Loading...
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/lsm_hooks.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
70 */
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
73{
74 struct user_namespace *ns = targ_ns;
75
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
81 /* Do we have the necessary capabilities? */
82 if (ns == cred->user_ns)
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
85 /*
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
88 */
89 if (ns->level <= cred->user_ns->level)
90 return -EPERM;
91
92 /*
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
95 */
96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 return 0;
98
99 /*
100 * If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
102 */
103 ns = ns->parent;
104 }
105
106 /* We never get here */
107}
108
109/**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
117int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
118{
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122}
123
124/**
125 * cap_ptrace_access_check - Determine whether the current process may access
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
133 * access is allowed.
134 * Else denied.
135 *
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
138 */
139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
140{
141 int ret = 0;
142 const struct cred *cred, *child_cred;
143 const kernel_cap_t *caller_caps;
144
145 rcu_read_lock();
146 cred = current_cred();
147 child_cred = __task_cred(child);
148 if (mode & PTRACE_MODE_FSCREDS)
149 caller_caps = &cred->cap_effective;
150 else
151 caller_caps = &cred->cap_permitted;
152 if (cred->user_ns == child_cred->user_ns &&
153 cap_issubset(child_cred->cap_permitted, *caller_caps))
154 goto out;
155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
156 goto out;
157 ret = -EPERM;
158out:
159 rcu_read_unlock();
160 return ret;
161}
162
163/**
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
166 *
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * access is allowed.
171 * Else denied.
172 *
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
175 */
176int cap_ptrace_traceme(struct task_struct *parent)
177{
178 int ret = 0;
179 const struct cred *cred, *child_cred;
180
181 rcu_read_lock();
182 cred = __task_cred(parent);
183 child_cred = current_cred();
184 if (cred->user_ns == child_cred->user_ns &&
185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 goto out;
187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
188 goto out;
189 ret = -EPERM;
190out:
191 rcu_read_unlock();
192 return ret;
193}
194
195/**
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
201 *
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
204 */
205int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 kernel_cap_t *inheritable, kernel_cap_t *permitted)
207{
208 const struct cred *cred;
209
210 /* Derived from kernel/capability.c:sys_capget. */
211 rcu_read_lock();
212 cred = __task_cred(target);
213 *effective = cred->cap_effective;
214 *inheritable = cred->cap_inheritable;
215 *permitted = cred->cap_permitted;
216 rcu_read_unlock();
217 return 0;
218}
219
220/*
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
223 */
224static inline int cap_inh_is_capped(void)
225{
226
227 /* they are so limited unless the current task has the CAP_SETPCAP
228 * capability
229 */
230 if (cap_capable(current_cred(), current_cred()->user_ns,
231 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
232 return 0;
233 return 1;
234}
235
236/**
237 * cap_capset - Validate and apply proposed changes to current's capabilities
238 * @new: The proposed new credentials; alterations should be made here
239 * @old: The current task's current credentials
240 * @effective: A pointer to the proposed new effective capabilities set
241 * @inheritable: A pointer to the proposed new inheritable capabilities set
242 * @permitted: A pointer to the proposed new permitted capabilities set
243 *
244 * This function validates and applies a proposed mass change to the current
245 * process's capability sets. The changes are made to the proposed new
246 * credentials, and assuming no error, will be committed by the caller of LSM.
247 */
248int cap_capset(struct cred *new,
249 const struct cred *old,
250 const kernel_cap_t *effective,
251 const kernel_cap_t *inheritable,
252 const kernel_cap_t *permitted)
253{
254 if (cap_inh_is_capped() &&
255 !cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_permitted)))
258 /* incapable of using this inheritable set */
259 return -EPERM;
260
261 if (!cap_issubset(*inheritable,
262 cap_combine(old->cap_inheritable,
263 old->cap_bset)))
264 /* no new pI capabilities outside bounding set */
265 return -EPERM;
266
267 /* verify restrictions on target's new Permitted set */
268 if (!cap_issubset(*permitted, old->cap_permitted))
269 return -EPERM;
270
271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
272 if (!cap_issubset(*effective, *permitted))
273 return -EPERM;
274
275 new->cap_effective = *effective;
276 new->cap_inheritable = *inheritable;
277 new->cap_permitted = *permitted;
278
279 /*
280 * Mask off ambient bits that are no longer both permitted and
281 * inheritable.
282 */
283 new->cap_ambient = cap_intersect(new->cap_ambient,
284 cap_intersect(*permitted,
285 *inheritable));
286 if (WARN_ON(!cap_ambient_invariant_ok(new)))
287 return -EINVAL;
288 return 0;
289}
290
291/**
292 * cap_inode_need_killpriv - Determine if inode change affects privileges
293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
294 *
295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296 * affects the security markings on that inode, and if it is, should
297 * inode_killpriv() be invoked or the change rejected.
298 *
299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
301 */
302int cap_inode_need_killpriv(struct dentry *dentry)
303{
304 struct inode *inode = d_backing_inode(dentry);
305 int error;
306
307 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
308 return error > 0;
309}
310
311/**
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
314 *
315 * Erase the privilege-enhancing security markings on an inode.
316 *
317 * Returns 0 if successful, -ve on error.
318 */
319int cap_inode_killpriv(struct dentry *dentry)
320{
321 int error;
322
323 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
324 if (error == -EOPNOTSUPP)
325 error = 0;
326 return error;
327}
328
329static bool rootid_owns_currentns(kuid_t kroot)
330{
331 struct user_namespace *ns;
332
333 if (!uid_valid(kroot))
334 return false;
335
336 for (ns = current_user_ns(); ; ns = ns->parent) {
337 if (from_kuid(ns, kroot) == 0)
338 return true;
339 if (ns == &init_user_ns)
340 break;
341 }
342
343 return false;
344}
345
346static __u32 sansflags(__u32 m)
347{
348 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
349}
350
351static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_2)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
356}
357
358static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
359{
360 if (size != XATTR_CAPS_SZ_3)
361 return false;
362 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
363}
364
365/*
366 * getsecurity: We are called for security.* before any attempt to read the
367 * xattr from the inode itself.
368 *
369 * This gives us a chance to read the on-disk value and convert it. If we
370 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
371 *
372 * Note we are not called by vfs_getxattr_alloc(), but that is only called
373 * by the integrity subsystem, which really wants the unconverted values -
374 * so that's good.
375 */
376int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
377 bool alloc)
378{
379 int size, ret;
380 kuid_t kroot;
381 uid_t root, mappedroot;
382 char *tmpbuf = NULL;
383 struct vfs_cap_data *cap;
384 struct vfs_ns_cap_data *nscap;
385 struct dentry *dentry;
386 struct user_namespace *fs_ns;
387
388 if (strcmp(name, "capability") != 0)
389 return -EOPNOTSUPP;
390
391 dentry = d_find_alias(inode);
392 if (!dentry)
393 return -EINVAL;
394
395 size = sizeof(struct vfs_ns_cap_data);
396 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
397 &tmpbuf, size, GFP_NOFS);
398 dput(dentry);
399
400 if (ret < 0)
401 return ret;
402
403 fs_ns = inode->i_sb->s_user_ns;
404 cap = (struct vfs_cap_data *) tmpbuf;
405 if (is_v2header((size_t) ret, cap)) {
406 /* If this is sizeof(vfs_cap_data) then we're ok with the
407 * on-disk value, so return that. */
408 if (alloc)
409 *buffer = tmpbuf;
410 else
411 kfree(tmpbuf);
412 return ret;
413 } else if (!is_v3header((size_t) ret, cap)) {
414 kfree(tmpbuf);
415 return -EINVAL;
416 }
417
418 nscap = (struct vfs_ns_cap_data *) tmpbuf;
419 root = le32_to_cpu(nscap->rootid);
420 kroot = make_kuid(fs_ns, root);
421
422 /* If the root kuid maps to a valid uid in current ns, then return
423 * this as a nscap. */
424 mappedroot = from_kuid(current_user_ns(), kroot);
425 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
426 if (alloc) {
427 *buffer = tmpbuf;
428 nscap->rootid = cpu_to_le32(mappedroot);
429 } else
430 kfree(tmpbuf);
431 return size;
432 }
433
434 if (!rootid_owns_currentns(kroot)) {
435 kfree(tmpbuf);
436 return -EOPNOTSUPP;
437 }
438
439 /* This comes from a parent namespace. Return as a v2 capability */
440 size = sizeof(struct vfs_cap_data);
441 if (alloc) {
442 *buffer = kmalloc(size, GFP_ATOMIC);
443 if (*buffer) {
444 struct vfs_cap_data *cap = *buffer;
445 __le32 nsmagic, magic;
446 magic = VFS_CAP_REVISION_2;
447 nsmagic = le32_to_cpu(nscap->magic_etc);
448 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
449 magic |= VFS_CAP_FLAGS_EFFECTIVE;
450 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
451 cap->magic_etc = cpu_to_le32(magic);
452 } else {
453 size = -ENOMEM;
454 }
455 }
456 kfree(tmpbuf);
457 return size;
458}
459
460static kuid_t rootid_from_xattr(const void *value, size_t size,
461 struct user_namespace *task_ns)
462{
463 const struct vfs_ns_cap_data *nscap = value;
464 uid_t rootid = 0;
465
466 if (size == XATTR_CAPS_SZ_3)
467 rootid = le32_to_cpu(nscap->rootid);
468
469 return make_kuid(task_ns, rootid);
470}
471
472static bool validheader(size_t size, const struct vfs_cap_data *cap)
473{
474 return is_v2header(size, cap) || is_v3header(size, cap);
475}
476
477/*
478 * User requested a write of security.capability. If needed, update the
479 * xattr to change from v2 to v3, or to fixup the v3 rootid.
480 *
481 * If all is ok, we return the new size, on error return < 0.
482 */
483int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
484{
485 struct vfs_ns_cap_data *nscap;
486 uid_t nsrootid;
487 const struct vfs_cap_data *cap = *ivalue;
488 __u32 magic, nsmagic;
489 struct inode *inode = d_backing_inode(dentry);
490 struct user_namespace *task_ns = current_user_ns(),
491 *fs_ns = inode->i_sb->s_user_ns;
492 kuid_t rootid;
493 size_t newsize;
494
495 if (!*ivalue)
496 return -EINVAL;
497 if (!validheader(size, cap))
498 return -EINVAL;
499 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
500 return -EPERM;
501 if (size == XATTR_CAPS_SZ_2)
502 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
503 /* user is privileged, just write the v2 */
504 return size;
505
506 rootid = rootid_from_xattr(*ivalue, size, task_ns);
507 if (!uid_valid(rootid))
508 return -EINVAL;
509
510 nsrootid = from_kuid(fs_ns, rootid);
511 if (nsrootid == -1)
512 return -EINVAL;
513
514 newsize = sizeof(struct vfs_ns_cap_data);
515 nscap = kmalloc(newsize, GFP_ATOMIC);
516 if (!nscap)
517 return -ENOMEM;
518 nscap->rootid = cpu_to_le32(nsrootid);
519 nsmagic = VFS_CAP_REVISION_3;
520 magic = le32_to_cpu(cap->magic_etc);
521 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
522 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
523 nscap->magic_etc = cpu_to_le32(nsmagic);
524 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
525
526 kvfree(*ivalue);
527 *ivalue = nscap;
528 return newsize;
529}
530
531/*
532 * Calculate the new process capability sets from the capability sets attached
533 * to a file.
534 */
535static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
536 struct linux_binprm *bprm,
537 bool *effective,
538 bool *has_fcap)
539{
540 struct cred *new = bprm->cred;
541 unsigned i;
542 int ret = 0;
543
544 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
545 *effective = true;
546
547 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
548 *has_fcap = true;
549
550 CAP_FOR_EACH_U32(i) {
551 __u32 permitted = caps->permitted.cap[i];
552 __u32 inheritable = caps->inheritable.cap[i];
553
554 /*
555 * pP' = (X & fP) | (pI & fI)
556 * The addition of pA' is handled later.
557 */
558 new->cap_permitted.cap[i] =
559 (new->cap_bset.cap[i] & permitted) |
560 (new->cap_inheritable.cap[i] & inheritable);
561
562 if (permitted & ~new->cap_permitted.cap[i])
563 /* insufficient to execute correctly */
564 ret = -EPERM;
565 }
566
567 /*
568 * For legacy apps, with no internal support for recognizing they
569 * do not have enough capabilities, we return an error if they are
570 * missing some "forced" (aka file-permitted) capabilities.
571 */
572 return *effective ? ret : 0;
573}
574
575/*
576 * Extract the on-exec-apply capability sets for an executable file.
577 */
578int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
579{
580 struct inode *inode = d_backing_inode(dentry);
581 __u32 magic_etc;
582 unsigned tocopy, i;
583 int size;
584 struct vfs_ns_cap_data data, *nscaps = &data;
585 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
586 kuid_t rootkuid;
587 struct user_namespace *fs_ns;
588
589 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
590
591 if (!inode)
592 return -ENODATA;
593
594 fs_ns = inode->i_sb->s_user_ns;
595 size = __vfs_getxattr((struct dentry *)dentry, inode,
596 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
597 if (size == -ENODATA || size == -EOPNOTSUPP)
598 /* no data, that's ok */
599 return -ENODATA;
600
601 if (size < 0)
602 return size;
603
604 if (size < sizeof(magic_etc))
605 return -EINVAL;
606
607 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
608
609 rootkuid = make_kuid(fs_ns, 0);
610 switch (magic_etc & VFS_CAP_REVISION_MASK) {
611 case VFS_CAP_REVISION_1:
612 if (size != XATTR_CAPS_SZ_1)
613 return -EINVAL;
614 tocopy = VFS_CAP_U32_1;
615 break;
616 case VFS_CAP_REVISION_2:
617 if (size != XATTR_CAPS_SZ_2)
618 return -EINVAL;
619 tocopy = VFS_CAP_U32_2;
620 break;
621 case VFS_CAP_REVISION_3:
622 if (size != XATTR_CAPS_SZ_3)
623 return -EINVAL;
624 tocopy = VFS_CAP_U32_3;
625 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
626 break;
627
628 default:
629 return -EINVAL;
630 }
631 /* Limit the caps to the mounter of the filesystem
632 * or the more limited uid specified in the xattr.
633 */
634 if (!rootid_owns_currentns(rootkuid))
635 return -ENODATA;
636
637 CAP_FOR_EACH_U32(i) {
638 if (i >= tocopy)
639 break;
640 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
641 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
642 }
643
644 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
646
647 return 0;
648}
649
650/*
651 * Attempt to get the on-exec apply capability sets for an executable file from
652 * its xattrs and, if present, apply them to the proposed credentials being
653 * constructed by execve().
654 */
655static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
656{
657 int rc = 0;
658 struct cpu_vfs_cap_data vcaps;
659
660 cap_clear(bprm->cred->cap_permitted);
661
662 if (!file_caps_enabled)
663 return 0;
664
665 if (!mnt_may_suid(bprm->file->f_path.mnt))
666 return 0;
667
668 /*
669 * This check is redundant with mnt_may_suid() but is kept to make
670 * explicit that capability bits are limited to s_user_ns and its
671 * descendants.
672 */
673 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
674 return 0;
675
676 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
677 if (rc < 0) {
678 if (rc == -EINVAL)
679 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
680 bprm->filename);
681 else if (rc == -ENODATA)
682 rc = 0;
683 goto out;
684 }
685
686 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
687 if (rc == -EINVAL)
688 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
689 __func__, rc, bprm->filename);
690
691out:
692 if (rc)
693 cap_clear(bprm->cred->cap_permitted);
694
695 return rc;
696}
697
698static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
699
700static inline bool __is_real(kuid_t uid, struct cred *cred)
701{ return uid_eq(cred->uid, uid); }
702
703static inline bool __is_eff(kuid_t uid, struct cred *cred)
704{ return uid_eq(cred->euid, uid); }
705
706static inline bool __is_suid(kuid_t uid, struct cred *cred)
707{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
708
709/*
710 * handle_privileged_root - Handle case of privileged root
711 * @bprm: The execution parameters, including the proposed creds
712 * @has_fcap: Are any file capabilities set?
713 * @effective: Do we have effective root privilege?
714 * @root_uid: This namespace' root UID WRT initial USER namespace
715 *
716 * Handle the case where root is privileged and hasn't been neutered by
717 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
718 * set UID root and nothing is changed. If we are root, cap_permitted is
719 * updated. If we have become set UID root, the effective bit is set.
720 */
721static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
722 bool *effective, kuid_t root_uid)
723{
724 const struct cred *old = current_cred();
725 struct cred *new = bprm->cred;
726
727 if (!root_privileged())
728 return;
729 /*
730 * If the legacy file capability is set, then don't set privs
731 * for a setuid root binary run by a non-root user. Do set it
732 * for a root user just to cause least surprise to an admin.
733 */
734 if (has_fcap && __is_suid(root_uid, new)) {
735 warn_setuid_and_fcaps_mixed(bprm->filename);
736 return;
737 }
738 /*
739 * To support inheritance of root-permissions and suid-root
740 * executables under compatibility mode, we override the
741 * capability sets for the file.
742 */
743 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
744 /* pP' = (cap_bset & ~0) | (pI & ~0) */
745 new->cap_permitted = cap_combine(old->cap_bset,
746 old->cap_inheritable);
747 }
748 /*
749 * If only the real uid is 0, we do not set the effective bit.
750 */
751 if (__is_eff(root_uid, new))
752 *effective = true;
753}
754
755#define __cap_gained(field, target, source) \
756 !cap_issubset(target->cap_##field, source->cap_##field)
757#define __cap_grew(target, source, cred) \
758 !cap_issubset(cred->cap_##target, cred->cap_##source)
759#define __cap_full(field, cred) \
760 cap_issubset(CAP_FULL_SET, cred->cap_##field)
761
762static inline bool __is_setuid(struct cred *new, const struct cred *old)
763{ return !uid_eq(new->euid, old->uid); }
764
765static inline bool __is_setgid(struct cred *new, const struct cred *old)
766{ return !gid_eq(new->egid, old->gid); }
767
768/*
769 * 1) Audit candidate if current->cap_effective is set
770 *
771 * We do not bother to audit if 3 things are true:
772 * 1) cap_effective has all caps
773 * 2) we became root *OR* are were already root
774 * 3) root is supposed to have all caps (SECURE_NOROOT)
775 * Since this is just a normal root execing a process.
776 *
777 * Number 1 above might fail if you don't have a full bset, but I think
778 * that is interesting information to audit.
779 *
780 * A number of other conditions require logging:
781 * 2) something prevented setuid root getting all caps
782 * 3) non-setuid root gets fcaps
783 * 4) non-setuid root gets ambient
784 */
785static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
786 kuid_t root, bool has_fcap)
787{
788 bool ret = false;
789
790 if ((__cap_grew(effective, ambient, new) &&
791 !(__cap_full(effective, new) &&
792 (__is_eff(root, new) || __is_real(root, new)) &&
793 root_privileged())) ||
794 (root_privileged() &&
795 __is_suid(root, new) &&
796 !__cap_full(effective, new)) ||
797 (!__is_setuid(new, old) &&
798 ((has_fcap &&
799 __cap_gained(permitted, new, old)) ||
800 __cap_gained(ambient, new, old))))
801
802 ret = true;
803
804 return ret;
805}
806
807/**
808 * cap_bprm_set_creds - Set up the proposed credentials for execve().
809 * @bprm: The execution parameters, including the proposed creds
810 *
811 * Set up the proposed credentials for a new execution context being
812 * constructed by execve(). The proposed creds in @bprm->cred is altered,
813 * which won't take effect immediately. Returns 0 if successful, -ve on error.
814 */
815int cap_bprm_set_creds(struct linux_binprm *bprm)
816{
817 const struct cred *old = current_cred();
818 struct cred *new = bprm->cred;
819 bool effective = false, has_fcap = false, is_setid;
820 int ret;
821 kuid_t root_uid;
822
823 if (WARN_ON(!cap_ambient_invariant_ok(old)))
824 return -EPERM;
825
826 ret = get_file_caps(bprm, &effective, &has_fcap);
827 if (ret < 0)
828 return ret;
829
830 root_uid = make_kuid(new->user_ns, 0);
831
832 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
833
834 /* if we have fs caps, clear dangerous personality flags */
835 if (__cap_gained(permitted, new, old))
836 bprm->per_clear |= PER_CLEAR_ON_SETID;
837
838 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
839 * credentials unless they have the appropriate permit.
840 *
841 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
842 */
843 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
844
845 if ((is_setid || __cap_gained(permitted, new, old)) &&
846 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
847 !ptracer_capable(current, new->user_ns))) {
848 /* downgrade; they get no more than they had, and maybe less */
849 if (!ns_capable(new->user_ns, CAP_SETUID) ||
850 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
851 new->euid = new->uid;
852 new->egid = new->gid;
853 }
854 new->cap_permitted = cap_intersect(new->cap_permitted,
855 old->cap_permitted);
856 }
857
858 new->suid = new->fsuid = new->euid;
859 new->sgid = new->fsgid = new->egid;
860
861 /* File caps or setid cancels ambient. */
862 if (has_fcap || is_setid)
863 cap_clear(new->cap_ambient);
864
865 /*
866 * Now that we've computed pA', update pP' to give:
867 * pP' = (X & fP) | (pI & fI) | pA'
868 */
869 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
870
871 /*
872 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
873 * this is the same as pE' = (fE ? pP' : 0) | pA'.
874 */
875 if (effective)
876 new->cap_effective = new->cap_permitted;
877 else
878 new->cap_effective = new->cap_ambient;
879
880 if (WARN_ON(!cap_ambient_invariant_ok(new)))
881 return -EPERM;
882
883 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
884 ret = audit_log_bprm_fcaps(bprm, new, old);
885 if (ret < 0)
886 return ret;
887 }
888
889 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
890
891 if (WARN_ON(!cap_ambient_invariant_ok(new)))
892 return -EPERM;
893
894 /* Check for privilege-elevated exec. */
895 bprm->cap_elevated = 0;
896 if (is_setid ||
897 (!__is_real(root_uid, new) &&
898 (effective ||
899 __cap_grew(permitted, ambient, new))))
900 bprm->cap_elevated = 1;
901
902 return 0;
903}
904
905/**
906 * cap_inode_setxattr - Determine whether an xattr may be altered
907 * @dentry: The inode/dentry being altered
908 * @name: The name of the xattr to be changed
909 * @value: The value that the xattr will be changed to
910 * @size: The size of value
911 * @flags: The replacement flag
912 *
913 * Determine whether an xattr may be altered or set on an inode, returning 0 if
914 * permission is granted, -ve if denied.
915 *
916 * This is used to make sure security xattrs don't get updated or set by those
917 * who aren't privileged to do so.
918 */
919int cap_inode_setxattr(struct dentry *dentry, const char *name,
920 const void *value, size_t size, int flags)
921{
922 /* Ignore non-security xattrs */
923 if (strncmp(name, XATTR_SECURITY_PREFIX,
924 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
925 return 0;
926
927 /*
928 * For XATTR_NAME_CAPS the check will be done in
929 * cap_convert_nscap(), called by setxattr()
930 */
931 if (strcmp(name, XATTR_NAME_CAPS) == 0)
932 return 0;
933
934 if (!capable(CAP_SYS_ADMIN))
935 return -EPERM;
936 return 0;
937}
938
939/**
940 * cap_inode_removexattr - Determine whether an xattr may be removed
941 * @dentry: The inode/dentry being altered
942 * @name: The name of the xattr to be changed
943 *
944 * Determine whether an xattr may be removed from an inode, returning 0 if
945 * permission is granted, -ve if denied.
946 *
947 * This is used to make sure security xattrs don't get removed by those who
948 * aren't privileged to remove them.
949 */
950int cap_inode_removexattr(struct dentry *dentry, const char *name)
951{
952 /* Ignore non-security xattrs */
953 if (strncmp(name, XATTR_SECURITY_PREFIX,
954 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
955 return 0;
956
957 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
958 /* security.capability gets namespaced */
959 struct inode *inode = d_backing_inode(dentry);
960 if (!inode)
961 return -EINVAL;
962 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
963 return -EPERM;
964 return 0;
965 }
966
967 if (!capable(CAP_SYS_ADMIN))
968 return -EPERM;
969 return 0;
970}
971
972/*
973 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
974 * a process after a call to setuid, setreuid, or setresuid.
975 *
976 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
977 * {r,e,s}uid != 0, the permitted and effective capabilities are
978 * cleared.
979 *
980 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
981 * capabilities of the process are cleared.
982 *
983 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
984 * capabilities are set to the permitted capabilities.
985 *
986 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
987 * never happen.
988 *
989 * -astor
990 *
991 * cevans - New behaviour, Oct '99
992 * A process may, via prctl(), elect to keep its capabilities when it
993 * calls setuid() and switches away from uid==0. Both permitted and
994 * effective sets will be retained.
995 * Without this change, it was impossible for a daemon to drop only some
996 * of its privilege. The call to setuid(!=0) would drop all privileges!
997 * Keeping uid 0 is not an option because uid 0 owns too many vital
998 * files..
999 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1000 */
1001static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1002{
1003 kuid_t root_uid = make_kuid(old->user_ns, 0);
1004
1005 if ((uid_eq(old->uid, root_uid) ||
1006 uid_eq(old->euid, root_uid) ||
1007 uid_eq(old->suid, root_uid)) &&
1008 (!uid_eq(new->uid, root_uid) &&
1009 !uid_eq(new->euid, root_uid) &&
1010 !uid_eq(new->suid, root_uid))) {
1011 if (!issecure(SECURE_KEEP_CAPS)) {
1012 cap_clear(new->cap_permitted);
1013 cap_clear(new->cap_effective);
1014 }
1015
1016 /*
1017 * Pre-ambient programs expect setresuid to nonroot followed
1018 * by exec to drop capabilities. We should make sure that
1019 * this remains the case.
1020 */
1021 cap_clear(new->cap_ambient);
1022 }
1023 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1024 cap_clear(new->cap_effective);
1025 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1026 new->cap_effective = new->cap_permitted;
1027}
1028
1029/**
1030 * cap_task_fix_setuid - Fix up the results of setuid() call
1031 * @new: The proposed credentials
1032 * @old: The current task's current credentials
1033 * @flags: Indications of what has changed
1034 *
1035 * Fix up the results of setuid() call before the credential changes are
1036 * actually applied, returning 0 to grant the changes, -ve to deny them.
1037 */
1038int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1039{
1040 switch (flags) {
1041 case LSM_SETID_RE:
1042 case LSM_SETID_ID:
1043 case LSM_SETID_RES:
1044 /* juggle the capabilities to follow [RES]UID changes unless
1045 * otherwise suppressed */
1046 if (!issecure(SECURE_NO_SETUID_FIXUP))
1047 cap_emulate_setxuid(new, old);
1048 break;
1049
1050 case LSM_SETID_FS:
1051 /* juggle the capabilties to follow FSUID changes, unless
1052 * otherwise suppressed
1053 *
1054 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1055 * if not, we might be a bit too harsh here.
1056 */
1057 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1058 kuid_t root_uid = make_kuid(old->user_ns, 0);
1059 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1060 new->cap_effective =
1061 cap_drop_fs_set(new->cap_effective);
1062
1063 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1064 new->cap_effective =
1065 cap_raise_fs_set(new->cap_effective,
1066 new->cap_permitted);
1067 }
1068 break;
1069
1070 default:
1071 return -EINVAL;
1072 }
1073
1074 return 0;
1075}
1076
1077/*
1078 * Rationale: code calling task_setscheduler, task_setioprio, and
1079 * task_setnice, assumes that
1080 * . if capable(cap_sys_nice), then those actions should be allowed
1081 * . if not capable(cap_sys_nice), but acting on your own processes,
1082 * then those actions should be allowed
1083 * This is insufficient now since you can call code without suid, but
1084 * yet with increased caps.
1085 * So we check for increased caps on the target process.
1086 */
1087static int cap_safe_nice(struct task_struct *p)
1088{
1089 int is_subset, ret = 0;
1090
1091 rcu_read_lock();
1092 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1093 current_cred()->cap_permitted);
1094 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1095 ret = -EPERM;
1096 rcu_read_unlock();
1097
1098 return ret;
1099}
1100
1101/**
1102 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1103 * @p: The task to affect
1104 *
1105 * Detemine if the requested scheduler policy change is permitted for the
1106 * specified task, returning 0 if permission is granted, -ve if denied.
1107 */
1108int cap_task_setscheduler(struct task_struct *p)
1109{
1110 return cap_safe_nice(p);
1111}
1112
1113/**
1114 * cap_task_ioprio - Detemine if I/O priority change is permitted
1115 * @p: The task to affect
1116 * @ioprio: The I/O priority to set
1117 *
1118 * Detemine if the requested I/O priority change is permitted for the specified
1119 * task, returning 0 if permission is granted, -ve if denied.
1120 */
1121int cap_task_setioprio(struct task_struct *p, int ioprio)
1122{
1123 return cap_safe_nice(p);
1124}
1125
1126/**
1127 * cap_task_ioprio - Detemine if task priority change is permitted
1128 * @p: The task to affect
1129 * @nice: The nice value to set
1130 *
1131 * Detemine if the requested task priority change is permitted for the
1132 * specified task, returning 0 if permission is granted, -ve if denied.
1133 */
1134int cap_task_setnice(struct task_struct *p, int nice)
1135{
1136 return cap_safe_nice(p);
1137}
1138
1139/*
1140 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1141 * the current task's bounding set. Returns 0 on success, -ve on error.
1142 */
1143static int cap_prctl_drop(unsigned long cap)
1144{
1145 struct cred *new;
1146
1147 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1148 return -EPERM;
1149 if (!cap_valid(cap))
1150 return -EINVAL;
1151
1152 new = prepare_creds();
1153 if (!new)
1154 return -ENOMEM;
1155 cap_lower(new->cap_bset, cap);
1156 return commit_creds(new);
1157}
1158
1159/**
1160 * cap_task_prctl - Implement process control functions for this security module
1161 * @option: The process control function requested
1162 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1163 *
1164 * Allow process control functions (sys_prctl()) to alter capabilities; may
1165 * also deny access to other functions not otherwise implemented here.
1166 *
1167 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1168 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1169 * modules will consider performing the function.
1170 */
1171int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1172 unsigned long arg4, unsigned long arg5)
1173{
1174 const struct cred *old = current_cred();
1175 struct cred *new;
1176
1177 switch (option) {
1178 case PR_CAPBSET_READ:
1179 if (!cap_valid(arg2))
1180 return -EINVAL;
1181 return !!cap_raised(old->cap_bset, arg2);
1182
1183 case PR_CAPBSET_DROP:
1184 return cap_prctl_drop(arg2);
1185
1186 /*
1187 * The next four prctl's remain to assist with transitioning a
1188 * system from legacy UID=0 based privilege (when filesystem
1189 * capabilities are not in use) to a system using filesystem
1190 * capabilities only - as the POSIX.1e draft intended.
1191 *
1192 * Note:
1193 *
1194 * PR_SET_SECUREBITS =
1195 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1196 * | issecure_mask(SECURE_NOROOT)
1197 * | issecure_mask(SECURE_NOROOT_LOCKED)
1198 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1199 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1200 *
1201 * will ensure that the current process and all of its
1202 * children will be locked into a pure
1203 * capability-based-privilege environment.
1204 */
1205 case PR_SET_SECUREBITS:
1206 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1207 & (old->securebits ^ arg2)) /*[1]*/
1208 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1209 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1210 || (cap_capable(current_cred(),
1211 current_cred()->user_ns, CAP_SETPCAP,
1212 SECURITY_CAP_AUDIT) != 0) /*[4]*/
1213 /*
1214 * [1] no changing of bits that are locked
1215 * [2] no unlocking of locks
1216 * [3] no setting of unsupported bits
1217 * [4] doing anything requires privilege (go read about
1218 * the "sendmail capabilities bug")
1219 */
1220 )
1221 /* cannot change a locked bit */
1222 return -EPERM;
1223
1224 new = prepare_creds();
1225 if (!new)
1226 return -ENOMEM;
1227 new->securebits = arg2;
1228 return commit_creds(new);
1229
1230 case PR_GET_SECUREBITS:
1231 return old->securebits;
1232
1233 case PR_GET_KEEPCAPS:
1234 return !!issecure(SECURE_KEEP_CAPS);
1235
1236 case PR_SET_KEEPCAPS:
1237 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1238 return -EINVAL;
1239 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1240 return -EPERM;
1241
1242 new = prepare_creds();
1243 if (!new)
1244 return -ENOMEM;
1245 if (arg2)
1246 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1247 else
1248 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1249 return commit_creds(new);
1250
1251 case PR_CAP_AMBIENT:
1252 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1253 if (arg3 | arg4 | arg5)
1254 return -EINVAL;
1255
1256 new = prepare_creds();
1257 if (!new)
1258 return -ENOMEM;
1259 cap_clear(new->cap_ambient);
1260 return commit_creds(new);
1261 }
1262
1263 if (((!cap_valid(arg3)) | arg4 | arg5))
1264 return -EINVAL;
1265
1266 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1267 return !!cap_raised(current_cred()->cap_ambient, arg3);
1268 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1269 arg2 != PR_CAP_AMBIENT_LOWER) {
1270 return -EINVAL;
1271 } else {
1272 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1273 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1274 !cap_raised(current_cred()->cap_inheritable,
1275 arg3) ||
1276 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1277 return -EPERM;
1278
1279 new = prepare_creds();
1280 if (!new)
1281 return -ENOMEM;
1282 if (arg2 == PR_CAP_AMBIENT_RAISE)
1283 cap_raise(new->cap_ambient, arg3);
1284 else
1285 cap_lower(new->cap_ambient, arg3);
1286 return commit_creds(new);
1287 }
1288
1289 default:
1290 /* No functionality available - continue with default */
1291 return -ENOSYS;
1292 }
1293}
1294
1295/**
1296 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1297 * @mm: The VM space in which the new mapping is to be made
1298 * @pages: The size of the mapping
1299 *
1300 * Determine whether the allocation of a new virtual mapping by the current
1301 * task is permitted, returning 1 if permission is granted, 0 if not.
1302 */
1303int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1304{
1305 int cap_sys_admin = 0;
1306
1307 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1308 SECURITY_CAP_NOAUDIT) == 0)
1309 cap_sys_admin = 1;
1310 return cap_sys_admin;
1311}
1312
1313/*
1314 * cap_mmap_addr - check if able to map given addr
1315 * @addr: address attempting to be mapped
1316 *
1317 * If the process is attempting to map memory below dac_mmap_min_addr they need
1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1319 * capability security module. Returns 0 if this mapping should be allowed
1320 * -EPERM if not.
1321 */
1322int cap_mmap_addr(unsigned long addr)
1323{
1324 int ret = 0;
1325
1326 if (addr < dac_mmap_min_addr) {
1327 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1328 SECURITY_CAP_AUDIT);
1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1330 if (ret == 0)
1331 current->flags |= PF_SUPERPRIV;
1332 }
1333 return ret;
1334}
1335
1336int cap_mmap_file(struct file *file, unsigned long reqprot,
1337 unsigned long prot, unsigned long flags)
1338{
1339 return 0;
1340}
1341
1342#ifdef CONFIG_SECURITY
1343
1344struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1345 LSM_HOOK_INIT(capable, cap_capable),
1346 LSM_HOOK_INIT(settime, cap_settime),
1347 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1348 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1349 LSM_HOOK_INIT(capget, cap_capget),
1350 LSM_HOOK_INIT(capset, cap_capset),
1351 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1352 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1353 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1354 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1355 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1356 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1357 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1358 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1359 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1360 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1361 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1362 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1363};
1364
1365void __init capability_add_hooks(void)
1366{
1367 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1368 "capability");
1369}
1370
1371#endif /* CONFIG_SECURITY */
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/lsm_hooks.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
70 */
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
73{
74 struct user_namespace *ns = targ_ns;
75
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
81 /* Do we have the necessary capabilities? */
82 if (ns == cred->user_ns)
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
85 /* Have we tried all of the parent namespaces? */
86 if (ns == &init_user_ns)
87 return -EPERM;
88
89 /*
90 * The owner of the user namespace in the parent of the
91 * user namespace has all caps.
92 */
93 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
94 return 0;
95
96 /*
97 * If you have a capability in a parent user ns, then you have
98 * it over all children user namespaces as well.
99 */
100 ns = ns->parent;
101 }
102
103 /* We never get here */
104}
105
106/**
107 * cap_settime - Determine whether the current process may set the system clock
108 * @ts: The time to set
109 * @tz: The timezone to set
110 *
111 * Determine whether the current process may set the system clock and timezone
112 * information, returning 0 if permission granted, -ve if denied.
113 */
114int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
115{
116 if (!capable(CAP_SYS_TIME))
117 return -EPERM;
118 return 0;
119}
120
121/**
122 * cap_ptrace_access_check - Determine whether the current process may access
123 * another
124 * @child: The process to be accessed
125 * @mode: The mode of attachment.
126 *
127 * If we are in the same or an ancestor user_ns and have all the target
128 * task's capabilities, then ptrace access is allowed.
129 * If we have the ptrace capability to the target user_ns, then ptrace
130 * access is allowed.
131 * Else denied.
132 *
133 * Determine whether a process may access another, returning 0 if permission
134 * granted, -ve if denied.
135 */
136int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
137{
138 int ret = 0;
139 const struct cred *cred, *child_cred;
140 const kernel_cap_t *caller_caps;
141
142 rcu_read_lock();
143 cred = current_cred();
144 child_cred = __task_cred(child);
145 if (mode & PTRACE_MODE_FSCREDS)
146 caller_caps = &cred->cap_effective;
147 else
148 caller_caps = &cred->cap_permitted;
149 if (cred->user_ns == child_cred->user_ns &&
150 cap_issubset(child_cred->cap_permitted, *caller_caps))
151 goto out;
152 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
153 goto out;
154 ret = -EPERM;
155out:
156 rcu_read_unlock();
157 return ret;
158}
159
160/**
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
163 *
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
167 * access is allowed.
168 * Else denied.
169 *
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
172 */
173int cap_ptrace_traceme(struct task_struct *parent)
174{
175 int ret = 0;
176 const struct cred *cred, *child_cred;
177
178 rcu_read_lock();
179 cred = __task_cred(parent);
180 child_cred = current_cred();
181 if (cred->user_ns == child_cred->user_ns &&
182 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
183 goto out;
184 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
185 goto out;
186 ret = -EPERM;
187out:
188 rcu_read_unlock();
189 return ret;
190}
191
192/**
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
198 *
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
201 */
202int cap_capget(struct task_struct *target, kernel_cap_t *effective,
203 kernel_cap_t *inheritable, kernel_cap_t *permitted)
204{
205 const struct cred *cred;
206
207 /* Derived from kernel/capability.c:sys_capget. */
208 rcu_read_lock();
209 cred = __task_cred(target);
210 *effective = cred->cap_effective;
211 *inheritable = cred->cap_inheritable;
212 *permitted = cred->cap_permitted;
213 rcu_read_unlock();
214 return 0;
215}
216
217/*
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 */
221static inline int cap_inh_is_capped(void)
222{
223
224 /* they are so limited unless the current task has the CAP_SETPCAP
225 * capability
226 */
227 if (cap_capable(current_cred(), current_cred()->user_ns,
228 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
231}
232
233/**
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
240 *
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
244 */
245int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
250{
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
257
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
263
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
267
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
271
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275
276 /*
277 * Mask off ambient bits that are no longer both permitted and
278 * inheritable.
279 */
280 new->cap_ambient = cap_intersect(new->cap_ambient,
281 cap_intersect(*permitted,
282 *inheritable));
283 if (WARN_ON(!cap_ambient_invariant_ok(new)))
284 return -EINVAL;
285 return 0;
286}
287
288/*
289 * Clear proposed capability sets for execve().
290 */
291static inline void bprm_clear_caps(struct linux_binprm *bprm)
292{
293 cap_clear(bprm->cred->cap_permitted);
294 bprm->cap_effective = false;
295}
296
297/**
298 * cap_inode_need_killpriv - Determine if inode change affects privileges
299 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
300 *
301 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
302 * affects the security markings on that inode, and if it is, should
303 * inode_killpriv() be invoked or the change rejected?
304 *
305 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
306 * -ve to deny the change.
307 */
308int cap_inode_need_killpriv(struct dentry *dentry)
309{
310 struct inode *inode = d_backing_inode(dentry);
311 int error;
312
313 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
314 return error > 0;
315}
316
317/**
318 * cap_inode_killpriv - Erase the security markings on an inode
319 * @dentry: The inode/dentry to alter
320 *
321 * Erase the privilege-enhancing security markings on an inode.
322 *
323 * Returns 0 if successful, -ve on error.
324 */
325int cap_inode_killpriv(struct dentry *dentry)
326{
327 int error;
328
329 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
330 if (error == -EOPNOTSUPP)
331 error = 0;
332 return error;
333}
334
335/*
336 * Calculate the new process capability sets from the capability sets attached
337 * to a file.
338 */
339static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
340 struct linux_binprm *bprm,
341 bool *effective,
342 bool *has_cap)
343{
344 struct cred *new = bprm->cred;
345 unsigned i;
346 int ret = 0;
347
348 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
349 *effective = true;
350
351 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
352 *has_cap = true;
353
354 CAP_FOR_EACH_U32(i) {
355 __u32 permitted = caps->permitted.cap[i];
356 __u32 inheritable = caps->inheritable.cap[i];
357
358 /*
359 * pP' = (X & fP) | (pI & fI)
360 * The addition of pA' is handled later.
361 */
362 new->cap_permitted.cap[i] =
363 (new->cap_bset.cap[i] & permitted) |
364 (new->cap_inheritable.cap[i] & inheritable);
365
366 if (permitted & ~new->cap_permitted.cap[i])
367 /* insufficient to execute correctly */
368 ret = -EPERM;
369 }
370
371 /*
372 * For legacy apps, with no internal support for recognizing they
373 * do not have enough capabilities, we return an error if they are
374 * missing some "forced" (aka file-permitted) capabilities.
375 */
376 return *effective ? ret : 0;
377}
378
379/*
380 * Extract the on-exec-apply capability sets for an executable file.
381 */
382int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
383{
384 struct inode *inode = d_backing_inode(dentry);
385 __u32 magic_etc;
386 unsigned tocopy, i;
387 int size;
388 struct vfs_cap_data caps;
389
390 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
391
392 if (!inode)
393 return -ENODATA;
394
395 size = __vfs_getxattr((struct dentry *)dentry, inode,
396 XATTR_NAME_CAPS, &caps, XATTR_CAPS_SZ);
397 if (size == -ENODATA || size == -EOPNOTSUPP)
398 /* no data, that's ok */
399 return -ENODATA;
400 if (size < 0)
401 return size;
402
403 if (size < sizeof(magic_etc))
404 return -EINVAL;
405
406 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
407
408 switch (magic_etc & VFS_CAP_REVISION_MASK) {
409 case VFS_CAP_REVISION_1:
410 if (size != XATTR_CAPS_SZ_1)
411 return -EINVAL;
412 tocopy = VFS_CAP_U32_1;
413 break;
414 case VFS_CAP_REVISION_2:
415 if (size != XATTR_CAPS_SZ_2)
416 return -EINVAL;
417 tocopy = VFS_CAP_U32_2;
418 break;
419 default:
420 return -EINVAL;
421 }
422
423 CAP_FOR_EACH_U32(i) {
424 if (i >= tocopy)
425 break;
426 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
427 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
428 }
429
430 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
431 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
432
433 return 0;
434}
435
436/*
437 * Attempt to get the on-exec apply capability sets for an executable file from
438 * its xattrs and, if present, apply them to the proposed credentials being
439 * constructed by execve().
440 */
441static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
442{
443 int rc = 0;
444 struct cpu_vfs_cap_data vcaps;
445
446 bprm_clear_caps(bprm);
447
448 if (!file_caps_enabled)
449 return 0;
450
451 if (!mnt_may_suid(bprm->file->f_path.mnt))
452 return 0;
453
454 /*
455 * This check is redundant with mnt_may_suid() but is kept to make
456 * explicit that capability bits are limited to s_user_ns and its
457 * descendants.
458 */
459 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
460 return 0;
461
462 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
463 if (rc < 0) {
464 if (rc == -EINVAL)
465 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
466 __func__, rc, bprm->filename);
467 else if (rc == -ENODATA)
468 rc = 0;
469 goto out;
470 }
471
472 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
473 if (rc == -EINVAL)
474 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
475 __func__, rc, bprm->filename);
476
477out:
478 if (rc)
479 bprm_clear_caps(bprm);
480
481 return rc;
482}
483
484/**
485 * cap_bprm_set_creds - Set up the proposed credentials for execve().
486 * @bprm: The execution parameters, including the proposed creds
487 *
488 * Set up the proposed credentials for a new execution context being
489 * constructed by execve(). The proposed creds in @bprm->cred is altered,
490 * which won't take effect immediately. Returns 0 if successful, -ve on error.
491 */
492int cap_bprm_set_creds(struct linux_binprm *bprm)
493{
494 const struct cred *old = current_cred();
495 struct cred *new = bprm->cred;
496 bool effective, has_cap = false, is_setid;
497 int ret;
498 kuid_t root_uid;
499
500 if (WARN_ON(!cap_ambient_invariant_ok(old)))
501 return -EPERM;
502
503 effective = false;
504 ret = get_file_caps(bprm, &effective, &has_cap);
505 if (ret < 0)
506 return ret;
507
508 root_uid = make_kuid(new->user_ns, 0);
509
510 if (!issecure(SECURE_NOROOT)) {
511 /*
512 * If the legacy file capability is set, then don't set privs
513 * for a setuid root binary run by a non-root user. Do set it
514 * for a root user just to cause least surprise to an admin.
515 */
516 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
517 warn_setuid_and_fcaps_mixed(bprm->filename);
518 goto skip;
519 }
520 /*
521 * To support inheritance of root-permissions and suid-root
522 * executables under compatibility mode, we override the
523 * capability sets for the file.
524 *
525 * If only the real uid is 0, we do not set the effective bit.
526 */
527 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
528 /* pP' = (cap_bset & ~0) | (pI & ~0) */
529 new->cap_permitted = cap_combine(old->cap_bset,
530 old->cap_inheritable);
531 }
532 if (uid_eq(new->euid, root_uid))
533 effective = true;
534 }
535skip:
536
537 /* if we have fs caps, clear dangerous personality flags */
538 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
539 bprm->per_clear |= PER_CLEAR_ON_SETID;
540
541
542 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
543 * credentials unless they have the appropriate permit.
544 *
545 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
546 */
547 is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
548
549 if ((is_setid ||
550 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
551 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
552 /* downgrade; they get no more than they had, and maybe less */
553 if (!capable(CAP_SETUID) ||
554 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
555 new->euid = new->uid;
556 new->egid = new->gid;
557 }
558 new->cap_permitted = cap_intersect(new->cap_permitted,
559 old->cap_permitted);
560 }
561
562 new->suid = new->fsuid = new->euid;
563 new->sgid = new->fsgid = new->egid;
564
565 /* File caps or setid cancels ambient. */
566 if (has_cap || is_setid)
567 cap_clear(new->cap_ambient);
568
569 /*
570 * Now that we've computed pA', update pP' to give:
571 * pP' = (X & fP) | (pI & fI) | pA'
572 */
573 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
574
575 /*
576 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
577 * this is the same as pE' = (fE ? pP' : 0) | pA'.
578 */
579 if (effective)
580 new->cap_effective = new->cap_permitted;
581 else
582 new->cap_effective = new->cap_ambient;
583
584 if (WARN_ON(!cap_ambient_invariant_ok(new)))
585 return -EPERM;
586
587 bprm->cap_effective = effective;
588
589 /*
590 * Audit candidate if current->cap_effective is set
591 *
592 * We do not bother to audit if 3 things are true:
593 * 1) cap_effective has all caps
594 * 2) we are root
595 * 3) root is supposed to have all caps (SECURE_NOROOT)
596 * Since this is just a normal root execing a process.
597 *
598 * Number 1 above might fail if you don't have a full bset, but I think
599 * that is interesting information to audit.
600 */
601 if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
602 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
603 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
604 issecure(SECURE_NOROOT)) {
605 ret = audit_log_bprm_fcaps(bprm, new, old);
606 if (ret < 0)
607 return ret;
608 }
609 }
610
611 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
612
613 if (WARN_ON(!cap_ambient_invariant_ok(new)))
614 return -EPERM;
615
616 return 0;
617}
618
619/**
620 * cap_bprm_secureexec - Determine whether a secure execution is required
621 * @bprm: The execution parameters
622 *
623 * Determine whether a secure execution is required, return 1 if it is, and 0
624 * if it is not.
625 *
626 * The credentials have been committed by this point, and so are no longer
627 * available through @bprm->cred.
628 */
629int cap_bprm_secureexec(struct linux_binprm *bprm)
630{
631 const struct cred *cred = current_cred();
632 kuid_t root_uid = make_kuid(cred->user_ns, 0);
633
634 if (!uid_eq(cred->uid, root_uid)) {
635 if (bprm->cap_effective)
636 return 1;
637 if (!cap_issubset(cred->cap_permitted, cred->cap_ambient))
638 return 1;
639 }
640
641 return (!uid_eq(cred->euid, cred->uid) ||
642 !gid_eq(cred->egid, cred->gid));
643}
644
645/**
646 * cap_inode_setxattr - Determine whether an xattr may be altered
647 * @dentry: The inode/dentry being altered
648 * @name: The name of the xattr to be changed
649 * @value: The value that the xattr will be changed to
650 * @size: The size of value
651 * @flags: The replacement flag
652 *
653 * Determine whether an xattr may be altered or set on an inode, returning 0 if
654 * permission is granted, -ve if denied.
655 *
656 * This is used to make sure security xattrs don't get updated or set by those
657 * who aren't privileged to do so.
658 */
659int cap_inode_setxattr(struct dentry *dentry, const char *name,
660 const void *value, size_t size, int flags)
661{
662 if (!strcmp(name, XATTR_NAME_CAPS)) {
663 if (!capable(CAP_SETFCAP))
664 return -EPERM;
665 return 0;
666 }
667
668 if (!strncmp(name, XATTR_SECURITY_PREFIX,
669 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
670 !capable(CAP_SYS_ADMIN))
671 return -EPERM;
672 return 0;
673}
674
675/**
676 * cap_inode_removexattr - Determine whether an xattr may be removed
677 * @dentry: The inode/dentry being altered
678 * @name: The name of the xattr to be changed
679 *
680 * Determine whether an xattr may be removed from an inode, returning 0 if
681 * permission is granted, -ve if denied.
682 *
683 * This is used to make sure security xattrs don't get removed by those who
684 * aren't privileged to remove them.
685 */
686int cap_inode_removexattr(struct dentry *dentry, const char *name)
687{
688 if (!strcmp(name, XATTR_NAME_CAPS)) {
689 if (!capable(CAP_SETFCAP))
690 return -EPERM;
691 return 0;
692 }
693
694 if (!strncmp(name, XATTR_SECURITY_PREFIX,
695 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
696 !capable(CAP_SYS_ADMIN))
697 return -EPERM;
698 return 0;
699}
700
701/*
702 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
703 * a process after a call to setuid, setreuid, or setresuid.
704 *
705 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
706 * {r,e,s}uid != 0, the permitted and effective capabilities are
707 * cleared.
708 *
709 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
710 * capabilities of the process are cleared.
711 *
712 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
713 * capabilities are set to the permitted capabilities.
714 *
715 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
716 * never happen.
717 *
718 * -astor
719 *
720 * cevans - New behaviour, Oct '99
721 * A process may, via prctl(), elect to keep its capabilities when it
722 * calls setuid() and switches away from uid==0. Both permitted and
723 * effective sets will be retained.
724 * Without this change, it was impossible for a daemon to drop only some
725 * of its privilege. The call to setuid(!=0) would drop all privileges!
726 * Keeping uid 0 is not an option because uid 0 owns too many vital
727 * files..
728 * Thanks to Olaf Kirch and Peter Benie for spotting this.
729 */
730static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
731{
732 kuid_t root_uid = make_kuid(old->user_ns, 0);
733
734 if ((uid_eq(old->uid, root_uid) ||
735 uid_eq(old->euid, root_uid) ||
736 uid_eq(old->suid, root_uid)) &&
737 (!uid_eq(new->uid, root_uid) &&
738 !uid_eq(new->euid, root_uid) &&
739 !uid_eq(new->suid, root_uid))) {
740 if (!issecure(SECURE_KEEP_CAPS)) {
741 cap_clear(new->cap_permitted);
742 cap_clear(new->cap_effective);
743 }
744
745 /*
746 * Pre-ambient programs expect setresuid to nonroot followed
747 * by exec to drop capabilities. We should make sure that
748 * this remains the case.
749 */
750 cap_clear(new->cap_ambient);
751 }
752 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
753 cap_clear(new->cap_effective);
754 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
755 new->cap_effective = new->cap_permitted;
756}
757
758/**
759 * cap_task_fix_setuid - Fix up the results of setuid() call
760 * @new: The proposed credentials
761 * @old: The current task's current credentials
762 * @flags: Indications of what has changed
763 *
764 * Fix up the results of setuid() call before the credential changes are
765 * actually applied, returning 0 to grant the changes, -ve to deny them.
766 */
767int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
768{
769 switch (flags) {
770 case LSM_SETID_RE:
771 case LSM_SETID_ID:
772 case LSM_SETID_RES:
773 /* juggle the capabilities to follow [RES]UID changes unless
774 * otherwise suppressed */
775 if (!issecure(SECURE_NO_SETUID_FIXUP))
776 cap_emulate_setxuid(new, old);
777 break;
778
779 case LSM_SETID_FS:
780 /* juggle the capabilties to follow FSUID changes, unless
781 * otherwise suppressed
782 *
783 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
784 * if not, we might be a bit too harsh here.
785 */
786 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
787 kuid_t root_uid = make_kuid(old->user_ns, 0);
788 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
789 new->cap_effective =
790 cap_drop_fs_set(new->cap_effective);
791
792 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
793 new->cap_effective =
794 cap_raise_fs_set(new->cap_effective,
795 new->cap_permitted);
796 }
797 break;
798
799 default:
800 return -EINVAL;
801 }
802
803 return 0;
804}
805
806/*
807 * Rationale: code calling task_setscheduler, task_setioprio, and
808 * task_setnice, assumes that
809 * . if capable(cap_sys_nice), then those actions should be allowed
810 * . if not capable(cap_sys_nice), but acting on your own processes,
811 * then those actions should be allowed
812 * This is insufficient now since you can call code without suid, but
813 * yet with increased caps.
814 * So we check for increased caps on the target process.
815 */
816static int cap_safe_nice(struct task_struct *p)
817{
818 int is_subset, ret = 0;
819
820 rcu_read_lock();
821 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
822 current_cred()->cap_permitted);
823 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
824 ret = -EPERM;
825 rcu_read_unlock();
826
827 return ret;
828}
829
830/**
831 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
832 * @p: The task to affect
833 *
834 * Detemine if the requested scheduler policy change is permitted for the
835 * specified task, returning 0 if permission is granted, -ve if denied.
836 */
837int cap_task_setscheduler(struct task_struct *p)
838{
839 return cap_safe_nice(p);
840}
841
842/**
843 * cap_task_ioprio - Detemine if I/O priority change is permitted
844 * @p: The task to affect
845 * @ioprio: The I/O priority to set
846 *
847 * Detemine if the requested I/O priority change is permitted for the specified
848 * task, returning 0 if permission is granted, -ve if denied.
849 */
850int cap_task_setioprio(struct task_struct *p, int ioprio)
851{
852 return cap_safe_nice(p);
853}
854
855/**
856 * cap_task_ioprio - Detemine if task priority change is permitted
857 * @p: The task to affect
858 * @nice: The nice value to set
859 *
860 * Detemine if the requested task priority change is permitted for the
861 * specified task, returning 0 if permission is granted, -ve if denied.
862 */
863int cap_task_setnice(struct task_struct *p, int nice)
864{
865 return cap_safe_nice(p);
866}
867
868/*
869 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
870 * the current task's bounding set. Returns 0 on success, -ve on error.
871 */
872static int cap_prctl_drop(unsigned long cap)
873{
874 struct cred *new;
875
876 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
877 return -EPERM;
878 if (!cap_valid(cap))
879 return -EINVAL;
880
881 new = prepare_creds();
882 if (!new)
883 return -ENOMEM;
884 cap_lower(new->cap_bset, cap);
885 return commit_creds(new);
886}
887
888/**
889 * cap_task_prctl - Implement process control functions for this security module
890 * @option: The process control function requested
891 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
892 *
893 * Allow process control functions (sys_prctl()) to alter capabilities; may
894 * also deny access to other functions not otherwise implemented here.
895 *
896 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
897 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
898 * modules will consider performing the function.
899 */
900int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
901 unsigned long arg4, unsigned long arg5)
902{
903 const struct cred *old = current_cred();
904 struct cred *new;
905
906 switch (option) {
907 case PR_CAPBSET_READ:
908 if (!cap_valid(arg2))
909 return -EINVAL;
910 return !!cap_raised(old->cap_bset, arg2);
911
912 case PR_CAPBSET_DROP:
913 return cap_prctl_drop(arg2);
914
915 /*
916 * The next four prctl's remain to assist with transitioning a
917 * system from legacy UID=0 based privilege (when filesystem
918 * capabilities are not in use) to a system using filesystem
919 * capabilities only - as the POSIX.1e draft intended.
920 *
921 * Note:
922 *
923 * PR_SET_SECUREBITS =
924 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
925 * | issecure_mask(SECURE_NOROOT)
926 * | issecure_mask(SECURE_NOROOT_LOCKED)
927 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
928 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
929 *
930 * will ensure that the current process and all of its
931 * children will be locked into a pure
932 * capability-based-privilege environment.
933 */
934 case PR_SET_SECUREBITS:
935 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
936 & (old->securebits ^ arg2)) /*[1]*/
937 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
938 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
939 || (cap_capable(current_cred(),
940 current_cred()->user_ns, CAP_SETPCAP,
941 SECURITY_CAP_AUDIT) != 0) /*[4]*/
942 /*
943 * [1] no changing of bits that are locked
944 * [2] no unlocking of locks
945 * [3] no setting of unsupported bits
946 * [4] doing anything requires privilege (go read about
947 * the "sendmail capabilities bug")
948 */
949 )
950 /* cannot change a locked bit */
951 return -EPERM;
952
953 new = prepare_creds();
954 if (!new)
955 return -ENOMEM;
956 new->securebits = arg2;
957 return commit_creds(new);
958
959 case PR_GET_SECUREBITS:
960 return old->securebits;
961
962 case PR_GET_KEEPCAPS:
963 return !!issecure(SECURE_KEEP_CAPS);
964
965 case PR_SET_KEEPCAPS:
966 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
967 return -EINVAL;
968 if (issecure(SECURE_KEEP_CAPS_LOCKED))
969 return -EPERM;
970
971 new = prepare_creds();
972 if (!new)
973 return -ENOMEM;
974 if (arg2)
975 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
976 else
977 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
978 return commit_creds(new);
979
980 case PR_CAP_AMBIENT:
981 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
982 if (arg3 | arg4 | arg5)
983 return -EINVAL;
984
985 new = prepare_creds();
986 if (!new)
987 return -ENOMEM;
988 cap_clear(new->cap_ambient);
989 return commit_creds(new);
990 }
991
992 if (((!cap_valid(arg3)) | arg4 | arg5))
993 return -EINVAL;
994
995 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
996 return !!cap_raised(current_cred()->cap_ambient, arg3);
997 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
998 arg2 != PR_CAP_AMBIENT_LOWER) {
999 return -EINVAL;
1000 } else {
1001 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1002 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1003 !cap_raised(current_cred()->cap_inheritable,
1004 arg3) ||
1005 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1006 return -EPERM;
1007
1008 new = prepare_creds();
1009 if (!new)
1010 return -ENOMEM;
1011 if (arg2 == PR_CAP_AMBIENT_RAISE)
1012 cap_raise(new->cap_ambient, arg3);
1013 else
1014 cap_lower(new->cap_ambient, arg3);
1015 return commit_creds(new);
1016 }
1017
1018 default:
1019 /* No functionality available - continue with default */
1020 return -ENOSYS;
1021 }
1022}
1023
1024/**
1025 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1026 * @mm: The VM space in which the new mapping is to be made
1027 * @pages: The size of the mapping
1028 *
1029 * Determine whether the allocation of a new virtual mapping by the current
1030 * task is permitted, returning 1 if permission is granted, 0 if not.
1031 */
1032int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1033{
1034 int cap_sys_admin = 0;
1035
1036 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1037 SECURITY_CAP_NOAUDIT) == 0)
1038 cap_sys_admin = 1;
1039 return cap_sys_admin;
1040}
1041
1042/*
1043 * cap_mmap_addr - check if able to map given addr
1044 * @addr: address attempting to be mapped
1045 *
1046 * If the process is attempting to map memory below dac_mmap_min_addr they need
1047 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1048 * capability security module. Returns 0 if this mapping should be allowed
1049 * -EPERM if not.
1050 */
1051int cap_mmap_addr(unsigned long addr)
1052{
1053 int ret = 0;
1054
1055 if (addr < dac_mmap_min_addr) {
1056 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1057 SECURITY_CAP_AUDIT);
1058 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1059 if (ret == 0)
1060 current->flags |= PF_SUPERPRIV;
1061 }
1062 return ret;
1063}
1064
1065int cap_mmap_file(struct file *file, unsigned long reqprot,
1066 unsigned long prot, unsigned long flags)
1067{
1068 return 0;
1069}
1070
1071#ifdef CONFIG_SECURITY
1072
1073struct security_hook_list capability_hooks[] = {
1074 LSM_HOOK_INIT(capable, cap_capable),
1075 LSM_HOOK_INIT(settime, cap_settime),
1076 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1077 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1078 LSM_HOOK_INIT(capget, cap_capget),
1079 LSM_HOOK_INIT(capset, cap_capset),
1080 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1081 LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec),
1082 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1083 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1084 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1085 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1086 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1087 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1088 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1089 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1090 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1091 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1092};
1093
1094void __init capability_add_hooks(void)
1095{
1096 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks));
1097}
1098
1099#endif /* CONFIG_SECURITY */