Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE		max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT	10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that makes the machine dump writes/reads and block dirtyings.
 113 */
 114int block_dump;
 115
 116/*
 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118 * a full sync is triggered after this time elapses without any disk activity.
 119 */
 120int laptop_mode;
 121
 122EXPORT_SYMBOL(laptop_mode);
 123
 124/* End of sysctl-exported parameters */
 125
 126struct wb_domain global_wb_domain;
 127
 128/* consolidated parameters for balance_dirty_pages() and its subroutines */
 129struct dirty_throttle_control {
 130#ifdef CONFIG_CGROUP_WRITEBACK
 131	struct wb_domain	*dom;
 132	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 133#endif
 134	struct bdi_writeback	*wb;
 135	struct fprop_local_percpu *wb_completions;
 136
 137	unsigned long		avail;		/* dirtyable */
 138	unsigned long		dirty;		/* file_dirty + write + nfs */
 139	unsigned long		thresh;		/* dirty threshold */
 140	unsigned long		bg_thresh;	/* dirty background threshold */
 141
 142	unsigned long		wb_dirty;	/* per-wb counterparts */
 143	unsigned long		wb_thresh;
 144	unsigned long		wb_bg_thresh;
 145
 146	unsigned long		pos_ratio;
 147};
 148
 149/*
 150 * Length of period for aging writeout fractions of bdis. This is an
 151 * arbitrarily chosen number. The longer the period, the slower fractions will
 152 * reflect changes in current writeout rate.
 153 */
 154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155
 156#ifdef CONFIG_CGROUP_WRITEBACK
 157
 158#define GDTC_INIT(__wb)		.wb = (__wb),				\
 159				.dom = &global_wb_domain,		\
 160				.wb_completions = &(__wb)->completions
 161
 162#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 163
 164#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 165				.dom = mem_cgroup_wb_domain(__wb),	\
 166				.wb_completions = &(__wb)->memcg_completions, \
 167				.gdtc = __gdtc
 168
 169static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170{
 171	return dtc->dom;
 172}
 173
 174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175{
 176	return dtc->dom;
 177}
 178
 179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180{
 181	return mdtc->gdtc;
 182}
 183
 184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185{
 186	return &wb->memcg_completions;
 187}
 188
 189static void wb_min_max_ratio(struct bdi_writeback *wb,
 190			     unsigned long *minp, unsigned long *maxp)
 191{
 192	unsigned long this_bw = wb->avg_write_bandwidth;
 193	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194	unsigned long long min = wb->bdi->min_ratio;
 195	unsigned long long max = wb->bdi->max_ratio;
 196
 197	/*
 198	 * @wb may already be clean by the time control reaches here and
 199	 * the total may not include its bw.
 200	 */
 201	if (this_bw < tot_bw) {
 202		if (min) {
 203			min *= this_bw;
 204			do_div(min, tot_bw);
 205		}
 206		if (max < 100) {
 207			max *= this_bw;
 208			do_div(max, tot_bw);
 209		}
 210	}
 211
 212	*minp = min;
 213	*maxp = max;
 214}
 215
 216#else	/* CONFIG_CGROUP_WRITEBACK */
 217
 218#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 219				.wb_completions = &(__wb)->completions
 220#define GDTC_INIT_NO_WB
 221#define MDTC_INIT(__wb, __gdtc)
 222
 223static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224{
 225	return false;
 226}
 227
 228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229{
 230	return &global_wb_domain;
 231}
 232
 233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234{
 235	return NULL;
 236}
 237
 238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239{
 240	return NULL;
 241}
 242
 243static void wb_min_max_ratio(struct bdi_writeback *wb,
 244			     unsigned long *minp, unsigned long *maxp)
 245{
 246	*minp = wb->bdi->min_ratio;
 247	*maxp = wb->bdi->max_ratio;
 248}
 249
 250#endif	/* CONFIG_CGROUP_WRITEBACK */
 251
 252/*
 253 * In a memory zone, there is a certain amount of pages we consider
 254 * available for the page cache, which is essentially the number of
 255 * free and reclaimable pages, minus some zone reserves to protect
 256 * lowmem and the ability to uphold the zone's watermarks without
 257 * requiring writeback.
 258 *
 259 * This number of dirtyable pages is the base value of which the
 260 * user-configurable dirty ratio is the effictive number of pages that
 261 * are allowed to be actually dirtied.  Per individual zone, or
 262 * globally by using the sum of dirtyable pages over all zones.
 263 *
 264 * Because the user is allowed to specify the dirty limit globally as
 265 * absolute number of bytes, calculating the per-zone dirty limit can
 266 * require translating the configured limit into a percentage of
 267 * global dirtyable memory first.
 268 */
 269
 270/**
 271 * node_dirtyable_memory - number of dirtyable pages in a node
 272 * @pgdat: the node
 273 *
 274 * Returns the node's number of pages potentially available for dirty
 275 * page cache.  This is the base value for the per-node dirty limits.
 276 */
 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278{
 279	unsigned long nr_pages = 0;
 280	int z;
 281
 282	for (z = 0; z < MAX_NR_ZONES; z++) {
 283		struct zone *zone = pgdat->node_zones + z;
 284
 285		if (!populated_zone(zone))
 286			continue;
 287
 288		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289	}
 290
 291	/*
 292	 * Pages reserved for the kernel should not be considered
 293	 * dirtyable, to prevent a situation where reclaim has to
 294	 * clean pages in order to balance the zones.
 295	 */
 296	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297
 298	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300
 301	return nr_pages;
 302}
 303
 304static unsigned long highmem_dirtyable_memory(unsigned long total)
 305{
 306#ifdef CONFIG_HIGHMEM
 307	int node;
 308	unsigned long x = 0;
 309	int i;
 310
 311	for_each_node_state(node, N_HIGH_MEMORY) {
 312		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313			struct zone *z;
 314			unsigned long nr_pages;
 315
 316			if (!is_highmem_idx(i))
 317				continue;
 318
 319			z = &NODE_DATA(node)->node_zones[i];
 320			if (!populated_zone(z))
 321				continue;
 322
 323			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324			/* watch for underflows */
 325			nr_pages -= min(nr_pages, high_wmark_pages(z));
 326			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328			x += nr_pages;
 329		}
 330	}
 331
 332	/*
 333	 * Unreclaimable memory (kernel memory or anonymous memory
 334	 * without swap) can bring down the dirtyable pages below
 335	 * the zone's dirty balance reserve and the above calculation
 336	 * will underflow.  However we still want to add in nodes
 337	 * which are below threshold (negative values) to get a more
 338	 * accurate calculation but make sure that the total never
 339	 * underflows.
 340	 */
 341	if ((long)x < 0)
 342		x = 0;
 343
 344	/*
 345	 * Make sure that the number of highmem pages is never larger
 346	 * than the number of the total dirtyable memory. This can only
 347	 * occur in very strange VM situations but we want to make sure
 348	 * that this does not occur.
 349	 */
 350	return min(x, total);
 351#else
 352	return 0;
 353#endif
 354}
 355
 356/**
 357 * global_dirtyable_memory - number of globally dirtyable pages
 358 *
 359 * Returns the global number of pages potentially available for dirty
 360 * page cache.  This is the base value for the global dirty limits.
 361 */
 362static unsigned long global_dirtyable_memory(void)
 363{
 364	unsigned long x;
 365
 366	x = global_zone_page_state(NR_FREE_PAGES);
 367	/*
 368	 * Pages reserved for the kernel should not be considered
 369	 * dirtyable, to prevent a situation where reclaim has to
 370	 * clean pages in order to balance the zones.
 371	 */
 372	x -= min(x, totalreserve_pages);
 373
 374	x += global_node_page_state(NR_INACTIVE_FILE);
 375	x += global_node_page_state(NR_ACTIVE_FILE);
 376
 377	if (!vm_highmem_is_dirtyable)
 378		x -= highmem_dirtyable_memory(x);
 379
 380	return x + 1;	/* Ensure that we never return 0 */
 381}
 382
 383/**
 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385 * @dtc: dirty_throttle_control of interest
 386 *
 387 * Calculate @dtc->thresh and ->bg_thresh considering
 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389 * must ensure that @dtc->avail is set before calling this function.  The
 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 391 * real-time tasks.
 392 */
 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 394{
 395	const unsigned long available_memory = dtc->avail;
 396	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 397	unsigned long bytes = vm_dirty_bytes;
 398	unsigned long bg_bytes = dirty_background_bytes;
 399	/* convert ratios to per-PAGE_SIZE for higher precision */
 400	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 401	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 402	unsigned long thresh;
 403	unsigned long bg_thresh;
 404	struct task_struct *tsk;
 405
 406	/* gdtc is !NULL iff @dtc is for memcg domain */
 407	if (gdtc) {
 408		unsigned long global_avail = gdtc->avail;
 409
 410		/*
 411		 * The byte settings can't be applied directly to memcg
 412		 * domains.  Convert them to ratios by scaling against
 413		 * globally available memory.  As the ratios are in
 414		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 415		 * number of pages.
 416		 */
 417		if (bytes)
 418			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 419				    PAGE_SIZE);
 420		if (bg_bytes)
 421			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 422				       PAGE_SIZE);
 423		bytes = bg_bytes = 0;
 424	}
 425
 426	if (bytes)
 427		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 428	else
 429		thresh = (ratio * available_memory) / PAGE_SIZE;
 430
 431	if (bg_bytes)
 432		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 433	else
 434		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 435
 436	if (bg_thresh >= thresh)
 437		bg_thresh = thresh / 2;
 438	tsk = current;
 439	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 440		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 441		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 442	}
 443	dtc->thresh = thresh;
 444	dtc->bg_thresh = bg_thresh;
 445
 446	/* we should eventually report the domain in the TP */
 447	if (!gdtc)
 448		trace_global_dirty_state(bg_thresh, thresh);
 449}
 450
 451/**
 452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 453 * @pbackground: out parameter for bg_thresh
 454 * @pdirty: out parameter for thresh
 455 *
 456 * Calculate bg_thresh and thresh for global_wb_domain.  See
 457 * domain_dirty_limits() for details.
 458 */
 459void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 460{
 461	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 462
 463	gdtc.avail = global_dirtyable_memory();
 464	domain_dirty_limits(&gdtc);
 465
 466	*pbackground = gdtc.bg_thresh;
 467	*pdirty = gdtc.thresh;
 468}
 469
 470/**
 471 * node_dirty_limit - maximum number of dirty pages allowed in a node
 472 * @pgdat: the node
 473 *
 474 * Returns the maximum number of dirty pages allowed in a node, based
 475 * on the node's dirtyable memory.
 476 */
 477static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 478{
 479	unsigned long node_memory = node_dirtyable_memory(pgdat);
 480	struct task_struct *tsk = current;
 481	unsigned long dirty;
 482
 483	if (vm_dirty_bytes)
 484		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 485			node_memory / global_dirtyable_memory();
 486	else
 487		dirty = vm_dirty_ratio * node_memory / 100;
 488
 489	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 490		dirty += dirty / 4;
 491
 492	return dirty;
 493}
 494
 495/**
 496 * node_dirty_ok - tells whether a node is within its dirty limits
 497 * @pgdat: the node to check
 498 *
 499 * Returns %true when the dirty pages in @pgdat are within the node's
 500 * dirty limit, %false if the limit is exceeded.
 501 */
 502bool node_dirty_ok(struct pglist_data *pgdat)
 503{
 504	unsigned long limit = node_dirty_limit(pgdat);
 505	unsigned long nr_pages = 0;
 506
 507	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 508	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 509	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 510
 511	return nr_pages <= limit;
 512}
 513
 514int dirty_background_ratio_handler(struct ctl_table *table, int write,
 515		void __user *buffer, size_t *lenp,
 516		loff_t *ppos)
 517{
 518	int ret;
 519
 520	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 521	if (ret == 0 && write)
 522		dirty_background_bytes = 0;
 523	return ret;
 524}
 525
 526int dirty_background_bytes_handler(struct ctl_table *table, int write,
 527		void __user *buffer, size_t *lenp,
 528		loff_t *ppos)
 529{
 530	int ret;
 531
 532	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 533	if (ret == 0 && write)
 534		dirty_background_ratio = 0;
 535	return ret;
 536}
 537
 538int dirty_ratio_handler(struct ctl_table *table, int write,
 539		void __user *buffer, size_t *lenp,
 540		loff_t *ppos)
 541{
 542	int old_ratio = vm_dirty_ratio;
 543	int ret;
 544
 545	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 546	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 547		writeback_set_ratelimit();
 548		vm_dirty_bytes = 0;
 549	}
 550	return ret;
 551}
 552
 553int dirty_bytes_handler(struct ctl_table *table, int write,
 554		void __user *buffer, size_t *lenp,
 555		loff_t *ppos)
 556{
 557	unsigned long old_bytes = vm_dirty_bytes;
 558	int ret;
 559
 560	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 561	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 562		writeback_set_ratelimit();
 563		vm_dirty_ratio = 0;
 564	}
 565	return ret;
 566}
 567
 568static unsigned long wp_next_time(unsigned long cur_time)
 569{
 570	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 571	/* 0 has a special meaning... */
 572	if (!cur_time)
 573		return 1;
 574	return cur_time;
 575}
 576
 577static void wb_domain_writeout_inc(struct wb_domain *dom,
 578				   struct fprop_local_percpu *completions,
 579				   unsigned int max_prop_frac)
 580{
 581	__fprop_inc_percpu_max(&dom->completions, completions,
 582			       max_prop_frac);
 583	/* First event after period switching was turned off? */
 584	if (unlikely(!dom->period_time)) {
 585		/*
 586		 * We can race with other __bdi_writeout_inc calls here but
 587		 * it does not cause any harm since the resulting time when
 588		 * timer will fire and what is in writeout_period_time will be
 589		 * roughly the same.
 590		 */
 591		dom->period_time = wp_next_time(jiffies);
 592		mod_timer(&dom->period_timer, dom->period_time);
 593	}
 594}
 595
 596/*
 597 * Increment @wb's writeout completion count and the global writeout
 598 * completion count. Called from test_clear_page_writeback().
 599 */
 600static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 601{
 602	struct wb_domain *cgdom;
 603
 604	inc_wb_stat(wb, WB_WRITTEN);
 605	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 606			       wb->bdi->max_prop_frac);
 607
 608	cgdom = mem_cgroup_wb_domain(wb);
 609	if (cgdom)
 610		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 611				       wb->bdi->max_prop_frac);
 612}
 613
 614void wb_writeout_inc(struct bdi_writeback *wb)
 615{
 616	unsigned long flags;
 617
 618	local_irq_save(flags);
 619	__wb_writeout_inc(wb);
 620	local_irq_restore(flags);
 621}
 622EXPORT_SYMBOL_GPL(wb_writeout_inc);
 623
 624/*
 625 * On idle system, we can be called long after we scheduled because we use
 626 * deferred timers so count with missed periods.
 627 */
 628static void writeout_period(struct timer_list *t)
 629{
 630	struct wb_domain *dom = from_timer(dom, t, period_timer);
 631	int miss_periods = (jiffies - dom->period_time) /
 632						 VM_COMPLETIONS_PERIOD_LEN;
 633
 634	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 635		dom->period_time = wp_next_time(dom->period_time +
 636				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 637		mod_timer(&dom->period_timer, dom->period_time);
 638	} else {
 639		/*
 640		 * Aging has zeroed all fractions. Stop wasting CPU on period
 641		 * updates.
 642		 */
 643		dom->period_time = 0;
 644	}
 645}
 646
 647int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 648{
 649	memset(dom, 0, sizeof(*dom));
 650
 651	spin_lock_init(&dom->lock);
 652
 653	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 
 
 654
 655	dom->dirty_limit_tstamp = jiffies;
 656
 657	return fprop_global_init(&dom->completions, gfp);
 658}
 659
 660#ifdef CONFIG_CGROUP_WRITEBACK
 661void wb_domain_exit(struct wb_domain *dom)
 662{
 663	del_timer_sync(&dom->period_timer);
 664	fprop_global_destroy(&dom->completions);
 665}
 666#endif
 667
 668/*
 669 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 670 * registered backing devices, which, for obvious reasons, can not
 671 * exceed 100%.
 672 */
 673static unsigned int bdi_min_ratio;
 674
 675int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 676{
 677	int ret = 0;
 678
 679	spin_lock_bh(&bdi_lock);
 680	if (min_ratio > bdi->max_ratio) {
 681		ret = -EINVAL;
 682	} else {
 683		min_ratio -= bdi->min_ratio;
 684		if (bdi_min_ratio + min_ratio < 100) {
 685			bdi_min_ratio += min_ratio;
 686			bdi->min_ratio += min_ratio;
 687		} else {
 688			ret = -EINVAL;
 689		}
 690	}
 691	spin_unlock_bh(&bdi_lock);
 692
 693	return ret;
 694}
 695
 696int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 697{
 698	int ret = 0;
 699
 700	if (max_ratio > 100)
 701		return -EINVAL;
 702
 703	spin_lock_bh(&bdi_lock);
 704	if (bdi->min_ratio > max_ratio) {
 705		ret = -EINVAL;
 706	} else {
 707		bdi->max_ratio = max_ratio;
 708		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 709	}
 710	spin_unlock_bh(&bdi_lock);
 711
 712	return ret;
 713}
 714EXPORT_SYMBOL(bdi_set_max_ratio);
 715
 716static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 717					   unsigned long bg_thresh)
 718{
 719	return (thresh + bg_thresh) / 2;
 720}
 721
 722static unsigned long hard_dirty_limit(struct wb_domain *dom,
 723				      unsigned long thresh)
 724{
 725	return max(thresh, dom->dirty_limit);
 726}
 727
 728/*
 729 * Memory which can be further allocated to a memcg domain is capped by
 730 * system-wide clean memory excluding the amount being used in the domain.
 731 */
 732static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 733			    unsigned long filepages, unsigned long headroom)
 734{
 735	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 736	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 737	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 738	unsigned long other_clean = global_clean - min(global_clean, clean);
 739
 740	mdtc->avail = filepages + min(headroom, other_clean);
 741}
 742
 743/**
 744 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 745 * @dtc: dirty_throttle_context of interest
 746 *
 747 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 748 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 749 *
 750 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 751 * when sleeping max_pause per page is not enough to keep the dirty pages under
 752 * control. For example, when the device is completely stalled due to some error
 753 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 754 * In the other normal situations, it acts more gently by throttling the tasks
 755 * more (rather than completely block them) when the wb dirty pages go high.
 756 *
 757 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 758 * - starving fast devices
 759 * - piling up dirty pages (that will take long time to sync) on slow devices
 760 *
 761 * The wb's share of dirty limit will be adapting to its throughput and
 762 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 763 */
 764static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 765{
 766	struct wb_domain *dom = dtc_dom(dtc);
 767	unsigned long thresh = dtc->thresh;
 768	u64 wb_thresh;
 769	long numerator, denominator;
 770	unsigned long wb_min_ratio, wb_max_ratio;
 771
 772	/*
 773	 * Calculate this BDI's share of the thresh ratio.
 774	 */
 775	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 776			      &numerator, &denominator);
 777
 778	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 779	wb_thresh *= numerator;
 780	do_div(wb_thresh, denominator);
 781
 782	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 783
 784	wb_thresh += (thresh * wb_min_ratio) / 100;
 785	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 786		wb_thresh = thresh * wb_max_ratio / 100;
 787
 788	return wb_thresh;
 789}
 790
 791unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 792{
 793	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 794					       .thresh = thresh };
 795	return __wb_calc_thresh(&gdtc);
 796}
 797
 798/*
 799 *                           setpoint - dirty 3
 800 *        f(dirty) := 1.0 + (----------------)
 801 *                           limit - setpoint
 802 *
 803 * it's a 3rd order polynomial that subjects to
 804 *
 805 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 806 * (2) f(setpoint) = 1.0 => the balance point
 807 * (3) f(limit)    = 0   => the hard limit
 808 * (4) df/dx      <= 0	 => negative feedback control
 809 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 810 *     => fast response on large errors; small oscillation near setpoint
 811 */
 812static long long pos_ratio_polynom(unsigned long setpoint,
 813					  unsigned long dirty,
 814					  unsigned long limit)
 815{
 816	long long pos_ratio;
 817	long x;
 818
 819	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 820		      (limit - setpoint) | 1);
 821	pos_ratio = x;
 822	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 823	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 825
 826	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 827}
 828
 829/*
 830 * Dirty position control.
 831 *
 832 * (o) global/bdi setpoints
 833 *
 834 * We want the dirty pages be balanced around the global/wb setpoints.
 835 * When the number of dirty pages is higher/lower than the setpoint, the
 836 * dirty position control ratio (and hence task dirty ratelimit) will be
 837 * decreased/increased to bring the dirty pages back to the setpoint.
 838 *
 839 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 840 *
 841 *     if (dirty < setpoint) scale up   pos_ratio
 842 *     if (dirty > setpoint) scale down pos_ratio
 843 *
 844 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 845 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 846 *
 847 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 848 *
 849 * (o) global control line
 850 *
 851 *     ^ pos_ratio
 852 *     |
 853 *     |            |<===== global dirty control scope ======>|
 854 * 2.0 .............*
 855 *     |            .*
 856 *     |            . *
 857 *     |            .   *
 858 *     |            .     *
 859 *     |            .        *
 860 *     |            .            *
 861 * 1.0 ................................*
 862 *     |            .                  .     *
 863 *     |            .                  .          *
 864 *     |            .                  .              *
 865 *     |            .                  .                 *
 866 *     |            .                  .                    *
 867 *   0 +------------.------------------.----------------------*------------->
 868 *           freerun^          setpoint^                 limit^   dirty pages
 869 *
 870 * (o) wb control line
 871 *
 872 *     ^ pos_ratio
 873 *     |
 874 *     |            *
 875 *     |              *
 876 *     |                *
 877 *     |                  *
 878 *     |                    * |<=========== span ============>|
 879 * 1.0 .......................*
 880 *     |                      . *
 881 *     |                      .   *
 882 *     |                      .     *
 883 *     |                      .       *
 884 *     |                      .         *
 885 *     |                      .           *
 886 *     |                      .             *
 887 *     |                      .               *
 888 *     |                      .                 *
 889 *     |                      .                   *
 890 *     |                      .                     *
 891 * 1/4 ...............................................* * * * * * * * * * * *
 892 *     |                      .                         .
 893 *     |                      .                           .
 894 *     |                      .                             .
 895 *   0 +----------------------.-------------------------------.------------->
 896 *                wb_setpoint^                    x_intercept^
 897 *
 898 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 899 * be smoothly throttled down to normal if it starts high in situations like
 900 * - start writing to a slow SD card and a fast disk at the same time. The SD
 901 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 902 * - the wb dirty thresh drops quickly due to change of JBOD workload
 903 */
 904static void wb_position_ratio(struct dirty_throttle_control *dtc)
 905{
 906	struct bdi_writeback *wb = dtc->wb;
 907	unsigned long write_bw = wb->avg_write_bandwidth;
 908	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 909	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 910	unsigned long wb_thresh = dtc->wb_thresh;
 911	unsigned long x_intercept;
 912	unsigned long setpoint;		/* dirty pages' target balance point */
 913	unsigned long wb_setpoint;
 914	unsigned long span;
 915	long long pos_ratio;		/* for scaling up/down the rate limit */
 916	long x;
 917
 918	dtc->pos_ratio = 0;
 919
 920	if (unlikely(dtc->dirty >= limit))
 921		return;
 922
 923	/*
 924	 * global setpoint
 925	 *
 926	 * See comment for pos_ratio_polynom().
 927	 */
 928	setpoint = (freerun + limit) / 2;
 929	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 930
 931	/*
 932	 * The strictlimit feature is a tool preventing mistrusted filesystems
 933	 * from growing a large number of dirty pages before throttling. For
 934	 * such filesystems balance_dirty_pages always checks wb counters
 935	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 936	 * This is especially important for fuse which sets bdi->max_ratio to
 937	 * 1% by default. Without strictlimit feature, fuse writeback may
 938	 * consume arbitrary amount of RAM because it is accounted in
 939	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 940	 *
 941	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 942	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 943	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 944	 * limits are set by default to 10% and 20% (background and throttle).
 945	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 946	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 947	 * about ~6K pages (as the average of background and throttle wb
 948	 * limits). The 3rd order polynomial will provide positive feedback if
 949	 * wb_dirty is under wb_setpoint and vice versa.
 950	 *
 951	 * Note, that we cannot use global counters in these calculations
 952	 * because we want to throttle process writing to a strictlimit wb
 953	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 954	 * in the example above).
 955	 */
 956	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 957		long long wb_pos_ratio;
 958
 959		if (dtc->wb_dirty < 8) {
 960			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 961					   2 << RATELIMIT_CALC_SHIFT);
 962			return;
 963		}
 964
 965		if (dtc->wb_dirty >= wb_thresh)
 966			return;
 967
 968		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 969						    dtc->wb_bg_thresh);
 970
 971		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 972			return;
 973
 974		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 975						 wb_thresh);
 976
 977		/*
 978		 * Typically, for strictlimit case, wb_setpoint << setpoint
 979		 * and pos_ratio >> wb_pos_ratio. In the other words global
 980		 * state ("dirty") is not limiting factor and we have to
 981		 * make decision based on wb counters. But there is an
 982		 * important case when global pos_ratio should get precedence:
 983		 * global limits are exceeded (e.g. due to activities on other
 984		 * wb's) while given strictlimit wb is below limit.
 985		 *
 986		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 987		 * but it would look too non-natural for the case of all
 988		 * activity in the system coming from a single strictlimit wb
 989		 * with bdi->max_ratio == 100%.
 990		 *
 991		 * Note that min() below somewhat changes the dynamics of the
 992		 * control system. Normally, pos_ratio value can be well over 3
 993		 * (when globally we are at freerun and wb is well below wb
 994		 * setpoint). Now the maximum pos_ratio in the same situation
 995		 * is 2. We might want to tweak this if we observe the control
 996		 * system is too slow to adapt.
 997		 */
 998		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 999		return;
1000	}
1001
1002	/*
1003	 * We have computed basic pos_ratio above based on global situation. If
1004	 * the wb is over/under its share of dirty pages, we want to scale
1005	 * pos_ratio further down/up. That is done by the following mechanism.
1006	 */
1007
1008	/*
1009	 * wb setpoint
1010	 *
1011	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012	 *
1013	 *                        x_intercept - wb_dirty
1014	 *                     := --------------------------
1015	 *                        x_intercept - wb_setpoint
1016	 *
1017	 * The main wb control line is a linear function that subjects to
1018	 *
1019	 * (1) f(wb_setpoint) = 1.0
1020	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1021	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1022	 *
1023	 * For single wb case, the dirty pages are observed to fluctuate
1024	 * regularly within range
1025	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1026	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1027	 * fluctuation range for pos_ratio.
1028	 *
1029	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1030	 * own size, so move the slope over accordingly and choose a slope that
1031	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032	 */
1033	if (unlikely(wb_thresh > dtc->thresh))
1034		wb_thresh = dtc->thresh;
1035	/*
1036	 * It's very possible that wb_thresh is close to 0 not because the
1037	 * device is slow, but that it has remained inactive for long time.
1038	 * Honour such devices a reasonable good (hopefully IO efficient)
1039	 * threshold, so that the occasional writes won't be blocked and active
1040	 * writes can rampup the threshold quickly.
1041	 */
1042	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043	/*
1044	 * scale global setpoint to wb's:
1045	 *	wb_setpoint = setpoint * wb_thresh / thresh
1046	 */
1047	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048	wb_setpoint = setpoint * (u64)x >> 16;
1049	/*
1050	 * Use span=(8*write_bw) in single wb case as indicated by
1051	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052	 *
1053	 *        wb_thresh                    thresh - wb_thresh
1054	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055	 *         thresh                           thresh
1056	 */
1057	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058	x_intercept = wb_setpoint + span;
1059
1060	if (dtc->wb_dirty < x_intercept - span / 4) {
1061		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062				      (x_intercept - wb_setpoint) | 1);
1063	} else
1064		pos_ratio /= 4;
1065
1066	/*
1067	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1068	 * It may push the desired control point of global dirty pages higher
1069	 * than setpoint.
1070	 */
1071	x_intercept = wb_thresh / 2;
1072	if (dtc->wb_dirty < x_intercept) {
1073		if (dtc->wb_dirty > x_intercept / 8)
1074			pos_ratio = div_u64(pos_ratio * x_intercept,
1075					    dtc->wb_dirty);
1076		else
1077			pos_ratio *= 8;
1078	}
1079
1080	dtc->pos_ratio = pos_ratio;
1081}
1082
1083static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084				      unsigned long elapsed,
1085				      unsigned long written)
1086{
1087	const unsigned long period = roundup_pow_of_two(3 * HZ);
1088	unsigned long avg = wb->avg_write_bandwidth;
1089	unsigned long old = wb->write_bandwidth;
1090	u64 bw;
1091
1092	/*
1093	 * bw = written * HZ / elapsed
1094	 *
1095	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1096	 * write_bandwidth = ---------------------------------------------------
1097	 *                                          period
1098	 *
1099	 * @written may have decreased due to account_page_redirty().
1100	 * Avoid underflowing @bw calculation.
1101	 */
1102	bw = written - min(written, wb->written_stamp);
1103	bw *= HZ;
1104	if (unlikely(elapsed > period)) {
1105		do_div(bw, elapsed);
1106		avg = bw;
1107		goto out;
1108	}
1109	bw += (u64)wb->write_bandwidth * (period - elapsed);
1110	bw >>= ilog2(period);
1111
1112	/*
1113	 * one more level of smoothing, for filtering out sudden spikes
1114	 */
1115	if (avg > old && old >= (unsigned long)bw)
1116		avg -= (avg - old) >> 3;
1117
1118	if (avg < old && old <= (unsigned long)bw)
1119		avg += (old - avg) >> 3;
1120
1121out:
1122	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123	avg = max(avg, 1LU);
1124	if (wb_has_dirty_io(wb)) {
1125		long delta = avg - wb->avg_write_bandwidth;
1126		WARN_ON_ONCE(atomic_long_add_return(delta,
1127					&wb->bdi->tot_write_bandwidth) <= 0);
1128	}
1129	wb->write_bandwidth = bw;
1130	wb->avg_write_bandwidth = avg;
1131}
1132
1133static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134{
1135	struct wb_domain *dom = dtc_dom(dtc);
1136	unsigned long thresh = dtc->thresh;
1137	unsigned long limit = dom->dirty_limit;
1138
1139	/*
1140	 * Follow up in one step.
1141	 */
1142	if (limit < thresh) {
1143		limit = thresh;
1144		goto update;
1145	}
1146
1147	/*
1148	 * Follow down slowly. Use the higher one as the target, because thresh
1149	 * may drop below dirty. This is exactly the reason to introduce
1150	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151	 */
1152	thresh = max(thresh, dtc->dirty);
1153	if (limit > thresh) {
1154		limit -= (limit - thresh) >> 5;
1155		goto update;
1156	}
1157	return;
1158update:
1159	dom->dirty_limit = limit;
1160}
1161
1162static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1163				    unsigned long now)
1164{
1165	struct wb_domain *dom = dtc_dom(dtc);
1166
1167	/*
1168	 * check locklessly first to optimize away locking for the most time
1169	 */
1170	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171		return;
1172
1173	spin_lock(&dom->lock);
1174	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175		update_dirty_limit(dtc);
1176		dom->dirty_limit_tstamp = now;
1177	}
1178	spin_unlock(&dom->lock);
1179}
1180
1181/*
1182 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183 *
1184 * Normal wb tasks will be curbed at or below it in long term.
1185 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 */
1187static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188				      unsigned long dirtied,
1189				      unsigned long elapsed)
1190{
1191	struct bdi_writeback *wb = dtc->wb;
1192	unsigned long dirty = dtc->dirty;
1193	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1195	unsigned long setpoint = (freerun + limit) / 2;
1196	unsigned long write_bw = wb->avg_write_bandwidth;
1197	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1198	unsigned long dirty_rate;
1199	unsigned long task_ratelimit;
1200	unsigned long balanced_dirty_ratelimit;
1201	unsigned long step;
1202	unsigned long x;
1203	unsigned long shift;
1204
1205	/*
1206	 * The dirty rate will match the writeout rate in long term, except
1207	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208	 */
1209	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1210
1211	/*
1212	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213	 */
1214	task_ratelimit = (u64)dirty_ratelimit *
1215					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1216	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217
1218	/*
1219	 * A linear estimation of the "balanced" throttle rate. The theory is,
1220	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1221	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222	 * formula will yield the balanced rate limit (write_bw / N).
1223	 *
1224	 * Note that the expanded form is not a pure rate feedback:
1225	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1226	 * but also takes pos_ratio into account:
1227	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1228	 *
1229	 * (1) is not realistic because pos_ratio also takes part in balancing
1230	 * the dirty rate.  Consider the state
1231	 *	pos_ratio = 0.5						     (3)
1232	 *	rate = 2 * (write_bw / N)				     (4)
1233	 * If (1) is used, it will stuck in that state! Because each dd will
1234	 * be throttled at
1235	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1236	 * yielding
1237	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1238	 * put (6) into (1) we get
1239	 *	rate_(i+1) = rate_(i)					     (7)
1240	 *
1241	 * So we end up using (2) to always keep
1242	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1243	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244	 * pos_ratio is able to drive itself to 1.0, which is not only where
1245	 * the dirty count meet the setpoint, but also where the slope of
1246	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247	 */
1248	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249					   dirty_rate | 1);
1250	/*
1251	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252	 */
1253	if (unlikely(balanced_dirty_ratelimit > write_bw))
1254		balanced_dirty_ratelimit = write_bw;
1255
1256	/*
1257	 * We could safely do this and return immediately:
1258	 *
1259	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260	 *
1261	 * However to get a more stable dirty_ratelimit, the below elaborated
1262	 * code makes use of task_ratelimit to filter out singular points and
1263	 * limit the step size.
1264	 *
1265	 * The below code essentially only uses the relative value of
1266	 *
1267	 *	task_ratelimit - dirty_ratelimit
1268	 *	= (pos_ratio - 1) * dirty_ratelimit
1269	 *
1270	 * which reflects the direction and size of dirty position error.
1271	 */
1272
1273	/*
1274	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1276	 * For example, when
1277	 * - dirty_ratelimit > balanced_dirty_ratelimit
1278	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279	 * lowering dirty_ratelimit will help meet both the position and rate
1280	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1281	 * only help meet the rate target. After all, what the users ultimately
1282	 * feel and care are stable dirty rate and small position error.
1283	 *
1284	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1285	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1286	 * keeps jumping around randomly and can even leap far away at times
1287	 * due to the small 200ms estimation period of dirty_rate (we want to
1288	 * keep that period small to reduce time lags).
1289	 */
1290	step = 0;
1291
1292	/*
1293	 * For strictlimit case, calculations above were based on wb counters
1294	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1297	 * "dirty" and wb_setpoint as "setpoint".
1298	 *
1299	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300	 * it's possible that wb_thresh is close to zero due to inactivity
1301	 * of backing device.
1302	 */
1303	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304		dirty = dtc->wb_dirty;
1305		if (dtc->wb_dirty < 8)
1306			setpoint = dtc->wb_dirty + 1;
1307		else
1308			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309	}
1310
1311	if (dirty < setpoint) {
1312		x = min3(wb->balanced_dirty_ratelimit,
1313			 balanced_dirty_ratelimit, task_ratelimit);
1314		if (dirty_ratelimit < x)
1315			step = x - dirty_ratelimit;
1316	} else {
1317		x = max3(wb->balanced_dirty_ratelimit,
1318			 balanced_dirty_ratelimit, task_ratelimit);
1319		if (dirty_ratelimit > x)
1320			step = dirty_ratelimit - x;
1321	}
1322
1323	/*
1324	 * Don't pursue 100% rate matching. It's impossible since the balanced
1325	 * rate itself is constantly fluctuating. So decrease the track speed
1326	 * when it gets close to the target. Helps eliminate pointless tremors.
1327	 */
1328	shift = dirty_ratelimit / (2 * step + 1);
1329	if (shift < BITS_PER_LONG)
1330		step = DIV_ROUND_UP(step >> shift, 8);
1331	else
1332		step = 0;
1333
1334	if (dirty_ratelimit < balanced_dirty_ratelimit)
1335		dirty_ratelimit += step;
1336	else
1337		dirty_ratelimit -= step;
1338
1339	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341
1342	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1343}
1344
1345static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346				  struct dirty_throttle_control *mdtc,
1347				  unsigned long start_time,
1348				  bool update_ratelimit)
1349{
1350	struct bdi_writeback *wb = gdtc->wb;
1351	unsigned long now = jiffies;
1352	unsigned long elapsed = now - wb->bw_time_stamp;
1353	unsigned long dirtied;
1354	unsigned long written;
1355
1356	lockdep_assert_held(&wb->list_lock);
1357
1358	/*
1359	 * rate-limit, only update once every 200ms.
1360	 */
1361	if (elapsed < BANDWIDTH_INTERVAL)
1362		return;
1363
1364	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366
1367	/*
1368	 * Skip quiet periods when disk bandwidth is under-utilized.
1369	 * (at least 1s idle time between two flusher runs)
1370	 */
1371	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372		goto snapshot;
1373
1374	if (update_ratelimit) {
1375		domain_update_bandwidth(gdtc, now);
1376		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377
1378		/*
1379		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380		 * compiler has no way to figure that out.  Help it.
1381		 */
1382		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383			domain_update_bandwidth(mdtc, now);
1384			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385		}
1386	}
1387	wb_update_write_bandwidth(wb, elapsed, written);
1388
1389snapshot:
1390	wb->dirtied_stamp = dirtied;
1391	wb->written_stamp = written;
1392	wb->bw_time_stamp = now;
1393}
1394
1395void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396{
1397	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398
1399	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1400}
1401
1402/*
1403 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404 * will look to see if it needs to start dirty throttling.
1405 *
1406 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408 * (the number of pages we may dirty without exceeding the dirty limits).
1409 */
1410static unsigned long dirty_poll_interval(unsigned long dirty,
1411					 unsigned long thresh)
1412{
1413	if (thresh > dirty)
1414		return 1UL << (ilog2(thresh - dirty) >> 1);
1415
1416	return 1;
1417}
1418
1419static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420				  unsigned long wb_dirty)
1421{
1422	unsigned long bw = wb->avg_write_bandwidth;
1423	unsigned long t;
1424
1425	/*
1426	 * Limit pause time for small memory systems. If sleeping for too long
1427	 * time, a small pool of dirty/writeback pages may go empty and disk go
1428	 * idle.
1429	 *
1430	 * 8 serves as the safety ratio.
1431	 */
1432	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433	t++;
1434
1435	return min_t(unsigned long, t, MAX_PAUSE);
1436}
1437
1438static long wb_min_pause(struct bdi_writeback *wb,
1439			 long max_pause,
1440			 unsigned long task_ratelimit,
1441			 unsigned long dirty_ratelimit,
1442			 int *nr_dirtied_pause)
1443{
1444	long hi = ilog2(wb->avg_write_bandwidth);
1445	long lo = ilog2(wb->dirty_ratelimit);
1446	long t;		/* target pause */
1447	long pause;	/* estimated next pause */
1448	int pages;	/* target nr_dirtied_pause */
1449
1450	/* target for 10ms pause on 1-dd case */
1451	t = max(1, HZ / 100);
1452
1453	/*
1454	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455	 * overheads.
1456	 *
1457	 * (N * 10ms) on 2^N concurrent tasks.
1458	 */
1459	if (hi > lo)
1460		t += (hi - lo) * (10 * HZ) / 1024;
1461
1462	/*
1463	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464	 * on the much more stable dirty_ratelimit. However the next pause time
1465	 * will be computed based on task_ratelimit and the two rate limits may
1466	 * depart considerably at some time. Especially if task_ratelimit goes
1467	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1469	 * result task_ratelimit won't be executed faithfully, which could
1470	 * eventually bring down dirty_ratelimit.
1471	 *
1472	 * We apply two rules to fix it up:
1473	 * 1) try to estimate the next pause time and if necessary, use a lower
1474	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1476	 * 2) limit the target pause time to max_pause/2, so that the normal
1477	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1478	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479	 */
1480	t = min(t, 1 + max_pause / 2);
1481	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482
1483	/*
1484	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486	 * When the 16 consecutive reads are often interrupted by some dirty
1487	 * throttling pause during the async writes, cfq will go into idles
1488	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1489	 * until reaches DIRTY_POLL_THRESH=32 pages.
1490	 */
1491	if (pages < DIRTY_POLL_THRESH) {
1492		t = max_pause;
1493		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494		if (pages > DIRTY_POLL_THRESH) {
1495			pages = DIRTY_POLL_THRESH;
1496			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497		}
1498	}
1499
1500	pause = HZ * pages / (task_ratelimit + 1);
1501	if (pause > max_pause) {
1502		t = max_pause;
1503		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504	}
1505
1506	*nr_dirtied_pause = pages;
1507	/*
1508	 * The minimal pause time will normally be half the target pause time.
1509	 */
1510	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511}
1512
1513static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514{
1515	struct bdi_writeback *wb = dtc->wb;
1516	unsigned long wb_reclaimable;
1517
1518	/*
1519	 * wb_thresh is not treated as some limiting factor as
1520	 * dirty_thresh, due to reasons
1521	 * - in JBOD setup, wb_thresh can fluctuate a lot
1522	 * - in a system with HDD and USB key, the USB key may somehow
1523	 *   go into state (wb_dirty >> wb_thresh) either because
1524	 *   wb_dirty starts high, or because wb_thresh drops low.
1525	 *   In this case we don't want to hard throttle the USB key
1526	 *   dirtiers for 100 seconds until wb_dirty drops under
1527	 *   wb_thresh. Instead the auxiliary wb control line in
1528	 *   wb_position_ratio() will let the dirtier task progress
1529	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530	 */
1531	dtc->wb_thresh = __wb_calc_thresh(dtc);
1532	dtc->wb_bg_thresh = dtc->thresh ?
1533		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534
1535	/*
1536	 * In order to avoid the stacked BDI deadlock we need
1537	 * to ensure we accurately count the 'dirty' pages when
1538	 * the threshold is low.
1539	 *
1540	 * Otherwise it would be possible to get thresh+n pages
1541	 * reported dirty, even though there are thresh-m pages
1542	 * actually dirty; with m+n sitting in the percpu
1543	 * deltas.
1544	 */
1545	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548	} else {
1549		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551	}
1552}
1553
1554/*
1555 * balance_dirty_pages() must be called by processes which are generating dirty
1556 * data.  It looks at the number of dirty pages in the machine and will force
1557 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558 * If we're over `background_thresh' then the writeback threads are woken to
1559 * perform some writeout.
1560 */
1561static void balance_dirty_pages(struct bdi_writeback *wb,
 
1562				unsigned long pages_dirtied)
1563{
1564	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568						     &mdtc_stor : NULL;
1569	struct dirty_throttle_control *sdtc;
1570	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1571	long period;
1572	long pause;
1573	long max_pause;
1574	long min_pause;
1575	int nr_dirtied_pause;
1576	bool dirty_exceeded = false;
1577	unsigned long task_ratelimit;
1578	unsigned long dirty_ratelimit;
1579	struct backing_dev_info *bdi = wb->bdi;
1580	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581	unsigned long start_time = jiffies;
1582
1583	for (;;) {
1584		unsigned long now = jiffies;
1585		unsigned long dirty, thresh, bg_thresh;
1586		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1587		unsigned long m_thresh = 0;
1588		unsigned long m_bg_thresh = 0;
1589
1590		/*
1591		 * Unstable writes are a feature of certain networked
1592		 * filesystems (i.e. NFS) in which data may have been
1593		 * written to the server's write cache, but has not yet
1594		 * been flushed to permanent storage.
1595		 */
1596		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597					global_node_page_state(NR_UNSTABLE_NFS);
1598		gdtc->avail = global_dirtyable_memory();
1599		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600
1601		domain_dirty_limits(gdtc);
1602
1603		if (unlikely(strictlimit)) {
1604			wb_dirty_limits(gdtc);
1605
1606			dirty = gdtc->wb_dirty;
1607			thresh = gdtc->wb_thresh;
1608			bg_thresh = gdtc->wb_bg_thresh;
1609		} else {
1610			dirty = gdtc->dirty;
1611			thresh = gdtc->thresh;
1612			bg_thresh = gdtc->bg_thresh;
1613		}
1614
1615		if (mdtc) {
1616			unsigned long filepages, headroom, writeback;
1617
1618			/*
1619			 * If @wb belongs to !root memcg, repeat the same
1620			 * basic calculations for the memcg domain.
1621			 */
1622			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623					    &mdtc->dirty, &writeback);
1624			mdtc->dirty += writeback;
1625			mdtc_calc_avail(mdtc, filepages, headroom);
1626
1627			domain_dirty_limits(mdtc);
1628
1629			if (unlikely(strictlimit)) {
1630				wb_dirty_limits(mdtc);
1631				m_dirty = mdtc->wb_dirty;
1632				m_thresh = mdtc->wb_thresh;
1633				m_bg_thresh = mdtc->wb_bg_thresh;
1634			} else {
1635				m_dirty = mdtc->dirty;
1636				m_thresh = mdtc->thresh;
1637				m_bg_thresh = mdtc->bg_thresh;
1638			}
1639		}
1640
1641		/*
1642		 * Throttle it only when the background writeback cannot
1643		 * catch-up. This avoids (excessively) small writeouts
1644		 * when the wb limits are ramping up in case of !strictlimit.
1645		 *
1646		 * In strictlimit case make decision based on the wb counters
1647		 * and limits. Small writeouts when the wb limits are ramping
1648		 * up are the price we consciously pay for strictlimit-ing.
1649		 *
1650		 * If memcg domain is in effect, @dirty should be under
1651		 * both global and memcg freerun ceilings.
1652		 */
1653		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654		    (!mdtc ||
1655		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656			unsigned long intv = dirty_poll_interval(dirty, thresh);
1657			unsigned long m_intv = ULONG_MAX;
1658
1659			current->dirty_paused_when = now;
1660			current->nr_dirtied = 0;
1661			if (mdtc)
1662				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663			current->nr_dirtied_pause = min(intv, m_intv);
1664			break;
1665		}
1666
1667		if (unlikely(!writeback_in_progress(wb)))
1668			wb_start_background_writeback(wb);
1669
1670		/*
1671		 * Calculate global domain's pos_ratio and select the
1672		 * global dtc by default.
1673		 */
1674		if (!strictlimit)
1675			wb_dirty_limits(gdtc);
1676
1677		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1678			((gdtc->dirty > gdtc->thresh) || strictlimit);
1679
1680		wb_position_ratio(gdtc);
1681		sdtc = gdtc;
1682
1683		if (mdtc) {
1684			/*
1685			 * If memcg domain is in effect, calculate its
1686			 * pos_ratio.  @wb should satisfy constraints from
1687			 * both global and memcg domains.  Choose the one
1688			 * w/ lower pos_ratio.
1689			 */
1690			if (!strictlimit)
1691				wb_dirty_limits(mdtc);
1692
1693			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1694				((mdtc->dirty > mdtc->thresh) || strictlimit);
1695
1696			wb_position_ratio(mdtc);
1697			if (mdtc->pos_ratio < gdtc->pos_ratio)
1698				sdtc = mdtc;
1699		}
1700
1701		if (dirty_exceeded && !wb->dirty_exceeded)
1702			wb->dirty_exceeded = 1;
1703
1704		if (time_is_before_jiffies(wb->bw_time_stamp +
1705					   BANDWIDTH_INTERVAL)) {
1706			spin_lock(&wb->list_lock);
1707			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1708			spin_unlock(&wb->list_lock);
1709		}
1710
1711		/* throttle according to the chosen dtc */
1712		dirty_ratelimit = wb->dirty_ratelimit;
1713		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1714							RATELIMIT_CALC_SHIFT;
1715		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1716		min_pause = wb_min_pause(wb, max_pause,
1717					 task_ratelimit, dirty_ratelimit,
1718					 &nr_dirtied_pause);
1719
1720		if (unlikely(task_ratelimit == 0)) {
1721			period = max_pause;
1722			pause = max_pause;
1723			goto pause;
1724		}
1725		period = HZ * pages_dirtied / task_ratelimit;
1726		pause = period;
1727		if (current->dirty_paused_when)
1728			pause -= now - current->dirty_paused_when;
1729		/*
1730		 * For less than 1s think time (ext3/4 may block the dirtier
1731		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1732		 * however at much less frequency), try to compensate it in
1733		 * future periods by updating the virtual time; otherwise just
1734		 * do a reset, as it may be a light dirtier.
1735		 */
1736		if (pause < min_pause) {
1737			trace_balance_dirty_pages(wb,
1738						  sdtc->thresh,
1739						  sdtc->bg_thresh,
1740						  sdtc->dirty,
1741						  sdtc->wb_thresh,
1742						  sdtc->wb_dirty,
1743						  dirty_ratelimit,
1744						  task_ratelimit,
1745						  pages_dirtied,
1746						  period,
1747						  min(pause, 0L),
1748						  start_time);
1749			if (pause < -HZ) {
1750				current->dirty_paused_when = now;
1751				current->nr_dirtied = 0;
1752			} else if (period) {
1753				current->dirty_paused_when += period;
1754				current->nr_dirtied = 0;
1755			} else if (current->nr_dirtied_pause <= pages_dirtied)
1756				current->nr_dirtied_pause += pages_dirtied;
1757			break;
1758		}
1759		if (unlikely(pause > max_pause)) {
1760			/* for occasional dropped task_ratelimit */
1761			now += min(pause - max_pause, max_pause);
1762			pause = max_pause;
1763		}
1764
1765pause:
1766		trace_balance_dirty_pages(wb,
1767					  sdtc->thresh,
1768					  sdtc->bg_thresh,
1769					  sdtc->dirty,
1770					  sdtc->wb_thresh,
1771					  sdtc->wb_dirty,
1772					  dirty_ratelimit,
1773					  task_ratelimit,
1774					  pages_dirtied,
1775					  period,
1776					  pause,
1777					  start_time);
1778		__set_current_state(TASK_KILLABLE);
1779		wb->dirty_sleep = now;
1780		io_schedule_timeout(pause);
1781
1782		current->dirty_paused_when = now + pause;
1783		current->nr_dirtied = 0;
1784		current->nr_dirtied_pause = nr_dirtied_pause;
1785
1786		/*
1787		 * This is typically equal to (dirty < thresh) and can also
1788		 * keep "1000+ dd on a slow USB stick" under control.
1789		 */
1790		if (task_ratelimit)
1791			break;
1792
1793		/*
1794		 * In the case of an unresponding NFS server and the NFS dirty
1795		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1796		 * to go through, so that tasks on them still remain responsive.
1797		 *
1798		 * In theory 1 page is enough to keep the consumer-producer
1799		 * pipe going: the flusher cleans 1 page => the task dirties 1
1800		 * more page. However wb_dirty has accounting errors.  So use
1801		 * the larger and more IO friendly wb_stat_error.
1802		 */
1803		if (sdtc->wb_dirty <= wb_stat_error())
1804			break;
1805
1806		if (fatal_signal_pending(current))
1807			break;
1808	}
1809
1810	if (!dirty_exceeded && wb->dirty_exceeded)
1811		wb->dirty_exceeded = 0;
1812
1813	if (writeback_in_progress(wb))
1814		return;
1815
1816	/*
1817	 * In laptop mode, we wait until hitting the higher threshold before
1818	 * starting background writeout, and then write out all the way down
1819	 * to the lower threshold.  So slow writers cause minimal disk activity.
1820	 *
1821	 * In normal mode, we start background writeout at the lower
1822	 * background_thresh, to keep the amount of dirty memory low.
1823	 */
1824	if (laptop_mode)
1825		return;
1826
1827	if (nr_reclaimable > gdtc->bg_thresh)
1828		wb_start_background_writeback(wb);
1829}
1830
1831static DEFINE_PER_CPU(int, bdp_ratelimits);
1832
1833/*
1834 * Normal tasks are throttled by
1835 *	loop {
1836 *		dirty tsk->nr_dirtied_pause pages;
1837 *		take a snap in balance_dirty_pages();
1838 *	}
1839 * However there is a worst case. If every task exit immediately when dirtied
1840 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1841 * called to throttle the page dirties. The solution is to save the not yet
1842 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1843 * randomly into the running tasks. This works well for the above worst case,
1844 * as the new task will pick up and accumulate the old task's leaked dirty
1845 * count and eventually get throttled.
1846 */
1847DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1848
1849/**
1850 * balance_dirty_pages_ratelimited - balance dirty memory state
1851 * @mapping: address_space which was dirtied
1852 *
1853 * Processes which are dirtying memory should call in here once for each page
1854 * which was newly dirtied.  The function will periodically check the system's
1855 * dirty state and will initiate writeback if needed.
1856 *
1857 * On really big machines, get_writeback_state is expensive, so try to avoid
1858 * calling it too often (ratelimiting).  But once we're over the dirty memory
1859 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1860 * from overshooting the limit by (ratelimit_pages) each.
1861 */
1862void balance_dirty_pages_ratelimited(struct address_space *mapping)
1863{
1864	struct inode *inode = mapping->host;
1865	struct backing_dev_info *bdi = inode_to_bdi(inode);
1866	struct bdi_writeback *wb = NULL;
1867	int ratelimit;
1868	int *p;
1869
1870	if (!bdi_cap_account_dirty(bdi))
1871		return;
1872
1873	if (inode_cgwb_enabled(inode))
1874		wb = wb_get_create_current(bdi, GFP_KERNEL);
1875	if (!wb)
1876		wb = &bdi->wb;
1877
1878	ratelimit = current->nr_dirtied_pause;
1879	if (wb->dirty_exceeded)
1880		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1881
1882	preempt_disable();
1883	/*
1884	 * This prevents one CPU to accumulate too many dirtied pages without
1885	 * calling into balance_dirty_pages(), which can happen when there are
1886	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1887	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1888	 */
1889	p =  this_cpu_ptr(&bdp_ratelimits);
1890	if (unlikely(current->nr_dirtied >= ratelimit))
1891		*p = 0;
1892	else if (unlikely(*p >= ratelimit_pages)) {
1893		*p = 0;
1894		ratelimit = 0;
1895	}
1896	/*
1897	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1898	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1899	 * the dirty throttling and livelock other long-run dirtiers.
1900	 */
1901	p = this_cpu_ptr(&dirty_throttle_leaks);
1902	if (*p > 0 && current->nr_dirtied < ratelimit) {
1903		unsigned long nr_pages_dirtied;
1904		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1905		*p -= nr_pages_dirtied;
1906		current->nr_dirtied += nr_pages_dirtied;
1907	}
1908	preempt_enable();
1909
1910	if (unlikely(current->nr_dirtied >= ratelimit))
1911		balance_dirty_pages(wb, current->nr_dirtied);
1912
1913	wb_put(wb);
1914}
1915EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1916
1917/**
1918 * wb_over_bg_thresh - does @wb need to be written back?
1919 * @wb: bdi_writeback of interest
1920 *
1921 * Determines whether background writeback should keep writing @wb or it's
1922 * clean enough.  Returns %true if writeback should continue.
1923 */
1924bool wb_over_bg_thresh(struct bdi_writeback *wb)
1925{
1926	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1927	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1928	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1929	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1930						     &mdtc_stor : NULL;
1931
1932	/*
1933	 * Similar to balance_dirty_pages() but ignores pages being written
1934	 * as we're trying to decide whether to put more under writeback.
1935	 */
1936	gdtc->avail = global_dirtyable_memory();
1937	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1938		      global_node_page_state(NR_UNSTABLE_NFS);
1939	domain_dirty_limits(gdtc);
1940
1941	if (gdtc->dirty > gdtc->bg_thresh)
1942		return true;
1943
1944	if (wb_stat(wb, WB_RECLAIMABLE) >
1945	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1946		return true;
1947
1948	if (mdtc) {
1949		unsigned long filepages, headroom, writeback;
1950
1951		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1952				    &writeback);
1953		mdtc_calc_avail(mdtc, filepages, headroom);
1954		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1955
1956		if (mdtc->dirty > mdtc->bg_thresh)
1957			return true;
1958
1959		if (wb_stat(wb, WB_RECLAIMABLE) >
1960		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1961			return true;
1962	}
1963
1964	return false;
1965}
1966
1967/*
1968 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1969 */
1970int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1971	void __user *buffer, size_t *length, loff_t *ppos)
1972{
1973	unsigned int old_interval = dirty_writeback_interval;
1974	int ret;
1975
1976	ret = proc_dointvec(table, write, buffer, length, ppos);
1977
1978	/*
1979	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1980	 * and a different non-zero value will wakeup the writeback threads.
1981	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1982	 * iterate over all bdis and wbs.
1983	 * The reason we do this is to make the change take effect immediately.
1984	 */
1985	if (!ret && write && dirty_writeback_interval &&
1986		dirty_writeback_interval != old_interval)
1987		wakeup_flusher_threads(WB_REASON_PERIODIC);
1988
1989	return ret;
1990}
1991
1992#ifdef CONFIG_BLOCK
1993void laptop_mode_timer_fn(struct timer_list *t)
1994{
1995	struct backing_dev_info *backing_dev_info =
1996		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
 
 
1997
1998	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
1999}
2000
2001/*
2002 * We've spun up the disk and we're in laptop mode: schedule writeback
2003 * of all dirty data a few seconds from now.  If the flush is already scheduled
2004 * then push it back - the user is still using the disk.
2005 */
2006void laptop_io_completion(struct backing_dev_info *info)
2007{
2008	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2009}
2010
2011/*
2012 * We're in laptop mode and we've just synced. The sync's writes will have
2013 * caused another writeback to be scheduled by laptop_io_completion.
2014 * Nothing needs to be written back anymore, so we unschedule the writeback.
2015 */
2016void laptop_sync_completion(void)
2017{
2018	struct backing_dev_info *bdi;
2019
2020	rcu_read_lock();
2021
2022	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2023		del_timer(&bdi->laptop_mode_wb_timer);
2024
2025	rcu_read_unlock();
2026}
2027#endif
2028
2029/*
2030 * If ratelimit_pages is too high then we can get into dirty-data overload
2031 * if a large number of processes all perform writes at the same time.
2032 * If it is too low then SMP machines will call the (expensive)
2033 * get_writeback_state too often.
2034 *
2035 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2036 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2037 * thresholds.
2038 */
2039
2040void writeback_set_ratelimit(void)
2041{
2042	struct wb_domain *dom = &global_wb_domain;
2043	unsigned long background_thresh;
2044	unsigned long dirty_thresh;
2045
2046	global_dirty_limits(&background_thresh, &dirty_thresh);
2047	dom->dirty_limit = dirty_thresh;
2048	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2049	if (ratelimit_pages < 16)
2050		ratelimit_pages = 16;
2051}
2052
2053static int page_writeback_cpu_online(unsigned int cpu)
2054{
2055	writeback_set_ratelimit();
2056	return 0;
2057}
2058
2059/*
2060 * Called early on to tune the page writeback dirty limits.
2061 *
2062 * We used to scale dirty pages according to how total memory
2063 * related to pages that could be allocated for buffers (by
2064 * comparing nr_free_buffer_pages() to vm_total_pages.
2065 *
2066 * However, that was when we used "dirty_ratio" to scale with
2067 * all memory, and we don't do that any more. "dirty_ratio"
2068 * is now applied to total non-HIGHPAGE memory (by subtracting
2069 * totalhigh_pages from vm_total_pages), and as such we can't
2070 * get into the old insane situation any more where we had
2071 * large amounts of dirty pages compared to a small amount of
2072 * non-HIGHMEM memory.
2073 *
2074 * But we might still want to scale the dirty_ratio by how
2075 * much memory the box has..
2076 */
2077void __init page_writeback_init(void)
2078{
2079	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080
2081	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2082			  page_writeback_cpu_online, NULL);
2083	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2084			  page_writeback_cpu_online);
2085}
2086
2087/**
2088 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2089 * @mapping: address space structure to write
2090 * @start: starting page index
2091 * @end: ending page index (inclusive)
2092 *
2093 * This function scans the page range from @start to @end (inclusive) and tags
2094 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2095 * that write_cache_pages (or whoever calls this function) will then use
2096 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2097 * used to avoid livelocking of writeback by a process steadily creating new
2098 * dirty pages in the file (thus it is important for this function to be quick
2099 * so that it can tag pages faster than a dirtying process can create them).
2100 */
2101/*
2102 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce the i_pages lock
2103 * latency.
2104 */
2105void tag_pages_for_writeback(struct address_space *mapping,
2106			     pgoff_t start, pgoff_t end)
2107{
2108#define WRITEBACK_TAG_BATCH 4096
2109	unsigned long tagged = 0;
2110	struct radix_tree_iter iter;
2111	void **slot;
2112
2113	xa_lock_irq(&mapping->i_pages);
2114	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start,
2115							PAGECACHE_TAG_DIRTY) {
2116		if (iter.index > end)
2117			break;
2118		radix_tree_iter_tag_set(&mapping->i_pages, &iter,
2119							PAGECACHE_TAG_TOWRITE);
2120		tagged++;
2121		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2122			continue;
2123		slot = radix_tree_iter_resume(slot, &iter);
2124		xa_unlock_irq(&mapping->i_pages);
2125		cond_resched();
2126		xa_lock_irq(&mapping->i_pages);
2127	}
2128	xa_unlock_irq(&mapping->i_pages);
2129}
2130EXPORT_SYMBOL(tag_pages_for_writeback);
2131
2132/**
2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 * @mapping: address space structure to write
2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 * @writepage: function called for each page
2137 * @data: data passed to writepage function
2138 *
2139 * If a page is already under I/O, write_cache_pages() skips it, even
2140 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2141 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2142 * and msync() need to guarantee that all the data which was dirty at the time
2143 * the call was made get new I/O started against them.  If wbc->sync_mode is
2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2145 * existing IO to complete.
2146 *
2147 * To avoid livelocks (when other process dirties new pages), we first tag
2148 * pages which should be written back with TOWRITE tag and only then start
2149 * writing them. For data-integrity sync we have to be careful so that we do
2150 * not miss some pages (e.g., because some other process has cleared TOWRITE
2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2152 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153 */
2154int write_cache_pages(struct address_space *mapping,
2155		      struct writeback_control *wbc, writepage_t writepage,
2156		      void *data)
2157{
2158	int ret = 0;
2159	int done = 0;
2160	struct pagevec pvec;
2161	int nr_pages;
2162	pgoff_t uninitialized_var(writeback_index);
2163	pgoff_t index;
2164	pgoff_t end;		/* Inclusive */
2165	pgoff_t done_index;
2166	int cycled;
2167	int range_whole = 0;
2168	int tag;
2169
2170	pagevec_init(&pvec);
2171	if (wbc->range_cyclic) {
2172		writeback_index = mapping->writeback_index; /* prev offset */
2173		index = writeback_index;
2174		if (index == 0)
2175			cycled = 1;
2176		else
2177			cycled = 0;
2178		end = -1;
2179	} else {
2180		index = wbc->range_start >> PAGE_SHIFT;
2181		end = wbc->range_end >> PAGE_SHIFT;
2182		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183			range_whole = 1;
2184		cycled = 1; /* ignore range_cyclic tests */
2185	}
2186	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187		tag = PAGECACHE_TAG_TOWRITE;
2188	else
2189		tag = PAGECACHE_TAG_DIRTY;
2190retry:
2191	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192		tag_pages_for_writeback(mapping, index, end);
2193	done_index = index;
2194	while (!done && (index <= end)) {
2195		int i;
2196
2197		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2198				tag);
2199		if (nr_pages == 0)
2200			break;
2201
2202		for (i = 0; i < nr_pages; i++) {
2203			struct page *page = pvec.pages[i];
2204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205			done_index = page->index;
2206
2207			lock_page(page);
2208
2209			/*
2210			 * Page truncated or invalidated. We can freely skip it
2211			 * then, even for data integrity operations: the page
2212			 * has disappeared concurrently, so there could be no
2213			 * real expectation of this data interity operation
2214			 * even if there is now a new, dirty page at the same
2215			 * pagecache address.
2216			 */
2217			if (unlikely(page->mapping != mapping)) {
2218continue_unlock:
2219				unlock_page(page);
2220				continue;
2221			}
2222
2223			if (!PageDirty(page)) {
2224				/* someone wrote it for us */
2225				goto continue_unlock;
2226			}
2227
2228			if (PageWriteback(page)) {
2229				if (wbc->sync_mode != WB_SYNC_NONE)
2230					wait_on_page_writeback(page);
2231				else
2232					goto continue_unlock;
2233			}
2234
2235			BUG_ON(PageWriteback(page));
2236			if (!clear_page_dirty_for_io(page))
2237				goto continue_unlock;
2238
2239			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2240			ret = (*writepage)(page, wbc, data);
2241			if (unlikely(ret)) {
2242				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2243					unlock_page(page);
2244					ret = 0;
2245				} else {
2246					/*
2247					 * done_index is set past this page,
2248					 * so media errors will not choke
2249					 * background writeout for the entire
2250					 * file. This has consequences for
2251					 * range_cyclic semantics (ie. it may
2252					 * not be suitable for data integrity
2253					 * writeout).
2254					 */
2255					done_index = page->index + 1;
2256					done = 1;
2257					break;
2258				}
2259			}
2260
2261			/*
2262			 * We stop writing back only if we are not doing
2263			 * integrity sync. In case of integrity sync we have to
2264			 * keep going until we have written all the pages
2265			 * we tagged for writeback prior to entering this loop.
2266			 */
2267			if (--wbc->nr_to_write <= 0 &&
2268			    wbc->sync_mode == WB_SYNC_NONE) {
2269				done = 1;
2270				break;
2271			}
2272		}
2273		pagevec_release(&pvec);
2274		cond_resched();
2275	}
2276	if (!cycled && !done) {
2277		/*
2278		 * range_cyclic:
2279		 * We hit the last page and there is more work to be done: wrap
2280		 * back to the start of the file
2281		 */
2282		cycled = 1;
2283		index = 0;
2284		end = writeback_index - 1;
2285		goto retry;
2286	}
2287	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2288		mapping->writeback_index = done_index;
2289
2290	return ret;
2291}
2292EXPORT_SYMBOL(write_cache_pages);
2293
2294/*
2295 * Function used by generic_writepages to call the real writepage
2296 * function and set the mapping flags on error
2297 */
2298static int __writepage(struct page *page, struct writeback_control *wbc,
2299		       void *data)
2300{
2301	struct address_space *mapping = data;
2302	int ret = mapping->a_ops->writepage(page, wbc);
2303	mapping_set_error(mapping, ret);
2304	return ret;
2305}
2306
2307/**
2308 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2309 * @mapping: address space structure to write
2310 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2311 *
2312 * This is a library function, which implements the writepages()
2313 * address_space_operation.
2314 */
2315int generic_writepages(struct address_space *mapping,
2316		       struct writeback_control *wbc)
2317{
2318	struct blk_plug plug;
2319	int ret;
2320
2321	/* deal with chardevs and other special file */
2322	if (!mapping->a_ops->writepage)
2323		return 0;
2324
2325	blk_start_plug(&plug);
2326	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2327	blk_finish_plug(&plug);
2328	return ret;
2329}
2330
2331EXPORT_SYMBOL(generic_writepages);
2332
2333int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2334{
2335	int ret;
2336
2337	if (wbc->nr_to_write <= 0)
2338		return 0;
2339	while (1) {
2340		if (mapping->a_ops->writepages)
2341			ret = mapping->a_ops->writepages(mapping, wbc);
2342		else
2343			ret = generic_writepages(mapping, wbc);
2344		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2345			break;
2346		cond_resched();
2347		congestion_wait(BLK_RW_ASYNC, HZ/50);
2348	}
2349	return ret;
2350}
2351
2352/**
2353 * write_one_page - write out a single page and wait on I/O
2354 * @page: the page to write
 
2355 *
2356 * The page must be locked by the caller and will be unlocked upon return.
2357 *
2358 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2359 * function returns.
2360 */
2361int write_one_page(struct page *page)
2362{
2363	struct address_space *mapping = page->mapping;
2364	int ret = 0;
2365	struct writeback_control wbc = {
2366		.sync_mode = WB_SYNC_ALL,
2367		.nr_to_write = 1,
2368	};
2369
2370	BUG_ON(!PageLocked(page));
2371
2372	wait_on_page_writeback(page);
 
2373
2374	if (clear_page_dirty_for_io(page)) {
2375		get_page(page);
2376		ret = mapping->a_ops->writepage(page, &wbc);
2377		if (ret == 0)
2378			wait_on_page_writeback(page);
 
 
 
2379		put_page(page);
2380	} else {
2381		unlock_page(page);
2382	}
2383
2384	if (!ret)
2385		ret = filemap_check_errors(mapping);
2386	return ret;
2387}
2388EXPORT_SYMBOL(write_one_page);
2389
2390/*
2391 * For address_spaces which do not use buffers nor write back.
2392 */
2393int __set_page_dirty_no_writeback(struct page *page)
2394{
2395	if (!PageDirty(page))
2396		return !TestSetPageDirty(page);
2397	return 0;
2398}
2399
2400/*
2401 * Helper function for set_page_dirty family.
2402 *
2403 * Caller must hold lock_page_memcg().
2404 *
2405 * NOTE: This relies on being atomic wrt interrupts.
2406 */
2407void account_page_dirtied(struct page *page, struct address_space *mapping)
2408{
2409	struct inode *inode = mapping->host;
2410
2411	trace_writeback_dirty_page(page, mapping);
2412
2413	if (mapping_cap_account_dirty(mapping)) {
2414		struct bdi_writeback *wb;
2415
2416		inode_attach_wb(inode, page);
2417		wb = inode_to_wb(inode);
2418
2419		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
 
2420		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2421		__inc_node_page_state(page, NR_DIRTIED);
2422		inc_wb_stat(wb, WB_RECLAIMABLE);
2423		inc_wb_stat(wb, WB_DIRTIED);
2424		task_io_account_write(PAGE_SIZE);
2425		current->nr_dirtied++;
2426		this_cpu_inc(bdp_ratelimits);
2427	}
2428}
2429EXPORT_SYMBOL(account_page_dirtied);
2430
2431/*
2432 * Helper function for deaccounting dirty page without writeback.
2433 *
2434 * Caller must hold lock_page_memcg().
2435 */
2436void account_page_cleaned(struct page *page, struct address_space *mapping,
2437			  struct bdi_writeback *wb)
2438{
2439	if (mapping_cap_account_dirty(mapping)) {
2440		dec_lruvec_page_state(page, NR_FILE_DIRTY);
 
2441		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2442		dec_wb_stat(wb, WB_RECLAIMABLE);
2443		task_io_account_cancelled_write(PAGE_SIZE);
2444	}
2445}
2446
2447/*
2448 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2449 * its radix tree.
2450 *
2451 * This is also used when a single buffer is being dirtied: we want to set the
2452 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2453 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2454 *
2455 * The caller must ensure this doesn't race with truncation.  Most will simply
2456 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2457 * the pte lock held, which also locks out truncation.
2458 */
2459int __set_page_dirty_nobuffers(struct page *page)
2460{
2461	lock_page_memcg(page);
2462	if (!TestSetPageDirty(page)) {
2463		struct address_space *mapping = page_mapping(page);
2464		unsigned long flags;
2465
2466		if (!mapping) {
2467			unlock_page_memcg(page);
2468			return 1;
2469		}
2470
2471		xa_lock_irqsave(&mapping->i_pages, flags);
2472		BUG_ON(page_mapping(page) != mapping);
2473		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2474		account_page_dirtied(page, mapping);
2475		radix_tree_tag_set(&mapping->i_pages, page_index(page),
2476				   PAGECACHE_TAG_DIRTY);
2477		xa_unlock_irqrestore(&mapping->i_pages, flags);
2478		unlock_page_memcg(page);
2479
2480		if (mapping->host) {
2481			/* !PageAnon && !swapper_space */
2482			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2483		}
2484		return 1;
2485	}
2486	unlock_page_memcg(page);
2487	return 0;
2488}
2489EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2490
2491/*
2492 * Call this whenever redirtying a page, to de-account the dirty counters
2493 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2494 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2495 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2496 * control.
2497 */
2498void account_page_redirty(struct page *page)
2499{
2500	struct address_space *mapping = page->mapping;
2501
2502	if (mapping && mapping_cap_account_dirty(mapping)) {
2503		struct inode *inode = mapping->host;
2504		struct bdi_writeback *wb;
2505		struct wb_lock_cookie cookie = {};
2506
2507		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2508		current->nr_dirtied--;
2509		dec_node_page_state(page, NR_DIRTIED);
2510		dec_wb_stat(wb, WB_DIRTIED);
2511		unlocked_inode_to_wb_end(inode, &cookie);
2512	}
2513}
2514EXPORT_SYMBOL(account_page_redirty);
2515
2516/*
2517 * When a writepage implementation decides that it doesn't want to write this
2518 * page for some reason, it should redirty the locked page via
2519 * redirty_page_for_writepage() and it should then unlock the page and return 0
2520 */
2521int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2522{
2523	int ret;
2524
2525	wbc->pages_skipped++;
2526	ret = __set_page_dirty_nobuffers(page);
2527	account_page_redirty(page);
2528	return ret;
2529}
2530EXPORT_SYMBOL(redirty_page_for_writepage);
2531
2532/*
2533 * Dirty a page.
2534 *
2535 * For pages with a mapping this should be done under the page lock
2536 * for the benefit of asynchronous memory errors who prefer a consistent
2537 * dirty state. This rule can be broken in some special cases,
2538 * but should be better not to.
2539 *
2540 * If the mapping doesn't provide a set_page_dirty a_op, then
2541 * just fall through and assume that it wants buffer_heads.
2542 */
2543int set_page_dirty(struct page *page)
2544{
2545	struct address_space *mapping = page_mapping(page);
2546
2547	page = compound_head(page);
2548	if (likely(mapping)) {
2549		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2550		/*
2551		 * readahead/lru_deactivate_page could remain
2552		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2553		 * About readahead, if the page is written, the flags would be
2554		 * reset. So no problem.
2555		 * About lru_deactivate_page, if the page is redirty, the flag
2556		 * will be reset. So no problem. but if the page is used by readahead
2557		 * it will confuse readahead and make it restart the size rampup
2558		 * process. But it's a trivial problem.
2559		 */
2560		if (PageReclaim(page))
2561			ClearPageReclaim(page);
2562#ifdef CONFIG_BLOCK
2563		if (!spd)
2564			spd = __set_page_dirty_buffers;
2565#endif
2566		return (*spd)(page);
2567	}
2568	if (!PageDirty(page)) {
2569		if (!TestSetPageDirty(page))
2570			return 1;
2571	}
2572	return 0;
2573}
2574EXPORT_SYMBOL(set_page_dirty);
2575
2576/*
2577 * set_page_dirty() is racy if the caller has no reference against
2578 * page->mapping->host, and if the page is unlocked.  This is because another
2579 * CPU could truncate the page off the mapping and then free the mapping.
2580 *
2581 * Usually, the page _is_ locked, or the caller is a user-space process which
2582 * holds a reference on the inode by having an open file.
2583 *
2584 * In other cases, the page should be locked before running set_page_dirty().
2585 */
2586int set_page_dirty_lock(struct page *page)
2587{
2588	int ret;
2589
2590	lock_page(page);
2591	ret = set_page_dirty(page);
2592	unlock_page(page);
2593	return ret;
2594}
2595EXPORT_SYMBOL(set_page_dirty_lock);
2596
2597/*
2598 * This cancels just the dirty bit on the kernel page itself, it does NOT
2599 * actually remove dirty bits on any mmap's that may be around. It also
2600 * leaves the page tagged dirty, so any sync activity will still find it on
2601 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2602 * look at the dirty bits in the VM.
2603 *
2604 * Doing this should *normally* only ever be done when a page is truncated,
2605 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2606 * this when it notices that somebody has cleaned out all the buffers on a
2607 * page without actually doing it through the VM. Can you say "ext3 is
2608 * horribly ugly"? Thought you could.
2609 */
2610void __cancel_dirty_page(struct page *page)
2611{
2612	struct address_space *mapping = page_mapping(page);
2613
2614	if (mapping_cap_account_dirty(mapping)) {
2615		struct inode *inode = mapping->host;
2616		struct bdi_writeback *wb;
2617		struct wb_lock_cookie cookie = {};
2618
2619		lock_page_memcg(page);
2620		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2621
2622		if (TestClearPageDirty(page))
2623			account_page_cleaned(page, mapping, wb);
2624
2625		unlocked_inode_to_wb_end(inode, &cookie);
2626		unlock_page_memcg(page);
2627	} else {
2628		ClearPageDirty(page);
2629	}
2630}
2631EXPORT_SYMBOL(__cancel_dirty_page);
2632
2633/*
2634 * Clear a page's dirty flag, while caring for dirty memory accounting.
2635 * Returns true if the page was previously dirty.
2636 *
2637 * This is for preparing to put the page under writeout.  We leave the page
2638 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2639 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2640 * implementation will run either set_page_writeback() or set_page_dirty(),
2641 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2642 * back into sync.
2643 *
2644 * This incoherency between the page's dirty flag and radix-tree tag is
2645 * unfortunate, but it only exists while the page is locked.
2646 */
2647int clear_page_dirty_for_io(struct page *page)
2648{
2649	struct address_space *mapping = page_mapping(page);
2650	int ret = 0;
2651
2652	BUG_ON(!PageLocked(page));
2653
2654	if (mapping && mapping_cap_account_dirty(mapping)) {
2655		struct inode *inode = mapping->host;
2656		struct bdi_writeback *wb;
2657		struct wb_lock_cookie cookie = {};
2658
2659		/*
2660		 * Yes, Virginia, this is indeed insane.
2661		 *
2662		 * We use this sequence to make sure that
2663		 *  (a) we account for dirty stats properly
2664		 *  (b) we tell the low-level filesystem to
2665		 *      mark the whole page dirty if it was
2666		 *      dirty in a pagetable. Only to then
2667		 *  (c) clean the page again and return 1 to
2668		 *      cause the writeback.
2669		 *
2670		 * This way we avoid all nasty races with the
2671		 * dirty bit in multiple places and clearing
2672		 * them concurrently from different threads.
2673		 *
2674		 * Note! Normally the "set_page_dirty(page)"
2675		 * has no effect on the actual dirty bit - since
2676		 * that will already usually be set. But we
2677		 * need the side effects, and it can help us
2678		 * avoid races.
2679		 *
2680		 * We basically use the page "master dirty bit"
2681		 * as a serialization point for all the different
2682		 * threads doing their things.
2683		 */
2684		if (page_mkclean(page))
2685			set_page_dirty(page);
2686		/*
2687		 * We carefully synchronise fault handlers against
2688		 * installing a dirty pte and marking the page dirty
2689		 * at this point.  We do this by having them hold the
2690		 * page lock while dirtying the page, and pages are
2691		 * always locked coming in here, so we get the desired
2692		 * exclusion.
2693		 */
2694		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2695		if (TestClearPageDirty(page)) {
2696			dec_lruvec_page_state(page, NR_FILE_DIRTY);
 
2697			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2698			dec_wb_stat(wb, WB_RECLAIMABLE);
2699			ret = 1;
2700		}
2701		unlocked_inode_to_wb_end(inode, &cookie);
2702		return ret;
2703	}
2704	return TestClearPageDirty(page);
2705}
2706EXPORT_SYMBOL(clear_page_dirty_for_io);
2707
2708int test_clear_page_writeback(struct page *page)
2709{
2710	struct address_space *mapping = page_mapping(page);
2711	struct mem_cgroup *memcg;
2712	struct lruvec *lruvec;
2713	int ret;
2714
2715	memcg = lock_page_memcg(page);
2716	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2717	if (mapping && mapping_use_writeback_tags(mapping)) {
2718		struct inode *inode = mapping->host;
2719		struct backing_dev_info *bdi = inode_to_bdi(inode);
2720		unsigned long flags;
2721
2722		xa_lock_irqsave(&mapping->i_pages, flags);
2723		ret = TestClearPageWriteback(page);
2724		if (ret) {
2725			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
 
2726						PAGECACHE_TAG_WRITEBACK);
2727			if (bdi_cap_account_writeback(bdi)) {
2728				struct bdi_writeback *wb = inode_to_wb(inode);
2729
2730				dec_wb_stat(wb, WB_WRITEBACK);
2731				__wb_writeout_inc(wb);
2732			}
2733		}
2734
2735		if (mapping->host && !mapping_tagged(mapping,
2736						     PAGECACHE_TAG_WRITEBACK))
2737			sb_clear_inode_writeback(mapping->host);
2738
2739		xa_unlock_irqrestore(&mapping->i_pages, flags);
2740	} else {
2741		ret = TestClearPageWriteback(page);
2742	}
2743	/*
2744	 * NOTE: Page might be free now! Writeback doesn't hold a page
2745	 * reference on its own, it relies on truncation to wait for
2746	 * the clearing of PG_writeback. The below can only access
2747	 * page state that is static across allocation cycles.
2748	 */
2749	if (ret) {
2750		dec_lruvec_state(lruvec, NR_WRITEBACK);
 
2751		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2752		inc_node_page_state(page, NR_WRITTEN);
2753	}
2754	__unlock_page_memcg(memcg);
2755	return ret;
2756}
2757
2758int __test_set_page_writeback(struct page *page, bool keep_write)
2759{
2760	struct address_space *mapping = page_mapping(page);
2761	int ret;
2762
2763	lock_page_memcg(page);
2764	if (mapping && mapping_use_writeback_tags(mapping)) {
2765		struct inode *inode = mapping->host;
2766		struct backing_dev_info *bdi = inode_to_bdi(inode);
2767		unsigned long flags;
2768
2769		xa_lock_irqsave(&mapping->i_pages, flags);
2770		ret = TestSetPageWriteback(page);
2771		if (!ret) {
2772			bool on_wblist;
2773
2774			on_wblist = mapping_tagged(mapping,
2775						   PAGECACHE_TAG_WRITEBACK);
2776
2777			radix_tree_tag_set(&mapping->i_pages, page_index(page),
 
2778						PAGECACHE_TAG_WRITEBACK);
2779			if (bdi_cap_account_writeback(bdi))
2780				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2781
2782			/*
2783			 * We can come through here when swapping anonymous
2784			 * pages, so we don't necessarily have an inode to track
2785			 * for sync.
2786			 */
2787			if (mapping->host && !on_wblist)
2788				sb_mark_inode_writeback(mapping->host);
2789		}
2790		if (!PageDirty(page))
2791			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
 
2792						PAGECACHE_TAG_DIRTY);
2793		if (!keep_write)
2794			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
 
2795						PAGECACHE_TAG_TOWRITE);
2796		xa_unlock_irqrestore(&mapping->i_pages, flags);
2797	} else {
2798		ret = TestSetPageWriteback(page);
2799	}
2800	if (!ret) {
2801		inc_lruvec_page_state(page, NR_WRITEBACK);
 
2802		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2803	}
2804	unlock_page_memcg(page);
2805	return ret;
2806
2807}
2808EXPORT_SYMBOL(__test_set_page_writeback);
2809
2810/*
2811 * Return true if any of the pages in the mapping are marked with the
2812 * passed tag.
2813 */
2814int mapping_tagged(struct address_space *mapping, int tag)
2815{
2816	return radix_tree_tagged(&mapping->i_pages, tag);
2817}
2818EXPORT_SYMBOL(mapping_tagged);
2819
2820/**
2821 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2822 * @page:	The page to wait on.
2823 *
2824 * This function determines if the given page is related to a backing device
2825 * that requires page contents to be held stable during writeback.  If so, then
2826 * it will wait for any pending writeback to complete.
2827 */
2828void wait_for_stable_page(struct page *page)
2829{
2830	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2831		wait_on_page_writeback(page);
2832}
2833EXPORT_SYMBOL_GPL(wait_for_stable_page);
v4.10.11
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
 
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130	struct wb_domain	*dom;
 131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 132#endif
 133	struct bdi_writeback	*wb;
 134	struct fprop_local_percpu *wb_completions;
 135
 136	unsigned long		avail;		/* dirtyable */
 137	unsigned long		dirty;		/* file_dirty + write + nfs */
 138	unsigned long		thresh;		/* dirty threshold */
 139	unsigned long		bg_thresh;	/* dirty background threshold */
 140
 141	unsigned long		wb_dirty;	/* per-wb counterparts */
 142	unsigned long		wb_thresh;
 143	unsigned long		wb_bg_thresh;
 144
 145	unsigned long		pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)		.wb = (__wb),				\
 158				.dom = &global_wb_domain,		\
 159				.wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 164				.dom = mem_cgroup_wb_domain(__wb),	\
 165				.wb_completions = &(__wb)->memcg_completions, \
 166				.gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175	return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180	return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185	return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189			     unsigned long *minp, unsigned long *maxp)
 190{
 191	unsigned long this_bw = wb->avg_write_bandwidth;
 192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193	unsigned long long min = wb->bdi->min_ratio;
 194	unsigned long long max = wb->bdi->max_ratio;
 195
 196	/*
 197	 * @wb may already be clean by the time control reaches here and
 198	 * the total may not include its bw.
 199	 */
 200	if (this_bw < tot_bw) {
 201		if (min) {
 202			min *= this_bw;
 203			do_div(min, tot_bw);
 204		}
 205		if (max < 100) {
 206			max *= this_bw;
 207			do_div(max, tot_bw);
 208		}
 209	}
 210
 211	*minp = min;
 212	*maxp = max;
 213}
 214
 215#else	/* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 218				.wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224	return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229	return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234	return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239	return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243			     unsigned long *minp, unsigned long *maxp)
 244{
 245	*minp = wb->bdi->min_ratio;
 246	*maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif	/* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * node_dirtyable_memory - number of dirtyable pages in a node
 271 * @pgdat: the node
 272 *
 273 * Returns the node's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-node dirty limits.
 275 */
 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 277{
 278	unsigned long nr_pages = 0;
 279	int z;
 280
 281	for (z = 0; z < MAX_NR_ZONES; z++) {
 282		struct zone *zone = pgdat->node_zones + z;
 283
 284		if (!populated_zone(zone))
 285			continue;
 286
 287		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 288	}
 289
 290	/*
 291	 * Pages reserved for the kernel should not be considered
 292	 * dirtyable, to prevent a situation where reclaim has to
 293	 * clean pages in order to balance the zones.
 294	 */
 295	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 296
 297	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 298	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 299
 300	return nr_pages;
 301}
 302
 303static unsigned long highmem_dirtyable_memory(unsigned long total)
 304{
 305#ifdef CONFIG_HIGHMEM
 306	int node;
 307	unsigned long x = 0;
 308	int i;
 309
 310	for_each_node_state(node, N_HIGH_MEMORY) {
 311		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 312			struct zone *z;
 313			unsigned long nr_pages;
 314
 315			if (!is_highmem_idx(i))
 316				continue;
 317
 318			z = &NODE_DATA(node)->node_zones[i];
 319			if (!populated_zone(z))
 320				continue;
 321
 322			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 323			/* watch for underflows */
 324			nr_pages -= min(nr_pages, high_wmark_pages(z));
 325			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 326			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 327			x += nr_pages;
 328		}
 329	}
 330
 331	/*
 332	 * Unreclaimable memory (kernel memory or anonymous memory
 333	 * without swap) can bring down the dirtyable pages below
 334	 * the zone's dirty balance reserve and the above calculation
 335	 * will underflow.  However we still want to add in nodes
 336	 * which are below threshold (negative values) to get a more
 337	 * accurate calculation but make sure that the total never
 338	 * underflows.
 339	 */
 340	if ((long)x < 0)
 341		x = 0;
 342
 343	/*
 344	 * Make sure that the number of highmem pages is never larger
 345	 * than the number of the total dirtyable memory. This can only
 346	 * occur in very strange VM situations but we want to make sure
 347	 * that this does not occur.
 348	 */
 349	return min(x, total);
 350#else
 351	return 0;
 352#endif
 353}
 354
 355/**
 356 * global_dirtyable_memory - number of globally dirtyable pages
 357 *
 358 * Returns the global number of pages potentially available for dirty
 359 * page cache.  This is the base value for the global dirty limits.
 360 */
 361static unsigned long global_dirtyable_memory(void)
 362{
 363	unsigned long x;
 364
 365	x = global_page_state(NR_FREE_PAGES);
 366	/*
 367	 * Pages reserved for the kernel should not be considered
 368	 * dirtyable, to prevent a situation where reclaim has to
 369	 * clean pages in order to balance the zones.
 370	 */
 371	x -= min(x, totalreserve_pages);
 372
 373	x += global_node_page_state(NR_INACTIVE_FILE);
 374	x += global_node_page_state(NR_ACTIVE_FILE);
 375
 376	if (!vm_highmem_is_dirtyable)
 377		x -= highmem_dirtyable_memory(x);
 378
 379	return x + 1;	/* Ensure that we never return 0 */
 380}
 381
 382/**
 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 384 * @dtc: dirty_throttle_control of interest
 385 *
 386 * Calculate @dtc->thresh and ->bg_thresh considering
 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 388 * must ensure that @dtc->avail is set before calling this function.  The
 389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 390 * real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394	const unsigned long available_memory = dtc->avail;
 395	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396	unsigned long bytes = vm_dirty_bytes;
 397	unsigned long bg_bytes = dirty_background_bytes;
 398	/* convert ratios to per-PAGE_SIZE for higher precision */
 399	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401	unsigned long thresh;
 402	unsigned long bg_thresh;
 403	struct task_struct *tsk;
 404
 405	/* gdtc is !NULL iff @dtc is for memcg domain */
 406	if (gdtc) {
 407		unsigned long global_avail = gdtc->avail;
 408
 409		/*
 410		 * The byte settings can't be applied directly to memcg
 411		 * domains.  Convert them to ratios by scaling against
 412		 * globally available memory.  As the ratios are in
 413		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414		 * number of pages.
 415		 */
 416		if (bytes)
 417			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418				    PAGE_SIZE);
 419		if (bg_bytes)
 420			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421				       PAGE_SIZE);
 422		bytes = bg_bytes = 0;
 423	}
 424
 425	if (bytes)
 426		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427	else
 428		thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430	if (bg_bytes)
 431		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432	else
 433		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435	if (bg_thresh >= thresh)
 436		bg_thresh = thresh / 2;
 437	tsk = current;
 438	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 439		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441	}
 442	dtc->thresh = thresh;
 443	dtc->bg_thresh = bg_thresh;
 444
 445	/* we should eventually report the domain in the TP */
 446	if (!gdtc)
 447		trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462	gdtc.avail = global_dirtyable_memory();
 463	domain_dirty_limits(&gdtc);
 464
 465	*pbackground = gdtc.bg_thresh;
 466	*pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Returns the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478	unsigned long node_memory = node_dirtyable_memory(pgdat);
 479	struct task_struct *tsk = current;
 480	unsigned long dirty;
 481
 482	if (vm_dirty_bytes)
 483		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484			node_memory / global_dirtyable_memory();
 485	else
 486		dirty = vm_dirty_ratio * node_memory / 100;
 487
 488	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 489		dirty += dirty / 4;
 490
 491	return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Returns %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503	unsigned long limit = node_dirty_limit(pgdat);
 504	unsigned long nr_pages = 0;
 505
 506	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 508	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 509
 510	return nr_pages <= limit;
 511}
 512
 513int dirty_background_ratio_handler(struct ctl_table *table, int write,
 514		void __user *buffer, size_t *lenp,
 515		loff_t *ppos)
 516{
 517	int ret;
 518
 519	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 520	if (ret == 0 && write)
 521		dirty_background_bytes = 0;
 522	return ret;
 523}
 524
 525int dirty_background_bytes_handler(struct ctl_table *table, int write,
 526		void __user *buffer, size_t *lenp,
 527		loff_t *ppos)
 528{
 529	int ret;
 530
 531	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 532	if (ret == 0 && write)
 533		dirty_background_ratio = 0;
 534	return ret;
 535}
 536
 537int dirty_ratio_handler(struct ctl_table *table, int write,
 538		void __user *buffer, size_t *lenp,
 539		loff_t *ppos)
 540{
 541	int old_ratio = vm_dirty_ratio;
 542	int ret;
 543
 544	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 545	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 546		writeback_set_ratelimit();
 547		vm_dirty_bytes = 0;
 548	}
 549	return ret;
 550}
 551
 552int dirty_bytes_handler(struct ctl_table *table, int write,
 553		void __user *buffer, size_t *lenp,
 554		loff_t *ppos)
 555{
 556	unsigned long old_bytes = vm_dirty_bytes;
 557	int ret;
 558
 559	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 560	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 561		writeback_set_ratelimit();
 562		vm_dirty_ratio = 0;
 563	}
 564	return ret;
 565}
 566
 567static unsigned long wp_next_time(unsigned long cur_time)
 568{
 569	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 570	/* 0 has a special meaning... */
 571	if (!cur_time)
 572		return 1;
 573	return cur_time;
 574}
 575
 576static void wb_domain_writeout_inc(struct wb_domain *dom,
 577				   struct fprop_local_percpu *completions,
 578				   unsigned int max_prop_frac)
 579{
 580	__fprop_inc_percpu_max(&dom->completions, completions,
 581			       max_prop_frac);
 582	/* First event after period switching was turned off? */
 583	if (!unlikely(dom->period_time)) {
 584		/*
 585		 * We can race with other __bdi_writeout_inc calls here but
 586		 * it does not cause any harm since the resulting time when
 587		 * timer will fire and what is in writeout_period_time will be
 588		 * roughly the same.
 589		 */
 590		dom->period_time = wp_next_time(jiffies);
 591		mod_timer(&dom->period_timer, dom->period_time);
 592	}
 593}
 594
 595/*
 596 * Increment @wb's writeout completion count and the global writeout
 597 * completion count. Called from test_clear_page_writeback().
 598 */
 599static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 600{
 601	struct wb_domain *cgdom;
 602
 603	__inc_wb_stat(wb, WB_WRITTEN);
 604	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 605			       wb->bdi->max_prop_frac);
 606
 607	cgdom = mem_cgroup_wb_domain(wb);
 608	if (cgdom)
 609		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 610				       wb->bdi->max_prop_frac);
 611}
 612
 613void wb_writeout_inc(struct bdi_writeback *wb)
 614{
 615	unsigned long flags;
 616
 617	local_irq_save(flags);
 618	__wb_writeout_inc(wb);
 619	local_irq_restore(flags);
 620}
 621EXPORT_SYMBOL_GPL(wb_writeout_inc);
 622
 623/*
 624 * On idle system, we can be called long after we scheduled because we use
 625 * deferred timers so count with missed periods.
 626 */
 627static void writeout_period(unsigned long t)
 628{
 629	struct wb_domain *dom = (void *)t;
 630	int miss_periods = (jiffies - dom->period_time) /
 631						 VM_COMPLETIONS_PERIOD_LEN;
 632
 633	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 634		dom->period_time = wp_next_time(dom->period_time +
 635				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 636		mod_timer(&dom->period_timer, dom->period_time);
 637	} else {
 638		/*
 639		 * Aging has zeroed all fractions. Stop wasting CPU on period
 640		 * updates.
 641		 */
 642		dom->period_time = 0;
 643	}
 644}
 645
 646int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 647{
 648	memset(dom, 0, sizeof(*dom));
 649
 650	spin_lock_init(&dom->lock);
 651
 652	init_timer_deferrable(&dom->period_timer);
 653	dom->period_timer.function = writeout_period;
 654	dom->period_timer.data = (unsigned long)dom;
 655
 656	dom->dirty_limit_tstamp = jiffies;
 657
 658	return fprop_global_init(&dom->completions, gfp);
 659}
 660
 661#ifdef CONFIG_CGROUP_WRITEBACK
 662void wb_domain_exit(struct wb_domain *dom)
 663{
 664	del_timer_sync(&dom->period_timer);
 665	fprop_global_destroy(&dom->completions);
 666}
 667#endif
 668
 669/*
 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 671 * registered backing devices, which, for obvious reasons, can not
 672 * exceed 100%.
 673 */
 674static unsigned int bdi_min_ratio;
 675
 676int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 677{
 678	int ret = 0;
 679
 680	spin_lock_bh(&bdi_lock);
 681	if (min_ratio > bdi->max_ratio) {
 682		ret = -EINVAL;
 683	} else {
 684		min_ratio -= bdi->min_ratio;
 685		if (bdi_min_ratio + min_ratio < 100) {
 686			bdi_min_ratio += min_ratio;
 687			bdi->min_ratio += min_ratio;
 688		} else {
 689			ret = -EINVAL;
 690		}
 691	}
 692	spin_unlock_bh(&bdi_lock);
 693
 694	return ret;
 695}
 696
 697int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 698{
 699	int ret = 0;
 700
 701	if (max_ratio > 100)
 702		return -EINVAL;
 703
 704	spin_lock_bh(&bdi_lock);
 705	if (bdi->min_ratio > max_ratio) {
 706		ret = -EINVAL;
 707	} else {
 708		bdi->max_ratio = max_ratio;
 709		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 710	}
 711	spin_unlock_bh(&bdi_lock);
 712
 713	return ret;
 714}
 715EXPORT_SYMBOL(bdi_set_max_ratio);
 716
 717static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 718					   unsigned long bg_thresh)
 719{
 720	return (thresh + bg_thresh) / 2;
 721}
 722
 723static unsigned long hard_dirty_limit(struct wb_domain *dom,
 724				      unsigned long thresh)
 725{
 726	return max(thresh, dom->dirty_limit);
 727}
 728
 729/*
 730 * Memory which can be further allocated to a memcg domain is capped by
 731 * system-wide clean memory excluding the amount being used in the domain.
 732 */
 733static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 734			    unsigned long filepages, unsigned long headroom)
 735{
 736	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 737	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 738	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 739	unsigned long other_clean = global_clean - min(global_clean, clean);
 740
 741	mdtc->avail = filepages + min(headroom, other_clean);
 742}
 743
 744/**
 745 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 746 * @dtc: dirty_throttle_context of interest
 747 *
 748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 750 *
 751 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 752 * when sleeping max_pause per page is not enough to keep the dirty pages under
 753 * control. For example, when the device is completely stalled due to some error
 754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 755 * In the other normal situations, it acts more gently by throttling the tasks
 756 * more (rather than completely block them) when the wb dirty pages go high.
 757 *
 758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 759 * - starving fast devices
 760 * - piling up dirty pages (that will take long time to sync) on slow devices
 761 *
 762 * The wb's share of dirty limit will be adapting to its throughput and
 763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 764 */
 765static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 766{
 767	struct wb_domain *dom = dtc_dom(dtc);
 768	unsigned long thresh = dtc->thresh;
 769	u64 wb_thresh;
 770	long numerator, denominator;
 771	unsigned long wb_min_ratio, wb_max_ratio;
 772
 773	/*
 774	 * Calculate this BDI's share of the thresh ratio.
 775	 */
 776	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 777			      &numerator, &denominator);
 778
 779	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 780	wb_thresh *= numerator;
 781	do_div(wb_thresh, denominator);
 782
 783	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 784
 785	wb_thresh += (thresh * wb_min_ratio) / 100;
 786	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 787		wb_thresh = thresh * wb_max_ratio / 100;
 788
 789	return wb_thresh;
 790}
 791
 792unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 793{
 794	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 795					       .thresh = thresh };
 796	return __wb_calc_thresh(&gdtc);
 797}
 798
 799/*
 800 *                           setpoint - dirty 3
 801 *        f(dirty) := 1.0 + (----------------)
 802 *                           limit - setpoint
 803 *
 804 * it's a 3rd order polynomial that subjects to
 805 *
 806 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 807 * (2) f(setpoint) = 1.0 => the balance point
 808 * (3) f(limit)    = 0   => the hard limit
 809 * (4) df/dx      <= 0	 => negative feedback control
 810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 811 *     => fast response on large errors; small oscillation near setpoint
 812 */
 813static long long pos_ratio_polynom(unsigned long setpoint,
 814					  unsigned long dirty,
 815					  unsigned long limit)
 816{
 817	long long pos_ratio;
 818	long x;
 819
 820	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 821		      (limit - setpoint) | 1);
 822	pos_ratio = x;
 823	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 825	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 826
 827	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 828}
 829
 830/*
 831 * Dirty position control.
 832 *
 833 * (o) global/bdi setpoints
 834 *
 835 * We want the dirty pages be balanced around the global/wb setpoints.
 836 * When the number of dirty pages is higher/lower than the setpoint, the
 837 * dirty position control ratio (and hence task dirty ratelimit) will be
 838 * decreased/increased to bring the dirty pages back to the setpoint.
 839 *
 840 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 841 *
 842 *     if (dirty < setpoint) scale up   pos_ratio
 843 *     if (dirty > setpoint) scale down pos_ratio
 844 *
 845 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 846 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 847 *
 848 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 849 *
 850 * (o) global control line
 851 *
 852 *     ^ pos_ratio
 853 *     |
 854 *     |            |<===== global dirty control scope ======>|
 855 * 2.0 .............*
 856 *     |            .*
 857 *     |            . *
 858 *     |            .   *
 859 *     |            .     *
 860 *     |            .        *
 861 *     |            .            *
 862 * 1.0 ................................*
 863 *     |            .                  .     *
 864 *     |            .                  .          *
 865 *     |            .                  .              *
 866 *     |            .                  .                 *
 867 *     |            .                  .                    *
 868 *   0 +------------.------------------.----------------------*------------->
 869 *           freerun^          setpoint^                 limit^   dirty pages
 870 *
 871 * (o) wb control line
 872 *
 873 *     ^ pos_ratio
 874 *     |
 875 *     |            *
 876 *     |              *
 877 *     |                *
 878 *     |                  *
 879 *     |                    * |<=========== span ============>|
 880 * 1.0 .......................*
 881 *     |                      . *
 882 *     |                      .   *
 883 *     |                      .     *
 884 *     |                      .       *
 885 *     |                      .         *
 886 *     |                      .           *
 887 *     |                      .             *
 888 *     |                      .               *
 889 *     |                      .                 *
 890 *     |                      .                   *
 891 *     |                      .                     *
 892 * 1/4 ...............................................* * * * * * * * * * * *
 893 *     |                      .                         .
 894 *     |                      .                           .
 895 *     |                      .                             .
 896 *   0 +----------------------.-------------------------------.------------->
 897 *                wb_setpoint^                    x_intercept^
 898 *
 899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 900 * be smoothly throttled down to normal if it starts high in situations like
 901 * - start writing to a slow SD card and a fast disk at the same time. The SD
 902 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 903 * - the wb dirty thresh drops quickly due to change of JBOD workload
 904 */
 905static void wb_position_ratio(struct dirty_throttle_control *dtc)
 906{
 907	struct bdi_writeback *wb = dtc->wb;
 908	unsigned long write_bw = wb->avg_write_bandwidth;
 909	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 910	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 911	unsigned long wb_thresh = dtc->wb_thresh;
 912	unsigned long x_intercept;
 913	unsigned long setpoint;		/* dirty pages' target balance point */
 914	unsigned long wb_setpoint;
 915	unsigned long span;
 916	long long pos_ratio;		/* for scaling up/down the rate limit */
 917	long x;
 918
 919	dtc->pos_ratio = 0;
 920
 921	if (unlikely(dtc->dirty >= limit))
 922		return;
 923
 924	/*
 925	 * global setpoint
 926	 *
 927	 * See comment for pos_ratio_polynom().
 928	 */
 929	setpoint = (freerun + limit) / 2;
 930	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 931
 932	/*
 933	 * The strictlimit feature is a tool preventing mistrusted filesystems
 934	 * from growing a large number of dirty pages before throttling. For
 935	 * such filesystems balance_dirty_pages always checks wb counters
 936	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 937	 * This is especially important for fuse which sets bdi->max_ratio to
 938	 * 1% by default. Without strictlimit feature, fuse writeback may
 939	 * consume arbitrary amount of RAM because it is accounted in
 940	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 941	 *
 942	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 943	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 944	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 945	 * limits are set by default to 10% and 20% (background and throttle).
 946	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 947	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 948	 * about ~6K pages (as the average of background and throttle wb
 949	 * limits). The 3rd order polynomial will provide positive feedback if
 950	 * wb_dirty is under wb_setpoint and vice versa.
 951	 *
 952	 * Note, that we cannot use global counters in these calculations
 953	 * because we want to throttle process writing to a strictlimit wb
 954	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 955	 * in the example above).
 956	 */
 957	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 958		long long wb_pos_ratio;
 959
 960		if (dtc->wb_dirty < 8) {
 961			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 962					   2 << RATELIMIT_CALC_SHIFT);
 963			return;
 964		}
 965
 966		if (dtc->wb_dirty >= wb_thresh)
 967			return;
 968
 969		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 970						    dtc->wb_bg_thresh);
 971
 972		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 973			return;
 974
 975		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 976						 wb_thresh);
 977
 978		/*
 979		 * Typically, for strictlimit case, wb_setpoint << setpoint
 980		 * and pos_ratio >> wb_pos_ratio. In the other words global
 981		 * state ("dirty") is not limiting factor and we have to
 982		 * make decision based on wb counters. But there is an
 983		 * important case when global pos_ratio should get precedence:
 984		 * global limits are exceeded (e.g. due to activities on other
 985		 * wb's) while given strictlimit wb is below limit.
 986		 *
 987		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 988		 * but it would look too non-natural for the case of all
 989		 * activity in the system coming from a single strictlimit wb
 990		 * with bdi->max_ratio == 100%.
 991		 *
 992		 * Note that min() below somewhat changes the dynamics of the
 993		 * control system. Normally, pos_ratio value can be well over 3
 994		 * (when globally we are at freerun and wb is well below wb
 995		 * setpoint). Now the maximum pos_ratio in the same situation
 996		 * is 2. We might want to tweak this if we observe the control
 997		 * system is too slow to adapt.
 998		 */
 999		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1000		return;
1001	}
1002
1003	/*
1004	 * We have computed basic pos_ratio above based on global situation. If
1005	 * the wb is over/under its share of dirty pages, we want to scale
1006	 * pos_ratio further down/up. That is done by the following mechanism.
1007	 */
1008
1009	/*
1010	 * wb setpoint
1011	 *
1012	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1013	 *
1014	 *                        x_intercept - wb_dirty
1015	 *                     := --------------------------
1016	 *                        x_intercept - wb_setpoint
1017	 *
1018	 * The main wb control line is a linear function that subjects to
1019	 *
1020	 * (1) f(wb_setpoint) = 1.0
1021	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1022	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1023	 *
1024	 * For single wb case, the dirty pages are observed to fluctuate
1025	 * regularly within range
1026	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1027	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1028	 * fluctuation range for pos_ratio.
1029	 *
1030	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1031	 * own size, so move the slope over accordingly and choose a slope that
1032	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1033	 */
1034	if (unlikely(wb_thresh > dtc->thresh))
1035		wb_thresh = dtc->thresh;
1036	/*
1037	 * It's very possible that wb_thresh is close to 0 not because the
1038	 * device is slow, but that it has remained inactive for long time.
1039	 * Honour such devices a reasonable good (hopefully IO efficient)
1040	 * threshold, so that the occasional writes won't be blocked and active
1041	 * writes can rampup the threshold quickly.
1042	 */
1043	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1044	/*
1045	 * scale global setpoint to wb's:
1046	 *	wb_setpoint = setpoint * wb_thresh / thresh
1047	 */
1048	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1049	wb_setpoint = setpoint * (u64)x >> 16;
1050	/*
1051	 * Use span=(8*write_bw) in single wb case as indicated by
1052	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1053	 *
1054	 *        wb_thresh                    thresh - wb_thresh
1055	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1056	 *         thresh                           thresh
1057	 */
1058	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1059	x_intercept = wb_setpoint + span;
1060
1061	if (dtc->wb_dirty < x_intercept - span / 4) {
1062		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1063				      (x_intercept - wb_setpoint) | 1);
1064	} else
1065		pos_ratio /= 4;
1066
1067	/*
1068	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1069	 * It may push the desired control point of global dirty pages higher
1070	 * than setpoint.
1071	 */
1072	x_intercept = wb_thresh / 2;
1073	if (dtc->wb_dirty < x_intercept) {
1074		if (dtc->wb_dirty > x_intercept / 8)
1075			pos_ratio = div_u64(pos_ratio * x_intercept,
1076					    dtc->wb_dirty);
1077		else
1078			pos_ratio *= 8;
1079	}
1080
1081	dtc->pos_ratio = pos_ratio;
1082}
1083
1084static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1085				      unsigned long elapsed,
1086				      unsigned long written)
1087{
1088	const unsigned long period = roundup_pow_of_two(3 * HZ);
1089	unsigned long avg = wb->avg_write_bandwidth;
1090	unsigned long old = wb->write_bandwidth;
1091	u64 bw;
1092
1093	/*
1094	 * bw = written * HZ / elapsed
1095	 *
1096	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1097	 * write_bandwidth = ---------------------------------------------------
1098	 *                                          period
1099	 *
1100	 * @written may have decreased due to account_page_redirty().
1101	 * Avoid underflowing @bw calculation.
1102	 */
1103	bw = written - min(written, wb->written_stamp);
1104	bw *= HZ;
1105	if (unlikely(elapsed > period)) {
1106		do_div(bw, elapsed);
1107		avg = bw;
1108		goto out;
1109	}
1110	bw += (u64)wb->write_bandwidth * (period - elapsed);
1111	bw >>= ilog2(period);
1112
1113	/*
1114	 * one more level of smoothing, for filtering out sudden spikes
1115	 */
1116	if (avg > old && old >= (unsigned long)bw)
1117		avg -= (avg - old) >> 3;
1118
1119	if (avg < old && old <= (unsigned long)bw)
1120		avg += (old - avg) >> 3;
1121
1122out:
1123	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1124	avg = max(avg, 1LU);
1125	if (wb_has_dirty_io(wb)) {
1126		long delta = avg - wb->avg_write_bandwidth;
1127		WARN_ON_ONCE(atomic_long_add_return(delta,
1128					&wb->bdi->tot_write_bandwidth) <= 0);
1129	}
1130	wb->write_bandwidth = bw;
1131	wb->avg_write_bandwidth = avg;
1132}
1133
1134static void update_dirty_limit(struct dirty_throttle_control *dtc)
1135{
1136	struct wb_domain *dom = dtc_dom(dtc);
1137	unsigned long thresh = dtc->thresh;
1138	unsigned long limit = dom->dirty_limit;
1139
1140	/*
1141	 * Follow up in one step.
1142	 */
1143	if (limit < thresh) {
1144		limit = thresh;
1145		goto update;
1146	}
1147
1148	/*
1149	 * Follow down slowly. Use the higher one as the target, because thresh
1150	 * may drop below dirty. This is exactly the reason to introduce
1151	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1152	 */
1153	thresh = max(thresh, dtc->dirty);
1154	if (limit > thresh) {
1155		limit -= (limit - thresh) >> 5;
1156		goto update;
1157	}
1158	return;
1159update:
1160	dom->dirty_limit = limit;
1161}
1162
1163static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1164				    unsigned long now)
1165{
1166	struct wb_domain *dom = dtc_dom(dtc);
1167
1168	/*
1169	 * check locklessly first to optimize away locking for the most time
1170	 */
1171	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1172		return;
1173
1174	spin_lock(&dom->lock);
1175	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1176		update_dirty_limit(dtc);
1177		dom->dirty_limit_tstamp = now;
1178	}
1179	spin_unlock(&dom->lock);
1180}
1181
1182/*
1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1184 *
1185 * Normal wb tasks will be curbed at or below it in long term.
1186 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1187 */
1188static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1189				      unsigned long dirtied,
1190				      unsigned long elapsed)
1191{
1192	struct bdi_writeback *wb = dtc->wb;
1193	unsigned long dirty = dtc->dirty;
1194	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1195	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1196	unsigned long setpoint = (freerun + limit) / 2;
1197	unsigned long write_bw = wb->avg_write_bandwidth;
1198	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1199	unsigned long dirty_rate;
1200	unsigned long task_ratelimit;
1201	unsigned long balanced_dirty_ratelimit;
1202	unsigned long step;
1203	unsigned long x;
1204	unsigned long shift;
1205
1206	/*
1207	 * The dirty rate will match the writeout rate in long term, except
1208	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1209	 */
1210	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1211
1212	/*
1213	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1214	 */
1215	task_ratelimit = (u64)dirty_ratelimit *
1216					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1217	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1218
1219	/*
1220	 * A linear estimation of the "balanced" throttle rate. The theory is,
1221	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1222	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1223	 * formula will yield the balanced rate limit (write_bw / N).
1224	 *
1225	 * Note that the expanded form is not a pure rate feedback:
1226	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1227	 * but also takes pos_ratio into account:
1228	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1229	 *
1230	 * (1) is not realistic because pos_ratio also takes part in balancing
1231	 * the dirty rate.  Consider the state
1232	 *	pos_ratio = 0.5						     (3)
1233	 *	rate = 2 * (write_bw / N)				     (4)
1234	 * If (1) is used, it will stuck in that state! Because each dd will
1235	 * be throttled at
1236	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1237	 * yielding
1238	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1239	 * put (6) into (1) we get
1240	 *	rate_(i+1) = rate_(i)					     (7)
1241	 *
1242	 * So we end up using (2) to always keep
1243	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1244	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1245	 * pos_ratio is able to drive itself to 1.0, which is not only where
1246	 * the dirty count meet the setpoint, but also where the slope of
1247	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1248	 */
1249	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1250					   dirty_rate | 1);
1251	/*
1252	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1253	 */
1254	if (unlikely(balanced_dirty_ratelimit > write_bw))
1255		balanced_dirty_ratelimit = write_bw;
1256
1257	/*
1258	 * We could safely do this and return immediately:
1259	 *
1260	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1261	 *
1262	 * However to get a more stable dirty_ratelimit, the below elaborated
1263	 * code makes use of task_ratelimit to filter out singular points and
1264	 * limit the step size.
1265	 *
1266	 * The below code essentially only uses the relative value of
1267	 *
1268	 *	task_ratelimit - dirty_ratelimit
1269	 *	= (pos_ratio - 1) * dirty_ratelimit
1270	 *
1271	 * which reflects the direction and size of dirty position error.
1272	 */
1273
1274	/*
1275	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1276	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1277	 * For example, when
1278	 * - dirty_ratelimit > balanced_dirty_ratelimit
1279	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1280	 * lowering dirty_ratelimit will help meet both the position and rate
1281	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1282	 * only help meet the rate target. After all, what the users ultimately
1283	 * feel and care are stable dirty rate and small position error.
1284	 *
1285	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1286	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1287	 * keeps jumping around randomly and can even leap far away at times
1288	 * due to the small 200ms estimation period of dirty_rate (we want to
1289	 * keep that period small to reduce time lags).
1290	 */
1291	step = 0;
1292
1293	/*
1294	 * For strictlimit case, calculations above were based on wb counters
1295	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1296	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1297	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1298	 * "dirty" and wb_setpoint as "setpoint".
1299	 *
1300	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1301	 * it's possible that wb_thresh is close to zero due to inactivity
1302	 * of backing device.
1303	 */
1304	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1305		dirty = dtc->wb_dirty;
1306		if (dtc->wb_dirty < 8)
1307			setpoint = dtc->wb_dirty + 1;
1308		else
1309			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310	}
1311
1312	if (dirty < setpoint) {
1313		x = min3(wb->balanced_dirty_ratelimit,
1314			 balanced_dirty_ratelimit, task_ratelimit);
1315		if (dirty_ratelimit < x)
1316			step = x - dirty_ratelimit;
1317	} else {
1318		x = max3(wb->balanced_dirty_ratelimit,
1319			 balanced_dirty_ratelimit, task_ratelimit);
1320		if (dirty_ratelimit > x)
1321			step = dirty_ratelimit - x;
1322	}
1323
1324	/*
1325	 * Don't pursue 100% rate matching. It's impossible since the balanced
1326	 * rate itself is constantly fluctuating. So decrease the track speed
1327	 * when it gets close to the target. Helps eliminate pointless tremors.
1328	 */
1329	shift = dirty_ratelimit / (2 * step + 1);
1330	if (shift < BITS_PER_LONG)
1331		step = DIV_ROUND_UP(step >> shift, 8);
1332	else
1333		step = 0;
1334
1335	if (dirty_ratelimit < balanced_dirty_ratelimit)
1336		dirty_ratelimit += step;
1337	else
1338		dirty_ratelimit -= step;
1339
1340	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1341	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1342
1343	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1344}
1345
1346static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1347				  struct dirty_throttle_control *mdtc,
1348				  unsigned long start_time,
1349				  bool update_ratelimit)
1350{
1351	struct bdi_writeback *wb = gdtc->wb;
1352	unsigned long now = jiffies;
1353	unsigned long elapsed = now - wb->bw_time_stamp;
1354	unsigned long dirtied;
1355	unsigned long written;
1356
1357	lockdep_assert_held(&wb->list_lock);
1358
1359	/*
1360	 * rate-limit, only update once every 200ms.
1361	 */
1362	if (elapsed < BANDWIDTH_INTERVAL)
1363		return;
1364
1365	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1366	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367
1368	/*
1369	 * Skip quiet periods when disk bandwidth is under-utilized.
1370	 * (at least 1s idle time between two flusher runs)
1371	 */
1372	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1373		goto snapshot;
1374
1375	if (update_ratelimit) {
1376		domain_update_bandwidth(gdtc, now);
1377		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1378
1379		/*
1380		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1381		 * compiler has no way to figure that out.  Help it.
1382		 */
1383		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1384			domain_update_bandwidth(mdtc, now);
1385			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1386		}
1387	}
1388	wb_update_write_bandwidth(wb, elapsed, written);
1389
1390snapshot:
1391	wb->dirtied_stamp = dirtied;
1392	wb->written_stamp = written;
1393	wb->bw_time_stamp = now;
1394}
1395
1396void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1397{
1398	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1399
1400	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1401}
1402
1403/*
1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1405 * will look to see if it needs to start dirty throttling.
1406 *
1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1408 * global_page_state() too often. So scale it near-sqrt to the safety margin
1409 * (the number of pages we may dirty without exceeding the dirty limits).
1410 */
1411static unsigned long dirty_poll_interval(unsigned long dirty,
1412					 unsigned long thresh)
1413{
1414	if (thresh > dirty)
1415		return 1UL << (ilog2(thresh - dirty) >> 1);
1416
1417	return 1;
1418}
1419
1420static unsigned long wb_max_pause(struct bdi_writeback *wb,
1421				  unsigned long wb_dirty)
1422{
1423	unsigned long bw = wb->avg_write_bandwidth;
1424	unsigned long t;
1425
1426	/*
1427	 * Limit pause time for small memory systems. If sleeping for too long
1428	 * time, a small pool of dirty/writeback pages may go empty and disk go
1429	 * idle.
1430	 *
1431	 * 8 serves as the safety ratio.
1432	 */
1433	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1434	t++;
1435
1436	return min_t(unsigned long, t, MAX_PAUSE);
1437}
1438
1439static long wb_min_pause(struct bdi_writeback *wb,
1440			 long max_pause,
1441			 unsigned long task_ratelimit,
1442			 unsigned long dirty_ratelimit,
1443			 int *nr_dirtied_pause)
1444{
1445	long hi = ilog2(wb->avg_write_bandwidth);
1446	long lo = ilog2(wb->dirty_ratelimit);
1447	long t;		/* target pause */
1448	long pause;	/* estimated next pause */
1449	int pages;	/* target nr_dirtied_pause */
1450
1451	/* target for 10ms pause on 1-dd case */
1452	t = max(1, HZ / 100);
1453
1454	/*
1455	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1456	 * overheads.
1457	 *
1458	 * (N * 10ms) on 2^N concurrent tasks.
1459	 */
1460	if (hi > lo)
1461		t += (hi - lo) * (10 * HZ) / 1024;
1462
1463	/*
1464	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1465	 * on the much more stable dirty_ratelimit. However the next pause time
1466	 * will be computed based on task_ratelimit and the two rate limits may
1467	 * depart considerably at some time. Especially if task_ratelimit goes
1468	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1469	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1470	 * result task_ratelimit won't be executed faithfully, which could
1471	 * eventually bring down dirty_ratelimit.
1472	 *
1473	 * We apply two rules to fix it up:
1474	 * 1) try to estimate the next pause time and if necessary, use a lower
1475	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1476	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1477	 * 2) limit the target pause time to max_pause/2, so that the normal
1478	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1479	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1480	 */
1481	t = min(t, 1 + max_pause / 2);
1482	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483
1484	/*
1485	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1486	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1487	 * When the 16 consecutive reads are often interrupted by some dirty
1488	 * throttling pause during the async writes, cfq will go into idles
1489	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1490	 * until reaches DIRTY_POLL_THRESH=32 pages.
1491	 */
1492	if (pages < DIRTY_POLL_THRESH) {
1493		t = max_pause;
1494		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1495		if (pages > DIRTY_POLL_THRESH) {
1496			pages = DIRTY_POLL_THRESH;
1497			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1498		}
1499	}
1500
1501	pause = HZ * pages / (task_ratelimit + 1);
1502	if (pause > max_pause) {
1503		t = max_pause;
1504		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1505	}
1506
1507	*nr_dirtied_pause = pages;
1508	/*
1509	 * The minimal pause time will normally be half the target pause time.
1510	 */
1511	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512}
1513
1514static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1515{
1516	struct bdi_writeback *wb = dtc->wb;
1517	unsigned long wb_reclaimable;
1518
1519	/*
1520	 * wb_thresh is not treated as some limiting factor as
1521	 * dirty_thresh, due to reasons
1522	 * - in JBOD setup, wb_thresh can fluctuate a lot
1523	 * - in a system with HDD and USB key, the USB key may somehow
1524	 *   go into state (wb_dirty >> wb_thresh) either because
1525	 *   wb_dirty starts high, or because wb_thresh drops low.
1526	 *   In this case we don't want to hard throttle the USB key
1527	 *   dirtiers for 100 seconds until wb_dirty drops under
1528	 *   wb_thresh. Instead the auxiliary wb control line in
1529	 *   wb_position_ratio() will let the dirtier task progress
1530	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1531	 */
1532	dtc->wb_thresh = __wb_calc_thresh(dtc);
1533	dtc->wb_bg_thresh = dtc->thresh ?
1534		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535
1536	/*
1537	 * In order to avoid the stacked BDI deadlock we need
1538	 * to ensure we accurately count the 'dirty' pages when
1539	 * the threshold is low.
1540	 *
1541	 * Otherwise it would be possible to get thresh+n pages
1542	 * reported dirty, even though there are thresh-m pages
1543	 * actually dirty; with m+n sitting in the percpu
1544	 * deltas.
1545	 */
1546	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1547		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1548		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1549	} else {
1550		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1551		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1552	}
1553}
1554
1555/*
1556 * balance_dirty_pages() must be called by processes which are generating dirty
1557 * data.  It looks at the number of dirty pages in the machine and will force
1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1559 * If we're over `background_thresh' then the writeback threads are woken to
1560 * perform some writeout.
1561 */
1562static void balance_dirty_pages(struct address_space *mapping,
1563				struct bdi_writeback *wb,
1564				unsigned long pages_dirtied)
1565{
1566	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1567	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1568	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1569	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1570						     &mdtc_stor : NULL;
1571	struct dirty_throttle_control *sdtc;
1572	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1573	long period;
1574	long pause;
1575	long max_pause;
1576	long min_pause;
1577	int nr_dirtied_pause;
1578	bool dirty_exceeded = false;
1579	unsigned long task_ratelimit;
1580	unsigned long dirty_ratelimit;
1581	struct backing_dev_info *bdi = wb->bdi;
1582	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1583	unsigned long start_time = jiffies;
1584
1585	for (;;) {
1586		unsigned long now = jiffies;
1587		unsigned long dirty, thresh, bg_thresh;
1588		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1589		unsigned long m_thresh = 0;
1590		unsigned long m_bg_thresh = 0;
1591
1592		/*
1593		 * Unstable writes are a feature of certain networked
1594		 * filesystems (i.e. NFS) in which data may have been
1595		 * written to the server's write cache, but has not yet
1596		 * been flushed to permanent storage.
1597		 */
1598		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1599					global_node_page_state(NR_UNSTABLE_NFS);
1600		gdtc->avail = global_dirtyable_memory();
1601		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1602
1603		domain_dirty_limits(gdtc);
1604
1605		if (unlikely(strictlimit)) {
1606			wb_dirty_limits(gdtc);
1607
1608			dirty = gdtc->wb_dirty;
1609			thresh = gdtc->wb_thresh;
1610			bg_thresh = gdtc->wb_bg_thresh;
1611		} else {
1612			dirty = gdtc->dirty;
1613			thresh = gdtc->thresh;
1614			bg_thresh = gdtc->bg_thresh;
1615		}
1616
1617		if (mdtc) {
1618			unsigned long filepages, headroom, writeback;
1619
1620			/*
1621			 * If @wb belongs to !root memcg, repeat the same
1622			 * basic calculations for the memcg domain.
1623			 */
1624			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1625					    &mdtc->dirty, &writeback);
1626			mdtc->dirty += writeback;
1627			mdtc_calc_avail(mdtc, filepages, headroom);
1628
1629			domain_dirty_limits(mdtc);
1630
1631			if (unlikely(strictlimit)) {
1632				wb_dirty_limits(mdtc);
1633				m_dirty = mdtc->wb_dirty;
1634				m_thresh = mdtc->wb_thresh;
1635				m_bg_thresh = mdtc->wb_bg_thresh;
1636			} else {
1637				m_dirty = mdtc->dirty;
1638				m_thresh = mdtc->thresh;
1639				m_bg_thresh = mdtc->bg_thresh;
1640			}
1641		}
1642
1643		/*
1644		 * Throttle it only when the background writeback cannot
1645		 * catch-up. This avoids (excessively) small writeouts
1646		 * when the wb limits are ramping up in case of !strictlimit.
1647		 *
1648		 * In strictlimit case make decision based on the wb counters
1649		 * and limits. Small writeouts when the wb limits are ramping
1650		 * up are the price we consciously pay for strictlimit-ing.
1651		 *
1652		 * If memcg domain is in effect, @dirty should be under
1653		 * both global and memcg freerun ceilings.
1654		 */
1655		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1656		    (!mdtc ||
1657		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1658			unsigned long intv = dirty_poll_interval(dirty, thresh);
1659			unsigned long m_intv = ULONG_MAX;
1660
1661			current->dirty_paused_when = now;
1662			current->nr_dirtied = 0;
1663			if (mdtc)
1664				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1665			current->nr_dirtied_pause = min(intv, m_intv);
1666			break;
1667		}
1668
1669		if (unlikely(!writeback_in_progress(wb)))
1670			wb_start_background_writeback(wb);
1671
1672		/*
1673		 * Calculate global domain's pos_ratio and select the
1674		 * global dtc by default.
1675		 */
1676		if (!strictlimit)
1677			wb_dirty_limits(gdtc);
1678
1679		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680			((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682		wb_position_ratio(gdtc);
1683		sdtc = gdtc;
1684
1685		if (mdtc) {
1686			/*
1687			 * If memcg domain is in effect, calculate its
1688			 * pos_ratio.  @wb should satisfy constraints from
1689			 * both global and memcg domains.  Choose the one
1690			 * w/ lower pos_ratio.
1691			 */
1692			if (!strictlimit)
1693				wb_dirty_limits(mdtc);
1694
1695			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696				((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698			wb_position_ratio(mdtc);
1699			if (mdtc->pos_ratio < gdtc->pos_ratio)
1700				sdtc = mdtc;
1701		}
1702
1703		if (dirty_exceeded && !wb->dirty_exceeded)
1704			wb->dirty_exceeded = 1;
1705
1706		if (time_is_before_jiffies(wb->bw_time_stamp +
1707					   BANDWIDTH_INTERVAL)) {
1708			spin_lock(&wb->list_lock);
1709			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710			spin_unlock(&wb->list_lock);
1711		}
1712
1713		/* throttle according to the chosen dtc */
1714		dirty_ratelimit = wb->dirty_ratelimit;
1715		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716							RATELIMIT_CALC_SHIFT;
1717		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718		min_pause = wb_min_pause(wb, max_pause,
1719					 task_ratelimit, dirty_ratelimit,
1720					 &nr_dirtied_pause);
1721
1722		if (unlikely(task_ratelimit == 0)) {
1723			period = max_pause;
1724			pause = max_pause;
1725			goto pause;
1726		}
1727		period = HZ * pages_dirtied / task_ratelimit;
1728		pause = period;
1729		if (current->dirty_paused_when)
1730			pause -= now - current->dirty_paused_when;
1731		/*
1732		 * For less than 1s think time (ext3/4 may block the dirtier
1733		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734		 * however at much less frequency), try to compensate it in
1735		 * future periods by updating the virtual time; otherwise just
1736		 * do a reset, as it may be a light dirtier.
1737		 */
1738		if (pause < min_pause) {
1739			trace_balance_dirty_pages(wb,
1740						  sdtc->thresh,
1741						  sdtc->bg_thresh,
1742						  sdtc->dirty,
1743						  sdtc->wb_thresh,
1744						  sdtc->wb_dirty,
1745						  dirty_ratelimit,
1746						  task_ratelimit,
1747						  pages_dirtied,
1748						  period,
1749						  min(pause, 0L),
1750						  start_time);
1751			if (pause < -HZ) {
1752				current->dirty_paused_when = now;
1753				current->nr_dirtied = 0;
1754			} else if (period) {
1755				current->dirty_paused_when += period;
1756				current->nr_dirtied = 0;
1757			} else if (current->nr_dirtied_pause <= pages_dirtied)
1758				current->nr_dirtied_pause += pages_dirtied;
1759			break;
1760		}
1761		if (unlikely(pause > max_pause)) {
1762			/* for occasional dropped task_ratelimit */
1763			now += min(pause - max_pause, max_pause);
1764			pause = max_pause;
1765		}
1766
1767pause:
1768		trace_balance_dirty_pages(wb,
1769					  sdtc->thresh,
1770					  sdtc->bg_thresh,
1771					  sdtc->dirty,
1772					  sdtc->wb_thresh,
1773					  sdtc->wb_dirty,
1774					  dirty_ratelimit,
1775					  task_ratelimit,
1776					  pages_dirtied,
1777					  period,
1778					  pause,
1779					  start_time);
1780		__set_current_state(TASK_KILLABLE);
1781		wb->dirty_sleep = now;
1782		io_schedule_timeout(pause);
1783
1784		current->dirty_paused_when = now + pause;
1785		current->nr_dirtied = 0;
1786		current->nr_dirtied_pause = nr_dirtied_pause;
1787
1788		/*
1789		 * This is typically equal to (dirty < thresh) and can also
1790		 * keep "1000+ dd on a slow USB stick" under control.
1791		 */
1792		if (task_ratelimit)
1793			break;
1794
1795		/*
1796		 * In the case of an unresponding NFS server and the NFS dirty
1797		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798		 * to go through, so that tasks on them still remain responsive.
1799		 *
1800		 * In theory 1 page is enough to keep the comsumer-producer
1801		 * pipe going: the flusher cleans 1 page => the task dirties 1
1802		 * more page. However wb_dirty has accounting errors.  So use
1803		 * the larger and more IO friendly wb_stat_error.
1804		 */
1805		if (sdtc->wb_dirty <= wb_stat_error(wb))
1806			break;
1807
1808		if (fatal_signal_pending(current))
1809			break;
1810	}
1811
1812	if (!dirty_exceeded && wb->dirty_exceeded)
1813		wb->dirty_exceeded = 0;
1814
1815	if (writeback_in_progress(wb))
1816		return;
1817
1818	/*
1819	 * In laptop mode, we wait until hitting the higher threshold before
1820	 * starting background writeout, and then write out all the way down
1821	 * to the lower threshold.  So slow writers cause minimal disk activity.
1822	 *
1823	 * In normal mode, we start background writeout at the lower
1824	 * background_thresh, to keep the amount of dirty memory low.
1825	 */
1826	if (laptop_mode)
1827		return;
1828
1829	if (nr_reclaimable > gdtc->bg_thresh)
1830		wb_start_background_writeback(wb);
1831}
1832
1833static DEFINE_PER_CPU(int, bdp_ratelimits);
1834
1835/*
1836 * Normal tasks are throttled by
1837 *	loop {
1838 *		dirty tsk->nr_dirtied_pause pages;
1839 *		take a snap in balance_dirty_pages();
1840 *	}
1841 * However there is a worst case. If every task exit immediately when dirtied
1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843 * called to throttle the page dirties. The solution is to save the not yet
1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845 * randomly into the running tasks. This works well for the above worst case,
1846 * as the new task will pick up and accumulate the old task's leaked dirty
1847 * count and eventually get throttled.
1848 */
1849DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850
1851/**
1852 * balance_dirty_pages_ratelimited - balance dirty memory state
1853 * @mapping: address_space which was dirtied
1854 *
1855 * Processes which are dirtying memory should call in here once for each page
1856 * which was newly dirtied.  The function will periodically check the system's
1857 * dirty state and will initiate writeback if needed.
1858 *
1859 * On really big machines, get_writeback_state is expensive, so try to avoid
1860 * calling it too often (ratelimiting).  But once we're over the dirty memory
1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862 * from overshooting the limit by (ratelimit_pages) each.
1863 */
1864void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865{
1866	struct inode *inode = mapping->host;
1867	struct backing_dev_info *bdi = inode_to_bdi(inode);
1868	struct bdi_writeback *wb = NULL;
1869	int ratelimit;
1870	int *p;
1871
1872	if (!bdi_cap_account_dirty(bdi))
1873		return;
1874
1875	if (inode_cgwb_enabled(inode))
1876		wb = wb_get_create_current(bdi, GFP_KERNEL);
1877	if (!wb)
1878		wb = &bdi->wb;
1879
1880	ratelimit = current->nr_dirtied_pause;
1881	if (wb->dirty_exceeded)
1882		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883
1884	preempt_disable();
1885	/*
1886	 * This prevents one CPU to accumulate too many dirtied pages without
1887	 * calling into balance_dirty_pages(), which can happen when there are
1888	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1889	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1890	 */
1891	p =  this_cpu_ptr(&bdp_ratelimits);
1892	if (unlikely(current->nr_dirtied >= ratelimit))
1893		*p = 0;
1894	else if (unlikely(*p >= ratelimit_pages)) {
1895		*p = 0;
1896		ratelimit = 0;
1897	}
1898	/*
1899	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901	 * the dirty throttling and livelock other long-run dirtiers.
1902	 */
1903	p = this_cpu_ptr(&dirty_throttle_leaks);
1904	if (*p > 0 && current->nr_dirtied < ratelimit) {
1905		unsigned long nr_pages_dirtied;
1906		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907		*p -= nr_pages_dirtied;
1908		current->nr_dirtied += nr_pages_dirtied;
1909	}
1910	preempt_enable();
1911
1912	if (unlikely(current->nr_dirtied >= ratelimit))
1913		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1914
1915	wb_put(wb);
1916}
1917EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918
1919/**
1920 * wb_over_bg_thresh - does @wb need to be written back?
1921 * @wb: bdi_writeback of interest
1922 *
1923 * Determines whether background writeback should keep writing @wb or it's
1924 * clean enough.  Returns %true if writeback should continue.
1925 */
1926bool wb_over_bg_thresh(struct bdi_writeback *wb)
1927{
1928	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1929	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1930	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1931	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1932						     &mdtc_stor : NULL;
1933
1934	/*
1935	 * Similar to balance_dirty_pages() but ignores pages being written
1936	 * as we're trying to decide whether to put more under writeback.
1937	 */
1938	gdtc->avail = global_dirtyable_memory();
1939	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1940		      global_node_page_state(NR_UNSTABLE_NFS);
1941	domain_dirty_limits(gdtc);
1942
1943	if (gdtc->dirty > gdtc->bg_thresh)
1944		return true;
1945
1946	if (wb_stat(wb, WB_RECLAIMABLE) >
1947	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1948		return true;
1949
1950	if (mdtc) {
1951		unsigned long filepages, headroom, writeback;
1952
1953		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1954				    &writeback);
1955		mdtc_calc_avail(mdtc, filepages, headroom);
1956		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1957
1958		if (mdtc->dirty > mdtc->bg_thresh)
1959			return true;
1960
1961		if (wb_stat(wb, WB_RECLAIMABLE) >
1962		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1963			return true;
1964	}
1965
1966	return false;
1967}
1968
1969/*
1970 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1971 */
1972int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1973	void __user *buffer, size_t *length, loff_t *ppos)
1974{
1975	proc_dointvec(table, write, buffer, length, ppos);
1976	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977}
1978
1979#ifdef CONFIG_BLOCK
1980void laptop_mode_timer_fn(unsigned long data)
1981{
1982	struct request_queue *q = (struct request_queue *)data;
1983	int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1984		global_node_page_state(NR_UNSTABLE_NFS);
1985	struct bdi_writeback *wb;
1986
1987	/*
1988	 * We want to write everything out, not just down to the dirty
1989	 * threshold
1990	 */
1991	if (!bdi_has_dirty_io(&q->backing_dev_info))
1992		return;
1993
1994	rcu_read_lock();
1995	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1996		if (wb_has_dirty_io(wb))
1997			wb_start_writeback(wb, nr_pages, true,
1998					   WB_REASON_LAPTOP_TIMER);
1999	rcu_read_unlock();
2000}
2001
2002/*
2003 * We've spun up the disk and we're in laptop mode: schedule writeback
2004 * of all dirty data a few seconds from now.  If the flush is already scheduled
2005 * then push it back - the user is still using the disk.
2006 */
2007void laptop_io_completion(struct backing_dev_info *info)
2008{
2009	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2010}
2011
2012/*
2013 * We're in laptop mode and we've just synced. The sync's writes will have
2014 * caused another writeback to be scheduled by laptop_io_completion.
2015 * Nothing needs to be written back anymore, so we unschedule the writeback.
2016 */
2017void laptop_sync_completion(void)
2018{
2019	struct backing_dev_info *bdi;
2020
2021	rcu_read_lock();
2022
2023	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2024		del_timer(&bdi->laptop_mode_wb_timer);
2025
2026	rcu_read_unlock();
2027}
2028#endif
2029
2030/*
2031 * If ratelimit_pages is too high then we can get into dirty-data overload
2032 * if a large number of processes all perform writes at the same time.
2033 * If it is too low then SMP machines will call the (expensive)
2034 * get_writeback_state too often.
2035 *
2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2038 * thresholds.
2039 */
2040
2041void writeback_set_ratelimit(void)
2042{
2043	struct wb_domain *dom = &global_wb_domain;
2044	unsigned long background_thresh;
2045	unsigned long dirty_thresh;
2046
2047	global_dirty_limits(&background_thresh, &dirty_thresh);
2048	dom->dirty_limit = dirty_thresh;
2049	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2050	if (ratelimit_pages < 16)
2051		ratelimit_pages = 16;
2052}
2053
2054static int page_writeback_cpu_online(unsigned int cpu)
2055{
2056	writeback_set_ratelimit();
2057	return 0;
2058}
2059
2060/*
2061 * Called early on to tune the page writeback dirty limits.
2062 *
2063 * We used to scale dirty pages according to how total memory
2064 * related to pages that could be allocated for buffers (by
2065 * comparing nr_free_buffer_pages() to vm_total_pages.
2066 *
2067 * However, that was when we used "dirty_ratio" to scale with
2068 * all memory, and we don't do that any more. "dirty_ratio"
2069 * is now applied to total non-HIGHPAGE memory (by subtracting
2070 * totalhigh_pages from vm_total_pages), and as such we can't
2071 * get into the old insane situation any more where we had
2072 * large amounts of dirty pages compared to a small amount of
2073 * non-HIGHMEM memory.
2074 *
2075 * But we might still want to scale the dirty_ratio by how
2076 * much memory the box has..
2077 */
2078void __init page_writeback_init(void)
2079{
2080	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2081
2082	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2083			  page_writeback_cpu_online, NULL);
2084	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2085			  page_writeback_cpu_online);
2086}
2087
2088/**
2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2090 * @mapping: address space structure to write
2091 * @start: starting page index
2092 * @end: ending page index (inclusive)
2093 *
2094 * This function scans the page range from @start to @end (inclusive) and tags
2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2096 * that write_cache_pages (or whoever calls this function) will then use
2097 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2098 * used to avoid livelocking of writeback by a process steadily creating new
2099 * dirty pages in the file (thus it is important for this function to be quick
2100 * so that it can tag pages faster than a dirtying process can create them).
2101 */
2102/*
2103 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 
2104 */
2105void tag_pages_for_writeback(struct address_space *mapping,
2106			     pgoff_t start, pgoff_t end)
2107{
2108#define WRITEBACK_TAG_BATCH 4096
2109	unsigned long tagged = 0;
2110	struct radix_tree_iter iter;
2111	void **slot;
2112
2113	spin_lock_irq(&mapping->tree_lock);
2114	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2115							PAGECACHE_TAG_DIRTY) {
2116		if (iter.index > end)
2117			break;
2118		radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2119							PAGECACHE_TAG_TOWRITE);
2120		tagged++;
2121		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2122			continue;
2123		slot = radix_tree_iter_resume(slot, &iter);
2124		spin_unlock_irq(&mapping->tree_lock);
2125		cond_resched();
2126		spin_lock_irq(&mapping->tree_lock);
2127	}
2128	spin_unlock_irq(&mapping->tree_lock);
2129}
2130EXPORT_SYMBOL(tag_pages_for_writeback);
2131
2132/**
2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 * @mapping: address space structure to write
2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 * @writepage: function called for each page
2137 * @data: data passed to writepage function
2138 *
2139 * If a page is already under I/O, write_cache_pages() skips it, even
2140 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2141 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2142 * and msync() need to guarantee that all the data which was dirty at the time
2143 * the call was made get new I/O started against them.  If wbc->sync_mode is
2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2145 * existing IO to complete.
2146 *
2147 * To avoid livelocks (when other process dirties new pages), we first tag
2148 * pages which should be written back with TOWRITE tag and only then start
2149 * writing them. For data-integrity sync we have to be careful so that we do
2150 * not miss some pages (e.g., because some other process has cleared TOWRITE
2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2152 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153 */
2154int write_cache_pages(struct address_space *mapping,
2155		      struct writeback_control *wbc, writepage_t writepage,
2156		      void *data)
2157{
2158	int ret = 0;
2159	int done = 0;
2160	struct pagevec pvec;
2161	int nr_pages;
2162	pgoff_t uninitialized_var(writeback_index);
2163	pgoff_t index;
2164	pgoff_t end;		/* Inclusive */
2165	pgoff_t done_index;
2166	int cycled;
2167	int range_whole = 0;
2168	int tag;
2169
2170	pagevec_init(&pvec, 0);
2171	if (wbc->range_cyclic) {
2172		writeback_index = mapping->writeback_index; /* prev offset */
2173		index = writeback_index;
2174		if (index == 0)
2175			cycled = 1;
2176		else
2177			cycled = 0;
2178		end = -1;
2179	} else {
2180		index = wbc->range_start >> PAGE_SHIFT;
2181		end = wbc->range_end >> PAGE_SHIFT;
2182		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183			range_whole = 1;
2184		cycled = 1; /* ignore range_cyclic tests */
2185	}
2186	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187		tag = PAGECACHE_TAG_TOWRITE;
2188	else
2189		tag = PAGECACHE_TAG_DIRTY;
2190retry:
2191	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192		tag_pages_for_writeback(mapping, index, end);
2193	done_index = index;
2194	while (!done && (index <= end)) {
2195		int i;
2196
2197		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2198			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2199		if (nr_pages == 0)
2200			break;
2201
2202		for (i = 0; i < nr_pages; i++) {
2203			struct page *page = pvec.pages[i];
2204
2205			/*
2206			 * At this point, the page may be truncated or
2207			 * invalidated (changing page->mapping to NULL), or
2208			 * even swizzled back from swapper_space to tmpfs file
2209			 * mapping. However, page->index will not change
2210			 * because we have a reference on the page.
2211			 */
2212			if (page->index > end) {
2213				/*
2214				 * can't be range_cyclic (1st pass) because
2215				 * end == -1 in that case.
2216				 */
2217				done = 1;
2218				break;
2219			}
2220
2221			done_index = page->index;
2222
2223			lock_page(page);
2224
2225			/*
2226			 * Page truncated or invalidated. We can freely skip it
2227			 * then, even for data integrity operations: the page
2228			 * has disappeared concurrently, so there could be no
2229			 * real expectation of this data interity operation
2230			 * even if there is now a new, dirty page at the same
2231			 * pagecache address.
2232			 */
2233			if (unlikely(page->mapping != mapping)) {
2234continue_unlock:
2235				unlock_page(page);
2236				continue;
2237			}
2238
2239			if (!PageDirty(page)) {
2240				/* someone wrote it for us */
2241				goto continue_unlock;
2242			}
2243
2244			if (PageWriteback(page)) {
2245				if (wbc->sync_mode != WB_SYNC_NONE)
2246					wait_on_page_writeback(page);
2247				else
2248					goto continue_unlock;
2249			}
2250
2251			BUG_ON(PageWriteback(page));
2252			if (!clear_page_dirty_for_io(page))
2253				goto continue_unlock;
2254
2255			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2256			ret = (*writepage)(page, wbc, data);
2257			if (unlikely(ret)) {
2258				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2259					unlock_page(page);
2260					ret = 0;
2261				} else {
2262					/*
2263					 * done_index is set past this page,
2264					 * so media errors will not choke
2265					 * background writeout for the entire
2266					 * file. This has consequences for
2267					 * range_cyclic semantics (ie. it may
2268					 * not be suitable for data integrity
2269					 * writeout).
2270					 */
2271					done_index = page->index + 1;
2272					done = 1;
2273					break;
2274				}
2275			}
2276
2277			/*
2278			 * We stop writing back only if we are not doing
2279			 * integrity sync. In case of integrity sync we have to
2280			 * keep going until we have written all the pages
2281			 * we tagged for writeback prior to entering this loop.
2282			 */
2283			if (--wbc->nr_to_write <= 0 &&
2284			    wbc->sync_mode == WB_SYNC_NONE) {
2285				done = 1;
2286				break;
2287			}
2288		}
2289		pagevec_release(&pvec);
2290		cond_resched();
2291	}
2292	if (!cycled && !done) {
2293		/*
2294		 * range_cyclic:
2295		 * We hit the last page and there is more work to be done: wrap
2296		 * back to the start of the file
2297		 */
2298		cycled = 1;
2299		index = 0;
2300		end = writeback_index - 1;
2301		goto retry;
2302	}
2303	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2304		mapping->writeback_index = done_index;
2305
2306	return ret;
2307}
2308EXPORT_SYMBOL(write_cache_pages);
2309
2310/*
2311 * Function used by generic_writepages to call the real writepage
2312 * function and set the mapping flags on error
2313 */
2314static int __writepage(struct page *page, struct writeback_control *wbc,
2315		       void *data)
2316{
2317	struct address_space *mapping = data;
2318	int ret = mapping->a_ops->writepage(page, wbc);
2319	mapping_set_error(mapping, ret);
2320	return ret;
2321}
2322
2323/**
2324 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2325 * @mapping: address space structure to write
2326 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2327 *
2328 * This is a library function, which implements the writepages()
2329 * address_space_operation.
2330 */
2331int generic_writepages(struct address_space *mapping,
2332		       struct writeback_control *wbc)
2333{
2334	struct blk_plug plug;
2335	int ret;
2336
2337	/* deal with chardevs and other special file */
2338	if (!mapping->a_ops->writepage)
2339		return 0;
2340
2341	blk_start_plug(&plug);
2342	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2343	blk_finish_plug(&plug);
2344	return ret;
2345}
2346
2347EXPORT_SYMBOL(generic_writepages);
2348
2349int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2350{
2351	int ret;
2352
2353	if (wbc->nr_to_write <= 0)
2354		return 0;
2355	if (mapping->a_ops->writepages)
2356		ret = mapping->a_ops->writepages(mapping, wbc);
2357	else
2358		ret = generic_writepages(mapping, wbc);
 
 
 
 
 
 
2359	return ret;
2360}
2361
2362/**
2363 * write_one_page - write out a single page and optionally wait on I/O
2364 * @page: the page to write
2365 * @wait: if true, wait on writeout
2366 *
2367 * The page must be locked by the caller and will be unlocked upon return.
2368 *
2369 * write_one_page() returns a negative error code if I/O failed.
 
2370 */
2371int write_one_page(struct page *page, int wait)
2372{
2373	struct address_space *mapping = page->mapping;
2374	int ret = 0;
2375	struct writeback_control wbc = {
2376		.sync_mode = WB_SYNC_ALL,
2377		.nr_to_write = 1,
2378	};
2379
2380	BUG_ON(!PageLocked(page));
2381
2382	if (wait)
2383		wait_on_page_writeback(page);
2384
2385	if (clear_page_dirty_for_io(page)) {
2386		get_page(page);
2387		ret = mapping->a_ops->writepage(page, &wbc);
2388		if (ret == 0 && wait) {
2389			wait_on_page_writeback(page);
2390			if (PageError(page))
2391				ret = -EIO;
2392		}
2393		put_page(page);
2394	} else {
2395		unlock_page(page);
2396	}
 
 
 
2397	return ret;
2398}
2399EXPORT_SYMBOL(write_one_page);
2400
2401/*
2402 * For address_spaces which do not use buffers nor write back.
2403 */
2404int __set_page_dirty_no_writeback(struct page *page)
2405{
2406	if (!PageDirty(page))
2407		return !TestSetPageDirty(page);
2408	return 0;
2409}
2410
2411/*
2412 * Helper function for set_page_dirty family.
2413 *
2414 * Caller must hold lock_page_memcg().
2415 *
2416 * NOTE: This relies on being atomic wrt interrupts.
2417 */
2418void account_page_dirtied(struct page *page, struct address_space *mapping)
2419{
2420	struct inode *inode = mapping->host;
2421
2422	trace_writeback_dirty_page(page, mapping);
2423
2424	if (mapping_cap_account_dirty(mapping)) {
2425		struct bdi_writeback *wb;
2426
2427		inode_attach_wb(inode, page);
2428		wb = inode_to_wb(inode);
2429
2430		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2431		__inc_node_page_state(page, NR_FILE_DIRTY);
2432		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2433		__inc_node_page_state(page, NR_DIRTIED);
2434		__inc_wb_stat(wb, WB_RECLAIMABLE);
2435		__inc_wb_stat(wb, WB_DIRTIED);
2436		task_io_account_write(PAGE_SIZE);
2437		current->nr_dirtied++;
2438		this_cpu_inc(bdp_ratelimits);
2439	}
2440}
2441EXPORT_SYMBOL(account_page_dirtied);
2442
2443/*
2444 * Helper function for deaccounting dirty page without writeback.
2445 *
2446 * Caller must hold lock_page_memcg().
2447 */
2448void account_page_cleaned(struct page *page, struct address_space *mapping,
2449			  struct bdi_writeback *wb)
2450{
2451	if (mapping_cap_account_dirty(mapping)) {
2452		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453		dec_node_page_state(page, NR_FILE_DIRTY);
2454		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2455		dec_wb_stat(wb, WB_RECLAIMABLE);
2456		task_io_account_cancelled_write(PAGE_SIZE);
2457	}
2458}
2459
2460/*
2461 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2462 * its radix tree.
2463 *
2464 * This is also used when a single buffer is being dirtied: we want to set the
2465 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2466 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2467 *
2468 * The caller must ensure this doesn't race with truncation.  Most will simply
2469 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2470 * the pte lock held, which also locks out truncation.
2471 */
2472int __set_page_dirty_nobuffers(struct page *page)
2473{
2474	lock_page_memcg(page);
2475	if (!TestSetPageDirty(page)) {
2476		struct address_space *mapping = page_mapping(page);
2477		unsigned long flags;
2478
2479		if (!mapping) {
2480			unlock_page_memcg(page);
2481			return 1;
2482		}
2483
2484		spin_lock_irqsave(&mapping->tree_lock, flags);
2485		BUG_ON(page_mapping(page) != mapping);
2486		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2487		account_page_dirtied(page, mapping);
2488		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2489				   PAGECACHE_TAG_DIRTY);
2490		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2491		unlock_page_memcg(page);
2492
2493		if (mapping->host) {
2494			/* !PageAnon && !swapper_space */
2495			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2496		}
2497		return 1;
2498	}
2499	unlock_page_memcg(page);
2500	return 0;
2501}
2502EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2503
2504/*
2505 * Call this whenever redirtying a page, to de-account the dirty counters
2506 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2507 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2508 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2509 * control.
2510 */
2511void account_page_redirty(struct page *page)
2512{
2513	struct address_space *mapping = page->mapping;
2514
2515	if (mapping && mapping_cap_account_dirty(mapping)) {
2516		struct inode *inode = mapping->host;
2517		struct bdi_writeback *wb;
2518		bool locked;
2519
2520		wb = unlocked_inode_to_wb_begin(inode, &locked);
2521		current->nr_dirtied--;
2522		dec_node_page_state(page, NR_DIRTIED);
2523		dec_wb_stat(wb, WB_DIRTIED);
2524		unlocked_inode_to_wb_end(inode, locked);
2525	}
2526}
2527EXPORT_SYMBOL(account_page_redirty);
2528
2529/*
2530 * When a writepage implementation decides that it doesn't want to write this
2531 * page for some reason, it should redirty the locked page via
2532 * redirty_page_for_writepage() and it should then unlock the page and return 0
2533 */
2534int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2535{
2536	int ret;
2537
2538	wbc->pages_skipped++;
2539	ret = __set_page_dirty_nobuffers(page);
2540	account_page_redirty(page);
2541	return ret;
2542}
2543EXPORT_SYMBOL(redirty_page_for_writepage);
2544
2545/*
2546 * Dirty a page.
2547 *
2548 * For pages with a mapping this should be done under the page lock
2549 * for the benefit of asynchronous memory errors who prefer a consistent
2550 * dirty state. This rule can be broken in some special cases,
2551 * but should be better not to.
2552 *
2553 * If the mapping doesn't provide a set_page_dirty a_op, then
2554 * just fall through and assume that it wants buffer_heads.
2555 */
2556int set_page_dirty(struct page *page)
2557{
2558	struct address_space *mapping = page_mapping(page);
2559
2560	page = compound_head(page);
2561	if (likely(mapping)) {
2562		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2563		/*
2564		 * readahead/lru_deactivate_page could remain
2565		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2566		 * About readahead, if the page is written, the flags would be
2567		 * reset. So no problem.
2568		 * About lru_deactivate_page, if the page is redirty, the flag
2569		 * will be reset. So no problem. but if the page is used by readahead
2570		 * it will confuse readahead and make it restart the size rampup
2571		 * process. But it's a trivial problem.
2572		 */
2573		if (PageReclaim(page))
2574			ClearPageReclaim(page);
2575#ifdef CONFIG_BLOCK
2576		if (!spd)
2577			spd = __set_page_dirty_buffers;
2578#endif
2579		return (*spd)(page);
2580	}
2581	if (!PageDirty(page)) {
2582		if (!TestSetPageDirty(page))
2583			return 1;
2584	}
2585	return 0;
2586}
2587EXPORT_SYMBOL(set_page_dirty);
2588
2589/*
2590 * set_page_dirty() is racy if the caller has no reference against
2591 * page->mapping->host, and if the page is unlocked.  This is because another
2592 * CPU could truncate the page off the mapping and then free the mapping.
2593 *
2594 * Usually, the page _is_ locked, or the caller is a user-space process which
2595 * holds a reference on the inode by having an open file.
2596 *
2597 * In other cases, the page should be locked before running set_page_dirty().
2598 */
2599int set_page_dirty_lock(struct page *page)
2600{
2601	int ret;
2602
2603	lock_page(page);
2604	ret = set_page_dirty(page);
2605	unlock_page(page);
2606	return ret;
2607}
2608EXPORT_SYMBOL(set_page_dirty_lock);
2609
2610/*
2611 * This cancels just the dirty bit on the kernel page itself, it does NOT
2612 * actually remove dirty bits on any mmap's that may be around. It also
2613 * leaves the page tagged dirty, so any sync activity will still find it on
2614 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2615 * look at the dirty bits in the VM.
2616 *
2617 * Doing this should *normally* only ever be done when a page is truncated,
2618 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2619 * this when it notices that somebody has cleaned out all the buffers on a
2620 * page without actually doing it through the VM. Can you say "ext3 is
2621 * horribly ugly"? Thought you could.
2622 */
2623void cancel_dirty_page(struct page *page)
2624{
2625	struct address_space *mapping = page_mapping(page);
2626
2627	if (mapping_cap_account_dirty(mapping)) {
2628		struct inode *inode = mapping->host;
2629		struct bdi_writeback *wb;
2630		bool locked;
2631
2632		lock_page_memcg(page);
2633		wb = unlocked_inode_to_wb_begin(inode, &locked);
2634
2635		if (TestClearPageDirty(page))
2636			account_page_cleaned(page, mapping, wb);
2637
2638		unlocked_inode_to_wb_end(inode, locked);
2639		unlock_page_memcg(page);
2640	} else {
2641		ClearPageDirty(page);
2642	}
2643}
2644EXPORT_SYMBOL(cancel_dirty_page);
2645
2646/*
2647 * Clear a page's dirty flag, while caring for dirty memory accounting.
2648 * Returns true if the page was previously dirty.
2649 *
2650 * This is for preparing to put the page under writeout.  We leave the page
2651 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2652 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2653 * implementation will run either set_page_writeback() or set_page_dirty(),
2654 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2655 * back into sync.
2656 *
2657 * This incoherency between the page's dirty flag and radix-tree tag is
2658 * unfortunate, but it only exists while the page is locked.
2659 */
2660int clear_page_dirty_for_io(struct page *page)
2661{
2662	struct address_space *mapping = page_mapping(page);
2663	int ret = 0;
2664
2665	BUG_ON(!PageLocked(page));
2666
2667	if (mapping && mapping_cap_account_dirty(mapping)) {
2668		struct inode *inode = mapping->host;
2669		struct bdi_writeback *wb;
2670		bool locked;
2671
2672		/*
2673		 * Yes, Virginia, this is indeed insane.
2674		 *
2675		 * We use this sequence to make sure that
2676		 *  (a) we account for dirty stats properly
2677		 *  (b) we tell the low-level filesystem to
2678		 *      mark the whole page dirty if it was
2679		 *      dirty in a pagetable. Only to then
2680		 *  (c) clean the page again and return 1 to
2681		 *      cause the writeback.
2682		 *
2683		 * This way we avoid all nasty races with the
2684		 * dirty bit in multiple places and clearing
2685		 * them concurrently from different threads.
2686		 *
2687		 * Note! Normally the "set_page_dirty(page)"
2688		 * has no effect on the actual dirty bit - since
2689		 * that will already usually be set. But we
2690		 * need the side effects, and it can help us
2691		 * avoid races.
2692		 *
2693		 * We basically use the page "master dirty bit"
2694		 * as a serialization point for all the different
2695		 * threads doing their things.
2696		 */
2697		if (page_mkclean(page))
2698			set_page_dirty(page);
2699		/*
2700		 * We carefully synchronise fault handlers against
2701		 * installing a dirty pte and marking the page dirty
2702		 * at this point.  We do this by having them hold the
2703		 * page lock while dirtying the page, and pages are
2704		 * always locked coming in here, so we get the desired
2705		 * exclusion.
2706		 */
2707		wb = unlocked_inode_to_wb_begin(inode, &locked);
2708		if (TestClearPageDirty(page)) {
2709			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2710			dec_node_page_state(page, NR_FILE_DIRTY);
2711			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712			dec_wb_stat(wb, WB_RECLAIMABLE);
2713			ret = 1;
2714		}
2715		unlocked_inode_to_wb_end(inode, locked);
2716		return ret;
2717	}
2718	return TestClearPageDirty(page);
2719}
2720EXPORT_SYMBOL(clear_page_dirty_for_io);
2721
2722int test_clear_page_writeback(struct page *page)
2723{
2724	struct address_space *mapping = page_mapping(page);
 
 
2725	int ret;
2726
2727	lock_page_memcg(page);
 
2728	if (mapping && mapping_use_writeback_tags(mapping)) {
2729		struct inode *inode = mapping->host;
2730		struct backing_dev_info *bdi = inode_to_bdi(inode);
2731		unsigned long flags;
2732
2733		spin_lock_irqsave(&mapping->tree_lock, flags);
2734		ret = TestClearPageWriteback(page);
2735		if (ret) {
2736			radix_tree_tag_clear(&mapping->page_tree,
2737						page_index(page),
2738						PAGECACHE_TAG_WRITEBACK);
2739			if (bdi_cap_account_writeback(bdi)) {
2740				struct bdi_writeback *wb = inode_to_wb(inode);
2741
2742				__dec_wb_stat(wb, WB_WRITEBACK);
2743				__wb_writeout_inc(wb);
2744			}
2745		}
2746
2747		if (mapping->host && !mapping_tagged(mapping,
2748						     PAGECACHE_TAG_WRITEBACK))
2749			sb_clear_inode_writeback(mapping->host);
2750
2751		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2752	} else {
2753		ret = TestClearPageWriteback(page);
2754	}
 
 
 
 
 
 
2755	if (ret) {
2756		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2757		dec_node_page_state(page, NR_WRITEBACK);
2758		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2759		inc_node_page_state(page, NR_WRITTEN);
2760	}
2761	unlock_page_memcg(page);
2762	return ret;
2763}
2764
2765int __test_set_page_writeback(struct page *page, bool keep_write)
2766{
2767	struct address_space *mapping = page_mapping(page);
2768	int ret;
2769
2770	lock_page_memcg(page);
2771	if (mapping && mapping_use_writeback_tags(mapping)) {
2772		struct inode *inode = mapping->host;
2773		struct backing_dev_info *bdi = inode_to_bdi(inode);
2774		unsigned long flags;
2775
2776		spin_lock_irqsave(&mapping->tree_lock, flags);
2777		ret = TestSetPageWriteback(page);
2778		if (!ret) {
2779			bool on_wblist;
2780
2781			on_wblist = mapping_tagged(mapping,
2782						   PAGECACHE_TAG_WRITEBACK);
2783
2784			radix_tree_tag_set(&mapping->page_tree,
2785						page_index(page),
2786						PAGECACHE_TAG_WRITEBACK);
2787			if (bdi_cap_account_writeback(bdi))
2788				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2789
2790			/*
2791			 * We can come through here when swapping anonymous
2792			 * pages, so we don't necessarily have an inode to track
2793			 * for sync.
2794			 */
2795			if (mapping->host && !on_wblist)
2796				sb_mark_inode_writeback(mapping->host);
2797		}
2798		if (!PageDirty(page))
2799			radix_tree_tag_clear(&mapping->page_tree,
2800						page_index(page),
2801						PAGECACHE_TAG_DIRTY);
2802		if (!keep_write)
2803			radix_tree_tag_clear(&mapping->page_tree,
2804						page_index(page),
2805						PAGECACHE_TAG_TOWRITE);
2806		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2807	} else {
2808		ret = TestSetPageWriteback(page);
2809	}
2810	if (!ret) {
2811		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2812		inc_node_page_state(page, NR_WRITEBACK);
2813		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2814	}
2815	unlock_page_memcg(page);
2816	return ret;
2817
2818}
2819EXPORT_SYMBOL(__test_set_page_writeback);
2820
2821/*
2822 * Return true if any of the pages in the mapping are marked with the
2823 * passed tag.
2824 */
2825int mapping_tagged(struct address_space *mapping, int tag)
2826{
2827	return radix_tree_tagged(&mapping->page_tree, tag);
2828}
2829EXPORT_SYMBOL(mapping_tagged);
2830
2831/**
2832 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2833 * @page:	The page to wait on.
2834 *
2835 * This function determines if the given page is related to a backing device
2836 * that requires page contents to be held stable during writeback.  If so, then
2837 * it will wait for any pending writeback to complete.
2838 */
2839void wait_for_stable_page(struct page *page)
2840{
2841	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2842		wait_on_page_writeback(page);
2843}
2844EXPORT_SYMBOL_GPL(wait_for_stable_page);