Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Derived from "arch/m68k/kernel/ptrace.c"
   6 *  Copyright (C) 1994 by Hamish Macdonald
   7 *  Taken from linux/kernel/ptrace.c and modified for M680x0.
   8 *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
   9 *
  10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
  11 * and Paul Mackerras (paulus@samba.org).
  12 *
  13 * This file is subject to the terms and conditions of the GNU General
  14 * Public License.  See the file README.legal in the main directory of
  15 * this archive for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/sched.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/errno.h>
  23#include <linux/ptrace.h>
  24#include <linux/regset.h>
  25#include <linux/tracehook.h>
  26#include <linux/elf.h>
  27#include <linux/user.h>
  28#include <linux/security.h>
  29#include <linux/signal.h>
  30#include <linux/seccomp.h>
  31#include <linux/audit.h>
  32#include <trace/syscall.h>
  33#include <linux/hw_breakpoint.h>
  34#include <linux/perf_event.h>
  35#include <linux/context_tracking.h>
  36
  37#include <linux/uaccess.h>
  38#include <linux/pkeys.h>
  39#include <asm/page.h>
  40#include <asm/pgtable.h>
  41#include <asm/switch_to.h>
  42#include <asm/tm.h>
  43#include <asm/asm-prototypes.h>
  44#include <asm/debug.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/syscalls.h>
  48
  49/*
  50 * The parameter save area on the stack is used to store arguments being passed
  51 * to callee function and is located at fixed offset from stack pointer.
  52 */
  53#ifdef CONFIG_PPC32
  54#define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
  55#else /* CONFIG_PPC32 */
  56#define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
  57#endif
  58
  59struct pt_regs_offset {
  60	const char *name;
  61	int offset;
  62};
  63
  64#define STR(s)	#s			/* convert to string */
  65#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
  66#define GPR_OFFSET_NAME(num)	\
  67	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
  68	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
  69#define REG_OFFSET_END {.name = NULL, .offset = 0}
  70
  71#define TVSO(f)	(offsetof(struct thread_vr_state, f))
  72#define TFSO(f)	(offsetof(struct thread_fp_state, f))
  73#define TSO(f)	(offsetof(struct thread_struct, f))
  74
  75static const struct pt_regs_offset regoffset_table[] = {
  76	GPR_OFFSET_NAME(0),
  77	GPR_OFFSET_NAME(1),
  78	GPR_OFFSET_NAME(2),
  79	GPR_OFFSET_NAME(3),
  80	GPR_OFFSET_NAME(4),
  81	GPR_OFFSET_NAME(5),
  82	GPR_OFFSET_NAME(6),
  83	GPR_OFFSET_NAME(7),
  84	GPR_OFFSET_NAME(8),
  85	GPR_OFFSET_NAME(9),
  86	GPR_OFFSET_NAME(10),
  87	GPR_OFFSET_NAME(11),
  88	GPR_OFFSET_NAME(12),
  89	GPR_OFFSET_NAME(13),
  90	GPR_OFFSET_NAME(14),
  91	GPR_OFFSET_NAME(15),
  92	GPR_OFFSET_NAME(16),
  93	GPR_OFFSET_NAME(17),
  94	GPR_OFFSET_NAME(18),
  95	GPR_OFFSET_NAME(19),
  96	GPR_OFFSET_NAME(20),
  97	GPR_OFFSET_NAME(21),
  98	GPR_OFFSET_NAME(22),
  99	GPR_OFFSET_NAME(23),
 100	GPR_OFFSET_NAME(24),
 101	GPR_OFFSET_NAME(25),
 102	GPR_OFFSET_NAME(26),
 103	GPR_OFFSET_NAME(27),
 104	GPR_OFFSET_NAME(28),
 105	GPR_OFFSET_NAME(29),
 106	GPR_OFFSET_NAME(30),
 107	GPR_OFFSET_NAME(31),
 108	REG_OFFSET_NAME(nip),
 109	REG_OFFSET_NAME(msr),
 110	REG_OFFSET_NAME(ctr),
 111	REG_OFFSET_NAME(link),
 112	REG_OFFSET_NAME(xer),
 113	REG_OFFSET_NAME(ccr),
 114#ifdef CONFIG_PPC64
 115	REG_OFFSET_NAME(softe),
 116#else
 117	REG_OFFSET_NAME(mq),
 118#endif
 119	REG_OFFSET_NAME(trap),
 120	REG_OFFSET_NAME(dar),
 121	REG_OFFSET_NAME(dsisr),
 122	REG_OFFSET_END,
 123};
 124
 125#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 126static void flush_tmregs_to_thread(struct task_struct *tsk)
 127{
 128	/*
 129	 * If task is not current, it will have been flushed already to
 130	 * it's thread_struct during __switch_to().
 131	 *
 132	 * A reclaim flushes ALL the state or if not in TM save TM SPRs
 133	 * in the appropriate thread structures from live.
 134	 */
 135
 136	if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
 137		return;
 138
 139	if (MSR_TM_SUSPENDED(mfmsr())) {
 140		tm_reclaim_current(TM_CAUSE_SIGNAL);
 141	} else {
 142		tm_enable();
 143		tm_save_sprs(&(tsk->thread));
 144	}
 145}
 146#else
 147static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
 148#endif
 149
 150/**
 151 * regs_query_register_offset() - query register offset from its name
 152 * @name:	the name of a register
 153 *
 154 * regs_query_register_offset() returns the offset of a register in struct
 155 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 156 */
 157int regs_query_register_offset(const char *name)
 158{
 159	const struct pt_regs_offset *roff;
 160	for (roff = regoffset_table; roff->name != NULL; roff++)
 161		if (!strcmp(roff->name, name))
 162			return roff->offset;
 163	return -EINVAL;
 164}
 165
 166/**
 167 * regs_query_register_name() - query register name from its offset
 168 * @offset:	the offset of a register in struct pt_regs.
 169 *
 170 * regs_query_register_name() returns the name of a register from its
 171 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 172 */
 173const char *regs_query_register_name(unsigned int offset)
 174{
 175	const struct pt_regs_offset *roff;
 176	for (roff = regoffset_table; roff->name != NULL; roff++)
 177		if (roff->offset == offset)
 178			return roff->name;
 179	return NULL;
 180}
 181
 182/*
 183 * does not yet catch signals sent when the child dies.
 184 * in exit.c or in signal.c.
 185 */
 186
 187/*
 188 * Set of msr bits that gdb can change on behalf of a process.
 189 */
 190#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 191#define MSR_DEBUGCHANGE	0
 192#else
 193#define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
 194#endif
 195
 196/*
 197 * Max register writeable via put_reg
 198 */
 199#ifdef CONFIG_PPC32
 200#define PT_MAX_PUT_REG	PT_MQ
 201#else
 202#define PT_MAX_PUT_REG	PT_CCR
 203#endif
 204
 205static unsigned long get_user_msr(struct task_struct *task)
 206{
 207	return task->thread.regs->msr | task->thread.fpexc_mode;
 208}
 209
 210static int set_user_msr(struct task_struct *task, unsigned long msr)
 211{
 212	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
 213	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
 214	return 0;
 215}
 216
 217#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 218static unsigned long get_user_ckpt_msr(struct task_struct *task)
 219{
 220	return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
 221}
 222
 223static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
 224{
 225	task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
 226	task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
 227	return 0;
 228}
 229
 230static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
 231{
 232	task->thread.ckpt_regs.trap = trap & 0xfff0;
 233	return 0;
 234}
 235#endif
 236
 237#ifdef CONFIG_PPC64
 238static int get_user_dscr(struct task_struct *task, unsigned long *data)
 239{
 240	*data = task->thread.dscr;
 241	return 0;
 242}
 243
 244static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 245{
 246	task->thread.dscr = dscr;
 247	task->thread.dscr_inherit = 1;
 248	return 0;
 249}
 250#else
 251static int get_user_dscr(struct task_struct *task, unsigned long *data)
 252{
 253	return -EIO;
 254}
 255
 256static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 257{
 258	return -EIO;
 259}
 260#endif
 261
 262/*
 263 * We prevent mucking around with the reserved area of trap
 264 * which are used internally by the kernel.
 265 */
 266static int set_user_trap(struct task_struct *task, unsigned long trap)
 267{
 268	task->thread.regs->trap = trap & 0xfff0;
 269	return 0;
 270}
 271
 272/*
 273 * Get contents of register REGNO in task TASK.
 274 */
 275int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
 276{
 277	if ((task->thread.regs == NULL) || !data)
 278		return -EIO;
 279
 280	if (regno == PT_MSR) {
 281		*data = get_user_msr(task);
 282		return 0;
 283	}
 284
 285	if (regno == PT_DSCR)
 286		return get_user_dscr(task, data);
 287
 288#ifdef CONFIG_PPC64
 289	/*
 290	 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
 291	 * no more used as a flag, lets force usr to alway see the softe value as 1
 292	 * which means interrupts are not soft disabled.
 293	 */
 294	if (regno == PT_SOFTE) {
 295		*data = 1;
 296		return  0;
 297	}
 298#endif
 299
 300	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
 301		*data = ((unsigned long *)task->thread.regs)[regno];
 302		return 0;
 303	}
 304
 305	return -EIO;
 306}
 307
 308/*
 309 * Write contents of register REGNO in task TASK.
 310 */
 311int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
 312{
 313	if (task->thread.regs == NULL)
 314		return -EIO;
 315
 316	if (regno == PT_MSR)
 317		return set_user_msr(task, data);
 318	if (regno == PT_TRAP)
 319		return set_user_trap(task, data);
 320	if (regno == PT_DSCR)
 321		return set_user_dscr(task, data);
 322
 323	if (regno <= PT_MAX_PUT_REG) {
 324		((unsigned long *)task->thread.regs)[regno] = data;
 325		return 0;
 326	}
 327	return -EIO;
 328}
 329
 330static int gpr_get(struct task_struct *target, const struct user_regset *regset,
 331		   unsigned int pos, unsigned int count,
 332		   void *kbuf, void __user *ubuf)
 333{
 334	int i, ret;
 335
 336	if (target->thread.regs == NULL)
 337		return -EIO;
 338
 339	if (!FULL_REGS(target->thread.regs)) {
 340		/* We have a partial register set.  Fill 14-31 with bogus values */
 341		for (i = 14; i < 32; i++)
 342			target->thread.regs->gpr[i] = NV_REG_POISON;
 343	}
 344
 345	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 346				  target->thread.regs,
 347				  0, offsetof(struct pt_regs, msr));
 348	if (!ret) {
 349		unsigned long msr = get_user_msr(target);
 350		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
 351					  offsetof(struct pt_regs, msr),
 352					  offsetof(struct pt_regs, msr) +
 353					  sizeof(msr));
 354	}
 355
 356	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 357		     offsetof(struct pt_regs, msr) + sizeof(long));
 358
 359	if (!ret)
 360		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 361					  &target->thread.regs->orig_gpr3,
 362					  offsetof(struct pt_regs, orig_gpr3),
 363					  sizeof(struct pt_regs));
 364	if (!ret)
 365		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 366					       sizeof(struct pt_regs), -1);
 367
 368	return ret;
 369}
 370
 371static int gpr_set(struct task_struct *target, const struct user_regset *regset,
 372		   unsigned int pos, unsigned int count,
 373		   const void *kbuf, const void __user *ubuf)
 374{
 375	unsigned long reg;
 376	int ret;
 377
 378	if (target->thread.regs == NULL)
 379		return -EIO;
 380
 381	CHECK_FULL_REGS(target->thread.regs);
 382
 383	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 384				 target->thread.regs,
 385				 0, PT_MSR * sizeof(reg));
 386
 387	if (!ret && count > 0) {
 388		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 389					 PT_MSR * sizeof(reg),
 390					 (PT_MSR + 1) * sizeof(reg));
 391		if (!ret)
 392			ret = set_user_msr(target, reg);
 393	}
 394
 395	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 396		     offsetof(struct pt_regs, msr) + sizeof(long));
 397
 398	if (!ret)
 399		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 400					 &target->thread.regs->orig_gpr3,
 401					 PT_ORIG_R3 * sizeof(reg),
 402					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
 403
 404	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
 405		ret = user_regset_copyin_ignore(
 406			&pos, &count, &kbuf, &ubuf,
 407			(PT_MAX_PUT_REG + 1) * sizeof(reg),
 408			PT_TRAP * sizeof(reg));
 409
 410	if (!ret && count > 0) {
 411		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 412					 PT_TRAP * sizeof(reg),
 413					 (PT_TRAP + 1) * sizeof(reg));
 414		if (!ret)
 415			ret = set_user_trap(target, reg);
 416	}
 417
 418	if (!ret)
 419		ret = user_regset_copyin_ignore(
 420			&pos, &count, &kbuf, &ubuf,
 421			(PT_TRAP + 1) * sizeof(reg), -1);
 422
 423	return ret;
 424}
 425
 426/*
 427 * Regardless of transactions, 'fp_state' holds the current running
 428 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
 429 * value of all FPR registers for the current transaction.
 430 *
 431 * Userspace interface buffer layout:
 432 *
 433 * struct data {
 434 *	u64	fpr[32];
 435 *	u64	fpscr;
 436 * };
 437 */
 438static int fpr_get(struct task_struct *target, const struct user_regset *regset,
 439		   unsigned int pos, unsigned int count,
 440		   void *kbuf, void __user *ubuf)
 441{
 442#ifdef CONFIG_VSX
 443	u64 buf[33];
 444	int i;
 445
 446	flush_fp_to_thread(target);
 447
 448	/* copy to local buffer then write that out */
 449	for (i = 0; i < 32 ; i++)
 450		buf[i] = target->thread.TS_FPR(i);
 451	buf[32] = target->thread.fp_state.fpscr;
 452	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 453#else
 454	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 455		     offsetof(struct thread_fp_state, fpr[32]));
 456
 457	flush_fp_to_thread(target);
 458
 459	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 460				   &target->thread.fp_state, 0, -1);
 461#endif
 462}
 463
 464/*
 465 * Regardless of transactions, 'fp_state' holds the current running
 466 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
 467 * value of all FPR registers for the current transaction.
 468 *
 469 * Userspace interface buffer layout:
 470 *
 471 * struct data {
 472 *	u64	fpr[32];
 473 *	u64	fpscr;
 474 * };
 475 *
 476 */
 477static int fpr_set(struct task_struct *target, const struct user_regset *regset,
 478		   unsigned int pos, unsigned int count,
 479		   const void *kbuf, const void __user *ubuf)
 480{
 481#ifdef CONFIG_VSX
 482	u64 buf[33];
 483	int i;
 484
 485	flush_fp_to_thread(target);
 486
 487	for (i = 0; i < 32 ; i++)
 488		buf[i] = target->thread.TS_FPR(i);
 489	buf[32] = target->thread.fp_state.fpscr;
 490
 491	/* copy to local buffer then write that out */
 492	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 493	if (i)
 494		return i;
 495
 496	for (i = 0; i < 32 ; i++)
 497		target->thread.TS_FPR(i) = buf[i];
 498	target->thread.fp_state.fpscr = buf[32];
 499	return 0;
 500#else
 501	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 502		     offsetof(struct thread_fp_state, fpr[32]));
 503
 504	flush_fp_to_thread(target);
 505
 506	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 507				  &target->thread.fp_state, 0, -1);
 508#endif
 509}
 510
 511#ifdef CONFIG_ALTIVEC
 512/*
 513 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
 514 * The transfer totals 34 quadword.  Quadwords 0-31 contain the
 515 * corresponding vector registers.  Quadword 32 contains the vscr as the
 516 * last word (offset 12) within that quadword.  Quadword 33 contains the
 517 * vrsave as the first word (offset 0) within the quadword.
 518 *
 519 * This definition of the VMX state is compatible with the current PPC32
 520 * ptrace interface.  This allows signal handling and ptrace to use the
 521 * same structures.  This also simplifies the implementation of a bi-arch
 522 * (combined (32- and 64-bit) gdb.
 523 */
 524
 525static int vr_active(struct task_struct *target,
 526		     const struct user_regset *regset)
 527{
 528	flush_altivec_to_thread(target);
 529	return target->thread.used_vr ? regset->n : 0;
 530}
 531
 532/*
 533 * Regardless of transactions, 'vr_state' holds the current running
 534 * value of all the VMX registers and 'ckvr_state' holds the last
 535 * checkpointed value of all the VMX registers for the current
 536 * transaction to fall back on in case it aborts.
 537 *
 538 * Userspace interface buffer layout:
 539 *
 540 * struct data {
 541 *	vector128	vr[32];
 542 *	vector128	vscr;
 543 *	vector128	vrsave;
 544 * };
 545 */
 546static int vr_get(struct task_struct *target, const struct user_regset *regset,
 547		  unsigned int pos, unsigned int count,
 548		  void *kbuf, void __user *ubuf)
 549{
 550	int ret;
 551
 552	flush_altivec_to_thread(target);
 553
 554	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 555		     offsetof(struct thread_vr_state, vr[32]));
 556
 557	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 558				  &target->thread.vr_state, 0,
 559				  33 * sizeof(vector128));
 560	if (!ret) {
 561		/*
 562		 * Copy out only the low-order word of vrsave.
 563		 */
 564		union {
 565			elf_vrreg_t reg;
 566			u32 word;
 567		} vrsave;
 568		memset(&vrsave, 0, sizeof(vrsave));
 569
 570		vrsave.word = target->thread.vrsave;
 571
 572		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
 573					  33 * sizeof(vector128), -1);
 574	}
 575
 576	return ret;
 577}
 578
 579/*
 580 * Regardless of transactions, 'vr_state' holds the current running
 581 * value of all the VMX registers and 'ckvr_state' holds the last
 582 * checkpointed value of all the VMX registers for the current
 583 * transaction to fall back on in case it aborts.
 584 *
 585 * Userspace interface buffer layout:
 586 *
 587 * struct data {
 588 *	vector128	vr[32];
 589 *	vector128	vscr;
 590 *	vector128	vrsave;
 591 * };
 592 */
 593static int vr_set(struct task_struct *target, const struct user_regset *regset,
 594		  unsigned int pos, unsigned int count,
 595		  const void *kbuf, const void __user *ubuf)
 596{
 597	int ret;
 598
 599	flush_altivec_to_thread(target);
 600
 601	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 602		     offsetof(struct thread_vr_state, vr[32]));
 603
 604	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 605				 &target->thread.vr_state, 0,
 606				 33 * sizeof(vector128));
 607	if (!ret && count > 0) {
 608		/*
 609		 * We use only the first word of vrsave.
 610		 */
 611		union {
 612			elf_vrreg_t reg;
 613			u32 word;
 614		} vrsave;
 615		memset(&vrsave, 0, sizeof(vrsave));
 616
 617		vrsave.word = target->thread.vrsave;
 618
 619		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
 620					 33 * sizeof(vector128), -1);
 621		if (!ret)
 622			target->thread.vrsave = vrsave.word;
 623	}
 624
 625	return ret;
 626}
 627#endif /* CONFIG_ALTIVEC */
 628
 629#ifdef CONFIG_VSX
 630/*
 631 * Currently to set and and get all the vsx state, you need to call
 632 * the fp and VMX calls as well.  This only get/sets the lower 32
 633 * 128bit VSX registers.
 634 */
 635
 636static int vsr_active(struct task_struct *target,
 637		      const struct user_regset *regset)
 638{
 639	flush_vsx_to_thread(target);
 640	return target->thread.used_vsr ? regset->n : 0;
 641}
 642
 643/*
 644 * Regardless of transactions, 'fp_state' holds the current running
 645 * value of all FPR registers and 'ckfp_state' holds the last
 646 * checkpointed value of all FPR registers for the current
 647 * transaction.
 648 *
 649 * Userspace interface buffer layout:
 650 *
 651 * struct data {
 652 *	u64	vsx[32];
 653 * };
 654 */
 655static int vsr_get(struct task_struct *target, const struct user_regset *regset,
 656		   unsigned int pos, unsigned int count,
 657		   void *kbuf, void __user *ubuf)
 658{
 659	u64 buf[32];
 660	int ret, i;
 661
 662	flush_tmregs_to_thread(target);
 663	flush_fp_to_thread(target);
 664	flush_altivec_to_thread(target);
 665	flush_vsx_to_thread(target);
 666
 667	for (i = 0; i < 32 ; i++)
 668		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 669
 670	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 671				  buf, 0, 32 * sizeof(double));
 672
 673	return ret;
 674}
 675
 676/*
 677 * Regardless of transactions, 'fp_state' holds the current running
 678 * value of all FPR registers and 'ckfp_state' holds the last
 679 * checkpointed value of all FPR registers for the current
 680 * transaction.
 681 *
 682 * Userspace interface buffer layout:
 683 *
 684 * struct data {
 685 *	u64	vsx[32];
 686 * };
 687 */
 688static int vsr_set(struct task_struct *target, const struct user_regset *regset,
 689		   unsigned int pos, unsigned int count,
 690		   const void *kbuf, const void __user *ubuf)
 691{
 692	u64 buf[32];
 693	int ret,i;
 694
 695	flush_tmregs_to_thread(target);
 696	flush_fp_to_thread(target);
 697	flush_altivec_to_thread(target);
 698	flush_vsx_to_thread(target);
 699
 700	for (i = 0; i < 32 ; i++)
 701		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 702
 703	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 704				 buf, 0, 32 * sizeof(double));
 705	if (!ret)
 706		for (i = 0; i < 32 ; i++)
 707			target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 708
 709	return ret;
 710}
 711#endif /* CONFIG_VSX */
 712
 713#ifdef CONFIG_SPE
 714
 715/*
 716 * For get_evrregs/set_evrregs functions 'data' has the following layout:
 717 *
 718 * struct {
 719 *   u32 evr[32];
 720 *   u64 acc;
 721 *   u32 spefscr;
 722 * }
 723 */
 724
 725static int evr_active(struct task_struct *target,
 726		      const struct user_regset *regset)
 727{
 728	flush_spe_to_thread(target);
 729	return target->thread.used_spe ? regset->n : 0;
 730}
 731
 732static int evr_get(struct task_struct *target, const struct user_regset *regset,
 733		   unsigned int pos, unsigned int count,
 734		   void *kbuf, void __user *ubuf)
 735{
 736	int ret;
 737
 738	flush_spe_to_thread(target);
 739
 740	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 741				  &target->thread.evr,
 742				  0, sizeof(target->thread.evr));
 743
 744	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 745		     offsetof(struct thread_struct, spefscr));
 746
 747	if (!ret)
 748		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 749					  &target->thread.acc,
 750					  sizeof(target->thread.evr), -1);
 751
 752	return ret;
 753}
 754
 755static int evr_set(struct task_struct *target, const struct user_regset *regset,
 756		   unsigned int pos, unsigned int count,
 757		   const void *kbuf, const void __user *ubuf)
 758{
 759	int ret;
 760
 761	flush_spe_to_thread(target);
 762
 763	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 764				 &target->thread.evr,
 765				 0, sizeof(target->thread.evr));
 766
 767	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 768		     offsetof(struct thread_struct, spefscr));
 769
 770	if (!ret)
 771		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 772					 &target->thread.acc,
 773					 sizeof(target->thread.evr), -1);
 774
 775	return ret;
 776}
 777#endif /* CONFIG_SPE */
 778
 779#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 780/**
 781 * tm_cgpr_active - get active number of registers in CGPR
 782 * @target:	The target task.
 783 * @regset:	The user regset structure.
 784 *
 785 * This function checks for the active number of available
 786 * regisers in transaction checkpointed GPR category.
 787 */
 788static int tm_cgpr_active(struct task_struct *target,
 789			  const struct user_regset *regset)
 790{
 791	if (!cpu_has_feature(CPU_FTR_TM))
 792		return -ENODEV;
 793
 794	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 795		return 0;
 796
 797	return regset->n;
 798}
 799
 800/**
 801 * tm_cgpr_get - get CGPR registers
 802 * @target:	The target task.
 803 * @regset:	The user regset structure.
 804 * @pos:	The buffer position.
 805 * @count:	Number of bytes to copy.
 806 * @kbuf:	Kernel buffer to copy from.
 807 * @ubuf:	User buffer to copy into.
 808 *
 809 * This function gets transaction checkpointed GPR registers.
 810 *
 811 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
 812 * GPR register values for the current transaction to fall back on if it
 813 * aborts in between. This function gets those checkpointed GPR registers.
 814 * The userspace interface buffer layout is as follows.
 815 *
 816 * struct data {
 817 *	struct pt_regs ckpt_regs;
 818 * };
 819 */
 820static int tm_cgpr_get(struct task_struct *target,
 821			const struct user_regset *regset,
 822			unsigned int pos, unsigned int count,
 823			void *kbuf, void __user *ubuf)
 824{
 825	int ret;
 826
 827	if (!cpu_has_feature(CPU_FTR_TM))
 828		return -ENODEV;
 829
 830	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 831		return -ENODATA;
 832
 833	flush_tmregs_to_thread(target);
 834	flush_fp_to_thread(target);
 835	flush_altivec_to_thread(target);
 836
 837	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 838				  &target->thread.ckpt_regs,
 839				  0, offsetof(struct pt_regs, msr));
 840	if (!ret) {
 841		unsigned long msr = get_user_ckpt_msr(target);
 842
 843		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
 844					  offsetof(struct pt_regs, msr),
 845					  offsetof(struct pt_regs, msr) +
 846					  sizeof(msr));
 847	}
 848
 849	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 850		     offsetof(struct pt_regs, msr) + sizeof(long));
 851
 852	if (!ret)
 853		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 854					  &target->thread.ckpt_regs.orig_gpr3,
 855					  offsetof(struct pt_regs, orig_gpr3),
 856					  sizeof(struct pt_regs));
 857	if (!ret)
 858		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 859					       sizeof(struct pt_regs), -1);
 860
 861	return ret;
 862}
 863
 864/*
 865 * tm_cgpr_set - set the CGPR registers
 866 * @target:	The target task.
 867 * @regset:	The user regset structure.
 868 * @pos:	The buffer position.
 869 * @count:	Number of bytes to copy.
 870 * @kbuf:	Kernel buffer to copy into.
 871 * @ubuf:	User buffer to copy from.
 872 *
 873 * This function sets in transaction checkpointed GPR registers.
 874 *
 875 * When the transaction is active, 'ckpt_regs' holds the checkpointed
 876 * GPR register values for the current transaction to fall back on if it
 877 * aborts in between. This function sets those checkpointed GPR registers.
 878 * The userspace interface buffer layout is as follows.
 879 *
 880 * struct data {
 881 *	struct pt_regs ckpt_regs;
 882 * };
 883 */
 884static int tm_cgpr_set(struct task_struct *target,
 885			const struct user_regset *regset,
 886			unsigned int pos, unsigned int count,
 887			const void *kbuf, const void __user *ubuf)
 888{
 889	unsigned long reg;
 890	int ret;
 891
 892	if (!cpu_has_feature(CPU_FTR_TM))
 893		return -ENODEV;
 894
 895	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 896		return -ENODATA;
 897
 898	flush_tmregs_to_thread(target);
 899	flush_fp_to_thread(target);
 900	flush_altivec_to_thread(target);
 901
 902	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 903				 &target->thread.ckpt_regs,
 904				 0, PT_MSR * sizeof(reg));
 905
 906	if (!ret && count > 0) {
 907		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 908					 PT_MSR * sizeof(reg),
 909					 (PT_MSR + 1) * sizeof(reg));
 910		if (!ret)
 911			ret = set_user_ckpt_msr(target, reg);
 912	}
 913
 914	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 915		     offsetof(struct pt_regs, msr) + sizeof(long));
 916
 917	if (!ret)
 918		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 919					 &target->thread.ckpt_regs.orig_gpr3,
 920					 PT_ORIG_R3 * sizeof(reg),
 921					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
 922
 923	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
 924		ret = user_regset_copyin_ignore(
 925			&pos, &count, &kbuf, &ubuf,
 926			(PT_MAX_PUT_REG + 1) * sizeof(reg),
 927			PT_TRAP * sizeof(reg));
 928
 929	if (!ret && count > 0) {
 930		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 931					 PT_TRAP * sizeof(reg),
 932					 (PT_TRAP + 1) * sizeof(reg));
 933		if (!ret)
 934			ret = set_user_ckpt_trap(target, reg);
 935	}
 936
 937	if (!ret)
 938		ret = user_regset_copyin_ignore(
 939			&pos, &count, &kbuf, &ubuf,
 940			(PT_TRAP + 1) * sizeof(reg), -1);
 941
 942	return ret;
 943}
 944
 945/**
 946 * tm_cfpr_active - get active number of registers in CFPR
 947 * @target:	The target task.
 948 * @regset:	The user regset structure.
 949 *
 950 * This function checks for the active number of available
 951 * regisers in transaction checkpointed FPR category.
 952 */
 953static int tm_cfpr_active(struct task_struct *target,
 954				const struct user_regset *regset)
 955{
 956	if (!cpu_has_feature(CPU_FTR_TM))
 957		return -ENODEV;
 958
 959	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 960		return 0;
 961
 962	return regset->n;
 963}
 964
 965/**
 966 * tm_cfpr_get - get CFPR registers
 967 * @target:	The target task.
 968 * @regset:	The user regset structure.
 969 * @pos:	The buffer position.
 970 * @count:	Number of bytes to copy.
 971 * @kbuf:	Kernel buffer to copy from.
 972 * @ubuf:	User buffer to copy into.
 973 *
 974 * This function gets in transaction checkpointed FPR registers.
 975 *
 976 * When the transaction is active 'ckfp_state' holds the checkpointed
 977 * values for the current transaction to fall back on if it aborts
 978 * in between. This function gets those checkpointed FPR registers.
 979 * The userspace interface buffer layout is as follows.
 980 *
 981 * struct data {
 982 *	u64	fpr[32];
 983 *	u64	fpscr;
 984 *};
 985 */
 986static int tm_cfpr_get(struct task_struct *target,
 987			const struct user_regset *regset,
 988			unsigned int pos, unsigned int count,
 989			void *kbuf, void __user *ubuf)
 990{
 991	u64 buf[33];
 992	int i;
 993
 994	if (!cpu_has_feature(CPU_FTR_TM))
 995		return -ENODEV;
 996
 997	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 998		return -ENODATA;
 999
1000	flush_tmregs_to_thread(target);
1001	flush_fp_to_thread(target);
1002	flush_altivec_to_thread(target);
1003
1004	/* copy to local buffer then write that out */
1005	for (i = 0; i < 32 ; i++)
1006		buf[i] = target->thread.TS_CKFPR(i);
1007	buf[32] = target->thread.ckfp_state.fpscr;
1008	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1009}
1010
1011/**
1012 * tm_cfpr_set - set CFPR registers
1013 * @target:	The target task.
1014 * @regset:	The user regset structure.
1015 * @pos:	The buffer position.
1016 * @count:	Number of bytes to copy.
1017 * @kbuf:	Kernel buffer to copy into.
1018 * @ubuf:	User buffer to copy from.
1019 *
1020 * This function sets in transaction checkpointed FPR registers.
1021 *
1022 * When the transaction is active 'ckfp_state' holds the checkpointed
1023 * FPR register values for the current transaction to fall back on
1024 * if it aborts in between. This function sets these checkpointed
1025 * FPR registers. The userspace interface buffer layout is as follows.
1026 *
1027 * struct data {
1028 *	u64	fpr[32];
1029 *	u64	fpscr;
1030 *};
1031 */
1032static int tm_cfpr_set(struct task_struct *target,
1033			const struct user_regset *regset,
1034			unsigned int pos, unsigned int count,
1035			const void *kbuf, const void __user *ubuf)
1036{
1037	u64 buf[33];
1038	int i;
1039
1040	if (!cpu_has_feature(CPU_FTR_TM))
1041		return -ENODEV;
1042
1043	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1044		return -ENODATA;
1045
1046	flush_tmregs_to_thread(target);
1047	flush_fp_to_thread(target);
1048	flush_altivec_to_thread(target);
1049
1050	for (i = 0; i < 32; i++)
1051		buf[i] = target->thread.TS_CKFPR(i);
1052	buf[32] = target->thread.ckfp_state.fpscr;
1053
1054	/* copy to local buffer then write that out */
1055	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1056	if (i)
1057		return i;
1058	for (i = 0; i < 32 ; i++)
1059		target->thread.TS_CKFPR(i) = buf[i];
1060	target->thread.ckfp_state.fpscr = buf[32];
1061	return 0;
1062}
1063
1064/**
1065 * tm_cvmx_active - get active number of registers in CVMX
1066 * @target:	The target task.
1067 * @regset:	The user regset structure.
1068 *
1069 * This function checks for the active number of available
1070 * regisers in checkpointed VMX category.
1071 */
1072static int tm_cvmx_active(struct task_struct *target,
1073				const struct user_regset *regset)
1074{
1075	if (!cpu_has_feature(CPU_FTR_TM))
1076		return -ENODEV;
1077
1078	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1079		return 0;
1080
1081	return regset->n;
1082}
1083
1084/**
1085 * tm_cvmx_get - get CMVX registers
1086 * @target:	The target task.
1087 * @regset:	The user regset structure.
1088 * @pos:	The buffer position.
1089 * @count:	Number of bytes to copy.
1090 * @kbuf:	Kernel buffer to copy from.
1091 * @ubuf:	User buffer to copy into.
1092 *
1093 * This function gets in transaction checkpointed VMX registers.
1094 *
1095 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1096 * the checkpointed values for the current transaction to fall
1097 * back on if it aborts in between. The userspace interface buffer
1098 * layout is as follows.
1099 *
1100 * struct data {
1101 *	vector128	vr[32];
1102 *	vector128	vscr;
1103 *	vector128	vrsave;
1104 *};
1105 */
1106static int tm_cvmx_get(struct task_struct *target,
1107			const struct user_regset *regset,
1108			unsigned int pos, unsigned int count,
1109			void *kbuf, void __user *ubuf)
1110{
1111	int ret;
1112
1113	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1114
1115	if (!cpu_has_feature(CPU_FTR_TM))
1116		return -ENODEV;
1117
1118	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1119		return -ENODATA;
1120
1121	/* Flush the state */
1122	flush_tmregs_to_thread(target);
1123	flush_fp_to_thread(target);
1124	flush_altivec_to_thread(target);
1125
1126	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1127					&target->thread.ckvr_state, 0,
1128					33 * sizeof(vector128));
1129	if (!ret) {
1130		/*
1131		 * Copy out only the low-order word of vrsave.
1132		 */
1133		union {
1134			elf_vrreg_t reg;
1135			u32 word;
1136		} vrsave;
1137		memset(&vrsave, 0, sizeof(vrsave));
1138		vrsave.word = target->thread.ckvrsave;
1139		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1140						33 * sizeof(vector128), -1);
1141	}
1142
1143	return ret;
1144}
1145
1146/**
1147 * tm_cvmx_set - set CMVX registers
1148 * @target:	The target task.
1149 * @regset:	The user regset structure.
1150 * @pos:	The buffer position.
1151 * @count:	Number of bytes to copy.
1152 * @kbuf:	Kernel buffer to copy into.
1153 * @ubuf:	User buffer to copy from.
1154 *
1155 * This function sets in transaction checkpointed VMX registers.
1156 *
1157 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1158 * the checkpointed values for the current transaction to fall
1159 * back on if it aborts in between. The userspace interface buffer
1160 * layout is as follows.
1161 *
1162 * struct data {
1163 *	vector128	vr[32];
1164 *	vector128	vscr;
1165 *	vector128	vrsave;
1166 *};
1167 */
1168static int tm_cvmx_set(struct task_struct *target,
1169			const struct user_regset *regset,
1170			unsigned int pos, unsigned int count,
1171			const void *kbuf, const void __user *ubuf)
1172{
1173	int ret;
1174
1175	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1176
1177	if (!cpu_has_feature(CPU_FTR_TM))
1178		return -ENODEV;
1179
1180	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1181		return -ENODATA;
1182
1183	flush_tmregs_to_thread(target);
1184	flush_fp_to_thread(target);
1185	flush_altivec_to_thread(target);
1186
1187	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1188					&target->thread.ckvr_state, 0,
1189					33 * sizeof(vector128));
1190	if (!ret && count > 0) {
1191		/*
1192		 * We use only the low-order word of vrsave.
1193		 */
1194		union {
1195			elf_vrreg_t reg;
1196			u32 word;
1197		} vrsave;
1198		memset(&vrsave, 0, sizeof(vrsave));
1199		vrsave.word = target->thread.ckvrsave;
1200		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1201						33 * sizeof(vector128), -1);
1202		if (!ret)
1203			target->thread.ckvrsave = vrsave.word;
1204	}
1205
1206	return ret;
1207}
1208
1209/**
1210 * tm_cvsx_active - get active number of registers in CVSX
1211 * @target:	The target task.
1212 * @regset:	The user regset structure.
1213 *
1214 * This function checks for the active number of available
1215 * regisers in transaction checkpointed VSX category.
1216 */
1217static int tm_cvsx_active(struct task_struct *target,
1218				const struct user_regset *regset)
1219{
1220	if (!cpu_has_feature(CPU_FTR_TM))
1221		return -ENODEV;
1222
1223	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1224		return 0;
1225
1226	flush_vsx_to_thread(target);
1227	return target->thread.used_vsr ? regset->n : 0;
1228}
1229
1230/**
1231 * tm_cvsx_get - get CVSX registers
1232 * @target:	The target task.
1233 * @regset:	The user regset structure.
1234 * @pos:	The buffer position.
1235 * @count:	Number of bytes to copy.
1236 * @kbuf:	Kernel buffer to copy from.
1237 * @ubuf:	User buffer to copy into.
1238 *
1239 * This function gets in transaction checkpointed VSX registers.
1240 *
1241 * When the transaction is active 'ckfp_state' holds the checkpointed
1242 * values for the current transaction to fall back on if it aborts
1243 * in between. This function gets those checkpointed VSX registers.
1244 * The userspace interface buffer layout is as follows.
1245 *
1246 * struct data {
1247 *	u64	vsx[32];
1248 *};
1249 */
1250static int tm_cvsx_get(struct task_struct *target,
1251			const struct user_regset *regset,
1252			unsigned int pos, unsigned int count,
1253			void *kbuf, void __user *ubuf)
1254{
1255	u64 buf[32];
1256	int ret, i;
1257
1258	if (!cpu_has_feature(CPU_FTR_TM))
1259		return -ENODEV;
1260
1261	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1262		return -ENODATA;
1263
1264	/* Flush the state */
1265	flush_tmregs_to_thread(target);
1266	flush_fp_to_thread(target);
1267	flush_altivec_to_thread(target);
1268	flush_vsx_to_thread(target);
1269
1270	for (i = 0; i < 32 ; i++)
1271		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1272	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1273				  buf, 0, 32 * sizeof(double));
1274
1275	return ret;
1276}
1277
1278/**
1279 * tm_cvsx_set - set CFPR registers
1280 * @target:	The target task.
1281 * @regset:	The user regset structure.
1282 * @pos:	The buffer position.
1283 * @count:	Number of bytes to copy.
1284 * @kbuf:	Kernel buffer to copy into.
1285 * @ubuf:	User buffer to copy from.
1286 *
1287 * This function sets in transaction checkpointed VSX registers.
1288 *
1289 * When the transaction is active 'ckfp_state' holds the checkpointed
1290 * VSX register values for the current transaction to fall back on
1291 * if it aborts in between. This function sets these checkpointed
1292 * FPR registers. The userspace interface buffer layout is as follows.
1293 *
1294 * struct data {
1295 *	u64	vsx[32];
1296 *};
1297 */
1298static int tm_cvsx_set(struct task_struct *target,
1299			const struct user_regset *regset,
1300			unsigned int pos, unsigned int count,
1301			const void *kbuf, const void __user *ubuf)
1302{
1303	u64 buf[32];
1304	int ret, i;
1305
1306	if (!cpu_has_feature(CPU_FTR_TM))
1307		return -ENODEV;
1308
1309	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1310		return -ENODATA;
1311
1312	/* Flush the state */
1313	flush_tmregs_to_thread(target);
1314	flush_fp_to_thread(target);
1315	flush_altivec_to_thread(target);
1316	flush_vsx_to_thread(target);
1317
1318	for (i = 0; i < 32 ; i++)
1319		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1320
1321	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322				 buf, 0, 32 * sizeof(double));
1323	if (!ret)
1324		for (i = 0; i < 32 ; i++)
1325			target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1326
1327	return ret;
1328}
1329
1330/**
1331 * tm_spr_active - get active number of registers in TM SPR
1332 * @target:	The target task.
1333 * @regset:	The user regset structure.
1334 *
1335 * This function checks the active number of available
1336 * regisers in the transactional memory SPR category.
1337 */
1338static int tm_spr_active(struct task_struct *target,
1339			 const struct user_regset *regset)
1340{
1341	if (!cpu_has_feature(CPU_FTR_TM))
1342		return -ENODEV;
1343
1344	return regset->n;
1345}
1346
1347/**
1348 * tm_spr_get - get the TM related SPR registers
1349 * @target:	The target task.
1350 * @regset:	The user regset structure.
1351 * @pos:	The buffer position.
1352 * @count:	Number of bytes to copy.
1353 * @kbuf:	Kernel buffer to copy from.
1354 * @ubuf:	User buffer to copy into.
1355 *
1356 * This function gets transactional memory related SPR registers.
1357 * The userspace interface buffer layout is as follows.
1358 *
1359 * struct {
1360 *	u64		tm_tfhar;
1361 *	u64		tm_texasr;
1362 *	u64		tm_tfiar;
1363 * };
1364 */
1365static int tm_spr_get(struct task_struct *target,
1366		      const struct user_regset *regset,
1367		      unsigned int pos, unsigned int count,
1368		      void *kbuf, void __user *ubuf)
1369{
1370	int ret;
1371
1372	/* Build tests */
1373	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1374	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1375	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1376
1377	if (!cpu_has_feature(CPU_FTR_TM))
1378		return -ENODEV;
1379
1380	/* Flush the states */
1381	flush_tmregs_to_thread(target);
1382	flush_fp_to_thread(target);
1383	flush_altivec_to_thread(target);
1384
1385	/* TFHAR register */
1386	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1387				&target->thread.tm_tfhar, 0, sizeof(u64));
1388
1389	/* TEXASR register */
1390	if (!ret)
1391		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1392				&target->thread.tm_texasr, sizeof(u64),
1393				2 * sizeof(u64));
1394
1395	/* TFIAR register */
1396	if (!ret)
1397		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1398				&target->thread.tm_tfiar,
1399				2 * sizeof(u64), 3 * sizeof(u64));
1400	return ret;
1401}
1402
1403/**
1404 * tm_spr_set - set the TM related SPR registers
1405 * @target:	The target task.
1406 * @regset:	The user regset structure.
1407 * @pos:	The buffer position.
1408 * @count:	Number of bytes to copy.
1409 * @kbuf:	Kernel buffer to copy into.
1410 * @ubuf:	User buffer to copy from.
1411 *
1412 * This function sets transactional memory related SPR registers.
1413 * The userspace interface buffer layout is as follows.
1414 *
1415 * struct {
1416 *	u64		tm_tfhar;
1417 *	u64		tm_texasr;
1418 *	u64		tm_tfiar;
1419 * };
1420 */
1421static int tm_spr_set(struct task_struct *target,
1422		      const struct user_regset *regset,
1423		      unsigned int pos, unsigned int count,
1424		      const void *kbuf, const void __user *ubuf)
1425{
1426	int ret;
1427
1428	/* Build tests */
1429	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1430	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1431	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1432
1433	if (!cpu_has_feature(CPU_FTR_TM))
1434		return -ENODEV;
1435
1436	/* Flush the states */
1437	flush_tmregs_to_thread(target);
1438	flush_fp_to_thread(target);
1439	flush_altivec_to_thread(target);
1440
1441	/* TFHAR register */
1442	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1443				&target->thread.tm_tfhar, 0, sizeof(u64));
1444
1445	/* TEXASR register */
1446	if (!ret)
1447		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1448				&target->thread.tm_texasr, sizeof(u64),
1449				2 * sizeof(u64));
1450
1451	/* TFIAR register */
1452	if (!ret)
1453		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1454				&target->thread.tm_tfiar,
1455				 2 * sizeof(u64), 3 * sizeof(u64));
1456	return ret;
1457}
1458
1459static int tm_tar_active(struct task_struct *target,
1460			 const struct user_regset *regset)
1461{
1462	if (!cpu_has_feature(CPU_FTR_TM))
1463		return -ENODEV;
1464
1465	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1466		return regset->n;
1467
1468	return 0;
1469}
1470
1471static int tm_tar_get(struct task_struct *target,
1472		      const struct user_regset *regset,
1473		      unsigned int pos, unsigned int count,
1474		      void *kbuf, void __user *ubuf)
1475{
1476	int ret;
1477
1478	if (!cpu_has_feature(CPU_FTR_TM))
1479		return -ENODEV;
1480
1481	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1482		return -ENODATA;
1483
1484	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1485				&target->thread.tm_tar, 0, sizeof(u64));
1486	return ret;
1487}
1488
1489static int tm_tar_set(struct task_struct *target,
1490		      const struct user_regset *regset,
1491		      unsigned int pos, unsigned int count,
1492		      const void *kbuf, const void __user *ubuf)
1493{
1494	int ret;
1495
1496	if (!cpu_has_feature(CPU_FTR_TM))
1497		return -ENODEV;
1498
1499	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1500		return -ENODATA;
1501
1502	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1503				&target->thread.tm_tar, 0, sizeof(u64));
1504	return ret;
1505}
1506
1507static int tm_ppr_active(struct task_struct *target,
1508			 const struct user_regset *regset)
1509{
1510	if (!cpu_has_feature(CPU_FTR_TM))
1511		return -ENODEV;
1512
1513	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1514		return regset->n;
1515
1516	return 0;
1517}
1518
1519
1520static int tm_ppr_get(struct task_struct *target,
1521		      const struct user_regset *regset,
1522		      unsigned int pos, unsigned int count,
1523		      void *kbuf, void __user *ubuf)
1524{
1525	int ret;
1526
1527	if (!cpu_has_feature(CPU_FTR_TM))
1528		return -ENODEV;
1529
1530	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1531		return -ENODATA;
1532
1533	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1534				&target->thread.tm_ppr, 0, sizeof(u64));
1535	return ret;
1536}
1537
1538static int tm_ppr_set(struct task_struct *target,
1539		      const struct user_regset *regset,
1540		      unsigned int pos, unsigned int count,
1541		      const void *kbuf, const void __user *ubuf)
1542{
1543	int ret;
1544
1545	if (!cpu_has_feature(CPU_FTR_TM))
1546		return -ENODEV;
1547
1548	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1549		return -ENODATA;
1550
1551	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1552				&target->thread.tm_ppr, 0, sizeof(u64));
1553	return ret;
1554}
1555
1556static int tm_dscr_active(struct task_struct *target,
1557			 const struct user_regset *regset)
1558{
1559	if (!cpu_has_feature(CPU_FTR_TM))
1560		return -ENODEV;
1561
1562	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1563		return regset->n;
1564
1565	return 0;
1566}
1567
1568static int tm_dscr_get(struct task_struct *target,
1569		      const struct user_regset *regset,
1570		      unsigned int pos, unsigned int count,
1571		      void *kbuf, void __user *ubuf)
1572{
1573	int ret;
1574
1575	if (!cpu_has_feature(CPU_FTR_TM))
1576		return -ENODEV;
1577
1578	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1579		return -ENODATA;
1580
1581	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1582				&target->thread.tm_dscr, 0, sizeof(u64));
1583	return ret;
1584}
1585
1586static int tm_dscr_set(struct task_struct *target,
1587		      const struct user_regset *regset,
1588		      unsigned int pos, unsigned int count,
1589		      const void *kbuf, const void __user *ubuf)
1590{
1591	int ret;
1592
1593	if (!cpu_has_feature(CPU_FTR_TM))
1594		return -ENODEV;
1595
1596	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1597		return -ENODATA;
1598
1599	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1600				&target->thread.tm_dscr, 0, sizeof(u64));
1601	return ret;
1602}
1603#endif	/* CONFIG_PPC_TRANSACTIONAL_MEM */
1604
1605#ifdef CONFIG_PPC64
1606static int ppr_get(struct task_struct *target,
1607		      const struct user_regset *regset,
1608		      unsigned int pos, unsigned int count,
1609		      void *kbuf, void __user *ubuf)
1610{
1611	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1612				   &target->thread.ppr, 0, sizeof(u64));
 
 
 
1613}
1614
1615static int ppr_set(struct task_struct *target,
1616		      const struct user_regset *regset,
1617		      unsigned int pos, unsigned int count,
1618		      const void *kbuf, const void __user *ubuf)
1619{
1620	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1621				  &target->thread.ppr, 0, sizeof(u64));
 
 
 
1622}
1623
1624static int dscr_get(struct task_struct *target,
1625		      const struct user_regset *regset,
1626		      unsigned int pos, unsigned int count,
1627		      void *kbuf, void __user *ubuf)
1628{
1629	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1630				   &target->thread.dscr, 0, sizeof(u64));
 
 
 
1631}
1632static int dscr_set(struct task_struct *target,
1633		      const struct user_regset *regset,
1634		      unsigned int pos, unsigned int count,
1635		      const void *kbuf, const void __user *ubuf)
1636{
1637	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1638				  &target->thread.dscr, 0, sizeof(u64));
 
 
 
1639}
1640#endif
1641#ifdef CONFIG_PPC_BOOK3S_64
1642static int tar_get(struct task_struct *target,
1643		      const struct user_regset *regset,
1644		      unsigned int pos, unsigned int count,
1645		      void *kbuf, void __user *ubuf)
1646{
1647	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1648				   &target->thread.tar, 0, sizeof(u64));
 
 
 
1649}
1650static int tar_set(struct task_struct *target,
1651		      const struct user_regset *regset,
1652		      unsigned int pos, unsigned int count,
1653		      const void *kbuf, const void __user *ubuf)
1654{
1655	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1656				  &target->thread.tar, 0, sizeof(u64));
 
 
 
1657}
1658
1659static int ebb_active(struct task_struct *target,
1660			 const struct user_regset *regset)
1661{
1662	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1663		return -ENODEV;
1664
1665	if (target->thread.used_ebb)
1666		return regset->n;
1667
1668	return 0;
1669}
1670
1671static int ebb_get(struct task_struct *target,
1672		      const struct user_regset *regset,
1673		      unsigned int pos, unsigned int count,
1674		      void *kbuf, void __user *ubuf)
1675{
1676	/* Build tests */
1677	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1678	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1679
1680	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1681		return -ENODEV;
1682
1683	if (!target->thread.used_ebb)
1684		return -ENODATA;
1685
1686	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1687			&target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1688}
1689
1690static int ebb_set(struct task_struct *target,
1691		      const struct user_regset *regset,
1692		      unsigned int pos, unsigned int count,
1693		      const void *kbuf, const void __user *ubuf)
1694{
1695	int ret = 0;
1696
1697	/* Build tests */
1698	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1699	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1700
1701	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1702		return -ENODEV;
1703
1704	if (target->thread.used_ebb)
1705		return -ENODATA;
1706
1707	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1708			&target->thread.ebbrr, 0, sizeof(unsigned long));
1709
1710	if (!ret)
1711		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1712			&target->thread.ebbhr, sizeof(unsigned long),
1713			2 * sizeof(unsigned long));
1714
1715	if (!ret)
1716		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1717			&target->thread.bescr,
1718			2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1719
1720	return ret;
1721}
1722static int pmu_active(struct task_struct *target,
1723			 const struct user_regset *regset)
1724{
1725	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1726		return -ENODEV;
1727
1728	return regset->n;
1729}
1730
1731static int pmu_get(struct task_struct *target,
1732		      const struct user_regset *regset,
1733		      unsigned int pos, unsigned int count,
1734		      void *kbuf, void __user *ubuf)
1735{
1736	/* Build tests */
1737	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1738	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1739	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1740	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1741
1742	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1743		return -ENODEV;
1744
1745	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1746			&target->thread.siar, 0,
1747			5 * sizeof(unsigned long));
1748}
1749
1750static int pmu_set(struct task_struct *target,
1751		      const struct user_regset *regset,
1752		      unsigned int pos, unsigned int count,
1753		      const void *kbuf, const void __user *ubuf)
1754{
1755	int ret = 0;
1756
1757	/* Build tests */
1758	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1759	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1760	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1761	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1762
1763	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1764		return -ENODEV;
1765
1766	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1767			&target->thread.siar, 0,
1768			sizeof(unsigned long));
1769
1770	if (!ret)
1771		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1772			&target->thread.sdar, sizeof(unsigned long),
1773			2 * sizeof(unsigned long));
1774
1775	if (!ret)
1776		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1777			&target->thread.sier, 2 * sizeof(unsigned long),
1778			3 * sizeof(unsigned long));
1779
1780	if (!ret)
1781		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1782			&target->thread.mmcr2, 3 * sizeof(unsigned long),
1783			4 * sizeof(unsigned long));
1784
1785	if (!ret)
1786		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1787			&target->thread.mmcr0, 4 * sizeof(unsigned long),
1788			5 * sizeof(unsigned long));
1789	return ret;
1790}
1791#endif
1792
1793#ifdef CONFIG_PPC_MEM_KEYS
1794static int pkey_active(struct task_struct *target,
1795		       const struct user_regset *regset)
1796{
1797	if (!arch_pkeys_enabled())
1798		return -ENODEV;
1799
1800	return regset->n;
1801}
1802
1803static int pkey_get(struct task_struct *target,
1804		    const struct user_regset *regset,
1805		    unsigned int pos, unsigned int count,
1806		    void *kbuf, void __user *ubuf)
1807{
1808	BUILD_BUG_ON(TSO(amr) + sizeof(unsigned long) != TSO(iamr));
1809	BUILD_BUG_ON(TSO(iamr) + sizeof(unsigned long) != TSO(uamor));
1810
1811	if (!arch_pkeys_enabled())
1812		return -ENODEV;
1813
1814	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1815				   &target->thread.amr, 0,
1816				   ELF_NPKEY * sizeof(unsigned long));
1817}
1818
1819static int pkey_set(struct task_struct *target,
1820		      const struct user_regset *regset,
1821		      unsigned int pos, unsigned int count,
1822		      const void *kbuf, const void __user *ubuf)
1823{
1824	u64 new_amr;
1825	int ret;
1826
1827	if (!arch_pkeys_enabled())
1828		return -ENODEV;
1829
1830	/* Only the AMR can be set from userspace */
1831	if (pos != 0 || count != sizeof(new_amr))
1832		return -EINVAL;
1833
1834	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1835				 &new_amr, 0, sizeof(new_amr));
1836	if (ret)
1837		return ret;
1838
1839	/* UAMOR determines which bits of the AMR can be set from userspace. */
1840	target->thread.amr = (new_amr & target->thread.uamor) |
1841		(target->thread.amr & ~target->thread.uamor);
1842
1843	return 0;
1844}
1845#endif /* CONFIG_PPC_MEM_KEYS */
1846
1847/*
1848 * These are our native regset flavors.
1849 */
1850enum powerpc_regset {
1851	REGSET_GPR,
1852	REGSET_FPR,
1853#ifdef CONFIG_ALTIVEC
1854	REGSET_VMX,
1855#endif
1856#ifdef CONFIG_VSX
1857	REGSET_VSX,
1858#endif
1859#ifdef CONFIG_SPE
1860	REGSET_SPE,
1861#endif
1862#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1863	REGSET_TM_CGPR,		/* TM checkpointed GPR registers */
1864	REGSET_TM_CFPR,		/* TM checkpointed FPR registers */
1865	REGSET_TM_CVMX,		/* TM checkpointed VMX registers */
1866	REGSET_TM_CVSX,		/* TM checkpointed VSX registers */
1867	REGSET_TM_SPR,		/* TM specific SPR registers */
1868	REGSET_TM_CTAR,		/* TM checkpointed TAR register */
1869	REGSET_TM_CPPR,		/* TM checkpointed PPR register */
1870	REGSET_TM_CDSCR,	/* TM checkpointed DSCR register */
1871#endif
1872#ifdef CONFIG_PPC64
1873	REGSET_PPR,		/* PPR register */
1874	REGSET_DSCR,		/* DSCR register */
1875#endif
1876#ifdef CONFIG_PPC_BOOK3S_64
1877	REGSET_TAR,		/* TAR register */
1878	REGSET_EBB,		/* EBB registers */
1879	REGSET_PMR,		/* Performance Monitor Registers */
1880#endif
1881#ifdef CONFIG_PPC_MEM_KEYS
1882	REGSET_PKEY,		/* AMR register */
1883#endif
1884};
1885
1886static const struct user_regset native_regsets[] = {
1887	[REGSET_GPR] = {
1888		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1889		.size = sizeof(long), .align = sizeof(long),
1890		.get = gpr_get, .set = gpr_set
1891	},
1892	[REGSET_FPR] = {
1893		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1894		.size = sizeof(double), .align = sizeof(double),
1895		.get = fpr_get, .set = fpr_set
1896	},
1897#ifdef CONFIG_ALTIVEC
1898	[REGSET_VMX] = {
1899		.core_note_type = NT_PPC_VMX, .n = 34,
1900		.size = sizeof(vector128), .align = sizeof(vector128),
1901		.active = vr_active, .get = vr_get, .set = vr_set
1902	},
1903#endif
1904#ifdef CONFIG_VSX
1905	[REGSET_VSX] = {
1906		.core_note_type = NT_PPC_VSX, .n = 32,
1907		.size = sizeof(double), .align = sizeof(double),
1908		.active = vsr_active, .get = vsr_get, .set = vsr_set
1909	},
1910#endif
1911#ifdef CONFIG_SPE
1912	[REGSET_SPE] = {
1913		.core_note_type = NT_PPC_SPE, .n = 35,
1914		.size = sizeof(u32), .align = sizeof(u32),
1915		.active = evr_active, .get = evr_get, .set = evr_set
1916	},
1917#endif
1918#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1919	[REGSET_TM_CGPR] = {
1920		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1921		.size = sizeof(long), .align = sizeof(long),
1922		.active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1923	},
1924	[REGSET_TM_CFPR] = {
1925		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1926		.size = sizeof(double), .align = sizeof(double),
1927		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1928	},
1929	[REGSET_TM_CVMX] = {
1930		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1931		.size = sizeof(vector128), .align = sizeof(vector128),
1932		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1933	},
1934	[REGSET_TM_CVSX] = {
1935		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1936		.size = sizeof(double), .align = sizeof(double),
1937		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1938	},
1939	[REGSET_TM_SPR] = {
1940		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1941		.size = sizeof(u64), .align = sizeof(u64),
1942		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1943	},
1944	[REGSET_TM_CTAR] = {
1945		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
1946		.size = sizeof(u64), .align = sizeof(u64),
1947		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1948	},
1949	[REGSET_TM_CPPR] = {
1950		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
1951		.size = sizeof(u64), .align = sizeof(u64),
1952		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1953	},
1954	[REGSET_TM_CDSCR] = {
1955		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1956		.size = sizeof(u64), .align = sizeof(u64),
1957		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1958	},
1959#endif
1960#ifdef CONFIG_PPC64
1961	[REGSET_PPR] = {
1962		.core_note_type = NT_PPC_PPR, .n = 1,
1963		.size = sizeof(u64), .align = sizeof(u64),
1964		.get = ppr_get, .set = ppr_set
1965	},
1966	[REGSET_DSCR] = {
1967		.core_note_type = NT_PPC_DSCR, .n = 1,
1968		.size = sizeof(u64), .align = sizeof(u64),
1969		.get = dscr_get, .set = dscr_set
1970	},
1971#endif
1972#ifdef CONFIG_PPC_BOOK3S_64
1973	[REGSET_TAR] = {
1974		.core_note_type = NT_PPC_TAR, .n = 1,
1975		.size = sizeof(u64), .align = sizeof(u64),
1976		.get = tar_get, .set = tar_set
1977	},
1978	[REGSET_EBB] = {
1979		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1980		.size = sizeof(u64), .align = sizeof(u64),
1981		.active = ebb_active, .get = ebb_get, .set = ebb_set
1982	},
1983	[REGSET_PMR] = {
1984		.core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1985		.size = sizeof(u64), .align = sizeof(u64),
1986		.active = pmu_active, .get = pmu_get, .set = pmu_set
1987	},
1988#endif
1989#ifdef CONFIG_PPC_MEM_KEYS
1990	[REGSET_PKEY] = {
1991		.core_note_type = NT_PPC_PKEY, .n = ELF_NPKEY,
1992		.size = sizeof(u64), .align = sizeof(u64),
1993		.active = pkey_active, .get = pkey_get, .set = pkey_set
1994	},
1995#endif
1996};
1997
1998static const struct user_regset_view user_ppc_native_view = {
1999	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2000	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2001};
2002
2003#ifdef CONFIG_PPC64
2004#include <linux/compat.h>
2005
2006static int gpr32_get_common(struct task_struct *target,
2007		     const struct user_regset *regset,
2008		     unsigned int pos, unsigned int count,
2009			    void *kbuf, void __user *ubuf,
2010			    unsigned long *regs)
2011{
2012	compat_ulong_t *k = kbuf;
2013	compat_ulong_t __user *u = ubuf;
2014	compat_ulong_t reg;
2015
2016	pos /= sizeof(reg);
2017	count /= sizeof(reg);
2018
2019	if (kbuf)
2020		for (; count > 0 && pos < PT_MSR; --count)
2021			*k++ = regs[pos++];
2022	else
2023		for (; count > 0 && pos < PT_MSR; --count)
2024			if (__put_user((compat_ulong_t) regs[pos++], u++))
2025				return -EFAULT;
2026
2027	if (count > 0 && pos == PT_MSR) {
2028		reg = get_user_msr(target);
2029		if (kbuf)
2030			*k++ = reg;
2031		else if (__put_user(reg, u++))
2032			return -EFAULT;
2033		++pos;
2034		--count;
2035	}
2036
2037	if (kbuf)
2038		for (; count > 0 && pos < PT_REGS_COUNT; --count)
2039			*k++ = regs[pos++];
2040	else
2041		for (; count > 0 && pos < PT_REGS_COUNT; --count)
2042			if (__put_user((compat_ulong_t) regs[pos++], u++))
2043				return -EFAULT;
2044
2045	kbuf = k;
2046	ubuf = u;
2047	pos *= sizeof(reg);
2048	count *= sizeof(reg);
2049	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2050					PT_REGS_COUNT * sizeof(reg), -1);
2051}
2052
2053static int gpr32_set_common(struct task_struct *target,
2054		     const struct user_regset *regset,
2055		     unsigned int pos, unsigned int count,
2056		     const void *kbuf, const void __user *ubuf,
2057		     unsigned long *regs)
2058{
2059	const compat_ulong_t *k = kbuf;
2060	const compat_ulong_t __user *u = ubuf;
2061	compat_ulong_t reg;
2062
2063	pos /= sizeof(reg);
2064	count /= sizeof(reg);
2065
2066	if (kbuf)
2067		for (; count > 0 && pos < PT_MSR; --count)
2068			regs[pos++] = *k++;
2069	else
2070		for (; count > 0 && pos < PT_MSR; --count) {
2071			if (__get_user(reg, u++))
2072				return -EFAULT;
2073			regs[pos++] = reg;
2074		}
2075
2076
2077	if (count > 0 && pos == PT_MSR) {
2078		if (kbuf)
2079			reg = *k++;
2080		else if (__get_user(reg, u++))
2081			return -EFAULT;
2082		set_user_msr(target, reg);
2083		++pos;
2084		--count;
2085	}
2086
2087	if (kbuf) {
2088		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2089			regs[pos++] = *k++;
2090		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2091			++k;
2092	} else {
2093		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2094			if (__get_user(reg, u++))
2095				return -EFAULT;
2096			regs[pos++] = reg;
2097		}
2098		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2099			if (__get_user(reg, u++))
2100				return -EFAULT;
2101	}
2102
2103	if (count > 0 && pos == PT_TRAP) {
2104		if (kbuf)
2105			reg = *k++;
2106		else if (__get_user(reg, u++))
2107			return -EFAULT;
2108		set_user_trap(target, reg);
2109		++pos;
2110		--count;
2111	}
2112
2113	kbuf = k;
2114	ubuf = u;
2115	pos *= sizeof(reg);
2116	count *= sizeof(reg);
2117	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2118					 (PT_TRAP + 1) * sizeof(reg), -1);
2119}
2120
2121#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2122static int tm_cgpr32_get(struct task_struct *target,
2123		     const struct user_regset *regset,
2124		     unsigned int pos, unsigned int count,
2125		     void *kbuf, void __user *ubuf)
2126{
2127	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2128			&target->thread.ckpt_regs.gpr[0]);
2129}
2130
2131static int tm_cgpr32_set(struct task_struct *target,
2132		     const struct user_regset *regset,
2133		     unsigned int pos, unsigned int count,
2134		     const void *kbuf, const void __user *ubuf)
2135{
2136	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2137			&target->thread.ckpt_regs.gpr[0]);
2138}
2139#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2140
2141static int gpr32_get(struct task_struct *target,
2142		     const struct user_regset *regset,
2143		     unsigned int pos, unsigned int count,
2144		     void *kbuf, void __user *ubuf)
2145{
2146	int i;
2147
2148	if (target->thread.regs == NULL)
2149		return -EIO;
2150
2151	if (!FULL_REGS(target->thread.regs)) {
2152		/*
2153		 * We have a partial register set.
2154		 * Fill 14-31 with bogus values.
2155		 */
2156		for (i = 14; i < 32; i++)
2157			target->thread.regs->gpr[i] = NV_REG_POISON;
2158	}
2159	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2160			&target->thread.regs->gpr[0]);
2161}
2162
2163static int gpr32_set(struct task_struct *target,
2164		     const struct user_regset *regset,
2165		     unsigned int pos, unsigned int count,
2166		     const void *kbuf, const void __user *ubuf)
2167{
2168	if (target->thread.regs == NULL)
2169		return -EIO;
2170
2171	CHECK_FULL_REGS(target->thread.regs);
2172	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2173			&target->thread.regs->gpr[0]);
2174}
2175
2176/*
2177 * These are the regset flavors matching the CONFIG_PPC32 native set.
2178 */
2179static const struct user_regset compat_regsets[] = {
2180	[REGSET_GPR] = {
2181		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2182		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2183		.get = gpr32_get, .set = gpr32_set
2184	},
2185	[REGSET_FPR] = {
2186		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2187		.size = sizeof(double), .align = sizeof(double),
2188		.get = fpr_get, .set = fpr_set
2189	},
2190#ifdef CONFIG_ALTIVEC
2191	[REGSET_VMX] = {
2192		.core_note_type = NT_PPC_VMX, .n = 34,
2193		.size = sizeof(vector128), .align = sizeof(vector128),
2194		.active = vr_active, .get = vr_get, .set = vr_set
2195	},
2196#endif
2197#ifdef CONFIG_SPE
2198	[REGSET_SPE] = {
2199		.core_note_type = NT_PPC_SPE, .n = 35,
2200		.size = sizeof(u32), .align = sizeof(u32),
2201		.active = evr_active, .get = evr_get, .set = evr_set
2202	},
2203#endif
2204#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2205	[REGSET_TM_CGPR] = {
2206		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2207		.size = sizeof(long), .align = sizeof(long),
2208		.active = tm_cgpr_active,
2209		.get = tm_cgpr32_get, .set = tm_cgpr32_set
2210	},
2211	[REGSET_TM_CFPR] = {
2212		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2213		.size = sizeof(double), .align = sizeof(double),
2214		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2215	},
2216	[REGSET_TM_CVMX] = {
2217		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2218		.size = sizeof(vector128), .align = sizeof(vector128),
2219		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2220	},
2221	[REGSET_TM_CVSX] = {
2222		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2223		.size = sizeof(double), .align = sizeof(double),
2224		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2225	},
2226	[REGSET_TM_SPR] = {
2227		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2228		.size = sizeof(u64), .align = sizeof(u64),
2229		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2230	},
2231	[REGSET_TM_CTAR] = {
2232		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
2233		.size = sizeof(u64), .align = sizeof(u64),
2234		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2235	},
2236	[REGSET_TM_CPPR] = {
2237		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
2238		.size = sizeof(u64), .align = sizeof(u64),
2239		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2240	},
2241	[REGSET_TM_CDSCR] = {
2242		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2243		.size = sizeof(u64), .align = sizeof(u64),
2244		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2245	},
2246#endif
2247#ifdef CONFIG_PPC64
2248	[REGSET_PPR] = {
2249		.core_note_type = NT_PPC_PPR, .n = 1,
2250		.size = sizeof(u64), .align = sizeof(u64),
2251		.get = ppr_get, .set = ppr_set
2252	},
2253	[REGSET_DSCR] = {
2254		.core_note_type = NT_PPC_DSCR, .n = 1,
2255		.size = sizeof(u64), .align = sizeof(u64),
2256		.get = dscr_get, .set = dscr_set
2257	},
2258#endif
2259#ifdef CONFIG_PPC_BOOK3S_64
2260	[REGSET_TAR] = {
2261		.core_note_type = NT_PPC_TAR, .n = 1,
2262		.size = sizeof(u64), .align = sizeof(u64),
2263		.get = tar_get, .set = tar_set
2264	},
2265	[REGSET_EBB] = {
2266		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2267		.size = sizeof(u64), .align = sizeof(u64),
2268		.active = ebb_active, .get = ebb_get, .set = ebb_set
2269	},
2270#endif
2271};
2272
2273static const struct user_regset_view user_ppc_compat_view = {
2274	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2275	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2276};
2277#endif	/* CONFIG_PPC64 */
2278
2279const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2280{
2281#ifdef CONFIG_PPC64
2282	if (test_tsk_thread_flag(task, TIF_32BIT))
2283		return &user_ppc_compat_view;
2284#endif
2285	return &user_ppc_native_view;
2286}
2287
2288
2289void user_enable_single_step(struct task_struct *task)
2290{
2291	struct pt_regs *regs = task->thread.regs;
2292
2293	if (regs != NULL) {
2294#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2295		task->thread.debug.dbcr0 &= ~DBCR0_BT;
2296		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2297		regs->msr |= MSR_DE;
2298#else
2299		regs->msr &= ~MSR_BE;
2300		regs->msr |= MSR_SE;
2301#endif
2302	}
2303	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2304}
2305
2306void user_enable_block_step(struct task_struct *task)
2307{
2308	struct pt_regs *regs = task->thread.regs;
2309
2310	if (regs != NULL) {
2311#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2312		task->thread.debug.dbcr0 &= ~DBCR0_IC;
2313		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2314		regs->msr |= MSR_DE;
2315#else
2316		regs->msr &= ~MSR_SE;
2317		regs->msr |= MSR_BE;
2318#endif
2319	}
2320	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2321}
2322
2323void user_disable_single_step(struct task_struct *task)
2324{
2325	struct pt_regs *regs = task->thread.regs;
2326
2327	if (regs != NULL) {
2328#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2329		/*
2330		 * The logic to disable single stepping should be as
2331		 * simple as turning off the Instruction Complete flag.
2332		 * And, after doing so, if all debug flags are off, turn
2333		 * off DBCR0(IDM) and MSR(DE) .... Torez
2334		 */
2335		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2336		/*
2337		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2338		 */
2339		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2340					task->thread.debug.dbcr1)) {
2341			/*
2342			 * All debug events were off.....
2343			 */
2344			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2345			regs->msr &= ~MSR_DE;
2346		}
2347#else
2348		regs->msr &= ~(MSR_SE | MSR_BE);
2349#endif
2350	}
2351	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2352}
2353
2354#ifdef CONFIG_HAVE_HW_BREAKPOINT
2355void ptrace_triggered(struct perf_event *bp,
2356		      struct perf_sample_data *data, struct pt_regs *regs)
2357{
2358	struct perf_event_attr attr;
2359
2360	/*
2361	 * Disable the breakpoint request here since ptrace has defined a
2362	 * one-shot behaviour for breakpoint exceptions in PPC64.
2363	 * The SIGTRAP signal is generated automatically for us in do_dabr().
2364	 * We don't have to do anything about that here
2365	 */
2366	attr = bp->attr;
2367	attr.disabled = true;
2368	modify_user_hw_breakpoint(bp, &attr);
2369}
2370#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2371
2372static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2373			       unsigned long data)
2374{
2375#ifdef CONFIG_HAVE_HW_BREAKPOINT
2376	int ret;
2377	struct thread_struct *thread = &(task->thread);
2378	struct perf_event *bp;
2379	struct perf_event_attr attr;
2380#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2381#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2382	bool set_bp = true;
2383	struct arch_hw_breakpoint hw_brk;
2384#endif
2385
2386	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2387	 *  For embedded processors we support one DAC and no IAC's at the
2388	 *  moment.
2389	 */
2390	if (addr > 0)
2391		return -EINVAL;
2392
2393	/* The bottom 3 bits in dabr are flags */
2394	if ((data & ~0x7UL) >= TASK_SIZE)
2395		return -EIO;
2396
2397#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2398	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2399	 *  It was assumed, on previous implementations, that 3 bits were
2400	 *  passed together with the data address, fitting the design of the
2401	 *  DABR register, as follows:
2402	 *
2403	 *  bit 0: Read flag
2404	 *  bit 1: Write flag
2405	 *  bit 2: Breakpoint translation
2406	 *
2407	 *  Thus, we use them here as so.
2408	 */
2409
2410	/* Ensure breakpoint translation bit is set */
2411	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2412		return -EIO;
2413	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2414	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2415	hw_brk.len = 8;
2416	set_bp = (data) && (hw_brk.type & HW_BRK_TYPE_RDWR);
2417#ifdef CONFIG_HAVE_HW_BREAKPOINT
2418	bp = thread->ptrace_bps[0];
2419	if (!set_bp) {
2420		if (bp) {
2421			unregister_hw_breakpoint(bp);
2422			thread->ptrace_bps[0] = NULL;
2423		}
2424		return 0;
2425	}
2426	if (bp) {
2427		attr = bp->attr;
2428		attr.bp_addr = hw_brk.address;
2429		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2430
2431		/* Enable breakpoint */
2432		attr.disabled = false;
2433
2434		ret =  modify_user_hw_breakpoint(bp, &attr);
2435		if (ret) {
2436			return ret;
2437		}
2438		thread->ptrace_bps[0] = bp;
2439		thread->hw_brk = hw_brk;
2440		return 0;
2441	}
2442
2443	/* Create a new breakpoint request if one doesn't exist already */
2444	hw_breakpoint_init(&attr);
2445	attr.bp_addr = hw_brk.address;
2446	arch_bp_generic_fields(hw_brk.type,
2447			       &attr.bp_type);
2448
2449	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2450					       ptrace_triggered, NULL, task);
2451	if (IS_ERR(bp)) {
2452		thread->ptrace_bps[0] = NULL;
2453		return PTR_ERR(bp);
2454	}
2455
2456#else /* !CONFIG_HAVE_HW_BREAKPOINT */
2457	if (set_bp && (!ppc_breakpoint_available()))
2458		return -ENODEV;
2459#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2460	task->thread.hw_brk = hw_brk;
2461#else /* CONFIG_PPC_ADV_DEBUG_REGS */
2462	/* As described above, it was assumed 3 bits were passed with the data
2463	 *  address, but we will assume only the mode bits will be passed
2464	 *  as to not cause alignment restrictions for DAC-based processors.
2465	 */
2466
2467	/* DAC's hold the whole address without any mode flags */
2468	task->thread.debug.dac1 = data & ~0x3UL;
2469
2470	if (task->thread.debug.dac1 == 0) {
2471		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2472		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2473					task->thread.debug.dbcr1)) {
2474			task->thread.regs->msr &= ~MSR_DE;
2475			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2476		}
2477		return 0;
2478	}
2479
2480	/* Read or Write bits must be set */
2481
2482	if (!(data & 0x3UL))
2483		return -EINVAL;
2484
2485	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2486	   register */
2487	task->thread.debug.dbcr0 |= DBCR0_IDM;
2488
2489	/* Check for write and read flags and set DBCR0
2490	   accordingly */
2491	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2492	if (data & 0x1UL)
2493		dbcr_dac(task) |= DBCR_DAC1R;
2494	if (data & 0x2UL)
2495		dbcr_dac(task) |= DBCR_DAC1W;
2496	task->thread.regs->msr |= MSR_DE;
2497#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2498	return 0;
2499}
2500
2501/*
2502 * Called by kernel/ptrace.c when detaching..
2503 *
2504 * Make sure single step bits etc are not set.
2505 */
2506void ptrace_disable(struct task_struct *child)
2507{
2508	/* make sure the single step bit is not set. */
2509	user_disable_single_step(child);
2510}
2511
2512#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2513static long set_instruction_bp(struct task_struct *child,
2514			      struct ppc_hw_breakpoint *bp_info)
2515{
2516	int slot;
2517	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2518	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2519	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2520	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2521
2522	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2523		slot2_in_use = 1;
2524	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2525		slot4_in_use = 1;
2526
2527	if (bp_info->addr >= TASK_SIZE)
2528		return -EIO;
2529
2530	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2531
2532		/* Make sure range is valid. */
2533		if (bp_info->addr2 >= TASK_SIZE)
2534			return -EIO;
2535
2536		/* We need a pair of IAC regsisters */
2537		if ((!slot1_in_use) && (!slot2_in_use)) {
2538			slot = 1;
2539			child->thread.debug.iac1 = bp_info->addr;
2540			child->thread.debug.iac2 = bp_info->addr2;
2541			child->thread.debug.dbcr0 |= DBCR0_IAC1;
2542			if (bp_info->addr_mode ==
2543					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2544				dbcr_iac_range(child) |= DBCR_IAC12X;
2545			else
2546				dbcr_iac_range(child) |= DBCR_IAC12I;
2547#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2548		} else if ((!slot3_in_use) && (!slot4_in_use)) {
2549			slot = 3;
2550			child->thread.debug.iac3 = bp_info->addr;
2551			child->thread.debug.iac4 = bp_info->addr2;
2552			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2553			if (bp_info->addr_mode ==
2554					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2555				dbcr_iac_range(child) |= DBCR_IAC34X;
2556			else
2557				dbcr_iac_range(child) |= DBCR_IAC34I;
2558#endif
2559		} else
2560			return -ENOSPC;
2561	} else {
2562		/* We only need one.  If possible leave a pair free in
2563		 * case a range is needed later
2564		 */
2565		if (!slot1_in_use) {
2566			/*
2567			 * Don't use iac1 if iac1-iac2 are free and either
2568			 * iac3 or iac4 (but not both) are free
2569			 */
2570			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2571				slot = 1;
2572				child->thread.debug.iac1 = bp_info->addr;
2573				child->thread.debug.dbcr0 |= DBCR0_IAC1;
2574				goto out;
2575			}
2576		}
2577		if (!slot2_in_use) {
2578			slot = 2;
2579			child->thread.debug.iac2 = bp_info->addr;
2580			child->thread.debug.dbcr0 |= DBCR0_IAC2;
2581#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2582		} else if (!slot3_in_use) {
2583			slot = 3;
2584			child->thread.debug.iac3 = bp_info->addr;
2585			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2586		} else if (!slot4_in_use) {
2587			slot = 4;
2588			child->thread.debug.iac4 = bp_info->addr;
2589			child->thread.debug.dbcr0 |= DBCR0_IAC4;
2590#endif
2591		} else
2592			return -ENOSPC;
2593	}
2594out:
2595	child->thread.debug.dbcr0 |= DBCR0_IDM;
2596	child->thread.regs->msr |= MSR_DE;
2597
2598	return slot;
2599}
2600
2601static int del_instruction_bp(struct task_struct *child, int slot)
2602{
2603	switch (slot) {
2604	case 1:
2605		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2606			return -ENOENT;
2607
2608		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2609			/* address range - clear slots 1 & 2 */
2610			child->thread.debug.iac2 = 0;
2611			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2612		}
2613		child->thread.debug.iac1 = 0;
2614		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2615		break;
2616	case 2:
2617		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2618			return -ENOENT;
2619
2620		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2621			/* used in a range */
2622			return -EINVAL;
2623		child->thread.debug.iac2 = 0;
2624		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2625		break;
2626#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2627	case 3:
2628		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2629			return -ENOENT;
2630
2631		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2632			/* address range - clear slots 3 & 4 */
2633			child->thread.debug.iac4 = 0;
2634			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2635		}
2636		child->thread.debug.iac3 = 0;
2637		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2638		break;
2639	case 4:
2640		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2641			return -ENOENT;
2642
2643		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2644			/* Used in a range */
2645			return -EINVAL;
2646		child->thread.debug.iac4 = 0;
2647		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2648		break;
2649#endif
2650	default:
2651		return -EINVAL;
2652	}
2653	return 0;
2654}
2655
2656static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2657{
2658	int byte_enable =
2659		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2660		& 0xf;
2661	int condition_mode =
2662		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2663	int slot;
2664
2665	if (byte_enable && (condition_mode == 0))
2666		return -EINVAL;
2667
2668	if (bp_info->addr >= TASK_SIZE)
2669		return -EIO;
2670
2671	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2672		slot = 1;
2673		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2674			dbcr_dac(child) |= DBCR_DAC1R;
2675		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2676			dbcr_dac(child) |= DBCR_DAC1W;
2677		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2678#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2679		if (byte_enable) {
2680			child->thread.debug.dvc1 =
2681				(unsigned long)bp_info->condition_value;
2682			child->thread.debug.dbcr2 |=
2683				((byte_enable << DBCR2_DVC1BE_SHIFT) |
2684				 (condition_mode << DBCR2_DVC1M_SHIFT));
2685		}
2686#endif
2687#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2688	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2689		/* Both dac1 and dac2 are part of a range */
2690		return -ENOSPC;
2691#endif
2692	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2693		slot = 2;
2694		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2695			dbcr_dac(child) |= DBCR_DAC2R;
2696		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2697			dbcr_dac(child) |= DBCR_DAC2W;
2698		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2700		if (byte_enable) {
2701			child->thread.debug.dvc2 =
2702				(unsigned long)bp_info->condition_value;
2703			child->thread.debug.dbcr2 |=
2704				((byte_enable << DBCR2_DVC2BE_SHIFT) |
2705				 (condition_mode << DBCR2_DVC2M_SHIFT));
2706		}
2707#endif
2708	} else
2709		return -ENOSPC;
2710	child->thread.debug.dbcr0 |= DBCR0_IDM;
2711	child->thread.regs->msr |= MSR_DE;
2712
2713	return slot + 4;
2714}
2715
2716static int del_dac(struct task_struct *child, int slot)
2717{
2718	if (slot == 1) {
2719		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2720			return -ENOENT;
2721
2722		child->thread.debug.dac1 = 0;
2723		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2724#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2725		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2726			child->thread.debug.dac2 = 0;
2727			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2728		}
2729		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2730#endif
2731#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2732		child->thread.debug.dvc1 = 0;
2733#endif
2734	} else if (slot == 2) {
2735		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2736			return -ENOENT;
2737
2738#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2739		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2740			/* Part of a range */
2741			return -EINVAL;
2742		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2743#endif
2744#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2745		child->thread.debug.dvc2 = 0;
2746#endif
2747		child->thread.debug.dac2 = 0;
2748		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2749	} else
2750		return -EINVAL;
2751
2752	return 0;
2753}
2754#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2755
2756#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2757static int set_dac_range(struct task_struct *child,
2758			 struct ppc_hw_breakpoint *bp_info)
2759{
2760	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2761
2762	/* We don't allow range watchpoints to be used with DVC */
2763	if (bp_info->condition_mode)
2764		return -EINVAL;
2765
2766	/*
2767	 * Best effort to verify the address range.  The user/supervisor bits
2768	 * prevent trapping in kernel space, but let's fail on an obvious bad
2769	 * range.  The simple test on the mask is not fool-proof, and any
2770	 * exclusive range will spill over into kernel space.
2771	 */
2772	if (bp_info->addr >= TASK_SIZE)
2773		return -EIO;
2774	if (mode == PPC_BREAKPOINT_MODE_MASK) {
2775		/*
2776		 * dac2 is a bitmask.  Don't allow a mask that makes a
2777		 * kernel space address from a valid dac1 value
2778		 */
2779		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2780			return -EIO;
2781	} else {
2782		/*
2783		 * For range breakpoints, addr2 must also be a valid address
2784		 */
2785		if (bp_info->addr2 >= TASK_SIZE)
2786			return -EIO;
2787	}
2788
2789	if (child->thread.debug.dbcr0 &
2790	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2791		return -ENOSPC;
2792
2793	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2794		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2795	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2796		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2797	child->thread.debug.dac1 = bp_info->addr;
2798	child->thread.debug.dac2 = bp_info->addr2;
2799	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2800		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2801	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2802		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2803	else	/* PPC_BREAKPOINT_MODE_MASK */
2804		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2805	child->thread.regs->msr |= MSR_DE;
2806
2807	return 5;
2808}
2809#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2810
2811static long ppc_set_hwdebug(struct task_struct *child,
2812		     struct ppc_hw_breakpoint *bp_info)
2813{
2814#ifdef CONFIG_HAVE_HW_BREAKPOINT
2815	int len = 0;
2816	struct thread_struct *thread = &(child->thread);
2817	struct perf_event *bp;
2818	struct perf_event_attr attr;
2819#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2820#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2821	struct arch_hw_breakpoint brk;
2822#endif
2823
2824	if (bp_info->version != 1)
2825		return -ENOTSUPP;
2826#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2827	/*
2828	 * Check for invalid flags and combinations
2829	 */
2830	if ((bp_info->trigger_type == 0) ||
2831	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2832				       PPC_BREAKPOINT_TRIGGER_RW)) ||
2833	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2834	    (bp_info->condition_mode &
2835	     ~(PPC_BREAKPOINT_CONDITION_MODE |
2836	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
2837		return -EINVAL;
2838#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2839	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2840		return -EINVAL;
2841#endif
2842
2843	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2844		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2845		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2846			return -EINVAL;
2847		return set_instruction_bp(child, bp_info);
2848	}
2849	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2850		return set_dac(child, bp_info);
2851
2852#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2853	return set_dac_range(child, bp_info);
2854#else
2855	return -EINVAL;
2856#endif
2857#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2858	/*
2859	 * We only support one data breakpoint
2860	 */
2861	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2862	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2863	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2864		return -EINVAL;
2865
2866	if ((unsigned long)bp_info->addr >= TASK_SIZE)
2867		return -EIO;
2868
2869	brk.address = bp_info->addr & ~7UL;
2870	brk.type = HW_BRK_TYPE_TRANSLATE;
2871	brk.len = 8;
2872	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2873		brk.type |= HW_BRK_TYPE_READ;
2874	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2875		brk.type |= HW_BRK_TYPE_WRITE;
2876#ifdef CONFIG_HAVE_HW_BREAKPOINT
2877	/*
2878	 * Check if the request is for 'range' breakpoints. We can
2879	 * support it if range < 8 bytes.
2880	 */
2881	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2882		len = bp_info->addr2 - bp_info->addr;
2883	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2884		len = 1;
2885	else
2886		return -EINVAL;
2887	bp = thread->ptrace_bps[0];
2888	if (bp)
2889		return -ENOSPC;
2890
2891	/* Create a new breakpoint request if one doesn't exist already */
2892	hw_breakpoint_init(&attr);
2893	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2894	attr.bp_len = len;
2895	arch_bp_generic_fields(brk.type, &attr.bp_type);
2896
2897	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2898					       ptrace_triggered, NULL, child);
2899	if (IS_ERR(bp)) {
2900		thread->ptrace_bps[0] = NULL;
2901		return PTR_ERR(bp);
2902	}
2903
2904	return 1;
2905#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2906
2907	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2908		return -EINVAL;
2909
2910	if (child->thread.hw_brk.address)
2911		return -ENOSPC;
2912
2913	if (!ppc_breakpoint_available())
2914		return -ENODEV;
2915
2916	child->thread.hw_brk = brk;
2917
2918	return 1;
2919#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2920}
2921
2922static long ppc_del_hwdebug(struct task_struct *child, long data)
2923{
2924#ifdef CONFIG_HAVE_HW_BREAKPOINT
2925	int ret = 0;
2926	struct thread_struct *thread = &(child->thread);
2927	struct perf_event *bp;
2928#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2929#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2930	int rc;
2931
2932	if (data <= 4)
2933		rc = del_instruction_bp(child, (int)data);
2934	else
2935		rc = del_dac(child, (int)data - 4);
2936
2937	if (!rc) {
2938		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2939					child->thread.debug.dbcr1)) {
2940			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2941			child->thread.regs->msr &= ~MSR_DE;
2942		}
2943	}
2944	return rc;
2945#else
2946	if (data != 1)
2947		return -EINVAL;
2948
2949#ifdef CONFIG_HAVE_HW_BREAKPOINT
2950	bp = thread->ptrace_bps[0];
2951	if (bp) {
2952		unregister_hw_breakpoint(bp);
2953		thread->ptrace_bps[0] = NULL;
2954	} else
2955		ret = -ENOENT;
2956	return ret;
2957#else /* CONFIG_HAVE_HW_BREAKPOINT */
2958	if (child->thread.hw_brk.address == 0)
2959		return -ENOENT;
2960
2961	child->thread.hw_brk.address = 0;
2962	child->thread.hw_brk.type = 0;
2963#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2964
2965	return 0;
2966#endif
2967}
2968
2969long arch_ptrace(struct task_struct *child, long request,
2970		 unsigned long addr, unsigned long data)
2971{
2972	int ret = -EPERM;
2973	void __user *datavp = (void __user *) data;
2974	unsigned long __user *datalp = datavp;
2975
2976	switch (request) {
2977	/* read the word at location addr in the USER area. */
2978	case PTRACE_PEEKUSR: {
2979		unsigned long index, tmp;
2980
2981		ret = -EIO;
2982		/* convert to index and check */
2983#ifdef CONFIG_PPC32
2984		index = addr >> 2;
2985		if ((addr & 3) || (index > PT_FPSCR)
2986		    || (child->thread.regs == NULL))
2987#else
2988		index = addr >> 3;
2989		if ((addr & 7) || (index > PT_FPSCR))
2990#endif
2991			break;
2992
2993		CHECK_FULL_REGS(child->thread.regs);
2994		if (index < PT_FPR0) {
2995			ret = ptrace_get_reg(child, (int) index, &tmp);
2996			if (ret)
2997				break;
2998		} else {
2999			unsigned int fpidx = index - PT_FPR0;
3000
3001			flush_fp_to_thread(child);
3002			if (fpidx < (PT_FPSCR - PT_FPR0))
3003				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
3004				       sizeof(long));
3005			else
3006				tmp = child->thread.fp_state.fpscr;
3007		}
3008		ret = put_user(tmp, datalp);
3009		break;
3010	}
3011
3012	/* write the word at location addr in the USER area */
3013	case PTRACE_POKEUSR: {
3014		unsigned long index;
3015
3016		ret = -EIO;
3017		/* convert to index and check */
3018#ifdef CONFIG_PPC32
3019		index = addr >> 2;
3020		if ((addr & 3) || (index > PT_FPSCR)
3021		    || (child->thread.regs == NULL))
3022#else
3023		index = addr >> 3;
3024		if ((addr & 7) || (index > PT_FPSCR))
3025#endif
3026			break;
3027
3028		CHECK_FULL_REGS(child->thread.regs);
3029		if (index < PT_FPR0) {
3030			ret = ptrace_put_reg(child, index, data);
3031		} else {
3032			unsigned int fpidx = index - PT_FPR0;
3033
3034			flush_fp_to_thread(child);
3035			if (fpidx < (PT_FPSCR - PT_FPR0))
3036				memcpy(&child->thread.TS_FPR(fpidx), &data,
3037				       sizeof(long));
3038			else
3039				child->thread.fp_state.fpscr = data;
3040			ret = 0;
3041		}
3042		break;
3043	}
3044
3045	case PPC_PTRACE_GETHWDBGINFO: {
3046		struct ppc_debug_info dbginfo;
3047
3048		dbginfo.version = 1;
3049#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3050		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3051		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3052		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3053		dbginfo.data_bp_alignment = 4;
3054		dbginfo.sizeof_condition = 4;
3055		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3056				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
3057#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3058		dbginfo.features |=
3059				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3060				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
3061#endif
3062#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3063		dbginfo.num_instruction_bps = 0;
3064		if (ppc_breakpoint_available())
3065			dbginfo.num_data_bps = 1;
3066		else
3067			dbginfo.num_data_bps = 0;
3068		dbginfo.num_condition_regs = 0;
3069#ifdef CONFIG_PPC64
3070		dbginfo.data_bp_alignment = 8;
3071#else
3072		dbginfo.data_bp_alignment = 4;
3073#endif
3074		dbginfo.sizeof_condition = 0;
3075#ifdef CONFIG_HAVE_HW_BREAKPOINT
3076		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3077		if (cpu_has_feature(CPU_FTR_DAWR))
3078			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3079#else
3080		dbginfo.features = 0;
3081#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3082#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3083
3084		if (!access_ok(VERIFY_WRITE, datavp,
3085			       sizeof(struct ppc_debug_info)))
3086			return -EFAULT;
3087		ret = __copy_to_user(datavp, &dbginfo,
3088				     sizeof(struct ppc_debug_info)) ?
3089		      -EFAULT : 0;
3090		break;
3091	}
3092
3093	case PPC_PTRACE_SETHWDEBUG: {
3094		struct ppc_hw_breakpoint bp_info;
3095
3096		if (!access_ok(VERIFY_READ, datavp,
3097			       sizeof(struct ppc_hw_breakpoint)))
3098			return -EFAULT;
3099		ret = __copy_from_user(&bp_info, datavp,
3100				       sizeof(struct ppc_hw_breakpoint)) ?
3101		      -EFAULT : 0;
3102		if (!ret)
3103			ret = ppc_set_hwdebug(child, &bp_info);
3104		break;
3105	}
3106
3107	case PPC_PTRACE_DELHWDEBUG: {
3108		ret = ppc_del_hwdebug(child, data);
3109		break;
3110	}
3111
3112	case PTRACE_GET_DEBUGREG: {
3113#ifndef CONFIG_PPC_ADV_DEBUG_REGS
3114		unsigned long dabr_fake;
3115#endif
3116		ret = -EINVAL;
3117		/* We only support one DABR and no IABRS at the moment */
3118		if (addr > 0)
3119			break;
3120#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3121		ret = put_user(child->thread.debug.dac1, datalp);
3122#else
3123		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3124			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3125		ret = put_user(dabr_fake, datalp);
3126#endif
3127		break;
3128	}
3129
3130	case PTRACE_SET_DEBUGREG:
3131		ret = ptrace_set_debugreg(child, addr, data);
3132		break;
3133
3134#ifdef CONFIG_PPC64
3135	case PTRACE_GETREGS64:
3136#endif
3137	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
3138		return copy_regset_to_user(child, &user_ppc_native_view,
3139					   REGSET_GPR,
3140					   0, sizeof(struct pt_regs),
3141					   datavp);
3142
3143#ifdef CONFIG_PPC64
3144	case PTRACE_SETREGS64:
3145#endif
3146	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
3147		return copy_regset_from_user(child, &user_ppc_native_view,
3148					     REGSET_GPR,
3149					     0, sizeof(struct pt_regs),
3150					     datavp);
3151
3152	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3153		return copy_regset_to_user(child, &user_ppc_native_view,
3154					   REGSET_FPR,
3155					   0, sizeof(elf_fpregset_t),
3156					   datavp);
3157
3158	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3159		return copy_regset_from_user(child, &user_ppc_native_view,
3160					     REGSET_FPR,
3161					     0, sizeof(elf_fpregset_t),
3162					     datavp);
3163
3164#ifdef CONFIG_ALTIVEC
3165	case PTRACE_GETVRREGS:
3166		return copy_regset_to_user(child, &user_ppc_native_view,
3167					   REGSET_VMX,
3168					   0, (33 * sizeof(vector128) +
3169					       sizeof(u32)),
3170					   datavp);
3171
3172	case PTRACE_SETVRREGS:
3173		return copy_regset_from_user(child, &user_ppc_native_view,
3174					     REGSET_VMX,
3175					     0, (33 * sizeof(vector128) +
3176						 sizeof(u32)),
3177					     datavp);
3178#endif
3179#ifdef CONFIG_VSX
3180	case PTRACE_GETVSRREGS:
3181		return copy_regset_to_user(child, &user_ppc_native_view,
3182					   REGSET_VSX,
3183					   0, 32 * sizeof(double),
3184					   datavp);
3185
3186	case PTRACE_SETVSRREGS:
3187		return copy_regset_from_user(child, &user_ppc_native_view,
3188					     REGSET_VSX,
3189					     0, 32 * sizeof(double),
3190					     datavp);
3191#endif
3192#ifdef CONFIG_SPE
3193	case PTRACE_GETEVRREGS:
3194		/* Get the child spe register state. */
3195		return copy_regset_to_user(child, &user_ppc_native_view,
3196					   REGSET_SPE, 0, 35 * sizeof(u32),
3197					   datavp);
3198
3199	case PTRACE_SETEVRREGS:
3200		/* Set the child spe register state. */
3201		return copy_regset_from_user(child, &user_ppc_native_view,
3202					     REGSET_SPE, 0, 35 * sizeof(u32),
3203					     datavp);
3204#endif
3205
3206	default:
3207		ret = ptrace_request(child, request, addr, data);
3208		break;
3209	}
3210	return ret;
3211}
3212
3213#ifdef CONFIG_SECCOMP
3214static int do_seccomp(struct pt_regs *regs)
3215{
3216	if (!test_thread_flag(TIF_SECCOMP))
3217		return 0;
3218
3219	/*
3220	 * The ABI we present to seccomp tracers is that r3 contains
3221	 * the syscall return value and orig_gpr3 contains the first
3222	 * syscall parameter. This is different to the ptrace ABI where
3223	 * both r3 and orig_gpr3 contain the first syscall parameter.
3224	 */
3225	regs->gpr[3] = -ENOSYS;
3226
3227	/*
3228	 * We use the __ version here because we have already checked
3229	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3230	 * have already loaded -ENOSYS into r3, or seccomp has put
3231	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3232	 */
3233	if (__secure_computing(NULL))
3234		return -1;
3235
3236	/*
3237	 * The syscall was allowed by seccomp, restore the register
3238	 * state to what audit expects.
3239	 * Note that we use orig_gpr3, which means a seccomp tracer can
3240	 * modify the first syscall parameter (in orig_gpr3) and also
3241	 * allow the syscall to proceed.
3242	 */
3243	regs->gpr[3] = regs->orig_gpr3;
3244
3245	return 0;
3246}
3247#else
3248static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3249#endif /* CONFIG_SECCOMP */
3250
3251/**
3252 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3253 * @regs: the pt_regs of the task to trace (current)
3254 *
3255 * Performs various types of tracing on syscall entry. This includes seccomp,
3256 * ptrace, syscall tracepoints and audit.
3257 *
3258 * The pt_regs are potentially visible to userspace via ptrace, so their
3259 * contents is ABI.
3260 *
3261 * One or more of the tracers may modify the contents of pt_regs, in particular
3262 * to modify arguments or even the syscall number itself.
3263 *
3264 * It's also possible that a tracer can choose to reject the system call. In
3265 * that case this function will return an illegal syscall number, and will put
3266 * an appropriate return value in regs->r3.
3267 *
3268 * Return: the (possibly changed) syscall number.
3269 */
3270long do_syscall_trace_enter(struct pt_regs *regs)
3271{
3272	user_exit();
3273
3274	/*
3275	 * The tracer may decide to abort the syscall, if so tracehook
3276	 * will return !0. Note that the tracer may also just change
3277	 * regs->gpr[0] to an invalid syscall number, that is handled
3278	 * below on the exit path.
3279	 */
3280	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3281	    tracehook_report_syscall_entry(regs))
3282		goto skip;
3283
3284	/* Run seccomp after ptrace; allow it to set gpr[3]. */
3285	if (do_seccomp(regs))
3286		return -1;
3287
3288	/* Avoid trace and audit when syscall is invalid. */
3289	if (regs->gpr[0] >= NR_syscalls)
3290		goto skip;
3291
3292	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3293		trace_sys_enter(regs, regs->gpr[0]);
3294
3295#ifdef CONFIG_PPC64
3296	if (!is_32bit_task())
3297		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3298				    regs->gpr[5], regs->gpr[6]);
3299	else
3300#endif
3301		audit_syscall_entry(regs->gpr[0],
3302				    regs->gpr[3] & 0xffffffff,
3303				    regs->gpr[4] & 0xffffffff,
3304				    regs->gpr[5] & 0xffffffff,
3305				    regs->gpr[6] & 0xffffffff);
3306
3307	/* Return the possibly modified but valid syscall number */
3308	return regs->gpr[0];
3309
3310skip:
3311	/*
3312	 * If we are aborting explicitly, or if the syscall number is
3313	 * now invalid, set the return value to -ENOSYS.
3314	 */
3315	regs->gpr[3] = -ENOSYS;
3316	return -1;
3317}
3318
3319void do_syscall_trace_leave(struct pt_regs *regs)
3320{
3321	int step;
3322
3323	audit_syscall_exit(regs);
3324
3325	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3326		trace_sys_exit(regs, regs->result);
3327
3328	step = test_thread_flag(TIF_SINGLESTEP);
3329	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3330		tracehook_report_syscall_exit(regs, step);
3331
3332	user_enter();
3333}
v4.10.11
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Derived from "arch/m68k/kernel/ptrace.c"
   6 *  Copyright (C) 1994 by Hamish Macdonald
   7 *  Taken from linux/kernel/ptrace.c and modified for M680x0.
   8 *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
   9 *
  10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
  11 * and Paul Mackerras (paulus@samba.org).
  12 *
  13 * This file is subject to the terms and conditions of the GNU General
  14 * Public License.  See the file README.legal in the main directory of
  15 * this archive for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/sched.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/errno.h>
  23#include <linux/ptrace.h>
  24#include <linux/regset.h>
  25#include <linux/tracehook.h>
  26#include <linux/elf.h>
  27#include <linux/user.h>
  28#include <linux/security.h>
  29#include <linux/signal.h>
  30#include <linux/seccomp.h>
  31#include <linux/audit.h>
  32#include <trace/syscall.h>
  33#include <linux/hw_breakpoint.h>
  34#include <linux/perf_event.h>
  35#include <linux/context_tracking.h>
  36
  37#include <linux/uaccess.h>
 
  38#include <asm/page.h>
  39#include <asm/pgtable.h>
  40#include <asm/switch_to.h>
  41#include <asm/tm.h>
  42#include <asm/asm-prototypes.h>
 
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/syscalls.h>
  46
  47/*
  48 * The parameter save area on the stack is used to store arguments being passed
  49 * to callee function and is located at fixed offset from stack pointer.
  50 */
  51#ifdef CONFIG_PPC32
  52#define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
  53#else /* CONFIG_PPC32 */
  54#define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
  55#endif
  56
  57struct pt_regs_offset {
  58	const char *name;
  59	int offset;
  60};
  61
  62#define STR(s)	#s			/* convert to string */
  63#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
  64#define GPR_OFFSET_NAME(num)	\
  65	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
  66	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
  67#define REG_OFFSET_END {.name = NULL, .offset = 0}
  68
  69#define TVSO(f)	(offsetof(struct thread_vr_state, f))
  70#define TFSO(f)	(offsetof(struct thread_fp_state, f))
  71#define TSO(f)	(offsetof(struct thread_struct, f))
  72
  73static const struct pt_regs_offset regoffset_table[] = {
  74	GPR_OFFSET_NAME(0),
  75	GPR_OFFSET_NAME(1),
  76	GPR_OFFSET_NAME(2),
  77	GPR_OFFSET_NAME(3),
  78	GPR_OFFSET_NAME(4),
  79	GPR_OFFSET_NAME(5),
  80	GPR_OFFSET_NAME(6),
  81	GPR_OFFSET_NAME(7),
  82	GPR_OFFSET_NAME(8),
  83	GPR_OFFSET_NAME(9),
  84	GPR_OFFSET_NAME(10),
  85	GPR_OFFSET_NAME(11),
  86	GPR_OFFSET_NAME(12),
  87	GPR_OFFSET_NAME(13),
  88	GPR_OFFSET_NAME(14),
  89	GPR_OFFSET_NAME(15),
  90	GPR_OFFSET_NAME(16),
  91	GPR_OFFSET_NAME(17),
  92	GPR_OFFSET_NAME(18),
  93	GPR_OFFSET_NAME(19),
  94	GPR_OFFSET_NAME(20),
  95	GPR_OFFSET_NAME(21),
  96	GPR_OFFSET_NAME(22),
  97	GPR_OFFSET_NAME(23),
  98	GPR_OFFSET_NAME(24),
  99	GPR_OFFSET_NAME(25),
 100	GPR_OFFSET_NAME(26),
 101	GPR_OFFSET_NAME(27),
 102	GPR_OFFSET_NAME(28),
 103	GPR_OFFSET_NAME(29),
 104	GPR_OFFSET_NAME(30),
 105	GPR_OFFSET_NAME(31),
 106	REG_OFFSET_NAME(nip),
 107	REG_OFFSET_NAME(msr),
 108	REG_OFFSET_NAME(ctr),
 109	REG_OFFSET_NAME(link),
 110	REG_OFFSET_NAME(xer),
 111	REG_OFFSET_NAME(ccr),
 112#ifdef CONFIG_PPC64
 113	REG_OFFSET_NAME(softe),
 114#else
 115	REG_OFFSET_NAME(mq),
 116#endif
 117	REG_OFFSET_NAME(trap),
 118	REG_OFFSET_NAME(dar),
 119	REG_OFFSET_NAME(dsisr),
 120	REG_OFFSET_END,
 121};
 122
 123#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 124static void flush_tmregs_to_thread(struct task_struct *tsk)
 125{
 126	/*
 127	 * If task is not current, it will have been flushed already to
 128	 * it's thread_struct during __switch_to().
 129	 *
 130	 * A reclaim flushes ALL the state.
 
 131	 */
 132
 133	if (tsk == current && MSR_TM_SUSPENDED(mfmsr()))
 
 
 
 134		tm_reclaim_current(TM_CAUSE_SIGNAL);
 135
 
 
 
 136}
 137#else
 138static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
 139#endif
 140
 141/**
 142 * regs_query_register_offset() - query register offset from its name
 143 * @name:	the name of a register
 144 *
 145 * regs_query_register_offset() returns the offset of a register in struct
 146 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 147 */
 148int regs_query_register_offset(const char *name)
 149{
 150	const struct pt_regs_offset *roff;
 151	for (roff = regoffset_table; roff->name != NULL; roff++)
 152		if (!strcmp(roff->name, name))
 153			return roff->offset;
 154	return -EINVAL;
 155}
 156
 157/**
 158 * regs_query_register_name() - query register name from its offset
 159 * @offset:	the offset of a register in struct pt_regs.
 160 *
 161 * regs_query_register_name() returns the name of a register from its
 162 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 163 */
 164const char *regs_query_register_name(unsigned int offset)
 165{
 166	const struct pt_regs_offset *roff;
 167	for (roff = regoffset_table; roff->name != NULL; roff++)
 168		if (roff->offset == offset)
 169			return roff->name;
 170	return NULL;
 171}
 172
 173/*
 174 * does not yet catch signals sent when the child dies.
 175 * in exit.c or in signal.c.
 176 */
 177
 178/*
 179 * Set of msr bits that gdb can change on behalf of a process.
 180 */
 181#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 182#define MSR_DEBUGCHANGE	0
 183#else
 184#define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
 185#endif
 186
 187/*
 188 * Max register writeable via put_reg
 189 */
 190#ifdef CONFIG_PPC32
 191#define PT_MAX_PUT_REG	PT_MQ
 192#else
 193#define PT_MAX_PUT_REG	PT_CCR
 194#endif
 195
 196static unsigned long get_user_msr(struct task_struct *task)
 197{
 198	return task->thread.regs->msr | task->thread.fpexc_mode;
 199}
 200
 201static int set_user_msr(struct task_struct *task, unsigned long msr)
 202{
 203	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
 204	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
 205	return 0;
 206}
 207
 208#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 209static unsigned long get_user_ckpt_msr(struct task_struct *task)
 210{
 211	return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
 212}
 213
 214static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
 215{
 216	task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
 217	task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
 218	return 0;
 219}
 220
 221static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
 222{
 223	task->thread.ckpt_regs.trap = trap & 0xfff0;
 224	return 0;
 225}
 226#endif
 227
 228#ifdef CONFIG_PPC64
 229static int get_user_dscr(struct task_struct *task, unsigned long *data)
 230{
 231	*data = task->thread.dscr;
 232	return 0;
 233}
 234
 235static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 236{
 237	task->thread.dscr = dscr;
 238	task->thread.dscr_inherit = 1;
 239	return 0;
 240}
 241#else
 242static int get_user_dscr(struct task_struct *task, unsigned long *data)
 243{
 244	return -EIO;
 245}
 246
 247static int set_user_dscr(struct task_struct *task, unsigned long dscr)
 248{
 249	return -EIO;
 250}
 251#endif
 252
 253/*
 254 * We prevent mucking around with the reserved area of trap
 255 * which are used internally by the kernel.
 256 */
 257static int set_user_trap(struct task_struct *task, unsigned long trap)
 258{
 259	task->thread.regs->trap = trap & 0xfff0;
 260	return 0;
 261}
 262
 263/*
 264 * Get contents of register REGNO in task TASK.
 265 */
 266int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
 267{
 268	if ((task->thread.regs == NULL) || !data)
 269		return -EIO;
 270
 271	if (regno == PT_MSR) {
 272		*data = get_user_msr(task);
 273		return 0;
 274	}
 275
 276	if (regno == PT_DSCR)
 277		return get_user_dscr(task, data);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 279	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
 280		*data = ((unsigned long *)task->thread.regs)[regno];
 281		return 0;
 282	}
 283
 284	return -EIO;
 285}
 286
 287/*
 288 * Write contents of register REGNO in task TASK.
 289 */
 290int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
 291{
 292	if (task->thread.regs == NULL)
 293		return -EIO;
 294
 295	if (regno == PT_MSR)
 296		return set_user_msr(task, data);
 297	if (regno == PT_TRAP)
 298		return set_user_trap(task, data);
 299	if (regno == PT_DSCR)
 300		return set_user_dscr(task, data);
 301
 302	if (regno <= PT_MAX_PUT_REG) {
 303		((unsigned long *)task->thread.regs)[regno] = data;
 304		return 0;
 305	}
 306	return -EIO;
 307}
 308
 309static int gpr_get(struct task_struct *target, const struct user_regset *regset,
 310		   unsigned int pos, unsigned int count,
 311		   void *kbuf, void __user *ubuf)
 312{
 313	int i, ret;
 314
 315	if (target->thread.regs == NULL)
 316		return -EIO;
 317
 318	if (!FULL_REGS(target->thread.regs)) {
 319		/* We have a partial register set.  Fill 14-31 with bogus values */
 320		for (i = 14; i < 32; i++)
 321			target->thread.regs->gpr[i] = NV_REG_POISON;
 322	}
 323
 324	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 325				  target->thread.regs,
 326				  0, offsetof(struct pt_regs, msr));
 327	if (!ret) {
 328		unsigned long msr = get_user_msr(target);
 329		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
 330					  offsetof(struct pt_regs, msr),
 331					  offsetof(struct pt_regs, msr) +
 332					  sizeof(msr));
 333	}
 334
 335	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 336		     offsetof(struct pt_regs, msr) + sizeof(long));
 337
 338	if (!ret)
 339		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 340					  &target->thread.regs->orig_gpr3,
 341					  offsetof(struct pt_regs, orig_gpr3),
 342					  sizeof(struct pt_regs));
 343	if (!ret)
 344		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 345					       sizeof(struct pt_regs), -1);
 346
 347	return ret;
 348}
 349
 350static int gpr_set(struct task_struct *target, const struct user_regset *regset,
 351		   unsigned int pos, unsigned int count,
 352		   const void *kbuf, const void __user *ubuf)
 353{
 354	unsigned long reg;
 355	int ret;
 356
 357	if (target->thread.regs == NULL)
 358		return -EIO;
 359
 360	CHECK_FULL_REGS(target->thread.regs);
 361
 362	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 363				 target->thread.regs,
 364				 0, PT_MSR * sizeof(reg));
 365
 366	if (!ret && count > 0) {
 367		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 368					 PT_MSR * sizeof(reg),
 369					 (PT_MSR + 1) * sizeof(reg));
 370		if (!ret)
 371			ret = set_user_msr(target, reg);
 372	}
 373
 374	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 375		     offsetof(struct pt_regs, msr) + sizeof(long));
 376
 377	if (!ret)
 378		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 379					 &target->thread.regs->orig_gpr3,
 380					 PT_ORIG_R3 * sizeof(reg),
 381					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
 382
 383	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
 384		ret = user_regset_copyin_ignore(
 385			&pos, &count, &kbuf, &ubuf,
 386			(PT_MAX_PUT_REG + 1) * sizeof(reg),
 387			PT_TRAP * sizeof(reg));
 388
 389	if (!ret && count > 0) {
 390		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 391					 PT_TRAP * sizeof(reg),
 392					 (PT_TRAP + 1) * sizeof(reg));
 393		if (!ret)
 394			ret = set_user_trap(target, reg);
 395	}
 396
 397	if (!ret)
 398		ret = user_regset_copyin_ignore(
 399			&pos, &count, &kbuf, &ubuf,
 400			(PT_TRAP + 1) * sizeof(reg), -1);
 401
 402	return ret;
 403}
 404
 405/*
 406 * Regardless of transactions, 'fp_state' holds the current running
 407 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
 408 * value of all FPR registers for the current transaction.
 409 *
 410 * Userspace interface buffer layout:
 411 *
 412 * struct data {
 413 *	u64	fpr[32];
 414 *	u64	fpscr;
 415 * };
 416 */
 417static int fpr_get(struct task_struct *target, const struct user_regset *regset,
 418		   unsigned int pos, unsigned int count,
 419		   void *kbuf, void __user *ubuf)
 420{
 421#ifdef CONFIG_VSX
 422	u64 buf[33];
 423	int i;
 424
 425	flush_fp_to_thread(target);
 426
 427	/* copy to local buffer then write that out */
 428	for (i = 0; i < 32 ; i++)
 429		buf[i] = target->thread.TS_FPR(i);
 430	buf[32] = target->thread.fp_state.fpscr;
 431	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 432#else
 433	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 434		     offsetof(struct thread_fp_state, fpr[32]));
 435
 436	flush_fp_to_thread(target);
 437
 438	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 439				   &target->thread.fp_state, 0, -1);
 440#endif
 441}
 442
 443/*
 444 * Regardless of transactions, 'fp_state' holds the current running
 445 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
 446 * value of all FPR registers for the current transaction.
 447 *
 448 * Userspace interface buffer layout:
 449 *
 450 * struct data {
 451 *	u64	fpr[32];
 452 *	u64	fpscr;
 453 * };
 454 *
 455 */
 456static int fpr_set(struct task_struct *target, const struct user_regset *regset,
 457		   unsigned int pos, unsigned int count,
 458		   const void *kbuf, const void __user *ubuf)
 459{
 460#ifdef CONFIG_VSX
 461	u64 buf[33];
 462	int i;
 463
 464	flush_fp_to_thread(target);
 465
 466	for (i = 0; i < 32 ; i++)
 467		buf[i] = target->thread.TS_FPR(i);
 468	buf[32] = target->thread.fp_state.fpscr;
 469
 470	/* copy to local buffer then write that out */
 471	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 472	if (i)
 473		return i;
 474
 475	for (i = 0; i < 32 ; i++)
 476		target->thread.TS_FPR(i) = buf[i];
 477	target->thread.fp_state.fpscr = buf[32];
 478	return 0;
 479#else
 480	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
 481		     offsetof(struct thread_fp_state, fpr[32]));
 482
 483	flush_fp_to_thread(target);
 484
 485	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 486				  &target->thread.fp_state, 0, -1);
 487#endif
 488}
 489
 490#ifdef CONFIG_ALTIVEC
 491/*
 492 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
 493 * The transfer totals 34 quadword.  Quadwords 0-31 contain the
 494 * corresponding vector registers.  Quadword 32 contains the vscr as the
 495 * last word (offset 12) within that quadword.  Quadword 33 contains the
 496 * vrsave as the first word (offset 0) within the quadword.
 497 *
 498 * This definition of the VMX state is compatible with the current PPC32
 499 * ptrace interface.  This allows signal handling and ptrace to use the
 500 * same structures.  This also simplifies the implementation of a bi-arch
 501 * (combined (32- and 64-bit) gdb.
 502 */
 503
 504static int vr_active(struct task_struct *target,
 505		     const struct user_regset *regset)
 506{
 507	flush_altivec_to_thread(target);
 508	return target->thread.used_vr ? regset->n : 0;
 509}
 510
 511/*
 512 * Regardless of transactions, 'vr_state' holds the current running
 513 * value of all the VMX registers and 'ckvr_state' holds the last
 514 * checkpointed value of all the VMX registers for the current
 515 * transaction to fall back on in case it aborts.
 516 *
 517 * Userspace interface buffer layout:
 518 *
 519 * struct data {
 520 *	vector128	vr[32];
 521 *	vector128	vscr;
 522 *	vector128	vrsave;
 523 * };
 524 */
 525static int vr_get(struct task_struct *target, const struct user_regset *regset,
 526		  unsigned int pos, unsigned int count,
 527		  void *kbuf, void __user *ubuf)
 528{
 529	int ret;
 530
 531	flush_altivec_to_thread(target);
 532
 533	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 534		     offsetof(struct thread_vr_state, vr[32]));
 535
 536	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 537				  &target->thread.vr_state, 0,
 538				  33 * sizeof(vector128));
 539	if (!ret) {
 540		/*
 541		 * Copy out only the low-order word of vrsave.
 542		 */
 543		union {
 544			elf_vrreg_t reg;
 545			u32 word;
 546		} vrsave;
 547		memset(&vrsave, 0, sizeof(vrsave));
 548
 549		vrsave.word = target->thread.vrsave;
 550
 551		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
 552					  33 * sizeof(vector128), -1);
 553	}
 554
 555	return ret;
 556}
 557
 558/*
 559 * Regardless of transactions, 'vr_state' holds the current running
 560 * value of all the VMX registers and 'ckvr_state' holds the last
 561 * checkpointed value of all the VMX registers for the current
 562 * transaction to fall back on in case it aborts.
 563 *
 564 * Userspace interface buffer layout:
 565 *
 566 * struct data {
 567 *	vector128	vr[32];
 568 *	vector128	vscr;
 569 *	vector128	vrsave;
 570 * };
 571 */
 572static int vr_set(struct task_struct *target, const struct user_regset *regset,
 573		  unsigned int pos, unsigned int count,
 574		  const void *kbuf, const void __user *ubuf)
 575{
 576	int ret;
 577
 578	flush_altivec_to_thread(target);
 579
 580	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
 581		     offsetof(struct thread_vr_state, vr[32]));
 582
 583	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 584				 &target->thread.vr_state, 0,
 585				 33 * sizeof(vector128));
 586	if (!ret && count > 0) {
 587		/*
 588		 * We use only the first word of vrsave.
 589		 */
 590		union {
 591			elf_vrreg_t reg;
 592			u32 word;
 593		} vrsave;
 594		memset(&vrsave, 0, sizeof(vrsave));
 595
 596		vrsave.word = target->thread.vrsave;
 597
 598		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
 599					 33 * sizeof(vector128), -1);
 600		if (!ret)
 601			target->thread.vrsave = vrsave.word;
 602	}
 603
 604	return ret;
 605}
 606#endif /* CONFIG_ALTIVEC */
 607
 608#ifdef CONFIG_VSX
 609/*
 610 * Currently to set and and get all the vsx state, you need to call
 611 * the fp and VMX calls as well.  This only get/sets the lower 32
 612 * 128bit VSX registers.
 613 */
 614
 615static int vsr_active(struct task_struct *target,
 616		      const struct user_regset *regset)
 617{
 618	flush_vsx_to_thread(target);
 619	return target->thread.used_vsr ? regset->n : 0;
 620}
 621
 622/*
 623 * Regardless of transactions, 'fp_state' holds the current running
 624 * value of all FPR registers and 'ckfp_state' holds the last
 625 * checkpointed value of all FPR registers for the current
 626 * transaction.
 627 *
 628 * Userspace interface buffer layout:
 629 *
 630 * struct data {
 631 *	u64	vsx[32];
 632 * };
 633 */
 634static int vsr_get(struct task_struct *target, const struct user_regset *regset,
 635		   unsigned int pos, unsigned int count,
 636		   void *kbuf, void __user *ubuf)
 637{
 638	u64 buf[32];
 639	int ret, i;
 640
 641	flush_tmregs_to_thread(target);
 642	flush_fp_to_thread(target);
 643	flush_altivec_to_thread(target);
 644	flush_vsx_to_thread(target);
 645
 646	for (i = 0; i < 32 ; i++)
 647		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 648
 649	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 650				  buf, 0, 32 * sizeof(double));
 651
 652	return ret;
 653}
 654
 655/*
 656 * Regardless of transactions, 'fp_state' holds the current running
 657 * value of all FPR registers and 'ckfp_state' holds the last
 658 * checkpointed value of all FPR registers for the current
 659 * transaction.
 660 *
 661 * Userspace interface buffer layout:
 662 *
 663 * struct data {
 664 *	u64	vsx[32];
 665 * };
 666 */
 667static int vsr_set(struct task_struct *target, const struct user_regset *regset,
 668		   unsigned int pos, unsigned int count,
 669		   const void *kbuf, const void __user *ubuf)
 670{
 671	u64 buf[32];
 672	int ret,i;
 673
 674	flush_tmregs_to_thread(target);
 675	flush_fp_to_thread(target);
 676	flush_altivec_to_thread(target);
 677	flush_vsx_to_thread(target);
 678
 679	for (i = 0; i < 32 ; i++)
 680		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 681
 682	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 683				 buf, 0, 32 * sizeof(double));
 684	if (!ret)
 685		for (i = 0; i < 32 ; i++)
 686			target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 687
 688	return ret;
 689}
 690#endif /* CONFIG_VSX */
 691
 692#ifdef CONFIG_SPE
 693
 694/*
 695 * For get_evrregs/set_evrregs functions 'data' has the following layout:
 696 *
 697 * struct {
 698 *   u32 evr[32];
 699 *   u64 acc;
 700 *   u32 spefscr;
 701 * }
 702 */
 703
 704static int evr_active(struct task_struct *target,
 705		      const struct user_regset *regset)
 706{
 707	flush_spe_to_thread(target);
 708	return target->thread.used_spe ? regset->n : 0;
 709}
 710
 711static int evr_get(struct task_struct *target, const struct user_regset *regset,
 712		   unsigned int pos, unsigned int count,
 713		   void *kbuf, void __user *ubuf)
 714{
 715	int ret;
 716
 717	flush_spe_to_thread(target);
 718
 719	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 720				  &target->thread.evr,
 721				  0, sizeof(target->thread.evr));
 722
 723	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 724		     offsetof(struct thread_struct, spefscr));
 725
 726	if (!ret)
 727		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 728					  &target->thread.acc,
 729					  sizeof(target->thread.evr), -1);
 730
 731	return ret;
 732}
 733
 734static int evr_set(struct task_struct *target, const struct user_regset *regset,
 735		   unsigned int pos, unsigned int count,
 736		   const void *kbuf, const void __user *ubuf)
 737{
 738	int ret;
 739
 740	flush_spe_to_thread(target);
 741
 742	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 743				 &target->thread.evr,
 744				 0, sizeof(target->thread.evr));
 745
 746	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
 747		     offsetof(struct thread_struct, spefscr));
 748
 749	if (!ret)
 750		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 751					 &target->thread.acc,
 752					 sizeof(target->thread.evr), -1);
 753
 754	return ret;
 755}
 756#endif /* CONFIG_SPE */
 757
 758#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 759/**
 760 * tm_cgpr_active - get active number of registers in CGPR
 761 * @target:	The target task.
 762 * @regset:	The user regset structure.
 763 *
 764 * This function checks for the active number of available
 765 * regisers in transaction checkpointed GPR category.
 766 */
 767static int tm_cgpr_active(struct task_struct *target,
 768			  const struct user_regset *regset)
 769{
 770	if (!cpu_has_feature(CPU_FTR_TM))
 771		return -ENODEV;
 772
 773	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 774		return 0;
 775
 776	return regset->n;
 777}
 778
 779/**
 780 * tm_cgpr_get - get CGPR registers
 781 * @target:	The target task.
 782 * @regset:	The user regset structure.
 783 * @pos:	The buffer position.
 784 * @count:	Number of bytes to copy.
 785 * @kbuf:	Kernel buffer to copy from.
 786 * @ubuf:	User buffer to copy into.
 787 *
 788 * This function gets transaction checkpointed GPR registers.
 789 *
 790 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
 791 * GPR register values for the current transaction to fall back on if it
 792 * aborts in between. This function gets those checkpointed GPR registers.
 793 * The userspace interface buffer layout is as follows.
 794 *
 795 * struct data {
 796 *	struct pt_regs ckpt_regs;
 797 * };
 798 */
 799static int tm_cgpr_get(struct task_struct *target,
 800			const struct user_regset *regset,
 801			unsigned int pos, unsigned int count,
 802			void *kbuf, void __user *ubuf)
 803{
 804	int ret;
 805
 806	if (!cpu_has_feature(CPU_FTR_TM))
 807		return -ENODEV;
 808
 809	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 810		return -ENODATA;
 811
 812	flush_tmregs_to_thread(target);
 813	flush_fp_to_thread(target);
 814	flush_altivec_to_thread(target);
 815
 816	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 817				  &target->thread.ckpt_regs,
 818				  0, offsetof(struct pt_regs, msr));
 819	if (!ret) {
 820		unsigned long msr = get_user_ckpt_msr(target);
 821
 822		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
 823					  offsetof(struct pt_regs, msr),
 824					  offsetof(struct pt_regs, msr) +
 825					  sizeof(msr));
 826	}
 827
 828	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 829		     offsetof(struct pt_regs, msr) + sizeof(long));
 830
 831	if (!ret)
 832		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 833					  &target->thread.ckpt_regs.orig_gpr3,
 834					  offsetof(struct pt_regs, orig_gpr3),
 835					  sizeof(struct pt_regs));
 836	if (!ret)
 837		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
 838					       sizeof(struct pt_regs), -1);
 839
 840	return ret;
 841}
 842
 843/*
 844 * tm_cgpr_set - set the CGPR registers
 845 * @target:	The target task.
 846 * @regset:	The user regset structure.
 847 * @pos:	The buffer position.
 848 * @count:	Number of bytes to copy.
 849 * @kbuf:	Kernel buffer to copy into.
 850 * @ubuf:	User buffer to copy from.
 851 *
 852 * This function sets in transaction checkpointed GPR registers.
 853 *
 854 * When the transaction is active, 'ckpt_regs' holds the checkpointed
 855 * GPR register values for the current transaction to fall back on if it
 856 * aborts in between. This function sets those checkpointed GPR registers.
 857 * The userspace interface buffer layout is as follows.
 858 *
 859 * struct data {
 860 *	struct pt_regs ckpt_regs;
 861 * };
 862 */
 863static int tm_cgpr_set(struct task_struct *target,
 864			const struct user_regset *regset,
 865			unsigned int pos, unsigned int count,
 866			const void *kbuf, const void __user *ubuf)
 867{
 868	unsigned long reg;
 869	int ret;
 870
 871	if (!cpu_has_feature(CPU_FTR_TM))
 872		return -ENODEV;
 873
 874	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 875		return -ENODATA;
 876
 877	flush_tmregs_to_thread(target);
 878	flush_fp_to_thread(target);
 879	flush_altivec_to_thread(target);
 880
 881	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 882				 &target->thread.ckpt_regs,
 883				 0, PT_MSR * sizeof(reg));
 884
 885	if (!ret && count > 0) {
 886		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 887					 PT_MSR * sizeof(reg),
 888					 (PT_MSR + 1) * sizeof(reg));
 889		if (!ret)
 890			ret = set_user_ckpt_msr(target, reg);
 891	}
 892
 893	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
 894		     offsetof(struct pt_regs, msr) + sizeof(long));
 895
 896	if (!ret)
 897		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 898					 &target->thread.ckpt_regs.orig_gpr3,
 899					 PT_ORIG_R3 * sizeof(reg),
 900					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
 901
 902	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
 903		ret = user_regset_copyin_ignore(
 904			&pos, &count, &kbuf, &ubuf,
 905			(PT_MAX_PUT_REG + 1) * sizeof(reg),
 906			PT_TRAP * sizeof(reg));
 907
 908	if (!ret && count > 0) {
 909		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
 910					 PT_TRAP * sizeof(reg),
 911					 (PT_TRAP + 1) * sizeof(reg));
 912		if (!ret)
 913			ret = set_user_ckpt_trap(target, reg);
 914	}
 915
 916	if (!ret)
 917		ret = user_regset_copyin_ignore(
 918			&pos, &count, &kbuf, &ubuf,
 919			(PT_TRAP + 1) * sizeof(reg), -1);
 920
 921	return ret;
 922}
 923
 924/**
 925 * tm_cfpr_active - get active number of registers in CFPR
 926 * @target:	The target task.
 927 * @regset:	The user regset structure.
 928 *
 929 * This function checks for the active number of available
 930 * regisers in transaction checkpointed FPR category.
 931 */
 932static int tm_cfpr_active(struct task_struct *target,
 933				const struct user_regset *regset)
 934{
 935	if (!cpu_has_feature(CPU_FTR_TM))
 936		return -ENODEV;
 937
 938	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 939		return 0;
 940
 941	return regset->n;
 942}
 943
 944/**
 945 * tm_cfpr_get - get CFPR registers
 946 * @target:	The target task.
 947 * @regset:	The user regset structure.
 948 * @pos:	The buffer position.
 949 * @count:	Number of bytes to copy.
 950 * @kbuf:	Kernel buffer to copy from.
 951 * @ubuf:	User buffer to copy into.
 952 *
 953 * This function gets in transaction checkpointed FPR registers.
 954 *
 955 * When the transaction is active 'ckfp_state' holds the checkpointed
 956 * values for the current transaction to fall back on if it aborts
 957 * in between. This function gets those checkpointed FPR registers.
 958 * The userspace interface buffer layout is as follows.
 959 *
 960 * struct data {
 961 *	u64	fpr[32];
 962 *	u64	fpscr;
 963 *};
 964 */
 965static int tm_cfpr_get(struct task_struct *target,
 966			const struct user_regset *regset,
 967			unsigned int pos, unsigned int count,
 968			void *kbuf, void __user *ubuf)
 969{
 970	u64 buf[33];
 971	int i;
 972
 973	if (!cpu_has_feature(CPU_FTR_TM))
 974		return -ENODEV;
 975
 976	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
 977		return -ENODATA;
 978
 979	flush_tmregs_to_thread(target);
 980	flush_fp_to_thread(target);
 981	flush_altivec_to_thread(target);
 982
 983	/* copy to local buffer then write that out */
 984	for (i = 0; i < 32 ; i++)
 985		buf[i] = target->thread.TS_CKFPR(i);
 986	buf[32] = target->thread.ckfp_state.fpscr;
 987	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
 988}
 989
 990/**
 991 * tm_cfpr_set - set CFPR registers
 992 * @target:	The target task.
 993 * @regset:	The user regset structure.
 994 * @pos:	The buffer position.
 995 * @count:	Number of bytes to copy.
 996 * @kbuf:	Kernel buffer to copy into.
 997 * @ubuf:	User buffer to copy from.
 998 *
 999 * This function sets in transaction checkpointed FPR registers.
1000 *
1001 * When the transaction is active 'ckfp_state' holds the checkpointed
1002 * FPR register values for the current transaction to fall back on
1003 * if it aborts in between. This function sets these checkpointed
1004 * FPR registers. The userspace interface buffer layout is as follows.
1005 *
1006 * struct data {
1007 *	u64	fpr[32];
1008 *	u64	fpscr;
1009 *};
1010 */
1011static int tm_cfpr_set(struct task_struct *target,
1012			const struct user_regset *regset,
1013			unsigned int pos, unsigned int count,
1014			const void *kbuf, const void __user *ubuf)
1015{
1016	u64 buf[33];
1017	int i;
1018
1019	if (!cpu_has_feature(CPU_FTR_TM))
1020		return -ENODEV;
1021
1022	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1023		return -ENODATA;
1024
1025	flush_tmregs_to_thread(target);
1026	flush_fp_to_thread(target);
1027	flush_altivec_to_thread(target);
1028
1029	for (i = 0; i < 32; i++)
1030		buf[i] = target->thread.TS_CKFPR(i);
1031	buf[32] = target->thread.ckfp_state.fpscr;
1032
1033	/* copy to local buffer then write that out */
1034	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1035	if (i)
1036		return i;
1037	for (i = 0; i < 32 ; i++)
1038		target->thread.TS_CKFPR(i) = buf[i];
1039	target->thread.ckfp_state.fpscr = buf[32];
1040	return 0;
1041}
1042
1043/**
1044 * tm_cvmx_active - get active number of registers in CVMX
1045 * @target:	The target task.
1046 * @regset:	The user regset structure.
1047 *
1048 * This function checks for the active number of available
1049 * regisers in checkpointed VMX category.
1050 */
1051static int tm_cvmx_active(struct task_struct *target,
1052				const struct user_regset *regset)
1053{
1054	if (!cpu_has_feature(CPU_FTR_TM))
1055		return -ENODEV;
1056
1057	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1058		return 0;
1059
1060	return regset->n;
1061}
1062
1063/**
1064 * tm_cvmx_get - get CMVX registers
1065 * @target:	The target task.
1066 * @regset:	The user regset structure.
1067 * @pos:	The buffer position.
1068 * @count:	Number of bytes to copy.
1069 * @kbuf:	Kernel buffer to copy from.
1070 * @ubuf:	User buffer to copy into.
1071 *
1072 * This function gets in transaction checkpointed VMX registers.
1073 *
1074 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1075 * the checkpointed values for the current transaction to fall
1076 * back on if it aborts in between. The userspace interface buffer
1077 * layout is as follows.
1078 *
1079 * struct data {
1080 *	vector128	vr[32];
1081 *	vector128	vscr;
1082 *	vector128	vrsave;
1083 *};
1084 */
1085static int tm_cvmx_get(struct task_struct *target,
1086			const struct user_regset *regset,
1087			unsigned int pos, unsigned int count,
1088			void *kbuf, void __user *ubuf)
1089{
1090	int ret;
1091
1092	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1093
1094	if (!cpu_has_feature(CPU_FTR_TM))
1095		return -ENODEV;
1096
1097	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1098		return -ENODATA;
1099
1100	/* Flush the state */
1101	flush_tmregs_to_thread(target);
1102	flush_fp_to_thread(target);
1103	flush_altivec_to_thread(target);
1104
1105	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1106					&target->thread.ckvr_state, 0,
1107					33 * sizeof(vector128));
1108	if (!ret) {
1109		/*
1110		 * Copy out only the low-order word of vrsave.
1111		 */
1112		union {
1113			elf_vrreg_t reg;
1114			u32 word;
1115		} vrsave;
1116		memset(&vrsave, 0, sizeof(vrsave));
1117		vrsave.word = target->thread.ckvrsave;
1118		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1119						33 * sizeof(vector128), -1);
1120	}
1121
1122	return ret;
1123}
1124
1125/**
1126 * tm_cvmx_set - set CMVX registers
1127 * @target:	The target task.
1128 * @regset:	The user regset structure.
1129 * @pos:	The buffer position.
1130 * @count:	Number of bytes to copy.
1131 * @kbuf:	Kernel buffer to copy into.
1132 * @ubuf:	User buffer to copy from.
1133 *
1134 * This function sets in transaction checkpointed VMX registers.
1135 *
1136 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1137 * the checkpointed values for the current transaction to fall
1138 * back on if it aborts in between. The userspace interface buffer
1139 * layout is as follows.
1140 *
1141 * struct data {
1142 *	vector128	vr[32];
1143 *	vector128	vscr;
1144 *	vector128	vrsave;
1145 *};
1146 */
1147static int tm_cvmx_set(struct task_struct *target,
1148			const struct user_regset *regset,
1149			unsigned int pos, unsigned int count,
1150			const void *kbuf, const void __user *ubuf)
1151{
1152	int ret;
1153
1154	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1155
1156	if (!cpu_has_feature(CPU_FTR_TM))
1157		return -ENODEV;
1158
1159	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1160		return -ENODATA;
1161
1162	flush_tmregs_to_thread(target);
1163	flush_fp_to_thread(target);
1164	flush_altivec_to_thread(target);
1165
1166	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1167					&target->thread.ckvr_state, 0,
1168					33 * sizeof(vector128));
1169	if (!ret && count > 0) {
1170		/*
1171		 * We use only the low-order word of vrsave.
1172		 */
1173		union {
1174			elf_vrreg_t reg;
1175			u32 word;
1176		} vrsave;
1177		memset(&vrsave, 0, sizeof(vrsave));
1178		vrsave.word = target->thread.ckvrsave;
1179		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1180						33 * sizeof(vector128), -1);
1181		if (!ret)
1182			target->thread.ckvrsave = vrsave.word;
1183	}
1184
1185	return ret;
1186}
1187
1188/**
1189 * tm_cvsx_active - get active number of registers in CVSX
1190 * @target:	The target task.
1191 * @regset:	The user regset structure.
1192 *
1193 * This function checks for the active number of available
1194 * regisers in transaction checkpointed VSX category.
1195 */
1196static int tm_cvsx_active(struct task_struct *target,
1197				const struct user_regset *regset)
1198{
1199	if (!cpu_has_feature(CPU_FTR_TM))
1200		return -ENODEV;
1201
1202	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1203		return 0;
1204
1205	flush_vsx_to_thread(target);
1206	return target->thread.used_vsr ? regset->n : 0;
1207}
1208
1209/**
1210 * tm_cvsx_get - get CVSX registers
1211 * @target:	The target task.
1212 * @regset:	The user regset structure.
1213 * @pos:	The buffer position.
1214 * @count:	Number of bytes to copy.
1215 * @kbuf:	Kernel buffer to copy from.
1216 * @ubuf:	User buffer to copy into.
1217 *
1218 * This function gets in transaction checkpointed VSX registers.
1219 *
1220 * When the transaction is active 'ckfp_state' holds the checkpointed
1221 * values for the current transaction to fall back on if it aborts
1222 * in between. This function gets those checkpointed VSX registers.
1223 * The userspace interface buffer layout is as follows.
1224 *
1225 * struct data {
1226 *	u64	vsx[32];
1227 *};
1228 */
1229static int tm_cvsx_get(struct task_struct *target,
1230			const struct user_regset *regset,
1231			unsigned int pos, unsigned int count,
1232			void *kbuf, void __user *ubuf)
1233{
1234	u64 buf[32];
1235	int ret, i;
1236
1237	if (!cpu_has_feature(CPU_FTR_TM))
1238		return -ENODEV;
1239
1240	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1241		return -ENODATA;
1242
1243	/* Flush the state */
1244	flush_tmregs_to_thread(target);
1245	flush_fp_to_thread(target);
1246	flush_altivec_to_thread(target);
1247	flush_vsx_to_thread(target);
1248
1249	for (i = 0; i < 32 ; i++)
1250		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1251	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1252				  buf, 0, 32 * sizeof(double));
1253
1254	return ret;
1255}
1256
1257/**
1258 * tm_cvsx_set - set CFPR registers
1259 * @target:	The target task.
1260 * @regset:	The user regset structure.
1261 * @pos:	The buffer position.
1262 * @count:	Number of bytes to copy.
1263 * @kbuf:	Kernel buffer to copy into.
1264 * @ubuf:	User buffer to copy from.
1265 *
1266 * This function sets in transaction checkpointed VSX registers.
1267 *
1268 * When the transaction is active 'ckfp_state' holds the checkpointed
1269 * VSX register values for the current transaction to fall back on
1270 * if it aborts in between. This function sets these checkpointed
1271 * FPR registers. The userspace interface buffer layout is as follows.
1272 *
1273 * struct data {
1274 *	u64	vsx[32];
1275 *};
1276 */
1277static int tm_cvsx_set(struct task_struct *target,
1278			const struct user_regset *regset,
1279			unsigned int pos, unsigned int count,
1280			const void *kbuf, const void __user *ubuf)
1281{
1282	u64 buf[32];
1283	int ret, i;
1284
1285	if (!cpu_has_feature(CPU_FTR_TM))
1286		return -ENODEV;
1287
1288	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1289		return -ENODATA;
1290
1291	/* Flush the state */
1292	flush_tmregs_to_thread(target);
1293	flush_fp_to_thread(target);
1294	flush_altivec_to_thread(target);
1295	flush_vsx_to_thread(target);
1296
1297	for (i = 0; i < 32 ; i++)
1298		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1299
1300	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1301				 buf, 0, 32 * sizeof(double));
1302	if (!ret)
1303		for (i = 0; i < 32 ; i++)
1304			target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1305
1306	return ret;
1307}
1308
1309/**
1310 * tm_spr_active - get active number of registers in TM SPR
1311 * @target:	The target task.
1312 * @regset:	The user regset structure.
1313 *
1314 * This function checks the active number of available
1315 * regisers in the transactional memory SPR category.
1316 */
1317static int tm_spr_active(struct task_struct *target,
1318			 const struct user_regset *regset)
1319{
1320	if (!cpu_has_feature(CPU_FTR_TM))
1321		return -ENODEV;
1322
1323	return regset->n;
1324}
1325
1326/**
1327 * tm_spr_get - get the TM related SPR registers
1328 * @target:	The target task.
1329 * @regset:	The user regset structure.
1330 * @pos:	The buffer position.
1331 * @count:	Number of bytes to copy.
1332 * @kbuf:	Kernel buffer to copy from.
1333 * @ubuf:	User buffer to copy into.
1334 *
1335 * This function gets transactional memory related SPR registers.
1336 * The userspace interface buffer layout is as follows.
1337 *
1338 * struct {
1339 *	u64		tm_tfhar;
1340 *	u64		tm_texasr;
1341 *	u64		tm_tfiar;
1342 * };
1343 */
1344static int tm_spr_get(struct task_struct *target,
1345		      const struct user_regset *regset,
1346		      unsigned int pos, unsigned int count,
1347		      void *kbuf, void __user *ubuf)
1348{
1349	int ret;
1350
1351	/* Build tests */
1352	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1353	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1354	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1355
1356	if (!cpu_has_feature(CPU_FTR_TM))
1357		return -ENODEV;
1358
1359	/* Flush the states */
1360	flush_tmregs_to_thread(target);
1361	flush_fp_to_thread(target);
1362	flush_altivec_to_thread(target);
1363
1364	/* TFHAR register */
1365	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1366				&target->thread.tm_tfhar, 0, sizeof(u64));
1367
1368	/* TEXASR register */
1369	if (!ret)
1370		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1371				&target->thread.tm_texasr, sizeof(u64),
1372				2 * sizeof(u64));
1373
1374	/* TFIAR register */
1375	if (!ret)
1376		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1377				&target->thread.tm_tfiar,
1378				2 * sizeof(u64), 3 * sizeof(u64));
1379	return ret;
1380}
1381
1382/**
1383 * tm_spr_set - set the TM related SPR registers
1384 * @target:	The target task.
1385 * @regset:	The user regset structure.
1386 * @pos:	The buffer position.
1387 * @count:	Number of bytes to copy.
1388 * @kbuf:	Kernel buffer to copy into.
1389 * @ubuf:	User buffer to copy from.
1390 *
1391 * This function sets transactional memory related SPR registers.
1392 * The userspace interface buffer layout is as follows.
1393 *
1394 * struct {
1395 *	u64		tm_tfhar;
1396 *	u64		tm_texasr;
1397 *	u64		tm_tfiar;
1398 * };
1399 */
1400static int tm_spr_set(struct task_struct *target,
1401		      const struct user_regset *regset,
1402		      unsigned int pos, unsigned int count,
1403		      const void *kbuf, const void __user *ubuf)
1404{
1405	int ret;
1406
1407	/* Build tests */
1408	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1409	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1410	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1411
1412	if (!cpu_has_feature(CPU_FTR_TM))
1413		return -ENODEV;
1414
1415	/* Flush the states */
1416	flush_tmregs_to_thread(target);
1417	flush_fp_to_thread(target);
1418	flush_altivec_to_thread(target);
1419
1420	/* TFHAR register */
1421	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1422				&target->thread.tm_tfhar, 0, sizeof(u64));
1423
1424	/* TEXASR register */
1425	if (!ret)
1426		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1427				&target->thread.tm_texasr, sizeof(u64),
1428				2 * sizeof(u64));
1429
1430	/* TFIAR register */
1431	if (!ret)
1432		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1433				&target->thread.tm_tfiar,
1434				 2 * sizeof(u64), 3 * sizeof(u64));
1435	return ret;
1436}
1437
1438static int tm_tar_active(struct task_struct *target,
1439			 const struct user_regset *regset)
1440{
1441	if (!cpu_has_feature(CPU_FTR_TM))
1442		return -ENODEV;
1443
1444	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1445		return regset->n;
1446
1447	return 0;
1448}
1449
1450static int tm_tar_get(struct task_struct *target,
1451		      const struct user_regset *regset,
1452		      unsigned int pos, unsigned int count,
1453		      void *kbuf, void __user *ubuf)
1454{
1455	int ret;
1456
1457	if (!cpu_has_feature(CPU_FTR_TM))
1458		return -ENODEV;
1459
1460	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1461		return -ENODATA;
1462
1463	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1464				&target->thread.tm_tar, 0, sizeof(u64));
1465	return ret;
1466}
1467
1468static int tm_tar_set(struct task_struct *target,
1469		      const struct user_regset *regset,
1470		      unsigned int pos, unsigned int count,
1471		      const void *kbuf, const void __user *ubuf)
1472{
1473	int ret;
1474
1475	if (!cpu_has_feature(CPU_FTR_TM))
1476		return -ENODEV;
1477
1478	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1479		return -ENODATA;
1480
1481	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1482				&target->thread.tm_tar, 0, sizeof(u64));
1483	return ret;
1484}
1485
1486static int tm_ppr_active(struct task_struct *target,
1487			 const struct user_regset *regset)
1488{
1489	if (!cpu_has_feature(CPU_FTR_TM))
1490		return -ENODEV;
1491
1492	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1493		return regset->n;
1494
1495	return 0;
1496}
1497
1498
1499static int tm_ppr_get(struct task_struct *target,
1500		      const struct user_regset *regset,
1501		      unsigned int pos, unsigned int count,
1502		      void *kbuf, void __user *ubuf)
1503{
1504	int ret;
1505
1506	if (!cpu_has_feature(CPU_FTR_TM))
1507		return -ENODEV;
1508
1509	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1510		return -ENODATA;
1511
1512	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1513				&target->thread.tm_ppr, 0, sizeof(u64));
1514	return ret;
1515}
1516
1517static int tm_ppr_set(struct task_struct *target,
1518		      const struct user_regset *regset,
1519		      unsigned int pos, unsigned int count,
1520		      const void *kbuf, const void __user *ubuf)
1521{
1522	int ret;
1523
1524	if (!cpu_has_feature(CPU_FTR_TM))
1525		return -ENODEV;
1526
1527	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1528		return -ENODATA;
1529
1530	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1531				&target->thread.tm_ppr, 0, sizeof(u64));
1532	return ret;
1533}
1534
1535static int tm_dscr_active(struct task_struct *target,
1536			 const struct user_regset *regset)
1537{
1538	if (!cpu_has_feature(CPU_FTR_TM))
1539		return -ENODEV;
1540
1541	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1542		return regset->n;
1543
1544	return 0;
1545}
1546
1547static int tm_dscr_get(struct task_struct *target,
1548		      const struct user_regset *regset,
1549		      unsigned int pos, unsigned int count,
1550		      void *kbuf, void __user *ubuf)
1551{
1552	int ret;
1553
1554	if (!cpu_has_feature(CPU_FTR_TM))
1555		return -ENODEV;
1556
1557	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1558		return -ENODATA;
1559
1560	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1561				&target->thread.tm_dscr, 0, sizeof(u64));
1562	return ret;
1563}
1564
1565static int tm_dscr_set(struct task_struct *target,
1566		      const struct user_regset *regset,
1567		      unsigned int pos, unsigned int count,
1568		      const void *kbuf, const void __user *ubuf)
1569{
1570	int ret;
1571
1572	if (!cpu_has_feature(CPU_FTR_TM))
1573		return -ENODEV;
1574
1575	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1576		return -ENODATA;
1577
1578	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1579				&target->thread.tm_dscr, 0, sizeof(u64));
1580	return ret;
1581}
1582#endif	/* CONFIG_PPC_TRANSACTIONAL_MEM */
1583
1584#ifdef CONFIG_PPC64
1585static int ppr_get(struct task_struct *target,
1586		      const struct user_regset *regset,
1587		      unsigned int pos, unsigned int count,
1588		      void *kbuf, void __user *ubuf)
1589{
1590	int ret;
1591
1592	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1593				&target->thread.ppr, 0, sizeof(u64));
1594	return ret;
1595}
1596
1597static int ppr_set(struct task_struct *target,
1598		      const struct user_regset *regset,
1599		      unsigned int pos, unsigned int count,
1600		      const void *kbuf, const void __user *ubuf)
1601{
1602	int ret;
1603
1604	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1605				&target->thread.ppr, 0, sizeof(u64));
1606	return ret;
1607}
1608
1609static int dscr_get(struct task_struct *target,
1610		      const struct user_regset *regset,
1611		      unsigned int pos, unsigned int count,
1612		      void *kbuf, void __user *ubuf)
1613{
1614	int ret;
1615
1616	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1617				&target->thread.dscr, 0, sizeof(u64));
1618	return ret;
1619}
1620static int dscr_set(struct task_struct *target,
1621		      const struct user_regset *regset,
1622		      unsigned int pos, unsigned int count,
1623		      const void *kbuf, const void __user *ubuf)
1624{
1625	int ret;
1626
1627	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1628				&target->thread.dscr, 0, sizeof(u64));
1629	return ret;
1630}
1631#endif
1632#ifdef CONFIG_PPC_BOOK3S_64
1633static int tar_get(struct task_struct *target,
1634		      const struct user_regset *regset,
1635		      unsigned int pos, unsigned int count,
1636		      void *kbuf, void __user *ubuf)
1637{
1638	int ret;
1639
1640	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1641				&target->thread.tar, 0, sizeof(u64));
1642	return ret;
1643}
1644static int tar_set(struct task_struct *target,
1645		      const struct user_regset *regset,
1646		      unsigned int pos, unsigned int count,
1647		      const void *kbuf, const void __user *ubuf)
1648{
1649	int ret;
1650
1651	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1652				&target->thread.tar, 0, sizeof(u64));
1653	return ret;
1654}
1655
1656static int ebb_active(struct task_struct *target,
1657			 const struct user_regset *regset)
1658{
1659	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1660		return -ENODEV;
1661
1662	if (target->thread.used_ebb)
1663		return regset->n;
1664
1665	return 0;
1666}
1667
1668static int ebb_get(struct task_struct *target,
1669		      const struct user_regset *regset,
1670		      unsigned int pos, unsigned int count,
1671		      void *kbuf, void __user *ubuf)
1672{
1673	/* Build tests */
1674	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1675	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1676
1677	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1678		return -ENODEV;
1679
1680	if (!target->thread.used_ebb)
1681		return -ENODATA;
1682
1683	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1684			&target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1685}
1686
1687static int ebb_set(struct task_struct *target,
1688		      const struct user_regset *regset,
1689		      unsigned int pos, unsigned int count,
1690		      const void *kbuf, const void __user *ubuf)
1691{
1692	int ret = 0;
1693
1694	/* Build tests */
1695	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1696	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1697
1698	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1699		return -ENODEV;
1700
1701	if (target->thread.used_ebb)
1702		return -ENODATA;
1703
1704	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1705			&target->thread.ebbrr, 0, sizeof(unsigned long));
1706
1707	if (!ret)
1708		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1709			&target->thread.ebbhr, sizeof(unsigned long),
1710			2 * sizeof(unsigned long));
1711
1712	if (!ret)
1713		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1714			&target->thread.bescr,
1715			2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1716
1717	return ret;
1718}
1719static int pmu_active(struct task_struct *target,
1720			 const struct user_regset *regset)
1721{
1722	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1723		return -ENODEV;
1724
1725	return regset->n;
1726}
1727
1728static int pmu_get(struct task_struct *target,
1729		      const struct user_regset *regset,
1730		      unsigned int pos, unsigned int count,
1731		      void *kbuf, void __user *ubuf)
1732{
1733	/* Build tests */
1734	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1735	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1736	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1737	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1738
1739	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1740		return -ENODEV;
1741
1742	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1743			&target->thread.siar, 0,
1744			5 * sizeof(unsigned long));
1745}
1746
1747static int pmu_set(struct task_struct *target,
1748		      const struct user_regset *regset,
1749		      unsigned int pos, unsigned int count,
1750		      const void *kbuf, const void __user *ubuf)
1751{
1752	int ret = 0;
1753
1754	/* Build tests */
1755	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1756	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1757	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1758	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1759
1760	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1761		return -ENODEV;
1762
1763	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1764			&target->thread.siar, 0,
1765			sizeof(unsigned long));
1766
1767	if (!ret)
1768		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1769			&target->thread.sdar, sizeof(unsigned long),
1770			2 * sizeof(unsigned long));
1771
1772	if (!ret)
1773		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1774			&target->thread.sier, 2 * sizeof(unsigned long),
1775			3 * sizeof(unsigned long));
1776
1777	if (!ret)
1778		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1779			&target->thread.mmcr2, 3 * sizeof(unsigned long),
1780			4 * sizeof(unsigned long));
1781
1782	if (!ret)
1783		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1784			&target->thread.mmcr0, 4 * sizeof(unsigned long),
1785			5 * sizeof(unsigned long));
1786	return ret;
1787}
1788#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789/*
1790 * These are our native regset flavors.
1791 */
1792enum powerpc_regset {
1793	REGSET_GPR,
1794	REGSET_FPR,
1795#ifdef CONFIG_ALTIVEC
1796	REGSET_VMX,
1797#endif
1798#ifdef CONFIG_VSX
1799	REGSET_VSX,
1800#endif
1801#ifdef CONFIG_SPE
1802	REGSET_SPE,
1803#endif
1804#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1805	REGSET_TM_CGPR,		/* TM checkpointed GPR registers */
1806	REGSET_TM_CFPR,		/* TM checkpointed FPR registers */
1807	REGSET_TM_CVMX,		/* TM checkpointed VMX registers */
1808	REGSET_TM_CVSX,		/* TM checkpointed VSX registers */
1809	REGSET_TM_SPR,		/* TM specific SPR registers */
1810	REGSET_TM_CTAR,		/* TM checkpointed TAR register */
1811	REGSET_TM_CPPR,		/* TM checkpointed PPR register */
1812	REGSET_TM_CDSCR,	/* TM checkpointed DSCR register */
1813#endif
1814#ifdef CONFIG_PPC64
1815	REGSET_PPR,		/* PPR register */
1816	REGSET_DSCR,		/* DSCR register */
1817#endif
1818#ifdef CONFIG_PPC_BOOK3S_64
1819	REGSET_TAR,		/* TAR register */
1820	REGSET_EBB,		/* EBB registers */
1821	REGSET_PMR,		/* Performance Monitor Registers */
1822#endif
 
 
 
1823};
1824
1825static const struct user_regset native_regsets[] = {
1826	[REGSET_GPR] = {
1827		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1828		.size = sizeof(long), .align = sizeof(long),
1829		.get = gpr_get, .set = gpr_set
1830	},
1831	[REGSET_FPR] = {
1832		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1833		.size = sizeof(double), .align = sizeof(double),
1834		.get = fpr_get, .set = fpr_set
1835	},
1836#ifdef CONFIG_ALTIVEC
1837	[REGSET_VMX] = {
1838		.core_note_type = NT_PPC_VMX, .n = 34,
1839		.size = sizeof(vector128), .align = sizeof(vector128),
1840		.active = vr_active, .get = vr_get, .set = vr_set
1841	},
1842#endif
1843#ifdef CONFIG_VSX
1844	[REGSET_VSX] = {
1845		.core_note_type = NT_PPC_VSX, .n = 32,
1846		.size = sizeof(double), .align = sizeof(double),
1847		.active = vsr_active, .get = vsr_get, .set = vsr_set
1848	},
1849#endif
1850#ifdef CONFIG_SPE
1851	[REGSET_SPE] = {
1852		.core_note_type = NT_PPC_SPE, .n = 35,
1853		.size = sizeof(u32), .align = sizeof(u32),
1854		.active = evr_active, .get = evr_get, .set = evr_set
1855	},
1856#endif
1857#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1858	[REGSET_TM_CGPR] = {
1859		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1860		.size = sizeof(long), .align = sizeof(long),
1861		.active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1862	},
1863	[REGSET_TM_CFPR] = {
1864		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1865		.size = sizeof(double), .align = sizeof(double),
1866		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1867	},
1868	[REGSET_TM_CVMX] = {
1869		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1870		.size = sizeof(vector128), .align = sizeof(vector128),
1871		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1872	},
1873	[REGSET_TM_CVSX] = {
1874		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1875		.size = sizeof(double), .align = sizeof(double),
1876		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1877	},
1878	[REGSET_TM_SPR] = {
1879		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1880		.size = sizeof(u64), .align = sizeof(u64),
1881		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1882	},
1883	[REGSET_TM_CTAR] = {
1884		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
1885		.size = sizeof(u64), .align = sizeof(u64),
1886		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1887	},
1888	[REGSET_TM_CPPR] = {
1889		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
1890		.size = sizeof(u64), .align = sizeof(u64),
1891		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1892	},
1893	[REGSET_TM_CDSCR] = {
1894		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1895		.size = sizeof(u64), .align = sizeof(u64),
1896		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1897	},
1898#endif
1899#ifdef CONFIG_PPC64
1900	[REGSET_PPR] = {
1901		.core_note_type = NT_PPC_PPR, .n = 1,
1902		.size = sizeof(u64), .align = sizeof(u64),
1903		.get = ppr_get, .set = ppr_set
1904	},
1905	[REGSET_DSCR] = {
1906		.core_note_type = NT_PPC_DSCR, .n = 1,
1907		.size = sizeof(u64), .align = sizeof(u64),
1908		.get = dscr_get, .set = dscr_set
1909	},
1910#endif
1911#ifdef CONFIG_PPC_BOOK3S_64
1912	[REGSET_TAR] = {
1913		.core_note_type = NT_PPC_TAR, .n = 1,
1914		.size = sizeof(u64), .align = sizeof(u64),
1915		.get = tar_get, .set = tar_set
1916	},
1917	[REGSET_EBB] = {
1918		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1919		.size = sizeof(u64), .align = sizeof(u64),
1920		.active = ebb_active, .get = ebb_get, .set = ebb_set
1921	},
1922	[REGSET_PMR] = {
1923		.core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1924		.size = sizeof(u64), .align = sizeof(u64),
1925		.active = pmu_active, .get = pmu_get, .set = pmu_set
1926	},
1927#endif
 
 
 
 
 
 
 
1928};
1929
1930static const struct user_regset_view user_ppc_native_view = {
1931	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1932	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1933};
1934
1935#ifdef CONFIG_PPC64
1936#include <linux/compat.h>
1937
1938static int gpr32_get_common(struct task_struct *target,
1939		     const struct user_regset *regset,
1940		     unsigned int pos, unsigned int count,
1941			    void *kbuf, void __user *ubuf,
1942			    unsigned long *regs)
1943{
1944	compat_ulong_t *k = kbuf;
1945	compat_ulong_t __user *u = ubuf;
1946	compat_ulong_t reg;
1947
1948	pos /= sizeof(reg);
1949	count /= sizeof(reg);
1950
1951	if (kbuf)
1952		for (; count > 0 && pos < PT_MSR; --count)
1953			*k++ = regs[pos++];
1954	else
1955		for (; count > 0 && pos < PT_MSR; --count)
1956			if (__put_user((compat_ulong_t) regs[pos++], u++))
1957				return -EFAULT;
1958
1959	if (count > 0 && pos == PT_MSR) {
1960		reg = get_user_msr(target);
1961		if (kbuf)
1962			*k++ = reg;
1963		else if (__put_user(reg, u++))
1964			return -EFAULT;
1965		++pos;
1966		--count;
1967	}
1968
1969	if (kbuf)
1970		for (; count > 0 && pos < PT_REGS_COUNT; --count)
1971			*k++ = regs[pos++];
1972	else
1973		for (; count > 0 && pos < PT_REGS_COUNT; --count)
1974			if (__put_user((compat_ulong_t) regs[pos++], u++))
1975				return -EFAULT;
1976
1977	kbuf = k;
1978	ubuf = u;
1979	pos *= sizeof(reg);
1980	count *= sizeof(reg);
1981	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1982					PT_REGS_COUNT * sizeof(reg), -1);
1983}
1984
1985static int gpr32_set_common(struct task_struct *target,
1986		     const struct user_regset *regset,
1987		     unsigned int pos, unsigned int count,
1988		     const void *kbuf, const void __user *ubuf,
1989		     unsigned long *regs)
1990{
1991	const compat_ulong_t *k = kbuf;
1992	const compat_ulong_t __user *u = ubuf;
1993	compat_ulong_t reg;
1994
1995	pos /= sizeof(reg);
1996	count /= sizeof(reg);
1997
1998	if (kbuf)
1999		for (; count > 0 && pos < PT_MSR; --count)
2000			regs[pos++] = *k++;
2001	else
2002		for (; count > 0 && pos < PT_MSR; --count) {
2003			if (__get_user(reg, u++))
2004				return -EFAULT;
2005			regs[pos++] = reg;
2006		}
2007
2008
2009	if (count > 0 && pos == PT_MSR) {
2010		if (kbuf)
2011			reg = *k++;
2012		else if (__get_user(reg, u++))
2013			return -EFAULT;
2014		set_user_msr(target, reg);
2015		++pos;
2016		--count;
2017	}
2018
2019	if (kbuf) {
2020		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2021			regs[pos++] = *k++;
2022		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2023			++k;
2024	} else {
2025		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2026			if (__get_user(reg, u++))
2027				return -EFAULT;
2028			regs[pos++] = reg;
2029		}
2030		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2031			if (__get_user(reg, u++))
2032				return -EFAULT;
2033	}
2034
2035	if (count > 0 && pos == PT_TRAP) {
2036		if (kbuf)
2037			reg = *k++;
2038		else if (__get_user(reg, u++))
2039			return -EFAULT;
2040		set_user_trap(target, reg);
2041		++pos;
2042		--count;
2043	}
2044
2045	kbuf = k;
2046	ubuf = u;
2047	pos *= sizeof(reg);
2048	count *= sizeof(reg);
2049	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2050					 (PT_TRAP + 1) * sizeof(reg), -1);
2051}
2052
2053#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2054static int tm_cgpr32_get(struct task_struct *target,
2055		     const struct user_regset *regset,
2056		     unsigned int pos, unsigned int count,
2057		     void *kbuf, void __user *ubuf)
2058{
2059	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2060			&target->thread.ckpt_regs.gpr[0]);
2061}
2062
2063static int tm_cgpr32_set(struct task_struct *target,
2064		     const struct user_regset *regset,
2065		     unsigned int pos, unsigned int count,
2066		     const void *kbuf, const void __user *ubuf)
2067{
2068	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2069			&target->thread.ckpt_regs.gpr[0]);
2070}
2071#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2072
2073static int gpr32_get(struct task_struct *target,
2074		     const struct user_regset *regset,
2075		     unsigned int pos, unsigned int count,
2076		     void *kbuf, void __user *ubuf)
2077{
2078	int i;
2079
2080	if (target->thread.regs == NULL)
2081		return -EIO;
2082
2083	if (!FULL_REGS(target->thread.regs)) {
2084		/*
2085		 * We have a partial register set.
2086		 * Fill 14-31 with bogus values.
2087		 */
2088		for (i = 14; i < 32; i++)
2089			target->thread.regs->gpr[i] = NV_REG_POISON;
2090	}
2091	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2092			&target->thread.regs->gpr[0]);
2093}
2094
2095static int gpr32_set(struct task_struct *target,
2096		     const struct user_regset *regset,
2097		     unsigned int pos, unsigned int count,
2098		     const void *kbuf, const void __user *ubuf)
2099{
2100	if (target->thread.regs == NULL)
2101		return -EIO;
2102
2103	CHECK_FULL_REGS(target->thread.regs);
2104	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2105			&target->thread.regs->gpr[0]);
2106}
2107
2108/*
2109 * These are the regset flavors matching the CONFIG_PPC32 native set.
2110 */
2111static const struct user_regset compat_regsets[] = {
2112	[REGSET_GPR] = {
2113		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2114		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2115		.get = gpr32_get, .set = gpr32_set
2116	},
2117	[REGSET_FPR] = {
2118		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2119		.size = sizeof(double), .align = sizeof(double),
2120		.get = fpr_get, .set = fpr_set
2121	},
2122#ifdef CONFIG_ALTIVEC
2123	[REGSET_VMX] = {
2124		.core_note_type = NT_PPC_VMX, .n = 34,
2125		.size = sizeof(vector128), .align = sizeof(vector128),
2126		.active = vr_active, .get = vr_get, .set = vr_set
2127	},
2128#endif
2129#ifdef CONFIG_SPE
2130	[REGSET_SPE] = {
2131		.core_note_type = NT_PPC_SPE, .n = 35,
2132		.size = sizeof(u32), .align = sizeof(u32),
2133		.active = evr_active, .get = evr_get, .set = evr_set
2134	},
2135#endif
2136#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2137	[REGSET_TM_CGPR] = {
2138		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2139		.size = sizeof(long), .align = sizeof(long),
2140		.active = tm_cgpr_active,
2141		.get = tm_cgpr32_get, .set = tm_cgpr32_set
2142	},
2143	[REGSET_TM_CFPR] = {
2144		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2145		.size = sizeof(double), .align = sizeof(double),
2146		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2147	},
2148	[REGSET_TM_CVMX] = {
2149		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2150		.size = sizeof(vector128), .align = sizeof(vector128),
2151		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2152	},
2153	[REGSET_TM_CVSX] = {
2154		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2155		.size = sizeof(double), .align = sizeof(double),
2156		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2157	},
2158	[REGSET_TM_SPR] = {
2159		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2160		.size = sizeof(u64), .align = sizeof(u64),
2161		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2162	},
2163	[REGSET_TM_CTAR] = {
2164		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
2165		.size = sizeof(u64), .align = sizeof(u64),
2166		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2167	},
2168	[REGSET_TM_CPPR] = {
2169		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
2170		.size = sizeof(u64), .align = sizeof(u64),
2171		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2172	},
2173	[REGSET_TM_CDSCR] = {
2174		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2175		.size = sizeof(u64), .align = sizeof(u64),
2176		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2177	},
2178#endif
2179#ifdef CONFIG_PPC64
2180	[REGSET_PPR] = {
2181		.core_note_type = NT_PPC_PPR, .n = 1,
2182		.size = sizeof(u64), .align = sizeof(u64),
2183		.get = ppr_get, .set = ppr_set
2184	},
2185	[REGSET_DSCR] = {
2186		.core_note_type = NT_PPC_DSCR, .n = 1,
2187		.size = sizeof(u64), .align = sizeof(u64),
2188		.get = dscr_get, .set = dscr_set
2189	},
2190#endif
2191#ifdef CONFIG_PPC_BOOK3S_64
2192	[REGSET_TAR] = {
2193		.core_note_type = NT_PPC_TAR, .n = 1,
2194		.size = sizeof(u64), .align = sizeof(u64),
2195		.get = tar_get, .set = tar_set
2196	},
2197	[REGSET_EBB] = {
2198		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2199		.size = sizeof(u64), .align = sizeof(u64),
2200		.active = ebb_active, .get = ebb_get, .set = ebb_set
2201	},
2202#endif
2203};
2204
2205static const struct user_regset_view user_ppc_compat_view = {
2206	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2207	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2208};
2209#endif	/* CONFIG_PPC64 */
2210
2211const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2212{
2213#ifdef CONFIG_PPC64
2214	if (test_tsk_thread_flag(task, TIF_32BIT))
2215		return &user_ppc_compat_view;
2216#endif
2217	return &user_ppc_native_view;
2218}
2219
2220
2221void user_enable_single_step(struct task_struct *task)
2222{
2223	struct pt_regs *regs = task->thread.regs;
2224
2225	if (regs != NULL) {
2226#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2227		task->thread.debug.dbcr0 &= ~DBCR0_BT;
2228		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2229		regs->msr |= MSR_DE;
2230#else
2231		regs->msr &= ~MSR_BE;
2232		regs->msr |= MSR_SE;
2233#endif
2234	}
2235	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2236}
2237
2238void user_enable_block_step(struct task_struct *task)
2239{
2240	struct pt_regs *regs = task->thread.regs;
2241
2242	if (regs != NULL) {
2243#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2244		task->thread.debug.dbcr0 &= ~DBCR0_IC;
2245		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2246		regs->msr |= MSR_DE;
2247#else
2248		regs->msr &= ~MSR_SE;
2249		regs->msr |= MSR_BE;
2250#endif
2251	}
2252	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2253}
2254
2255void user_disable_single_step(struct task_struct *task)
2256{
2257	struct pt_regs *regs = task->thread.regs;
2258
2259	if (regs != NULL) {
2260#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2261		/*
2262		 * The logic to disable single stepping should be as
2263		 * simple as turning off the Instruction Complete flag.
2264		 * And, after doing so, if all debug flags are off, turn
2265		 * off DBCR0(IDM) and MSR(DE) .... Torez
2266		 */
2267		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2268		/*
2269		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2270		 */
2271		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2272					task->thread.debug.dbcr1)) {
2273			/*
2274			 * All debug events were off.....
2275			 */
2276			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2277			regs->msr &= ~MSR_DE;
2278		}
2279#else
2280		regs->msr &= ~(MSR_SE | MSR_BE);
2281#endif
2282	}
2283	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2284}
2285
2286#ifdef CONFIG_HAVE_HW_BREAKPOINT
2287void ptrace_triggered(struct perf_event *bp,
2288		      struct perf_sample_data *data, struct pt_regs *regs)
2289{
2290	struct perf_event_attr attr;
2291
2292	/*
2293	 * Disable the breakpoint request here since ptrace has defined a
2294	 * one-shot behaviour for breakpoint exceptions in PPC64.
2295	 * The SIGTRAP signal is generated automatically for us in do_dabr().
2296	 * We don't have to do anything about that here
2297	 */
2298	attr = bp->attr;
2299	attr.disabled = true;
2300	modify_user_hw_breakpoint(bp, &attr);
2301}
2302#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2303
2304static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2305			       unsigned long data)
2306{
2307#ifdef CONFIG_HAVE_HW_BREAKPOINT
2308	int ret;
2309	struct thread_struct *thread = &(task->thread);
2310	struct perf_event *bp;
2311	struct perf_event_attr attr;
2312#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2313#ifndef CONFIG_PPC_ADV_DEBUG_REGS
 
2314	struct arch_hw_breakpoint hw_brk;
2315#endif
2316
2317	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2318	 *  For embedded processors we support one DAC and no IAC's at the
2319	 *  moment.
2320	 */
2321	if (addr > 0)
2322		return -EINVAL;
2323
2324	/* The bottom 3 bits in dabr are flags */
2325	if ((data & ~0x7UL) >= TASK_SIZE)
2326		return -EIO;
2327
2328#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2329	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2330	 *  It was assumed, on previous implementations, that 3 bits were
2331	 *  passed together with the data address, fitting the design of the
2332	 *  DABR register, as follows:
2333	 *
2334	 *  bit 0: Read flag
2335	 *  bit 1: Write flag
2336	 *  bit 2: Breakpoint translation
2337	 *
2338	 *  Thus, we use them here as so.
2339	 */
2340
2341	/* Ensure breakpoint translation bit is set */
2342	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2343		return -EIO;
2344	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2345	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2346	hw_brk.len = 8;
 
2347#ifdef CONFIG_HAVE_HW_BREAKPOINT
2348	bp = thread->ptrace_bps[0];
2349	if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2350		if (bp) {
2351			unregister_hw_breakpoint(bp);
2352			thread->ptrace_bps[0] = NULL;
2353		}
2354		return 0;
2355	}
2356	if (bp) {
2357		attr = bp->attr;
2358		attr.bp_addr = hw_brk.address;
2359		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2360
2361		/* Enable breakpoint */
2362		attr.disabled = false;
2363
2364		ret =  modify_user_hw_breakpoint(bp, &attr);
2365		if (ret) {
2366			return ret;
2367		}
2368		thread->ptrace_bps[0] = bp;
2369		thread->hw_brk = hw_brk;
2370		return 0;
2371	}
2372
2373	/* Create a new breakpoint request if one doesn't exist already */
2374	hw_breakpoint_init(&attr);
2375	attr.bp_addr = hw_brk.address;
2376	arch_bp_generic_fields(hw_brk.type,
2377			       &attr.bp_type);
2378
2379	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2380					       ptrace_triggered, NULL, task);
2381	if (IS_ERR(bp)) {
2382		thread->ptrace_bps[0] = NULL;
2383		return PTR_ERR(bp);
2384	}
2385
 
 
 
2386#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2387	task->thread.hw_brk = hw_brk;
2388#else /* CONFIG_PPC_ADV_DEBUG_REGS */
2389	/* As described above, it was assumed 3 bits were passed with the data
2390	 *  address, but we will assume only the mode bits will be passed
2391	 *  as to not cause alignment restrictions for DAC-based processors.
2392	 */
2393
2394	/* DAC's hold the whole address without any mode flags */
2395	task->thread.debug.dac1 = data & ~0x3UL;
2396
2397	if (task->thread.debug.dac1 == 0) {
2398		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2399		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2400					task->thread.debug.dbcr1)) {
2401			task->thread.regs->msr &= ~MSR_DE;
2402			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2403		}
2404		return 0;
2405	}
2406
2407	/* Read or Write bits must be set */
2408
2409	if (!(data & 0x3UL))
2410		return -EINVAL;
2411
2412	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2413	   register */
2414	task->thread.debug.dbcr0 |= DBCR0_IDM;
2415
2416	/* Check for write and read flags and set DBCR0
2417	   accordingly */
2418	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2419	if (data & 0x1UL)
2420		dbcr_dac(task) |= DBCR_DAC1R;
2421	if (data & 0x2UL)
2422		dbcr_dac(task) |= DBCR_DAC1W;
2423	task->thread.regs->msr |= MSR_DE;
2424#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2425	return 0;
2426}
2427
2428/*
2429 * Called by kernel/ptrace.c when detaching..
2430 *
2431 * Make sure single step bits etc are not set.
2432 */
2433void ptrace_disable(struct task_struct *child)
2434{
2435	/* make sure the single step bit is not set. */
2436	user_disable_single_step(child);
2437}
2438
2439#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2440static long set_instruction_bp(struct task_struct *child,
2441			      struct ppc_hw_breakpoint *bp_info)
2442{
2443	int slot;
2444	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2445	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2446	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2447	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2448
2449	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2450		slot2_in_use = 1;
2451	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2452		slot4_in_use = 1;
2453
2454	if (bp_info->addr >= TASK_SIZE)
2455		return -EIO;
2456
2457	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2458
2459		/* Make sure range is valid. */
2460		if (bp_info->addr2 >= TASK_SIZE)
2461			return -EIO;
2462
2463		/* We need a pair of IAC regsisters */
2464		if ((!slot1_in_use) && (!slot2_in_use)) {
2465			slot = 1;
2466			child->thread.debug.iac1 = bp_info->addr;
2467			child->thread.debug.iac2 = bp_info->addr2;
2468			child->thread.debug.dbcr0 |= DBCR0_IAC1;
2469			if (bp_info->addr_mode ==
2470					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2471				dbcr_iac_range(child) |= DBCR_IAC12X;
2472			else
2473				dbcr_iac_range(child) |= DBCR_IAC12I;
2474#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2475		} else if ((!slot3_in_use) && (!slot4_in_use)) {
2476			slot = 3;
2477			child->thread.debug.iac3 = bp_info->addr;
2478			child->thread.debug.iac4 = bp_info->addr2;
2479			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2480			if (bp_info->addr_mode ==
2481					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2482				dbcr_iac_range(child) |= DBCR_IAC34X;
2483			else
2484				dbcr_iac_range(child) |= DBCR_IAC34I;
2485#endif
2486		} else
2487			return -ENOSPC;
2488	} else {
2489		/* We only need one.  If possible leave a pair free in
2490		 * case a range is needed later
2491		 */
2492		if (!slot1_in_use) {
2493			/*
2494			 * Don't use iac1 if iac1-iac2 are free and either
2495			 * iac3 or iac4 (but not both) are free
2496			 */
2497			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2498				slot = 1;
2499				child->thread.debug.iac1 = bp_info->addr;
2500				child->thread.debug.dbcr0 |= DBCR0_IAC1;
2501				goto out;
2502			}
2503		}
2504		if (!slot2_in_use) {
2505			slot = 2;
2506			child->thread.debug.iac2 = bp_info->addr;
2507			child->thread.debug.dbcr0 |= DBCR0_IAC2;
2508#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2509		} else if (!slot3_in_use) {
2510			slot = 3;
2511			child->thread.debug.iac3 = bp_info->addr;
2512			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2513		} else if (!slot4_in_use) {
2514			slot = 4;
2515			child->thread.debug.iac4 = bp_info->addr;
2516			child->thread.debug.dbcr0 |= DBCR0_IAC4;
2517#endif
2518		} else
2519			return -ENOSPC;
2520	}
2521out:
2522	child->thread.debug.dbcr0 |= DBCR0_IDM;
2523	child->thread.regs->msr |= MSR_DE;
2524
2525	return slot;
2526}
2527
2528static int del_instruction_bp(struct task_struct *child, int slot)
2529{
2530	switch (slot) {
2531	case 1:
2532		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2533			return -ENOENT;
2534
2535		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2536			/* address range - clear slots 1 & 2 */
2537			child->thread.debug.iac2 = 0;
2538			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2539		}
2540		child->thread.debug.iac1 = 0;
2541		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2542		break;
2543	case 2:
2544		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2545			return -ENOENT;
2546
2547		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2548			/* used in a range */
2549			return -EINVAL;
2550		child->thread.debug.iac2 = 0;
2551		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2552		break;
2553#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2554	case 3:
2555		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2556			return -ENOENT;
2557
2558		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2559			/* address range - clear slots 3 & 4 */
2560			child->thread.debug.iac4 = 0;
2561			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2562		}
2563		child->thread.debug.iac3 = 0;
2564		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2565		break;
2566	case 4:
2567		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2568			return -ENOENT;
2569
2570		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2571			/* Used in a range */
2572			return -EINVAL;
2573		child->thread.debug.iac4 = 0;
2574		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2575		break;
2576#endif
2577	default:
2578		return -EINVAL;
2579	}
2580	return 0;
2581}
2582
2583static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2584{
2585	int byte_enable =
2586		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2587		& 0xf;
2588	int condition_mode =
2589		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2590	int slot;
2591
2592	if (byte_enable && (condition_mode == 0))
2593		return -EINVAL;
2594
2595	if (bp_info->addr >= TASK_SIZE)
2596		return -EIO;
2597
2598	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2599		slot = 1;
2600		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2601			dbcr_dac(child) |= DBCR_DAC1R;
2602		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2603			dbcr_dac(child) |= DBCR_DAC1W;
2604		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2605#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2606		if (byte_enable) {
2607			child->thread.debug.dvc1 =
2608				(unsigned long)bp_info->condition_value;
2609			child->thread.debug.dbcr2 |=
2610				((byte_enable << DBCR2_DVC1BE_SHIFT) |
2611				 (condition_mode << DBCR2_DVC1M_SHIFT));
2612		}
2613#endif
2614#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2615	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2616		/* Both dac1 and dac2 are part of a range */
2617		return -ENOSPC;
2618#endif
2619	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2620		slot = 2;
2621		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2622			dbcr_dac(child) |= DBCR_DAC2R;
2623		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2624			dbcr_dac(child) |= DBCR_DAC2W;
2625		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2626#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2627		if (byte_enable) {
2628			child->thread.debug.dvc2 =
2629				(unsigned long)bp_info->condition_value;
2630			child->thread.debug.dbcr2 |=
2631				((byte_enable << DBCR2_DVC2BE_SHIFT) |
2632				 (condition_mode << DBCR2_DVC2M_SHIFT));
2633		}
2634#endif
2635	} else
2636		return -ENOSPC;
2637	child->thread.debug.dbcr0 |= DBCR0_IDM;
2638	child->thread.regs->msr |= MSR_DE;
2639
2640	return slot + 4;
2641}
2642
2643static int del_dac(struct task_struct *child, int slot)
2644{
2645	if (slot == 1) {
2646		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2647			return -ENOENT;
2648
2649		child->thread.debug.dac1 = 0;
2650		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2651#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2652		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2653			child->thread.debug.dac2 = 0;
2654			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2655		}
2656		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2657#endif
2658#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2659		child->thread.debug.dvc1 = 0;
2660#endif
2661	} else if (slot == 2) {
2662		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2663			return -ENOENT;
2664
2665#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2666		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2667			/* Part of a range */
2668			return -EINVAL;
2669		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2670#endif
2671#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2672		child->thread.debug.dvc2 = 0;
2673#endif
2674		child->thread.debug.dac2 = 0;
2675		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2676	} else
2677		return -EINVAL;
2678
2679	return 0;
2680}
2681#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2682
2683#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2684static int set_dac_range(struct task_struct *child,
2685			 struct ppc_hw_breakpoint *bp_info)
2686{
2687	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2688
2689	/* We don't allow range watchpoints to be used with DVC */
2690	if (bp_info->condition_mode)
2691		return -EINVAL;
2692
2693	/*
2694	 * Best effort to verify the address range.  The user/supervisor bits
2695	 * prevent trapping in kernel space, but let's fail on an obvious bad
2696	 * range.  The simple test on the mask is not fool-proof, and any
2697	 * exclusive range will spill over into kernel space.
2698	 */
2699	if (bp_info->addr >= TASK_SIZE)
2700		return -EIO;
2701	if (mode == PPC_BREAKPOINT_MODE_MASK) {
2702		/*
2703		 * dac2 is a bitmask.  Don't allow a mask that makes a
2704		 * kernel space address from a valid dac1 value
2705		 */
2706		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2707			return -EIO;
2708	} else {
2709		/*
2710		 * For range breakpoints, addr2 must also be a valid address
2711		 */
2712		if (bp_info->addr2 >= TASK_SIZE)
2713			return -EIO;
2714	}
2715
2716	if (child->thread.debug.dbcr0 &
2717	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2718		return -ENOSPC;
2719
2720	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2721		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2722	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2723		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2724	child->thread.debug.dac1 = bp_info->addr;
2725	child->thread.debug.dac2 = bp_info->addr2;
2726	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2727		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2728	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2729		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2730	else	/* PPC_BREAKPOINT_MODE_MASK */
2731		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2732	child->thread.regs->msr |= MSR_DE;
2733
2734	return 5;
2735}
2736#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2737
2738static long ppc_set_hwdebug(struct task_struct *child,
2739		     struct ppc_hw_breakpoint *bp_info)
2740{
2741#ifdef CONFIG_HAVE_HW_BREAKPOINT
2742	int len = 0;
2743	struct thread_struct *thread = &(child->thread);
2744	struct perf_event *bp;
2745	struct perf_event_attr attr;
2746#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2747#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2748	struct arch_hw_breakpoint brk;
2749#endif
2750
2751	if (bp_info->version != 1)
2752		return -ENOTSUPP;
2753#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2754	/*
2755	 * Check for invalid flags and combinations
2756	 */
2757	if ((bp_info->trigger_type == 0) ||
2758	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2759				       PPC_BREAKPOINT_TRIGGER_RW)) ||
2760	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2761	    (bp_info->condition_mode &
2762	     ~(PPC_BREAKPOINT_CONDITION_MODE |
2763	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
2764		return -EINVAL;
2765#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2766	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2767		return -EINVAL;
2768#endif
2769
2770	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2771		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2772		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2773			return -EINVAL;
2774		return set_instruction_bp(child, bp_info);
2775	}
2776	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2777		return set_dac(child, bp_info);
2778
2779#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2780	return set_dac_range(child, bp_info);
2781#else
2782	return -EINVAL;
2783#endif
2784#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2785	/*
2786	 * We only support one data breakpoint
2787	 */
2788	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2789	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2790	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2791		return -EINVAL;
2792
2793	if ((unsigned long)bp_info->addr >= TASK_SIZE)
2794		return -EIO;
2795
2796	brk.address = bp_info->addr & ~7UL;
2797	brk.type = HW_BRK_TYPE_TRANSLATE;
2798	brk.len = 8;
2799	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2800		brk.type |= HW_BRK_TYPE_READ;
2801	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2802		brk.type |= HW_BRK_TYPE_WRITE;
2803#ifdef CONFIG_HAVE_HW_BREAKPOINT
2804	/*
2805	 * Check if the request is for 'range' breakpoints. We can
2806	 * support it if range < 8 bytes.
2807	 */
2808	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2809		len = bp_info->addr2 - bp_info->addr;
2810	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2811		len = 1;
2812	else
2813		return -EINVAL;
2814	bp = thread->ptrace_bps[0];
2815	if (bp)
2816		return -ENOSPC;
2817
2818	/* Create a new breakpoint request if one doesn't exist already */
2819	hw_breakpoint_init(&attr);
2820	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2821	attr.bp_len = len;
2822	arch_bp_generic_fields(brk.type, &attr.bp_type);
2823
2824	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2825					       ptrace_triggered, NULL, child);
2826	if (IS_ERR(bp)) {
2827		thread->ptrace_bps[0] = NULL;
2828		return PTR_ERR(bp);
2829	}
2830
2831	return 1;
2832#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2833
2834	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2835		return -EINVAL;
2836
2837	if (child->thread.hw_brk.address)
2838		return -ENOSPC;
2839
 
 
 
2840	child->thread.hw_brk = brk;
2841
2842	return 1;
2843#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2844}
2845
2846static long ppc_del_hwdebug(struct task_struct *child, long data)
2847{
2848#ifdef CONFIG_HAVE_HW_BREAKPOINT
2849	int ret = 0;
2850	struct thread_struct *thread = &(child->thread);
2851	struct perf_event *bp;
2852#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2853#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2854	int rc;
2855
2856	if (data <= 4)
2857		rc = del_instruction_bp(child, (int)data);
2858	else
2859		rc = del_dac(child, (int)data - 4);
2860
2861	if (!rc) {
2862		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2863					child->thread.debug.dbcr1)) {
2864			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2865			child->thread.regs->msr &= ~MSR_DE;
2866		}
2867	}
2868	return rc;
2869#else
2870	if (data != 1)
2871		return -EINVAL;
2872
2873#ifdef CONFIG_HAVE_HW_BREAKPOINT
2874	bp = thread->ptrace_bps[0];
2875	if (bp) {
2876		unregister_hw_breakpoint(bp);
2877		thread->ptrace_bps[0] = NULL;
2878	} else
2879		ret = -ENOENT;
2880	return ret;
2881#else /* CONFIG_HAVE_HW_BREAKPOINT */
2882	if (child->thread.hw_brk.address == 0)
2883		return -ENOENT;
2884
2885	child->thread.hw_brk.address = 0;
2886	child->thread.hw_brk.type = 0;
2887#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2888
2889	return 0;
2890#endif
2891}
2892
2893long arch_ptrace(struct task_struct *child, long request,
2894		 unsigned long addr, unsigned long data)
2895{
2896	int ret = -EPERM;
2897	void __user *datavp = (void __user *) data;
2898	unsigned long __user *datalp = datavp;
2899
2900	switch (request) {
2901	/* read the word at location addr in the USER area. */
2902	case PTRACE_PEEKUSR: {
2903		unsigned long index, tmp;
2904
2905		ret = -EIO;
2906		/* convert to index and check */
2907#ifdef CONFIG_PPC32
2908		index = addr >> 2;
2909		if ((addr & 3) || (index > PT_FPSCR)
2910		    || (child->thread.regs == NULL))
2911#else
2912		index = addr >> 3;
2913		if ((addr & 7) || (index > PT_FPSCR))
2914#endif
2915			break;
2916
2917		CHECK_FULL_REGS(child->thread.regs);
2918		if (index < PT_FPR0) {
2919			ret = ptrace_get_reg(child, (int) index, &tmp);
2920			if (ret)
2921				break;
2922		} else {
2923			unsigned int fpidx = index - PT_FPR0;
2924
2925			flush_fp_to_thread(child);
2926			if (fpidx < (PT_FPSCR - PT_FPR0))
2927				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2928				       sizeof(long));
2929			else
2930				tmp = child->thread.fp_state.fpscr;
2931		}
2932		ret = put_user(tmp, datalp);
2933		break;
2934	}
2935
2936	/* write the word at location addr in the USER area */
2937	case PTRACE_POKEUSR: {
2938		unsigned long index;
2939
2940		ret = -EIO;
2941		/* convert to index and check */
2942#ifdef CONFIG_PPC32
2943		index = addr >> 2;
2944		if ((addr & 3) || (index > PT_FPSCR)
2945		    || (child->thread.regs == NULL))
2946#else
2947		index = addr >> 3;
2948		if ((addr & 7) || (index > PT_FPSCR))
2949#endif
2950			break;
2951
2952		CHECK_FULL_REGS(child->thread.regs);
2953		if (index < PT_FPR0) {
2954			ret = ptrace_put_reg(child, index, data);
2955		} else {
2956			unsigned int fpidx = index - PT_FPR0;
2957
2958			flush_fp_to_thread(child);
2959			if (fpidx < (PT_FPSCR - PT_FPR0))
2960				memcpy(&child->thread.TS_FPR(fpidx), &data,
2961				       sizeof(long));
2962			else
2963				child->thread.fp_state.fpscr = data;
2964			ret = 0;
2965		}
2966		break;
2967	}
2968
2969	case PPC_PTRACE_GETHWDBGINFO: {
2970		struct ppc_debug_info dbginfo;
2971
2972		dbginfo.version = 1;
2973#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2974		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2975		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2976		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2977		dbginfo.data_bp_alignment = 4;
2978		dbginfo.sizeof_condition = 4;
2979		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2980				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
2981#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2982		dbginfo.features |=
2983				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2984				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
2985#endif
2986#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2987		dbginfo.num_instruction_bps = 0;
2988		dbginfo.num_data_bps = 1;
 
 
 
2989		dbginfo.num_condition_regs = 0;
2990#ifdef CONFIG_PPC64
2991		dbginfo.data_bp_alignment = 8;
2992#else
2993		dbginfo.data_bp_alignment = 4;
2994#endif
2995		dbginfo.sizeof_condition = 0;
2996#ifdef CONFIG_HAVE_HW_BREAKPOINT
2997		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2998		if (cpu_has_feature(CPU_FTR_DAWR))
2999			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3000#else
3001		dbginfo.features = 0;
3002#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3003#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3004
3005		if (!access_ok(VERIFY_WRITE, datavp,
3006			       sizeof(struct ppc_debug_info)))
3007			return -EFAULT;
3008		ret = __copy_to_user(datavp, &dbginfo,
3009				     sizeof(struct ppc_debug_info)) ?
3010		      -EFAULT : 0;
3011		break;
3012	}
3013
3014	case PPC_PTRACE_SETHWDEBUG: {
3015		struct ppc_hw_breakpoint bp_info;
3016
3017		if (!access_ok(VERIFY_READ, datavp,
3018			       sizeof(struct ppc_hw_breakpoint)))
3019			return -EFAULT;
3020		ret = __copy_from_user(&bp_info, datavp,
3021				       sizeof(struct ppc_hw_breakpoint)) ?
3022		      -EFAULT : 0;
3023		if (!ret)
3024			ret = ppc_set_hwdebug(child, &bp_info);
3025		break;
3026	}
3027
3028	case PPC_PTRACE_DELHWDEBUG: {
3029		ret = ppc_del_hwdebug(child, data);
3030		break;
3031	}
3032
3033	case PTRACE_GET_DEBUGREG: {
3034#ifndef CONFIG_PPC_ADV_DEBUG_REGS
3035		unsigned long dabr_fake;
3036#endif
3037		ret = -EINVAL;
3038		/* We only support one DABR and no IABRS at the moment */
3039		if (addr > 0)
3040			break;
3041#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3042		ret = put_user(child->thread.debug.dac1, datalp);
3043#else
3044		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3045			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3046		ret = put_user(dabr_fake, datalp);
3047#endif
3048		break;
3049	}
3050
3051	case PTRACE_SET_DEBUGREG:
3052		ret = ptrace_set_debugreg(child, addr, data);
3053		break;
3054
3055#ifdef CONFIG_PPC64
3056	case PTRACE_GETREGS64:
3057#endif
3058	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
3059		return copy_regset_to_user(child, &user_ppc_native_view,
3060					   REGSET_GPR,
3061					   0, sizeof(struct pt_regs),
3062					   datavp);
3063
3064#ifdef CONFIG_PPC64
3065	case PTRACE_SETREGS64:
3066#endif
3067	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
3068		return copy_regset_from_user(child, &user_ppc_native_view,
3069					     REGSET_GPR,
3070					     0, sizeof(struct pt_regs),
3071					     datavp);
3072
3073	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3074		return copy_regset_to_user(child, &user_ppc_native_view,
3075					   REGSET_FPR,
3076					   0, sizeof(elf_fpregset_t),
3077					   datavp);
3078
3079	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3080		return copy_regset_from_user(child, &user_ppc_native_view,
3081					     REGSET_FPR,
3082					     0, sizeof(elf_fpregset_t),
3083					     datavp);
3084
3085#ifdef CONFIG_ALTIVEC
3086	case PTRACE_GETVRREGS:
3087		return copy_regset_to_user(child, &user_ppc_native_view,
3088					   REGSET_VMX,
3089					   0, (33 * sizeof(vector128) +
3090					       sizeof(u32)),
3091					   datavp);
3092
3093	case PTRACE_SETVRREGS:
3094		return copy_regset_from_user(child, &user_ppc_native_view,
3095					     REGSET_VMX,
3096					     0, (33 * sizeof(vector128) +
3097						 sizeof(u32)),
3098					     datavp);
3099#endif
3100#ifdef CONFIG_VSX
3101	case PTRACE_GETVSRREGS:
3102		return copy_regset_to_user(child, &user_ppc_native_view,
3103					   REGSET_VSX,
3104					   0, 32 * sizeof(double),
3105					   datavp);
3106
3107	case PTRACE_SETVSRREGS:
3108		return copy_regset_from_user(child, &user_ppc_native_view,
3109					     REGSET_VSX,
3110					     0, 32 * sizeof(double),
3111					     datavp);
3112#endif
3113#ifdef CONFIG_SPE
3114	case PTRACE_GETEVRREGS:
3115		/* Get the child spe register state. */
3116		return copy_regset_to_user(child, &user_ppc_native_view,
3117					   REGSET_SPE, 0, 35 * sizeof(u32),
3118					   datavp);
3119
3120	case PTRACE_SETEVRREGS:
3121		/* Set the child spe register state. */
3122		return copy_regset_from_user(child, &user_ppc_native_view,
3123					     REGSET_SPE, 0, 35 * sizeof(u32),
3124					     datavp);
3125#endif
3126
3127	default:
3128		ret = ptrace_request(child, request, addr, data);
3129		break;
3130	}
3131	return ret;
3132}
3133
3134#ifdef CONFIG_SECCOMP
3135static int do_seccomp(struct pt_regs *regs)
3136{
3137	if (!test_thread_flag(TIF_SECCOMP))
3138		return 0;
3139
3140	/*
3141	 * The ABI we present to seccomp tracers is that r3 contains
3142	 * the syscall return value and orig_gpr3 contains the first
3143	 * syscall parameter. This is different to the ptrace ABI where
3144	 * both r3 and orig_gpr3 contain the first syscall parameter.
3145	 */
3146	regs->gpr[3] = -ENOSYS;
3147
3148	/*
3149	 * We use the __ version here because we have already checked
3150	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3151	 * have already loaded -ENOSYS into r3, or seccomp has put
3152	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3153	 */
3154	if (__secure_computing(NULL))
3155		return -1;
3156
3157	/*
3158	 * The syscall was allowed by seccomp, restore the register
3159	 * state to what audit expects.
3160	 * Note that we use orig_gpr3, which means a seccomp tracer can
3161	 * modify the first syscall parameter (in orig_gpr3) and also
3162	 * allow the syscall to proceed.
3163	 */
3164	regs->gpr[3] = regs->orig_gpr3;
3165
3166	return 0;
3167}
3168#else
3169static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3170#endif /* CONFIG_SECCOMP */
3171
3172/**
3173 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3174 * @regs: the pt_regs of the task to trace (current)
3175 *
3176 * Performs various types of tracing on syscall entry. This includes seccomp,
3177 * ptrace, syscall tracepoints and audit.
3178 *
3179 * The pt_regs are potentially visible to userspace via ptrace, so their
3180 * contents is ABI.
3181 *
3182 * One or more of the tracers may modify the contents of pt_regs, in particular
3183 * to modify arguments or even the syscall number itself.
3184 *
3185 * It's also possible that a tracer can choose to reject the system call. In
3186 * that case this function will return an illegal syscall number, and will put
3187 * an appropriate return value in regs->r3.
3188 *
3189 * Return: the (possibly changed) syscall number.
3190 */
3191long do_syscall_trace_enter(struct pt_regs *regs)
3192{
3193	user_exit();
3194
3195	/*
3196	 * The tracer may decide to abort the syscall, if so tracehook
3197	 * will return !0. Note that the tracer may also just change
3198	 * regs->gpr[0] to an invalid syscall number, that is handled
3199	 * below on the exit path.
3200	 */
3201	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3202	    tracehook_report_syscall_entry(regs))
3203		goto skip;
3204
3205	/* Run seccomp after ptrace; allow it to set gpr[3]. */
3206	if (do_seccomp(regs))
3207		return -1;
3208
3209	/* Avoid trace and audit when syscall is invalid. */
3210	if (regs->gpr[0] >= NR_syscalls)
3211		goto skip;
3212
3213	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3214		trace_sys_enter(regs, regs->gpr[0]);
3215
3216#ifdef CONFIG_PPC64
3217	if (!is_32bit_task())
3218		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3219				    regs->gpr[5], regs->gpr[6]);
3220	else
3221#endif
3222		audit_syscall_entry(regs->gpr[0],
3223				    regs->gpr[3] & 0xffffffff,
3224				    regs->gpr[4] & 0xffffffff,
3225				    regs->gpr[5] & 0xffffffff,
3226				    regs->gpr[6] & 0xffffffff);
3227
3228	/* Return the possibly modified but valid syscall number */
3229	return regs->gpr[0];
3230
3231skip:
3232	/*
3233	 * If we are aborting explicitly, or if the syscall number is
3234	 * now invalid, set the return value to -ENOSYS.
3235	 */
3236	regs->gpr[3] = -ENOSYS;
3237	return -1;
3238}
3239
3240void do_syscall_trace_leave(struct pt_regs *regs)
3241{
3242	int step;
3243
3244	audit_syscall_exit(regs);
3245
3246	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3247		trace_sys_exit(regs, regs->result);
3248
3249	step = test_thread_flag(TIF_SINGLESTEP);
3250	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3251		tracehook_report_syscall_exit(regs, step);
3252
3253	user_enter();
3254}