Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/mm.h>
18#include <linux/sched/mm.h>
19#include <linux/module.h>
20#include <linux/gfp.h>
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
26#include <linux/vmpressure.h>
27#include <linux/vmstat.h>
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
39#include <linux/compaction.h>
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45#include <linux/memcontrol.h>
46#include <linux/delayacct.h>
47#include <linux/sysctl.h>
48#include <linux/oom.h>
49#include <linux/prefetch.h>
50#include <linux/printk.h>
51#include <linux/dax.h>
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
57#include <linux/balloon_compaction.h>
58
59#include "internal.h"
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
64struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 /* Allocation order */
72 int order;
73
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
79
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
85
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
108
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
129};
130
131#ifdef ARCH_HAS_PREFETCH
132#define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141#else
142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143#endif
144
145#ifdef ARCH_HAS_PREFETCHW
146#define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155#else
156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157#endif
158
159/*
160 * From 0 .. 100. Higher means more swappy.
161 */
162int vm_swappiness = 60;
163/*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167unsigned long vm_total_pages;
168
169static LIST_HEAD(shrinker_list);
170static DECLARE_RWSEM(shrinker_rwsem);
171
172#ifdef CONFIG_MEMCG
173static bool global_reclaim(struct scan_control *sc)
174{
175 return !sc->target_mem_cgroup;
176}
177
178/**
179 * sane_reclaim - is the usual dirty throttling mechanism operational?
180 * @sc: scan_control in question
181 *
182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
183 * completely broken with the legacy memcg and direct stalling in
184 * shrink_page_list() is used for throttling instead, which lacks all the
185 * niceties such as fairness, adaptive pausing, bandwidth proportional
186 * allocation and configurability.
187 *
188 * This function tests whether the vmscan currently in progress can assume
189 * that the normal dirty throttling mechanism is operational.
190 */
191static bool sane_reclaim(struct scan_control *sc)
192{
193 struct mem_cgroup *memcg = sc->target_mem_cgroup;
194
195 if (!memcg)
196 return true;
197#ifdef CONFIG_CGROUP_WRITEBACK
198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 return true;
200#endif
201 return false;
202}
203
204static void set_memcg_congestion(pg_data_t *pgdat,
205 struct mem_cgroup *memcg,
206 bool congested)
207{
208 struct mem_cgroup_per_node *mn;
209
210 if (!memcg)
211 return;
212
213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 WRITE_ONCE(mn->congested, congested);
215}
216
217static bool memcg_congested(pg_data_t *pgdat,
218 struct mem_cgroup *memcg)
219{
220 struct mem_cgroup_per_node *mn;
221
222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 return READ_ONCE(mn->congested);
224
225}
226#else
227static bool global_reclaim(struct scan_control *sc)
228{
229 return true;
230}
231
232static bool sane_reclaim(struct scan_control *sc)
233{
234 return true;
235}
236
237static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 struct mem_cgroup *memcg, bool congested)
239{
240}
241
242static inline bool memcg_congested(struct pglist_data *pgdat,
243 struct mem_cgroup *memcg)
244{
245 return false;
246
247}
248#endif
249
250/*
251 * This misses isolated pages which are not accounted for to save counters.
252 * As the data only determines if reclaim or compaction continues, it is
253 * not expected that isolated pages will be a dominating factor.
254 */
255unsigned long zone_reclaimable_pages(struct zone *zone)
256{
257 unsigned long nr;
258
259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 if (get_nr_swap_pages() > 0)
262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
264
265 return nr;
266}
267
268/**
269 * lruvec_lru_size - Returns the number of pages on the given LRU list.
270 * @lruvec: lru vector
271 * @lru: lru to use
272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
273 */
274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
275{
276 unsigned long lru_size;
277 int zid;
278
279 if (!mem_cgroup_disabled())
280 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 else
282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
283
284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 unsigned long size;
287
288 if (!managed_zone(zone))
289 continue;
290
291 if (!mem_cgroup_disabled())
292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 else
294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 NR_ZONE_LRU_BASE + lru);
296 lru_size -= min(size, lru_size);
297 }
298
299 return lru_size;
300
301}
302
303/*
304 * Add a shrinker callback to be called from the vm.
305 */
306int prealloc_shrinker(struct shrinker *shrinker)
307{
308 size_t size = sizeof(*shrinker->nr_deferred);
309
310 if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 size *= nr_node_ids;
312
313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 if (!shrinker->nr_deferred)
315 return -ENOMEM;
316 return 0;
317}
318
319void free_prealloced_shrinker(struct shrinker *shrinker)
320{
321 kfree(shrinker->nr_deferred);
322 shrinker->nr_deferred = NULL;
323}
324
325void register_shrinker_prepared(struct shrinker *shrinker)
326{
327 down_write(&shrinker_rwsem);
328 list_add_tail(&shrinker->list, &shrinker_list);
329 up_write(&shrinker_rwsem);
330}
331
332int register_shrinker(struct shrinker *shrinker)
333{
334 int err = prealloc_shrinker(shrinker);
335
336 if (err)
337 return err;
338 register_shrinker_prepared(shrinker);
339 return 0;
340}
341EXPORT_SYMBOL(register_shrinker);
342
343/*
344 * Remove one
345 */
346void unregister_shrinker(struct shrinker *shrinker)
347{
348 if (!shrinker->nr_deferred)
349 return;
350 down_write(&shrinker_rwsem);
351 list_del(&shrinker->list);
352 up_write(&shrinker_rwsem);
353 kfree(shrinker->nr_deferred);
354 shrinker->nr_deferred = NULL;
355}
356EXPORT_SYMBOL(unregister_shrinker);
357
358#define SHRINK_BATCH 128
359
360static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
361 struct shrinker *shrinker, int priority)
362{
363 unsigned long freed = 0;
364 unsigned long long delta;
365 long total_scan;
366 long freeable;
367 long nr;
368 long new_nr;
369 int nid = shrinkctl->nid;
370 long batch_size = shrinker->batch ? shrinker->batch
371 : SHRINK_BATCH;
372 long scanned = 0, next_deferred;
373
374 freeable = shrinker->count_objects(shrinker, shrinkctl);
375 if (freeable == 0)
376 return 0;
377
378 /*
379 * copy the current shrinker scan count into a local variable
380 * and zero it so that other concurrent shrinker invocations
381 * don't also do this scanning work.
382 */
383 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
384
385 total_scan = nr;
386 delta = freeable >> priority;
387 delta *= 4;
388 do_div(delta, shrinker->seeks);
389 total_scan += delta;
390 if (total_scan < 0) {
391 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
392 shrinker->scan_objects, total_scan);
393 total_scan = freeable;
394 next_deferred = nr;
395 } else
396 next_deferred = total_scan;
397
398 /*
399 * We need to avoid excessive windup on filesystem shrinkers
400 * due to large numbers of GFP_NOFS allocations causing the
401 * shrinkers to return -1 all the time. This results in a large
402 * nr being built up so when a shrink that can do some work
403 * comes along it empties the entire cache due to nr >>>
404 * freeable. This is bad for sustaining a working set in
405 * memory.
406 *
407 * Hence only allow the shrinker to scan the entire cache when
408 * a large delta change is calculated directly.
409 */
410 if (delta < freeable / 4)
411 total_scan = min(total_scan, freeable / 2);
412
413 /*
414 * Avoid risking looping forever due to too large nr value:
415 * never try to free more than twice the estimate number of
416 * freeable entries.
417 */
418 if (total_scan > freeable * 2)
419 total_scan = freeable * 2;
420
421 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
422 freeable, delta, total_scan, priority);
423
424 /*
425 * Normally, we should not scan less than batch_size objects in one
426 * pass to avoid too frequent shrinker calls, but if the slab has less
427 * than batch_size objects in total and we are really tight on memory,
428 * we will try to reclaim all available objects, otherwise we can end
429 * up failing allocations although there are plenty of reclaimable
430 * objects spread over several slabs with usage less than the
431 * batch_size.
432 *
433 * We detect the "tight on memory" situations by looking at the total
434 * number of objects we want to scan (total_scan). If it is greater
435 * than the total number of objects on slab (freeable), we must be
436 * scanning at high prio and therefore should try to reclaim as much as
437 * possible.
438 */
439 while (total_scan >= batch_size ||
440 total_scan >= freeable) {
441 unsigned long ret;
442 unsigned long nr_to_scan = min(batch_size, total_scan);
443
444 shrinkctl->nr_to_scan = nr_to_scan;
445 shrinkctl->nr_scanned = nr_to_scan;
446 ret = shrinker->scan_objects(shrinker, shrinkctl);
447 if (ret == SHRINK_STOP)
448 break;
449 freed += ret;
450
451 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
452 total_scan -= shrinkctl->nr_scanned;
453 scanned += shrinkctl->nr_scanned;
454
455 cond_resched();
456 }
457
458 if (next_deferred >= scanned)
459 next_deferred -= scanned;
460 else
461 next_deferred = 0;
462 /*
463 * move the unused scan count back into the shrinker in a
464 * manner that handles concurrent updates. If we exhausted the
465 * scan, there is no need to do an update.
466 */
467 if (next_deferred > 0)
468 new_nr = atomic_long_add_return(next_deferred,
469 &shrinker->nr_deferred[nid]);
470 else
471 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
472
473 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
474 return freed;
475}
476
477/**
478 * shrink_slab - shrink slab caches
479 * @gfp_mask: allocation context
480 * @nid: node whose slab caches to target
481 * @memcg: memory cgroup whose slab caches to target
482 * @priority: the reclaim priority
483 *
484 * Call the shrink functions to age shrinkable caches.
485 *
486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
487 * unaware shrinkers will receive a node id of 0 instead.
488 *
489 * @memcg specifies the memory cgroup to target. If it is not NULL,
490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
491 * objects from the memory cgroup specified. Otherwise, only unaware
492 * shrinkers are called.
493 *
494 * @priority is sc->priority, we take the number of objects and >> by priority
495 * in order to get the scan target.
496 *
497 * Returns the number of reclaimed slab objects.
498 */
499static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
500 struct mem_cgroup *memcg,
501 int priority)
502{
503 struct shrinker *shrinker;
504 unsigned long freed = 0;
505
506 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
507 return 0;
508
509 if (!down_read_trylock(&shrinker_rwsem))
510 goto out;
511
512 list_for_each_entry(shrinker, &shrinker_list, list) {
513 struct shrink_control sc = {
514 .gfp_mask = gfp_mask,
515 .nid = nid,
516 .memcg = memcg,
517 };
518
519 /*
520 * If kernel memory accounting is disabled, we ignore
521 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
522 * passing NULL for memcg.
523 */
524 if (memcg_kmem_enabled() &&
525 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
526 continue;
527
528 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
529 sc.nid = 0;
530
531 freed += do_shrink_slab(&sc, shrinker, priority);
532 /*
533 * Bail out if someone want to register a new shrinker to
534 * prevent the regsitration from being stalled for long periods
535 * by parallel ongoing shrinking.
536 */
537 if (rwsem_is_contended(&shrinker_rwsem)) {
538 freed = freed ? : 1;
539 break;
540 }
541 }
542
543 up_read(&shrinker_rwsem);
544out:
545 cond_resched();
546 return freed;
547}
548
549void drop_slab_node(int nid)
550{
551 unsigned long freed;
552
553 do {
554 struct mem_cgroup *memcg = NULL;
555
556 freed = 0;
557 do {
558 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
559 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
560 } while (freed > 10);
561}
562
563void drop_slab(void)
564{
565 int nid;
566
567 for_each_online_node(nid)
568 drop_slab_node(nid);
569}
570
571static inline int is_page_cache_freeable(struct page *page)
572{
573 /*
574 * A freeable page cache page is referenced only by the caller
575 * that isolated the page, the page cache radix tree and
576 * optional buffer heads at page->private.
577 */
578 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
579 HPAGE_PMD_NR : 1;
580 return page_count(page) - page_has_private(page) == 1 + radix_pins;
581}
582
583static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
584{
585 if (current->flags & PF_SWAPWRITE)
586 return 1;
587 if (!inode_write_congested(inode))
588 return 1;
589 if (inode_to_bdi(inode) == current->backing_dev_info)
590 return 1;
591 return 0;
592}
593
594/*
595 * We detected a synchronous write error writing a page out. Probably
596 * -ENOSPC. We need to propagate that into the address_space for a subsequent
597 * fsync(), msync() or close().
598 *
599 * The tricky part is that after writepage we cannot touch the mapping: nothing
600 * prevents it from being freed up. But we have a ref on the page and once
601 * that page is locked, the mapping is pinned.
602 *
603 * We're allowed to run sleeping lock_page() here because we know the caller has
604 * __GFP_FS.
605 */
606static void handle_write_error(struct address_space *mapping,
607 struct page *page, int error)
608{
609 lock_page(page);
610 if (page_mapping(page) == mapping)
611 mapping_set_error(mapping, error);
612 unlock_page(page);
613}
614
615/* possible outcome of pageout() */
616typedef enum {
617 /* failed to write page out, page is locked */
618 PAGE_KEEP,
619 /* move page to the active list, page is locked */
620 PAGE_ACTIVATE,
621 /* page has been sent to the disk successfully, page is unlocked */
622 PAGE_SUCCESS,
623 /* page is clean and locked */
624 PAGE_CLEAN,
625} pageout_t;
626
627/*
628 * pageout is called by shrink_page_list() for each dirty page.
629 * Calls ->writepage().
630 */
631static pageout_t pageout(struct page *page, struct address_space *mapping,
632 struct scan_control *sc)
633{
634 /*
635 * If the page is dirty, only perform writeback if that write
636 * will be non-blocking. To prevent this allocation from being
637 * stalled by pagecache activity. But note that there may be
638 * stalls if we need to run get_block(). We could test
639 * PagePrivate for that.
640 *
641 * If this process is currently in __generic_file_write_iter() against
642 * this page's queue, we can perform writeback even if that
643 * will block.
644 *
645 * If the page is swapcache, write it back even if that would
646 * block, for some throttling. This happens by accident, because
647 * swap_backing_dev_info is bust: it doesn't reflect the
648 * congestion state of the swapdevs. Easy to fix, if needed.
649 */
650 if (!is_page_cache_freeable(page))
651 return PAGE_KEEP;
652 if (!mapping) {
653 /*
654 * Some data journaling orphaned pages can have
655 * page->mapping == NULL while being dirty with clean buffers.
656 */
657 if (page_has_private(page)) {
658 if (try_to_free_buffers(page)) {
659 ClearPageDirty(page);
660 pr_info("%s: orphaned page\n", __func__);
661 return PAGE_CLEAN;
662 }
663 }
664 return PAGE_KEEP;
665 }
666 if (mapping->a_ops->writepage == NULL)
667 return PAGE_ACTIVATE;
668 if (!may_write_to_inode(mapping->host, sc))
669 return PAGE_KEEP;
670
671 if (clear_page_dirty_for_io(page)) {
672 int res;
673 struct writeback_control wbc = {
674 .sync_mode = WB_SYNC_NONE,
675 .nr_to_write = SWAP_CLUSTER_MAX,
676 .range_start = 0,
677 .range_end = LLONG_MAX,
678 .for_reclaim = 1,
679 };
680
681 SetPageReclaim(page);
682 res = mapping->a_ops->writepage(page, &wbc);
683 if (res < 0)
684 handle_write_error(mapping, page, res);
685 if (res == AOP_WRITEPAGE_ACTIVATE) {
686 ClearPageReclaim(page);
687 return PAGE_ACTIVATE;
688 }
689
690 if (!PageWriteback(page)) {
691 /* synchronous write or broken a_ops? */
692 ClearPageReclaim(page);
693 }
694 trace_mm_vmscan_writepage(page);
695 inc_node_page_state(page, NR_VMSCAN_WRITE);
696 return PAGE_SUCCESS;
697 }
698
699 return PAGE_CLEAN;
700}
701
702/*
703 * Same as remove_mapping, but if the page is removed from the mapping, it
704 * gets returned with a refcount of 0.
705 */
706static int __remove_mapping(struct address_space *mapping, struct page *page,
707 bool reclaimed)
708{
709 unsigned long flags;
710 int refcount;
711
712 BUG_ON(!PageLocked(page));
713 BUG_ON(mapping != page_mapping(page));
714
715 xa_lock_irqsave(&mapping->i_pages, flags);
716 /*
717 * The non racy check for a busy page.
718 *
719 * Must be careful with the order of the tests. When someone has
720 * a ref to the page, it may be possible that they dirty it then
721 * drop the reference. So if PageDirty is tested before page_count
722 * here, then the following race may occur:
723 *
724 * get_user_pages(&page);
725 * [user mapping goes away]
726 * write_to(page);
727 * !PageDirty(page) [good]
728 * SetPageDirty(page);
729 * put_page(page);
730 * !page_count(page) [good, discard it]
731 *
732 * [oops, our write_to data is lost]
733 *
734 * Reversing the order of the tests ensures such a situation cannot
735 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
736 * load is not satisfied before that of page->_refcount.
737 *
738 * Note that if SetPageDirty is always performed via set_page_dirty,
739 * and thus under the i_pages lock, then this ordering is not required.
740 */
741 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
742 refcount = 1 + HPAGE_PMD_NR;
743 else
744 refcount = 2;
745 if (!page_ref_freeze(page, refcount))
746 goto cannot_free;
747 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
748 if (unlikely(PageDirty(page))) {
749 page_ref_unfreeze(page, refcount);
750 goto cannot_free;
751 }
752
753 if (PageSwapCache(page)) {
754 swp_entry_t swap = { .val = page_private(page) };
755 mem_cgroup_swapout(page, swap);
756 __delete_from_swap_cache(page);
757 xa_unlock_irqrestore(&mapping->i_pages, flags);
758 put_swap_page(page, swap);
759 } else {
760 void (*freepage)(struct page *);
761 void *shadow = NULL;
762
763 freepage = mapping->a_ops->freepage;
764 /*
765 * Remember a shadow entry for reclaimed file cache in
766 * order to detect refaults, thus thrashing, later on.
767 *
768 * But don't store shadows in an address space that is
769 * already exiting. This is not just an optizimation,
770 * inode reclaim needs to empty out the radix tree or
771 * the nodes are lost. Don't plant shadows behind its
772 * back.
773 *
774 * We also don't store shadows for DAX mappings because the
775 * only page cache pages found in these are zero pages
776 * covering holes, and because we don't want to mix DAX
777 * exceptional entries and shadow exceptional entries in the
778 * same address_space.
779 */
780 if (reclaimed && page_is_file_cache(page) &&
781 !mapping_exiting(mapping) && !dax_mapping(mapping))
782 shadow = workingset_eviction(mapping, page);
783 __delete_from_page_cache(page, shadow);
784 xa_unlock_irqrestore(&mapping->i_pages, flags);
785
786 if (freepage != NULL)
787 freepage(page);
788 }
789
790 return 1;
791
792cannot_free:
793 xa_unlock_irqrestore(&mapping->i_pages, flags);
794 return 0;
795}
796
797/*
798 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
799 * someone else has a ref on the page, abort and return 0. If it was
800 * successfully detached, return 1. Assumes the caller has a single ref on
801 * this page.
802 */
803int remove_mapping(struct address_space *mapping, struct page *page)
804{
805 if (__remove_mapping(mapping, page, false)) {
806 /*
807 * Unfreezing the refcount with 1 rather than 2 effectively
808 * drops the pagecache ref for us without requiring another
809 * atomic operation.
810 */
811 page_ref_unfreeze(page, 1);
812 return 1;
813 }
814 return 0;
815}
816
817/**
818 * putback_lru_page - put previously isolated page onto appropriate LRU list
819 * @page: page to be put back to appropriate lru list
820 *
821 * Add previously isolated @page to appropriate LRU list.
822 * Page may still be unevictable for other reasons.
823 *
824 * lru_lock must not be held, interrupts must be enabled.
825 */
826void putback_lru_page(struct page *page)
827{
828 lru_cache_add(page);
829 put_page(page); /* drop ref from isolate */
830}
831
832enum page_references {
833 PAGEREF_RECLAIM,
834 PAGEREF_RECLAIM_CLEAN,
835 PAGEREF_KEEP,
836 PAGEREF_ACTIVATE,
837};
838
839static enum page_references page_check_references(struct page *page,
840 struct scan_control *sc)
841{
842 int referenced_ptes, referenced_page;
843 unsigned long vm_flags;
844
845 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
846 &vm_flags);
847 referenced_page = TestClearPageReferenced(page);
848
849 /*
850 * Mlock lost the isolation race with us. Let try_to_unmap()
851 * move the page to the unevictable list.
852 */
853 if (vm_flags & VM_LOCKED)
854 return PAGEREF_RECLAIM;
855
856 if (referenced_ptes) {
857 if (PageSwapBacked(page))
858 return PAGEREF_ACTIVATE;
859 /*
860 * All mapped pages start out with page table
861 * references from the instantiating fault, so we need
862 * to look twice if a mapped file page is used more
863 * than once.
864 *
865 * Mark it and spare it for another trip around the
866 * inactive list. Another page table reference will
867 * lead to its activation.
868 *
869 * Note: the mark is set for activated pages as well
870 * so that recently deactivated but used pages are
871 * quickly recovered.
872 */
873 SetPageReferenced(page);
874
875 if (referenced_page || referenced_ptes > 1)
876 return PAGEREF_ACTIVATE;
877
878 /*
879 * Activate file-backed executable pages after first usage.
880 */
881 if (vm_flags & VM_EXEC)
882 return PAGEREF_ACTIVATE;
883
884 return PAGEREF_KEEP;
885 }
886
887 /* Reclaim if clean, defer dirty pages to writeback */
888 if (referenced_page && !PageSwapBacked(page))
889 return PAGEREF_RECLAIM_CLEAN;
890
891 return PAGEREF_RECLAIM;
892}
893
894/* Check if a page is dirty or under writeback */
895static void page_check_dirty_writeback(struct page *page,
896 bool *dirty, bool *writeback)
897{
898 struct address_space *mapping;
899
900 /*
901 * Anonymous pages are not handled by flushers and must be written
902 * from reclaim context. Do not stall reclaim based on them
903 */
904 if (!page_is_file_cache(page) ||
905 (PageAnon(page) && !PageSwapBacked(page))) {
906 *dirty = false;
907 *writeback = false;
908 return;
909 }
910
911 /* By default assume that the page flags are accurate */
912 *dirty = PageDirty(page);
913 *writeback = PageWriteback(page);
914
915 /* Verify dirty/writeback state if the filesystem supports it */
916 if (!page_has_private(page))
917 return;
918
919 mapping = page_mapping(page);
920 if (mapping && mapping->a_ops->is_dirty_writeback)
921 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
922}
923
924/*
925 * shrink_page_list() returns the number of reclaimed pages
926 */
927static unsigned long shrink_page_list(struct list_head *page_list,
928 struct pglist_data *pgdat,
929 struct scan_control *sc,
930 enum ttu_flags ttu_flags,
931 struct reclaim_stat *stat,
932 bool force_reclaim)
933{
934 LIST_HEAD(ret_pages);
935 LIST_HEAD(free_pages);
936 int pgactivate = 0;
937 unsigned nr_unqueued_dirty = 0;
938 unsigned nr_dirty = 0;
939 unsigned nr_congested = 0;
940 unsigned nr_reclaimed = 0;
941 unsigned nr_writeback = 0;
942 unsigned nr_immediate = 0;
943 unsigned nr_ref_keep = 0;
944 unsigned nr_unmap_fail = 0;
945
946 cond_resched();
947
948 while (!list_empty(page_list)) {
949 struct address_space *mapping;
950 struct page *page;
951 int may_enter_fs;
952 enum page_references references = PAGEREF_RECLAIM_CLEAN;
953 bool dirty, writeback;
954
955 cond_resched();
956
957 page = lru_to_page(page_list);
958 list_del(&page->lru);
959
960 if (!trylock_page(page))
961 goto keep;
962
963 VM_BUG_ON_PAGE(PageActive(page), page);
964
965 sc->nr_scanned++;
966
967 if (unlikely(!page_evictable(page)))
968 goto activate_locked;
969
970 if (!sc->may_unmap && page_mapped(page))
971 goto keep_locked;
972
973 /* Double the slab pressure for mapped and swapcache pages */
974 if ((page_mapped(page) || PageSwapCache(page)) &&
975 !(PageAnon(page) && !PageSwapBacked(page)))
976 sc->nr_scanned++;
977
978 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
979 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
980
981 /*
982 * The number of dirty pages determines if a node is marked
983 * reclaim_congested which affects wait_iff_congested. kswapd
984 * will stall and start writing pages if the tail of the LRU
985 * is all dirty unqueued pages.
986 */
987 page_check_dirty_writeback(page, &dirty, &writeback);
988 if (dirty || writeback)
989 nr_dirty++;
990
991 if (dirty && !writeback)
992 nr_unqueued_dirty++;
993
994 /*
995 * Treat this page as congested if the underlying BDI is or if
996 * pages are cycling through the LRU so quickly that the
997 * pages marked for immediate reclaim are making it to the
998 * end of the LRU a second time.
999 */
1000 mapping = page_mapping(page);
1001 if (((dirty || writeback) && mapping &&
1002 inode_write_congested(mapping->host)) ||
1003 (writeback && PageReclaim(page)))
1004 nr_congested++;
1005
1006 /*
1007 * If a page at the tail of the LRU is under writeback, there
1008 * are three cases to consider.
1009 *
1010 * 1) If reclaim is encountering an excessive number of pages
1011 * under writeback and this page is both under writeback and
1012 * PageReclaim then it indicates that pages are being queued
1013 * for IO but are being recycled through the LRU before the
1014 * IO can complete. Waiting on the page itself risks an
1015 * indefinite stall if it is impossible to writeback the
1016 * page due to IO error or disconnected storage so instead
1017 * note that the LRU is being scanned too quickly and the
1018 * caller can stall after page list has been processed.
1019 *
1020 * 2) Global or new memcg reclaim encounters a page that is
1021 * not marked for immediate reclaim, or the caller does not
1022 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023 * not to fs). In this case mark the page for immediate
1024 * reclaim and continue scanning.
1025 *
1026 * Require may_enter_fs because we would wait on fs, which
1027 * may not have submitted IO yet. And the loop driver might
1028 * enter reclaim, and deadlock if it waits on a page for
1029 * which it is needed to do the write (loop masks off
1030 * __GFP_IO|__GFP_FS for this reason); but more thought
1031 * would probably show more reasons.
1032 *
1033 * 3) Legacy memcg encounters a page that is already marked
1034 * PageReclaim. memcg does not have any dirty pages
1035 * throttling so we could easily OOM just because too many
1036 * pages are in writeback and there is nothing else to
1037 * reclaim. Wait for the writeback to complete.
1038 *
1039 * In cases 1) and 2) we activate the pages to get them out of
1040 * the way while we continue scanning for clean pages on the
1041 * inactive list and refilling from the active list. The
1042 * observation here is that waiting for disk writes is more
1043 * expensive than potentially causing reloads down the line.
1044 * Since they're marked for immediate reclaim, they won't put
1045 * memory pressure on the cache working set any longer than it
1046 * takes to write them to disk.
1047 */
1048 if (PageWriteback(page)) {
1049 /* Case 1 above */
1050 if (current_is_kswapd() &&
1051 PageReclaim(page) &&
1052 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053 nr_immediate++;
1054 goto activate_locked;
1055
1056 /* Case 2 above */
1057 } else if (sane_reclaim(sc) ||
1058 !PageReclaim(page) || !may_enter_fs) {
1059 /*
1060 * This is slightly racy - end_page_writeback()
1061 * might have just cleared PageReclaim, then
1062 * setting PageReclaim here end up interpreted
1063 * as PageReadahead - but that does not matter
1064 * enough to care. What we do want is for this
1065 * page to have PageReclaim set next time memcg
1066 * reclaim reaches the tests above, so it will
1067 * then wait_on_page_writeback() to avoid OOM;
1068 * and it's also appropriate in global reclaim.
1069 */
1070 SetPageReclaim(page);
1071 nr_writeback++;
1072 goto activate_locked;
1073
1074 /* Case 3 above */
1075 } else {
1076 unlock_page(page);
1077 wait_on_page_writeback(page);
1078 /* then go back and try same page again */
1079 list_add_tail(&page->lru, page_list);
1080 continue;
1081 }
1082 }
1083
1084 if (!force_reclaim)
1085 references = page_check_references(page, sc);
1086
1087 switch (references) {
1088 case PAGEREF_ACTIVATE:
1089 goto activate_locked;
1090 case PAGEREF_KEEP:
1091 nr_ref_keep++;
1092 goto keep_locked;
1093 case PAGEREF_RECLAIM:
1094 case PAGEREF_RECLAIM_CLEAN:
1095 ; /* try to reclaim the page below */
1096 }
1097
1098 /*
1099 * Anonymous process memory has backing store?
1100 * Try to allocate it some swap space here.
1101 * Lazyfree page could be freed directly
1102 */
1103 if (PageAnon(page) && PageSwapBacked(page)) {
1104 if (!PageSwapCache(page)) {
1105 if (!(sc->gfp_mask & __GFP_IO))
1106 goto keep_locked;
1107 if (PageTransHuge(page)) {
1108 /* cannot split THP, skip it */
1109 if (!can_split_huge_page(page, NULL))
1110 goto activate_locked;
1111 /*
1112 * Split pages without a PMD map right
1113 * away. Chances are some or all of the
1114 * tail pages can be freed without IO.
1115 */
1116 if (!compound_mapcount(page) &&
1117 split_huge_page_to_list(page,
1118 page_list))
1119 goto activate_locked;
1120 }
1121 if (!add_to_swap(page)) {
1122 if (!PageTransHuge(page))
1123 goto activate_locked;
1124 /* Fallback to swap normal pages */
1125 if (split_huge_page_to_list(page,
1126 page_list))
1127 goto activate_locked;
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129 count_vm_event(THP_SWPOUT_FALLBACK);
1130#endif
1131 if (!add_to_swap(page))
1132 goto activate_locked;
1133 }
1134
1135 may_enter_fs = 1;
1136
1137 /* Adding to swap updated mapping */
1138 mapping = page_mapping(page);
1139 }
1140 } else if (unlikely(PageTransHuge(page))) {
1141 /* Split file THP */
1142 if (split_huge_page_to_list(page, page_list))
1143 goto keep_locked;
1144 }
1145
1146 /*
1147 * The page is mapped into the page tables of one or more
1148 * processes. Try to unmap it here.
1149 */
1150 if (page_mapped(page)) {
1151 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152
1153 if (unlikely(PageTransHuge(page)))
1154 flags |= TTU_SPLIT_HUGE_PMD;
1155 if (!try_to_unmap(page, flags)) {
1156 nr_unmap_fail++;
1157 goto activate_locked;
1158 }
1159 }
1160
1161 if (PageDirty(page)) {
1162 /*
1163 * Only kswapd can writeback filesystem pages
1164 * to avoid risk of stack overflow. But avoid
1165 * injecting inefficient single-page IO into
1166 * flusher writeback as much as possible: only
1167 * write pages when we've encountered many
1168 * dirty pages, and when we've already scanned
1169 * the rest of the LRU for clean pages and see
1170 * the same dirty pages again (PageReclaim).
1171 */
1172 if (page_is_file_cache(page) &&
1173 (!current_is_kswapd() || !PageReclaim(page) ||
1174 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175 /*
1176 * Immediately reclaim when written back.
1177 * Similar in principal to deactivate_page()
1178 * except we already have the page isolated
1179 * and know it's dirty
1180 */
1181 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182 SetPageReclaim(page);
1183
1184 goto activate_locked;
1185 }
1186
1187 if (references == PAGEREF_RECLAIM_CLEAN)
1188 goto keep_locked;
1189 if (!may_enter_fs)
1190 goto keep_locked;
1191 if (!sc->may_writepage)
1192 goto keep_locked;
1193
1194 /*
1195 * Page is dirty. Flush the TLB if a writable entry
1196 * potentially exists to avoid CPU writes after IO
1197 * starts and then write it out here.
1198 */
1199 try_to_unmap_flush_dirty();
1200 switch (pageout(page, mapping, sc)) {
1201 case PAGE_KEEP:
1202 goto keep_locked;
1203 case PAGE_ACTIVATE:
1204 goto activate_locked;
1205 case PAGE_SUCCESS:
1206 if (PageWriteback(page))
1207 goto keep;
1208 if (PageDirty(page))
1209 goto keep;
1210
1211 /*
1212 * A synchronous write - probably a ramdisk. Go
1213 * ahead and try to reclaim the page.
1214 */
1215 if (!trylock_page(page))
1216 goto keep;
1217 if (PageDirty(page) || PageWriteback(page))
1218 goto keep_locked;
1219 mapping = page_mapping(page);
1220 case PAGE_CLEAN:
1221 ; /* try to free the page below */
1222 }
1223 }
1224
1225 /*
1226 * If the page has buffers, try to free the buffer mappings
1227 * associated with this page. If we succeed we try to free
1228 * the page as well.
1229 *
1230 * We do this even if the page is PageDirty().
1231 * try_to_release_page() does not perform I/O, but it is
1232 * possible for a page to have PageDirty set, but it is actually
1233 * clean (all its buffers are clean). This happens if the
1234 * buffers were written out directly, with submit_bh(). ext3
1235 * will do this, as well as the blockdev mapping.
1236 * try_to_release_page() will discover that cleanness and will
1237 * drop the buffers and mark the page clean - it can be freed.
1238 *
1239 * Rarely, pages can have buffers and no ->mapping. These are
1240 * the pages which were not successfully invalidated in
1241 * truncate_complete_page(). We try to drop those buffers here
1242 * and if that worked, and the page is no longer mapped into
1243 * process address space (page_count == 1) it can be freed.
1244 * Otherwise, leave the page on the LRU so it is swappable.
1245 */
1246 if (page_has_private(page)) {
1247 if (!try_to_release_page(page, sc->gfp_mask))
1248 goto activate_locked;
1249 if (!mapping && page_count(page) == 1) {
1250 unlock_page(page);
1251 if (put_page_testzero(page))
1252 goto free_it;
1253 else {
1254 /*
1255 * rare race with speculative reference.
1256 * the speculative reference will free
1257 * this page shortly, so we may
1258 * increment nr_reclaimed here (and
1259 * leave it off the LRU).
1260 */
1261 nr_reclaimed++;
1262 continue;
1263 }
1264 }
1265 }
1266
1267 if (PageAnon(page) && !PageSwapBacked(page)) {
1268 /* follow __remove_mapping for reference */
1269 if (!page_ref_freeze(page, 1))
1270 goto keep_locked;
1271 if (PageDirty(page)) {
1272 page_ref_unfreeze(page, 1);
1273 goto keep_locked;
1274 }
1275
1276 count_vm_event(PGLAZYFREED);
1277 count_memcg_page_event(page, PGLAZYFREED);
1278 } else if (!mapping || !__remove_mapping(mapping, page, true))
1279 goto keep_locked;
1280 /*
1281 * At this point, we have no other references and there is
1282 * no way to pick any more up (removed from LRU, removed
1283 * from pagecache). Can use non-atomic bitops now (and
1284 * we obviously don't have to worry about waking up a process
1285 * waiting on the page lock, because there are no references.
1286 */
1287 __ClearPageLocked(page);
1288free_it:
1289 nr_reclaimed++;
1290
1291 /*
1292 * Is there need to periodically free_page_list? It would
1293 * appear not as the counts should be low
1294 */
1295 if (unlikely(PageTransHuge(page))) {
1296 mem_cgroup_uncharge(page);
1297 (*get_compound_page_dtor(page))(page);
1298 } else
1299 list_add(&page->lru, &free_pages);
1300 continue;
1301
1302activate_locked:
1303 /* Not a candidate for swapping, so reclaim swap space. */
1304 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305 PageMlocked(page)))
1306 try_to_free_swap(page);
1307 VM_BUG_ON_PAGE(PageActive(page), page);
1308 if (!PageMlocked(page)) {
1309 SetPageActive(page);
1310 pgactivate++;
1311 count_memcg_page_event(page, PGACTIVATE);
1312 }
1313keep_locked:
1314 unlock_page(page);
1315keep:
1316 list_add(&page->lru, &ret_pages);
1317 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318 }
1319
1320 mem_cgroup_uncharge_list(&free_pages);
1321 try_to_unmap_flush();
1322 free_unref_page_list(&free_pages);
1323
1324 list_splice(&ret_pages, page_list);
1325 count_vm_events(PGACTIVATE, pgactivate);
1326
1327 if (stat) {
1328 stat->nr_dirty = nr_dirty;
1329 stat->nr_congested = nr_congested;
1330 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331 stat->nr_writeback = nr_writeback;
1332 stat->nr_immediate = nr_immediate;
1333 stat->nr_activate = pgactivate;
1334 stat->nr_ref_keep = nr_ref_keep;
1335 stat->nr_unmap_fail = nr_unmap_fail;
1336 }
1337 return nr_reclaimed;
1338}
1339
1340unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341 struct list_head *page_list)
1342{
1343 struct scan_control sc = {
1344 .gfp_mask = GFP_KERNEL,
1345 .priority = DEF_PRIORITY,
1346 .may_unmap = 1,
1347 };
1348 unsigned long ret;
1349 struct page *page, *next;
1350 LIST_HEAD(clean_pages);
1351
1352 list_for_each_entry_safe(page, next, page_list, lru) {
1353 if (page_is_file_cache(page) && !PageDirty(page) &&
1354 !__PageMovable(page)) {
1355 ClearPageActive(page);
1356 list_move(&page->lru, &clean_pages);
1357 }
1358 }
1359
1360 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361 TTU_IGNORE_ACCESS, NULL, true);
1362 list_splice(&clean_pages, page_list);
1363 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364 return ret;
1365}
1366
1367/*
1368 * Attempt to remove the specified page from its LRU. Only take this page
1369 * if it is of the appropriate PageActive status. Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page: page to consider
1373 * mode: one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378{
1379 int ret = -EINVAL;
1380
1381 /* Only take pages on the LRU. */
1382 if (!PageLRU(page))
1383 return ret;
1384
1385 /* Compaction should not handle unevictable pages but CMA can do so */
1386 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387 return ret;
1388
1389 ret = -EBUSY;
1390
1391 /*
1392 * To minimise LRU disruption, the caller can indicate that it only
1393 * wants to isolate pages it will be able to operate on without
1394 * blocking - clean pages for the most part.
1395 *
1396 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397 * that it is possible to migrate without blocking
1398 */
1399 if (mode & ISOLATE_ASYNC_MIGRATE) {
1400 /* All the caller can do on PageWriteback is block */
1401 if (PageWriteback(page))
1402 return ret;
1403
1404 if (PageDirty(page)) {
1405 struct address_space *mapping;
1406 bool migrate_dirty;
1407
1408 /*
1409 * Only pages without mappings or that have a
1410 * ->migratepage callback are possible to migrate
1411 * without blocking. However, we can be racing with
1412 * truncation so it's necessary to lock the page
1413 * to stabilise the mapping as truncation holds
1414 * the page lock until after the page is removed
1415 * from the page cache.
1416 */
1417 if (!trylock_page(page))
1418 return ret;
1419
1420 mapping = page_mapping(page);
1421 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422 unlock_page(page);
1423 if (!migrate_dirty)
1424 return ret;
1425 }
1426 }
1427
1428 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429 return ret;
1430
1431 if (likely(get_page_unless_zero(page))) {
1432 /*
1433 * Be careful not to clear PageLRU until after we're
1434 * sure the page is not being freed elsewhere -- the
1435 * page release code relies on it.
1436 */
1437 ClearPageLRU(page);
1438 ret = 0;
1439 }
1440
1441 return ret;
1442}
1443
1444
1445/*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450 enum lru_list lru, unsigned long *nr_zone_taken)
1451{
1452 int zid;
1453
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 if (!nr_zone_taken[zid])
1456 continue;
1457
1458 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459#ifdef CONFIG_MEMCG
1460 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461#endif
1462 }
1463
1464}
1465
1466/*
1467 * zone_lru_lock is heavily contended. Some of the functions that
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan: The number of eligible pages to look through on the list.
1477 * @lruvec: The LRU vector to pull pages from.
1478 * @dst: The temp list to put pages on to.
1479 * @nr_scanned: The number of pages that were scanned.
1480 * @sc: The scan_control struct for this reclaim session
1481 * @mode: One of the LRU isolation modes
1482 * @lru: LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487 struct lruvec *lruvec, struct list_head *dst,
1488 unsigned long *nr_scanned, struct scan_control *sc,
1489 isolate_mode_t mode, enum lru_list lru)
1490{
1491 struct list_head *src = &lruvec->lists[lru];
1492 unsigned long nr_taken = 0;
1493 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495 unsigned long skipped = 0;
1496 unsigned long scan, total_scan, nr_pages;
1497 LIST_HEAD(pages_skipped);
1498
1499 scan = 0;
1500 for (total_scan = 0;
1501 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502 total_scan++) {
1503 struct page *page;
1504
1505 page = lru_to_page(src);
1506 prefetchw_prev_lru_page(page, src, flags);
1507
1508 VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510 if (page_zonenum(page) > sc->reclaim_idx) {
1511 list_move(&page->lru, &pages_skipped);
1512 nr_skipped[page_zonenum(page)]++;
1513 continue;
1514 }
1515
1516 /*
1517 * Do not count skipped pages because that makes the function
1518 * return with no isolated pages if the LRU mostly contains
1519 * ineligible pages. This causes the VM to not reclaim any
1520 * pages, triggering a premature OOM.
1521 */
1522 scan++;
1523 switch (__isolate_lru_page(page, mode)) {
1524 case 0:
1525 nr_pages = hpage_nr_pages(page);
1526 nr_taken += nr_pages;
1527 nr_zone_taken[page_zonenum(page)] += nr_pages;
1528 list_move(&page->lru, dst);
1529 break;
1530
1531 case -EBUSY:
1532 /* else it is being freed elsewhere */
1533 list_move(&page->lru, src);
1534 continue;
1535
1536 default:
1537 BUG();
1538 }
1539 }
1540
1541 /*
1542 * Splice any skipped pages to the start of the LRU list. Note that
1543 * this disrupts the LRU order when reclaiming for lower zones but
1544 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545 * scanning would soon rescan the same pages to skip and put the
1546 * system at risk of premature OOM.
1547 */
1548 if (!list_empty(&pages_skipped)) {
1549 int zid;
1550
1551 list_splice(&pages_skipped, src);
1552 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553 if (!nr_skipped[zid])
1554 continue;
1555
1556 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557 skipped += nr_skipped[zid];
1558 }
1559 }
1560 *nr_scanned = total_scan;
1561 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562 total_scan, skipped, nr_taken, mode, lru);
1563 update_lru_sizes(lruvec, lru, nr_zone_taken);
1564 return nr_taken;
1565}
1566
1567/**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared. If it was found on
1578 * the active list, it will have PageActive set. If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 * fundamentnal difference from isolate_lru_pages (which is called
1589 * without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
1592 */
1593int isolate_lru_page(struct page *page)
1594{
1595 int ret = -EBUSY;
1596
1597 VM_BUG_ON_PAGE(!page_count(page), page);
1598 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600 if (PageLRU(page)) {
1601 struct zone *zone = page_zone(page);
1602 struct lruvec *lruvec;
1603
1604 spin_lock_irq(zone_lru_lock(zone));
1605 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606 if (PageLRU(page)) {
1607 int lru = page_lru(page);
1608 get_page(page);
1609 ClearPageLRU(page);
1610 del_page_from_lru_list(page, lruvec, lru);
1611 ret = 0;
1612 }
1613 spin_unlock_irq(zone_lru_lock(zone));
1614 }
1615 return ret;
1616}
1617
1618/*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625static int too_many_isolated(struct pglist_data *pgdat, int file,
1626 struct scan_control *sc)
1627{
1628 unsigned long inactive, isolated;
1629
1630 if (current_is_kswapd())
1631 return 0;
1632
1633 if (!sane_reclaim(sc))
1634 return 0;
1635
1636 if (file) {
1637 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639 } else {
1640 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642 }
1643
1644 /*
1645 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646 * won't get blocked by normal direct-reclaimers, forming a circular
1647 * deadlock.
1648 */
1649 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650 inactive >>= 3;
1651
1652 return isolated > inactive;
1653}
1654
1655static noinline_for_stack void
1656putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657{
1658 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660 LIST_HEAD(pages_to_free);
1661
1662 /*
1663 * Put back any unfreeable pages.
1664 */
1665 while (!list_empty(page_list)) {
1666 struct page *page = lru_to_page(page_list);
1667 int lru;
1668
1669 VM_BUG_ON_PAGE(PageLRU(page), page);
1670 list_del(&page->lru);
1671 if (unlikely(!page_evictable(page))) {
1672 spin_unlock_irq(&pgdat->lru_lock);
1673 putback_lru_page(page);
1674 spin_lock_irq(&pgdat->lru_lock);
1675 continue;
1676 }
1677
1678 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680 SetPageLRU(page);
1681 lru = page_lru(page);
1682 add_page_to_lru_list(page, lruvec, lru);
1683
1684 if (is_active_lru(lru)) {
1685 int file = is_file_lru(lru);
1686 int numpages = hpage_nr_pages(page);
1687 reclaim_stat->recent_rotated[file] += numpages;
1688 }
1689 if (put_page_testzero(page)) {
1690 __ClearPageLRU(page);
1691 __ClearPageActive(page);
1692 del_page_from_lru_list(page, lruvec, lru);
1693
1694 if (unlikely(PageCompound(page))) {
1695 spin_unlock_irq(&pgdat->lru_lock);
1696 mem_cgroup_uncharge(page);
1697 (*get_compound_page_dtor(page))(page);
1698 spin_lock_irq(&pgdat->lru_lock);
1699 } else
1700 list_add(&page->lru, &pages_to_free);
1701 }
1702 }
1703
1704 /*
1705 * To save our caller's stack, now use input list for pages to free.
1706 */
1707 list_splice(&pages_to_free, page_list);
1708}
1709
1710/*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested. In other cases it is safe to throttle.
1715 */
1716static int current_may_throttle(void)
1717{
1718 return !(current->flags & PF_LESS_THROTTLE) ||
1719 current->backing_dev_info == NULL ||
1720 bdi_write_congested(current->backing_dev_info);
1721}
1722
1723/*
1724 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1725 * of reclaimed pages
1726 */
1727static noinline_for_stack unsigned long
1728shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729 struct scan_control *sc, enum lru_list lru)
1730{
1731 LIST_HEAD(page_list);
1732 unsigned long nr_scanned;
1733 unsigned long nr_reclaimed = 0;
1734 unsigned long nr_taken;
1735 struct reclaim_stat stat = {};
1736 isolate_mode_t isolate_mode = 0;
1737 int file = is_file_lru(lru);
1738 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740 bool stalled = false;
1741
1742 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743 if (stalled)
1744 return 0;
1745
1746 /* wait a bit for the reclaimer. */
1747 msleep(100);
1748 stalled = true;
1749
1750 /* We are about to die and free our memory. Return now. */
1751 if (fatal_signal_pending(current))
1752 return SWAP_CLUSTER_MAX;
1753 }
1754
1755 lru_add_drain();
1756
1757 if (!sc->may_unmap)
1758 isolate_mode |= ISOLATE_UNMAPPED;
1759
1760 spin_lock_irq(&pgdat->lru_lock);
1761
1762 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763 &nr_scanned, sc, isolate_mode, lru);
1764
1765 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766 reclaim_stat->recent_scanned[file] += nr_taken;
1767
1768 if (current_is_kswapd()) {
1769 if (global_reclaim(sc))
1770 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772 nr_scanned);
1773 } else {
1774 if (global_reclaim(sc))
1775 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777 nr_scanned);
1778 }
1779 spin_unlock_irq(&pgdat->lru_lock);
1780
1781 if (nr_taken == 0)
1782 return 0;
1783
1784 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785 &stat, false);
1786
1787 spin_lock_irq(&pgdat->lru_lock);
1788
1789 if (current_is_kswapd()) {
1790 if (global_reclaim(sc))
1791 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793 nr_reclaimed);
1794 } else {
1795 if (global_reclaim(sc))
1796 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798 nr_reclaimed);
1799 }
1800
1801 putback_inactive_pages(lruvec, &page_list);
1802
1803 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804
1805 spin_unlock_irq(&pgdat->lru_lock);
1806
1807 mem_cgroup_uncharge_list(&page_list);
1808 free_unref_page_list(&page_list);
1809
1810 /*
1811 * If dirty pages are scanned that are not queued for IO, it
1812 * implies that flushers are not doing their job. This can
1813 * happen when memory pressure pushes dirty pages to the end of
1814 * the LRU before the dirty limits are breached and the dirty
1815 * data has expired. It can also happen when the proportion of
1816 * dirty pages grows not through writes but through memory
1817 * pressure reclaiming all the clean cache. And in some cases,
1818 * the flushers simply cannot keep up with the allocation
1819 * rate. Nudge the flusher threads in case they are asleep.
1820 */
1821 if (stat.nr_unqueued_dirty == nr_taken)
1822 wakeup_flusher_threads(WB_REASON_VMSCAN);
1823
1824 sc->nr.dirty += stat.nr_dirty;
1825 sc->nr.congested += stat.nr_congested;
1826 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827 sc->nr.writeback += stat.nr_writeback;
1828 sc->nr.immediate += stat.nr_immediate;
1829 sc->nr.taken += nr_taken;
1830 if (file)
1831 sc->nr.file_taken += nr_taken;
1832
1833 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835 return nr_reclaimed;
1836}
1837
1838/*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation. But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page. It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859 struct list_head *list,
1860 struct list_head *pages_to_free,
1861 enum lru_list lru)
1862{
1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864 struct page *page;
1865 int nr_pages;
1866 int nr_moved = 0;
1867
1868 while (!list_empty(list)) {
1869 page = lru_to_page(list);
1870 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872 VM_BUG_ON_PAGE(PageLRU(page), page);
1873 SetPageLRU(page);
1874
1875 nr_pages = hpage_nr_pages(page);
1876 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877 list_move(&page->lru, &lruvec->lists[lru]);
1878
1879 if (put_page_testzero(page)) {
1880 __ClearPageLRU(page);
1881 __ClearPageActive(page);
1882 del_page_from_lru_list(page, lruvec, lru);
1883
1884 if (unlikely(PageCompound(page))) {
1885 spin_unlock_irq(&pgdat->lru_lock);
1886 mem_cgroup_uncharge(page);
1887 (*get_compound_page_dtor(page))(page);
1888 spin_lock_irq(&pgdat->lru_lock);
1889 } else
1890 list_add(&page->lru, pages_to_free);
1891 } else {
1892 nr_moved += nr_pages;
1893 }
1894 }
1895
1896 if (!is_active_lru(lru)) {
1897 __count_vm_events(PGDEACTIVATE, nr_moved);
1898 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899 nr_moved);
1900 }
1901
1902 return nr_moved;
1903}
1904
1905static void shrink_active_list(unsigned long nr_to_scan,
1906 struct lruvec *lruvec,
1907 struct scan_control *sc,
1908 enum lru_list lru)
1909{
1910 unsigned long nr_taken;
1911 unsigned long nr_scanned;
1912 unsigned long vm_flags;
1913 LIST_HEAD(l_hold); /* The pages which were snipped off */
1914 LIST_HEAD(l_active);
1915 LIST_HEAD(l_inactive);
1916 struct page *page;
1917 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918 unsigned nr_deactivate, nr_activate;
1919 unsigned nr_rotated = 0;
1920 isolate_mode_t isolate_mode = 0;
1921 int file = is_file_lru(lru);
1922 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924 lru_add_drain();
1925
1926 if (!sc->may_unmap)
1927 isolate_mode |= ISOLATE_UNMAPPED;
1928
1929 spin_lock_irq(&pgdat->lru_lock);
1930
1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932 &nr_scanned, sc, isolate_mode, lru);
1933
1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937 __count_vm_events(PGREFILL, nr_scanned);
1938 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939
1940 spin_unlock_irq(&pgdat->lru_lock);
1941
1942 while (!list_empty(&l_hold)) {
1943 cond_resched();
1944 page = lru_to_page(&l_hold);
1945 list_del(&page->lru);
1946
1947 if (unlikely(!page_evictable(page))) {
1948 putback_lru_page(page);
1949 continue;
1950 }
1951
1952 if (unlikely(buffer_heads_over_limit)) {
1953 if (page_has_private(page) && trylock_page(page)) {
1954 if (page_has_private(page))
1955 try_to_release_page(page, 0);
1956 unlock_page(page);
1957 }
1958 }
1959
1960 if (page_referenced(page, 0, sc->target_mem_cgroup,
1961 &vm_flags)) {
1962 nr_rotated += hpage_nr_pages(page);
1963 /*
1964 * Identify referenced, file-backed active pages and
1965 * give them one more trip around the active list. So
1966 * that executable code get better chances to stay in
1967 * memory under moderate memory pressure. Anon pages
1968 * are not likely to be evicted by use-once streaming
1969 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970 * so we ignore them here.
1971 */
1972 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973 list_add(&page->lru, &l_active);
1974 continue;
1975 }
1976 }
1977
1978 ClearPageActive(page); /* we are de-activating */
1979 list_add(&page->lru, &l_inactive);
1980 }
1981
1982 /*
1983 * Move pages back to the lru list.
1984 */
1985 spin_lock_irq(&pgdat->lru_lock);
1986 /*
1987 * Count referenced pages from currently used mappings as rotated,
1988 * even though only some of them are actually re-activated. This
1989 * helps balance scan pressure between file and anonymous pages in
1990 * get_scan_count.
1991 */
1992 reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997 spin_unlock_irq(&pgdat->lru_lock);
1998
1999 mem_cgroup_uncharge_list(&l_hold);
2000 free_unref_page_list(&l_hold);
2001 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002 nr_deactivate, nr_rotated, sc->priority, file);
2003}
2004
2005/*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total target max
2023 * memory ratio inactive
2024 * -------------------------------------
2025 * 10MB 1 5MB
2026 * 100MB 1 50MB
2027 * 1GB 3 250MB
2028 * 10GB 10 0.9GB
2029 * 100GB 31 3GB
2030 * 1TB 101 10GB
2031 * 10TB 320 32GB
2032 */
2033static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034 struct mem_cgroup *memcg,
2035 struct scan_control *sc, bool actual_reclaim)
2036{
2037 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039 enum lru_list inactive_lru = file * LRU_FILE;
2040 unsigned long inactive, active;
2041 unsigned long inactive_ratio;
2042 unsigned long refaults;
2043 unsigned long gb;
2044
2045 /*
2046 * If we don't have swap space, anonymous page deactivation
2047 * is pointless.
2048 */
2049 if (!file && !total_swap_pages)
2050 return false;
2051
2052 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054
2055 if (memcg)
2056 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057 else
2058 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2059
2060 /*
2061 * When refaults are being observed, it means a new workingset
2062 * is being established. Disable active list protection to get
2063 * rid of the stale workingset quickly.
2064 */
2065 if (file && actual_reclaim && lruvec->refaults != refaults) {
2066 inactive_ratio = 0;
2067 } else {
2068 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069 if (gb)
2070 inactive_ratio = int_sqrt(10 * gb);
2071 else
2072 inactive_ratio = 1;
2073 }
2074
2075 if (actual_reclaim)
2076 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079 inactive_ratio, file);
2080
2081 return inactive * inactive_ratio < active;
2082}
2083
2084static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086 struct scan_control *sc)
2087{
2088 if (is_active_lru(lru)) {
2089 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090 memcg, sc, true))
2091 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 return 0;
2093 }
2094
2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096}
2097
2098enum scan_balance {
2099 SCAN_EQUAL,
2100 SCAN_FRACT,
2101 SCAN_ANON,
2102 SCAN_FILE,
2103};
2104
2105/*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned. The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 struct scan_control *sc, unsigned long *nr,
2116 unsigned long *lru_pages)
2117{
2118 int swappiness = mem_cgroup_swappiness(memcg);
2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120 u64 fraction[2];
2121 u64 denominator = 0; /* gcc */
2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 unsigned long anon_prio, file_prio;
2124 enum scan_balance scan_balance;
2125 unsigned long anon, file;
2126 unsigned long ap, fp;
2127 enum lru_list lru;
2128
2129 /* If we have no swap space, do not bother scanning anon pages. */
2130 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131 scan_balance = SCAN_FILE;
2132 goto out;
2133 }
2134
2135 /*
2136 * Global reclaim will swap to prevent OOM even with no
2137 * swappiness, but memcg users want to use this knob to
2138 * disable swapping for individual groups completely when
2139 * using the memory controller's swap limit feature would be
2140 * too expensive.
2141 */
2142 if (!global_reclaim(sc) && !swappiness) {
2143 scan_balance = SCAN_FILE;
2144 goto out;
2145 }
2146
2147 /*
2148 * Do not apply any pressure balancing cleverness when the
2149 * system is close to OOM, scan both anon and file equally
2150 * (unless the swappiness setting disagrees with swapping).
2151 */
2152 if (!sc->priority && swappiness) {
2153 scan_balance = SCAN_EQUAL;
2154 goto out;
2155 }
2156
2157 /*
2158 * Prevent the reclaimer from falling into the cache trap: as
2159 * cache pages start out inactive, every cache fault will tip
2160 * the scan balance towards the file LRU. And as the file LRU
2161 * shrinks, so does the window for rotation from references.
2162 * This means we have a runaway feedback loop where a tiny
2163 * thrashing file LRU becomes infinitely more attractive than
2164 * anon pages. Try to detect this based on file LRU size.
2165 */
2166 if (global_reclaim(sc)) {
2167 unsigned long pgdatfile;
2168 unsigned long pgdatfree;
2169 int z;
2170 unsigned long total_high_wmark = 0;
2171
2172 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174 node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176 for (z = 0; z < MAX_NR_ZONES; z++) {
2177 struct zone *zone = &pgdat->node_zones[z];
2178 if (!managed_zone(zone))
2179 continue;
2180
2181 total_high_wmark += high_wmark_pages(zone);
2182 }
2183
2184 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185 /*
2186 * Force SCAN_ANON if there are enough inactive
2187 * anonymous pages on the LRU in eligible zones.
2188 * Otherwise, the small LRU gets thrashed.
2189 */
2190 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192 >> sc->priority) {
2193 scan_balance = SCAN_ANON;
2194 goto out;
2195 }
2196 }
2197 }
2198
2199 /*
2200 * If there is enough inactive page cache, i.e. if the size of the
2201 * inactive list is greater than that of the active list *and* the
2202 * inactive list actually has some pages to scan on this priority, we
2203 * do not reclaim anything from the anonymous working set right now.
2204 * Without the second condition we could end up never scanning an
2205 * lruvec even if it has plenty of old anonymous pages unless the
2206 * system is under heavy pressure.
2207 */
2208 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210 scan_balance = SCAN_FILE;
2211 goto out;
2212 }
2213
2214 scan_balance = SCAN_FRACT;
2215
2216 /*
2217 * With swappiness at 100, anonymous and file have the same priority.
2218 * This scanning priority is essentially the inverse of IO cost.
2219 */
2220 anon_prio = swappiness;
2221 file_prio = 200 - anon_prio;
2222
2223 /*
2224 * OK, so we have swap space and a fair amount of page cache
2225 * pages. We use the recently rotated / recently scanned
2226 * ratios to determine how valuable each cache is.
2227 *
2228 * Because workloads change over time (and to avoid overflow)
2229 * we keep these statistics as a floating average, which ends
2230 * up weighing recent references more than old ones.
2231 *
2232 * anon in [0], file in [1]
2233 */
2234
2235 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240 spin_lock_irq(&pgdat->lru_lock);
2241 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242 reclaim_stat->recent_scanned[0] /= 2;
2243 reclaim_stat->recent_rotated[0] /= 2;
2244 }
2245
2246 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247 reclaim_stat->recent_scanned[1] /= 2;
2248 reclaim_stat->recent_rotated[1] /= 2;
2249 }
2250
2251 /*
2252 * The amount of pressure on anon vs file pages is inversely
2253 * proportional to the fraction of recently scanned pages on
2254 * each list that were recently referenced and in active use.
2255 */
2256 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257 ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260 fp /= reclaim_stat->recent_rotated[1] + 1;
2261 spin_unlock_irq(&pgdat->lru_lock);
2262
2263 fraction[0] = ap;
2264 fraction[1] = fp;
2265 denominator = ap + fp + 1;
2266out:
2267 *lru_pages = 0;
2268 for_each_evictable_lru(lru) {
2269 int file = is_file_lru(lru);
2270 unsigned long size;
2271 unsigned long scan;
2272
2273 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274 scan = size >> sc->priority;
2275 /*
2276 * If the cgroup's already been deleted, make sure to
2277 * scrape out the remaining cache.
2278 */
2279 if (!scan && !mem_cgroup_online(memcg))
2280 scan = min(size, SWAP_CLUSTER_MAX);
2281
2282 switch (scan_balance) {
2283 case SCAN_EQUAL:
2284 /* Scan lists relative to size */
2285 break;
2286 case SCAN_FRACT:
2287 /*
2288 * Scan types proportional to swappiness and
2289 * their relative recent reclaim efficiency.
2290 */
2291 scan = div64_u64(scan * fraction[file],
2292 denominator);
2293 break;
2294 case SCAN_FILE:
2295 case SCAN_ANON:
2296 /* Scan one type exclusively */
2297 if ((scan_balance == SCAN_FILE) != file) {
2298 size = 0;
2299 scan = 0;
2300 }
2301 break;
2302 default:
2303 /* Look ma, no brain */
2304 BUG();
2305 }
2306
2307 *lru_pages += size;
2308 nr[lru] = scan;
2309 }
2310}
2311
2312/*
2313 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2314 */
2315static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316 struct scan_control *sc, unsigned long *lru_pages)
2317{
2318 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319 unsigned long nr[NR_LRU_LISTS];
2320 unsigned long targets[NR_LRU_LISTS];
2321 unsigned long nr_to_scan;
2322 enum lru_list lru;
2323 unsigned long nr_reclaimed = 0;
2324 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325 struct blk_plug plug;
2326 bool scan_adjusted;
2327
2328 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329
2330 /* Record the original scan target for proportional adjustments later */
2331 memcpy(targets, nr, sizeof(nr));
2332
2333 /*
2334 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335 * event that can occur when there is little memory pressure e.g.
2336 * multiple streaming readers/writers. Hence, we do not abort scanning
2337 * when the requested number of pages are reclaimed when scanning at
2338 * DEF_PRIORITY on the assumption that the fact we are direct
2339 * reclaiming implies that kswapd is not keeping up and it is best to
2340 * do a batch of work at once. For memcg reclaim one check is made to
2341 * abort proportional reclaim if either the file or anon lru has already
2342 * dropped to zero at the first pass.
2343 */
2344 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345 sc->priority == DEF_PRIORITY);
2346
2347 blk_start_plug(&plug);
2348 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349 nr[LRU_INACTIVE_FILE]) {
2350 unsigned long nr_anon, nr_file, percentage;
2351 unsigned long nr_scanned;
2352
2353 for_each_evictable_lru(lru) {
2354 if (nr[lru]) {
2355 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356 nr[lru] -= nr_to_scan;
2357
2358 nr_reclaimed += shrink_list(lru, nr_to_scan,
2359 lruvec, memcg, sc);
2360 }
2361 }
2362
2363 cond_resched();
2364
2365 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366 continue;
2367
2368 /*
2369 * For kswapd and memcg, reclaim at least the number of pages
2370 * requested. Ensure that the anon and file LRUs are scanned
2371 * proportionally what was requested by get_scan_count(). We
2372 * stop reclaiming one LRU and reduce the amount scanning
2373 * proportional to the original scan target.
2374 */
2375 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378 /*
2379 * It's just vindictive to attack the larger once the smaller
2380 * has gone to zero. And given the way we stop scanning the
2381 * smaller below, this makes sure that we only make one nudge
2382 * towards proportionality once we've got nr_to_reclaim.
2383 */
2384 if (!nr_file || !nr_anon)
2385 break;
2386
2387 if (nr_file > nr_anon) {
2388 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389 targets[LRU_ACTIVE_ANON] + 1;
2390 lru = LRU_BASE;
2391 percentage = nr_anon * 100 / scan_target;
2392 } else {
2393 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394 targets[LRU_ACTIVE_FILE] + 1;
2395 lru = LRU_FILE;
2396 percentage = nr_file * 100 / scan_target;
2397 }
2398
2399 /* Stop scanning the smaller of the LRU */
2400 nr[lru] = 0;
2401 nr[lru + LRU_ACTIVE] = 0;
2402
2403 /*
2404 * Recalculate the other LRU scan count based on its original
2405 * scan target and the percentage scanning already complete
2406 */
2407 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408 nr_scanned = targets[lru] - nr[lru];
2409 nr[lru] = targets[lru] * (100 - percentage) / 100;
2410 nr[lru] -= min(nr[lru], nr_scanned);
2411
2412 lru += LRU_ACTIVE;
2413 nr_scanned = targets[lru] - nr[lru];
2414 nr[lru] = targets[lru] * (100 - percentage) / 100;
2415 nr[lru] -= min(nr[lru], nr_scanned);
2416
2417 scan_adjusted = true;
2418 }
2419 blk_finish_plug(&plug);
2420 sc->nr_reclaimed += nr_reclaimed;
2421
2422 /*
2423 * Even if we did not try to evict anon pages at all, we want to
2424 * rebalance the anon lru active/inactive ratio.
2425 */
2426 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428 sc, LRU_ACTIVE_ANON);
2429}
2430
2431/* Use reclaim/compaction for costly allocs or under memory pressure */
2432static bool in_reclaim_compaction(struct scan_control *sc)
2433{
2434 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436 sc->priority < DEF_PRIORITY - 2))
2437 return true;
2438
2439 return false;
2440}
2441
2442/*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450 unsigned long nr_reclaimed,
2451 unsigned long nr_scanned,
2452 struct scan_control *sc)
2453{
2454 unsigned long pages_for_compaction;
2455 unsigned long inactive_lru_pages;
2456 int z;
2457
2458 /* If not in reclaim/compaction mode, stop */
2459 if (!in_reclaim_compaction(sc))
2460 return false;
2461
2462 /* Consider stopping depending on scan and reclaim activity */
2463 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464 /*
2465 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466 * full LRU list has been scanned and we are still failing
2467 * to reclaim pages. This full LRU scan is potentially
2468 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469 */
2470 if (!nr_reclaimed && !nr_scanned)
2471 return false;
2472 } else {
2473 /*
2474 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475 * fail without consequence, stop if we failed to reclaim
2476 * any pages from the last SWAP_CLUSTER_MAX number of
2477 * pages that were scanned. This will return to the
2478 * caller faster at the risk reclaim/compaction and
2479 * the resulting allocation attempt fails
2480 */
2481 if (!nr_reclaimed)
2482 return false;
2483 }
2484
2485 /*
2486 * If we have not reclaimed enough pages for compaction and the
2487 * inactive lists are large enough, continue reclaiming
2488 */
2489 pages_for_compaction = compact_gap(sc->order);
2490 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491 if (get_nr_swap_pages() > 0)
2492 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493 if (sc->nr_reclaimed < pages_for_compaction &&
2494 inactive_lru_pages > pages_for_compaction)
2495 return true;
2496
2497 /* If compaction would go ahead or the allocation would succeed, stop */
2498 for (z = 0; z <= sc->reclaim_idx; z++) {
2499 struct zone *zone = &pgdat->node_zones[z];
2500 if (!managed_zone(zone))
2501 continue;
2502
2503 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504 case COMPACT_SUCCESS:
2505 case COMPACT_CONTINUE:
2506 return false;
2507 default:
2508 /* check next zone */
2509 ;
2510 }
2511 }
2512 return true;
2513}
2514
2515static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516{
2517 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518 (memcg && memcg_congested(pgdat, memcg));
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522{
2523 struct reclaim_state *reclaim_state = current->reclaim_state;
2524 unsigned long nr_reclaimed, nr_scanned;
2525 bool reclaimable = false;
2526
2527 do {
2528 struct mem_cgroup *root = sc->target_mem_cgroup;
2529 struct mem_cgroup_reclaim_cookie reclaim = {
2530 .pgdat = pgdat,
2531 .priority = sc->priority,
2532 };
2533 unsigned long node_lru_pages = 0;
2534 struct mem_cgroup *memcg;
2535
2536 memset(&sc->nr, 0, sizeof(sc->nr));
2537
2538 nr_reclaimed = sc->nr_reclaimed;
2539 nr_scanned = sc->nr_scanned;
2540
2541 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542 do {
2543 unsigned long lru_pages;
2544 unsigned long reclaimed;
2545 unsigned long scanned;
2546
2547 if (mem_cgroup_low(root, memcg)) {
2548 if (!sc->memcg_low_reclaim) {
2549 sc->memcg_low_skipped = 1;
2550 continue;
2551 }
2552 memcg_memory_event(memcg, MEMCG_LOW);
2553 }
2554
2555 reclaimed = sc->nr_reclaimed;
2556 scanned = sc->nr_scanned;
2557 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558 node_lru_pages += lru_pages;
2559
2560 if (memcg)
2561 shrink_slab(sc->gfp_mask, pgdat->node_id,
2562 memcg, sc->priority);
2563
2564 /* Record the group's reclaim efficiency */
2565 vmpressure(sc->gfp_mask, memcg, false,
2566 sc->nr_scanned - scanned,
2567 sc->nr_reclaimed - reclaimed);
2568
2569 /*
2570 * Direct reclaim and kswapd have to scan all memory
2571 * cgroups to fulfill the overall scan target for the
2572 * node.
2573 *
2574 * Limit reclaim, on the other hand, only cares about
2575 * nr_to_reclaim pages to be reclaimed and it will
2576 * retry with decreasing priority if one round over the
2577 * whole hierarchy is not sufficient.
2578 */
2579 if (!global_reclaim(sc) &&
2580 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581 mem_cgroup_iter_break(root, memcg);
2582 break;
2583 }
2584 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585
2586 if (global_reclaim(sc))
2587 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588 sc->priority);
2589
2590 if (reclaim_state) {
2591 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2592 reclaim_state->reclaimed_slab = 0;
2593 }
2594
2595 /* Record the subtree's reclaim efficiency */
2596 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597 sc->nr_scanned - nr_scanned,
2598 sc->nr_reclaimed - nr_reclaimed);
2599
2600 if (sc->nr_reclaimed - nr_reclaimed)
2601 reclaimable = true;
2602
2603 if (current_is_kswapd()) {
2604 /*
2605 * If reclaim is isolating dirty pages under writeback,
2606 * it implies that the long-lived page allocation rate
2607 * is exceeding the page laundering rate. Either the
2608 * global limits are not being effective at throttling
2609 * processes due to the page distribution throughout
2610 * zones or there is heavy usage of a slow backing
2611 * device. The only option is to throttle from reclaim
2612 * context which is not ideal as there is no guarantee
2613 * the dirtying process is throttled in the same way
2614 * balance_dirty_pages() manages.
2615 *
2616 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2617 * count the number of pages under pages flagged for
2618 * immediate reclaim and stall if any are encountered
2619 * in the nr_immediate check below.
2620 */
2621 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2622 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623
2624 /*
2625 * Tag a node as congested if all the dirty pages
2626 * scanned were backed by a congested BDI and
2627 * wait_iff_congested will stall.
2628 */
2629 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2630 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2631
2632 /* Allow kswapd to start writing pages during reclaim.*/
2633 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2634 set_bit(PGDAT_DIRTY, &pgdat->flags);
2635
2636 /*
2637 * If kswapd scans pages marked marked for immediate
2638 * reclaim and under writeback (nr_immediate), it
2639 * implies that pages are cycling through the LRU
2640 * faster than they are written so also forcibly stall.
2641 */
2642 if (sc->nr.immediate)
2643 congestion_wait(BLK_RW_ASYNC, HZ/10);
2644 }
2645
2646 /*
2647 * Legacy memcg will stall in page writeback so avoid forcibly
2648 * stalling in wait_iff_congested().
2649 */
2650 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2651 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2652 set_memcg_congestion(pgdat, root, true);
2653
2654 /*
2655 * Stall direct reclaim for IO completions if underlying BDIs
2656 * and node is congested. Allow kswapd to continue until it
2657 * starts encountering unqueued dirty pages or cycling through
2658 * the LRU too quickly.
2659 */
2660 if (!sc->hibernation_mode && !current_is_kswapd() &&
2661 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2662 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2663
2664 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665 sc->nr_scanned - nr_scanned, sc));
2666
2667 /*
2668 * Kswapd gives up on balancing particular nodes after too
2669 * many failures to reclaim anything from them and goes to
2670 * sleep. On reclaim progress, reset the failure counter. A
2671 * successful direct reclaim run will revive a dormant kswapd.
2672 */
2673 if (reclaimable)
2674 pgdat->kswapd_failures = 0;
2675
2676 return reclaimable;
2677}
2678
2679/*
2680 * Returns true if compaction should go ahead for a costly-order request, or
2681 * the allocation would already succeed without compaction. Return false if we
2682 * should reclaim first.
2683 */
2684static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685{
2686 unsigned long watermark;
2687 enum compact_result suitable;
2688
2689 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2690 if (suitable == COMPACT_SUCCESS)
2691 /* Allocation should succeed already. Don't reclaim. */
2692 return true;
2693 if (suitable == COMPACT_SKIPPED)
2694 /* Compaction cannot yet proceed. Do reclaim. */
2695 return false;
2696
2697 /*
2698 * Compaction is already possible, but it takes time to run and there
2699 * are potentially other callers using the pages just freed. So proceed
2700 * with reclaim to make a buffer of free pages available to give
2701 * compaction a reasonable chance of completing and allocating the page.
2702 * Note that we won't actually reclaim the whole buffer in one attempt
2703 * as the target watermark in should_continue_reclaim() is lower. But if
2704 * we are already above the high+gap watermark, don't reclaim at all.
2705 */
2706 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2707
2708 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709}
2710
2711/*
2712 * This is the direct reclaim path, for page-allocating processes. We only
2713 * try to reclaim pages from zones which will satisfy the caller's allocation
2714 * request.
2715 *
2716 * If a zone is deemed to be full of pinned pages then just give it a light
2717 * scan then give up on it.
2718 */
2719static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2720{
2721 struct zoneref *z;
2722 struct zone *zone;
2723 unsigned long nr_soft_reclaimed;
2724 unsigned long nr_soft_scanned;
2725 gfp_t orig_mask;
2726 pg_data_t *last_pgdat = NULL;
2727
2728 /*
2729 * If the number of buffer_heads in the machine exceeds the maximum
2730 * allowed level, force direct reclaim to scan the highmem zone as
2731 * highmem pages could be pinning lowmem pages storing buffer_heads
2732 */
2733 orig_mask = sc->gfp_mask;
2734 if (buffer_heads_over_limit) {
2735 sc->gfp_mask |= __GFP_HIGHMEM;
2736 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737 }
2738
2739 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740 sc->reclaim_idx, sc->nodemask) {
2741 /*
2742 * Take care memory controller reclaiming has small influence
2743 * to global LRU.
2744 */
2745 if (global_reclaim(sc)) {
2746 if (!cpuset_zone_allowed(zone,
2747 GFP_KERNEL | __GFP_HARDWALL))
2748 continue;
2749
2750 /*
2751 * If we already have plenty of memory free for
2752 * compaction in this zone, don't free any more.
2753 * Even though compaction is invoked for any
2754 * non-zero order, only frequent costly order
2755 * reclamation is disruptive enough to become a
2756 * noticeable problem, like transparent huge
2757 * page allocations.
2758 */
2759 if (IS_ENABLED(CONFIG_COMPACTION) &&
2760 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761 compaction_ready(zone, sc)) {
2762 sc->compaction_ready = true;
2763 continue;
2764 }
2765
2766 /*
2767 * Shrink each node in the zonelist once. If the
2768 * zonelist is ordered by zone (not the default) then a
2769 * node may be shrunk multiple times but in that case
2770 * the user prefers lower zones being preserved.
2771 */
2772 if (zone->zone_pgdat == last_pgdat)
2773 continue;
2774
2775 /*
2776 * This steals pages from memory cgroups over softlimit
2777 * and returns the number of reclaimed pages and
2778 * scanned pages. This works for global memory pressure
2779 * and balancing, not for a memcg's limit.
2780 */
2781 nr_soft_scanned = 0;
2782 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783 sc->order, sc->gfp_mask,
2784 &nr_soft_scanned);
2785 sc->nr_reclaimed += nr_soft_reclaimed;
2786 sc->nr_scanned += nr_soft_scanned;
2787 /* need some check for avoid more shrink_zone() */
2788 }
2789
2790 /* See comment about same check for global reclaim above */
2791 if (zone->zone_pgdat == last_pgdat)
2792 continue;
2793 last_pgdat = zone->zone_pgdat;
2794 shrink_node(zone->zone_pgdat, sc);
2795 }
2796
2797 /*
2798 * Restore to original mask to avoid the impact on the caller if we
2799 * promoted it to __GFP_HIGHMEM.
2800 */
2801 sc->gfp_mask = orig_mask;
2802}
2803
2804static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2805{
2806 struct mem_cgroup *memcg;
2807
2808 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2809 do {
2810 unsigned long refaults;
2811 struct lruvec *lruvec;
2812
2813 if (memcg)
2814 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815 else
2816 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2817
2818 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2819 lruvec->refaults = refaults;
2820 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2821}
2822
2823/*
2824 * This is the main entry point to direct page reclaim.
2825 *
2826 * If a full scan of the inactive list fails to free enough memory then we
2827 * are "out of memory" and something needs to be killed.
2828 *
2829 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2830 * high - the zone may be full of dirty or under-writeback pages, which this
2831 * caller can't do much about. We kick the writeback threads and take explicit
2832 * naps in the hope that some of these pages can be written. But if the
2833 * allocating task holds filesystem locks which prevent writeout this might not
2834 * work, and the allocation attempt will fail.
2835 *
2836 * returns: 0, if no pages reclaimed
2837 * else, the number of pages reclaimed
2838 */
2839static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840 struct scan_control *sc)
2841{
2842 int initial_priority = sc->priority;
2843 pg_data_t *last_pgdat;
2844 struct zoneref *z;
2845 struct zone *zone;
2846retry:
2847 delayacct_freepages_start();
2848
2849 if (global_reclaim(sc))
2850 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2851
2852 do {
2853 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2854 sc->priority);
2855 sc->nr_scanned = 0;
2856 shrink_zones(zonelist, sc);
2857
2858 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859 break;
2860
2861 if (sc->compaction_ready)
2862 break;
2863
2864 /*
2865 * If we're getting trouble reclaiming, start doing
2866 * writepage even in laptop mode.
2867 */
2868 if (sc->priority < DEF_PRIORITY - 2)
2869 sc->may_writepage = 1;
2870 } while (--sc->priority >= 0);
2871
2872 last_pgdat = NULL;
2873 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2874 sc->nodemask) {
2875 if (zone->zone_pgdat == last_pgdat)
2876 continue;
2877 last_pgdat = zone->zone_pgdat;
2878 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2880 }
2881
2882 delayacct_freepages_end();
2883
2884 if (sc->nr_reclaimed)
2885 return sc->nr_reclaimed;
2886
2887 /* Aborted reclaim to try compaction? don't OOM, then */
2888 if (sc->compaction_ready)
2889 return 1;
2890
2891 /* Untapped cgroup reserves? Don't OOM, retry. */
2892 if (sc->memcg_low_skipped) {
2893 sc->priority = initial_priority;
2894 sc->memcg_low_reclaim = 1;
2895 sc->memcg_low_skipped = 0;
2896 goto retry;
2897 }
2898
2899 return 0;
2900}
2901
2902static bool allow_direct_reclaim(pg_data_t *pgdat)
2903{
2904 struct zone *zone;
2905 unsigned long pfmemalloc_reserve = 0;
2906 unsigned long free_pages = 0;
2907 int i;
2908 bool wmark_ok;
2909
2910 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2911 return true;
2912
2913 for (i = 0; i <= ZONE_NORMAL; i++) {
2914 zone = &pgdat->node_zones[i];
2915 if (!managed_zone(zone))
2916 continue;
2917
2918 if (!zone_reclaimable_pages(zone))
2919 continue;
2920
2921 pfmemalloc_reserve += min_wmark_pages(zone);
2922 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2923 }
2924
2925 /* If there are no reserves (unexpected config) then do not throttle */
2926 if (!pfmemalloc_reserve)
2927 return true;
2928
2929 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2930
2931 /* kswapd must be awake if processes are being throttled */
2932 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934 (enum zone_type)ZONE_NORMAL);
2935 wake_up_interruptible(&pgdat->kswapd_wait);
2936 }
2937
2938 return wmark_ok;
2939}
2940
2941/*
2942 * Throttle direct reclaimers if backing storage is backed by the network
2943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2944 * depleted. kswapd will continue to make progress and wake the processes
2945 * when the low watermark is reached.
2946 *
2947 * Returns true if a fatal signal was delivered during throttling. If this
2948 * happens, the page allocator should not consider triggering the OOM killer.
2949 */
2950static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951 nodemask_t *nodemask)
2952{
2953 struct zoneref *z;
2954 struct zone *zone;
2955 pg_data_t *pgdat = NULL;
2956
2957 /*
2958 * Kernel threads should not be throttled as they may be indirectly
2959 * responsible for cleaning pages necessary for reclaim to make forward
2960 * progress. kjournald for example may enter direct reclaim while
2961 * committing a transaction where throttling it could forcing other
2962 * processes to block on log_wait_commit().
2963 */
2964 if (current->flags & PF_KTHREAD)
2965 goto out;
2966
2967 /*
2968 * If a fatal signal is pending, this process should not throttle.
2969 * It should return quickly so it can exit and free its memory
2970 */
2971 if (fatal_signal_pending(current))
2972 goto out;
2973
2974 /*
2975 * Check if the pfmemalloc reserves are ok by finding the first node
2976 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2977 * GFP_KERNEL will be required for allocating network buffers when
2978 * swapping over the network so ZONE_HIGHMEM is unusable.
2979 *
2980 * Throttling is based on the first usable node and throttled processes
2981 * wait on a queue until kswapd makes progress and wakes them. There
2982 * is an affinity then between processes waking up and where reclaim
2983 * progress has been made assuming the process wakes on the same node.
2984 * More importantly, processes running on remote nodes will not compete
2985 * for remote pfmemalloc reserves and processes on different nodes
2986 * should make reasonable progress.
2987 */
2988 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989 gfp_zone(gfp_mask), nodemask) {
2990 if (zone_idx(zone) > ZONE_NORMAL)
2991 continue;
2992
2993 /* Throttle based on the first usable node */
2994 pgdat = zone->zone_pgdat;
2995 if (allow_direct_reclaim(pgdat))
2996 goto out;
2997 break;
2998 }
2999
3000 /* If no zone was usable by the allocation flags then do not throttle */
3001 if (!pgdat)
3002 goto out;
3003
3004 /* Account for the throttling */
3005 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3006
3007 /*
3008 * If the caller cannot enter the filesystem, it's possible that it
3009 * is due to the caller holding an FS lock or performing a journal
3010 * transaction in the case of a filesystem like ext[3|4]. In this case,
3011 * it is not safe to block on pfmemalloc_wait as kswapd could be
3012 * blocked waiting on the same lock. Instead, throttle for up to a
3013 * second before continuing.
3014 */
3015 if (!(gfp_mask & __GFP_FS)) {
3016 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017 allow_direct_reclaim(pgdat), HZ);
3018
3019 goto check_pending;
3020 }
3021
3022 /* Throttle until kswapd wakes the process */
3023 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024 allow_direct_reclaim(pgdat));
3025
3026check_pending:
3027 if (fatal_signal_pending(current))
3028 return true;
3029
3030out:
3031 return false;
3032}
3033
3034unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035 gfp_t gfp_mask, nodemask_t *nodemask)
3036{
3037 unsigned long nr_reclaimed;
3038 struct scan_control sc = {
3039 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3040 .gfp_mask = current_gfp_context(gfp_mask),
3041 .reclaim_idx = gfp_zone(gfp_mask),
3042 .order = order,
3043 .nodemask = nodemask,
3044 .priority = DEF_PRIORITY,
3045 .may_writepage = !laptop_mode,
3046 .may_unmap = 1,
3047 .may_swap = 1,
3048 };
3049
3050 /*
3051 * Do not enter reclaim if fatal signal was delivered while throttled.
3052 * 1 is returned so that the page allocator does not OOM kill at this
3053 * point.
3054 */
3055 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056 return 1;
3057
3058 trace_mm_vmscan_direct_reclaim_begin(order,
3059 sc.may_writepage,
3060 sc.gfp_mask,
3061 sc.reclaim_idx);
3062
3063 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064
3065 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3066
3067 return nr_reclaimed;
3068}
3069
3070#ifdef CONFIG_MEMCG
3071
3072unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073 gfp_t gfp_mask, bool noswap,
3074 pg_data_t *pgdat,
3075 unsigned long *nr_scanned)
3076{
3077 struct scan_control sc = {
3078 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3079 .target_mem_cgroup = memcg,
3080 .may_writepage = !laptop_mode,
3081 .may_unmap = 1,
3082 .reclaim_idx = MAX_NR_ZONES - 1,
3083 .may_swap = !noswap,
3084 };
3085 unsigned long lru_pages;
3086
3087 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3088 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089
3090 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091 sc.may_writepage,
3092 sc.gfp_mask,
3093 sc.reclaim_idx);
3094
3095 /*
3096 * NOTE: Although we can get the priority field, using it
3097 * here is not a good idea, since it limits the pages we can scan.
3098 * if we don't reclaim here, the shrink_node from balance_pgdat
3099 * will pick up pages from other mem cgroup's as well. We hack
3100 * the priority and make it zero.
3101 */
3102 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103
3104 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3105
3106 *nr_scanned = sc.nr_scanned;
3107 return sc.nr_reclaimed;
3108}
3109
3110unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111 unsigned long nr_pages,
3112 gfp_t gfp_mask,
3113 bool may_swap)
3114{
3115 struct zonelist *zonelist;
3116 unsigned long nr_reclaimed;
3117 int nid;
3118 unsigned int noreclaim_flag;
3119 struct scan_control sc = {
3120 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3121 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123 .reclaim_idx = MAX_NR_ZONES - 1,
3124 .target_mem_cgroup = memcg,
3125 .priority = DEF_PRIORITY,
3126 .may_writepage = !laptop_mode,
3127 .may_unmap = 1,
3128 .may_swap = may_swap,
3129 };
3130
3131 /*
3132 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3133 * take care of from where we get pages. So the node where we start the
3134 * scan does not need to be the current node.
3135 */
3136 nid = mem_cgroup_select_victim_node(memcg);
3137
3138 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139
3140 trace_mm_vmscan_memcg_reclaim_begin(0,
3141 sc.may_writepage,
3142 sc.gfp_mask,
3143 sc.reclaim_idx);
3144
3145 noreclaim_flag = memalloc_noreclaim_save();
3146 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147 memalloc_noreclaim_restore(noreclaim_flag);
3148
3149 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3150
3151 return nr_reclaimed;
3152}
3153#endif
3154
3155static void age_active_anon(struct pglist_data *pgdat,
3156 struct scan_control *sc)
3157{
3158 struct mem_cgroup *memcg;
3159
3160 if (!total_swap_pages)
3161 return;
3162
3163 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3164 do {
3165 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166
3167 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169 sc, LRU_ACTIVE_ANON);
3170
3171 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3172 } while (memcg);
3173}
3174
3175/*
3176 * Returns true if there is an eligible zone balanced for the request order
3177 * and classzone_idx
3178 */
3179static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3180{
3181 int i;
3182 unsigned long mark = -1;
3183 struct zone *zone;
3184
3185 for (i = 0; i <= classzone_idx; i++) {
3186 zone = pgdat->node_zones + i;
3187
3188 if (!managed_zone(zone))
3189 continue;
3190
3191 mark = high_wmark_pages(zone);
3192 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3193 return true;
3194 }
3195
3196 /*
3197 * If a node has no populated zone within classzone_idx, it does not
3198 * need balancing by definition. This can happen if a zone-restricted
3199 * allocation tries to wake a remote kswapd.
3200 */
3201 if (mark == -1)
3202 return true;
3203
3204 return false;
3205}
3206
3207/* Clear pgdat state for congested, dirty or under writeback. */
3208static void clear_pgdat_congested(pg_data_t *pgdat)
3209{
3210 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3211 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3212 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3213}
3214
3215/*
3216 * Prepare kswapd for sleeping. This verifies that there are no processes
3217 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3218 *
3219 * Returns true if kswapd is ready to sleep
3220 */
3221static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3222{
3223 /*
3224 * The throttled processes are normally woken up in balance_pgdat() as
3225 * soon as allow_direct_reclaim() is true. But there is a potential
3226 * race between when kswapd checks the watermarks and a process gets
3227 * throttled. There is also a potential race if processes get
3228 * throttled, kswapd wakes, a large process exits thereby balancing the
3229 * zones, which causes kswapd to exit balance_pgdat() before reaching
3230 * the wake up checks. If kswapd is going to sleep, no process should
3231 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3232 * the wake up is premature, processes will wake kswapd and get
3233 * throttled again. The difference from wake ups in balance_pgdat() is
3234 * that here we are under prepare_to_wait().
3235 */
3236 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3237 wake_up_all(&pgdat->pfmemalloc_wait);
3238
3239 /* Hopeless node, leave it to direct reclaim */
3240 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3241 return true;
3242
3243 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3244 clear_pgdat_congested(pgdat);
3245 return true;
3246 }
3247
3248 return false;
3249}
3250
3251/*
3252 * kswapd shrinks a node of pages that are at or below the highest usable
3253 * zone that is currently unbalanced.
3254 *
3255 * Returns true if kswapd scanned at least the requested number of pages to
3256 * reclaim or if the lack of progress was due to pages under writeback.
3257 * This is used to determine if the scanning priority needs to be raised.
3258 */
3259static bool kswapd_shrink_node(pg_data_t *pgdat,
3260 struct scan_control *sc)
3261{
3262 struct zone *zone;
3263 int z;
3264
3265 /* Reclaim a number of pages proportional to the number of zones */
3266 sc->nr_to_reclaim = 0;
3267 for (z = 0; z <= sc->reclaim_idx; z++) {
3268 zone = pgdat->node_zones + z;
3269 if (!managed_zone(zone))
3270 continue;
3271
3272 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3273 }
3274
3275 /*
3276 * Historically care was taken to put equal pressure on all zones but
3277 * now pressure is applied based on node LRU order.
3278 */
3279 shrink_node(pgdat, sc);
3280
3281 /*
3282 * Fragmentation may mean that the system cannot be rebalanced for
3283 * high-order allocations. If twice the allocation size has been
3284 * reclaimed then recheck watermarks only at order-0 to prevent
3285 * excessive reclaim. Assume that a process requested a high-order
3286 * can direct reclaim/compact.
3287 */
3288 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289 sc->order = 0;
3290
3291 return sc->nr_scanned >= sc->nr_to_reclaim;
3292}
3293
3294/*
3295 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3296 * that are eligible for use by the caller until at least one zone is
3297 * balanced.
3298 *
3299 * Returns the order kswapd finished reclaiming at.
3300 *
3301 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3302 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3304 * or lower is eligible for reclaim until at least one usable zone is
3305 * balanced.
3306 */
3307static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3308{
3309 int i;
3310 unsigned long nr_soft_reclaimed;
3311 unsigned long nr_soft_scanned;
3312 struct zone *zone;
3313 struct scan_control sc = {
3314 .gfp_mask = GFP_KERNEL,
3315 .order = order,
3316 .priority = DEF_PRIORITY,
3317 .may_writepage = !laptop_mode,
3318 .may_unmap = 1,
3319 .may_swap = 1,
3320 };
3321 count_vm_event(PAGEOUTRUN);
3322
3323 do {
3324 unsigned long nr_reclaimed = sc.nr_reclaimed;
3325 bool raise_priority = true;
3326
3327 sc.reclaim_idx = classzone_idx;
3328
3329 /*
3330 * If the number of buffer_heads exceeds the maximum allowed
3331 * then consider reclaiming from all zones. This has a dual
3332 * purpose -- on 64-bit systems it is expected that
3333 * buffer_heads are stripped during active rotation. On 32-bit
3334 * systems, highmem pages can pin lowmem memory and shrinking
3335 * buffers can relieve lowmem pressure. Reclaim may still not
3336 * go ahead if all eligible zones for the original allocation
3337 * request are balanced to avoid excessive reclaim from kswapd.
3338 */
3339 if (buffer_heads_over_limit) {
3340 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3341 zone = pgdat->node_zones + i;
3342 if (!managed_zone(zone))
3343 continue;
3344
3345 sc.reclaim_idx = i;
3346 break;
3347 }
3348 }
3349
3350 /*
3351 * Only reclaim if there are no eligible zones. Note that
3352 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3353 * have adjusted it.
3354 */
3355 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3356 goto out;
3357
3358 /*
3359 * Do some background aging of the anon list, to give
3360 * pages a chance to be referenced before reclaiming. All
3361 * pages are rotated regardless of classzone as this is
3362 * about consistent aging.
3363 */
3364 age_active_anon(pgdat, &sc);
3365
3366 /*
3367 * If we're getting trouble reclaiming, start doing writepage
3368 * even in laptop mode.
3369 */
3370 if (sc.priority < DEF_PRIORITY - 2)
3371 sc.may_writepage = 1;
3372
3373 /* Call soft limit reclaim before calling shrink_node. */
3374 sc.nr_scanned = 0;
3375 nr_soft_scanned = 0;
3376 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377 sc.gfp_mask, &nr_soft_scanned);
3378 sc.nr_reclaimed += nr_soft_reclaimed;
3379
3380 /*
3381 * There should be no need to raise the scanning priority if
3382 * enough pages are already being scanned that that high
3383 * watermark would be met at 100% efficiency.
3384 */
3385 if (kswapd_shrink_node(pgdat, &sc))
3386 raise_priority = false;
3387
3388 /*
3389 * If the low watermark is met there is no need for processes
3390 * to be throttled on pfmemalloc_wait as they should not be
3391 * able to safely make forward progress. Wake them
3392 */
3393 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394 allow_direct_reclaim(pgdat))
3395 wake_up_all(&pgdat->pfmemalloc_wait);
3396
3397 /* Check if kswapd should be suspending */
3398 if (try_to_freeze() || kthread_should_stop())
3399 break;
3400
3401 /*
3402 * Raise priority if scanning rate is too low or there was no
3403 * progress in reclaiming pages
3404 */
3405 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3406 if (raise_priority || !nr_reclaimed)
3407 sc.priority--;
3408 } while (sc.priority >= 1);
3409
3410 if (!sc.nr_reclaimed)
3411 pgdat->kswapd_failures++;
3412
3413out:
3414 snapshot_refaults(NULL, pgdat);
3415 /*
3416 * Return the order kswapd stopped reclaiming at as
3417 * prepare_kswapd_sleep() takes it into account. If another caller
3418 * entered the allocator slow path while kswapd was awake, order will
3419 * remain at the higher level.
3420 */
3421 return sc.order;
3422}
3423
3424/*
3425 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3426 * allocation request woke kswapd for. When kswapd has not woken recently,
3427 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3428 * given classzone and returns it or the highest classzone index kswapd
3429 * was recently woke for.
3430 */
3431static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3432 enum zone_type classzone_idx)
3433{
3434 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3435 return classzone_idx;
3436
3437 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3438}
3439
3440static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3441 unsigned int classzone_idx)
3442{
3443 long remaining = 0;
3444 DEFINE_WAIT(wait);
3445
3446 if (freezing(current) || kthread_should_stop())
3447 return;
3448
3449 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3450
3451 /*
3452 * Try to sleep for a short interval. Note that kcompactd will only be
3453 * woken if it is possible to sleep for a short interval. This is
3454 * deliberate on the assumption that if reclaim cannot keep an
3455 * eligible zone balanced that it's also unlikely that compaction will
3456 * succeed.
3457 */
3458 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459 /*
3460 * Compaction records what page blocks it recently failed to
3461 * isolate pages from and skips them in the future scanning.
3462 * When kswapd is going to sleep, it is reasonable to assume
3463 * that pages and compaction may succeed so reset the cache.
3464 */
3465 reset_isolation_suitable(pgdat);
3466
3467 /*
3468 * We have freed the memory, now we should compact it to make
3469 * allocation of the requested order possible.
3470 */
3471 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472
3473 remaining = schedule_timeout(HZ/10);
3474
3475 /*
3476 * If woken prematurely then reset kswapd_classzone_idx and
3477 * order. The values will either be from a wakeup request or
3478 * the previous request that slept prematurely.
3479 */
3480 if (remaining) {
3481 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3483 }
3484
3485 finish_wait(&pgdat->kswapd_wait, &wait);
3486 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3487 }
3488
3489 /*
3490 * After a short sleep, check if it was a premature sleep. If not, then
3491 * go fully to sleep until explicitly woken up.
3492 */
3493 if (!remaining &&
3494 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3496
3497 /*
3498 * vmstat counters are not perfectly accurate and the estimated
3499 * value for counters such as NR_FREE_PAGES can deviate from the
3500 * true value by nr_online_cpus * threshold. To avoid the zone
3501 * watermarks being breached while under pressure, we reduce the
3502 * per-cpu vmstat threshold while kswapd is awake and restore
3503 * them before going back to sleep.
3504 */
3505 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506
3507 if (!kthread_should_stop())
3508 schedule();
3509
3510 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3511 } else {
3512 if (remaining)
3513 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3514 else
3515 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3516 }
3517 finish_wait(&pgdat->kswapd_wait, &wait);
3518}
3519
3520/*
3521 * The background pageout daemon, started as a kernel thread
3522 * from the init process.
3523 *
3524 * This basically trickles out pages so that we have _some_
3525 * free memory available even if there is no other activity
3526 * that frees anything up. This is needed for things like routing
3527 * etc, where we otherwise might have all activity going on in
3528 * asynchronous contexts that cannot page things out.
3529 *
3530 * If there are applications that are active memory-allocators
3531 * (most normal use), this basically shouldn't matter.
3532 */
3533static int kswapd(void *p)
3534{
3535 unsigned int alloc_order, reclaim_order;
3536 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3537 pg_data_t *pgdat = (pg_data_t*)p;
3538 struct task_struct *tsk = current;
3539
3540 struct reclaim_state reclaim_state = {
3541 .reclaimed_slab = 0,
3542 };
3543 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3544
3545 if (!cpumask_empty(cpumask))
3546 set_cpus_allowed_ptr(tsk, cpumask);
3547 current->reclaim_state = &reclaim_state;
3548
3549 /*
3550 * Tell the memory management that we're a "memory allocator",
3551 * and that if we need more memory we should get access to it
3552 * regardless (see "__alloc_pages()"). "kswapd" should
3553 * never get caught in the normal page freeing logic.
3554 *
3555 * (Kswapd normally doesn't need memory anyway, but sometimes
3556 * you need a small amount of memory in order to be able to
3557 * page out something else, and this flag essentially protects
3558 * us from recursively trying to free more memory as we're
3559 * trying to free the first piece of memory in the first place).
3560 */
3561 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562 set_freezable();
3563
3564 pgdat->kswapd_order = 0;
3565 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3566 for ( ; ; ) {
3567 bool ret;
3568
3569 alloc_order = reclaim_order = pgdat->kswapd_order;
3570 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3571
3572kswapd_try_sleep:
3573 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3574 classzone_idx);
3575
3576 /* Read the new order and classzone_idx */
3577 alloc_order = reclaim_order = pgdat->kswapd_order;
3578 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579 pgdat->kswapd_order = 0;
3580 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3581
3582 ret = try_to_freeze();
3583 if (kthread_should_stop())
3584 break;
3585
3586 /*
3587 * We can speed up thawing tasks if we don't call balance_pgdat
3588 * after returning from the refrigerator
3589 */
3590 if (ret)
3591 continue;
3592
3593 /*
3594 * Reclaim begins at the requested order but if a high-order
3595 * reclaim fails then kswapd falls back to reclaiming for
3596 * order-0. If that happens, kswapd will consider sleeping
3597 * for the order it finished reclaiming at (reclaim_order)
3598 * but kcompactd is woken to compact for the original
3599 * request (alloc_order).
3600 */
3601 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3602 alloc_order);
3603 fs_reclaim_acquire(GFP_KERNEL);
3604 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605 fs_reclaim_release(GFP_KERNEL);
3606 if (reclaim_order < alloc_order)
3607 goto kswapd_try_sleep;
3608 }
3609
3610 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611 current->reclaim_state = NULL;
3612
3613 return 0;
3614}
3615
3616/*
3617 * A zone is low on free memory or too fragmented for high-order memory. If
3618 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3619 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3620 * has failed or is not needed, still wake up kcompactd if only compaction is
3621 * needed.
3622 */
3623void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3624 enum zone_type classzone_idx)
3625{
3626 pg_data_t *pgdat;
3627
3628 if (!managed_zone(zone))
3629 return;
3630
3631 if (!cpuset_zone_allowed(zone, gfp_flags))
3632 return;
3633 pgdat = zone->zone_pgdat;
3634 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3635 classzone_idx);
3636 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3637 if (!waitqueue_active(&pgdat->kswapd_wait))
3638 return;
3639
3640 /* Hopeless node, leave it to direct reclaim if possible */
3641 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3642 pgdat_balanced(pgdat, order, classzone_idx)) {
3643 /*
3644 * There may be plenty of free memory available, but it's too
3645 * fragmented for high-order allocations. Wake up kcompactd
3646 * and rely on compaction_suitable() to determine if it's
3647 * needed. If it fails, it will defer subsequent attempts to
3648 * ratelimit its work.
3649 */
3650 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3651 wakeup_kcompactd(pgdat, order, classzone_idx);
3652 return;
3653 }
3654
3655 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3656 gfp_flags);
3657 wake_up_interruptible(&pgdat->kswapd_wait);
3658}
3659
3660#ifdef CONFIG_HIBERNATION
3661/*
3662 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 * freed pages.
3664 *
3665 * Rather than trying to age LRUs the aim is to preserve the overall
3666 * LRU order by reclaiming preferentially
3667 * inactive > active > active referenced > active mapped
3668 */
3669unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3670{
3671 struct reclaim_state reclaim_state;
3672 struct scan_control sc = {
3673 .nr_to_reclaim = nr_to_reclaim,
3674 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3675 .reclaim_idx = MAX_NR_ZONES - 1,
3676 .priority = DEF_PRIORITY,
3677 .may_writepage = 1,
3678 .may_unmap = 1,
3679 .may_swap = 1,
3680 .hibernation_mode = 1,
3681 };
3682 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683 struct task_struct *p = current;
3684 unsigned long nr_reclaimed;
3685 unsigned int noreclaim_flag;
3686
3687 noreclaim_flag = memalloc_noreclaim_save();
3688 fs_reclaim_acquire(sc.gfp_mask);
3689 reclaim_state.reclaimed_slab = 0;
3690 p->reclaim_state = &reclaim_state;
3691
3692 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693
3694 p->reclaim_state = NULL;
3695 fs_reclaim_release(sc.gfp_mask);
3696 memalloc_noreclaim_restore(noreclaim_flag);
3697
3698 return nr_reclaimed;
3699}
3700#endif /* CONFIG_HIBERNATION */
3701
3702/* It's optimal to keep kswapds on the same CPUs as their memory, but
3703 not required for correctness. So if the last cpu in a node goes
3704 away, we get changed to run anywhere: as the first one comes back,
3705 restore their cpu bindings. */
3706static int kswapd_cpu_online(unsigned int cpu)
3707{
3708 int nid;
3709
3710 for_each_node_state(nid, N_MEMORY) {
3711 pg_data_t *pgdat = NODE_DATA(nid);
3712 const struct cpumask *mask;
3713
3714 mask = cpumask_of_node(pgdat->node_id);
3715
3716 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3717 /* One of our CPUs online: restore mask */
3718 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3719 }
3720 return 0;
3721}
3722
3723/*
3724 * This kswapd start function will be called by init and node-hot-add.
3725 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3726 */
3727int kswapd_run(int nid)
3728{
3729 pg_data_t *pgdat = NODE_DATA(nid);
3730 int ret = 0;
3731
3732 if (pgdat->kswapd)
3733 return 0;
3734
3735 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3736 if (IS_ERR(pgdat->kswapd)) {
3737 /* failure at boot is fatal */
3738 BUG_ON(system_state < SYSTEM_RUNNING);
3739 pr_err("Failed to start kswapd on node %d\n", nid);
3740 ret = PTR_ERR(pgdat->kswapd);
3741 pgdat->kswapd = NULL;
3742 }
3743 return ret;
3744}
3745
3746/*
3747 * Called by memory hotplug when all memory in a node is offlined. Caller must
3748 * hold mem_hotplug_begin/end().
3749 */
3750void kswapd_stop(int nid)
3751{
3752 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3753
3754 if (kswapd) {
3755 kthread_stop(kswapd);
3756 NODE_DATA(nid)->kswapd = NULL;
3757 }
3758}
3759
3760static int __init kswapd_init(void)
3761{
3762 int nid, ret;
3763
3764 swap_setup();
3765 for_each_node_state(nid, N_MEMORY)
3766 kswapd_run(nid);
3767 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3768 "mm/vmscan:online", kswapd_cpu_online,
3769 NULL);
3770 WARN_ON(ret < 0);
3771 return 0;
3772}
3773
3774module_init(kswapd_init)
3775
3776#ifdef CONFIG_NUMA
3777/*
3778 * Node reclaim mode
3779 *
3780 * If non-zero call node_reclaim when the number of free pages falls below
3781 * the watermarks.
3782 */
3783int node_reclaim_mode __read_mostly;
3784
3785#define RECLAIM_OFF 0
3786#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3787#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3788#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3789
3790/*
3791 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3793 * a zone.
3794 */
3795#define NODE_RECLAIM_PRIORITY 4
3796
3797/*
3798 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 * occur.
3800 */
3801int sysctl_min_unmapped_ratio = 1;
3802
3803/*
3804 * If the number of slab pages in a zone grows beyond this percentage then
3805 * slab reclaim needs to occur.
3806 */
3807int sysctl_min_slab_ratio = 5;
3808
3809static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810{
3811 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3812 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3813 node_page_state(pgdat, NR_ACTIVE_FILE);
3814
3815 /*
3816 * It's possible for there to be more file mapped pages than
3817 * accounted for by the pages on the file LRU lists because
3818 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3819 */
3820 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3821}
3822
3823/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825{
3826 unsigned long nr_pagecache_reclaimable;
3827 unsigned long delta = 0;
3828
3829 /*
3830 * If RECLAIM_UNMAP is set, then all file pages are considered
3831 * potentially reclaimable. Otherwise, we have to worry about
3832 * pages like swapcache and node_unmapped_file_pages() provides
3833 * a better estimate
3834 */
3835 if (node_reclaim_mode & RECLAIM_UNMAP)
3836 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837 else
3838 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839
3840 /* If we can't clean pages, remove dirty pages from consideration */
3841 if (!(node_reclaim_mode & RECLAIM_WRITE))
3842 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843
3844 /* Watch for any possible underflows due to delta */
3845 if (unlikely(delta > nr_pagecache_reclaimable))
3846 delta = nr_pagecache_reclaimable;
3847
3848 return nr_pagecache_reclaimable - delta;
3849}
3850
3851/*
3852 * Try to free up some pages from this node through reclaim.
3853 */
3854static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855{
3856 /* Minimum pages needed in order to stay on node */
3857 const unsigned long nr_pages = 1 << order;
3858 struct task_struct *p = current;
3859 struct reclaim_state reclaim_state;
3860 unsigned int noreclaim_flag;
3861 struct scan_control sc = {
3862 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863 .gfp_mask = current_gfp_context(gfp_mask),
3864 .order = order,
3865 .priority = NODE_RECLAIM_PRIORITY,
3866 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3867 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868 .may_swap = 1,
3869 .reclaim_idx = gfp_zone(gfp_mask),
3870 };
3871
3872 cond_resched();
3873 /*
3874 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875 * and we also need to be able to write out pages for RECLAIM_WRITE
3876 * and RECLAIM_UNMAP.
3877 */
3878 noreclaim_flag = memalloc_noreclaim_save();
3879 p->flags |= PF_SWAPWRITE;
3880 fs_reclaim_acquire(sc.gfp_mask);
3881 reclaim_state.reclaimed_slab = 0;
3882 p->reclaim_state = &reclaim_state;
3883
3884 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3885 /*
3886 * Free memory by calling shrink node with increasing
3887 * priorities until we have enough memory freed.
3888 */
3889 do {
3890 shrink_node(pgdat, &sc);
3891 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3892 }
3893
3894 p->reclaim_state = NULL;
3895 fs_reclaim_release(gfp_mask);
3896 current->flags &= ~PF_SWAPWRITE;
3897 memalloc_noreclaim_restore(noreclaim_flag);
3898 return sc.nr_reclaimed >= nr_pages;
3899}
3900
3901int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902{
3903 int ret;
3904
3905 /*
3906 * Node reclaim reclaims unmapped file backed pages and
3907 * slab pages if we are over the defined limits.
3908 *
3909 * A small portion of unmapped file backed pages is needed for
3910 * file I/O otherwise pages read by file I/O will be immediately
3911 * thrown out if the node is overallocated. So we do not reclaim
3912 * if less than a specified percentage of the node is used by
3913 * unmapped file backed pages.
3914 */
3915 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3917 return NODE_RECLAIM_FULL;
3918
3919 /*
3920 * Do not scan if the allocation should not be delayed.
3921 */
3922 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923 return NODE_RECLAIM_NOSCAN;
3924
3925 /*
3926 * Only run node reclaim on the local node or on nodes that do not
3927 * have associated processors. This will favor the local processor
3928 * over remote processors and spread off node memory allocations
3929 * as wide as possible.
3930 */
3931 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3932 return NODE_RECLAIM_NOSCAN;
3933
3934 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3935 return NODE_RECLAIM_NOSCAN;
3936
3937 ret = __node_reclaim(pgdat, gfp_mask, order);
3938 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939
3940 if (!ret)
3941 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3942
3943 return ret;
3944}
3945#endif
3946
3947/*
3948 * page_evictable - test whether a page is evictable
3949 * @page: the page to test
3950 *
3951 * Test whether page is evictable--i.e., should be placed on active/inactive
3952 * lists vs unevictable list.
3953 *
3954 * Reasons page might not be evictable:
3955 * (1) page's mapping marked unevictable
3956 * (2) page is part of an mlocked VMA
3957 *
3958 */
3959int page_evictable(struct page *page)
3960{
3961 int ret;
3962
3963 /* Prevent address_space of inode and swap cache from being freed */
3964 rcu_read_lock();
3965 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3966 rcu_read_unlock();
3967 return ret;
3968}
3969
3970#ifdef CONFIG_SHMEM
3971/**
3972 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3973 * @pages: array of pages to check
3974 * @nr_pages: number of pages to check
3975 *
3976 * Checks pages for evictability and moves them to the appropriate lru list.
3977 *
3978 * This function is only used for SysV IPC SHM_UNLOCK.
3979 */
3980void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981{
3982 struct lruvec *lruvec;
3983 struct pglist_data *pgdat = NULL;
3984 int pgscanned = 0;
3985 int pgrescued = 0;
3986 int i;
3987
3988 for (i = 0; i < nr_pages; i++) {
3989 struct page *page = pages[i];
3990 struct pglist_data *pagepgdat = page_pgdat(page);
3991
3992 pgscanned++;
3993 if (pagepgdat != pgdat) {
3994 if (pgdat)
3995 spin_unlock_irq(&pgdat->lru_lock);
3996 pgdat = pagepgdat;
3997 spin_lock_irq(&pgdat->lru_lock);
3998 }
3999 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4000
4001 if (!PageLRU(page) || !PageUnevictable(page))
4002 continue;
4003
4004 if (page_evictable(page)) {
4005 enum lru_list lru = page_lru_base_type(page);
4006
4007 VM_BUG_ON_PAGE(PageActive(page), page);
4008 ClearPageUnevictable(page);
4009 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4010 add_page_to_lru_list(page, lruvec, lru);
4011 pgrescued++;
4012 }
4013 }
4014
4015 if (pgdat) {
4016 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4017 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018 spin_unlock_irq(&pgdat->lru_lock);
4019 }
4020}
4021#endif /* CONFIG_SHMEM */
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/gfp.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/vmstat.h>
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/compaction.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
37#include <linux/delay.h>
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40#include <linux/memcontrol.h>
41#include <linux/delayacct.h>
42#include <linux/sysctl.h>
43#include <linux/oom.h>
44#include <linux/prefetch.h>
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
51#include "internal.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
56struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95};
96
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
131long vm_total_pages; /* The total number of pages which the VM controls */
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137static bool global_reclaim(struct scan_control *sc)
138{
139 return !sc->target_mem_cgroup;
140}
141#else
142static bool global_reclaim(struct scan_control *sc)
143{
144 return true;
145}
146#endif
147
148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149{
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154}
155
156/*
157 * Add a shrinker callback to be called from the vm
158 */
159void register_shrinker(struct shrinker *shrinker)
160{
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165}
166EXPORT_SYMBOL(register_shrinker);
167
168/*
169 * Remove one
170 */
171void unregister_shrinker(struct shrinker *shrinker)
172{
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176}
177EXPORT_SYMBOL(unregister_shrinker);
178
179static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182{
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185}
186
187#define SHRINK_BATCH 128
188/*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210{
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313out:
314 cond_resched();
315 return ret;
316}
317
318static inline int is_page_cache_freeable(struct page *page)
319{
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326}
327
328static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330{
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338}
339
340/*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354{
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359}
360
361/* possible outcome of pageout() */
362typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371} pageout_t;
372
373/*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379{
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446}
447
448/*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452static int __remove_mapping(struct address_space *mapping, struct page *page)
453{
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514}
515
516/*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534}
535
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545void putback_lru_page(struct page *page)
546{
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607}
608
609enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614};
615
616static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618{
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669}
670
671/*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
679{
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
682 int pgactivate = 0;
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
687
688 cond_resched();
689
690 while (!list_empty(page_list)) {
691 enum page_references references;
692 struct address_space *mapping;
693 struct page *page;
694 int may_enter_fs;
695
696 cond_resched();
697
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
700
701 if (!trylock_page(page))
702 goto keep;
703
704 VM_BUG_ON(PageActive(page));
705 VM_BUG_ON(page_zone(page) != zone);
706
707 sc->nr_scanned++;
708
709 if (unlikely(!page_evictable(page, NULL)))
710 goto cull_mlocked;
711
712 if (!sc->may_unmap && page_mapped(page))
713 goto keep_locked;
714
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
717 sc->nr_scanned++;
718
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722 if (PageWriteback(page)) {
723 /*
724 * memcg doesn't have any dirty pages throttling so we
725 * could easily OOM just because too many pages are in
726 * writeback and there is nothing else to reclaim.
727 *
728 * Check __GFP_IO, certainly because a loop driver
729 * thread might enter reclaim, and deadlock if it waits
730 * on a page for which it is needed to do the write
731 * (loop masks off __GFP_IO|__GFP_FS for this reason);
732 * but more thought would probably show more reasons.
733 *
734 * Don't require __GFP_FS, since we're not going into
735 * the FS, just waiting on its writeback completion.
736 * Worryingly, ext4 gfs2 and xfs allocate pages with
737 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
738 * testing may_enter_fs here is liable to OOM on them.
739 */
740 if (global_reclaim(sc) ||
741 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
742 /*
743 * This is slightly racy - end_page_writeback()
744 * might have just cleared PageReclaim, then
745 * setting PageReclaim here end up interpreted
746 * as PageReadahead - but that does not matter
747 * enough to care. What we do want is for this
748 * page to have PageReclaim set next time memcg
749 * reclaim reaches the tests above, so it will
750 * then wait_on_page_writeback() to avoid OOM;
751 * and it's also appropriate in global reclaim.
752 */
753 SetPageReclaim(page);
754 nr_writeback++;
755 goto keep_locked;
756 }
757 wait_on_page_writeback(page);
758 }
759
760 references = page_check_references(page, sc);
761 switch (references) {
762 case PAGEREF_ACTIVATE:
763 goto activate_locked;
764 case PAGEREF_KEEP:
765 goto keep_locked;
766 case PAGEREF_RECLAIM:
767 case PAGEREF_RECLAIM_CLEAN:
768 ; /* try to reclaim the page below */
769 }
770
771 /*
772 * Anonymous process memory has backing store?
773 * Try to allocate it some swap space here.
774 */
775 if (PageAnon(page) && !PageSwapCache(page)) {
776 if (!(sc->gfp_mask & __GFP_IO))
777 goto keep_locked;
778 if (!add_to_swap(page))
779 goto activate_locked;
780 may_enter_fs = 1;
781 }
782
783 mapping = page_mapping(page);
784
785 /*
786 * The page is mapped into the page tables of one or more
787 * processes. Try to unmap it here.
788 */
789 if (page_mapped(page) && mapping) {
790 switch (try_to_unmap(page, TTU_UNMAP)) {
791 case SWAP_FAIL:
792 goto activate_locked;
793 case SWAP_AGAIN:
794 goto keep_locked;
795 case SWAP_MLOCK:
796 goto cull_mlocked;
797 case SWAP_SUCCESS:
798 ; /* try to free the page below */
799 }
800 }
801
802 if (PageDirty(page)) {
803 nr_dirty++;
804
805 /*
806 * Only kswapd can writeback filesystem pages to
807 * avoid risk of stack overflow but do not writeback
808 * unless under significant pressure.
809 */
810 if (page_is_file_cache(page) &&
811 (!current_is_kswapd() ||
812 sc->priority >= DEF_PRIORITY - 2)) {
813 /*
814 * Immediately reclaim when written back.
815 * Similar in principal to deactivate_page()
816 * except we already have the page isolated
817 * and know it's dirty
818 */
819 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
820 SetPageReclaim(page);
821
822 goto keep_locked;
823 }
824
825 if (references == PAGEREF_RECLAIM_CLEAN)
826 goto keep_locked;
827 if (!may_enter_fs)
828 goto keep_locked;
829 if (!sc->may_writepage)
830 goto keep_locked;
831
832 /* Page is dirty, try to write it out here */
833 switch (pageout(page, mapping, sc)) {
834 case PAGE_KEEP:
835 nr_congested++;
836 goto keep_locked;
837 case PAGE_ACTIVATE:
838 goto activate_locked;
839 case PAGE_SUCCESS:
840 if (PageWriteback(page))
841 goto keep;
842 if (PageDirty(page))
843 goto keep;
844
845 /*
846 * A synchronous write - probably a ramdisk. Go
847 * ahead and try to reclaim the page.
848 */
849 if (!trylock_page(page))
850 goto keep;
851 if (PageDirty(page) || PageWriteback(page))
852 goto keep_locked;
853 mapping = page_mapping(page);
854 case PAGE_CLEAN:
855 ; /* try to free the page below */
856 }
857 }
858
859 /*
860 * If the page has buffers, try to free the buffer mappings
861 * associated with this page. If we succeed we try to free
862 * the page as well.
863 *
864 * We do this even if the page is PageDirty().
865 * try_to_release_page() does not perform I/O, but it is
866 * possible for a page to have PageDirty set, but it is actually
867 * clean (all its buffers are clean). This happens if the
868 * buffers were written out directly, with submit_bh(). ext3
869 * will do this, as well as the blockdev mapping.
870 * try_to_release_page() will discover that cleanness and will
871 * drop the buffers and mark the page clean - it can be freed.
872 *
873 * Rarely, pages can have buffers and no ->mapping. These are
874 * the pages which were not successfully invalidated in
875 * truncate_complete_page(). We try to drop those buffers here
876 * and if that worked, and the page is no longer mapped into
877 * process address space (page_count == 1) it can be freed.
878 * Otherwise, leave the page on the LRU so it is swappable.
879 */
880 if (page_has_private(page)) {
881 if (!try_to_release_page(page, sc->gfp_mask))
882 goto activate_locked;
883 if (!mapping && page_count(page) == 1) {
884 unlock_page(page);
885 if (put_page_testzero(page))
886 goto free_it;
887 else {
888 /*
889 * rare race with speculative reference.
890 * the speculative reference will free
891 * this page shortly, so we may
892 * increment nr_reclaimed here (and
893 * leave it off the LRU).
894 */
895 nr_reclaimed++;
896 continue;
897 }
898 }
899 }
900
901 if (!mapping || !__remove_mapping(mapping, page))
902 goto keep_locked;
903
904 /*
905 * At this point, we have no other references and there is
906 * no way to pick any more up (removed from LRU, removed
907 * from pagecache). Can use non-atomic bitops now (and
908 * we obviously don't have to worry about waking up a process
909 * waiting on the page lock, because there are no references.
910 */
911 __clear_page_locked(page);
912free_it:
913 nr_reclaimed++;
914
915 /*
916 * Is there need to periodically free_page_list? It would
917 * appear not as the counts should be low
918 */
919 list_add(&page->lru, &free_pages);
920 continue;
921
922cull_mlocked:
923 if (PageSwapCache(page))
924 try_to_free_swap(page);
925 unlock_page(page);
926 putback_lru_page(page);
927 continue;
928
929activate_locked:
930 /* Not a candidate for swapping, so reclaim swap space. */
931 if (PageSwapCache(page) && vm_swap_full())
932 try_to_free_swap(page);
933 VM_BUG_ON(PageActive(page));
934 SetPageActive(page);
935 pgactivate++;
936keep_locked:
937 unlock_page(page);
938keep:
939 list_add(&page->lru, &ret_pages);
940 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
941 }
942
943 /*
944 * Tag a zone as congested if all the dirty pages encountered were
945 * backed by a congested BDI. In this case, reclaimers should just
946 * back off and wait for congestion to clear because further reclaim
947 * will encounter the same problem
948 */
949 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
950 zone_set_flag(zone, ZONE_CONGESTED);
951
952 free_hot_cold_page_list(&free_pages, 1);
953
954 list_splice(&ret_pages, page_list);
955 count_vm_events(PGACTIVATE, pgactivate);
956 *ret_nr_dirty += nr_dirty;
957 *ret_nr_writeback += nr_writeback;
958 return nr_reclaimed;
959}
960
961/*
962 * Attempt to remove the specified page from its LRU. Only take this page
963 * if it is of the appropriate PageActive status. Pages which are being
964 * freed elsewhere are also ignored.
965 *
966 * page: page to consider
967 * mode: one of the LRU isolation modes defined above
968 *
969 * returns 0 on success, -ve errno on failure.
970 */
971int __isolate_lru_page(struct page *page, isolate_mode_t mode)
972{
973 int ret = -EINVAL;
974
975 /* Only take pages on the LRU. */
976 if (!PageLRU(page))
977 return ret;
978
979 /* Do not give back unevictable pages for compaction */
980 if (PageUnevictable(page))
981 return ret;
982
983 ret = -EBUSY;
984
985 /*
986 * To minimise LRU disruption, the caller can indicate that it only
987 * wants to isolate pages it will be able to operate on without
988 * blocking - clean pages for the most part.
989 *
990 * ISOLATE_CLEAN means that only clean pages should be isolated. This
991 * is used by reclaim when it is cannot write to backing storage
992 *
993 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
994 * that it is possible to migrate without blocking
995 */
996 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
997 /* All the caller can do on PageWriteback is block */
998 if (PageWriteback(page))
999 return ret;
1000
1001 if (PageDirty(page)) {
1002 struct address_space *mapping;
1003
1004 /* ISOLATE_CLEAN means only clean pages */
1005 if (mode & ISOLATE_CLEAN)
1006 return ret;
1007
1008 /*
1009 * Only pages without mappings or that have a
1010 * ->migratepage callback are possible to migrate
1011 * without blocking
1012 */
1013 mapping = page_mapping(page);
1014 if (mapping && !mapping->a_ops->migratepage)
1015 return ret;
1016 }
1017 }
1018
1019 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1020 return ret;
1021
1022 if (likely(get_page_unless_zero(page))) {
1023 /*
1024 * Be careful not to clear PageLRU until after we're
1025 * sure the page is not being freed elsewhere -- the
1026 * page release code relies on it.
1027 */
1028 ClearPageLRU(page);
1029 ret = 0;
1030 }
1031
1032 return ret;
1033}
1034
1035/*
1036 * zone->lru_lock is heavily contended. Some of the functions that
1037 * shrink the lists perform better by taking out a batch of pages
1038 * and working on them outside the LRU lock.
1039 *
1040 * For pagecache intensive workloads, this function is the hottest
1041 * spot in the kernel (apart from copy_*_user functions).
1042 *
1043 * Appropriate locks must be held before calling this function.
1044 *
1045 * @nr_to_scan: The number of pages to look through on the list.
1046 * @lruvec: The LRU vector to pull pages from.
1047 * @dst: The temp list to put pages on to.
1048 * @nr_scanned: The number of pages that were scanned.
1049 * @sc: The scan_control struct for this reclaim session
1050 * @mode: One of the LRU isolation modes
1051 * @lru: LRU list id for isolating
1052 *
1053 * returns how many pages were moved onto *@dst.
1054 */
1055static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056 struct lruvec *lruvec, struct list_head *dst,
1057 unsigned long *nr_scanned, struct scan_control *sc,
1058 isolate_mode_t mode, enum lru_list lru)
1059{
1060 struct list_head *src = &lruvec->lists[lru];
1061 unsigned long nr_taken = 0;
1062 unsigned long scan;
1063
1064 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1065 struct page *page;
1066 int nr_pages;
1067
1068 page = lru_to_page(src);
1069 prefetchw_prev_lru_page(page, src, flags);
1070
1071 VM_BUG_ON(!PageLRU(page));
1072
1073 switch (__isolate_lru_page(page, mode)) {
1074 case 0:
1075 nr_pages = hpage_nr_pages(page);
1076 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1077 list_move(&page->lru, dst);
1078 nr_taken += nr_pages;
1079 break;
1080
1081 case -EBUSY:
1082 /* else it is being freed elsewhere */
1083 list_move(&page->lru, src);
1084 continue;
1085
1086 default:
1087 BUG();
1088 }
1089 }
1090
1091 *nr_scanned = scan;
1092 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093 nr_taken, mode, is_file_lru(lru));
1094 return nr_taken;
1095}
1096
1097/**
1098 * isolate_lru_page - tries to isolate a page from its LRU list
1099 * @page: page to isolate from its LRU list
1100 *
1101 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102 * vmstat statistic corresponding to whatever LRU list the page was on.
1103 *
1104 * Returns 0 if the page was removed from an LRU list.
1105 * Returns -EBUSY if the page was not on an LRU list.
1106 *
1107 * The returned page will have PageLRU() cleared. If it was found on
1108 * the active list, it will have PageActive set. If it was found on
1109 * the unevictable list, it will have the PageUnevictable bit set. That flag
1110 * may need to be cleared by the caller before letting the page go.
1111 *
1112 * The vmstat statistic corresponding to the list on which the page was
1113 * found will be decremented.
1114 *
1115 * Restrictions:
1116 * (1) Must be called with an elevated refcount on the page. This is a
1117 * fundamentnal difference from isolate_lru_pages (which is called
1118 * without a stable reference).
1119 * (2) the lru_lock must not be held.
1120 * (3) interrupts must be enabled.
1121 */
1122int isolate_lru_page(struct page *page)
1123{
1124 int ret = -EBUSY;
1125
1126 VM_BUG_ON(!page_count(page));
1127
1128 if (PageLRU(page)) {
1129 struct zone *zone = page_zone(page);
1130 struct lruvec *lruvec;
1131
1132 spin_lock_irq(&zone->lru_lock);
1133 lruvec = mem_cgroup_page_lruvec(page, zone);
1134 if (PageLRU(page)) {
1135 int lru = page_lru(page);
1136 get_page(page);
1137 ClearPageLRU(page);
1138 del_page_from_lru_list(page, lruvec, lru);
1139 ret = 0;
1140 }
1141 spin_unlock_irq(&zone->lru_lock);
1142 }
1143 return ret;
1144}
1145
1146/*
1147 * Are there way too many processes in the direct reclaim path already?
1148 */
1149static int too_many_isolated(struct zone *zone, int file,
1150 struct scan_control *sc)
1151{
1152 unsigned long inactive, isolated;
1153
1154 if (current_is_kswapd())
1155 return 0;
1156
1157 if (!global_reclaim(sc))
1158 return 0;
1159
1160 if (file) {
1161 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1163 } else {
1164 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1166 }
1167
1168 return isolated > inactive;
1169}
1170
1171static noinline_for_stack void
1172putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1173{
1174 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175 struct zone *zone = lruvec_zone(lruvec);
1176 LIST_HEAD(pages_to_free);
1177
1178 /*
1179 * Put back any unfreeable pages.
1180 */
1181 while (!list_empty(page_list)) {
1182 struct page *page = lru_to_page(page_list);
1183 int lru;
1184
1185 VM_BUG_ON(PageLRU(page));
1186 list_del(&page->lru);
1187 if (unlikely(!page_evictable(page, NULL))) {
1188 spin_unlock_irq(&zone->lru_lock);
1189 putback_lru_page(page);
1190 spin_lock_irq(&zone->lru_lock);
1191 continue;
1192 }
1193
1194 lruvec = mem_cgroup_page_lruvec(page, zone);
1195
1196 SetPageLRU(page);
1197 lru = page_lru(page);
1198 add_page_to_lru_list(page, lruvec, lru);
1199
1200 if (is_active_lru(lru)) {
1201 int file = is_file_lru(lru);
1202 int numpages = hpage_nr_pages(page);
1203 reclaim_stat->recent_rotated[file] += numpages;
1204 }
1205 if (put_page_testzero(page)) {
1206 __ClearPageLRU(page);
1207 __ClearPageActive(page);
1208 del_page_from_lru_list(page, lruvec, lru);
1209
1210 if (unlikely(PageCompound(page))) {
1211 spin_unlock_irq(&zone->lru_lock);
1212 (*get_compound_page_dtor(page))(page);
1213 spin_lock_irq(&zone->lru_lock);
1214 } else
1215 list_add(&page->lru, &pages_to_free);
1216 }
1217 }
1218
1219 /*
1220 * To save our caller's stack, now use input list for pages to free.
1221 */
1222 list_splice(&pages_to_free, page_list);
1223}
1224
1225/*
1226 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1227 * of reclaimed pages
1228 */
1229static noinline_for_stack unsigned long
1230shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231 struct scan_control *sc, enum lru_list lru)
1232{
1233 LIST_HEAD(page_list);
1234 unsigned long nr_scanned;
1235 unsigned long nr_reclaimed = 0;
1236 unsigned long nr_taken;
1237 unsigned long nr_dirty = 0;
1238 unsigned long nr_writeback = 0;
1239 isolate_mode_t isolate_mode = 0;
1240 int file = is_file_lru(lru);
1241 struct zone *zone = lruvec_zone(lruvec);
1242 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1243
1244 while (unlikely(too_many_isolated(zone, file, sc))) {
1245 congestion_wait(BLK_RW_ASYNC, HZ/10);
1246
1247 /* We are about to die and free our memory. Return now. */
1248 if (fatal_signal_pending(current))
1249 return SWAP_CLUSTER_MAX;
1250 }
1251
1252 lru_add_drain();
1253
1254 if (!sc->may_unmap)
1255 isolate_mode |= ISOLATE_UNMAPPED;
1256 if (!sc->may_writepage)
1257 isolate_mode |= ISOLATE_CLEAN;
1258
1259 spin_lock_irq(&zone->lru_lock);
1260
1261 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262 &nr_scanned, sc, isolate_mode, lru);
1263
1264 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1266
1267 if (global_reclaim(sc)) {
1268 zone->pages_scanned += nr_scanned;
1269 if (current_is_kswapd())
1270 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271 else
1272 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1273 }
1274 spin_unlock_irq(&zone->lru_lock);
1275
1276 if (nr_taken == 0)
1277 return 0;
1278
1279 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280 &nr_dirty, &nr_writeback);
1281
1282 spin_lock_irq(&zone->lru_lock);
1283
1284 reclaim_stat->recent_scanned[file] += nr_taken;
1285
1286 if (global_reclaim(sc)) {
1287 if (current_is_kswapd())
1288 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1289 nr_reclaimed);
1290 else
1291 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1292 nr_reclaimed);
1293 }
1294
1295 putback_inactive_pages(lruvec, &page_list);
1296
1297 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1298
1299 spin_unlock_irq(&zone->lru_lock);
1300
1301 free_hot_cold_page_list(&page_list, 1);
1302
1303 /*
1304 * If reclaim is isolating dirty pages under writeback, it implies
1305 * that the long-lived page allocation rate is exceeding the page
1306 * laundering rate. Either the global limits are not being effective
1307 * at throttling processes due to the page distribution throughout
1308 * zones or there is heavy usage of a slow backing device. The
1309 * only option is to throttle from reclaim context which is not ideal
1310 * as there is no guarantee the dirtying process is throttled in the
1311 * same way balance_dirty_pages() manages.
1312 *
1313 * This scales the number of dirty pages that must be under writeback
1314 * before throttling depending on priority. It is a simple backoff
1315 * function that has the most effect in the range DEF_PRIORITY to
1316 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317 * in trouble and reclaim is considered to be in trouble.
1318 *
1319 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1320 * DEF_PRIORITY-1 50% must be PageWriteback
1321 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1322 * ...
1323 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324 * isolated page is PageWriteback
1325 */
1326 if (nr_writeback && nr_writeback >=
1327 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1328 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1329
1330 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1331 zone_idx(zone),
1332 nr_scanned, nr_reclaimed,
1333 sc->priority,
1334 trace_shrink_flags(file));
1335 return nr_reclaimed;
1336}
1337
1338/*
1339 * This moves pages from the active list to the inactive list.
1340 *
1341 * We move them the other way if the page is referenced by one or more
1342 * processes, from rmap.
1343 *
1344 * If the pages are mostly unmapped, the processing is fast and it is
1345 * appropriate to hold zone->lru_lock across the whole operation. But if
1346 * the pages are mapped, the processing is slow (page_referenced()) so we
1347 * should drop zone->lru_lock around each page. It's impossible to balance
1348 * this, so instead we remove the pages from the LRU while processing them.
1349 * It is safe to rely on PG_active against the non-LRU pages in here because
1350 * nobody will play with that bit on a non-LRU page.
1351 *
1352 * The downside is that we have to touch page->_count against each page.
1353 * But we had to alter page->flags anyway.
1354 */
1355
1356static void move_active_pages_to_lru(struct lruvec *lruvec,
1357 struct list_head *list,
1358 struct list_head *pages_to_free,
1359 enum lru_list lru)
1360{
1361 struct zone *zone = lruvec_zone(lruvec);
1362 unsigned long pgmoved = 0;
1363 struct page *page;
1364 int nr_pages;
1365
1366 while (!list_empty(list)) {
1367 page = lru_to_page(list);
1368 lruvec = mem_cgroup_page_lruvec(page, zone);
1369
1370 VM_BUG_ON(PageLRU(page));
1371 SetPageLRU(page);
1372
1373 nr_pages = hpage_nr_pages(page);
1374 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375 list_move(&page->lru, &lruvec->lists[lru]);
1376 pgmoved += nr_pages;
1377
1378 if (put_page_testzero(page)) {
1379 __ClearPageLRU(page);
1380 __ClearPageActive(page);
1381 del_page_from_lru_list(page, lruvec, lru);
1382
1383 if (unlikely(PageCompound(page))) {
1384 spin_unlock_irq(&zone->lru_lock);
1385 (*get_compound_page_dtor(page))(page);
1386 spin_lock_irq(&zone->lru_lock);
1387 } else
1388 list_add(&page->lru, pages_to_free);
1389 }
1390 }
1391 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392 if (!is_active_lru(lru))
1393 __count_vm_events(PGDEACTIVATE, pgmoved);
1394}
1395
1396static void shrink_active_list(unsigned long nr_to_scan,
1397 struct lruvec *lruvec,
1398 struct scan_control *sc,
1399 enum lru_list lru)
1400{
1401 unsigned long nr_taken;
1402 unsigned long nr_scanned;
1403 unsigned long vm_flags;
1404 LIST_HEAD(l_hold); /* The pages which were snipped off */
1405 LIST_HEAD(l_active);
1406 LIST_HEAD(l_inactive);
1407 struct page *page;
1408 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409 unsigned long nr_rotated = 0;
1410 isolate_mode_t isolate_mode = 0;
1411 int file = is_file_lru(lru);
1412 struct zone *zone = lruvec_zone(lruvec);
1413
1414 lru_add_drain();
1415
1416 if (!sc->may_unmap)
1417 isolate_mode |= ISOLATE_UNMAPPED;
1418 if (!sc->may_writepage)
1419 isolate_mode |= ISOLATE_CLEAN;
1420
1421 spin_lock_irq(&zone->lru_lock);
1422
1423 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424 &nr_scanned, sc, isolate_mode, lru);
1425 if (global_reclaim(sc))
1426 zone->pages_scanned += nr_scanned;
1427
1428 reclaim_stat->recent_scanned[file] += nr_taken;
1429
1430 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433 spin_unlock_irq(&zone->lru_lock);
1434
1435 while (!list_empty(&l_hold)) {
1436 cond_resched();
1437 page = lru_to_page(&l_hold);
1438 list_del(&page->lru);
1439
1440 if (unlikely(!page_evictable(page, NULL))) {
1441 putback_lru_page(page);
1442 continue;
1443 }
1444
1445 if (unlikely(buffer_heads_over_limit)) {
1446 if (page_has_private(page) && trylock_page(page)) {
1447 if (page_has_private(page))
1448 try_to_release_page(page, 0);
1449 unlock_page(page);
1450 }
1451 }
1452
1453 if (page_referenced(page, 0, sc->target_mem_cgroup,
1454 &vm_flags)) {
1455 nr_rotated += hpage_nr_pages(page);
1456 /*
1457 * Identify referenced, file-backed active pages and
1458 * give them one more trip around the active list. So
1459 * that executable code get better chances to stay in
1460 * memory under moderate memory pressure. Anon pages
1461 * are not likely to be evicted by use-once streaming
1462 * IO, plus JVM can create lots of anon VM_EXEC pages,
1463 * so we ignore them here.
1464 */
1465 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466 list_add(&page->lru, &l_active);
1467 continue;
1468 }
1469 }
1470
1471 ClearPageActive(page); /* we are de-activating */
1472 list_add(&page->lru, &l_inactive);
1473 }
1474
1475 /*
1476 * Move pages back to the lru list.
1477 */
1478 spin_lock_irq(&zone->lru_lock);
1479 /*
1480 * Count referenced pages from currently used mappings as rotated,
1481 * even though only some of them are actually re-activated. This
1482 * helps balance scan pressure between file and anonymous pages in
1483 * get_scan_ratio.
1484 */
1485 reclaim_stat->recent_rotated[file] += nr_rotated;
1486
1487 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490 spin_unlock_irq(&zone->lru_lock);
1491
1492 free_hot_cold_page_list(&l_hold, 1);
1493}
1494
1495#ifdef CONFIG_SWAP
1496static int inactive_anon_is_low_global(struct zone *zone)
1497{
1498 unsigned long active, inactive;
1499
1500 active = zone_page_state(zone, NR_ACTIVE_ANON);
1501 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1502
1503 if (inactive * zone->inactive_ratio < active)
1504 return 1;
1505
1506 return 0;
1507}
1508
1509/**
1510 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511 * @lruvec: LRU vector to check
1512 *
1513 * Returns true if the zone does not have enough inactive anon pages,
1514 * meaning some active anon pages need to be deactivated.
1515 */
1516static int inactive_anon_is_low(struct lruvec *lruvec)
1517{
1518 /*
1519 * If we don't have swap space, anonymous page deactivation
1520 * is pointless.
1521 */
1522 if (!total_swap_pages)
1523 return 0;
1524
1525 if (!mem_cgroup_disabled())
1526 return mem_cgroup_inactive_anon_is_low(lruvec);
1527
1528 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529}
1530#else
1531static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532{
1533 return 0;
1534}
1535#endif
1536
1537static int inactive_file_is_low_global(struct zone *zone)
1538{
1539 unsigned long active, inactive;
1540
1541 active = zone_page_state(zone, NR_ACTIVE_FILE);
1542 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1543
1544 return (active > inactive);
1545}
1546
1547/**
1548 * inactive_file_is_low - check if file pages need to be deactivated
1549 * @lruvec: LRU vector to check
1550 *
1551 * When the system is doing streaming IO, memory pressure here
1552 * ensures that active file pages get deactivated, until more
1553 * than half of the file pages are on the inactive list.
1554 *
1555 * Once we get to that situation, protect the system's working
1556 * set from being evicted by disabling active file page aging.
1557 *
1558 * This uses a different ratio than the anonymous pages, because
1559 * the page cache uses a use-once replacement algorithm.
1560 */
1561static int inactive_file_is_low(struct lruvec *lruvec)
1562{
1563 if (!mem_cgroup_disabled())
1564 return mem_cgroup_inactive_file_is_low(lruvec);
1565
1566 return inactive_file_is_low_global(lruvec_zone(lruvec));
1567}
1568
1569static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570{
1571 if (is_file_lru(lru))
1572 return inactive_file_is_low(lruvec);
1573 else
1574 return inactive_anon_is_low(lruvec);
1575}
1576
1577static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578 struct lruvec *lruvec, struct scan_control *sc)
1579{
1580 if (is_active_lru(lru)) {
1581 if (inactive_list_is_low(lruvec, lru))
1582 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1583 return 0;
1584 }
1585
1586 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587}
1588
1589static int vmscan_swappiness(struct scan_control *sc)
1590{
1591 if (global_reclaim(sc))
1592 return vm_swappiness;
1593 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1594}
1595
1596/*
1597 * Determine how aggressively the anon and file LRU lists should be
1598 * scanned. The relative value of each set of LRU lists is determined
1599 * by looking at the fraction of the pages scanned we did rotate back
1600 * onto the active list instead of evict.
1601 *
1602 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1603 */
1604static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1605 unsigned long *nr)
1606{
1607 unsigned long anon, file, free;
1608 unsigned long anon_prio, file_prio;
1609 unsigned long ap, fp;
1610 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1611 u64 fraction[2], denominator;
1612 enum lru_list lru;
1613 int noswap = 0;
1614 bool force_scan = false;
1615 struct zone *zone = lruvec_zone(lruvec);
1616
1617 /*
1618 * If the zone or memcg is small, nr[l] can be 0. This
1619 * results in no scanning on this priority and a potential
1620 * priority drop. Global direct reclaim can go to the next
1621 * zone and tends to have no problems. Global kswapd is for
1622 * zone balancing and it needs to scan a minimum amount. When
1623 * reclaiming for a memcg, a priority drop can cause high
1624 * latencies, so it's better to scan a minimum amount there as
1625 * well.
1626 */
1627 if (current_is_kswapd() && zone->all_unreclaimable)
1628 force_scan = true;
1629 if (!global_reclaim(sc))
1630 force_scan = true;
1631
1632 /* If we have no swap space, do not bother scanning anon pages. */
1633 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1634 noswap = 1;
1635 fraction[0] = 0;
1636 fraction[1] = 1;
1637 denominator = 1;
1638 goto out;
1639 }
1640
1641 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1642 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1643 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1644 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1645
1646 if (global_reclaim(sc)) {
1647 free = zone_page_state(zone, NR_FREE_PAGES);
1648 /* If we have very few page cache pages,
1649 force-scan anon pages. */
1650 if (unlikely(file + free <= high_wmark_pages(zone))) {
1651 fraction[0] = 1;
1652 fraction[1] = 0;
1653 denominator = 1;
1654 goto out;
1655 }
1656 }
1657
1658 /*
1659 * With swappiness at 100, anonymous and file have the same priority.
1660 * This scanning priority is essentially the inverse of IO cost.
1661 */
1662 anon_prio = vmscan_swappiness(sc);
1663 file_prio = 200 - anon_prio;
1664
1665 /*
1666 * OK, so we have swap space and a fair amount of page cache
1667 * pages. We use the recently rotated / recently scanned
1668 * ratios to determine how valuable each cache is.
1669 *
1670 * Because workloads change over time (and to avoid overflow)
1671 * we keep these statistics as a floating average, which ends
1672 * up weighing recent references more than old ones.
1673 *
1674 * anon in [0], file in [1]
1675 */
1676 spin_lock_irq(&zone->lru_lock);
1677 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1678 reclaim_stat->recent_scanned[0] /= 2;
1679 reclaim_stat->recent_rotated[0] /= 2;
1680 }
1681
1682 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1683 reclaim_stat->recent_scanned[1] /= 2;
1684 reclaim_stat->recent_rotated[1] /= 2;
1685 }
1686
1687 /*
1688 * The amount of pressure on anon vs file pages is inversely
1689 * proportional to the fraction of recently scanned pages on
1690 * each list that were recently referenced and in active use.
1691 */
1692 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1693 ap /= reclaim_stat->recent_rotated[0] + 1;
1694
1695 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1696 fp /= reclaim_stat->recent_rotated[1] + 1;
1697 spin_unlock_irq(&zone->lru_lock);
1698
1699 fraction[0] = ap;
1700 fraction[1] = fp;
1701 denominator = ap + fp + 1;
1702out:
1703 for_each_evictable_lru(lru) {
1704 int file = is_file_lru(lru);
1705 unsigned long scan;
1706
1707 scan = get_lru_size(lruvec, lru);
1708 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1709 scan >>= sc->priority;
1710 if (!scan && force_scan)
1711 scan = SWAP_CLUSTER_MAX;
1712 scan = div64_u64(scan * fraction[file], denominator);
1713 }
1714 nr[lru] = scan;
1715 }
1716}
1717
1718/* Use reclaim/compaction for costly allocs or under memory pressure */
1719static bool in_reclaim_compaction(struct scan_control *sc)
1720{
1721 if (COMPACTION_BUILD && sc->order &&
1722 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1723 sc->priority < DEF_PRIORITY - 2))
1724 return true;
1725
1726 return false;
1727}
1728
1729/*
1730 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1731 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1732 * true if more pages should be reclaimed such that when the page allocator
1733 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1734 * It will give up earlier than that if there is difficulty reclaiming pages.
1735 */
1736static inline bool should_continue_reclaim(struct lruvec *lruvec,
1737 unsigned long nr_reclaimed,
1738 unsigned long nr_scanned,
1739 struct scan_control *sc)
1740{
1741 unsigned long pages_for_compaction;
1742 unsigned long inactive_lru_pages;
1743
1744 /* If not in reclaim/compaction mode, stop */
1745 if (!in_reclaim_compaction(sc))
1746 return false;
1747
1748 /* Consider stopping depending on scan and reclaim activity */
1749 if (sc->gfp_mask & __GFP_REPEAT) {
1750 /*
1751 * For __GFP_REPEAT allocations, stop reclaiming if the
1752 * full LRU list has been scanned and we are still failing
1753 * to reclaim pages. This full LRU scan is potentially
1754 * expensive but a __GFP_REPEAT caller really wants to succeed
1755 */
1756 if (!nr_reclaimed && !nr_scanned)
1757 return false;
1758 } else {
1759 /*
1760 * For non-__GFP_REPEAT allocations which can presumably
1761 * fail without consequence, stop if we failed to reclaim
1762 * any pages from the last SWAP_CLUSTER_MAX number of
1763 * pages that were scanned. This will return to the
1764 * caller faster at the risk reclaim/compaction and
1765 * the resulting allocation attempt fails
1766 */
1767 if (!nr_reclaimed)
1768 return false;
1769 }
1770
1771 /*
1772 * If we have not reclaimed enough pages for compaction and the
1773 * inactive lists are large enough, continue reclaiming
1774 */
1775 pages_for_compaction = (2UL << sc->order);
1776 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1777 if (nr_swap_pages > 0)
1778 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1779 if (sc->nr_reclaimed < pages_for_compaction &&
1780 inactive_lru_pages > pages_for_compaction)
1781 return true;
1782
1783 /* If compaction would go ahead or the allocation would succeed, stop */
1784 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1785 case COMPACT_PARTIAL:
1786 case COMPACT_CONTINUE:
1787 return false;
1788 default:
1789 return true;
1790 }
1791}
1792
1793/*
1794 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1795 */
1796static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1797{
1798 unsigned long nr[NR_LRU_LISTS];
1799 unsigned long nr_to_scan;
1800 enum lru_list lru;
1801 unsigned long nr_reclaimed, nr_scanned;
1802 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1803 struct blk_plug plug;
1804
1805restart:
1806 nr_reclaimed = 0;
1807 nr_scanned = sc->nr_scanned;
1808 get_scan_count(lruvec, sc, nr);
1809
1810 blk_start_plug(&plug);
1811 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1812 nr[LRU_INACTIVE_FILE]) {
1813 for_each_evictable_lru(lru) {
1814 if (nr[lru]) {
1815 nr_to_scan = min_t(unsigned long,
1816 nr[lru], SWAP_CLUSTER_MAX);
1817 nr[lru] -= nr_to_scan;
1818
1819 nr_reclaimed += shrink_list(lru, nr_to_scan,
1820 lruvec, sc);
1821 }
1822 }
1823 /*
1824 * On large memory systems, scan >> priority can become
1825 * really large. This is fine for the starting priority;
1826 * we want to put equal scanning pressure on each zone.
1827 * However, if the VM has a harder time of freeing pages,
1828 * with multiple processes reclaiming pages, the total
1829 * freeing target can get unreasonably large.
1830 */
1831 if (nr_reclaimed >= nr_to_reclaim &&
1832 sc->priority < DEF_PRIORITY)
1833 break;
1834 }
1835 blk_finish_plug(&plug);
1836 sc->nr_reclaimed += nr_reclaimed;
1837
1838 /*
1839 * Even if we did not try to evict anon pages at all, we want to
1840 * rebalance the anon lru active/inactive ratio.
1841 */
1842 if (inactive_anon_is_low(lruvec))
1843 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1844 sc, LRU_ACTIVE_ANON);
1845
1846 /* reclaim/compaction might need reclaim to continue */
1847 if (should_continue_reclaim(lruvec, nr_reclaimed,
1848 sc->nr_scanned - nr_scanned, sc))
1849 goto restart;
1850
1851 throttle_vm_writeout(sc->gfp_mask);
1852}
1853
1854static void shrink_zone(struct zone *zone, struct scan_control *sc)
1855{
1856 struct mem_cgroup *root = sc->target_mem_cgroup;
1857 struct mem_cgroup_reclaim_cookie reclaim = {
1858 .zone = zone,
1859 .priority = sc->priority,
1860 };
1861 struct mem_cgroup *memcg;
1862
1863 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1864 do {
1865 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1866
1867 shrink_lruvec(lruvec, sc);
1868
1869 /*
1870 * Limit reclaim has historically picked one memcg and
1871 * scanned it with decreasing priority levels until
1872 * nr_to_reclaim had been reclaimed. This priority
1873 * cycle is thus over after a single memcg.
1874 *
1875 * Direct reclaim and kswapd, on the other hand, have
1876 * to scan all memory cgroups to fulfill the overall
1877 * scan target for the zone.
1878 */
1879 if (!global_reclaim(sc)) {
1880 mem_cgroup_iter_break(root, memcg);
1881 break;
1882 }
1883 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1884 } while (memcg);
1885}
1886
1887/* Returns true if compaction should go ahead for a high-order request */
1888static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1889{
1890 unsigned long balance_gap, watermark;
1891 bool watermark_ok;
1892
1893 /* Do not consider compaction for orders reclaim is meant to satisfy */
1894 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1895 return false;
1896
1897 /*
1898 * Compaction takes time to run and there are potentially other
1899 * callers using the pages just freed. Continue reclaiming until
1900 * there is a buffer of free pages available to give compaction
1901 * a reasonable chance of completing and allocating the page
1902 */
1903 balance_gap = min(low_wmark_pages(zone),
1904 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1905 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1906 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1907 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1908
1909 /*
1910 * If compaction is deferred, reclaim up to a point where
1911 * compaction will have a chance of success when re-enabled
1912 */
1913 if (compaction_deferred(zone, sc->order))
1914 return watermark_ok;
1915
1916 /* If compaction is not ready to start, keep reclaiming */
1917 if (!compaction_suitable(zone, sc->order))
1918 return false;
1919
1920 return watermark_ok;
1921}
1922
1923/*
1924 * This is the direct reclaim path, for page-allocating processes. We only
1925 * try to reclaim pages from zones which will satisfy the caller's allocation
1926 * request.
1927 *
1928 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1929 * Because:
1930 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1931 * allocation or
1932 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1933 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1934 * zone defense algorithm.
1935 *
1936 * If a zone is deemed to be full of pinned pages then just give it a light
1937 * scan then give up on it.
1938 *
1939 * This function returns true if a zone is being reclaimed for a costly
1940 * high-order allocation and compaction is ready to begin. This indicates to
1941 * the caller that it should consider retrying the allocation instead of
1942 * further reclaim.
1943 */
1944static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1945{
1946 struct zoneref *z;
1947 struct zone *zone;
1948 unsigned long nr_soft_reclaimed;
1949 unsigned long nr_soft_scanned;
1950 bool aborted_reclaim = false;
1951
1952 /*
1953 * If the number of buffer_heads in the machine exceeds the maximum
1954 * allowed level, force direct reclaim to scan the highmem zone as
1955 * highmem pages could be pinning lowmem pages storing buffer_heads
1956 */
1957 if (buffer_heads_over_limit)
1958 sc->gfp_mask |= __GFP_HIGHMEM;
1959
1960 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1961 gfp_zone(sc->gfp_mask), sc->nodemask) {
1962 if (!populated_zone(zone))
1963 continue;
1964 /*
1965 * Take care memory controller reclaiming has small influence
1966 * to global LRU.
1967 */
1968 if (global_reclaim(sc)) {
1969 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1970 continue;
1971 if (zone->all_unreclaimable &&
1972 sc->priority != DEF_PRIORITY)
1973 continue; /* Let kswapd poll it */
1974 if (COMPACTION_BUILD) {
1975 /*
1976 * If we already have plenty of memory free for
1977 * compaction in this zone, don't free any more.
1978 * Even though compaction is invoked for any
1979 * non-zero order, only frequent costly order
1980 * reclamation is disruptive enough to become a
1981 * noticeable problem, like transparent huge
1982 * page allocations.
1983 */
1984 if (compaction_ready(zone, sc)) {
1985 aborted_reclaim = true;
1986 continue;
1987 }
1988 }
1989 /*
1990 * This steals pages from memory cgroups over softlimit
1991 * and returns the number of reclaimed pages and
1992 * scanned pages. This works for global memory pressure
1993 * and balancing, not for a memcg's limit.
1994 */
1995 nr_soft_scanned = 0;
1996 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1997 sc->order, sc->gfp_mask,
1998 &nr_soft_scanned);
1999 sc->nr_reclaimed += nr_soft_reclaimed;
2000 sc->nr_scanned += nr_soft_scanned;
2001 /* need some check for avoid more shrink_zone() */
2002 }
2003
2004 shrink_zone(zone, sc);
2005 }
2006
2007 return aborted_reclaim;
2008}
2009
2010static bool zone_reclaimable(struct zone *zone)
2011{
2012 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2013}
2014
2015/* All zones in zonelist are unreclaimable? */
2016static bool all_unreclaimable(struct zonelist *zonelist,
2017 struct scan_control *sc)
2018{
2019 struct zoneref *z;
2020 struct zone *zone;
2021
2022 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2023 gfp_zone(sc->gfp_mask), sc->nodemask) {
2024 if (!populated_zone(zone))
2025 continue;
2026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027 continue;
2028 if (!zone->all_unreclaimable)
2029 return false;
2030 }
2031
2032 return true;
2033}
2034
2035/*
2036 * This is the main entry point to direct page reclaim.
2037 *
2038 * If a full scan of the inactive list fails to free enough memory then we
2039 * are "out of memory" and something needs to be killed.
2040 *
2041 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2042 * high - the zone may be full of dirty or under-writeback pages, which this
2043 * caller can't do much about. We kick the writeback threads and take explicit
2044 * naps in the hope that some of these pages can be written. But if the
2045 * allocating task holds filesystem locks which prevent writeout this might not
2046 * work, and the allocation attempt will fail.
2047 *
2048 * returns: 0, if no pages reclaimed
2049 * else, the number of pages reclaimed
2050 */
2051static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2052 struct scan_control *sc,
2053 struct shrink_control *shrink)
2054{
2055 unsigned long total_scanned = 0;
2056 struct reclaim_state *reclaim_state = current->reclaim_state;
2057 struct zoneref *z;
2058 struct zone *zone;
2059 unsigned long writeback_threshold;
2060 bool aborted_reclaim;
2061
2062 delayacct_freepages_start();
2063
2064 if (global_reclaim(sc))
2065 count_vm_event(ALLOCSTALL);
2066
2067 do {
2068 sc->nr_scanned = 0;
2069 aborted_reclaim = shrink_zones(zonelist, sc);
2070
2071 /*
2072 * Don't shrink slabs when reclaiming memory from
2073 * over limit cgroups
2074 */
2075 if (global_reclaim(sc)) {
2076 unsigned long lru_pages = 0;
2077 for_each_zone_zonelist(zone, z, zonelist,
2078 gfp_zone(sc->gfp_mask)) {
2079 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080 continue;
2081
2082 lru_pages += zone_reclaimable_pages(zone);
2083 }
2084
2085 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2086 if (reclaim_state) {
2087 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2088 reclaim_state->reclaimed_slab = 0;
2089 }
2090 }
2091 total_scanned += sc->nr_scanned;
2092 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2093 goto out;
2094
2095 /*
2096 * Try to write back as many pages as we just scanned. This
2097 * tends to cause slow streaming writers to write data to the
2098 * disk smoothly, at the dirtying rate, which is nice. But
2099 * that's undesirable in laptop mode, where we *want* lumpy
2100 * writeout. So in laptop mode, write out the whole world.
2101 */
2102 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2103 if (total_scanned > writeback_threshold) {
2104 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2105 WB_REASON_TRY_TO_FREE_PAGES);
2106 sc->may_writepage = 1;
2107 }
2108
2109 /* Take a nap, wait for some writeback to complete */
2110 if (!sc->hibernation_mode && sc->nr_scanned &&
2111 sc->priority < DEF_PRIORITY - 2) {
2112 struct zone *preferred_zone;
2113
2114 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2115 &cpuset_current_mems_allowed,
2116 &preferred_zone);
2117 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2118 }
2119 } while (--sc->priority >= 0);
2120
2121out:
2122 delayacct_freepages_end();
2123
2124 if (sc->nr_reclaimed)
2125 return sc->nr_reclaimed;
2126
2127 /*
2128 * As hibernation is going on, kswapd is freezed so that it can't mark
2129 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2130 * check.
2131 */
2132 if (oom_killer_disabled)
2133 return 0;
2134
2135 /* Aborted reclaim to try compaction? don't OOM, then */
2136 if (aborted_reclaim)
2137 return 1;
2138
2139 /* top priority shrink_zones still had more to do? don't OOM, then */
2140 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2141 return 1;
2142
2143 return 0;
2144}
2145
2146unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2147 gfp_t gfp_mask, nodemask_t *nodemask)
2148{
2149 unsigned long nr_reclaimed;
2150 struct scan_control sc = {
2151 .gfp_mask = gfp_mask,
2152 .may_writepage = !laptop_mode,
2153 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2154 .may_unmap = 1,
2155 .may_swap = 1,
2156 .order = order,
2157 .priority = DEF_PRIORITY,
2158 .target_mem_cgroup = NULL,
2159 .nodemask = nodemask,
2160 };
2161 struct shrink_control shrink = {
2162 .gfp_mask = sc.gfp_mask,
2163 };
2164
2165 trace_mm_vmscan_direct_reclaim_begin(order,
2166 sc.may_writepage,
2167 gfp_mask);
2168
2169 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2170
2171 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2172
2173 return nr_reclaimed;
2174}
2175
2176#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2177
2178unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2179 gfp_t gfp_mask, bool noswap,
2180 struct zone *zone,
2181 unsigned long *nr_scanned)
2182{
2183 struct scan_control sc = {
2184 .nr_scanned = 0,
2185 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2186 .may_writepage = !laptop_mode,
2187 .may_unmap = 1,
2188 .may_swap = !noswap,
2189 .order = 0,
2190 .priority = 0,
2191 .target_mem_cgroup = memcg,
2192 };
2193 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2194
2195 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2196 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2197
2198 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2199 sc.may_writepage,
2200 sc.gfp_mask);
2201
2202 /*
2203 * NOTE: Although we can get the priority field, using it
2204 * here is not a good idea, since it limits the pages we can scan.
2205 * if we don't reclaim here, the shrink_zone from balance_pgdat
2206 * will pick up pages from other mem cgroup's as well. We hack
2207 * the priority and make it zero.
2208 */
2209 shrink_lruvec(lruvec, &sc);
2210
2211 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2212
2213 *nr_scanned = sc.nr_scanned;
2214 return sc.nr_reclaimed;
2215}
2216
2217unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2218 gfp_t gfp_mask,
2219 bool noswap)
2220{
2221 struct zonelist *zonelist;
2222 unsigned long nr_reclaimed;
2223 int nid;
2224 struct scan_control sc = {
2225 .may_writepage = !laptop_mode,
2226 .may_unmap = 1,
2227 .may_swap = !noswap,
2228 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2229 .order = 0,
2230 .priority = DEF_PRIORITY,
2231 .target_mem_cgroup = memcg,
2232 .nodemask = NULL, /* we don't care the placement */
2233 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2234 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2235 };
2236 struct shrink_control shrink = {
2237 .gfp_mask = sc.gfp_mask,
2238 };
2239
2240 /*
2241 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2242 * take care of from where we get pages. So the node where we start the
2243 * scan does not need to be the current node.
2244 */
2245 nid = mem_cgroup_select_victim_node(memcg);
2246
2247 zonelist = NODE_DATA(nid)->node_zonelists;
2248
2249 trace_mm_vmscan_memcg_reclaim_begin(0,
2250 sc.may_writepage,
2251 sc.gfp_mask);
2252
2253 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2254
2255 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2256
2257 return nr_reclaimed;
2258}
2259#endif
2260
2261static void age_active_anon(struct zone *zone, struct scan_control *sc)
2262{
2263 struct mem_cgroup *memcg;
2264
2265 if (!total_swap_pages)
2266 return;
2267
2268 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2269 do {
2270 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2271
2272 if (inactive_anon_is_low(lruvec))
2273 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2274 sc, LRU_ACTIVE_ANON);
2275
2276 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2277 } while (memcg);
2278}
2279
2280/*
2281 * pgdat_balanced is used when checking if a node is balanced for high-order
2282 * allocations. Only zones that meet watermarks and are in a zone allowed
2283 * by the callers classzone_idx are added to balanced_pages. The total of
2284 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2285 * for the node to be considered balanced. Forcing all zones to be balanced
2286 * for high orders can cause excessive reclaim when there are imbalanced zones.
2287 * The choice of 25% is due to
2288 * o a 16M DMA zone that is balanced will not balance a zone on any
2289 * reasonable sized machine
2290 * o On all other machines, the top zone must be at least a reasonable
2291 * percentage of the middle zones. For example, on 32-bit x86, highmem
2292 * would need to be at least 256M for it to be balance a whole node.
2293 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2294 * to balance a node on its own. These seemed like reasonable ratios.
2295 */
2296static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2297 int classzone_idx)
2298{
2299 unsigned long present_pages = 0;
2300 int i;
2301
2302 for (i = 0; i <= classzone_idx; i++)
2303 present_pages += pgdat->node_zones[i].present_pages;
2304
2305 /* A special case here: if zone has no page, we think it's balanced */
2306 return balanced_pages >= (present_pages >> 2);
2307}
2308
2309/* is kswapd sleeping prematurely? */
2310static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2311 int classzone_idx)
2312{
2313 int i;
2314 unsigned long balanced = 0;
2315 bool all_zones_ok = true;
2316
2317 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2318 if (remaining)
2319 return true;
2320
2321 /* Check the watermark levels */
2322 for (i = 0; i <= classzone_idx; i++) {
2323 struct zone *zone = pgdat->node_zones + i;
2324
2325 if (!populated_zone(zone))
2326 continue;
2327
2328 /*
2329 * balance_pgdat() skips over all_unreclaimable after
2330 * DEF_PRIORITY. Effectively, it considers them balanced so
2331 * they must be considered balanced here as well if kswapd
2332 * is to sleep
2333 */
2334 if (zone->all_unreclaimable) {
2335 balanced += zone->present_pages;
2336 continue;
2337 }
2338
2339 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2340 i, 0))
2341 all_zones_ok = false;
2342 else
2343 balanced += zone->present_pages;
2344 }
2345
2346 /*
2347 * For high-order requests, the balanced zones must contain at least
2348 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2349 * must be balanced
2350 */
2351 if (order)
2352 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2353 else
2354 return !all_zones_ok;
2355}
2356
2357/*
2358 * For kswapd, balance_pgdat() will work across all this node's zones until
2359 * they are all at high_wmark_pages(zone).
2360 *
2361 * Returns the final order kswapd was reclaiming at
2362 *
2363 * There is special handling here for zones which are full of pinned pages.
2364 * This can happen if the pages are all mlocked, or if they are all used by
2365 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2366 * What we do is to detect the case where all pages in the zone have been
2367 * scanned twice and there has been zero successful reclaim. Mark the zone as
2368 * dead and from now on, only perform a short scan. Basically we're polling
2369 * the zone for when the problem goes away.
2370 *
2371 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2372 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2373 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2374 * lower zones regardless of the number of free pages in the lower zones. This
2375 * interoperates with the page allocator fallback scheme to ensure that aging
2376 * of pages is balanced across the zones.
2377 */
2378static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2379 int *classzone_idx)
2380{
2381 int all_zones_ok;
2382 unsigned long balanced;
2383 int i;
2384 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2385 unsigned long total_scanned;
2386 struct reclaim_state *reclaim_state = current->reclaim_state;
2387 unsigned long nr_soft_reclaimed;
2388 unsigned long nr_soft_scanned;
2389 struct scan_control sc = {
2390 .gfp_mask = GFP_KERNEL,
2391 .may_unmap = 1,
2392 .may_swap = 1,
2393 /*
2394 * kswapd doesn't want to be bailed out while reclaim. because
2395 * we want to put equal scanning pressure on each zone.
2396 */
2397 .nr_to_reclaim = ULONG_MAX,
2398 .order = order,
2399 .target_mem_cgroup = NULL,
2400 };
2401 struct shrink_control shrink = {
2402 .gfp_mask = sc.gfp_mask,
2403 };
2404loop_again:
2405 total_scanned = 0;
2406 sc.priority = DEF_PRIORITY;
2407 sc.nr_reclaimed = 0;
2408 sc.may_writepage = !laptop_mode;
2409 count_vm_event(PAGEOUTRUN);
2410
2411 do {
2412 unsigned long lru_pages = 0;
2413 int has_under_min_watermark_zone = 0;
2414
2415 all_zones_ok = 1;
2416 balanced = 0;
2417
2418 /*
2419 * Scan in the highmem->dma direction for the highest
2420 * zone which needs scanning
2421 */
2422 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2423 struct zone *zone = pgdat->node_zones + i;
2424
2425 if (!populated_zone(zone))
2426 continue;
2427
2428 if (zone->all_unreclaimable &&
2429 sc.priority != DEF_PRIORITY)
2430 continue;
2431
2432 /*
2433 * Do some background aging of the anon list, to give
2434 * pages a chance to be referenced before reclaiming.
2435 */
2436 age_active_anon(zone, &sc);
2437
2438 /*
2439 * If the number of buffer_heads in the machine
2440 * exceeds the maximum allowed level and this node
2441 * has a highmem zone, force kswapd to reclaim from
2442 * it to relieve lowmem pressure.
2443 */
2444 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2445 end_zone = i;
2446 break;
2447 }
2448
2449 if (!zone_watermark_ok_safe(zone, order,
2450 high_wmark_pages(zone), 0, 0)) {
2451 end_zone = i;
2452 break;
2453 } else {
2454 /* If balanced, clear the congested flag */
2455 zone_clear_flag(zone, ZONE_CONGESTED);
2456 }
2457 }
2458 if (i < 0)
2459 goto out;
2460
2461 for (i = 0; i <= end_zone; i++) {
2462 struct zone *zone = pgdat->node_zones + i;
2463
2464 lru_pages += zone_reclaimable_pages(zone);
2465 }
2466
2467 /*
2468 * Now scan the zone in the dma->highmem direction, stopping
2469 * at the last zone which needs scanning.
2470 *
2471 * We do this because the page allocator works in the opposite
2472 * direction. This prevents the page allocator from allocating
2473 * pages behind kswapd's direction of progress, which would
2474 * cause too much scanning of the lower zones.
2475 */
2476 for (i = 0; i <= end_zone; i++) {
2477 struct zone *zone = pgdat->node_zones + i;
2478 int nr_slab, testorder;
2479 unsigned long balance_gap;
2480
2481 if (!populated_zone(zone))
2482 continue;
2483
2484 if (zone->all_unreclaimable &&
2485 sc.priority != DEF_PRIORITY)
2486 continue;
2487
2488 sc.nr_scanned = 0;
2489
2490 nr_soft_scanned = 0;
2491 /*
2492 * Call soft limit reclaim before calling shrink_zone.
2493 */
2494 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2495 order, sc.gfp_mask,
2496 &nr_soft_scanned);
2497 sc.nr_reclaimed += nr_soft_reclaimed;
2498 total_scanned += nr_soft_scanned;
2499
2500 /*
2501 * We put equal pressure on every zone, unless
2502 * one zone has way too many pages free
2503 * already. The "too many pages" is defined
2504 * as the high wmark plus a "gap" where the
2505 * gap is either the low watermark or 1%
2506 * of the zone, whichever is smaller.
2507 */
2508 balance_gap = min(low_wmark_pages(zone),
2509 (zone->present_pages +
2510 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2511 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2512 /*
2513 * Kswapd reclaims only single pages with compaction
2514 * enabled. Trying too hard to reclaim until contiguous
2515 * free pages have become available can hurt performance
2516 * by evicting too much useful data from memory.
2517 * Do not reclaim more than needed for compaction.
2518 */
2519 testorder = order;
2520 if (COMPACTION_BUILD && order &&
2521 compaction_suitable(zone, order) !=
2522 COMPACT_SKIPPED)
2523 testorder = 0;
2524
2525 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2526 !zone_watermark_ok_safe(zone, testorder,
2527 high_wmark_pages(zone) + balance_gap,
2528 end_zone, 0)) {
2529 shrink_zone(zone, &sc);
2530
2531 reclaim_state->reclaimed_slab = 0;
2532 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2533 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2534 total_scanned += sc.nr_scanned;
2535
2536 if (nr_slab == 0 && !zone_reclaimable(zone))
2537 zone->all_unreclaimable = 1;
2538 }
2539
2540 /*
2541 * If we've done a decent amount of scanning and
2542 * the reclaim ratio is low, start doing writepage
2543 * even in laptop mode
2544 */
2545 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2546 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2547 sc.may_writepage = 1;
2548
2549 if (zone->all_unreclaimable) {
2550 if (end_zone && end_zone == i)
2551 end_zone--;
2552 continue;
2553 }
2554
2555 if (!zone_watermark_ok_safe(zone, testorder,
2556 high_wmark_pages(zone), end_zone, 0)) {
2557 all_zones_ok = 0;
2558 /*
2559 * We are still under min water mark. This
2560 * means that we have a GFP_ATOMIC allocation
2561 * failure risk. Hurry up!
2562 */
2563 if (!zone_watermark_ok_safe(zone, order,
2564 min_wmark_pages(zone), end_zone, 0))
2565 has_under_min_watermark_zone = 1;
2566 } else {
2567 /*
2568 * If a zone reaches its high watermark,
2569 * consider it to be no longer congested. It's
2570 * possible there are dirty pages backed by
2571 * congested BDIs but as pressure is relieved,
2572 * spectulatively avoid congestion waits
2573 */
2574 zone_clear_flag(zone, ZONE_CONGESTED);
2575 if (i <= *classzone_idx)
2576 balanced += zone->present_pages;
2577 }
2578
2579 }
2580 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2581 break; /* kswapd: all done */
2582 /*
2583 * OK, kswapd is getting into trouble. Take a nap, then take
2584 * another pass across the zones.
2585 */
2586 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2587 if (has_under_min_watermark_zone)
2588 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2589 else
2590 congestion_wait(BLK_RW_ASYNC, HZ/10);
2591 }
2592
2593 /*
2594 * We do this so kswapd doesn't build up large priorities for
2595 * example when it is freeing in parallel with allocators. It
2596 * matches the direct reclaim path behaviour in terms of impact
2597 * on zone->*_priority.
2598 */
2599 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2600 break;
2601 } while (--sc.priority >= 0);
2602out:
2603
2604 /*
2605 * order-0: All zones must meet high watermark for a balanced node
2606 * high-order: Balanced zones must make up at least 25% of the node
2607 * for the node to be balanced
2608 */
2609 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2610 cond_resched();
2611
2612 try_to_freeze();
2613
2614 /*
2615 * Fragmentation may mean that the system cannot be
2616 * rebalanced for high-order allocations in all zones.
2617 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2618 * it means the zones have been fully scanned and are still
2619 * not balanced. For high-order allocations, there is
2620 * little point trying all over again as kswapd may
2621 * infinite loop.
2622 *
2623 * Instead, recheck all watermarks at order-0 as they
2624 * are the most important. If watermarks are ok, kswapd will go
2625 * back to sleep. High-order users can still perform direct
2626 * reclaim if they wish.
2627 */
2628 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2629 order = sc.order = 0;
2630
2631 goto loop_again;
2632 }
2633
2634 /*
2635 * If kswapd was reclaiming at a higher order, it has the option of
2636 * sleeping without all zones being balanced. Before it does, it must
2637 * ensure that the watermarks for order-0 on *all* zones are met and
2638 * that the congestion flags are cleared. The congestion flag must
2639 * be cleared as kswapd is the only mechanism that clears the flag
2640 * and it is potentially going to sleep here.
2641 */
2642 if (order) {
2643 int zones_need_compaction = 1;
2644
2645 for (i = 0; i <= end_zone; i++) {
2646 struct zone *zone = pgdat->node_zones + i;
2647
2648 if (!populated_zone(zone))
2649 continue;
2650
2651 if (zone->all_unreclaimable &&
2652 sc.priority != DEF_PRIORITY)
2653 continue;
2654
2655 /* Would compaction fail due to lack of free memory? */
2656 if (COMPACTION_BUILD &&
2657 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2658 goto loop_again;
2659
2660 /* Confirm the zone is balanced for order-0 */
2661 if (!zone_watermark_ok(zone, 0,
2662 high_wmark_pages(zone), 0, 0)) {
2663 order = sc.order = 0;
2664 goto loop_again;
2665 }
2666
2667 /* Check if the memory needs to be defragmented. */
2668 if (zone_watermark_ok(zone, order,
2669 low_wmark_pages(zone), *classzone_idx, 0))
2670 zones_need_compaction = 0;
2671
2672 /* If balanced, clear the congested flag */
2673 zone_clear_flag(zone, ZONE_CONGESTED);
2674 }
2675
2676 if (zones_need_compaction)
2677 compact_pgdat(pgdat, order);
2678 }
2679
2680 /*
2681 * Return the order we were reclaiming at so sleeping_prematurely()
2682 * makes a decision on the order we were last reclaiming at. However,
2683 * if another caller entered the allocator slow path while kswapd
2684 * was awake, order will remain at the higher level
2685 */
2686 *classzone_idx = end_zone;
2687 return order;
2688}
2689
2690static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2691{
2692 long remaining = 0;
2693 DEFINE_WAIT(wait);
2694
2695 if (freezing(current) || kthread_should_stop())
2696 return;
2697
2698 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699
2700 /* Try to sleep for a short interval */
2701 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2702 remaining = schedule_timeout(HZ/10);
2703 finish_wait(&pgdat->kswapd_wait, &wait);
2704 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2705 }
2706
2707 /*
2708 * After a short sleep, check if it was a premature sleep. If not, then
2709 * go fully to sleep until explicitly woken up.
2710 */
2711 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2712 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2713
2714 /*
2715 * vmstat counters are not perfectly accurate and the estimated
2716 * value for counters such as NR_FREE_PAGES can deviate from the
2717 * true value by nr_online_cpus * threshold. To avoid the zone
2718 * watermarks being breached while under pressure, we reduce the
2719 * per-cpu vmstat threshold while kswapd is awake and restore
2720 * them before going back to sleep.
2721 */
2722 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2723
2724 if (!kthread_should_stop())
2725 schedule();
2726
2727 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2728 } else {
2729 if (remaining)
2730 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2731 else
2732 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2733 }
2734 finish_wait(&pgdat->kswapd_wait, &wait);
2735}
2736
2737/*
2738 * The background pageout daemon, started as a kernel thread
2739 * from the init process.
2740 *
2741 * This basically trickles out pages so that we have _some_
2742 * free memory available even if there is no other activity
2743 * that frees anything up. This is needed for things like routing
2744 * etc, where we otherwise might have all activity going on in
2745 * asynchronous contexts that cannot page things out.
2746 *
2747 * If there are applications that are active memory-allocators
2748 * (most normal use), this basically shouldn't matter.
2749 */
2750static int kswapd(void *p)
2751{
2752 unsigned long order, new_order;
2753 unsigned balanced_order;
2754 int classzone_idx, new_classzone_idx;
2755 int balanced_classzone_idx;
2756 pg_data_t *pgdat = (pg_data_t*)p;
2757 struct task_struct *tsk = current;
2758
2759 struct reclaim_state reclaim_state = {
2760 .reclaimed_slab = 0,
2761 };
2762 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2763
2764 lockdep_set_current_reclaim_state(GFP_KERNEL);
2765
2766 if (!cpumask_empty(cpumask))
2767 set_cpus_allowed_ptr(tsk, cpumask);
2768 current->reclaim_state = &reclaim_state;
2769
2770 /*
2771 * Tell the memory management that we're a "memory allocator",
2772 * and that if we need more memory we should get access to it
2773 * regardless (see "__alloc_pages()"). "kswapd" should
2774 * never get caught in the normal page freeing logic.
2775 *
2776 * (Kswapd normally doesn't need memory anyway, but sometimes
2777 * you need a small amount of memory in order to be able to
2778 * page out something else, and this flag essentially protects
2779 * us from recursively trying to free more memory as we're
2780 * trying to free the first piece of memory in the first place).
2781 */
2782 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2783 set_freezable();
2784
2785 order = new_order = 0;
2786 balanced_order = 0;
2787 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2788 balanced_classzone_idx = classzone_idx;
2789 for ( ; ; ) {
2790 int ret;
2791
2792 /*
2793 * If the last balance_pgdat was unsuccessful it's unlikely a
2794 * new request of a similar or harder type will succeed soon
2795 * so consider going to sleep on the basis we reclaimed at
2796 */
2797 if (balanced_classzone_idx >= new_classzone_idx &&
2798 balanced_order == new_order) {
2799 new_order = pgdat->kswapd_max_order;
2800 new_classzone_idx = pgdat->classzone_idx;
2801 pgdat->kswapd_max_order = 0;
2802 pgdat->classzone_idx = pgdat->nr_zones - 1;
2803 }
2804
2805 if (order < new_order || classzone_idx > new_classzone_idx) {
2806 /*
2807 * Don't sleep if someone wants a larger 'order'
2808 * allocation or has tigher zone constraints
2809 */
2810 order = new_order;
2811 classzone_idx = new_classzone_idx;
2812 } else {
2813 kswapd_try_to_sleep(pgdat, balanced_order,
2814 balanced_classzone_idx);
2815 order = pgdat->kswapd_max_order;
2816 classzone_idx = pgdat->classzone_idx;
2817 new_order = order;
2818 new_classzone_idx = classzone_idx;
2819 pgdat->kswapd_max_order = 0;
2820 pgdat->classzone_idx = pgdat->nr_zones - 1;
2821 }
2822
2823 ret = try_to_freeze();
2824 if (kthread_should_stop())
2825 break;
2826
2827 /*
2828 * We can speed up thawing tasks if we don't call balance_pgdat
2829 * after returning from the refrigerator
2830 */
2831 if (!ret) {
2832 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2833 balanced_classzone_idx = classzone_idx;
2834 balanced_order = balance_pgdat(pgdat, order,
2835 &balanced_classzone_idx);
2836 }
2837 }
2838 return 0;
2839}
2840
2841/*
2842 * A zone is low on free memory, so wake its kswapd task to service it.
2843 */
2844void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2845{
2846 pg_data_t *pgdat;
2847
2848 if (!populated_zone(zone))
2849 return;
2850
2851 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2852 return;
2853 pgdat = zone->zone_pgdat;
2854 if (pgdat->kswapd_max_order < order) {
2855 pgdat->kswapd_max_order = order;
2856 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2857 }
2858 if (!waitqueue_active(&pgdat->kswapd_wait))
2859 return;
2860 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2861 return;
2862
2863 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2864 wake_up_interruptible(&pgdat->kswapd_wait);
2865}
2866
2867/*
2868 * The reclaimable count would be mostly accurate.
2869 * The less reclaimable pages may be
2870 * - mlocked pages, which will be moved to unevictable list when encountered
2871 * - mapped pages, which may require several travels to be reclaimed
2872 * - dirty pages, which is not "instantly" reclaimable
2873 */
2874unsigned long global_reclaimable_pages(void)
2875{
2876 int nr;
2877
2878 nr = global_page_state(NR_ACTIVE_FILE) +
2879 global_page_state(NR_INACTIVE_FILE);
2880
2881 if (nr_swap_pages > 0)
2882 nr += global_page_state(NR_ACTIVE_ANON) +
2883 global_page_state(NR_INACTIVE_ANON);
2884
2885 return nr;
2886}
2887
2888unsigned long zone_reclaimable_pages(struct zone *zone)
2889{
2890 int nr;
2891
2892 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2893 zone_page_state(zone, NR_INACTIVE_FILE);
2894
2895 if (nr_swap_pages > 0)
2896 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2897 zone_page_state(zone, NR_INACTIVE_ANON);
2898
2899 return nr;
2900}
2901
2902#ifdef CONFIG_HIBERNATION
2903/*
2904 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2905 * freed pages.
2906 *
2907 * Rather than trying to age LRUs the aim is to preserve the overall
2908 * LRU order by reclaiming preferentially
2909 * inactive > active > active referenced > active mapped
2910 */
2911unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2912{
2913 struct reclaim_state reclaim_state;
2914 struct scan_control sc = {
2915 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2916 .may_swap = 1,
2917 .may_unmap = 1,
2918 .may_writepage = 1,
2919 .nr_to_reclaim = nr_to_reclaim,
2920 .hibernation_mode = 1,
2921 .order = 0,
2922 .priority = DEF_PRIORITY,
2923 };
2924 struct shrink_control shrink = {
2925 .gfp_mask = sc.gfp_mask,
2926 };
2927 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2928 struct task_struct *p = current;
2929 unsigned long nr_reclaimed;
2930
2931 p->flags |= PF_MEMALLOC;
2932 lockdep_set_current_reclaim_state(sc.gfp_mask);
2933 reclaim_state.reclaimed_slab = 0;
2934 p->reclaim_state = &reclaim_state;
2935
2936 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2937
2938 p->reclaim_state = NULL;
2939 lockdep_clear_current_reclaim_state();
2940 p->flags &= ~PF_MEMALLOC;
2941
2942 return nr_reclaimed;
2943}
2944#endif /* CONFIG_HIBERNATION */
2945
2946/* It's optimal to keep kswapds on the same CPUs as their memory, but
2947 not required for correctness. So if the last cpu in a node goes
2948 away, we get changed to run anywhere: as the first one comes back,
2949 restore their cpu bindings. */
2950static int __devinit cpu_callback(struct notifier_block *nfb,
2951 unsigned long action, void *hcpu)
2952{
2953 int nid;
2954
2955 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2956 for_each_node_state(nid, N_HIGH_MEMORY) {
2957 pg_data_t *pgdat = NODE_DATA(nid);
2958 const struct cpumask *mask;
2959
2960 mask = cpumask_of_node(pgdat->node_id);
2961
2962 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2963 /* One of our CPUs online: restore mask */
2964 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2965 }
2966 }
2967 return NOTIFY_OK;
2968}
2969
2970/*
2971 * This kswapd start function will be called by init and node-hot-add.
2972 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2973 */
2974int kswapd_run(int nid)
2975{
2976 pg_data_t *pgdat = NODE_DATA(nid);
2977 int ret = 0;
2978
2979 if (pgdat->kswapd)
2980 return 0;
2981
2982 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2983 if (IS_ERR(pgdat->kswapd)) {
2984 /* failure at boot is fatal */
2985 BUG_ON(system_state == SYSTEM_BOOTING);
2986 printk("Failed to start kswapd on node %d\n",nid);
2987 ret = -1;
2988 }
2989 return ret;
2990}
2991
2992/*
2993 * Called by memory hotplug when all memory in a node is offlined. Caller must
2994 * hold lock_memory_hotplug().
2995 */
2996void kswapd_stop(int nid)
2997{
2998 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2999
3000 if (kswapd) {
3001 kthread_stop(kswapd);
3002 NODE_DATA(nid)->kswapd = NULL;
3003 }
3004}
3005
3006static int __init kswapd_init(void)
3007{
3008 int nid;
3009
3010 swap_setup();
3011 for_each_node_state(nid, N_HIGH_MEMORY)
3012 kswapd_run(nid);
3013 hotcpu_notifier(cpu_callback, 0);
3014 return 0;
3015}
3016
3017module_init(kswapd_init)
3018
3019#ifdef CONFIG_NUMA
3020/*
3021 * Zone reclaim mode
3022 *
3023 * If non-zero call zone_reclaim when the number of free pages falls below
3024 * the watermarks.
3025 */
3026int zone_reclaim_mode __read_mostly;
3027
3028#define RECLAIM_OFF 0
3029#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3030#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3031#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3032
3033/*
3034 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3035 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3036 * a zone.
3037 */
3038#define ZONE_RECLAIM_PRIORITY 4
3039
3040/*
3041 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3042 * occur.
3043 */
3044int sysctl_min_unmapped_ratio = 1;
3045
3046/*
3047 * If the number of slab pages in a zone grows beyond this percentage then
3048 * slab reclaim needs to occur.
3049 */
3050int sysctl_min_slab_ratio = 5;
3051
3052static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3053{
3054 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3055 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3056 zone_page_state(zone, NR_ACTIVE_FILE);
3057
3058 /*
3059 * It's possible for there to be more file mapped pages than
3060 * accounted for by the pages on the file LRU lists because
3061 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3062 */
3063 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3064}
3065
3066/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3067static long zone_pagecache_reclaimable(struct zone *zone)
3068{
3069 long nr_pagecache_reclaimable;
3070 long delta = 0;
3071
3072 /*
3073 * If RECLAIM_SWAP is set, then all file pages are considered
3074 * potentially reclaimable. Otherwise, we have to worry about
3075 * pages like swapcache and zone_unmapped_file_pages() provides
3076 * a better estimate
3077 */
3078 if (zone_reclaim_mode & RECLAIM_SWAP)
3079 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3080 else
3081 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3082
3083 /* If we can't clean pages, remove dirty pages from consideration */
3084 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3085 delta += zone_page_state(zone, NR_FILE_DIRTY);
3086
3087 /* Watch for any possible underflows due to delta */
3088 if (unlikely(delta > nr_pagecache_reclaimable))
3089 delta = nr_pagecache_reclaimable;
3090
3091 return nr_pagecache_reclaimable - delta;
3092}
3093
3094/*
3095 * Try to free up some pages from this zone through reclaim.
3096 */
3097static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3098{
3099 /* Minimum pages needed in order to stay on node */
3100 const unsigned long nr_pages = 1 << order;
3101 struct task_struct *p = current;
3102 struct reclaim_state reclaim_state;
3103 struct scan_control sc = {
3104 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3106 .may_swap = 1,
3107 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3108 SWAP_CLUSTER_MAX),
3109 .gfp_mask = gfp_mask,
3110 .order = order,
3111 .priority = ZONE_RECLAIM_PRIORITY,
3112 };
3113 struct shrink_control shrink = {
3114 .gfp_mask = sc.gfp_mask,
3115 };
3116 unsigned long nr_slab_pages0, nr_slab_pages1;
3117
3118 cond_resched();
3119 /*
3120 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3121 * and we also need to be able to write out pages for RECLAIM_WRITE
3122 * and RECLAIM_SWAP.
3123 */
3124 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3125 lockdep_set_current_reclaim_state(gfp_mask);
3126 reclaim_state.reclaimed_slab = 0;
3127 p->reclaim_state = &reclaim_state;
3128
3129 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3130 /*
3131 * Free memory by calling shrink zone with increasing
3132 * priorities until we have enough memory freed.
3133 */
3134 do {
3135 shrink_zone(zone, &sc);
3136 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3137 }
3138
3139 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3140 if (nr_slab_pages0 > zone->min_slab_pages) {
3141 /*
3142 * shrink_slab() does not currently allow us to determine how
3143 * many pages were freed in this zone. So we take the current
3144 * number of slab pages and shake the slab until it is reduced
3145 * by the same nr_pages that we used for reclaiming unmapped
3146 * pages.
3147 *
3148 * Note that shrink_slab will free memory on all zones and may
3149 * take a long time.
3150 */
3151 for (;;) {
3152 unsigned long lru_pages = zone_reclaimable_pages(zone);
3153
3154 /* No reclaimable slab or very low memory pressure */
3155 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3156 break;
3157
3158 /* Freed enough memory */
3159 nr_slab_pages1 = zone_page_state(zone,
3160 NR_SLAB_RECLAIMABLE);
3161 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3162 break;
3163 }
3164
3165 /*
3166 * Update nr_reclaimed by the number of slab pages we
3167 * reclaimed from this zone.
3168 */
3169 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3170 if (nr_slab_pages1 < nr_slab_pages0)
3171 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3172 }
3173
3174 p->reclaim_state = NULL;
3175 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3176 lockdep_clear_current_reclaim_state();
3177 return sc.nr_reclaimed >= nr_pages;
3178}
3179
3180int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3181{
3182 int node_id;
3183 int ret;
3184
3185 /*
3186 * Zone reclaim reclaims unmapped file backed pages and
3187 * slab pages if we are over the defined limits.
3188 *
3189 * A small portion of unmapped file backed pages is needed for
3190 * file I/O otherwise pages read by file I/O will be immediately
3191 * thrown out if the zone is overallocated. So we do not reclaim
3192 * if less than a specified percentage of the zone is used by
3193 * unmapped file backed pages.
3194 */
3195 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3196 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3197 return ZONE_RECLAIM_FULL;
3198
3199 if (zone->all_unreclaimable)
3200 return ZONE_RECLAIM_FULL;
3201
3202 /*
3203 * Do not scan if the allocation should not be delayed.
3204 */
3205 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3206 return ZONE_RECLAIM_NOSCAN;
3207
3208 /*
3209 * Only run zone reclaim on the local zone or on zones that do not
3210 * have associated processors. This will favor the local processor
3211 * over remote processors and spread off node memory allocations
3212 * as wide as possible.
3213 */
3214 node_id = zone_to_nid(zone);
3215 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3216 return ZONE_RECLAIM_NOSCAN;
3217
3218 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3219 return ZONE_RECLAIM_NOSCAN;
3220
3221 ret = __zone_reclaim(zone, gfp_mask, order);
3222 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3223
3224 if (!ret)
3225 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3226
3227 return ret;
3228}
3229#endif
3230
3231/*
3232 * page_evictable - test whether a page is evictable
3233 * @page: the page to test
3234 * @vma: the VMA in which the page is or will be mapped, may be NULL
3235 *
3236 * Test whether page is evictable--i.e., should be placed on active/inactive
3237 * lists vs unevictable list. The vma argument is !NULL when called from the
3238 * fault path to determine how to instantate a new page.
3239 *
3240 * Reasons page might not be evictable:
3241 * (1) page's mapping marked unevictable
3242 * (2) page is part of an mlocked VMA
3243 *
3244 */
3245int page_evictable(struct page *page, struct vm_area_struct *vma)
3246{
3247
3248 if (mapping_unevictable(page_mapping(page)))
3249 return 0;
3250
3251 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3252 return 0;
3253
3254 return 1;
3255}
3256
3257#ifdef CONFIG_SHMEM
3258/**
3259 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3260 * @pages: array of pages to check
3261 * @nr_pages: number of pages to check
3262 *
3263 * Checks pages for evictability and moves them to the appropriate lru list.
3264 *
3265 * This function is only used for SysV IPC SHM_UNLOCK.
3266 */
3267void check_move_unevictable_pages(struct page **pages, int nr_pages)
3268{
3269 struct lruvec *lruvec;
3270 struct zone *zone = NULL;
3271 int pgscanned = 0;
3272 int pgrescued = 0;
3273 int i;
3274
3275 for (i = 0; i < nr_pages; i++) {
3276 struct page *page = pages[i];
3277 struct zone *pagezone;
3278
3279 pgscanned++;
3280 pagezone = page_zone(page);
3281 if (pagezone != zone) {
3282 if (zone)
3283 spin_unlock_irq(&zone->lru_lock);
3284 zone = pagezone;
3285 spin_lock_irq(&zone->lru_lock);
3286 }
3287 lruvec = mem_cgroup_page_lruvec(page, zone);
3288
3289 if (!PageLRU(page) || !PageUnevictable(page))
3290 continue;
3291
3292 if (page_evictable(page, NULL)) {
3293 enum lru_list lru = page_lru_base_type(page);
3294
3295 VM_BUG_ON(PageActive(page));
3296 ClearPageUnevictable(page);
3297 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3298 add_page_to_lru_list(page, lruvec, lru);
3299 pgrescued++;
3300 }
3301 }
3302
3303 if (zone) {
3304 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3305 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3306 spin_unlock_irq(&zone->lru_lock);
3307 }
3308}
3309#endif /* CONFIG_SHMEM */
3310
3311static void warn_scan_unevictable_pages(void)
3312{
3313 printk_once(KERN_WARNING
3314 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3315 "disabled for lack of a legitimate use case. If you have "
3316 "one, please send an email to linux-mm@kvack.org.\n",
3317 current->comm);
3318}
3319
3320/*
3321 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3322 * all nodes' unevictable lists for evictable pages
3323 */
3324unsigned long scan_unevictable_pages;
3325
3326int scan_unevictable_handler(struct ctl_table *table, int write,
3327 void __user *buffer,
3328 size_t *length, loff_t *ppos)
3329{
3330 warn_scan_unevictable_pages();
3331 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3332 scan_unevictable_pages = 0;
3333 return 0;
3334}
3335
3336#ifdef CONFIG_NUMA
3337/*
3338 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3339 * a specified node's per zone unevictable lists for evictable pages.
3340 */
3341
3342static ssize_t read_scan_unevictable_node(struct device *dev,
3343 struct device_attribute *attr,
3344 char *buf)
3345{
3346 warn_scan_unevictable_pages();
3347 return sprintf(buf, "0\n"); /* always zero; should fit... */
3348}
3349
3350static ssize_t write_scan_unevictable_node(struct device *dev,
3351 struct device_attribute *attr,
3352 const char *buf, size_t count)
3353{
3354 warn_scan_unevictable_pages();
3355 return 1;
3356}
3357
3358
3359static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3360 read_scan_unevictable_node,
3361 write_scan_unevictable_node);
3362
3363int scan_unevictable_register_node(struct node *node)
3364{
3365 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366}
3367
3368void scan_unevictable_unregister_node(struct node *node)
3369{
3370 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3371}
3372#endif