Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28
 29#include <asm/time.h>
 30#include <asm/pgtable.h>
 31#include <asm/processor.h>
 32#include <asm/bootinfo.h>
 33#include <asm/pmon.h>
 34#include <asm/cacheflush.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mipsregs.h>
 37#include <asm/bmips.h>
 38#include <asm/traps.h>
 39#include <asm/barrier.h>
 40#include <asm/cpu-features.h>
 41
 42static int __maybe_unused max_cpus = 1;
 43
 44/* these may be configured by the platform code */
 45int bmips_smp_enabled = 1;
 46int bmips_cpu_offset;
 47cpumask_t bmips_booted_mask;
 48unsigned long bmips_tp1_irqs = IE_IRQ1;
 49
 50#define RESET_FROM_KSEG0		0x80080800
 51#define RESET_FROM_KSEG1		0xa0080800
 52
 53static void bmips_set_reset_vec(int cpu, u32 val);
 54
 55#ifdef CONFIG_SMP
 56
 57/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 58unsigned long bmips_smp_boot_sp;
 59unsigned long bmips_smp_boot_gp;
 60
 61static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 62static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 63static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 64static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 65
 66/* SW interrupts 0,1 are used for interprocessor signaling */
 67#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 68#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 69
 70#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 71#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 72#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 74
 75static void __init bmips_smp_setup(void)
 76{
 77	int i, cpu = 1, boot_cpu = 0;
 78	int cpu_hw_intr;
 79
 80	switch (current_cpu_type()) {
 81	case CPU_BMIPS4350:
 82	case CPU_BMIPS4380:
 83		/* arbitration priority */
 84		clear_c0_brcm_cmt_ctrl(0x30);
 85
 86		/* NBK and weak order flags */
 87		set_c0_brcm_config_0(0x30000);
 88
 89		/* Find out if we are running on TP0 or TP1 */
 90		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 91
 92		/*
 93		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 94		 * thread
 95		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 96		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 97		 */
 98		if (boot_cpu == 0)
 99			cpu_hw_intr = 0x02;
100		else
101			cpu_hw_intr = 0x1d;
102
103		change_c0_brcm_cmt_intr(0xf8018000,
104					(cpu_hw_intr << 27) | (0x03 << 15));
105
106		/* single core, 2 threads (2 pipelines) */
107		max_cpus = 2;
108
109		break;
110	case CPU_BMIPS5000:
111		/* enable raceless SW interrupts */
112		set_c0_brcm_config(0x03 << 22);
113
114		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117		/* N cores, 2 threads per core */
118		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120		/* clear any pending SW interrupts */
121		for (i = 0; i < max_cpus; i++) {
122			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124		}
125
126		break;
127	default:
128		max_cpus = 1;
129	}
130
131	if (!bmips_smp_enabled)
132		max_cpus = 1;
133
134	/* this can be overridden by the BSP */
135	if (!board_ebase_setup)
136		board_ebase_setup = &bmips_ebase_setup;
137
138	__cpu_number_map[boot_cpu] = 0;
139	__cpu_logical_map[0] = boot_cpu;
140
141	for (i = 0; i < max_cpus; i++) {
142		if (i != boot_cpu) {
143			__cpu_number_map[i] = cpu;
144			__cpu_logical_map[cpu] = i;
145			cpu++;
146		}
147		set_cpu_possible(i, 1);
148		set_cpu_present(i, 1);
149	}
150}
151
152/*
153 * IPI IRQ setup - runs on CPU0
154 */
155static void bmips_prepare_cpus(unsigned int max_cpus)
156{
157	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159	switch (current_cpu_type()) {
160	case CPU_BMIPS4350:
161	case CPU_BMIPS4380:
162		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163		break;
164	case CPU_BMIPS5000:
165		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166		break;
167	default:
168		return;
169	}
170
171	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
172			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
173		panic("Can't request IPI0 interrupt");
174	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
175			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
176		panic("Can't request IPI1 interrupt");
177}
178
179/*
180 * Tell the hardware to boot CPUx - runs on CPU0
181 */
182static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183{
184	bmips_smp_boot_sp = __KSTK_TOS(idle);
185	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186	mb();
187
188	/*
189	 * Initial boot sequence for secondary CPU:
190	 *   bmips_reset_nmi_vec @ a000_0000 ->
191	 *   bmips_smp_entry ->
192	 *   plat_wired_tlb_setup (cached function call; optional) ->
193	 *   start_secondary (cached jump)
194	 *
195	 * Warm restart sequence:
196	 *   play_dead WAIT loop ->
197	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198	 *   eret to play_dead ->
199	 *   bmips_secondary_reentry ->
200	 *   start_secondary
201	 */
202
203	pr_info("SMP: Booting CPU%d...\n", cpu);
204
205	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206		/* kseg1 might not exist if this CPU enabled XKS01 */
207		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209		switch (current_cpu_type()) {
210		case CPU_BMIPS4350:
211		case CPU_BMIPS4380:
212			bmips43xx_send_ipi_single(cpu, 0);
213			break;
214		case CPU_BMIPS5000:
215			bmips5000_send_ipi_single(cpu, 0);
216			break;
217		}
218	} else {
219		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221		switch (current_cpu_type()) {
222		case CPU_BMIPS4350:
223		case CPU_BMIPS4380:
224			/* Reset slave TP1 if booting from TP0 */
225			if (cpu_logical_map(cpu) == 1)
226				set_c0_brcm_cmt_ctrl(0x01);
227			break;
228		case CPU_BMIPS5000:
229			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230			break;
231		}
232		cpumask_set_cpu(cpu, &bmips_booted_mask);
233	}
234
235	return 0;
236}
237
238/*
239 * Early setup - runs on secondary CPU after cache probe
240 */
241static void bmips_init_secondary(void)
242{
243	switch (current_cpu_type()) {
244	case CPU_BMIPS4350:
245	case CPU_BMIPS4380:
246		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
247		break;
248	case CPU_BMIPS5000:
249		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
250		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
251		break;
252	}
253}
254
255/*
256 * Late setup - runs on secondary CPU before entering the idle loop
257 */
258static void bmips_smp_finish(void)
259{
260	pr_info("SMP: CPU%d is running\n", smp_processor_id());
261
262	/* make sure there won't be a timer interrupt for a little while */
263	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
264
265	irq_enable_hazard();
266	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
267	irq_enable_hazard();
268}
269
270/*
271 * BMIPS5000 raceless IPIs
272 *
273 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
274 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
275 * IPI1 is used for SMP_CALL_FUNCTION
276 */
277
278static void bmips5000_send_ipi_single(int cpu, unsigned int action)
279{
280	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
281}
282
283static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
284{
285	int action = irq - IPI0_IRQ;
286
287	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
288
289	if (action == 0)
290		scheduler_ipi();
291	else
292		generic_smp_call_function_interrupt();
293
294	return IRQ_HANDLED;
295}
296
297static void bmips5000_send_ipi_mask(const struct cpumask *mask,
298	unsigned int action)
299{
300	unsigned int i;
301
302	for_each_cpu(i, mask)
303		bmips5000_send_ipi_single(i, action);
304}
305
306/*
307 * BMIPS43xx racey IPIs
308 *
309 * We use one inbound SW IRQ for each CPU.
310 *
311 * A spinlock must be held in order to keep CPUx from accidentally clearing
312 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
313 * same spinlock is used to protect the action masks.
314 */
315
316static DEFINE_SPINLOCK(ipi_lock);
317static DEFINE_PER_CPU(int, ipi_action_mask);
318
319static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
320{
321	unsigned long flags;
322
323	spin_lock_irqsave(&ipi_lock, flags);
324	set_c0_cause(cpu ? C_SW1 : C_SW0);
325	per_cpu(ipi_action_mask, cpu) |= action;
326	irq_enable_hazard();
327	spin_unlock_irqrestore(&ipi_lock, flags);
328}
329
330static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
331{
332	unsigned long flags;
333	int action, cpu = irq - IPI0_IRQ;
334
335	spin_lock_irqsave(&ipi_lock, flags);
336	action = __this_cpu_read(ipi_action_mask);
337	per_cpu(ipi_action_mask, cpu) = 0;
338	clear_c0_cause(cpu ? C_SW1 : C_SW0);
339	spin_unlock_irqrestore(&ipi_lock, flags);
340
341	if (action & SMP_RESCHEDULE_YOURSELF)
342		scheduler_ipi();
343	if (action & SMP_CALL_FUNCTION)
344		generic_smp_call_function_interrupt();
345
346	return IRQ_HANDLED;
347}
348
349static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
350	unsigned int action)
351{
352	unsigned int i;
353
354	for_each_cpu(i, mask)
355		bmips43xx_send_ipi_single(i, action);
356}
357
358#ifdef CONFIG_HOTPLUG_CPU
359
360static int bmips_cpu_disable(void)
361{
362	unsigned int cpu = smp_processor_id();
363
364	if (cpu == 0)
365		return -EBUSY;
366
367	pr_info("SMP: CPU%d is offline\n", cpu);
368
369	set_cpu_online(cpu, false);
370	calculate_cpu_foreign_map();
371	irq_cpu_offline();
372	clear_c0_status(IE_IRQ5);
373
374	local_flush_tlb_all();
375	local_flush_icache_range(0, ~0);
376
377	return 0;
378}
379
380static void bmips_cpu_die(unsigned int cpu)
381{
382}
383
384void __ref play_dead(void)
385{
386	idle_task_exit();
387
388	/* flush data cache */
389	_dma_cache_wback_inv(0, ~0);
390
391	/*
392	 * Wakeup is on SW0 or SW1; disable everything else
393	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
394	 * IRQ handlers; this clears ST0_IE and returns immediately.
395	 */
396	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
397	change_c0_status(
398		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
399		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
400	irq_disable_hazard();
401
402	/*
403	 * wait for SW interrupt from bmips_boot_secondary(), then jump
404	 * back to start_secondary()
405	 */
406	__asm__ __volatile__(
407	"	wait\n"
408	"	j	bmips_secondary_reentry\n"
409	: : : "memory");
410}
411
412#endif /* CONFIG_HOTPLUG_CPU */
413
414const struct plat_smp_ops bmips43xx_smp_ops = {
415	.smp_setup		= bmips_smp_setup,
416	.prepare_cpus		= bmips_prepare_cpus,
417	.boot_secondary		= bmips_boot_secondary,
418	.smp_finish		= bmips_smp_finish,
419	.init_secondary		= bmips_init_secondary,
420	.send_ipi_single	= bmips43xx_send_ipi_single,
421	.send_ipi_mask		= bmips43xx_send_ipi_mask,
422#ifdef CONFIG_HOTPLUG_CPU
423	.cpu_disable		= bmips_cpu_disable,
424	.cpu_die		= bmips_cpu_die,
425#endif
426};
427
428const struct plat_smp_ops bmips5000_smp_ops = {
429	.smp_setup		= bmips_smp_setup,
430	.prepare_cpus		= bmips_prepare_cpus,
431	.boot_secondary		= bmips_boot_secondary,
432	.smp_finish		= bmips_smp_finish,
433	.init_secondary		= bmips_init_secondary,
434	.send_ipi_single	= bmips5000_send_ipi_single,
435	.send_ipi_mask		= bmips5000_send_ipi_mask,
436#ifdef CONFIG_HOTPLUG_CPU
437	.cpu_disable		= bmips_cpu_disable,
438	.cpu_die		= bmips_cpu_die,
439#endif
440};
441
442#endif /* CONFIG_SMP */
443
444/***********************************************************************
445 * BMIPS vector relocation
446 * This is primarily used for SMP boot, but it is applicable to some
447 * UP BMIPS systems as well.
448 ***********************************************************************/
449
450static void bmips_wr_vec(unsigned long dst, char *start, char *end)
451{
452	memcpy((void *)dst, start, end - start);
453	dma_cache_wback(dst, end - start);
454	local_flush_icache_range(dst, dst + (end - start));
455	instruction_hazard();
456}
457
458static inline void bmips_nmi_handler_setup(void)
459{
460	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
461		&bmips_reset_nmi_vec_end);
462	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
463		&bmips_smp_int_vec_end);
464}
465
466struct reset_vec_info {
467	int cpu;
468	u32 val;
469};
470
471static void bmips_set_reset_vec_remote(void *vinfo)
472{
473	struct reset_vec_info *info = vinfo;
474	int shift = info->cpu & 0x01 ? 16 : 0;
475	u32 mask = ~(0xffff << shift), val = info->val >> 16;
476
477	preempt_disable();
478	if (smp_processor_id() > 0) {
479		smp_call_function_single(0, &bmips_set_reset_vec_remote,
480					 info, 1);
481	} else {
482		if (info->cpu & 0x02) {
483			/* BMIPS5200 "should" use mask/shift, but it's buggy */
484			bmips_write_zscm_reg(0xa0, (val << 16) | val);
485			bmips_read_zscm_reg(0xa0);
486		} else {
487			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
488					      (val << shift));
489		}
490	}
491	preempt_enable();
492}
493
494static void bmips_set_reset_vec(int cpu, u32 val)
495{
496	struct reset_vec_info info;
497
498	if (current_cpu_type() == CPU_BMIPS5000) {
499		/* this needs to run from CPU0 (which is always online) */
500		info.cpu = cpu;
501		info.val = val;
502		bmips_set_reset_vec_remote(&info);
503	} else {
504		void __iomem *cbr = BMIPS_GET_CBR();
505
506		if (cpu == 0)
507			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
508		else {
509			if (current_cpu_type() != CPU_BMIPS4380)
510				return;
511			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
512		}
513	}
514	__sync();
515	back_to_back_c0_hazard();
516}
517
518void bmips_ebase_setup(void)
519{
520	unsigned long new_ebase = ebase;
521
522	BUG_ON(ebase != CKSEG0);
523
524	switch (current_cpu_type()) {
525	case CPU_BMIPS4350:
526		/*
527		 * BMIPS4350 cannot relocate the normal vectors, but it
528		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
529		 * the relocated BEV=1, IV=0 general exception vector @
530		 * 0xa000_0380.
531		 *
532		 * set_uncached_handler() is used here because:
533		 *  - CPU1 will run this from uncached space
534		 *  - None of the cacheflush functions are set up yet
535		 */
536		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
537			&bmips_smp_int_vec, 0x80);
538		__sync();
539		return;
540	case CPU_BMIPS3300:
541	case CPU_BMIPS4380:
542		/*
543		 * 0x8000_0000: reset/NMI (initially in kseg1)
544		 * 0x8000_0400: normal vectors
545		 */
546		new_ebase = 0x80000400;
547		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
548		break;
549	case CPU_BMIPS5000:
550		/*
551		 * 0x8000_0000: reset/NMI (initially in kseg1)
552		 * 0x8000_1000: normal vectors
553		 */
554		new_ebase = 0x80001000;
555		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
556		write_c0_ebase(new_ebase);
557		break;
558	default:
559		return;
560	}
561
562	board_nmi_handler_setup = &bmips_nmi_handler_setup;
563	ebase = new_ebase;
564}
565
566asmlinkage void __weak plat_wired_tlb_setup(void)
567{
568	/*
569	 * Called when starting/restarting a secondary CPU.
570	 * Kernel stacks and other important data might only be accessible
571	 * once the wired entries are present.
572	 */
573}
574
575void bmips_cpu_setup(void)
576{
577	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
578	u32 __maybe_unused cfg;
579
580	switch (current_cpu_type()) {
581	case CPU_BMIPS3300:
582		/* Set BIU to async mode */
583		set_c0_brcm_bus_pll(BIT(22));
584		__sync();
585
586		/* put the BIU back in sync mode */
587		clear_c0_brcm_bus_pll(BIT(22));
588
589		/* clear BHTD to enable branch history table */
590		clear_c0_brcm_reset(BIT(16));
591
592		/* Flush and enable RAC */
593		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
595		__raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
599		__raw_readl(cbr + BMIPS_RAC_CONFIG);
600
601		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
603		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
604		break;
605
606	case CPU_BMIPS4380:
607		/* CBG workaround for early BMIPS4380 CPUs */
608		switch (read_c0_prid()) {
609		case 0x2a040:
610		case 0x2a042:
611		case 0x2a044:
612		case 0x2a060:
613			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
614			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
615			__raw_readl(cbr + BMIPS_L2_CONFIG);
616		}
617
618		/* clear BHTD to enable branch history table */
619		clear_c0_brcm_config_0(BIT(21));
620
621		/* XI/ROTR enable */
622		set_c0_brcm_config_0(BIT(23));
623		set_c0_brcm_cmt_ctrl(BIT(15));
624		break;
625
626	case CPU_BMIPS5000:
627		/* enable RDHWR, BRDHWR */
628		set_c0_brcm_config(BIT(17) | BIT(21));
629
630		/* Disable JTB */
631		__asm__ __volatile__(
632		"	.set	noreorder\n"
633		"	li	$8, 0x5a455048\n"
634		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
635		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
636		"	li	$9, 0x00008000\n"
637		"	or	$8, $8, $9\n"
638		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
639		"	sync\n"
640		"	li	$8, 0x0\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.set	reorder\n"
643		: : : "$8", "$9");
644
645		/* XI enable */
646		set_c0_brcm_config(BIT(27));
647
648		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
649		__asm__ __volatile__(
650		"	li	$8, 0x5a455048\n"
651		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
652		"	nop; nop; nop\n"
653		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
654		"	lui	$9, 0x0100\n"
655		"	or	$8, $9\n"
656		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
657		: : : "$8", "$9");
658		break;
659	}
660}
v4.10.11
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 38#include <asm/cpu-features.h>
 39
 40static int __maybe_unused max_cpus = 1;
 41
 42/* these may be configured by the platform code */
 43int bmips_smp_enabled = 1;
 44int bmips_cpu_offset;
 45cpumask_t bmips_booted_mask;
 46unsigned long bmips_tp1_irqs = IE_IRQ1;
 47
 48#define RESET_FROM_KSEG0		0x80080800
 49#define RESET_FROM_KSEG1		0xa0080800
 50
 51static void bmips_set_reset_vec(int cpu, u32 val);
 52
 53#ifdef CONFIG_SMP
 54
 55/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 56unsigned long bmips_smp_boot_sp;
 57unsigned long bmips_smp_boot_gp;
 58
 59static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 60static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 61static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 62static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 63
 64/* SW interrupts 0,1 are used for interprocessor signaling */
 65#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 66#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 67
 68#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 69#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 70#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 71#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 72
 73static void __init bmips_smp_setup(void)
 74{
 75	int i, cpu = 1, boot_cpu = 0;
 76	int cpu_hw_intr;
 77
 78	switch (current_cpu_type()) {
 79	case CPU_BMIPS4350:
 80	case CPU_BMIPS4380:
 81		/* arbitration priority */
 82		clear_c0_brcm_cmt_ctrl(0x30);
 83
 84		/* NBK and weak order flags */
 85		set_c0_brcm_config_0(0x30000);
 86
 87		/* Find out if we are running on TP0 or TP1 */
 88		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 89
 90		/*
 91		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 92		 * thread
 93		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 94		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 95		 */
 96		if (boot_cpu == 0)
 97			cpu_hw_intr = 0x02;
 98		else
 99			cpu_hw_intr = 0x1d;
100
101		change_c0_brcm_cmt_intr(0xf8018000,
102					(cpu_hw_intr << 27) | (0x03 << 15));
103
104		/* single core, 2 threads (2 pipelines) */
105		max_cpus = 2;
106
107		break;
108	case CPU_BMIPS5000:
109		/* enable raceless SW interrupts */
110		set_c0_brcm_config(0x03 << 22);
111
112		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114
115		/* N cores, 2 threads per core */
116		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117
118		/* clear any pending SW interrupts */
119		for (i = 0; i < max_cpus; i++) {
120			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122		}
123
124		break;
125	default:
126		max_cpus = 1;
127	}
128
129	if (!bmips_smp_enabled)
130		max_cpus = 1;
131
132	/* this can be overridden by the BSP */
133	if (!board_ebase_setup)
134		board_ebase_setup = &bmips_ebase_setup;
135
136	__cpu_number_map[boot_cpu] = 0;
137	__cpu_logical_map[0] = boot_cpu;
138
139	for (i = 0; i < max_cpus; i++) {
140		if (i != boot_cpu) {
141			__cpu_number_map[i] = cpu;
142			__cpu_logical_map[cpu] = i;
143			cpu++;
144		}
145		set_cpu_possible(i, 1);
146		set_cpu_present(i, 1);
147	}
148}
149
150/*
151 * IPI IRQ setup - runs on CPU0
152 */
153static void bmips_prepare_cpus(unsigned int max_cpus)
154{
155	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156
157	switch (current_cpu_type()) {
158	case CPU_BMIPS4350:
159	case CPU_BMIPS4380:
160		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161		break;
162	case CPU_BMIPS5000:
163		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164		break;
165	default:
166		return;
167	}
168
169	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170			"smp_ipi0", NULL))
171		panic("Can't request IPI0 interrupt");
172	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
173			"smp_ipi1", NULL))
174		panic("Can't request IPI1 interrupt");
175}
176
177/*
178 * Tell the hardware to boot CPUx - runs on CPU0
179 */
180static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181{
182	bmips_smp_boot_sp = __KSTK_TOS(idle);
183	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184	mb();
185
186	/*
187	 * Initial boot sequence for secondary CPU:
188	 *   bmips_reset_nmi_vec @ a000_0000 ->
189	 *   bmips_smp_entry ->
190	 *   plat_wired_tlb_setup (cached function call; optional) ->
191	 *   start_secondary (cached jump)
192	 *
193	 * Warm restart sequence:
194	 *   play_dead WAIT loop ->
195	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196	 *   eret to play_dead ->
197	 *   bmips_secondary_reentry ->
198	 *   start_secondary
199	 */
200
201	pr_info("SMP: Booting CPU%d...\n", cpu);
202
203	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204		/* kseg1 might not exist if this CPU enabled XKS01 */
205		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206
207		switch (current_cpu_type()) {
208		case CPU_BMIPS4350:
209		case CPU_BMIPS4380:
210			bmips43xx_send_ipi_single(cpu, 0);
211			break;
212		case CPU_BMIPS5000:
213			bmips5000_send_ipi_single(cpu, 0);
214			break;
215		}
216	} else {
217		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218
219		switch (current_cpu_type()) {
220		case CPU_BMIPS4350:
221		case CPU_BMIPS4380:
222			/* Reset slave TP1 if booting from TP0 */
223			if (cpu_logical_map(cpu) == 1)
224				set_c0_brcm_cmt_ctrl(0x01);
225			break;
226		case CPU_BMIPS5000:
227			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228			break;
229		}
230		cpumask_set_cpu(cpu, &bmips_booted_mask);
231	}
 
 
232}
233
234/*
235 * Early setup - runs on secondary CPU after cache probe
236 */
237static void bmips_init_secondary(void)
238{
239	switch (current_cpu_type()) {
240	case CPU_BMIPS4350:
241	case CPU_BMIPS4380:
242		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
243		break;
244	case CPU_BMIPS5000:
245		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
246		current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
247		break;
248	}
249}
250
251/*
252 * Late setup - runs on secondary CPU before entering the idle loop
253 */
254static void bmips_smp_finish(void)
255{
256	pr_info("SMP: CPU%d is running\n", smp_processor_id());
257
258	/* make sure there won't be a timer interrupt for a little while */
259	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
260
261	irq_enable_hazard();
262	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
263	irq_enable_hazard();
264}
265
266/*
267 * BMIPS5000 raceless IPIs
268 *
269 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
270 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
271 * IPI1 is used for SMP_CALL_FUNCTION
272 */
273
274static void bmips5000_send_ipi_single(int cpu, unsigned int action)
275{
276	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
277}
278
279static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
280{
281	int action = irq - IPI0_IRQ;
282
283	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
284
285	if (action == 0)
286		scheduler_ipi();
287	else
288		generic_smp_call_function_interrupt();
289
290	return IRQ_HANDLED;
291}
292
293static void bmips5000_send_ipi_mask(const struct cpumask *mask,
294	unsigned int action)
295{
296	unsigned int i;
297
298	for_each_cpu(i, mask)
299		bmips5000_send_ipi_single(i, action);
300}
301
302/*
303 * BMIPS43xx racey IPIs
304 *
305 * We use one inbound SW IRQ for each CPU.
306 *
307 * A spinlock must be held in order to keep CPUx from accidentally clearing
308 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
309 * same spinlock is used to protect the action masks.
310 */
311
312static DEFINE_SPINLOCK(ipi_lock);
313static DEFINE_PER_CPU(int, ipi_action_mask);
314
315static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
316{
317	unsigned long flags;
318
319	spin_lock_irqsave(&ipi_lock, flags);
320	set_c0_cause(cpu ? C_SW1 : C_SW0);
321	per_cpu(ipi_action_mask, cpu) |= action;
322	irq_enable_hazard();
323	spin_unlock_irqrestore(&ipi_lock, flags);
324}
325
326static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
327{
328	unsigned long flags;
329	int action, cpu = irq - IPI0_IRQ;
330
331	spin_lock_irqsave(&ipi_lock, flags);
332	action = __this_cpu_read(ipi_action_mask);
333	per_cpu(ipi_action_mask, cpu) = 0;
334	clear_c0_cause(cpu ? C_SW1 : C_SW0);
335	spin_unlock_irqrestore(&ipi_lock, flags);
336
337	if (action & SMP_RESCHEDULE_YOURSELF)
338		scheduler_ipi();
339	if (action & SMP_CALL_FUNCTION)
340		generic_smp_call_function_interrupt();
341
342	return IRQ_HANDLED;
343}
344
345static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
346	unsigned int action)
347{
348	unsigned int i;
349
350	for_each_cpu(i, mask)
351		bmips43xx_send_ipi_single(i, action);
352}
353
354#ifdef CONFIG_HOTPLUG_CPU
355
356static int bmips_cpu_disable(void)
357{
358	unsigned int cpu = smp_processor_id();
359
360	if (cpu == 0)
361		return -EBUSY;
362
363	pr_info("SMP: CPU%d is offline\n", cpu);
364
365	set_cpu_online(cpu, false);
366	calculate_cpu_foreign_map();
367	cpumask_clear_cpu(cpu, &cpu_callin_map);
368	clear_c0_status(IE_IRQ5);
369
370	local_flush_tlb_all();
371	local_flush_icache_range(0, ~0);
372
373	return 0;
374}
375
376static void bmips_cpu_die(unsigned int cpu)
377{
378}
379
380void __ref play_dead(void)
381{
382	idle_task_exit();
383
384	/* flush data cache */
385	_dma_cache_wback_inv(0, ~0);
386
387	/*
388	 * Wakeup is on SW0 or SW1; disable everything else
389	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
390	 * IRQ handlers; this clears ST0_IE and returns immediately.
391	 */
392	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
393	change_c0_status(
394		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
395		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
396	irq_disable_hazard();
397
398	/*
399	 * wait for SW interrupt from bmips_boot_secondary(), then jump
400	 * back to start_secondary()
401	 */
402	__asm__ __volatile__(
403	"	wait\n"
404	"	j	bmips_secondary_reentry\n"
405	: : : "memory");
406}
407
408#endif /* CONFIG_HOTPLUG_CPU */
409
410struct plat_smp_ops bmips43xx_smp_ops = {
411	.smp_setup		= bmips_smp_setup,
412	.prepare_cpus		= bmips_prepare_cpus,
413	.boot_secondary		= bmips_boot_secondary,
414	.smp_finish		= bmips_smp_finish,
415	.init_secondary		= bmips_init_secondary,
416	.send_ipi_single	= bmips43xx_send_ipi_single,
417	.send_ipi_mask		= bmips43xx_send_ipi_mask,
418#ifdef CONFIG_HOTPLUG_CPU
419	.cpu_disable		= bmips_cpu_disable,
420	.cpu_die		= bmips_cpu_die,
421#endif
422};
423
424struct plat_smp_ops bmips5000_smp_ops = {
425	.smp_setup		= bmips_smp_setup,
426	.prepare_cpus		= bmips_prepare_cpus,
427	.boot_secondary		= bmips_boot_secondary,
428	.smp_finish		= bmips_smp_finish,
429	.init_secondary		= bmips_init_secondary,
430	.send_ipi_single	= bmips5000_send_ipi_single,
431	.send_ipi_mask		= bmips5000_send_ipi_mask,
432#ifdef CONFIG_HOTPLUG_CPU
433	.cpu_disable		= bmips_cpu_disable,
434	.cpu_die		= bmips_cpu_die,
435#endif
436};
437
438#endif /* CONFIG_SMP */
439
440/***********************************************************************
441 * BMIPS vector relocation
442 * This is primarily used for SMP boot, but it is applicable to some
443 * UP BMIPS systems as well.
444 ***********************************************************************/
445
446static void bmips_wr_vec(unsigned long dst, char *start, char *end)
447{
448	memcpy((void *)dst, start, end - start);
449	dma_cache_wback(dst, end - start);
450	local_flush_icache_range(dst, dst + (end - start));
451	instruction_hazard();
452}
453
454static inline void bmips_nmi_handler_setup(void)
455{
456	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
457		&bmips_reset_nmi_vec_end);
458	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
459		&bmips_smp_int_vec_end);
460}
461
462struct reset_vec_info {
463	int cpu;
464	u32 val;
465};
466
467static void bmips_set_reset_vec_remote(void *vinfo)
468{
469	struct reset_vec_info *info = vinfo;
470	int shift = info->cpu & 0x01 ? 16 : 0;
471	u32 mask = ~(0xffff << shift), val = info->val >> 16;
472
473	preempt_disable();
474	if (smp_processor_id() > 0) {
475		smp_call_function_single(0, &bmips_set_reset_vec_remote,
476					 info, 1);
477	} else {
478		if (info->cpu & 0x02) {
479			/* BMIPS5200 "should" use mask/shift, but it's buggy */
480			bmips_write_zscm_reg(0xa0, (val << 16) | val);
481			bmips_read_zscm_reg(0xa0);
482		} else {
483			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
484					      (val << shift));
485		}
486	}
487	preempt_enable();
488}
489
490static void bmips_set_reset_vec(int cpu, u32 val)
491{
492	struct reset_vec_info info;
493
494	if (current_cpu_type() == CPU_BMIPS5000) {
495		/* this needs to run from CPU0 (which is always online) */
496		info.cpu = cpu;
497		info.val = val;
498		bmips_set_reset_vec_remote(&info);
499	} else {
500		void __iomem *cbr = BMIPS_GET_CBR();
501
502		if (cpu == 0)
503			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
504		else {
505			if (current_cpu_type() != CPU_BMIPS4380)
506				return;
507			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508		}
509	}
510	__sync();
511	back_to_back_c0_hazard();
512}
513
514void bmips_ebase_setup(void)
515{
516	unsigned long new_ebase = ebase;
517
518	BUG_ON(ebase != CKSEG0);
519
520	switch (current_cpu_type()) {
521	case CPU_BMIPS4350:
522		/*
523		 * BMIPS4350 cannot relocate the normal vectors, but it
524		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
525		 * the relocated BEV=1, IV=0 general exception vector @
526		 * 0xa000_0380.
527		 *
528		 * set_uncached_handler() is used here because:
529		 *  - CPU1 will run this from uncached space
530		 *  - None of the cacheflush functions are set up yet
531		 */
532		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
533			&bmips_smp_int_vec, 0x80);
534		__sync();
535		return;
536	case CPU_BMIPS3300:
537	case CPU_BMIPS4380:
538		/*
539		 * 0x8000_0000: reset/NMI (initially in kseg1)
540		 * 0x8000_0400: normal vectors
541		 */
542		new_ebase = 0x80000400;
543		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
544		break;
545	case CPU_BMIPS5000:
546		/*
547		 * 0x8000_0000: reset/NMI (initially in kseg1)
548		 * 0x8000_1000: normal vectors
549		 */
550		new_ebase = 0x80001000;
551		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552		write_c0_ebase(new_ebase);
553		break;
554	default:
555		return;
556	}
557
558	board_nmi_handler_setup = &bmips_nmi_handler_setup;
559	ebase = new_ebase;
560}
561
562asmlinkage void __weak plat_wired_tlb_setup(void)
563{
564	/*
565	 * Called when starting/restarting a secondary CPU.
566	 * Kernel stacks and other important data might only be accessible
567	 * once the wired entries are present.
568	 */
569}
570
571void __init bmips_cpu_setup(void)
572{
573	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
574	u32 __maybe_unused cfg;
575
576	switch (current_cpu_type()) {
577	case CPU_BMIPS3300:
578		/* Set BIU to async mode */
579		set_c0_brcm_bus_pll(BIT(22));
580		__sync();
581
582		/* put the BIU back in sync mode */
583		clear_c0_brcm_bus_pll(BIT(22));
584
585		/* clear BHTD to enable branch history table */
586		clear_c0_brcm_reset(BIT(16));
587
588		/* Flush and enable RAC */
589		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
590		__raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
591		__raw_readl(cbr + BMIPS_RAC_CONFIG);
592
593		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594		__raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
595		__raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
598		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
599		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600		break;
601
602	case CPU_BMIPS4380:
603		/* CBG workaround for early BMIPS4380 CPUs */
604		switch (read_c0_prid()) {
605		case 0x2a040:
606		case 0x2a042:
607		case 0x2a044:
608		case 0x2a060:
609			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
610			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
611			__raw_readl(cbr + BMIPS_L2_CONFIG);
612		}
613
614		/* clear BHTD to enable branch history table */
615		clear_c0_brcm_config_0(BIT(21));
616
617		/* XI/ROTR enable */
618		set_c0_brcm_config_0(BIT(23));
619		set_c0_brcm_cmt_ctrl(BIT(15));
620		break;
621
622	case CPU_BMIPS5000:
623		/* enable RDHWR, BRDHWR */
624		set_c0_brcm_config(BIT(17) | BIT(21));
625
626		/* Disable JTB */
627		__asm__ __volatile__(
628		"	.set	noreorder\n"
629		"	li	$8, 0x5a455048\n"
630		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
631		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
632		"	li	$9, 0x00008000\n"
633		"	or	$8, $8, $9\n"
634		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
635		"	sync\n"
636		"	li	$8, 0x0\n"
637		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
638		"	.set	reorder\n"
639		: : : "$8", "$9");
640
641		/* XI enable */
642		set_c0_brcm_config(BIT(27));
643
644		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
645		__asm__ __volatile__(
646		"	li	$8, 0x5a455048\n"
647		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
648		"	nop; nop; nop\n"
649		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
650		"	lui	$9, 0x0100\n"
651		"	or	$8, $9\n"
652		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
653		: : : "$8", "$9");
654		break;
655	}
656}