Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100
 101#include <linux/uaccess.h>
 102
 103#include <linux/kbd_kern.h>
 104#include <linux/vt_kern.h>
 105#include <linux/selection.h>
 106
 107#include <linux/kmod.h>
 108#include <linux/nsproxy.h>
 109
 110#undef TTY_DEBUG_HANGUP
 111#ifdef TTY_DEBUG_HANGUP
 112# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 113#else
 114# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 115#endif
 116
 117#define TTY_PARANOIA_CHECK 1
 118#define CHECK_TTY_COUNT 1
 119
 120struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 121	.c_iflag = ICRNL | IXON,
 122	.c_oflag = OPOST | ONLCR,
 123	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 124	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 125		   ECHOCTL | ECHOKE | IEXTEN,
 126	.c_cc = INIT_C_CC,
 127	.c_ispeed = 38400,
 128	.c_ospeed = 38400,
 129	/* .c_line = N_TTY, */
 130};
 131
 132EXPORT_SYMBOL(tty_std_termios);
 133
 134/* This list gets poked at by procfs and various bits of boot up code. This
 135   could do with some rationalisation such as pulling the tty proc function
 136   into this file */
 137
 138LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 139
 140/* Mutex to protect creating and releasing a tty */
 141DEFINE_MUTEX(tty_mutex);
 142
 143static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 144static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 145ssize_t redirected_tty_write(struct file *, const char __user *,
 146							size_t, loff_t *);
 147static __poll_t tty_poll(struct file *, poll_table *);
 148static int tty_open(struct inode *, struct file *);
 149long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 207}
 208
 209/**
 210 * tty_free_file - free file->private_data
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254const char *tty_driver_name(const struct tty_struct *tty)
 255{
 256	if (!tty || !tty->driver)
 257		return "";
 258	return tty->driver->name;
 259}
 260
 261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 262			      const char *routine)
 263{
 264#ifdef TTY_PARANOIA_CHECK
 265	if (!tty) {
 266		pr_warn("(%d:%d): %s: NULL tty\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270	if (tty->magic != TTY_MAGIC) {
 271		pr_warn("(%d:%d): %s: bad magic number\n",
 272			imajor(inode), iminor(inode), routine);
 273		return 1;
 274	}
 275#endif
 276	return 0;
 277}
 278
 279/* Caller must hold tty_lock */
 280static int check_tty_count(struct tty_struct *tty, const char *routine)
 281{
 282#ifdef CHECK_TTY_COUNT
 283	struct list_head *p;
 284	int count = 0, kopen_count = 0;
 285
 286	spin_lock(&tty->files_lock);
 287	list_for_each(p, &tty->tty_files) {
 288		count++;
 289	}
 290	spin_unlock(&tty->files_lock);
 291	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 292	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 293	    tty->link && tty->link->count)
 294		count++;
 295	if (tty_port_kopened(tty->port))
 296		kopen_count++;
 297	if (tty->count != (count + kopen_count)) {
 298		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 299			 routine, tty->count, count, kopen_count);
 300		return (count + kopen_count);
 301	}
 302#endif
 303	return 0;
 304}
 305
 306/**
 307 *	get_tty_driver		-	find device of a tty
 308 *	@dev_t: device identifier
 309 *	@index: returns the index of the tty
 310 *
 311 *	This routine returns a tty driver structure, given a device number
 312 *	and also passes back the index number.
 313 *
 314 *	Locking: caller must hold tty_mutex
 315 */
 316
 317static struct tty_driver *get_tty_driver(dev_t device, int *index)
 318{
 319	struct tty_driver *p;
 320
 321	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 322		dev_t base = MKDEV(p->major, p->minor_start);
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 434				size_t count, loff_t *ppos)
 435{
 436	return 0;
 437}
 438
 439static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 440				 size_t count, loff_t *ppos)
 441{
 442	return -EIO;
 443}
 444
 445/* No kernel lock held - none needed ;) */
 446static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 447{
 448	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 449}
 450
 451static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 452		unsigned long arg)
 453{
 454	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 455}
 456
 457static long hung_up_tty_compat_ioctl(struct file *file,
 458				     unsigned int cmd, unsigned long arg)
 459{
 460	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 461}
 462
 463static int hung_up_tty_fasync(int fd, struct file *file, int on)
 464{
 465	return -ENOTTY;
 466}
 467
 468static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 469{
 470	struct tty_struct *tty = file_tty(file);
 471
 472	if (tty && tty->ops && tty->ops->show_fdinfo)
 473		tty->ops->show_fdinfo(tty, m);
 474}
 475
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read		= tty_read,
 492	.write		= redirected_tty_write,
 493	.poll		= tty_poll,
 494	.unlocked_ioctl	= tty_ioctl,
 495	.compat_ioctl	= tty_compat_ioctl,
 496	.open		= tty_open,
 497	.release	= tty_release,
 498	.fasync		= tty_fasync,
 499};
 500
 501static const struct file_operations hung_up_tty_fops = {
 502	.llseek		= no_llseek,
 503	.read		= hung_up_tty_read,
 504	.write		= hung_up_tty_write,
 505	.poll		= hung_up_tty_poll,
 506	.unlocked_ioctl	= hung_up_tty_ioctl,
 507	.compat_ioctl	= hung_up_tty_compat_ioctl,
 508	.release	= tty_release,
 509	.fasync		= hung_up_tty_fasync,
 510};
 511
 512static DEFINE_SPINLOCK(redirect_lock);
 513static struct file *redirect;
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515/**
 516 *	tty_wakeup	-	request more data
 517 *	@tty: terminal
 518 *
 519 *	Internal and external helper for wakeups of tty. This function
 520 *	informs the line discipline if present that the driver is ready
 521 *	to receive more output data.
 522 */
 523
 524void tty_wakeup(struct tty_struct *tty)
 525{
 526	struct tty_ldisc *ld;
 527
 528	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 529		ld = tty_ldisc_ref(tty);
 530		if (ld) {
 531			if (ld->ops->write_wakeup)
 532				ld->ops->write_wakeup(tty);
 533			tty_ldisc_deref(ld);
 534		}
 535	}
 536	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 537}
 538
 539EXPORT_SYMBOL_GPL(tty_wakeup);
 540
 541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542 *	__tty_hangup		-	actual handler for hangup events
 543 *	@work: tty device
 544 *
 545 *	This can be called by a "kworker" kernel thread.  That is process
 546 *	synchronous but doesn't hold any locks, so we need to make sure we
 547 *	have the appropriate locks for what we're doing.
 548 *
 549 *	The hangup event clears any pending redirections onto the hung up
 550 *	device. It ensures future writes will error and it does the needed
 551 *	line discipline hangup and signal delivery. The tty object itself
 552 *	remains intact.
 553 *
 554 *	Locking:
 555 *		BTM
 556 *		  redirect lock for undoing redirection
 557 *		  file list lock for manipulating list of ttys
 558 *		  tty_ldiscs_lock from called functions
 559 *		  termios_rwsem resetting termios data
 560 *		  tasklist_lock to walk task list for hangup event
 561 *		    ->siglock to protect ->signal/->sighand
 562 */
 563static void __tty_hangup(struct tty_struct *tty, int exit_session)
 564{
 565	struct file *cons_filp = NULL;
 566	struct file *filp, *f = NULL;
 567	struct tty_file_private *priv;
 568	int    closecount = 0, n;
 569	int refs;
 570
 571	if (!tty)
 572		return;
 573
 574
 575	spin_lock(&redirect_lock);
 576	if (redirect && file_tty(redirect) == tty) {
 577		f = redirect;
 578		redirect = NULL;
 579	}
 580	spin_unlock(&redirect_lock);
 581
 582	tty_lock(tty);
 583
 584	if (test_bit(TTY_HUPPED, &tty->flags)) {
 585		tty_unlock(tty);
 586		return;
 587	}
 588
 589	/*
 590	 * Some console devices aren't actually hung up for technical and
 591	 * historical reasons, which can lead to indefinite interruptible
 592	 * sleep in n_tty_read().  The following explicitly tells
 593	 * n_tty_read() to abort readers.
 594	 */
 595	set_bit(TTY_HUPPING, &tty->flags);
 596
 597	/* inuse_filps is protected by the single tty lock,
 598	   this really needs to change if we want to flush the
 599	   workqueue with the lock held */
 600	check_tty_count(tty, "tty_hangup");
 601
 602	spin_lock(&tty->files_lock);
 603	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 604	list_for_each_entry(priv, &tty->tty_files, list) {
 605		filp = priv->file;
 606		if (filp->f_op->write == redirected_tty_write)
 607			cons_filp = filp;
 608		if (filp->f_op->write != tty_write)
 609			continue;
 610		closecount++;
 611		__tty_fasync(-1, filp, 0);	/* can't block */
 612		filp->f_op = &hung_up_tty_fops;
 613	}
 614	spin_unlock(&tty->files_lock);
 615
 616	refs = tty_signal_session_leader(tty, exit_session);
 617	/* Account for the p->signal references we killed */
 618	while (refs--)
 619		tty_kref_put(tty);
 620
 621	tty_ldisc_hangup(tty, cons_filp != NULL);
 622
 623	spin_lock_irq(&tty->ctrl_lock);
 624	clear_bit(TTY_THROTTLED, &tty->flags);
 625	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 626	put_pid(tty->session);
 627	put_pid(tty->pgrp);
 628	tty->session = NULL;
 629	tty->pgrp = NULL;
 630	tty->ctrl_status = 0;
 631	spin_unlock_irq(&tty->ctrl_lock);
 632
 633	/*
 634	 * If one of the devices matches a console pointer, we
 635	 * cannot just call hangup() because that will cause
 636	 * tty->count and state->count to go out of sync.
 637	 * So we just call close() the right number of times.
 638	 */
 639	if (cons_filp) {
 640		if (tty->ops->close)
 641			for (n = 0; n < closecount; n++)
 642				tty->ops->close(tty, cons_filp);
 643	} else if (tty->ops->hangup)
 644		tty->ops->hangup(tty);
 645	/*
 646	 * We don't want to have driver/ldisc interactions beyond the ones
 647	 * we did here. The driver layer expects no calls after ->hangup()
 648	 * from the ldisc side, which is now guaranteed.
 649	 */
 650	set_bit(TTY_HUPPED, &tty->flags);
 651	clear_bit(TTY_HUPPING, &tty->flags);
 652	tty_unlock(tty);
 653
 654	if (f)
 655		fput(f);
 656}
 657
 658static void do_tty_hangup(struct work_struct *work)
 659{
 660	struct tty_struct *tty =
 661		container_of(work, struct tty_struct, hangup_work);
 662
 663	__tty_hangup(tty, 0);
 664}
 665
 666/**
 667 *	tty_hangup		-	trigger a hangup event
 668 *	@tty: tty to hangup
 669 *
 670 *	A carrier loss (virtual or otherwise) has occurred on this like
 671 *	schedule a hangup sequence to run after this event.
 672 */
 673
 674void tty_hangup(struct tty_struct *tty)
 675{
 676	tty_debug_hangup(tty, "hangup\n");
 677	schedule_work(&tty->hangup_work);
 678}
 679
 680EXPORT_SYMBOL(tty_hangup);
 681
 682/**
 683 *	tty_vhangup		-	process vhangup
 684 *	@tty: tty to hangup
 685 *
 686 *	The user has asked via system call for the terminal to be hung up.
 687 *	We do this synchronously so that when the syscall returns the process
 688 *	is complete. That guarantee is necessary for security reasons.
 689 */
 690
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 695}
 696
 697EXPORT_SYMBOL(tty_vhangup);
 698
 699
 700/**
 701 *	tty_vhangup_self	-	process vhangup for own ctty
 702 *
 703 *	Perform a vhangup on the current controlling tty
 704 */
 705
 706void tty_vhangup_self(void)
 707{
 708	struct tty_struct *tty;
 709
 710	tty = get_current_tty();
 711	if (tty) {
 712		tty_vhangup(tty);
 713		tty_kref_put(tty);
 714	}
 715}
 716
 717/**
 718 *	tty_vhangup_session		-	hangup session leader exit
 719 *	@tty: tty to hangup
 720 *
 721 *	The session leader is exiting and hanging up its controlling terminal.
 722 *	Every process in the foreground process group is signalled SIGHUP.
 723 *
 724 *	We do this synchronously so that when the syscall returns the process
 725 *	is complete. That guarantee is necessary for security reasons.
 726 */
 727
 728void tty_vhangup_session(struct tty_struct *tty)
 729{
 730	tty_debug_hangup(tty, "session hangup\n");
 731	__tty_hangup(tty, 1);
 732}
 733
 734/**
 735 *	tty_hung_up_p		-	was tty hung up
 736 *	@filp: file pointer of tty
 737 *
 738 *	Return true if the tty has been subject to a vhangup or a carrier
 739 *	loss
 740 */
 741
 742int tty_hung_up_p(struct file *filp)
 743{
 744	return (filp && filp->f_op == &hung_up_tty_fops);
 745}
 746
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 749/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 *	stop_tty	-	propagate flow control
 751 *	@tty: tty to stop
 752 *
 753 *	Perform flow control to the driver. May be called
 754 *	on an already stopped device and will not re-call the driver
 755 *	method.
 756 *
 757 *	This functionality is used by both the line disciplines for
 758 *	halting incoming flow and by the driver. It may therefore be
 759 *	called from any context, may be under the tty atomic_write_lock
 760 *	but not always.
 761 *
 762 *	Locking:
 763 *		flow_lock
 764 */
 765
 766void __stop_tty(struct tty_struct *tty)
 767{
 768	if (tty->stopped)
 769		return;
 770	tty->stopped = 1;
 771	if (tty->ops->stop)
 772		tty->ops->stop(tty);
 773}
 774
 775void stop_tty(struct tty_struct *tty)
 776{
 777	unsigned long flags;
 778
 779	spin_lock_irqsave(&tty->flow_lock, flags);
 780	__stop_tty(tty);
 781	spin_unlock_irqrestore(&tty->flow_lock, flags);
 782}
 783EXPORT_SYMBOL(stop_tty);
 784
 785/**
 786 *	start_tty	-	propagate flow control
 787 *	@tty: tty to start
 788 *
 789 *	Start a tty that has been stopped if at all possible. If this
 790 *	tty was previous stopped and is now being started, the driver
 791 *	start method is invoked and the line discipline woken.
 792 *
 793 *	Locking:
 794 *		flow_lock
 795 */
 796
 797void __start_tty(struct tty_struct *tty)
 798{
 799	if (!tty->stopped || tty->flow_stopped)
 800		return;
 801	tty->stopped = 0;
 802	if (tty->ops->start)
 803		tty->ops->start(tty);
 804	tty_wakeup(tty);
 805}
 806
 807void start_tty(struct tty_struct *tty)
 808{
 809	unsigned long flags;
 810
 811	spin_lock_irqsave(&tty->flow_lock, flags);
 812	__start_tty(tty);
 813	spin_unlock_irqrestore(&tty->flow_lock, flags);
 814}
 815EXPORT_SYMBOL(start_tty);
 816
 817static void tty_update_time(struct timespec *time)
 818{
 819	unsigned long sec = get_seconds();
 820
 821	/*
 822	 * We only care if the two values differ in anything other than the
 823	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 824	 * the time of the tty device, otherwise it could be construded as a
 825	 * security leak to let userspace know the exact timing of the tty.
 826	 */
 827	if ((sec ^ time->tv_sec) & ~7)
 828		time->tv_sec = sec;
 829}
 830
 831/**
 832 *	tty_read	-	read method for tty device files
 833 *	@file: pointer to tty file
 834 *	@buf: user buffer
 835 *	@count: size of user buffer
 836 *	@ppos: unused
 837 *
 838 *	Perform the read system call function on this terminal device. Checks
 839 *	for hung up devices before calling the line discipline method.
 840 *
 841 *	Locking:
 842 *		Locks the line discipline internally while needed. Multiple
 843 *	read calls may be outstanding in parallel.
 844 */
 845
 846static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 847			loff_t *ppos)
 848{
 849	int i;
 850	struct inode *inode = file_inode(file);
 851	struct tty_struct *tty = file_tty(file);
 852	struct tty_ldisc *ld;
 853
 854	if (tty_paranoia_check(tty, inode, "tty_read"))
 855		return -EIO;
 856	if (!tty || tty_io_error(tty))
 857		return -EIO;
 858
 859	/* We want to wait for the line discipline to sort out in this
 860	   situation */
 861	ld = tty_ldisc_ref_wait(tty);
 862	if (!ld)
 863		return hung_up_tty_read(file, buf, count, ppos);
 864	if (ld->ops->read)
 865		i = ld->ops->read(tty, file, buf, count);
 866	else
 867		i = -EIO;
 868	tty_ldisc_deref(ld);
 869
 870	if (i > 0)
 871		tty_update_time(&inode->i_atime);
 872
 873	return i;
 874}
 875
 876static void tty_write_unlock(struct tty_struct *tty)
 877{
 878	mutex_unlock(&tty->atomic_write_lock);
 879	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 880}
 881
 882static int tty_write_lock(struct tty_struct *tty, int ndelay)
 883{
 884	if (!mutex_trylock(&tty->atomic_write_lock)) {
 885		if (ndelay)
 886			return -EAGAIN;
 887		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 888			return -ERESTARTSYS;
 889	}
 890	return 0;
 891}
 892
 893/*
 894 * Split writes up in sane blocksizes to avoid
 895 * denial-of-service type attacks
 896 */
 897static inline ssize_t do_tty_write(
 898	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 899	struct tty_struct *tty,
 900	struct file *file,
 901	const char __user *buf,
 902	size_t count)
 903{
 904	ssize_t ret, written = 0;
 905	unsigned int chunk;
 906
 907	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 908	if (ret < 0)
 909		return ret;
 910
 911	/*
 912	 * We chunk up writes into a temporary buffer. This
 913	 * simplifies low-level drivers immensely, since they
 914	 * don't have locking issues and user mode accesses.
 915	 *
 916	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 917	 * big chunk-size..
 918	 *
 919	 * The default chunk-size is 2kB, because the NTTY
 920	 * layer has problems with bigger chunks. It will
 921	 * claim to be able to handle more characters than
 922	 * it actually does.
 923	 *
 924	 * FIXME: This can probably go away now except that 64K chunks
 925	 * are too likely to fail unless switched to vmalloc...
 926	 */
 927	chunk = 2048;
 928	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 929		chunk = 65536;
 930	if (count < chunk)
 931		chunk = count;
 932
 933	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 934	if (tty->write_cnt < chunk) {
 935		unsigned char *buf_chunk;
 936
 937		if (chunk < 1024)
 938			chunk = 1024;
 939
 940		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 941		if (!buf_chunk) {
 942			ret = -ENOMEM;
 943			goto out;
 944		}
 945		kfree(tty->write_buf);
 946		tty->write_cnt = chunk;
 947		tty->write_buf = buf_chunk;
 948	}
 949
 950	/* Do the write .. */
 951	for (;;) {
 952		size_t size = count;
 953		if (size > chunk)
 954			size = chunk;
 955		ret = -EFAULT;
 956		if (copy_from_user(tty->write_buf, buf, size))
 957			break;
 958		ret = write(tty, file, tty->write_buf, size);
 959		if (ret <= 0)
 960			break;
 961		written += ret;
 962		buf += ret;
 963		count -= ret;
 964		if (!count)
 965			break;
 966		ret = -ERESTARTSYS;
 967		if (signal_pending(current))
 968			break;
 969		cond_resched();
 970	}
 971	if (written) {
 972		tty_update_time(&file_inode(file)->i_mtime);
 973		ret = written;
 974	}
 975out:
 976	tty_write_unlock(tty);
 977	return ret;
 978}
 979
 980/**
 981 * tty_write_message - write a message to a certain tty, not just the console.
 982 * @tty: the destination tty_struct
 983 * @msg: the message to write
 984 *
 985 * This is used for messages that need to be redirected to a specific tty.
 986 * We don't put it into the syslog queue right now maybe in the future if
 987 * really needed.
 988 *
 989 * We must still hold the BTM and test the CLOSING flag for the moment.
 990 */
 991
 992void tty_write_message(struct tty_struct *tty, char *msg)
 993{
 994	if (tty) {
 995		mutex_lock(&tty->atomic_write_lock);
 996		tty_lock(tty);
 997		if (tty->ops->write && tty->count > 0)
 998			tty->ops->write(tty, msg, strlen(msg));
 999		tty_unlock(tty);
1000		tty_write_unlock(tty);
1001	}
1002	return;
1003}
1004
1005
1006/**
1007 *	tty_write		-	write method for tty device file
1008 *	@file: tty file pointer
1009 *	@buf: user data to write
1010 *	@count: bytes to write
1011 *	@ppos: unused
1012 *
1013 *	Write data to a tty device via the line discipline.
1014 *
1015 *	Locking:
1016 *		Locks the line discipline as required
1017 *		Writes to the tty driver are serialized by the atomic_write_lock
1018 *	and are then processed in chunks to the device. The line discipline
1019 *	write method will not be invoked in parallel for each device.
1020 */
1021
1022static ssize_t tty_write(struct file *file, const char __user *buf,
1023						size_t count, loff_t *ppos)
1024{
1025	struct tty_struct *tty = file_tty(file);
1026 	struct tty_ldisc *ld;
1027	ssize_t ret;
1028
1029	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030		return -EIO;
1031	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1032			return -EIO;
1033	/* Short term debug to catch buggy drivers */
1034	if (tty->ops->write_room == NULL)
1035		tty_err(tty, "missing write_room method\n");
1036	ld = tty_ldisc_ref_wait(tty);
1037	if (!ld)
1038		return hung_up_tty_write(file, buf, count, ppos);
1039	if (!ld->ops->write)
1040		ret = -EIO;
1041	else
1042		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043	tty_ldisc_deref(ld);
1044	return ret;
1045}
1046
1047ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048						size_t count, loff_t *ppos)
1049{
1050	struct file *p = NULL;
1051
1052	spin_lock(&redirect_lock);
1053	if (redirect)
1054		p = get_file(redirect);
1055	spin_unlock(&redirect_lock);
1056
1057	if (p) {
1058		ssize_t res;
1059		res = vfs_write(p, buf, count, &p->f_pos);
1060		fput(p);
1061		return res;
1062	}
1063	return tty_write(file, buf, count, ppos);
1064}
1065
1066/**
1067 *	tty_send_xchar	-	send priority character
1068 *
1069 *	Send a high priority character to the tty even if stopped
1070 *
1071 *	Locking: none for xchar method, write ordering for write method.
1072 */
1073
1074int tty_send_xchar(struct tty_struct *tty, char ch)
1075{
1076	int	was_stopped = tty->stopped;
1077
1078	if (tty->ops->send_xchar) {
1079		down_read(&tty->termios_rwsem);
1080		tty->ops->send_xchar(tty, ch);
1081		up_read(&tty->termios_rwsem);
1082		return 0;
1083	}
1084
1085	if (tty_write_lock(tty, 0) < 0)
1086		return -ERESTARTSYS;
1087
1088	down_read(&tty->termios_rwsem);
1089	if (was_stopped)
1090		start_tty(tty);
1091	tty->ops->write(tty, &ch, 1);
1092	if (was_stopped)
1093		stop_tty(tty);
1094	up_read(&tty->termios_rwsem);
1095	tty_write_unlock(tty);
1096	return 0;
1097}
1098
1099static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101/**
1102 *	pty_line_name	-	generate name for a pty
1103 *	@driver: the tty driver in use
1104 *	@index: the minor number
1105 *	@p: output buffer of at least 6 bytes
1106 *
1107 *	Generate a name from a driver reference and write it to the output
1108 *	buffer.
1109 *
1110 *	Locking: None
1111 */
1112static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113{
1114	int i = index + driver->name_base;
1115	/* ->name is initialized to "ttyp", but "tty" is expected */
1116	sprintf(p, "%s%c%x",
1117		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118		ptychar[i >> 4 & 0xf], i & 0xf);
1119}
1120
1121/**
1122 *	tty_line_name	-	generate name for a tty
1123 *	@driver: the tty driver in use
1124 *	@index: the minor number
1125 *	@p: output buffer of at least 7 bytes
1126 *
1127 *	Generate a name from a driver reference and write it to the output
1128 *	buffer.
1129 *
1130 *	Locking: None
1131 */
1132static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133{
1134	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135		return sprintf(p, "%s", driver->name);
1136	else
1137		return sprintf(p, "%s%d", driver->name,
1138			       index + driver->name_base);
1139}
1140
1141/**
1142 *	tty_driver_lookup_tty() - find an existing tty, if any
1143 *	@driver: the driver for the tty
1144 *	@idx:	 the minor number
1145 *
1146 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 *	driver lookup() method returns an error.
1148 *
1149 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150 */
1151static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152		struct file *file, int idx)
1153{
1154	struct tty_struct *tty;
1155
1156	if (driver->ops->lookup)
1157		if (!file)
1158			tty = ERR_PTR(-EIO);
1159		else
1160			tty = driver->ops->lookup(driver, file, idx);
1161	else
1162		tty = driver->ttys[idx];
1163
1164	if (!IS_ERR(tty))
1165		tty_kref_get(tty);
1166	return tty;
1167}
1168
1169/**
1170 *	tty_init_termios	-  helper for termios setup
1171 *	@tty: the tty to set up
1172 *
1173 *	Initialise the termios structures for this tty. Thus runs under
1174 *	the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
1177void tty_init_termios(struct tty_struct *tty)
1178{
1179	struct ktermios *tp;
1180	int idx = tty->index;
1181
1182	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183		tty->termios = tty->driver->init_termios;
1184	else {
1185		/* Check for lazy saved data */
1186		tp = tty->driver->termios[idx];
1187		if (tp != NULL) {
1188			tty->termios = *tp;
1189			tty->termios.c_line  = tty->driver->init_termios.c_line;
1190		} else
1191			tty->termios = tty->driver->init_termios;
1192	}
1193	/* Compatibility until drivers always set this */
1194	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196}
1197EXPORT_SYMBOL_GPL(tty_init_termios);
1198
1199int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200{
1201	tty_init_termios(tty);
1202	tty_driver_kref_get(driver);
1203	tty->count++;
1204	driver->ttys[tty->index] = tty;
1205	return 0;
1206}
1207EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209/**
1210 *	tty_driver_install_tty() - install a tty entry in the driver
1211 *	@driver: the driver for the tty
1212 *	@tty: the tty
1213 *
1214 *	Install a tty object into the driver tables. The tty->index field
1215 *	will be set by the time this is called. This method is responsible
1216 *	for ensuring any need additional structures are allocated and
1217 *	configured.
1218 *
1219 *	Locking: tty_mutex for now
1220 */
1221static int tty_driver_install_tty(struct tty_driver *driver,
1222						struct tty_struct *tty)
1223{
1224	return driver->ops->install ? driver->ops->install(driver, tty) :
1225		tty_standard_install(driver, tty);
1226}
1227
1228/**
1229 *	tty_driver_remove_tty() - remove a tty from the driver tables
1230 *	@driver: the driver for the tty
1231 *	@idx:	 the minor number
1232 *
1233 *	Remvoe a tty object from the driver tables. The tty->index field
1234 *	will be set by the time this is called.
1235 *
1236 *	Locking: tty_mutex for now
1237 */
1238static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239{
1240	if (driver->ops->remove)
1241		driver->ops->remove(driver, tty);
1242	else
1243		driver->ttys[tty->index] = NULL;
1244}
1245
1246/*
1247 * 	tty_reopen()	- fast re-open of an open tty
1248 * 	@tty	- the tty to open
1249 *
1250 *	Return 0 on success, -errno on error.
1251 *	Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 *	Locking: Caller must hold tty_lock
1254 */
1255static int tty_reopen(struct tty_struct *tty)
1256{
1257	struct tty_driver *driver = tty->driver;
1258
1259	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1260	    driver->subtype == PTY_TYPE_MASTER)
1261		return -EIO;
1262
1263	if (!tty->count)
1264		return -EAGAIN;
1265
1266	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1267		return -EBUSY;
1268
1269	tty->count++;
1270
1271	if (!tty->ldisc)
1272		return tty_ldisc_reinit(tty, tty->termios.c_line);
1273
1274	return 0;
1275}
1276
1277/**
1278 *	tty_init_dev		-	initialise a tty device
1279 *	@driver: tty driver we are opening a device on
1280 *	@idx: device index
1281 *	@ret_tty: returned tty structure
1282 *
1283 *	Prepare a tty device. This may not be a "new" clean device but
1284 *	could also be an active device. The pty drivers require special
1285 *	handling because of this.
1286 *
1287 *	Locking:
1288 *		The function is called under the tty_mutex, which
1289 *	protects us from the tty struct or driver itself going away.
1290 *
1291 *	On exit the tty device has the line discipline attached and
1292 *	a reference count of 1. If a pair was created for pty/tty use
1293 *	and the other was a pty master then it too has a reference count of 1.
1294 *
1295 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1296 * failed open.  The new code protects the open with a mutex, so it's
1297 * really quite straightforward.  The mutex locking can probably be
1298 * relaxed for the (most common) case of reopening a tty.
1299 */
1300
1301struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1302{
1303	struct tty_struct *tty;
1304	int retval;
1305
1306	/*
1307	 * First time open is complex, especially for PTY devices.
1308	 * This code guarantees that either everything succeeds and the
1309	 * TTY is ready for operation, or else the table slots are vacated
1310	 * and the allocated memory released.  (Except that the termios
1311	 * may be retained.)
1312	 */
1313
1314	if (!try_module_get(driver->owner))
1315		return ERR_PTR(-ENODEV);
1316
1317	tty = alloc_tty_struct(driver, idx);
1318	if (!tty) {
1319		retval = -ENOMEM;
1320		goto err_module_put;
1321	}
1322
1323	tty_lock(tty);
1324	retval = tty_driver_install_tty(driver, tty);
1325	if (retval < 0)
1326		goto err_free_tty;
1327
1328	if (!tty->port)
1329		tty->port = driver->ports[idx];
1330
1331	WARN_RATELIMIT(!tty->port,
1332			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1333			__func__, tty->driver->name);
1334
1335	retval = tty_ldisc_lock(tty, 5 * HZ);
1336	if (retval)
1337		goto err_release_lock;
1338	tty->port->itty = tty;
1339
1340	/*
1341	 * Structures all installed ... call the ldisc open routines.
1342	 * If we fail here just call release_tty to clean up.  No need
1343	 * to decrement the use counts, as release_tty doesn't care.
1344	 */
1345	retval = tty_ldisc_setup(tty, tty->link);
1346	if (retval)
1347		goto err_release_tty;
1348	tty_ldisc_unlock(tty);
1349	/* Return the tty locked so that it cannot vanish under the caller */
1350	return tty;
1351
1352err_free_tty:
1353	tty_unlock(tty);
1354	free_tty_struct(tty);
1355err_module_put:
1356	module_put(driver->owner);
1357	return ERR_PTR(retval);
1358
1359	/* call the tty release_tty routine to clean out this slot */
1360err_release_tty:
1361	tty_ldisc_unlock(tty);
1362	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1363			     retval, idx);
1364err_release_lock:
1365	tty_unlock(tty);
1366	release_tty(tty, idx);
1367	return ERR_PTR(retval);
1368}
1369
1370static void tty_free_termios(struct tty_struct *tty)
1371{
1372	struct ktermios *tp;
1373	int idx = tty->index;
1374
1375	/* If the port is going to reset then it has no termios to save */
1376	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1377		return;
1378
1379	/* Stash the termios data */
1380	tp = tty->driver->termios[idx];
1381	if (tp == NULL) {
1382		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1383		if (tp == NULL)
1384			return;
1385		tty->driver->termios[idx] = tp;
1386	}
1387	*tp = tty->termios;
1388}
1389
1390/**
1391 *	tty_flush_works		-	flush all works of a tty/pty pair
1392 *	@tty: tty device to flush works for (or either end of a pty pair)
1393 *
1394 *	Sync flush all works belonging to @tty (and the 'other' tty).
1395 */
1396static void tty_flush_works(struct tty_struct *tty)
1397{
1398	flush_work(&tty->SAK_work);
1399	flush_work(&tty->hangup_work);
1400	if (tty->link) {
1401		flush_work(&tty->link->SAK_work);
1402		flush_work(&tty->link->hangup_work);
1403	}
1404}
1405
1406/**
1407 *	release_one_tty		-	release tty structure memory
1408 *	@kref: kref of tty we are obliterating
1409 *
1410 *	Releases memory associated with a tty structure, and clears out the
1411 *	driver table slots. This function is called when a device is no longer
1412 *	in use. It also gets called when setup of a device fails.
1413 *
1414 *	Locking:
1415 *		takes the file list lock internally when working on the list
1416 *	of ttys that the driver keeps.
1417 *
1418 *	This method gets called from a work queue so that the driver private
1419 *	cleanup ops can sleep (needed for USB at least)
1420 */
1421static void release_one_tty(struct work_struct *work)
1422{
1423	struct tty_struct *tty =
1424		container_of(work, struct tty_struct, hangup_work);
1425	struct tty_driver *driver = tty->driver;
1426	struct module *owner = driver->owner;
1427
1428	if (tty->ops->cleanup)
1429		tty->ops->cleanup(tty);
1430
1431	tty->magic = 0;
1432	tty_driver_kref_put(driver);
1433	module_put(owner);
1434
1435	spin_lock(&tty->files_lock);
1436	list_del_init(&tty->tty_files);
1437	spin_unlock(&tty->files_lock);
1438
1439	put_pid(tty->pgrp);
1440	put_pid(tty->session);
1441	free_tty_struct(tty);
1442}
1443
1444static void queue_release_one_tty(struct kref *kref)
1445{
1446	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1447
1448	/* The hangup queue is now free so we can reuse it rather than
1449	   waste a chunk of memory for each port */
1450	INIT_WORK(&tty->hangup_work, release_one_tty);
1451	schedule_work(&tty->hangup_work);
1452}
1453
1454/**
1455 *	tty_kref_put		-	release a tty kref
1456 *	@tty: tty device
1457 *
1458 *	Release a reference to a tty device and if need be let the kref
1459 *	layer destruct the object for us
1460 */
1461
1462void tty_kref_put(struct tty_struct *tty)
1463{
1464	if (tty)
1465		kref_put(&tty->kref, queue_release_one_tty);
1466}
1467EXPORT_SYMBOL(tty_kref_put);
1468
1469/**
1470 *	release_tty		-	release tty structure memory
1471 *
1472 *	Release both @tty and a possible linked partner (think pty pair),
1473 *	and decrement the refcount of the backing module.
1474 *
1475 *	Locking:
1476 *		tty_mutex
1477 *		takes the file list lock internally when working on the list
1478 *	of ttys that the driver keeps.
1479 *
1480 */
1481static void release_tty(struct tty_struct *tty, int idx)
1482{
1483	/* This should always be true but check for the moment */
1484	WARN_ON(tty->index != idx);
1485	WARN_ON(!mutex_is_locked(&tty_mutex));
1486	if (tty->ops->shutdown)
1487		tty->ops->shutdown(tty);
1488	tty_free_termios(tty);
1489	tty_driver_remove_tty(tty->driver, tty);
1490	tty->port->itty = NULL;
1491	if (tty->link)
1492		tty->link->port->itty = NULL;
1493	tty_buffer_cancel_work(tty->port);
1494	if (tty->link)
1495		tty_buffer_cancel_work(tty->link->port);
1496
1497	tty_kref_put(tty->link);
1498	tty_kref_put(tty);
1499}
1500
1501/**
1502 *	tty_release_checks - check a tty before real release
1503 *	@tty: tty to check
1504 *	@o_tty: link of @tty (if any)
1505 *	@idx: index of the tty
1506 *
1507 *	Performs some paranoid checking before true release of the @tty.
1508 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1509 */
1510static int tty_release_checks(struct tty_struct *tty, int idx)
1511{
1512#ifdef TTY_PARANOIA_CHECK
1513	if (idx < 0 || idx >= tty->driver->num) {
1514		tty_debug(tty, "bad idx %d\n", idx);
1515		return -1;
1516	}
1517
1518	/* not much to check for devpts */
1519	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1520		return 0;
1521
1522	if (tty != tty->driver->ttys[idx]) {
1523		tty_debug(tty, "bad driver table[%d] = %p\n",
1524			  idx, tty->driver->ttys[idx]);
1525		return -1;
1526	}
1527	if (tty->driver->other) {
1528		struct tty_struct *o_tty = tty->link;
1529
1530		if (o_tty != tty->driver->other->ttys[idx]) {
1531			tty_debug(tty, "bad other table[%d] = %p\n",
1532				  idx, tty->driver->other->ttys[idx]);
1533			return -1;
1534		}
1535		if (o_tty->link != tty) {
1536			tty_debug(tty, "bad link = %p\n", o_tty->link);
1537			return -1;
1538		}
1539	}
1540#endif
1541	return 0;
1542}
1543
1544/**
1545 *      tty_kclose      -       closes tty opened by tty_kopen
1546 *      @tty: tty device
1547 *
1548 *      Performs the final steps to release and free a tty device. It is the
1549 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1550 *      flag on tty->port.
1551 */
1552void tty_kclose(struct tty_struct *tty)
1553{
1554	/*
1555	 * Ask the line discipline code to release its structures
1556	 */
1557	tty_ldisc_release(tty);
1558
1559	/* Wait for pending work before tty destruction commmences */
1560	tty_flush_works(tty);
1561
1562	tty_debug_hangup(tty, "freeing structure\n");
1563	/*
1564	 * The release_tty function takes care of the details of clearing
1565	 * the slots and preserving the termios structure. The tty_unlock_pair
1566	 * should be safe as we keep a kref while the tty is locked (so the
1567	 * unlock never unlocks a freed tty).
1568	 */
1569	mutex_lock(&tty_mutex);
1570	tty_port_set_kopened(tty->port, 0);
1571	release_tty(tty, tty->index);
1572	mutex_unlock(&tty_mutex);
1573}
1574EXPORT_SYMBOL_GPL(tty_kclose);
1575
1576/**
1577 *	tty_release_struct	-	release a tty struct
1578 *	@tty: tty device
1579 *	@idx: index of the tty
1580 *
1581 *	Performs the final steps to release and free a tty device. It is
1582 *	roughly the reverse of tty_init_dev.
1583 */
1584void tty_release_struct(struct tty_struct *tty, int idx)
1585{
1586	/*
1587	 * Ask the line discipline code to release its structures
1588	 */
1589	tty_ldisc_release(tty);
1590
1591	/* Wait for pending work before tty destruction commmences */
1592	tty_flush_works(tty);
1593
1594	tty_debug_hangup(tty, "freeing structure\n");
1595	/*
1596	 * The release_tty function takes care of the details of clearing
1597	 * the slots and preserving the termios structure. The tty_unlock_pair
1598	 * should be safe as we keep a kref while the tty is locked (so the
1599	 * unlock never unlocks a freed tty).
1600	 */
1601	mutex_lock(&tty_mutex);
1602	release_tty(tty, idx);
1603	mutex_unlock(&tty_mutex);
1604}
1605EXPORT_SYMBOL_GPL(tty_release_struct);
1606
1607/**
1608 *	tty_release		-	vfs callback for close
1609 *	@inode: inode of tty
1610 *	@filp: file pointer for handle to tty
1611 *
1612 *	Called the last time each file handle is closed that references
1613 *	this tty. There may however be several such references.
1614 *
1615 *	Locking:
1616 *		Takes bkl. See tty_release_dev
1617 *
1618 * Even releasing the tty structures is a tricky business.. We have
1619 * to be very careful that the structures are all released at the
1620 * same time, as interrupts might otherwise get the wrong pointers.
1621 *
1622 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1623 * lead to double frees or releasing memory still in use.
1624 */
1625
1626int tty_release(struct inode *inode, struct file *filp)
1627{
1628	struct tty_struct *tty = file_tty(filp);
1629	struct tty_struct *o_tty = NULL;
1630	int	do_sleep, final;
1631	int	idx;
1632	long	timeout = 0;
1633	int	once = 1;
1634
1635	if (tty_paranoia_check(tty, inode, __func__))
1636		return 0;
1637
1638	tty_lock(tty);
1639	check_tty_count(tty, __func__);
1640
1641	__tty_fasync(-1, filp, 0);
1642
1643	idx = tty->index;
1644	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645	    tty->driver->subtype == PTY_TYPE_MASTER)
1646		o_tty = tty->link;
1647
1648	if (tty_release_checks(tty, idx)) {
1649		tty_unlock(tty);
1650		return 0;
1651	}
1652
1653	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1654
1655	if (tty->ops->close)
1656		tty->ops->close(tty, filp);
1657
1658	/* If tty is pty master, lock the slave pty (stable lock order) */
1659	tty_lock_slave(o_tty);
1660
1661	/*
1662	 * Sanity check: if tty->count is going to zero, there shouldn't be
1663	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1664	 * wait queues and kick everyone out _before_ actually starting to
1665	 * close.  This ensures that we won't block while releasing the tty
1666	 * structure.
1667	 *
1668	 * The test for the o_tty closing is necessary, since the master and
1669	 * slave sides may close in any order.  If the slave side closes out
1670	 * first, its count will be one, since the master side holds an open.
1671	 * Thus this test wouldn't be triggered at the time the slave closed,
1672	 * so we do it now.
1673	 */
1674	while (1) {
1675		do_sleep = 0;
1676
1677		if (tty->count <= 1) {
1678			if (waitqueue_active(&tty->read_wait)) {
1679				wake_up_poll(&tty->read_wait, EPOLLIN);
1680				do_sleep++;
1681			}
1682			if (waitqueue_active(&tty->write_wait)) {
1683				wake_up_poll(&tty->write_wait, EPOLLOUT);
1684				do_sleep++;
1685			}
1686		}
1687		if (o_tty && o_tty->count <= 1) {
1688			if (waitqueue_active(&o_tty->read_wait)) {
1689				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1690				do_sleep++;
1691			}
1692			if (waitqueue_active(&o_tty->write_wait)) {
1693				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1694				do_sleep++;
1695			}
1696		}
1697		if (!do_sleep)
1698			break;
1699
1700		if (once) {
1701			once = 0;
1702			tty_warn(tty, "read/write wait queue active!\n");
1703		}
1704		schedule_timeout_killable(timeout);
1705		if (timeout < 120 * HZ)
1706			timeout = 2 * timeout + 1;
1707		else
1708			timeout = MAX_SCHEDULE_TIMEOUT;
1709	}
1710
1711	if (o_tty) {
1712		if (--o_tty->count < 0) {
1713			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1714			o_tty->count = 0;
1715		}
1716	}
1717	if (--tty->count < 0) {
1718		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1719		tty->count = 0;
1720	}
1721
1722	/*
1723	 * We've decremented tty->count, so we need to remove this file
1724	 * descriptor off the tty->tty_files list; this serves two
1725	 * purposes:
1726	 *  - check_tty_count sees the correct number of file descriptors
1727	 *    associated with this tty.
1728	 *  - do_tty_hangup no longer sees this file descriptor as
1729	 *    something that needs to be handled for hangups.
1730	 */
1731	tty_del_file(filp);
1732
1733	/*
1734	 * Perform some housekeeping before deciding whether to return.
1735	 *
1736	 * If _either_ side is closing, make sure there aren't any
1737	 * processes that still think tty or o_tty is their controlling
1738	 * tty.
1739	 */
1740	if (!tty->count) {
1741		read_lock(&tasklist_lock);
1742		session_clear_tty(tty->session);
1743		if (o_tty)
1744			session_clear_tty(o_tty->session);
1745		read_unlock(&tasklist_lock);
1746	}
1747
1748	/* check whether both sides are closing ... */
1749	final = !tty->count && !(o_tty && o_tty->count);
1750
1751	tty_unlock_slave(o_tty);
1752	tty_unlock(tty);
1753
1754	/* At this point, the tty->count == 0 should ensure a dead tty
1755	   cannot be re-opened by a racing opener */
1756
1757	if (!final)
1758		return 0;
1759
1760	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762	tty_release_struct(tty, idx);
1763	return 0;
1764}
1765
1766/**
1767 *	tty_open_current_tty - get locked tty of current task
1768 *	@device: device number
1769 *	@filp: file pointer to tty
1770 *	@return: locked tty of the current task iff @device is /dev/tty
1771 *
1772 *	Performs a re-open of the current task's controlling tty.
1773 *
1774 *	We cannot return driver and index like for the other nodes because
1775 *	devpts will not work then. It expects inodes to be from devpts FS.
1776 */
1777static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1778{
1779	struct tty_struct *tty;
1780	int retval;
1781
1782	if (device != MKDEV(TTYAUX_MAJOR, 0))
1783		return NULL;
1784
1785	tty = get_current_tty();
1786	if (!tty)
1787		return ERR_PTR(-ENXIO);
1788
1789	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1790	/* noctty = 1; */
1791	tty_lock(tty);
1792	tty_kref_put(tty);	/* safe to drop the kref now */
1793
1794	retval = tty_reopen(tty);
1795	if (retval < 0) {
1796		tty_unlock(tty);
1797		tty = ERR_PTR(retval);
1798	}
1799	return tty;
1800}
1801
1802/**
1803 *	tty_lookup_driver - lookup a tty driver for a given device file
1804 *	@device: device number
1805 *	@filp: file pointer to tty
1806 *	@index: index for the device in the @return driver
1807 *	@return: driver for this inode (with increased refcount)
1808 *
1809 * 	If @return is not erroneous, the caller is responsible to decrement the
1810 * 	refcount by tty_driver_kref_put.
1811 *
1812 *	Locking: tty_mutex protects get_tty_driver
1813 */
1814static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1815		int *index)
1816{
1817	struct tty_driver *driver;
1818
1819	switch (device) {
1820#ifdef CONFIG_VT
1821	case MKDEV(TTY_MAJOR, 0): {
1822		extern struct tty_driver *console_driver;
1823		driver = tty_driver_kref_get(console_driver);
1824		*index = fg_console;
1825		break;
1826	}
1827#endif
1828	case MKDEV(TTYAUX_MAJOR, 1): {
1829		struct tty_driver *console_driver = console_device(index);
1830		if (console_driver) {
1831			driver = tty_driver_kref_get(console_driver);
1832			if (driver && filp) {
1833				/* Don't let /dev/console block */
1834				filp->f_flags |= O_NONBLOCK;
1835				break;
1836			}
1837		}
1838		return ERR_PTR(-ENODEV);
1839	}
1840	default:
1841		driver = get_tty_driver(device, index);
1842		if (!driver)
1843			return ERR_PTR(-ENODEV);
1844		break;
1845	}
1846	return driver;
1847}
1848
1849/**
1850 *	tty_kopen	-	open a tty device for kernel
1851 *	@device: dev_t of device to open
1852 *
1853 *	Opens tty exclusively for kernel. Performs the driver lookup,
1854 *	makes sure it's not already opened and performs the first-time
1855 *	tty initialization.
1856 *
1857 *	Returns the locked initialized &tty_struct
1858 *
1859 *	Claims the global tty_mutex to serialize:
1860 *	  - concurrent first-time tty initialization
1861 *	  - concurrent tty driver removal w/ lookup
1862 *	  - concurrent tty removal from driver table
1863 */
1864struct tty_struct *tty_kopen(dev_t device)
1865{
1866	struct tty_struct *tty;
1867	struct tty_driver *driver = NULL;
1868	int index = -1;
1869
1870	mutex_lock(&tty_mutex);
1871	driver = tty_lookup_driver(device, NULL, &index);
1872	if (IS_ERR(driver)) {
1873		mutex_unlock(&tty_mutex);
1874		return ERR_CAST(driver);
1875	}
1876
1877	/* check whether we're reopening an existing tty */
1878	tty = tty_driver_lookup_tty(driver, NULL, index);
1879	if (IS_ERR(tty))
1880		goto out;
1881
1882	if (tty) {
1883		/* drop kref from tty_driver_lookup_tty() */
1884		tty_kref_put(tty);
1885		tty = ERR_PTR(-EBUSY);
1886	} else { /* tty_init_dev returns tty with the tty_lock held */
1887		tty = tty_init_dev(driver, index);
1888		if (IS_ERR(tty))
1889			goto out;
1890		tty_port_set_kopened(tty->port, 1);
1891	}
1892out:
1893	mutex_unlock(&tty_mutex);
1894	tty_driver_kref_put(driver);
1895	return tty;
1896}
1897EXPORT_SYMBOL_GPL(tty_kopen);
1898
1899/**
1900 *	tty_open_by_driver	-	open a tty device
1901 *	@device: dev_t of device to open
1902 *	@inode: inode of device file
1903 *	@filp: file pointer to tty
1904 *
1905 *	Performs the driver lookup, checks for a reopen, or otherwise
1906 *	performs the first-time tty initialization.
1907 *
1908 *	Returns the locked initialized or re-opened &tty_struct
1909 *
1910 *	Claims the global tty_mutex to serialize:
1911 *	  - concurrent first-time tty initialization
1912 *	  - concurrent tty driver removal w/ lookup
1913 *	  - concurrent tty removal from driver table
1914 */
1915static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1916					     struct file *filp)
1917{
1918	struct tty_struct *tty;
1919	struct tty_driver *driver = NULL;
1920	int index = -1;
1921	int retval;
1922
1923	mutex_lock(&tty_mutex);
1924	driver = tty_lookup_driver(device, filp, &index);
1925	if (IS_ERR(driver)) {
1926		mutex_unlock(&tty_mutex);
1927		return ERR_CAST(driver);
1928	}
1929
1930	/* check whether we're reopening an existing tty */
1931	tty = tty_driver_lookup_tty(driver, filp, index);
1932	if (IS_ERR(tty)) {
1933		mutex_unlock(&tty_mutex);
1934		goto out;
1935	}
1936
1937	if (tty) {
1938		if (tty_port_kopened(tty->port)) {
1939			tty_kref_put(tty);
1940			mutex_unlock(&tty_mutex);
1941			tty = ERR_PTR(-EBUSY);
1942			goto out;
1943		}
1944		mutex_unlock(&tty_mutex);
1945		retval = tty_lock_interruptible(tty);
1946		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1947		if (retval) {
1948			if (retval == -EINTR)
1949				retval = -ERESTARTSYS;
1950			tty = ERR_PTR(retval);
1951			goto out;
1952		}
1953		retval = tty_reopen(tty);
1954		if (retval < 0) {
1955			tty_unlock(tty);
1956			tty = ERR_PTR(retval);
1957		}
1958	} else { /* Returns with the tty_lock held for now */
1959		tty = tty_init_dev(driver, index);
1960		mutex_unlock(&tty_mutex);
1961	}
1962out:
1963	tty_driver_kref_put(driver);
1964	return tty;
1965}
1966
1967/**
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	dev_t device = inode->i_rdev;
1996	unsigned saved_flags = filp->f_flags;
1997
1998	nonseekable_open(inode, filp);
1999
2000retry_open:
2001	retval = tty_alloc_file(filp);
2002	if (retval)
2003		return -ENOMEM;
2004
2005	tty = tty_open_current_tty(device, filp);
2006	if (!tty)
2007		tty = tty_open_by_driver(device, inode, filp);
2008
2009	if (IS_ERR(tty)) {
2010		tty_free_file(filp);
2011		retval = PTR_ERR(tty);
2012		if (retval != -EAGAIN || signal_pending(current))
2013			return retval;
2014		schedule();
2015		goto retry_open;
2016	}
2017
2018	tty_add_file(tty, filp);
2019
2020	check_tty_count(tty, __func__);
2021	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2022
2023	if (tty->ops->open)
2024		retval = tty->ops->open(tty, filp);
2025	else
2026		retval = -ENODEV;
2027	filp->f_flags = saved_flags;
2028
2029	if (retval) {
2030		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2031
2032		tty_unlock(tty); /* need to call tty_release without BTM */
2033		tty_release(inode, filp);
2034		if (retval != -ERESTARTSYS)
2035			return retval;
2036
2037		if (signal_pending(current))
2038			return retval;
2039
2040		schedule();
2041		/*
2042		 * Need to reset f_op in case a hangup happened.
2043		 */
2044		if (tty_hung_up_p(filp))
2045			filp->f_op = &tty_fops;
2046		goto retry_open;
2047	}
2048	clear_bit(TTY_HUPPED, &tty->flags);
2049
 
 
 
2050	noctty = (filp->f_flags & O_NOCTTY) ||
2051		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2052		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2053		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054		  tty->driver->subtype == PTY_TYPE_MASTER);
2055	if (!noctty)
2056		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057	tty_unlock(tty);
2058	return 0;
2059}
2060
2061
2062
2063/**
2064 *	tty_poll	-	check tty status
2065 *	@filp: file being polled
2066 *	@wait: poll wait structures to update
2067 *
2068 *	Call the line discipline polling method to obtain the poll
2069 *	status of the device.
2070 *
2071 *	Locking: locks called line discipline but ldisc poll method
2072 *	may be re-entered freely by other callers.
2073 */
2074
2075static __poll_t tty_poll(struct file *filp, poll_table *wait)
2076{
2077	struct tty_struct *tty = file_tty(filp);
2078	struct tty_ldisc *ld;
2079	__poll_t ret = 0;
2080
2081	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2082		return 0;
2083
2084	ld = tty_ldisc_ref_wait(tty);
2085	if (!ld)
2086		return hung_up_tty_poll(filp, wait);
2087	if (ld->ops->poll)
2088		ret = ld->ops->poll(tty, filp, wait);
2089	tty_ldisc_deref(ld);
2090	return ret;
2091}
2092
2093static int __tty_fasync(int fd, struct file *filp, int on)
2094{
2095	struct tty_struct *tty = file_tty(filp);
2096	unsigned long flags;
2097	int retval = 0;
2098
2099	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2100		goto out;
2101
2102	retval = fasync_helper(fd, filp, on, &tty->fasync);
2103	if (retval <= 0)
2104		goto out;
2105
2106	if (on) {
2107		enum pid_type type;
2108		struct pid *pid;
2109
2110		spin_lock_irqsave(&tty->ctrl_lock, flags);
2111		if (tty->pgrp) {
2112			pid = tty->pgrp;
2113			type = PIDTYPE_PGID;
2114		} else {
2115			pid = task_pid(current);
2116			type = PIDTYPE_PID;
2117		}
2118		get_pid(pid);
2119		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2120		__f_setown(filp, pid, type, 0);
2121		put_pid(pid);
2122		retval = 0;
2123	}
2124out:
2125	return retval;
2126}
2127
2128static int tty_fasync(int fd, struct file *filp, int on)
2129{
2130	struct tty_struct *tty = file_tty(filp);
2131	int retval = -ENOTTY;
2132
2133	tty_lock(tty);
2134	if (!tty_hung_up_p(filp))
2135		retval = __tty_fasync(fd, filp, on);
2136	tty_unlock(tty);
2137
2138	return retval;
2139}
2140
2141/**
2142 *	tiocsti			-	fake input character
2143 *	@tty: tty to fake input into
2144 *	@p: pointer to character
2145 *
2146 *	Fake input to a tty device. Does the necessary locking and
2147 *	input management.
2148 *
2149 *	FIXME: does not honour flow control ??
2150 *
2151 *	Locking:
2152 *		Called functions take tty_ldiscs_lock
2153 *		current->signal->tty check is safe without locks
2154 *
2155 *	FIXME: may race normal receive processing
2156 */
2157
2158static int tiocsti(struct tty_struct *tty, char __user *p)
2159{
2160	char ch, mbz = 0;
2161	struct tty_ldisc *ld;
2162
2163	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2164		return -EPERM;
2165	if (get_user(ch, p))
2166		return -EFAULT;
2167	tty_audit_tiocsti(tty, ch);
2168	ld = tty_ldisc_ref_wait(tty);
2169	if (!ld)
2170		return -EIO;
2171	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2172	tty_ldisc_deref(ld);
2173	return 0;
2174}
2175
2176/**
2177 *	tiocgwinsz		-	implement window query ioctl
2178 *	@tty; tty
2179 *	@arg: user buffer for result
2180 *
2181 *	Copies the kernel idea of the window size into the user buffer.
2182 *
2183 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2184 *		is consistent.
2185 */
2186
2187static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2188{
2189	int err;
2190
2191	mutex_lock(&tty->winsize_mutex);
2192	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2193	mutex_unlock(&tty->winsize_mutex);
2194
2195	return err ? -EFAULT: 0;
2196}
2197
2198/**
2199 *	tty_do_resize		-	resize event
2200 *	@tty: tty being resized
2201 *	@rows: rows (character)
2202 *	@cols: cols (character)
2203 *
2204 *	Update the termios variables and send the necessary signals to
2205 *	peform a terminal resize correctly
2206 */
2207
2208int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2209{
2210	struct pid *pgrp;
2211
2212	/* Lock the tty */
2213	mutex_lock(&tty->winsize_mutex);
2214	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2215		goto done;
2216
2217	/* Signal the foreground process group */
2218	pgrp = tty_get_pgrp(tty);
2219	if (pgrp)
2220		kill_pgrp(pgrp, SIGWINCH, 1);
2221	put_pid(pgrp);
2222
2223	tty->winsize = *ws;
2224done:
2225	mutex_unlock(&tty->winsize_mutex);
2226	return 0;
2227}
2228EXPORT_SYMBOL(tty_do_resize);
2229
2230/**
2231 *	tiocswinsz		-	implement window size set ioctl
2232 *	@tty; tty side of tty
2233 *	@arg: user buffer for result
2234 *
2235 *	Copies the user idea of the window size to the kernel. Traditionally
2236 *	this is just advisory information but for the Linux console it
2237 *	actually has driver level meaning and triggers a VC resize.
2238 *
2239 *	Locking:
2240 *		Driver dependent. The default do_resize method takes the
2241 *	tty termios mutex and ctrl_lock. The console takes its own lock
2242 *	then calls into the default method.
2243 */
2244
2245static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2246{
2247	struct winsize tmp_ws;
2248	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2249		return -EFAULT;
2250
2251	if (tty->ops->resize)
2252		return tty->ops->resize(tty, &tmp_ws);
2253	else
2254		return tty_do_resize(tty, &tmp_ws);
2255}
2256
2257/**
2258 *	tioccons	-	allow admin to move logical console
2259 *	@file: the file to become console
2260 *
2261 *	Allow the administrator to move the redirected console device
2262 *
2263 *	Locking: uses redirect_lock to guard the redirect information
2264 */
2265
2266static int tioccons(struct file *file)
2267{
2268	if (!capable(CAP_SYS_ADMIN))
2269		return -EPERM;
2270	if (file->f_op->write == redirected_tty_write) {
2271		struct file *f;
2272		spin_lock(&redirect_lock);
2273		f = redirect;
2274		redirect = NULL;
2275		spin_unlock(&redirect_lock);
2276		if (f)
2277			fput(f);
2278		return 0;
2279	}
2280	spin_lock(&redirect_lock);
2281	if (redirect) {
2282		spin_unlock(&redirect_lock);
2283		return -EBUSY;
2284	}
2285	redirect = get_file(file);
2286	spin_unlock(&redirect_lock);
2287	return 0;
2288}
2289
2290/**
2291 *	fionbio		-	non blocking ioctl
2292 *	@file: file to set blocking value
2293 *	@p: user parameter
2294 *
2295 *	Historical tty interfaces had a blocking control ioctl before
2296 *	the generic functionality existed. This piece of history is preserved
2297 *	in the expected tty API of posix OS's.
2298 *
2299 *	Locking: none, the open file handle ensures it won't go away.
2300 */
2301
2302static int fionbio(struct file *file, int __user *p)
2303{
2304	int nonblock;
2305
2306	if (get_user(nonblock, p))
2307		return -EFAULT;
2308
2309	spin_lock(&file->f_lock);
2310	if (nonblock)
2311		file->f_flags |= O_NONBLOCK;
2312	else
2313		file->f_flags &= ~O_NONBLOCK;
2314	spin_unlock(&file->f_lock);
2315	return 0;
2316}
2317
2318/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319 *	tiocsetd	-	set line discipline
2320 *	@tty: tty device
2321 *	@p: pointer to user data
2322 *
2323 *	Set the line discipline according to user request.
2324 *
2325 *	Locking: see tty_set_ldisc, this function is just a helper
2326 */
2327
2328static int tiocsetd(struct tty_struct *tty, int __user *p)
2329{
2330	int disc;
2331	int ret;
2332
2333	if (get_user(disc, p))
2334		return -EFAULT;
2335
2336	ret = tty_set_ldisc(tty, disc);
2337
2338	return ret;
2339}
2340
2341/**
2342 *	tiocgetd	-	get line discipline
2343 *	@tty: tty device
2344 *	@p: pointer to user data
2345 *
2346 *	Retrieves the line discipline id directly from the ldisc.
2347 *
2348 *	Locking: waits for ldisc reference (in case the line discipline
2349 *		is changing or the tty is being hungup)
2350 */
2351
2352static int tiocgetd(struct tty_struct *tty, int __user *p)
2353{
2354	struct tty_ldisc *ld;
2355	int ret;
2356
2357	ld = tty_ldisc_ref_wait(tty);
2358	if (!ld)
2359		return -EIO;
2360	ret = put_user(ld->ops->num, p);
2361	tty_ldisc_deref(ld);
2362	return ret;
2363}
2364
2365/**
2366 *	send_break	-	performed time break
2367 *	@tty: device to break on
2368 *	@duration: timeout in mS
2369 *
2370 *	Perform a timed break on hardware that lacks its own driver level
2371 *	timed break functionality.
2372 *
2373 *	Locking:
2374 *		atomic_write_lock serializes
2375 *
2376 */
2377
2378static int send_break(struct tty_struct *tty, unsigned int duration)
2379{
2380	int retval;
2381
2382	if (tty->ops->break_ctl == NULL)
2383		return 0;
2384
2385	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2386		retval = tty->ops->break_ctl(tty, duration);
2387	else {
2388		/* Do the work ourselves */
2389		if (tty_write_lock(tty, 0) < 0)
2390			return -EINTR;
2391		retval = tty->ops->break_ctl(tty, -1);
2392		if (retval)
2393			goto out;
2394		if (!signal_pending(current))
2395			msleep_interruptible(duration);
2396		retval = tty->ops->break_ctl(tty, 0);
2397out:
2398		tty_write_unlock(tty);
2399		if (signal_pending(current))
2400			retval = -EINTR;
2401	}
2402	return retval;
2403}
2404
2405/**
2406 *	tty_tiocmget		-	get modem status
2407 *	@tty: tty device
2408 *	@file: user file pointer
2409 *	@p: pointer to result
2410 *
2411 *	Obtain the modem status bits from the tty driver if the feature
2412 *	is supported. Return -EINVAL if it is not available.
2413 *
2414 *	Locking: none (up to the driver)
2415 */
2416
2417static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2418{
2419	int retval = -EINVAL;
2420
2421	if (tty->ops->tiocmget) {
2422		retval = tty->ops->tiocmget(tty);
2423
2424		if (retval >= 0)
2425			retval = put_user(retval, p);
2426	}
2427	return retval;
2428}
2429
2430/**
2431 *	tty_tiocmset		-	set modem status
2432 *	@tty: tty device
2433 *	@cmd: command - clear bits, set bits or set all
2434 *	@p: pointer to desired bits
2435 *
2436 *	Set the modem status bits from the tty driver if the feature
2437 *	is supported. Return -EINVAL if it is not available.
2438 *
2439 *	Locking: none (up to the driver)
2440 */
2441
2442static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2443	     unsigned __user *p)
2444{
2445	int retval;
2446	unsigned int set, clear, val;
2447
2448	if (tty->ops->tiocmset == NULL)
2449		return -EINVAL;
2450
2451	retval = get_user(val, p);
2452	if (retval)
2453		return retval;
2454	set = clear = 0;
2455	switch (cmd) {
2456	case TIOCMBIS:
2457		set = val;
2458		break;
2459	case TIOCMBIC:
2460		clear = val;
2461		break;
2462	case TIOCMSET:
2463		set = val;
2464		clear = ~val;
2465		break;
2466	}
2467	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469	return tty->ops->tiocmset(tty, set, clear);
2470}
2471
2472static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2473{
2474	int retval = -EINVAL;
2475	struct serial_icounter_struct icount;
2476	memset(&icount, 0, sizeof(icount));
2477	if (tty->ops->get_icount)
2478		retval = tty->ops->get_icount(tty, &icount);
2479	if (retval != 0)
2480		return retval;
2481	if (copy_to_user(arg, &icount, sizeof(icount)))
2482		return -EFAULT;
2483	return 0;
2484}
2485
2486static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2487{
2488	static DEFINE_RATELIMIT_STATE(depr_flags,
2489			DEFAULT_RATELIMIT_INTERVAL,
2490			DEFAULT_RATELIMIT_BURST);
2491	char comm[TASK_COMM_LEN];
2492	int flags;
2493
2494	if (get_user(flags, &ss->flags))
2495		return;
2496
2497	flags &= ASYNC_DEPRECATED;
2498
2499	if (flags && __ratelimit(&depr_flags))
2500		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2501			__func__, get_task_comm(comm, current), flags);
2502}
2503
2504/*
2505 * if pty, return the slave side (real_tty)
2506 * otherwise, return self
2507 */
2508static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2509{
2510	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2511	    tty->driver->subtype == PTY_TYPE_MASTER)
2512		tty = tty->link;
2513	return tty;
2514}
2515
2516/*
2517 * Split this up, as gcc can choke on it otherwise..
2518 */
2519long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2520{
2521	struct tty_struct *tty = file_tty(file);
2522	struct tty_struct *real_tty;
2523	void __user *p = (void __user *)arg;
2524	int retval;
2525	struct tty_ldisc *ld;
2526
2527	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2528		return -EINVAL;
2529
2530	real_tty = tty_pair_get_tty(tty);
2531
2532	/*
2533	 * Factor out some common prep work
2534	 */
2535	switch (cmd) {
2536	case TIOCSETD:
2537	case TIOCSBRK:
2538	case TIOCCBRK:
2539	case TCSBRK:
2540	case TCSBRKP:
2541		retval = tty_check_change(tty);
2542		if (retval)
2543			return retval;
2544		if (cmd != TIOCCBRK) {
2545			tty_wait_until_sent(tty, 0);
2546			if (signal_pending(current))
2547				return -EINTR;
2548		}
2549		break;
2550	}
2551
2552	/*
2553	 *	Now do the stuff.
2554	 */
2555	switch (cmd) {
2556	case TIOCSTI:
2557		return tiocsti(tty, p);
2558	case TIOCGWINSZ:
2559		return tiocgwinsz(real_tty, p);
2560	case TIOCSWINSZ:
2561		return tiocswinsz(real_tty, p);
2562	case TIOCCONS:
2563		return real_tty != tty ? -EINVAL : tioccons(file);
2564	case FIONBIO:
2565		return fionbio(file, p);
2566	case TIOCEXCL:
2567		set_bit(TTY_EXCLUSIVE, &tty->flags);
2568		return 0;
2569	case TIOCNXCL:
2570		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2571		return 0;
2572	case TIOCGEXCL:
2573	{
2574		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2575		return put_user(excl, (int __user *)p);
2576	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	case TIOCGETD:
2578		return tiocgetd(tty, p);
2579	case TIOCSETD:
2580		return tiocsetd(tty, p);
2581	case TIOCVHANGUP:
2582		if (!capable(CAP_SYS_ADMIN))
2583			return -EPERM;
2584		tty_vhangup(tty);
2585		return 0;
2586	case TIOCGDEV:
2587	{
2588		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2589		return put_user(ret, (unsigned int __user *)p);
2590	}
2591	/*
2592	 * Break handling
2593	 */
2594	case TIOCSBRK:	/* Turn break on, unconditionally */
2595		if (tty->ops->break_ctl)
2596			return tty->ops->break_ctl(tty, -1);
2597		return 0;
2598	case TIOCCBRK:	/* Turn break off, unconditionally */
2599		if (tty->ops->break_ctl)
2600			return tty->ops->break_ctl(tty, 0);
2601		return 0;
2602	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2603		/* non-zero arg means wait for all output data
2604		 * to be sent (performed above) but don't send break.
2605		 * This is used by the tcdrain() termios function.
2606		 */
2607		if (!arg)
2608			return send_break(tty, 250);
2609		return 0;
2610	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2611		return send_break(tty, arg ? arg*100 : 250);
2612
2613	case TIOCMGET:
2614		return tty_tiocmget(tty, p);
2615	case TIOCMSET:
2616	case TIOCMBIC:
2617	case TIOCMBIS:
2618		return tty_tiocmset(tty, cmd, p);
2619	case TIOCGICOUNT:
2620		retval = tty_tiocgicount(tty, p);
2621		/* For the moment allow fall through to the old method */
2622        	if (retval != -EINVAL)
2623			return retval;
2624		break;
2625	case TCFLSH:
2626		switch (arg) {
2627		case TCIFLUSH:
2628		case TCIOFLUSH:
2629		/* flush tty buffer and allow ldisc to process ioctl */
2630			tty_buffer_flush(tty, NULL);
2631			break;
2632		}
2633		break;
2634	case TIOCSSERIAL:
2635		tty_warn_deprecated_flags(p);
2636		break;
2637	case TIOCGPTPEER:
2638		/* Special because the struct file is needed */
2639		return ptm_open_peer(file, tty, (int)arg);
2640	default:
2641		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2642		if (retval != -ENOIOCTLCMD)
2643			return retval;
2644	}
2645	if (tty->ops->ioctl) {
2646		retval = tty->ops->ioctl(tty, cmd, arg);
2647		if (retval != -ENOIOCTLCMD)
2648			return retval;
2649	}
2650	ld = tty_ldisc_ref_wait(tty);
2651	if (!ld)
2652		return hung_up_tty_ioctl(file, cmd, arg);
2653	retval = -EINVAL;
2654	if (ld->ops->ioctl) {
2655		retval = ld->ops->ioctl(tty, file, cmd, arg);
2656		if (retval == -ENOIOCTLCMD)
2657			retval = -ENOTTY;
2658	}
2659	tty_ldisc_deref(ld);
2660	return retval;
2661}
2662
2663#ifdef CONFIG_COMPAT
2664static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2665				unsigned long arg)
2666{
2667	struct tty_struct *tty = file_tty(file);
2668	struct tty_ldisc *ld;
2669	int retval = -ENOIOCTLCMD;
2670
2671	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2672		return -EINVAL;
2673
2674	if (tty->ops->compat_ioctl) {
2675		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2676		if (retval != -ENOIOCTLCMD)
2677			return retval;
2678	}
2679
2680	ld = tty_ldisc_ref_wait(tty);
2681	if (!ld)
2682		return hung_up_tty_compat_ioctl(file, cmd, arg);
2683	if (ld->ops->compat_ioctl)
2684		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2685	else
2686		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2687	tty_ldisc_deref(ld);
2688
2689	return retval;
2690}
2691#endif
2692
2693static int this_tty(const void *t, struct file *file, unsigned fd)
2694{
2695	if (likely(file->f_op->read != tty_read))
2696		return 0;
2697	return file_tty(file) != t ? 0 : fd + 1;
2698}
2699	
2700/*
2701 * This implements the "Secure Attention Key" ---  the idea is to
2702 * prevent trojan horses by killing all processes associated with this
2703 * tty when the user hits the "Secure Attention Key".  Required for
2704 * super-paranoid applications --- see the Orange Book for more details.
2705 *
2706 * This code could be nicer; ideally it should send a HUP, wait a few
2707 * seconds, then send a INT, and then a KILL signal.  But you then
2708 * have to coordinate with the init process, since all processes associated
2709 * with the current tty must be dead before the new getty is allowed
2710 * to spawn.
2711 *
2712 * Now, if it would be correct ;-/ The current code has a nasty hole -
2713 * it doesn't catch files in flight. We may send the descriptor to ourselves
2714 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2715 *
2716 * Nasty bug: do_SAK is being called in interrupt context.  This can
2717 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2718 */
2719void __do_SAK(struct tty_struct *tty)
2720{
2721#ifdef TTY_SOFT_SAK
2722	tty_hangup(tty);
2723#else
2724	struct task_struct *g, *p;
2725	struct pid *session;
2726	int		i;
2727
2728	if (!tty)
2729		return;
2730	session = tty->session;
2731
2732	tty_ldisc_flush(tty);
2733
2734	tty_driver_flush_buffer(tty);
2735
2736	read_lock(&tasklist_lock);
2737	/* Kill the entire session */
2738	do_each_pid_task(session, PIDTYPE_SID, p) {
2739		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2740			   task_pid_nr(p), p->comm);
2741		send_sig(SIGKILL, p, 1);
2742	} while_each_pid_task(session, PIDTYPE_SID, p);
2743
2744	/* Now kill any processes that happen to have the tty open */
2745	do_each_thread(g, p) {
2746		if (p->signal->tty == tty) {
2747			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2748				   task_pid_nr(p), p->comm);
2749			send_sig(SIGKILL, p, 1);
2750			continue;
2751		}
2752		task_lock(p);
2753		i = iterate_fd(p->files, 0, this_tty, tty);
2754		if (i != 0) {
2755			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2756				   task_pid_nr(p), p->comm, i - 1);
2757			force_sig(SIGKILL, p);
2758		}
2759		task_unlock(p);
2760	} while_each_thread(g, p);
2761	read_unlock(&tasklist_lock);
2762#endif
2763}
2764
2765static void do_SAK_work(struct work_struct *work)
2766{
2767	struct tty_struct *tty =
2768		container_of(work, struct tty_struct, SAK_work);
2769	__do_SAK(tty);
2770}
2771
2772/*
2773 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2774 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2775 * the values which we write to it will be identical to the values which it
2776 * already has. --akpm
2777 */
2778void do_SAK(struct tty_struct *tty)
2779{
2780	if (!tty)
2781		return;
2782	schedule_work(&tty->SAK_work);
2783}
2784
2785EXPORT_SYMBOL(do_SAK);
2786
2787static int dev_match_devt(struct device *dev, const void *data)
2788{
2789	const dev_t *devt = data;
2790	return dev->devt == *devt;
2791}
2792
2793/* Must put_device() after it's unused! */
2794static struct device *tty_get_device(struct tty_struct *tty)
2795{
2796	dev_t devt = tty_devnum(tty);
2797	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2798}
2799
2800
2801/**
2802 *	alloc_tty_struct
2803 *
2804 *	This subroutine allocates and initializes a tty structure.
2805 *
2806 *	Locking: none - tty in question is not exposed at this point
2807 */
2808
2809struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2810{
2811	struct tty_struct *tty;
2812
2813	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2814	if (!tty)
2815		return NULL;
2816
2817	kref_init(&tty->kref);
2818	tty->magic = TTY_MAGIC;
2819	if (tty_ldisc_init(tty)) {
2820		kfree(tty);
2821		return NULL;
2822	}
2823	tty->session = NULL;
2824	tty->pgrp = NULL;
2825	mutex_init(&tty->legacy_mutex);
2826	mutex_init(&tty->throttle_mutex);
2827	init_rwsem(&tty->termios_rwsem);
2828	mutex_init(&tty->winsize_mutex);
2829	init_ldsem(&tty->ldisc_sem);
2830	init_waitqueue_head(&tty->write_wait);
2831	init_waitqueue_head(&tty->read_wait);
2832	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2833	mutex_init(&tty->atomic_write_lock);
2834	spin_lock_init(&tty->ctrl_lock);
2835	spin_lock_init(&tty->flow_lock);
2836	spin_lock_init(&tty->files_lock);
2837	INIT_LIST_HEAD(&tty->tty_files);
2838	INIT_WORK(&tty->SAK_work, do_SAK_work);
2839
2840	tty->driver = driver;
2841	tty->ops = driver->ops;
2842	tty->index = idx;
2843	tty_line_name(driver, idx, tty->name);
2844	tty->dev = tty_get_device(tty);
2845
2846	return tty;
2847}
2848
2849/**
2850 *	tty_put_char	-	write one character to a tty
2851 *	@tty: tty
2852 *	@ch: character
2853 *
2854 *	Write one byte to the tty using the provided put_char method
2855 *	if present. Returns the number of characters successfully output.
2856 *
2857 *	Note: the specific put_char operation in the driver layer may go
2858 *	away soon. Don't call it directly, use this method
2859 */
2860
2861int tty_put_char(struct tty_struct *tty, unsigned char ch)
2862{
2863	if (tty->ops->put_char)
2864		return tty->ops->put_char(tty, ch);
2865	return tty->ops->write(tty, &ch, 1);
2866}
2867EXPORT_SYMBOL_GPL(tty_put_char);
2868
2869struct class *tty_class;
2870
2871static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2872		unsigned int index, unsigned int count)
2873{
2874	int err;
2875
2876	/* init here, since reused cdevs cause crashes */
2877	driver->cdevs[index] = cdev_alloc();
2878	if (!driver->cdevs[index])
2879		return -ENOMEM;
2880	driver->cdevs[index]->ops = &tty_fops;
2881	driver->cdevs[index]->owner = driver->owner;
2882	err = cdev_add(driver->cdevs[index], dev, count);
2883	if (err)
2884		kobject_put(&driver->cdevs[index]->kobj);
2885	return err;
2886}
2887
2888/**
2889 *	tty_register_device - register a tty device
2890 *	@driver: the tty driver that describes the tty device
2891 *	@index: the index in the tty driver for this tty device
2892 *	@device: a struct device that is associated with this tty device.
2893 *		This field is optional, if there is no known struct device
2894 *		for this tty device it can be set to NULL safely.
2895 *
2896 *	Returns a pointer to the struct device for this tty device
2897 *	(or ERR_PTR(-EFOO) on error).
2898 *
2899 *	This call is required to be made to register an individual tty device
2900 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2901 *	that bit is not set, this function should not be called by a tty
2902 *	driver.
2903 *
2904 *	Locking: ??
2905 */
2906
2907struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2908				   struct device *device)
2909{
2910	return tty_register_device_attr(driver, index, device, NULL, NULL);
2911}
2912EXPORT_SYMBOL(tty_register_device);
2913
2914static void tty_device_create_release(struct device *dev)
2915{
2916	dev_dbg(dev, "releasing...\n");
2917	kfree(dev);
2918}
2919
2920/**
2921 *	tty_register_device_attr - register a tty device
2922 *	@driver: the tty driver that describes the tty device
2923 *	@index: the index in the tty driver for this tty device
2924 *	@device: a struct device that is associated with this tty device.
2925 *		This field is optional, if there is no known struct device
2926 *		for this tty device it can be set to NULL safely.
2927 *	@drvdata: Driver data to be set to device.
2928 *	@attr_grp: Attribute group to be set on device.
2929 *
2930 *	Returns a pointer to the struct device for this tty device
2931 *	(or ERR_PTR(-EFOO) on error).
2932 *
2933 *	This call is required to be made to register an individual tty device
2934 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2935 *	that bit is not set, this function should not be called by a tty
2936 *	driver.
2937 *
2938 *	Locking: ??
2939 */
2940struct device *tty_register_device_attr(struct tty_driver *driver,
2941				   unsigned index, struct device *device,
2942				   void *drvdata,
2943				   const struct attribute_group **attr_grp)
2944{
2945	char name[64];
2946	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2947	struct ktermios *tp;
2948	struct device *dev;
2949	int retval;
2950
2951	if (index >= driver->num) {
2952		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2953		       driver->name, index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
 
 
 
 
 
 
 
2962	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2963	if (!dev)
2964		return ERR_PTR(-ENOMEM);
 
 
2965
2966	dev->devt = devt;
2967	dev->class = tty_class;
2968	dev->parent = device;
2969	dev->release = tty_device_create_release;
2970	dev_set_name(dev, "%s", name);
2971	dev->groups = attr_grp;
2972	dev_set_drvdata(dev, drvdata);
2973
2974	dev_set_uevent_suppress(dev, 1);
2975
2976	retval = device_register(dev);
2977	if (retval)
2978		goto err_put;
2979
2980	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2981		/*
2982		 * Free any saved termios data so that the termios state is
2983		 * reset when reusing a minor number.
2984		 */
2985		tp = driver->termios[index];
2986		if (tp) {
2987			driver->termios[index] = NULL;
2988			kfree(tp);
2989		}
2990
2991		retval = tty_cdev_add(driver, devt, index, 1);
2992		if (retval)
2993			goto err_del;
2994	}
2995
2996	dev_set_uevent_suppress(dev, 0);
2997	kobject_uevent(&dev->kobj, KOBJ_ADD);
2998
2999	return dev;
3000
3001err_del:
3002	device_del(dev);
3003err_put:
3004	put_device(dev);
3005
 
 
 
3006	return ERR_PTR(retval);
3007}
3008EXPORT_SYMBOL_GPL(tty_register_device_attr);
3009
3010/**
3011 * 	tty_unregister_device - unregister a tty device
3012 * 	@driver: the tty driver that describes the tty device
3013 * 	@index: the index in the tty driver for this tty device
3014 *
3015 * 	If a tty device is registered with a call to tty_register_device() then
3016 *	this function must be called when the tty device is gone.
3017 *
3018 *	Locking: ??
3019 */
3020
3021void tty_unregister_device(struct tty_driver *driver, unsigned index)
3022{
3023	device_destroy(tty_class,
3024		MKDEV(driver->major, driver->minor_start) + index);
3025	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3026		cdev_del(driver->cdevs[index]);
3027		driver->cdevs[index] = NULL;
3028	}
3029}
3030EXPORT_SYMBOL(tty_unregister_device);
3031
3032/**
3033 * __tty_alloc_driver -- allocate tty driver
3034 * @lines: count of lines this driver can handle at most
3035 * @owner: module which is responsible for this driver
3036 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3037 *
3038 * This should not be called directly, some of the provided macros should be
3039 * used instead. Use IS_ERR and friends on @retval.
3040 */
3041struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3042		unsigned long flags)
3043{
3044	struct tty_driver *driver;
3045	unsigned int cdevs = 1;
3046	int err;
3047
3048	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3049		return ERR_PTR(-EINVAL);
3050
3051	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052	if (!driver)
3053		return ERR_PTR(-ENOMEM);
3054
3055	kref_init(&driver->kref);
3056	driver->magic = TTY_DRIVER_MAGIC;
3057	driver->num = lines;
3058	driver->owner = owner;
3059	driver->flags = flags;
3060
3061	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3062		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3063				GFP_KERNEL);
3064		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3065				GFP_KERNEL);
3066		if (!driver->ttys || !driver->termios) {
3067			err = -ENOMEM;
3068			goto err_free_all;
3069		}
3070	}
3071
3072	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3074				GFP_KERNEL);
3075		if (!driver->ports) {
3076			err = -ENOMEM;
3077			goto err_free_all;
3078		}
3079		cdevs = lines;
3080	}
3081
3082	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3083	if (!driver->cdevs) {
3084		err = -ENOMEM;
3085		goto err_free_all;
3086	}
3087
3088	return driver;
3089err_free_all:
3090	kfree(driver->ports);
3091	kfree(driver->ttys);
3092	kfree(driver->termios);
3093	kfree(driver->cdevs);
3094	kfree(driver);
3095	return ERR_PTR(err);
3096}
3097EXPORT_SYMBOL(__tty_alloc_driver);
3098
3099static void destruct_tty_driver(struct kref *kref)
3100{
3101	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3102	int i;
3103	struct ktermios *tp;
3104
3105	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3106		for (i = 0; i < driver->num; i++) {
3107			tp = driver->termios[i];
3108			if (tp) {
3109				driver->termios[i] = NULL;
3110				kfree(tp);
3111			}
3112			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3113				tty_unregister_device(driver, i);
3114		}
3115		proc_tty_unregister_driver(driver);
3116		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3117			cdev_del(driver->cdevs[0]);
3118	}
3119	kfree(driver->cdevs);
3120	kfree(driver->ports);
3121	kfree(driver->termios);
3122	kfree(driver->ttys);
3123	kfree(driver);
3124}
3125
3126void tty_driver_kref_put(struct tty_driver *driver)
3127{
3128	kref_put(&driver->kref, destruct_tty_driver);
3129}
3130EXPORT_SYMBOL(tty_driver_kref_put);
3131
3132void tty_set_operations(struct tty_driver *driver,
3133			const struct tty_operations *op)
3134{
3135	driver->ops = op;
3136};
3137EXPORT_SYMBOL(tty_set_operations);
3138
3139void put_tty_driver(struct tty_driver *d)
3140{
3141	tty_driver_kref_put(d);
3142}
3143EXPORT_SYMBOL(put_tty_driver);
3144
3145/*
3146 * Called by a tty driver to register itself.
3147 */
3148int tty_register_driver(struct tty_driver *driver)
3149{
3150	int error;
3151	int i;
3152	dev_t dev;
3153	struct device *d;
3154
3155	if (!driver->major) {
3156		error = alloc_chrdev_region(&dev, driver->minor_start,
3157						driver->num, driver->name);
3158		if (!error) {
3159			driver->major = MAJOR(dev);
3160			driver->minor_start = MINOR(dev);
3161		}
3162	} else {
3163		dev = MKDEV(driver->major, driver->minor_start);
3164		error = register_chrdev_region(dev, driver->num, driver->name);
3165	}
3166	if (error < 0)
3167		goto err;
3168
3169	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3170		error = tty_cdev_add(driver, dev, 0, driver->num);
3171		if (error)
3172			goto err_unreg_char;
3173	}
3174
3175	mutex_lock(&tty_mutex);
3176	list_add(&driver->tty_drivers, &tty_drivers);
3177	mutex_unlock(&tty_mutex);
3178
3179	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3180		for (i = 0; i < driver->num; i++) {
3181			d = tty_register_device(driver, i, NULL);
3182			if (IS_ERR(d)) {
3183				error = PTR_ERR(d);
3184				goto err_unreg_devs;
3185			}
3186		}
3187	}
3188	proc_tty_register_driver(driver);
3189	driver->flags |= TTY_DRIVER_INSTALLED;
3190	return 0;
3191
3192err_unreg_devs:
3193	for (i--; i >= 0; i--)
3194		tty_unregister_device(driver, i);
3195
3196	mutex_lock(&tty_mutex);
3197	list_del(&driver->tty_drivers);
3198	mutex_unlock(&tty_mutex);
3199
3200err_unreg_char:
3201	unregister_chrdev_region(dev, driver->num);
3202err:
3203	return error;
3204}
3205EXPORT_SYMBOL(tty_register_driver);
3206
3207/*
3208 * Called by a tty driver to unregister itself.
3209 */
3210int tty_unregister_driver(struct tty_driver *driver)
3211{
3212#if 0
3213	/* FIXME */
3214	if (driver->refcount)
3215		return -EBUSY;
3216#endif
3217	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3218				driver->num);
3219	mutex_lock(&tty_mutex);
3220	list_del(&driver->tty_drivers);
3221	mutex_unlock(&tty_mutex);
3222	return 0;
3223}
3224
3225EXPORT_SYMBOL(tty_unregister_driver);
3226
3227dev_t tty_devnum(struct tty_struct *tty)
3228{
3229	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3230}
3231EXPORT_SYMBOL(tty_devnum);
3232
3233void tty_default_fops(struct file_operations *fops)
3234{
3235	*fops = tty_fops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236}
3237
3238static char *tty_devnode(struct device *dev, umode_t *mode)
3239{
3240	if (!mode)
3241		return NULL;
3242	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3243	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3244		*mode = 0666;
3245	return NULL;
3246}
3247
3248static int __init tty_class_init(void)
3249{
3250	tty_class = class_create(THIS_MODULE, "tty");
3251	if (IS_ERR(tty_class))
3252		return PTR_ERR(tty_class);
3253	tty_class->devnode = tty_devnode;
3254	return 0;
3255}
3256
3257postcore_initcall(tty_class_init);
3258
3259/* 3/2004 jmc: why do these devices exist? */
3260static struct cdev tty_cdev, console_cdev;
3261
3262static ssize_t show_cons_active(struct device *dev,
3263				struct device_attribute *attr, char *buf)
3264{
3265	struct console *cs[16];
3266	int i = 0;
3267	struct console *c;
3268	ssize_t count = 0;
3269
3270	console_lock();
3271	for_each_console(c) {
3272		if (!c->device)
3273			continue;
3274		if (!c->write)
3275			continue;
3276		if ((c->flags & CON_ENABLED) == 0)
3277			continue;
3278		cs[i++] = c;
3279		if (i >= ARRAY_SIZE(cs))
3280			break;
3281	}
3282	while (i--) {
3283		int index = cs[i]->index;
3284		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3285
3286		/* don't resolve tty0 as some programs depend on it */
3287		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3288			count += tty_line_name(drv, index, buf + count);
3289		else
3290			count += sprintf(buf + count, "%s%d",
3291					 cs[i]->name, cs[i]->index);
3292
3293		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3294	}
3295	console_unlock();
3296
3297	return count;
3298}
3299static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3300
3301static struct attribute *cons_dev_attrs[] = {
3302	&dev_attr_active.attr,
3303	NULL
3304};
3305
3306ATTRIBUTE_GROUPS(cons_dev);
3307
3308static struct device *consdev;
3309
3310void console_sysfs_notify(void)
3311{
3312	if (consdev)
3313		sysfs_notify(&consdev->kobj, NULL, "active");
3314}
3315
3316/*
3317 * Ok, now we can initialize the rest of the tty devices and can count
3318 * on memory allocations, interrupts etc..
3319 */
3320int __init tty_init(void)
3321{
3322	cdev_init(&tty_cdev, &tty_fops);
3323	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3324	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3325		panic("Couldn't register /dev/tty driver\n");
3326	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3327
3328	cdev_init(&console_cdev, &console_fops);
3329	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3330	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3331		panic("Couldn't register /dev/console driver\n");
3332	consdev = device_create_with_groups(tty_class, NULL,
3333					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3334					    cons_dev_groups, "console");
3335	if (IS_ERR(consdev))
3336		consdev = NULL;
3337
3338#ifdef CONFIG_VT
3339	vty_init(&console_fops);
3340#endif
3341	return 0;
3342}
3343
v4.10.11
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233/**
 234 *	tty_name	-	return tty naming
 235 *	@tty: tty structure
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 248}
 249
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268	if (tty->magic != TTY_MAGIC) {
 269		pr_warn("(%d:%d): %s: bad magic number\n",
 270			imajor(inode), iminor(inode), routine);
 271		return 1;
 272	}
 273#endif
 274	return 0;
 275}
 276
 277/* Caller must hold tty_lock */
 278static int check_tty_count(struct tty_struct *tty, const char *routine)
 279{
 280#ifdef CHECK_TTY_COUNT
 281	struct list_head *p;
 282	int count = 0;
 283
 284	spin_lock(&tty->files_lock);
 285	list_for_each(p, &tty->tty_files) {
 286		count++;
 287	}
 288	spin_unlock(&tty->files_lock);
 289	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 290	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 291	    tty->link && tty->link->count)
 292		count++;
 293	if (tty->count != count) {
 294		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 295			 routine, tty->count, count);
 296		return count;
 
 
 297	}
 298#endif
 299	return 0;
 300}
 301
 302/**
 303 *	get_tty_driver		-	find device of a tty
 304 *	@dev_t: device identifier
 305 *	@index: returns the index of the tty
 306 *
 307 *	This routine returns a tty driver structure, given a device number
 308 *	and also passes back the index number.
 309 *
 310 *	Locking: caller must hold tty_mutex
 311 */
 312
 313static struct tty_driver *get_tty_driver(dev_t device, int *index)
 314{
 315	struct tty_driver *p;
 316
 317	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 318		dev_t base = MKDEV(p->major, p->minor_start);
 319		if (device < base || device >= base + p->num)
 320			continue;
 321		*index = device - base;
 322		return tty_driver_kref_get(p);
 323	}
 324	return NULL;
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327#ifdef CONFIG_CONSOLE_POLL
 328
 329/**
 330 *	tty_find_polling_driver	-	find device of a polled tty
 331 *	@name: name string to match
 332 *	@line: pointer to resulting tty line nr
 333 *
 334 *	This routine returns a tty driver structure, given a name
 335 *	and the condition that the tty driver is capable of polled
 336 *	operation.
 337 */
 338struct tty_driver *tty_find_polling_driver(char *name, int *line)
 339{
 340	struct tty_driver *p, *res = NULL;
 341	int tty_line = 0;
 342	int len;
 343	char *str, *stp;
 344
 345	for (str = name; *str; str++)
 346		if ((*str >= '0' && *str <= '9') || *str == ',')
 347			break;
 348	if (!*str)
 349		return NULL;
 350
 351	len = str - name;
 352	tty_line = simple_strtoul(str, &str, 10);
 353
 354	mutex_lock(&tty_mutex);
 355	/* Search through the tty devices to look for a match */
 356	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 357		if (strncmp(name, p->name, len) != 0)
 358			continue;
 359		stp = str;
 360		if (*stp == ',')
 361			stp++;
 362		if (*stp == '\0')
 363			stp = NULL;
 364
 365		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 366		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 367			res = tty_driver_kref_get(p);
 368			*line = tty_line;
 369			break;
 370		}
 371	}
 372	mutex_unlock(&tty_mutex);
 373
 374	return res;
 375}
 376EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 377#endif
 378
 379static int is_ignored(int sig)
 380{
 381	return (sigismember(&current->blocked, sig) ||
 382		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 383}
 384
 385/**
 386 *	tty_check_change	-	check for POSIX terminal changes
 387 *	@tty: tty to check
 388 *
 389 *	If we try to write to, or set the state of, a terminal and we're
 390 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 391 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 392 *
 393 *	Locking: ctrl_lock
 394 */
 395
 396int __tty_check_change(struct tty_struct *tty, int sig)
 397{
 398	unsigned long flags;
 399	struct pid *pgrp, *tty_pgrp;
 400	int ret = 0;
 401
 402	if (current->signal->tty != tty)
 403		return 0;
 404
 405	rcu_read_lock();
 406	pgrp = task_pgrp(current);
 407
 408	spin_lock_irqsave(&tty->ctrl_lock, flags);
 409	tty_pgrp = tty->pgrp;
 410	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 411
 412	if (tty_pgrp && pgrp != tty->pgrp) {
 413		if (is_ignored(sig)) {
 414			if (sig == SIGTTIN)
 415				ret = -EIO;
 416		} else if (is_current_pgrp_orphaned())
 417			ret = -EIO;
 418		else {
 419			kill_pgrp(pgrp, sig, 1);
 420			set_thread_flag(TIF_SIGPENDING);
 421			ret = -ERESTARTSYS;
 422		}
 423	}
 424	rcu_read_unlock();
 425
 426	if (!tty_pgrp)
 427		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 428
 429	return ret;
 430}
 431
 432int tty_check_change(struct tty_struct *tty)
 433{
 434	return __tty_check_change(tty, SIGTTOU);
 435}
 436EXPORT_SYMBOL(tty_check_change);
 437
 438static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 439				size_t count, loff_t *ppos)
 440{
 441	return 0;
 442}
 443
 444static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 445				 size_t count, loff_t *ppos)
 446{
 447	return -EIO;
 448}
 449
 450/* No kernel lock held - none needed ;) */
 451static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 452{
 453	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 454}
 455
 456static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 457		unsigned long arg)
 458{
 459	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 460}
 461
 462static long hung_up_tty_compat_ioctl(struct file *file,
 463				     unsigned int cmd, unsigned long arg)
 464{
 465	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 466}
 467
 468static int hung_up_tty_fasync(int fd, struct file *file, int on)
 469{
 470	return -ENOTTY;
 471}
 472
 
 
 
 
 
 
 
 
 473static const struct file_operations tty_fops = {
 474	.llseek		= no_llseek,
 475	.read		= tty_read,
 476	.write		= tty_write,
 477	.poll		= tty_poll,
 478	.unlocked_ioctl	= tty_ioctl,
 479	.compat_ioctl	= tty_compat_ioctl,
 480	.open		= tty_open,
 481	.release	= tty_release,
 482	.fasync		= tty_fasync,
 
 483};
 484
 485static const struct file_operations console_fops = {
 486	.llseek		= no_llseek,
 487	.read		= tty_read,
 488	.write		= redirected_tty_write,
 489	.poll		= tty_poll,
 490	.unlocked_ioctl	= tty_ioctl,
 491	.compat_ioctl	= tty_compat_ioctl,
 492	.open		= tty_open,
 493	.release	= tty_release,
 494	.fasync		= tty_fasync,
 495};
 496
 497static const struct file_operations hung_up_tty_fops = {
 498	.llseek		= no_llseek,
 499	.read		= hung_up_tty_read,
 500	.write		= hung_up_tty_write,
 501	.poll		= hung_up_tty_poll,
 502	.unlocked_ioctl	= hung_up_tty_ioctl,
 503	.compat_ioctl	= hung_up_tty_compat_ioctl,
 504	.release	= tty_release,
 505	.fasync		= hung_up_tty_fasync,
 506};
 507
 508static DEFINE_SPINLOCK(redirect_lock);
 509static struct file *redirect;
 510
 511
 512void proc_clear_tty(struct task_struct *p)
 513{
 514	unsigned long flags;
 515	struct tty_struct *tty;
 516	spin_lock_irqsave(&p->sighand->siglock, flags);
 517	tty = p->signal->tty;
 518	p->signal->tty = NULL;
 519	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 520	tty_kref_put(tty);
 521}
 522
 523/**
 524 * proc_set_tty -  set the controlling terminal
 525 *
 526 * Only callable by the session leader and only if it does not already have
 527 * a controlling terminal.
 528 *
 529 * Caller must hold:  tty_lock()
 530 *		      a readlock on tasklist_lock
 531 *		      sighand lock
 532 */
 533static void __proc_set_tty(struct tty_struct *tty)
 534{
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&tty->ctrl_lock, flags);
 538	/*
 539	 * The session and fg pgrp references will be non-NULL if
 540	 * tiocsctty() is stealing the controlling tty
 541	 */
 542	put_pid(tty->session);
 543	put_pid(tty->pgrp);
 544	tty->pgrp = get_pid(task_pgrp(current));
 545	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 546	tty->session = get_pid(task_session(current));
 547	if (current->signal->tty) {
 548		tty_debug(tty, "current tty %s not NULL!!\n",
 549			  current->signal->tty->name);
 550		tty_kref_put(current->signal->tty);
 551	}
 552	put_pid(current->signal->tty_old_pgrp);
 553	current->signal->tty = tty_kref_get(tty);
 554	current->signal->tty_old_pgrp = NULL;
 555}
 556
 557static void proc_set_tty(struct tty_struct *tty)
 558{
 559	spin_lock_irq(&current->sighand->siglock);
 560	__proc_set_tty(tty);
 561	spin_unlock_irq(&current->sighand->siglock);
 562}
 563
 564struct tty_struct *get_current_tty(void)
 565{
 566	struct tty_struct *tty;
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(&current->sighand->siglock, flags);
 570	tty = tty_kref_get(current->signal->tty);
 571	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 572	return tty;
 573}
 574EXPORT_SYMBOL_GPL(get_current_tty);
 575
 576static void session_clear_tty(struct pid *session)
 577{
 578	struct task_struct *p;
 579	do_each_pid_task(session, PIDTYPE_SID, p) {
 580		proc_clear_tty(p);
 581	} while_each_pid_task(session, PIDTYPE_SID, p);
 582}
 583
 584/**
 585 *	tty_wakeup	-	request more data
 586 *	@tty: terminal
 587 *
 588 *	Internal and external helper for wakeups of tty. This function
 589 *	informs the line discipline if present that the driver is ready
 590 *	to receive more output data.
 591 */
 592
 593void tty_wakeup(struct tty_struct *tty)
 594{
 595	struct tty_ldisc *ld;
 596
 597	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 598		ld = tty_ldisc_ref(tty);
 599		if (ld) {
 600			if (ld->ops->write_wakeup)
 601				ld->ops->write_wakeup(tty);
 602			tty_ldisc_deref(ld);
 603		}
 604	}
 605	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 606}
 607
 608EXPORT_SYMBOL_GPL(tty_wakeup);
 609
 610/**
 611 *	tty_signal_session_leader	- sends SIGHUP to session leader
 612 *	@tty		controlling tty
 613 *	@exit_session	if non-zero, signal all foreground group processes
 614 *
 615 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 616 *	Optionally, signal all processes in the foreground process group.
 617 *
 618 *	Returns the number of processes in the session with this tty
 619 *	as their controlling terminal. This value is used to drop
 620 *	tty references for those processes.
 621 */
 622static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 623{
 624	struct task_struct *p;
 625	int refs = 0;
 626	struct pid *tty_pgrp = NULL;
 627
 628	read_lock(&tasklist_lock);
 629	if (tty->session) {
 630		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 631			spin_lock_irq(&p->sighand->siglock);
 632			if (p->signal->tty == tty) {
 633				p->signal->tty = NULL;
 634				/* We defer the dereferences outside fo
 635				   the tasklist lock */
 636				refs++;
 637			}
 638			if (!p->signal->leader) {
 639				spin_unlock_irq(&p->sighand->siglock);
 640				continue;
 641			}
 642			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 643			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 644			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 645			spin_lock(&tty->ctrl_lock);
 646			tty_pgrp = get_pid(tty->pgrp);
 647			if (tty->pgrp)
 648				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 649			spin_unlock(&tty->ctrl_lock);
 650			spin_unlock_irq(&p->sighand->siglock);
 651		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 652	}
 653	read_unlock(&tasklist_lock);
 654
 655	if (tty_pgrp) {
 656		if (exit_session)
 657			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 658		put_pid(tty_pgrp);
 659	}
 660
 661	return refs;
 662}
 663
 664/**
 665 *	__tty_hangup		-	actual handler for hangup events
 666 *	@work: tty device
 667 *
 668 *	This can be called by a "kworker" kernel thread.  That is process
 669 *	synchronous but doesn't hold any locks, so we need to make sure we
 670 *	have the appropriate locks for what we're doing.
 671 *
 672 *	The hangup event clears any pending redirections onto the hung up
 673 *	device. It ensures future writes will error and it does the needed
 674 *	line discipline hangup and signal delivery. The tty object itself
 675 *	remains intact.
 676 *
 677 *	Locking:
 678 *		BTM
 679 *		  redirect lock for undoing redirection
 680 *		  file list lock for manipulating list of ttys
 681 *		  tty_ldiscs_lock from called functions
 682 *		  termios_rwsem resetting termios data
 683 *		  tasklist_lock to walk task list for hangup event
 684 *		    ->siglock to protect ->signal/->sighand
 685 */
 686static void __tty_hangup(struct tty_struct *tty, int exit_session)
 687{
 688	struct file *cons_filp = NULL;
 689	struct file *filp, *f = NULL;
 690	struct tty_file_private *priv;
 691	int    closecount = 0, n;
 692	int refs;
 693
 694	if (!tty)
 695		return;
 696
 697
 698	spin_lock(&redirect_lock);
 699	if (redirect && file_tty(redirect) == tty) {
 700		f = redirect;
 701		redirect = NULL;
 702	}
 703	spin_unlock(&redirect_lock);
 704
 705	tty_lock(tty);
 706
 707	if (test_bit(TTY_HUPPED, &tty->flags)) {
 708		tty_unlock(tty);
 709		return;
 710	}
 711
 
 
 
 
 
 
 
 
 712	/* inuse_filps is protected by the single tty lock,
 713	   this really needs to change if we want to flush the
 714	   workqueue with the lock held */
 715	check_tty_count(tty, "tty_hangup");
 716
 717	spin_lock(&tty->files_lock);
 718	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 719	list_for_each_entry(priv, &tty->tty_files, list) {
 720		filp = priv->file;
 721		if (filp->f_op->write == redirected_tty_write)
 722			cons_filp = filp;
 723		if (filp->f_op->write != tty_write)
 724			continue;
 725		closecount++;
 726		__tty_fasync(-1, filp, 0);	/* can't block */
 727		filp->f_op = &hung_up_tty_fops;
 728	}
 729	spin_unlock(&tty->files_lock);
 730
 731	refs = tty_signal_session_leader(tty, exit_session);
 732	/* Account for the p->signal references we killed */
 733	while (refs--)
 734		tty_kref_put(tty);
 735
 736	tty_ldisc_hangup(tty, cons_filp != NULL);
 737
 738	spin_lock_irq(&tty->ctrl_lock);
 739	clear_bit(TTY_THROTTLED, &tty->flags);
 740	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 741	put_pid(tty->session);
 742	put_pid(tty->pgrp);
 743	tty->session = NULL;
 744	tty->pgrp = NULL;
 745	tty->ctrl_status = 0;
 746	spin_unlock_irq(&tty->ctrl_lock);
 747
 748	/*
 749	 * If one of the devices matches a console pointer, we
 750	 * cannot just call hangup() because that will cause
 751	 * tty->count and state->count to go out of sync.
 752	 * So we just call close() the right number of times.
 753	 */
 754	if (cons_filp) {
 755		if (tty->ops->close)
 756			for (n = 0; n < closecount; n++)
 757				tty->ops->close(tty, cons_filp);
 758	} else if (tty->ops->hangup)
 759		tty->ops->hangup(tty);
 760	/*
 761	 * We don't want to have driver/ldisc interactions beyond the ones
 762	 * we did here. The driver layer expects no calls after ->hangup()
 763	 * from the ldisc side, which is now guaranteed.
 764	 */
 765	set_bit(TTY_HUPPED, &tty->flags);
 
 766	tty_unlock(tty);
 767
 768	if (f)
 769		fput(f);
 770}
 771
 772static void do_tty_hangup(struct work_struct *work)
 773{
 774	struct tty_struct *tty =
 775		container_of(work, struct tty_struct, hangup_work);
 776
 777	__tty_hangup(tty, 0);
 778}
 779
 780/**
 781 *	tty_hangup		-	trigger a hangup event
 782 *	@tty: tty to hangup
 783 *
 784 *	A carrier loss (virtual or otherwise) has occurred on this like
 785 *	schedule a hangup sequence to run after this event.
 786 */
 787
 788void tty_hangup(struct tty_struct *tty)
 789{
 790	tty_debug_hangup(tty, "hangup\n");
 791	schedule_work(&tty->hangup_work);
 792}
 793
 794EXPORT_SYMBOL(tty_hangup);
 795
 796/**
 797 *	tty_vhangup		-	process vhangup
 798 *	@tty: tty to hangup
 799 *
 800 *	The user has asked via system call for the terminal to be hung up.
 801 *	We do this synchronously so that when the syscall returns the process
 802 *	is complete. That guarantee is necessary for security reasons.
 803 */
 804
 805void tty_vhangup(struct tty_struct *tty)
 806{
 807	tty_debug_hangup(tty, "vhangup\n");
 808	__tty_hangup(tty, 0);
 809}
 810
 811EXPORT_SYMBOL(tty_vhangup);
 812
 813
 814/**
 815 *	tty_vhangup_self	-	process vhangup for own ctty
 816 *
 817 *	Perform a vhangup on the current controlling tty
 818 */
 819
 820void tty_vhangup_self(void)
 821{
 822	struct tty_struct *tty;
 823
 824	tty = get_current_tty();
 825	if (tty) {
 826		tty_vhangup(tty);
 827		tty_kref_put(tty);
 828	}
 829}
 830
 831/**
 832 *	tty_vhangup_session		-	hangup session leader exit
 833 *	@tty: tty to hangup
 834 *
 835 *	The session leader is exiting and hanging up its controlling terminal.
 836 *	Every process in the foreground process group is signalled SIGHUP.
 837 *
 838 *	We do this synchronously so that when the syscall returns the process
 839 *	is complete. That guarantee is necessary for security reasons.
 840 */
 841
 842static void tty_vhangup_session(struct tty_struct *tty)
 843{
 844	tty_debug_hangup(tty, "session hangup\n");
 845	__tty_hangup(tty, 1);
 846}
 847
 848/**
 849 *	tty_hung_up_p		-	was tty hung up
 850 *	@filp: file pointer of tty
 851 *
 852 *	Return true if the tty has been subject to a vhangup or a carrier
 853 *	loss
 854 */
 855
 856int tty_hung_up_p(struct file *filp)
 857{
 858	return (filp->f_op == &hung_up_tty_fops);
 859}
 860
 861EXPORT_SYMBOL(tty_hung_up_p);
 862
 863/**
 864 *	disassociate_ctty	-	disconnect controlling tty
 865 *	@on_exit: true if exiting so need to "hang up" the session
 866 *
 867 *	This function is typically called only by the session leader, when
 868 *	it wants to disassociate itself from its controlling tty.
 869 *
 870 *	It performs the following functions:
 871 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 872 * 	(2)  Clears the tty from being controlling the session
 873 * 	(3)  Clears the controlling tty for all processes in the
 874 * 		session group.
 875 *
 876 *	The argument on_exit is set to 1 if called when a process is
 877 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 878 *
 879 *	Locking:
 880 *		BTM is taken for hysterical raisins, and held when
 881 *		  called from no_tty().
 882 *		  tty_mutex is taken to protect tty
 883 *		  ->siglock is taken to protect ->signal/->sighand
 884 *		  tasklist_lock is taken to walk process list for sessions
 885 *		    ->siglock is taken to protect ->signal/->sighand
 886 */
 887
 888void disassociate_ctty(int on_exit)
 889{
 890	struct tty_struct *tty;
 891
 892	if (!current->signal->leader)
 893		return;
 894
 895	tty = get_current_tty();
 896	if (tty) {
 897		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 898			tty_vhangup_session(tty);
 899		} else {
 900			struct pid *tty_pgrp = tty_get_pgrp(tty);
 901			if (tty_pgrp) {
 902				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 903				if (!on_exit)
 904					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 905				put_pid(tty_pgrp);
 906			}
 907		}
 908		tty_kref_put(tty);
 909
 910	} else if (on_exit) {
 911		struct pid *old_pgrp;
 912		spin_lock_irq(&current->sighand->siglock);
 913		old_pgrp = current->signal->tty_old_pgrp;
 914		current->signal->tty_old_pgrp = NULL;
 915		spin_unlock_irq(&current->sighand->siglock);
 916		if (old_pgrp) {
 917			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 918			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 919			put_pid(old_pgrp);
 920		}
 921		return;
 922	}
 923
 924	spin_lock_irq(&current->sighand->siglock);
 925	put_pid(current->signal->tty_old_pgrp);
 926	current->signal->tty_old_pgrp = NULL;
 927
 928	tty = tty_kref_get(current->signal->tty);
 929	if (tty) {
 930		unsigned long flags;
 931		spin_lock_irqsave(&tty->ctrl_lock, flags);
 932		put_pid(tty->session);
 933		put_pid(tty->pgrp);
 934		tty->session = NULL;
 935		tty->pgrp = NULL;
 936		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 937		tty_kref_put(tty);
 938	} else
 939		tty_debug_hangup(tty, "no current tty\n");
 940
 941	spin_unlock_irq(&current->sighand->siglock);
 942	/* Now clear signal->tty under the lock */
 943	read_lock(&tasklist_lock);
 944	session_clear_tty(task_session(current));
 945	read_unlock(&tasklist_lock);
 946}
 947
 948/**
 949 *
 950 *	no_tty	- Ensure the current process does not have a controlling tty
 951 */
 952void no_tty(void)
 953{
 954	/* FIXME: Review locking here. The tty_lock never covered any race
 955	   between a new association and proc_clear_tty but possible we need
 956	   to protect against this anyway */
 957	struct task_struct *tsk = current;
 958	disassociate_ctty(0);
 959	proc_clear_tty(tsk);
 960}
 961
 962
 963/**
 964 *	stop_tty	-	propagate flow control
 965 *	@tty: tty to stop
 966 *
 967 *	Perform flow control to the driver. May be called
 968 *	on an already stopped device and will not re-call the driver
 969 *	method.
 970 *
 971 *	This functionality is used by both the line disciplines for
 972 *	halting incoming flow and by the driver. It may therefore be
 973 *	called from any context, may be under the tty atomic_write_lock
 974 *	but not always.
 975 *
 976 *	Locking:
 977 *		flow_lock
 978 */
 979
 980void __stop_tty(struct tty_struct *tty)
 981{
 982	if (tty->stopped)
 983		return;
 984	tty->stopped = 1;
 985	if (tty->ops->stop)
 986		tty->ops->stop(tty);
 987}
 988
 989void stop_tty(struct tty_struct *tty)
 990{
 991	unsigned long flags;
 992
 993	spin_lock_irqsave(&tty->flow_lock, flags);
 994	__stop_tty(tty);
 995	spin_unlock_irqrestore(&tty->flow_lock, flags);
 996}
 997EXPORT_SYMBOL(stop_tty);
 998
 999/**
1000 *	start_tty	-	propagate flow control
1001 *	@tty: tty to start
1002 *
1003 *	Start a tty that has been stopped if at all possible. If this
1004 *	tty was previous stopped and is now being started, the driver
1005 *	start method is invoked and the line discipline woken.
1006 *
1007 *	Locking:
1008 *		flow_lock
1009 */
1010
1011void __start_tty(struct tty_struct *tty)
1012{
1013	if (!tty->stopped || tty->flow_stopped)
1014		return;
1015	tty->stopped = 0;
1016	if (tty->ops->start)
1017		tty->ops->start(tty);
1018	tty_wakeup(tty);
1019}
1020
1021void start_tty(struct tty_struct *tty)
1022{
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tty->flow_lock, flags);
1026	__start_tty(tty);
1027	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028}
1029EXPORT_SYMBOL(start_tty);
1030
1031static void tty_update_time(struct timespec *time)
1032{
1033	unsigned long sec = get_seconds();
1034
1035	/*
1036	 * We only care if the two values differ in anything other than the
1037	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038	 * the time of the tty device, otherwise it could be construded as a
1039	 * security leak to let userspace know the exact timing of the tty.
1040	 */
1041	if ((sec ^ time->tv_sec) & ~7)
1042		time->tv_sec = sec;
1043}
1044
1045/**
1046 *	tty_read	-	read method for tty device files
1047 *	@file: pointer to tty file
1048 *	@buf: user buffer
1049 *	@count: size of user buffer
1050 *	@ppos: unused
1051 *
1052 *	Perform the read system call function on this terminal device. Checks
1053 *	for hung up devices before calling the line discipline method.
1054 *
1055 *	Locking:
1056 *		Locks the line discipline internally while needed. Multiple
1057 *	read calls may be outstanding in parallel.
1058 */
1059
1060static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061			loff_t *ppos)
1062{
1063	int i;
1064	struct inode *inode = file_inode(file);
1065	struct tty_struct *tty = file_tty(file);
1066	struct tty_ldisc *ld;
1067
1068	if (tty_paranoia_check(tty, inode, "tty_read"))
1069		return -EIO;
1070	if (!tty || tty_io_error(tty))
1071		return -EIO;
1072
1073	/* We want to wait for the line discipline to sort out in this
1074	   situation */
1075	ld = tty_ldisc_ref_wait(tty);
1076	if (!ld)
1077		return hung_up_tty_read(file, buf, count, ppos);
1078	if (ld->ops->read)
1079		i = ld->ops->read(tty, file, buf, count);
1080	else
1081		i = -EIO;
1082	tty_ldisc_deref(ld);
1083
1084	if (i > 0)
1085		tty_update_time(&inode->i_atime);
1086
1087	return i;
1088}
1089
1090static void tty_write_unlock(struct tty_struct *tty)
1091{
1092	mutex_unlock(&tty->atomic_write_lock);
1093	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094}
1095
1096static int tty_write_lock(struct tty_struct *tty, int ndelay)
1097{
1098	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099		if (ndelay)
1100			return -EAGAIN;
1101		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102			return -ERESTARTSYS;
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Split writes up in sane blocksizes to avoid
1109 * denial-of-service type attacks
1110 */
1111static inline ssize_t do_tty_write(
1112	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113	struct tty_struct *tty,
1114	struct file *file,
1115	const char __user *buf,
1116	size_t count)
1117{
1118	ssize_t ret, written = 0;
1119	unsigned int chunk;
1120
1121	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122	if (ret < 0)
1123		return ret;
1124
1125	/*
1126	 * We chunk up writes into a temporary buffer. This
1127	 * simplifies low-level drivers immensely, since they
1128	 * don't have locking issues and user mode accesses.
1129	 *
1130	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131	 * big chunk-size..
1132	 *
1133	 * The default chunk-size is 2kB, because the NTTY
1134	 * layer has problems with bigger chunks. It will
1135	 * claim to be able to handle more characters than
1136	 * it actually does.
1137	 *
1138	 * FIXME: This can probably go away now except that 64K chunks
1139	 * are too likely to fail unless switched to vmalloc...
1140	 */
1141	chunk = 2048;
1142	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143		chunk = 65536;
1144	if (count < chunk)
1145		chunk = count;
1146
1147	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148	if (tty->write_cnt < chunk) {
1149		unsigned char *buf_chunk;
1150
1151		if (chunk < 1024)
1152			chunk = 1024;
1153
1154		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155		if (!buf_chunk) {
1156			ret = -ENOMEM;
1157			goto out;
1158		}
1159		kfree(tty->write_buf);
1160		tty->write_cnt = chunk;
1161		tty->write_buf = buf_chunk;
1162	}
1163
1164	/* Do the write .. */
1165	for (;;) {
1166		size_t size = count;
1167		if (size > chunk)
1168			size = chunk;
1169		ret = -EFAULT;
1170		if (copy_from_user(tty->write_buf, buf, size))
1171			break;
1172		ret = write(tty, file, tty->write_buf, size);
1173		if (ret <= 0)
1174			break;
1175		written += ret;
1176		buf += ret;
1177		count -= ret;
1178		if (!count)
1179			break;
1180		ret = -ERESTARTSYS;
1181		if (signal_pending(current))
1182			break;
1183		cond_resched();
1184	}
1185	if (written) {
1186		tty_update_time(&file_inode(file)->i_mtime);
1187		ret = written;
1188	}
1189out:
1190	tty_write_unlock(tty);
1191	return ret;
1192}
1193
1194/**
1195 * tty_write_message - write a message to a certain tty, not just the console.
1196 * @tty: the destination tty_struct
1197 * @msg: the message to write
1198 *
1199 * This is used for messages that need to be redirected to a specific tty.
1200 * We don't put it into the syslog queue right now maybe in the future if
1201 * really needed.
1202 *
1203 * We must still hold the BTM and test the CLOSING flag for the moment.
1204 */
1205
1206void tty_write_message(struct tty_struct *tty, char *msg)
1207{
1208	if (tty) {
1209		mutex_lock(&tty->atomic_write_lock);
1210		tty_lock(tty);
1211		if (tty->ops->write && tty->count > 0)
1212			tty->ops->write(tty, msg, strlen(msg));
1213		tty_unlock(tty);
1214		tty_write_unlock(tty);
1215	}
1216	return;
1217}
1218
1219
1220/**
1221 *	tty_write		-	write method for tty device file
1222 *	@file: tty file pointer
1223 *	@buf: user data to write
1224 *	@count: bytes to write
1225 *	@ppos: unused
1226 *
1227 *	Write data to a tty device via the line discipline.
1228 *
1229 *	Locking:
1230 *		Locks the line discipline as required
1231 *		Writes to the tty driver are serialized by the atomic_write_lock
1232 *	and are then processed in chunks to the device. The line discipline
1233 *	write method will not be invoked in parallel for each device.
1234 */
1235
1236static ssize_t tty_write(struct file *file, const char __user *buf,
1237						size_t count, loff_t *ppos)
1238{
1239	struct tty_struct *tty = file_tty(file);
1240 	struct tty_ldisc *ld;
1241	ssize_t ret;
1242
1243	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244		return -EIO;
1245	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1246			return -EIO;
1247	/* Short term debug to catch buggy drivers */
1248	if (tty->ops->write_room == NULL)
1249		tty_err(tty, "missing write_room method\n");
1250	ld = tty_ldisc_ref_wait(tty);
1251	if (!ld)
1252		return hung_up_tty_write(file, buf, count, ppos);
1253	if (!ld->ops->write)
1254		ret = -EIO;
1255	else
1256		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257	tty_ldisc_deref(ld);
1258	return ret;
1259}
1260
1261ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262						size_t count, loff_t *ppos)
1263{
1264	struct file *p = NULL;
1265
1266	spin_lock(&redirect_lock);
1267	if (redirect)
1268		p = get_file(redirect);
1269	spin_unlock(&redirect_lock);
1270
1271	if (p) {
1272		ssize_t res;
1273		res = vfs_write(p, buf, count, &p->f_pos);
1274		fput(p);
1275		return res;
1276	}
1277	return tty_write(file, buf, count, ppos);
1278}
1279
1280/**
1281 *	tty_send_xchar	-	send priority character
1282 *
1283 *	Send a high priority character to the tty even if stopped
1284 *
1285 *	Locking: none for xchar method, write ordering for write method.
1286 */
1287
1288int tty_send_xchar(struct tty_struct *tty, char ch)
1289{
1290	int	was_stopped = tty->stopped;
1291
1292	if (tty->ops->send_xchar) {
1293		down_read(&tty->termios_rwsem);
1294		tty->ops->send_xchar(tty, ch);
1295		up_read(&tty->termios_rwsem);
1296		return 0;
1297	}
1298
1299	if (tty_write_lock(tty, 0) < 0)
1300		return -ERESTARTSYS;
1301
1302	down_read(&tty->termios_rwsem);
1303	if (was_stopped)
1304		start_tty(tty);
1305	tty->ops->write(tty, &ch, 1);
1306	if (was_stopped)
1307		stop_tty(tty);
1308	up_read(&tty->termios_rwsem);
1309	tty_write_unlock(tty);
1310	return 0;
1311}
1312
1313static char ptychar[] = "pqrstuvwxyzabcde";
1314
1315/**
1316 *	pty_line_name	-	generate name for a pty
1317 *	@driver: the tty driver in use
1318 *	@index: the minor number
1319 *	@p: output buffer of at least 6 bytes
1320 *
1321 *	Generate a name from a driver reference and write it to the output
1322 *	buffer.
1323 *
1324 *	Locking: None
1325 */
1326static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327{
1328	int i = index + driver->name_base;
1329	/* ->name is initialized to "ttyp", but "tty" is expected */
1330	sprintf(p, "%s%c%x",
1331		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332		ptychar[i >> 4 & 0xf], i & 0xf);
1333}
1334
1335/**
1336 *	tty_line_name	-	generate name for a tty
1337 *	@driver: the tty driver in use
1338 *	@index: the minor number
1339 *	@p: output buffer of at least 7 bytes
1340 *
1341 *	Generate a name from a driver reference and write it to the output
1342 *	buffer.
1343 *
1344 *	Locking: None
1345 */
1346static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347{
1348	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349		return sprintf(p, "%s", driver->name);
1350	else
1351		return sprintf(p, "%s%d", driver->name,
1352			       index + driver->name_base);
1353}
1354
1355/**
1356 *	tty_driver_lookup_tty() - find an existing tty, if any
1357 *	@driver: the driver for the tty
1358 *	@idx:	 the minor number
1359 *
1360 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361 *	driver lookup() method returns an error.
1362 *
1363 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1364 */
1365static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366		struct file *file, int idx)
1367{
1368	struct tty_struct *tty;
1369
1370	if (driver->ops->lookup)
1371		tty = driver->ops->lookup(driver, file, idx);
 
 
 
1372	else
1373		tty = driver->ttys[idx];
1374
1375	if (!IS_ERR(tty))
1376		tty_kref_get(tty);
1377	return tty;
1378}
1379
1380/**
1381 *	tty_init_termios	-  helper for termios setup
1382 *	@tty: the tty to set up
1383 *
1384 *	Initialise the termios structures for this tty. Thus runs under
1385 *	the tty_mutex currently so we can be relaxed about ordering.
1386 */
1387
1388void tty_init_termios(struct tty_struct *tty)
1389{
1390	struct ktermios *tp;
1391	int idx = tty->index;
1392
1393	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394		tty->termios = tty->driver->init_termios;
1395	else {
1396		/* Check for lazy saved data */
1397		tp = tty->driver->termios[idx];
1398		if (tp != NULL) {
1399			tty->termios = *tp;
1400			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401		} else
1402			tty->termios = tty->driver->init_termios;
1403	}
1404	/* Compatibility until drivers always set this */
1405	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1407}
1408EXPORT_SYMBOL_GPL(tty_init_termios);
1409
1410int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411{
1412	tty_init_termios(tty);
1413	tty_driver_kref_get(driver);
1414	tty->count++;
1415	driver->ttys[tty->index] = tty;
1416	return 0;
1417}
1418EXPORT_SYMBOL_GPL(tty_standard_install);
1419
1420/**
1421 *	tty_driver_install_tty() - install a tty entry in the driver
1422 *	@driver: the driver for the tty
1423 *	@tty: the tty
1424 *
1425 *	Install a tty object into the driver tables. The tty->index field
1426 *	will be set by the time this is called. This method is responsible
1427 *	for ensuring any need additional structures are allocated and
1428 *	configured.
1429 *
1430 *	Locking: tty_mutex for now
1431 */
1432static int tty_driver_install_tty(struct tty_driver *driver,
1433						struct tty_struct *tty)
1434{
1435	return driver->ops->install ? driver->ops->install(driver, tty) :
1436		tty_standard_install(driver, tty);
1437}
1438
1439/**
1440 *	tty_driver_remove_tty() - remove a tty from the driver tables
1441 *	@driver: the driver for the tty
1442 *	@idx:	 the minor number
1443 *
1444 *	Remvoe a tty object from the driver tables. The tty->index field
1445 *	will be set by the time this is called.
1446 *
1447 *	Locking: tty_mutex for now
1448 */
1449static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450{
1451	if (driver->ops->remove)
1452		driver->ops->remove(driver, tty);
1453	else
1454		driver->ttys[tty->index] = NULL;
1455}
1456
1457/*
1458 * 	tty_reopen()	- fast re-open of an open tty
1459 * 	@tty	- the tty to open
1460 *
1461 *	Return 0 on success, -errno on error.
1462 *	Re-opens on master ptys are not allowed and return -EIO.
1463 *
1464 *	Locking: Caller must hold tty_lock
1465 */
1466static int tty_reopen(struct tty_struct *tty)
1467{
1468	struct tty_driver *driver = tty->driver;
1469
1470	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471	    driver->subtype == PTY_TYPE_MASTER)
1472		return -EIO;
1473
1474	if (!tty->count)
1475		return -EAGAIN;
1476
1477	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478		return -EBUSY;
1479
1480	tty->count++;
1481
1482	if (!tty->ldisc)
1483		return tty_ldisc_reinit(tty, tty->termios.c_line);
1484
1485	return 0;
1486}
1487
1488/**
1489 *	tty_init_dev		-	initialise a tty device
1490 *	@driver: tty driver we are opening a device on
1491 *	@idx: device index
1492 *	@ret_tty: returned tty structure
1493 *
1494 *	Prepare a tty device. This may not be a "new" clean device but
1495 *	could also be an active device. The pty drivers require special
1496 *	handling because of this.
1497 *
1498 *	Locking:
1499 *		The function is called under the tty_mutex, which
1500 *	protects us from the tty struct or driver itself going away.
1501 *
1502 *	On exit the tty device has the line discipline attached and
1503 *	a reference count of 1. If a pair was created for pty/tty use
1504 *	and the other was a pty master then it too has a reference count of 1.
1505 *
1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507 * failed open.  The new code protects the open with a mutex, so it's
1508 * really quite straightforward.  The mutex locking can probably be
1509 * relaxed for the (most common) case of reopening a tty.
1510 */
1511
1512struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513{
1514	struct tty_struct *tty;
1515	int retval;
1516
1517	/*
1518	 * First time open is complex, especially for PTY devices.
1519	 * This code guarantees that either everything succeeds and the
1520	 * TTY is ready for operation, or else the table slots are vacated
1521	 * and the allocated memory released.  (Except that the termios
1522	 * and locked termios may be retained.)
1523	 */
1524
1525	if (!try_module_get(driver->owner))
1526		return ERR_PTR(-ENODEV);
1527
1528	tty = alloc_tty_struct(driver, idx);
1529	if (!tty) {
1530		retval = -ENOMEM;
1531		goto err_module_put;
1532	}
1533
1534	tty_lock(tty);
1535	retval = tty_driver_install_tty(driver, tty);
1536	if (retval < 0)
1537		goto err_free_tty;
1538
1539	if (!tty->port)
1540		tty->port = driver->ports[idx];
1541
1542	WARN_RATELIMIT(!tty->port,
1543			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544			__func__, tty->driver->name);
1545
 
 
 
1546	tty->port->itty = tty;
1547
1548	/*
1549	 * Structures all installed ... call the ldisc open routines.
1550	 * If we fail here just call release_tty to clean up.  No need
1551	 * to decrement the use counts, as release_tty doesn't care.
1552	 */
1553	retval = tty_ldisc_setup(tty, tty->link);
1554	if (retval)
1555		goto err_release_tty;
 
1556	/* Return the tty locked so that it cannot vanish under the caller */
1557	return tty;
1558
1559err_free_tty:
1560	tty_unlock(tty);
1561	free_tty_struct(tty);
1562err_module_put:
1563	module_put(driver->owner);
1564	return ERR_PTR(retval);
1565
1566	/* call the tty release_tty routine to clean out this slot */
1567err_release_tty:
1568	tty_unlock(tty);
1569	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570			     retval, idx);
 
 
1571	release_tty(tty, idx);
1572	return ERR_PTR(retval);
1573}
1574
1575static void tty_free_termios(struct tty_struct *tty)
1576{
1577	struct ktermios *tp;
1578	int idx = tty->index;
1579
1580	/* If the port is going to reset then it has no termios to save */
1581	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582		return;
1583
1584	/* Stash the termios data */
1585	tp = tty->driver->termios[idx];
1586	if (tp == NULL) {
1587		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588		if (tp == NULL)
1589			return;
1590		tty->driver->termios[idx] = tp;
1591	}
1592	*tp = tty->termios;
1593}
1594
1595/**
1596 *	tty_flush_works		-	flush all works of a tty/pty pair
1597 *	@tty: tty device to flush works for (or either end of a pty pair)
1598 *
1599 *	Sync flush all works belonging to @tty (and the 'other' tty).
1600 */
1601static void tty_flush_works(struct tty_struct *tty)
1602{
1603	flush_work(&tty->SAK_work);
1604	flush_work(&tty->hangup_work);
1605	if (tty->link) {
1606		flush_work(&tty->link->SAK_work);
1607		flush_work(&tty->link->hangup_work);
1608	}
1609}
1610
1611/**
1612 *	release_one_tty		-	release tty structure memory
1613 *	@kref: kref of tty we are obliterating
1614 *
1615 *	Releases memory associated with a tty structure, and clears out the
1616 *	driver table slots. This function is called when a device is no longer
1617 *	in use. It also gets called when setup of a device fails.
1618 *
1619 *	Locking:
1620 *		takes the file list lock internally when working on the list
1621 *	of ttys that the driver keeps.
1622 *
1623 *	This method gets called from a work queue so that the driver private
1624 *	cleanup ops can sleep (needed for USB at least)
1625 */
1626static void release_one_tty(struct work_struct *work)
1627{
1628	struct tty_struct *tty =
1629		container_of(work, struct tty_struct, hangup_work);
1630	struct tty_driver *driver = tty->driver;
1631	struct module *owner = driver->owner;
1632
1633	if (tty->ops->cleanup)
1634		tty->ops->cleanup(tty);
1635
1636	tty->magic = 0;
1637	tty_driver_kref_put(driver);
1638	module_put(owner);
1639
1640	spin_lock(&tty->files_lock);
1641	list_del_init(&tty->tty_files);
1642	spin_unlock(&tty->files_lock);
1643
1644	put_pid(tty->pgrp);
1645	put_pid(tty->session);
1646	free_tty_struct(tty);
1647}
1648
1649static void queue_release_one_tty(struct kref *kref)
1650{
1651	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652
1653	/* The hangup queue is now free so we can reuse it rather than
1654	   waste a chunk of memory for each port */
1655	INIT_WORK(&tty->hangup_work, release_one_tty);
1656	schedule_work(&tty->hangup_work);
1657}
1658
1659/**
1660 *	tty_kref_put		-	release a tty kref
1661 *	@tty: tty device
1662 *
1663 *	Release a reference to a tty device and if need be let the kref
1664 *	layer destruct the object for us
1665 */
1666
1667void tty_kref_put(struct tty_struct *tty)
1668{
1669	if (tty)
1670		kref_put(&tty->kref, queue_release_one_tty);
1671}
1672EXPORT_SYMBOL(tty_kref_put);
1673
1674/**
1675 *	release_tty		-	release tty structure memory
1676 *
1677 *	Release both @tty and a possible linked partner (think pty pair),
1678 *	and decrement the refcount of the backing module.
1679 *
1680 *	Locking:
1681 *		tty_mutex
1682 *		takes the file list lock internally when working on the list
1683 *	of ttys that the driver keeps.
1684 *
1685 */
1686static void release_tty(struct tty_struct *tty, int idx)
1687{
1688	/* This should always be true but check for the moment */
1689	WARN_ON(tty->index != idx);
1690	WARN_ON(!mutex_is_locked(&tty_mutex));
1691	if (tty->ops->shutdown)
1692		tty->ops->shutdown(tty);
1693	tty_free_termios(tty);
1694	tty_driver_remove_tty(tty->driver, tty);
1695	tty->port->itty = NULL;
1696	if (tty->link)
1697		tty->link->port->itty = NULL;
1698	tty_buffer_cancel_work(tty->port);
 
 
1699
1700	tty_kref_put(tty->link);
1701	tty_kref_put(tty);
1702}
1703
1704/**
1705 *	tty_release_checks - check a tty before real release
1706 *	@tty: tty to check
1707 *	@o_tty: link of @tty (if any)
1708 *	@idx: index of the tty
1709 *
1710 *	Performs some paranoid checking before true release of the @tty.
1711 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712 */
1713static int tty_release_checks(struct tty_struct *tty, int idx)
1714{
1715#ifdef TTY_PARANOIA_CHECK
1716	if (idx < 0 || idx >= tty->driver->num) {
1717		tty_debug(tty, "bad idx %d\n", idx);
1718		return -1;
1719	}
1720
1721	/* not much to check for devpts */
1722	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723		return 0;
1724
1725	if (tty != tty->driver->ttys[idx]) {
1726		tty_debug(tty, "bad driver table[%d] = %p\n",
1727			  idx, tty->driver->ttys[idx]);
1728		return -1;
1729	}
1730	if (tty->driver->other) {
1731		struct tty_struct *o_tty = tty->link;
1732
1733		if (o_tty != tty->driver->other->ttys[idx]) {
1734			tty_debug(tty, "bad other table[%d] = %p\n",
1735				  idx, tty->driver->other->ttys[idx]);
1736			return -1;
1737		}
1738		if (o_tty->link != tty) {
1739			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740			return -1;
1741		}
1742	}
1743#endif
1744	return 0;
1745}
1746
1747/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748 *	tty_release		-	vfs callback for close
1749 *	@inode: inode of tty
1750 *	@filp: file pointer for handle to tty
1751 *
1752 *	Called the last time each file handle is closed that references
1753 *	this tty. There may however be several such references.
1754 *
1755 *	Locking:
1756 *		Takes bkl. See tty_release_dev
1757 *
1758 * Even releasing the tty structures is a tricky business.. We have
1759 * to be very careful that the structures are all released at the
1760 * same time, as interrupts might otherwise get the wrong pointers.
1761 *
1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763 * lead to double frees or releasing memory still in use.
1764 */
1765
1766int tty_release(struct inode *inode, struct file *filp)
1767{
1768	struct tty_struct *tty = file_tty(filp);
1769	struct tty_struct *o_tty = NULL;
1770	int	do_sleep, final;
1771	int	idx;
1772	long	timeout = 0;
1773	int	once = 1;
1774
1775	if (tty_paranoia_check(tty, inode, __func__))
1776		return 0;
1777
1778	tty_lock(tty);
1779	check_tty_count(tty, __func__);
1780
1781	__tty_fasync(-1, filp, 0);
1782
1783	idx = tty->index;
1784	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785	    tty->driver->subtype == PTY_TYPE_MASTER)
1786		o_tty = tty->link;
1787
1788	if (tty_release_checks(tty, idx)) {
1789		tty_unlock(tty);
1790		return 0;
1791	}
1792
1793	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1794
1795	if (tty->ops->close)
1796		tty->ops->close(tty, filp);
1797
1798	/* If tty is pty master, lock the slave pty (stable lock order) */
1799	tty_lock_slave(o_tty);
1800
1801	/*
1802	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804	 * wait queues and kick everyone out _before_ actually starting to
1805	 * close.  This ensures that we won't block while releasing the tty
1806	 * structure.
1807	 *
1808	 * The test for the o_tty closing is necessary, since the master and
1809	 * slave sides may close in any order.  If the slave side closes out
1810	 * first, its count will be one, since the master side holds an open.
1811	 * Thus this test wouldn't be triggered at the time the slave closed,
1812	 * so we do it now.
1813	 */
1814	while (1) {
1815		do_sleep = 0;
1816
1817		if (tty->count <= 1) {
1818			if (waitqueue_active(&tty->read_wait)) {
1819				wake_up_poll(&tty->read_wait, POLLIN);
1820				do_sleep++;
1821			}
1822			if (waitqueue_active(&tty->write_wait)) {
1823				wake_up_poll(&tty->write_wait, POLLOUT);
1824				do_sleep++;
1825			}
1826		}
1827		if (o_tty && o_tty->count <= 1) {
1828			if (waitqueue_active(&o_tty->read_wait)) {
1829				wake_up_poll(&o_tty->read_wait, POLLIN);
1830				do_sleep++;
1831			}
1832			if (waitqueue_active(&o_tty->write_wait)) {
1833				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834				do_sleep++;
1835			}
1836		}
1837		if (!do_sleep)
1838			break;
1839
1840		if (once) {
1841			once = 0;
1842			tty_warn(tty, "read/write wait queue active!\n");
1843		}
1844		schedule_timeout_killable(timeout);
1845		if (timeout < 120 * HZ)
1846			timeout = 2 * timeout + 1;
1847		else
1848			timeout = MAX_SCHEDULE_TIMEOUT;
1849	}
1850
1851	if (o_tty) {
1852		if (--o_tty->count < 0) {
1853			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1854			o_tty->count = 0;
1855		}
1856	}
1857	if (--tty->count < 0) {
1858		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1859		tty->count = 0;
1860	}
1861
1862	/*
1863	 * We've decremented tty->count, so we need to remove this file
1864	 * descriptor off the tty->tty_files list; this serves two
1865	 * purposes:
1866	 *  - check_tty_count sees the correct number of file descriptors
1867	 *    associated with this tty.
1868	 *  - do_tty_hangup no longer sees this file descriptor as
1869	 *    something that needs to be handled for hangups.
1870	 */
1871	tty_del_file(filp);
1872
1873	/*
1874	 * Perform some housekeeping before deciding whether to return.
1875	 *
1876	 * If _either_ side is closing, make sure there aren't any
1877	 * processes that still think tty or o_tty is their controlling
1878	 * tty.
1879	 */
1880	if (!tty->count) {
1881		read_lock(&tasklist_lock);
1882		session_clear_tty(tty->session);
1883		if (o_tty)
1884			session_clear_tty(o_tty->session);
1885		read_unlock(&tasklist_lock);
1886	}
1887
1888	/* check whether both sides are closing ... */
1889	final = !tty->count && !(o_tty && o_tty->count);
1890
1891	tty_unlock_slave(o_tty);
1892	tty_unlock(tty);
1893
1894	/* At this point, the tty->count == 0 should ensure a dead tty
1895	   cannot be re-opened by a racing opener */
1896
1897	if (!final)
1898		return 0;
1899
1900	tty_debug_hangup(tty, "final close\n");
1901	/*
1902	 * Ask the line discipline code to release its structures
1903	 */
1904	tty_ldisc_release(tty);
1905
1906	/* Wait for pending work before tty destruction commmences */
1907	tty_flush_works(tty);
1908
1909	tty_debug_hangup(tty, "freeing structure\n");
1910	/*
1911	 * The release_tty function takes care of the details of clearing
1912	 * the slots and preserving the termios structure. The tty_unlock_pair
1913	 * should be safe as we keep a kref while the tty is locked (so the
1914	 * unlock never unlocks a freed tty).
1915	 */
1916	mutex_lock(&tty_mutex);
1917	release_tty(tty, idx);
1918	mutex_unlock(&tty_mutex);
1919
 
1920	return 0;
1921}
1922
1923/**
1924 *	tty_open_current_tty - get locked tty of current task
1925 *	@device: device number
1926 *	@filp: file pointer to tty
1927 *	@return: locked tty of the current task iff @device is /dev/tty
1928 *
1929 *	Performs a re-open of the current task's controlling tty.
1930 *
1931 *	We cannot return driver and index like for the other nodes because
1932 *	devpts will not work then. It expects inodes to be from devpts FS.
1933 */
1934static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1935{
1936	struct tty_struct *tty;
1937	int retval;
1938
1939	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940		return NULL;
1941
1942	tty = get_current_tty();
1943	if (!tty)
1944		return ERR_PTR(-ENXIO);
1945
1946	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947	/* noctty = 1; */
1948	tty_lock(tty);
1949	tty_kref_put(tty);	/* safe to drop the kref now */
1950
1951	retval = tty_reopen(tty);
1952	if (retval < 0) {
1953		tty_unlock(tty);
1954		tty = ERR_PTR(retval);
1955	}
1956	return tty;
1957}
1958
1959/**
1960 *	tty_lookup_driver - lookup a tty driver for a given device file
1961 *	@device: device number
1962 *	@filp: file pointer to tty
1963 *	@index: index for the device in the @return driver
1964 *	@return: driver for this inode (with increased refcount)
1965 *
1966 * 	If @return is not erroneous, the caller is responsible to decrement the
1967 * 	refcount by tty_driver_kref_put.
1968 *
1969 *	Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972		int *index)
1973{
1974	struct tty_driver *driver;
1975
1976	switch (device) {
1977#ifdef CONFIG_VT
1978	case MKDEV(TTY_MAJOR, 0): {
1979		extern struct tty_driver *console_driver;
1980		driver = tty_driver_kref_get(console_driver);
1981		*index = fg_console;
1982		break;
1983	}
1984#endif
1985	case MKDEV(TTYAUX_MAJOR, 1): {
1986		struct tty_driver *console_driver = console_device(index);
1987		if (console_driver) {
1988			driver = tty_driver_kref_get(console_driver);
1989			if (driver) {
1990				/* Don't let /dev/console block */
1991				filp->f_flags |= O_NONBLOCK;
1992				break;
1993			}
1994		}
1995		return ERR_PTR(-ENODEV);
1996	}
1997	default:
1998		driver = get_tty_driver(device, index);
1999		if (!driver)
2000			return ERR_PTR(-ENODEV);
2001		break;
2002	}
2003	return driver;
2004}
2005
2006/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2007 *	tty_open_by_driver	-	open a tty device
2008 *	@device: dev_t of device to open
2009 *	@inode: inode of device file
2010 *	@filp: file pointer to tty
2011 *
2012 *	Performs the driver lookup, checks for a reopen, or otherwise
2013 *	performs the first-time tty initialization.
2014 *
2015 *	Returns the locked initialized or re-opened &tty_struct
2016 *
2017 *	Claims the global tty_mutex to serialize:
2018 *	  - concurrent first-time tty initialization
2019 *	  - concurrent tty driver removal w/ lookup
2020 *	  - concurrent tty removal from driver table
2021 */
2022static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023					     struct file *filp)
2024{
2025	struct tty_struct *tty;
2026	struct tty_driver *driver = NULL;
2027	int index = -1;
2028	int retval;
2029
2030	mutex_lock(&tty_mutex);
2031	driver = tty_lookup_driver(device, filp, &index);
2032	if (IS_ERR(driver)) {
2033		mutex_unlock(&tty_mutex);
2034		return ERR_CAST(driver);
2035	}
2036
2037	/* check whether we're reopening an existing tty */
2038	tty = tty_driver_lookup_tty(driver, filp, index);
2039	if (IS_ERR(tty)) {
2040		mutex_unlock(&tty_mutex);
2041		goto out;
2042	}
2043
2044	if (tty) {
 
 
 
 
 
 
2045		mutex_unlock(&tty_mutex);
2046		retval = tty_lock_interruptible(tty);
2047		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048		if (retval) {
2049			if (retval == -EINTR)
2050				retval = -ERESTARTSYS;
2051			tty = ERR_PTR(retval);
2052			goto out;
2053		}
2054		retval = tty_reopen(tty);
2055		if (retval < 0) {
2056			tty_unlock(tty);
2057			tty = ERR_PTR(retval);
2058		}
2059	} else { /* Returns with the tty_lock held for now */
2060		tty = tty_init_dev(driver, index);
2061		mutex_unlock(&tty_mutex);
2062	}
2063out:
2064	tty_driver_kref_put(driver);
2065	return tty;
2066}
2067
2068/**
2069 *	tty_open		-	open a tty device
2070 *	@inode: inode of device file
2071 *	@filp: file pointer to tty
2072 *
2073 *	tty_open and tty_release keep up the tty count that contains the
2074 *	number of opens done on a tty. We cannot use the inode-count, as
2075 *	different inodes might point to the same tty.
2076 *
2077 *	Open-counting is needed for pty masters, as well as for keeping
2078 *	track of serial lines: DTR is dropped when the last close happens.
2079 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080 *
2081 *	The termios state of a pty is reset on first open so that
2082 *	settings don't persist across reuse.
2083 *
2084 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085 *		 tty->count should protect the rest.
2086 *		 ->siglock protects ->signal/->sighand
2087 *
2088 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089 *	tty_mutex
2090 */
2091
2092static int tty_open(struct inode *inode, struct file *filp)
2093{
2094	struct tty_struct *tty;
2095	int noctty, retval;
2096	dev_t device = inode->i_rdev;
2097	unsigned saved_flags = filp->f_flags;
2098
2099	nonseekable_open(inode, filp);
2100
2101retry_open:
2102	retval = tty_alloc_file(filp);
2103	if (retval)
2104		return -ENOMEM;
2105
2106	tty = tty_open_current_tty(device, filp);
2107	if (!tty)
2108		tty = tty_open_by_driver(device, inode, filp);
2109
2110	if (IS_ERR(tty)) {
2111		tty_free_file(filp);
2112		retval = PTR_ERR(tty);
2113		if (retval != -EAGAIN || signal_pending(current))
2114			return retval;
2115		schedule();
2116		goto retry_open;
2117	}
2118
2119	tty_add_file(tty, filp);
2120
2121	check_tty_count(tty, __func__);
2122	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2123
2124	if (tty->ops->open)
2125		retval = tty->ops->open(tty, filp);
2126	else
2127		retval = -ENODEV;
2128	filp->f_flags = saved_flags;
2129
2130	if (retval) {
2131		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132
2133		tty_unlock(tty); /* need to call tty_release without BTM */
2134		tty_release(inode, filp);
2135		if (retval != -ERESTARTSYS)
2136			return retval;
2137
2138		if (signal_pending(current))
2139			return retval;
2140
2141		schedule();
2142		/*
2143		 * Need to reset f_op in case a hangup happened.
2144		 */
2145		if (tty_hung_up_p(filp))
2146			filp->f_op = &tty_fops;
2147		goto retry_open;
2148	}
2149	clear_bit(TTY_HUPPED, &tty->flags);
2150
2151
2152	read_lock(&tasklist_lock);
2153	spin_lock_irq(&current->sighand->siglock);
2154	noctty = (filp->f_flags & O_NOCTTY) ||
2155			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158			 tty->driver->subtype == PTY_TYPE_MASTER);
2159
2160	if (!noctty &&
2161	    current->signal->leader &&
2162	    !current->signal->tty &&
2163	    tty->session == NULL) {
2164		/*
2165		 * Don't let a process that only has write access to the tty
2166		 * obtain the privileges associated with having a tty as
2167		 * controlling terminal (being able to reopen it with full
2168		 * access through /dev/tty, being able to perform pushback).
2169		 * Many distributions set the group of all ttys to "tty" and
2170		 * grant write-only access to all terminals for setgid tty
2171		 * binaries, which should not imply full privileges on all ttys.
2172		 *
2173		 * This could theoretically break old code that performs open()
2174		 * on a write-only file descriptor. In that case, it might be
2175		 * necessary to also permit this if
2176		 * inode_permission(inode, MAY_READ) == 0.
2177		 */
2178		if (filp->f_mode & FMODE_READ)
2179			__proc_set_tty(tty);
2180	}
2181	spin_unlock_irq(&current->sighand->siglock);
2182	read_unlock(&tasklist_lock);
2183	tty_unlock(tty);
2184	return 0;
2185}
2186
2187
2188
2189/**
2190 *	tty_poll	-	check tty status
2191 *	@filp: file being polled
2192 *	@wait: poll wait structures to update
2193 *
2194 *	Call the line discipline polling method to obtain the poll
2195 *	status of the device.
2196 *
2197 *	Locking: locks called line discipline but ldisc poll method
2198 *	may be re-entered freely by other callers.
2199 */
2200
2201static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	int ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237		if (tty->pgrp) {
2238			pid = tty->pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_PID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267/**
2268 *	tiocsti			-	fake input character
2269 *	@tty: tty to fake input into
2270 *	@p: pointer to character
2271 *
2272 *	Fake input to a tty device. Does the necessary locking and
2273 *	input management.
2274 *
2275 *	FIXME: does not honour flow control ??
2276 *
2277 *	Locking:
2278 *		Called functions take tty_ldiscs_lock
2279 *		current->signal->tty check is safe without locks
2280 *
2281 *	FIXME: may race normal receive processing
2282 */
2283
2284static int tiocsti(struct tty_struct *tty, char __user *p)
2285{
2286	char ch, mbz = 0;
2287	struct tty_ldisc *ld;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2298	tty_ldisc_deref(ld);
2299	return 0;
2300}
2301
2302/**
2303 *	tiocgwinsz		-	implement window query ioctl
2304 *	@tty; tty
2305 *	@arg: user buffer for result
2306 *
2307 *	Copies the kernel idea of the window size into the user buffer.
2308 *
2309 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310 *		is consistent.
2311 */
2312
2313static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314{
2315	int err;
2316
2317	mutex_lock(&tty->winsize_mutex);
2318	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319	mutex_unlock(&tty->winsize_mutex);
2320
2321	return err ? -EFAULT: 0;
2322}
2323
2324/**
2325 *	tty_do_resize		-	resize event
2326 *	@tty: tty being resized
2327 *	@rows: rows (character)
2328 *	@cols: cols (character)
2329 *
2330 *	Update the termios variables and send the necessary signals to
2331 *	peform a terminal resize correctly
2332 */
2333
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 *	tiocswinsz		-	implement window size set ioctl
2358 *	@tty; tty side of tty
2359 *	@arg: user buffer for result
2360 *
2361 *	Copies the user idea of the window size to the kernel. Traditionally
2362 *	this is just advisory information but for the Linux console it
2363 *	actually has driver level meaning and triggers a VC resize.
2364 *
2365 *	Locking:
2366 *		Driver dependent. The default do_resize method takes the
2367 *	tty termios mutex and ctrl_lock. The console takes its own lock
2368 *	then calls into the default method.
2369 */
2370
2371static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372{
2373	struct winsize tmp_ws;
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 *	tioccons	-	allow admin to move logical console
2385 *	@file: the file to become console
2386 *
2387 *	Allow the administrator to move the redirected console device
2388 *
2389 *	Locking: uses redirect_lock to guard the redirect information
2390 */
2391
2392static int tioccons(struct file *file)
2393{
2394	if (!capable(CAP_SYS_ADMIN))
2395		return -EPERM;
2396	if (file->f_op->write == redirected_tty_write) {
2397		struct file *f;
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	spin_lock(&redirect_lock);
2407	if (redirect) {
2408		spin_unlock(&redirect_lock);
2409		return -EBUSY;
2410	}
2411	redirect = get_file(file);
2412	spin_unlock(&redirect_lock);
2413	return 0;
2414}
2415
2416/**
2417 *	fionbio		-	non blocking ioctl
2418 *	@file: file to set blocking value
2419 *	@p: user parameter
2420 *
2421 *	Historical tty interfaces had a blocking control ioctl before
2422 *	the generic functionality existed. This piece of history is preserved
2423 *	in the expected tty API of posix OS's.
2424 *
2425 *	Locking: none, the open file handle ensures it won't go away.
2426 */
2427
2428static int fionbio(struct file *file, int __user *p)
2429{
2430	int nonblock;
2431
2432	if (get_user(nonblock, p))
2433		return -EFAULT;
2434
2435	spin_lock(&file->f_lock);
2436	if (nonblock)
2437		file->f_flags |= O_NONBLOCK;
2438	else
2439		file->f_flags &= ~O_NONBLOCK;
2440	spin_unlock(&file->f_lock);
2441	return 0;
2442}
2443
2444/**
2445 *	tiocsctty	-	set controlling tty
2446 *	@tty: tty structure
2447 *	@arg: user argument
2448 *
2449 *	This ioctl is used to manage job control. It permits a session
2450 *	leader to set this tty as the controlling tty for the session.
2451 *
2452 *	Locking:
2453 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454 *		Takes tasklist_lock internally to walk sessions
2455 *		Takes ->siglock() when updating signal->tty
2456 */
2457
2458static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459{
2460	int ret = 0;
2461
2462	tty_lock(tty);
2463	read_lock(&tasklist_lock);
2464
2465	if (current->signal->leader && (task_session(current) == tty->session))
2466		goto unlock;
2467
2468	/*
2469	 * The process must be a session leader and
2470	 * not have a controlling tty already.
2471	 */
2472	if (!current->signal->leader || current->signal->tty) {
2473		ret = -EPERM;
2474		goto unlock;
2475	}
2476
2477	if (tty->session) {
2478		/*
2479		 * This tty is already the controlling
2480		 * tty for another session group!
2481		 */
2482		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483			/*
2484			 * Steal it away
2485			 */
2486			session_clear_tty(tty->session);
2487		} else {
2488			ret = -EPERM;
2489			goto unlock;
2490		}
2491	}
2492
2493	/* See the comment in tty_open(). */
2494	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495		ret = -EPERM;
2496		goto unlock;
2497	}
2498
2499	proc_set_tty(tty);
2500unlock:
2501	read_unlock(&tasklist_lock);
2502	tty_unlock(tty);
2503	return ret;
2504}
2505
2506/**
2507 *	tty_get_pgrp	-	return a ref counted pgrp pid
2508 *	@tty: tty to read
2509 *
2510 *	Returns a refcounted instance of the pid struct for the process
2511 *	group controlling the tty.
2512 */
2513
2514struct pid *tty_get_pgrp(struct tty_struct *tty)
2515{
2516	unsigned long flags;
2517	struct pid *pgrp;
2518
2519	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520	pgrp = get_pid(tty->pgrp);
2521	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522
2523	return pgrp;
2524}
2525EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526
2527/*
2528 * This checks not only the pgrp, but falls back on the pid if no
2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530 * without this...
2531 *
2532 * The caller must hold rcu lock or the tasklist lock.
2533 */
2534static struct pid *session_of_pgrp(struct pid *pgrp)
2535{
2536	struct task_struct *p;
2537	struct pid *sid = NULL;
2538
2539	p = pid_task(pgrp, PIDTYPE_PGID);
2540	if (p == NULL)
2541		p = pid_task(pgrp, PIDTYPE_PID);
2542	if (p != NULL)
2543		sid = task_session(p);
2544
2545	return sid;
2546}
2547
2548/**
2549 *	tiocgpgrp		-	get process group
2550 *	@tty: tty passed by user
2551 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552 *	@p: returned pid
2553 *
2554 *	Obtain the process group of the tty. If there is no process group
2555 *	return an error.
2556 *
2557 *	Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
2560static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561{
2562	struct pid *pid;
2563	int ret;
2564	/*
2565	 * (tty == real_tty) is a cheap way of
2566	 * testing if the tty is NOT a master pty.
2567	 */
2568	if (tty == real_tty && current->signal->tty != real_tty)
2569		return -ENOTTY;
2570	pid = tty_get_pgrp(real_tty);
2571	ret =  put_user(pid_vnr(pid), p);
2572	put_pid(pid);
2573	return ret;
2574}
2575
2576/**
2577 *	tiocspgrp		-	attempt to set process group
2578 *	@tty: tty passed by user
2579 *	@real_tty: tty side device matching tty passed by user
2580 *	@p: pid pointer
2581 *
2582 *	Set the process group of the tty to the session passed. Only
2583 *	permitted where the tty session is our session.
2584 *
2585 *	Locking: RCU, ctrl lock
2586 */
2587
2588static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589{
2590	struct pid *pgrp;
2591	pid_t pgrp_nr;
2592	int retval = tty_check_change(real_tty);
2593
2594	if (retval == -EIO)
2595		return -ENOTTY;
2596	if (retval)
2597		return retval;
2598	if (!current->signal->tty ||
2599	    (current->signal->tty != real_tty) ||
2600	    (real_tty->session != task_session(current)))
2601		return -ENOTTY;
2602	if (get_user(pgrp_nr, p))
2603		return -EFAULT;
2604	if (pgrp_nr < 0)
2605		return -EINVAL;
2606	rcu_read_lock();
2607	pgrp = find_vpid(pgrp_nr);
2608	retval = -ESRCH;
2609	if (!pgrp)
2610		goto out_unlock;
2611	retval = -EPERM;
2612	if (session_of_pgrp(pgrp) != task_session(current))
2613		goto out_unlock;
2614	retval = 0;
2615	spin_lock_irq(&tty->ctrl_lock);
2616	put_pid(real_tty->pgrp);
2617	real_tty->pgrp = get_pid(pgrp);
2618	spin_unlock_irq(&tty->ctrl_lock);
2619out_unlock:
2620	rcu_read_unlock();
2621	return retval;
2622}
2623
2624/**
2625 *	tiocgsid		-	get session id
2626 *	@tty: tty passed by user
2627 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628 *	@p: pointer to returned session id
2629 *
2630 *	Obtain the session id of the tty. If there is no session
2631 *	return an error.
2632 *
2633 *	Locking: none. Reference to current->signal->tty is safe.
2634 */
2635
2636static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637{
2638	/*
2639	 * (tty == real_tty) is a cheap way of
2640	 * testing if the tty is NOT a master pty.
2641	*/
2642	if (tty == real_tty && current->signal->tty != real_tty)
2643		return -ENOTTY;
2644	if (!real_tty->session)
2645		return -ENOTTY;
2646	return put_user(pid_vnr(real_tty->session), p);
2647}
2648
2649/**
2650 *	tiocsetd	-	set line discipline
2651 *	@tty: tty device
2652 *	@p: pointer to user data
2653 *
2654 *	Set the line discipline according to user request.
2655 *
2656 *	Locking: see tty_set_ldisc, this function is just a helper
2657 */
2658
2659static int tiocsetd(struct tty_struct *tty, int __user *p)
2660{
2661	int disc;
2662	int ret;
2663
2664	if (get_user(disc, p))
2665		return -EFAULT;
2666
2667	ret = tty_set_ldisc(tty, disc);
2668
2669	return ret;
2670}
2671
2672/**
2673 *	tiocgetd	-	get line discipline
2674 *	@tty: tty device
2675 *	@p: pointer to user data
2676 *
2677 *	Retrieves the line discipline id directly from the ldisc.
2678 *
2679 *	Locking: waits for ldisc reference (in case the line discipline
2680 *		is changing or the tty is being hungup)
2681 */
2682
2683static int tiocgetd(struct tty_struct *tty, int __user *p)
2684{
2685	struct tty_ldisc *ld;
2686	int ret;
2687
2688	ld = tty_ldisc_ref_wait(tty);
2689	if (!ld)
2690		return -EIO;
2691	ret = put_user(ld->ops->num, p);
2692	tty_ldisc_deref(ld);
2693	return ret;
2694}
2695
2696/**
2697 *	send_break	-	performed time break
2698 *	@tty: device to break on
2699 *	@duration: timeout in mS
2700 *
2701 *	Perform a timed break on hardware that lacks its own driver level
2702 *	timed break functionality.
2703 *
2704 *	Locking:
2705 *		atomic_write_lock serializes
2706 *
2707 */
2708
2709static int send_break(struct tty_struct *tty, unsigned int duration)
2710{
2711	int retval;
2712
2713	if (tty->ops->break_ctl == NULL)
2714		return 0;
2715
2716	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717		retval = tty->ops->break_ctl(tty, duration);
2718	else {
2719		/* Do the work ourselves */
2720		if (tty_write_lock(tty, 0) < 0)
2721			return -EINTR;
2722		retval = tty->ops->break_ctl(tty, -1);
2723		if (retval)
2724			goto out;
2725		if (!signal_pending(current))
2726			msleep_interruptible(duration);
2727		retval = tty->ops->break_ctl(tty, 0);
2728out:
2729		tty_write_unlock(tty);
2730		if (signal_pending(current))
2731			retval = -EINTR;
2732	}
2733	return retval;
2734}
2735
2736/**
2737 *	tty_tiocmget		-	get modem status
2738 *	@tty: tty device
2739 *	@file: user file pointer
2740 *	@p: pointer to result
2741 *
2742 *	Obtain the modem status bits from the tty driver if the feature
2743 *	is supported. Return -EINVAL if it is not available.
2744 *
2745 *	Locking: none (up to the driver)
2746 */
2747
2748static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749{
2750	int retval = -EINVAL;
2751
2752	if (tty->ops->tiocmget) {
2753		retval = tty->ops->tiocmget(tty);
2754
2755		if (retval >= 0)
2756			retval = put_user(retval, p);
2757	}
2758	return retval;
2759}
2760
2761/**
2762 *	tty_tiocmset		-	set modem status
2763 *	@tty: tty device
2764 *	@cmd: command - clear bits, set bits or set all
2765 *	@p: pointer to desired bits
2766 *
2767 *	Set the modem status bits from the tty driver if the feature
2768 *	is supported. Return -EINVAL if it is not available.
2769 *
2770 *	Locking: none (up to the driver)
2771 */
2772
2773static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774	     unsigned __user *p)
2775{
2776	int retval;
2777	unsigned int set, clear, val;
2778
2779	if (tty->ops->tiocmset == NULL)
2780		return -EINVAL;
2781
2782	retval = get_user(val, p);
2783	if (retval)
2784		return retval;
2785	set = clear = 0;
2786	switch (cmd) {
2787	case TIOCMBIS:
2788		set = val;
2789		break;
2790	case TIOCMBIC:
2791		clear = val;
2792		break;
2793	case TIOCMSET:
2794		set = val;
2795		clear = ~val;
2796		break;
2797	}
2798	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800	return tty->ops->tiocmset(tty, set, clear);
2801}
2802
2803static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804{
2805	int retval = -EINVAL;
2806	struct serial_icounter_struct icount;
2807	memset(&icount, 0, sizeof(icount));
2808	if (tty->ops->get_icount)
2809		retval = tty->ops->get_icount(tty, &icount);
2810	if (retval != 0)
2811		return retval;
2812	if (copy_to_user(arg, &icount, sizeof(icount)))
2813		return -EFAULT;
2814	return 0;
2815}
2816
2817static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818{
2819	static DEFINE_RATELIMIT_STATE(depr_flags,
2820			DEFAULT_RATELIMIT_INTERVAL,
2821			DEFAULT_RATELIMIT_BURST);
2822	char comm[TASK_COMM_LEN];
2823	int flags;
2824
2825	if (get_user(flags, &ss->flags))
2826		return;
2827
2828	flags &= ASYNC_DEPRECATED;
2829
2830	if (flags && __ratelimit(&depr_flags))
2831		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832				__func__, get_task_comm(comm, current), flags);
2833}
2834
2835/*
2836 * if pty, return the slave side (real_tty)
2837 * otherwise, return self
2838 */
2839static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840{
2841	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842	    tty->driver->subtype == PTY_TYPE_MASTER)
2843		tty = tty->link;
2844	return tty;
2845}
2846
2847/*
2848 * Split this up, as gcc can choke on it otherwise..
2849 */
2850long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851{
2852	struct tty_struct *tty = file_tty(file);
2853	struct tty_struct *real_tty;
2854	void __user *p = (void __user *)arg;
2855	int retval;
2856	struct tty_ldisc *ld;
2857
2858	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859		return -EINVAL;
2860
2861	real_tty = tty_pair_get_tty(tty);
2862
2863	/*
2864	 * Factor out some common prep work
2865	 */
2866	switch (cmd) {
2867	case TIOCSETD:
2868	case TIOCSBRK:
2869	case TIOCCBRK:
2870	case TCSBRK:
2871	case TCSBRKP:
2872		retval = tty_check_change(tty);
2873		if (retval)
2874			return retval;
2875		if (cmd != TIOCCBRK) {
2876			tty_wait_until_sent(tty, 0);
2877			if (signal_pending(current))
2878				return -EINTR;
2879		}
2880		break;
2881	}
2882
2883	/*
2884	 *	Now do the stuff.
2885	 */
2886	switch (cmd) {
2887	case TIOCSTI:
2888		return tiocsti(tty, p);
2889	case TIOCGWINSZ:
2890		return tiocgwinsz(real_tty, p);
2891	case TIOCSWINSZ:
2892		return tiocswinsz(real_tty, p);
2893	case TIOCCONS:
2894		return real_tty != tty ? -EINVAL : tioccons(file);
2895	case FIONBIO:
2896		return fionbio(file, p);
2897	case TIOCEXCL:
2898		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899		return 0;
2900	case TIOCNXCL:
2901		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902		return 0;
2903	case TIOCGEXCL:
2904	{
2905		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2906		return put_user(excl, (int __user *)p);
2907	}
2908	case TIOCNOTTY:
2909		if (current->signal->tty != tty)
2910			return -ENOTTY;
2911		no_tty();
2912		return 0;
2913	case TIOCSCTTY:
2914		return tiocsctty(real_tty, file, arg);
2915	case TIOCGPGRP:
2916		return tiocgpgrp(tty, real_tty, p);
2917	case TIOCSPGRP:
2918		return tiocspgrp(tty, real_tty, p);
2919	case TIOCGSID:
2920		return tiocgsid(tty, real_tty, p);
2921	case TIOCGETD:
2922		return tiocgetd(tty, p);
2923	case TIOCSETD:
2924		return tiocsetd(tty, p);
2925	case TIOCVHANGUP:
2926		if (!capable(CAP_SYS_ADMIN))
2927			return -EPERM;
2928		tty_vhangup(tty);
2929		return 0;
2930	case TIOCGDEV:
2931	{
2932		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2933		return put_user(ret, (unsigned int __user *)p);
2934	}
2935	/*
2936	 * Break handling
2937	 */
2938	case TIOCSBRK:	/* Turn break on, unconditionally */
2939		if (tty->ops->break_ctl)
2940			return tty->ops->break_ctl(tty, -1);
2941		return 0;
2942	case TIOCCBRK:	/* Turn break off, unconditionally */
2943		if (tty->ops->break_ctl)
2944			return tty->ops->break_ctl(tty, 0);
2945		return 0;
2946	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947		/* non-zero arg means wait for all output data
2948		 * to be sent (performed above) but don't send break.
2949		 * This is used by the tcdrain() termios function.
2950		 */
2951		if (!arg)
2952			return send_break(tty, 250);
2953		return 0;
2954	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955		return send_break(tty, arg ? arg*100 : 250);
2956
2957	case TIOCMGET:
2958		return tty_tiocmget(tty, p);
2959	case TIOCMSET:
2960	case TIOCMBIC:
2961	case TIOCMBIS:
2962		return tty_tiocmset(tty, cmd, p);
2963	case TIOCGICOUNT:
2964		retval = tty_tiocgicount(tty, p);
2965		/* For the moment allow fall through to the old method */
2966        	if (retval != -EINVAL)
2967			return retval;
2968		break;
2969	case TCFLSH:
2970		switch (arg) {
2971		case TCIFLUSH:
2972		case TCIOFLUSH:
2973		/* flush tty buffer and allow ldisc to process ioctl */
2974			tty_buffer_flush(tty, NULL);
2975			break;
2976		}
2977		break;
2978	case TIOCSSERIAL:
2979		tty_warn_deprecated_flags(p);
2980		break;
 
 
 
 
 
 
 
2981	}
2982	if (tty->ops->ioctl) {
2983		retval = tty->ops->ioctl(tty, cmd, arg);
2984		if (retval != -ENOIOCTLCMD)
2985			return retval;
2986	}
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_ioctl(file, cmd, arg);
2990	retval = -EINVAL;
2991	if (ld->ops->ioctl) {
2992		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993		if (retval == -ENOIOCTLCMD)
2994			retval = -ENOTTY;
2995	}
2996	tty_ldisc_deref(ld);
2997	return retval;
2998}
2999
3000#ifdef CONFIG_COMPAT
3001static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002				unsigned long arg)
3003{
3004	struct tty_struct *tty = file_tty(file);
3005	struct tty_ldisc *ld;
3006	int retval = -ENOIOCTLCMD;
3007
3008	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009		return -EINVAL;
3010
3011	if (tty->ops->compat_ioctl) {
3012		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013		if (retval != -ENOIOCTLCMD)
3014			return retval;
3015	}
3016
3017	ld = tty_ldisc_ref_wait(tty);
3018	if (!ld)
3019		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020	if (ld->ops->compat_ioctl)
3021		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022	else
3023		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3024	tty_ldisc_deref(ld);
3025
3026	return retval;
3027}
3028#endif
3029
3030static int this_tty(const void *t, struct file *file, unsigned fd)
3031{
3032	if (likely(file->f_op->read != tty_read))
3033		return 0;
3034	return file_tty(file) != t ? 0 : fd + 1;
3035}
3036	
3037/*
3038 * This implements the "Secure Attention Key" ---  the idea is to
3039 * prevent trojan horses by killing all processes associated with this
3040 * tty when the user hits the "Secure Attention Key".  Required for
3041 * super-paranoid applications --- see the Orange Book for more details.
3042 *
3043 * This code could be nicer; ideally it should send a HUP, wait a few
3044 * seconds, then send a INT, and then a KILL signal.  But you then
3045 * have to coordinate with the init process, since all processes associated
3046 * with the current tty must be dead before the new getty is allowed
3047 * to spawn.
3048 *
3049 * Now, if it would be correct ;-/ The current code has a nasty hole -
3050 * it doesn't catch files in flight. We may send the descriptor to ourselves
3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052 *
3053 * Nasty bug: do_SAK is being called in interrupt context.  This can
3054 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055 */
3056void __do_SAK(struct tty_struct *tty)
3057{
3058#ifdef TTY_SOFT_SAK
3059	tty_hangup(tty);
3060#else
3061	struct task_struct *g, *p;
3062	struct pid *session;
3063	int		i;
3064
3065	if (!tty)
3066		return;
3067	session = tty->session;
3068
3069	tty_ldisc_flush(tty);
3070
3071	tty_driver_flush_buffer(tty);
3072
3073	read_lock(&tasklist_lock);
3074	/* Kill the entire session */
3075	do_each_pid_task(session, PIDTYPE_SID, p) {
3076		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077			   task_pid_nr(p), p->comm);
3078		send_sig(SIGKILL, p, 1);
3079	} while_each_pid_task(session, PIDTYPE_SID, p);
3080
3081	/* Now kill any processes that happen to have the tty open */
3082	do_each_thread(g, p) {
3083		if (p->signal->tty == tty) {
3084			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085				   task_pid_nr(p), p->comm);
3086			send_sig(SIGKILL, p, 1);
3087			continue;
3088		}
3089		task_lock(p);
3090		i = iterate_fd(p->files, 0, this_tty, tty);
3091		if (i != 0) {
3092			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093				   task_pid_nr(p), p->comm, i - 1);
3094			force_sig(SIGKILL, p);
3095		}
3096		task_unlock(p);
3097	} while_each_thread(g, p);
3098	read_unlock(&tasklist_lock);
3099#endif
3100}
3101
3102static void do_SAK_work(struct work_struct *work)
3103{
3104	struct tty_struct *tty =
3105		container_of(work, struct tty_struct, SAK_work);
3106	__do_SAK(tty);
3107}
3108
3109/*
3110 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112 * the values which we write to it will be identical to the values which it
3113 * already has. --akpm
3114 */
3115void do_SAK(struct tty_struct *tty)
3116{
3117	if (!tty)
3118		return;
3119	schedule_work(&tty->SAK_work);
3120}
3121
3122EXPORT_SYMBOL(do_SAK);
3123
3124static int dev_match_devt(struct device *dev, const void *data)
3125{
3126	const dev_t *devt = data;
3127	return dev->devt == *devt;
3128}
3129
3130/* Must put_device() after it's unused! */
3131static struct device *tty_get_device(struct tty_struct *tty)
3132{
3133	dev_t devt = tty_devnum(tty);
3134	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3135}
3136
3137
3138/**
3139 *	alloc_tty_struct
3140 *
3141 *	This subroutine allocates and initializes a tty structure.
3142 *
3143 *	Locking: none - tty in question is not exposed at this point
3144 */
3145
3146struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3147{
3148	struct tty_struct *tty;
3149
3150	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151	if (!tty)
3152		return NULL;
3153
3154	kref_init(&tty->kref);
3155	tty->magic = TTY_MAGIC;
3156	tty_ldisc_init(tty);
 
 
 
3157	tty->session = NULL;
3158	tty->pgrp = NULL;
3159	mutex_init(&tty->legacy_mutex);
3160	mutex_init(&tty->throttle_mutex);
3161	init_rwsem(&tty->termios_rwsem);
3162	mutex_init(&tty->winsize_mutex);
3163	init_ldsem(&tty->ldisc_sem);
3164	init_waitqueue_head(&tty->write_wait);
3165	init_waitqueue_head(&tty->read_wait);
3166	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3167	mutex_init(&tty->atomic_write_lock);
3168	spin_lock_init(&tty->ctrl_lock);
3169	spin_lock_init(&tty->flow_lock);
3170	spin_lock_init(&tty->files_lock);
3171	INIT_LIST_HEAD(&tty->tty_files);
3172	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173
3174	tty->driver = driver;
3175	tty->ops = driver->ops;
3176	tty->index = idx;
3177	tty_line_name(driver, idx, tty->name);
3178	tty->dev = tty_get_device(tty);
3179
3180	return tty;
3181}
3182
3183/**
3184 *	tty_put_char	-	write one character to a tty
3185 *	@tty: tty
3186 *	@ch: character
3187 *
3188 *	Write one byte to the tty using the provided put_char method
3189 *	if present. Returns the number of characters successfully output.
3190 *
3191 *	Note: the specific put_char operation in the driver layer may go
3192 *	away soon. Don't call it directly, use this method
3193 */
3194
3195int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196{
3197	if (tty->ops->put_char)
3198		return tty->ops->put_char(tty, ch);
3199	return tty->ops->write(tty, &ch, 1);
3200}
3201EXPORT_SYMBOL_GPL(tty_put_char);
3202
3203struct class *tty_class;
3204
3205static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206		unsigned int index, unsigned int count)
3207{
3208	int err;
3209
3210	/* init here, since reused cdevs cause crashes */
3211	driver->cdevs[index] = cdev_alloc();
3212	if (!driver->cdevs[index])
3213		return -ENOMEM;
3214	driver->cdevs[index]->ops = &tty_fops;
3215	driver->cdevs[index]->owner = driver->owner;
3216	err = cdev_add(driver->cdevs[index], dev, count);
3217	if (err)
3218		kobject_put(&driver->cdevs[index]->kobj);
3219	return err;
3220}
3221
3222/**
3223 *	tty_register_device - register a tty device
3224 *	@driver: the tty driver that describes the tty device
3225 *	@index: the index in the tty driver for this tty device
3226 *	@device: a struct device that is associated with this tty device.
3227 *		This field is optional, if there is no known struct device
3228 *		for this tty device it can be set to NULL safely.
3229 *
3230 *	Returns a pointer to the struct device for this tty device
3231 *	(or ERR_PTR(-EFOO) on error).
3232 *
3233 *	This call is required to be made to register an individual tty device
3234 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235 *	that bit is not set, this function should not be called by a tty
3236 *	driver.
3237 *
3238 *	Locking: ??
3239 */
3240
3241struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242				   struct device *device)
3243{
3244	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245}
3246EXPORT_SYMBOL(tty_register_device);
3247
3248static void tty_device_create_release(struct device *dev)
3249{
3250	dev_dbg(dev, "releasing...\n");
3251	kfree(dev);
3252}
3253
3254/**
3255 *	tty_register_device_attr - register a tty device
3256 *	@driver: the tty driver that describes the tty device
3257 *	@index: the index in the tty driver for this tty device
3258 *	@device: a struct device that is associated with this tty device.
3259 *		This field is optional, if there is no known struct device
3260 *		for this tty device it can be set to NULL safely.
3261 *	@drvdata: Driver data to be set to device.
3262 *	@attr_grp: Attribute group to be set on device.
3263 *
3264 *	Returns a pointer to the struct device for this tty device
3265 *	(or ERR_PTR(-EFOO) on error).
3266 *
3267 *	This call is required to be made to register an individual tty device
3268 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269 *	that bit is not set, this function should not be called by a tty
3270 *	driver.
3271 *
3272 *	Locking: ??
3273 */
3274struct device *tty_register_device_attr(struct tty_driver *driver,
3275				   unsigned index, struct device *device,
3276				   void *drvdata,
3277				   const struct attribute_group **attr_grp)
3278{
3279	char name[64];
3280	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281	struct device *dev = NULL;
3282	int retval = -ENODEV;
3283	bool cdev = false;
3284
3285	if (index >= driver->num) {
3286		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287		       driver->name, index);
3288		return ERR_PTR(-EINVAL);
3289	}
3290
3291	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292		pty_line_name(driver, index, name);
3293	else
3294		tty_line_name(driver, index, name);
3295
3296	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297		retval = tty_cdev_add(driver, devt, index, 1);
3298		if (retval)
3299			goto error;
3300		cdev = true;
3301	}
3302
3303	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304	if (!dev) {
3305		retval = -ENOMEM;
3306		goto error;
3307	}
3308
3309	dev->devt = devt;
3310	dev->class = tty_class;
3311	dev->parent = device;
3312	dev->release = tty_device_create_release;
3313	dev_set_name(dev, "%s", name);
3314	dev->groups = attr_grp;
3315	dev_set_drvdata(dev, drvdata);
3316
 
 
3317	retval = device_register(dev);
3318	if (retval)
3319		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320
3321	return dev;
3322
3323error:
 
 
3324	put_device(dev);
3325	if (cdev) {
3326		cdev_del(driver->cdevs[index]);
3327		driver->cdevs[index] = NULL;
3328	}
3329	return ERR_PTR(retval);
3330}
3331EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332
3333/**
3334 * 	tty_unregister_device - unregister a tty device
3335 * 	@driver: the tty driver that describes the tty device
3336 * 	@index: the index in the tty driver for this tty device
3337 *
3338 * 	If a tty device is registered with a call to tty_register_device() then
3339 *	this function must be called when the tty device is gone.
3340 *
3341 *	Locking: ??
3342 */
3343
3344void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345{
3346	device_destroy(tty_class,
3347		MKDEV(driver->major, driver->minor_start) + index);
3348	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349		cdev_del(driver->cdevs[index]);
3350		driver->cdevs[index] = NULL;
3351	}
3352}
3353EXPORT_SYMBOL(tty_unregister_device);
3354
3355/**
3356 * __tty_alloc_driver -- allocate tty driver
3357 * @lines: count of lines this driver can handle at most
3358 * @owner: module which is repsonsible for this driver
3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360 *
3361 * This should not be called directly, some of the provided macros should be
3362 * used instead. Use IS_ERR and friends on @retval.
3363 */
3364struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365		unsigned long flags)
3366{
3367	struct tty_driver *driver;
3368	unsigned int cdevs = 1;
3369	int err;
3370
3371	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372		return ERR_PTR(-EINVAL);
3373
3374	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375	if (!driver)
3376		return ERR_PTR(-ENOMEM);
3377
3378	kref_init(&driver->kref);
3379	driver->magic = TTY_DRIVER_MAGIC;
3380	driver->num = lines;
3381	driver->owner = owner;
3382	driver->flags = flags;
3383
3384	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386				GFP_KERNEL);
3387		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388				GFP_KERNEL);
3389		if (!driver->ttys || !driver->termios) {
3390			err = -ENOMEM;
3391			goto err_free_all;
3392		}
3393	}
3394
3395	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397				GFP_KERNEL);
3398		if (!driver->ports) {
3399			err = -ENOMEM;
3400			goto err_free_all;
3401		}
3402		cdevs = lines;
3403	}
3404
3405	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406	if (!driver->cdevs) {
3407		err = -ENOMEM;
3408		goto err_free_all;
3409	}
3410
3411	return driver;
3412err_free_all:
3413	kfree(driver->ports);
3414	kfree(driver->ttys);
3415	kfree(driver->termios);
3416	kfree(driver->cdevs);
3417	kfree(driver);
3418	return ERR_PTR(err);
3419}
3420EXPORT_SYMBOL(__tty_alloc_driver);
3421
3422static void destruct_tty_driver(struct kref *kref)
3423{
3424	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425	int i;
3426	struct ktermios *tp;
3427
3428	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429		/*
3430		 * Free the termios and termios_locked structures because
3431		 * we don't want to get memory leaks when modular tty
3432		 * drivers are removed from the kernel.
3433		 */
3434		for (i = 0; i < driver->num; i++) {
3435			tp = driver->termios[i];
3436			if (tp) {
3437				driver->termios[i] = NULL;
3438				kfree(tp);
3439			}
3440			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441				tty_unregister_device(driver, i);
3442		}
3443		proc_tty_unregister_driver(driver);
3444		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445			cdev_del(driver->cdevs[0]);
3446	}
3447	kfree(driver->cdevs);
3448	kfree(driver->ports);
3449	kfree(driver->termios);
3450	kfree(driver->ttys);
3451	kfree(driver);
3452}
3453
3454void tty_driver_kref_put(struct tty_driver *driver)
3455{
3456	kref_put(&driver->kref, destruct_tty_driver);
3457}
3458EXPORT_SYMBOL(tty_driver_kref_put);
3459
3460void tty_set_operations(struct tty_driver *driver,
3461			const struct tty_operations *op)
3462{
3463	driver->ops = op;
3464};
3465EXPORT_SYMBOL(tty_set_operations);
3466
3467void put_tty_driver(struct tty_driver *d)
3468{
3469	tty_driver_kref_put(d);
3470}
3471EXPORT_SYMBOL(put_tty_driver);
3472
3473/*
3474 * Called by a tty driver to register itself.
3475 */
3476int tty_register_driver(struct tty_driver *driver)
3477{
3478	int error;
3479	int i;
3480	dev_t dev;
3481	struct device *d;
3482
3483	if (!driver->major) {
3484		error = alloc_chrdev_region(&dev, driver->minor_start,
3485						driver->num, driver->name);
3486		if (!error) {
3487			driver->major = MAJOR(dev);
3488			driver->minor_start = MINOR(dev);
3489		}
3490	} else {
3491		dev = MKDEV(driver->major, driver->minor_start);
3492		error = register_chrdev_region(dev, driver->num, driver->name);
3493	}
3494	if (error < 0)
3495		goto err;
3496
3497	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498		error = tty_cdev_add(driver, dev, 0, driver->num);
3499		if (error)
3500			goto err_unreg_char;
3501	}
3502
3503	mutex_lock(&tty_mutex);
3504	list_add(&driver->tty_drivers, &tty_drivers);
3505	mutex_unlock(&tty_mutex);
3506
3507	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508		for (i = 0; i < driver->num; i++) {
3509			d = tty_register_device(driver, i, NULL);
3510			if (IS_ERR(d)) {
3511				error = PTR_ERR(d);
3512				goto err_unreg_devs;
3513			}
3514		}
3515	}
3516	proc_tty_register_driver(driver);
3517	driver->flags |= TTY_DRIVER_INSTALLED;
3518	return 0;
3519
3520err_unreg_devs:
3521	for (i--; i >= 0; i--)
3522		tty_unregister_device(driver, i);
3523
3524	mutex_lock(&tty_mutex);
3525	list_del(&driver->tty_drivers);
3526	mutex_unlock(&tty_mutex);
3527
3528err_unreg_char:
3529	unregister_chrdev_region(dev, driver->num);
3530err:
3531	return error;
3532}
3533EXPORT_SYMBOL(tty_register_driver);
3534
3535/*
3536 * Called by a tty driver to unregister itself.
3537 */
3538int tty_unregister_driver(struct tty_driver *driver)
3539{
3540#if 0
3541	/* FIXME */
3542	if (driver->refcount)
3543		return -EBUSY;
3544#endif
3545	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546				driver->num);
3547	mutex_lock(&tty_mutex);
3548	list_del(&driver->tty_drivers);
3549	mutex_unlock(&tty_mutex);
3550	return 0;
3551}
3552
3553EXPORT_SYMBOL(tty_unregister_driver);
3554
3555dev_t tty_devnum(struct tty_struct *tty)
3556{
3557	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558}
3559EXPORT_SYMBOL(tty_devnum);
3560
3561void tty_default_fops(struct file_operations *fops)
3562{
3563	*fops = tty_fops;
3564}
3565
3566/*
3567 * Initialize the console device. This is called *early*, so
3568 * we can't necessarily depend on lots of kernel help here.
3569 * Just do some early initializations, and do the complex setup
3570 * later.
3571 */
3572void __init console_init(void)
3573{
3574	initcall_t *call;
3575
3576	/* Setup the default TTY line discipline. */
3577	n_tty_init();
3578
3579	/*
3580	 * set up the console device so that later boot sequences can
3581	 * inform about problems etc..
3582	 */
3583	call = __con_initcall_start;
3584	while (call < __con_initcall_end) {
3585		(*call)();
3586		call++;
3587	}
3588}
3589
3590static char *tty_devnode(struct device *dev, umode_t *mode)
3591{
3592	if (!mode)
3593		return NULL;
3594	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596		*mode = 0666;
3597	return NULL;
3598}
3599
3600static int __init tty_class_init(void)
3601{
3602	tty_class = class_create(THIS_MODULE, "tty");
3603	if (IS_ERR(tty_class))
3604		return PTR_ERR(tty_class);
3605	tty_class->devnode = tty_devnode;
3606	return 0;
3607}
3608
3609postcore_initcall(tty_class_init);
3610
3611/* 3/2004 jmc: why do these devices exist? */
3612static struct cdev tty_cdev, console_cdev;
3613
3614static ssize_t show_cons_active(struct device *dev,
3615				struct device_attribute *attr, char *buf)
3616{
3617	struct console *cs[16];
3618	int i = 0;
3619	struct console *c;
3620	ssize_t count = 0;
3621
3622	console_lock();
3623	for_each_console(c) {
3624		if (!c->device)
3625			continue;
3626		if (!c->write)
3627			continue;
3628		if ((c->flags & CON_ENABLED) == 0)
3629			continue;
3630		cs[i++] = c;
3631		if (i >= ARRAY_SIZE(cs))
3632			break;
3633	}
3634	while (i--) {
3635		int index = cs[i]->index;
3636		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637
3638		/* don't resolve tty0 as some programs depend on it */
3639		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640			count += tty_line_name(drv, index, buf + count);
3641		else
3642			count += sprintf(buf + count, "%s%d",
3643					 cs[i]->name, cs[i]->index);
3644
3645		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646	}
3647	console_unlock();
3648
3649	return count;
3650}
3651static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652
3653static struct attribute *cons_dev_attrs[] = {
3654	&dev_attr_active.attr,
3655	NULL
3656};
3657
3658ATTRIBUTE_GROUPS(cons_dev);
3659
3660static struct device *consdev;
3661
3662void console_sysfs_notify(void)
3663{
3664	if (consdev)
3665		sysfs_notify(&consdev->kobj, NULL, "active");
3666}
3667
3668/*
3669 * Ok, now we can initialize the rest of the tty devices and can count
3670 * on memory allocations, interrupts etc..
3671 */
3672int __init tty_init(void)
3673{
3674	cdev_init(&tty_cdev, &tty_fops);
3675	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677		panic("Couldn't register /dev/tty driver\n");
3678	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679
3680	cdev_init(&console_cdev, &console_fops);
3681	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683		panic("Couldn't register /dev/console driver\n");
3684	consdev = device_create_with_groups(tty_class, NULL,
3685					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686					    cons_dev_groups, "console");
3687	if (IS_ERR(consdev))
3688		consdev = NULL;
3689
3690#ifdef CONFIG_VT
3691	vty_init(&console_fops);
3692#endif
3693	return 0;
3694}
3695