Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
 
 
 
 
 
 
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
 
 
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
  70
  71	/* Allocation order */
 
 
 
 
 
 
 
  72	int order;
  73
  74	/*
  75	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76	 * are scanned.
  77	 */
  78	nodemask_t	*nodemask;
  79
  80	/*
  81	 * The memory cgroup that hit its limit and as a result is the
  82	 * primary target of this reclaim invocation.
  83	 */
  84	struct mem_cgroup *target_mem_cgroup;
  85
  86	/* Scan (total_size >> priority) pages at once */
  87	int priority;
  88
  89	/* The highest zone to isolate pages for reclaim from */
  90	enum zone_type reclaim_idx;
  91
  92	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  93	unsigned int may_writepage:1;
  94
  95	/* Can mapped pages be reclaimed? */
  96	unsigned int may_unmap:1;
  97
  98	/* Can pages be swapped as part of reclaim? */
  99	unsigned int may_swap:1;
 100
 101	/*
 102	 * Cgroups are not reclaimed below their configured memory.low,
 103	 * unless we threaten to OOM. If any cgroups are skipped due to
 104	 * memory.low and nothing was reclaimed, go back for memory.low.
 105	 */
 106	unsigned int memcg_low_reclaim:1;
 107	unsigned int memcg_low_skipped:1;
 108
 109	unsigned int hibernation_mode:1;
 110
 111	/* One of the zones is ready for compaction */
 112	unsigned int compaction_ready:1;
 113
 114	/* Incremented by the number of inactive pages that were scanned */
 115	unsigned long nr_scanned;
 116
 117	/* Number of pages freed so far during a call to shrink_zones() */
 118	unsigned long nr_reclaimed;
 119
 120	struct {
 121		unsigned int dirty;
 122		unsigned int unqueued_dirty;
 123		unsigned int congested;
 124		unsigned int writeback;
 125		unsigned int immediate;
 126		unsigned int file_taken;
 127		unsigned int taken;
 128	} nr;
 129};
 130
 
 
 131#ifdef ARCH_HAS_PREFETCH
 132#define prefetch_prev_lru_page(_page, _base, _field)			\
 133	do {								\
 134		if ((_page)->lru.prev != _base) {			\
 135			struct page *prev;				\
 136									\
 137			prev = lru_to_page(&(_page->lru));		\
 138			prefetch(&prev->_field);			\
 139		}							\
 140	} while (0)
 141#else
 142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 143#endif
 144
 145#ifdef ARCH_HAS_PREFETCHW
 146#define prefetchw_prev_lru_page(_page, _base, _field)			\
 147	do {								\
 148		if ((_page)->lru.prev != _base) {			\
 149			struct page *prev;				\
 150									\
 151			prev = lru_to_page(&(_page->lru));		\
 152			prefetchw(&prev->_field);			\
 153		}							\
 154	} while (0)
 155#else
 156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 157#endif
 158
 159/*
 160 * From 0 .. 100.  Higher means more swappy.
 161 */
 162int vm_swappiness = 60;
 163/*
 164 * The total number of pages which are beyond the high watermark within all
 165 * zones.
 166 */
 167unsigned long vm_total_pages;
 168
 169static LIST_HEAD(shrinker_list);
 170static DECLARE_RWSEM(shrinker_rwsem);
 171
 172#ifdef CONFIG_MEMCG
 173static bool global_reclaim(struct scan_control *sc)
 174{
 175	return !sc->target_mem_cgroup;
 176}
 177
 178/**
 179 * sane_reclaim - is the usual dirty throttling mechanism operational?
 180 * @sc: scan_control in question
 181 *
 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 183 * completely broken with the legacy memcg and direct stalling in
 184 * shrink_page_list() is used for throttling instead, which lacks all the
 185 * niceties such as fairness, adaptive pausing, bandwidth proportional
 186 * allocation and configurability.
 187 *
 188 * This function tests whether the vmscan currently in progress can assume
 189 * that the normal dirty throttling mechanism is operational.
 190 */
 191static bool sane_reclaim(struct scan_control *sc)
 192{
 193	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 194
 195	if (!memcg)
 196		return true;
 197#ifdef CONFIG_CGROUP_WRITEBACK
 198	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 199		return true;
 200#endif
 201	return false;
 202}
 203
 204static void set_memcg_congestion(pg_data_t *pgdat,
 205				struct mem_cgroup *memcg,
 206				bool congested)
 207{
 208	struct mem_cgroup_per_node *mn;
 209
 210	if (!memcg)
 211		return;
 212
 213	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 214	WRITE_ONCE(mn->congested, congested);
 215}
 216
 217static bool memcg_congested(pg_data_t *pgdat,
 218			struct mem_cgroup *memcg)
 219{
 220	struct mem_cgroup_per_node *mn;
 221
 222	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 223	return READ_ONCE(mn->congested);
 224
 225}
 226#else
 227static bool global_reclaim(struct scan_control *sc)
 228{
 229	return true;
 230}
 231
 232static bool sane_reclaim(struct scan_control *sc)
 233{
 234	return true;
 235}
 236
 237static inline void set_memcg_congestion(struct pglist_data *pgdat,
 238				struct mem_cgroup *memcg, bool congested)
 239{
 240}
 241
 242static inline bool memcg_congested(struct pglist_data *pgdat,
 243			struct mem_cgroup *memcg)
 244{
 245	return false;
 246
 247}
 248#endif
 249
 250/*
 251 * This misses isolated pages which are not accounted for to save counters.
 252 * As the data only determines if reclaim or compaction continues, it is
 253 * not expected that isolated pages will be a dominating factor.
 254 */
 255unsigned long zone_reclaimable_pages(struct zone *zone)
 256{
 257	unsigned long nr;
 258
 259	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 260		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 261	if (get_nr_swap_pages() > 0)
 262		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 263			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 264
 265	return nr;
 266}
 267
 268/**
 269 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 270 * @lruvec: lru vector
 271 * @lru: lru to use
 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 273 */
 274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 275{
 276	unsigned long lru_size;
 277	int zid;
 278
 279	if (!mem_cgroup_disabled())
 280		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 281	else
 282		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 283
 284	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 285		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 286		unsigned long size;
 287
 288		if (!managed_zone(zone))
 289			continue;
 290
 291		if (!mem_cgroup_disabled())
 292			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 293		else
 294			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 295				       NR_ZONE_LRU_BASE + lru);
 296		lru_size -= min(size, lru_size);
 297	}
 298
 299	return lru_size;
 300
 
 301}
 302
 303/*
 304 * Add a shrinker callback to be called from the vm.
 305 */
 306int prealloc_shrinker(struct shrinker *shrinker)
 307{
 308	size_t size = sizeof(*shrinker->nr_deferred);
 309
 310	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 311		size *= nr_node_ids;
 312
 313	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 314	if (!shrinker->nr_deferred)
 315		return -ENOMEM;
 316	return 0;
 317}
 318
 319void free_prealloced_shrinker(struct shrinker *shrinker)
 320{
 321	kfree(shrinker->nr_deferred);
 322	shrinker->nr_deferred = NULL;
 323}
 324
 325void register_shrinker_prepared(struct shrinker *shrinker)
 326{
 
 327	down_write(&shrinker_rwsem);
 328	list_add_tail(&shrinker->list, &shrinker_list);
 329	up_write(&shrinker_rwsem);
 330}
 331
 332int register_shrinker(struct shrinker *shrinker)
 333{
 334	int err = prealloc_shrinker(shrinker);
 335
 336	if (err)
 337		return err;
 338	register_shrinker_prepared(shrinker);
 339	return 0;
 340}
 341EXPORT_SYMBOL(register_shrinker);
 342
 343/*
 344 * Remove one
 345 */
 346void unregister_shrinker(struct shrinker *shrinker)
 347{
 348	if (!shrinker->nr_deferred)
 349		return;
 350	down_write(&shrinker_rwsem);
 351	list_del(&shrinker->list);
 352	up_write(&shrinker_rwsem);
 353	kfree(shrinker->nr_deferred);
 354	shrinker->nr_deferred = NULL;
 355}
 356EXPORT_SYMBOL(unregister_shrinker);
 357
 358#define SHRINK_BATCH 128
 359
 360static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 361				    struct shrinker *shrinker, int priority)
 362{
 363	unsigned long freed = 0;
 364	unsigned long long delta;
 365	long total_scan;
 366	long freeable;
 367	long nr;
 368	long new_nr;
 369	int nid = shrinkctl->nid;
 370	long batch_size = shrinker->batch ? shrinker->batch
 371					  : SHRINK_BATCH;
 372	long scanned = 0, next_deferred;
 373
 374	freeable = shrinker->count_objects(shrinker, shrinkctl);
 375	if (freeable == 0)
 376		return 0;
 377
 378	/*
 379	 * copy the current shrinker scan count into a local variable
 380	 * and zero it so that other concurrent shrinker invocations
 381	 * don't also do this scanning work.
 382	 */
 383	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 384
 385	total_scan = nr;
 386	delta = freeable >> priority;
 387	delta *= 4;
 388	do_div(delta, shrinker->seeks);
 389	total_scan += delta;
 390	if (total_scan < 0) {
 391		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 392		       shrinker->scan_objects, total_scan);
 393		total_scan = freeable;
 394		next_deferred = nr;
 395	} else
 396		next_deferred = total_scan;
 397
 398	/*
 399	 * We need to avoid excessive windup on filesystem shrinkers
 400	 * due to large numbers of GFP_NOFS allocations causing the
 401	 * shrinkers to return -1 all the time. This results in a large
 402	 * nr being built up so when a shrink that can do some work
 403	 * comes along it empties the entire cache due to nr >>>
 404	 * freeable. This is bad for sustaining a working set in
 405	 * memory.
 406	 *
 407	 * Hence only allow the shrinker to scan the entire cache when
 408	 * a large delta change is calculated directly.
 409	 */
 410	if (delta < freeable / 4)
 411		total_scan = min(total_scan, freeable / 2);
 412
 413	/*
 414	 * Avoid risking looping forever due to too large nr value:
 415	 * never try to free more than twice the estimate number of
 416	 * freeable entries.
 417	 */
 418	if (total_scan > freeable * 2)
 419		total_scan = freeable * 2;
 420
 421	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 422				   freeable, delta, total_scan, priority);
 423
 424	/*
 425	 * Normally, we should not scan less than batch_size objects in one
 426	 * pass to avoid too frequent shrinker calls, but if the slab has less
 427	 * than batch_size objects in total and we are really tight on memory,
 428	 * we will try to reclaim all available objects, otherwise we can end
 429	 * up failing allocations although there are plenty of reclaimable
 430	 * objects spread over several slabs with usage less than the
 431	 * batch_size.
 432	 *
 433	 * We detect the "tight on memory" situations by looking at the total
 434	 * number of objects we want to scan (total_scan). If it is greater
 435	 * than the total number of objects on slab (freeable), we must be
 436	 * scanning at high prio and therefore should try to reclaim as much as
 437	 * possible.
 438	 */
 439	while (total_scan >= batch_size ||
 440	       total_scan >= freeable) {
 441		unsigned long ret;
 442		unsigned long nr_to_scan = min(batch_size, total_scan);
 443
 444		shrinkctl->nr_to_scan = nr_to_scan;
 445		shrinkctl->nr_scanned = nr_to_scan;
 446		ret = shrinker->scan_objects(shrinker, shrinkctl);
 447		if (ret == SHRINK_STOP)
 448			break;
 449		freed += ret;
 450
 451		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 452		total_scan -= shrinkctl->nr_scanned;
 453		scanned += shrinkctl->nr_scanned;
 454
 455		cond_resched();
 456	}
 457
 458	if (next_deferred >= scanned)
 459		next_deferred -= scanned;
 460	else
 461		next_deferred = 0;
 462	/*
 463	 * move the unused scan count back into the shrinker in a
 464	 * manner that handles concurrent updates. If we exhausted the
 465	 * scan, there is no need to do an update.
 466	 */
 467	if (next_deferred > 0)
 468		new_nr = atomic_long_add_return(next_deferred,
 469						&shrinker->nr_deferred[nid]);
 470	else
 471		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 472
 473	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 474	return freed;
 475}
 476
 477/**
 478 * shrink_slab - shrink slab caches
 479 * @gfp_mask: allocation context
 480 * @nid: node whose slab caches to target
 481 * @memcg: memory cgroup whose slab caches to target
 482 * @priority: the reclaim priority
 483 *
 484 * Call the shrink functions to age shrinkable caches.
 485 *
 486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 487 * unaware shrinkers will receive a node id of 0 instead.
 488 *
 489 * @memcg specifies the memory cgroup to target. If it is not NULL,
 490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 491 * objects from the memory cgroup specified. Otherwise, only unaware
 492 * shrinkers are called.
 493 *
 494 * @priority is sc->priority, we take the number of objects and >> by priority
 495 * in order to get the scan target.
 496 *
 497 * Returns the number of reclaimed slab objects.
 498 */
 499static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 500				 struct mem_cgroup *memcg,
 501				 int priority)
 502{
 503	struct shrinker *shrinker;
 504	unsigned long freed = 0;
 505
 506	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 507		return 0;
 508
 509	if (!down_read_trylock(&shrinker_rwsem))
 
 
 510		goto out;
 
 511
 512	list_for_each_entry(shrinker, &shrinker_list, list) {
 513		struct shrink_control sc = {
 514			.gfp_mask = gfp_mask,
 515			.nid = nid,
 516			.memcg = memcg,
 517		};
 
 
 
 518
 519		/*
 520		 * If kernel memory accounting is disabled, we ignore
 521		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 522		 * passing NULL for memcg.
 523		 */
 524		if (memcg_kmem_enabled() &&
 525		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 526			continue;
 527
 528		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 529			sc.nid = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531		freed += do_shrink_slab(&sc, shrinker, priority);
 532		/*
 533		 * Bail out if someone want to register a new shrinker to
 534		 * prevent the regsitration from being stalled for long periods
 535		 * by parallel ongoing shrinking.
 
 
 
 
 
 
 
 536		 */
 537		if (rwsem_is_contended(&shrinker_rwsem)) {
 538			freed = freed ? : 1;
 539			break;
 540		}
 541	}
 542
 543	up_read(&shrinker_rwsem);
 544out:
 545	cond_resched();
 546	return freed;
 547}
 
 
 548
 549void drop_slab_node(int nid)
 550{
 551	unsigned long freed;
 552
 553	do {
 554		struct mem_cgroup *memcg = NULL;
 555
 556		freed = 0;
 557		do {
 558			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 559		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 560	} while (freed > 10);
 561}
 
 
 
 562
 563void drop_slab(void)
 564{
 565	int nid;
 566
 567	for_each_online_node(nid)
 568		drop_slab_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571static inline int is_page_cache_freeable(struct page *page)
 572{
 573	/*
 574	 * A freeable page cache page is referenced only by the caller
 575	 * that isolated the page, the page cache radix tree and
 576	 * optional buffer heads at page->private.
 577	 */
 578	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
 579		HPAGE_PMD_NR : 1;
 580	return page_count(page) - page_has_private(page) == 1 + radix_pins;
 581}
 582
 583static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 
 584{
 585	if (current->flags & PF_SWAPWRITE)
 586		return 1;
 587	if (!inode_write_congested(inode))
 588		return 1;
 589	if (inode_to_bdi(inode) == current->backing_dev_info)
 590		return 1;
 591	return 0;
 592}
 593
 594/*
 595 * We detected a synchronous write error writing a page out.  Probably
 596 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 597 * fsync(), msync() or close().
 598 *
 599 * The tricky part is that after writepage we cannot touch the mapping: nothing
 600 * prevents it from being freed up.  But we have a ref on the page and once
 601 * that page is locked, the mapping is pinned.
 602 *
 603 * We're allowed to run sleeping lock_page() here because we know the caller has
 604 * __GFP_FS.
 605 */
 606static void handle_write_error(struct address_space *mapping,
 607				struct page *page, int error)
 608{
 609	lock_page(page);
 610	if (page_mapping(page) == mapping)
 611		mapping_set_error(mapping, error);
 612	unlock_page(page);
 613}
 614
 615/* possible outcome of pageout() */
 616typedef enum {
 617	/* failed to write page out, page is locked */
 618	PAGE_KEEP,
 619	/* move page to the active list, page is locked */
 620	PAGE_ACTIVATE,
 621	/* page has been sent to the disk successfully, page is unlocked */
 622	PAGE_SUCCESS,
 623	/* page is clean and locked */
 624	PAGE_CLEAN,
 625} pageout_t;
 626
 627/*
 628 * pageout is called by shrink_page_list() for each dirty page.
 629 * Calls ->writepage().
 630 */
 631static pageout_t pageout(struct page *page, struct address_space *mapping,
 632			 struct scan_control *sc)
 633{
 634	/*
 635	 * If the page is dirty, only perform writeback if that write
 636	 * will be non-blocking.  To prevent this allocation from being
 637	 * stalled by pagecache activity.  But note that there may be
 638	 * stalls if we need to run get_block().  We could test
 639	 * PagePrivate for that.
 640	 *
 641	 * If this process is currently in __generic_file_write_iter() against
 642	 * this page's queue, we can perform writeback even if that
 643	 * will block.
 644	 *
 645	 * If the page is swapcache, write it back even if that would
 646	 * block, for some throttling. This happens by accident, because
 647	 * swap_backing_dev_info is bust: it doesn't reflect the
 648	 * congestion state of the swapdevs.  Easy to fix, if needed.
 649	 */
 650	if (!is_page_cache_freeable(page))
 651		return PAGE_KEEP;
 652	if (!mapping) {
 653		/*
 654		 * Some data journaling orphaned pages can have
 655		 * page->mapping == NULL while being dirty with clean buffers.
 656		 */
 657		if (page_has_private(page)) {
 658			if (try_to_free_buffers(page)) {
 659				ClearPageDirty(page);
 660				pr_info("%s: orphaned page\n", __func__);
 661				return PAGE_CLEAN;
 662			}
 663		}
 664		return PAGE_KEEP;
 665	}
 666	if (mapping->a_ops->writepage == NULL)
 667		return PAGE_ACTIVATE;
 668	if (!may_write_to_inode(mapping->host, sc))
 669		return PAGE_KEEP;
 670
 671	if (clear_page_dirty_for_io(page)) {
 672		int res;
 673		struct writeback_control wbc = {
 674			.sync_mode = WB_SYNC_NONE,
 675			.nr_to_write = SWAP_CLUSTER_MAX,
 676			.range_start = 0,
 677			.range_end = LLONG_MAX,
 678			.for_reclaim = 1,
 679		};
 680
 681		SetPageReclaim(page);
 682		res = mapping->a_ops->writepage(page, &wbc);
 683		if (res < 0)
 684			handle_write_error(mapping, page, res);
 685		if (res == AOP_WRITEPAGE_ACTIVATE) {
 686			ClearPageReclaim(page);
 687			return PAGE_ACTIVATE;
 688		}
 689
 690		if (!PageWriteback(page)) {
 691			/* synchronous write or broken a_ops? */
 692			ClearPageReclaim(page);
 693		}
 694		trace_mm_vmscan_writepage(page);
 695		inc_node_page_state(page, NR_VMSCAN_WRITE);
 696		return PAGE_SUCCESS;
 697	}
 698
 699	return PAGE_CLEAN;
 700}
 701
 702/*
 703 * Same as remove_mapping, but if the page is removed from the mapping, it
 704 * gets returned with a refcount of 0.
 705 */
 706static int __remove_mapping(struct address_space *mapping, struct page *page,
 707			    bool reclaimed)
 708{
 709	unsigned long flags;
 710	int refcount;
 711
 712	BUG_ON(!PageLocked(page));
 713	BUG_ON(mapping != page_mapping(page));
 714
 715	xa_lock_irqsave(&mapping->i_pages, flags);
 716	/*
 717	 * The non racy check for a busy page.
 718	 *
 719	 * Must be careful with the order of the tests. When someone has
 720	 * a ref to the page, it may be possible that they dirty it then
 721	 * drop the reference. So if PageDirty is tested before page_count
 722	 * here, then the following race may occur:
 723	 *
 724	 * get_user_pages(&page);
 725	 * [user mapping goes away]
 726	 * write_to(page);
 727	 *				!PageDirty(page)    [good]
 728	 * SetPageDirty(page);
 729	 * put_page(page);
 730	 *				!page_count(page)   [good, discard it]
 731	 *
 732	 * [oops, our write_to data is lost]
 733	 *
 734	 * Reversing the order of the tests ensures such a situation cannot
 735	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 736	 * load is not satisfied before that of page->_refcount.
 737	 *
 738	 * Note that if SetPageDirty is always performed via set_page_dirty,
 739	 * and thus under the i_pages lock, then this ordering is not required.
 740	 */
 741	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 742		refcount = 1 + HPAGE_PMD_NR;
 743	else
 744		refcount = 2;
 745	if (!page_ref_freeze(page, refcount))
 746		goto cannot_free;
 747	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 748	if (unlikely(PageDirty(page))) {
 749		page_ref_unfreeze(page, refcount);
 750		goto cannot_free;
 751	}
 752
 753	if (PageSwapCache(page)) {
 754		swp_entry_t swap = { .val = page_private(page) };
 755		mem_cgroup_swapout(page, swap);
 756		__delete_from_swap_cache(page);
 757		xa_unlock_irqrestore(&mapping->i_pages, flags);
 758		put_swap_page(page, swap);
 759	} else {
 760		void (*freepage)(struct page *);
 761		void *shadow = NULL;
 762
 763		freepage = mapping->a_ops->freepage;
 764		/*
 765		 * Remember a shadow entry for reclaimed file cache in
 766		 * order to detect refaults, thus thrashing, later on.
 767		 *
 768		 * But don't store shadows in an address space that is
 769		 * already exiting.  This is not just an optizimation,
 770		 * inode reclaim needs to empty out the radix tree or
 771		 * the nodes are lost.  Don't plant shadows behind its
 772		 * back.
 773		 *
 774		 * We also don't store shadows for DAX mappings because the
 775		 * only page cache pages found in these are zero pages
 776		 * covering holes, and because we don't want to mix DAX
 777		 * exceptional entries and shadow exceptional entries in the
 778		 * same address_space.
 779		 */
 780		if (reclaimed && page_is_file_cache(page) &&
 781		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 782			shadow = workingset_eviction(mapping, page);
 783		__delete_from_page_cache(page, shadow);
 784		xa_unlock_irqrestore(&mapping->i_pages, flags);
 785
 786		if (freepage != NULL)
 787			freepage(page);
 788	}
 789
 790	return 1;
 791
 792cannot_free:
 793	xa_unlock_irqrestore(&mapping->i_pages, flags);
 794	return 0;
 795}
 796
 797/*
 798 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 799 * someone else has a ref on the page, abort and return 0.  If it was
 800 * successfully detached, return 1.  Assumes the caller has a single ref on
 801 * this page.
 802 */
 803int remove_mapping(struct address_space *mapping, struct page *page)
 804{
 805	if (__remove_mapping(mapping, page, false)) {
 806		/*
 807		 * Unfreezing the refcount with 1 rather than 2 effectively
 808		 * drops the pagecache ref for us without requiring another
 809		 * atomic operation.
 810		 */
 811		page_ref_unfreeze(page, 1);
 812		return 1;
 813	}
 814	return 0;
 815}
 816
 817/**
 818 * putback_lru_page - put previously isolated page onto appropriate LRU list
 819 * @page: page to be put back to appropriate lru list
 820 *
 821 * Add previously isolated @page to appropriate LRU list.
 822 * Page may still be unevictable for other reasons.
 823 *
 824 * lru_lock must not be held, interrupts must be enabled.
 825 */
 826void putback_lru_page(struct page *page)
 827{
 828	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	put_page(page);		/* drop ref from isolate */
 830}
 831
 832enum page_references {
 833	PAGEREF_RECLAIM,
 834	PAGEREF_RECLAIM_CLEAN,
 835	PAGEREF_KEEP,
 836	PAGEREF_ACTIVATE,
 837};
 838
 839static enum page_references page_check_references(struct page *page,
 840						  struct scan_control *sc)
 841{
 842	int referenced_ptes, referenced_page;
 843	unsigned long vm_flags;
 844
 845	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 846					  &vm_flags);
 847	referenced_page = TestClearPageReferenced(page);
 848
 849	/*
 850	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 851	 * move the page to the unevictable list.
 852	 */
 853	if (vm_flags & VM_LOCKED)
 854		return PAGEREF_RECLAIM;
 855
 856	if (referenced_ptes) {
 857		if (PageSwapBacked(page))
 858			return PAGEREF_ACTIVATE;
 859		/*
 860		 * All mapped pages start out with page table
 861		 * references from the instantiating fault, so we need
 862		 * to look twice if a mapped file page is used more
 863		 * than once.
 864		 *
 865		 * Mark it and spare it for another trip around the
 866		 * inactive list.  Another page table reference will
 867		 * lead to its activation.
 868		 *
 869		 * Note: the mark is set for activated pages as well
 870		 * so that recently deactivated but used pages are
 871		 * quickly recovered.
 872		 */
 873		SetPageReferenced(page);
 874
 875		if (referenced_page || referenced_ptes > 1)
 876			return PAGEREF_ACTIVATE;
 877
 878		/*
 879		 * Activate file-backed executable pages after first usage.
 880		 */
 881		if (vm_flags & VM_EXEC)
 882			return PAGEREF_ACTIVATE;
 883
 884		return PAGEREF_KEEP;
 885	}
 886
 887	/* Reclaim if clean, defer dirty pages to writeback */
 888	if (referenced_page && !PageSwapBacked(page))
 889		return PAGEREF_RECLAIM_CLEAN;
 890
 891	return PAGEREF_RECLAIM;
 892}
 893
 894/* Check if a page is dirty or under writeback */
 895static void page_check_dirty_writeback(struct page *page,
 896				       bool *dirty, bool *writeback)
 897{
 898	struct address_space *mapping;
 899
 900	/*
 901	 * Anonymous pages are not handled by flushers and must be written
 902	 * from reclaim context. Do not stall reclaim based on them
 903	 */
 904	if (!page_is_file_cache(page) ||
 905	    (PageAnon(page) && !PageSwapBacked(page))) {
 906		*dirty = false;
 907		*writeback = false;
 908		return;
 909	}
 910
 911	/* By default assume that the page flags are accurate */
 912	*dirty = PageDirty(page);
 913	*writeback = PageWriteback(page);
 914
 915	/* Verify dirty/writeback state if the filesystem supports it */
 916	if (!page_has_private(page))
 917		return;
 918
 919	mapping = page_mapping(page);
 920	if (mapping && mapping->a_ops->is_dirty_writeback)
 921		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 922}
 923
 924/*
 925 * shrink_page_list() returns the number of reclaimed pages
 926 */
 927static unsigned long shrink_page_list(struct list_head *page_list,
 928				      struct pglist_data *pgdat,
 929				      struct scan_control *sc,
 930				      enum ttu_flags ttu_flags,
 931				      struct reclaim_stat *stat,
 932				      bool force_reclaim)
 933{
 934	LIST_HEAD(ret_pages);
 935	LIST_HEAD(free_pages);
 936	int pgactivate = 0;
 937	unsigned nr_unqueued_dirty = 0;
 938	unsigned nr_dirty = 0;
 939	unsigned nr_congested = 0;
 940	unsigned nr_reclaimed = 0;
 941	unsigned nr_writeback = 0;
 942	unsigned nr_immediate = 0;
 943	unsigned nr_ref_keep = 0;
 944	unsigned nr_unmap_fail = 0;
 945
 946	cond_resched();
 947
 948	while (!list_empty(page_list)) {
 
 949		struct address_space *mapping;
 950		struct page *page;
 951		int may_enter_fs;
 952		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 953		bool dirty, writeback;
 954
 955		cond_resched();
 956
 957		page = lru_to_page(page_list);
 958		list_del(&page->lru);
 959
 960		if (!trylock_page(page))
 961			goto keep;
 962
 963		VM_BUG_ON_PAGE(PageActive(page), page);
 
 964
 965		sc->nr_scanned++;
 966
 967		if (unlikely(!page_evictable(page)))
 968			goto activate_locked;
 969
 970		if (!sc->may_unmap && page_mapped(page))
 971			goto keep_locked;
 972
 973		/* Double the slab pressure for mapped and swapcache pages */
 974		if ((page_mapped(page) || PageSwapCache(page)) &&
 975		    !(PageAnon(page) && !PageSwapBacked(page)))
 976			sc->nr_scanned++;
 977
 978		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 979			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 980
 981		/*
 982		 * The number of dirty pages determines if a node is marked
 983		 * reclaim_congested which affects wait_iff_congested. kswapd
 984		 * will stall and start writing pages if the tail of the LRU
 985		 * is all dirty unqueued pages.
 986		 */
 987		page_check_dirty_writeback(page, &dirty, &writeback);
 988		if (dirty || writeback)
 989			nr_dirty++;
 990
 991		if (dirty && !writeback)
 992			nr_unqueued_dirty++;
 993
 994		/*
 995		 * Treat this page as congested if the underlying BDI is or if
 996		 * pages are cycling through the LRU so quickly that the
 997		 * pages marked for immediate reclaim are making it to the
 998		 * end of the LRU a second time.
 999		 */
1000		mapping = page_mapping(page);
1001		if (((dirty || writeback) && mapping &&
1002		     inode_write_congested(mapping->host)) ||
1003		    (writeback && PageReclaim(page)))
1004			nr_congested++;
1005
1006		/*
1007		 * If a page at the tail of the LRU is under writeback, there
1008		 * are three cases to consider.
1009		 *
1010		 * 1) If reclaim is encountering an excessive number of pages
1011		 *    under writeback and this page is both under writeback and
1012		 *    PageReclaim then it indicates that pages are being queued
1013		 *    for IO but are being recycled through the LRU before the
1014		 *    IO can complete. Waiting on the page itself risks an
1015		 *    indefinite stall if it is impossible to writeback the
1016		 *    page due to IO error or disconnected storage so instead
1017		 *    note that the LRU is being scanned too quickly and the
1018		 *    caller can stall after page list has been processed.
1019		 *
1020		 * 2) Global or new memcg reclaim encounters a page that is
1021		 *    not marked for immediate reclaim, or the caller does not
1022		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023		 *    not to fs). In this case mark the page for immediate
1024		 *    reclaim and continue scanning.
1025		 *
1026		 *    Require may_enter_fs because we would wait on fs, which
1027		 *    may not have submitted IO yet. And the loop driver might
1028		 *    enter reclaim, and deadlock if it waits on a page for
1029		 *    which it is needed to do the write (loop masks off
1030		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1031		 *    would probably show more reasons.
1032		 *
1033		 * 3) Legacy memcg encounters a page that is already marked
1034		 *    PageReclaim. memcg does not have any dirty pages
1035		 *    throttling so we could easily OOM just because too many
1036		 *    pages are in writeback and there is nothing else to
1037		 *    reclaim. Wait for the writeback to complete.
1038		 *
1039		 * In cases 1) and 2) we activate the pages to get them out of
1040		 * the way while we continue scanning for clean pages on the
1041		 * inactive list and refilling from the active list. The
1042		 * observation here is that waiting for disk writes is more
1043		 * expensive than potentially causing reloads down the line.
1044		 * Since they're marked for immediate reclaim, they won't put
1045		 * memory pressure on the cache working set any longer than it
1046		 * takes to write them to disk.
1047		 */
1048		if (PageWriteback(page)) {
1049			/* Case 1 above */
1050			if (current_is_kswapd() &&
1051			    PageReclaim(page) &&
1052			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053				nr_immediate++;
1054				goto activate_locked;
1055
1056			/* Case 2 above */
1057			} else if (sane_reclaim(sc) ||
1058			    !PageReclaim(page) || !may_enter_fs) {
 
 
 
 
 
 
 
 
 
1059				/*
1060				 * This is slightly racy - end_page_writeback()
1061				 * might have just cleared PageReclaim, then
1062				 * setting PageReclaim here end up interpreted
1063				 * as PageReadahead - but that does not matter
1064				 * enough to care.  What we do want is for this
1065				 * page to have PageReclaim set next time memcg
1066				 * reclaim reaches the tests above, so it will
1067				 * then wait_on_page_writeback() to avoid OOM;
1068				 * and it's also appropriate in global reclaim.
1069				 */
1070				SetPageReclaim(page);
1071				nr_writeback++;
1072				goto activate_locked;
1073
1074			/* Case 3 above */
1075			} else {
1076				unlock_page(page);
1077				wait_on_page_writeback(page);
1078				/* then go back and try same page again */
1079				list_add_tail(&page->lru, page_list);
1080				continue;
1081			}
 
1082		}
1083
1084		if (!force_reclaim)
1085			references = page_check_references(page, sc);
1086
1087		switch (references) {
1088		case PAGEREF_ACTIVATE:
1089			goto activate_locked;
1090		case PAGEREF_KEEP:
1091			nr_ref_keep++;
1092			goto keep_locked;
1093		case PAGEREF_RECLAIM:
1094		case PAGEREF_RECLAIM_CLEAN:
1095			; /* try to reclaim the page below */
1096		}
1097
1098		/*
1099		 * Anonymous process memory has backing store?
1100		 * Try to allocate it some swap space here.
1101		 * Lazyfree page could be freed directly
1102		 */
1103		if (PageAnon(page) && PageSwapBacked(page)) {
1104			if (!PageSwapCache(page)) {
1105				if (!(sc->gfp_mask & __GFP_IO))
1106					goto keep_locked;
1107				if (PageTransHuge(page)) {
1108					/* cannot split THP, skip it */
1109					if (!can_split_huge_page(page, NULL))
1110						goto activate_locked;
1111					/*
1112					 * Split pages without a PMD map right
1113					 * away. Chances are some or all of the
1114					 * tail pages can be freed without IO.
1115					 */
1116					if (!compound_mapcount(page) &&
1117					    split_huge_page_to_list(page,
1118								    page_list))
1119						goto activate_locked;
1120				}
1121				if (!add_to_swap(page)) {
1122					if (!PageTransHuge(page))
1123						goto activate_locked;
1124					/* Fallback to swap normal pages */
1125					if (split_huge_page_to_list(page,
1126								    page_list))
1127						goto activate_locked;
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129					count_vm_event(THP_SWPOUT_FALLBACK);
1130#endif
1131					if (!add_to_swap(page))
1132						goto activate_locked;
1133				}
1134
1135				may_enter_fs = 1;
1136
1137				/* Adding to swap updated mapping */
1138				mapping = page_mapping(page);
1139			}
1140		} else if (unlikely(PageTransHuge(page))) {
1141			/* Split file THP */
1142			if (split_huge_page_to_list(page, page_list))
1143				goto keep_locked;
 
 
 
1144		}
1145
 
 
1146		/*
1147		 * The page is mapped into the page tables of one or more
1148		 * processes. Try to unmap it here.
1149		 */
1150		if (page_mapped(page)) {
1151			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152
1153			if (unlikely(PageTransHuge(page)))
1154				flags |= TTU_SPLIT_HUGE_PMD;
1155			if (!try_to_unmap(page, flags)) {
1156				nr_unmap_fail++;
1157				goto activate_locked;
 
 
 
 
 
 
1158			}
1159		}
1160
1161		if (PageDirty(page)) {
 
 
1162			/*
1163			 * Only kswapd can writeback filesystem pages
1164			 * to avoid risk of stack overflow. But avoid
1165			 * injecting inefficient single-page IO into
1166			 * flusher writeback as much as possible: only
1167			 * write pages when we've encountered many
1168			 * dirty pages, and when we've already scanned
1169			 * the rest of the LRU for clean pages and see
1170			 * the same dirty pages again (PageReclaim).
1171			 */
1172			if (page_is_file_cache(page) &&
1173			    (!current_is_kswapd() || !PageReclaim(page) ||
1174			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175				/*
1176				 * Immediately reclaim when written back.
1177				 * Similar in principal to deactivate_page()
1178				 * except we already have the page isolated
1179				 * and know it's dirty
1180				 */
1181				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182				SetPageReclaim(page);
1183
1184				goto activate_locked;
1185			}
1186
1187			if (references == PAGEREF_RECLAIM_CLEAN)
1188				goto keep_locked;
1189			if (!may_enter_fs)
1190				goto keep_locked;
1191			if (!sc->may_writepage)
1192				goto keep_locked;
1193
1194			/*
1195			 * Page is dirty. Flush the TLB if a writable entry
1196			 * potentially exists to avoid CPU writes after IO
1197			 * starts and then write it out here.
1198			 */
1199			try_to_unmap_flush_dirty();
1200			switch (pageout(page, mapping, sc)) {
1201			case PAGE_KEEP:
 
1202				goto keep_locked;
1203			case PAGE_ACTIVATE:
1204				goto activate_locked;
1205			case PAGE_SUCCESS:
1206				if (PageWriteback(page))
1207					goto keep;
1208				if (PageDirty(page))
1209					goto keep;
1210
1211				/*
1212				 * A synchronous write - probably a ramdisk.  Go
1213				 * ahead and try to reclaim the page.
1214				 */
1215				if (!trylock_page(page))
1216					goto keep;
1217				if (PageDirty(page) || PageWriteback(page))
1218					goto keep_locked;
1219				mapping = page_mapping(page);
1220			case PAGE_CLEAN:
1221				; /* try to free the page below */
1222			}
1223		}
1224
1225		/*
1226		 * If the page has buffers, try to free the buffer mappings
1227		 * associated with this page. If we succeed we try to free
1228		 * the page as well.
1229		 *
1230		 * We do this even if the page is PageDirty().
1231		 * try_to_release_page() does not perform I/O, but it is
1232		 * possible for a page to have PageDirty set, but it is actually
1233		 * clean (all its buffers are clean).  This happens if the
1234		 * buffers were written out directly, with submit_bh(). ext3
1235		 * will do this, as well as the blockdev mapping.
1236		 * try_to_release_page() will discover that cleanness and will
1237		 * drop the buffers and mark the page clean - it can be freed.
1238		 *
1239		 * Rarely, pages can have buffers and no ->mapping.  These are
1240		 * the pages which were not successfully invalidated in
1241		 * truncate_complete_page().  We try to drop those buffers here
1242		 * and if that worked, and the page is no longer mapped into
1243		 * process address space (page_count == 1) it can be freed.
1244		 * Otherwise, leave the page on the LRU so it is swappable.
1245		 */
1246		if (page_has_private(page)) {
1247			if (!try_to_release_page(page, sc->gfp_mask))
1248				goto activate_locked;
1249			if (!mapping && page_count(page) == 1) {
1250				unlock_page(page);
1251				if (put_page_testzero(page))
1252					goto free_it;
1253				else {
1254					/*
1255					 * rare race with speculative reference.
1256					 * the speculative reference will free
1257					 * this page shortly, so we may
1258					 * increment nr_reclaimed here (and
1259					 * leave it off the LRU).
1260					 */
1261					nr_reclaimed++;
1262					continue;
1263				}
1264			}
1265		}
1266
1267		if (PageAnon(page) && !PageSwapBacked(page)) {
1268			/* follow __remove_mapping for reference */
1269			if (!page_ref_freeze(page, 1))
1270				goto keep_locked;
1271			if (PageDirty(page)) {
1272				page_ref_unfreeze(page, 1);
1273				goto keep_locked;
1274			}
1275
1276			count_vm_event(PGLAZYFREED);
1277			count_memcg_page_event(page, PGLAZYFREED);
1278		} else if (!mapping || !__remove_mapping(mapping, page, true))
1279			goto keep_locked;
 
1280		/*
1281		 * At this point, we have no other references and there is
1282		 * no way to pick any more up (removed from LRU, removed
1283		 * from pagecache). Can use non-atomic bitops now (and
1284		 * we obviously don't have to worry about waking up a process
1285		 * waiting on the page lock, because there are no references.
1286		 */
1287		__ClearPageLocked(page);
1288free_it:
1289		nr_reclaimed++;
1290
1291		/*
1292		 * Is there need to periodically free_page_list? It would
1293		 * appear not as the counts should be low
1294		 */
1295		if (unlikely(PageTransHuge(page))) {
1296			mem_cgroup_uncharge(page);
1297			(*get_compound_page_dtor(page))(page);
1298		} else
1299			list_add(&page->lru, &free_pages);
 
 
 
1300		continue;
1301
1302activate_locked:
1303		/* Not a candidate for swapping, so reclaim swap space. */
1304		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305						PageMlocked(page)))
1306			try_to_free_swap(page);
1307		VM_BUG_ON_PAGE(PageActive(page), page);
1308		if (!PageMlocked(page)) {
1309			SetPageActive(page);
1310			pgactivate++;
1311			count_memcg_page_event(page, PGACTIVATE);
1312		}
1313keep_locked:
1314		unlock_page(page);
1315keep:
1316		list_add(&page->lru, &ret_pages);
1317		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318	}
1319
1320	mem_cgroup_uncharge_list(&free_pages);
1321	try_to_unmap_flush();
1322	free_unref_page_list(&free_pages);
 
 
 
 
 
 
 
1323
1324	list_splice(&ret_pages, page_list);
1325	count_vm_events(PGACTIVATE, pgactivate);
1326
1327	if (stat) {
1328		stat->nr_dirty = nr_dirty;
1329		stat->nr_congested = nr_congested;
1330		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331		stat->nr_writeback = nr_writeback;
1332		stat->nr_immediate = nr_immediate;
1333		stat->nr_activate = pgactivate;
1334		stat->nr_ref_keep = nr_ref_keep;
1335		stat->nr_unmap_fail = nr_unmap_fail;
1336	}
1337	return nr_reclaimed;
1338}
1339
1340unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341					    struct list_head *page_list)
1342{
1343	struct scan_control sc = {
1344		.gfp_mask = GFP_KERNEL,
1345		.priority = DEF_PRIORITY,
1346		.may_unmap = 1,
1347	};
1348	unsigned long ret;
1349	struct page *page, *next;
1350	LIST_HEAD(clean_pages);
1351
1352	list_for_each_entry_safe(page, next, page_list, lru) {
1353		if (page_is_file_cache(page) && !PageDirty(page) &&
1354		    !__PageMovable(page)) {
1355			ClearPageActive(page);
1356			list_move(&page->lru, &clean_pages);
1357		}
1358	}
1359
1360	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361			TTU_IGNORE_ACCESS, NULL, true);
1362	list_splice(&clean_pages, page_list);
1363	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364	return ret;
1365}
1366
1367/*
1368 * Attempt to remove the specified page from its LRU.  Only take this page
1369 * if it is of the appropriate PageActive status.  Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page:	page to consider
1373 * mode:	one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378{
1379	int ret = -EINVAL;
1380
1381	/* Only take pages on the LRU. */
1382	if (!PageLRU(page))
1383		return ret;
1384
1385	/* Compaction should not handle unevictable pages but CMA can do so */
1386	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387		return ret;
1388
1389	ret = -EBUSY;
1390
1391	/*
1392	 * To minimise LRU disruption, the caller can indicate that it only
1393	 * wants to isolate pages it will be able to operate on without
1394	 * blocking - clean pages for the most part.
1395	 *
 
 
 
1396	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397	 * that it is possible to migrate without blocking
1398	 */
1399	if (mode & ISOLATE_ASYNC_MIGRATE) {
1400		/* All the caller can do on PageWriteback is block */
1401		if (PageWriteback(page))
1402			return ret;
1403
1404		if (PageDirty(page)) {
1405			struct address_space *mapping;
1406			bool migrate_dirty;
 
 
 
1407
1408			/*
1409			 * Only pages without mappings or that have a
1410			 * ->migratepage callback are possible to migrate
1411			 * without blocking. However, we can be racing with
1412			 * truncation so it's necessary to lock the page
1413			 * to stabilise the mapping as truncation holds
1414			 * the page lock until after the page is removed
1415			 * from the page cache.
1416			 */
1417			if (!trylock_page(page))
1418				return ret;
1419
1420			mapping = page_mapping(page);
1421			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422			unlock_page(page);
1423			if (!migrate_dirty)
1424				return ret;
1425		}
1426	}
1427
1428	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429		return ret;
1430
1431	if (likely(get_page_unless_zero(page))) {
1432		/*
1433		 * Be careful not to clear PageLRU until after we're
1434		 * sure the page is not being freed elsewhere -- the
1435		 * page release code relies on it.
1436		 */
1437		ClearPageLRU(page);
1438		ret = 0;
1439	}
1440
1441	return ret;
1442}
1443
1444
1445/*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450			enum lru_list lru, unsigned long *nr_zone_taken)
1451{
1452	int zid;
1453
1454	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455		if (!nr_zone_taken[zid])
1456			continue;
1457
1458		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459#ifdef CONFIG_MEMCG
1460		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461#endif
1462	}
1463
1464}
1465
1466/*
1467 * zone_lru_lock is heavily contended.  Some of the functions that
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan:	The number of eligible pages to look through on the list.
1477 * @lruvec:	The LRU vector to pull pages from.
1478 * @dst:	The temp list to put pages on to.
1479 * @nr_scanned:	The number of pages that were scanned.
1480 * @sc:		The scan_control struct for this reclaim session
1481 * @mode:	One of the LRU isolation modes
1482 * @lru:	LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487		struct lruvec *lruvec, struct list_head *dst,
1488		unsigned long *nr_scanned, struct scan_control *sc,
1489		isolate_mode_t mode, enum lru_list lru)
1490{
1491	struct list_head *src = &lruvec->lists[lru];
1492	unsigned long nr_taken = 0;
1493	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495	unsigned long skipped = 0;
1496	unsigned long scan, total_scan, nr_pages;
1497	LIST_HEAD(pages_skipped);
1498
1499	scan = 0;
1500	for (total_scan = 0;
1501	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502	     total_scan++) {
1503		struct page *page;
 
1504
1505		page = lru_to_page(src);
1506		prefetchw_prev_lru_page(page, src, flags);
1507
1508		VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510		if (page_zonenum(page) > sc->reclaim_idx) {
1511			list_move(&page->lru, &pages_skipped);
1512			nr_skipped[page_zonenum(page)]++;
1513			continue;
1514		}
1515
1516		/*
1517		 * Do not count skipped pages because that makes the function
1518		 * return with no isolated pages if the LRU mostly contains
1519		 * ineligible pages.  This causes the VM to not reclaim any
1520		 * pages, triggering a premature OOM.
1521		 */
1522		scan++;
1523		switch (__isolate_lru_page(page, mode)) {
1524		case 0:
1525			nr_pages = hpage_nr_pages(page);
1526			nr_taken += nr_pages;
1527			nr_zone_taken[page_zonenum(page)] += nr_pages;
1528			list_move(&page->lru, dst);
 
1529			break;
1530
1531		case -EBUSY:
1532			/* else it is being freed elsewhere */
1533			list_move(&page->lru, src);
1534			continue;
1535
1536		default:
1537			BUG();
1538		}
1539	}
1540
1541	/*
1542	 * Splice any skipped pages to the start of the LRU list. Note that
1543	 * this disrupts the LRU order when reclaiming for lower zones but
1544	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545	 * scanning would soon rescan the same pages to skip and put the
1546	 * system at risk of premature OOM.
1547	 */
1548	if (!list_empty(&pages_skipped)) {
1549		int zid;
1550
1551		list_splice(&pages_skipped, src);
1552		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553			if (!nr_skipped[zid])
1554				continue;
1555
1556			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557			skipped += nr_skipped[zid];
1558		}
1559	}
1560	*nr_scanned = total_scan;
1561	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562				    total_scan, skipped, nr_taken, mode, lru);
1563	update_lru_sizes(lruvec, lru, nr_zone_taken);
1564	return nr_taken;
1565}
1566
1567/**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared.  If it was found on
1578 * the active list, it will have PageActive set.  If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 *     fundamentnal difference from isolate_lru_pages (which is called
1589 *     without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
1592 */
1593int isolate_lru_page(struct page *page)
1594{
1595	int ret = -EBUSY;
1596
1597	VM_BUG_ON_PAGE(!page_count(page), page);
1598	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600	if (PageLRU(page)) {
1601		struct zone *zone = page_zone(page);
1602		struct lruvec *lruvec;
1603
1604		spin_lock_irq(zone_lru_lock(zone));
1605		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606		if (PageLRU(page)) {
1607			int lru = page_lru(page);
1608			get_page(page);
1609			ClearPageLRU(page);
1610			del_page_from_lru_list(page, lruvec, lru);
1611			ret = 0;
1612		}
1613		spin_unlock_irq(zone_lru_lock(zone));
1614	}
1615	return ret;
1616}
1617
1618/*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625static int too_many_isolated(struct pglist_data *pgdat, int file,
1626		struct scan_control *sc)
1627{
1628	unsigned long inactive, isolated;
1629
1630	if (current_is_kswapd())
1631		return 0;
1632
1633	if (!sane_reclaim(sc))
1634		return 0;
1635
1636	if (file) {
1637		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639	} else {
1640		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642	}
1643
1644	/*
1645	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646	 * won't get blocked by normal direct-reclaimers, forming a circular
1647	 * deadlock.
1648	 */
1649	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650		inactive >>= 3;
1651
1652	return isolated > inactive;
1653}
1654
1655static noinline_for_stack void
1656putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657{
1658	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660	LIST_HEAD(pages_to_free);
1661
1662	/*
1663	 * Put back any unfreeable pages.
1664	 */
1665	while (!list_empty(page_list)) {
1666		struct page *page = lru_to_page(page_list);
1667		int lru;
1668
1669		VM_BUG_ON_PAGE(PageLRU(page), page);
1670		list_del(&page->lru);
1671		if (unlikely(!page_evictable(page))) {
1672			spin_unlock_irq(&pgdat->lru_lock);
1673			putback_lru_page(page);
1674			spin_lock_irq(&pgdat->lru_lock);
1675			continue;
1676		}
1677
1678		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680		SetPageLRU(page);
1681		lru = page_lru(page);
1682		add_page_to_lru_list(page, lruvec, lru);
1683
1684		if (is_active_lru(lru)) {
1685			int file = is_file_lru(lru);
1686			int numpages = hpage_nr_pages(page);
1687			reclaim_stat->recent_rotated[file] += numpages;
1688		}
1689		if (put_page_testzero(page)) {
1690			__ClearPageLRU(page);
1691			__ClearPageActive(page);
1692			del_page_from_lru_list(page, lruvec, lru);
1693
1694			if (unlikely(PageCompound(page))) {
1695				spin_unlock_irq(&pgdat->lru_lock);
1696				mem_cgroup_uncharge(page);
1697				(*get_compound_page_dtor(page))(page);
1698				spin_lock_irq(&pgdat->lru_lock);
1699			} else
1700				list_add(&page->lru, &pages_to_free);
1701		}
1702	}
1703
1704	/*
1705	 * To save our caller's stack, now use input list for pages to free.
1706	 */
1707	list_splice(&pages_to_free, page_list);
1708}
1709
1710/*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested.  In other cases it is safe to throttle.
1715 */
1716static int current_may_throttle(void)
1717{
1718	return !(current->flags & PF_LESS_THROTTLE) ||
1719		current->backing_dev_info == NULL ||
1720		bdi_write_congested(current->backing_dev_info);
1721}
1722
1723/*
1724 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1725 * of reclaimed pages
1726 */
1727static noinline_for_stack unsigned long
1728shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729		     struct scan_control *sc, enum lru_list lru)
1730{
1731	LIST_HEAD(page_list);
1732	unsigned long nr_scanned;
1733	unsigned long nr_reclaimed = 0;
1734	unsigned long nr_taken;
1735	struct reclaim_stat stat = {};
 
1736	isolate_mode_t isolate_mode = 0;
1737	int file = is_file_lru(lru);
1738	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740	bool stalled = false;
1741
1742	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743		if (stalled)
1744			return 0;
1745
1746		/* wait a bit for the reclaimer. */
1747		msleep(100);
1748		stalled = true;
1749
1750		/* We are about to die and free our memory. Return now. */
1751		if (fatal_signal_pending(current))
1752			return SWAP_CLUSTER_MAX;
1753	}
1754
1755	lru_add_drain();
1756
1757	if (!sc->may_unmap)
1758		isolate_mode |= ISOLATE_UNMAPPED;
 
 
1759
1760	spin_lock_irq(&pgdat->lru_lock);
1761
1762	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763				     &nr_scanned, sc, isolate_mode, lru);
1764
1765	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766	reclaim_stat->recent_scanned[file] += nr_taken;
1767
1768	if (current_is_kswapd()) {
1769		if (global_reclaim(sc))
1770			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772				   nr_scanned);
1773	} else {
1774		if (global_reclaim(sc))
1775			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777				   nr_scanned);
1778	}
1779	spin_unlock_irq(&pgdat->lru_lock);
1780
1781	if (nr_taken == 0)
1782		return 0;
1783
1784	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785				&stat, false);
1786
1787	spin_lock_irq(&pgdat->lru_lock);
1788
1789	if (current_is_kswapd()) {
1790		if (global_reclaim(sc))
1791			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793				   nr_reclaimed);
1794	} else {
1795		if (global_reclaim(sc))
1796			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798				   nr_reclaimed);
1799	}
1800
1801	putback_inactive_pages(lruvec, &page_list);
1802
1803	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804
1805	spin_unlock_irq(&pgdat->lru_lock);
1806
1807	mem_cgroup_uncharge_list(&page_list);
1808	free_unref_page_list(&page_list);
1809
1810	/*
1811	 * If dirty pages are scanned that are not queued for IO, it
1812	 * implies that flushers are not doing their job. This can
1813	 * happen when memory pressure pushes dirty pages to the end of
1814	 * the LRU before the dirty limits are breached and the dirty
1815	 * data has expired. It can also happen when the proportion of
1816	 * dirty pages grows not through writes but through memory
1817	 * pressure reclaiming all the clean cache. And in some cases,
1818	 * the flushers simply cannot keep up with the allocation
1819	 * rate. Nudge the flusher threads in case they are asleep.
1820	 */
1821	if (stat.nr_unqueued_dirty == nr_taken)
1822		wakeup_flusher_threads(WB_REASON_VMSCAN);
1823
1824	sc->nr.dirty += stat.nr_dirty;
1825	sc->nr.congested += stat.nr_congested;
1826	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827	sc->nr.writeback += stat.nr_writeback;
1828	sc->nr.immediate += stat.nr_immediate;
1829	sc->nr.taken += nr_taken;
1830	if (file)
1831		sc->nr.file_taken += nr_taken;
1832
1833	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
 
 
 
 
 
 
1835	return nr_reclaimed;
1836}
1837
1838/*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation.  But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page.  It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859				     struct list_head *list,
1860				     struct list_head *pages_to_free,
1861				     enum lru_list lru)
1862{
1863	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 
1864	struct page *page;
1865	int nr_pages;
1866	int nr_moved = 0;
1867
1868	while (!list_empty(list)) {
1869		page = lru_to_page(list);
1870		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872		VM_BUG_ON_PAGE(PageLRU(page), page);
1873		SetPageLRU(page);
1874
1875		nr_pages = hpage_nr_pages(page);
1876		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877		list_move(&page->lru, &lruvec->lists[lru]);
 
1878
1879		if (put_page_testzero(page)) {
1880			__ClearPageLRU(page);
1881			__ClearPageActive(page);
1882			del_page_from_lru_list(page, lruvec, lru);
1883
1884			if (unlikely(PageCompound(page))) {
1885				spin_unlock_irq(&pgdat->lru_lock);
1886				mem_cgroup_uncharge(page);
1887				(*get_compound_page_dtor(page))(page);
1888				spin_lock_irq(&pgdat->lru_lock);
1889			} else
1890				list_add(&page->lru, pages_to_free);
1891		} else {
1892			nr_moved += nr_pages;
1893		}
1894	}
1895
1896	if (!is_active_lru(lru)) {
1897		__count_vm_events(PGDEACTIVATE, nr_moved);
1898		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899				   nr_moved);
1900	}
1901
1902	return nr_moved;
1903}
1904
1905static void shrink_active_list(unsigned long nr_to_scan,
1906			       struct lruvec *lruvec,
1907			       struct scan_control *sc,
1908			       enum lru_list lru)
1909{
1910	unsigned long nr_taken;
1911	unsigned long nr_scanned;
1912	unsigned long vm_flags;
1913	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1914	LIST_HEAD(l_active);
1915	LIST_HEAD(l_inactive);
1916	struct page *page;
1917	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918	unsigned nr_deactivate, nr_activate;
1919	unsigned nr_rotated = 0;
1920	isolate_mode_t isolate_mode = 0;
1921	int file = is_file_lru(lru);
1922	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924	lru_add_drain();
1925
1926	if (!sc->may_unmap)
1927		isolate_mode |= ISOLATE_UNMAPPED;
 
 
1928
1929	spin_lock_irq(&pgdat->lru_lock);
1930
1931	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932				     &nr_scanned, sc, isolate_mode, lru);
 
 
1933
1934	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935	reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937	__count_vm_events(PGREFILL, nr_scanned);
1938	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939
1940	spin_unlock_irq(&pgdat->lru_lock);
1941
1942	while (!list_empty(&l_hold)) {
1943		cond_resched();
1944		page = lru_to_page(&l_hold);
1945		list_del(&page->lru);
1946
1947		if (unlikely(!page_evictable(page))) {
1948			putback_lru_page(page);
1949			continue;
1950		}
1951
1952		if (unlikely(buffer_heads_over_limit)) {
1953			if (page_has_private(page) && trylock_page(page)) {
1954				if (page_has_private(page))
1955					try_to_release_page(page, 0);
1956				unlock_page(page);
1957			}
1958		}
1959
1960		if (page_referenced(page, 0, sc->target_mem_cgroup,
1961				    &vm_flags)) {
1962			nr_rotated += hpage_nr_pages(page);
1963			/*
1964			 * Identify referenced, file-backed active pages and
1965			 * give them one more trip around the active list. So
1966			 * that executable code get better chances to stay in
1967			 * memory under moderate memory pressure.  Anon pages
1968			 * are not likely to be evicted by use-once streaming
1969			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970			 * so we ignore them here.
1971			 */
1972			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973				list_add(&page->lru, &l_active);
1974				continue;
1975			}
1976		}
1977
1978		ClearPageActive(page);	/* we are de-activating */
1979		list_add(&page->lru, &l_inactive);
1980	}
1981
1982	/*
1983	 * Move pages back to the lru list.
1984	 */
1985	spin_lock_irq(&pgdat->lru_lock);
1986	/*
1987	 * Count referenced pages from currently used mappings as rotated,
1988	 * even though only some of them are actually re-activated.  This
1989	 * helps balance scan pressure between file and anonymous pages in
1990	 * get_scan_count.
1991	 */
1992	reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997	spin_unlock_irq(&pgdat->lru_lock);
1998
1999	mem_cgroup_uncharge_list(&l_hold);
2000	free_unref_page_list(&l_hold);
2001	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002			nr_deactivate, nr_rotated, sc->priority, file);
2003}
2004
2005/*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total     target    max
2023 * memory    ratio     inactive
2024 * -------------------------------------
2025 *   10MB       1         5MB
2026 *  100MB       1        50MB
2027 *    1GB       3       250MB
2028 *   10GB      10       0.9GB
2029 *  100GB      31         3GB
2030 *    1TB     101        10GB
2031 *   10TB     320        32GB
2032 */
2033static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034				 struct mem_cgroup *memcg,
2035				 struct scan_control *sc, bool actual_reclaim)
2036{
2037	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039	enum lru_list inactive_lru = file * LRU_FILE;
2040	unsigned long inactive, active;
2041	unsigned long inactive_ratio;
2042	unsigned long refaults;
2043	unsigned long gb;
2044
 
 
 
 
 
 
 
 
 
2045	/*
2046	 * If we don't have swap space, anonymous page deactivation
2047	 * is pointless.
2048	 */
2049	if (!file && !total_swap_pages)
2050		return false;
2051
2052	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054
2055	if (memcg)
2056		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057	else
2058		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
 
 
 
 
2059
2060	/*
2061	 * When refaults are being observed, it means a new workingset
2062	 * is being established. Disable active list protection to get
2063	 * rid of the stale workingset quickly.
2064	 */
2065	if (file && actual_reclaim && lruvec->refaults != refaults) {
2066		inactive_ratio = 0;
2067	} else {
2068		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069		if (gb)
2070			inactive_ratio = int_sqrt(10 * gb);
2071		else
2072			inactive_ratio = 1;
2073	}
2074
2075	if (actual_reclaim)
2076		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079			inactive_ratio, file);
2080
2081	return inactive * inactive_ratio < active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086				 struct scan_control *sc)
2087{
2088	if (is_active_lru(lru)) {
2089		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090					 memcg, sc, true))
2091			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092		return 0;
2093	}
2094
2095	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096}
2097
2098enum scan_balance {
2099	SCAN_EQUAL,
2100	SCAN_FRACT,
2101	SCAN_ANON,
2102	SCAN_FILE,
2103};
2104
2105/*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned.  The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115			   struct scan_control *sc, unsigned long *nr,
2116			   unsigned long *lru_pages)
2117{
2118	int swappiness = mem_cgroup_swappiness(memcg);
2119	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120	u64 fraction[2];
2121	u64 denominator = 0;	/* gcc */
2122	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123	unsigned long anon_prio, file_prio;
2124	enum scan_balance scan_balance;
2125	unsigned long anon, file;
2126	unsigned long ap, fp;
 
 
2127	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129	/* If we have no swap space, do not bother scanning anon pages. */
2130	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131		scan_balance = SCAN_FILE;
2132		goto out;
2133	}
2134
2135	/*
2136	 * Global reclaim will swap to prevent OOM even with no
2137	 * swappiness, but memcg users want to use this knob to
2138	 * disable swapping for individual groups completely when
2139	 * using the memory controller's swap limit feature would be
2140	 * too expensive.
2141	 */
2142	if (!global_reclaim(sc) && !swappiness) {
2143		scan_balance = SCAN_FILE;
2144		goto out;
2145	}
2146
2147	/*
2148	 * Do not apply any pressure balancing cleverness when the
2149	 * system is close to OOM, scan both anon and file equally
2150	 * (unless the swappiness setting disagrees with swapping).
2151	 */
2152	if (!sc->priority && swappiness) {
2153		scan_balance = SCAN_EQUAL;
2154		goto out;
2155	}
2156
2157	/*
2158	 * Prevent the reclaimer from falling into the cache trap: as
2159	 * cache pages start out inactive, every cache fault will tip
2160	 * the scan balance towards the file LRU.  And as the file LRU
2161	 * shrinks, so does the window for rotation from references.
2162	 * This means we have a runaway feedback loop where a tiny
2163	 * thrashing file LRU becomes infinitely more attractive than
2164	 * anon pages.  Try to detect this based on file LRU size.
2165	 */
2166	if (global_reclaim(sc)) {
2167		unsigned long pgdatfile;
2168		unsigned long pgdatfree;
2169		int z;
2170		unsigned long total_high_wmark = 0;
2171
2172		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174			   node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176		for (z = 0; z < MAX_NR_ZONES; z++) {
2177			struct zone *zone = &pgdat->node_zones[z];
2178			if (!managed_zone(zone))
2179				continue;
2180
2181			total_high_wmark += high_wmark_pages(zone);
2182		}
2183
2184		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185			/*
2186			 * Force SCAN_ANON if there are enough inactive
2187			 * anonymous pages on the LRU in eligible zones.
2188			 * Otherwise, the small LRU gets thrashed.
2189			 */
2190			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192					>> sc->priority) {
2193				scan_balance = SCAN_ANON;
2194				goto out;
2195			}
2196		}
2197	}
2198
2199	/*
2200	 * If there is enough inactive page cache, i.e. if the size of the
2201	 * inactive list is greater than that of the active list *and* the
2202	 * inactive list actually has some pages to scan on this priority, we
2203	 * do not reclaim anything from the anonymous working set right now.
2204	 * Without the second condition we could end up never scanning an
2205	 * lruvec even if it has plenty of old anonymous pages unless the
2206	 * system is under heavy pressure.
2207	 */
2208	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210		scan_balance = SCAN_FILE;
2211		goto out;
2212	}
2213
2214	scan_balance = SCAN_FRACT;
2215
2216	/*
2217	 * With swappiness at 100, anonymous and file have the same priority.
2218	 * This scanning priority is essentially the inverse of IO cost.
2219	 */
2220	anon_prio = swappiness;
2221	file_prio = 200 - anon_prio;
2222
2223	/*
2224	 * OK, so we have swap space and a fair amount of page cache
2225	 * pages.  We use the recently rotated / recently scanned
2226	 * ratios to determine how valuable each cache is.
2227	 *
2228	 * Because workloads change over time (and to avoid overflow)
2229	 * we keep these statistics as a floating average, which ends
2230	 * up weighing recent references more than old ones.
2231	 *
2232	 * anon in [0], file in [1]
2233	 */
2234
2235	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240	spin_lock_irq(&pgdat->lru_lock);
2241	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242		reclaim_stat->recent_scanned[0] /= 2;
2243		reclaim_stat->recent_rotated[0] /= 2;
2244	}
2245
2246	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247		reclaim_stat->recent_scanned[1] /= 2;
2248		reclaim_stat->recent_rotated[1] /= 2;
2249	}
2250
2251	/*
2252	 * The amount of pressure on anon vs file pages is inversely
2253	 * proportional to the fraction of recently scanned pages on
2254	 * each list that were recently referenced and in active use.
2255	 */
2256	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257	ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260	fp /= reclaim_stat->recent_rotated[1] + 1;
2261	spin_unlock_irq(&pgdat->lru_lock);
2262
2263	fraction[0] = ap;
2264	fraction[1] = fp;
2265	denominator = ap + fp + 1;
2266out:
2267	*lru_pages = 0;
2268	for_each_evictable_lru(lru) {
2269		int file = is_file_lru(lru);
2270		unsigned long size;
2271		unsigned long scan;
2272
2273		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274		scan = size >> sc->priority;
2275		/*
2276		 * If the cgroup's already been deleted, make sure to
2277		 * scrape out the remaining cache.
2278		 */
2279		if (!scan && !mem_cgroup_online(memcg))
2280			scan = min(size, SWAP_CLUSTER_MAX);
2281
2282		switch (scan_balance) {
2283		case SCAN_EQUAL:
2284			/* Scan lists relative to size */
2285			break;
2286		case SCAN_FRACT:
2287			/*
2288			 * Scan types proportional to swappiness and
2289			 * their relative recent reclaim efficiency.
2290			 */
2291			scan = div64_u64(scan * fraction[file],
2292					 denominator);
2293			break;
2294		case SCAN_FILE:
2295		case SCAN_ANON:
2296			/* Scan one type exclusively */
2297			if ((scan_balance == SCAN_FILE) != file) {
2298				size = 0;
2299				scan = 0;
2300			}
2301			break;
2302		default:
2303			/* Look ma, no brain */
2304			BUG();
2305		}
2306
2307		*lru_pages += size;
2308		nr[lru] = scan;
2309	}
2310}
2311
2312/*
2313 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2314 */
2315static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316			      struct scan_control *sc, unsigned long *lru_pages)
2317{
2318	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319	unsigned long nr[NR_LRU_LISTS];
2320	unsigned long targets[NR_LRU_LISTS];
2321	unsigned long nr_to_scan;
2322	enum lru_list lru;
2323	unsigned long nr_reclaimed = 0;
2324	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325	struct blk_plug plug;
2326	bool scan_adjusted;
2327
2328	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329
2330	/* Record the original scan target for proportional adjustments later */
2331	memcpy(targets, nr, sizeof(nr));
2332
2333	/*
2334	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335	 * event that can occur when there is little memory pressure e.g.
2336	 * multiple streaming readers/writers. Hence, we do not abort scanning
2337	 * when the requested number of pages are reclaimed when scanning at
2338	 * DEF_PRIORITY on the assumption that the fact we are direct
2339	 * reclaiming implies that kswapd is not keeping up and it is best to
2340	 * do a batch of work at once. For memcg reclaim one check is made to
2341	 * abort proportional reclaim if either the file or anon lru has already
2342	 * dropped to zero at the first pass.
2343	 */
2344	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345			 sc->priority == DEF_PRIORITY);
2346
2347	blk_start_plug(&plug);
2348	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349					nr[LRU_INACTIVE_FILE]) {
2350		unsigned long nr_anon, nr_file, percentage;
2351		unsigned long nr_scanned;
2352
2353		for_each_evictable_lru(lru) {
2354			if (nr[lru]) {
2355				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356				nr[lru] -= nr_to_scan;
2357
2358				nr_reclaimed += shrink_list(lru, nr_to_scan,
2359							    lruvec, memcg, sc);
2360			}
2361		}
2362
2363		cond_resched();
2364
2365		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366			continue;
2367
2368		/*
2369		 * For kswapd and memcg, reclaim at least the number of pages
2370		 * requested. Ensure that the anon and file LRUs are scanned
2371		 * proportionally what was requested by get_scan_count(). We
2372		 * stop reclaiming one LRU and reduce the amount scanning
2373		 * proportional to the original scan target.
2374		 */
2375		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378		/*
2379		 * It's just vindictive to attack the larger once the smaller
2380		 * has gone to zero.  And given the way we stop scanning the
2381		 * smaller below, this makes sure that we only make one nudge
2382		 * towards proportionality once we've got nr_to_reclaim.
2383		 */
2384		if (!nr_file || !nr_anon)
2385			break;
2386
2387		if (nr_file > nr_anon) {
2388			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389						targets[LRU_ACTIVE_ANON] + 1;
2390			lru = LRU_BASE;
2391			percentage = nr_anon * 100 / scan_target;
2392		} else {
2393			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394						targets[LRU_ACTIVE_FILE] + 1;
2395			lru = LRU_FILE;
2396			percentage = nr_file * 100 / scan_target;
2397		}
2398
2399		/* Stop scanning the smaller of the LRU */
2400		nr[lru] = 0;
2401		nr[lru + LRU_ACTIVE] = 0;
2402
2403		/*
2404		 * Recalculate the other LRU scan count based on its original
2405		 * scan target and the percentage scanning already complete
2406		 */
2407		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408		nr_scanned = targets[lru] - nr[lru];
2409		nr[lru] = targets[lru] * (100 - percentage) / 100;
2410		nr[lru] -= min(nr[lru], nr_scanned);
2411
2412		lru += LRU_ACTIVE;
2413		nr_scanned = targets[lru] - nr[lru];
2414		nr[lru] = targets[lru] * (100 - percentage) / 100;
2415		nr[lru] -= min(nr[lru], nr_scanned);
2416
2417		scan_adjusted = true;
2418	}
2419	blk_finish_plug(&plug);
2420	sc->nr_reclaimed += nr_reclaimed;
2421
2422	/*
2423	 * Even if we did not try to evict anon pages at all, we want to
2424	 * rebalance the anon lru active/inactive ratio.
2425	 */
2426	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428				   sc, LRU_ACTIVE_ANON);
2429}
2430
2431/* Use reclaim/compaction for costly allocs or under memory pressure */
2432static bool in_reclaim_compaction(struct scan_control *sc)
2433{
2434	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436			 sc->priority < DEF_PRIORITY - 2))
2437		return true;
2438
2439	return false;
2440}
2441
2442/*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450					unsigned long nr_reclaimed,
2451					unsigned long nr_scanned,
2452					struct scan_control *sc)
2453{
2454	unsigned long pages_for_compaction;
2455	unsigned long inactive_lru_pages;
2456	int z;
2457
2458	/* If not in reclaim/compaction mode, stop */
2459	if (!in_reclaim_compaction(sc))
2460		return false;
2461
2462	/* Consider stopping depending on scan and reclaim activity */
2463	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464		/*
2465		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466		 * full LRU list has been scanned and we are still failing
2467		 * to reclaim pages. This full LRU scan is potentially
2468		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469		 */
2470		if (!nr_reclaimed && !nr_scanned)
2471			return false;
2472	} else {
2473		/*
2474		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475		 * fail without consequence, stop if we failed to reclaim
2476		 * any pages from the last SWAP_CLUSTER_MAX number of
2477		 * pages that were scanned. This will return to the
2478		 * caller faster at the risk reclaim/compaction and
2479		 * the resulting allocation attempt fails
2480		 */
2481		if (!nr_reclaimed)
2482			return false;
2483	}
2484
2485	/*
2486	 * If we have not reclaimed enough pages for compaction and the
2487	 * inactive lists are large enough, continue reclaiming
2488	 */
2489	pages_for_compaction = compact_gap(sc->order);
2490	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491	if (get_nr_swap_pages() > 0)
2492		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493	if (sc->nr_reclaimed < pages_for_compaction &&
2494			inactive_lru_pages > pages_for_compaction)
2495		return true;
2496
2497	/* If compaction would go ahead or the allocation would succeed, stop */
2498	for (z = 0; z <= sc->reclaim_idx; z++) {
2499		struct zone *zone = &pgdat->node_zones[z];
2500		if (!managed_zone(zone))
2501			continue;
2502
2503		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504		case COMPACT_SUCCESS:
2505		case COMPACT_CONTINUE:
2506			return false;
2507		default:
2508			/* check next zone */
2509			;
2510		}
2511	}
2512	return true;
2513}
2514
2515static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516{
2517	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518		(memcg && memcg_congested(pgdat, memcg));
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
2522{
2523	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2524	unsigned long nr_reclaimed, nr_scanned;
2525	bool reclaimable = false;
2526
2527	do {
2528		struct mem_cgroup *root = sc->target_mem_cgroup;
2529		struct mem_cgroup_reclaim_cookie reclaim = {
2530			.pgdat = pgdat,
2531			.priority = sc->priority,
2532		};
2533		unsigned long node_lru_pages = 0;
2534		struct mem_cgroup *memcg;
2535
2536		memset(&sc->nr, 0, sizeof(sc->nr));
2537
2538		nr_reclaimed = sc->nr_reclaimed;
2539		nr_scanned = sc->nr_scanned;
 
 
2540
2541		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542		do {
2543			unsigned long lru_pages;
2544			unsigned long reclaimed;
2545			unsigned long scanned;
2546
2547			if (mem_cgroup_low(root, memcg)) {
2548				if (!sc->memcg_low_reclaim) {
2549					sc->memcg_low_skipped = 1;
2550					continue;
2551				}
2552				memcg_memory_event(memcg, MEMCG_LOW);
2553			}
2554
2555			reclaimed = sc->nr_reclaimed;
2556			scanned = sc->nr_scanned;
2557			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558			node_lru_pages += lru_pages;
2559
2560			if (memcg)
2561				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562					    memcg, sc->priority);
2563
2564			/* Record the group's reclaim efficiency */
2565			vmpressure(sc->gfp_mask, memcg, false,
2566				   sc->nr_scanned - scanned,
2567				   sc->nr_reclaimed - reclaimed);
2568
2569			/*
2570			 * Direct reclaim and kswapd have to scan all memory
2571			 * cgroups to fulfill the overall scan target for the
2572			 * node.
2573			 *
2574			 * Limit reclaim, on the other hand, only cares about
2575			 * nr_to_reclaim pages to be reclaimed and it will
2576			 * retry with decreasing priority if one round over the
2577			 * whole hierarchy is not sufficient.
2578			 */
2579			if (!global_reclaim(sc) &&
2580					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581				mem_cgroup_iter_break(root, memcg);
2582				break;
2583			}
2584		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585
2586		if (global_reclaim(sc))
2587			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588				    sc->priority);
2589
2590		if (reclaim_state) {
2591			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2592			reclaim_state->reclaimed_slab = 0;
2593		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594
2595		/* Record the subtree's reclaim efficiency */
2596		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597			   sc->nr_scanned - nr_scanned,
2598			   sc->nr_reclaimed - nr_reclaimed);
2599
2600		if (sc->nr_reclaimed - nr_reclaimed)
2601			reclaimable = true;
2602
2603		if (current_is_kswapd()) {
2604			/*
2605			 * If reclaim is isolating dirty pages under writeback,
2606			 * it implies that the long-lived page allocation rate
2607			 * is exceeding the page laundering rate. Either the
2608			 * global limits are not being effective at throttling
2609			 * processes due to the page distribution throughout
2610			 * zones or there is heavy usage of a slow backing
2611			 * device. The only option is to throttle from reclaim
2612			 * context which is not ideal as there is no guarantee
2613			 * the dirtying process is throttled in the same way
2614			 * balance_dirty_pages() manages.
2615			 *
2616			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2617			 * count the number of pages under pages flagged for
2618			 * immediate reclaim and stall if any are encountered
2619			 * in the nr_immediate check below.
2620			 */
2621			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2622				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623
2624			/*
2625			 * Tag a node as congested if all the dirty pages
2626			 * scanned were backed by a congested BDI and
2627			 * wait_iff_congested will stall.
2628			 */
2629			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2630				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2631
2632			/* Allow kswapd to start writing pages during reclaim.*/
2633			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2634				set_bit(PGDAT_DIRTY, &pgdat->flags);
 
 
 
 
 
2635
2636			/*
2637			 * If kswapd scans pages marked marked for immediate
2638			 * reclaim and under writeback (nr_immediate), it
2639			 * implies that pages are cycling through the LRU
2640			 * faster than they are written so also forcibly stall.
2641			 */
2642			if (sc->nr.immediate)
2643				congestion_wait(BLK_RW_ASYNC, HZ/10);
2644		}
2645
2646		/*
2647		 * Legacy memcg will stall in page writeback so avoid forcibly
2648		 * stalling in wait_iff_congested().
2649		 */
2650		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2651		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2652			set_memcg_congestion(pgdat, root, true);
2653
2654		/*
2655		 * Stall direct reclaim for IO completions if underlying BDIs
2656		 * and node is congested. Allow kswapd to continue until it
2657		 * starts encountering unqueued dirty pages or cycling through
2658		 * the LRU too quickly.
 
 
 
 
2659		 */
2660		if (!sc->hibernation_mode && !current_is_kswapd() &&
2661		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2662			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2663
2664	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665					 sc->nr_scanned - nr_scanned, sc));
2666
2667	/*
2668	 * Kswapd gives up on balancing particular nodes after too
2669	 * many failures to reclaim anything from them and goes to
2670	 * sleep. On reclaim progress, reset the failure counter. A
2671	 * successful direct reclaim run will revive a dormant kswapd.
2672	 */
2673	if (reclaimable)
2674		pgdat->kswapd_failures = 0;
2675
2676	return reclaimable;
2677}
2678
2679/*
2680 * Returns true if compaction should go ahead for a costly-order request, or
2681 * the allocation would already succeed without compaction. Return false if we
2682 * should reclaim first.
2683 */
2684static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685{
2686	unsigned long watermark;
2687	enum compact_result suitable;
2688
2689	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2690	if (suitable == COMPACT_SUCCESS)
2691		/* Allocation should succeed already. Don't reclaim. */
2692		return true;
2693	if (suitable == COMPACT_SKIPPED)
2694		/* Compaction cannot yet proceed. Do reclaim. */
2695		return false;
2696
2697	/*
2698	 * Compaction is already possible, but it takes time to run and there
2699	 * are potentially other callers using the pages just freed. So proceed
2700	 * with reclaim to make a buffer of free pages available to give
2701	 * compaction a reasonable chance of completing and allocating the page.
2702	 * Note that we won't actually reclaim the whole buffer in one attempt
2703	 * as the target watermark in should_continue_reclaim() is lower. But if
2704	 * we are already above the high+gap watermark, don't reclaim at all.
 
 
 
 
 
 
 
2705	 */
2706	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
 
 
 
 
 
2707
2708	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709}
2710
2711/*
2712 * This is the direct reclaim path, for page-allocating processes.  We only
2713 * try to reclaim pages from zones which will satisfy the caller's allocation
2714 * request.
2715 *
 
 
 
 
 
 
 
 
2716 * If a zone is deemed to be full of pinned pages then just give it a light
2717 * scan then give up on it.
 
 
 
 
 
2718 */
2719static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2720{
2721	struct zoneref *z;
2722	struct zone *zone;
2723	unsigned long nr_soft_reclaimed;
2724	unsigned long nr_soft_scanned;
2725	gfp_t orig_mask;
2726	pg_data_t *last_pgdat = NULL;
2727
2728	/*
2729	 * If the number of buffer_heads in the machine exceeds the maximum
2730	 * allowed level, force direct reclaim to scan the highmem zone as
2731	 * highmem pages could be pinning lowmem pages storing buffer_heads
2732	 */
2733	orig_mask = sc->gfp_mask;
2734	if (buffer_heads_over_limit) {
2735		sc->gfp_mask |= __GFP_HIGHMEM;
2736		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737	}
2738
2739	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740					sc->reclaim_idx, sc->nodemask) {
 
 
2741		/*
2742		 * Take care memory controller reclaiming has small influence
2743		 * to global LRU.
2744		 */
2745		if (global_reclaim(sc)) {
2746			if (!cpuset_zone_allowed(zone,
2747						 GFP_KERNEL | __GFP_HARDWALL))
2748				continue;
2749
2750			/*
2751			 * If we already have plenty of memory free for
2752			 * compaction in this zone, don't free any more.
2753			 * Even though compaction is invoked for any
2754			 * non-zero order, only frequent costly order
2755			 * reclamation is disruptive enough to become a
2756			 * noticeable problem, like transparent huge
2757			 * page allocations.
2758			 */
2759			if (IS_ENABLED(CONFIG_COMPACTION) &&
2760			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761			    compaction_ready(zone, sc)) {
2762				sc->compaction_ready = true;
2763				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764			}
2765
2766			/*
2767			 * Shrink each node in the zonelist once. If the
2768			 * zonelist is ordered by zone (not the default) then a
2769			 * node may be shrunk multiple times but in that case
2770			 * the user prefers lower zones being preserved.
2771			 */
2772			if (zone->zone_pgdat == last_pgdat)
2773				continue;
2774
2775			/*
2776			 * This steals pages from memory cgroups over softlimit
2777			 * and returns the number of reclaimed pages and
2778			 * scanned pages. This works for global memory pressure
2779			 * and balancing, not for a memcg's limit.
2780			 */
2781			nr_soft_scanned = 0;
2782			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783						sc->order, sc->gfp_mask,
2784						&nr_soft_scanned);
2785			sc->nr_reclaimed += nr_soft_reclaimed;
2786			sc->nr_scanned += nr_soft_scanned;
2787			/* need some check for avoid more shrink_zone() */
2788		}
2789
2790		/* See comment about same check for global reclaim above */
2791		if (zone->zone_pgdat == last_pgdat)
2792			continue;
2793		last_pgdat = zone->zone_pgdat;
2794		shrink_node(zone->zone_pgdat, sc);
2795	}
2796
2797	/*
2798	 * Restore to original mask to avoid the impact on the caller if we
2799	 * promoted it to __GFP_HIGHMEM.
2800	 */
2801	sc->gfp_mask = orig_mask;
2802}
2803
2804static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2805{
2806	struct mem_cgroup *memcg;
 
2807
2808	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2809	do {
2810		unsigned long refaults;
2811		struct lruvec *lruvec;
 
 
2812
2813		if (memcg)
2814			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815		else
2816			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
 
 
 
 
 
2817
2818		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2819		lruvec->refaults = refaults;
2820	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2821}
2822
2823/*
2824 * This is the main entry point to direct page reclaim.
2825 *
2826 * If a full scan of the inactive list fails to free enough memory then we
2827 * are "out of memory" and something needs to be killed.
2828 *
2829 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2830 * high - the zone may be full of dirty or under-writeback pages, which this
2831 * caller can't do much about.  We kick the writeback threads and take explicit
2832 * naps in the hope that some of these pages can be written.  But if the
2833 * allocating task holds filesystem locks which prevent writeout this might not
2834 * work, and the allocation attempt will fail.
2835 *
2836 * returns:	0, if no pages reclaimed
2837 * 		else, the number of pages reclaimed
2838 */
2839static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840					  struct scan_control *sc)
 
2841{
2842	int initial_priority = sc->priority;
2843	pg_data_t *last_pgdat;
2844	struct zoneref *z;
2845	struct zone *zone;
2846retry:
 
 
2847	delayacct_freepages_start();
2848
2849	if (global_reclaim(sc))
2850		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2851
2852	do {
2853		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2854				sc->priority);
2855		sc->nr_scanned = 0;
2856		shrink_zones(zonelist, sc);
2857
2858		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859			break;
 
 
 
 
 
 
 
 
2860
2861		if (sc->compaction_ready)
2862			break;
 
 
 
 
 
 
 
 
 
 
2863
2864		/*
2865		 * If we're getting trouble reclaiming, start doing
2866		 * writepage even in laptop mode.
2867		 */
2868		if (sc->priority < DEF_PRIORITY - 2)
 
 
 
 
 
 
2869			sc->may_writepage = 1;
2870	} while (--sc->priority >= 0);
2871
2872	last_pgdat = NULL;
2873	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2874					sc->nodemask) {
2875		if (zone->zone_pgdat == last_pgdat)
2876			continue;
2877		last_pgdat = zone->zone_pgdat;
2878		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2880	}
 
 
2881
 
2882	delayacct_freepages_end();
2883
2884	if (sc->nr_reclaimed)
2885		return sc->nr_reclaimed;
2886
2887	/* Aborted reclaim to try compaction? don't OOM, then */
2888	if (sc->compaction_ready)
2889		return 1;
2890
2891	/* Untapped cgroup reserves?  Don't OOM, retry. */
2892	if (sc->memcg_low_skipped) {
2893		sc->priority = initial_priority;
2894		sc->memcg_low_reclaim = 1;
2895		sc->memcg_low_skipped = 0;
2896		goto retry;
2897	}
2898
2899	return 0;
2900}
2901
2902static bool allow_direct_reclaim(pg_data_t *pgdat)
2903{
2904	struct zone *zone;
2905	unsigned long pfmemalloc_reserve = 0;
2906	unsigned long free_pages = 0;
2907	int i;
2908	bool wmark_ok;
2909
2910	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2911		return true;
2912
2913	for (i = 0; i <= ZONE_NORMAL; i++) {
2914		zone = &pgdat->node_zones[i];
2915		if (!managed_zone(zone))
2916			continue;
2917
2918		if (!zone_reclaimable_pages(zone))
2919			continue;
2920
2921		pfmemalloc_reserve += min_wmark_pages(zone);
2922		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2923	}
2924
2925	/* If there are no reserves (unexpected config) then do not throttle */
2926	if (!pfmemalloc_reserve)
2927		return true;
2928
2929	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2930
2931	/* kswapd must be awake if processes are being throttled */
2932	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934						(enum zone_type)ZONE_NORMAL);
2935		wake_up_interruptible(&pgdat->kswapd_wait);
2936	}
2937
2938	return wmark_ok;
2939}
2940
2941/*
2942 * Throttle direct reclaimers if backing storage is backed by the network
2943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2944 * depleted. kswapd will continue to make progress and wake the processes
2945 * when the low watermark is reached.
2946 *
2947 * Returns true if a fatal signal was delivered during throttling. If this
2948 * happens, the page allocator should not consider triggering the OOM killer.
2949 */
2950static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951					nodemask_t *nodemask)
2952{
2953	struct zoneref *z;
2954	struct zone *zone;
2955	pg_data_t *pgdat = NULL;
2956
2957	/*
2958	 * Kernel threads should not be throttled as they may be indirectly
2959	 * responsible for cleaning pages necessary for reclaim to make forward
2960	 * progress. kjournald for example may enter direct reclaim while
2961	 * committing a transaction where throttling it could forcing other
2962	 * processes to block on log_wait_commit().
2963	 */
2964	if (current->flags & PF_KTHREAD)
2965		goto out;
2966
2967	/*
2968	 * If a fatal signal is pending, this process should not throttle.
2969	 * It should return quickly so it can exit and free its memory
2970	 */
2971	if (fatal_signal_pending(current))
2972		goto out;
2973
2974	/*
2975	 * Check if the pfmemalloc reserves are ok by finding the first node
2976	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2977	 * GFP_KERNEL will be required for allocating network buffers when
2978	 * swapping over the network so ZONE_HIGHMEM is unusable.
2979	 *
2980	 * Throttling is based on the first usable node and throttled processes
2981	 * wait on a queue until kswapd makes progress and wakes them. There
2982	 * is an affinity then between processes waking up and where reclaim
2983	 * progress has been made assuming the process wakes on the same node.
2984	 * More importantly, processes running on remote nodes will not compete
2985	 * for remote pfmemalloc reserves and processes on different nodes
2986	 * should make reasonable progress.
2987	 */
2988	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989					gfp_zone(gfp_mask), nodemask) {
2990		if (zone_idx(zone) > ZONE_NORMAL)
2991			continue;
2992
2993		/* Throttle based on the first usable node */
2994		pgdat = zone->zone_pgdat;
2995		if (allow_direct_reclaim(pgdat))
2996			goto out;
2997		break;
2998	}
2999
3000	/* If no zone was usable by the allocation flags then do not throttle */
3001	if (!pgdat)
3002		goto out;
3003
3004	/* Account for the throttling */
3005	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3006
3007	/*
3008	 * If the caller cannot enter the filesystem, it's possible that it
3009	 * is due to the caller holding an FS lock or performing a journal
3010	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3011	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3012	 * blocked waiting on the same lock. Instead, throttle for up to a
3013	 * second before continuing.
3014	 */
3015	if (!(gfp_mask & __GFP_FS)) {
3016		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017			allow_direct_reclaim(pgdat), HZ);
3018
3019		goto check_pending;
3020	}
3021
3022	/* Throttle until kswapd wakes the process */
3023	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024		allow_direct_reclaim(pgdat));
3025
3026check_pending:
3027	if (fatal_signal_pending(current))
3028		return true;
3029
3030out:
3031	return false;
3032}
3033
3034unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035				gfp_t gfp_mask, nodemask_t *nodemask)
3036{
3037	unsigned long nr_reclaimed;
3038	struct scan_control sc = {
3039		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3040		.gfp_mask = current_gfp_context(gfp_mask),
3041		.reclaim_idx = gfp_zone(gfp_mask),
3042		.order = order,
3043		.nodemask = nodemask,
3044		.priority = DEF_PRIORITY,
3045		.may_writepage = !laptop_mode,
 
3046		.may_unmap = 1,
3047		.may_swap = 1,
 
 
 
 
 
 
 
3048	};
3049
3050	/*
3051	 * Do not enter reclaim if fatal signal was delivered while throttled.
3052	 * 1 is returned so that the page allocator does not OOM kill at this
3053	 * point.
3054	 */
3055	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056		return 1;
3057
3058	trace_mm_vmscan_direct_reclaim_begin(order,
3059				sc.may_writepage,
3060				sc.gfp_mask,
3061				sc.reclaim_idx);
3062
3063	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064
3065	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3066
3067	return nr_reclaimed;
3068}
3069
3070#ifdef CONFIG_MEMCG
3071
3072unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073						gfp_t gfp_mask, bool noswap,
3074						pg_data_t *pgdat,
3075						unsigned long *nr_scanned)
3076{
3077	struct scan_control sc = {
 
3078		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3079		.target_mem_cgroup = memcg,
3080		.may_writepage = !laptop_mode,
3081		.may_unmap = 1,
3082		.reclaim_idx = MAX_NR_ZONES - 1,
3083		.may_swap = !noswap,
 
 
 
3084	};
3085	unsigned long lru_pages;
3086
3087	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3088			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089
3090	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091						      sc.may_writepage,
3092						      sc.gfp_mask,
3093						      sc.reclaim_idx);
3094
3095	/*
3096	 * NOTE: Although we can get the priority field, using it
3097	 * here is not a good idea, since it limits the pages we can scan.
3098	 * if we don't reclaim here, the shrink_node from balance_pgdat
3099	 * will pick up pages from other mem cgroup's as well. We hack
3100	 * the priority and make it zero.
3101	 */
3102	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103
3104	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3105
3106	*nr_scanned = sc.nr_scanned;
3107	return sc.nr_reclaimed;
3108}
3109
3110unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111					   unsigned long nr_pages,
3112					   gfp_t gfp_mask,
3113					   bool may_swap)
3114{
3115	struct zonelist *zonelist;
3116	unsigned long nr_reclaimed;
3117	int nid;
3118	unsigned int noreclaim_flag;
3119	struct scan_control sc = {
3120		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3121		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123		.reclaim_idx = MAX_NR_ZONES - 1,
3124		.target_mem_cgroup = memcg,
3125		.priority = DEF_PRIORITY,
3126		.may_writepage = !laptop_mode,
3127		.may_unmap = 1,
3128		.may_swap = may_swap,
 
 
 
 
 
 
 
 
 
 
3129	};
3130
3131	/*
3132	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3133	 * take care of from where we get pages. So the node where we start the
3134	 * scan does not need to be the current node.
3135	 */
3136	nid = mem_cgroup_select_victim_node(memcg);
3137
3138	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139
3140	trace_mm_vmscan_memcg_reclaim_begin(0,
3141					    sc.may_writepage,
3142					    sc.gfp_mask,
3143					    sc.reclaim_idx);
3144
3145	noreclaim_flag = memalloc_noreclaim_save();
3146	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147	memalloc_noreclaim_restore(noreclaim_flag);
3148
3149	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3150
3151	return nr_reclaimed;
3152}
3153#endif
3154
3155static void age_active_anon(struct pglist_data *pgdat,
3156				struct scan_control *sc)
3157{
3158	struct mem_cgroup *memcg;
3159
3160	if (!total_swap_pages)
3161		return;
3162
3163	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3164	do {
3165		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166
3167		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169					   sc, LRU_ACTIVE_ANON);
3170
3171		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3172	} while (memcg);
3173}
3174
3175/*
3176 * Returns true if there is an eligible zone balanced for the request order
3177 * and classzone_idx
 
 
 
 
 
 
 
 
 
 
 
 
3178 */
3179static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
 
3180{
 
3181	int i;
3182	unsigned long mark = -1;
3183	struct zone *zone;
3184
3185	for (i = 0; i <= classzone_idx; i++) {
3186		zone = pgdat->node_zones + i;
3187
3188		if (!managed_zone(zone))
3189			continue;
3190
3191		mark = high_wmark_pages(zone);
3192		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3193			return true;
3194	}
3195
3196	/*
3197	 * If a node has no populated zone within classzone_idx, it does not
3198	 * need balancing by definition. This can happen if a zone-restricted
3199	 * allocation tries to wake a remote kswapd.
3200	 */
3201	if (mark == -1)
3202		return true;
3203
3204	return false;
 
3205}
3206
3207/* Clear pgdat state for congested, dirty or under writeback. */
3208static void clear_pgdat_congested(pg_data_t *pgdat)
 
3209{
3210	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3211	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3212	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3213}
3214
3215/*
3216 * Prepare kswapd for sleeping. This verifies that there are no processes
3217 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3218 *
3219 * Returns true if kswapd is ready to sleep
3220 */
3221static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3222{
3223	/*
3224	 * The throttled processes are normally woken up in balance_pgdat() as
3225	 * soon as allow_direct_reclaim() is true. But there is a potential
3226	 * race between when kswapd checks the watermarks and a process gets
3227	 * throttled. There is also a potential race if processes get
3228	 * throttled, kswapd wakes, a large process exits thereby balancing the
3229	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3230	 * the wake up checks. If kswapd is going to sleep, no process should
3231	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3232	 * the wake up is premature, processes will wake kswapd and get
3233	 * throttled again. The difference from wake ups in balance_pgdat() is
3234	 * that here we are under prepare_to_wait().
3235	 */
3236	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3237		wake_up_all(&pgdat->pfmemalloc_wait);
3238
3239	/* Hopeless node, leave it to direct reclaim */
3240	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3241		return true;
3242
3243	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3244		clear_pgdat_congested(pgdat);
3245		return true;
3246	}
3247
3248	return false;
3249}
 
3250
3251/*
3252 * kswapd shrinks a node of pages that are at or below the highest usable
3253 * zone that is currently unbalanced.
3254 *
3255 * Returns true if kswapd scanned at least the requested number of pages to
3256 * reclaim or if the lack of progress was due to pages under writeback.
3257 * This is used to determine if the scanning priority needs to be raised.
3258 */
3259static bool kswapd_shrink_node(pg_data_t *pgdat,
3260			       struct scan_control *sc)
3261{
3262	struct zone *zone;
3263	int z;
3264
3265	/* Reclaim a number of pages proportional to the number of zones */
3266	sc->nr_to_reclaim = 0;
3267	for (z = 0; z <= sc->reclaim_idx; z++) {
3268		zone = pgdat->node_zones + z;
3269		if (!managed_zone(zone))
 
 
 
3270			continue;
 
3271
3272		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
3273	}
3274
3275	/*
3276	 * Historically care was taken to put equal pressure on all zones but
3277	 * now pressure is applied based on node LRU order.
 
3278	 */
3279	shrink_node(pgdat, sc);
3280
3281	/*
3282	 * Fragmentation may mean that the system cannot be rebalanced for
3283	 * high-order allocations. If twice the allocation size has been
3284	 * reclaimed then recheck watermarks only at order-0 to prevent
3285	 * excessive reclaim. Assume that a process requested a high-order
3286	 * can direct reclaim/compact.
3287	 */
3288	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289		sc->order = 0;
3290
3291	return sc->nr_scanned >= sc->nr_to_reclaim;
3292}
3293
3294/*
3295 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3296 * that are eligible for use by the caller until at least one zone is
3297 * balanced.
 
3298 *
3299 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
3300 *
3301 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3302 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3304 * or lower is eligible for reclaim until at least one usable zone is
3305 * balanced.
 
3306 */
3307static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
 
3308{
 
 
3309	int i;
 
 
 
3310	unsigned long nr_soft_reclaimed;
3311	unsigned long nr_soft_scanned;
3312	struct zone *zone;
3313	struct scan_control sc = {
3314		.gfp_mask = GFP_KERNEL,
3315		.order = order,
3316		.priority = DEF_PRIORITY,
3317		.may_writepage = !laptop_mode,
3318		.may_unmap = 1,
3319		.may_swap = 1,
 
 
 
 
 
 
 
 
 
 
3320	};
 
 
 
 
 
3321	count_vm_event(PAGEOUTRUN);
3322
3323	do {
3324		unsigned long nr_reclaimed = sc.nr_reclaimed;
3325		bool raise_priority = true;
3326
3327		sc.reclaim_idx = classzone_idx;
 
3328
3329		/*
3330		 * If the number of buffer_heads exceeds the maximum allowed
3331		 * then consider reclaiming from all zones. This has a dual
3332		 * purpose -- on 64-bit systems it is expected that
3333		 * buffer_heads are stripped during active rotation. On 32-bit
3334		 * systems, highmem pages can pin lowmem memory and shrinking
3335		 * buffers can relieve lowmem pressure. Reclaim may still not
3336		 * go ahead if all eligible zones for the original allocation
3337		 * request are balanced to avoid excessive reclaim from kswapd.
3338		 */
3339		if (buffer_heads_over_limit) {
3340			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3341				zone = pgdat->node_zones + i;
3342				if (!managed_zone(zone))
3343					continue;
 
 
 
 
3344
3345				sc.reclaim_idx = i;
 
 
 
 
 
 
 
3346				break;
3347			}
3348		}
3349
3350		/*
3351		 * Only reclaim if there are no eligible zones. Note that
3352		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3353		 * have adjusted it.
3354		 */
3355		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
 
 
 
 
3356			goto out;
3357
3358		/*
3359		 * Do some background aging of the anon list, to give
3360		 * pages a chance to be referenced before reclaiming. All
3361		 * pages are rotated regardless of classzone as this is
3362		 * about consistent aging.
3363		 */
3364		age_active_anon(pgdat, &sc);
3365
3366		/*
3367		 * If we're getting trouble reclaiming, start doing writepage
3368		 * even in laptop mode.
3369		 */
3370		if (sc.priority < DEF_PRIORITY - 2)
3371			sc.may_writepage = 1;
 
 
 
 
 
 
 
3372
3373		/* Call soft limit reclaim before calling shrink_node. */
3374		sc.nr_scanned = 0;
3375		nr_soft_scanned = 0;
3376		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377						sc.gfp_mask, &nr_soft_scanned);
3378		sc.nr_reclaimed += nr_soft_reclaimed;
3379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380		/*
3381		 * There should be no need to raise the scanning priority if
3382		 * enough pages are already being scanned that that high
3383		 * watermark would be met at 100% efficiency.
3384		 */
3385		if (kswapd_shrink_node(pgdat, &sc))
3386			raise_priority = false;
 
 
 
 
3387
3388		/*
3389		 * If the low watermark is met there is no need for processes
3390		 * to be throttled on pfmemalloc_wait as they should not be
3391		 * able to safely make forward progress. Wake them
 
3392		 */
3393		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394				allow_direct_reclaim(pgdat))
3395			wake_up_all(&pgdat->pfmemalloc_wait);
3396
3397		/* Check if kswapd should be suspending */
3398		if (try_to_freeze() || kthread_should_stop())
3399			break;
 
 
 
 
 
 
 
 
 
 
 
 
3400
3401		/*
3402		 * Raise priority if scanning rate is too low or there was no
3403		 * progress in reclaiming pages
 
 
 
 
 
 
 
 
 
 
3404		 */
3405		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3406		if (raise_priority || !nr_reclaimed)
3407			sc.priority--;
3408	} while (sc.priority >= 1);
3409
3410	if (!sc.nr_reclaimed)
3411		pgdat->kswapd_failures++;
3412
3413out:
3414	snapshot_refaults(NULL, pgdat);
3415	/*
3416	 * Return the order kswapd stopped reclaiming at as
3417	 * prepare_kswapd_sleep() takes it into account. If another caller
3418	 * entered the allocator slow path while kswapd was awake, order will
3419	 * remain at the higher level.
 
 
3420	 */
3421	return sc.order;
3422}
3423
3424/*
3425 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3426 * allocation request woke kswapd for. When kswapd has not woken recently,
3427 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3428 * given classzone and returns it or the highest classzone index kswapd
3429 * was recently woke for.
3430 */
3431static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3432					   enum zone_type classzone_idx)
3433{
3434	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3435		return classzone_idx;
3436
3437	return max(pgdat->kswapd_classzone_idx, classzone_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438}
3439
3440static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3441				unsigned int classzone_idx)
3442{
3443	long remaining = 0;
3444	DEFINE_WAIT(wait);
3445
3446	if (freezing(current) || kthread_should_stop())
3447		return;
3448
3449	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3450
3451	/*
3452	 * Try to sleep for a short interval. Note that kcompactd will only be
3453	 * woken if it is possible to sleep for a short interval. This is
3454	 * deliberate on the assumption that if reclaim cannot keep an
3455	 * eligible zone balanced that it's also unlikely that compaction will
3456	 * succeed.
3457	 */
3458	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459		/*
3460		 * Compaction records what page blocks it recently failed to
3461		 * isolate pages from and skips them in the future scanning.
3462		 * When kswapd is going to sleep, it is reasonable to assume
3463		 * that pages and compaction may succeed so reset the cache.
3464		 */
3465		reset_isolation_suitable(pgdat);
3466
3467		/*
3468		 * We have freed the memory, now we should compact it to make
3469		 * allocation of the requested order possible.
3470		 */
3471		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472
3473		remaining = schedule_timeout(HZ/10);
3474
3475		/*
3476		 * If woken prematurely then reset kswapd_classzone_idx and
3477		 * order. The values will either be from a wakeup request or
3478		 * the previous request that slept prematurely.
3479		 */
3480		if (remaining) {
3481			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3483		}
3484
3485		finish_wait(&pgdat->kswapd_wait, &wait);
3486		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3487	}
3488
3489	/*
3490	 * After a short sleep, check if it was a premature sleep. If not, then
3491	 * go fully to sleep until explicitly woken up.
3492	 */
3493	if (!remaining &&
3494	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3496
3497		/*
3498		 * vmstat counters are not perfectly accurate and the estimated
3499		 * value for counters such as NR_FREE_PAGES can deviate from the
3500		 * true value by nr_online_cpus * threshold. To avoid the zone
3501		 * watermarks being breached while under pressure, we reduce the
3502		 * per-cpu vmstat threshold while kswapd is awake and restore
3503		 * them before going back to sleep.
3504		 */
3505		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506
3507		if (!kthread_should_stop())
3508			schedule();
3509
3510		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3511	} else {
3512		if (remaining)
3513			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3514		else
3515			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3516	}
3517	finish_wait(&pgdat->kswapd_wait, &wait);
3518}
3519
3520/*
3521 * The background pageout daemon, started as a kernel thread
3522 * from the init process.
3523 *
3524 * This basically trickles out pages so that we have _some_
3525 * free memory available even if there is no other activity
3526 * that frees anything up. This is needed for things like routing
3527 * etc, where we otherwise might have all activity going on in
3528 * asynchronous contexts that cannot page things out.
3529 *
3530 * If there are applications that are active memory-allocators
3531 * (most normal use), this basically shouldn't matter.
3532 */
3533static int kswapd(void *p)
3534{
3535	unsigned int alloc_order, reclaim_order;
3536	unsigned int classzone_idx = MAX_NR_ZONES - 1;
 
 
3537	pg_data_t *pgdat = (pg_data_t*)p;
3538	struct task_struct *tsk = current;
3539
3540	struct reclaim_state reclaim_state = {
3541		.reclaimed_slab = 0,
3542	};
3543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3544
 
 
3545	if (!cpumask_empty(cpumask))
3546		set_cpus_allowed_ptr(tsk, cpumask);
3547	current->reclaim_state = &reclaim_state;
3548
3549	/*
3550	 * Tell the memory management that we're a "memory allocator",
3551	 * and that if we need more memory we should get access to it
3552	 * regardless (see "__alloc_pages()"). "kswapd" should
3553	 * never get caught in the normal page freeing logic.
3554	 *
3555	 * (Kswapd normally doesn't need memory anyway, but sometimes
3556	 * you need a small amount of memory in order to be able to
3557	 * page out something else, and this flag essentially protects
3558	 * us from recursively trying to free more memory as we're
3559	 * trying to free the first piece of memory in the first place).
3560	 */
3561	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562	set_freezable();
3563
3564	pgdat->kswapd_order = 0;
3565	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
 
3566	for ( ; ; ) {
3567		bool ret;
3568
3569		alloc_order = reclaim_order = pgdat->kswapd_order;
3570		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
 
 
 
 
 
 
 
 
 
3571
3572kswapd_try_sleep:
3573		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3574					classzone_idx);
3575
3576		/* Read the new order and classzone_idx */
3577		alloc_order = reclaim_order = pgdat->kswapd_order;
3578		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579		pgdat->kswapd_order = 0;
3580		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
 
 
 
 
 
 
 
3581
3582		ret = try_to_freeze();
3583		if (kthread_should_stop())
3584			break;
3585
3586		/*
3587		 * We can speed up thawing tasks if we don't call balance_pgdat
3588		 * after returning from the refrigerator
3589		 */
3590		if (ret)
3591			continue;
3592
3593		/*
3594		 * Reclaim begins at the requested order but if a high-order
3595		 * reclaim fails then kswapd falls back to reclaiming for
3596		 * order-0. If that happens, kswapd will consider sleeping
3597		 * for the order it finished reclaiming at (reclaim_order)
3598		 * but kcompactd is woken to compact for the original
3599		 * request (alloc_order).
3600		 */
3601		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3602						alloc_order);
3603		fs_reclaim_acquire(GFP_KERNEL);
3604		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605		fs_reclaim_release(GFP_KERNEL);
3606		if (reclaim_order < alloc_order)
3607			goto kswapd_try_sleep;
3608	}
3609
3610	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611	current->reclaim_state = NULL;
3612
3613	return 0;
3614}
3615
3616/*
3617 * A zone is low on free memory or too fragmented for high-order memory.  If
3618 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3619 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3620 * has failed or is not needed, still wake up kcompactd if only compaction is
3621 * needed.
3622 */
3623void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3624		   enum zone_type classzone_idx)
3625{
3626	pg_data_t *pgdat;
3627
3628	if (!managed_zone(zone))
3629		return;
3630
3631	if (!cpuset_zone_allowed(zone, gfp_flags))
3632		return;
3633	pgdat = zone->zone_pgdat;
3634	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3635							   classzone_idx);
3636	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
 
3637	if (!waitqueue_active(&pgdat->kswapd_wait))
3638		return;
3639
3640	/* Hopeless node, leave it to direct reclaim if possible */
3641	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3642	    pgdat_balanced(pgdat, order, classzone_idx)) {
3643		/*
3644		 * There may be plenty of free memory available, but it's too
3645		 * fragmented for high-order allocations.  Wake up kcompactd
3646		 * and rely on compaction_suitable() to determine if it's
3647		 * needed.  If it fails, it will defer subsequent attempts to
3648		 * ratelimit its work.
3649		 */
3650		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3651			wakeup_kcompactd(pgdat, order, classzone_idx);
3652		return;
3653	}
3654
3655	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3656				      gfp_flags);
3657	wake_up_interruptible(&pgdat->kswapd_wait);
3658}
3659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660#ifdef CONFIG_HIBERNATION
3661/*
3662 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 * freed pages.
3664 *
3665 * Rather than trying to age LRUs the aim is to preserve the overall
3666 * LRU order by reclaiming preferentially
3667 * inactive > active > active referenced > active mapped
3668 */
3669unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3670{
3671	struct reclaim_state reclaim_state;
3672	struct scan_control sc = {
3673		.nr_to_reclaim = nr_to_reclaim,
3674		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3675		.reclaim_idx = MAX_NR_ZONES - 1,
3676		.priority = DEF_PRIORITY,
3677		.may_writepage = 1,
3678		.may_unmap = 1,
3679		.may_swap = 1,
 
 
 
3680		.hibernation_mode = 1,
 
 
 
 
 
3681	};
3682	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683	struct task_struct *p = current;
3684	unsigned long nr_reclaimed;
3685	unsigned int noreclaim_flag;
3686
3687	noreclaim_flag = memalloc_noreclaim_save();
3688	fs_reclaim_acquire(sc.gfp_mask);
3689	reclaim_state.reclaimed_slab = 0;
3690	p->reclaim_state = &reclaim_state;
3691
3692	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693
3694	p->reclaim_state = NULL;
3695	fs_reclaim_release(sc.gfp_mask);
3696	memalloc_noreclaim_restore(noreclaim_flag);
3697
3698	return nr_reclaimed;
3699}
3700#endif /* CONFIG_HIBERNATION */
3701
3702/* It's optimal to keep kswapds on the same CPUs as their memory, but
3703   not required for correctness.  So if the last cpu in a node goes
3704   away, we get changed to run anywhere: as the first one comes back,
3705   restore their cpu bindings. */
3706static int kswapd_cpu_online(unsigned int cpu)
 
3707{
3708	int nid;
3709
3710	for_each_node_state(nid, N_MEMORY) {
3711		pg_data_t *pgdat = NODE_DATA(nid);
3712		const struct cpumask *mask;
3713
3714		mask = cpumask_of_node(pgdat->node_id);
3715
3716		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3717			/* One of our CPUs online: restore mask */
3718			set_cpus_allowed_ptr(pgdat->kswapd, mask);
 
 
3719	}
3720	return 0;
3721}
3722
3723/*
3724 * This kswapd start function will be called by init and node-hot-add.
3725 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3726 */
3727int kswapd_run(int nid)
3728{
3729	pg_data_t *pgdat = NODE_DATA(nid);
3730	int ret = 0;
3731
3732	if (pgdat->kswapd)
3733		return 0;
3734
3735	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3736	if (IS_ERR(pgdat->kswapd)) {
3737		/* failure at boot is fatal */
3738		BUG_ON(system_state < SYSTEM_RUNNING);
3739		pr_err("Failed to start kswapd on node %d\n", nid);
3740		ret = PTR_ERR(pgdat->kswapd);
3741		pgdat->kswapd = NULL;
3742	}
3743	return ret;
3744}
3745
3746/*
3747 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3748 * hold mem_hotplug_begin/end().
3749 */
3750void kswapd_stop(int nid)
3751{
3752	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3753
3754	if (kswapd) {
3755		kthread_stop(kswapd);
3756		NODE_DATA(nid)->kswapd = NULL;
3757	}
3758}
3759
3760static int __init kswapd_init(void)
3761{
3762	int nid, ret;
3763
3764	swap_setup();
3765	for_each_node_state(nid, N_MEMORY)
3766 		kswapd_run(nid);
3767	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3768					"mm/vmscan:online", kswapd_cpu_online,
3769					NULL);
3770	WARN_ON(ret < 0);
3771	return 0;
3772}
3773
3774module_init(kswapd_init)
3775
3776#ifdef CONFIG_NUMA
3777/*
3778 * Node reclaim mode
3779 *
3780 * If non-zero call node_reclaim when the number of free pages falls below
3781 * the watermarks.
3782 */
3783int node_reclaim_mode __read_mostly;
3784
3785#define RECLAIM_OFF 0
3786#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3787#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3788#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3789
3790/*
3791 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3793 * a zone.
3794 */
3795#define NODE_RECLAIM_PRIORITY 4
3796
3797/*
3798 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 * occur.
3800 */
3801int sysctl_min_unmapped_ratio = 1;
3802
3803/*
3804 * If the number of slab pages in a zone grows beyond this percentage then
3805 * slab reclaim needs to occur.
3806 */
3807int sysctl_min_slab_ratio = 5;
3808
3809static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810{
3811	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3812	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3813		node_page_state(pgdat, NR_ACTIVE_FILE);
3814
3815	/*
3816	 * It's possible for there to be more file mapped pages than
3817	 * accounted for by the pages on the file LRU lists because
3818	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3819	 */
3820	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3821}
3822
3823/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825{
3826	unsigned long nr_pagecache_reclaimable;
3827	unsigned long delta = 0;
3828
3829	/*
3830	 * If RECLAIM_UNMAP is set, then all file pages are considered
3831	 * potentially reclaimable. Otherwise, we have to worry about
3832	 * pages like swapcache and node_unmapped_file_pages() provides
3833	 * a better estimate
3834	 */
3835	if (node_reclaim_mode & RECLAIM_UNMAP)
3836		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837	else
3838		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839
3840	/* If we can't clean pages, remove dirty pages from consideration */
3841	if (!(node_reclaim_mode & RECLAIM_WRITE))
3842		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843
3844	/* Watch for any possible underflows due to delta */
3845	if (unlikely(delta > nr_pagecache_reclaimable))
3846		delta = nr_pagecache_reclaimable;
3847
3848	return nr_pagecache_reclaimable - delta;
3849}
3850
3851/*
3852 * Try to free up some pages from this node through reclaim.
3853 */
3854static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855{
3856	/* Minimum pages needed in order to stay on node */
3857	const unsigned long nr_pages = 1 << order;
3858	struct task_struct *p = current;
3859	struct reclaim_state reclaim_state;
3860	unsigned int noreclaim_flag;
3861	struct scan_control sc = {
3862		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863		.gfp_mask = current_gfp_context(gfp_mask),
3864		.order = order,
3865		.priority = NODE_RECLAIM_PRIORITY,
3866		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3867		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868		.may_swap = 1,
3869		.reclaim_idx = gfp_zone(gfp_mask),
 
 
 
 
 
 
 
3870	};
 
3871
3872	cond_resched();
3873	/*
3874	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875	 * and we also need to be able to write out pages for RECLAIM_WRITE
3876	 * and RECLAIM_UNMAP.
3877	 */
3878	noreclaim_flag = memalloc_noreclaim_save();
3879	p->flags |= PF_SWAPWRITE;
3880	fs_reclaim_acquire(sc.gfp_mask);
3881	reclaim_state.reclaimed_slab = 0;
3882	p->reclaim_state = &reclaim_state;
3883
3884	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3885		/*
3886		 * Free memory by calling shrink node with increasing
3887		 * priorities until we have enough memory freed.
3888		 */
3889		do {
3890			shrink_node(pgdat, &sc);
3891		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3892	}
3893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3894	p->reclaim_state = NULL;
3895	fs_reclaim_release(gfp_mask);
3896	current->flags &= ~PF_SWAPWRITE;
3897	memalloc_noreclaim_restore(noreclaim_flag);
3898	return sc.nr_reclaimed >= nr_pages;
3899}
3900
3901int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902{
 
3903	int ret;
3904
3905	/*
3906	 * Node reclaim reclaims unmapped file backed pages and
3907	 * slab pages if we are over the defined limits.
3908	 *
3909	 * A small portion of unmapped file backed pages is needed for
3910	 * file I/O otherwise pages read by file I/O will be immediately
3911	 * thrown out if the node is overallocated. So we do not reclaim
3912	 * if less than a specified percentage of the node is used by
3913	 * unmapped file backed pages.
3914	 */
3915	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3917		return NODE_RECLAIM_FULL;
 
 
 
3918
3919	/*
3920	 * Do not scan if the allocation should not be delayed.
3921	 */
3922	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923		return NODE_RECLAIM_NOSCAN;
3924
3925	/*
3926	 * Only run node reclaim on the local node or on nodes that do not
3927	 * have associated processors. This will favor the local processor
3928	 * over remote processors and spread off node memory allocations
3929	 * as wide as possible.
3930	 */
3931	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3932		return NODE_RECLAIM_NOSCAN;
 
3933
3934	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3935		return NODE_RECLAIM_NOSCAN;
3936
3937	ret = __node_reclaim(pgdat, gfp_mask, order);
3938	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939
3940	if (!ret)
3941		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3942
3943	return ret;
3944}
3945#endif
3946
3947/*
3948 * page_evictable - test whether a page is evictable
3949 * @page: the page to test
 
3950 *
3951 * Test whether page is evictable--i.e., should be placed on active/inactive
3952 * lists vs unevictable list.
 
3953 *
3954 * Reasons page might not be evictable:
3955 * (1) page's mapping marked unevictable
3956 * (2) page is part of an mlocked VMA
3957 *
3958 */
3959int page_evictable(struct page *page)
3960{
3961	int ret;
3962
3963	/* Prevent address_space of inode and swap cache from being freed */
3964	rcu_read_lock();
3965	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3966	rcu_read_unlock();
3967	return ret;
 
 
3968}
3969
3970#ifdef CONFIG_SHMEM
3971/**
3972 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3973 * @pages:	array of pages to check
3974 * @nr_pages:	number of pages to check
3975 *
3976 * Checks pages for evictability and moves them to the appropriate lru list.
3977 *
3978 * This function is only used for SysV IPC SHM_UNLOCK.
3979 */
3980void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981{
3982	struct lruvec *lruvec;
3983	struct pglist_data *pgdat = NULL;
3984	int pgscanned = 0;
3985	int pgrescued = 0;
3986	int i;
3987
3988	for (i = 0; i < nr_pages; i++) {
3989		struct page *page = pages[i];
3990		struct pglist_data *pagepgdat = page_pgdat(page);
3991
3992		pgscanned++;
3993		if (pagepgdat != pgdat) {
3994			if (pgdat)
3995				spin_unlock_irq(&pgdat->lru_lock);
3996			pgdat = pagepgdat;
3997			spin_lock_irq(&pgdat->lru_lock);
 
3998		}
3999		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4000
4001		if (!PageLRU(page) || !PageUnevictable(page))
4002			continue;
4003
4004		if (page_evictable(page)) {
4005			enum lru_list lru = page_lru_base_type(page);
4006
4007			VM_BUG_ON_PAGE(PageActive(page), page);
4008			ClearPageUnevictable(page);
4009			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4010			add_page_to_lru_list(page, lruvec, lru);
4011			pgrescued++;
4012		}
4013	}
4014
4015	if (pgdat) {
4016		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4017		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018		spin_unlock_irq(&pgdat->lru_lock);
4019	}
4020}
4021#endif /* CONFIG_SHMEM */
v3.5.6
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/backing-dev.h>
  30#include <linux/rmap.h>
  31#include <linux/topology.h>
  32#include <linux/cpu.h>
  33#include <linux/cpuset.h>
  34#include <linux/compaction.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43#include <linux/oom.h>
  44#include <linux/prefetch.h>
 
 
  45
  46#include <asm/tlbflush.h>
  47#include <asm/div64.h>
  48
  49#include <linux/swapops.h>
 
  50
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/vmscan.h>
  55
  56struct scan_control {
  57	/* Incremented by the number of inactive pages that were scanned */
  58	unsigned long nr_scanned;
  59
  60	/* Number of pages freed so far during a call to shrink_zones() */
  61	unsigned long nr_reclaimed;
  62
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
  66	unsigned long hibernation_mode;
  67
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
  70
  71	int may_writepage;
  72
  73	/* Can mapped pages be reclaimed? */
  74	int may_unmap;
  75
  76	/* Can pages be swapped as part of reclaim? */
  77	int may_swap;
  78
  79	int order;
  80
  81	/* Scan (total_size >> priority) pages at once */
  82	int priority;
 
 
 
  83
  84	/*
  85	 * The memory cgroup that hit its limit and as a result is the
  86	 * primary target of this reclaim invocation.
  87	 */
  88	struct mem_cgroup *target_mem_cgroup;
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90	/*
  91	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  92	 * are scanned.
 
  93	 */
  94	nodemask_t	*nodemask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95};
  96
  97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  98
  99#ifdef ARCH_HAS_PREFETCH
 100#define prefetch_prev_lru_page(_page, _base, _field)			\
 101	do {								\
 102		if ((_page)->lru.prev != _base) {			\
 103			struct page *prev;				\
 104									\
 105			prev = lru_to_page(&(_page->lru));		\
 106			prefetch(&prev->_field);			\
 107		}							\
 108	} while (0)
 109#else
 110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 111#endif
 112
 113#ifdef ARCH_HAS_PREFETCHW
 114#define prefetchw_prev_lru_page(_page, _base, _field)			\
 115	do {								\
 116		if ((_page)->lru.prev != _base) {			\
 117			struct page *prev;				\
 118									\
 119			prev = lru_to_page(&(_page->lru));		\
 120			prefetchw(&prev->_field);			\
 121		}							\
 122	} while (0)
 123#else
 124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 125#endif
 126
 127/*
 128 * From 0 .. 100.  Higher means more swappy.
 129 */
 130int vm_swappiness = 60;
 131long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 132
 133static LIST_HEAD(shrinker_list);
 134static DECLARE_RWSEM(shrinker_rwsem);
 135
 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 137static bool global_reclaim(struct scan_control *sc)
 138{
 139	return !sc->target_mem_cgroup;
 140}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141#else
 142static bool global_reclaim(struct scan_control *sc)
 143{
 144	return true;
 145}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146#endif
 147
 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 
 
 
 
 
 149{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150	if (!mem_cgroup_disabled())
 151		return mem_cgroup_get_lru_size(lruvec, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 154}
 155
 156/*
 157 * Add a shrinker callback to be called from the vm
 158 */
 159void register_shrinker(struct shrinker *shrinker)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160{
 161	atomic_long_set(&shrinker->nr_in_batch, 0);
 162	down_write(&shrinker_rwsem);
 163	list_add_tail(&shrinker->list, &shrinker_list);
 164	up_write(&shrinker_rwsem);
 165}
 
 
 
 
 
 
 
 
 
 
 166EXPORT_SYMBOL(register_shrinker);
 167
 168/*
 169 * Remove one
 170 */
 171void unregister_shrinker(struct shrinker *shrinker)
 172{
 
 
 173	down_write(&shrinker_rwsem);
 174	list_del(&shrinker->list);
 175	up_write(&shrinker_rwsem);
 
 
 176}
 177EXPORT_SYMBOL(unregister_shrinker);
 178
 179static inline int do_shrinker_shrink(struct shrinker *shrinker,
 180				     struct shrink_control *sc,
 181				     unsigned long nr_to_scan)
 
 182{
 183	sc->nr_to_scan = nr_to_scan;
 184	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187#define SHRINK_BATCH 128
 188/*
 189 * Call the shrink functions to age shrinkable caches
 190 *
 191 * Here we assume it costs one seek to replace a lru page and that it also
 192 * takes a seek to recreate a cache object.  With this in mind we age equal
 193 * percentages of the lru and ageable caches.  This should balance the seeks
 194 * generated by these structures.
 195 *
 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
 197 * slab to avoid swapping.
 198 *
 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 200 *
 201 * `lru_pages' represents the number of on-LRU pages in all the zones which
 202 * are eligible for the caller's allocation attempt.  It is used for balancing
 203 * slab reclaim versus page reclaim.
 204 *
 205 * Returns the number of slab objects which we shrunk.
 206 */
 207unsigned long shrink_slab(struct shrink_control *shrink,
 208			  unsigned long nr_pages_scanned,
 209			  unsigned long lru_pages)
 
 
 210{
 211	struct shrinker *shrinker;
 212	unsigned long ret = 0;
 213
 214	if (nr_pages_scanned == 0)
 215		nr_pages_scanned = SWAP_CLUSTER_MAX;
 216
 217	if (!down_read_trylock(&shrinker_rwsem)) {
 218		/* Assume we'll be able to shrink next time */
 219		ret = 1;
 220		goto out;
 221	}
 222
 223	list_for_each_entry(shrinker, &shrinker_list, list) {
 224		unsigned long long delta;
 225		long total_scan;
 226		long max_pass;
 227		int shrink_ret = 0;
 228		long nr;
 229		long new_nr;
 230		long batch_size = shrinker->batch ? shrinker->batch
 231						  : SHRINK_BATCH;
 232
 233		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 234		if (max_pass <= 0)
 
 
 
 
 
 235			continue;
 236
 237		/*
 238		 * copy the current shrinker scan count into a local variable
 239		 * and zero it so that other concurrent shrinker invocations
 240		 * don't also do this scanning work.
 241		 */
 242		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
 243
 244		total_scan = nr;
 245		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 246		delta *= max_pass;
 247		do_div(delta, lru_pages + 1);
 248		total_scan += delta;
 249		if (total_scan < 0) {
 250			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 251			       "delete nr=%ld\n",
 252			       shrinker->shrink, total_scan);
 253			total_scan = max_pass;
 254		}
 255
 
 256		/*
 257		 * We need to avoid excessive windup on filesystem shrinkers
 258		 * due to large numbers of GFP_NOFS allocations causing the
 259		 * shrinkers to return -1 all the time. This results in a large
 260		 * nr being built up so when a shrink that can do some work
 261		 * comes along it empties the entire cache due to nr >>>
 262		 * max_pass.  This is bad for sustaining a working set in
 263		 * memory.
 264		 *
 265		 * Hence only allow the shrinker to scan the entire cache when
 266		 * a large delta change is calculated directly.
 267		 */
 268		if (delta < max_pass / 4)
 269			total_scan = min(total_scan, max_pass / 2);
 
 
 
 270
 271		/*
 272		 * Avoid risking looping forever due to too large nr value:
 273		 * never try to free more than twice the estimate number of
 274		 * freeable entries.
 275		 */
 276		if (total_scan > max_pass * 2)
 277			total_scan = max_pass * 2;
 278
 279		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 280					nr_pages_scanned, lru_pages,
 281					max_pass, delta, total_scan);
 282
 283		while (total_scan >= batch_size) {
 284			int nr_before;
 285
 286			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 287			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 288							batch_size);
 289			if (shrink_ret == -1)
 290				break;
 291			if (shrink_ret < nr_before)
 292				ret += nr_before - shrink_ret;
 293			count_vm_events(SLABS_SCANNED, batch_size);
 294			total_scan -= batch_size;
 295
 296			cond_resched();
 297		}
 
 298
 299		/*
 300		 * move the unused scan count back into the shrinker in a
 301		 * manner that handles concurrent updates. If we exhausted the
 302		 * scan, there is no need to do an update.
 303		 */
 304		if (total_scan > 0)
 305			new_nr = atomic_long_add_return(total_scan,
 306					&shrinker->nr_in_batch);
 307		else
 308			new_nr = atomic_long_read(&shrinker->nr_in_batch);
 309
 310		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 311	}
 312	up_read(&shrinker_rwsem);
 313out:
 314	cond_resched();
 315	return ret;
 316}
 317
 318static inline int is_page_cache_freeable(struct page *page)
 319{
 320	/*
 321	 * A freeable page cache page is referenced only by the caller
 322	 * that isolated the page, the page cache radix tree and
 323	 * optional buffer heads at page->private.
 324	 */
 325	return page_count(page) - page_has_private(page) == 2;
 
 
 326}
 327
 328static int may_write_to_queue(struct backing_dev_info *bdi,
 329			      struct scan_control *sc)
 330{
 331	if (current->flags & PF_SWAPWRITE)
 332		return 1;
 333	if (!bdi_write_congested(bdi))
 334		return 1;
 335	if (bdi == current->backing_dev_info)
 336		return 1;
 337	return 0;
 338}
 339
 340/*
 341 * We detected a synchronous write error writing a page out.  Probably
 342 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 343 * fsync(), msync() or close().
 344 *
 345 * The tricky part is that after writepage we cannot touch the mapping: nothing
 346 * prevents it from being freed up.  But we have a ref on the page and once
 347 * that page is locked, the mapping is pinned.
 348 *
 349 * We're allowed to run sleeping lock_page() here because we know the caller has
 350 * __GFP_FS.
 351 */
 352static void handle_write_error(struct address_space *mapping,
 353				struct page *page, int error)
 354{
 355	lock_page(page);
 356	if (page_mapping(page) == mapping)
 357		mapping_set_error(mapping, error);
 358	unlock_page(page);
 359}
 360
 361/* possible outcome of pageout() */
 362typedef enum {
 363	/* failed to write page out, page is locked */
 364	PAGE_KEEP,
 365	/* move page to the active list, page is locked */
 366	PAGE_ACTIVATE,
 367	/* page has been sent to the disk successfully, page is unlocked */
 368	PAGE_SUCCESS,
 369	/* page is clean and locked */
 370	PAGE_CLEAN,
 371} pageout_t;
 372
 373/*
 374 * pageout is called by shrink_page_list() for each dirty page.
 375 * Calls ->writepage().
 376 */
 377static pageout_t pageout(struct page *page, struct address_space *mapping,
 378			 struct scan_control *sc)
 379{
 380	/*
 381	 * If the page is dirty, only perform writeback if that write
 382	 * will be non-blocking.  To prevent this allocation from being
 383	 * stalled by pagecache activity.  But note that there may be
 384	 * stalls if we need to run get_block().  We could test
 385	 * PagePrivate for that.
 386	 *
 387	 * If this process is currently in __generic_file_aio_write() against
 388	 * this page's queue, we can perform writeback even if that
 389	 * will block.
 390	 *
 391	 * If the page is swapcache, write it back even if that would
 392	 * block, for some throttling. This happens by accident, because
 393	 * swap_backing_dev_info is bust: it doesn't reflect the
 394	 * congestion state of the swapdevs.  Easy to fix, if needed.
 395	 */
 396	if (!is_page_cache_freeable(page))
 397		return PAGE_KEEP;
 398	if (!mapping) {
 399		/*
 400		 * Some data journaling orphaned pages can have
 401		 * page->mapping == NULL while being dirty with clean buffers.
 402		 */
 403		if (page_has_private(page)) {
 404			if (try_to_free_buffers(page)) {
 405				ClearPageDirty(page);
 406				printk("%s: orphaned page\n", __func__);
 407				return PAGE_CLEAN;
 408			}
 409		}
 410		return PAGE_KEEP;
 411	}
 412	if (mapping->a_ops->writepage == NULL)
 413		return PAGE_ACTIVATE;
 414	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 415		return PAGE_KEEP;
 416
 417	if (clear_page_dirty_for_io(page)) {
 418		int res;
 419		struct writeback_control wbc = {
 420			.sync_mode = WB_SYNC_NONE,
 421			.nr_to_write = SWAP_CLUSTER_MAX,
 422			.range_start = 0,
 423			.range_end = LLONG_MAX,
 424			.for_reclaim = 1,
 425		};
 426
 427		SetPageReclaim(page);
 428		res = mapping->a_ops->writepage(page, &wbc);
 429		if (res < 0)
 430			handle_write_error(mapping, page, res);
 431		if (res == AOP_WRITEPAGE_ACTIVATE) {
 432			ClearPageReclaim(page);
 433			return PAGE_ACTIVATE;
 434		}
 435
 436		if (!PageWriteback(page)) {
 437			/* synchronous write or broken a_ops? */
 438			ClearPageReclaim(page);
 439		}
 440		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 441		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 442		return PAGE_SUCCESS;
 443	}
 444
 445	return PAGE_CLEAN;
 446}
 447
 448/*
 449 * Same as remove_mapping, but if the page is removed from the mapping, it
 450 * gets returned with a refcount of 0.
 451 */
 452static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 453{
 
 
 
 454	BUG_ON(!PageLocked(page));
 455	BUG_ON(mapping != page_mapping(page));
 456
 457	spin_lock_irq(&mapping->tree_lock);
 458	/*
 459	 * The non racy check for a busy page.
 460	 *
 461	 * Must be careful with the order of the tests. When someone has
 462	 * a ref to the page, it may be possible that they dirty it then
 463	 * drop the reference. So if PageDirty is tested before page_count
 464	 * here, then the following race may occur:
 465	 *
 466	 * get_user_pages(&page);
 467	 * [user mapping goes away]
 468	 * write_to(page);
 469	 *				!PageDirty(page)    [good]
 470	 * SetPageDirty(page);
 471	 * put_page(page);
 472	 *				!page_count(page)   [good, discard it]
 473	 *
 474	 * [oops, our write_to data is lost]
 475	 *
 476	 * Reversing the order of the tests ensures such a situation cannot
 477	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 478	 * load is not satisfied before that of page->_count.
 479	 *
 480	 * Note that if SetPageDirty is always performed via set_page_dirty,
 481	 * and thus under tree_lock, then this ordering is not required.
 482	 */
 483	if (!page_freeze_refs(page, 2))
 
 
 
 
 484		goto cannot_free;
 485	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 486	if (unlikely(PageDirty(page))) {
 487		page_unfreeze_refs(page, 2);
 488		goto cannot_free;
 489	}
 490
 491	if (PageSwapCache(page)) {
 492		swp_entry_t swap = { .val = page_private(page) };
 
 493		__delete_from_swap_cache(page);
 494		spin_unlock_irq(&mapping->tree_lock);
 495		swapcache_free(swap, page);
 496	} else {
 497		void (*freepage)(struct page *);
 
 498
 499		freepage = mapping->a_ops->freepage;
 500
 501		__delete_from_page_cache(page);
 502		spin_unlock_irq(&mapping->tree_lock);
 503		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		if (freepage != NULL)
 506			freepage(page);
 507	}
 508
 509	return 1;
 510
 511cannot_free:
 512	spin_unlock_irq(&mapping->tree_lock);
 513	return 0;
 514}
 515
 516/*
 517 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 518 * someone else has a ref on the page, abort and return 0.  If it was
 519 * successfully detached, return 1.  Assumes the caller has a single ref on
 520 * this page.
 521 */
 522int remove_mapping(struct address_space *mapping, struct page *page)
 523{
 524	if (__remove_mapping(mapping, page)) {
 525		/*
 526		 * Unfreezing the refcount with 1 rather than 2 effectively
 527		 * drops the pagecache ref for us without requiring another
 528		 * atomic operation.
 529		 */
 530		page_unfreeze_refs(page, 1);
 531		return 1;
 532	}
 533	return 0;
 534}
 535
 536/**
 537 * putback_lru_page - put previously isolated page onto appropriate LRU list
 538 * @page: page to be put back to appropriate lru list
 539 *
 540 * Add previously isolated @page to appropriate LRU list.
 541 * Page may still be unevictable for other reasons.
 542 *
 543 * lru_lock must not be held, interrupts must be enabled.
 544 */
 545void putback_lru_page(struct page *page)
 546{
 547	int lru;
 548	int active = !!TestClearPageActive(page);
 549	int was_unevictable = PageUnevictable(page);
 550
 551	VM_BUG_ON(PageLRU(page));
 552
 553redo:
 554	ClearPageUnevictable(page);
 555
 556	if (page_evictable(page, NULL)) {
 557		/*
 558		 * For evictable pages, we can use the cache.
 559		 * In event of a race, worst case is we end up with an
 560		 * unevictable page on [in]active list.
 561		 * We know how to handle that.
 562		 */
 563		lru = active + page_lru_base_type(page);
 564		lru_cache_add_lru(page, lru);
 565	} else {
 566		/*
 567		 * Put unevictable pages directly on zone's unevictable
 568		 * list.
 569		 */
 570		lru = LRU_UNEVICTABLE;
 571		add_page_to_unevictable_list(page);
 572		/*
 573		 * When racing with an mlock or AS_UNEVICTABLE clearing
 574		 * (page is unlocked) make sure that if the other thread
 575		 * does not observe our setting of PG_lru and fails
 576		 * isolation/check_move_unevictable_pages,
 577		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 578		 * the page back to the evictable list.
 579		 *
 580		 * The other side is TestClearPageMlocked() or shmem_lock().
 581		 */
 582		smp_mb();
 583	}
 584
 585	/*
 586	 * page's status can change while we move it among lru. If an evictable
 587	 * page is on unevictable list, it never be freed. To avoid that,
 588	 * check after we added it to the list, again.
 589	 */
 590	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 591		if (!isolate_lru_page(page)) {
 592			put_page(page);
 593			goto redo;
 594		}
 595		/* This means someone else dropped this page from LRU
 596		 * So, it will be freed or putback to LRU again. There is
 597		 * nothing to do here.
 598		 */
 599	}
 600
 601	if (was_unevictable && lru != LRU_UNEVICTABLE)
 602		count_vm_event(UNEVICTABLE_PGRESCUED);
 603	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 604		count_vm_event(UNEVICTABLE_PGCULLED);
 605
 606	put_page(page);		/* drop ref from isolate */
 607}
 608
 609enum page_references {
 610	PAGEREF_RECLAIM,
 611	PAGEREF_RECLAIM_CLEAN,
 612	PAGEREF_KEEP,
 613	PAGEREF_ACTIVATE,
 614};
 615
 616static enum page_references page_check_references(struct page *page,
 617						  struct scan_control *sc)
 618{
 619	int referenced_ptes, referenced_page;
 620	unsigned long vm_flags;
 621
 622	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 623					  &vm_flags);
 624	referenced_page = TestClearPageReferenced(page);
 625
 626	/*
 627	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 628	 * move the page to the unevictable list.
 629	 */
 630	if (vm_flags & VM_LOCKED)
 631		return PAGEREF_RECLAIM;
 632
 633	if (referenced_ptes) {
 634		if (PageSwapBacked(page))
 635			return PAGEREF_ACTIVATE;
 636		/*
 637		 * All mapped pages start out with page table
 638		 * references from the instantiating fault, so we need
 639		 * to look twice if a mapped file page is used more
 640		 * than once.
 641		 *
 642		 * Mark it and spare it for another trip around the
 643		 * inactive list.  Another page table reference will
 644		 * lead to its activation.
 645		 *
 646		 * Note: the mark is set for activated pages as well
 647		 * so that recently deactivated but used pages are
 648		 * quickly recovered.
 649		 */
 650		SetPageReferenced(page);
 651
 652		if (referenced_page || referenced_ptes > 1)
 653			return PAGEREF_ACTIVATE;
 654
 655		/*
 656		 * Activate file-backed executable pages after first usage.
 657		 */
 658		if (vm_flags & VM_EXEC)
 659			return PAGEREF_ACTIVATE;
 660
 661		return PAGEREF_KEEP;
 662	}
 663
 664	/* Reclaim if clean, defer dirty pages to writeback */
 665	if (referenced_page && !PageSwapBacked(page))
 666		return PAGEREF_RECLAIM_CLEAN;
 667
 668	return PAGEREF_RECLAIM;
 669}
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/*
 672 * shrink_page_list() returns the number of reclaimed pages
 673 */
 674static unsigned long shrink_page_list(struct list_head *page_list,
 675				      struct zone *zone,
 676				      struct scan_control *sc,
 677				      unsigned long *ret_nr_dirty,
 678				      unsigned long *ret_nr_writeback)
 
 679{
 680	LIST_HEAD(ret_pages);
 681	LIST_HEAD(free_pages);
 682	int pgactivate = 0;
 683	unsigned long nr_dirty = 0;
 684	unsigned long nr_congested = 0;
 685	unsigned long nr_reclaimed = 0;
 686	unsigned long nr_writeback = 0;
 
 
 
 
 687
 688	cond_resched();
 689
 690	while (!list_empty(page_list)) {
 691		enum page_references references;
 692		struct address_space *mapping;
 693		struct page *page;
 694		int may_enter_fs;
 
 
 695
 696		cond_resched();
 697
 698		page = lru_to_page(page_list);
 699		list_del(&page->lru);
 700
 701		if (!trylock_page(page))
 702			goto keep;
 703
 704		VM_BUG_ON(PageActive(page));
 705		VM_BUG_ON(page_zone(page) != zone);
 706
 707		sc->nr_scanned++;
 708
 709		if (unlikely(!page_evictable(page, NULL)))
 710			goto cull_mlocked;
 711
 712		if (!sc->may_unmap && page_mapped(page))
 713			goto keep_locked;
 714
 715		/* Double the slab pressure for mapped and swapcache pages */
 716		if (page_mapped(page) || PageSwapCache(page))
 
 717			sc->nr_scanned++;
 718
 719		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 720			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722		if (PageWriteback(page)) {
 723			/*
 724			 * memcg doesn't have any dirty pages throttling so we
 725			 * could easily OOM just because too many pages are in
 726			 * writeback and there is nothing else to reclaim.
 727			 *
 728			 * Check __GFP_IO, certainly because a loop driver
 729			 * thread might enter reclaim, and deadlock if it waits
 730			 * on a page for which it is needed to do the write
 731			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
 732			 * but more thought would probably show more reasons.
 733			 *
 734			 * Don't require __GFP_FS, since we're not going into
 735			 * the FS, just waiting on its writeback completion.
 736			 * Worryingly, ext4 gfs2 and xfs allocate pages with
 737			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
 738			 * testing may_enter_fs here is liable to OOM on them.
 739			 */
 740			if (global_reclaim(sc) ||
 741			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 742				/*
 743				 * This is slightly racy - end_page_writeback()
 744				 * might have just cleared PageReclaim, then
 745				 * setting PageReclaim here end up interpreted
 746				 * as PageReadahead - but that does not matter
 747				 * enough to care.  What we do want is for this
 748				 * page to have PageReclaim set next time memcg
 749				 * reclaim reaches the tests above, so it will
 750				 * then wait_on_page_writeback() to avoid OOM;
 751				 * and it's also appropriate in global reclaim.
 752				 */
 753				SetPageReclaim(page);
 754				nr_writeback++;
 755				goto keep_locked;
 
 
 
 
 
 
 
 
 756			}
 757			wait_on_page_writeback(page);
 758		}
 759
 760		references = page_check_references(page, sc);
 
 
 761		switch (references) {
 762		case PAGEREF_ACTIVATE:
 763			goto activate_locked;
 764		case PAGEREF_KEEP:
 
 765			goto keep_locked;
 766		case PAGEREF_RECLAIM:
 767		case PAGEREF_RECLAIM_CLEAN:
 768			; /* try to reclaim the page below */
 769		}
 770
 771		/*
 772		 * Anonymous process memory has backing store?
 773		 * Try to allocate it some swap space here.
 
 774		 */
 775		if (PageAnon(page) && !PageSwapCache(page)) {
 776			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777				goto keep_locked;
 778			if (!add_to_swap(page))
 779				goto activate_locked;
 780			may_enter_fs = 1;
 781		}
 782
 783		mapping = page_mapping(page);
 784
 785		/*
 786		 * The page is mapped into the page tables of one or more
 787		 * processes. Try to unmap it here.
 788		 */
 789		if (page_mapped(page) && mapping) {
 790			switch (try_to_unmap(page, TTU_UNMAP)) {
 791			case SWAP_FAIL:
 
 
 
 
 792				goto activate_locked;
 793			case SWAP_AGAIN:
 794				goto keep_locked;
 795			case SWAP_MLOCK:
 796				goto cull_mlocked;
 797			case SWAP_SUCCESS:
 798				; /* try to free the page below */
 799			}
 800		}
 801
 802		if (PageDirty(page)) {
 803			nr_dirty++;
 804
 805			/*
 806			 * Only kswapd can writeback filesystem pages to
 807			 * avoid risk of stack overflow but do not writeback
 808			 * unless under significant pressure.
 
 
 
 
 
 809			 */
 810			if (page_is_file_cache(page) &&
 811					(!current_is_kswapd() ||
 812					 sc->priority >= DEF_PRIORITY - 2)) {
 813				/*
 814				 * Immediately reclaim when written back.
 815				 * Similar in principal to deactivate_page()
 816				 * except we already have the page isolated
 817				 * and know it's dirty
 818				 */
 819				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
 820				SetPageReclaim(page);
 821
 822				goto keep_locked;
 823			}
 824
 825			if (references == PAGEREF_RECLAIM_CLEAN)
 826				goto keep_locked;
 827			if (!may_enter_fs)
 828				goto keep_locked;
 829			if (!sc->may_writepage)
 830				goto keep_locked;
 831
 832			/* Page is dirty, try to write it out here */
 
 
 
 
 
 833			switch (pageout(page, mapping, sc)) {
 834			case PAGE_KEEP:
 835				nr_congested++;
 836				goto keep_locked;
 837			case PAGE_ACTIVATE:
 838				goto activate_locked;
 839			case PAGE_SUCCESS:
 840				if (PageWriteback(page))
 841					goto keep;
 842				if (PageDirty(page))
 843					goto keep;
 844
 845				/*
 846				 * A synchronous write - probably a ramdisk.  Go
 847				 * ahead and try to reclaim the page.
 848				 */
 849				if (!trylock_page(page))
 850					goto keep;
 851				if (PageDirty(page) || PageWriteback(page))
 852					goto keep_locked;
 853				mapping = page_mapping(page);
 854			case PAGE_CLEAN:
 855				; /* try to free the page below */
 856			}
 857		}
 858
 859		/*
 860		 * If the page has buffers, try to free the buffer mappings
 861		 * associated with this page. If we succeed we try to free
 862		 * the page as well.
 863		 *
 864		 * We do this even if the page is PageDirty().
 865		 * try_to_release_page() does not perform I/O, but it is
 866		 * possible for a page to have PageDirty set, but it is actually
 867		 * clean (all its buffers are clean).  This happens if the
 868		 * buffers were written out directly, with submit_bh(). ext3
 869		 * will do this, as well as the blockdev mapping.
 870		 * try_to_release_page() will discover that cleanness and will
 871		 * drop the buffers and mark the page clean - it can be freed.
 872		 *
 873		 * Rarely, pages can have buffers and no ->mapping.  These are
 874		 * the pages which were not successfully invalidated in
 875		 * truncate_complete_page().  We try to drop those buffers here
 876		 * and if that worked, and the page is no longer mapped into
 877		 * process address space (page_count == 1) it can be freed.
 878		 * Otherwise, leave the page on the LRU so it is swappable.
 879		 */
 880		if (page_has_private(page)) {
 881			if (!try_to_release_page(page, sc->gfp_mask))
 882				goto activate_locked;
 883			if (!mapping && page_count(page) == 1) {
 884				unlock_page(page);
 885				if (put_page_testzero(page))
 886					goto free_it;
 887				else {
 888					/*
 889					 * rare race with speculative reference.
 890					 * the speculative reference will free
 891					 * this page shortly, so we may
 892					 * increment nr_reclaimed here (and
 893					 * leave it off the LRU).
 894					 */
 895					nr_reclaimed++;
 896					continue;
 897				}
 898			}
 899		}
 900
 901		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 902			goto keep_locked;
 903
 904		/*
 905		 * At this point, we have no other references and there is
 906		 * no way to pick any more up (removed from LRU, removed
 907		 * from pagecache). Can use non-atomic bitops now (and
 908		 * we obviously don't have to worry about waking up a process
 909		 * waiting on the page lock, because there are no references.
 910		 */
 911		__clear_page_locked(page);
 912free_it:
 913		nr_reclaimed++;
 914
 915		/*
 916		 * Is there need to periodically free_page_list? It would
 917		 * appear not as the counts should be low
 918		 */
 919		list_add(&page->lru, &free_pages);
 920		continue;
 921
 922cull_mlocked:
 923		if (PageSwapCache(page))
 924			try_to_free_swap(page);
 925		unlock_page(page);
 926		putback_lru_page(page);
 927		continue;
 928
 929activate_locked:
 930		/* Not a candidate for swapping, so reclaim swap space. */
 931		if (PageSwapCache(page) && vm_swap_full())
 
 932			try_to_free_swap(page);
 933		VM_BUG_ON(PageActive(page));
 934		SetPageActive(page);
 935		pgactivate++;
 
 
 
 936keep_locked:
 937		unlock_page(page);
 938keep:
 939		list_add(&page->lru, &ret_pages);
 940		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 941	}
 942
 943	/*
 944	 * Tag a zone as congested if all the dirty pages encountered were
 945	 * backed by a congested BDI. In this case, reclaimers should just
 946	 * back off and wait for congestion to clear because further reclaim
 947	 * will encounter the same problem
 948	 */
 949	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
 950		zone_set_flag(zone, ZONE_CONGESTED);
 951
 952	free_hot_cold_page_list(&free_pages, 1);
 953
 954	list_splice(&ret_pages, page_list);
 955	count_vm_events(PGACTIVATE, pgactivate);
 956	*ret_nr_dirty += nr_dirty;
 957	*ret_nr_writeback += nr_writeback;
 
 
 
 
 
 
 
 
 
 958	return nr_reclaimed;
 959}
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961/*
 962 * Attempt to remove the specified page from its LRU.  Only take this page
 963 * if it is of the appropriate PageActive status.  Pages which are being
 964 * freed elsewhere are also ignored.
 965 *
 966 * page:	page to consider
 967 * mode:	one of the LRU isolation modes defined above
 968 *
 969 * returns 0 on success, -ve errno on failure.
 970 */
 971int __isolate_lru_page(struct page *page, isolate_mode_t mode)
 972{
 973	int ret = -EINVAL;
 974
 975	/* Only take pages on the LRU. */
 976	if (!PageLRU(page))
 977		return ret;
 978
 979	/* Do not give back unevictable pages for compaction */
 980	if (PageUnevictable(page))
 981		return ret;
 982
 983	ret = -EBUSY;
 984
 985	/*
 986	 * To minimise LRU disruption, the caller can indicate that it only
 987	 * wants to isolate pages it will be able to operate on without
 988	 * blocking - clean pages for the most part.
 989	 *
 990	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
 991	 * is used by reclaim when it is cannot write to backing storage
 992	 *
 993	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
 994	 * that it is possible to migrate without blocking
 995	 */
 996	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
 997		/* All the caller can do on PageWriteback is block */
 998		if (PageWriteback(page))
 999			return ret;
1000
1001		if (PageDirty(page)) {
1002			struct address_space *mapping;
1003
1004			/* ISOLATE_CLEAN means only clean pages */
1005			if (mode & ISOLATE_CLEAN)
1006				return ret;
1007
1008			/*
1009			 * Only pages without mappings or that have a
1010			 * ->migratepage callback are possible to migrate
1011			 * without blocking
 
 
 
 
1012			 */
 
 
 
1013			mapping = page_mapping(page);
1014			if (mapping && !mapping->a_ops->migratepage)
 
 
1015				return ret;
1016		}
1017	}
1018
1019	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1020		return ret;
1021
1022	if (likely(get_page_unless_zero(page))) {
1023		/*
1024		 * Be careful not to clear PageLRU until after we're
1025		 * sure the page is not being freed elsewhere -- the
1026		 * page release code relies on it.
1027		 */
1028		ClearPageLRU(page);
1029		ret = 0;
1030	}
1031
1032	return ret;
1033}
1034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035/*
1036 * zone->lru_lock is heavily contended.  Some of the functions that
1037 * shrink the lists perform better by taking out a batch of pages
1038 * and working on them outside the LRU lock.
1039 *
1040 * For pagecache intensive workloads, this function is the hottest
1041 * spot in the kernel (apart from copy_*_user functions).
1042 *
1043 * Appropriate locks must be held before calling this function.
1044 *
1045 * @nr_to_scan:	The number of pages to look through on the list.
1046 * @lruvec:	The LRU vector to pull pages from.
1047 * @dst:	The temp list to put pages on to.
1048 * @nr_scanned:	The number of pages that were scanned.
1049 * @sc:		The scan_control struct for this reclaim session
1050 * @mode:	One of the LRU isolation modes
1051 * @lru:	LRU list id for isolating
1052 *
1053 * returns how many pages were moved onto *@dst.
1054 */
1055static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056		struct lruvec *lruvec, struct list_head *dst,
1057		unsigned long *nr_scanned, struct scan_control *sc,
1058		isolate_mode_t mode, enum lru_list lru)
1059{
1060	struct list_head *src = &lruvec->lists[lru];
1061	unsigned long nr_taken = 0;
1062	unsigned long scan;
1063
1064	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
 
 
 
1065		struct page *page;
1066		int nr_pages;
1067
1068		page = lru_to_page(src);
1069		prefetchw_prev_lru_page(page, src, flags);
1070
1071		VM_BUG_ON(!PageLRU(page));
 
 
 
 
 
 
1072
 
 
 
 
 
 
 
1073		switch (__isolate_lru_page(page, mode)) {
1074		case 0:
1075			nr_pages = hpage_nr_pages(page);
1076			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
 
1077			list_move(&page->lru, dst);
1078			nr_taken += nr_pages;
1079			break;
1080
1081		case -EBUSY:
1082			/* else it is being freed elsewhere */
1083			list_move(&page->lru, src);
1084			continue;
1085
1086		default:
1087			BUG();
1088		}
1089	}
1090
1091	*nr_scanned = scan;
1092	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	return nr_taken;
1095}
1096
1097/**
1098 * isolate_lru_page - tries to isolate a page from its LRU list
1099 * @page: page to isolate from its LRU list
1100 *
1101 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102 * vmstat statistic corresponding to whatever LRU list the page was on.
1103 *
1104 * Returns 0 if the page was removed from an LRU list.
1105 * Returns -EBUSY if the page was not on an LRU list.
1106 *
1107 * The returned page will have PageLRU() cleared.  If it was found on
1108 * the active list, it will have PageActive set.  If it was found on
1109 * the unevictable list, it will have the PageUnevictable bit set. That flag
1110 * may need to be cleared by the caller before letting the page go.
1111 *
1112 * The vmstat statistic corresponding to the list on which the page was
1113 * found will be decremented.
1114 *
1115 * Restrictions:
 
1116 * (1) Must be called with an elevated refcount on the page. This is a
1117 *     fundamentnal difference from isolate_lru_pages (which is called
1118 *     without a stable reference).
1119 * (2) the lru_lock must not be held.
1120 * (3) interrupts must be enabled.
1121 */
1122int isolate_lru_page(struct page *page)
1123{
1124	int ret = -EBUSY;
1125
1126	VM_BUG_ON(!page_count(page));
 
1127
1128	if (PageLRU(page)) {
1129		struct zone *zone = page_zone(page);
1130		struct lruvec *lruvec;
1131
1132		spin_lock_irq(&zone->lru_lock);
1133		lruvec = mem_cgroup_page_lruvec(page, zone);
1134		if (PageLRU(page)) {
1135			int lru = page_lru(page);
1136			get_page(page);
1137			ClearPageLRU(page);
1138			del_page_from_lru_list(page, lruvec, lru);
1139			ret = 0;
1140		}
1141		spin_unlock_irq(&zone->lru_lock);
1142	}
1143	return ret;
1144}
1145
1146/*
1147 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1148 */
1149static int too_many_isolated(struct zone *zone, int file,
1150		struct scan_control *sc)
1151{
1152	unsigned long inactive, isolated;
1153
1154	if (current_is_kswapd())
1155		return 0;
1156
1157	if (!global_reclaim(sc))
1158		return 0;
1159
1160	if (file) {
1161		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1163	} else {
1164		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1166	}
1167
 
 
 
 
 
 
 
 
1168	return isolated > inactive;
1169}
1170
1171static noinline_for_stack void
1172putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1173{
1174	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175	struct zone *zone = lruvec_zone(lruvec);
1176	LIST_HEAD(pages_to_free);
1177
1178	/*
1179	 * Put back any unfreeable pages.
1180	 */
1181	while (!list_empty(page_list)) {
1182		struct page *page = lru_to_page(page_list);
1183		int lru;
1184
1185		VM_BUG_ON(PageLRU(page));
1186		list_del(&page->lru);
1187		if (unlikely(!page_evictable(page, NULL))) {
1188			spin_unlock_irq(&zone->lru_lock);
1189			putback_lru_page(page);
1190			spin_lock_irq(&zone->lru_lock);
1191			continue;
1192		}
1193
1194		lruvec = mem_cgroup_page_lruvec(page, zone);
1195
1196		SetPageLRU(page);
1197		lru = page_lru(page);
1198		add_page_to_lru_list(page, lruvec, lru);
1199
1200		if (is_active_lru(lru)) {
1201			int file = is_file_lru(lru);
1202			int numpages = hpage_nr_pages(page);
1203			reclaim_stat->recent_rotated[file] += numpages;
1204		}
1205		if (put_page_testzero(page)) {
1206			__ClearPageLRU(page);
1207			__ClearPageActive(page);
1208			del_page_from_lru_list(page, lruvec, lru);
1209
1210			if (unlikely(PageCompound(page))) {
1211				spin_unlock_irq(&zone->lru_lock);
 
1212				(*get_compound_page_dtor(page))(page);
1213				spin_lock_irq(&zone->lru_lock);
1214			} else
1215				list_add(&page->lru, &pages_to_free);
1216		}
1217	}
1218
1219	/*
1220	 * To save our caller's stack, now use input list for pages to free.
1221	 */
1222	list_splice(&pages_to_free, page_list);
1223}
1224
1225/*
1226 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 
 
 
 
 
 
 
 
 
 
 
 
 
1227 * of reclaimed pages
1228 */
1229static noinline_for_stack unsigned long
1230shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231		     struct scan_control *sc, enum lru_list lru)
1232{
1233	LIST_HEAD(page_list);
1234	unsigned long nr_scanned;
1235	unsigned long nr_reclaimed = 0;
1236	unsigned long nr_taken;
1237	unsigned long nr_dirty = 0;
1238	unsigned long nr_writeback = 0;
1239	isolate_mode_t isolate_mode = 0;
1240	int file = is_file_lru(lru);
1241	struct zone *zone = lruvec_zone(lruvec);
1242	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 
1243
1244	while (unlikely(too_many_isolated(zone, file, sc))) {
1245		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
1246
1247		/* We are about to die and free our memory. Return now. */
1248		if (fatal_signal_pending(current))
1249			return SWAP_CLUSTER_MAX;
1250	}
1251
1252	lru_add_drain();
1253
1254	if (!sc->may_unmap)
1255		isolate_mode |= ISOLATE_UNMAPPED;
1256	if (!sc->may_writepage)
1257		isolate_mode |= ISOLATE_CLEAN;
1258
1259	spin_lock_irq(&zone->lru_lock);
1260
1261	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262				     &nr_scanned, sc, isolate_mode, lru);
1263
1264	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1266
1267	if (global_reclaim(sc)) {
1268		zone->pages_scanned += nr_scanned;
1269		if (current_is_kswapd())
1270			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271		else
1272			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
 
 
 
 
1273	}
1274	spin_unlock_irq(&zone->lru_lock);
1275
1276	if (nr_taken == 0)
1277		return 0;
1278
1279	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280						&nr_dirty, &nr_writeback);
1281
1282	spin_lock_irq(&zone->lru_lock);
1283
1284	reclaim_stat->recent_scanned[file] += nr_taken;
1285
1286	if (global_reclaim(sc)) {
1287		if (current_is_kswapd())
1288			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1289					       nr_reclaimed);
1290		else
1291			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1292					       nr_reclaimed);
 
1293	}
1294
1295	putback_inactive_pages(lruvec, &page_list);
1296
1297	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1298
1299	spin_unlock_irq(&zone->lru_lock);
1300
1301	free_hot_cold_page_list(&page_list, 1);
 
1302
1303	/*
1304	 * If reclaim is isolating dirty pages under writeback, it implies
1305	 * that the long-lived page allocation rate is exceeding the page
1306	 * laundering rate. Either the global limits are not being effective
1307	 * at throttling processes due to the page distribution throughout
1308	 * zones or there is heavy usage of a slow backing device. The
1309	 * only option is to throttle from reclaim context which is not ideal
1310	 * as there is no guarantee the dirtying process is throttled in the
1311	 * same way balance_dirty_pages() manages.
1312	 *
1313	 * This scales the number of dirty pages that must be under writeback
1314	 * before throttling depending on priority. It is a simple backoff
1315	 * function that has the most effect in the range DEF_PRIORITY to
1316	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317	 * in trouble and reclaim is considered to be in trouble.
1318	 *
1319	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1320	 * DEF_PRIORITY-1  50% must be PageWriteback
1321	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1322	 * ...
1323	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324	 *                     isolated page is PageWriteback
1325	 */
1326	if (nr_writeback && nr_writeback >=
1327			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1328		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1329
1330	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1331		zone_idx(zone),
1332		nr_scanned, nr_reclaimed,
1333		sc->priority,
1334		trace_shrink_flags(file));
1335	return nr_reclaimed;
1336}
1337
1338/*
1339 * This moves pages from the active list to the inactive list.
1340 *
1341 * We move them the other way if the page is referenced by one or more
1342 * processes, from rmap.
1343 *
1344 * If the pages are mostly unmapped, the processing is fast and it is
1345 * appropriate to hold zone->lru_lock across the whole operation.  But if
1346 * the pages are mapped, the processing is slow (page_referenced()) so we
1347 * should drop zone->lru_lock around each page.  It's impossible to balance
1348 * this, so instead we remove the pages from the LRU while processing them.
1349 * It is safe to rely on PG_active against the non-LRU pages in here because
1350 * nobody will play with that bit on a non-LRU page.
1351 *
1352 * The downside is that we have to touch page->_count against each page.
1353 * But we had to alter page->flags anyway.
 
 
1354 */
1355
1356static void move_active_pages_to_lru(struct lruvec *lruvec,
1357				     struct list_head *list,
1358				     struct list_head *pages_to_free,
1359				     enum lru_list lru)
1360{
1361	struct zone *zone = lruvec_zone(lruvec);
1362	unsigned long pgmoved = 0;
1363	struct page *page;
1364	int nr_pages;
 
1365
1366	while (!list_empty(list)) {
1367		page = lru_to_page(list);
1368		lruvec = mem_cgroup_page_lruvec(page, zone);
1369
1370		VM_BUG_ON(PageLRU(page));
1371		SetPageLRU(page);
1372
1373		nr_pages = hpage_nr_pages(page);
1374		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375		list_move(&page->lru, &lruvec->lists[lru]);
1376		pgmoved += nr_pages;
1377
1378		if (put_page_testzero(page)) {
1379			__ClearPageLRU(page);
1380			__ClearPageActive(page);
1381			del_page_from_lru_list(page, lruvec, lru);
1382
1383			if (unlikely(PageCompound(page))) {
1384				spin_unlock_irq(&zone->lru_lock);
 
1385				(*get_compound_page_dtor(page))(page);
1386				spin_lock_irq(&zone->lru_lock);
1387			} else
1388				list_add(&page->lru, pages_to_free);
 
 
1389		}
1390	}
1391	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392	if (!is_active_lru(lru))
1393		__count_vm_events(PGDEACTIVATE, pgmoved);
 
 
 
 
 
1394}
1395
1396static void shrink_active_list(unsigned long nr_to_scan,
1397			       struct lruvec *lruvec,
1398			       struct scan_control *sc,
1399			       enum lru_list lru)
1400{
1401	unsigned long nr_taken;
1402	unsigned long nr_scanned;
1403	unsigned long vm_flags;
1404	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1405	LIST_HEAD(l_active);
1406	LIST_HEAD(l_inactive);
1407	struct page *page;
1408	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409	unsigned long nr_rotated = 0;
 
1410	isolate_mode_t isolate_mode = 0;
1411	int file = is_file_lru(lru);
1412	struct zone *zone = lruvec_zone(lruvec);
1413
1414	lru_add_drain();
1415
1416	if (!sc->may_unmap)
1417		isolate_mode |= ISOLATE_UNMAPPED;
1418	if (!sc->may_writepage)
1419		isolate_mode |= ISOLATE_CLEAN;
1420
1421	spin_lock_irq(&zone->lru_lock);
1422
1423	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424				     &nr_scanned, sc, isolate_mode, lru);
1425	if (global_reclaim(sc))
1426		zone->pages_scanned += nr_scanned;
1427
 
1428	reclaim_stat->recent_scanned[file] += nr_taken;
1429
1430	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433	spin_unlock_irq(&zone->lru_lock);
1434
1435	while (!list_empty(&l_hold)) {
1436		cond_resched();
1437		page = lru_to_page(&l_hold);
1438		list_del(&page->lru);
1439
1440		if (unlikely(!page_evictable(page, NULL))) {
1441			putback_lru_page(page);
1442			continue;
1443		}
1444
1445		if (unlikely(buffer_heads_over_limit)) {
1446			if (page_has_private(page) && trylock_page(page)) {
1447				if (page_has_private(page))
1448					try_to_release_page(page, 0);
1449				unlock_page(page);
1450			}
1451		}
1452
1453		if (page_referenced(page, 0, sc->target_mem_cgroup,
1454				    &vm_flags)) {
1455			nr_rotated += hpage_nr_pages(page);
1456			/*
1457			 * Identify referenced, file-backed active pages and
1458			 * give them one more trip around the active list. So
1459			 * that executable code get better chances to stay in
1460			 * memory under moderate memory pressure.  Anon pages
1461			 * are not likely to be evicted by use-once streaming
1462			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1463			 * so we ignore them here.
1464			 */
1465			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466				list_add(&page->lru, &l_active);
1467				continue;
1468			}
1469		}
1470
1471		ClearPageActive(page);	/* we are de-activating */
1472		list_add(&page->lru, &l_inactive);
1473	}
1474
1475	/*
1476	 * Move pages back to the lru list.
1477	 */
1478	spin_lock_irq(&zone->lru_lock);
1479	/*
1480	 * Count referenced pages from currently used mappings as rotated,
1481	 * even though only some of them are actually re-activated.  This
1482	 * helps balance scan pressure between file and anonymous pages in
1483	 * get_scan_ratio.
1484	 */
1485	reclaim_stat->recent_rotated[file] += nr_rotated;
1486
1487	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490	spin_unlock_irq(&zone->lru_lock);
1491
1492	free_hot_cold_page_list(&l_hold, 1);
 
 
 
1493}
1494
1495#ifdef CONFIG_SWAP
1496static int inactive_anon_is_low_global(struct zone *zone)
1497{
1498	unsigned long active, inactive;
1499
1500	active = zone_page_state(zone, NR_ACTIVE_ANON);
1501	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1502
1503	if (inactive * zone->inactive_ratio < active)
1504		return 1;
1505
1506	return 0;
1507}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508
1509/**
1510 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511 * @lruvec: LRU vector to check
1512 *
1513 * Returns true if the zone does not have enough inactive anon pages,
1514 * meaning some active anon pages need to be deactivated.
1515 */
1516static int inactive_anon_is_low(struct lruvec *lruvec)
1517{
1518	/*
1519	 * If we don't have swap space, anonymous page deactivation
1520	 * is pointless.
1521	 */
1522	if (!total_swap_pages)
1523		return 0;
1524
1525	if (!mem_cgroup_disabled())
1526		return mem_cgroup_inactive_anon_is_low(lruvec);
1527
1528	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529}
1530#else
1531static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532{
1533	return 0;
1534}
1535#endif
1536
1537static int inactive_file_is_low_global(struct zone *zone)
1538{
1539	unsigned long active, inactive;
 
 
 
 
 
 
 
 
 
 
 
1540
1541	active = zone_page_state(zone, NR_ACTIVE_FILE);
1542	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 
 
 
1543
1544	return (active > inactive);
1545}
1546
1547/**
1548 * inactive_file_is_low - check if file pages need to be deactivated
1549 * @lruvec: LRU vector to check
1550 *
1551 * When the system is doing streaming IO, memory pressure here
1552 * ensures that active file pages get deactivated, until more
1553 * than half of the file pages are on the inactive list.
1554 *
1555 * Once we get to that situation, protect the system's working
1556 * set from being evicted by disabling active file page aging.
1557 *
1558 * This uses a different ratio than the anonymous pages, because
1559 * the page cache uses a use-once replacement algorithm.
1560 */
1561static int inactive_file_is_low(struct lruvec *lruvec)
1562{
1563	if (!mem_cgroup_disabled())
1564		return mem_cgroup_inactive_file_is_low(lruvec);
1565
1566	return inactive_file_is_low_global(lruvec_zone(lruvec));
1567}
1568
1569static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570{
1571	if (is_file_lru(lru))
1572		return inactive_file_is_low(lruvec);
1573	else
1574		return inactive_anon_is_low(lruvec);
1575}
1576
1577static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578				 struct lruvec *lruvec, struct scan_control *sc)
 
1579{
1580	if (is_active_lru(lru)) {
1581		if (inactive_list_is_low(lruvec, lru))
 
1582			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1583		return 0;
1584	}
1585
1586	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587}
1588
1589static int vmscan_swappiness(struct scan_control *sc)
1590{
1591	if (global_reclaim(sc))
1592		return vm_swappiness;
1593	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1594}
1595
1596/*
1597 * Determine how aggressively the anon and file LRU lists should be
1598 * scanned.  The relative value of each set of LRU lists is determined
1599 * by looking at the fraction of the pages scanned we did rotate back
1600 * onto the active list instead of evict.
1601 *
1602 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1603 */
1604static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1605			   unsigned long *nr)
 
1606{
1607	unsigned long anon, file, free;
 
 
 
 
1608	unsigned long anon_prio, file_prio;
 
 
1609	unsigned long ap, fp;
1610	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1611	u64 fraction[2], denominator;
1612	enum lru_list lru;
1613	int noswap = 0;
1614	bool force_scan = false;
1615	struct zone *zone = lruvec_zone(lruvec);
1616
1617	/*
1618	 * If the zone or memcg is small, nr[l] can be 0.  This
1619	 * results in no scanning on this priority and a potential
1620	 * priority drop.  Global direct reclaim can go to the next
1621	 * zone and tends to have no problems. Global kswapd is for
1622	 * zone balancing and it needs to scan a minimum amount. When
1623	 * reclaiming for a memcg, a priority drop can cause high
1624	 * latencies, so it's better to scan a minimum amount there as
1625	 * well.
1626	 */
1627	if (current_is_kswapd() && zone->all_unreclaimable)
1628		force_scan = true;
1629	if (!global_reclaim(sc))
1630		force_scan = true;
1631
1632	/* If we have no swap space, do not bother scanning anon pages. */
1633	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1634		noswap = 1;
1635		fraction[0] = 0;
1636		fraction[1] = 1;
1637		denominator = 1;
 
 
 
 
 
 
 
 
 
1638		goto out;
1639	}
1640
1641	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1642		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1643	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1644		get_lru_size(lruvec, LRU_INACTIVE_FILE);
 
 
 
 
 
1645
 
 
 
 
 
 
 
 
 
1646	if (global_reclaim(sc)) {
1647		free  = zone_page_state(zone, NR_FREE_PAGES);
1648		/* If we have very few page cache pages,
1649		   force-scan anon pages. */
1650		if (unlikely(file + free <= high_wmark_pages(zone))) {
1651			fraction[0] = 1;
1652			fraction[1] = 0;
1653			denominator = 1;
1654			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655		}
1656	}
1657
1658	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659	 * With swappiness at 100, anonymous and file have the same priority.
1660	 * This scanning priority is essentially the inverse of IO cost.
1661	 */
1662	anon_prio = vmscan_swappiness(sc);
1663	file_prio = 200 - anon_prio;
1664
1665	/*
1666	 * OK, so we have swap space and a fair amount of page cache
1667	 * pages.  We use the recently rotated / recently scanned
1668	 * ratios to determine how valuable each cache is.
1669	 *
1670	 * Because workloads change over time (and to avoid overflow)
1671	 * we keep these statistics as a floating average, which ends
1672	 * up weighing recent references more than old ones.
1673	 *
1674	 * anon in [0], file in [1]
1675	 */
1676	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1677	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1678		reclaim_stat->recent_scanned[0] /= 2;
1679		reclaim_stat->recent_rotated[0] /= 2;
1680	}
1681
1682	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1683		reclaim_stat->recent_scanned[1] /= 2;
1684		reclaim_stat->recent_rotated[1] /= 2;
1685	}
1686
1687	/*
1688	 * The amount of pressure on anon vs file pages is inversely
1689	 * proportional to the fraction of recently scanned pages on
1690	 * each list that were recently referenced and in active use.
1691	 */
1692	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1693	ap /= reclaim_stat->recent_rotated[0] + 1;
1694
1695	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1696	fp /= reclaim_stat->recent_rotated[1] + 1;
1697	spin_unlock_irq(&zone->lru_lock);
1698
1699	fraction[0] = ap;
1700	fraction[1] = fp;
1701	denominator = ap + fp + 1;
1702out:
 
1703	for_each_evictable_lru(lru) {
1704		int file = is_file_lru(lru);
 
1705		unsigned long scan;
1706
1707		scan = get_lru_size(lruvec, lru);
1708		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1709			scan >>= sc->priority;
1710			if (!scan && force_scan)
1711				scan = SWAP_CLUSTER_MAX;
1712			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713		}
 
 
1714		nr[lru] = scan;
1715	}
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/* Use reclaim/compaction for costly allocs or under memory pressure */
1719static bool in_reclaim_compaction(struct scan_control *sc)
1720{
1721	if (COMPACTION_BUILD && sc->order &&
1722			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1723			 sc->priority < DEF_PRIORITY - 2))
1724		return true;
1725
1726	return false;
1727}
1728
1729/*
1730 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1731 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1732 * true if more pages should be reclaimed such that when the page allocator
1733 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1734 * It will give up earlier than that if there is difficulty reclaiming pages.
1735 */
1736static inline bool should_continue_reclaim(struct lruvec *lruvec,
1737					unsigned long nr_reclaimed,
1738					unsigned long nr_scanned,
1739					struct scan_control *sc)
1740{
1741	unsigned long pages_for_compaction;
1742	unsigned long inactive_lru_pages;
 
1743
1744	/* If not in reclaim/compaction mode, stop */
1745	if (!in_reclaim_compaction(sc))
1746		return false;
1747
1748	/* Consider stopping depending on scan and reclaim activity */
1749	if (sc->gfp_mask & __GFP_REPEAT) {
1750		/*
1751		 * For __GFP_REPEAT allocations, stop reclaiming if the
1752		 * full LRU list has been scanned and we are still failing
1753		 * to reclaim pages. This full LRU scan is potentially
1754		 * expensive but a __GFP_REPEAT caller really wants to succeed
1755		 */
1756		if (!nr_reclaimed && !nr_scanned)
1757			return false;
1758	} else {
1759		/*
1760		 * For non-__GFP_REPEAT allocations which can presumably
1761		 * fail without consequence, stop if we failed to reclaim
1762		 * any pages from the last SWAP_CLUSTER_MAX number of
1763		 * pages that were scanned. This will return to the
1764		 * caller faster at the risk reclaim/compaction and
1765		 * the resulting allocation attempt fails
1766		 */
1767		if (!nr_reclaimed)
1768			return false;
1769	}
1770
1771	/*
1772	 * If we have not reclaimed enough pages for compaction and the
1773	 * inactive lists are large enough, continue reclaiming
1774	 */
1775	pages_for_compaction = (2UL << sc->order);
1776	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1777	if (nr_swap_pages > 0)
1778		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1779	if (sc->nr_reclaimed < pages_for_compaction &&
1780			inactive_lru_pages > pages_for_compaction)
1781		return true;
1782
1783	/* If compaction would go ahead or the allocation would succeed, stop */
1784	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1785	case COMPACT_PARTIAL:
1786	case COMPACT_CONTINUE:
1787		return false;
1788	default:
1789		return true;
 
 
 
 
 
 
 
1790	}
 
 
 
 
 
 
 
1791}
1792
1793/*
1794 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1795 */
1796static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1797{
1798	unsigned long nr[NR_LRU_LISTS];
1799	unsigned long nr_to_scan;
1800	enum lru_list lru;
1801	unsigned long nr_reclaimed, nr_scanned;
1802	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1803	struct blk_plug plug;
 
 
 
 
 
 
 
 
 
 
1804
1805restart:
1806	nr_reclaimed = 0;
1807	nr_scanned = sc->nr_scanned;
1808	get_scan_count(lruvec, sc, nr);
1809
1810	blk_start_plug(&plug);
1811	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1812					nr[LRU_INACTIVE_FILE]) {
1813		for_each_evictable_lru(lru) {
1814			if (nr[lru]) {
1815				nr_to_scan = min_t(unsigned long,
1816						   nr[lru], SWAP_CLUSTER_MAX);
1817				nr[lru] -= nr_to_scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819				nr_reclaimed += shrink_list(lru, nr_to_scan,
1820							    lruvec, sc);
 
 
 
 
 
 
 
 
 
 
 
 
1821			}
 
 
 
 
 
 
 
 
 
1822		}
1823		/*
1824		 * On large memory systems, scan >> priority can become
1825		 * really large. This is fine for the starting priority;
1826		 * we want to put equal scanning pressure on each zone.
1827		 * However, if the VM has a harder time of freeing pages,
1828		 * with multiple processes reclaiming pages, the total
1829		 * freeing target can get unreasonably large.
1830		 */
1831		if (nr_reclaimed >= nr_to_reclaim &&
1832		    sc->priority < DEF_PRIORITY)
1833			break;
1834	}
1835	blk_finish_plug(&plug);
1836	sc->nr_reclaimed += nr_reclaimed;
1837
1838	/*
1839	 * Even if we did not try to evict anon pages at all, we want to
1840	 * rebalance the anon lru active/inactive ratio.
1841	 */
1842	if (inactive_anon_is_low(lruvec))
1843		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1844				   sc, LRU_ACTIVE_ANON);
1845
1846	/* reclaim/compaction might need reclaim to continue */
1847	if (should_continue_reclaim(lruvec, nr_reclaimed,
1848				    sc->nr_scanned - nr_scanned, sc))
1849		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	throttle_vm_writeout(sc->gfp_mask);
1852}
 
 
 
 
 
1853
1854static void shrink_zone(struct zone *zone, struct scan_control *sc)
1855{
1856	struct mem_cgroup *root = sc->target_mem_cgroup;
1857	struct mem_cgroup_reclaim_cookie reclaim = {
1858		.zone = zone,
1859		.priority = sc->priority,
1860	};
1861	struct mem_cgroup *memcg;
1862
1863	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1864	do {
1865		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
 
 
 
 
 
1866
1867		shrink_lruvec(lruvec, sc);
 
 
 
 
 
 
1868
1869		/*
1870		 * Limit reclaim has historically picked one memcg and
1871		 * scanned it with decreasing priority levels until
1872		 * nr_to_reclaim had been reclaimed.  This priority
1873		 * cycle is thus over after a single memcg.
1874		 *
1875		 * Direct reclaim and kswapd, on the other hand, have
1876		 * to scan all memory cgroups to fulfill the overall
1877		 * scan target for the zone.
1878		 */
1879		if (!global_reclaim(sc)) {
1880			mem_cgroup_iter_break(root, memcg);
1881			break;
1882		}
1883		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1884	} while (memcg);
 
 
 
 
 
 
 
 
 
 
 
1885}
1886
1887/* Returns true if compaction should go ahead for a high-order request */
 
 
 
 
1888static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1889{
1890	unsigned long balance_gap, watermark;
1891	bool watermark_ok;
1892
1893	/* Do not consider compaction for orders reclaim is meant to satisfy */
1894	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
 
 
 
 
1895		return false;
1896
1897	/*
1898	 * Compaction takes time to run and there are potentially other
1899	 * callers using the pages just freed. Continue reclaiming until
1900	 * there is a buffer of free pages available to give compaction
1901	 * a reasonable chance of completing and allocating the page
1902	 */
1903	balance_gap = min(low_wmark_pages(zone),
1904		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1905			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1906	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1907	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1908
1909	/*
1910	 * If compaction is deferred, reclaim up to a point where
1911	 * compaction will have a chance of success when re-enabled
1912	 */
1913	if (compaction_deferred(zone, sc->order))
1914		return watermark_ok;
1915
1916	/* If compaction is not ready to start, keep reclaiming */
1917	if (!compaction_suitable(zone, sc->order))
1918		return false;
1919
1920	return watermark_ok;
1921}
1922
1923/*
1924 * This is the direct reclaim path, for page-allocating processes.  We only
1925 * try to reclaim pages from zones which will satisfy the caller's allocation
1926 * request.
1927 *
1928 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1929 * Because:
1930 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1931 *    allocation or
1932 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1933 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1934 *    zone defense algorithm.
1935 *
1936 * If a zone is deemed to be full of pinned pages then just give it a light
1937 * scan then give up on it.
1938 *
1939 * This function returns true if a zone is being reclaimed for a costly
1940 * high-order allocation and compaction is ready to begin. This indicates to
1941 * the caller that it should consider retrying the allocation instead of
1942 * further reclaim.
1943 */
1944static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1945{
1946	struct zoneref *z;
1947	struct zone *zone;
1948	unsigned long nr_soft_reclaimed;
1949	unsigned long nr_soft_scanned;
1950	bool aborted_reclaim = false;
 
1951
1952	/*
1953	 * If the number of buffer_heads in the machine exceeds the maximum
1954	 * allowed level, force direct reclaim to scan the highmem zone as
1955	 * highmem pages could be pinning lowmem pages storing buffer_heads
1956	 */
1957	if (buffer_heads_over_limit)
 
1958		sc->gfp_mask |= __GFP_HIGHMEM;
 
 
1959
1960	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1961					gfp_zone(sc->gfp_mask), sc->nodemask) {
1962		if (!populated_zone(zone))
1963			continue;
1964		/*
1965		 * Take care memory controller reclaiming has small influence
1966		 * to global LRU.
1967		 */
1968		if (global_reclaim(sc)) {
1969			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970				continue;
1971			if (zone->all_unreclaimable &&
1972					sc->priority != DEF_PRIORITY)
1973				continue;	/* Let kswapd poll it */
1974			if (COMPACTION_BUILD) {
1975				/*
1976				 * If we already have plenty of memory free for
1977				 * compaction in this zone, don't free any more.
1978				 * Even though compaction is invoked for any
1979				 * non-zero order, only frequent costly order
1980				 * reclamation is disruptive enough to become a
1981				 * noticeable problem, like transparent huge
1982				 * page allocations.
1983				 */
1984				if (compaction_ready(zone, sc)) {
1985					aborted_reclaim = true;
1986					continue;
1987				}
1988			}
 
 
 
 
 
 
 
 
 
 
1989			/*
1990			 * This steals pages from memory cgroups over softlimit
1991			 * and returns the number of reclaimed pages and
1992			 * scanned pages. This works for global memory pressure
1993			 * and balancing, not for a memcg's limit.
1994			 */
1995			nr_soft_scanned = 0;
1996			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1997						sc->order, sc->gfp_mask,
1998						&nr_soft_scanned);
1999			sc->nr_reclaimed += nr_soft_reclaimed;
2000			sc->nr_scanned += nr_soft_scanned;
2001			/* need some check for avoid more shrink_zone() */
2002		}
2003
2004		shrink_zone(zone, sc);
 
 
 
 
2005	}
2006
2007	return aborted_reclaim;
 
 
 
 
2008}
2009
2010static bool zone_reclaimable(struct zone *zone)
2011{
2012	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2013}
2014
2015/* All zones in zonelist are unreclaimable? */
2016static bool all_unreclaimable(struct zonelist *zonelist,
2017		struct scan_control *sc)
2018{
2019	struct zoneref *z;
2020	struct zone *zone;
2021
2022	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2023			gfp_zone(sc->gfp_mask), sc->nodemask) {
2024		if (!populated_zone(zone))
2025			continue;
2026		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027			continue;
2028		if (!zone->all_unreclaimable)
2029			return false;
2030	}
2031
2032	return true;
 
 
2033}
2034
2035/*
2036 * This is the main entry point to direct page reclaim.
2037 *
2038 * If a full scan of the inactive list fails to free enough memory then we
2039 * are "out of memory" and something needs to be killed.
2040 *
2041 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2042 * high - the zone may be full of dirty or under-writeback pages, which this
2043 * caller can't do much about.  We kick the writeback threads and take explicit
2044 * naps in the hope that some of these pages can be written.  But if the
2045 * allocating task holds filesystem locks which prevent writeout this might not
2046 * work, and the allocation attempt will fail.
2047 *
2048 * returns:	0, if no pages reclaimed
2049 * 		else, the number of pages reclaimed
2050 */
2051static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2052					struct scan_control *sc,
2053					struct shrink_control *shrink)
2054{
2055	unsigned long total_scanned = 0;
2056	struct reclaim_state *reclaim_state = current->reclaim_state;
2057	struct zoneref *z;
2058	struct zone *zone;
2059	unsigned long writeback_threshold;
2060	bool aborted_reclaim;
2061
2062	delayacct_freepages_start();
2063
2064	if (global_reclaim(sc))
2065		count_vm_event(ALLOCSTALL);
2066
2067	do {
 
 
2068		sc->nr_scanned = 0;
2069		aborted_reclaim = shrink_zones(zonelist, sc);
2070
2071		/*
2072		 * Don't shrink slabs when reclaiming memory from
2073		 * over limit cgroups
2074		 */
2075		if (global_reclaim(sc)) {
2076			unsigned long lru_pages = 0;
2077			for_each_zone_zonelist(zone, z, zonelist,
2078					gfp_zone(sc->gfp_mask)) {
2079				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080					continue;
2081
2082				lru_pages += zone_reclaimable_pages(zone);
2083			}
2084
2085			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2086			if (reclaim_state) {
2087				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2088				reclaim_state->reclaimed_slab = 0;
2089			}
2090		}
2091		total_scanned += sc->nr_scanned;
2092		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2093			goto out;
2094
2095		/*
2096		 * Try to write back as many pages as we just scanned.  This
2097		 * tends to cause slow streaming writers to write data to the
2098		 * disk smoothly, at the dirtying rate, which is nice.   But
2099		 * that's undesirable in laptop mode, where we *want* lumpy
2100		 * writeout.  So in laptop mode, write out the whole world.
2101		 */
2102		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2103		if (total_scanned > writeback_threshold) {
2104			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2105						WB_REASON_TRY_TO_FREE_PAGES);
2106			sc->may_writepage = 1;
2107		}
2108
2109		/* Take a nap, wait for some writeback to complete */
2110		if (!sc->hibernation_mode && sc->nr_scanned &&
2111		    sc->priority < DEF_PRIORITY - 2) {
2112			struct zone *preferred_zone;
2113
2114			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2115						&cpuset_current_mems_allowed,
2116						&preferred_zone);
2117			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2118		}
2119	} while (--sc->priority >= 0);
2120
2121out:
2122	delayacct_freepages_end();
2123
2124	if (sc->nr_reclaimed)
2125		return sc->nr_reclaimed;
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127	/*
2128	 * As hibernation is going on, kswapd is freezed so that it can't mark
2129	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2130	 * check.
 
 
2131	 */
2132	if (oom_killer_disabled)
2133		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134
2135	/* Aborted reclaim to try compaction? don't OOM, then */
2136	if (aborted_reclaim)
2137		return 1;
2138
2139	/* top priority shrink_zones still had more to do? don't OOM, then */
2140	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2141		return 1;
2142
2143	return 0;
 
2144}
2145
2146unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2147				gfp_t gfp_mask, nodemask_t *nodemask)
2148{
2149	unsigned long nr_reclaimed;
2150	struct scan_control sc = {
2151		.gfp_mask = gfp_mask,
 
 
 
 
 
2152		.may_writepage = !laptop_mode,
2153		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2154		.may_unmap = 1,
2155		.may_swap = 1,
2156		.order = order,
2157		.priority = DEF_PRIORITY,
2158		.target_mem_cgroup = NULL,
2159		.nodemask = nodemask,
2160	};
2161	struct shrink_control shrink = {
2162		.gfp_mask = sc.gfp_mask,
2163	};
 
 
 
 
 
 
 
 
2164
2165	trace_mm_vmscan_direct_reclaim_begin(order,
2166				sc.may_writepage,
2167				gfp_mask);
 
2168
2169	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2170
2171	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2172
2173	return nr_reclaimed;
2174}
2175
2176#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2177
2178unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2179						gfp_t gfp_mask, bool noswap,
2180						struct zone *zone,
2181						unsigned long *nr_scanned)
2182{
2183	struct scan_control sc = {
2184		.nr_scanned = 0,
2185		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2186		.may_writepage = !laptop_mode,
2187		.may_unmap = 1,
 
2188		.may_swap = !noswap,
2189		.order = 0,
2190		.priority = 0,
2191		.target_mem_cgroup = memcg,
2192	};
2193	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2194
2195	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2196			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2197
2198	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2199						      sc.may_writepage,
2200						      sc.gfp_mask);
 
2201
2202	/*
2203	 * NOTE: Although we can get the priority field, using it
2204	 * here is not a good idea, since it limits the pages we can scan.
2205	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2206	 * will pick up pages from other mem cgroup's as well. We hack
2207	 * the priority and make it zero.
2208	 */
2209	shrink_lruvec(lruvec, &sc);
2210
2211	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2212
2213	*nr_scanned = sc.nr_scanned;
2214	return sc.nr_reclaimed;
2215}
2216
2217unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 
2218					   gfp_t gfp_mask,
2219					   bool noswap)
2220{
2221	struct zonelist *zonelist;
2222	unsigned long nr_reclaimed;
2223	int nid;
 
2224	struct scan_control sc = {
 
 
 
 
 
 
2225		.may_writepage = !laptop_mode,
2226		.may_unmap = 1,
2227		.may_swap = !noswap,
2228		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2229		.order = 0,
2230		.priority = DEF_PRIORITY,
2231		.target_mem_cgroup = memcg,
2232		.nodemask = NULL, /* we don't care the placement */
2233		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2234				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
2239
2240	/*
2241	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2242	 * take care of from where we get pages. So the node where we start the
2243	 * scan does not need to be the current node.
2244	 */
2245	nid = mem_cgroup_select_victim_node(memcg);
2246
2247	zonelist = NODE_DATA(nid)->node_zonelists;
2248
2249	trace_mm_vmscan_memcg_reclaim_begin(0,
2250					    sc.may_writepage,
2251					    sc.gfp_mask);
 
2252
2253	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 
 
2254
2255	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2256
2257	return nr_reclaimed;
2258}
2259#endif
2260
2261static void age_active_anon(struct zone *zone, struct scan_control *sc)
 
2262{
2263	struct mem_cgroup *memcg;
2264
2265	if (!total_swap_pages)
2266		return;
2267
2268	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2269	do {
2270		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2271
2272		if (inactive_anon_is_low(lruvec))
2273			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2274					   sc, LRU_ACTIVE_ANON);
2275
2276		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2277	} while (memcg);
2278}
2279
2280/*
2281 * pgdat_balanced is used when checking if a node is balanced for high-order
2282 * allocations. Only zones that meet watermarks and are in a zone allowed
2283 * by the callers classzone_idx are added to balanced_pages. The total of
2284 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2285 * for the node to be considered balanced. Forcing all zones to be balanced
2286 * for high orders can cause excessive reclaim when there are imbalanced zones.
2287 * The choice of 25% is due to
2288 *   o a 16M DMA zone that is balanced will not balance a zone on any
2289 *     reasonable sized machine
2290 *   o On all other machines, the top zone must be at least a reasonable
2291 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2292 *     would need to be at least 256M for it to be balance a whole node.
2293 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2294 *     to balance a node on its own. These seemed like reasonable ratios.
2295 */
2296static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2297						int classzone_idx)
2298{
2299	unsigned long present_pages = 0;
2300	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	for (i = 0; i <= classzone_idx; i++)
2303		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
2304
2305	/* A special case here: if zone has no page, we think it's balanced */
2306	return balanced_pages >= (present_pages >> 2);
2307}
2308
2309/* is kswapd sleeping prematurely? */
2310static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2311					int classzone_idx)
2312{
2313	int i;
2314	unsigned long balanced = 0;
2315	bool all_zones_ok = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2318	if (remaining)
2319		return true;
 
2320
2321	/* Check the watermark levels */
2322	for (i = 0; i <= classzone_idx; i++) {
2323		struct zone *zone = pgdat->node_zones + i;
2324
2325		if (!populated_zone(zone))
2326			continue;
 
 
 
 
 
 
 
 
 
 
 
2327
2328		/*
2329		 * balance_pgdat() skips over all_unreclaimable after
2330		 * DEF_PRIORITY. Effectively, it considers them balanced so
2331		 * they must be considered balanced here as well if kswapd
2332		 * is to sleep
2333		 */
2334		if (zone->all_unreclaimable) {
2335			balanced += zone->present_pages;
2336			continue;
2337		}
2338
2339		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2340							i, 0))
2341			all_zones_ok = false;
2342		else
2343			balanced += zone->present_pages;
2344	}
2345
2346	/*
2347	 * For high-order requests, the balanced zones must contain at least
2348	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2349	 * must be balanced
2350	 */
2351	if (order)
2352		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2353	else
2354		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
2355}
2356
2357/*
2358 * For kswapd, balance_pgdat() will work across all this node's zones until
2359 * they are all at high_wmark_pages(zone).
2360 *
2361 * Returns the final order kswapd was reclaiming at
2362 *
2363 * There is special handling here for zones which are full of pinned pages.
2364 * This can happen if the pages are all mlocked, or if they are all used by
2365 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2366 * What we do is to detect the case where all pages in the zone have been
2367 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2368 * dead and from now on, only perform a short scan.  Basically we're polling
2369 * the zone for when the problem goes away.
2370 *
2371 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2372 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2373 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2374 * lower zones regardless of the number of free pages in the lower zones. This
2375 * interoperates with the page allocator fallback scheme to ensure that aging
2376 * of pages is balanced across the zones.
2377 */
2378static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2379							int *classzone_idx)
2380{
2381	int all_zones_ok;
2382	unsigned long balanced;
2383	int i;
2384	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2385	unsigned long total_scanned;
2386	struct reclaim_state *reclaim_state = current->reclaim_state;
2387	unsigned long nr_soft_reclaimed;
2388	unsigned long nr_soft_scanned;
 
2389	struct scan_control sc = {
2390		.gfp_mask = GFP_KERNEL,
 
 
 
2391		.may_unmap = 1,
2392		.may_swap = 1,
2393		/*
2394		 * kswapd doesn't want to be bailed out while reclaim. because
2395		 * we want to put equal scanning pressure on each zone.
2396		 */
2397		.nr_to_reclaim = ULONG_MAX,
2398		.order = order,
2399		.target_mem_cgroup = NULL,
2400	};
2401	struct shrink_control shrink = {
2402		.gfp_mask = sc.gfp_mask,
2403	};
2404loop_again:
2405	total_scanned = 0;
2406	sc.priority = DEF_PRIORITY;
2407	sc.nr_reclaimed = 0;
2408	sc.may_writepage = !laptop_mode;
2409	count_vm_event(PAGEOUTRUN);
2410
2411	do {
2412		unsigned long lru_pages = 0;
2413		int has_under_min_watermark_zone = 0;
2414
2415		all_zones_ok = 1;
2416		balanced = 0;
2417
2418		/*
2419		 * Scan in the highmem->dma direction for the highest
2420		 * zone which needs scanning
2421		 */
2422		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2423			struct zone *zone = pgdat->node_zones + i;
2424
2425			if (!populated_zone(zone))
2426				continue;
2427
2428			if (zone->all_unreclaimable &&
2429			    sc.priority != DEF_PRIORITY)
2430				continue;
2431
2432			/*
2433			 * Do some background aging of the anon list, to give
2434			 * pages a chance to be referenced before reclaiming.
2435			 */
2436			age_active_anon(zone, &sc);
2437
2438			/*
2439			 * If the number of buffer_heads in the machine
2440			 * exceeds the maximum allowed level and this node
2441			 * has a highmem zone, force kswapd to reclaim from
2442			 * it to relieve lowmem pressure.
2443			 */
2444			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2445				end_zone = i;
2446				break;
2447			}
 
2448
2449			if (!zone_watermark_ok_safe(zone, order,
2450					high_wmark_pages(zone), 0, 0)) {
2451				end_zone = i;
2452				break;
2453			} else {
2454				/* If balanced, clear the congested flag */
2455				zone_clear_flag(zone, ZONE_CONGESTED);
2456			}
2457		}
2458		if (i < 0)
2459			goto out;
2460
2461		for (i = 0; i <= end_zone; i++) {
2462			struct zone *zone = pgdat->node_zones + i;
2463
2464			lru_pages += zone_reclaimable_pages(zone);
2465		}
 
 
2466
2467		/*
2468		 * Now scan the zone in the dma->highmem direction, stopping
2469		 * at the last zone which needs scanning.
2470		 *
2471		 * We do this because the page allocator works in the opposite
2472		 * direction.  This prevents the page allocator from allocating
2473		 * pages behind kswapd's direction of progress, which would
2474		 * cause too much scanning of the lower zones.
2475		 */
2476		for (i = 0; i <= end_zone; i++) {
2477			struct zone *zone = pgdat->node_zones + i;
2478			int nr_slab, testorder;
2479			unsigned long balance_gap;
2480
2481			if (!populated_zone(zone))
2482				continue;
 
 
 
 
2483
2484			if (zone->all_unreclaimable &&
2485			    sc.priority != DEF_PRIORITY)
2486				continue;
2487
2488			sc.nr_scanned = 0;
2489
2490			nr_soft_scanned = 0;
2491			/*
2492			 * Call soft limit reclaim before calling shrink_zone.
2493			 */
2494			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2495							order, sc.gfp_mask,
2496							&nr_soft_scanned);
2497			sc.nr_reclaimed += nr_soft_reclaimed;
2498			total_scanned += nr_soft_scanned;
2499
2500			/*
2501			 * We put equal pressure on every zone, unless
2502			 * one zone has way too many pages free
2503			 * already. The "too many pages" is defined
2504			 * as the high wmark plus a "gap" where the
2505			 * gap is either the low watermark or 1%
2506			 * of the zone, whichever is smaller.
2507			 */
2508			balance_gap = min(low_wmark_pages(zone),
2509				(zone->present_pages +
2510					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2511				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2512			/*
2513			 * Kswapd reclaims only single pages with compaction
2514			 * enabled. Trying too hard to reclaim until contiguous
2515			 * free pages have become available can hurt performance
2516			 * by evicting too much useful data from memory.
2517			 * Do not reclaim more than needed for compaction.
2518			 */
2519			testorder = order;
2520			if (COMPACTION_BUILD && order &&
2521					compaction_suitable(zone, order) !=
2522						COMPACT_SKIPPED)
2523				testorder = 0;
2524
2525			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2526				    !zone_watermark_ok_safe(zone, testorder,
2527					high_wmark_pages(zone) + balance_gap,
2528					end_zone, 0)) {
2529				shrink_zone(zone, &sc);
2530
2531				reclaim_state->reclaimed_slab = 0;
2532				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2533				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2534				total_scanned += sc.nr_scanned;
2535
2536				if (nr_slab == 0 && !zone_reclaimable(zone))
2537					zone->all_unreclaimable = 1;
2538			}
2539
2540			/*
2541			 * If we've done a decent amount of scanning and
2542			 * the reclaim ratio is low, start doing writepage
2543			 * even in laptop mode
2544			 */
2545			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2546			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2547				sc.may_writepage = 1;
2548
2549			if (zone->all_unreclaimable) {
2550				if (end_zone && end_zone == i)
2551					end_zone--;
2552				continue;
2553			}
2554
2555			if (!zone_watermark_ok_safe(zone, testorder,
2556					high_wmark_pages(zone), end_zone, 0)) {
2557				all_zones_ok = 0;
2558				/*
2559				 * We are still under min water mark.  This
2560				 * means that we have a GFP_ATOMIC allocation
2561				 * failure risk. Hurry up!
2562				 */
2563				if (!zone_watermark_ok_safe(zone, order,
2564					    min_wmark_pages(zone), end_zone, 0))
2565					has_under_min_watermark_zone = 1;
2566			} else {
2567				/*
2568				 * If a zone reaches its high watermark,
2569				 * consider it to be no longer congested. It's
2570				 * possible there are dirty pages backed by
2571				 * congested BDIs but as pressure is relieved,
2572				 * spectulatively avoid congestion waits
2573				 */
2574				zone_clear_flag(zone, ZONE_CONGESTED);
2575				if (i <= *classzone_idx)
2576					balanced += zone->present_pages;
2577			}
2578
2579		}
2580		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2581			break;		/* kswapd: all done */
2582		/*
2583		 * OK, kswapd is getting into trouble.  Take a nap, then take
2584		 * another pass across the zones.
 
2585		 */
2586		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2587			if (has_under_min_watermark_zone)
2588				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2589			else
2590				congestion_wait(BLK_RW_ASYNC, HZ/10);
2591		}
2592
2593		/*
2594		 * We do this so kswapd doesn't build up large priorities for
2595		 * example when it is freeing in parallel with allocators. It
2596		 * matches the direct reclaim path behaviour in terms of impact
2597		 * on zone->*_priority.
2598		 */
2599		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 
 
 
 
 
2600			break;
2601	} while (--sc.priority >= 0);
2602out:
2603
2604	/*
2605	 * order-0: All zones must meet high watermark for a balanced node
2606	 * high-order: Balanced zones must make up at least 25% of the node
2607	 *             for the node to be balanced
2608	 */
2609	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2610		cond_resched();
2611
2612		try_to_freeze();
2613
2614		/*
2615		 * Fragmentation may mean that the system cannot be
2616		 * rebalanced for high-order allocations in all zones.
2617		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2618		 * it means the zones have been fully scanned and are still
2619		 * not balanced. For high-order allocations, there is
2620		 * little point trying all over again as kswapd may
2621		 * infinite loop.
2622		 *
2623		 * Instead, recheck all watermarks at order-0 as they
2624		 * are the most important. If watermarks are ok, kswapd will go
2625		 * back to sleep. High-order users can still perform direct
2626		 * reclaim if they wish.
2627		 */
2628		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2629			order = sc.order = 0;
 
 
2630
2631		goto loop_again;
2632	}
2633
 
 
2634	/*
2635	 * If kswapd was reclaiming at a higher order, it has the option of
2636	 * sleeping without all zones being balanced. Before it does, it must
2637	 * ensure that the watermarks for order-0 on *all* zones are met and
2638	 * that the congestion flags are cleared. The congestion flag must
2639	 * be cleared as kswapd is the only mechanism that clears the flag
2640	 * and it is potentially going to sleep here.
2641	 */
2642	if (order) {
2643		int zones_need_compaction = 1;
2644
2645		for (i = 0; i <= end_zone; i++) {
2646			struct zone *zone = pgdat->node_zones + i;
2647
2648			if (!populated_zone(zone))
2649				continue;
 
 
 
 
 
 
 
2650
2651			if (zone->all_unreclaimable &&
2652			    sc.priority != DEF_PRIORITY)
2653				continue;
2654
2655			/* Would compaction fail due to lack of free memory? */
2656			if (COMPACTION_BUILD &&
2657			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2658				goto loop_again;
2659
2660			/* Confirm the zone is balanced for order-0 */
2661			if (!zone_watermark_ok(zone, 0,
2662					high_wmark_pages(zone), 0, 0)) {
2663				order = sc.order = 0;
2664				goto loop_again;
2665			}
2666
2667			/* Check if the memory needs to be defragmented. */
2668			if (zone_watermark_ok(zone, order,
2669				    low_wmark_pages(zone), *classzone_idx, 0))
2670				zones_need_compaction = 0;
2671
2672			/* If balanced, clear the congested flag */
2673			zone_clear_flag(zone, ZONE_CONGESTED);
2674		}
2675
2676		if (zones_need_compaction)
2677			compact_pgdat(pgdat, order);
2678	}
2679
2680	/*
2681	 * Return the order we were reclaiming at so sleeping_prematurely()
2682	 * makes a decision on the order we were last reclaiming at. However,
2683	 * if another caller entered the allocator slow path while kswapd
2684	 * was awake, order will remain at the higher level
2685	 */
2686	*classzone_idx = end_zone;
2687	return order;
2688}
2689
2690static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
2691{
2692	long remaining = 0;
2693	DEFINE_WAIT(wait);
2694
2695	if (freezing(current) || kthread_should_stop())
2696		return;
2697
2698	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699
2700	/* Try to sleep for a short interval */
2701	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
2703		finish_wait(&pgdat->kswapd_wait, &wait);
2704		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2705	}
2706
2707	/*
2708	 * After a short sleep, check if it was a premature sleep. If not, then
2709	 * go fully to sleep until explicitly woken up.
2710	 */
2711	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2712		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2713
2714		/*
2715		 * vmstat counters are not perfectly accurate and the estimated
2716		 * value for counters such as NR_FREE_PAGES can deviate from the
2717		 * true value by nr_online_cpus * threshold. To avoid the zone
2718		 * watermarks being breached while under pressure, we reduce the
2719		 * per-cpu vmstat threshold while kswapd is awake and restore
2720		 * them before going back to sleep.
2721		 */
2722		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2723
2724		if (!kthread_should_stop())
2725			schedule();
2726
2727		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2728	} else {
2729		if (remaining)
2730			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2731		else
2732			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2733	}
2734	finish_wait(&pgdat->kswapd_wait, &wait);
2735}
2736
2737/*
2738 * The background pageout daemon, started as a kernel thread
2739 * from the init process.
2740 *
2741 * This basically trickles out pages so that we have _some_
2742 * free memory available even if there is no other activity
2743 * that frees anything up. This is needed for things like routing
2744 * etc, where we otherwise might have all activity going on in
2745 * asynchronous contexts that cannot page things out.
2746 *
2747 * If there are applications that are active memory-allocators
2748 * (most normal use), this basically shouldn't matter.
2749 */
2750static int kswapd(void *p)
2751{
2752	unsigned long order, new_order;
2753	unsigned balanced_order;
2754	int classzone_idx, new_classzone_idx;
2755	int balanced_classzone_idx;
2756	pg_data_t *pgdat = (pg_data_t*)p;
2757	struct task_struct *tsk = current;
2758
2759	struct reclaim_state reclaim_state = {
2760		.reclaimed_slab = 0,
2761	};
2762	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2763
2764	lockdep_set_current_reclaim_state(GFP_KERNEL);
2765
2766	if (!cpumask_empty(cpumask))
2767		set_cpus_allowed_ptr(tsk, cpumask);
2768	current->reclaim_state = &reclaim_state;
2769
2770	/*
2771	 * Tell the memory management that we're a "memory allocator",
2772	 * and that if we need more memory we should get access to it
2773	 * regardless (see "__alloc_pages()"). "kswapd" should
2774	 * never get caught in the normal page freeing logic.
2775	 *
2776	 * (Kswapd normally doesn't need memory anyway, but sometimes
2777	 * you need a small amount of memory in order to be able to
2778	 * page out something else, and this flag essentially protects
2779	 * us from recursively trying to free more memory as we're
2780	 * trying to free the first piece of memory in the first place).
2781	 */
2782	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2783	set_freezable();
2784
2785	order = new_order = 0;
2786	balanced_order = 0;
2787	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2788	balanced_classzone_idx = classzone_idx;
2789	for ( ; ; ) {
2790		int ret;
2791
2792		/*
2793		 * If the last balance_pgdat was unsuccessful it's unlikely a
2794		 * new request of a similar or harder type will succeed soon
2795		 * so consider going to sleep on the basis we reclaimed at
2796		 */
2797		if (balanced_classzone_idx >= new_classzone_idx &&
2798					balanced_order == new_order) {
2799			new_order = pgdat->kswapd_max_order;
2800			new_classzone_idx = pgdat->classzone_idx;
2801			pgdat->kswapd_max_order =  0;
2802			pgdat->classzone_idx = pgdat->nr_zones - 1;
2803		}
2804
2805		if (order < new_order || classzone_idx > new_classzone_idx) {
2806			/*
2807			 * Don't sleep if someone wants a larger 'order'
2808			 * allocation or has tigher zone constraints
2809			 */
2810			order = new_order;
2811			classzone_idx = new_classzone_idx;
2812		} else {
2813			kswapd_try_to_sleep(pgdat, balanced_order,
2814						balanced_classzone_idx);
2815			order = pgdat->kswapd_max_order;
2816			classzone_idx = pgdat->classzone_idx;
2817			new_order = order;
2818			new_classzone_idx = classzone_idx;
2819			pgdat->kswapd_max_order = 0;
2820			pgdat->classzone_idx = pgdat->nr_zones - 1;
2821		}
2822
2823		ret = try_to_freeze();
2824		if (kthread_should_stop())
2825			break;
2826
2827		/*
2828		 * We can speed up thawing tasks if we don't call balance_pgdat
2829		 * after returning from the refrigerator
2830		 */
2831		if (!ret) {
2832			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2833			balanced_classzone_idx = classzone_idx;
2834			balanced_order = balance_pgdat(pgdat, order,
2835						&balanced_classzone_idx);
2836		}
 
 
 
 
 
 
 
 
 
 
 
 
2837	}
 
 
 
 
2838	return 0;
2839}
2840
2841/*
2842 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2843 */
2844void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2845{
2846	pg_data_t *pgdat;
2847
2848	if (!populated_zone(zone))
2849		return;
2850
2851	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2852		return;
2853	pgdat = zone->zone_pgdat;
2854	if (pgdat->kswapd_max_order < order) {
2855		pgdat->kswapd_max_order = order;
2856		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2857	}
2858	if (!waitqueue_active(&pgdat->kswapd_wait))
2859		return;
2860	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
2861		return;
 
2862
2863	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
2864	wake_up_interruptible(&pgdat->kswapd_wait);
2865}
2866
2867/*
2868 * The reclaimable count would be mostly accurate.
2869 * The less reclaimable pages may be
2870 * - mlocked pages, which will be moved to unevictable list when encountered
2871 * - mapped pages, which may require several travels to be reclaimed
2872 * - dirty pages, which is not "instantly" reclaimable
2873 */
2874unsigned long global_reclaimable_pages(void)
2875{
2876	int nr;
2877
2878	nr = global_page_state(NR_ACTIVE_FILE) +
2879	     global_page_state(NR_INACTIVE_FILE);
2880
2881	if (nr_swap_pages > 0)
2882		nr += global_page_state(NR_ACTIVE_ANON) +
2883		      global_page_state(NR_INACTIVE_ANON);
2884
2885	return nr;
2886}
2887
2888unsigned long zone_reclaimable_pages(struct zone *zone)
2889{
2890	int nr;
2891
2892	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2893	     zone_page_state(zone, NR_INACTIVE_FILE);
2894
2895	if (nr_swap_pages > 0)
2896		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2897		      zone_page_state(zone, NR_INACTIVE_ANON);
2898
2899	return nr;
2900}
2901
2902#ifdef CONFIG_HIBERNATION
2903/*
2904 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2905 * freed pages.
2906 *
2907 * Rather than trying to age LRUs the aim is to preserve the overall
2908 * LRU order by reclaiming preferentially
2909 * inactive > active > active referenced > active mapped
2910 */
2911unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2912{
2913	struct reclaim_state reclaim_state;
2914	struct scan_control sc = {
 
2915		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
2916		.may_swap = 1,
2917		.may_unmap = 1,
2918		.may_writepage = 1,
2919		.nr_to_reclaim = nr_to_reclaim,
2920		.hibernation_mode = 1,
2921		.order = 0,
2922		.priority = DEF_PRIORITY,
2923	};
2924	struct shrink_control shrink = {
2925		.gfp_mask = sc.gfp_mask,
2926	};
2927	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2928	struct task_struct *p = current;
2929	unsigned long nr_reclaimed;
 
2930
2931	p->flags |= PF_MEMALLOC;
2932	lockdep_set_current_reclaim_state(sc.gfp_mask);
2933	reclaim_state.reclaimed_slab = 0;
2934	p->reclaim_state = &reclaim_state;
2935
2936	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2937
2938	p->reclaim_state = NULL;
2939	lockdep_clear_current_reclaim_state();
2940	p->flags &= ~PF_MEMALLOC;
2941
2942	return nr_reclaimed;
2943}
2944#endif /* CONFIG_HIBERNATION */
2945
2946/* It's optimal to keep kswapds on the same CPUs as their memory, but
2947   not required for correctness.  So if the last cpu in a node goes
2948   away, we get changed to run anywhere: as the first one comes back,
2949   restore their cpu bindings. */
2950static int __devinit cpu_callback(struct notifier_block *nfb,
2951				  unsigned long action, void *hcpu)
2952{
2953	int nid;
2954
2955	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2956		for_each_node_state(nid, N_HIGH_MEMORY) {
2957			pg_data_t *pgdat = NODE_DATA(nid);
2958			const struct cpumask *mask;
2959
2960			mask = cpumask_of_node(pgdat->node_id);
2961
2962			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2963				/* One of our CPUs online: restore mask */
2964				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2965		}
2966	}
2967	return NOTIFY_OK;
2968}
2969
2970/*
2971 * This kswapd start function will be called by init and node-hot-add.
2972 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2973 */
2974int kswapd_run(int nid)
2975{
2976	pg_data_t *pgdat = NODE_DATA(nid);
2977	int ret = 0;
2978
2979	if (pgdat->kswapd)
2980		return 0;
2981
2982	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2983	if (IS_ERR(pgdat->kswapd)) {
2984		/* failure at boot is fatal */
2985		BUG_ON(system_state == SYSTEM_BOOTING);
2986		printk("Failed to start kswapd on node %d\n",nid);
2987		ret = -1;
 
2988	}
2989	return ret;
2990}
2991
2992/*
2993 * Called by memory hotplug when all memory in a node is offlined.  Caller must
2994 * hold lock_memory_hotplug().
2995 */
2996void kswapd_stop(int nid)
2997{
2998	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2999
3000	if (kswapd) {
3001		kthread_stop(kswapd);
3002		NODE_DATA(nid)->kswapd = NULL;
3003	}
3004}
3005
3006static int __init kswapd_init(void)
3007{
3008	int nid;
3009
3010	swap_setup();
3011	for_each_node_state(nid, N_HIGH_MEMORY)
3012 		kswapd_run(nid);
3013	hotcpu_notifier(cpu_callback, 0);
 
 
 
3014	return 0;
3015}
3016
3017module_init(kswapd_init)
3018
3019#ifdef CONFIG_NUMA
3020/*
3021 * Zone reclaim mode
3022 *
3023 * If non-zero call zone_reclaim when the number of free pages falls below
3024 * the watermarks.
3025 */
3026int zone_reclaim_mode __read_mostly;
3027
3028#define RECLAIM_OFF 0
3029#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3030#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3031#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3032
3033/*
3034 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3035 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3036 * a zone.
3037 */
3038#define ZONE_RECLAIM_PRIORITY 4
3039
3040/*
3041 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3042 * occur.
3043 */
3044int sysctl_min_unmapped_ratio = 1;
3045
3046/*
3047 * If the number of slab pages in a zone grows beyond this percentage then
3048 * slab reclaim needs to occur.
3049 */
3050int sysctl_min_slab_ratio = 5;
3051
3052static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3053{
3054	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3055	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3056		zone_page_state(zone, NR_ACTIVE_FILE);
3057
3058	/*
3059	 * It's possible for there to be more file mapped pages than
3060	 * accounted for by the pages on the file LRU lists because
3061	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3062	 */
3063	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3064}
3065
3066/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3067static long zone_pagecache_reclaimable(struct zone *zone)
3068{
3069	long nr_pagecache_reclaimable;
3070	long delta = 0;
3071
3072	/*
3073	 * If RECLAIM_SWAP is set, then all file pages are considered
3074	 * potentially reclaimable. Otherwise, we have to worry about
3075	 * pages like swapcache and zone_unmapped_file_pages() provides
3076	 * a better estimate
3077	 */
3078	if (zone_reclaim_mode & RECLAIM_SWAP)
3079		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3080	else
3081		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3082
3083	/* If we can't clean pages, remove dirty pages from consideration */
3084	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3085		delta += zone_page_state(zone, NR_FILE_DIRTY);
3086
3087	/* Watch for any possible underflows due to delta */
3088	if (unlikely(delta > nr_pagecache_reclaimable))
3089		delta = nr_pagecache_reclaimable;
3090
3091	return nr_pagecache_reclaimable - delta;
3092}
3093
3094/*
3095 * Try to free up some pages from this zone through reclaim.
3096 */
3097static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3098{
3099	/* Minimum pages needed in order to stay on node */
3100	const unsigned long nr_pages = 1 << order;
3101	struct task_struct *p = current;
3102	struct reclaim_state reclaim_state;
 
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 
 
 
 
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
3111		.priority = ZONE_RECLAIM_PRIORITY,
3112	};
3113	struct shrink_control shrink = {
3114		.gfp_mask = sc.gfp_mask,
3115	};
3116	unsigned long nr_slab_pages0, nr_slab_pages1;
3117
3118	cond_resched();
3119	/*
3120	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3121	 * and we also need to be able to write out pages for RECLAIM_WRITE
3122	 * and RECLAIM_SWAP.
3123	 */
3124	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3125	lockdep_set_current_reclaim_state(gfp_mask);
 
3126	reclaim_state.reclaimed_slab = 0;
3127	p->reclaim_state = &reclaim_state;
3128
3129	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3130		/*
3131		 * Free memory by calling shrink zone with increasing
3132		 * priorities until we have enough memory freed.
3133		 */
3134		do {
3135			shrink_zone(zone, &sc);
3136		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3137	}
3138
3139	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3140	if (nr_slab_pages0 > zone->min_slab_pages) {
3141		/*
3142		 * shrink_slab() does not currently allow us to determine how
3143		 * many pages were freed in this zone. So we take the current
3144		 * number of slab pages and shake the slab until it is reduced
3145		 * by the same nr_pages that we used for reclaiming unmapped
3146		 * pages.
3147		 *
3148		 * Note that shrink_slab will free memory on all zones and may
3149		 * take a long time.
3150		 */
3151		for (;;) {
3152			unsigned long lru_pages = zone_reclaimable_pages(zone);
3153
3154			/* No reclaimable slab or very low memory pressure */
3155			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3156				break;
3157
3158			/* Freed enough memory */
3159			nr_slab_pages1 = zone_page_state(zone,
3160							NR_SLAB_RECLAIMABLE);
3161			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3162				break;
3163		}
3164
3165		/*
3166		 * Update nr_reclaimed by the number of slab pages we
3167		 * reclaimed from this zone.
3168		 */
3169		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3170		if (nr_slab_pages1 < nr_slab_pages0)
3171			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3172	}
3173
3174	p->reclaim_state = NULL;
3175	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3176	lockdep_clear_current_reclaim_state();
 
3177	return sc.nr_reclaimed >= nr_pages;
3178}
3179
3180int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3181{
3182	int node_id;
3183	int ret;
3184
3185	/*
3186	 * Zone reclaim reclaims unmapped file backed pages and
3187	 * slab pages if we are over the defined limits.
3188	 *
3189	 * A small portion of unmapped file backed pages is needed for
3190	 * file I/O otherwise pages read by file I/O will be immediately
3191	 * thrown out if the zone is overallocated. So we do not reclaim
3192	 * if less than a specified percentage of the zone is used by
3193	 * unmapped file backed pages.
3194	 */
3195	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3196	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3197		return ZONE_RECLAIM_FULL;
3198
3199	if (zone->all_unreclaimable)
3200		return ZONE_RECLAIM_FULL;
3201
3202	/*
3203	 * Do not scan if the allocation should not be delayed.
3204	 */
3205	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3206		return ZONE_RECLAIM_NOSCAN;
3207
3208	/*
3209	 * Only run zone reclaim on the local zone or on zones that do not
3210	 * have associated processors. This will favor the local processor
3211	 * over remote processors and spread off node memory allocations
3212	 * as wide as possible.
3213	 */
3214	node_id = zone_to_nid(zone);
3215	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3216		return ZONE_RECLAIM_NOSCAN;
3217
3218	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3219		return ZONE_RECLAIM_NOSCAN;
3220
3221	ret = __zone_reclaim(zone, gfp_mask, order);
3222	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3223
3224	if (!ret)
3225		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3226
3227	return ret;
3228}
3229#endif
3230
3231/*
3232 * page_evictable - test whether a page is evictable
3233 * @page: the page to test
3234 * @vma: the VMA in which the page is or will be mapped, may be NULL
3235 *
3236 * Test whether page is evictable--i.e., should be placed on active/inactive
3237 * lists vs unevictable list.  The vma argument is !NULL when called from the
3238 * fault path to determine how to instantate a new page.
3239 *
3240 * Reasons page might not be evictable:
3241 * (1) page's mapping marked unevictable
3242 * (2) page is part of an mlocked VMA
3243 *
3244 */
3245int page_evictable(struct page *page, struct vm_area_struct *vma)
3246{
 
3247
3248	if (mapping_unevictable(page_mapping(page)))
3249		return 0;
3250
3251	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3252		return 0;
3253
3254	return 1;
3255}
3256
3257#ifdef CONFIG_SHMEM
3258/**
3259 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3260 * @pages:	array of pages to check
3261 * @nr_pages:	number of pages to check
3262 *
3263 * Checks pages for evictability and moves them to the appropriate lru list.
3264 *
3265 * This function is only used for SysV IPC SHM_UNLOCK.
3266 */
3267void check_move_unevictable_pages(struct page **pages, int nr_pages)
3268{
3269	struct lruvec *lruvec;
3270	struct zone *zone = NULL;
3271	int pgscanned = 0;
3272	int pgrescued = 0;
3273	int i;
3274
3275	for (i = 0; i < nr_pages; i++) {
3276		struct page *page = pages[i];
3277		struct zone *pagezone;
3278
3279		pgscanned++;
3280		pagezone = page_zone(page);
3281		if (pagezone != zone) {
3282			if (zone)
3283				spin_unlock_irq(&zone->lru_lock);
3284			zone = pagezone;
3285			spin_lock_irq(&zone->lru_lock);
3286		}
3287		lruvec = mem_cgroup_page_lruvec(page, zone);
3288
3289		if (!PageLRU(page) || !PageUnevictable(page))
3290			continue;
3291
3292		if (page_evictable(page, NULL)) {
3293			enum lru_list lru = page_lru_base_type(page);
3294
3295			VM_BUG_ON(PageActive(page));
3296			ClearPageUnevictable(page);
3297			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3298			add_page_to_lru_list(page, lruvec, lru);
3299			pgrescued++;
3300		}
3301	}
3302
3303	if (zone) {
3304		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3305		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3306		spin_unlock_irq(&zone->lru_lock);
3307	}
3308}
3309#endif /* CONFIG_SHMEM */
3310
3311static void warn_scan_unevictable_pages(void)
3312{
3313	printk_once(KERN_WARNING
3314		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3315		    "disabled for lack of a legitimate use case.  If you have "
3316		    "one, please send an email to linux-mm@kvack.org.\n",
3317		    current->comm);
3318}
3319
3320/*
3321 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3322 * all nodes' unevictable lists for evictable pages
3323 */
3324unsigned long scan_unevictable_pages;
3325
3326int scan_unevictable_handler(struct ctl_table *table, int write,
3327			   void __user *buffer,
3328			   size_t *length, loff_t *ppos)
3329{
3330	warn_scan_unevictable_pages();
3331	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3332	scan_unevictable_pages = 0;
3333	return 0;
3334}
3335
3336#ifdef CONFIG_NUMA
3337/*
3338 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3339 * a specified node's per zone unevictable lists for evictable pages.
3340 */
3341
3342static ssize_t read_scan_unevictable_node(struct device *dev,
3343					  struct device_attribute *attr,
3344					  char *buf)
3345{
3346	warn_scan_unevictable_pages();
3347	return sprintf(buf, "0\n");	/* always zero; should fit... */
3348}
3349
3350static ssize_t write_scan_unevictable_node(struct device *dev,
3351					   struct device_attribute *attr,
3352					const char *buf, size_t count)
3353{
3354	warn_scan_unevictable_pages();
3355	return 1;
3356}
3357
3358
3359static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3360			read_scan_unevictable_node,
3361			write_scan_unevictable_node);
3362
3363int scan_unevictable_register_node(struct node *node)
3364{
3365	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366}
3367
3368void scan_unevictable_unregister_node(struct node *node)
3369{
3370	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3371}
3372#endif