Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28
 29#include <asm/time.h>
 30#include <asm/pgtable.h>
 31#include <asm/processor.h>
 32#include <asm/bootinfo.h>
 33#include <asm/pmon.h>
 34#include <asm/cacheflush.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mipsregs.h>
 37#include <asm/bmips.h>
 38#include <asm/traps.h>
 39#include <asm/barrier.h>
 40#include <asm/cpu-features.h>
 41
 42static int __maybe_unused max_cpus = 1;
 43
 44/* these may be configured by the platform code */
 45int bmips_smp_enabled = 1;
 46int bmips_cpu_offset;
 47cpumask_t bmips_booted_mask;
 48unsigned long bmips_tp1_irqs = IE_IRQ1;
 49
 50#define RESET_FROM_KSEG0		0x80080800
 51#define RESET_FROM_KSEG1		0xa0080800
 52
 53static void bmips_set_reset_vec(int cpu, u32 val);
 54
 55#ifdef CONFIG_SMP
 56
 57/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 58unsigned long bmips_smp_boot_sp;
 59unsigned long bmips_smp_boot_gp;
 60
 61static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 62static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 63static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 64static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 65
 66/* SW interrupts 0,1 are used for interprocessor signaling */
 67#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 68#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 69
 70#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 71#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 72#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 74
 75static void __init bmips_smp_setup(void)
 76{
 77	int i, cpu = 1, boot_cpu = 0;
 78	int cpu_hw_intr;
 79
 80	switch (current_cpu_type()) {
 81	case CPU_BMIPS4350:
 82	case CPU_BMIPS4380:
 83		/* arbitration priority */
 84		clear_c0_brcm_cmt_ctrl(0x30);
 85
 86		/* NBK and weak order flags */
 87		set_c0_brcm_config_0(0x30000);
 88
 89		/* Find out if we are running on TP0 or TP1 */
 90		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 91
 92		/*
 93		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 94		 * thread
 95		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 96		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 97		 */
 98		if (boot_cpu == 0)
 99			cpu_hw_intr = 0x02;
100		else
101			cpu_hw_intr = 0x1d;
102
103		change_c0_brcm_cmt_intr(0xf8018000,
104					(cpu_hw_intr << 27) | (0x03 << 15));
105
106		/* single core, 2 threads (2 pipelines) */
107		max_cpus = 2;
108
109		break;
110	case CPU_BMIPS5000:
111		/* enable raceless SW interrupts */
112		set_c0_brcm_config(0x03 << 22);
113
114		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117		/* N cores, 2 threads per core */
118		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120		/* clear any pending SW interrupts */
121		for (i = 0; i < max_cpus; i++) {
122			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124		}
125
126		break;
127	default:
128		max_cpus = 1;
129	}
130
131	if (!bmips_smp_enabled)
132		max_cpus = 1;
133
134	/* this can be overridden by the BSP */
135	if (!board_ebase_setup)
136		board_ebase_setup = &bmips_ebase_setup;
137
138	__cpu_number_map[boot_cpu] = 0;
139	__cpu_logical_map[0] = boot_cpu;
140
141	for (i = 0; i < max_cpus; i++) {
142		if (i != boot_cpu) {
143			__cpu_number_map[i] = cpu;
144			__cpu_logical_map[cpu] = i;
145			cpu++;
146		}
147		set_cpu_possible(i, 1);
148		set_cpu_present(i, 1);
149	}
150}
151
152/*
153 * IPI IRQ setup - runs on CPU0
154 */
155static void bmips_prepare_cpus(unsigned int max_cpus)
156{
157	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159	switch (current_cpu_type()) {
160	case CPU_BMIPS4350:
161	case CPU_BMIPS4380:
162		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163		break;
164	case CPU_BMIPS5000:
165		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166		break;
167	default:
168		return;
169	}
170
171	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
172			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
173		panic("Can't request IPI0 interrupt");
174	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
175			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
176		panic("Can't request IPI1 interrupt");
177}
178
179/*
180 * Tell the hardware to boot CPUx - runs on CPU0
181 */
182static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183{
184	bmips_smp_boot_sp = __KSTK_TOS(idle);
185	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186	mb();
187
188	/*
189	 * Initial boot sequence for secondary CPU:
190	 *   bmips_reset_nmi_vec @ a000_0000 ->
191	 *   bmips_smp_entry ->
192	 *   plat_wired_tlb_setup (cached function call; optional) ->
193	 *   start_secondary (cached jump)
194	 *
195	 * Warm restart sequence:
196	 *   play_dead WAIT loop ->
197	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198	 *   eret to play_dead ->
199	 *   bmips_secondary_reentry ->
200	 *   start_secondary
201	 */
202
203	pr_info("SMP: Booting CPU%d...\n", cpu);
204
205	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206		/* kseg1 might not exist if this CPU enabled XKS01 */
207		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209		switch (current_cpu_type()) {
210		case CPU_BMIPS4350:
211		case CPU_BMIPS4380:
212			bmips43xx_send_ipi_single(cpu, 0);
213			break;
214		case CPU_BMIPS5000:
215			bmips5000_send_ipi_single(cpu, 0);
216			break;
217		}
218	} else {
219		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221		switch (current_cpu_type()) {
222		case CPU_BMIPS4350:
223		case CPU_BMIPS4380:
224			/* Reset slave TP1 if booting from TP0 */
225			if (cpu_logical_map(cpu) == 1)
226				set_c0_brcm_cmt_ctrl(0x01);
227			break;
228		case CPU_BMIPS5000:
229			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 
 
 
 
 
 
 
 
 
 
230			break;
231		}
232		cpumask_set_cpu(cpu, &bmips_booted_mask);
233	}
234
235	return 0;
236}
237
238/*
239 * Early setup - runs on secondary CPU after cache probe
240 */
241static void bmips_init_secondary(void)
242{
 
 
 
 
 
 
 
243	switch (current_cpu_type()) {
244	case CPU_BMIPS4350:
245	case CPU_BMIPS4380:
 
 
 
 
 
 
 
 
 
246		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
247		break;
248	case CPU_BMIPS5000:
 
 
 
249		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
250		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
251		break;
252	}
253}
254
255/*
256 * Late setup - runs on secondary CPU before entering the idle loop
257 */
258static void bmips_smp_finish(void)
259{
260	pr_info("SMP: CPU%d is running\n", smp_processor_id());
261
262	/* make sure there won't be a timer interrupt for a little while */
263	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
264
265	irq_enable_hazard();
266	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
267	irq_enable_hazard();
268}
269
270/*
 
 
 
 
 
 
 
271 * BMIPS5000 raceless IPIs
272 *
273 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
274 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
275 * IPI1 is used for SMP_CALL_FUNCTION
276 */
277
278static void bmips5000_send_ipi_single(int cpu, unsigned int action)
279{
280	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
281}
282
283static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
284{
285	int action = irq - IPI0_IRQ;
286
287	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
288
289	if (action == 0)
290		scheduler_ipi();
291	else
292		generic_smp_call_function_interrupt();
293
294	return IRQ_HANDLED;
295}
296
297static void bmips5000_send_ipi_mask(const struct cpumask *mask,
298	unsigned int action)
299{
300	unsigned int i;
301
302	for_each_cpu(i, mask)
303		bmips5000_send_ipi_single(i, action);
304}
305
306/*
307 * BMIPS43xx racey IPIs
308 *
309 * We use one inbound SW IRQ for each CPU.
310 *
311 * A spinlock must be held in order to keep CPUx from accidentally clearing
312 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
313 * same spinlock is used to protect the action masks.
314 */
315
316static DEFINE_SPINLOCK(ipi_lock);
317static DEFINE_PER_CPU(int, ipi_action_mask);
318
319static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
320{
321	unsigned long flags;
322
323	spin_lock_irqsave(&ipi_lock, flags);
324	set_c0_cause(cpu ? C_SW1 : C_SW0);
325	per_cpu(ipi_action_mask, cpu) |= action;
326	irq_enable_hazard();
327	spin_unlock_irqrestore(&ipi_lock, flags);
328}
329
330static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
331{
332	unsigned long flags;
333	int action, cpu = irq - IPI0_IRQ;
334
335	spin_lock_irqsave(&ipi_lock, flags);
336	action = __this_cpu_read(ipi_action_mask);
337	per_cpu(ipi_action_mask, cpu) = 0;
338	clear_c0_cause(cpu ? C_SW1 : C_SW0);
339	spin_unlock_irqrestore(&ipi_lock, flags);
340
341	if (action & SMP_RESCHEDULE_YOURSELF)
342		scheduler_ipi();
343	if (action & SMP_CALL_FUNCTION)
344		generic_smp_call_function_interrupt();
345
346	return IRQ_HANDLED;
347}
348
349static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
350	unsigned int action)
351{
352	unsigned int i;
353
354	for_each_cpu(i, mask)
355		bmips43xx_send_ipi_single(i, action);
356}
357
358#ifdef CONFIG_HOTPLUG_CPU
359
360static int bmips_cpu_disable(void)
361{
362	unsigned int cpu = smp_processor_id();
363
364	if (cpu == 0)
365		return -EBUSY;
366
367	pr_info("SMP: CPU%d is offline\n", cpu);
368
369	set_cpu_online(cpu, false);
370	calculate_cpu_foreign_map();
371	irq_cpu_offline();
372	clear_c0_status(IE_IRQ5);
373
374	local_flush_tlb_all();
375	local_flush_icache_range(0, ~0);
376
377	return 0;
378}
379
380static void bmips_cpu_die(unsigned int cpu)
381{
382}
383
384void __ref play_dead(void)
385{
386	idle_task_exit();
387
388	/* flush data cache */
389	_dma_cache_wback_inv(0, ~0);
390
391	/*
392	 * Wakeup is on SW0 or SW1; disable everything else
393	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
394	 * IRQ handlers; this clears ST0_IE and returns immediately.
395	 */
396	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
397	change_c0_status(
398		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
399		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
400	irq_disable_hazard();
401
402	/*
403	 * wait for SW interrupt from bmips_boot_secondary(), then jump
404	 * back to start_secondary()
405	 */
406	__asm__ __volatile__(
407	"	wait\n"
408	"	j	bmips_secondary_reentry\n"
409	: : : "memory");
410}
411
412#endif /* CONFIG_HOTPLUG_CPU */
413
414const struct plat_smp_ops bmips43xx_smp_ops = {
415	.smp_setup		= bmips_smp_setup,
416	.prepare_cpus		= bmips_prepare_cpus,
417	.boot_secondary		= bmips_boot_secondary,
418	.smp_finish		= bmips_smp_finish,
419	.init_secondary		= bmips_init_secondary,
 
420	.send_ipi_single	= bmips43xx_send_ipi_single,
421	.send_ipi_mask		= bmips43xx_send_ipi_mask,
422#ifdef CONFIG_HOTPLUG_CPU
423	.cpu_disable		= bmips_cpu_disable,
424	.cpu_die		= bmips_cpu_die,
425#endif
426};
427
428const struct plat_smp_ops bmips5000_smp_ops = {
429	.smp_setup		= bmips_smp_setup,
430	.prepare_cpus		= bmips_prepare_cpus,
431	.boot_secondary		= bmips_boot_secondary,
432	.smp_finish		= bmips_smp_finish,
433	.init_secondary		= bmips_init_secondary,
 
434	.send_ipi_single	= bmips5000_send_ipi_single,
435	.send_ipi_mask		= bmips5000_send_ipi_mask,
436#ifdef CONFIG_HOTPLUG_CPU
437	.cpu_disable		= bmips_cpu_disable,
438	.cpu_die		= bmips_cpu_die,
439#endif
440};
441
442#endif /* CONFIG_SMP */
443
444/***********************************************************************
445 * BMIPS vector relocation
446 * This is primarily used for SMP boot, but it is applicable to some
447 * UP BMIPS systems as well.
448 ***********************************************************************/
449
450static void bmips_wr_vec(unsigned long dst, char *start, char *end)
451{
452	memcpy((void *)dst, start, end - start);
453	dma_cache_wback(dst, end - start);
454	local_flush_icache_range(dst, dst + (end - start));
455	instruction_hazard();
456}
457
458static inline void bmips_nmi_handler_setup(void)
459{
460	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
461		&bmips_reset_nmi_vec_end);
462	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
463		&bmips_smp_int_vec_end);
464}
465
466struct reset_vec_info {
467	int cpu;
468	u32 val;
469};
470
471static void bmips_set_reset_vec_remote(void *vinfo)
472{
473	struct reset_vec_info *info = vinfo;
474	int shift = info->cpu & 0x01 ? 16 : 0;
475	u32 mask = ~(0xffff << shift), val = info->val >> 16;
476
477	preempt_disable();
478	if (smp_processor_id() > 0) {
479		smp_call_function_single(0, &bmips_set_reset_vec_remote,
480					 info, 1);
481	} else {
482		if (info->cpu & 0x02) {
483			/* BMIPS5200 "should" use mask/shift, but it's buggy */
484			bmips_write_zscm_reg(0xa0, (val << 16) | val);
485			bmips_read_zscm_reg(0xa0);
486		} else {
487			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
488					      (val << shift));
489		}
490	}
491	preempt_enable();
492}
493
494static void bmips_set_reset_vec(int cpu, u32 val)
495{
496	struct reset_vec_info info;
497
498	if (current_cpu_type() == CPU_BMIPS5000) {
499		/* this needs to run from CPU0 (which is always online) */
500		info.cpu = cpu;
501		info.val = val;
502		bmips_set_reset_vec_remote(&info);
503	} else {
504		void __iomem *cbr = BMIPS_GET_CBR();
505
506		if (cpu == 0)
507			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
508		else {
509			if (current_cpu_type() != CPU_BMIPS4380)
510				return;
511			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
512		}
513	}
514	__sync();
515	back_to_back_c0_hazard();
516}
517
518void bmips_ebase_setup(void)
519{
520	unsigned long new_ebase = ebase;
 
521
522	BUG_ON(ebase != CKSEG0);
523
524	switch (current_cpu_type()) {
525	case CPU_BMIPS4350:
526		/*
527		 * BMIPS4350 cannot relocate the normal vectors, but it
528		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
529		 * the relocated BEV=1, IV=0 general exception vector @
530		 * 0xa000_0380.
531		 *
532		 * set_uncached_handler() is used here because:
533		 *  - CPU1 will run this from uncached space
534		 *  - None of the cacheflush functions are set up yet
535		 */
536		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
537			&bmips_smp_int_vec, 0x80);
538		__sync();
539		return;
540	case CPU_BMIPS3300:
541	case CPU_BMIPS4380:
542		/*
543		 * 0x8000_0000: reset/NMI (initially in kseg1)
544		 * 0x8000_0400: normal vectors
545		 */
546		new_ebase = 0x80000400;
547		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 
 
548		break;
549	case CPU_BMIPS5000:
550		/*
551		 * 0x8000_0000: reset/NMI (initially in kseg1)
552		 * 0x8000_1000: normal vectors
553		 */
554		new_ebase = 0x80001000;
555		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
556		write_c0_ebase(new_ebase);
 
 
557		break;
558	default:
559		return;
560	}
561
562	board_nmi_handler_setup = &bmips_nmi_handler_setup;
563	ebase = new_ebase;
564}
565
566asmlinkage void __weak plat_wired_tlb_setup(void)
567{
568	/*
569	 * Called when starting/restarting a secondary CPU.
570	 * Kernel stacks and other important data might only be accessible
571	 * once the wired entries are present.
572	 */
573}
574
575void bmips_cpu_setup(void)
576{
577	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
578	u32 __maybe_unused cfg;
579
580	switch (current_cpu_type()) {
581	case CPU_BMIPS3300:
582		/* Set BIU to async mode */
583		set_c0_brcm_bus_pll(BIT(22));
584		__sync();
585
586		/* put the BIU back in sync mode */
587		clear_c0_brcm_bus_pll(BIT(22));
588
589		/* clear BHTD to enable branch history table */
590		clear_c0_brcm_reset(BIT(16));
591
592		/* Flush and enable RAC */
593		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
595		__raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
599		__raw_readl(cbr + BMIPS_RAC_CONFIG);
600
601		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
603		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
604		break;
605
606	case CPU_BMIPS4380:
607		/* CBG workaround for early BMIPS4380 CPUs */
608		switch (read_c0_prid()) {
609		case 0x2a040:
610		case 0x2a042:
611		case 0x2a044:
612		case 0x2a060:
613			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
614			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
615			__raw_readl(cbr + BMIPS_L2_CONFIG);
616		}
617
618		/* clear BHTD to enable branch history table */
619		clear_c0_brcm_config_0(BIT(21));
620
621		/* XI/ROTR enable */
622		set_c0_brcm_config_0(BIT(23));
623		set_c0_brcm_cmt_ctrl(BIT(15));
624		break;
625
626	case CPU_BMIPS5000:
627		/* enable RDHWR, BRDHWR */
628		set_c0_brcm_config(BIT(17) | BIT(21));
629
630		/* Disable JTB */
631		__asm__ __volatile__(
632		"	.set	noreorder\n"
633		"	li	$8, 0x5a455048\n"
634		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
635		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
636		"	li	$9, 0x00008000\n"
637		"	or	$8, $8, $9\n"
638		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
639		"	sync\n"
640		"	li	$8, 0x0\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.set	reorder\n"
643		: : : "$8", "$9");
644
645		/* XI enable */
646		set_c0_brcm_config(BIT(27));
647
648		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
649		__asm__ __volatile__(
650		"	li	$8, 0x5a455048\n"
651		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
652		"	nop; nop; nop\n"
653		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
654		"	lui	$9, 0x0100\n"
655		"	or	$8, $9\n"
656		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
657		: : : "$8", "$9");
658		break;
659	}
660}
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 
 
 
 
 
 
 45
 46#ifdef CONFIG_SMP
 47
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 53static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 54static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 55static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 56
 57/* SW interrupts 0,1 are used for interprocessor signaling */
 58#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 59#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 60
 61#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 62#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 63#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 64#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 65
 66static void __init bmips_smp_setup(void)
 67{
 68	int i, cpu = 1, boot_cpu = 0;
 69	int cpu_hw_intr;
 70
 71	switch (current_cpu_type()) {
 72	case CPU_BMIPS4350:
 73	case CPU_BMIPS4380:
 74		/* arbitration priority */
 75		clear_c0_brcm_cmt_ctrl(0x30);
 76
 77		/* NBK and weak order flags */
 78		set_c0_brcm_config_0(0x30000);
 79
 80		/* Find out if we are running on TP0 or TP1 */
 81		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 82
 83		/*
 84		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 85		 * thread
 86		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 87		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 88		 */
 89		if (boot_cpu == 0)
 90			cpu_hw_intr = 0x02;
 91		else
 92			cpu_hw_intr = 0x1d;
 93
 94		change_c0_brcm_cmt_intr(0xf8018000,
 95					(cpu_hw_intr << 27) | (0x03 << 15));
 96
 97		/* single core, 2 threads (2 pipelines) */
 98		max_cpus = 2;
 99
100		break;
101	case CPU_BMIPS5000:
102		/* enable raceless SW interrupts */
103		set_c0_brcm_config(0x03 << 22);
104
105		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108		/* N cores, 2 threads per core */
109		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111		/* clear any pending SW interrupts */
112		for (i = 0; i < max_cpus; i++) {
113			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115		}
116
117		break;
118	default:
119		max_cpus = 1;
120	}
121
122	if (!bmips_smp_enabled)
123		max_cpus = 1;
124
125	/* this can be overridden by the BSP */
126	if (!board_ebase_setup)
127		board_ebase_setup = &bmips_ebase_setup;
128
129	__cpu_number_map[boot_cpu] = 0;
130	__cpu_logical_map[0] = boot_cpu;
131
132	for (i = 0; i < max_cpus; i++) {
133		if (i != boot_cpu) {
134			__cpu_number_map[i] = cpu;
135			__cpu_logical_map[cpu] = i;
136			cpu++;
137		}
138		set_cpu_possible(i, 1);
139		set_cpu_present(i, 1);
140	}
141}
142
143/*
144 * IPI IRQ setup - runs on CPU0
145 */
146static void bmips_prepare_cpus(unsigned int max_cpus)
147{
148	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150	switch (current_cpu_type()) {
151	case CPU_BMIPS4350:
152	case CPU_BMIPS4380:
153		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154		break;
155	case CPU_BMIPS5000:
156		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157		break;
158	default:
159		return;
160	}
161
162	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163			"smp_ipi0", NULL))
164		panic("Can't request IPI0 interrupt");
165	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166			"smp_ipi1", NULL))
167		panic("Can't request IPI1 interrupt");
168}
169
170/*
171 * Tell the hardware to boot CPUx - runs on CPU0
172 */
173static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174{
175	bmips_smp_boot_sp = __KSTK_TOS(idle);
176	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177	mb();
178
179	/*
180	 * Initial boot sequence for secondary CPU:
181	 *   bmips_reset_nmi_vec @ a000_0000 ->
182	 *   bmips_smp_entry ->
183	 *   plat_wired_tlb_setup (cached function call; optional) ->
184	 *   start_secondary (cached jump)
185	 *
186	 * Warm restart sequence:
187	 *   play_dead WAIT loop ->
188	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189	 *   eret to play_dead ->
190	 *   bmips_secondary_reentry ->
191	 *   start_secondary
192	 */
193
194	pr_info("SMP: Booting CPU%d...\n", cpu);
195
196	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 
 
 
197		switch (current_cpu_type()) {
198		case CPU_BMIPS4350:
199		case CPU_BMIPS4380:
200			bmips43xx_send_ipi_single(cpu, 0);
201			break;
202		case CPU_BMIPS5000:
203			bmips5000_send_ipi_single(cpu, 0);
204			break;
205		}
206	}
207	else {
 
208		switch (current_cpu_type()) {
209		case CPU_BMIPS4350:
210		case CPU_BMIPS4380:
211			/* Reset slave TP1 if booting from TP0 */
212			if (cpu_logical_map(cpu) == 1)
213				set_c0_brcm_cmt_ctrl(0x01);
214			break;
215		case CPU_BMIPS5000:
216			if (cpu & 0x01)
217				write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218			else {
219				/*
220				 * core N thread 0 was already booted; just
221				 * pulse the NMI line
222				 */
223				bmips_write_zscm_reg(0x210, 0xc0000000);
224				udelay(10);
225				bmips_write_zscm_reg(0x210, 0x00);
226			}
227			break;
228		}
229		cpumask_set_cpu(cpu, &bmips_booted_mask);
230	}
 
 
231}
232
233/*
234 * Early setup - runs on secondary CPU after cache probe
235 */
236static void bmips_init_secondary(void)
237{
238	/* move NMI vector to kseg0, in case XKS01 is enabled */
239
240	void __iomem *cbr;
241	unsigned long old_vec;
242	unsigned long relo_vector;
243	int boot_cpu;
244
245	switch (current_cpu_type()) {
246	case CPU_BMIPS4350:
247	case CPU_BMIPS4380:
248		cbr = BMIPS_GET_CBR();
249
250		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251		relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252				  BMIPS_RELO_VECTOR_CONTROL_1;
253
254		old_vec = __raw_readl(cbr + relo_vector);
255		__raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261			(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 
264		break;
265	}
266}
267
268/*
269 * Late setup - runs on secondary CPU before entering the idle loop
270 */
271static void bmips_smp_finish(void)
272{
273	pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275	/* make sure there won't be a timer interrupt for a little while */
276	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278	irq_enable_hazard();
279	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280	irq_enable_hazard();
281}
282
283/*
284 * Runs on CPU0 after all CPUs have been booted
285 */
286static void bmips_cpus_done(void)
287{
288}
289
290/*
291 * BMIPS5000 raceless IPIs
292 *
293 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
294 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
295 * IPI1 is used for SMP_CALL_FUNCTION
296 */
297
298static void bmips5000_send_ipi_single(int cpu, unsigned int action)
299{
300	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
301}
302
303static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
304{
305	int action = irq - IPI0_IRQ;
306
307	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
308
309	if (action == 0)
310		scheduler_ipi();
311	else
312		smp_call_function_interrupt();
313
314	return IRQ_HANDLED;
315}
316
317static void bmips5000_send_ipi_mask(const struct cpumask *mask,
318	unsigned int action)
319{
320	unsigned int i;
321
322	for_each_cpu(i, mask)
323		bmips5000_send_ipi_single(i, action);
324}
325
326/*
327 * BMIPS43xx racey IPIs
328 *
329 * We use one inbound SW IRQ for each CPU.
330 *
331 * A spinlock must be held in order to keep CPUx from accidentally clearing
332 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
333 * same spinlock is used to protect the action masks.
334 */
335
336static DEFINE_SPINLOCK(ipi_lock);
337static DEFINE_PER_CPU(int, ipi_action_mask);
338
339static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
340{
341	unsigned long flags;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	set_c0_cause(cpu ? C_SW1 : C_SW0);
345	per_cpu(ipi_action_mask, cpu) |= action;
346	irq_enable_hazard();
347	spin_unlock_irqrestore(&ipi_lock, flags);
348}
349
350static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
351{
352	unsigned long flags;
353	int action, cpu = irq - IPI0_IRQ;
354
355	spin_lock_irqsave(&ipi_lock, flags);
356	action = __get_cpu_var(ipi_action_mask);
357	per_cpu(ipi_action_mask, cpu) = 0;
358	clear_c0_cause(cpu ? C_SW1 : C_SW0);
359	spin_unlock_irqrestore(&ipi_lock, flags);
360
361	if (action & SMP_RESCHEDULE_YOURSELF)
362		scheduler_ipi();
363	if (action & SMP_CALL_FUNCTION)
364		smp_call_function_interrupt();
365
366	return IRQ_HANDLED;
367}
368
369static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
370	unsigned int action)
371{
372	unsigned int i;
373
374	for_each_cpu(i, mask)
375		bmips43xx_send_ipi_single(i, action);
376}
377
378#ifdef CONFIG_HOTPLUG_CPU
379
380static int bmips_cpu_disable(void)
381{
382	unsigned int cpu = smp_processor_id();
383
384	if (cpu == 0)
385		return -EBUSY;
386
387	pr_info("SMP: CPU%d is offline\n", cpu);
388
389	set_cpu_online(cpu, false);
390	cpu_clear(cpu, cpu_callin_map);
 
 
391
392	local_flush_tlb_all();
393	local_flush_icache_range(0, ~0);
394
395	return 0;
396}
397
398static void bmips_cpu_die(unsigned int cpu)
399{
400}
401
402void __ref play_dead(void)
403{
404	idle_task_exit();
405
406	/* flush data cache */
407	_dma_cache_wback_inv(0, ~0);
408
409	/*
410	 * Wakeup is on SW0 or SW1; disable everything else
411	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
412	 * IRQ handlers; this clears ST0_IE and returns immediately.
413	 */
414	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
415	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 
416		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
417	irq_disable_hazard();
418
419	/*
420	 * wait for SW interrupt from bmips_boot_secondary(), then jump
421	 * back to start_secondary()
422	 */
423	__asm__ __volatile__(
424	"	wait\n"
425	"	j	bmips_secondary_reentry\n"
426	: : : "memory");
427}
428
429#endif /* CONFIG_HOTPLUG_CPU */
430
431struct plat_smp_ops bmips43xx_smp_ops = {
432	.smp_setup		= bmips_smp_setup,
433	.prepare_cpus		= bmips_prepare_cpus,
434	.boot_secondary		= bmips_boot_secondary,
435	.smp_finish		= bmips_smp_finish,
436	.init_secondary		= bmips_init_secondary,
437	.cpus_done		= bmips_cpus_done,
438	.send_ipi_single	= bmips43xx_send_ipi_single,
439	.send_ipi_mask		= bmips43xx_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
444};
445
446struct plat_smp_ops bmips5000_smp_ops = {
447	.smp_setup		= bmips_smp_setup,
448	.prepare_cpus		= bmips_prepare_cpus,
449	.boot_secondary		= bmips_boot_secondary,
450	.smp_finish		= bmips_smp_finish,
451	.init_secondary		= bmips_init_secondary,
452	.cpus_done		= bmips_cpus_done,
453	.send_ipi_single	= bmips5000_send_ipi_single,
454	.send_ipi_mask		= bmips5000_send_ipi_mask,
455#ifdef CONFIG_HOTPLUG_CPU
456	.cpu_disable		= bmips_cpu_disable,
457	.cpu_die		= bmips_cpu_die,
458#endif
459};
460
461#endif /* CONFIG_SMP */
462
463/***********************************************************************
464 * BMIPS vector relocation
465 * This is primarily used for SMP boot, but it is applicable to some
466 * UP BMIPS systems as well.
467 ***********************************************************************/
468
469static void bmips_wr_vec(unsigned long dst, char *start, char *end)
470{
471	memcpy((void *)dst, start, end - start);
472	dma_cache_wback((unsigned long)start, end - start);
473	local_flush_icache_range(dst, dst + (end - start));
474	instruction_hazard();
475}
476
477static inline void bmips_nmi_handler_setup(void)
478{
479	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
480		&bmips_reset_nmi_vec_end);
481	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
482		&bmips_smp_int_vec_end);
483}
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485void bmips_ebase_setup(void)
486{
487	unsigned long new_ebase = ebase;
488	void __iomem __maybe_unused *cbr;
489
490	BUG_ON(ebase != CKSEG0);
491
492	switch (current_cpu_type()) {
493	case CPU_BMIPS4350:
494		/*
495		 * BMIPS4350 cannot relocate the normal vectors, but it
496		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
497		 * the relocated BEV=1, IV=0 general exception vector @
498		 * 0xa000_0380.
499		 *
500		 * set_uncached_handler() is used here because:
501		 *  - CPU1 will run this from uncached space
502		 *  - None of the cacheflush functions are set up yet
503		 */
504		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
505			&bmips_smp_int_vec, 0x80);
506		__sync();
507		return;
 
508	case CPU_BMIPS4380:
509		/*
510		 * 0x8000_0000: reset/NMI (initially in kseg1)
511		 * 0x8000_0400: normal vectors
512		 */
513		new_ebase = 0x80000400;
514		cbr = BMIPS_GET_CBR();
515		__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
516		__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
517		break;
518	case CPU_BMIPS5000:
519		/*
520		 * 0x8000_0000: reset/NMI (initially in kseg1)
521		 * 0x8000_1000: normal vectors
522		 */
523		new_ebase = 0x80001000;
524		write_c0_brcm_bootvec(0xa0088008);
525		write_c0_ebase(new_ebase);
526		if (max_cpus > 2)
527			bmips_write_zscm_reg(0xa0, 0xa008a008);
528		break;
529	default:
530		return;
531	}
532
533	board_nmi_handler_setup = &bmips_nmi_handler_setup;
534	ebase = new_ebase;
535}
536
537asmlinkage void __weak plat_wired_tlb_setup(void)
538{
539	/*
540	 * Called when starting/restarting a secondary CPU.
541	 * Kernel stacks and other important data might only be accessible
542	 * once the wired entries are present.
543	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544}