Loading...
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/lsm_hooks.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
70 */
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
73{
74 struct user_namespace *ns = targ_ns;
75
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
81 /* Do we have the necessary capabilities? */
82 if (ns == cred->user_ns)
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
85 /*
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
88 */
89 if (ns->level <= cred->user_ns->level)
90 return -EPERM;
91
92 /*
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
95 */
96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 return 0;
98
99 /*
100 * If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
102 */
103 ns = ns->parent;
104 }
105
106 /* We never get here */
107}
108
109/**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
117int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
118{
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122}
123
124/**
125 * cap_ptrace_access_check - Determine whether the current process may access
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
133 * access is allowed.
134 * Else denied.
135 *
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
138 */
139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
140{
141 int ret = 0;
142 const struct cred *cred, *child_cred;
143 const kernel_cap_t *caller_caps;
144
145 rcu_read_lock();
146 cred = current_cred();
147 child_cred = __task_cred(child);
148 if (mode & PTRACE_MODE_FSCREDS)
149 caller_caps = &cred->cap_effective;
150 else
151 caller_caps = &cred->cap_permitted;
152 if (cred->user_ns == child_cred->user_ns &&
153 cap_issubset(child_cred->cap_permitted, *caller_caps))
154 goto out;
155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
156 goto out;
157 ret = -EPERM;
158out:
159 rcu_read_unlock();
160 return ret;
161}
162
163/**
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
166 *
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * access is allowed.
171 * Else denied.
172 *
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
175 */
176int cap_ptrace_traceme(struct task_struct *parent)
177{
178 int ret = 0;
179 const struct cred *cred, *child_cred;
180
181 rcu_read_lock();
182 cred = __task_cred(parent);
183 child_cred = current_cred();
184 if (cred->user_ns == child_cred->user_ns &&
185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 goto out;
187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
188 goto out;
189 ret = -EPERM;
190out:
191 rcu_read_unlock();
192 return ret;
193}
194
195/**
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
201 *
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
204 */
205int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 kernel_cap_t *inheritable, kernel_cap_t *permitted)
207{
208 const struct cred *cred;
209
210 /* Derived from kernel/capability.c:sys_capget. */
211 rcu_read_lock();
212 cred = __task_cred(target);
213 *effective = cred->cap_effective;
214 *inheritable = cred->cap_inheritable;
215 *permitted = cred->cap_permitted;
216 rcu_read_unlock();
217 return 0;
218}
219
220/*
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
223 */
224static inline int cap_inh_is_capped(void)
225{
226
227 /* they are so limited unless the current task has the CAP_SETPCAP
228 * capability
229 */
230 if (cap_capable(current_cred(), current_cred()->user_ns,
231 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
232 return 0;
233 return 1;
234}
235
236/**
237 * cap_capset - Validate and apply proposed changes to current's capabilities
238 * @new: The proposed new credentials; alterations should be made here
239 * @old: The current task's current credentials
240 * @effective: A pointer to the proposed new effective capabilities set
241 * @inheritable: A pointer to the proposed new inheritable capabilities set
242 * @permitted: A pointer to the proposed new permitted capabilities set
243 *
244 * This function validates and applies a proposed mass change to the current
245 * process's capability sets. The changes are made to the proposed new
246 * credentials, and assuming no error, will be committed by the caller of LSM.
247 */
248int cap_capset(struct cred *new,
249 const struct cred *old,
250 const kernel_cap_t *effective,
251 const kernel_cap_t *inheritable,
252 const kernel_cap_t *permitted)
253{
254 if (cap_inh_is_capped() &&
255 !cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_permitted)))
258 /* incapable of using this inheritable set */
259 return -EPERM;
260
261 if (!cap_issubset(*inheritable,
262 cap_combine(old->cap_inheritable,
263 old->cap_bset)))
264 /* no new pI capabilities outside bounding set */
265 return -EPERM;
266
267 /* verify restrictions on target's new Permitted set */
268 if (!cap_issubset(*permitted, old->cap_permitted))
269 return -EPERM;
270
271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
272 if (!cap_issubset(*effective, *permitted))
273 return -EPERM;
274
275 new->cap_effective = *effective;
276 new->cap_inheritable = *inheritable;
277 new->cap_permitted = *permitted;
278
279 /*
280 * Mask off ambient bits that are no longer both permitted and
281 * inheritable.
282 */
283 new->cap_ambient = cap_intersect(new->cap_ambient,
284 cap_intersect(*permitted,
285 *inheritable));
286 if (WARN_ON(!cap_ambient_invariant_ok(new)))
287 return -EINVAL;
288 return 0;
289}
290
291/**
292 * cap_inode_need_killpriv - Determine if inode change affects privileges
293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
294 *
295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296 * affects the security markings on that inode, and if it is, should
297 * inode_killpriv() be invoked or the change rejected.
298 *
299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
301 */
302int cap_inode_need_killpriv(struct dentry *dentry)
303{
304 struct inode *inode = d_backing_inode(dentry);
305 int error;
306
307 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
308 return error > 0;
309}
310
311/**
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
314 *
315 * Erase the privilege-enhancing security markings on an inode.
316 *
317 * Returns 0 if successful, -ve on error.
318 */
319int cap_inode_killpriv(struct dentry *dentry)
320{
321 int error;
322
323 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
324 if (error == -EOPNOTSUPP)
325 error = 0;
326 return error;
327}
328
329static bool rootid_owns_currentns(kuid_t kroot)
330{
331 struct user_namespace *ns;
332
333 if (!uid_valid(kroot))
334 return false;
335
336 for (ns = current_user_ns(); ; ns = ns->parent) {
337 if (from_kuid(ns, kroot) == 0)
338 return true;
339 if (ns == &init_user_ns)
340 break;
341 }
342
343 return false;
344}
345
346static __u32 sansflags(__u32 m)
347{
348 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
349}
350
351static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_2)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
356}
357
358static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
359{
360 if (size != XATTR_CAPS_SZ_3)
361 return false;
362 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
363}
364
365/*
366 * getsecurity: We are called for security.* before any attempt to read the
367 * xattr from the inode itself.
368 *
369 * This gives us a chance to read the on-disk value and convert it. If we
370 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
371 *
372 * Note we are not called by vfs_getxattr_alloc(), but that is only called
373 * by the integrity subsystem, which really wants the unconverted values -
374 * so that's good.
375 */
376int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
377 bool alloc)
378{
379 int size, ret;
380 kuid_t kroot;
381 uid_t root, mappedroot;
382 char *tmpbuf = NULL;
383 struct vfs_cap_data *cap;
384 struct vfs_ns_cap_data *nscap;
385 struct dentry *dentry;
386 struct user_namespace *fs_ns;
387
388 if (strcmp(name, "capability") != 0)
389 return -EOPNOTSUPP;
390
391 dentry = d_find_alias(inode);
392 if (!dentry)
393 return -EINVAL;
394
395 size = sizeof(struct vfs_ns_cap_data);
396 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
397 &tmpbuf, size, GFP_NOFS);
398 dput(dentry);
399
400 if (ret < 0)
401 return ret;
402
403 fs_ns = inode->i_sb->s_user_ns;
404 cap = (struct vfs_cap_data *) tmpbuf;
405 if (is_v2header((size_t) ret, cap)) {
406 /* If this is sizeof(vfs_cap_data) then we're ok with the
407 * on-disk value, so return that. */
408 if (alloc)
409 *buffer = tmpbuf;
410 else
411 kfree(tmpbuf);
412 return ret;
413 } else if (!is_v3header((size_t) ret, cap)) {
414 kfree(tmpbuf);
415 return -EINVAL;
416 }
417
418 nscap = (struct vfs_ns_cap_data *) tmpbuf;
419 root = le32_to_cpu(nscap->rootid);
420 kroot = make_kuid(fs_ns, root);
421
422 /* If the root kuid maps to a valid uid in current ns, then return
423 * this as a nscap. */
424 mappedroot = from_kuid(current_user_ns(), kroot);
425 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
426 if (alloc) {
427 *buffer = tmpbuf;
428 nscap->rootid = cpu_to_le32(mappedroot);
429 } else
430 kfree(tmpbuf);
431 return size;
432 }
433
434 if (!rootid_owns_currentns(kroot)) {
435 kfree(tmpbuf);
436 return -EOPNOTSUPP;
437 }
438
439 /* This comes from a parent namespace. Return as a v2 capability */
440 size = sizeof(struct vfs_cap_data);
441 if (alloc) {
442 *buffer = kmalloc(size, GFP_ATOMIC);
443 if (*buffer) {
444 struct vfs_cap_data *cap = *buffer;
445 __le32 nsmagic, magic;
446 magic = VFS_CAP_REVISION_2;
447 nsmagic = le32_to_cpu(nscap->magic_etc);
448 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
449 magic |= VFS_CAP_FLAGS_EFFECTIVE;
450 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
451 cap->magic_etc = cpu_to_le32(magic);
452 } else {
453 size = -ENOMEM;
454 }
455 }
456 kfree(tmpbuf);
457 return size;
458}
459
460static kuid_t rootid_from_xattr(const void *value, size_t size,
461 struct user_namespace *task_ns)
462{
463 const struct vfs_ns_cap_data *nscap = value;
464 uid_t rootid = 0;
465
466 if (size == XATTR_CAPS_SZ_3)
467 rootid = le32_to_cpu(nscap->rootid);
468
469 return make_kuid(task_ns, rootid);
470}
471
472static bool validheader(size_t size, const struct vfs_cap_data *cap)
473{
474 return is_v2header(size, cap) || is_v3header(size, cap);
475}
476
477/*
478 * User requested a write of security.capability. If needed, update the
479 * xattr to change from v2 to v3, or to fixup the v3 rootid.
480 *
481 * If all is ok, we return the new size, on error return < 0.
482 */
483int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
484{
485 struct vfs_ns_cap_data *nscap;
486 uid_t nsrootid;
487 const struct vfs_cap_data *cap = *ivalue;
488 __u32 magic, nsmagic;
489 struct inode *inode = d_backing_inode(dentry);
490 struct user_namespace *task_ns = current_user_ns(),
491 *fs_ns = inode->i_sb->s_user_ns;
492 kuid_t rootid;
493 size_t newsize;
494
495 if (!*ivalue)
496 return -EINVAL;
497 if (!validheader(size, cap))
498 return -EINVAL;
499 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
500 return -EPERM;
501 if (size == XATTR_CAPS_SZ_2)
502 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
503 /* user is privileged, just write the v2 */
504 return size;
505
506 rootid = rootid_from_xattr(*ivalue, size, task_ns);
507 if (!uid_valid(rootid))
508 return -EINVAL;
509
510 nsrootid = from_kuid(fs_ns, rootid);
511 if (nsrootid == -1)
512 return -EINVAL;
513
514 newsize = sizeof(struct vfs_ns_cap_data);
515 nscap = kmalloc(newsize, GFP_ATOMIC);
516 if (!nscap)
517 return -ENOMEM;
518 nscap->rootid = cpu_to_le32(nsrootid);
519 nsmagic = VFS_CAP_REVISION_3;
520 magic = le32_to_cpu(cap->magic_etc);
521 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
522 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
523 nscap->magic_etc = cpu_to_le32(nsmagic);
524 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
525
526 kvfree(*ivalue);
527 *ivalue = nscap;
528 return newsize;
529}
530
531/*
532 * Calculate the new process capability sets from the capability sets attached
533 * to a file.
534 */
535static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
536 struct linux_binprm *bprm,
537 bool *effective,
538 bool *has_fcap)
539{
540 struct cred *new = bprm->cred;
541 unsigned i;
542 int ret = 0;
543
544 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
545 *effective = true;
546
547 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
548 *has_fcap = true;
549
550 CAP_FOR_EACH_U32(i) {
551 __u32 permitted = caps->permitted.cap[i];
552 __u32 inheritable = caps->inheritable.cap[i];
553
554 /*
555 * pP' = (X & fP) | (pI & fI)
556 * The addition of pA' is handled later.
557 */
558 new->cap_permitted.cap[i] =
559 (new->cap_bset.cap[i] & permitted) |
560 (new->cap_inheritable.cap[i] & inheritable);
561
562 if (permitted & ~new->cap_permitted.cap[i])
563 /* insufficient to execute correctly */
564 ret = -EPERM;
565 }
566
567 /*
568 * For legacy apps, with no internal support for recognizing they
569 * do not have enough capabilities, we return an error if they are
570 * missing some "forced" (aka file-permitted) capabilities.
571 */
572 return *effective ? ret : 0;
573}
574
575/*
576 * Extract the on-exec-apply capability sets for an executable file.
577 */
578int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
579{
580 struct inode *inode = d_backing_inode(dentry);
581 __u32 magic_etc;
582 unsigned tocopy, i;
583 int size;
584 struct vfs_ns_cap_data data, *nscaps = &data;
585 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
586 kuid_t rootkuid;
587 struct user_namespace *fs_ns;
588
589 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
590
591 if (!inode)
592 return -ENODATA;
593
594 fs_ns = inode->i_sb->s_user_ns;
595 size = __vfs_getxattr((struct dentry *)dentry, inode,
596 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
597 if (size == -ENODATA || size == -EOPNOTSUPP)
598 /* no data, that's ok */
599 return -ENODATA;
600
601 if (size < 0)
602 return size;
603
604 if (size < sizeof(magic_etc))
605 return -EINVAL;
606
607 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
608
609 rootkuid = make_kuid(fs_ns, 0);
610 switch (magic_etc & VFS_CAP_REVISION_MASK) {
611 case VFS_CAP_REVISION_1:
612 if (size != XATTR_CAPS_SZ_1)
613 return -EINVAL;
614 tocopy = VFS_CAP_U32_1;
615 break;
616 case VFS_CAP_REVISION_2:
617 if (size != XATTR_CAPS_SZ_2)
618 return -EINVAL;
619 tocopy = VFS_CAP_U32_2;
620 break;
621 case VFS_CAP_REVISION_3:
622 if (size != XATTR_CAPS_SZ_3)
623 return -EINVAL;
624 tocopy = VFS_CAP_U32_3;
625 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
626 break;
627
628 default:
629 return -EINVAL;
630 }
631 /* Limit the caps to the mounter of the filesystem
632 * or the more limited uid specified in the xattr.
633 */
634 if (!rootid_owns_currentns(rootkuid))
635 return -ENODATA;
636
637 CAP_FOR_EACH_U32(i) {
638 if (i >= tocopy)
639 break;
640 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
641 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
642 }
643
644 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
646
647 return 0;
648}
649
650/*
651 * Attempt to get the on-exec apply capability sets for an executable file from
652 * its xattrs and, if present, apply them to the proposed credentials being
653 * constructed by execve().
654 */
655static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
656{
657 int rc = 0;
658 struct cpu_vfs_cap_data vcaps;
659
660 cap_clear(bprm->cred->cap_permitted);
661
662 if (!file_caps_enabled)
663 return 0;
664
665 if (!mnt_may_suid(bprm->file->f_path.mnt))
666 return 0;
667
668 /*
669 * This check is redundant with mnt_may_suid() but is kept to make
670 * explicit that capability bits are limited to s_user_ns and its
671 * descendants.
672 */
673 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
674 return 0;
675
676 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
677 if (rc < 0) {
678 if (rc == -EINVAL)
679 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
680 bprm->filename);
681 else if (rc == -ENODATA)
682 rc = 0;
683 goto out;
684 }
685
686 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
687 if (rc == -EINVAL)
688 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
689 __func__, rc, bprm->filename);
690
691out:
692 if (rc)
693 cap_clear(bprm->cred->cap_permitted);
694
695 return rc;
696}
697
698static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
699
700static inline bool __is_real(kuid_t uid, struct cred *cred)
701{ return uid_eq(cred->uid, uid); }
702
703static inline bool __is_eff(kuid_t uid, struct cred *cred)
704{ return uid_eq(cred->euid, uid); }
705
706static inline bool __is_suid(kuid_t uid, struct cred *cred)
707{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
708
709/*
710 * handle_privileged_root - Handle case of privileged root
711 * @bprm: The execution parameters, including the proposed creds
712 * @has_fcap: Are any file capabilities set?
713 * @effective: Do we have effective root privilege?
714 * @root_uid: This namespace' root UID WRT initial USER namespace
715 *
716 * Handle the case where root is privileged and hasn't been neutered by
717 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
718 * set UID root and nothing is changed. If we are root, cap_permitted is
719 * updated. If we have become set UID root, the effective bit is set.
720 */
721static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
722 bool *effective, kuid_t root_uid)
723{
724 const struct cred *old = current_cred();
725 struct cred *new = bprm->cred;
726
727 if (!root_privileged())
728 return;
729 /*
730 * If the legacy file capability is set, then don't set privs
731 * for a setuid root binary run by a non-root user. Do set it
732 * for a root user just to cause least surprise to an admin.
733 */
734 if (has_fcap && __is_suid(root_uid, new)) {
735 warn_setuid_and_fcaps_mixed(bprm->filename);
736 return;
737 }
738 /*
739 * To support inheritance of root-permissions and suid-root
740 * executables under compatibility mode, we override the
741 * capability sets for the file.
742 */
743 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
744 /* pP' = (cap_bset & ~0) | (pI & ~0) */
745 new->cap_permitted = cap_combine(old->cap_bset,
746 old->cap_inheritable);
747 }
748 /*
749 * If only the real uid is 0, we do not set the effective bit.
750 */
751 if (__is_eff(root_uid, new))
752 *effective = true;
753}
754
755#define __cap_gained(field, target, source) \
756 !cap_issubset(target->cap_##field, source->cap_##field)
757#define __cap_grew(target, source, cred) \
758 !cap_issubset(cred->cap_##target, cred->cap_##source)
759#define __cap_full(field, cred) \
760 cap_issubset(CAP_FULL_SET, cred->cap_##field)
761
762static inline bool __is_setuid(struct cred *new, const struct cred *old)
763{ return !uid_eq(new->euid, old->uid); }
764
765static inline bool __is_setgid(struct cred *new, const struct cred *old)
766{ return !gid_eq(new->egid, old->gid); }
767
768/*
769 * 1) Audit candidate if current->cap_effective is set
770 *
771 * We do not bother to audit if 3 things are true:
772 * 1) cap_effective has all caps
773 * 2) we became root *OR* are were already root
774 * 3) root is supposed to have all caps (SECURE_NOROOT)
775 * Since this is just a normal root execing a process.
776 *
777 * Number 1 above might fail if you don't have a full bset, but I think
778 * that is interesting information to audit.
779 *
780 * A number of other conditions require logging:
781 * 2) something prevented setuid root getting all caps
782 * 3) non-setuid root gets fcaps
783 * 4) non-setuid root gets ambient
784 */
785static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
786 kuid_t root, bool has_fcap)
787{
788 bool ret = false;
789
790 if ((__cap_grew(effective, ambient, new) &&
791 !(__cap_full(effective, new) &&
792 (__is_eff(root, new) || __is_real(root, new)) &&
793 root_privileged())) ||
794 (root_privileged() &&
795 __is_suid(root, new) &&
796 !__cap_full(effective, new)) ||
797 (!__is_setuid(new, old) &&
798 ((has_fcap &&
799 __cap_gained(permitted, new, old)) ||
800 __cap_gained(ambient, new, old))))
801
802 ret = true;
803
804 return ret;
805}
806
807/**
808 * cap_bprm_set_creds - Set up the proposed credentials for execve().
809 * @bprm: The execution parameters, including the proposed creds
810 *
811 * Set up the proposed credentials for a new execution context being
812 * constructed by execve(). The proposed creds in @bprm->cred is altered,
813 * which won't take effect immediately. Returns 0 if successful, -ve on error.
814 */
815int cap_bprm_set_creds(struct linux_binprm *bprm)
816{
817 const struct cred *old = current_cred();
818 struct cred *new = bprm->cred;
819 bool effective = false, has_fcap = false, is_setid;
820 int ret;
821 kuid_t root_uid;
822
823 if (WARN_ON(!cap_ambient_invariant_ok(old)))
824 return -EPERM;
825
826 ret = get_file_caps(bprm, &effective, &has_fcap);
827 if (ret < 0)
828 return ret;
829
830 root_uid = make_kuid(new->user_ns, 0);
831
832 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
833
834 /* if we have fs caps, clear dangerous personality flags */
835 if (__cap_gained(permitted, new, old))
836 bprm->per_clear |= PER_CLEAR_ON_SETID;
837
838 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
839 * credentials unless they have the appropriate permit.
840 *
841 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
842 */
843 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
844
845 if ((is_setid || __cap_gained(permitted, new, old)) &&
846 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
847 !ptracer_capable(current, new->user_ns))) {
848 /* downgrade; they get no more than they had, and maybe less */
849 if (!ns_capable(new->user_ns, CAP_SETUID) ||
850 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
851 new->euid = new->uid;
852 new->egid = new->gid;
853 }
854 new->cap_permitted = cap_intersect(new->cap_permitted,
855 old->cap_permitted);
856 }
857
858 new->suid = new->fsuid = new->euid;
859 new->sgid = new->fsgid = new->egid;
860
861 /* File caps or setid cancels ambient. */
862 if (has_fcap || is_setid)
863 cap_clear(new->cap_ambient);
864
865 /*
866 * Now that we've computed pA', update pP' to give:
867 * pP' = (X & fP) | (pI & fI) | pA'
868 */
869 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
870
871 /*
872 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
873 * this is the same as pE' = (fE ? pP' : 0) | pA'.
874 */
875 if (effective)
876 new->cap_effective = new->cap_permitted;
877 else
878 new->cap_effective = new->cap_ambient;
879
880 if (WARN_ON(!cap_ambient_invariant_ok(new)))
881 return -EPERM;
882
883 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
884 ret = audit_log_bprm_fcaps(bprm, new, old);
885 if (ret < 0)
886 return ret;
887 }
888
889 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
890
891 if (WARN_ON(!cap_ambient_invariant_ok(new)))
892 return -EPERM;
893
894 /* Check for privilege-elevated exec. */
895 bprm->cap_elevated = 0;
896 if (is_setid ||
897 (!__is_real(root_uid, new) &&
898 (effective ||
899 __cap_grew(permitted, ambient, new))))
900 bprm->cap_elevated = 1;
901
902 return 0;
903}
904
905/**
906 * cap_inode_setxattr - Determine whether an xattr may be altered
907 * @dentry: The inode/dentry being altered
908 * @name: The name of the xattr to be changed
909 * @value: The value that the xattr will be changed to
910 * @size: The size of value
911 * @flags: The replacement flag
912 *
913 * Determine whether an xattr may be altered or set on an inode, returning 0 if
914 * permission is granted, -ve if denied.
915 *
916 * This is used to make sure security xattrs don't get updated or set by those
917 * who aren't privileged to do so.
918 */
919int cap_inode_setxattr(struct dentry *dentry, const char *name,
920 const void *value, size_t size, int flags)
921{
922 /* Ignore non-security xattrs */
923 if (strncmp(name, XATTR_SECURITY_PREFIX,
924 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
925 return 0;
926
927 /*
928 * For XATTR_NAME_CAPS the check will be done in
929 * cap_convert_nscap(), called by setxattr()
930 */
931 if (strcmp(name, XATTR_NAME_CAPS) == 0)
932 return 0;
933
934 if (!capable(CAP_SYS_ADMIN))
935 return -EPERM;
936 return 0;
937}
938
939/**
940 * cap_inode_removexattr - Determine whether an xattr may be removed
941 * @dentry: The inode/dentry being altered
942 * @name: The name of the xattr to be changed
943 *
944 * Determine whether an xattr may be removed from an inode, returning 0 if
945 * permission is granted, -ve if denied.
946 *
947 * This is used to make sure security xattrs don't get removed by those who
948 * aren't privileged to remove them.
949 */
950int cap_inode_removexattr(struct dentry *dentry, const char *name)
951{
952 /* Ignore non-security xattrs */
953 if (strncmp(name, XATTR_SECURITY_PREFIX,
954 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
955 return 0;
956
957 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
958 /* security.capability gets namespaced */
959 struct inode *inode = d_backing_inode(dentry);
960 if (!inode)
961 return -EINVAL;
962 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
963 return -EPERM;
964 return 0;
965 }
966
967 if (!capable(CAP_SYS_ADMIN))
968 return -EPERM;
969 return 0;
970}
971
972/*
973 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
974 * a process after a call to setuid, setreuid, or setresuid.
975 *
976 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
977 * {r,e,s}uid != 0, the permitted and effective capabilities are
978 * cleared.
979 *
980 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
981 * capabilities of the process are cleared.
982 *
983 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
984 * capabilities are set to the permitted capabilities.
985 *
986 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
987 * never happen.
988 *
989 * -astor
990 *
991 * cevans - New behaviour, Oct '99
992 * A process may, via prctl(), elect to keep its capabilities when it
993 * calls setuid() and switches away from uid==0. Both permitted and
994 * effective sets will be retained.
995 * Without this change, it was impossible for a daemon to drop only some
996 * of its privilege. The call to setuid(!=0) would drop all privileges!
997 * Keeping uid 0 is not an option because uid 0 owns too many vital
998 * files..
999 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1000 */
1001static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1002{
1003 kuid_t root_uid = make_kuid(old->user_ns, 0);
1004
1005 if ((uid_eq(old->uid, root_uid) ||
1006 uid_eq(old->euid, root_uid) ||
1007 uid_eq(old->suid, root_uid)) &&
1008 (!uid_eq(new->uid, root_uid) &&
1009 !uid_eq(new->euid, root_uid) &&
1010 !uid_eq(new->suid, root_uid))) {
1011 if (!issecure(SECURE_KEEP_CAPS)) {
1012 cap_clear(new->cap_permitted);
1013 cap_clear(new->cap_effective);
1014 }
1015
1016 /*
1017 * Pre-ambient programs expect setresuid to nonroot followed
1018 * by exec to drop capabilities. We should make sure that
1019 * this remains the case.
1020 */
1021 cap_clear(new->cap_ambient);
1022 }
1023 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1024 cap_clear(new->cap_effective);
1025 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1026 new->cap_effective = new->cap_permitted;
1027}
1028
1029/**
1030 * cap_task_fix_setuid - Fix up the results of setuid() call
1031 * @new: The proposed credentials
1032 * @old: The current task's current credentials
1033 * @flags: Indications of what has changed
1034 *
1035 * Fix up the results of setuid() call before the credential changes are
1036 * actually applied, returning 0 to grant the changes, -ve to deny them.
1037 */
1038int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1039{
1040 switch (flags) {
1041 case LSM_SETID_RE:
1042 case LSM_SETID_ID:
1043 case LSM_SETID_RES:
1044 /* juggle the capabilities to follow [RES]UID changes unless
1045 * otherwise suppressed */
1046 if (!issecure(SECURE_NO_SETUID_FIXUP))
1047 cap_emulate_setxuid(new, old);
1048 break;
1049
1050 case LSM_SETID_FS:
1051 /* juggle the capabilties to follow FSUID changes, unless
1052 * otherwise suppressed
1053 *
1054 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1055 * if not, we might be a bit too harsh here.
1056 */
1057 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1058 kuid_t root_uid = make_kuid(old->user_ns, 0);
1059 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1060 new->cap_effective =
1061 cap_drop_fs_set(new->cap_effective);
1062
1063 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1064 new->cap_effective =
1065 cap_raise_fs_set(new->cap_effective,
1066 new->cap_permitted);
1067 }
1068 break;
1069
1070 default:
1071 return -EINVAL;
1072 }
1073
1074 return 0;
1075}
1076
1077/*
1078 * Rationale: code calling task_setscheduler, task_setioprio, and
1079 * task_setnice, assumes that
1080 * . if capable(cap_sys_nice), then those actions should be allowed
1081 * . if not capable(cap_sys_nice), but acting on your own processes,
1082 * then those actions should be allowed
1083 * This is insufficient now since you can call code without suid, but
1084 * yet with increased caps.
1085 * So we check for increased caps on the target process.
1086 */
1087static int cap_safe_nice(struct task_struct *p)
1088{
1089 int is_subset, ret = 0;
1090
1091 rcu_read_lock();
1092 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1093 current_cred()->cap_permitted);
1094 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1095 ret = -EPERM;
1096 rcu_read_unlock();
1097
1098 return ret;
1099}
1100
1101/**
1102 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1103 * @p: The task to affect
1104 *
1105 * Detemine if the requested scheduler policy change is permitted for the
1106 * specified task, returning 0 if permission is granted, -ve if denied.
1107 */
1108int cap_task_setscheduler(struct task_struct *p)
1109{
1110 return cap_safe_nice(p);
1111}
1112
1113/**
1114 * cap_task_ioprio - Detemine if I/O priority change is permitted
1115 * @p: The task to affect
1116 * @ioprio: The I/O priority to set
1117 *
1118 * Detemine if the requested I/O priority change is permitted for the specified
1119 * task, returning 0 if permission is granted, -ve if denied.
1120 */
1121int cap_task_setioprio(struct task_struct *p, int ioprio)
1122{
1123 return cap_safe_nice(p);
1124}
1125
1126/**
1127 * cap_task_ioprio - Detemine if task priority change is permitted
1128 * @p: The task to affect
1129 * @nice: The nice value to set
1130 *
1131 * Detemine if the requested task priority change is permitted for the
1132 * specified task, returning 0 if permission is granted, -ve if denied.
1133 */
1134int cap_task_setnice(struct task_struct *p, int nice)
1135{
1136 return cap_safe_nice(p);
1137}
1138
1139/*
1140 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1141 * the current task's bounding set. Returns 0 on success, -ve on error.
1142 */
1143static int cap_prctl_drop(unsigned long cap)
1144{
1145 struct cred *new;
1146
1147 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1148 return -EPERM;
1149 if (!cap_valid(cap))
1150 return -EINVAL;
1151
1152 new = prepare_creds();
1153 if (!new)
1154 return -ENOMEM;
1155 cap_lower(new->cap_bset, cap);
1156 return commit_creds(new);
1157}
1158
1159/**
1160 * cap_task_prctl - Implement process control functions for this security module
1161 * @option: The process control function requested
1162 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1163 *
1164 * Allow process control functions (sys_prctl()) to alter capabilities; may
1165 * also deny access to other functions not otherwise implemented here.
1166 *
1167 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1168 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1169 * modules will consider performing the function.
1170 */
1171int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1172 unsigned long arg4, unsigned long arg5)
1173{
1174 const struct cred *old = current_cred();
1175 struct cred *new;
1176
1177 switch (option) {
1178 case PR_CAPBSET_READ:
1179 if (!cap_valid(arg2))
1180 return -EINVAL;
1181 return !!cap_raised(old->cap_bset, arg2);
1182
1183 case PR_CAPBSET_DROP:
1184 return cap_prctl_drop(arg2);
1185
1186 /*
1187 * The next four prctl's remain to assist with transitioning a
1188 * system from legacy UID=0 based privilege (when filesystem
1189 * capabilities are not in use) to a system using filesystem
1190 * capabilities only - as the POSIX.1e draft intended.
1191 *
1192 * Note:
1193 *
1194 * PR_SET_SECUREBITS =
1195 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1196 * | issecure_mask(SECURE_NOROOT)
1197 * | issecure_mask(SECURE_NOROOT_LOCKED)
1198 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1199 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1200 *
1201 * will ensure that the current process and all of its
1202 * children will be locked into a pure
1203 * capability-based-privilege environment.
1204 */
1205 case PR_SET_SECUREBITS:
1206 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1207 & (old->securebits ^ arg2)) /*[1]*/
1208 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1209 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1210 || (cap_capable(current_cred(),
1211 current_cred()->user_ns, CAP_SETPCAP,
1212 SECURITY_CAP_AUDIT) != 0) /*[4]*/
1213 /*
1214 * [1] no changing of bits that are locked
1215 * [2] no unlocking of locks
1216 * [3] no setting of unsupported bits
1217 * [4] doing anything requires privilege (go read about
1218 * the "sendmail capabilities bug")
1219 */
1220 )
1221 /* cannot change a locked bit */
1222 return -EPERM;
1223
1224 new = prepare_creds();
1225 if (!new)
1226 return -ENOMEM;
1227 new->securebits = arg2;
1228 return commit_creds(new);
1229
1230 case PR_GET_SECUREBITS:
1231 return old->securebits;
1232
1233 case PR_GET_KEEPCAPS:
1234 return !!issecure(SECURE_KEEP_CAPS);
1235
1236 case PR_SET_KEEPCAPS:
1237 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1238 return -EINVAL;
1239 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1240 return -EPERM;
1241
1242 new = prepare_creds();
1243 if (!new)
1244 return -ENOMEM;
1245 if (arg2)
1246 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1247 else
1248 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1249 return commit_creds(new);
1250
1251 case PR_CAP_AMBIENT:
1252 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1253 if (arg3 | arg4 | arg5)
1254 return -EINVAL;
1255
1256 new = prepare_creds();
1257 if (!new)
1258 return -ENOMEM;
1259 cap_clear(new->cap_ambient);
1260 return commit_creds(new);
1261 }
1262
1263 if (((!cap_valid(arg3)) | arg4 | arg5))
1264 return -EINVAL;
1265
1266 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1267 return !!cap_raised(current_cred()->cap_ambient, arg3);
1268 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1269 arg2 != PR_CAP_AMBIENT_LOWER) {
1270 return -EINVAL;
1271 } else {
1272 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1273 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1274 !cap_raised(current_cred()->cap_inheritable,
1275 arg3) ||
1276 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1277 return -EPERM;
1278
1279 new = prepare_creds();
1280 if (!new)
1281 return -ENOMEM;
1282 if (arg2 == PR_CAP_AMBIENT_RAISE)
1283 cap_raise(new->cap_ambient, arg3);
1284 else
1285 cap_lower(new->cap_ambient, arg3);
1286 return commit_creds(new);
1287 }
1288
1289 default:
1290 /* No functionality available - continue with default */
1291 return -ENOSYS;
1292 }
1293}
1294
1295/**
1296 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1297 * @mm: The VM space in which the new mapping is to be made
1298 * @pages: The size of the mapping
1299 *
1300 * Determine whether the allocation of a new virtual mapping by the current
1301 * task is permitted, returning 1 if permission is granted, 0 if not.
1302 */
1303int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1304{
1305 int cap_sys_admin = 0;
1306
1307 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1308 SECURITY_CAP_NOAUDIT) == 0)
1309 cap_sys_admin = 1;
1310 return cap_sys_admin;
1311}
1312
1313/*
1314 * cap_mmap_addr - check if able to map given addr
1315 * @addr: address attempting to be mapped
1316 *
1317 * If the process is attempting to map memory below dac_mmap_min_addr they need
1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1319 * capability security module. Returns 0 if this mapping should be allowed
1320 * -EPERM if not.
1321 */
1322int cap_mmap_addr(unsigned long addr)
1323{
1324 int ret = 0;
1325
1326 if (addr < dac_mmap_min_addr) {
1327 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1328 SECURITY_CAP_AUDIT);
1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1330 if (ret == 0)
1331 current->flags |= PF_SUPERPRIV;
1332 }
1333 return ret;
1334}
1335
1336int cap_mmap_file(struct file *file, unsigned long reqprot,
1337 unsigned long prot, unsigned long flags)
1338{
1339 return 0;
1340}
1341
1342#ifdef CONFIG_SECURITY
1343
1344struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1345 LSM_HOOK_INIT(capable, cap_capable),
1346 LSM_HOOK_INIT(settime, cap_settime),
1347 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1348 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1349 LSM_HOOK_INIT(capget, cap_capget),
1350 LSM_HOOK_INIT(capset, cap_capset),
1351 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1352 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1353 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1354 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1355 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1356 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1357 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1358 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1359 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1360 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1361 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1362 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1363};
1364
1365void __init capability_add_hooks(void)
1366{
1367 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1368 "capability");
1369}
1370
1371#endif /* CONFIG_SECURITY */
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/security.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57{
58 return 0;
59}
60
61/**
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
67 *
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
70 *
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
75 */
76int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 int cap, int audit)
78{
79 struct user_namespace *ns = targ_ns;
80
81 /* See if cred has the capability in the target user namespace
82 * by examining the target user namespace and all of the target
83 * user namespace's parents.
84 */
85 for (;;) {
86 /* Do we have the necessary capabilities? */
87 if (ns == cred->user_ns)
88 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
89
90 /* Have we tried all of the parent namespaces? */
91 if (ns == &init_user_ns)
92 return -EPERM;
93
94 /*
95 * The owner of the user namespace in the parent of the
96 * user namespace has all caps.
97 */
98 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
99 return 0;
100
101 /*
102 * If you have a capability in a parent user ns, then you have
103 * it over all children user namespaces as well.
104 */
105 ns = ns->parent;
106 }
107
108 /* We never get here */
109}
110
111/**
112 * cap_settime - Determine whether the current process may set the system clock
113 * @ts: The time to set
114 * @tz: The timezone to set
115 *
116 * Determine whether the current process may set the system clock and timezone
117 * information, returning 0 if permission granted, -ve if denied.
118 */
119int cap_settime(const struct timespec *ts, const struct timezone *tz)
120{
121 if (!capable(CAP_SYS_TIME))
122 return -EPERM;
123 return 0;
124}
125
126/**
127 * cap_ptrace_access_check - Determine whether the current process may access
128 * another
129 * @child: The process to be accessed
130 * @mode: The mode of attachment.
131 *
132 * If we are in the same or an ancestor user_ns and have all the target
133 * task's capabilities, then ptrace access is allowed.
134 * If we have the ptrace capability to the target user_ns, then ptrace
135 * access is allowed.
136 * Else denied.
137 *
138 * Determine whether a process may access another, returning 0 if permission
139 * granted, -ve if denied.
140 */
141int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
142{
143 int ret = 0;
144 const struct cred *cred, *child_cred;
145
146 rcu_read_lock();
147 cred = current_cred();
148 child_cred = __task_cred(child);
149 if (cred->user_ns == child_cred->user_ns &&
150 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
151 goto out;
152 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
153 goto out;
154 ret = -EPERM;
155out:
156 rcu_read_unlock();
157 return ret;
158}
159
160/**
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
163 *
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
167 * access is allowed.
168 * Else denied.
169 *
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
172 */
173int cap_ptrace_traceme(struct task_struct *parent)
174{
175 int ret = 0;
176 const struct cred *cred, *child_cred;
177
178 rcu_read_lock();
179 cred = __task_cred(parent);
180 child_cred = current_cred();
181 if (cred->user_ns == child_cred->user_ns &&
182 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
183 goto out;
184 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
185 goto out;
186 ret = -EPERM;
187out:
188 rcu_read_unlock();
189 return ret;
190}
191
192/**
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
198 *
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
201 */
202int cap_capget(struct task_struct *target, kernel_cap_t *effective,
203 kernel_cap_t *inheritable, kernel_cap_t *permitted)
204{
205 const struct cred *cred;
206
207 /* Derived from kernel/capability.c:sys_capget. */
208 rcu_read_lock();
209 cred = __task_cred(target);
210 *effective = cred->cap_effective;
211 *inheritable = cred->cap_inheritable;
212 *permitted = cred->cap_permitted;
213 rcu_read_unlock();
214 return 0;
215}
216
217/*
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 */
221static inline int cap_inh_is_capped(void)
222{
223
224 /* they are so limited unless the current task has the CAP_SETPCAP
225 * capability
226 */
227 if (cap_capable(current_cred(), current_cred()->user_ns,
228 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
231}
232
233/**
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
240 *
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
244 */
245int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
250{
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
257
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
263
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
267
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
271
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275 return 0;
276}
277
278/*
279 * Clear proposed capability sets for execve().
280 */
281static inline void bprm_clear_caps(struct linux_binprm *bprm)
282{
283 cap_clear(bprm->cred->cap_permitted);
284 bprm->cap_effective = false;
285}
286
287/**
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
290 *
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
294 *
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
297 */
298int cap_inode_need_killpriv(struct dentry *dentry)
299{
300 struct inode *inode = dentry->d_inode;
301 int error;
302
303 if (!inode->i_op->getxattr)
304 return 0;
305
306 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
307 if (error <= 0)
308 return 0;
309 return 1;
310}
311
312/**
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
315 *
316 * Erase the privilege-enhancing security markings on an inode.
317 *
318 * Returns 0 if successful, -ve on error.
319 */
320int cap_inode_killpriv(struct dentry *dentry)
321{
322 struct inode *inode = dentry->d_inode;
323
324 if (!inode->i_op->removexattr)
325 return 0;
326
327 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
328}
329
330/*
331 * Calculate the new process capability sets from the capability sets attached
332 * to a file.
333 */
334static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
335 struct linux_binprm *bprm,
336 bool *effective,
337 bool *has_cap)
338{
339 struct cred *new = bprm->cred;
340 unsigned i;
341 int ret = 0;
342
343 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
344 *effective = true;
345
346 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
347 *has_cap = true;
348
349 CAP_FOR_EACH_U32(i) {
350 __u32 permitted = caps->permitted.cap[i];
351 __u32 inheritable = caps->inheritable.cap[i];
352
353 /*
354 * pP' = (X & fP) | (pI & fI)
355 */
356 new->cap_permitted.cap[i] =
357 (new->cap_bset.cap[i] & permitted) |
358 (new->cap_inheritable.cap[i] & inheritable);
359
360 if (permitted & ~new->cap_permitted.cap[i])
361 /* insufficient to execute correctly */
362 ret = -EPERM;
363 }
364
365 /*
366 * For legacy apps, with no internal support for recognizing they
367 * do not have enough capabilities, we return an error if they are
368 * missing some "forced" (aka file-permitted) capabilities.
369 */
370 return *effective ? ret : 0;
371}
372
373/*
374 * Extract the on-exec-apply capability sets for an executable file.
375 */
376int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
377{
378 struct inode *inode = dentry->d_inode;
379 __u32 magic_etc;
380 unsigned tocopy, i;
381 int size;
382 struct vfs_cap_data caps;
383
384 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
385
386 if (!inode || !inode->i_op->getxattr)
387 return -ENODATA;
388
389 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
390 XATTR_CAPS_SZ);
391 if (size == -ENODATA || size == -EOPNOTSUPP)
392 /* no data, that's ok */
393 return -ENODATA;
394 if (size < 0)
395 return size;
396
397 if (size < sizeof(magic_etc))
398 return -EINVAL;
399
400 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
401
402 switch (magic_etc & VFS_CAP_REVISION_MASK) {
403 case VFS_CAP_REVISION_1:
404 if (size != XATTR_CAPS_SZ_1)
405 return -EINVAL;
406 tocopy = VFS_CAP_U32_1;
407 break;
408 case VFS_CAP_REVISION_2:
409 if (size != XATTR_CAPS_SZ_2)
410 return -EINVAL;
411 tocopy = VFS_CAP_U32_2;
412 break;
413 default:
414 return -EINVAL;
415 }
416
417 CAP_FOR_EACH_U32(i) {
418 if (i >= tocopy)
419 break;
420 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
421 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
422 }
423
424 return 0;
425}
426
427/*
428 * Attempt to get the on-exec apply capability sets for an executable file from
429 * its xattrs and, if present, apply them to the proposed credentials being
430 * constructed by execve().
431 */
432static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
433{
434 struct dentry *dentry;
435 int rc = 0;
436 struct cpu_vfs_cap_data vcaps;
437
438 bprm_clear_caps(bprm);
439
440 if (!file_caps_enabled)
441 return 0;
442
443 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
444 return 0;
445
446 dentry = dget(bprm->file->f_dentry);
447
448 rc = get_vfs_caps_from_disk(dentry, &vcaps);
449 if (rc < 0) {
450 if (rc == -EINVAL)
451 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
452 __func__, rc, bprm->filename);
453 else if (rc == -ENODATA)
454 rc = 0;
455 goto out;
456 }
457
458 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
459 if (rc == -EINVAL)
460 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
461 __func__, rc, bprm->filename);
462
463out:
464 dput(dentry);
465 if (rc)
466 bprm_clear_caps(bprm);
467
468 return rc;
469}
470
471/**
472 * cap_bprm_set_creds - Set up the proposed credentials for execve().
473 * @bprm: The execution parameters, including the proposed creds
474 *
475 * Set up the proposed credentials for a new execution context being
476 * constructed by execve(). The proposed creds in @bprm->cred is altered,
477 * which won't take effect immediately. Returns 0 if successful, -ve on error.
478 */
479int cap_bprm_set_creds(struct linux_binprm *bprm)
480{
481 const struct cred *old = current_cred();
482 struct cred *new = bprm->cred;
483 bool effective, has_cap = false;
484 int ret;
485 kuid_t root_uid;
486
487 effective = false;
488 ret = get_file_caps(bprm, &effective, &has_cap);
489 if (ret < 0)
490 return ret;
491
492 root_uid = make_kuid(new->user_ns, 0);
493
494 if (!issecure(SECURE_NOROOT)) {
495 /*
496 * If the legacy file capability is set, then don't set privs
497 * for a setuid root binary run by a non-root user. Do set it
498 * for a root user just to cause least surprise to an admin.
499 */
500 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
501 warn_setuid_and_fcaps_mixed(bprm->filename);
502 goto skip;
503 }
504 /*
505 * To support inheritance of root-permissions and suid-root
506 * executables under compatibility mode, we override the
507 * capability sets for the file.
508 *
509 * If only the real uid is 0, we do not set the effective bit.
510 */
511 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
512 /* pP' = (cap_bset & ~0) | (pI & ~0) */
513 new->cap_permitted = cap_combine(old->cap_bset,
514 old->cap_inheritable);
515 }
516 if (uid_eq(new->euid, root_uid))
517 effective = true;
518 }
519skip:
520
521 /* if we have fs caps, clear dangerous personality flags */
522 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
523 bprm->per_clear |= PER_CLEAR_ON_SETID;
524
525
526 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
527 * credentials unless they have the appropriate permit.
528 *
529 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
530 */
531 if ((!uid_eq(new->euid, old->uid) ||
532 !gid_eq(new->egid, old->gid) ||
533 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
534 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
535 /* downgrade; they get no more than they had, and maybe less */
536 if (!capable(CAP_SETUID) ||
537 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
538 new->euid = new->uid;
539 new->egid = new->gid;
540 }
541 new->cap_permitted = cap_intersect(new->cap_permitted,
542 old->cap_permitted);
543 }
544
545 new->suid = new->fsuid = new->euid;
546 new->sgid = new->fsgid = new->egid;
547
548 if (effective)
549 new->cap_effective = new->cap_permitted;
550 else
551 cap_clear(new->cap_effective);
552 bprm->cap_effective = effective;
553
554 /*
555 * Audit candidate if current->cap_effective is set
556 *
557 * We do not bother to audit if 3 things are true:
558 * 1) cap_effective has all caps
559 * 2) we are root
560 * 3) root is supposed to have all caps (SECURE_NOROOT)
561 * Since this is just a normal root execing a process.
562 *
563 * Number 1 above might fail if you don't have a full bset, but I think
564 * that is interesting information to audit.
565 */
566 if (!cap_isclear(new->cap_effective)) {
567 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
568 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
569 issecure(SECURE_NOROOT)) {
570 ret = audit_log_bprm_fcaps(bprm, new, old);
571 if (ret < 0)
572 return ret;
573 }
574 }
575
576 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
577 return 0;
578}
579
580/**
581 * cap_bprm_secureexec - Determine whether a secure execution is required
582 * @bprm: The execution parameters
583 *
584 * Determine whether a secure execution is required, return 1 if it is, and 0
585 * if it is not.
586 *
587 * The credentials have been committed by this point, and so are no longer
588 * available through @bprm->cred.
589 */
590int cap_bprm_secureexec(struct linux_binprm *bprm)
591{
592 const struct cred *cred = current_cred();
593 kuid_t root_uid = make_kuid(cred->user_ns, 0);
594
595 if (!uid_eq(cred->uid, root_uid)) {
596 if (bprm->cap_effective)
597 return 1;
598 if (!cap_isclear(cred->cap_permitted))
599 return 1;
600 }
601
602 return (!uid_eq(cred->euid, cred->uid) ||
603 !gid_eq(cred->egid, cred->gid));
604}
605
606/**
607 * cap_inode_setxattr - Determine whether an xattr may be altered
608 * @dentry: The inode/dentry being altered
609 * @name: The name of the xattr to be changed
610 * @value: The value that the xattr will be changed to
611 * @size: The size of value
612 * @flags: The replacement flag
613 *
614 * Determine whether an xattr may be altered or set on an inode, returning 0 if
615 * permission is granted, -ve if denied.
616 *
617 * This is used to make sure security xattrs don't get updated or set by those
618 * who aren't privileged to do so.
619 */
620int cap_inode_setxattr(struct dentry *dentry, const char *name,
621 const void *value, size_t size, int flags)
622{
623 if (!strcmp(name, XATTR_NAME_CAPS)) {
624 if (!capable(CAP_SETFCAP))
625 return -EPERM;
626 return 0;
627 }
628
629 if (!strncmp(name, XATTR_SECURITY_PREFIX,
630 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
631 !capable(CAP_SYS_ADMIN))
632 return -EPERM;
633 return 0;
634}
635
636/**
637 * cap_inode_removexattr - Determine whether an xattr may be removed
638 * @dentry: The inode/dentry being altered
639 * @name: The name of the xattr to be changed
640 *
641 * Determine whether an xattr may be removed from an inode, returning 0 if
642 * permission is granted, -ve if denied.
643 *
644 * This is used to make sure security xattrs don't get removed by those who
645 * aren't privileged to remove them.
646 */
647int cap_inode_removexattr(struct dentry *dentry, const char *name)
648{
649 if (!strcmp(name, XATTR_NAME_CAPS)) {
650 if (!capable(CAP_SETFCAP))
651 return -EPERM;
652 return 0;
653 }
654
655 if (!strncmp(name, XATTR_SECURITY_PREFIX,
656 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
657 !capable(CAP_SYS_ADMIN))
658 return -EPERM;
659 return 0;
660}
661
662/*
663 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
664 * a process after a call to setuid, setreuid, or setresuid.
665 *
666 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
667 * {r,e,s}uid != 0, the permitted and effective capabilities are
668 * cleared.
669 *
670 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
671 * capabilities of the process are cleared.
672 *
673 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
674 * capabilities are set to the permitted capabilities.
675 *
676 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
677 * never happen.
678 *
679 * -astor
680 *
681 * cevans - New behaviour, Oct '99
682 * A process may, via prctl(), elect to keep its capabilities when it
683 * calls setuid() and switches away from uid==0. Both permitted and
684 * effective sets will be retained.
685 * Without this change, it was impossible for a daemon to drop only some
686 * of its privilege. The call to setuid(!=0) would drop all privileges!
687 * Keeping uid 0 is not an option because uid 0 owns too many vital
688 * files..
689 * Thanks to Olaf Kirch and Peter Benie for spotting this.
690 */
691static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
692{
693 kuid_t root_uid = make_kuid(old->user_ns, 0);
694
695 if ((uid_eq(old->uid, root_uid) ||
696 uid_eq(old->euid, root_uid) ||
697 uid_eq(old->suid, root_uid)) &&
698 (!uid_eq(new->uid, root_uid) &&
699 !uid_eq(new->euid, root_uid) &&
700 !uid_eq(new->suid, root_uid)) &&
701 !issecure(SECURE_KEEP_CAPS)) {
702 cap_clear(new->cap_permitted);
703 cap_clear(new->cap_effective);
704 }
705 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
706 cap_clear(new->cap_effective);
707 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
708 new->cap_effective = new->cap_permitted;
709}
710
711/**
712 * cap_task_fix_setuid - Fix up the results of setuid() call
713 * @new: The proposed credentials
714 * @old: The current task's current credentials
715 * @flags: Indications of what has changed
716 *
717 * Fix up the results of setuid() call before the credential changes are
718 * actually applied, returning 0 to grant the changes, -ve to deny them.
719 */
720int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
721{
722 switch (flags) {
723 case LSM_SETID_RE:
724 case LSM_SETID_ID:
725 case LSM_SETID_RES:
726 /* juggle the capabilities to follow [RES]UID changes unless
727 * otherwise suppressed */
728 if (!issecure(SECURE_NO_SETUID_FIXUP))
729 cap_emulate_setxuid(new, old);
730 break;
731
732 case LSM_SETID_FS:
733 /* juggle the capabilties to follow FSUID changes, unless
734 * otherwise suppressed
735 *
736 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
737 * if not, we might be a bit too harsh here.
738 */
739 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
740 kuid_t root_uid = make_kuid(old->user_ns, 0);
741 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
742 new->cap_effective =
743 cap_drop_fs_set(new->cap_effective);
744
745 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
746 new->cap_effective =
747 cap_raise_fs_set(new->cap_effective,
748 new->cap_permitted);
749 }
750 break;
751
752 default:
753 return -EINVAL;
754 }
755
756 return 0;
757}
758
759/*
760 * Rationale: code calling task_setscheduler, task_setioprio, and
761 * task_setnice, assumes that
762 * . if capable(cap_sys_nice), then those actions should be allowed
763 * . if not capable(cap_sys_nice), but acting on your own processes,
764 * then those actions should be allowed
765 * This is insufficient now since you can call code without suid, but
766 * yet with increased caps.
767 * So we check for increased caps on the target process.
768 */
769static int cap_safe_nice(struct task_struct *p)
770{
771 int is_subset, ret = 0;
772
773 rcu_read_lock();
774 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
775 current_cred()->cap_permitted);
776 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
777 ret = -EPERM;
778 rcu_read_unlock();
779
780 return ret;
781}
782
783/**
784 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
785 * @p: The task to affect
786 *
787 * Detemine if the requested scheduler policy change is permitted for the
788 * specified task, returning 0 if permission is granted, -ve if denied.
789 */
790int cap_task_setscheduler(struct task_struct *p)
791{
792 return cap_safe_nice(p);
793}
794
795/**
796 * cap_task_ioprio - Detemine if I/O priority change is permitted
797 * @p: The task to affect
798 * @ioprio: The I/O priority to set
799 *
800 * Detemine if the requested I/O priority change is permitted for the specified
801 * task, returning 0 if permission is granted, -ve if denied.
802 */
803int cap_task_setioprio(struct task_struct *p, int ioprio)
804{
805 return cap_safe_nice(p);
806}
807
808/**
809 * cap_task_ioprio - Detemine if task priority change is permitted
810 * @p: The task to affect
811 * @nice: The nice value to set
812 *
813 * Detemine if the requested task priority change is permitted for the
814 * specified task, returning 0 if permission is granted, -ve if denied.
815 */
816int cap_task_setnice(struct task_struct *p, int nice)
817{
818 return cap_safe_nice(p);
819}
820
821/*
822 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
823 * the current task's bounding set. Returns 0 on success, -ve on error.
824 */
825static long cap_prctl_drop(struct cred *new, unsigned long cap)
826{
827 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
828 return -EPERM;
829 if (!cap_valid(cap))
830 return -EINVAL;
831
832 cap_lower(new->cap_bset, cap);
833 return 0;
834}
835
836/**
837 * cap_task_prctl - Implement process control functions for this security module
838 * @option: The process control function requested
839 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
840 *
841 * Allow process control functions (sys_prctl()) to alter capabilities; may
842 * also deny access to other functions not otherwise implemented here.
843 *
844 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
845 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
846 * modules will consider performing the function.
847 */
848int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
849 unsigned long arg4, unsigned long arg5)
850{
851 struct cred *new;
852 long error = 0;
853
854 new = prepare_creds();
855 if (!new)
856 return -ENOMEM;
857
858 switch (option) {
859 case PR_CAPBSET_READ:
860 error = -EINVAL;
861 if (!cap_valid(arg2))
862 goto error;
863 error = !!cap_raised(new->cap_bset, arg2);
864 goto no_change;
865
866 case PR_CAPBSET_DROP:
867 error = cap_prctl_drop(new, arg2);
868 if (error < 0)
869 goto error;
870 goto changed;
871
872 /*
873 * The next four prctl's remain to assist with transitioning a
874 * system from legacy UID=0 based privilege (when filesystem
875 * capabilities are not in use) to a system using filesystem
876 * capabilities only - as the POSIX.1e draft intended.
877 *
878 * Note:
879 *
880 * PR_SET_SECUREBITS =
881 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
882 * | issecure_mask(SECURE_NOROOT)
883 * | issecure_mask(SECURE_NOROOT_LOCKED)
884 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
885 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
886 *
887 * will ensure that the current process and all of its
888 * children will be locked into a pure
889 * capability-based-privilege environment.
890 */
891 case PR_SET_SECUREBITS:
892 error = -EPERM;
893 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
894 & (new->securebits ^ arg2)) /*[1]*/
895 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
896 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
897 || (cap_capable(current_cred(),
898 current_cred()->user_ns, CAP_SETPCAP,
899 SECURITY_CAP_AUDIT) != 0) /*[4]*/
900 /*
901 * [1] no changing of bits that are locked
902 * [2] no unlocking of locks
903 * [3] no setting of unsupported bits
904 * [4] doing anything requires privilege (go read about
905 * the "sendmail capabilities bug")
906 */
907 )
908 /* cannot change a locked bit */
909 goto error;
910 new->securebits = arg2;
911 goto changed;
912
913 case PR_GET_SECUREBITS:
914 error = new->securebits;
915 goto no_change;
916
917 case PR_GET_KEEPCAPS:
918 if (issecure(SECURE_KEEP_CAPS))
919 error = 1;
920 goto no_change;
921
922 case PR_SET_KEEPCAPS:
923 error = -EINVAL;
924 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
925 goto error;
926 error = -EPERM;
927 if (issecure(SECURE_KEEP_CAPS_LOCKED))
928 goto error;
929 if (arg2)
930 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
931 else
932 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
933 goto changed;
934
935 default:
936 /* No functionality available - continue with default */
937 error = -ENOSYS;
938 goto error;
939 }
940
941 /* Functionality provided */
942changed:
943 return commit_creds(new);
944
945no_change:
946error:
947 abort_creds(new);
948 return error;
949}
950
951/**
952 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
953 * @mm: The VM space in which the new mapping is to be made
954 * @pages: The size of the mapping
955 *
956 * Determine whether the allocation of a new virtual mapping by the current
957 * task is permitted, returning 0 if permission is granted, -ve if not.
958 */
959int cap_vm_enough_memory(struct mm_struct *mm, long pages)
960{
961 int cap_sys_admin = 0;
962
963 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
964 SECURITY_CAP_NOAUDIT) == 0)
965 cap_sys_admin = 1;
966 return __vm_enough_memory(mm, pages, cap_sys_admin);
967}
968
969/*
970 * cap_mmap_addr - check if able to map given addr
971 * @addr: address attempting to be mapped
972 *
973 * If the process is attempting to map memory below dac_mmap_min_addr they need
974 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
975 * capability security module. Returns 0 if this mapping should be allowed
976 * -EPERM if not.
977 */
978int cap_mmap_addr(unsigned long addr)
979{
980 int ret = 0;
981
982 if (addr < dac_mmap_min_addr) {
983 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
984 SECURITY_CAP_AUDIT);
985 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
986 if (ret == 0)
987 current->flags |= PF_SUPERPRIV;
988 }
989 return ret;
990}
991
992int cap_mmap_file(struct file *file, unsigned long reqprot,
993 unsigned long prot, unsigned long flags)
994{
995 return 0;
996}