Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100
 101#include <linux/uaccess.h>
 102
 103#include <linux/kbd_kern.h>
 104#include <linux/vt_kern.h>
 105#include <linux/selection.h>
 106
 107#include <linux/kmod.h>
 108#include <linux/nsproxy.h>
 109
 110#undef TTY_DEBUG_HANGUP
 111#ifdef TTY_DEBUG_HANGUP
 112# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 113#else
 114# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 115#endif
 116
 117#define TTY_PARANOIA_CHECK 1
 118#define CHECK_TTY_COUNT 1
 119
 120struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 121	.c_iflag = ICRNL | IXON,
 122	.c_oflag = OPOST | ONLCR,
 123	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 124	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 125		   ECHOCTL | ECHOKE | IEXTEN,
 126	.c_cc = INIT_C_CC,
 127	.c_ispeed = 38400,
 128	.c_ospeed = 38400,
 129	/* .c_line = N_TTY, */
 130};
 131
 132EXPORT_SYMBOL(tty_std_termios);
 133
 134/* This list gets poked at by procfs and various bits of boot up code. This
 135   could do with some rationalisation such as pulling the tty proc function
 136   into this file */
 137
 138LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 139
 140/* Mutex to protect creating and releasing a tty */
 
 141DEFINE_MUTEX(tty_mutex);
 
 
 
 
 142
 143static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 144static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 145ssize_t redirected_tty_write(struct file *, const char __user *,
 146							size_t, loff_t *);
 147static __poll_t tty_poll(struct file *, poll_table *);
 148static int tty_open(struct inode *, struct file *);
 149long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 207}
 208
 209/**
 210 * tty_free_file - free file->private_data
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 
 
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254const char *tty_driver_name(const struct tty_struct *tty)
 255{
 256	if (!tty || !tty->driver)
 257		return "";
 258	return tty->driver->name;
 259}
 260
 261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 262			      const char *routine)
 263{
 264#ifdef TTY_PARANOIA_CHECK
 265	if (!tty) {
 266		pr_warn("(%d:%d): %s: NULL tty\n",
 
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270	if (tty->magic != TTY_MAGIC) {
 271		pr_warn("(%d:%d): %s: bad magic number\n",
 
 272			imajor(inode), iminor(inode), routine);
 273		return 1;
 274	}
 275#endif
 276	return 0;
 277}
 278
 279/* Caller must hold tty_lock */
 280static int check_tty_count(struct tty_struct *tty, const char *routine)
 281{
 282#ifdef CHECK_TTY_COUNT
 283	struct list_head *p;
 284	int count = 0, kopen_count = 0;
 285
 286	spin_lock(&tty->files_lock);
 287	list_for_each(p, &tty->tty_files) {
 288		count++;
 289	}
 290	spin_unlock(&tty->files_lock);
 291	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 292	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 293	    tty->link && tty->link->count)
 294		count++;
 295	if (tty_port_kopened(tty->port))
 296		kopen_count++;
 297	if (tty->count != (count + kopen_count)) {
 298		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 299			 routine, tty->count, count, kopen_count);
 300		return (count + kopen_count);
 301	}
 302#endif
 303	return 0;
 304}
 305
 306/**
 307 *	get_tty_driver		-	find device of a tty
 308 *	@dev_t: device identifier
 309 *	@index: returns the index of the tty
 310 *
 311 *	This routine returns a tty driver structure, given a device number
 312 *	and also passes back the index number.
 313 *
 314 *	Locking: caller must hold tty_mutex
 315 */
 316
 317static struct tty_driver *get_tty_driver(dev_t device, int *index)
 318{
 319	struct tty_driver *p;
 320
 321	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 322		dev_t base = MKDEV(p->major, p->minor_start);
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 434				size_t count, loff_t *ppos)
 435{
 436	return 0;
 437}
 438
 439static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 440				 size_t count, loff_t *ppos)
 441{
 442	return -EIO;
 443}
 444
 445/* No kernel lock held - none needed ;) */
 446static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 447{
 448	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 449}
 450
 451static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 452		unsigned long arg)
 453{
 454	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 455}
 456
 457static long hung_up_tty_compat_ioctl(struct file *file,
 458				     unsigned int cmd, unsigned long arg)
 459{
 460	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 461}
 462
 463static int hung_up_tty_fasync(int fd, struct file *file, int on)
 464{
 465	return -ENOTTY;
 466}
 467
 468static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 469{
 470	struct tty_struct *tty = file_tty(file);
 471
 472	if (tty && tty->ops && tty->ops->show_fdinfo)
 473		tty->ops->show_fdinfo(tty, m);
 474}
 475
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read		= tty_read,
 492	.write		= redirected_tty_write,
 493	.poll		= tty_poll,
 494	.unlocked_ioctl	= tty_ioctl,
 495	.compat_ioctl	= tty_compat_ioctl,
 496	.open		= tty_open,
 497	.release	= tty_release,
 498	.fasync		= tty_fasync,
 499};
 500
 501static const struct file_operations hung_up_tty_fops = {
 502	.llseek		= no_llseek,
 503	.read		= hung_up_tty_read,
 504	.write		= hung_up_tty_write,
 505	.poll		= hung_up_tty_poll,
 506	.unlocked_ioctl	= hung_up_tty_ioctl,
 507	.compat_ioctl	= hung_up_tty_compat_ioctl,
 508	.release	= tty_release,
 509	.fasync		= hung_up_tty_fasync,
 510};
 511
 512static DEFINE_SPINLOCK(redirect_lock);
 513static struct file *redirect;
 514
 515/**
 516 *	tty_wakeup	-	request more data
 517 *	@tty: terminal
 518 *
 519 *	Internal and external helper for wakeups of tty. This function
 520 *	informs the line discipline if present that the driver is ready
 521 *	to receive more output data.
 522 */
 523
 524void tty_wakeup(struct tty_struct *tty)
 525{
 526	struct tty_ldisc *ld;
 527
 528	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 529		ld = tty_ldisc_ref(tty);
 530		if (ld) {
 531			if (ld->ops->write_wakeup)
 532				ld->ops->write_wakeup(tty);
 533			tty_ldisc_deref(ld);
 534		}
 535	}
 536	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 537}
 538
 539EXPORT_SYMBOL_GPL(tty_wakeup);
 540
 541/**
 542 *	__tty_hangup		-	actual handler for hangup events
 543 *	@work: tty device
 544 *
 545 *	This can be called by a "kworker" kernel thread.  That is process
 546 *	synchronous but doesn't hold any locks, so we need to make sure we
 547 *	have the appropriate locks for what we're doing.
 548 *
 549 *	The hangup event clears any pending redirections onto the hung up
 550 *	device. It ensures future writes will error and it does the needed
 551 *	line discipline hangup and signal delivery. The tty object itself
 552 *	remains intact.
 553 *
 554 *	Locking:
 555 *		BTM
 556 *		  redirect lock for undoing redirection
 557 *		  file list lock for manipulating list of ttys
 558 *		  tty_ldiscs_lock from called functions
 559 *		  termios_rwsem resetting termios data
 560 *		  tasklist_lock to walk task list for hangup event
 561 *		    ->siglock to protect ->signal/->sighand
 562 */
 563static void __tty_hangup(struct tty_struct *tty, int exit_session)
 564{
 565	struct file *cons_filp = NULL;
 566	struct file *filp, *f = NULL;
 
 567	struct tty_file_private *priv;
 568	int    closecount = 0, n;
 569	int refs;
 
 570
 571	if (!tty)
 572		return;
 573
 574
 575	spin_lock(&redirect_lock);
 576	if (redirect && file_tty(redirect) == tty) {
 577		f = redirect;
 578		redirect = NULL;
 579	}
 580	spin_unlock(&redirect_lock);
 581
 582	tty_lock(tty);
 583
 584	if (test_bit(TTY_HUPPED, &tty->flags)) {
 585		tty_unlock(tty);
 586		return;
 587	}
 588
 589	/*
 590	 * Some console devices aren't actually hung up for technical and
 591	 * historical reasons, which can lead to indefinite interruptible
 592	 * sleep in n_tty_read().  The following explicitly tells
 593	 * n_tty_read() to abort readers.
 594	 */
 595	set_bit(TTY_HUPPING, &tty->flags);
 596
 597	/* inuse_filps is protected by the single tty lock,
 598	   this really needs to change if we want to flush the
 599	   workqueue with the lock held */
 600	check_tty_count(tty, "tty_hangup");
 601
 602	spin_lock(&tty->files_lock);
 603	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 604	list_for_each_entry(priv, &tty->tty_files, list) {
 605		filp = priv->file;
 606		if (filp->f_op->write == redirected_tty_write)
 607			cons_filp = filp;
 608		if (filp->f_op->write != tty_write)
 609			continue;
 610		closecount++;
 611		__tty_fasync(-1, filp, 0);	/* can't block */
 612		filp->f_op = &hung_up_tty_fops;
 613	}
 614	spin_unlock(&tty->files_lock);
 615
 616	refs = tty_signal_session_leader(tty, exit_session);
 617	/* Account for the p->signal references we killed */
 618	while (refs--)
 619		tty_kref_put(tty);
 
 620
 621	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	spin_lock_irq(&tty->ctrl_lock);
 624	clear_bit(TTY_THROTTLED, &tty->flags);
 
 625	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 626	put_pid(tty->session);
 627	put_pid(tty->pgrp);
 628	tty->session = NULL;
 629	tty->pgrp = NULL;
 630	tty->ctrl_status = 0;
 631	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 632
 633	/*
 634	 * If one of the devices matches a console pointer, we
 635	 * cannot just call hangup() because that will cause
 636	 * tty->count and state->count to go out of sync.
 637	 * So we just call close() the right number of times.
 638	 */
 639	if (cons_filp) {
 640		if (tty->ops->close)
 641			for (n = 0; n < closecount; n++)
 642				tty->ops->close(tty, cons_filp);
 643	} else if (tty->ops->hangup)
 644		tty->ops->hangup(tty);
 645	/*
 646	 * We don't want to have driver/ldisc interactions beyond the ones
 647	 * we did here. The driver layer expects no calls after ->hangup()
 648	 * from the ldisc side, which is now guaranteed.
 
 649	 */
 650	set_bit(TTY_HUPPED, &tty->flags);
 651	clear_bit(TTY_HUPPING, &tty->flags);
 652	tty_unlock(tty);
 
 
 653
 654	if (f)
 655		fput(f);
 656}
 657
 658static void do_tty_hangup(struct work_struct *work)
 659{
 660	struct tty_struct *tty =
 661		container_of(work, struct tty_struct, hangup_work);
 662
 663	__tty_hangup(tty, 0);
 664}
 665
 666/**
 667 *	tty_hangup		-	trigger a hangup event
 668 *	@tty: tty to hangup
 669 *
 670 *	A carrier loss (virtual or otherwise) has occurred on this like
 671 *	schedule a hangup sequence to run after this event.
 672 */
 673
 674void tty_hangup(struct tty_struct *tty)
 675{
 676	tty_debug_hangup(tty, "hangup\n");
 
 
 
 677	schedule_work(&tty->hangup_work);
 678}
 679
 680EXPORT_SYMBOL(tty_hangup);
 681
 682/**
 683 *	tty_vhangup		-	process vhangup
 684 *	@tty: tty to hangup
 685 *
 686 *	The user has asked via system call for the terminal to be hung up.
 687 *	We do this synchronously so that when the syscall returns the process
 688 *	is complete. That guarantee is necessary for security reasons.
 689 */
 690
 691void tty_vhangup(struct tty_struct *tty)
 692{
 693	tty_debug_hangup(tty, "vhangup\n");
 694	__tty_hangup(tty, 0);
 
 
 
 
 695}
 696
 697EXPORT_SYMBOL(tty_vhangup);
 698
 699
 700/**
 701 *	tty_vhangup_self	-	process vhangup for own ctty
 702 *
 703 *	Perform a vhangup on the current controlling tty
 704 */
 705
 706void tty_vhangup_self(void)
 707{
 708	struct tty_struct *tty;
 709
 710	tty = get_current_tty();
 711	if (tty) {
 712		tty_vhangup(tty);
 713		tty_kref_put(tty);
 714	}
 715}
 716
 717/**
 718 *	tty_vhangup_session		-	hangup session leader exit
 719 *	@tty: tty to hangup
 720 *
 721 *	The session leader is exiting and hanging up its controlling terminal.
 722 *	Every process in the foreground process group is signalled SIGHUP.
 723 *
 724 *	We do this synchronously so that when the syscall returns the process
 725 *	is complete. That guarantee is necessary for security reasons.
 726 */
 727
 728void tty_vhangup_session(struct tty_struct *tty)
 729{
 730	tty_debug_hangup(tty, "session hangup\n");
 731	__tty_hangup(tty, 1);
 
 
 
 
 
 
 
 
 
 732}
 733
 734/**
 735 *	tty_hung_up_p		-	was tty hung up
 736 *	@filp: file pointer of tty
 737 *
 738 *	Return true if the tty has been subject to a vhangup or a carrier
 739 *	loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740 */
 741
 742int tty_hung_up_p(struct file *filp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743{
 744	return (filp && filp->f_op == &hung_up_tty_fops);
 
 
 
 
 
 745}
 746
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 749/**
 750 *	stop_tty	-	propagate flow control
 751 *	@tty: tty to stop
 752 *
 753 *	Perform flow control to the driver. May be called
 
 754 *	on an already stopped device and will not re-call the driver
 755 *	method.
 756 *
 757 *	This functionality is used by both the line disciplines for
 758 *	halting incoming flow and by the driver. It may therefore be
 759 *	called from any context, may be under the tty atomic_write_lock
 760 *	but not always.
 761 *
 762 *	Locking:
 763 *		flow_lock
 764 */
 765
 766void __stop_tty(struct tty_struct *tty)
 767{
 768	if (tty->stopped)
 
 
 
 769		return;
 
 770	tty->stopped = 1;
 
 
 
 
 
 
 771	if (tty->ops->stop)
 772		tty->ops->stop(tty);
 773}
 774
 775void stop_tty(struct tty_struct *tty)
 776{
 777	unsigned long flags;
 778
 779	spin_lock_irqsave(&tty->flow_lock, flags);
 780	__stop_tty(tty);
 781	spin_unlock_irqrestore(&tty->flow_lock, flags);
 782}
 783EXPORT_SYMBOL(stop_tty);
 784
 785/**
 786 *	start_tty	-	propagate flow control
 787 *	@tty: tty to start
 788 *
 789 *	Start a tty that has been stopped if at all possible. If this
 790 *	tty was previous stopped and is now being started, the driver
 791 *	start method is invoked and the line discipline woken.
 
 792 *
 793 *	Locking:
 794 *		flow_lock
 795 */
 796
 797void __start_tty(struct tty_struct *tty)
 798{
 799	if (!tty->stopped || tty->flow_stopped)
 
 
 
 800		return;
 
 801	tty->stopped = 0;
 
 
 
 
 
 
 802	if (tty->ops->start)
 803		tty->ops->start(tty);
 
 804	tty_wakeup(tty);
 805}
 806
 807void start_tty(struct tty_struct *tty)
 808{
 809	unsigned long flags;
 810
 811	spin_lock_irqsave(&tty->flow_lock, flags);
 812	__start_tty(tty);
 813	spin_unlock_irqrestore(&tty->flow_lock, flags);
 814}
 815EXPORT_SYMBOL(start_tty);
 816
 817static void tty_update_time(struct timespec *time)
 818{
 819	unsigned long sec = get_seconds();
 820
 821	/*
 822	 * We only care if the two values differ in anything other than the
 823	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 824	 * the time of the tty device, otherwise it could be construded as a
 825	 * security leak to let userspace know the exact timing of the tty.
 826	 */
 827	if ((sec ^ time->tv_sec) & ~7)
 828		time->tv_sec = sec;
 829}
 830
 831/**
 832 *	tty_read	-	read method for tty device files
 833 *	@file: pointer to tty file
 834 *	@buf: user buffer
 835 *	@count: size of user buffer
 836 *	@ppos: unused
 837 *
 838 *	Perform the read system call function on this terminal device. Checks
 839 *	for hung up devices before calling the line discipline method.
 840 *
 841 *	Locking:
 842 *		Locks the line discipline internally while needed. Multiple
 843 *	read calls may be outstanding in parallel.
 844 */
 845
 846static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 847			loff_t *ppos)
 848{
 849	int i;
 850	struct inode *inode = file_inode(file);
 851	struct tty_struct *tty = file_tty(file);
 852	struct tty_ldisc *ld;
 853
 854	if (tty_paranoia_check(tty, inode, "tty_read"))
 855		return -EIO;
 856	if (!tty || tty_io_error(tty))
 857		return -EIO;
 858
 859	/* We want to wait for the line discipline to sort out in this
 860	   situation */
 861	ld = tty_ldisc_ref_wait(tty);
 862	if (!ld)
 863		return hung_up_tty_read(file, buf, count, ppos);
 864	if (ld->ops->read)
 865		i = ld->ops->read(tty, file, buf, count);
 866	else
 867		i = -EIO;
 868	tty_ldisc_deref(ld);
 869
 870	if (i > 0)
 871		tty_update_time(&inode->i_atime);
 872
 873	return i;
 874}
 875
 876static void tty_write_unlock(struct tty_struct *tty)
 
 877{
 878	mutex_unlock(&tty->atomic_write_lock);
 879	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 880}
 881
 882static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 883{
 884	if (!mutex_trylock(&tty->atomic_write_lock)) {
 885		if (ndelay)
 886			return -EAGAIN;
 887		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 888			return -ERESTARTSYS;
 889	}
 890	return 0;
 891}
 892
 893/*
 894 * Split writes up in sane blocksizes to avoid
 895 * denial-of-service type attacks
 896 */
 897static inline ssize_t do_tty_write(
 898	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 899	struct tty_struct *tty,
 900	struct file *file,
 901	const char __user *buf,
 902	size_t count)
 903{
 904	ssize_t ret, written = 0;
 905	unsigned int chunk;
 906
 907	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 908	if (ret < 0)
 909		return ret;
 910
 911	/*
 912	 * We chunk up writes into a temporary buffer. This
 913	 * simplifies low-level drivers immensely, since they
 914	 * don't have locking issues and user mode accesses.
 915	 *
 916	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 917	 * big chunk-size..
 918	 *
 919	 * The default chunk-size is 2kB, because the NTTY
 920	 * layer has problems with bigger chunks. It will
 921	 * claim to be able to handle more characters than
 922	 * it actually does.
 923	 *
 924	 * FIXME: This can probably go away now except that 64K chunks
 925	 * are too likely to fail unless switched to vmalloc...
 926	 */
 927	chunk = 2048;
 928	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 929		chunk = 65536;
 930	if (count < chunk)
 931		chunk = count;
 932
 933	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 934	if (tty->write_cnt < chunk) {
 935		unsigned char *buf_chunk;
 936
 937		if (chunk < 1024)
 938			chunk = 1024;
 939
 940		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 941		if (!buf_chunk) {
 942			ret = -ENOMEM;
 943			goto out;
 944		}
 945		kfree(tty->write_buf);
 946		tty->write_cnt = chunk;
 947		tty->write_buf = buf_chunk;
 948	}
 949
 950	/* Do the write .. */
 951	for (;;) {
 952		size_t size = count;
 953		if (size > chunk)
 954			size = chunk;
 955		ret = -EFAULT;
 956		if (copy_from_user(tty->write_buf, buf, size))
 957			break;
 958		ret = write(tty, file, tty->write_buf, size);
 959		if (ret <= 0)
 960			break;
 961		written += ret;
 962		buf += ret;
 963		count -= ret;
 964		if (!count)
 965			break;
 966		ret = -ERESTARTSYS;
 967		if (signal_pending(current))
 968			break;
 969		cond_resched();
 970	}
 971	if (written) {
 972		tty_update_time(&file_inode(file)->i_mtime);
 
 973		ret = written;
 974	}
 975out:
 976	tty_write_unlock(tty);
 977	return ret;
 978}
 979
 980/**
 981 * tty_write_message - write a message to a certain tty, not just the console.
 982 * @tty: the destination tty_struct
 983 * @msg: the message to write
 984 *
 985 * This is used for messages that need to be redirected to a specific tty.
 986 * We don't put it into the syslog queue right now maybe in the future if
 987 * really needed.
 988 *
 989 * We must still hold the BTM and test the CLOSING flag for the moment.
 990 */
 991
 992void tty_write_message(struct tty_struct *tty, char *msg)
 993{
 994	if (tty) {
 995		mutex_lock(&tty->atomic_write_lock);
 996		tty_lock(tty);
 997		if (tty->ops->write && tty->count > 0)
 
 998			tty->ops->write(tty, msg, strlen(msg));
 999		tty_unlock(tty);
 
1000		tty_write_unlock(tty);
1001	}
1002	return;
1003}
1004
1005
1006/**
1007 *	tty_write		-	write method for tty device file
1008 *	@file: tty file pointer
1009 *	@buf: user data to write
1010 *	@count: bytes to write
1011 *	@ppos: unused
1012 *
1013 *	Write data to a tty device via the line discipline.
1014 *
1015 *	Locking:
1016 *		Locks the line discipline as required
1017 *		Writes to the tty driver are serialized by the atomic_write_lock
1018 *	and are then processed in chunks to the device. The line discipline
1019 *	write method will not be invoked in parallel for each device.
1020 */
1021
1022static ssize_t tty_write(struct file *file, const char __user *buf,
1023						size_t count, loff_t *ppos)
1024{
 
1025	struct tty_struct *tty = file_tty(file);
1026 	struct tty_ldisc *ld;
1027	ssize_t ret;
1028
1029	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030		return -EIO;
1031	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1032			return -EIO;
1033	/* Short term debug to catch buggy drivers */
1034	if (tty->ops->write_room == NULL)
1035		tty_err(tty, "missing write_room method\n");
 
1036	ld = tty_ldisc_ref_wait(tty);
1037	if (!ld)
1038		return hung_up_tty_write(file, buf, count, ppos);
1039	if (!ld->ops->write)
1040		ret = -EIO;
1041	else
1042		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043	tty_ldisc_deref(ld);
1044	return ret;
1045}
1046
1047ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048						size_t count, loff_t *ppos)
1049{
1050	struct file *p = NULL;
1051
1052	spin_lock(&redirect_lock);
1053	if (redirect)
1054		p = get_file(redirect);
 
 
1055	spin_unlock(&redirect_lock);
1056
1057	if (p) {
1058		ssize_t res;
1059		res = vfs_write(p, buf, count, &p->f_pos);
1060		fput(p);
1061		return res;
1062	}
1063	return tty_write(file, buf, count, ppos);
1064}
1065
1066/**
1067 *	tty_send_xchar	-	send priority character
1068 *
1069 *	Send a high priority character to the tty even if stopped
1070 *
1071 *	Locking: none for xchar method, write ordering for write method.
1072 */
1073
1074int tty_send_xchar(struct tty_struct *tty, char ch)
1075{
1076	int	was_stopped = tty->stopped;
1077
1078	if (tty->ops->send_xchar) {
1079		down_read(&tty->termios_rwsem);
1080		tty->ops->send_xchar(tty, ch);
1081		up_read(&tty->termios_rwsem);
1082		return 0;
1083	}
1084
1085	if (tty_write_lock(tty, 0) < 0)
1086		return -ERESTARTSYS;
1087
1088	down_read(&tty->termios_rwsem);
1089	if (was_stopped)
1090		start_tty(tty);
1091	tty->ops->write(tty, &ch, 1);
1092	if (was_stopped)
1093		stop_tty(tty);
1094	up_read(&tty->termios_rwsem);
1095	tty_write_unlock(tty);
1096	return 0;
1097}
1098
1099static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101/**
1102 *	pty_line_name	-	generate name for a pty
1103 *	@driver: the tty driver in use
1104 *	@index: the minor number
1105 *	@p: output buffer of at least 6 bytes
1106 *
1107 *	Generate a name from a driver reference and write it to the output
1108 *	buffer.
1109 *
1110 *	Locking: None
1111 */
1112static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113{
1114	int i = index + driver->name_base;
1115	/* ->name is initialized to "ttyp", but "tty" is expected */
1116	sprintf(p, "%s%c%x",
1117		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118		ptychar[i >> 4 & 0xf], i & 0xf);
1119}
1120
1121/**
1122 *	tty_line_name	-	generate name for a tty
1123 *	@driver: the tty driver in use
1124 *	@index: the minor number
1125 *	@p: output buffer of at least 7 bytes
1126 *
1127 *	Generate a name from a driver reference and write it to the output
1128 *	buffer.
1129 *
1130 *	Locking: None
1131 */
1132static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133{
1134	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135		return sprintf(p, "%s", driver->name);
1136	else
1137		return sprintf(p, "%s%d", driver->name,
1138			       index + driver->name_base);
1139}
1140
1141/**
1142 *	tty_driver_lookup_tty() - find an existing tty, if any
1143 *	@driver: the driver for the tty
1144 *	@idx:	 the minor number
1145 *
1146 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 *	driver lookup() method returns an error.
1148 *
1149 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1150 */
1151static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152		struct file *file, int idx)
1153{
1154	struct tty_struct *tty;
1155
1156	if (driver->ops->lookup)
1157		if (!file)
1158			tty = ERR_PTR(-EIO);
1159		else
1160			tty = driver->ops->lookup(driver, file, idx);
1161	else
1162		tty = driver->ttys[idx];
1163
1164	if (!IS_ERR(tty))
1165		tty_kref_get(tty);
1166	return tty;
1167}
1168
1169/**
1170 *	tty_init_termios	-  helper for termios setup
1171 *	@tty: the tty to set up
1172 *
1173 *	Initialise the termios structures for this tty. Thus runs under
1174 *	the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
1177void tty_init_termios(struct tty_struct *tty)
1178{
1179	struct ktermios *tp;
1180	int idx = tty->index;
1181
1182	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183		tty->termios = tty->driver->init_termios;
1184	else {
1185		/* Check for lazy saved data */
1186		tp = tty->driver->termios[idx];
1187		if (tp != NULL) {
1188			tty->termios = *tp;
1189			tty->termios.c_line  = tty->driver->init_termios.c_line;
1190		} else
1191			tty->termios = tty->driver->init_termios;
1192	}
 
 
 
1193	/* Compatibility until drivers always set this */
1194	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1196}
1197EXPORT_SYMBOL_GPL(tty_init_termios);
1198
1199int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200{
1201	tty_init_termios(tty);
 
 
 
1202	tty_driver_kref_get(driver);
1203	tty->count++;
1204	driver->ttys[tty->index] = tty;
1205	return 0;
1206}
1207EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209/**
1210 *	tty_driver_install_tty() - install a tty entry in the driver
1211 *	@driver: the driver for the tty
1212 *	@tty: the tty
1213 *
1214 *	Install a tty object into the driver tables. The tty->index field
1215 *	will be set by the time this is called. This method is responsible
1216 *	for ensuring any need additional structures are allocated and
1217 *	configured.
1218 *
1219 *	Locking: tty_mutex for now
1220 */
1221static int tty_driver_install_tty(struct tty_driver *driver,
1222						struct tty_struct *tty)
1223{
1224	return driver->ops->install ? driver->ops->install(driver, tty) :
1225		tty_standard_install(driver, tty);
1226}
1227
1228/**
1229 *	tty_driver_remove_tty() - remove a tty from the driver tables
1230 *	@driver: the driver for the tty
1231 *	@idx:	 the minor number
1232 *
1233 *	Remvoe a tty object from the driver tables. The tty->index field
1234 *	will be set by the time this is called.
1235 *
1236 *	Locking: tty_mutex for now
1237 */
1238static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239{
1240	if (driver->ops->remove)
1241		driver->ops->remove(driver, tty);
1242	else
1243		driver->ttys[tty->index] = NULL;
1244}
1245
1246/*
1247 * 	tty_reopen()	- fast re-open of an open tty
1248 * 	@tty	- the tty to open
1249 *
1250 *	Return 0 on success, -errno on error.
1251 *	Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 *	Locking: Caller must hold tty_lock
 
1254 */
1255static int tty_reopen(struct tty_struct *tty)
1256{
1257	struct tty_driver *driver = tty->driver;
1258
1259	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1260	    driver->subtype == PTY_TYPE_MASTER)
 
1261		return -EIO;
1262
1263	if (!tty->count)
1264		return -EAGAIN;
1265
1266	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1267		return -EBUSY;
 
 
 
1268
 
 
1269	tty->count++;
1270
1271	if (!tty->ldisc)
1272		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
1273
1274	return 0;
1275}
1276
1277/**
1278 *	tty_init_dev		-	initialise a tty device
1279 *	@driver: tty driver we are opening a device on
1280 *	@idx: device index
1281 *	@ret_tty: returned tty structure
1282 *
1283 *	Prepare a tty device. This may not be a "new" clean device but
1284 *	could also be an active device. The pty drivers require special
1285 *	handling because of this.
1286 *
1287 *	Locking:
1288 *		The function is called under the tty_mutex, which
1289 *	protects us from the tty struct or driver itself going away.
1290 *
1291 *	On exit the tty device has the line discipline attached and
1292 *	a reference count of 1. If a pair was created for pty/tty use
1293 *	and the other was a pty master then it too has a reference count of 1.
1294 *
1295 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1296 * failed open.  The new code protects the open with a mutex, so it's
1297 * really quite straightforward.  The mutex locking can probably be
1298 * relaxed for the (most common) case of reopening a tty.
1299 */
1300
1301struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1302{
1303	struct tty_struct *tty;
1304	int retval;
1305
1306	/*
1307	 * First time open is complex, especially for PTY devices.
1308	 * This code guarantees that either everything succeeds and the
1309	 * TTY is ready for operation, or else the table slots are vacated
1310	 * and the allocated memory released.  (Except that the termios
1311	 * may be retained.)
1312	 */
1313
1314	if (!try_module_get(driver->owner))
1315		return ERR_PTR(-ENODEV);
1316
1317	tty = alloc_tty_struct(driver, idx);
1318	if (!tty) {
1319		retval = -ENOMEM;
1320		goto err_module_put;
1321	}
 
1322
1323	tty_lock(tty);
1324	retval = tty_driver_install_tty(driver, tty);
1325	if (retval < 0)
1326		goto err_free_tty;
1327
1328	if (!tty->port)
1329		tty->port = driver->ports[idx];
1330
1331	WARN_RATELIMIT(!tty->port,
1332			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1333			__func__, tty->driver->name);
1334
1335	retval = tty_ldisc_lock(tty, 5 * HZ);
1336	if (retval)
1337		goto err_release_lock;
1338	tty->port->itty = tty;
1339
1340	/*
1341	 * Structures all installed ... call the ldisc open routines.
1342	 * If we fail here just call release_tty to clean up.  No need
1343	 * to decrement the use counts, as release_tty doesn't care.
1344	 */
1345	retval = tty_ldisc_setup(tty, tty->link);
1346	if (retval)
1347		goto err_release_tty;
1348	tty_ldisc_unlock(tty);
1349	/* Return the tty locked so that it cannot vanish under the caller */
1350	return tty;
1351
1352err_free_tty:
1353	tty_unlock(tty);
1354	free_tty_struct(tty);
1355err_module_put:
1356	module_put(driver->owner);
1357	return ERR_PTR(retval);
1358
1359	/* call the tty release_tty routine to clean out this slot */
1360err_release_tty:
1361	tty_ldisc_unlock(tty);
1362	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1363			     retval, idx);
1364err_release_lock:
1365	tty_unlock(tty);
1366	release_tty(tty, idx);
1367	return ERR_PTR(retval);
1368}
1369
1370static void tty_free_termios(struct tty_struct *tty)
1371{
1372	struct ktermios *tp;
1373	int idx = tty->index;
1374
1375	/* If the port is going to reset then it has no termios to save */
1376	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1377		return;
1378
1379	/* Stash the termios data */
1380	tp = tty->driver->termios[idx];
1381	if (tp == NULL) {
1382		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1383		if (tp == NULL)
1384			return;
1385		tty->driver->termios[idx] = tp;
1386	}
1387	*tp = tty->termios;
1388}
 
1389
1390/**
1391 *	tty_flush_works		-	flush all works of a tty/pty pair
1392 *	@tty: tty device to flush works for (or either end of a pty pair)
1393 *
1394 *	Sync flush all works belonging to @tty (and the 'other' tty).
1395 */
1396static void tty_flush_works(struct tty_struct *tty)
1397{
1398	flush_work(&tty->SAK_work);
1399	flush_work(&tty->hangup_work);
1400	if (tty->link) {
1401		flush_work(&tty->link->SAK_work);
1402		flush_work(&tty->link->hangup_work);
1403	}
1404}
 
1405
1406/**
1407 *	release_one_tty		-	release tty structure memory
1408 *	@kref: kref of tty we are obliterating
1409 *
1410 *	Releases memory associated with a tty structure, and clears out the
1411 *	driver table slots. This function is called when a device is no longer
1412 *	in use. It also gets called when setup of a device fails.
1413 *
1414 *	Locking:
 
1415 *		takes the file list lock internally when working on the list
1416 *	of ttys that the driver keeps.
1417 *
1418 *	This method gets called from a work queue so that the driver private
1419 *	cleanup ops can sleep (needed for USB at least)
1420 */
1421static void release_one_tty(struct work_struct *work)
1422{
1423	struct tty_struct *tty =
1424		container_of(work, struct tty_struct, hangup_work);
1425	struct tty_driver *driver = tty->driver;
1426	struct module *owner = driver->owner;
1427
1428	if (tty->ops->cleanup)
1429		tty->ops->cleanup(tty);
1430
1431	tty->magic = 0;
1432	tty_driver_kref_put(driver);
1433	module_put(owner);
1434
1435	spin_lock(&tty->files_lock);
1436	list_del_init(&tty->tty_files);
1437	spin_unlock(&tty->files_lock);
1438
1439	put_pid(tty->pgrp);
1440	put_pid(tty->session);
1441	free_tty_struct(tty);
1442}
1443
1444static void queue_release_one_tty(struct kref *kref)
1445{
1446	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1447
 
 
 
 
 
1448	/* The hangup queue is now free so we can reuse it rather than
1449	   waste a chunk of memory for each port */
1450	INIT_WORK(&tty->hangup_work, release_one_tty);
1451	schedule_work(&tty->hangup_work);
1452}
1453
1454/**
1455 *	tty_kref_put		-	release a tty kref
1456 *	@tty: tty device
1457 *
1458 *	Release a reference to a tty device and if need be let the kref
1459 *	layer destruct the object for us
1460 */
1461
1462void tty_kref_put(struct tty_struct *tty)
1463{
1464	if (tty)
1465		kref_put(&tty->kref, queue_release_one_tty);
1466}
1467EXPORT_SYMBOL(tty_kref_put);
1468
1469/**
1470 *	release_tty		-	release tty structure memory
1471 *
1472 *	Release both @tty and a possible linked partner (think pty pair),
1473 *	and decrement the refcount of the backing module.
1474 *
1475 *	Locking:
1476 *		tty_mutex
1477 *		takes the file list lock internally when working on the list
1478 *	of ttys that the driver keeps.
 
1479 *
1480 */
1481static void release_tty(struct tty_struct *tty, int idx)
1482{
1483	/* This should always be true but check for the moment */
1484	WARN_ON(tty->index != idx);
1485	WARN_ON(!mutex_is_locked(&tty_mutex));
1486	if (tty->ops->shutdown)
1487		tty->ops->shutdown(tty);
1488	tty_free_termios(tty);
1489	tty_driver_remove_tty(tty->driver, tty);
1490	tty->port->itty = NULL;
1491	if (tty->link)
1492		tty->link->port->itty = NULL;
1493	tty_buffer_cancel_work(tty->port);
1494	if (tty->link)
1495		tty_buffer_cancel_work(tty->link->port);
1496
1497	tty_kref_put(tty->link);
 
1498	tty_kref_put(tty);
1499}
1500
1501/**
1502 *	tty_release_checks - check a tty before real release
1503 *	@tty: tty to check
1504 *	@o_tty: link of @tty (if any)
1505 *	@idx: index of the tty
1506 *
1507 *	Performs some paranoid checking before true release of the @tty.
1508 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1509 */
1510static int tty_release_checks(struct tty_struct *tty, int idx)
 
1511{
1512#ifdef TTY_PARANOIA_CHECK
1513	if (idx < 0 || idx >= tty->driver->num) {
1514		tty_debug(tty, "bad idx %d\n", idx);
 
1515		return -1;
1516	}
1517
1518	/* not much to check for devpts */
1519	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1520		return 0;
1521
1522	if (tty != tty->driver->ttys[idx]) {
1523		tty_debug(tty, "bad driver table[%d] = %p\n",
1524			  idx, tty->driver->ttys[idx]);
 
 
 
 
 
1525		return -1;
1526	}
1527	if (tty->driver->other) {
1528		struct tty_struct *o_tty = tty->link;
1529
1530		if (o_tty != tty->driver->other->ttys[idx]) {
1531			tty_debug(tty, "bad other table[%d] = %p\n",
1532				  idx, tty->driver->other->ttys[idx]);
 
 
 
 
 
1533			return -1;
1534		}
1535		if (o_tty->link != tty) {
1536			tty_debug(tty, "bad link = %p\n", o_tty->link);
1537			return -1;
1538		}
1539	}
1540#endif
1541	return 0;
1542}
1543
1544/**
1545 *      tty_kclose      -       closes tty opened by tty_kopen
1546 *      @tty: tty device
1547 *
1548 *      Performs the final steps to release and free a tty device. It is the
1549 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1550 *      flag on tty->port.
1551 */
1552void tty_kclose(struct tty_struct *tty)
1553{
1554	/*
1555	 * Ask the line discipline code to release its structures
1556	 */
1557	tty_ldisc_release(tty);
1558
1559	/* Wait for pending work before tty destruction commmences */
1560	tty_flush_works(tty);
1561
1562	tty_debug_hangup(tty, "freeing structure\n");
1563	/*
1564	 * The release_tty function takes care of the details of clearing
1565	 * the slots and preserving the termios structure. The tty_unlock_pair
1566	 * should be safe as we keep a kref while the tty is locked (so the
1567	 * unlock never unlocks a freed tty).
1568	 */
1569	mutex_lock(&tty_mutex);
1570	tty_port_set_kopened(tty->port, 0);
1571	release_tty(tty, tty->index);
1572	mutex_unlock(&tty_mutex);
1573}
1574EXPORT_SYMBOL_GPL(tty_kclose);
1575
1576/**
1577 *	tty_release_struct	-	release a tty struct
1578 *	@tty: tty device
1579 *	@idx: index of the tty
1580 *
1581 *	Performs the final steps to release and free a tty device. It is
1582 *	roughly the reverse of tty_init_dev.
1583 */
1584void tty_release_struct(struct tty_struct *tty, int idx)
1585{
1586	/*
1587	 * Ask the line discipline code to release its structures
1588	 */
1589	tty_ldisc_release(tty);
1590
1591	/* Wait for pending work before tty destruction commmences */
1592	tty_flush_works(tty);
1593
1594	tty_debug_hangup(tty, "freeing structure\n");
1595	/*
1596	 * The release_tty function takes care of the details of clearing
1597	 * the slots and preserving the termios structure. The tty_unlock_pair
1598	 * should be safe as we keep a kref while the tty is locked (so the
1599	 * unlock never unlocks a freed tty).
1600	 */
1601	mutex_lock(&tty_mutex);
1602	release_tty(tty, idx);
1603	mutex_unlock(&tty_mutex);
1604}
1605EXPORT_SYMBOL_GPL(tty_release_struct);
1606
1607/**
1608 *	tty_release		-	vfs callback for close
1609 *	@inode: inode of tty
1610 *	@filp: file pointer for handle to tty
1611 *
1612 *	Called the last time each file handle is closed that references
1613 *	this tty. There may however be several such references.
1614 *
1615 *	Locking:
1616 *		Takes bkl. See tty_release_dev
1617 *
1618 * Even releasing the tty structures is a tricky business.. We have
1619 * to be very careful that the structures are all released at the
1620 * same time, as interrupts might otherwise get the wrong pointers.
1621 *
1622 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1623 * lead to double frees or releasing memory still in use.
1624 */
1625
1626int tty_release(struct inode *inode, struct file *filp)
1627{
1628	struct tty_struct *tty = file_tty(filp);
1629	struct tty_struct *o_tty = NULL;
1630	int	do_sleep, final;
 
1631	int	idx;
1632	long	timeout = 0;
1633	int	once = 1;
1634
1635	if (tty_paranoia_check(tty, inode, __func__))
1636		return 0;
1637
1638	tty_lock(tty);
1639	check_tty_count(tty, __func__);
1640
1641	__tty_fasync(-1, filp, 0);
1642
1643	idx = tty->index;
1644	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645	    tty->driver->subtype == PTY_TYPE_MASTER)
1646		o_tty = tty->link;
 
1647
1648	if (tty_release_checks(tty, idx)) {
1649		tty_unlock(tty);
1650		return 0;
1651	}
1652
1653	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1654
1655	if (tty->ops->close)
1656		tty->ops->close(tty, filp);
1657
1658	/* If tty is pty master, lock the slave pty (stable lock order) */
1659	tty_lock_slave(o_tty);
1660
1661	/*
1662	 * Sanity check: if tty->count is going to zero, there shouldn't be
1663	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1664	 * wait queues and kick everyone out _before_ actually starting to
1665	 * close.  This ensures that we won't block while releasing the tty
1666	 * structure.
1667	 *
1668	 * The test for the o_tty closing is necessary, since the master and
1669	 * slave sides may close in any order.  If the slave side closes out
1670	 * first, its count will be one, since the master side holds an open.
1671	 * Thus this test wouldn't be triggered at the time the slave closed,
1672	 * so we do it now.
 
 
 
 
1673	 */
1674	while (1) {
 
 
 
 
 
 
 
 
1675		do_sleep = 0;
1676
1677		if (tty->count <= 1) {
1678			if (waitqueue_active(&tty->read_wait)) {
1679				wake_up_poll(&tty->read_wait, EPOLLIN);
1680				do_sleep++;
1681			}
1682			if (waitqueue_active(&tty->write_wait)) {
1683				wake_up_poll(&tty->write_wait, EPOLLOUT);
1684				do_sleep++;
1685			}
1686		}
1687		if (o_tty && o_tty->count <= 1) {
1688			if (waitqueue_active(&o_tty->read_wait)) {
1689				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1690				do_sleep++;
1691			}
1692			if (waitqueue_active(&o_tty->write_wait)) {
1693				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1694				do_sleep++;
1695			}
1696		}
1697		if (!do_sleep)
1698			break;
1699
1700		if (once) {
1701			once = 0;
1702			tty_warn(tty, "read/write wait queue active!\n");
1703		}
1704		schedule_timeout_killable(timeout);
1705		if (timeout < 120 * HZ)
1706			timeout = 2 * timeout + 1;
1707		else
1708			timeout = MAX_SCHEDULE_TIMEOUT;
1709	}
1710
1711	if (o_tty) {
 
 
 
 
 
1712		if (--o_tty->count < 0) {
1713			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1714			o_tty->count = 0;
1715		}
1716	}
1717	if (--tty->count < 0) {
1718		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1719		tty->count = 0;
1720	}
1721
1722	/*
1723	 * We've decremented tty->count, so we need to remove this file
1724	 * descriptor off the tty->tty_files list; this serves two
1725	 * purposes:
1726	 *  - check_tty_count sees the correct number of file descriptors
1727	 *    associated with this tty.
1728	 *  - do_tty_hangup no longer sees this file descriptor as
1729	 *    something that needs to be handled for hangups.
1730	 */
1731	tty_del_file(filp);
1732
1733	/*
1734	 * Perform some housekeeping before deciding whether to return.
1735	 *
 
 
 
 
 
 
 
 
 
 
1736	 * If _either_ side is closing, make sure there aren't any
1737	 * processes that still think tty or o_tty is their controlling
1738	 * tty.
1739	 */
1740	if (!tty->count) {
1741		read_lock(&tasklist_lock);
1742		session_clear_tty(tty->session);
1743		if (o_tty)
1744			session_clear_tty(o_tty->session);
1745		read_unlock(&tasklist_lock);
1746	}
1747
1748	/* check whether both sides are closing ... */
1749	final = !tty->count && !(o_tty && o_tty->count);
1750
1751	tty_unlock_slave(o_tty);
1752	tty_unlock(tty);
1753
1754	/* At this point, the tty->count == 0 should ensure a dead tty
1755	   cannot be re-opened by a racing opener */
1756
1757	if (!final)
 
 
1758		return 0;
 
1759
1760	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1761
1762	tty_release_struct(tty, idx);
 
 
 
1763	return 0;
1764}
1765
1766/**
1767 *	tty_open_current_tty - get locked tty of current task
1768 *	@device: device number
1769 *	@filp: file pointer to tty
1770 *	@return: locked tty of the current task iff @device is /dev/tty
1771 *
1772 *	Performs a re-open of the current task's controlling tty.
1773 *
1774 *	We cannot return driver and index like for the other nodes because
1775 *	devpts will not work then. It expects inodes to be from devpts FS.
 
 
 
1776 */
1777static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1778{
1779	struct tty_struct *tty;
1780	int retval;
1781
1782	if (device != MKDEV(TTYAUX_MAJOR, 0))
1783		return NULL;
1784
1785	tty = get_current_tty();
1786	if (!tty)
1787		return ERR_PTR(-ENXIO);
1788
1789	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1790	/* noctty = 1; */
1791	tty_lock(tty);
1792	tty_kref_put(tty);	/* safe to drop the kref now */
1793
1794	retval = tty_reopen(tty);
1795	if (retval < 0) {
1796		tty_unlock(tty);
1797		tty = ERR_PTR(retval);
1798	}
1799	return tty;
1800}
1801
1802/**
1803 *	tty_lookup_driver - lookup a tty driver for a given device file
1804 *	@device: device number
1805 *	@filp: file pointer to tty
 
1806 *	@index: index for the device in the @return driver
1807 *	@return: driver for this inode (with increased refcount)
1808 *
1809 * 	If @return is not erroneous, the caller is responsible to decrement the
1810 * 	refcount by tty_driver_kref_put.
1811 *
1812 *	Locking: tty_mutex protects get_tty_driver
1813 */
1814static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1815		int *index)
1816{
1817	struct tty_driver *driver;
1818
1819	switch (device) {
1820#ifdef CONFIG_VT
1821	case MKDEV(TTY_MAJOR, 0): {
1822		extern struct tty_driver *console_driver;
1823		driver = tty_driver_kref_get(console_driver);
1824		*index = fg_console;
 
1825		break;
1826	}
1827#endif
1828	case MKDEV(TTYAUX_MAJOR, 1): {
1829		struct tty_driver *console_driver = console_device(index);
1830		if (console_driver) {
1831			driver = tty_driver_kref_get(console_driver);
1832			if (driver && filp) {
1833				/* Don't let /dev/console block */
1834				filp->f_flags |= O_NONBLOCK;
 
1835				break;
1836			}
1837		}
1838		return ERR_PTR(-ENODEV);
1839	}
1840	default:
1841		driver = get_tty_driver(device, index);
1842		if (!driver)
1843			return ERR_PTR(-ENODEV);
1844		break;
1845	}
1846	return driver;
1847}
1848
1849/**
1850 *	tty_kopen	-	open a tty device for kernel
1851 *	@device: dev_t of device to open
1852 *
1853 *	Opens tty exclusively for kernel. Performs the driver lookup,
1854 *	makes sure it's not already opened and performs the first-time
1855 *	tty initialization.
1856 *
1857 *	Returns the locked initialized &tty_struct
1858 *
1859 *	Claims the global tty_mutex to serialize:
1860 *	  - concurrent first-time tty initialization
1861 *	  - concurrent tty driver removal w/ lookup
1862 *	  - concurrent tty removal from driver table
1863 */
1864struct tty_struct *tty_kopen(dev_t device)
1865{
1866	struct tty_struct *tty;
1867	struct tty_driver *driver = NULL;
1868	int index = -1;
1869
1870	mutex_lock(&tty_mutex);
1871	driver = tty_lookup_driver(device, NULL, &index);
1872	if (IS_ERR(driver)) {
1873		mutex_unlock(&tty_mutex);
1874		return ERR_CAST(driver);
1875	}
1876
1877	/* check whether we're reopening an existing tty */
1878	tty = tty_driver_lookup_tty(driver, NULL, index);
1879	if (IS_ERR(tty))
1880		goto out;
1881
1882	if (tty) {
1883		/* drop kref from tty_driver_lookup_tty() */
1884		tty_kref_put(tty);
1885		tty = ERR_PTR(-EBUSY);
1886	} else { /* tty_init_dev returns tty with the tty_lock held */
1887		tty = tty_init_dev(driver, index);
1888		if (IS_ERR(tty))
1889			goto out;
1890		tty_port_set_kopened(tty->port, 1);
1891	}
1892out:
1893	mutex_unlock(&tty_mutex);
1894	tty_driver_kref_put(driver);
1895	return tty;
1896}
1897EXPORT_SYMBOL_GPL(tty_kopen);
1898
1899/**
1900 *	tty_open_by_driver	-	open a tty device
1901 *	@device: dev_t of device to open
1902 *	@inode: inode of device file
1903 *	@filp: file pointer to tty
1904 *
1905 *	Performs the driver lookup, checks for a reopen, or otherwise
1906 *	performs the first-time tty initialization.
1907 *
1908 *	Returns the locked initialized or re-opened &tty_struct
1909 *
1910 *	Claims the global tty_mutex to serialize:
1911 *	  - concurrent first-time tty initialization
1912 *	  - concurrent tty driver removal w/ lookup
1913 *	  - concurrent tty removal from driver table
1914 */
1915static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1916					     struct file *filp)
1917{
1918	struct tty_struct *tty;
1919	struct tty_driver *driver = NULL;
1920	int index = -1;
1921	int retval;
1922
1923	mutex_lock(&tty_mutex);
1924	driver = tty_lookup_driver(device, filp, &index);
1925	if (IS_ERR(driver)) {
1926		mutex_unlock(&tty_mutex);
1927		return ERR_CAST(driver);
1928	}
1929
1930	/* check whether we're reopening an existing tty */
1931	tty = tty_driver_lookup_tty(driver, filp, index);
1932	if (IS_ERR(tty)) {
1933		mutex_unlock(&tty_mutex);
1934		goto out;
1935	}
1936
1937	if (tty) {
1938		if (tty_port_kopened(tty->port)) {
1939			tty_kref_put(tty);
1940			mutex_unlock(&tty_mutex);
1941			tty = ERR_PTR(-EBUSY);
1942			goto out;
1943		}
1944		mutex_unlock(&tty_mutex);
1945		retval = tty_lock_interruptible(tty);
1946		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1947		if (retval) {
1948			if (retval == -EINTR)
1949				retval = -ERESTARTSYS;
1950			tty = ERR_PTR(retval);
1951			goto out;
1952		}
1953		retval = tty_reopen(tty);
1954		if (retval < 0) {
1955			tty_unlock(tty);
1956			tty = ERR_PTR(retval);
1957		}
1958	} else { /* Returns with the tty_lock held for now */
1959		tty = tty_init_dev(driver, index);
1960		mutex_unlock(&tty_mutex);
1961	}
1962out:
1963	tty_driver_kref_put(driver);
1964	return tty;
1965}
1966
1967/**
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
 
 
1995	dev_t device = inode->i_rdev;
1996	unsigned saved_flags = filp->f_flags;
1997
1998	nonseekable_open(inode, filp);
1999
2000retry_open:
2001	retval = tty_alloc_file(filp);
2002	if (retval)
2003		return -ENOMEM;
2004
 
 
 
 
 
 
 
2005	tty = tty_open_current_tty(device, filp);
2006	if (!tty)
2007		tty = tty_open_by_driver(device, inode, filp);
 
 
 
 
 
 
 
2008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009	if (IS_ERR(tty)) {
2010		tty_free_file(filp);
2011		retval = PTR_ERR(tty);
2012		if (retval != -EAGAIN || signal_pending(current))
2013			return retval;
2014		schedule();
2015		goto retry_open;
2016	}
2017
2018	tty_add_file(tty, filp);
2019
2020	check_tty_count(tty, __func__);
2021	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2022
 
 
 
 
2023	if (tty->ops->open)
2024		retval = tty->ops->open(tty, filp);
2025	else
2026		retval = -ENODEV;
2027	filp->f_flags = saved_flags;
2028
2029	if (retval) {
2030		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
 
2031
2032		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
 
 
 
2033		tty_release(inode, filp);
2034		if (retval != -ERESTARTSYS)
2035			return retval;
2036
2037		if (signal_pending(current))
2038			return retval;
2039
2040		schedule();
2041		/*
2042		 * Need to reset f_op in case a hangup happened.
2043		 */
2044		if (tty_hung_up_p(filp))
 
2045			filp->f_op = &tty_fops;
 
2046		goto retry_open;
2047	}
2048	clear_bit(TTY_HUPPED, &tty->flags);
2049
2050	noctty = (filp->f_flags & O_NOCTTY) ||
2051		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2052		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2053		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054		  tty->driver->subtype == PTY_TYPE_MASTER);
2055	if (!noctty)
2056		tty_open_proc_set_tty(filp, tty);
2057	tty_unlock(tty);
 
 
 
 
2058	return 0;
 
 
 
 
 
 
 
 
 
2059}
2060
2061
2062
2063/**
2064 *	tty_poll	-	check tty status
2065 *	@filp: file being polled
2066 *	@wait: poll wait structures to update
2067 *
2068 *	Call the line discipline polling method to obtain the poll
2069 *	status of the device.
2070 *
2071 *	Locking: locks called line discipline but ldisc poll method
2072 *	may be re-entered freely by other callers.
2073 */
2074
2075static __poll_t tty_poll(struct file *filp, poll_table *wait)
2076{
2077	struct tty_struct *tty = file_tty(filp);
2078	struct tty_ldisc *ld;
2079	__poll_t ret = 0;
2080
2081	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2082		return 0;
2083
2084	ld = tty_ldisc_ref_wait(tty);
2085	if (!ld)
2086		return hung_up_tty_poll(filp, wait);
2087	if (ld->ops->poll)
2088		ret = ld->ops->poll(tty, filp, wait);
2089	tty_ldisc_deref(ld);
2090	return ret;
2091}
2092
2093static int __tty_fasync(int fd, struct file *filp, int on)
2094{
2095	struct tty_struct *tty = file_tty(filp);
2096	unsigned long flags;
2097	int retval = 0;
2098
2099	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2100		goto out;
2101
2102	retval = fasync_helper(fd, filp, on, &tty->fasync);
2103	if (retval <= 0)
2104		goto out;
2105
2106	if (on) {
2107		enum pid_type type;
2108		struct pid *pid;
2109
 
2110		spin_lock_irqsave(&tty->ctrl_lock, flags);
2111		if (tty->pgrp) {
2112			pid = tty->pgrp;
2113			type = PIDTYPE_PGID;
2114		} else {
2115			pid = task_pid(current);
2116			type = PIDTYPE_PID;
2117		}
2118		get_pid(pid);
2119		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2120		__f_setown(filp, pid, type, 0);
2121		put_pid(pid);
2122		retval = 0;
 
 
 
 
2123	}
 
2124out:
2125	return retval;
2126}
2127
2128static int tty_fasync(int fd, struct file *filp, int on)
2129{
2130	struct tty_struct *tty = file_tty(filp);
2131	int retval = -ENOTTY;
2132
2133	tty_lock(tty);
2134	if (!tty_hung_up_p(filp))
2135		retval = __tty_fasync(fd, filp, on);
2136	tty_unlock(tty);
2137
2138	return retval;
2139}
2140
2141/**
2142 *	tiocsti			-	fake input character
2143 *	@tty: tty to fake input into
2144 *	@p: pointer to character
2145 *
2146 *	Fake input to a tty device. Does the necessary locking and
2147 *	input management.
2148 *
2149 *	FIXME: does not honour flow control ??
2150 *
2151 *	Locking:
2152 *		Called functions take tty_ldiscs_lock
2153 *		current->signal->tty check is safe without locks
2154 *
2155 *	FIXME: may race normal receive processing
2156 */
2157
2158static int tiocsti(struct tty_struct *tty, char __user *p)
2159{
2160	char ch, mbz = 0;
2161	struct tty_ldisc *ld;
2162
2163	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2164		return -EPERM;
2165	if (get_user(ch, p))
2166		return -EFAULT;
2167	tty_audit_tiocsti(tty, ch);
2168	ld = tty_ldisc_ref_wait(tty);
2169	if (!ld)
2170		return -EIO;
2171	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2172	tty_ldisc_deref(ld);
2173	return 0;
2174}
2175
2176/**
2177 *	tiocgwinsz		-	implement window query ioctl
2178 *	@tty; tty
2179 *	@arg: user buffer for result
2180 *
2181 *	Copies the kernel idea of the window size into the user buffer.
2182 *
2183 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2184 *		is consistent.
2185 */
2186
2187static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2188{
2189	int err;
2190
2191	mutex_lock(&tty->winsize_mutex);
2192	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2193	mutex_unlock(&tty->winsize_mutex);
2194
2195	return err ? -EFAULT: 0;
2196}
2197
2198/**
2199 *	tty_do_resize		-	resize event
2200 *	@tty: tty being resized
2201 *	@rows: rows (character)
2202 *	@cols: cols (character)
2203 *
2204 *	Update the termios variables and send the necessary signals to
2205 *	peform a terminal resize correctly
2206 */
2207
2208int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2209{
2210	struct pid *pgrp;
 
2211
2212	/* Lock the tty */
2213	mutex_lock(&tty->winsize_mutex);
2214	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2215		goto done;
 
 
 
 
 
2216
2217	/* Signal the foreground process group */
2218	pgrp = tty_get_pgrp(tty);
2219	if (pgrp)
2220		kill_pgrp(pgrp, SIGWINCH, 1);
2221	put_pid(pgrp);
2222
2223	tty->winsize = *ws;
2224done:
2225	mutex_unlock(&tty->winsize_mutex);
2226	return 0;
2227}
2228EXPORT_SYMBOL(tty_do_resize);
2229
2230/**
2231 *	tiocswinsz		-	implement window size set ioctl
2232 *	@tty; tty side of tty
2233 *	@arg: user buffer for result
2234 *
2235 *	Copies the user idea of the window size to the kernel. Traditionally
2236 *	this is just advisory information but for the Linux console it
2237 *	actually has driver level meaning and triggers a VC resize.
2238 *
2239 *	Locking:
2240 *		Driver dependent. The default do_resize method takes the
2241 *	tty termios mutex and ctrl_lock. The console takes its own lock
2242 *	then calls into the default method.
2243 */
2244
2245static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2246{
2247	struct winsize tmp_ws;
2248	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2249		return -EFAULT;
2250
2251	if (tty->ops->resize)
2252		return tty->ops->resize(tty, &tmp_ws);
2253	else
2254		return tty_do_resize(tty, &tmp_ws);
2255}
2256
2257/**
2258 *	tioccons	-	allow admin to move logical console
2259 *	@file: the file to become console
2260 *
2261 *	Allow the administrator to move the redirected console device
2262 *
2263 *	Locking: uses redirect_lock to guard the redirect information
2264 */
2265
2266static int tioccons(struct file *file)
2267{
2268	if (!capable(CAP_SYS_ADMIN))
2269		return -EPERM;
2270	if (file->f_op->write == redirected_tty_write) {
2271		struct file *f;
2272		spin_lock(&redirect_lock);
2273		f = redirect;
2274		redirect = NULL;
2275		spin_unlock(&redirect_lock);
2276		if (f)
2277			fput(f);
2278		return 0;
2279	}
2280	spin_lock(&redirect_lock);
2281	if (redirect) {
2282		spin_unlock(&redirect_lock);
2283		return -EBUSY;
2284	}
2285	redirect = get_file(file);
 
2286	spin_unlock(&redirect_lock);
2287	return 0;
2288}
2289
2290/**
2291 *	fionbio		-	non blocking ioctl
2292 *	@file: file to set blocking value
2293 *	@p: user parameter
2294 *
2295 *	Historical tty interfaces had a blocking control ioctl before
2296 *	the generic functionality existed. This piece of history is preserved
2297 *	in the expected tty API of posix OS's.
2298 *
2299 *	Locking: none, the open file handle ensures it won't go away.
2300 */
2301
2302static int fionbio(struct file *file, int __user *p)
2303{
2304	int nonblock;
2305
2306	if (get_user(nonblock, p))
2307		return -EFAULT;
2308
2309	spin_lock(&file->f_lock);
2310	if (nonblock)
2311		file->f_flags |= O_NONBLOCK;
2312	else
2313		file->f_flags &= ~O_NONBLOCK;
2314	spin_unlock(&file->f_lock);
2315	return 0;
2316}
2317
2318/**
2319 *	tiocsetd	-	set line discipline
2320 *	@tty: tty device
2321 *	@p: pointer to user data
2322 *
2323 *	Set the line discipline according to user request.
 
2324 *
2325 *	Locking: see tty_set_ldisc, this function is just a helper
 
 
 
2326 */
2327
2328static int tiocsetd(struct tty_struct *tty, int __user *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2329{
2330	int disc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331	int ret;
 
 
 
 
 
 
 
 
 
 
 
2332
2333	if (get_user(disc, p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335
2336	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
2337
2338	return ret;
 
 
 
 
 
 
 
 
 
 
2339}
2340
2341/**
2342 *	tiocgetd	-	get line discipline
2343 *	@tty: tty device
2344 *	@p: pointer to user data
2345 *
2346 *	Retrieves the line discipline id directly from the ldisc.
2347 *
2348 *	Locking: waits for ldisc reference (in case the line discipline
2349 *		is changing or the tty is being hungup)
2350 */
2351
2352static int tiocgetd(struct tty_struct *tty, int __user *p)
2353{
2354	struct tty_ldisc *ld;
2355	int ret;
2356
2357	ld = tty_ldisc_ref_wait(tty);
2358	if (!ld)
2359		return -EIO;
2360	ret = put_user(ld->ops->num, p);
2361	tty_ldisc_deref(ld);
2362	return ret;
2363}
2364
2365/**
2366 *	send_break	-	performed time break
2367 *	@tty: device to break on
2368 *	@duration: timeout in mS
2369 *
2370 *	Perform a timed break on hardware that lacks its own driver level
2371 *	timed break functionality.
2372 *
2373 *	Locking:
2374 *		atomic_write_lock serializes
2375 *
2376 */
2377
2378static int send_break(struct tty_struct *tty, unsigned int duration)
2379{
2380	int retval;
2381
2382	if (tty->ops->break_ctl == NULL)
2383		return 0;
2384
2385	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2386		retval = tty->ops->break_ctl(tty, duration);
2387	else {
2388		/* Do the work ourselves */
2389		if (tty_write_lock(tty, 0) < 0)
2390			return -EINTR;
2391		retval = tty->ops->break_ctl(tty, -1);
2392		if (retval)
2393			goto out;
2394		if (!signal_pending(current))
2395			msleep_interruptible(duration);
2396		retval = tty->ops->break_ctl(tty, 0);
2397out:
2398		tty_write_unlock(tty);
2399		if (signal_pending(current))
2400			retval = -EINTR;
2401	}
2402	return retval;
2403}
2404
2405/**
2406 *	tty_tiocmget		-	get modem status
2407 *	@tty: tty device
2408 *	@file: user file pointer
2409 *	@p: pointer to result
2410 *
2411 *	Obtain the modem status bits from the tty driver if the feature
2412 *	is supported. Return -EINVAL if it is not available.
2413 *
2414 *	Locking: none (up to the driver)
2415 */
2416
2417static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2418{
2419	int retval = -EINVAL;
2420
2421	if (tty->ops->tiocmget) {
2422		retval = tty->ops->tiocmget(tty);
2423
2424		if (retval >= 0)
2425			retval = put_user(retval, p);
2426	}
2427	return retval;
2428}
2429
2430/**
2431 *	tty_tiocmset		-	set modem status
2432 *	@tty: tty device
2433 *	@cmd: command - clear bits, set bits or set all
2434 *	@p: pointer to desired bits
2435 *
2436 *	Set the modem status bits from the tty driver if the feature
2437 *	is supported. Return -EINVAL if it is not available.
2438 *
2439 *	Locking: none (up to the driver)
2440 */
2441
2442static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2443	     unsigned __user *p)
2444{
2445	int retval;
2446	unsigned int set, clear, val;
2447
2448	if (tty->ops->tiocmset == NULL)
2449		return -EINVAL;
2450
2451	retval = get_user(val, p);
2452	if (retval)
2453		return retval;
2454	set = clear = 0;
2455	switch (cmd) {
2456	case TIOCMBIS:
2457		set = val;
2458		break;
2459	case TIOCMBIC:
2460		clear = val;
2461		break;
2462	case TIOCMSET:
2463		set = val;
2464		clear = ~val;
2465		break;
2466	}
2467	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469	return tty->ops->tiocmset(tty, set, clear);
2470}
2471
2472static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2473{
2474	int retval = -EINVAL;
2475	struct serial_icounter_struct icount;
2476	memset(&icount, 0, sizeof(icount));
2477	if (tty->ops->get_icount)
2478		retval = tty->ops->get_icount(tty, &icount);
2479	if (retval != 0)
2480		return retval;
2481	if (copy_to_user(arg, &icount, sizeof(icount)))
2482		return -EFAULT;
2483	return 0;
2484}
2485
2486static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2487{
2488	static DEFINE_RATELIMIT_STATE(depr_flags,
2489			DEFAULT_RATELIMIT_INTERVAL,
2490			DEFAULT_RATELIMIT_BURST);
2491	char comm[TASK_COMM_LEN];
2492	int flags;
2493
2494	if (get_user(flags, &ss->flags))
2495		return;
2496
2497	flags &= ASYNC_DEPRECATED;
2498
2499	if (flags && __ratelimit(&depr_flags))
2500		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2501			__func__, get_task_comm(comm, current), flags);
2502}
 
2503
2504/*
2505 * if pty, return the slave side (real_tty)
2506 * otherwise, return self
2507 */
2508static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2509{
2510	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2511	    tty->driver->subtype == PTY_TYPE_MASTER)
2512		tty = tty->link;
2513	return tty;
2514}
 
2515
2516/*
2517 * Split this up, as gcc can choke on it otherwise..
2518 */
2519long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2520{
2521	struct tty_struct *tty = file_tty(file);
2522	struct tty_struct *real_tty;
2523	void __user *p = (void __user *)arg;
2524	int retval;
2525	struct tty_ldisc *ld;
 
2526
2527	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2528		return -EINVAL;
2529
2530	real_tty = tty_pair_get_tty(tty);
2531
2532	/*
2533	 * Factor out some common prep work
2534	 */
2535	switch (cmd) {
2536	case TIOCSETD:
2537	case TIOCSBRK:
2538	case TIOCCBRK:
2539	case TCSBRK:
2540	case TCSBRKP:
2541		retval = tty_check_change(tty);
2542		if (retval)
2543			return retval;
2544		if (cmd != TIOCCBRK) {
2545			tty_wait_until_sent(tty, 0);
2546			if (signal_pending(current))
2547				return -EINTR;
2548		}
2549		break;
2550	}
2551
2552	/*
2553	 *	Now do the stuff.
2554	 */
2555	switch (cmd) {
2556	case TIOCSTI:
2557		return tiocsti(tty, p);
2558	case TIOCGWINSZ:
2559		return tiocgwinsz(real_tty, p);
2560	case TIOCSWINSZ:
2561		return tiocswinsz(real_tty, p);
2562	case TIOCCONS:
2563		return real_tty != tty ? -EINVAL : tioccons(file);
2564	case FIONBIO:
2565		return fionbio(file, p);
2566	case TIOCEXCL:
2567		set_bit(TTY_EXCLUSIVE, &tty->flags);
2568		return 0;
2569	case TIOCNXCL:
2570		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2571		return 0;
2572	case TIOCGEXCL:
2573	{
2574		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2575		return put_user(excl, (int __user *)p);
2576	}
 
 
 
 
 
 
 
 
2577	case TIOCGETD:
2578		return tiocgetd(tty, p);
2579	case TIOCSETD:
2580		return tiocsetd(tty, p);
2581	case TIOCVHANGUP:
2582		if (!capable(CAP_SYS_ADMIN))
2583			return -EPERM;
2584		tty_vhangup(tty);
2585		return 0;
2586	case TIOCGDEV:
2587	{
2588		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2589		return put_user(ret, (unsigned int __user *)p);
2590	}
2591	/*
2592	 * Break handling
2593	 */
2594	case TIOCSBRK:	/* Turn break on, unconditionally */
2595		if (tty->ops->break_ctl)
2596			return tty->ops->break_ctl(tty, -1);
2597		return 0;
2598	case TIOCCBRK:	/* Turn break off, unconditionally */
2599		if (tty->ops->break_ctl)
2600			return tty->ops->break_ctl(tty, 0);
2601		return 0;
2602	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2603		/* non-zero arg means wait for all output data
2604		 * to be sent (performed above) but don't send break.
2605		 * This is used by the tcdrain() termios function.
2606		 */
2607		if (!arg)
2608			return send_break(tty, 250);
2609		return 0;
2610	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2611		return send_break(tty, arg ? arg*100 : 250);
2612
2613	case TIOCMGET:
2614		return tty_tiocmget(tty, p);
2615	case TIOCMSET:
2616	case TIOCMBIC:
2617	case TIOCMBIS:
2618		return tty_tiocmset(tty, cmd, p);
2619	case TIOCGICOUNT:
2620		retval = tty_tiocgicount(tty, p);
2621		/* For the moment allow fall through to the old method */
2622        	if (retval != -EINVAL)
2623			return retval;
2624		break;
2625	case TCFLSH:
2626		switch (arg) {
2627		case TCIFLUSH:
2628		case TCIOFLUSH:
2629		/* flush tty buffer and allow ldisc to process ioctl */
2630			tty_buffer_flush(tty, NULL);
2631			break;
2632		}
2633		break;
2634	case TIOCSSERIAL:
2635		tty_warn_deprecated_flags(p);
2636		break;
2637	case TIOCGPTPEER:
2638		/* Special because the struct file is needed */
2639		return ptm_open_peer(file, tty, (int)arg);
2640	default:
2641		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2642		if (retval != -ENOIOCTLCMD)
2643			return retval;
2644	}
2645	if (tty->ops->ioctl) {
2646		retval = tty->ops->ioctl(tty, cmd, arg);
2647		if (retval != -ENOIOCTLCMD)
2648			return retval;
2649	}
2650	ld = tty_ldisc_ref_wait(tty);
2651	if (!ld)
2652		return hung_up_tty_ioctl(file, cmd, arg);
2653	retval = -EINVAL;
2654	if (ld->ops->ioctl) {
2655		retval = ld->ops->ioctl(tty, file, cmd, arg);
2656		if (retval == -ENOIOCTLCMD)
2657			retval = -ENOTTY;
2658	}
2659	tty_ldisc_deref(ld);
2660	return retval;
2661}
2662
2663#ifdef CONFIG_COMPAT
2664static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2665				unsigned long arg)
2666{
 
2667	struct tty_struct *tty = file_tty(file);
2668	struct tty_ldisc *ld;
2669	int retval = -ENOIOCTLCMD;
2670
2671	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2672		return -EINVAL;
2673
2674	if (tty->ops->compat_ioctl) {
2675		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2676		if (retval != -ENOIOCTLCMD)
2677			return retval;
2678	}
2679
2680	ld = tty_ldisc_ref_wait(tty);
2681	if (!ld)
2682		return hung_up_tty_compat_ioctl(file, cmd, arg);
2683	if (ld->ops->compat_ioctl)
2684		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2685	else
2686		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2687	tty_ldisc_deref(ld);
2688
2689	return retval;
2690}
2691#endif
2692
2693static int this_tty(const void *t, struct file *file, unsigned fd)
2694{
2695	if (likely(file->f_op->read != tty_read))
2696		return 0;
2697	return file_tty(file) != t ? 0 : fd + 1;
2698}
2699	
2700/*
2701 * This implements the "Secure Attention Key" ---  the idea is to
2702 * prevent trojan horses by killing all processes associated with this
2703 * tty when the user hits the "Secure Attention Key".  Required for
2704 * super-paranoid applications --- see the Orange Book for more details.
2705 *
2706 * This code could be nicer; ideally it should send a HUP, wait a few
2707 * seconds, then send a INT, and then a KILL signal.  But you then
2708 * have to coordinate with the init process, since all processes associated
2709 * with the current tty must be dead before the new getty is allowed
2710 * to spawn.
2711 *
2712 * Now, if it would be correct ;-/ The current code has a nasty hole -
2713 * it doesn't catch files in flight. We may send the descriptor to ourselves
2714 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2715 *
2716 * Nasty bug: do_SAK is being called in interrupt context.  This can
2717 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2718 */
2719void __do_SAK(struct tty_struct *tty)
2720{
2721#ifdef TTY_SOFT_SAK
2722	tty_hangup(tty);
2723#else
2724	struct task_struct *g, *p;
2725	struct pid *session;
2726	int		i;
 
 
2727
2728	if (!tty)
2729		return;
2730	session = tty->session;
2731
2732	tty_ldisc_flush(tty);
2733
2734	tty_driver_flush_buffer(tty);
2735
2736	read_lock(&tasklist_lock);
2737	/* Kill the entire session */
2738	do_each_pid_task(session, PIDTYPE_SID, p) {
2739		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2740			   task_pid_nr(p), p->comm);
 
2741		send_sig(SIGKILL, p, 1);
2742	} while_each_pid_task(session, PIDTYPE_SID, p);
2743
2744	/* Now kill any processes that happen to have the tty open */
 
2745	do_each_thread(g, p) {
2746		if (p->signal->tty == tty) {
2747			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2748				   task_pid_nr(p), p->comm);
 
2749			send_sig(SIGKILL, p, 1);
2750			continue;
2751		}
2752		task_lock(p);
2753		i = iterate_fd(p->files, 0, this_tty, tty);
2754		if (i != 0) {
2755			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2756				   task_pid_nr(p), p->comm, i - 1);
2757			force_sig(SIGKILL, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758		}
2759		task_unlock(p);
2760	} while_each_thread(g, p);
2761	read_unlock(&tasklist_lock);
2762#endif
2763}
2764
2765static void do_SAK_work(struct work_struct *work)
2766{
2767	struct tty_struct *tty =
2768		container_of(work, struct tty_struct, SAK_work);
2769	__do_SAK(tty);
2770}
2771
2772/*
2773 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2774 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2775 * the values which we write to it will be identical to the values which it
2776 * already has. --akpm
2777 */
2778void do_SAK(struct tty_struct *tty)
2779{
2780	if (!tty)
2781		return;
2782	schedule_work(&tty->SAK_work);
2783}
2784
2785EXPORT_SYMBOL(do_SAK);
2786
2787static int dev_match_devt(struct device *dev, const void *data)
2788{
2789	const dev_t *devt = data;
2790	return dev->devt == *devt;
2791}
2792
2793/* Must put_device() after it's unused! */
2794static struct device *tty_get_device(struct tty_struct *tty)
2795{
2796	dev_t devt = tty_devnum(tty);
2797	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2798}
2799
2800
2801/**
2802 *	alloc_tty_struct
 
2803 *
2804 *	This subroutine allocates and initializes a tty structure.
 
2805 *
2806 *	Locking: none - tty in question is not exposed at this point
2807 */
2808
2809struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
2810{
2811	struct tty_struct *tty;
2812
2813	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2814	if (!tty)
2815		return NULL;
2816
2817	kref_init(&tty->kref);
2818	tty->magic = TTY_MAGIC;
2819	if (tty_ldisc_init(tty)) {
2820		kfree(tty);
2821		return NULL;
2822	}
2823	tty->session = NULL;
2824	tty->pgrp = NULL;
2825	mutex_init(&tty->legacy_mutex);
2826	mutex_init(&tty->throttle_mutex);
2827	init_rwsem(&tty->termios_rwsem);
2828	mutex_init(&tty->winsize_mutex);
2829	init_ldsem(&tty->ldisc_sem);
2830	init_waitqueue_head(&tty->write_wait);
2831	init_waitqueue_head(&tty->read_wait);
2832	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
2833	mutex_init(&tty->atomic_write_lock);
 
 
 
2834	spin_lock_init(&tty->ctrl_lock);
2835	spin_lock_init(&tty->flow_lock);
2836	spin_lock_init(&tty->files_lock);
2837	INIT_LIST_HEAD(&tty->tty_files);
2838	INIT_WORK(&tty->SAK_work, do_SAK_work);
2839
2840	tty->driver = driver;
2841	tty->ops = driver->ops;
2842	tty->index = idx;
2843	tty_line_name(driver, idx, tty->name);
2844	tty->dev = tty_get_device(tty);
 
2845
2846	return tty;
 
 
 
 
 
 
 
 
 
 
 
2847}
2848
2849/**
2850 *	tty_put_char	-	write one character to a tty
2851 *	@tty: tty
2852 *	@ch: character
2853 *
2854 *	Write one byte to the tty using the provided put_char method
2855 *	if present. Returns the number of characters successfully output.
2856 *
2857 *	Note: the specific put_char operation in the driver layer may go
2858 *	away soon. Don't call it directly, use this method
2859 */
2860
2861int tty_put_char(struct tty_struct *tty, unsigned char ch)
2862{
2863	if (tty->ops->put_char)
2864		return tty->ops->put_char(tty, ch);
2865	return tty->ops->write(tty, &ch, 1);
2866}
2867EXPORT_SYMBOL_GPL(tty_put_char);
2868
2869struct class *tty_class;
2870
2871static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2872		unsigned int index, unsigned int count)
2873{
2874	int err;
2875
2876	/* init here, since reused cdevs cause crashes */
2877	driver->cdevs[index] = cdev_alloc();
2878	if (!driver->cdevs[index])
2879		return -ENOMEM;
2880	driver->cdevs[index]->ops = &tty_fops;
2881	driver->cdevs[index]->owner = driver->owner;
2882	err = cdev_add(driver->cdevs[index], dev, count);
2883	if (err)
2884		kobject_put(&driver->cdevs[index]->kobj);
2885	return err;
2886}
2887
2888/**
2889 *	tty_register_device - register a tty device
2890 *	@driver: the tty driver that describes the tty device
2891 *	@index: the index in the tty driver for this tty device
2892 *	@device: a struct device that is associated with this tty device.
2893 *		This field is optional, if there is no known struct device
2894 *		for this tty device it can be set to NULL safely.
2895 *
2896 *	Returns a pointer to the struct device for this tty device
2897 *	(or ERR_PTR(-EFOO) on error).
2898 *
2899 *	This call is required to be made to register an individual tty device
2900 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2901 *	that bit is not set, this function should not be called by a tty
2902 *	driver.
2903 *
2904 *	Locking: ??
2905 */
2906
2907struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2908				   struct device *device)
2909{
2910	return tty_register_device_attr(driver, index, device, NULL, NULL);
2911}
2912EXPORT_SYMBOL(tty_register_device);
2913
2914static void tty_device_create_release(struct device *dev)
2915{
2916	dev_dbg(dev, "releasing...\n");
2917	kfree(dev);
2918}
2919
2920/**
2921 *	tty_register_device_attr - register a tty device
2922 *	@driver: the tty driver that describes the tty device
2923 *	@index: the index in the tty driver for this tty device
2924 *	@device: a struct device that is associated with this tty device.
2925 *		This field is optional, if there is no known struct device
2926 *		for this tty device it can be set to NULL safely.
2927 *	@drvdata: Driver data to be set to device.
2928 *	@attr_grp: Attribute group to be set on device.
2929 *
2930 *	Returns a pointer to the struct device for this tty device
2931 *	(or ERR_PTR(-EFOO) on error).
2932 *
2933 *	This call is required to be made to register an individual tty device
2934 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2935 *	that bit is not set, this function should not be called by a tty
2936 *	driver.
2937 *
2938 *	Locking: ??
2939 */
2940struct device *tty_register_device_attr(struct tty_driver *driver,
2941				   unsigned index, struct device *device,
2942				   void *drvdata,
2943				   const struct attribute_group **attr_grp)
2944{
2945	char name[64];
2946	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2947	struct ktermios *tp;
2948	struct device *dev;
2949	int retval;
2950
2951	if (index >= driver->num) {
2952		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2953		       driver->name, index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2963	if (!dev)
2964		return ERR_PTR(-ENOMEM);
2965
2966	dev->devt = devt;
2967	dev->class = tty_class;
2968	dev->parent = device;
2969	dev->release = tty_device_create_release;
2970	dev_set_name(dev, "%s", name);
2971	dev->groups = attr_grp;
2972	dev_set_drvdata(dev, drvdata);
2973
2974	dev_set_uevent_suppress(dev, 1);
2975
2976	retval = device_register(dev);
2977	if (retval)
2978		goto err_put;
2979
2980	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2981		/*
2982		 * Free any saved termios data so that the termios state is
2983		 * reset when reusing a minor number.
2984		 */
2985		tp = driver->termios[index];
2986		if (tp) {
2987			driver->termios[index] = NULL;
2988			kfree(tp);
2989		}
2990
2991		retval = tty_cdev_add(driver, devt, index, 1);
2992		if (retval)
2993			goto err_del;
2994	}
2995
2996	dev_set_uevent_suppress(dev, 0);
2997	kobject_uevent(&dev->kobj, KOBJ_ADD);
2998
2999	return dev;
3000
3001err_del:
3002	device_del(dev);
3003err_put:
3004	put_device(dev);
3005
3006	return ERR_PTR(retval);
3007}
3008EXPORT_SYMBOL_GPL(tty_register_device_attr);
3009
3010/**
3011 * 	tty_unregister_device - unregister a tty device
3012 * 	@driver: the tty driver that describes the tty device
3013 * 	@index: the index in the tty driver for this tty device
3014 *
3015 * 	If a tty device is registered with a call to tty_register_device() then
3016 *	this function must be called when the tty device is gone.
3017 *
3018 *	Locking: ??
3019 */
3020
3021void tty_unregister_device(struct tty_driver *driver, unsigned index)
3022{
3023	device_destroy(tty_class,
3024		MKDEV(driver->major, driver->minor_start) + index);
3025	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3026		cdev_del(driver->cdevs[index]);
3027		driver->cdevs[index] = NULL;
3028	}
3029}
3030EXPORT_SYMBOL(tty_unregister_device);
3031
3032/**
3033 * __tty_alloc_driver -- allocate tty driver
3034 * @lines: count of lines this driver can handle at most
3035 * @owner: module which is responsible for this driver
3036 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3037 *
3038 * This should not be called directly, some of the provided macros should be
3039 * used instead. Use IS_ERR and friends on @retval.
3040 */
3041struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3042		unsigned long flags)
3043{
3044	struct tty_driver *driver;
3045	unsigned int cdevs = 1;
3046	int err;
3047
3048	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3049		return ERR_PTR(-EINVAL);
3050
3051	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052	if (!driver)
3053		return ERR_PTR(-ENOMEM);
3054
3055	kref_init(&driver->kref);
3056	driver->magic = TTY_DRIVER_MAGIC;
3057	driver->num = lines;
3058	driver->owner = owner;
3059	driver->flags = flags;
3060
3061	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3062		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3063				GFP_KERNEL);
3064		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3065				GFP_KERNEL);
3066		if (!driver->ttys || !driver->termios) {
3067			err = -ENOMEM;
3068			goto err_free_all;
3069		}
3070	}
3071
3072	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3074				GFP_KERNEL);
3075		if (!driver->ports) {
3076			err = -ENOMEM;
3077			goto err_free_all;
3078		}
3079		cdevs = lines;
3080	}
3081
3082	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3083	if (!driver->cdevs) {
3084		err = -ENOMEM;
3085		goto err_free_all;
3086	}
3087
3088	return driver;
3089err_free_all:
3090	kfree(driver->ports);
3091	kfree(driver->ttys);
3092	kfree(driver->termios);
3093	kfree(driver->cdevs);
3094	kfree(driver);
3095	return ERR_PTR(err);
3096}
3097EXPORT_SYMBOL(__tty_alloc_driver);
3098
3099static void destruct_tty_driver(struct kref *kref)
3100{
3101	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3102	int i;
3103	struct ktermios *tp;
 
3104
3105	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3106		for (i = 0; i < driver->num; i++) {
3107			tp = driver->termios[i];
3108			if (tp) {
3109				driver->termios[i] = NULL;
3110				kfree(tp);
3111			}
3112			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3113				tty_unregister_device(driver, i);
3114		}
 
3115		proc_tty_unregister_driver(driver);
3116		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3117			cdev_del(driver->cdevs[0]);
 
 
3118	}
3119	kfree(driver->cdevs);
3120	kfree(driver->ports);
3121	kfree(driver->termios);
3122	kfree(driver->ttys);
3123	kfree(driver);
3124}
3125
3126void tty_driver_kref_put(struct tty_driver *driver)
3127{
3128	kref_put(&driver->kref, destruct_tty_driver);
3129}
3130EXPORT_SYMBOL(tty_driver_kref_put);
3131
3132void tty_set_operations(struct tty_driver *driver,
3133			const struct tty_operations *op)
3134{
3135	driver->ops = op;
3136};
3137EXPORT_SYMBOL(tty_set_operations);
3138
3139void put_tty_driver(struct tty_driver *d)
3140{
3141	tty_driver_kref_put(d);
3142}
3143EXPORT_SYMBOL(put_tty_driver);
3144
3145/*
3146 * Called by a tty driver to register itself.
3147 */
3148int tty_register_driver(struct tty_driver *driver)
3149{
3150	int error;
3151	int i;
3152	dev_t dev;
 
3153	struct device *d;
3154
 
 
 
 
 
 
3155	if (!driver->major) {
3156		error = alloc_chrdev_region(&dev, driver->minor_start,
3157						driver->num, driver->name);
3158		if (!error) {
3159			driver->major = MAJOR(dev);
3160			driver->minor_start = MINOR(dev);
3161		}
3162	} else {
3163		dev = MKDEV(driver->major, driver->minor_start);
3164		error = register_chrdev_region(dev, driver->num, driver->name);
3165	}
3166	if (error < 0)
3167		goto err;
 
 
 
 
 
 
 
 
 
 
3168
3169	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3170		error = tty_cdev_add(driver, dev, 0, driver->num);
3171		if (error)
3172			goto err_unreg_char;
 
 
 
 
 
3173	}
3174
3175	mutex_lock(&tty_mutex);
3176	list_add(&driver->tty_drivers, &tty_drivers);
3177	mutex_unlock(&tty_mutex);
3178
3179	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3180		for (i = 0; i < driver->num; i++) {
3181			d = tty_register_device(driver, i, NULL);
3182			if (IS_ERR(d)) {
3183				error = PTR_ERR(d);
3184				goto err_unreg_devs;
3185			}
3186		}
3187	}
3188	proc_tty_register_driver(driver);
3189	driver->flags |= TTY_DRIVER_INSTALLED;
3190	return 0;
3191
3192err_unreg_devs:
3193	for (i--; i >= 0; i--)
3194		tty_unregister_device(driver, i);
3195
3196	mutex_lock(&tty_mutex);
3197	list_del(&driver->tty_drivers);
3198	mutex_unlock(&tty_mutex);
3199
3200err_unreg_char:
3201	unregister_chrdev_region(dev, driver->num);
3202err:
 
 
3203	return error;
3204}
 
3205EXPORT_SYMBOL(tty_register_driver);
3206
3207/*
3208 * Called by a tty driver to unregister itself.
3209 */
3210int tty_unregister_driver(struct tty_driver *driver)
3211{
3212#if 0
3213	/* FIXME */
3214	if (driver->refcount)
3215		return -EBUSY;
3216#endif
3217	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3218				driver->num);
3219	mutex_lock(&tty_mutex);
3220	list_del(&driver->tty_drivers);
3221	mutex_unlock(&tty_mutex);
3222	return 0;
3223}
3224
3225EXPORT_SYMBOL(tty_unregister_driver);
3226
3227dev_t tty_devnum(struct tty_struct *tty)
3228{
3229	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3230}
3231EXPORT_SYMBOL(tty_devnum);
3232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233void tty_default_fops(struct file_operations *fops)
3234{
3235	*fops = tty_fops;
3236}
3237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238static char *tty_devnode(struct device *dev, umode_t *mode)
3239{
3240	if (!mode)
3241		return NULL;
3242	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3243	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3244		*mode = 0666;
3245	return NULL;
3246}
3247
3248static int __init tty_class_init(void)
3249{
3250	tty_class = class_create(THIS_MODULE, "tty");
3251	if (IS_ERR(tty_class))
3252		return PTR_ERR(tty_class);
3253	tty_class->devnode = tty_devnode;
3254	return 0;
3255}
3256
3257postcore_initcall(tty_class_init);
3258
3259/* 3/2004 jmc: why do these devices exist? */
3260static struct cdev tty_cdev, console_cdev;
3261
3262static ssize_t show_cons_active(struct device *dev,
3263				struct device_attribute *attr, char *buf)
3264{
3265	struct console *cs[16];
3266	int i = 0;
3267	struct console *c;
3268	ssize_t count = 0;
3269
3270	console_lock();
3271	for_each_console(c) {
3272		if (!c->device)
3273			continue;
3274		if (!c->write)
3275			continue;
3276		if ((c->flags & CON_ENABLED) == 0)
3277			continue;
3278		cs[i++] = c;
3279		if (i >= ARRAY_SIZE(cs))
3280			break;
3281	}
3282	while (i--) {
3283		int index = cs[i]->index;
3284		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3285
3286		/* don't resolve tty0 as some programs depend on it */
3287		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3288			count += tty_line_name(drv, index, buf + count);
3289		else
3290			count += sprintf(buf + count, "%s%d",
3291					 cs[i]->name, cs[i]->index);
3292
3293		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3294	}
3295	console_unlock();
3296
3297	return count;
3298}
3299static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3300
3301static struct attribute *cons_dev_attrs[] = {
3302	&dev_attr_active.attr,
3303	NULL
3304};
3305
3306ATTRIBUTE_GROUPS(cons_dev);
3307
3308static struct device *consdev;
3309
3310void console_sysfs_notify(void)
3311{
3312	if (consdev)
3313		sysfs_notify(&consdev->kobj, NULL, "active");
3314}
3315
3316/*
3317 * Ok, now we can initialize the rest of the tty devices and can count
3318 * on memory allocations, interrupts etc..
3319 */
3320int __init tty_init(void)
3321{
3322	cdev_init(&tty_cdev, &tty_fops);
3323	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3324	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3325		panic("Couldn't register /dev/tty driver\n");
3326	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3327
3328	cdev_init(&console_cdev, &console_fops);
3329	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3330	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3331		panic("Couldn't register /dev/console driver\n");
3332	consdev = device_create_with_groups(tty_class, NULL,
3333					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3334					    cons_dev_groups, "console");
3335	if (IS_ERR(consdev))
3336		consdev = NULL;
 
 
3337
3338#ifdef CONFIG_VT
3339	vty_init(&console_fops);
3340#endif
3341	return 0;
3342}
3343
v3.5.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (tty->dev)
 185		put_device(tty->dev);
 186	kfree(tty->write_buf);
 187	tty_buffer_free_all(tty);
 188	kfree(tty);
 189}
 190
 191static inline struct tty_struct *file_tty(struct file *file)
 192{
 193	return ((struct tty_file_private *)file->private_data)->tty;
 194}
 195
 196int tty_alloc_file(struct file *file)
 197{
 198	struct tty_file_private *priv;
 199
 200	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 201	if (!priv)
 202		return -ENOMEM;
 203
 204	file->private_data = priv;
 205
 206	return 0;
 207}
 208
 209/* Associate a new file with the tty structure */
 210void tty_add_file(struct tty_struct *tty, struct file *file)
 211{
 212	struct tty_file_private *priv = file->private_data;
 213
 214	priv->tty = tty;
 215	priv->file = file;
 216
 217	spin_lock(&tty_files_lock);
 218	list_add(&priv->list, &tty->tty_files);
 219	spin_unlock(&tty_files_lock);
 220}
 221
 222/**
 223 * tty_free_file - free file->private_data
 224 *
 225 * This shall be used only for fail path handling when tty_add_file was not
 226 * called yet.
 227 */
 228void tty_free_file(struct file *file)
 229{
 230	struct tty_file_private *priv = file->private_data;
 231
 232	file->private_data = NULL;
 233	kfree(priv);
 234}
 235
 236/* Delete file from its tty */
 237void tty_del_file(struct file *file)
 238{
 239	struct tty_file_private *priv = file->private_data;
 
 240
 241	spin_lock(&tty_files_lock);
 242	list_del(&priv->list);
 243	spin_unlock(&tty_files_lock);
 244	tty_free_file(file);
 245}
 246
 247
 248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 249
 250/**
 251 *	tty_name	-	return tty naming
 252 *	@tty: tty structure
 253 *	@buf: buffer for output
 254 *
 255 *	Convert a tty structure into a name. The name reflects the kernel
 256 *	naming policy and if udev is in use may not reflect user space
 257 *
 258 *	Locking: none
 259 */
 260
 261char *tty_name(struct tty_struct *tty, char *buf)
 262{
 263	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 264		strcpy(buf, "NULL tty");
 265	else
 266		strcpy(buf, tty->name);
 267	return buf;
 268}
 269
 270EXPORT_SYMBOL(tty_name);
 271
 272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 273			      const char *routine)
 274{
 275#ifdef TTY_PARANOIA_CHECK
 276	if (!tty) {
 277		printk(KERN_WARNING
 278			"null TTY for (%d:%d) in %s\n",
 279			imajor(inode), iminor(inode), routine);
 280		return 1;
 281	}
 282	if (tty->magic != TTY_MAGIC) {
 283		printk(KERN_WARNING
 284			"bad magic number for tty struct (%d:%d) in %s\n",
 285			imajor(inode), iminor(inode), routine);
 286		return 1;
 287	}
 288#endif
 289	return 0;
 290}
 291
 
 292static int check_tty_count(struct tty_struct *tty, const char *routine)
 293{
 294#ifdef CHECK_TTY_COUNT
 295	struct list_head *p;
 296	int count = 0;
 297
 298	spin_lock(&tty_files_lock);
 299	list_for_each(p, &tty->tty_files) {
 300		count++;
 301	}
 302	spin_unlock(&tty_files_lock);
 303	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 304	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 305	    tty->link && tty->link->count)
 306		count++;
 307	if (tty->count != count) {
 308		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 309				    "!= #fd's(%d) in %s\n",
 310		       tty->name, tty->count, count, routine);
 311		return count;
 
 312	}
 313#endif
 314	return 0;
 315}
 316
 317/**
 318 *	get_tty_driver		-	find device of a tty
 319 *	@dev_t: device identifier
 320 *	@index: returns the index of the tty
 321 *
 322 *	This routine returns a tty driver structure, given a device number
 323 *	and also passes back the index number.
 324 *
 325 *	Locking: caller must hold tty_mutex
 326 */
 327
 328static struct tty_driver *get_tty_driver(dev_t device, int *index)
 329{
 330	struct tty_driver *p;
 331
 332	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 333		dev_t base = MKDEV(p->major, p->minor_start);
 334		if (device < base || device >= base + p->num)
 335			continue;
 336		*index = device - base;
 337		return tty_driver_kref_get(p);
 338	}
 339	return NULL;
 340}
 341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342#ifdef CONFIG_CONSOLE_POLL
 343
 344/**
 345 *	tty_find_polling_driver	-	find device of a polled tty
 346 *	@name: name string to match
 347 *	@line: pointer to resulting tty line nr
 348 *
 349 *	This routine returns a tty driver structure, given a name
 350 *	and the condition that the tty driver is capable of polled
 351 *	operation.
 352 */
 353struct tty_driver *tty_find_polling_driver(char *name, int *line)
 354{
 355	struct tty_driver *p, *res = NULL;
 356	int tty_line = 0;
 357	int len;
 358	char *str, *stp;
 359
 360	for (str = name; *str; str++)
 361		if ((*str >= '0' && *str <= '9') || *str == ',')
 362			break;
 363	if (!*str)
 364		return NULL;
 365
 366	len = str - name;
 367	tty_line = simple_strtoul(str, &str, 10);
 368
 369	mutex_lock(&tty_mutex);
 370	/* Search through the tty devices to look for a match */
 371	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 372		if (strncmp(name, p->name, len) != 0)
 373			continue;
 374		stp = str;
 375		if (*stp == ',')
 376			stp++;
 377		if (*stp == '\0')
 378			stp = NULL;
 379
 380		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 381		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 382			res = tty_driver_kref_get(p);
 383			*line = tty_line;
 384			break;
 385		}
 386	}
 387	mutex_unlock(&tty_mutex);
 388
 389	return res;
 390}
 391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 392#endif
 393
 394/**
 395 *	tty_check_change	-	check for POSIX terminal changes
 396 *	@tty: tty to check
 397 *
 398 *	If we try to write to, or set the state of, a terminal and we're
 399 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 400 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 401 *
 402 *	Locking: ctrl_lock
 403 */
 404
 405int tty_check_change(struct tty_struct *tty)
 406{
 407	unsigned long flags;
 408	int ret = 0;
 409
 410	if (current->signal->tty != tty)
 411		return 0;
 412
 413	spin_lock_irqsave(&tty->ctrl_lock, flags);
 414
 415	if (!tty->pgrp) {
 416		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 417		goto out_unlock;
 418	}
 419	if (task_pgrp(current) == tty->pgrp)
 420		goto out_unlock;
 421	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 422	if (is_ignored(SIGTTOU))
 423		goto out;
 424	if (is_current_pgrp_orphaned()) {
 425		ret = -EIO;
 426		goto out;
 427	}
 428	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 429	set_thread_flag(TIF_SIGPENDING);
 430	ret = -ERESTARTSYS;
 431out:
 432	return ret;
 433out_unlock:
 434	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 435	return ret;
 436}
 437
 438EXPORT_SYMBOL(tty_check_change);
 439
 440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 441				size_t count, loff_t *ppos)
 442{
 443	return 0;
 444}
 445
 446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 447				 size_t count, loff_t *ppos)
 448{
 449	return -EIO;
 450}
 451
 452/* No kernel lock held - none needed ;) */
 453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 454{
 455	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 456}
 457
 458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 459		unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static long hung_up_tty_compat_ioctl(struct file *file,
 465				     unsigned int cmd, unsigned long arg)
 466{
 467	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 470static const struct file_operations tty_fops = {
 471	.llseek		= no_llseek,
 472	.read		= tty_read,
 473	.write		= tty_write,
 474	.poll		= tty_poll,
 475	.unlocked_ioctl	= tty_ioctl,
 476	.compat_ioctl	= tty_compat_ioctl,
 477	.open		= tty_open,
 478	.release	= tty_release,
 479	.fasync		= tty_fasync,
 
 480};
 481
 482static const struct file_operations console_fops = {
 483	.llseek		= no_llseek,
 484	.read		= tty_read,
 485	.write		= redirected_tty_write,
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read		= hung_up_tty_read,
 497	.write		= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 *	tty_wakeup	-	request more data
 509 *	@tty: terminal
 510 *
 511 *	Internal and external helper for wakeups of tty. This function
 512 *	informs the line discipline if present that the driver is ready
 513 *	to receive more output data.
 514 */
 515
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 529}
 530
 531EXPORT_SYMBOL_GPL(tty_wakeup);
 532
 533/**
 534 *	__tty_hangup		-	actual handler for hangup events
 535 *	@work: tty device
 536 *
 537 *	This can be called by the "eventd" kernel thread.  That is process
 538 *	synchronous but doesn't hold any locks, so we need to make sure we
 539 *	have the appropriate locks for what we're doing.
 540 *
 541 *	The hangup event clears any pending redirections onto the hung up
 542 *	device. It ensures future writes will error and it does the needed
 543 *	line discipline hangup and signal delivery. The tty object itself
 544 *	remains intact.
 545 *
 546 *	Locking:
 547 *		BTM
 548 *		  redirect lock for undoing redirection
 549 *		  file list lock for manipulating list of ttys
 550 *		  tty_ldisc_lock from called functions
 551 *		  termios_mutex resetting termios data
 552 *		  tasklist_lock to walk task list for hangup event
 553 *		    ->siglock to protect ->signal/->sighand
 554 */
 555void __tty_hangup(struct tty_struct *tty)
 556{
 557	struct file *cons_filp = NULL;
 558	struct file *filp, *f = NULL;
 559	struct task_struct *p;
 560	struct tty_file_private *priv;
 561	int    closecount = 0, n;
 562	unsigned long flags;
 563	int refs = 0;
 564
 565	if (!tty)
 566		return;
 567
 568
 569	spin_lock(&redirect_lock);
 570	if (redirect && file_tty(redirect) == tty) {
 571		f = redirect;
 572		redirect = NULL;
 573	}
 574	spin_unlock(&redirect_lock);
 575
 576	tty_lock();
 577
 578	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 
 
 
 
 
 579	set_bit(TTY_HUPPING, &tty->flags);
 580
 581	/* inuse_filps is protected by the single tty lock,
 582	   this really needs to change if we want to flush the
 583	   workqueue with the lock held */
 584	check_tty_count(tty, "tty_hangup");
 585
 586	spin_lock(&tty_files_lock);
 587	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 588	list_for_each_entry(priv, &tty->tty_files, list) {
 589		filp = priv->file;
 590		if (filp->f_op->write == redirected_tty_write)
 591			cons_filp = filp;
 592		if (filp->f_op->write != tty_write)
 593			continue;
 594		closecount++;
 595		__tty_fasync(-1, filp, 0);	/* can't block */
 596		filp->f_op = &hung_up_tty_fops;
 597	}
 598	spin_unlock(&tty_files_lock);
 599
 600	/*
 601	 * it drops BTM and thus races with reopen
 602	 * we protect the race by TTY_HUPPING
 603	 */
 604	tty_ldisc_hangup(tty);
 605
 606	read_lock(&tasklist_lock);
 607	if (tty->session) {
 608		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609			spin_lock_irq(&p->sighand->siglock);
 610			if (p->signal->tty == tty) {
 611				p->signal->tty = NULL;
 612				/* We defer the dereferences outside fo
 613				   the tasklist lock */
 614				refs++;
 615			}
 616			if (!p->signal->leader) {
 617				spin_unlock_irq(&p->sighand->siglock);
 618				continue;
 619			}
 620			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623			spin_lock_irqsave(&tty->ctrl_lock, flags);
 624			if (tty->pgrp)
 625				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 626			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 627			spin_unlock_irq(&p->sighand->siglock);
 628		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 629	}
 630	read_unlock(&tasklist_lock);
 631
 632	spin_lock_irqsave(&tty->ctrl_lock, flags);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_PUSH, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->session);
 637	put_pid(tty->pgrp);
 638	tty->session = NULL;
 639	tty->pgrp = NULL;
 640	tty->ctrl_status = 0;
 641	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 642
 643	/* Account for the p->signal references we killed */
 644	while (refs--)
 645		tty_kref_put(tty);
 646
 647	/*
 648	 * If one of the devices matches a console pointer, we
 649	 * cannot just call hangup() because that will cause
 650	 * tty->count and state->count to go out of sync.
 651	 * So we just call close() the right number of times.
 652	 */
 653	if (cons_filp) {
 654		if (tty->ops->close)
 655			for (n = 0; n < closecount; n++)
 656				tty->ops->close(tty, cons_filp);
 657	} else if (tty->ops->hangup)
 658		(tty->ops->hangup)(tty);
 659	/*
 660	 * We don't want to have driver/ldisc interactions beyond
 661	 * the ones we did here. The driver layer expects no
 662	 * calls after ->hangup() from the ldisc side. However we
 663	 * can't yet guarantee all that.
 664	 */
 665	set_bit(TTY_HUPPED, &tty->flags);
 666	clear_bit(TTY_HUPPING, &tty->flags);
 667	tty_ldisc_enable(tty);
 668
 669	tty_unlock();
 670
 671	if (f)
 672		fput(f);
 673}
 674
 675static void do_tty_hangup(struct work_struct *work)
 676{
 677	struct tty_struct *tty =
 678		container_of(work, struct tty_struct, hangup_work);
 679
 680	__tty_hangup(tty);
 681}
 682
 683/**
 684 *	tty_hangup		-	trigger a hangup event
 685 *	@tty: tty to hangup
 686 *
 687 *	A carrier loss (virtual or otherwise) has occurred on this like
 688 *	schedule a hangup sequence to run after this event.
 689 */
 690
 691void tty_hangup(struct tty_struct *tty)
 692{
 693#ifdef TTY_DEBUG_HANGUP
 694	char	buf[64];
 695	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 696#endif
 697	schedule_work(&tty->hangup_work);
 698}
 699
 700EXPORT_SYMBOL(tty_hangup);
 701
 702/**
 703 *	tty_vhangup		-	process vhangup
 704 *	@tty: tty to hangup
 705 *
 706 *	The user has asked via system call for the terminal to be hung up.
 707 *	We do this synchronously so that when the syscall returns the process
 708 *	is complete. That guarantee is necessary for security reasons.
 709 */
 710
 711void tty_vhangup(struct tty_struct *tty)
 712{
 713#ifdef TTY_DEBUG_HANGUP
 714	char	buf[64];
 715
 716	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 717#endif
 718	__tty_hangup(tty);
 719}
 720
 721EXPORT_SYMBOL(tty_vhangup);
 722
 723
 724/**
 725 *	tty_vhangup_self	-	process vhangup for own ctty
 726 *
 727 *	Perform a vhangup on the current controlling tty
 728 */
 729
 730void tty_vhangup_self(void)
 731{
 732	struct tty_struct *tty;
 733
 734	tty = get_current_tty();
 735	if (tty) {
 736		tty_vhangup(tty);
 737		tty_kref_put(tty);
 738	}
 739}
 740
 741/**
 742 *	tty_hung_up_p		-	was tty hung up
 743 *	@filp: file pointer of tty
 
 
 
 744 *
 745 *	Return true if the tty has been subject to a vhangup or a carrier
 746 *	loss
 747 */
 748
 749int tty_hung_up_p(struct file *filp)
 750{
 751	return (filp->f_op == &hung_up_tty_fops);
 752}
 753
 754EXPORT_SYMBOL(tty_hung_up_p);
 755
 756static void session_clear_tty(struct pid *session)
 757{
 758	struct task_struct *p;
 759	do_each_pid_task(session, PIDTYPE_SID, p) {
 760		proc_clear_tty(p);
 761	} while_each_pid_task(session, PIDTYPE_SID, p);
 762}
 763
 764/**
 765 *	disassociate_ctty	-	disconnect controlling tty
 766 *	@on_exit: true if exiting so need to "hang up" the session
 767 *
 768 *	This function is typically called only by the session leader, when
 769 *	it wants to disassociate itself from its controlling tty.
 770 *
 771 *	It performs the following functions:
 772 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 773 * 	(2)  Clears the tty from being controlling the session
 774 * 	(3)  Clears the controlling tty for all processes in the
 775 * 		session group.
 776 *
 777 *	The argument on_exit is set to 1 if called when a process is
 778 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 779 *
 780 *	Locking:
 781 *		BTM is taken for hysterical raisins, and held when
 782 *		  called from no_tty().
 783 *		  tty_mutex is taken to protect tty
 784 *		  ->siglock is taken to protect ->signal/->sighand
 785 *		  tasklist_lock is taken to walk process list for sessions
 786 *		    ->siglock is taken to protect ->signal/->sighand
 787 */
 788
 789void disassociate_ctty(int on_exit)
 790{
 791	struct tty_struct *tty;
 792
 793	if (!current->signal->leader)
 794		return;
 795
 796	tty = get_current_tty();
 797	if (tty) {
 798		struct pid *tty_pgrp = get_pid(tty->pgrp);
 799		if (on_exit) {
 800			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 801				tty_vhangup(tty);
 802		}
 803		tty_kref_put(tty);
 804		if (tty_pgrp) {
 805			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 806			if (!on_exit)
 807				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 808			put_pid(tty_pgrp);
 809		}
 810	} else if (on_exit) {
 811		struct pid *old_pgrp;
 812		spin_lock_irq(&current->sighand->siglock);
 813		old_pgrp = current->signal->tty_old_pgrp;
 814		current->signal->tty_old_pgrp = NULL;
 815		spin_unlock_irq(&current->sighand->siglock);
 816		if (old_pgrp) {
 817			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 818			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 819			put_pid(old_pgrp);
 820		}
 821		return;
 822	}
 823
 824	spin_lock_irq(&current->sighand->siglock);
 825	put_pid(current->signal->tty_old_pgrp);
 826	current->signal->tty_old_pgrp = NULL;
 827	spin_unlock_irq(&current->sighand->siglock);
 828
 829	tty = get_current_tty();
 830	if (tty) {
 831		unsigned long flags;
 832		spin_lock_irqsave(&tty->ctrl_lock, flags);
 833		put_pid(tty->session);
 834		put_pid(tty->pgrp);
 835		tty->session = NULL;
 836		tty->pgrp = NULL;
 837		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 838		tty_kref_put(tty);
 839	} else {
 840#ifdef TTY_DEBUG_HANGUP
 841		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 842		       " = NULL", tty);
 843#endif
 844	}
 845
 846	/* Now clear signal->tty under the lock */
 847	read_lock(&tasklist_lock);
 848	session_clear_tty(task_session(current));
 849	read_unlock(&tasklist_lock);
 850}
 851
 852/**
 853 *
 854 *	no_tty	- Ensure the current process does not have a controlling tty
 855 */
 856void no_tty(void)
 857{
 858	/* FIXME: Review locking here. The tty_lock never covered any race
 859	   between a new association and proc_clear_tty but possible we need
 860	   to protect against this anyway */
 861	struct task_struct *tsk = current;
 862	disassociate_ctty(0);
 863	proc_clear_tty(tsk);
 864}
 865
 
 866
 867/**
 868 *	stop_tty	-	propagate flow control
 869 *	@tty: tty to stop
 870 *
 871 *	Perform flow control to the driver. For PTY/TTY pairs we
 872 *	must also propagate the TIOCKPKT status. May be called
 873 *	on an already stopped device and will not re-call the driver
 874 *	method.
 875 *
 876 *	This functionality is used by both the line disciplines for
 877 *	halting incoming flow and by the driver. It may therefore be
 878 *	called from any context, may be under the tty atomic_write_lock
 879 *	but not always.
 880 *
 881 *	Locking:
 882 *		Uses the tty control lock internally
 883 */
 884
 885void stop_tty(struct tty_struct *tty)
 886{
 887	unsigned long flags;
 888	spin_lock_irqsave(&tty->ctrl_lock, flags);
 889	if (tty->stopped) {
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		return;
 892	}
 893	tty->stopped = 1;
 894	if (tty->link && tty->link->packet) {
 895		tty->ctrl_status &= ~TIOCPKT_START;
 896		tty->ctrl_status |= TIOCPKT_STOP;
 897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 898	}
 899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 900	if (tty->ops->stop)
 901		(tty->ops->stop)(tty);
 902}
 903
 
 
 
 
 
 
 
 
 904EXPORT_SYMBOL(stop_tty);
 905
 906/**
 907 *	start_tty	-	propagate flow control
 908 *	@tty: tty to start
 909 *
 910 *	Start a tty that has been stopped if at all possible. Perform
 911 *	any necessary wakeups and propagate the TIOCPKT status. If this
 912 *	is the tty was previous stopped and is being started then the
 913 *	driver start method is invoked and the line discipline woken.
 914 *
 915 *	Locking:
 916 *		ctrl_lock
 917 */
 918
 919void start_tty(struct tty_struct *tty)
 920{
 921	unsigned long flags;
 922	spin_lock_irqsave(&tty->ctrl_lock, flags);
 923	if (!tty->stopped || tty->flow_stopped) {
 924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 925		return;
 926	}
 927	tty->stopped = 0;
 928	if (tty->link && tty->link->packet) {
 929		tty->ctrl_status &= ~TIOCPKT_STOP;
 930		tty->ctrl_status |= TIOCPKT_START;
 931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 932	}
 933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 934	if (tty->ops->start)
 935		(tty->ops->start)(tty);
 936	/* If we have a running line discipline it may need kicking */
 937	tty_wakeup(tty);
 938}
 939
 
 
 
 
 
 
 
 
 940EXPORT_SYMBOL(start_tty);
 941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942/**
 943 *	tty_read	-	read method for tty device files
 944 *	@file: pointer to tty file
 945 *	@buf: user buffer
 946 *	@count: size of user buffer
 947 *	@ppos: unused
 948 *
 949 *	Perform the read system call function on this terminal device. Checks
 950 *	for hung up devices before calling the line discipline method.
 951 *
 952 *	Locking:
 953 *		Locks the line discipline internally while needed. Multiple
 954 *	read calls may be outstanding in parallel.
 955 */
 956
 957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 958			loff_t *ppos)
 959{
 960	int i;
 961	struct inode *inode = file->f_path.dentry->d_inode;
 962	struct tty_struct *tty = file_tty(file);
 963	struct tty_ldisc *ld;
 964
 965	if (tty_paranoia_check(tty, inode, "tty_read"))
 966		return -EIO;
 967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 968		return -EIO;
 969
 970	/* We want to wait for the line discipline to sort out in this
 971	   situation */
 972	ld = tty_ldisc_ref_wait(tty);
 
 
 973	if (ld->ops->read)
 974		i = (ld->ops->read)(tty, file, buf, count);
 975	else
 976		i = -EIO;
 977	tty_ldisc_deref(ld);
 
 978	if (i > 0)
 979		inode->i_atime = current_fs_time(inode->i_sb);
 
 980	return i;
 981}
 982
 983void tty_write_unlock(struct tty_struct *tty)
 984	__releases(&tty->atomic_write_lock)
 985{
 986	mutex_unlock(&tty->atomic_write_lock);
 987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 988}
 989
 990int tty_write_lock(struct tty_struct *tty, int ndelay)
 991	__acquires(&tty->atomic_write_lock)
 992{
 993	if (!mutex_trylock(&tty->atomic_write_lock)) {
 994		if (ndelay)
 995			return -EAGAIN;
 996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 997			return -ERESTARTSYS;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
1062		if (size > chunk)
1063			size = chunk;
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
1067		ret = write(tty, file, tty->write_buf, size);
1068		if (ret <= 0)
1069			break;
1070		written += ret;
1071		buf += ret;
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
 
 
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
 
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
 
 
1233	if (driver->ops->lookup)
1234		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1235
1236	return driver->ttys[idx];
 
 
1237}
1238
1239/**
1240 *	tty_init_termios	-  helper for termios setup
1241 *	@tty: the tty to set up
1242 *
1243 *	Initialise the termios structures for this tty. Thus runs under
1244 *	the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	tp = tty->driver->termios[idx];
1253	if (tp == NULL) {
1254		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255		if (tp == NULL)
1256			return -ENOMEM;
1257		memcpy(tp, &tty->driver->init_termios,
1258						sizeof(struct ktermios));
1259		tty->driver->termios[idx] = tp;
 
 
1260	}
1261	tty->termios = tp;
1262	tty->termios_locked = tp + 1;
1263
1264	/* Compatibility until drivers always set this */
1265	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273	int ret = tty_init_termios(tty);
1274	if (ret)
1275		return ret;
1276
1277	tty_driver_kref_get(driver);
1278	tty->count++;
1279	driver->ttys[tty->index] = tty;
1280	return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 *	tty_driver_install_tty() - install a tty entry in the driver
1286 *	@driver: the driver for the tty
1287 *	@tty: the tty
1288 *
1289 *	Install a tty object into the driver tables. The tty->index field
1290 *	will be set by the time this is called. This method is responsible
1291 *	for ensuring any need additional structures are allocated and
1292 *	configured.
1293 *
1294 *	Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297						struct tty_struct *tty)
1298{
1299	return driver->ops->install ? driver->ops->install(driver, tty) :
1300		tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 *	tty_driver_remove_tty() - remove a tty from the driver tables
1305 *	@driver: the driver for the tty
1306 *	@idx:	 the minor number
1307 *
1308 *	Remvoe a tty object from the driver tables. The tty->index field
1309 *	will be set by the time this is called.
1310 *
1311 *	Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315	if (driver->ops->remove)
1316		driver->ops->remove(driver, tty);
1317	else
1318		driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * 	tty_reopen()	- fast re-open of an open tty
1323 * 	@tty	- the tty to open
1324 *
1325 *	Return 0 on success, -errno on error.
 
1326 *
1327 *	Locking: tty_mutex must be held from the time the tty was found
1328 *		 till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332	struct tty_driver *driver = tty->driver;
1333
1334	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335			test_bit(TTY_HUPPING, &tty->flags) ||
1336			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337		return -EIO;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER) {
1341		/*
1342		 * special case for PTY masters: only one open permitted,
1343		 * and the slave side open count is incremented as well.
1344		 */
1345		if (tty->count)
1346			return -EIO;
1347
1348		tty->link->count++;
1349	}
1350	tty->count++;
1351
1352	mutex_lock(&tty->ldisc_mutex);
1353	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354	mutex_unlock(&tty->ldisc_mutex);
1355
1356	return 0;
1357}
1358
1359/**
1360 *	tty_init_dev		-	initialise a tty device
1361 *	@driver: tty driver we are opening a device on
1362 *	@idx: device index
1363 *	@ret_tty: returned tty structure
1364 *
1365 *	Prepare a tty device. This may not be a "new" clean device but
1366 *	could also be an active device. The pty drivers require special
1367 *	handling because of this.
1368 *
1369 *	Locking:
1370 *		The function is called under the tty_mutex, which
1371 *	protects us from the tty struct or driver itself going away.
1372 *
1373 *	On exit the tty device has the line discipline attached and
1374 *	a reference count of 1. If a pair was created for pty/tty use
1375 *	and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open.  The new code protects the open with a mutex, so it's
1379 * really quite straightforward.  The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385	struct tty_struct *tty;
1386	int retval;
1387
1388	/*
1389	 * First time open is complex, especially for PTY devices.
1390	 * This code guarantees that either everything succeeds and the
1391	 * TTY is ready for operation, or else the table slots are vacated
1392	 * and the allocated memory released.  (Except that the termios
1393	 * and locked termios may be retained.)
1394	 */
1395
1396	if (!try_module_get(driver->owner))
1397		return ERR_PTR(-ENODEV);
1398
1399	tty = alloc_tty_struct();
1400	if (!tty) {
1401		retval = -ENOMEM;
1402		goto err_module_put;
1403	}
1404	initialize_tty_struct(tty, driver, idx);
1405
 
1406	retval = tty_driver_install_tty(driver, tty);
1407	if (retval < 0)
1408		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * Structures all installed ... call the ldisc open routines.
1412	 * If we fail here just call release_tty to clean up.  No need
1413	 * to decrement the use counts, as release_tty doesn't care.
1414	 */
1415	retval = tty_ldisc_setup(tty, tty->link);
1416	if (retval)
1417		goto err_release_tty;
 
 
1418	return tty;
1419
1420err_deinit_tty:
1421	deinitialize_tty_struct(tty);
1422	free_tty_struct(tty);
1423err_module_put:
1424	module_put(driver->owner);
1425	return ERR_PTR(retval);
1426
1427	/* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430				 "clearing slot %d\n", idx);
 
 
 
1431	release_tty(tty, idx);
1432	return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
1436{
1437	struct ktermios *tp;
1438	int idx = tty->index;
1439	/* Kill this flag and push into drivers for locking etc */
1440	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441		/* FIXME: Locking on ->termios array */
1442		tp = tty->termios;
1443		tty->driver->termios[idx] = NULL;
1444		kfree(tp);
 
 
 
 
 
 
1445	}
 
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1450{
1451	tty_driver_remove_tty(tty->driver, tty);
1452	tty_free_termios(tty);
 
 
 
 
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 *	release_one_tty		-	release tty structure memory
1458 *	@kref: kref of tty we are obliterating
1459 *
1460 *	Releases memory associated with a tty structure, and clears out the
1461 *	driver table slots. This function is called when a device is no longer
1462 *	in use. It also gets called when setup of a device fails.
1463 *
1464 *	Locking:
1465 *		tty_mutex - sometimes only
1466 *		takes the file list lock internally when working on the list
1467 *	of ttys that the driver keeps.
1468 *
1469 *	This method gets called from a work queue so that the driver private
1470 *	cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474	struct tty_struct *tty =
1475		container_of(work, struct tty_struct, hangup_work);
1476	struct tty_driver *driver = tty->driver;
 
1477
1478	if (tty->ops->cleanup)
1479		tty->ops->cleanup(tty);
1480
1481	tty->magic = 0;
1482	tty_driver_kref_put(driver);
1483	module_put(driver->owner);
1484
1485	spin_lock(&tty_files_lock);
1486	list_del_init(&tty->tty_files);
1487	spin_unlock(&tty_files_lock);
1488
1489	put_pid(tty->pgrp);
1490	put_pid(tty->session);
1491	free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498	if (tty->ops->shutdown)
1499		tty->ops->shutdown(tty);
1500	else
1501		tty_shutdown(tty);
1502
1503	/* The hangup queue is now free so we can reuse it rather than
1504	   waste a chunk of memory for each port */
1505	INIT_WORK(&tty->hangup_work, release_one_tty);
1506	schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 *	tty_kref_put		-	release a tty kref
1511 *	@tty: tty device
1512 *
1513 *	Release a reference to a tty device and if need be let the kref
1514 *	layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519	if (tty)
1520		kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 *	release_tty		-	release tty structure memory
1526 *
1527 *	Release both @tty and a possible linked partner (think pty pair),
1528 *	and decrement the refcount of the backing module.
1529 *
1530 *	Locking:
1531 *		tty_mutex - sometimes only
1532 *		takes the file list lock internally when working on the list
1533 *	of ttys that the driver keeps.
1534 *		FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539	/* This should always be true but check for the moment */
1540	WARN_ON(tty->index != idx);
 
 
 
 
 
 
 
 
 
 
 
1541
1542	if (tty->link)
1543		tty_kref_put(tty->link);
1544	tty_kref_put(tty);
1545}
1546
1547/**
1548 *	tty_release_checks - check a tty before real release
1549 *	@tty: tty to check
1550 *	@o_tty: link of @tty (if any)
1551 *	@idx: index of the tty
1552 *
1553 *	Performs some paranoid checking before true release of the @tty.
1554 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557		int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560	if (idx < 0 || idx >= tty->driver->num) {
1561		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562				__func__, tty->name);
1563		return -1;
1564	}
1565
1566	/* not much to check for devpts */
1567	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568		return 0;
1569
1570	if (tty != tty->driver->ttys[idx]) {
1571		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572				__func__, idx, tty->name);
1573		return -1;
1574	}
1575	if (tty->termios != tty->driver->termios[idx]) {
1576		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577				__func__, idx, tty->name);
1578		return -1;
1579	}
1580	if (tty->driver->other) {
 
 
1581		if (o_tty != tty->driver->other->ttys[idx]) {
1582			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583					__func__, idx, tty->name);
1584			return -1;
1585		}
1586		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588					__func__, idx, tty->name);
1589			return -1;
1590		}
1591		if (o_tty->link != tty) {
1592			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593			return -1;
1594		}
1595	}
1596#endif
1597	return 0;
1598}
1599
1600/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601 *	tty_release		-	vfs callback for close
1602 *	@inode: inode of tty
1603 *	@filp: file pointer for handle to tty
1604 *
1605 *	Called the last time each file handle is closed that references
1606 *	this tty. There may however be several such references.
1607 *
1608 *	Locking:
1609 *		Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621	struct tty_struct *tty = file_tty(filp);
1622	struct tty_struct *o_tty;
1623	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624	int	devpts;
1625	int	idx;
1626	char	buf[64];
 
1627
1628	if (tty_paranoia_check(tty, inode, __func__))
1629		return 0;
1630
1631	tty_lock();
1632	check_tty_count(tty, __func__);
1633
1634	__tty_fasync(-1, filp, 0);
1635
1636	idx = tty->index;
1637	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638		      tty->driver->subtype == PTY_TYPE_MASTER);
1639	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640	o_tty = tty->link;
1641
1642	if (tty_release_checks(tty, o_tty, idx)) {
1643		tty_unlock();
1644		return 0;
1645	}
1646
1647#ifdef TTY_DEBUG_HANGUP
1648	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649			tty_name(tty, buf), tty->count);
1650#endif
1651
1652	if (tty->ops->close)
1653		tty->ops->close(tty, filp);
1654
1655	tty_unlock();
 
 
1656	/*
1657	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659	 * wait queues and kick everyone out _before_ actually starting to
1660	 * close.  This ensures that we won't block while releasing the tty
1661	 * structure.
1662	 *
1663	 * The test for the o_tty closing is necessary, since the master and
1664	 * slave sides may close in any order.  If the slave side closes out
1665	 * first, its count will be one, since the master side holds an open.
1666	 * Thus this test wouldn't be triggered at the time the slave closes,
1667	 * so we do it now.
1668	 *
1669	 * Note that it's possible for the tty to be opened again while we're
1670	 * flushing out waiters.  By recalculating the closing flags before
1671	 * each iteration we avoid any problems.
1672	 */
1673	while (1) {
1674		/* Guard against races with tty->count changes elsewhere and
1675		   opens on /dev/tty */
1676
1677		mutex_lock(&tty_mutex);
1678		tty_lock();
1679		tty_closing = tty->count <= 1;
1680		o_tty_closing = o_tty &&
1681			(o_tty->count <= (pty_master ? 1 : 0));
1682		do_sleep = 0;
1683
1684		if (tty_closing) {
1685			if (waitqueue_active(&tty->read_wait)) {
1686				wake_up_poll(&tty->read_wait, POLLIN);
1687				do_sleep++;
1688			}
1689			if (waitqueue_active(&tty->write_wait)) {
1690				wake_up_poll(&tty->write_wait, POLLOUT);
1691				do_sleep++;
1692			}
1693		}
1694		if (o_tty_closing) {
1695			if (waitqueue_active(&o_tty->read_wait)) {
1696				wake_up_poll(&o_tty->read_wait, POLLIN);
1697				do_sleep++;
1698			}
1699			if (waitqueue_active(&o_tty->write_wait)) {
1700				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701				do_sleep++;
1702			}
1703		}
1704		if (!do_sleep)
1705			break;
1706
1707		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708				__func__, tty_name(tty, buf));
1709		tty_unlock();
1710		mutex_unlock(&tty_mutex);
1711		schedule();
 
 
 
 
1712	}
1713
1714	/*
1715	 * The closing flags are now consistent with the open counts on
1716	 * both sides, and we've completed the last operation that could
1717	 * block, so it's safe to proceed with closing.
1718	 */
1719	if (pty_master) {
1720		if (--o_tty->count < 0) {
1721			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722				__func__, o_tty->count, tty_name(o_tty, buf));
1723			o_tty->count = 0;
1724		}
1725	}
1726	if (--tty->count < 0) {
1727		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728				__func__, tty->count, tty_name(tty, buf));
1729		tty->count = 0;
1730	}
1731
1732	/*
1733	 * We've decremented tty->count, so we need to remove this file
1734	 * descriptor off the tty->tty_files list; this serves two
1735	 * purposes:
1736	 *  - check_tty_count sees the correct number of file descriptors
1737	 *    associated with this tty.
1738	 *  - do_tty_hangup no longer sees this file descriptor as
1739	 *    something that needs to be handled for hangups.
1740	 */
1741	tty_del_file(filp);
1742
1743	/*
1744	 * Perform some housekeeping before deciding whether to return.
1745	 *
1746	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747	 * case of a pty we may have to wait around for the other side
1748	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749	 */
1750	if (tty_closing)
1751		set_bit(TTY_CLOSING, &tty->flags);
1752	if (o_tty_closing)
1753		set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755	/*
1756	 * If _either_ side is closing, make sure there aren't any
1757	 * processes that still think tty or o_tty is their controlling
1758	 * tty.
1759	 */
1760	if (tty_closing || o_tty_closing) {
1761		read_lock(&tasklist_lock);
1762		session_clear_tty(tty->session);
1763		if (o_tty)
1764			session_clear_tty(o_tty->session);
1765		read_unlock(&tasklist_lock);
1766	}
1767
1768	mutex_unlock(&tty_mutex);
 
 
 
 
 
 
 
1769
1770	/* check whether both sides are closing ... */
1771	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772		tty_unlock();
1773		return 0;
1774	}
1775
1776#ifdef TTY_DEBUG_HANGUP
1777	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779	/*
1780	 * Ask the line discipline code to release its structures
1781	 */
1782	tty_ldisc_release(tty, o_tty);
1783	/*
1784	 * The release_tty function takes care of the details of clearing
1785	 * the slots and preserving the termios structure.
1786	 */
1787	release_tty(tty, idx);
1788
1789	/* Make this pty number available for reallocation */
1790	if (devpts)
1791		devpts_kill_index(inode, idx);
1792	tty_unlock();
1793	return 0;
1794}
1795
1796/**
1797 *	tty_open_current_tty - get tty of current task for open
1798 *	@device: device number
1799 *	@filp: file pointer to tty
1800 *	@return: tty of the current task iff @device is /dev/tty
 
 
1801 *
1802 *	We cannot return driver and index like for the other nodes because
1803 *	devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 *	We need to move to returning a refcounted object from all the lookup
1806 *	paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810	struct tty_struct *tty;
 
1811
1812	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813		return NULL;
1814
1815	tty = get_current_tty();
1816	if (!tty)
1817		return ERR_PTR(-ENXIO);
1818
1819	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820	/* noctty = 1; */
1821	tty_kref_put(tty);
1822	/* FIXME: we put a reference and return a TTY! */
1823	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1824	return tty;
1825}
1826
1827/**
1828 *	tty_lookup_driver - lookup a tty driver for a given device file
1829 *	@device: device number
1830 *	@filp: file pointer to tty
1831 *	@noctty: set if the device should not become a controlling tty
1832 *	@index: index for the device in the @return driver
1833 *	@return: driver for this inode (with increased refcount)
1834 *
1835 * 	If @return is not erroneous, the caller is responsible to decrement the
1836 * 	refcount by tty_driver_kref_put.
1837 *
1838 *	Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841		int *noctty, int *index)
1842{
1843	struct tty_driver *driver;
1844
1845	switch (device) {
1846#ifdef CONFIG_VT
1847	case MKDEV(TTY_MAJOR, 0): {
1848		extern struct tty_driver *console_driver;
1849		driver = tty_driver_kref_get(console_driver);
1850		*index = fg_console;
1851		*noctty = 1;
1852		break;
1853	}
1854#endif
1855	case MKDEV(TTYAUX_MAJOR, 1): {
1856		struct tty_driver *console_driver = console_device(index);
1857		if (console_driver) {
1858			driver = tty_driver_kref_get(console_driver);
1859			if (driver) {
1860				/* Don't let /dev/console block */
1861				filp->f_flags |= O_NONBLOCK;
1862				*noctty = 1;
1863				break;
1864			}
1865		}
1866		return ERR_PTR(-ENODEV);
1867	}
1868	default:
1869		driver = get_tty_driver(device, index);
1870		if (!driver)
1871			return ERR_PTR(-ENODEV);
1872		break;
1873	}
1874	return driver;
1875}
1876
1877/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878 *	tty_open		-	open a tty device
1879 *	@inode: inode of device file
1880 *	@filp: file pointer to tty
1881 *
1882 *	tty_open and tty_release keep up the tty count that contains the
1883 *	number of opens done on a tty. We cannot use the inode-count, as
1884 *	different inodes might point to the same tty.
1885 *
1886 *	Open-counting is needed for pty masters, as well as for keeping
1887 *	track of serial lines: DTR is dropped when the last close happens.
1888 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889 *
1890 *	The termios state of a pty is reset on first open so that
1891 *	settings don't persist across reuse.
1892 *
1893 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 *		 tty->count should protect the rest.
1895 *		 ->siglock protects ->signal/->sighand
 
 
 
1896 */
1897
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901	int noctty, retval;
1902	struct tty_driver *driver = NULL;
1903	int index;
1904	dev_t device = inode->i_rdev;
1905	unsigned saved_flags = filp->f_flags;
1906
1907	nonseekable_open(inode, filp);
1908
1909retry_open:
1910	retval = tty_alloc_file(filp);
1911	if (retval)
1912		return -ENOMEM;
1913
1914	noctty = filp->f_flags & O_NOCTTY;
1915	index  = -1;
1916	retval = 0;
1917
1918	mutex_lock(&tty_mutex);
1919	tty_lock();
1920
1921	tty = tty_open_current_tty(device, filp);
1922	if (IS_ERR(tty)) {
1923		retval = PTR_ERR(tty);
1924		goto err_unlock;
1925	} else if (!tty) {
1926		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927		if (IS_ERR(driver)) {
1928			retval = PTR_ERR(driver);
1929			goto err_unlock;
1930		}
1931
1932		/* check whether we're reopening an existing tty */
1933		tty = tty_driver_lookup_tty(driver, inode, index);
1934		if (IS_ERR(tty)) {
1935			retval = PTR_ERR(tty);
1936			goto err_unlock;
1937		}
1938	}
1939
1940	if (tty) {
1941		retval = tty_reopen(tty);
1942		if (retval)
1943			tty = ERR_PTR(retval);
1944	} else
1945		tty = tty_init_dev(driver, index);
1946
1947	mutex_unlock(&tty_mutex);
1948	if (driver)
1949		tty_driver_kref_put(driver);
1950	if (IS_ERR(tty)) {
1951		tty_unlock();
1952		retval = PTR_ERR(tty);
1953		goto err_file;
 
 
 
1954	}
1955
1956	tty_add_file(tty, filp);
1957
1958	check_tty_count(tty, __func__);
1959	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960	    tty->driver->subtype == PTY_TYPE_MASTER)
1961		noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965	if (tty->ops->open)
1966		retval = tty->ops->open(tty, filp);
1967	else
1968		retval = -ENODEV;
1969	filp->f_flags = saved_flags;
1970
1971	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972						!capable(CAP_SYS_ADMIN))
1973		retval = -EBUSY;
1974
1975	if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978				retval, tty->name);
1979#endif
1980		tty_unlock(); /* need to call tty_release without BTM */
1981		tty_release(inode, filp);
1982		if (retval != -ERESTARTSYS)
1983			return retval;
1984
1985		if (signal_pending(current))
1986			return retval;
1987
1988		schedule();
1989		/*
1990		 * Need to reset f_op in case a hangup happened.
1991		 */
1992		tty_lock();
1993		if (filp->f_op == &hung_up_tty_fops)
1994			filp->f_op = &tty_fops;
1995		tty_unlock();
1996		goto retry_open;
1997	}
1998	tty_unlock();
1999
2000
2001	mutex_lock(&tty_mutex);
2002	tty_lock();
2003	spin_lock_irq(&current->sighand->siglock);
2004	if (!noctty &&
2005	    current->signal->leader &&
2006	    !current->signal->tty &&
2007	    tty->session == NULL)
2008		__proc_set_tty(current, tty);
2009	spin_unlock_irq(&current->sighand->siglock);
2010	tty_unlock();
2011	mutex_unlock(&tty_mutex);
2012	return 0;
2013err_unlock:
2014	tty_unlock();
2015	mutex_unlock(&tty_mutex);
2016	/* after locks to avoid deadlock */
2017	if (!IS_ERR_OR_NULL(driver))
2018		tty_driver_kref_put(driver);
2019err_file:
2020	tty_free_file(filp);
2021	return retval;
2022}
2023
2024
2025
2026/**
2027 *	tty_poll	-	check tty status
2028 *	@filp: file being polled
2029 *	@wait: poll wait structures to update
2030 *
2031 *	Call the line discipline polling method to obtain the poll
2032 *	status of the device.
2033 *
2034 *	Locking: locks called line discipline but ldisc poll method
2035 *	may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040	struct tty_struct *tty = file_tty(filp);
2041	struct tty_ldisc *ld;
2042	int ret = 0;
2043
2044	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045		return 0;
2046
2047	ld = tty_ldisc_ref_wait(tty);
 
 
2048	if (ld->ops->poll)
2049		ret = (ld->ops->poll)(tty, filp, wait);
2050	tty_ldisc_deref(ld);
2051	return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056	struct tty_struct *tty = file_tty(filp);
2057	unsigned long flags;
2058	int retval = 0;
2059
2060	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061		goto out;
2062
2063	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064	if (retval <= 0)
2065		goto out;
2066
2067	if (on) {
2068		enum pid_type type;
2069		struct pid *pid;
2070		if (!waitqueue_active(&tty->read_wait))
2071			tty->minimum_to_wake = 1;
2072		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073		if (tty->pgrp) {
2074			pid = tty->pgrp;
2075			type = PIDTYPE_PGID;
2076		} else {
2077			pid = task_pid(current);
2078			type = PIDTYPE_PID;
2079		}
2080		get_pid(pid);
2081		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082		retval = __f_setown(filp, pid, type, 0);
2083		put_pid(pid);
2084		if (retval)
2085			goto out;
2086	} else {
2087		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089	}
2090	retval = 0;
2091out:
2092	return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097	int retval;
2098	tty_lock();
2099	retval = __tty_fasync(fd, filp, on);
2100	tty_unlock();
 
 
 
 
2101	return retval;
2102}
2103
2104/**
2105 *	tiocsti			-	fake input character
2106 *	@tty: tty to fake input into
2107 *	@p: pointer to character
2108 *
2109 *	Fake input to a tty device. Does the necessary locking and
2110 *	input management.
2111 *
2112 *	FIXME: does not honour flow control ??
2113 *
2114 *	Locking:
2115 *		Called functions take tty_ldisc_lock
2116 *		current->signal->tty check is safe without locks
2117 *
2118 *	FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123	char ch, mbz = 0;
2124	struct tty_ldisc *ld;
2125
2126	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127		return -EPERM;
2128	if (get_user(ch, p))
2129		return -EFAULT;
2130	tty_audit_tiocsti(tty, ch);
2131	ld = tty_ldisc_ref_wait(tty);
 
 
2132	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133	tty_ldisc_deref(ld);
2134	return 0;
2135}
2136
2137/**
2138 *	tiocgwinsz		-	implement window query ioctl
2139 *	@tty; tty
2140 *	@arg: user buffer for result
2141 *
2142 *	Copies the kernel idea of the window size into the user buffer.
2143 *
2144 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145 *		is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150	int err;
2151
2152	mutex_lock(&tty->termios_mutex);
2153	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154	mutex_unlock(&tty->termios_mutex);
2155
2156	return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 *	tty_do_resize		-	resize event
2161 *	@tty: tty being resized
2162 *	@rows: rows (character)
2163 *	@cols: cols (character)
2164 *
2165 *	Update the termios variables and send the necessary signals to
2166 *	peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171	struct pid *pgrp;
2172	unsigned long flags;
2173
2174	/* Lock the tty */
2175	mutex_lock(&tty->termios_mutex);
2176	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177		goto done;
2178	/* Get the PID values and reference them so we can
2179	   avoid holding the tty ctrl lock while sending signals */
2180	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181	pgrp = get_pid(tty->pgrp);
2182	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
 
 
2184	if (pgrp)
2185		kill_pgrp(pgrp, SIGWINCH, 1);
2186	put_pid(pgrp);
2187
2188	tty->winsize = *ws;
2189done:
2190	mutex_unlock(&tty->termios_mutex);
2191	return 0;
2192}
 
2193
2194/**
2195 *	tiocswinsz		-	implement window size set ioctl
2196 *	@tty; tty side of tty
2197 *	@arg: user buffer for result
2198 *
2199 *	Copies the user idea of the window size to the kernel. Traditionally
2200 *	this is just advisory information but for the Linux console it
2201 *	actually has driver level meaning and triggers a VC resize.
2202 *
2203 *	Locking:
2204 *		Driver dependent. The default do_resize method takes the
2205 *	tty termios mutex and ctrl_lock. The console takes its own lock
2206 *	then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211	struct winsize tmp_ws;
2212	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213		return -EFAULT;
2214
2215	if (tty->ops->resize)
2216		return tty->ops->resize(tty, &tmp_ws);
2217	else
2218		return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 *	tioccons	-	allow admin to move logical console
2223 *	@file: the file to become console
2224 *
2225 *	Allow the administrator to move the redirected console device
2226 *
2227 *	Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234	if (file->f_op->write == redirected_tty_write) {
2235		struct file *f;
2236		spin_lock(&redirect_lock);
2237		f = redirect;
2238		redirect = NULL;
2239		spin_unlock(&redirect_lock);
2240		if (f)
2241			fput(f);
2242		return 0;
2243	}
2244	spin_lock(&redirect_lock);
2245	if (redirect) {
2246		spin_unlock(&redirect_lock);
2247		return -EBUSY;
2248	}
2249	get_file(file);
2250	redirect = file;
2251	spin_unlock(&redirect_lock);
2252	return 0;
2253}
2254
2255/**
2256 *	fionbio		-	non blocking ioctl
2257 *	@file: file to set blocking value
2258 *	@p: user parameter
2259 *
2260 *	Historical tty interfaces had a blocking control ioctl before
2261 *	the generic functionality existed. This piece of history is preserved
2262 *	in the expected tty API of posix OS's.
2263 *
2264 *	Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269	int nonblock;
2270
2271	if (get_user(nonblock, p))
2272		return -EFAULT;
2273
2274	spin_lock(&file->f_lock);
2275	if (nonblock)
2276		file->f_flags |= O_NONBLOCK;
2277	else
2278		file->f_flags &= ~O_NONBLOCK;
2279	spin_unlock(&file->f_lock);
2280	return 0;
2281}
2282
2283/**
2284 *	tiocsctty	-	set controlling tty
2285 *	@tty: tty structure
2286 *	@arg: user argument
2287 *
2288 *	This ioctl is used to manage job control. It permits a session
2289 *	leader to set this tty as the controlling tty for the session.
2290 *
2291 *	Locking:
2292 *		Takes tty_mutex() to protect tty instance
2293 *		Takes tasklist_lock internally to walk sessions
2294 *		Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299	int ret = 0;
2300	if (current->signal->leader && (task_session(current) == tty->session))
2301		return ret;
2302
2303	mutex_lock(&tty_mutex);
2304	/*
2305	 * The process must be a session leader and
2306	 * not have a controlling tty already.
2307	 */
2308	if (!current->signal->leader || current->signal->tty) {
2309		ret = -EPERM;
2310		goto unlock;
2311	}
2312
2313	if (tty->session) {
2314		/*
2315		 * This tty is already the controlling
2316		 * tty for another session group!
2317		 */
2318		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319			/*
2320			 * Steal it away
2321			 */
2322			read_lock(&tasklist_lock);
2323			session_clear_tty(tty->session);
2324			read_unlock(&tasklist_lock);
2325		} else {
2326			ret = -EPERM;
2327			goto unlock;
2328		}
2329	}
2330	proc_set_tty(current, tty);
2331unlock:
2332	mutex_unlock(&tty_mutex);
2333	return ret;
2334}
2335
2336/**
2337 *	tty_get_pgrp	-	return a ref counted pgrp pid
2338 *	@tty: tty to read
2339 *
2340 *	Returns a refcounted instance of the pid struct for the process
2341 *	group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346	unsigned long flags;
2347	struct pid *pgrp;
2348
2349	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350	pgrp = get_pid(tty->pgrp);
2351	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353	return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 *	tiocgpgrp		-	get process group
2359 *	@tty: tty passed by user
2360 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361 *	@p: returned pid
2362 *
2363 *	Obtain the process group of the tty. If there is no process group
2364 *	return an error.
2365 *
2366 *	Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371	struct pid *pid;
2372	int ret;
2373	/*
2374	 * (tty == real_tty) is a cheap way of
2375	 * testing if the tty is NOT a master pty.
2376	 */
2377	if (tty == real_tty && current->signal->tty != real_tty)
2378		return -ENOTTY;
2379	pid = tty_get_pgrp(real_tty);
2380	ret =  put_user(pid_vnr(pid), p);
2381	put_pid(pid);
2382	return ret;
2383}
2384
2385/**
2386 *	tiocspgrp		-	attempt to set process group
2387 *	@tty: tty passed by user
2388 *	@real_tty: tty side device matching tty passed by user
2389 *	@p: pid pointer
2390 *
2391 *	Set the process group of the tty to the session passed. Only
2392 *	permitted where the tty session is our session.
2393 *
2394 *	Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399	struct pid *pgrp;
2400	pid_t pgrp_nr;
2401	int retval = tty_check_change(real_tty);
2402	unsigned long flags;
2403
2404	if (retval == -EIO)
2405		return -ENOTTY;
2406	if (retval)
2407		return retval;
2408	if (!current->signal->tty ||
2409	    (current->signal->tty != real_tty) ||
2410	    (real_tty->session != task_session(current)))
2411		return -ENOTTY;
2412	if (get_user(pgrp_nr, p))
2413		return -EFAULT;
2414	if (pgrp_nr < 0)
2415		return -EINVAL;
2416	rcu_read_lock();
2417	pgrp = find_vpid(pgrp_nr);
2418	retval = -ESRCH;
2419	if (!pgrp)
2420		goto out_unlock;
2421	retval = -EPERM;
2422	if (session_of_pgrp(pgrp) != task_session(current))
2423		goto out_unlock;
2424	retval = 0;
2425	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426	put_pid(real_tty->pgrp);
2427	real_tty->pgrp = get_pid(pgrp);
2428	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430	rcu_read_unlock();
2431	return retval;
2432}
2433
2434/**
2435 *	tiocgsid		-	get session id
2436 *	@tty: tty passed by user
2437 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438 *	@p: pointer to returned session id
2439 *
2440 *	Obtain the session id of the tty. If there is no session
2441 *	return an error.
2442 *
2443 *	Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448	/*
2449	 * (tty == real_tty) is a cheap way of
2450	 * testing if the tty is NOT a master pty.
2451	*/
2452	if (tty == real_tty && current->signal->tty != real_tty)
2453		return -ENOTTY;
2454	if (!real_tty->session)
2455		return -ENOTTY;
2456	return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 *	tiocsetd	-	set line discipline
2461 *	@tty: tty device
2462 *	@p: pointer to user data
2463 *
2464 *	Set the line discipline according to user request.
2465 *
2466 *	Locking: see tty_set_ldisc, this function is just a helper
 
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471	int ldisc;
2472	int ret;
2473
2474	if (get_user(ldisc, p))
2475		return -EFAULT;
2476
2477	ret = tty_set_ldisc(tty, ldisc);
2478
2479	return ret;
2480}
2481
2482/**
2483 *	send_break	-	performed time break
2484 *	@tty: device to break on
2485 *	@duration: timeout in mS
2486 *
2487 *	Perform a timed break on hardware that lacks its own driver level
2488 *	timed break functionality.
2489 *
2490 *	Locking:
2491 *		atomic_write_lock serializes
2492 *
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497	int retval;
2498
2499	if (tty->ops->break_ctl == NULL)
2500		return 0;
2501
2502	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503		retval = tty->ops->break_ctl(tty, duration);
2504	else {
2505		/* Do the work ourselves */
2506		if (tty_write_lock(tty, 0) < 0)
2507			return -EINTR;
2508		retval = tty->ops->break_ctl(tty, -1);
2509		if (retval)
2510			goto out;
2511		if (!signal_pending(current))
2512			msleep_interruptible(duration);
2513		retval = tty->ops->break_ctl(tty, 0);
2514out:
2515		tty_write_unlock(tty);
2516		if (signal_pending(current))
2517			retval = -EINTR;
2518	}
2519	return retval;
2520}
2521
2522/**
2523 *	tty_tiocmget		-	get modem status
2524 *	@tty: tty device
2525 *	@file: user file pointer
2526 *	@p: pointer to result
2527 *
2528 *	Obtain the modem status bits from the tty driver if the feature
2529 *	is supported. Return -EINVAL if it is not available.
2530 *
2531 *	Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536	int retval = -EINVAL;
2537
2538	if (tty->ops->tiocmget) {
2539		retval = tty->ops->tiocmget(tty);
2540
2541		if (retval >= 0)
2542			retval = put_user(retval, p);
2543	}
2544	return retval;
2545}
2546
2547/**
2548 *	tty_tiocmset		-	set modem status
2549 *	@tty: tty device
2550 *	@cmd: command - clear bits, set bits or set all
2551 *	@p: pointer to desired bits
2552 *
2553 *	Set the modem status bits from the tty driver if the feature
2554 *	is supported. Return -EINVAL if it is not available.
2555 *
2556 *	Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560	     unsigned __user *p)
2561{
2562	int retval;
2563	unsigned int set, clear, val;
2564
2565	if (tty->ops->tiocmset == NULL)
2566		return -EINVAL;
2567
2568	retval = get_user(val, p);
2569	if (retval)
2570		return retval;
2571	set = clear = 0;
2572	switch (cmd) {
2573	case TIOCMBIS:
2574		set = val;
2575		break;
2576	case TIOCMBIC:
2577		clear = val;
2578		break;
2579	case TIOCMSET:
2580		set = val;
2581		clear = ~val;
2582		break;
2583	}
2584	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	return tty->ops->tiocmset(tty, set, clear);
2587}
2588
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591	int retval = -EINVAL;
2592	struct serial_icounter_struct icount;
2593	memset(&icount, 0, sizeof(icount));
2594	if (tty->ops->get_icount)
2595		retval = tty->ops->get_icount(tty, &icount);
2596	if (retval != 0)
2597		return retval;
2598	if (copy_to_user(arg, &icount, sizeof(icount)))
2599		return -EFAULT;
2600	return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606	    tty->driver->subtype == PTY_TYPE_MASTER)
2607		tty = tty->link;
2608	return tty;
 
 
 
 
 
 
 
 
 
 
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2613{
2614	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615	    tty->driver->subtype == PTY_TYPE_MASTER)
2616	    return tty;
2617	return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626	struct tty_struct *tty = file_tty(file);
2627	struct tty_struct *real_tty;
2628	void __user *p = (void __user *)arg;
2629	int retval;
2630	struct tty_ldisc *ld;
2631	struct inode *inode = file->f_dentry->d_inode;
2632
2633	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634		return -EINVAL;
2635
2636	real_tty = tty_pair_get_tty(tty);
2637
2638	/*
2639	 * Factor out some common prep work
2640	 */
2641	switch (cmd) {
2642	case TIOCSETD:
2643	case TIOCSBRK:
2644	case TIOCCBRK:
2645	case TCSBRK:
2646	case TCSBRKP:
2647		retval = tty_check_change(tty);
2648		if (retval)
2649			return retval;
2650		if (cmd != TIOCCBRK) {
2651			tty_wait_until_sent(tty, 0);
2652			if (signal_pending(current))
2653				return -EINTR;
2654		}
2655		break;
2656	}
2657
2658	/*
2659	 *	Now do the stuff.
2660	 */
2661	switch (cmd) {
2662	case TIOCSTI:
2663		return tiocsti(tty, p);
2664	case TIOCGWINSZ:
2665		return tiocgwinsz(real_tty, p);
2666	case TIOCSWINSZ:
2667		return tiocswinsz(real_tty, p);
2668	case TIOCCONS:
2669		return real_tty != tty ? -EINVAL : tioccons(file);
2670	case FIONBIO:
2671		return fionbio(file, p);
2672	case TIOCEXCL:
2673		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674		return 0;
2675	case TIOCNXCL:
2676		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677		return 0;
2678	case TIOCNOTTY:
2679		if (current->signal->tty != tty)
2680			return -ENOTTY;
2681		no_tty();
2682		return 0;
2683	case TIOCSCTTY:
2684		return tiocsctty(tty, arg);
2685	case TIOCGPGRP:
2686		return tiocgpgrp(tty, real_tty, p);
2687	case TIOCSPGRP:
2688		return tiocspgrp(tty, real_tty, p);
2689	case TIOCGSID:
2690		return tiocgsid(tty, real_tty, p);
2691	case TIOCGETD:
2692		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693	case TIOCSETD:
2694		return tiocsetd(tty, p);
2695	case TIOCVHANGUP:
2696		if (!capable(CAP_SYS_ADMIN))
2697			return -EPERM;
2698		tty_vhangup(tty);
2699		return 0;
2700	case TIOCGDEV:
2701	{
2702		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703		return put_user(ret, (unsigned int __user *)p);
2704	}
2705	/*
2706	 * Break handling
2707	 */
2708	case TIOCSBRK:	/* Turn break on, unconditionally */
2709		if (tty->ops->break_ctl)
2710			return tty->ops->break_ctl(tty, -1);
2711		return 0;
2712	case TIOCCBRK:	/* Turn break off, unconditionally */
2713		if (tty->ops->break_ctl)
2714			return tty->ops->break_ctl(tty, 0);
2715		return 0;
2716	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717		/* non-zero arg means wait for all output data
2718		 * to be sent (performed above) but don't send break.
2719		 * This is used by the tcdrain() termios function.
2720		 */
2721		if (!arg)
2722			return send_break(tty, 250);
2723		return 0;
2724	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725		return send_break(tty, arg ? arg*100 : 250);
2726
2727	case TIOCMGET:
2728		return tty_tiocmget(tty, p);
2729	case TIOCMSET:
2730	case TIOCMBIC:
2731	case TIOCMBIS:
2732		return tty_tiocmset(tty, cmd, p);
2733	case TIOCGICOUNT:
2734		retval = tty_tiocgicount(tty, p);
2735		/* For the moment allow fall through to the old method */
2736        	if (retval != -EINVAL)
2737			return retval;
2738		break;
2739	case TCFLSH:
2740		switch (arg) {
2741		case TCIFLUSH:
2742		case TCIOFLUSH:
2743		/* flush tty buffer and allow ldisc to process ioctl */
2744			tty_buffer_flush(tty);
2745			break;
2746		}
2747		break;
 
 
 
 
 
 
 
 
 
 
2748	}
2749	if (tty->ops->ioctl) {
2750		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751		if (retval != -ENOIOCTLCMD)
2752			return retval;
2753	}
2754	ld = tty_ldisc_ref_wait(tty);
 
 
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -EINVAL;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767				unsigned long arg)
2768{
2769	struct inode *inode = file->f_dentry->d_inode;
2770	struct tty_struct *tty = file_tty(file);
2771	struct tty_ldisc *ld;
2772	int retval = -ENOIOCTLCMD;
2773
2774	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775		return -EINVAL;
2776
2777	if (tty->ops->compat_ioctl) {
2778		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779		if (retval != -ENOIOCTLCMD)
2780			return retval;
2781	}
2782
2783	ld = tty_ldisc_ref_wait(tty);
 
 
2784	if (ld->ops->compat_ioctl)
2785		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786	else
2787		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788	tty_ldisc_deref(ld);
2789
2790	return retval;
2791}
2792#endif
2793
 
 
 
 
 
 
 
2794/*
2795 * This implements the "Secure Attention Key" ---  the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key".  Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal.  But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context.  This can
2811 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816	tty_hangup(tty);
2817#else
2818	struct task_struct *g, *p;
2819	struct pid *session;
2820	int		i;
2821	struct file	*filp;
2822	struct fdtable *fdt;
2823
2824	if (!tty)
2825		return;
2826	session = tty->session;
2827
2828	tty_ldisc_flush(tty);
2829
2830	tty_driver_flush_buffer(tty);
2831
2832	read_lock(&tasklist_lock);
2833	/* Kill the entire session */
2834	do_each_pid_task(session, PIDTYPE_SID, p) {
2835		printk(KERN_NOTICE "SAK: killed process %d"
2836			" (%s): task_session(p)==tty->session\n",
2837			task_pid_nr(p), p->comm);
2838		send_sig(SIGKILL, p, 1);
2839	} while_each_pid_task(session, PIDTYPE_SID, p);
2840	/* Now kill any processes that happen to have the
2841	 * tty open.
2842	 */
2843	do_each_thread(g, p) {
2844		if (p->signal->tty == tty) {
2845			printk(KERN_NOTICE "SAK: killed process %d"
2846			    " (%s): task_session(p)==tty->session\n",
2847			    task_pid_nr(p), p->comm);
2848			send_sig(SIGKILL, p, 1);
2849			continue;
2850		}
2851		task_lock(p);
2852		if (p->files) {
2853			/*
2854			 * We don't take a ref to the file, so we must
2855			 * hold ->file_lock instead.
2856			 */
2857			spin_lock(&p->files->file_lock);
2858			fdt = files_fdtable(p->files);
2859			for (i = 0; i < fdt->max_fds; i++) {
2860				filp = fcheck_files(p->files, i);
2861				if (!filp)
2862					continue;
2863				if (filp->f_op->read == tty_read &&
2864				    file_tty(filp) == tty) {
2865					printk(KERN_NOTICE "SAK: killed process %d"
2866					    " (%s): fd#%d opened to the tty\n",
2867					    task_pid_nr(p), p->comm, i);
2868					force_sig(SIGKILL, p);
2869					break;
2870				}
2871			}
2872			spin_unlock(&p->files->file_lock);
2873		}
2874		task_unlock(p);
2875	} while_each_thread(g, p);
2876	read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882	struct tty_struct *tty =
2883		container_of(work, struct tty_struct, SAK_work);
2884	__do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895	if (!tty)
2896		return;
2897	schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904	dev_t *devt = data;
2905	return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911	dev_t devt = tty_devnum(tty);
2912	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 *	initialize_tty_struct
2918 *	@tty: tty to initialize
2919 *
2920 *	This subroutine initializes a tty structure that has been newly
2921 *	allocated.
2922 *
2923 *	Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927		struct tty_driver *driver, int idx)
2928{
2929	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2930	kref_init(&tty->kref);
2931	tty->magic = TTY_MAGIC;
2932	tty_ldisc_init(tty);
 
 
 
2933	tty->session = NULL;
2934	tty->pgrp = NULL;
2935	tty->overrun_time = jiffies;
2936	tty_buffer_init(tty);
2937	mutex_init(&tty->termios_mutex);
2938	mutex_init(&tty->ldisc_mutex);
 
2939	init_waitqueue_head(&tty->write_wait);
2940	init_waitqueue_head(&tty->read_wait);
2941	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942	mutex_init(&tty->atomic_read_lock);
2943	mutex_init(&tty->atomic_write_lock);
2944	mutex_init(&tty->output_lock);
2945	mutex_init(&tty->echo_lock);
2946	spin_lock_init(&tty->read_lock);
2947	spin_lock_init(&tty->ctrl_lock);
 
 
2948	INIT_LIST_HEAD(&tty->tty_files);
2949	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951	tty->driver = driver;
2952	tty->ops = driver->ops;
2953	tty->index = idx;
2954	tty_line_name(driver, idx, tty->name);
2955	tty->dev = tty_get_device(tty);
2956}
2957
2958/**
2959 *	deinitialize_tty_struct
2960 *	@tty: tty to deinitialize
2961 *
2962 *	This subroutine deinitializes a tty structure that has been newly
2963 *	allocated but tty_release cannot be called on that yet.
2964 *
2965 *	Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969	tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 *	tty_put_char	-	write one character to a tty
2974 *	@tty: tty
2975 *	@ch: character
2976 *
2977 *	Write one byte to the tty using the provided put_char method
2978 *	if present. Returns the number of characters successfully output.
2979 *
2980 *	Note: the specific put_char operation in the driver layer may go
2981 *	away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986	if (tty->ops->put_char)
2987		return tty->ops->put_char(tty, ch);
2988	return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994/**
2995 *	tty_register_device - register a tty device
2996 *	@driver: the tty driver that describes the tty device
2997 *	@index: the index in the tty driver for this tty device
2998 *	@device: a struct device that is associated with this tty device.
2999 *		This field is optional, if there is no known struct device
3000 *		for this tty device it can be set to NULL safely.
3001 *
3002 *	Returns a pointer to the struct device for this tty device
3003 *	(or ERR_PTR(-EFOO) on error).
3004 *
3005 *	This call is required to be made to register an individual tty device
3006 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007 *	that bit is not set, this function should not be called by a tty
3008 *	driver.
3009 *
3010 *	Locking: ??
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014				   struct device *device)
3015{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016	char name[64];
3017	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
3018
3019	if (index >= driver->num) {
3020		printk(KERN_ERR "Attempt to register invalid tty line number "
3021		       " (%d).\n", index);
3022		return ERR_PTR(-EINVAL);
3023	}
3024
3025	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026		pty_line_name(driver, index, name);
3027	else
3028		tty_line_name(driver, index, name);
3029
3030	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * 	tty_unregister_device - unregister a tty device
3036 * 	@driver: the tty driver that describes the tty device
3037 * 	@index: the index in the tty driver for this tty device
3038 *
3039 * 	If a tty device is registered with a call to tty_register_device() then
3040 *	this function must be called when the tty device is gone.
3041 *
3042 *	Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047	device_destroy(tty_class,
3048		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
 
 
 
 
 
 
 
 
 
 
3053{
3054	struct tty_driver *driver;
 
 
 
 
 
3055
3056	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057	if (driver) {
3058		kref_init(&driver->kref);
3059		driver->magic = TTY_DRIVER_MAGIC;
3060		driver->num = lines;
3061		driver->owner = owner;
3062		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
3063	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064	return driver;
 
 
 
 
 
 
 
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071	int i;
3072	struct ktermios *tp;
3073	void *p;
3074
3075	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076		/*
3077		 * Free the termios and termios_locked structures because
3078		 * we don't want to get memory leaks when modular tty
3079		 * drivers are removed from the kernel.
3080		 */
3081		for (i = 0; i < driver->num; i++) {
3082			tp = driver->termios[i];
3083			if (tp) {
3084				driver->termios[i] = NULL;
3085				kfree(tp);
3086			}
3087			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088				tty_unregister_device(driver, i);
3089		}
3090		p = driver->ttys;
3091		proc_tty_unregister_driver(driver);
3092		driver->ttys = NULL;
3093		driver->termios = NULL;
3094		kfree(p);
3095		cdev_del(&driver->cdev);
3096	}
 
 
 
 
3097	kfree(driver);
3098}
3099
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102	kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107			const struct tty_operations *op)
3108{
3109	driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115	tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124	int error;
3125	int i;
3126	dev_t dev;
3127	void **p = NULL;
3128	struct device *d;
3129
3130	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132		if (!p)
3133			return -ENOMEM;
3134	}
3135
3136	if (!driver->major) {
3137		error = alloc_chrdev_region(&dev, driver->minor_start,
3138						driver->num, driver->name);
3139		if (!error) {
3140			driver->major = MAJOR(dev);
3141			driver->minor_start = MINOR(dev);
3142		}
3143	} else {
3144		dev = MKDEV(driver->major, driver->minor_start);
3145		error = register_chrdev_region(dev, driver->num, driver->name);
3146	}
3147	if (error < 0) {
3148		kfree(p);
3149		return error;
3150	}
3151
3152	if (p) {
3153		driver->ttys = (struct tty_struct **)p;
3154		driver->termios = (struct ktermios **)(p + driver->num);
3155	} else {
3156		driver->ttys = NULL;
3157		driver->termios = NULL;
3158	}
3159
3160	cdev_init(&driver->cdev, &tty_fops);
3161	driver->cdev.owner = driver->owner;
3162	error = cdev_add(&driver->cdev, dev, driver->num);
3163	if (error) {
3164		unregister_chrdev_region(dev, driver->num);
3165		driver->ttys = NULL;
3166		driver->termios = NULL;
3167		kfree(p);
3168		return error;
3169	}
3170
3171	mutex_lock(&tty_mutex);
3172	list_add(&driver->tty_drivers, &tty_drivers);
3173	mutex_unlock(&tty_mutex);
3174
3175	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176		for (i = 0; i < driver->num; i++) {
3177			d = tty_register_device(driver, i, NULL);
3178			if (IS_ERR(d)) {
3179				error = PTR_ERR(d);
3180				goto err;
3181			}
3182		}
3183	}
3184	proc_tty_register_driver(driver);
3185	driver->flags |= TTY_DRIVER_INSTALLED;
3186	return 0;
3187
3188err:
3189	for (i--; i >= 0; i--)
3190		tty_unregister_device(driver, i);
3191
3192	mutex_lock(&tty_mutex);
3193	list_del(&driver->tty_drivers);
3194	mutex_unlock(&tty_mutex);
3195
 
3196	unregister_chrdev_region(dev, driver->num);
3197	driver->ttys = NULL;
3198	driver->termios = NULL;
3199	kfree(p);
3200	return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211	/* FIXME */
3212	if (driver->refcount)
3213		return -EBUSY;
3214#endif
3215	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216				driver->num);
3217	mutex_lock(&tty_mutex);
3218	list_del(&driver->tty_drivers);
3219	mutex_unlock(&tty_mutex);
3220	return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233	unsigned long flags;
3234	struct tty_struct *tty;
3235	spin_lock_irqsave(&p->sighand->siglock, flags);
3236	tty = p->signal->tty;
3237	p->signal->tty = NULL;
3238	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239	tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246	if (tty) {
3247		unsigned long flags;
3248		/* We should not have a session or pgrp to put here but.... */
3249		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250		put_pid(tty->session);
3251		put_pid(tty->pgrp);
3252		tty->pgrp = get_pid(task_pgrp(tsk));
3253		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254		tty->session = get_pid(task_session(tsk));
3255		if (tsk->signal->tty) {
3256			printk(KERN_DEBUG "tty not NULL!!\n");
3257			tty_kref_put(tsk->signal->tty);
3258		}
3259	}
3260	put_pid(tsk->signal->tty_old_pgrp);
3261	tsk->signal->tty = tty_kref_get(tty);
3262	tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267	spin_lock_irq(&tsk->sighand->siglock);
3268	__proc_set_tty(tsk, tty);
3269	spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274	struct tty_struct *tty;
3275	unsigned long flags;
3276
3277	spin_lock_irqsave(&current->sighand->siglock, flags);
3278	tty = tty_kref_get(current->signal->tty);
3279	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280	return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286	*fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297	initcall_t *call;
3298
3299	/* Setup the default TTY line discipline. */
3300	tty_ldisc_begin();
3301
3302	/*
3303	 * set up the console device so that later boot sequences can
3304	 * inform about problems etc..
3305	 */
3306	call = __con_initcall_start;
3307	while (call < __con_initcall_end) {
3308		(*call)();
3309		call++;
3310	}
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315	if (!mode)
3316		return NULL;
3317	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319		*mode = 0666;
3320	return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325	tty_class = class_create(THIS_MODULE, "tty");
3326	if (IS_ERR(tty_class))
3327		return PTR_ERR(tty_class);
3328	tty_class->devnode = tty_devnode;
3329	return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338				struct device_attribute *attr, char *buf)
3339{
3340	struct console *cs[16];
3341	int i = 0;
3342	struct console *c;
3343	ssize_t count = 0;
3344
3345	console_lock();
3346	for_each_console(c) {
3347		if (!c->device)
3348			continue;
3349		if (!c->write)
3350			continue;
3351		if ((c->flags & CON_ENABLED) == 0)
3352			continue;
3353		cs[i++] = c;
3354		if (i >= ARRAY_SIZE(cs))
3355			break;
3356	}
3357	while (i--)
3358		count += sprintf(buf + count, "%s%d%c",
3359				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3360	console_unlock();
3361
3362	return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
 
 
 
 
 
 
 
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370	if (consdev)
3371		sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
3380	cdev_init(&tty_cdev, &tty_fops);
3381	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383		panic("Couldn't register /dev/tty driver\n");
3384	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386	cdev_init(&console_cdev, &console_fops);
3387	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389		panic("Couldn't register /dev/console driver\n");
3390	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391			      "console");
 
3392	if (IS_ERR(consdev))
3393		consdev = NULL;
3394	else
3395		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398	vty_init(&console_fops);
3399#endif
3400	return 0;
3401}
3402