Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
 
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
 
  48#include <linux/oom.h>
 
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
 
 
 
 
 
 
 
 
 
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
 
  58
  59#include "internal.h"
 
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
  70
  71	/* Allocation order */
  72	int order;
  73
  74	/*
  75	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76	 * are scanned.
  77	 */
  78	nodemask_t	*nodemask;
  79
  80	/*
  81	 * The memory cgroup that hit its limit and as a result is the
  82	 * primary target of this reclaim invocation.
  83	 */
  84	struct mem_cgroup *target_mem_cgroup;
  85
  86	/* Scan (total_size >> priority) pages at once */
  87	int priority;
 
 
 
 
 
 
 
 
  88
  89	/* The highest zone to isolate pages for reclaim from */
  90	enum zone_type reclaim_idx;
 
 
 
 
  91
  92	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  93	unsigned int may_writepage:1;
  94
  95	/* Can mapped pages be reclaimed? */
  96	unsigned int may_unmap:1;
  97
  98	/* Can pages be swapped as part of reclaim? */
  99	unsigned int may_swap:1;
 100
 
 
 
 
 
 
 
 
 
 101	/*
 102	 * Cgroups are not reclaimed below their configured memory.low,
 103	 * unless we threaten to OOM. If any cgroups are skipped due to
 104	 * memory.low and nothing was reclaimed, go back for memory.low.
 
 
 
 105	 */
 106	unsigned int memcg_low_reclaim:1;
 107	unsigned int memcg_low_skipped:1;
 108
 
 
 
 109	unsigned int hibernation_mode:1;
 110
 111	/* One of the zones is ready for compaction */
 112	unsigned int compaction_ready:1;
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	/* Incremented by the number of inactive pages that were scanned */
 115	unsigned long nr_scanned;
 116
 117	/* Number of pages freed so far during a call to shrink_zones() */
 118	unsigned long nr_reclaimed;
 119
 120	struct {
 121		unsigned int dirty;
 122		unsigned int unqueued_dirty;
 123		unsigned int congested;
 124		unsigned int writeback;
 125		unsigned int immediate;
 126		unsigned int file_taken;
 127		unsigned int taken;
 128	} nr;
 129};
 130
 131#ifdef ARCH_HAS_PREFETCH
 132#define prefetch_prev_lru_page(_page, _base, _field)			\
 133	do {								\
 134		if ((_page)->lru.prev != _base) {			\
 135			struct page *prev;				\
 136									\
 137			prev = lru_to_page(&(_page->lru));		\
 138			prefetch(&prev->_field);			\
 139		}							\
 140	} while (0)
 141#else
 142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 143#endif
 144
 145#ifdef ARCH_HAS_PREFETCHW
 146#define prefetchw_prev_lru_page(_page, _base, _field)			\
 147	do {								\
 148		if ((_page)->lru.prev != _base) {			\
 149			struct page *prev;				\
 150									\
 151			prev = lru_to_page(&(_page->lru));		\
 152			prefetchw(&prev->_field);			\
 153		}							\
 154	} while (0)
 155#else
 156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 157#endif
 158
 159/*
 160 * From 0 .. 100.  Higher means more swappy.
 161 */
 162int vm_swappiness = 60;
 163/*
 164 * The total number of pages which are beyond the high watermark within all
 165 * zones.
 166 */
 167unsigned long vm_total_pages;
 168
 169static LIST_HEAD(shrinker_list);
 170static DECLARE_RWSEM(shrinker_rwsem);
 171
 172#ifdef CONFIG_MEMCG
 173static bool global_reclaim(struct scan_control *sc)
 
 
 174{
 175	return !sc->target_mem_cgroup;
 
 
 
 
 
 
 
 
 
 176}
 177
 178/**
 179 * sane_reclaim - is the usual dirty throttling mechanism operational?
 180 * @sc: scan_control in question
 181 *
 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 183 * completely broken with the legacy memcg and direct stalling in
 184 * shrink_page_list() is used for throttling instead, which lacks all the
 185 * niceties such as fairness, adaptive pausing, bandwidth proportional
 186 * allocation and configurability.
 187 *
 188 * This function tests whether the vmscan currently in progress can assume
 189 * that the normal dirty throttling mechanism is operational.
 190 */
 191static bool sane_reclaim(struct scan_control *sc)
 192{
 193	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 194
 195	if (!memcg)
 196		return true;
 197#ifdef CONFIG_CGROUP_WRITEBACK
 198	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 199		return true;
 200#endif
 201	return false;
 202}
 203
 204static void set_memcg_congestion(pg_data_t *pgdat,
 205				struct mem_cgroup *memcg,
 206				bool congested)
 207{
 208	struct mem_cgroup_per_node *mn;
 209
 210	if (!memcg)
 211		return;
 212
 213	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 214	WRITE_ONCE(mn->congested, congested);
 
 215}
 216
 217static bool memcg_congested(pg_data_t *pgdat,
 218			struct mem_cgroup *memcg)
 219{
 220	struct mem_cgroup_per_node *mn;
 
 221
 222	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 223	return READ_ONCE(mn->congested);
 
 
 224
 
 
 
 225}
 226#else
 227static bool global_reclaim(struct scan_control *sc)
 
 
 228{
 229	return true;
 
 
 
 
 
 
 230}
 231
 232static bool sane_reclaim(struct scan_control *sc)
 
 
 
 
 233{
 234	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235}
 236
 237static inline void set_memcg_congestion(struct pglist_data *pgdat,
 238				struct mem_cgroup *memcg, bool congested)
 239{
 
 
 
 
 
 
 
 
 240}
 241
 242static inline bool memcg_congested(struct pglist_data *pgdat,
 243			struct mem_cgroup *memcg)
 
 244{
 245	return false;
 
 
 
 
 
 
 
 
 
 
 
 246
 
 
 
 
 
 
 247}
 248#endif
 249
 250/*
 251 * This misses isolated pages which are not accounted for to save counters.
 252 * As the data only determines if reclaim or compaction continues, it is
 253 * not expected that isolated pages will be a dominating factor.
 254 */
 255unsigned long zone_reclaimable_pages(struct zone *zone)
 256{
 257	unsigned long nr;
 258
 259	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 260		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 261	if (get_nr_swap_pages() > 0)
 262		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 263			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 264
 
 
 
 
 
 
 
 265	return nr;
 266}
 267
 268/**
 269 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 270 * @lruvec: lru vector
 271 * @lru: lru to use
 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 273 */
 274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 
 275{
 276	unsigned long lru_size;
 277	int zid;
 278
 279	if (!mem_cgroup_disabled())
 280		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 281	else
 282		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 283
 284	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 285		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 286		unsigned long size;
 287
 288		if (!managed_zone(zone))
 289			continue;
 290
 291		if (!mem_cgroup_disabled())
 292			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 293		else
 294			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 295				       NR_ZONE_LRU_BASE + lru);
 296		lru_size -= min(size, lru_size);
 297	}
 298
 299	return lru_size;
 300
 301}
 302
 303/*
 304 * Add a shrinker callback to be called from the vm.
 305 */
 306int prealloc_shrinker(struct shrinker *shrinker)
 307{
 308	size_t size = sizeof(*shrinker->nr_deferred);
 
 309
 310	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 311		size *= nr_node_ids;
 
 
 312
 313	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 314	if (!shrinker->nr_deferred)
 315		return -ENOMEM;
 316	return 0;
 317}
 318
 319void free_prealloced_shrinker(struct shrinker *shrinker)
 320{
 321	kfree(shrinker->nr_deferred);
 322	shrinker->nr_deferred = NULL;
 
 
 
 
 
 
 
 
 
 
 
 323}
 324
 325void register_shrinker_prepared(struct shrinker *shrinker)
 326{
 327	down_write(&shrinker_rwsem);
 328	list_add_tail(&shrinker->list, &shrinker_list);
 329	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 330}
 331
 332int register_shrinker(struct shrinker *shrinker)
 333{
 334	int err = prealloc_shrinker(shrinker);
 335
 336	if (err)
 337		return err;
 338	register_shrinker_prepared(shrinker);
 339	return 0;
 
 340}
 341EXPORT_SYMBOL(register_shrinker);
 342
 343/*
 344 * Remove one
 
 
 
 
 
 
 
 
 
 345 */
 346void unregister_shrinker(struct shrinker *shrinker)
 
 347{
 348	if (!shrinker->nr_deferred)
 349		return;
 350	down_write(&shrinker_rwsem);
 351	list_del(&shrinker->list);
 352	up_write(&shrinker_rwsem);
 353	kfree(shrinker->nr_deferred);
 354	shrinker->nr_deferred = NULL;
 355}
 356EXPORT_SYMBOL(unregister_shrinker);
 357
 358#define SHRINK_BATCH 128
 359
 360static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 361				    struct shrinker *shrinker, int priority)
 362{
 363	unsigned long freed = 0;
 364	unsigned long long delta;
 365	long total_scan;
 366	long freeable;
 367	long nr;
 368	long new_nr;
 369	int nid = shrinkctl->nid;
 370	long batch_size = shrinker->batch ? shrinker->batch
 371					  : SHRINK_BATCH;
 372	long scanned = 0, next_deferred;
 373
 374	freeable = shrinker->count_objects(shrinker, shrinkctl);
 375	if (freeable == 0)
 376		return 0;
 377
 378	/*
 379	 * copy the current shrinker scan count into a local variable
 380	 * and zero it so that other concurrent shrinker invocations
 381	 * don't also do this scanning work.
 382	 */
 383	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 384
 385	total_scan = nr;
 386	delta = freeable >> priority;
 387	delta *= 4;
 388	do_div(delta, shrinker->seeks);
 389	total_scan += delta;
 390	if (total_scan < 0) {
 391		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 392		       shrinker->scan_objects, total_scan);
 393		total_scan = freeable;
 394		next_deferred = nr;
 395	} else
 396		next_deferred = total_scan;
 397
 398	/*
 399	 * We need to avoid excessive windup on filesystem shrinkers
 400	 * due to large numbers of GFP_NOFS allocations causing the
 401	 * shrinkers to return -1 all the time. This results in a large
 402	 * nr being built up so when a shrink that can do some work
 403	 * comes along it empties the entire cache due to nr >>>
 404	 * freeable. This is bad for sustaining a working set in
 405	 * memory.
 406	 *
 407	 * Hence only allow the shrinker to scan the entire cache when
 408	 * a large delta change is calculated directly.
 409	 */
 410	if (delta < freeable / 4)
 411		total_scan = min(total_scan, freeable / 2);
 412
 413	/*
 414	 * Avoid risking looping forever due to too large nr value:
 415	 * never try to free more than twice the estimate number of
 416	 * freeable entries.
 417	 */
 418	if (total_scan > freeable * 2)
 419		total_scan = freeable * 2;
 420
 421	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 422				   freeable, delta, total_scan, priority);
 423
 424	/*
 425	 * Normally, we should not scan less than batch_size objects in one
 426	 * pass to avoid too frequent shrinker calls, but if the slab has less
 427	 * than batch_size objects in total and we are really tight on memory,
 428	 * we will try to reclaim all available objects, otherwise we can end
 429	 * up failing allocations although there are plenty of reclaimable
 430	 * objects spread over several slabs with usage less than the
 431	 * batch_size.
 432	 *
 433	 * We detect the "tight on memory" situations by looking at the total
 434	 * number of objects we want to scan (total_scan). If it is greater
 435	 * than the total number of objects on slab (freeable), we must be
 436	 * scanning at high prio and therefore should try to reclaim as much as
 437	 * possible.
 438	 */
 439	while (total_scan >= batch_size ||
 440	       total_scan >= freeable) {
 441		unsigned long ret;
 442		unsigned long nr_to_scan = min(batch_size, total_scan);
 443
 444		shrinkctl->nr_to_scan = nr_to_scan;
 445		shrinkctl->nr_scanned = nr_to_scan;
 446		ret = shrinker->scan_objects(shrinker, shrinkctl);
 447		if (ret == SHRINK_STOP)
 448			break;
 449		freed += ret;
 450
 451		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 452		total_scan -= shrinkctl->nr_scanned;
 453		scanned += shrinkctl->nr_scanned;
 454
 455		cond_resched();
 
 
 456	}
 
 
 457
 458	if (next_deferred >= scanned)
 459		next_deferred -= scanned;
 460	else
 461		next_deferred = 0;
 462	/*
 463	 * move the unused scan count back into the shrinker in a
 464	 * manner that handles concurrent updates. If we exhausted the
 465	 * scan, there is no need to do an update.
 466	 */
 467	if (next_deferred > 0)
 468		new_nr = atomic_long_add_return(next_deferred,
 469						&shrinker->nr_deferred[nid]);
 470	else
 471		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 472
 473	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 474	return freed;
 475}
 476
 477/**
 478 * shrink_slab - shrink slab caches
 479 * @gfp_mask: allocation context
 480 * @nid: node whose slab caches to target
 481 * @memcg: memory cgroup whose slab caches to target
 482 * @priority: the reclaim priority
 483 *
 484 * Call the shrink functions to age shrinkable caches.
 485 *
 486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 487 * unaware shrinkers will receive a node id of 0 instead.
 488 *
 489 * @memcg specifies the memory cgroup to target. If it is not NULL,
 490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 491 * objects from the memory cgroup specified. Otherwise, only unaware
 492 * shrinkers are called.
 493 *
 494 * @priority is sc->priority, we take the number of objects and >> by priority
 495 * in order to get the scan target.
 496 *
 497 * Returns the number of reclaimed slab objects.
 498 */
 499static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 500				 struct mem_cgroup *memcg,
 501				 int priority)
 502{
 503	struct shrinker *shrinker;
 504	unsigned long freed = 0;
 505
 506	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 507		return 0;
 508
 509	if (!down_read_trylock(&shrinker_rwsem))
 510		goto out;
 
 
 
 
 
 
 
 
 511
 512	list_for_each_entry(shrinker, &shrinker_list, list) {
 513		struct shrink_control sc = {
 514			.gfp_mask = gfp_mask,
 515			.nid = nid,
 516			.memcg = memcg,
 517		};
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519		/*
 520		 * If kernel memory accounting is disabled, we ignore
 521		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 522		 * passing NULL for memcg.
 523		 */
 524		if (memcg_kmem_enabled() &&
 525		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 526			continue;
 527
 528		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 529			sc.nid = 0;
 530
 531		freed += do_shrink_slab(&sc, shrinker, priority);
 532		/*
 533		 * Bail out if someone want to register a new shrinker to
 534		 * prevent the regsitration from being stalled for long periods
 535		 * by parallel ongoing shrinking.
 536		 */
 537		if (rwsem_is_contended(&shrinker_rwsem)) {
 538			freed = freed ? : 1;
 539			break;
 540		}
 541	}
 542
 543	up_read(&shrinker_rwsem);
 544out:
 545	cond_resched();
 546	return freed;
 547}
 548
 549void drop_slab_node(int nid)
 550{
 551	unsigned long freed;
 552
 553	do {
 554		struct mem_cgroup *memcg = NULL;
 555
 556		freed = 0;
 557		do {
 558			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 559		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 560	} while (freed > 10);
 561}
 562
 563void drop_slab(void)
 
 
 
 
 
 
 564{
 565	int nid;
 566
 567	for_each_online_node(nid)
 568		drop_slab_node(nid);
 569}
 570
 571static inline int is_page_cache_freeable(struct page *page)
 572{
 573	/*
 574	 * A freeable page cache page is referenced only by the caller
 575	 * that isolated the page, the page cache radix tree and
 576	 * optional buffer heads at page->private.
 
 
 577	 */
 578	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
 579		HPAGE_PMD_NR : 1;
 580	return page_count(page) - page_has_private(page) == 1 + radix_pins;
 581}
 582
 583static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 584{
 585	if (current->flags & PF_SWAPWRITE)
 586		return 1;
 587	if (!inode_write_congested(inode))
 588		return 1;
 589	if (inode_to_bdi(inode) == current->backing_dev_info)
 590		return 1;
 591	return 0;
 592}
 593
 594/*
 595 * We detected a synchronous write error writing a page out.  Probably
 596 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 597 * fsync(), msync() or close().
 598 *
 599 * The tricky part is that after writepage we cannot touch the mapping: nothing
 600 * prevents it from being freed up.  But we have a ref on the page and once
 601 * that page is locked, the mapping is pinned.
 602 *
 603 * We're allowed to run sleeping lock_page() here because we know the caller has
 604 * __GFP_FS.
 605 */
 606static void handle_write_error(struct address_space *mapping,
 607				struct page *page, int error)
 608{
 609	lock_page(page);
 610	if (page_mapping(page) == mapping)
 611		mapping_set_error(mapping, error);
 612	unlock_page(page);
 613}
 614
 615/* possible outcome of pageout() */
 616typedef enum {
 617	/* failed to write page out, page is locked */
 618	PAGE_KEEP,
 619	/* move page to the active list, page is locked */
 620	PAGE_ACTIVATE,
 621	/* page has been sent to the disk successfully, page is unlocked */
 622	PAGE_SUCCESS,
 623	/* page is clean and locked */
 624	PAGE_CLEAN,
 625} pageout_t;
 626
 627/*
 628 * pageout is called by shrink_page_list() for each dirty page.
 629 * Calls ->writepage().
 630 */
 631static pageout_t pageout(struct page *page, struct address_space *mapping,
 632			 struct scan_control *sc)
 633{
 634	/*
 635	 * If the page is dirty, only perform writeback if that write
 636	 * will be non-blocking.  To prevent this allocation from being
 637	 * stalled by pagecache activity.  But note that there may be
 638	 * stalls if we need to run get_block().  We could test
 639	 * PagePrivate for that.
 640	 *
 641	 * If this process is currently in __generic_file_write_iter() against
 642	 * this page's queue, we can perform writeback even if that
 643	 * will block.
 644	 *
 645	 * If the page is swapcache, write it back even if that would
 646	 * block, for some throttling. This happens by accident, because
 647	 * swap_backing_dev_info is bust: it doesn't reflect the
 648	 * congestion state of the swapdevs.  Easy to fix, if needed.
 649	 */
 650	if (!is_page_cache_freeable(page))
 651		return PAGE_KEEP;
 652	if (!mapping) {
 653		/*
 654		 * Some data journaling orphaned pages can have
 655		 * page->mapping == NULL while being dirty with clean buffers.
 656		 */
 657		if (page_has_private(page)) {
 658			if (try_to_free_buffers(page)) {
 659				ClearPageDirty(page);
 660				pr_info("%s: orphaned page\n", __func__);
 661				return PAGE_CLEAN;
 662			}
 663		}
 664		return PAGE_KEEP;
 665	}
 666	if (mapping->a_ops->writepage == NULL)
 667		return PAGE_ACTIVATE;
 668	if (!may_write_to_inode(mapping->host, sc))
 669		return PAGE_KEEP;
 670
 671	if (clear_page_dirty_for_io(page)) {
 672		int res;
 673		struct writeback_control wbc = {
 674			.sync_mode = WB_SYNC_NONE,
 675			.nr_to_write = SWAP_CLUSTER_MAX,
 676			.range_start = 0,
 677			.range_end = LLONG_MAX,
 678			.for_reclaim = 1,
 
 679		};
 680
 681		SetPageReclaim(page);
 682		res = mapping->a_ops->writepage(page, &wbc);
 
 
 
 
 
 
 
 
 683		if (res < 0)
 684			handle_write_error(mapping, page, res);
 685		if (res == AOP_WRITEPAGE_ACTIVATE) {
 686			ClearPageReclaim(page);
 687			return PAGE_ACTIVATE;
 688		}
 689
 690		if (!PageWriteback(page)) {
 691			/* synchronous write or broken a_ops? */
 692			ClearPageReclaim(page);
 693		}
 694		trace_mm_vmscan_writepage(page);
 695		inc_node_page_state(page, NR_VMSCAN_WRITE);
 696		return PAGE_SUCCESS;
 697	}
 698
 699	return PAGE_CLEAN;
 700}
 701
 702/*
 703 * Same as remove_mapping, but if the page is removed from the mapping, it
 704 * gets returned with a refcount of 0.
 705 */
 706static int __remove_mapping(struct address_space *mapping, struct page *page,
 707			    bool reclaimed)
 708{
 709	unsigned long flags;
 710	int refcount;
 
 711
 712	BUG_ON(!PageLocked(page));
 713	BUG_ON(mapping != page_mapping(page));
 714
 715	xa_lock_irqsave(&mapping->i_pages, flags);
 
 
 716	/*
 717	 * The non racy check for a busy page.
 718	 *
 719	 * Must be careful with the order of the tests. When someone has
 720	 * a ref to the page, it may be possible that they dirty it then
 721	 * drop the reference. So if PageDirty is tested before page_count
 722	 * here, then the following race may occur:
 723	 *
 724	 * get_user_pages(&page);
 725	 * [user mapping goes away]
 726	 * write_to(page);
 727	 *				!PageDirty(page)    [good]
 728	 * SetPageDirty(page);
 729	 * put_page(page);
 730	 *				!page_count(page)   [good, discard it]
 731	 *
 732	 * [oops, our write_to data is lost]
 733	 *
 734	 * Reversing the order of the tests ensures such a situation cannot
 735	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 736	 * load is not satisfied before that of page->_refcount.
 737	 *
 738	 * Note that if SetPageDirty is always performed via set_page_dirty,
 739	 * and thus under the i_pages lock, then this ordering is not required.
 740	 */
 741	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 742		refcount = 1 + HPAGE_PMD_NR;
 743	else
 744		refcount = 2;
 745	if (!page_ref_freeze(page, refcount))
 746		goto cannot_free;
 747	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 748	if (unlikely(PageDirty(page))) {
 749		page_ref_unfreeze(page, refcount);
 750		goto cannot_free;
 751	}
 752
 753	if (PageSwapCache(page)) {
 754		swp_entry_t swap = { .val = page_private(page) };
 755		mem_cgroup_swapout(page, swap);
 756		__delete_from_swap_cache(page);
 757		xa_unlock_irqrestore(&mapping->i_pages, flags);
 758		put_swap_page(page, swap);
 
 
 
 759	} else {
 760		void (*freepage)(struct page *);
 761		void *shadow = NULL;
 762
 763		freepage = mapping->a_ops->freepage;
 764		/*
 765		 * Remember a shadow entry for reclaimed file cache in
 766		 * order to detect refaults, thus thrashing, later on.
 767		 *
 768		 * But don't store shadows in an address space that is
 769		 * already exiting.  This is not just an optizimation,
 770		 * inode reclaim needs to empty out the radix tree or
 771		 * the nodes are lost.  Don't plant shadows behind its
 772		 * back.
 773		 *
 774		 * We also don't store shadows for DAX mappings because the
 775		 * only page cache pages found in these are zero pages
 776		 * covering holes, and because we don't want to mix DAX
 777		 * exceptional entries and shadow exceptional entries in the
 778		 * same address_space.
 779		 */
 780		if (reclaimed && page_is_file_cache(page) &&
 781		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 782			shadow = workingset_eviction(mapping, page);
 783		__delete_from_page_cache(page, shadow);
 784		xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 785
 786		if (freepage != NULL)
 787			freepage(page);
 788	}
 789
 790	return 1;
 791
 792cannot_free:
 793	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 794	return 0;
 795}
 796
 797/*
 798 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 799 * someone else has a ref on the page, abort and return 0.  If it was
 800 * successfully detached, return 1.  Assumes the caller has a single ref on
 801 * this page.
 
 
 
 
 
 
 802 */
 803int remove_mapping(struct address_space *mapping, struct page *page)
 804{
 805	if (__remove_mapping(mapping, page, false)) {
 806		/*
 807		 * Unfreezing the refcount with 1 rather than 2 effectively
 808		 * drops the pagecache ref for us without requiring another
 809		 * atomic operation.
 810		 */
 811		page_ref_unfreeze(page, 1);
 812		return 1;
 813	}
 814	return 0;
 815}
 816
 817/**
 818 * putback_lru_page - put previously isolated page onto appropriate LRU list
 819 * @page: page to be put back to appropriate lru list
 820 *
 821 * Add previously isolated @page to appropriate LRU list.
 822 * Page may still be unevictable for other reasons.
 823 *
 824 * lru_lock must not be held, interrupts must be enabled.
 825 */
 826void putback_lru_page(struct page *page)
 827{
 828	lru_cache_add(page);
 829	put_page(page);		/* drop ref from isolate */
 830}
 831
 832enum page_references {
 833	PAGEREF_RECLAIM,
 834	PAGEREF_RECLAIM_CLEAN,
 835	PAGEREF_KEEP,
 836	PAGEREF_ACTIVATE,
 837};
 838
 839static enum page_references page_check_references(struct page *page,
 840						  struct scan_control *sc)
 841{
 842	int referenced_ptes, referenced_page;
 843	unsigned long vm_flags;
 844
 845	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 846					  &vm_flags);
 847	referenced_page = TestClearPageReferenced(page);
 848
 849	/*
 850	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 851	 * move the page to the unevictable list.
 852	 */
 853	if (vm_flags & VM_LOCKED)
 854		return PAGEREF_RECLAIM;
 
 
 
 
 
 
 
 
 
 855
 856	if (referenced_ptes) {
 857		if (PageSwapBacked(page))
 858			return PAGEREF_ACTIVATE;
 859		/*
 860		 * All mapped pages start out with page table
 861		 * references from the instantiating fault, so we need
 862		 * to look twice if a mapped file page is used more
 863		 * than once.
 864		 *
 865		 * Mark it and spare it for another trip around the
 866		 * inactive list.  Another page table reference will
 867		 * lead to its activation.
 868		 *
 869		 * Note: the mark is set for activated pages as well
 870		 * so that recently deactivated but used pages are
 871		 * quickly recovered.
 872		 */
 873		SetPageReferenced(page);
 874
 875		if (referenced_page || referenced_ptes > 1)
 876			return PAGEREF_ACTIVATE;
 877
 878		/*
 879		 * Activate file-backed executable pages after first usage.
 880		 */
 881		if (vm_flags & VM_EXEC)
 882			return PAGEREF_ACTIVATE;
 883
 884		return PAGEREF_KEEP;
 885	}
 886
 887	/* Reclaim if clean, defer dirty pages to writeback */
 888	if (referenced_page && !PageSwapBacked(page))
 889		return PAGEREF_RECLAIM_CLEAN;
 890
 891	return PAGEREF_RECLAIM;
 892}
 893
 894/* Check if a page is dirty or under writeback */
 895static void page_check_dirty_writeback(struct page *page,
 896				       bool *dirty, bool *writeback)
 897{
 898	struct address_space *mapping;
 899
 900	/*
 901	 * Anonymous pages are not handled by flushers and must be written
 902	 * from reclaim context. Do not stall reclaim based on them
 
 
 
 903	 */
 904	if (!page_is_file_cache(page) ||
 905	    (PageAnon(page) && !PageSwapBacked(page))) {
 906		*dirty = false;
 907		*writeback = false;
 908		return;
 909	}
 910
 911	/* By default assume that the page flags are accurate */
 912	*dirty = PageDirty(page);
 913	*writeback = PageWriteback(page);
 914
 915	/* Verify dirty/writeback state if the filesystem supports it */
 916	if (!page_has_private(page))
 917		return;
 918
 919	mapping = page_mapping(page);
 920	if (mapping && mapping->a_ops->is_dirty_writeback)
 921		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922}
 923
 924/*
 925 * shrink_page_list() returns the number of reclaimed pages
 926 */
 927static unsigned long shrink_page_list(struct list_head *page_list,
 928				      struct pglist_data *pgdat,
 929				      struct scan_control *sc,
 930				      enum ttu_flags ttu_flags,
 931				      struct reclaim_stat *stat,
 932				      bool force_reclaim)
 933{
 934	LIST_HEAD(ret_pages);
 935	LIST_HEAD(free_pages);
 936	int pgactivate = 0;
 937	unsigned nr_unqueued_dirty = 0;
 938	unsigned nr_dirty = 0;
 939	unsigned nr_congested = 0;
 940	unsigned nr_reclaimed = 0;
 941	unsigned nr_writeback = 0;
 942	unsigned nr_immediate = 0;
 943	unsigned nr_ref_keep = 0;
 944	unsigned nr_unmap_fail = 0;
 945
 
 
 946	cond_resched();
 
 947
 948	while (!list_empty(page_list)) {
 
 949		struct address_space *mapping;
 950		struct page *page;
 951		int may_enter_fs;
 952		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 953		bool dirty, writeback;
 
 954
 955		cond_resched();
 956
 957		page = lru_to_page(page_list);
 958		list_del(&page->lru);
 959
 960		if (!trylock_page(page))
 961			goto keep;
 962
 963		VM_BUG_ON_PAGE(PageActive(page), page);
 964
 965		sc->nr_scanned++;
 966
 967		if (unlikely(!page_evictable(page)))
 
 
 
 968			goto activate_locked;
 969
 970		if (!sc->may_unmap && page_mapped(page))
 971			goto keep_locked;
 972
 973		/* Double the slab pressure for mapped and swapcache pages */
 974		if ((page_mapped(page) || PageSwapCache(page)) &&
 975		    !(PageAnon(page) && !PageSwapBacked(page)))
 976			sc->nr_scanned++;
 977
 978		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 979			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 980
 981		/*
 982		 * The number of dirty pages determines if a node is marked
 983		 * reclaim_congested which affects wait_iff_congested. kswapd
 984		 * will stall and start writing pages if the tail of the LRU
 985		 * is all dirty unqueued pages.
 986		 */
 987		page_check_dirty_writeback(page, &dirty, &writeback);
 988		if (dirty || writeback)
 989			nr_dirty++;
 990
 991		if (dirty && !writeback)
 992			nr_unqueued_dirty++;
 993
 994		/*
 995		 * Treat this page as congested if the underlying BDI is or if
 996		 * pages are cycling through the LRU so quickly that the
 997		 * pages marked for immediate reclaim are making it to the
 998		 * end of the LRU a second time.
 999		 */
1000		mapping = page_mapping(page);
1001		if (((dirty || writeback) && mapping &&
1002		     inode_write_congested(mapping->host)) ||
1003		    (writeback && PageReclaim(page)))
1004			nr_congested++;
1005
1006		/*
1007		 * If a page at the tail of the LRU is under writeback, there
1008		 * are three cases to consider.
1009		 *
1010		 * 1) If reclaim is encountering an excessive number of pages
1011		 *    under writeback and this page is both under writeback and
1012		 *    PageReclaim then it indicates that pages are being queued
1013		 *    for IO but are being recycled through the LRU before the
1014		 *    IO can complete. Waiting on the page itself risks an
1015		 *    indefinite stall if it is impossible to writeback the
1016		 *    page due to IO error or disconnected storage so instead
1017		 *    note that the LRU is being scanned too quickly and the
1018		 *    caller can stall after page list has been processed.
 
 
1019		 *
1020		 * 2) Global or new memcg reclaim encounters a page that is
1021		 *    not marked for immediate reclaim, or the caller does not
1022		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023		 *    not to fs). In this case mark the page for immediate
1024		 *    reclaim and continue scanning.
1025		 *
1026		 *    Require may_enter_fs because we would wait on fs, which
1027		 *    may not have submitted IO yet. And the loop driver might
1028		 *    enter reclaim, and deadlock if it waits on a page for
1029		 *    which it is needed to do the write (loop masks off
1030		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1031		 *    would probably show more reasons.
1032		 *
1033		 * 3) Legacy memcg encounters a page that is already marked
1034		 *    PageReclaim. memcg does not have any dirty pages
1035		 *    throttling so we could easily OOM just because too many
1036		 *    pages are in writeback and there is nothing else to
1037		 *    reclaim. Wait for the writeback to complete.
1038		 *
1039		 * In cases 1) and 2) we activate the pages to get them out of
1040		 * the way while we continue scanning for clean pages on the
1041		 * inactive list and refilling from the active list. The
1042		 * observation here is that waiting for disk writes is more
1043		 * expensive than potentially causing reloads down the line.
1044		 * Since they're marked for immediate reclaim, they won't put
1045		 * memory pressure on the cache working set any longer than it
1046		 * takes to write them to disk.
1047		 */
1048		if (PageWriteback(page)) {
1049			/* Case 1 above */
1050			if (current_is_kswapd() &&
1051			    PageReclaim(page) &&
1052			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053				nr_immediate++;
1054				goto activate_locked;
1055
1056			/* Case 2 above */
1057			} else if (sane_reclaim(sc) ||
1058			    !PageReclaim(page) || !may_enter_fs) {
 
1059				/*
1060				 * This is slightly racy - end_page_writeback()
1061				 * might have just cleared PageReclaim, then
1062				 * setting PageReclaim here end up interpreted
1063				 * as PageReadahead - but that does not matter
1064				 * enough to care.  What we do want is for this
1065				 * page to have PageReclaim set next time memcg
1066				 * reclaim reaches the tests above, so it will
1067				 * then wait_on_page_writeback() to avoid OOM;
1068				 * and it's also appropriate in global reclaim.
 
 
 
1069				 */
1070				SetPageReclaim(page);
1071				nr_writeback++;
1072				goto activate_locked;
1073
1074			/* Case 3 above */
1075			} else {
1076				unlock_page(page);
1077				wait_on_page_writeback(page);
1078				/* then go back and try same page again */
1079				list_add_tail(&page->lru, page_list);
1080				continue;
1081			}
1082		}
1083
1084		if (!force_reclaim)
1085			references = page_check_references(page, sc);
1086
1087		switch (references) {
1088		case PAGEREF_ACTIVATE:
1089			goto activate_locked;
1090		case PAGEREF_KEEP:
1091			nr_ref_keep++;
1092			goto keep_locked;
1093		case PAGEREF_RECLAIM:
1094		case PAGEREF_RECLAIM_CLEAN:
1095			; /* try to reclaim the page below */
 
 
 
 
 
 
 
 
 
 
 
1096		}
1097
1098		/*
1099		 * Anonymous process memory has backing store?
1100		 * Try to allocate it some swap space here.
1101		 * Lazyfree page could be freed directly
1102		 */
1103		if (PageAnon(page) && PageSwapBacked(page)) {
1104			if (!PageSwapCache(page)) {
1105				if (!(sc->gfp_mask & __GFP_IO))
1106					goto keep_locked;
1107				if (PageTransHuge(page)) {
1108					/* cannot split THP, skip it */
1109					if (!can_split_huge_page(page, NULL))
 
 
1110						goto activate_locked;
1111					/*
1112					 * Split pages without a PMD map right
1113					 * away. Chances are some or all of the
1114					 * tail pages can be freed without IO.
1115					 */
1116					if (!compound_mapcount(page) &&
1117					    split_huge_page_to_list(page,
1118								    page_list))
1119						goto activate_locked;
1120				}
1121				if (!add_to_swap(page)) {
1122					if (!PageTransHuge(page))
1123						goto activate_locked;
 
 
1124					/* Fallback to swap normal pages */
1125					if (split_huge_page_to_list(page,
1126								    page_list))
1127						goto activate_locked;
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129					count_vm_event(THP_SWPOUT_FALLBACK);
 
 
 
 
1130#endif
1131					if (!add_to_swap(page))
1132						goto activate_locked;
 
1133				}
1134
1135				may_enter_fs = 1;
1136
1137				/* Adding to swap updated mapping */
1138				mapping = page_mapping(page);
1139			}
1140		} else if (unlikely(PageTransHuge(page))) {
1141			/* Split file THP */
1142			if (split_huge_page_to_list(page, page_list))
1143				goto keep_locked;
1144		}
1145
1146		/*
1147		 * The page is mapped into the page tables of one or more
 
 
 
 
 
 
 
 
 
 
1148		 * processes. Try to unmap it here.
1149		 */
1150		if (page_mapped(page)) {
1151			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
 
1152
1153			if (unlikely(PageTransHuge(page)))
1154				flags |= TTU_SPLIT_HUGE_PMD;
1155			if (!try_to_unmap(page, flags)) {
1156				nr_unmap_fail++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157				goto activate_locked;
1158			}
1159		}
1160
1161		if (PageDirty(page)) {
 
 
 
 
 
 
 
 
 
 
 
1162			/*
1163			 * Only kswapd can writeback filesystem pages
1164			 * to avoid risk of stack overflow. But avoid
1165			 * injecting inefficient single-page IO into
1166			 * flusher writeback as much as possible: only
1167			 * write pages when we've encountered many
1168			 * dirty pages, and when we've already scanned
1169			 * the rest of the LRU for clean pages and see
1170			 * the same dirty pages again (PageReclaim).
 
1171			 */
1172			if (page_is_file_cache(page) &&
1173			    (!current_is_kswapd() || !PageReclaim(page) ||
 
1174			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175				/*
1176				 * Immediately reclaim when written back.
1177				 * Similar in principal to deactivate_page()
1178				 * except we already have the page isolated
1179				 * and know it's dirty
1180				 */
1181				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182				SetPageReclaim(page);
 
1183
1184				goto activate_locked;
1185			}
1186
1187			if (references == PAGEREF_RECLAIM_CLEAN)
1188				goto keep_locked;
1189			if (!may_enter_fs)
1190				goto keep_locked;
1191			if (!sc->may_writepage)
1192				goto keep_locked;
1193
1194			/*
1195			 * Page is dirty. Flush the TLB if a writable entry
1196			 * potentially exists to avoid CPU writes after IO
1197			 * starts and then write it out here.
1198			 */
1199			try_to_unmap_flush_dirty();
1200			switch (pageout(page, mapping, sc)) {
1201			case PAGE_KEEP:
1202				goto keep_locked;
1203			case PAGE_ACTIVATE:
 
 
 
 
 
 
 
 
 
1204				goto activate_locked;
1205			case PAGE_SUCCESS:
1206				if (PageWriteback(page))
 
 
 
 
 
 
1207					goto keep;
1208				if (PageDirty(page))
1209					goto keep;
1210
1211				/*
1212				 * A synchronous write - probably a ramdisk.  Go
1213				 * ahead and try to reclaim the page.
1214				 */
1215				if (!trylock_page(page))
1216					goto keep;
1217				if (PageDirty(page) || PageWriteback(page))
 
1218					goto keep_locked;
1219				mapping = page_mapping(page);
 
1220			case PAGE_CLEAN:
1221				; /* try to free the page below */
1222			}
1223		}
1224
1225		/*
1226		 * If the page has buffers, try to free the buffer mappings
1227		 * associated with this page. If we succeed we try to free
1228		 * the page as well.
1229		 *
1230		 * We do this even if the page is PageDirty().
1231		 * try_to_release_page() does not perform I/O, but it is
1232		 * possible for a page to have PageDirty set, but it is actually
1233		 * clean (all its buffers are clean).  This happens if the
1234		 * buffers were written out directly, with submit_bh(). ext3
1235		 * will do this, as well as the blockdev mapping.
1236		 * try_to_release_page() will discover that cleanness and will
1237		 * drop the buffers and mark the page clean - it can be freed.
 
1238		 *
1239		 * Rarely, pages can have buffers and no ->mapping.  These are
1240		 * the pages which were not successfully invalidated in
1241		 * truncate_complete_page().  We try to drop those buffers here
1242		 * and if that worked, and the page is no longer mapped into
1243		 * process address space (page_count == 1) it can be freed.
1244		 * Otherwise, leave the page on the LRU so it is swappable.
 
1245		 */
1246		if (page_has_private(page)) {
1247			if (!try_to_release_page(page, sc->gfp_mask))
1248				goto activate_locked;
1249			if (!mapping && page_count(page) == 1) {
1250				unlock_page(page);
1251				if (put_page_testzero(page))
1252					goto free_it;
1253				else {
1254					/*
1255					 * rare race with speculative reference.
1256					 * the speculative reference will free
1257					 * this page shortly, so we may
1258					 * increment nr_reclaimed here (and
1259					 * leave it off the LRU).
1260					 */
1261					nr_reclaimed++;
1262					continue;
1263				}
1264			}
1265		}
1266
1267		if (PageAnon(page) && !PageSwapBacked(page)) {
1268			/* follow __remove_mapping for reference */
1269			if (!page_ref_freeze(page, 1))
1270				goto keep_locked;
1271			if (PageDirty(page)) {
1272				page_ref_unfreeze(page, 1);
1273				goto keep_locked;
1274			}
1275
1276			count_vm_event(PGLAZYFREED);
1277			count_memcg_page_event(page, PGLAZYFREED);
1278		} else if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
1279			goto keep_locked;
1280		/*
1281		 * At this point, we have no other references and there is
1282		 * no way to pick any more up (removed from LRU, removed
1283		 * from pagecache). Can use non-atomic bitops now (and
1284		 * we obviously don't have to worry about waking up a process
1285		 * waiting on the page lock, because there are no references.
1286		 */
1287		__ClearPageLocked(page);
1288free_it:
1289		nr_reclaimed++;
1290
 
 
1291		/*
1292		 * Is there need to periodically free_page_list? It would
1293		 * appear not as the counts should be low
1294		 */
1295		if (unlikely(PageTransHuge(page))) {
1296			mem_cgroup_uncharge(page);
1297			(*get_compound_page_dtor(page))(page);
1298		} else
1299			list_add(&page->lru, &free_pages);
 
 
 
1300		continue;
1301
 
 
 
 
 
 
 
 
 
1302activate_locked:
1303		/* Not a candidate for swapping, so reclaim swap space. */
1304		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305						PageMlocked(page)))
1306			try_to_free_swap(page);
1307		VM_BUG_ON_PAGE(PageActive(page), page);
1308		if (!PageMlocked(page)) {
1309			SetPageActive(page);
1310			pgactivate++;
1311			count_memcg_page_event(page, PGACTIVATE);
 
1312		}
1313keep_locked:
1314		unlock_page(page);
1315keep:
1316		list_add(&page->lru, &ret_pages);
1317		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318	}
1319
1320	mem_cgroup_uncharge_list(&free_pages);
 
 
1321	try_to_unmap_flush();
1322	free_unref_page_list(&free_pages);
1323
1324	list_splice(&ret_pages, page_list);
1325	count_vm_events(PGACTIVATE, pgactivate);
1326
1327	if (stat) {
1328		stat->nr_dirty = nr_dirty;
1329		stat->nr_congested = nr_congested;
1330		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331		stat->nr_writeback = nr_writeback;
1332		stat->nr_immediate = nr_immediate;
1333		stat->nr_activate = pgactivate;
1334		stat->nr_ref_keep = nr_ref_keep;
1335		stat->nr_unmap_fail = nr_unmap_fail;
1336	}
1337	return nr_reclaimed;
1338}
1339
1340unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341					    struct list_head *page_list)
1342{
1343	struct scan_control sc = {
1344		.gfp_mask = GFP_KERNEL,
1345		.priority = DEF_PRIORITY,
1346		.may_unmap = 1,
1347	};
1348	unsigned long ret;
1349	struct page *page, *next;
1350	LIST_HEAD(clean_pages);
1351
1352	list_for_each_entry_safe(page, next, page_list, lru) {
1353		if (page_is_file_cache(page) && !PageDirty(page) &&
1354		    !__PageMovable(page)) {
1355			ClearPageActive(page);
1356			list_move(&page->lru, &clean_pages);
 
 
 
1357		}
1358	}
1359
1360	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361			TTU_IGNORE_ACCESS, NULL, true);
1362	list_splice(&clean_pages, page_list);
1363	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364	return ret;
1365}
1366
1367/*
1368 * Attempt to remove the specified page from its LRU.  Only take this page
1369 * if it is of the appropriate PageActive status.  Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page:	page to consider
1373 * mode:	one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378{
1379	int ret = -EINVAL;
1380
1381	/* Only take pages on the LRU. */
1382	if (!PageLRU(page))
1383		return ret;
1384
1385	/* Compaction should not handle unevictable pages but CMA can do so */
1386	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387		return ret;
1388
1389	ret = -EBUSY;
1390
1391	/*
1392	 * To minimise LRU disruption, the caller can indicate that it only
1393	 * wants to isolate pages it will be able to operate on without
1394	 * blocking - clean pages for the most part.
1395	 *
1396	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397	 * that it is possible to migrate without blocking
1398	 */
1399	if (mode & ISOLATE_ASYNC_MIGRATE) {
1400		/* All the caller can do on PageWriteback is block */
1401		if (PageWriteback(page))
1402			return ret;
1403
1404		if (PageDirty(page)) {
1405			struct address_space *mapping;
1406			bool migrate_dirty;
1407
1408			/*
1409			 * Only pages without mappings or that have a
1410			 * ->migratepage callback are possible to migrate
1411			 * without blocking. However, we can be racing with
1412			 * truncation so it's necessary to lock the page
1413			 * to stabilise the mapping as truncation holds
1414			 * the page lock until after the page is removed
1415			 * from the page cache.
1416			 */
1417			if (!trylock_page(page))
1418				return ret;
1419
1420			mapping = page_mapping(page);
1421			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422			unlock_page(page);
1423			if (!migrate_dirty)
1424				return ret;
1425		}
1426	}
1427
1428	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429		return ret;
1430
1431	if (likely(get_page_unless_zero(page))) {
1432		/*
1433		 * Be careful not to clear PageLRU until after we're
1434		 * sure the page is not being freed elsewhere -- the
1435		 * page release code relies on it.
1436		 */
1437		ClearPageLRU(page);
1438		ret = 0;
1439	}
1440
1441	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1442}
1443
1444
1445/*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450			enum lru_list lru, unsigned long *nr_zone_taken)
1451{
1452	int zid;
1453
1454	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455		if (!nr_zone_taken[zid])
1456			continue;
1457
1458		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459#ifdef CONFIG_MEMCG
1460		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461#endif
1462	}
1463
1464}
1465
1466/*
1467 * zone_lru_lock is heavily contended.  Some of the functions that
 
 
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan:	The number of eligible pages to look through on the list.
1477 * @lruvec:	The LRU vector to pull pages from.
1478 * @dst:	The temp list to put pages on to.
1479 * @nr_scanned:	The number of pages that were scanned.
1480 * @sc:		The scan_control struct for this reclaim session
1481 * @mode:	One of the LRU isolation modes
1482 * @lru:	LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487		struct lruvec *lruvec, struct list_head *dst,
1488		unsigned long *nr_scanned, struct scan_control *sc,
1489		isolate_mode_t mode, enum lru_list lru)
1490{
1491	struct list_head *src = &lruvec->lists[lru];
1492	unsigned long nr_taken = 0;
1493	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495	unsigned long skipped = 0;
1496	unsigned long scan, total_scan, nr_pages;
1497	LIST_HEAD(pages_skipped);
1498
 
1499	scan = 0;
1500	for (total_scan = 0;
1501	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502	     total_scan++) {
1503		struct page *page;
1504
1505		page = lru_to_page(src);
1506		prefetchw_prev_lru_page(page, src, flags);
1507
1508		VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510		if (page_zonenum(page) > sc->reclaim_idx) {
1511			list_move(&page->lru, &pages_skipped);
1512			nr_skipped[page_zonenum(page)]++;
1513			continue;
1514		}
1515
1516		/*
1517		 * Do not count skipped pages because that makes the function
1518		 * return with no isolated pages if the LRU mostly contains
1519		 * ineligible pages.  This causes the VM to not reclaim any
1520		 * pages, triggering a premature OOM.
1521		 */
1522		scan++;
1523		switch (__isolate_lru_page(page, mode)) {
1524		case 0:
1525			nr_pages = hpage_nr_pages(page);
1526			nr_taken += nr_pages;
1527			nr_zone_taken[page_zonenum(page)] += nr_pages;
1528			list_move(&page->lru, dst);
1529			break;
1530
1531		case -EBUSY:
1532			/* else it is being freed elsewhere */
1533			list_move(&page->lru, src);
1534			continue;
1535
1536		default:
1537			BUG();
 
 
 
 
1538		}
 
 
 
 
 
 
1539	}
1540
1541	/*
1542	 * Splice any skipped pages to the start of the LRU list. Note that
1543	 * this disrupts the LRU order when reclaiming for lower zones but
1544	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545	 * scanning would soon rescan the same pages to skip and put the
1546	 * system at risk of premature OOM.
1547	 */
1548	if (!list_empty(&pages_skipped)) {
1549		int zid;
1550
1551		list_splice(&pages_skipped, src);
1552		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553			if (!nr_skipped[zid])
1554				continue;
1555
1556			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557			skipped += nr_skipped[zid];
1558		}
1559	}
1560	*nr_scanned = total_scan;
1561	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562				    total_scan, skipped, nr_taken, mode, lru);
1563	update_lru_sizes(lruvec, lru, nr_zone_taken);
1564	return nr_taken;
1565}
1566
1567/**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared.  If it was found on
1578 * the active list, it will have PageActive set.  If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 *     fundamentnal difference from isolate_lru_pages (which is called
1589 *     without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
 
 
 
1592 */
1593int isolate_lru_page(struct page *page)
1594{
1595	int ret = -EBUSY;
1596
1597	VM_BUG_ON_PAGE(!page_count(page), page);
1598	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600	if (PageLRU(page)) {
1601		struct zone *zone = page_zone(page);
1602		struct lruvec *lruvec;
1603
1604		spin_lock_irq(zone_lru_lock(zone));
1605		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606		if (PageLRU(page)) {
1607			int lru = page_lru(page);
1608			get_page(page);
1609			ClearPageLRU(page);
1610			del_page_from_lru_list(page, lruvec, lru);
1611			ret = 0;
1612		}
1613		spin_unlock_irq(zone_lru_lock(zone));
1614	}
 
1615	return ret;
1616}
1617
1618/*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625static int too_many_isolated(struct pglist_data *pgdat, int file,
1626		struct scan_control *sc)
1627{
1628	unsigned long inactive, isolated;
 
1629
1630	if (current_is_kswapd())
1631		return 0;
1632
1633	if (!sane_reclaim(sc))
1634		return 0;
1635
1636	if (file) {
1637		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639	} else {
1640		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642	}
1643
1644	/*
1645	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646	 * won't get blocked by normal direct-reclaimers, forming a circular
1647	 * deadlock.
1648	 */
1649	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650		inactive >>= 3;
1651
1652	return isolated > inactive;
 
 
 
 
 
 
1653}
1654
1655static noinline_for_stack void
1656putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
1657{
1658	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660	LIST_HEAD(pages_to_free);
1661
1662	/*
1663	 * Put back any unfreeable pages.
1664	 */
1665	while (!list_empty(page_list)) {
1666		struct page *page = lru_to_page(page_list);
1667		int lru;
1668
1669		VM_BUG_ON_PAGE(PageLRU(page), page);
1670		list_del(&page->lru);
1671		if (unlikely(!page_evictable(page))) {
1672			spin_unlock_irq(&pgdat->lru_lock);
1673			putback_lru_page(page);
1674			spin_lock_irq(&pgdat->lru_lock);
1675			continue;
1676		}
1677
1678		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680		SetPageLRU(page);
1681		lru = page_lru(page);
1682		add_page_to_lru_list(page, lruvec, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683
1684		if (is_active_lru(lru)) {
1685			int file = is_file_lru(lru);
1686			int numpages = hpage_nr_pages(page);
1687			reclaim_stat->recent_rotated[file] += numpages;
1688		}
1689		if (put_page_testzero(page)) {
1690			__ClearPageLRU(page);
1691			__ClearPageActive(page);
1692			del_page_from_lru_list(page, lruvec, lru);
1693
1694			if (unlikely(PageCompound(page))) {
1695				spin_unlock_irq(&pgdat->lru_lock);
1696				mem_cgroup_uncharge(page);
1697				(*get_compound_page_dtor(page))(page);
1698				spin_lock_irq(&pgdat->lru_lock);
1699			} else
1700				list_add(&page->lru, &pages_to_free);
1701		}
 
 
 
 
 
 
 
 
 
1702	}
1703
1704	/*
1705	 * To save our caller's stack, now use input list for pages to free.
1706	 */
1707	list_splice(&pages_to_free, page_list);
1708}
1709
1710/*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested.  In other cases it is safe to throttle.
1715 */
1716static int current_may_throttle(void)
1717{
1718	return !(current->flags & PF_LESS_THROTTLE) ||
1719		current->backing_dev_info == NULL ||
1720		bdi_write_congested(current->backing_dev_info);
1721}
1722
1723/*
1724 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1725 * of reclaimed pages
1726 */
1727static noinline_for_stack unsigned long
1728shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729		     struct scan_control *sc, enum lru_list lru)
1730{
1731	LIST_HEAD(page_list);
1732	unsigned long nr_scanned;
1733	unsigned long nr_reclaimed = 0;
1734	unsigned long nr_taken;
1735	struct reclaim_stat stat = {};
1736	isolate_mode_t isolate_mode = 0;
1737	int file = is_file_lru(lru);
1738	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740	bool stalled = false;
1741
1742	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743		if (stalled)
1744			return 0;
1745
1746		/* wait a bit for the reclaimer. */
1747		msleep(100);
1748		stalled = true;
 
1749
1750		/* We are about to die and free our memory. Return now. */
1751		if (fatal_signal_pending(current))
1752			return SWAP_CLUSTER_MAX;
1753	}
1754
1755	lru_add_drain();
1756
1757	if (!sc->may_unmap)
1758		isolate_mode |= ISOLATE_UNMAPPED;
1759
1760	spin_lock_irq(&pgdat->lru_lock);
1761
1762	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763				     &nr_scanned, sc, isolate_mode, lru);
1764
1765	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
1767
1768	if (current_is_kswapd()) {
1769		if (global_reclaim(sc))
1770			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772				   nr_scanned);
1773	} else {
1774		if (global_reclaim(sc))
1775			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777				   nr_scanned);
1778	}
1779	spin_unlock_irq(&pgdat->lru_lock);
1780
1781	if (nr_taken == 0)
1782		return 0;
1783
1784	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785				&stat, false);
1786
1787	spin_lock_irq(&pgdat->lru_lock);
1788
1789	if (current_is_kswapd()) {
1790		if (global_reclaim(sc))
1791			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793				   nr_reclaimed);
1794	} else {
1795		if (global_reclaim(sc))
1796			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798				   nr_reclaimed);
1799	}
1800
1801	putback_inactive_pages(lruvec, &page_list);
 
1802
 
 
1803	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
 
 
 
 
 
 
1804
1805	spin_unlock_irq(&pgdat->lru_lock);
1806
1807	mem_cgroup_uncharge_list(&page_list);
1808	free_unref_page_list(&page_list);
1809
1810	/*
1811	 * If dirty pages are scanned that are not queued for IO, it
1812	 * implies that flushers are not doing their job. This can
1813	 * happen when memory pressure pushes dirty pages to the end of
1814	 * the LRU before the dirty limits are breached and the dirty
1815	 * data has expired. It can also happen when the proportion of
1816	 * dirty pages grows not through writes but through memory
1817	 * pressure reclaiming all the clean cache. And in some cases,
1818	 * the flushers simply cannot keep up with the allocation
1819	 * rate. Nudge the flusher threads in case they are asleep.
1820	 */
1821	if (stat.nr_unqueued_dirty == nr_taken)
1822		wakeup_flusher_threads(WB_REASON_VMSCAN);
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	sc->nr.dirty += stat.nr_dirty;
1825	sc->nr.congested += stat.nr_congested;
1826	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827	sc->nr.writeback += stat.nr_writeback;
1828	sc->nr.immediate += stat.nr_immediate;
1829	sc->nr.taken += nr_taken;
1830	if (file)
1831		sc->nr.file_taken += nr_taken;
1832
1833	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835	return nr_reclaimed;
1836}
1837
1838/*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation.  But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page.  It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859				     struct list_head *list,
1860				     struct list_head *pages_to_free,
1861				     enum lru_list lru)
1862{
1863	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864	struct page *page;
1865	int nr_pages;
1866	int nr_moved = 0;
1867
1868	while (!list_empty(list)) {
1869		page = lru_to_page(list);
1870		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872		VM_BUG_ON_PAGE(PageLRU(page), page);
1873		SetPageLRU(page);
1874
1875		nr_pages = hpage_nr_pages(page);
1876		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877		list_move(&page->lru, &lruvec->lists[lru]);
1878
1879		if (put_page_testzero(page)) {
1880			__ClearPageLRU(page);
1881			__ClearPageActive(page);
1882			del_page_from_lru_list(page, lruvec, lru);
1883
1884			if (unlikely(PageCompound(page))) {
1885				spin_unlock_irq(&pgdat->lru_lock);
1886				mem_cgroup_uncharge(page);
1887				(*get_compound_page_dtor(page))(page);
1888				spin_lock_irq(&pgdat->lru_lock);
1889			} else
1890				list_add(&page->lru, pages_to_free);
1891		} else {
1892			nr_moved += nr_pages;
1893		}
1894	}
1895
1896	if (!is_active_lru(lru)) {
1897		__count_vm_events(PGDEACTIVATE, nr_moved);
1898		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899				   nr_moved);
1900	}
1901
1902	return nr_moved;
1903}
1904
1905static void shrink_active_list(unsigned long nr_to_scan,
1906			       struct lruvec *lruvec,
1907			       struct scan_control *sc,
1908			       enum lru_list lru)
1909{
1910	unsigned long nr_taken;
1911	unsigned long nr_scanned;
1912	unsigned long vm_flags;
1913	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1914	LIST_HEAD(l_active);
1915	LIST_HEAD(l_inactive);
1916	struct page *page;
1917	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918	unsigned nr_deactivate, nr_activate;
1919	unsigned nr_rotated = 0;
1920	isolate_mode_t isolate_mode = 0;
1921	int file = is_file_lru(lru);
1922	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924	lru_add_drain();
1925
1926	if (!sc->may_unmap)
1927		isolate_mode |= ISOLATE_UNMAPPED;
1928
1929	spin_lock_irq(&pgdat->lru_lock);
1930
1931	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932				     &nr_scanned, sc, isolate_mode, lru);
1933
1934	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935	reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937	__count_vm_events(PGREFILL, nr_scanned);
1938	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
 
1939
1940	spin_unlock_irq(&pgdat->lru_lock);
1941
1942	while (!list_empty(&l_hold)) {
 
 
1943		cond_resched();
1944		page = lru_to_page(&l_hold);
1945		list_del(&page->lru);
1946
1947		if (unlikely(!page_evictable(page))) {
1948			putback_lru_page(page);
1949			continue;
1950		}
1951
1952		if (unlikely(buffer_heads_over_limit)) {
1953			if (page_has_private(page) && trylock_page(page)) {
1954				if (page_has_private(page))
1955					try_to_release_page(page, 0);
1956				unlock_page(page);
1957			}
1958		}
1959
1960		if (page_referenced(page, 0, sc->target_mem_cgroup,
1961				    &vm_flags)) {
1962			nr_rotated += hpage_nr_pages(page);
1963			/*
1964			 * Identify referenced, file-backed active pages and
1965			 * give them one more trip around the active list. So
1966			 * that executable code get better chances to stay in
1967			 * memory under moderate memory pressure.  Anon pages
1968			 * are not likely to be evicted by use-once streaming
1969			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970			 * so we ignore them here.
1971			 */
1972			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973				list_add(&page->lru, &l_active);
 
1974				continue;
1975			}
1976		}
1977
1978		ClearPageActive(page);	/* we are de-activating */
1979		list_add(&page->lru, &l_inactive);
 
1980	}
1981
1982	/*
1983	 * Move pages back to the lru list.
1984	 */
1985	spin_lock_irq(&pgdat->lru_lock);
1986	/*
1987	 * Count referenced pages from currently used mappings as rotated,
1988	 * even though only some of them are actually re-activated.  This
1989	 * helps balance scan pressure between file and anonymous pages in
1990	 * get_scan_count.
1991	 */
1992	reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997	spin_unlock_irq(&pgdat->lru_lock);
1998
1999	mem_cgroup_uncharge_list(&l_hold);
2000	free_unref_page_list(&l_hold);
2001	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002			nr_deactivate, nr_rotated, sc->priority, file);
2003}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005/*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total     target    max
2023 * memory    ratio     inactive
2024 * -------------------------------------
2025 *   10MB       1         5MB
2026 *  100MB       1        50MB
2027 *    1GB       3       250MB
2028 *   10GB      10       0.9GB
2029 *  100GB      31         3GB
2030 *    1TB     101        10GB
2031 *   10TB     320        32GB
2032 */
2033static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034				 struct mem_cgroup *memcg,
2035				 struct scan_control *sc, bool actual_reclaim)
2036{
2037	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039	enum lru_list inactive_lru = file * LRU_FILE;
2040	unsigned long inactive, active;
2041	unsigned long inactive_ratio;
2042	unsigned long refaults;
2043	unsigned long gb;
2044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045	/*
2046	 * If we don't have swap space, anonymous page deactivation
2047	 * is pointless.
 
2048	 */
2049	if (!file && !total_swap_pages)
2050		return false;
2051
2052	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
 
 
 
 
 
2054
2055	if (memcg)
2056		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057	else
2058		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2059
2060	/*
2061	 * When refaults are being observed, it means a new workingset
2062	 * is being established. Disable active list protection to get
2063	 * rid of the stale workingset quickly.
 
 
 
 
2064	 */
2065	if (file && actual_reclaim && lruvec->refaults != refaults) {
2066		inactive_ratio = 0;
2067	} else {
2068		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069		if (gb)
2070			inactive_ratio = int_sqrt(10 * gb);
2071		else
2072			inactive_ratio = 1;
2073	}
2074
2075	if (actual_reclaim)
2076		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079			inactive_ratio, file);
2080
2081	return inactive * inactive_ratio < active;
2082}
2083
2084static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086				 struct scan_control *sc)
2087{
2088	if (is_active_lru(lru)) {
2089		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090					 memcg, sc, true))
2091			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092		return 0;
2093	}
2094
2095	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096}
2097
2098enum scan_balance {
2099	SCAN_EQUAL,
2100	SCAN_FRACT,
2101	SCAN_ANON,
2102	SCAN_FILE,
2103};
 
 
 
 
 
 
 
2104
2105/*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned.  The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115			   struct scan_control *sc, unsigned long *nr,
2116			   unsigned long *lru_pages)
2117{
2118	int swappiness = mem_cgroup_swappiness(memcg);
2119	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120	u64 fraction[2];
2121	u64 denominator = 0;	/* gcc */
2122	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123	unsigned long anon_prio, file_prio;
 
 
 
 
2124	enum scan_balance scan_balance;
2125	unsigned long anon, file;
2126	unsigned long ap, fp;
2127	enum lru_list lru;
2128
2129	/* If we have no swap space, do not bother scanning anon pages. */
2130	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131		scan_balance = SCAN_FILE;
2132		goto out;
2133	}
2134
2135	/*
2136	 * Global reclaim will swap to prevent OOM even with no
2137	 * swappiness, but memcg users want to use this knob to
2138	 * disable swapping for individual groups completely when
2139	 * using the memory controller's swap limit feature would be
2140	 * too expensive.
2141	 */
2142	if (!global_reclaim(sc) && !swappiness) {
2143		scan_balance = SCAN_FILE;
2144		goto out;
2145	}
2146
2147	/*
2148	 * Do not apply any pressure balancing cleverness when the
2149	 * system is close to OOM, scan both anon and file equally
2150	 * (unless the swappiness setting disagrees with swapping).
2151	 */
2152	if (!sc->priority && swappiness) {
2153		scan_balance = SCAN_EQUAL;
2154		goto out;
2155	}
2156
2157	/*
2158	 * Prevent the reclaimer from falling into the cache trap: as
2159	 * cache pages start out inactive, every cache fault will tip
2160	 * the scan balance towards the file LRU.  And as the file LRU
2161	 * shrinks, so does the window for rotation from references.
2162	 * This means we have a runaway feedback loop where a tiny
2163	 * thrashing file LRU becomes infinitely more attractive than
2164	 * anon pages.  Try to detect this based on file LRU size.
2165	 */
2166	if (global_reclaim(sc)) {
2167		unsigned long pgdatfile;
2168		unsigned long pgdatfree;
2169		int z;
2170		unsigned long total_high_wmark = 0;
2171
2172		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174			   node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176		for (z = 0; z < MAX_NR_ZONES; z++) {
2177			struct zone *zone = &pgdat->node_zones[z];
2178			if (!managed_zone(zone))
2179				continue;
2180
2181			total_high_wmark += high_wmark_pages(zone);
2182		}
2183
2184		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185			/*
2186			 * Force SCAN_ANON if there are enough inactive
2187			 * anonymous pages on the LRU in eligible zones.
2188			 * Otherwise, the small LRU gets thrashed.
2189			 */
2190			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192					>> sc->priority) {
2193				scan_balance = SCAN_ANON;
2194				goto out;
2195			}
2196		}
2197	}
2198
2199	/*
2200	 * If there is enough inactive page cache, i.e. if the size of the
2201	 * inactive list is greater than that of the active list *and* the
2202	 * inactive list actually has some pages to scan on this priority, we
2203	 * do not reclaim anything from the anonymous working set right now.
2204	 * Without the second condition we could end up never scanning an
2205	 * lruvec even if it has plenty of old anonymous pages unless the
2206	 * system is under heavy pressure.
2207	 */
2208	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210		scan_balance = SCAN_FILE;
2211		goto out;
2212	}
2213
2214	scan_balance = SCAN_FRACT;
2215
2216	/*
2217	 * With swappiness at 100, anonymous and file have the same priority.
2218	 * This scanning priority is essentially the inverse of IO cost.
2219	 */
2220	anon_prio = swappiness;
2221	file_prio = 200 - anon_prio;
2222
2223	/*
2224	 * OK, so we have swap space and a fair amount of page cache
2225	 * pages.  We use the recently rotated / recently scanned
2226	 * ratios to determine how valuable each cache is.
2227	 *
2228	 * Because workloads change over time (and to avoid overflow)
2229	 * we keep these statistics as a floating average, which ends
2230	 * up weighing recent references more than old ones.
2231	 *
2232	 * anon in [0], file in [1]
2233	 */
 
 
 
 
2234
2235	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240	spin_lock_irq(&pgdat->lru_lock);
2241	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242		reclaim_stat->recent_scanned[0] /= 2;
2243		reclaim_stat->recent_rotated[0] /= 2;
2244	}
2245
2246	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247		reclaim_stat->recent_scanned[1] /= 2;
2248		reclaim_stat->recent_rotated[1] /= 2;
2249	}
2250
2251	/*
2252	 * The amount of pressure on anon vs file pages is inversely
2253	 * proportional to the fraction of recently scanned pages on
2254	 * each list that were recently referenced and in active use.
2255	 */
2256	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257	ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260	fp /= reclaim_stat->recent_rotated[1] + 1;
2261	spin_unlock_irq(&pgdat->lru_lock);
2262
2263	fraction[0] = ap;
2264	fraction[1] = fp;
2265	denominator = ap + fp + 1;
2266out:
2267	*lru_pages = 0;
2268	for_each_evictable_lru(lru) {
2269		int file = is_file_lru(lru);
2270		unsigned long size;
 
2271		unsigned long scan;
2272
2273		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274		scan = size >> sc->priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275		/*
2276		 * If the cgroup's already been deleted, make sure to
2277		 * scrape out the remaining cache.
2278		 */
2279		if (!scan && !mem_cgroup_online(memcg))
2280			scan = min(size, SWAP_CLUSTER_MAX);
2281
2282		switch (scan_balance) {
2283		case SCAN_EQUAL:
2284			/* Scan lists relative to size */
2285			break;
2286		case SCAN_FRACT:
2287			/*
2288			 * Scan types proportional to swappiness and
2289			 * their relative recent reclaim efficiency.
 
 
 
2290			 */
2291			scan = div64_u64(scan * fraction[file],
2292					 denominator);
 
 
2293			break;
2294		case SCAN_FILE:
2295		case SCAN_ANON:
2296			/* Scan one type exclusively */
2297			if ((scan_balance == SCAN_FILE) != file) {
2298				size = 0;
2299				scan = 0;
2300			}
2301			break;
2302		default:
2303			/* Look ma, no brain */
2304			BUG();
2305		}
2306
2307		*lru_pages += size;
2308		nr[lru] = scan;
2309	}
2310}
2311
2312/*
2313 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314 */
2315static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316			      struct scan_control *sc, unsigned long *lru_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317{
2318	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319	unsigned long nr[NR_LRU_LISTS];
2320	unsigned long targets[NR_LRU_LISTS];
2321	unsigned long nr_to_scan;
2322	enum lru_list lru;
2323	unsigned long nr_reclaimed = 0;
2324	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
2325	struct blk_plug plug;
2326	bool scan_adjusted;
2327
2328	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
 
 
 
 
 
2329
2330	/* Record the original scan target for proportional adjustments later */
2331	memcpy(targets, nr, sizeof(nr));
2332
2333	/*
2334	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335	 * event that can occur when there is little memory pressure e.g.
2336	 * multiple streaming readers/writers. Hence, we do not abort scanning
2337	 * when the requested number of pages are reclaimed when scanning at
2338	 * DEF_PRIORITY on the assumption that the fact we are direct
2339	 * reclaiming implies that kswapd is not keeping up and it is best to
2340	 * do a batch of work at once. For memcg reclaim one check is made to
2341	 * abort proportional reclaim if either the file or anon lru has already
2342	 * dropped to zero at the first pass.
2343	 */
2344	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345			 sc->priority == DEF_PRIORITY);
2346
2347	blk_start_plug(&plug);
2348	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349					nr[LRU_INACTIVE_FILE]) {
2350		unsigned long nr_anon, nr_file, percentage;
2351		unsigned long nr_scanned;
2352
2353		for_each_evictable_lru(lru) {
2354			if (nr[lru]) {
2355				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356				nr[lru] -= nr_to_scan;
2357
2358				nr_reclaimed += shrink_list(lru, nr_to_scan,
2359							    lruvec, memcg, sc);
2360			}
2361		}
2362
2363		cond_resched();
2364
2365		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366			continue;
2367
2368		/*
2369		 * For kswapd and memcg, reclaim at least the number of pages
2370		 * requested. Ensure that the anon and file LRUs are scanned
2371		 * proportionally what was requested by get_scan_count(). We
2372		 * stop reclaiming one LRU and reduce the amount scanning
2373		 * proportional to the original scan target.
2374		 */
2375		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378		/*
2379		 * It's just vindictive to attack the larger once the smaller
2380		 * has gone to zero.  And given the way we stop scanning the
2381		 * smaller below, this makes sure that we only make one nudge
2382		 * towards proportionality once we've got nr_to_reclaim.
2383		 */
2384		if (!nr_file || !nr_anon)
2385			break;
2386
2387		if (nr_file > nr_anon) {
2388			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389						targets[LRU_ACTIVE_ANON] + 1;
2390			lru = LRU_BASE;
2391			percentage = nr_anon * 100 / scan_target;
2392		} else {
2393			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394						targets[LRU_ACTIVE_FILE] + 1;
2395			lru = LRU_FILE;
2396			percentage = nr_file * 100 / scan_target;
2397		}
2398
2399		/* Stop scanning the smaller of the LRU */
2400		nr[lru] = 0;
2401		nr[lru + LRU_ACTIVE] = 0;
2402
2403		/*
2404		 * Recalculate the other LRU scan count based on its original
2405		 * scan target and the percentage scanning already complete
2406		 */
2407		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408		nr_scanned = targets[lru] - nr[lru];
2409		nr[lru] = targets[lru] * (100 - percentage) / 100;
2410		nr[lru] -= min(nr[lru], nr_scanned);
2411
2412		lru += LRU_ACTIVE;
2413		nr_scanned = targets[lru] - nr[lru];
2414		nr[lru] = targets[lru] * (100 - percentage) / 100;
2415		nr[lru] -= min(nr[lru], nr_scanned);
2416
2417		scan_adjusted = true;
2418	}
2419	blk_finish_plug(&plug);
2420	sc->nr_reclaimed += nr_reclaimed;
2421
2422	/*
2423	 * Even if we did not try to evict anon pages at all, we want to
2424	 * rebalance the anon lru active/inactive ratio.
2425	 */
2426	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
 
2427		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428				   sc, LRU_ACTIVE_ANON);
2429}
2430
2431/* Use reclaim/compaction for costly allocs or under memory pressure */
2432static bool in_reclaim_compaction(struct scan_control *sc)
2433{
2434	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436			 sc->priority < DEF_PRIORITY - 2))
2437		return true;
2438
2439	return false;
2440}
2441
2442/*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450					unsigned long nr_reclaimed,
2451					unsigned long nr_scanned,
2452					struct scan_control *sc)
2453{
2454	unsigned long pages_for_compaction;
2455	unsigned long inactive_lru_pages;
2456	int z;
2457
2458	/* If not in reclaim/compaction mode, stop */
2459	if (!in_reclaim_compaction(sc))
2460		return false;
2461
2462	/* Consider stopping depending on scan and reclaim activity */
2463	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464		/*
2465		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466		 * full LRU list has been scanned and we are still failing
2467		 * to reclaim pages. This full LRU scan is potentially
2468		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469		 */
2470		if (!nr_reclaimed && !nr_scanned)
 
 
 
 
 
 
 
 
 
 
 
 
 
2471			return false;
2472	} else {
2473		/*
2474		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475		 * fail without consequence, stop if we failed to reclaim
2476		 * any pages from the last SWAP_CLUSTER_MAX number of
2477		 * pages that were scanned. This will return to the
2478		 * caller faster at the risk reclaim/compaction and
2479		 * the resulting allocation attempt fails
2480		 */
2481		if (!nr_reclaimed)
2482			return false;
2483	}
2484
2485	/*
2486	 * If we have not reclaimed enough pages for compaction and the
2487	 * inactive lists are large enough, continue reclaiming
2488	 */
2489	pages_for_compaction = compact_gap(sc->order);
2490	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491	if (get_nr_swap_pages() > 0)
2492		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493	if (sc->nr_reclaimed < pages_for_compaction &&
2494			inactive_lru_pages > pages_for_compaction)
2495		return true;
2496
2497	/* If compaction would go ahead or the allocation would succeed, stop */
2498	for (z = 0; z <= sc->reclaim_idx; z++) {
2499		struct zone *zone = &pgdat->node_zones[z];
2500		if (!managed_zone(zone))
2501			continue;
2502
2503		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504		case COMPACT_SUCCESS:
2505		case COMPACT_CONTINUE:
2506			return false;
2507		default:
2508			/* check next zone */
2509			;
2510		}
2511	}
2512	return true;
2513}
2514
2515static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516{
2517	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518		(memcg && memcg_congested(pgdat, memcg));
2519}
 
 
 
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522{
2523	struct reclaim_state *reclaim_state = current->reclaim_state;
2524	unsigned long nr_reclaimed, nr_scanned;
2525	bool reclaimable = false;
 
 
 
 
 
 
2526
 
2527	do {
2528		struct mem_cgroup *root = sc->target_mem_cgroup;
2529		struct mem_cgroup_reclaim_cookie reclaim = {
2530			.pgdat = pgdat,
2531			.priority = sc->priority,
2532		};
2533		unsigned long node_lru_pages = 0;
2534		struct mem_cgroup *memcg;
2535
2536		memset(&sc->nr, 0, sizeof(sc->nr));
 
 
 
 
 
 
2537
2538		nr_reclaimed = sc->nr_reclaimed;
2539		nr_scanned = sc->nr_scanned;
2540
2541		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542		do {
2543			unsigned long lru_pages;
2544			unsigned long reclaimed;
2545			unsigned long scanned;
2546
2547			if (mem_cgroup_low(root, memcg)) {
2548				if (!sc->memcg_low_reclaim) {
2549					sc->memcg_low_skipped = 1;
2550					continue;
2551				}
2552				memcg_memory_event(memcg, MEMCG_LOW);
 
 
 
 
2553			}
 
 
 
 
 
2554
2555			reclaimed = sc->nr_reclaimed;
2556			scanned = sc->nr_scanned;
2557			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558			node_lru_pages += lru_pages;
2559
2560			if (memcg)
2561				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562					    memcg, sc->priority);
2563
2564			/* Record the group's reclaim efficiency */
 
 
 
 
2565			vmpressure(sc->gfp_mask, memcg, false,
2566				   sc->nr_scanned - scanned,
2567				   sc->nr_reclaimed - reclaimed);
2568
2569			/*
2570			 * Direct reclaim and kswapd have to scan all memory
2571			 * cgroups to fulfill the overall scan target for the
2572			 * node.
2573			 *
2574			 * Limit reclaim, on the other hand, only cares about
2575			 * nr_to_reclaim pages to be reclaimed and it will
2576			 * retry with decreasing priority if one round over the
2577			 * whole hierarchy is not sufficient.
2578			 */
2579			if (!global_reclaim(sc) &&
2580					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581				mem_cgroup_iter_break(root, memcg);
2582				break;
2583			}
2584		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585
2586		if (global_reclaim(sc))
2587			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588				    sc->priority);
 
 
2589
2590		if (reclaim_state) {
2591			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2592			reclaim_state->reclaimed_slab = 0;
2593		}
 
2594
2595		/* Record the subtree's reclaim efficiency */
2596		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597			   sc->nr_scanned - nr_scanned,
2598			   sc->nr_reclaimed - nr_reclaimed);
2599
2600		if (sc->nr_reclaimed - nr_reclaimed)
2601			reclaimable = true;
2602
2603		if (current_is_kswapd()) {
2604			/*
2605			 * If reclaim is isolating dirty pages under writeback,
2606			 * it implies that the long-lived page allocation rate
2607			 * is exceeding the page laundering rate. Either the
2608			 * global limits are not being effective at throttling
2609			 * processes due to the page distribution throughout
2610			 * zones or there is heavy usage of a slow backing
2611			 * device. The only option is to throttle from reclaim
2612			 * context which is not ideal as there is no guarantee
2613			 * the dirtying process is throttled in the same way
2614			 * balance_dirty_pages() manages.
2615			 *
2616			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2617			 * count the number of pages under pages flagged for
2618			 * immediate reclaim and stall if any are encountered
2619			 * in the nr_immediate check below.
2620			 */
2621			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2622				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623
2624			/*
2625			 * Tag a node as congested if all the dirty pages
2626			 * scanned were backed by a congested BDI and
2627			 * wait_iff_congested will stall.
2628			 */
2629			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2630				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2631
2632			/* Allow kswapd to start writing pages during reclaim.*/
2633			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2634				set_bit(PGDAT_DIRTY, &pgdat->flags);
2635
2636			/*
2637			 * If kswapd scans pages marked marked for immediate
2638			 * reclaim and under writeback (nr_immediate), it
2639			 * implies that pages are cycling through the LRU
2640			 * faster than they are written so also forcibly stall.
2641			 */
2642			if (sc->nr.immediate)
2643				congestion_wait(BLK_RW_ASYNC, HZ/10);
2644		}
2645
 
 
 
 
 
 
 
 
 
 
 
2646		/*
2647		 * Legacy memcg will stall in page writeback so avoid forcibly
2648		 * stalling in wait_iff_congested().
 
 
 
 
 
 
 
 
 
 
 
 
 
2649		 */
2650		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2651		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2652			set_memcg_congestion(pgdat, root, true);
 
 
 
 
2653
2654		/*
2655		 * Stall direct reclaim for IO completions if underlying BDIs
2656		 * and node is congested. Allow kswapd to continue until it
2657		 * starts encountering unqueued dirty pages or cycling through
2658		 * the LRU too quickly.
 
2659		 */
2660		if (!sc->hibernation_mode && !current_is_kswapd() &&
2661		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2662			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
 
 
 
2663
2664	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665					 sc->nr_scanned - nr_scanned, sc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666
2667	/*
2668	 * Kswapd gives up on balancing particular nodes after too
2669	 * many failures to reclaim anything from them and goes to
2670	 * sleep. On reclaim progress, reset the failure counter. A
2671	 * successful direct reclaim run will revive a dormant kswapd.
2672	 */
2673	if (reclaimable)
2674		pgdat->kswapd_failures = 0;
2675
2676	return reclaimable;
2677}
2678
2679/*
2680 * Returns true if compaction should go ahead for a costly-order request, or
2681 * the allocation would already succeed without compaction. Return false if we
2682 * should reclaim first.
2683 */
2684static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685{
2686	unsigned long watermark;
2687	enum compact_result suitable;
2688
2689	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2690	if (suitable == COMPACT_SUCCESS)
2691		/* Allocation should succeed already. Don't reclaim. */
 
 
 
2692		return true;
2693	if (suitable == COMPACT_SKIPPED)
2694		/* Compaction cannot yet proceed. Do reclaim. */
 
2695		return false;
2696
2697	/*
2698	 * Compaction is already possible, but it takes time to run and there
2699	 * are potentially other callers using the pages just freed. So proceed
2700	 * with reclaim to make a buffer of free pages available to give
2701	 * compaction a reasonable chance of completing and allocating the page.
2702	 * Note that we won't actually reclaim the whole buffer in one attempt
2703	 * as the target watermark in should_continue_reclaim() is lower. But if
2704	 * we are already above the high+gap watermark, don't reclaim at all.
2705	 */
2706	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2707
2708	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709}
2710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711/*
2712 * This is the direct reclaim path, for page-allocating processes.  We only
2713 * try to reclaim pages from zones which will satisfy the caller's allocation
2714 * request.
2715 *
2716 * If a zone is deemed to be full of pinned pages then just give it a light
2717 * scan then give up on it.
2718 */
2719static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2720{
2721	struct zoneref *z;
2722	struct zone *zone;
2723	unsigned long nr_soft_reclaimed;
2724	unsigned long nr_soft_scanned;
2725	gfp_t orig_mask;
2726	pg_data_t *last_pgdat = NULL;
 
2727
2728	/*
2729	 * If the number of buffer_heads in the machine exceeds the maximum
2730	 * allowed level, force direct reclaim to scan the highmem zone as
2731	 * highmem pages could be pinning lowmem pages storing buffer_heads
2732	 */
2733	orig_mask = sc->gfp_mask;
2734	if (buffer_heads_over_limit) {
2735		sc->gfp_mask |= __GFP_HIGHMEM;
2736		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737	}
2738
2739	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740					sc->reclaim_idx, sc->nodemask) {
2741		/*
2742		 * Take care memory controller reclaiming has small influence
2743		 * to global LRU.
2744		 */
2745		if (global_reclaim(sc)) {
2746			if (!cpuset_zone_allowed(zone,
2747						 GFP_KERNEL | __GFP_HARDWALL))
2748				continue;
2749
2750			/*
2751			 * If we already have plenty of memory free for
2752			 * compaction in this zone, don't free any more.
2753			 * Even though compaction is invoked for any
2754			 * non-zero order, only frequent costly order
2755			 * reclamation is disruptive enough to become a
2756			 * noticeable problem, like transparent huge
2757			 * page allocations.
2758			 */
2759			if (IS_ENABLED(CONFIG_COMPACTION) &&
2760			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761			    compaction_ready(zone, sc)) {
2762				sc->compaction_ready = true;
2763				continue;
2764			}
2765
2766			/*
2767			 * Shrink each node in the zonelist once. If the
2768			 * zonelist is ordered by zone (not the default) then a
2769			 * node may be shrunk multiple times but in that case
2770			 * the user prefers lower zones being preserved.
2771			 */
2772			if (zone->zone_pgdat == last_pgdat)
2773				continue;
2774
2775			/*
2776			 * This steals pages from memory cgroups over softlimit
2777			 * and returns the number of reclaimed pages and
2778			 * scanned pages. This works for global memory pressure
2779			 * and balancing, not for a memcg's limit.
2780			 */
2781			nr_soft_scanned = 0;
2782			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783						sc->order, sc->gfp_mask,
2784						&nr_soft_scanned);
2785			sc->nr_reclaimed += nr_soft_reclaimed;
2786			sc->nr_scanned += nr_soft_scanned;
2787			/* need some check for avoid more shrink_zone() */
2788		}
2789
 
 
 
2790		/* See comment about same check for global reclaim above */
2791		if (zone->zone_pgdat == last_pgdat)
2792			continue;
2793		last_pgdat = zone->zone_pgdat;
2794		shrink_node(zone->zone_pgdat, sc);
2795	}
2796
 
 
 
2797	/*
2798	 * Restore to original mask to avoid the impact on the caller if we
2799	 * promoted it to __GFP_HIGHMEM.
2800	 */
2801	sc->gfp_mask = orig_mask;
2802}
2803
2804static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2805{
2806	struct mem_cgroup *memcg;
2807
2808	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2809	do {
2810		unsigned long refaults;
2811		struct lruvec *lruvec;
2812
2813		if (memcg)
2814			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815		else
2816			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2817
2818		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2819		lruvec->refaults = refaults;
2820	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
 
 
2821}
2822
2823/*
2824 * This is the main entry point to direct page reclaim.
2825 *
2826 * If a full scan of the inactive list fails to free enough memory then we
2827 * are "out of memory" and something needs to be killed.
2828 *
2829 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2830 * high - the zone may be full of dirty or under-writeback pages, which this
2831 * caller can't do much about.  We kick the writeback threads and take explicit
2832 * naps in the hope that some of these pages can be written.  But if the
2833 * allocating task holds filesystem locks which prevent writeout this might not
2834 * work, and the allocation attempt will fail.
2835 *
2836 * returns:	0, if no pages reclaimed
2837 * 		else, the number of pages reclaimed
2838 */
2839static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840					  struct scan_control *sc)
2841{
2842	int initial_priority = sc->priority;
2843	pg_data_t *last_pgdat;
2844	struct zoneref *z;
2845	struct zone *zone;
2846retry:
2847	delayacct_freepages_start();
2848
2849	if (global_reclaim(sc))
2850		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2851
2852	do {
2853		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2854				sc->priority);
 
2855		sc->nr_scanned = 0;
2856		shrink_zones(zonelist, sc);
2857
2858		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859			break;
2860
2861		if (sc->compaction_ready)
2862			break;
2863
2864		/*
2865		 * If we're getting trouble reclaiming, start doing
2866		 * writepage even in laptop mode.
2867		 */
2868		if (sc->priority < DEF_PRIORITY - 2)
2869			sc->may_writepage = 1;
2870	} while (--sc->priority >= 0);
2871
2872	last_pgdat = NULL;
2873	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2874					sc->nodemask) {
2875		if (zone->zone_pgdat == last_pgdat)
2876			continue;
2877		last_pgdat = zone->zone_pgdat;
 
2878		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
 
 
 
 
 
 
 
2880	}
2881
2882	delayacct_freepages_end();
2883
2884	if (sc->nr_reclaimed)
2885		return sc->nr_reclaimed;
2886
2887	/* Aborted reclaim to try compaction? don't OOM, then */
2888	if (sc->compaction_ready)
2889		return 1;
2890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2891	/* Untapped cgroup reserves?  Don't OOM, retry. */
2892	if (sc->memcg_low_skipped) {
2893		sc->priority = initial_priority;
 
2894		sc->memcg_low_reclaim = 1;
2895		sc->memcg_low_skipped = 0;
2896		goto retry;
2897	}
2898
2899	return 0;
2900}
2901
2902static bool allow_direct_reclaim(pg_data_t *pgdat)
2903{
2904	struct zone *zone;
2905	unsigned long pfmemalloc_reserve = 0;
2906	unsigned long free_pages = 0;
2907	int i;
2908	bool wmark_ok;
2909
2910	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2911		return true;
2912
2913	for (i = 0; i <= ZONE_NORMAL; i++) {
2914		zone = &pgdat->node_zones[i];
2915		if (!managed_zone(zone))
2916			continue;
2917
2918		if (!zone_reclaimable_pages(zone))
2919			continue;
2920
2921		pfmemalloc_reserve += min_wmark_pages(zone);
2922		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2923	}
2924
2925	/* If there are no reserves (unexpected config) then do not throttle */
2926	if (!pfmemalloc_reserve)
2927		return true;
2928
2929	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2930
2931	/* kswapd must be awake if processes are being throttled */
2932	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934						(enum zone_type)ZONE_NORMAL);
 
2935		wake_up_interruptible(&pgdat->kswapd_wait);
2936	}
2937
2938	return wmark_ok;
2939}
2940
2941/*
2942 * Throttle direct reclaimers if backing storage is backed by the network
2943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2944 * depleted. kswapd will continue to make progress and wake the processes
2945 * when the low watermark is reached.
2946 *
2947 * Returns true if a fatal signal was delivered during throttling. If this
2948 * happens, the page allocator should not consider triggering the OOM killer.
2949 */
2950static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951					nodemask_t *nodemask)
2952{
2953	struct zoneref *z;
2954	struct zone *zone;
2955	pg_data_t *pgdat = NULL;
2956
2957	/*
2958	 * Kernel threads should not be throttled as they may be indirectly
2959	 * responsible for cleaning pages necessary for reclaim to make forward
2960	 * progress. kjournald for example may enter direct reclaim while
2961	 * committing a transaction where throttling it could forcing other
2962	 * processes to block on log_wait_commit().
2963	 */
2964	if (current->flags & PF_KTHREAD)
2965		goto out;
2966
2967	/*
2968	 * If a fatal signal is pending, this process should not throttle.
2969	 * It should return quickly so it can exit and free its memory
2970	 */
2971	if (fatal_signal_pending(current))
2972		goto out;
2973
2974	/*
2975	 * Check if the pfmemalloc reserves are ok by finding the first node
2976	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2977	 * GFP_KERNEL will be required for allocating network buffers when
2978	 * swapping over the network so ZONE_HIGHMEM is unusable.
2979	 *
2980	 * Throttling is based on the first usable node and throttled processes
2981	 * wait on a queue until kswapd makes progress and wakes them. There
2982	 * is an affinity then between processes waking up and where reclaim
2983	 * progress has been made assuming the process wakes on the same node.
2984	 * More importantly, processes running on remote nodes will not compete
2985	 * for remote pfmemalloc reserves and processes on different nodes
2986	 * should make reasonable progress.
2987	 */
2988	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989					gfp_zone(gfp_mask), nodemask) {
2990		if (zone_idx(zone) > ZONE_NORMAL)
2991			continue;
2992
2993		/* Throttle based on the first usable node */
2994		pgdat = zone->zone_pgdat;
2995		if (allow_direct_reclaim(pgdat))
2996			goto out;
2997		break;
2998	}
2999
3000	/* If no zone was usable by the allocation flags then do not throttle */
3001	if (!pgdat)
3002		goto out;
3003
3004	/* Account for the throttling */
3005	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3006
3007	/*
3008	 * If the caller cannot enter the filesystem, it's possible that it
3009	 * is due to the caller holding an FS lock or performing a journal
3010	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3011	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3012	 * blocked waiting on the same lock. Instead, throttle for up to a
3013	 * second before continuing.
3014	 */
3015	if (!(gfp_mask & __GFP_FS)) {
3016		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017			allow_direct_reclaim(pgdat), HZ);
 
 
 
 
3018
3019		goto check_pending;
3020	}
3021
3022	/* Throttle until kswapd wakes the process */
3023	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024		allow_direct_reclaim(pgdat));
3025
3026check_pending:
3027	if (fatal_signal_pending(current))
3028		return true;
3029
3030out:
3031	return false;
3032}
3033
3034unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035				gfp_t gfp_mask, nodemask_t *nodemask)
3036{
3037	unsigned long nr_reclaimed;
3038	struct scan_control sc = {
3039		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3040		.gfp_mask = current_gfp_context(gfp_mask),
3041		.reclaim_idx = gfp_zone(gfp_mask),
3042		.order = order,
3043		.nodemask = nodemask,
3044		.priority = DEF_PRIORITY,
3045		.may_writepage = !laptop_mode,
3046		.may_unmap = 1,
3047		.may_swap = 1,
3048	};
3049
3050	/*
 
 
 
 
 
 
 
 
3051	 * Do not enter reclaim if fatal signal was delivered while throttled.
3052	 * 1 is returned so that the page allocator does not OOM kill at this
3053	 * point.
3054	 */
3055	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056		return 1;
3057
3058	trace_mm_vmscan_direct_reclaim_begin(order,
3059				sc.may_writepage,
3060				sc.gfp_mask,
3061				sc.reclaim_idx);
3062
3063	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064
3065	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
3066
3067	return nr_reclaimed;
3068}
3069
3070#ifdef CONFIG_MEMCG
3071
 
3072unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073						gfp_t gfp_mask, bool noswap,
3074						pg_data_t *pgdat,
3075						unsigned long *nr_scanned)
3076{
 
3077	struct scan_control sc = {
3078		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3079		.target_mem_cgroup = memcg,
3080		.may_writepage = !laptop_mode,
3081		.may_unmap = 1,
3082		.reclaim_idx = MAX_NR_ZONES - 1,
3083		.may_swap = !noswap,
3084	};
3085	unsigned long lru_pages;
 
3086
3087	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3088			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089
3090	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091						      sc.may_writepage,
3092						      sc.gfp_mask,
3093						      sc.reclaim_idx);
3094
3095	/*
3096	 * NOTE: Although we can get the priority field, using it
3097	 * here is not a good idea, since it limits the pages we can scan.
3098	 * if we don't reclaim here, the shrink_node from balance_pgdat
3099	 * will pick up pages from other mem cgroup's as well. We hack
3100	 * the priority and make it zero.
3101	 */
3102	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103
3104	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3105
3106	*nr_scanned = sc.nr_scanned;
 
3107	return sc.nr_reclaimed;
3108}
3109
3110unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111					   unsigned long nr_pages,
3112					   gfp_t gfp_mask,
3113					   bool may_swap)
 
3114{
3115	struct zonelist *zonelist;
3116	unsigned long nr_reclaimed;
3117	int nid;
3118	unsigned int noreclaim_flag;
3119	struct scan_control sc = {
3120		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
 
3121		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123		.reclaim_idx = MAX_NR_ZONES - 1,
3124		.target_mem_cgroup = memcg,
3125		.priority = DEF_PRIORITY,
3126		.may_writepage = !laptop_mode,
3127		.may_unmap = 1,
3128		.may_swap = may_swap,
 
3129	};
3130
3131	/*
3132	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3133	 * take care of from where we get pages. So the node where we start the
3134	 * scan does not need to be the current node.
3135	 */
3136	nid = mem_cgroup_select_victim_node(memcg);
3137
3138	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139
3140	trace_mm_vmscan_memcg_reclaim_begin(0,
3141					    sc.may_writepage,
3142					    sc.gfp_mask,
3143					    sc.reclaim_idx);
3144
 
 
3145	noreclaim_flag = memalloc_noreclaim_save();
 
3146	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147	memalloc_noreclaim_restore(noreclaim_flag);
3148
 
3149	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
3150
3151	return nr_reclaimed;
3152}
3153#endif
3154
3155static void age_active_anon(struct pglist_data *pgdat,
3156				struct scan_control *sc)
3157{
3158	struct mem_cgroup *memcg;
 
3159
3160	if (!total_swap_pages)
 
3161		return;
 
3162
3163	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3164	do {
3165		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166
3167		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169					   sc, LRU_ACTIVE_ANON);
3170
 
 
 
 
 
3171		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3172	} while (memcg);
3173}
3174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3175/*
3176 * Returns true if there is an eligible zone balanced for the request order
3177 * and classzone_idx
3178 */
3179static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3180{
3181	int i;
3182	unsigned long mark = -1;
3183	struct zone *zone;
3184
3185	for (i = 0; i <= classzone_idx; i++) {
 
 
 
 
3186		zone = pgdat->node_zones + i;
3187
3188		if (!managed_zone(zone))
3189			continue;
3190
3191		mark = high_wmark_pages(zone);
3192		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
 
 
 
3193			return true;
3194	}
3195
3196	/*
3197	 * If a node has no populated zone within classzone_idx, it does not
3198	 * need balancing by definition. This can happen if a zone-restricted
3199	 * allocation tries to wake a remote kswapd.
3200	 */
3201	if (mark == -1)
3202		return true;
3203
3204	return false;
3205}
3206
3207/* Clear pgdat state for congested, dirty or under writeback. */
3208static void clear_pgdat_congested(pg_data_t *pgdat)
3209{
3210	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
 
 
 
3211	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3212	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3213}
3214
3215/*
3216 * Prepare kswapd for sleeping. This verifies that there are no processes
3217 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3218 *
3219 * Returns true if kswapd is ready to sleep
3220 */
3221static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
3222{
3223	/*
3224	 * The throttled processes are normally woken up in balance_pgdat() as
3225	 * soon as allow_direct_reclaim() is true. But there is a potential
3226	 * race between when kswapd checks the watermarks and a process gets
3227	 * throttled. There is also a potential race if processes get
3228	 * throttled, kswapd wakes, a large process exits thereby balancing the
3229	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3230	 * the wake up checks. If kswapd is going to sleep, no process should
3231	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3232	 * the wake up is premature, processes will wake kswapd and get
3233	 * throttled again. The difference from wake ups in balance_pgdat() is
3234	 * that here we are under prepare_to_wait().
3235	 */
3236	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3237		wake_up_all(&pgdat->pfmemalloc_wait);
3238
3239	/* Hopeless node, leave it to direct reclaim */
3240	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3241		return true;
3242
3243	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3244		clear_pgdat_congested(pgdat);
3245		return true;
3246	}
3247
3248	return false;
3249}
3250
3251/*
3252 * kswapd shrinks a node of pages that are at or below the highest usable
3253 * zone that is currently unbalanced.
3254 *
3255 * Returns true if kswapd scanned at least the requested number of pages to
3256 * reclaim or if the lack of progress was due to pages under writeback.
3257 * This is used to determine if the scanning priority needs to be raised.
3258 */
3259static bool kswapd_shrink_node(pg_data_t *pgdat,
3260			       struct scan_control *sc)
3261{
3262	struct zone *zone;
3263	int z;
 
3264
3265	/* Reclaim a number of pages proportional to the number of zones */
3266	sc->nr_to_reclaim = 0;
3267	for (z = 0; z <= sc->reclaim_idx; z++) {
3268		zone = pgdat->node_zones + z;
3269		if (!managed_zone(zone))
3270			continue;
3271
3272		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3273	}
3274
3275	/*
3276	 * Historically care was taken to put equal pressure on all zones but
3277	 * now pressure is applied based on node LRU order.
3278	 */
3279	shrink_node(pgdat, sc);
3280
3281	/*
3282	 * Fragmentation may mean that the system cannot be rebalanced for
3283	 * high-order allocations. If twice the allocation size has been
3284	 * reclaimed then recheck watermarks only at order-0 to prevent
3285	 * excessive reclaim. Assume that a process requested a high-order
3286	 * can direct reclaim/compact.
3287	 */
3288	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289		sc->order = 0;
3290
3291	return sc->nr_scanned >= sc->nr_to_reclaim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3292}
3293
3294/*
3295 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3296 * that are eligible for use by the caller until at least one zone is
3297 * balanced.
3298 *
3299 * Returns the order kswapd finished reclaiming at.
3300 *
3301 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3302 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3304 * or lower is eligible for reclaim until at least one usable zone is
3305 * balanced.
3306 */
3307static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3308{
3309	int i;
3310	unsigned long nr_soft_reclaimed;
3311	unsigned long nr_soft_scanned;
 
 
 
 
3312	struct zone *zone;
3313	struct scan_control sc = {
3314		.gfp_mask = GFP_KERNEL,
3315		.order = order,
3316		.priority = DEF_PRIORITY,
3317		.may_writepage = !laptop_mode,
3318		.may_unmap = 1,
3319		.may_swap = 1,
3320	};
 
 
 
 
 
3321	count_vm_event(PAGEOUTRUN);
3322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323	do {
3324		unsigned long nr_reclaimed = sc.nr_reclaimed;
3325		bool raise_priority = true;
 
 
 
3326
3327		sc.reclaim_idx = classzone_idx;
3328
3329		/*
3330		 * If the number of buffer_heads exceeds the maximum allowed
3331		 * then consider reclaiming from all zones. This has a dual
3332		 * purpose -- on 64-bit systems it is expected that
3333		 * buffer_heads are stripped during active rotation. On 32-bit
3334		 * systems, highmem pages can pin lowmem memory and shrinking
3335		 * buffers can relieve lowmem pressure. Reclaim may still not
3336		 * go ahead if all eligible zones for the original allocation
3337		 * request are balanced to avoid excessive reclaim from kswapd.
3338		 */
3339		if (buffer_heads_over_limit) {
3340			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3341				zone = pgdat->node_zones + i;
3342				if (!managed_zone(zone))
3343					continue;
3344
3345				sc.reclaim_idx = i;
3346				break;
3347			}
3348		}
3349
3350		/*
3351		 * Only reclaim if there are no eligible zones. Note that
3352		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3353		 * have adjusted it.
 
 
 
 
 
 
 
 
 
 
 
 
 
3354		 */
3355		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3356			goto out;
3357
 
 
 
 
3358		/*
3359		 * Do some background aging of the anon list, to give
3360		 * pages a chance to be referenced before reclaiming. All
3361		 * pages are rotated regardless of classzone as this is
3362		 * about consistent aging.
3363		 */
3364		age_active_anon(pgdat, &sc);
 
 
 
 
 
 
 
 
3365
3366		/*
3367		 * If we're getting trouble reclaiming, start doing writepage
3368		 * even in laptop mode.
3369		 */
3370		if (sc.priority < DEF_PRIORITY - 2)
3371			sc.may_writepage = 1;
3372
3373		/* Call soft limit reclaim before calling shrink_node. */
3374		sc.nr_scanned = 0;
3375		nr_soft_scanned = 0;
3376		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377						sc.gfp_mask, &nr_soft_scanned);
3378		sc.nr_reclaimed += nr_soft_reclaimed;
3379
3380		/*
3381		 * There should be no need to raise the scanning priority if
3382		 * enough pages are already being scanned that that high
3383		 * watermark would be met at 100% efficiency.
3384		 */
3385		if (kswapd_shrink_node(pgdat, &sc))
3386			raise_priority = false;
3387
3388		/*
3389		 * If the low watermark is met there is no need for processes
3390		 * to be throttled on pfmemalloc_wait as they should not be
3391		 * able to safely make forward progress. Wake them
3392		 */
3393		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394				allow_direct_reclaim(pgdat))
3395			wake_up_all(&pgdat->pfmemalloc_wait);
3396
3397		/* Check if kswapd should be suspending */
3398		if (try_to_freeze() || kthread_should_stop())
 
 
 
3399			break;
3400
3401		/*
3402		 * Raise priority if scanning rate is too low or there was no
3403		 * progress in reclaiming pages
3404		 */
3405		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
3406		if (raise_priority || !nr_reclaimed)
3407			sc.priority--;
3408	} while (sc.priority >= 1);
3409
 
 
 
 
 
 
 
 
 
 
3410	if (!sc.nr_reclaimed)
3411		pgdat->kswapd_failures++;
3412
3413out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414	snapshot_refaults(NULL, pgdat);
 
 
 
 
3415	/*
3416	 * Return the order kswapd stopped reclaiming at as
3417	 * prepare_kswapd_sleep() takes it into account. If another caller
3418	 * entered the allocator slow path while kswapd was awake, order will
3419	 * remain at the higher level.
3420	 */
3421	return sc.order;
3422}
3423
3424/*
3425 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3426 * allocation request woke kswapd for. When kswapd has not woken recently,
3427 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3428 * given classzone and returns it or the highest classzone index kswapd
3429 * was recently woke for.
3430 */
3431static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3432					   enum zone_type classzone_idx)
3433{
3434	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3435		return classzone_idx;
3436
3437	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3438}
3439
3440static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3441				unsigned int classzone_idx)
3442{
3443	long remaining = 0;
3444	DEFINE_WAIT(wait);
3445
3446	if (freezing(current) || kthread_should_stop())
3447		return;
3448
3449	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3450
3451	/*
3452	 * Try to sleep for a short interval. Note that kcompactd will only be
3453	 * woken if it is possible to sleep for a short interval. This is
3454	 * deliberate on the assumption that if reclaim cannot keep an
3455	 * eligible zone balanced that it's also unlikely that compaction will
3456	 * succeed.
3457	 */
3458	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459		/*
3460		 * Compaction records what page blocks it recently failed to
3461		 * isolate pages from and skips them in the future scanning.
3462		 * When kswapd is going to sleep, it is reasonable to assume
3463		 * that pages and compaction may succeed so reset the cache.
3464		 */
3465		reset_isolation_suitable(pgdat);
3466
3467		/*
3468		 * We have freed the memory, now we should compact it to make
3469		 * allocation of the requested order possible.
3470		 */
3471		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472
3473		remaining = schedule_timeout(HZ/10);
3474
3475		/*
3476		 * If woken prematurely then reset kswapd_classzone_idx and
3477		 * order. The values will either be from a wakeup request or
3478		 * the previous request that slept prematurely.
3479		 */
3480		if (remaining) {
3481			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
 
 
 
 
3483		}
3484
3485		finish_wait(&pgdat->kswapd_wait, &wait);
3486		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3487	}
3488
3489	/*
3490	 * After a short sleep, check if it was a premature sleep. If not, then
3491	 * go fully to sleep until explicitly woken up.
3492	 */
3493	if (!remaining &&
3494	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3496
3497		/*
3498		 * vmstat counters are not perfectly accurate and the estimated
3499		 * value for counters such as NR_FREE_PAGES can deviate from the
3500		 * true value by nr_online_cpus * threshold. To avoid the zone
3501		 * watermarks being breached while under pressure, we reduce the
3502		 * per-cpu vmstat threshold while kswapd is awake and restore
3503		 * them before going back to sleep.
3504		 */
3505		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506
3507		if (!kthread_should_stop())
3508			schedule();
3509
3510		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3511	} else {
3512		if (remaining)
3513			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3514		else
3515			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3516	}
3517	finish_wait(&pgdat->kswapd_wait, &wait);
3518}
3519
3520/*
3521 * The background pageout daemon, started as a kernel thread
3522 * from the init process.
3523 *
3524 * This basically trickles out pages so that we have _some_
3525 * free memory available even if there is no other activity
3526 * that frees anything up. This is needed for things like routing
3527 * etc, where we otherwise might have all activity going on in
3528 * asynchronous contexts that cannot page things out.
3529 *
3530 * If there are applications that are active memory-allocators
3531 * (most normal use), this basically shouldn't matter.
3532 */
3533static int kswapd(void *p)
3534{
3535	unsigned int alloc_order, reclaim_order;
3536	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3537	pg_data_t *pgdat = (pg_data_t*)p;
3538	struct task_struct *tsk = current;
3539
3540	struct reclaim_state reclaim_state = {
3541		.reclaimed_slab = 0,
3542	};
3543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3544
3545	if (!cpumask_empty(cpumask))
3546		set_cpus_allowed_ptr(tsk, cpumask);
3547	current->reclaim_state = &reclaim_state;
3548
3549	/*
3550	 * Tell the memory management that we're a "memory allocator",
3551	 * and that if we need more memory we should get access to it
3552	 * regardless (see "__alloc_pages()"). "kswapd" should
3553	 * never get caught in the normal page freeing logic.
3554	 *
3555	 * (Kswapd normally doesn't need memory anyway, but sometimes
3556	 * you need a small amount of memory in order to be able to
3557	 * page out something else, and this flag essentially protects
3558	 * us from recursively trying to free more memory as we're
3559	 * trying to free the first piece of memory in the first place).
3560	 */
3561	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562	set_freezable();
3563
3564	pgdat->kswapd_order = 0;
3565	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3566	for ( ; ; ) {
3567		bool ret;
3568
3569		alloc_order = reclaim_order = pgdat->kswapd_order;
3570		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
3571
3572kswapd_try_sleep:
3573		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3574					classzone_idx);
3575
3576		/* Read the new order and classzone_idx */
3577		alloc_order = reclaim_order = pgdat->kswapd_order;
3578		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579		pgdat->kswapd_order = 0;
3580		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
3581
3582		ret = try_to_freeze();
3583		if (kthread_should_stop())
3584			break;
3585
3586		/*
3587		 * We can speed up thawing tasks if we don't call balance_pgdat
3588		 * after returning from the refrigerator
3589		 */
3590		if (ret)
3591			continue;
3592
3593		/*
3594		 * Reclaim begins at the requested order but if a high-order
3595		 * reclaim fails then kswapd falls back to reclaiming for
3596		 * order-0. If that happens, kswapd will consider sleeping
3597		 * for the order it finished reclaiming at (reclaim_order)
3598		 * but kcompactd is woken to compact for the original
3599		 * request (alloc_order).
3600		 */
3601		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3602						alloc_order);
3603		fs_reclaim_acquire(GFP_KERNEL);
3604		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605		fs_reclaim_release(GFP_KERNEL);
3606		if (reclaim_order < alloc_order)
3607			goto kswapd_try_sleep;
3608	}
3609
3610	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611	current->reclaim_state = NULL;
3612
3613	return 0;
3614}
3615
3616/*
3617 * A zone is low on free memory or too fragmented for high-order memory.  If
3618 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3619 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3620 * has failed or is not needed, still wake up kcompactd if only compaction is
3621 * needed.
3622 */
3623void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3624		   enum zone_type classzone_idx)
3625{
3626	pg_data_t *pgdat;
 
3627
3628	if (!managed_zone(zone))
3629		return;
3630
3631	if (!cpuset_zone_allowed(zone, gfp_flags))
3632		return;
 
3633	pgdat = zone->zone_pgdat;
3634	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3635							   classzone_idx);
3636	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
 
 
 
 
 
3637	if (!waitqueue_active(&pgdat->kswapd_wait))
3638		return;
3639
3640	/* Hopeless node, leave it to direct reclaim if possible */
3641	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3642	    pgdat_balanced(pgdat, order, classzone_idx)) {
 
3643		/*
3644		 * There may be plenty of free memory available, but it's too
3645		 * fragmented for high-order allocations.  Wake up kcompactd
3646		 * and rely on compaction_suitable() to determine if it's
3647		 * needed.  If it fails, it will defer subsequent attempts to
3648		 * ratelimit its work.
3649		 */
3650		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3651			wakeup_kcompactd(pgdat, order, classzone_idx);
3652		return;
3653	}
3654
3655	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3656				      gfp_flags);
3657	wake_up_interruptible(&pgdat->kswapd_wait);
3658}
3659
3660#ifdef CONFIG_HIBERNATION
3661/*
3662 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 * freed pages.
3664 *
3665 * Rather than trying to age LRUs the aim is to preserve the overall
3666 * LRU order by reclaiming preferentially
3667 * inactive > active > active referenced > active mapped
3668 */
3669unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3670{
3671	struct reclaim_state reclaim_state;
3672	struct scan_control sc = {
3673		.nr_to_reclaim = nr_to_reclaim,
3674		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3675		.reclaim_idx = MAX_NR_ZONES - 1,
3676		.priority = DEF_PRIORITY,
3677		.may_writepage = 1,
3678		.may_unmap = 1,
3679		.may_swap = 1,
3680		.hibernation_mode = 1,
3681	};
3682	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683	struct task_struct *p = current;
3684	unsigned long nr_reclaimed;
3685	unsigned int noreclaim_flag;
3686
3687	noreclaim_flag = memalloc_noreclaim_save();
3688	fs_reclaim_acquire(sc.gfp_mask);
3689	reclaim_state.reclaimed_slab = 0;
3690	p->reclaim_state = &reclaim_state;
3691
3692	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693
3694	p->reclaim_state = NULL;
3695	fs_reclaim_release(sc.gfp_mask);
3696	memalloc_noreclaim_restore(noreclaim_flag);
 
3697
3698	return nr_reclaimed;
3699}
3700#endif /* CONFIG_HIBERNATION */
3701
3702/* It's optimal to keep kswapds on the same CPUs as their memory, but
3703   not required for correctness.  So if the last cpu in a node goes
3704   away, we get changed to run anywhere: as the first one comes back,
3705   restore their cpu bindings. */
3706static int kswapd_cpu_online(unsigned int cpu)
3707{
3708	int nid;
3709
3710	for_each_node_state(nid, N_MEMORY) {
3711		pg_data_t *pgdat = NODE_DATA(nid);
3712		const struct cpumask *mask;
3713
3714		mask = cpumask_of_node(pgdat->node_id);
3715
3716		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3717			/* One of our CPUs online: restore mask */
3718			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3719	}
3720	return 0;
3721}
3722
3723/*
3724 * This kswapd start function will be called by init and node-hot-add.
3725 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3726 */
3727int kswapd_run(int nid)
3728{
3729	pg_data_t *pgdat = NODE_DATA(nid);
3730	int ret = 0;
3731
3732	if (pgdat->kswapd)
3733		return 0;
3734
3735	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3736	if (IS_ERR(pgdat->kswapd)) {
3737		/* failure at boot is fatal */
3738		BUG_ON(system_state < SYSTEM_RUNNING);
3739		pr_err("Failed to start kswapd on node %d\n", nid);
3740		ret = PTR_ERR(pgdat->kswapd);
3741		pgdat->kswapd = NULL;
 
 
 
3742	}
3743	return ret;
3744}
3745
3746/*
3747 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3748 * hold mem_hotplug_begin/end().
3749 */
3750void kswapd_stop(int nid)
3751{
3752	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 
3753
 
 
3754	if (kswapd) {
3755		kthread_stop(kswapd);
3756		NODE_DATA(nid)->kswapd = NULL;
3757	}
 
3758}
3759
3760static int __init kswapd_init(void)
3761{
3762	int nid, ret;
3763
3764	swap_setup();
3765	for_each_node_state(nid, N_MEMORY)
3766 		kswapd_run(nid);
3767	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3768					"mm/vmscan:online", kswapd_cpu_online,
3769					NULL);
3770	WARN_ON(ret < 0);
3771	return 0;
3772}
3773
3774module_init(kswapd_init)
3775
3776#ifdef CONFIG_NUMA
3777/*
3778 * Node reclaim mode
3779 *
3780 * If non-zero call node_reclaim when the number of free pages falls below
3781 * the watermarks.
3782 */
3783int node_reclaim_mode __read_mostly;
3784
3785#define RECLAIM_OFF 0
3786#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3787#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3788#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3789
3790/*
3791 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3793 * a zone.
3794 */
3795#define NODE_RECLAIM_PRIORITY 4
3796
3797/*
3798 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 * occur.
3800 */
3801int sysctl_min_unmapped_ratio = 1;
3802
3803/*
3804 * If the number of slab pages in a zone grows beyond this percentage then
3805 * slab reclaim needs to occur.
3806 */
3807int sysctl_min_slab_ratio = 5;
3808
3809static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810{
3811	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3812	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3813		node_page_state(pgdat, NR_ACTIVE_FILE);
3814
3815	/*
3816	 * It's possible for there to be more file mapped pages than
3817	 * accounted for by the pages on the file LRU lists because
3818	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3819	 */
3820	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3821}
3822
3823/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825{
3826	unsigned long nr_pagecache_reclaimable;
3827	unsigned long delta = 0;
3828
3829	/*
3830	 * If RECLAIM_UNMAP is set, then all file pages are considered
3831	 * potentially reclaimable. Otherwise, we have to worry about
3832	 * pages like swapcache and node_unmapped_file_pages() provides
3833	 * a better estimate
3834	 */
3835	if (node_reclaim_mode & RECLAIM_UNMAP)
3836		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837	else
3838		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839
3840	/* If we can't clean pages, remove dirty pages from consideration */
3841	if (!(node_reclaim_mode & RECLAIM_WRITE))
3842		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843
3844	/* Watch for any possible underflows due to delta */
3845	if (unlikely(delta > nr_pagecache_reclaimable))
3846		delta = nr_pagecache_reclaimable;
3847
3848	return nr_pagecache_reclaimable - delta;
3849}
3850
3851/*
3852 * Try to free up some pages from this node through reclaim.
3853 */
3854static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855{
3856	/* Minimum pages needed in order to stay on node */
3857	const unsigned long nr_pages = 1 << order;
3858	struct task_struct *p = current;
3859	struct reclaim_state reclaim_state;
3860	unsigned int noreclaim_flag;
3861	struct scan_control sc = {
3862		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863		.gfp_mask = current_gfp_context(gfp_mask),
3864		.order = order,
3865		.priority = NODE_RECLAIM_PRIORITY,
3866		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3867		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868		.may_swap = 1,
3869		.reclaim_idx = gfp_zone(gfp_mask),
3870	};
 
 
 
 
3871
3872	cond_resched();
 
 
 
3873	/*
3874	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875	 * and we also need to be able to write out pages for RECLAIM_WRITE
3876	 * and RECLAIM_UNMAP.
3877	 */
3878	noreclaim_flag = memalloc_noreclaim_save();
3879	p->flags |= PF_SWAPWRITE;
3880	fs_reclaim_acquire(sc.gfp_mask);
3881	reclaim_state.reclaimed_slab = 0;
3882	p->reclaim_state = &reclaim_state;
3883
3884	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
 
3885		/*
3886		 * Free memory by calling shrink node with increasing
3887		 * priorities until we have enough memory freed.
3888		 */
3889		do {
3890			shrink_node(pgdat, &sc);
3891		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3892	}
3893
3894	p->reclaim_state = NULL;
3895	fs_reclaim_release(gfp_mask);
3896	current->flags &= ~PF_SWAPWRITE;
3897	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
3898	return sc.nr_reclaimed >= nr_pages;
3899}
3900
3901int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902{
3903	int ret;
3904
3905	/*
3906	 * Node reclaim reclaims unmapped file backed pages and
3907	 * slab pages if we are over the defined limits.
3908	 *
3909	 * A small portion of unmapped file backed pages is needed for
3910	 * file I/O otherwise pages read by file I/O will be immediately
3911	 * thrown out if the node is overallocated. So we do not reclaim
3912	 * if less than a specified percentage of the node is used by
3913	 * unmapped file backed pages.
3914	 */
3915	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
 
3917		return NODE_RECLAIM_FULL;
3918
3919	/*
3920	 * Do not scan if the allocation should not be delayed.
3921	 */
3922	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923		return NODE_RECLAIM_NOSCAN;
3924
3925	/*
3926	 * Only run node reclaim on the local node or on nodes that do not
3927	 * have associated processors. This will favor the local processor
3928	 * over remote processors and spread off node memory allocations
3929	 * as wide as possible.
3930	 */
3931	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3932		return NODE_RECLAIM_NOSCAN;
3933
3934	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3935		return NODE_RECLAIM_NOSCAN;
3936
3937	ret = __node_reclaim(pgdat, gfp_mask, order);
3938	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939
3940	if (!ret)
 
 
3941		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3942
3943	return ret;
3944}
3945#endif
3946
3947/*
3948 * page_evictable - test whether a page is evictable
3949 * @page: the page to test
3950 *
3951 * Test whether page is evictable--i.e., should be placed on active/inactive
3952 * lists vs unevictable list.
3953 *
3954 * Reasons page might not be evictable:
3955 * (1) page's mapping marked unevictable
3956 * (2) page is part of an mlocked VMA
3957 *
3958 */
3959int page_evictable(struct page *page)
3960{
3961	int ret;
3962
3963	/* Prevent address_space of inode and swap cache from being freed */
3964	rcu_read_lock();
3965	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3966	rcu_read_unlock();
3967	return ret;
3968}
3969
3970#ifdef CONFIG_SHMEM
3971/**
3972 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3973 * @pages:	array of pages to check
3974 * @nr_pages:	number of pages to check
3975 *
3976 * Checks pages for evictability and moves them to the appropriate lru list.
3977 *
3978 * This function is only used for SysV IPC SHM_UNLOCK.
3979 */
3980void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981{
3982	struct lruvec *lruvec;
3983	struct pglist_data *pgdat = NULL;
3984	int pgscanned = 0;
3985	int pgrescued = 0;
3986	int i;
3987
3988	for (i = 0; i < nr_pages; i++) {
3989		struct page *page = pages[i];
3990		struct pglist_data *pagepgdat = page_pgdat(page);
3991
3992		pgscanned++;
3993		if (pagepgdat != pgdat) {
3994			if (pgdat)
3995				spin_unlock_irq(&pgdat->lru_lock);
3996			pgdat = pagepgdat;
3997			spin_lock_irq(&pgdat->lru_lock);
3998		}
3999		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4000
4001		if (!PageLRU(page) || !PageUnevictable(page))
 
4002			continue;
4003
4004		if (page_evictable(page)) {
4005			enum lru_list lru = page_lru_base_type(page);
4006
4007			VM_BUG_ON_PAGE(PageActive(page), page);
4008			ClearPageUnevictable(page);
4009			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4010			add_page_to_lru_list(page, lruvec, lru);
4011			pgrescued++;
4012		}
 
4013	}
4014
4015	if (pgdat) {
4016		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4017		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018		spin_unlock_irq(&pgdat->lru_lock);
 
 
4019	}
4020}
4021#endif /* CONFIG_SHMEM */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
 
  30#include <linux/mm_inline.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rmap.h>
  33#include <linux/topology.h>
  34#include <linux/cpu.h>
  35#include <linux/cpuset.h>
  36#include <linux/compaction.h>
  37#include <linux/notifier.h>
 
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/migrate.h>
  43#include <linux/delayacct.h>
  44#include <linux/sysctl.h>
  45#include <linux/memory-tiers.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52#include <linux/pagewalk.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/ctype.h>
  55#include <linux/debugfs.h>
  56#include <linux/khugepaged.h>
  57#include <linux/rculist_nulls.h>
  58#include <linux/random.h>
  59#include <linux/mmu_notifier.h>
  60
  61#include <asm/tlbflush.h>
  62#include <asm/div64.h>
  63
  64#include <linux/swapops.h>
  65#include <linux/balloon_compaction.h>
  66#include <linux/sched/sysctl.h>
  67
  68#include "internal.h"
  69#include "swap.h"
  70
  71#define CREATE_TRACE_POINTS
  72#include <trace/events/vmscan.h>
  73
  74struct scan_control {
  75	/* How many pages shrink_list() should reclaim */
  76	unsigned long nr_to_reclaim;
  77
 
 
 
 
 
 
  78	/*
  79	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  80	 * are scanned.
  81	 */
  82	nodemask_t	*nodemask;
  83
  84	/*
  85	 * The memory cgroup that hit its limit and as a result is the
  86	 * primary target of this reclaim invocation.
  87	 */
  88	struct mem_cgroup *target_mem_cgroup;
  89
  90	/*
  91	 * Scan pressure balancing between anon and file LRUs
  92	 */
  93	unsigned long	anon_cost;
  94	unsigned long	file_cost;
  95
  96#ifdef CONFIG_MEMCG
  97	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
  98	int *proactive_swappiness;
  99#endif
 100
 101	/* Can active folios be deactivated as part of reclaim? */
 102#define DEACTIVATE_ANON 1
 103#define DEACTIVATE_FILE 2
 104	unsigned int may_deactivate:2;
 105	unsigned int force_deactivate:1;
 106	unsigned int skipped_deactivate:1;
 107
 108	/* Writepage batching in laptop mode; RECLAIM_WRITE */
 109	unsigned int may_writepage:1;
 110
 111	/* Can mapped folios be reclaimed? */
 112	unsigned int may_unmap:1;
 113
 114	/* Can folios be swapped as part of reclaim? */
 115	unsigned int may_swap:1;
 116
 117	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
 118	unsigned int no_cache_trim_mode:1;
 119
 120	/* Has cache_trim_mode failed at least once? */
 121	unsigned int cache_trim_mode_failed:1;
 122
 123	/* Proactive reclaim invoked by userspace through memory.reclaim */
 124	unsigned int proactive:1;
 125
 126	/*
 127	 * Cgroup memory below memory.low is protected as long as we
 128	 * don't threaten to OOM. If any cgroup is reclaimed at
 129	 * reduced force or passed over entirely due to its memory.low
 130	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 131	 * result, then go back for one more cycle that reclaims the protected
 132	 * memory (memcg_low_reclaim) to avert OOM.
 133	 */
 134	unsigned int memcg_low_reclaim:1;
 135	unsigned int memcg_low_skipped:1;
 136
 137	/* Shared cgroup tree walk failed, rescan the whole tree */
 138	unsigned int memcg_full_walk:1;
 139
 140	unsigned int hibernation_mode:1;
 141
 142	/* One of the zones is ready for compaction */
 143	unsigned int compaction_ready:1;
 144
 145	/* There is easily reclaimable cold cache in the current node */
 146	unsigned int cache_trim_mode:1;
 147
 148	/* The file folios on the current node are dangerously low */
 149	unsigned int file_is_tiny:1;
 150
 151	/* Always discard instead of demoting to lower tier memory */
 152	unsigned int no_demotion:1;
 153
 154	/* Allocation order */
 155	s8 order;
 156
 157	/* Scan (total_size >> priority) pages at once */
 158	s8 priority;
 159
 160	/* The highest zone to isolate folios for reclaim from */
 161	s8 reclaim_idx;
 162
 163	/* This context's GFP mask */
 164	gfp_t gfp_mask;
 165
 166	/* Incremented by the number of inactive pages that were scanned */
 167	unsigned long nr_scanned;
 168
 169	/* Number of pages freed so far during a call to shrink_zones() */
 170	unsigned long nr_reclaimed;
 171
 172	struct {
 173		unsigned int dirty;
 174		unsigned int unqueued_dirty;
 175		unsigned int congested;
 176		unsigned int writeback;
 177		unsigned int immediate;
 178		unsigned int file_taken;
 179		unsigned int taken;
 180	} nr;
 
 181
 182	/* for recording the reclaimed slab by now */
 183	struct reclaim_state reclaim_state;
 184};
 
 
 
 
 
 
 
 
 
 
 185
 186#ifdef ARCH_HAS_PREFETCHW
 187#define prefetchw_prev_lru_folio(_folio, _base, _field)			\
 188	do {								\
 189		if ((_folio)->lru.prev != _base) {			\
 190			struct folio *prev;				\
 191									\
 192			prev = lru_to_folio(&(_folio->lru));		\
 193			prefetchw(&prev->_field);			\
 194		}							\
 195	} while (0)
 196#else
 197#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
 198#endif
 199
 200/*
 201 * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
 202 */
 203int vm_swappiness = 60;
 
 
 
 
 
 
 
 
 204
 205#ifdef CONFIG_MEMCG
 206
 207/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
 208static bool cgroup_reclaim(struct scan_control *sc)
 209{
 210	return sc->target_mem_cgroup;
 211}
 212
 213/*
 214 * Returns true for reclaim on the root cgroup. This is true for direct
 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 216 */
 217static bool root_reclaim(struct scan_control *sc)
 218{
 219	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
 220}
 221
 222/**
 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 224 * @sc: scan_control in question
 225 *
 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 227 * completely broken with the legacy memcg and direct stalling in
 228 * shrink_folio_list() is used for throttling instead, which lacks all the
 229 * niceties such as fairness, adaptive pausing, bandwidth proportional
 230 * allocation and configurability.
 231 *
 232 * This function tests whether the vmscan currently in progress can assume
 233 * that the normal dirty throttling mechanism is operational.
 234 */
 235static bool writeback_throttling_sane(struct scan_control *sc)
 236{
 237	if (!cgroup_reclaim(sc))
 
 
 238		return true;
 239#ifdef CONFIG_CGROUP_WRITEBACK
 240	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 241		return true;
 242#endif
 243	return false;
 244}
 245
 246static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 
 
 247{
 248	if (sc->proactive && sc->proactive_swappiness)
 249		return *sc->proactive_swappiness;
 250	return mem_cgroup_swappiness(memcg);
 251}
 252#else
 253static bool cgroup_reclaim(struct scan_control *sc)
 254{
 255	return false;
 256}
 257
 258static bool root_reclaim(struct scan_control *sc)
 
 259{
 260	return true;
 261}
 262
 263static bool writeback_throttling_sane(struct scan_control *sc)
 264{
 265	return true;
 266}
 267
 268static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 269{
 270	return READ_ONCE(vm_swappiness);
 271}
 272#endif
 273
 274static void set_task_reclaim_state(struct task_struct *task,
 275				   struct reclaim_state *rs)
 276{
 277	/* Check for an overwrite */
 278	WARN_ON_ONCE(rs && task->reclaim_state);
 279
 280	/* Check for the nulling of an already-nulled member */
 281	WARN_ON_ONCE(!rs && !task->reclaim_state);
 282
 283	task->reclaim_state = rs;
 284}
 285
 286/*
 287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 288 * scan_control->nr_reclaimed.
 289 */
 290static void flush_reclaim_state(struct scan_control *sc)
 291{
 292	/*
 293	 * Currently, reclaim_state->reclaimed includes three types of pages
 294	 * freed outside of vmscan:
 295	 * (1) Slab pages.
 296	 * (2) Clean file pages from pruned inodes (on highmem systems).
 297	 * (3) XFS freed buffer pages.
 298	 *
 299	 * For all of these cases, we cannot universally link the pages to a
 300	 * single memcg. For example, a memcg-aware shrinker can free one object
 301	 * charged to the target memcg, causing an entire page to be freed.
 302	 * If we count the entire page as reclaimed from the memcg, we end up
 303	 * overestimating the reclaimed amount (potentially under-reclaiming).
 304	 *
 305	 * Only count such pages for global reclaim to prevent under-reclaiming
 306	 * from the target memcg; preventing unnecessary retries during memcg
 307	 * charging and false positives from proactive reclaim.
 308	 *
 309	 * For uncommon cases where the freed pages were actually mostly
 310	 * charged to the target memcg, we end up underestimating the reclaimed
 311	 * amount. This should be fine. The freed pages will be uncharged
 312	 * anyway, even if they are not counted here properly, and we will be
 313	 * able to make forward progress in charging (which is usually in a
 314	 * retry loop).
 315	 *
 316	 * We can go one step further, and report the uncharged objcg pages in
 317	 * memcg reclaim, to make reporting more accurate and reduce
 318	 * underestimation, but it's probably not worth the complexity for now.
 319	 */
 320	if (current->reclaim_state && root_reclaim(sc)) {
 321		sc->nr_reclaimed += current->reclaim_state->reclaimed;
 322		current->reclaim_state->reclaimed = 0;
 323	}
 324}
 325
 326static bool can_demote(int nid, struct scan_control *sc)
 
 327{
 328	if (!numa_demotion_enabled)
 329		return false;
 330	if (sc && sc->no_demotion)
 331		return false;
 332	if (next_demotion_node(nid) == NUMA_NO_NODE)
 333		return false;
 334
 335	return true;
 336}
 337
 338static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 339					  int nid,
 340					  struct scan_control *sc)
 341{
 342	if (memcg == NULL) {
 343		/*
 344		 * For non-memcg reclaim, is there
 345		 * space in any swap device?
 346		 */
 347		if (get_nr_swap_pages() > 0)
 348			return true;
 349	} else {
 350		/* Is the memcg below its swap limit? */
 351		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 352			return true;
 353	}
 354
 355	/*
 356	 * The page can not be swapped.
 357	 *
 358	 * Can it be reclaimed from this node via demotion?
 359	 */
 360	return can_demote(nid, sc);
 361}
 
 362
 363/*
 364 * This misses isolated folios which are not accounted for to save counters.
 365 * As the data only determines if reclaim or compaction continues, it is
 366 * not expected that isolated folios will be a dominating factor.
 367 */
 368unsigned long zone_reclaimable_pages(struct zone *zone)
 369{
 370	unsigned long nr;
 371
 372	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 373		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 374	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 375		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 376			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 377	/*
 378	 * If there are no reclaimable file-backed or anonymous pages,
 379	 * ensure zones with sufficient free pages are not skipped.
 380	 * This prevents zones like DMA32 from being ignored in reclaim
 381	 * scenarios where they can still help alleviate memory pressure.
 382	 */
 383	if (nr == 0)
 384		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
 385	return nr;
 386}
 387
 388/**
 389 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 390 * @lruvec: lru vector
 391 * @lru: lru to use
 392 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 393 */
 394static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 395				     int zone_idx)
 396{
 397	unsigned long size = 0;
 398	int zid;
 399
 400	for (zid = 0; zid <= zone_idx; zid++) {
 
 
 
 
 
 401		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 
 402
 403		if (!managed_zone(zone))
 404			continue;
 405
 406		if (!mem_cgroup_disabled())
 407			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 408		else
 409			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 
 
 410	}
 411	return size;
 
 
 412}
 413
 414static unsigned long drop_slab_node(int nid)
 
 
 
 415{
 416	unsigned long freed = 0;
 417	struct mem_cgroup *memcg = NULL;
 418
 419	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 420	do {
 421		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 422	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 423
 424	return freed;
 
 
 
 425}
 426
 427void drop_slab(void)
 428{
 429	int nid;
 430	int shift = 0;
 431	unsigned long freed;
 432
 433	do {
 434		freed = 0;
 435		for_each_online_node(nid) {
 436			if (fatal_signal_pending(current))
 437				return;
 438
 439			freed += drop_slab_node(nid);
 440		}
 441	} while ((freed >> shift++) > 1);
 442}
 443
 444static int reclaimer_offset(void)
 445{
 446	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 447			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
 448	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 449			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
 450	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 451			PGSCAN_DIRECT - PGSCAN_KSWAPD);
 452	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 453			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
 454
 455	if (current_is_kswapd())
 456		return 0;
 457	if (current_is_khugepaged())
 458		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
 459	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
 460}
 461
 462static inline int is_page_cache_freeable(struct folio *folio)
 463{
 464	/*
 465	 * A freeable page cache folio is referenced only by the caller
 466	 * that isolated the folio, the page cache and optional filesystem
 467	 * private data at folio->private.
 468	 */
 469	return folio_ref_count(folio) - folio_test_private(folio) ==
 470		1 + folio_nr_pages(folio);
 471}
 
 472
 473/*
 474 * We detected a synchronous write error writing a folio out.  Probably
 475 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 476 * fsync(), msync() or close().
 477 *
 478 * The tricky part is that after writepage we cannot touch the mapping: nothing
 479 * prevents it from being freed up.  But we have a ref on the folio and once
 480 * that folio is locked, the mapping is pinned.
 481 *
 482 * We're allowed to run sleeping folio_lock() here because we know the caller has
 483 * __GFP_FS.
 484 */
 485static void handle_write_error(struct address_space *mapping,
 486				struct folio *folio, int error)
 487{
 488	folio_lock(folio);
 489	if (folio_mapping(folio) == mapping)
 490		mapping_set_error(mapping, error);
 491	folio_unlock(folio);
 
 
 
 492}
 
 493
 494static bool skip_throttle_noprogress(pg_data_t *pgdat)
 
 
 
 495{
 496	int reclaimable = 0, write_pending = 0;
 497	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	/*
 500	 * If kswapd is disabled, reschedule if necessary but do not
 501	 * throttle as the system is likely near OOM.
 
 
 
 
 
 
 
 
 502	 */
 503	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 504		return true;
 505
 506	/*
 507	 * If there are a lot of dirty/writeback folios then do not
 508	 * throttle as throttling will occur when the folios cycle
 509	 * towards the end of the LRU if still under writeback.
 510	 */
 511	for (i = 0; i < MAX_NR_ZONES; i++) {
 512		struct zone *zone = pgdat->node_zones + i;
 513
 514		if (!managed_zone(zone))
 515			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517		reclaimable += zone_reclaimable_pages(zone);
 518		write_pending += zone_page_state_snapshot(zone,
 519						  NR_ZONE_WRITE_PENDING);
 520	}
 521	if (2 * write_pending <= reclaimable)
 522		return true;
 523
 524	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525}
 526
 527void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528{
 529	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
 530	long timeout, ret;
 531	DEFINE_WAIT(wait);
 
 
 532
 533	/*
 534	 * Do not throttle user workers, kthreads other than kswapd or
 535	 * workqueues. They may be required for reclaim to make
 536	 * forward progress (e.g. journalling workqueues or kthreads).
 537	 */
 538	if (!current_is_kswapd() &&
 539	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
 540		cond_resched();
 541		return;
 542	}
 543
 544	/*
 545	 * These figures are pulled out of thin air.
 546	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
 547	 * parallel reclaimers which is a short-lived event so the timeout is
 548	 * short. Failing to make progress or waiting on writeback are
 549	 * potentially long-lived events so use a longer timeout. This is shaky
 550	 * logic as a failure to make progress could be due to anything from
 551	 * writeback to a slow device to excessive referenced folios at the tail
 552	 * of the inactive LRU.
 553	 */
 554	switch(reason) {
 555	case VMSCAN_THROTTLE_WRITEBACK:
 556		timeout = HZ/10;
 557
 558		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
 559			WRITE_ONCE(pgdat->nr_reclaim_start,
 560				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
 561		}
 562
 563		break;
 564	case VMSCAN_THROTTLE_CONGESTED:
 565		fallthrough;
 566	case VMSCAN_THROTTLE_NOPROGRESS:
 567		if (skip_throttle_noprogress(pgdat)) {
 568			cond_resched();
 569			return;
 570		}
 571
 572		timeout = 1;
 
 573
 574		break;
 575	case VMSCAN_THROTTLE_ISOLATED:
 576		timeout = HZ/50;
 577		break;
 578	default:
 579		WARN_ON_ONCE(1);
 580		timeout = HZ;
 581		break;
 
 
 582	}
 583
 584	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 585	ret = schedule_timeout(timeout);
 586	finish_wait(wqh, &wait);
 
 
 587
 588	if (reason == VMSCAN_THROTTLE_WRITEBACK)
 589		atomic_dec(&pgdat->nr_writeback_throttled);
 
 
 
 
 590
 591	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
 592				jiffies_to_usecs(timeout - ret),
 593				reason);
 
 
 594}
 595
 596/*
 597 * Account for folios written if tasks are throttled waiting on dirty
 598 * folios to clean. If enough folios have been cleaned since throttling
 599 * started then wakeup the throttled tasks.
 600 */
 601void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 602							int nr_throttled)
 603{
 604	unsigned long nr_written;
 605
 606	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
 
 
 607
 
 
 608	/*
 609	 * This is an inaccurate read as the per-cpu deltas may not
 610	 * be synchronised. However, given that the system is
 611	 * writeback throttled, it is not worth taking the penalty
 612	 * of getting an accurate count. At worst, the throttle
 613	 * timeout guarantees forward progress.
 614	 */
 615	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
 616		READ_ONCE(pgdat->nr_reclaim_start);
 
 
 617
 618	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
 619		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620}
 621
 622/* possible outcome of pageout() */
 623typedef enum {
 624	/* failed to write folio out, folio is locked */
 625	PAGE_KEEP,
 626	/* move folio to the active list, folio is locked */
 627	PAGE_ACTIVATE,
 628	/* folio has been sent to the disk successfully, folio is unlocked */
 629	PAGE_SUCCESS,
 630	/* folio is clean and locked */
 631	PAGE_CLEAN,
 632} pageout_t;
 633
 634/*
 635 * pageout is called by shrink_folio_list() for each dirty folio.
 636 * Calls ->writepage().
 637 */
 638static pageout_t pageout(struct folio *folio, struct address_space *mapping,
 639			 struct swap_iocb **plug, struct list_head *folio_list)
 640{
 641	/*
 642	 * If the folio is dirty, only perform writeback if that write
 643	 * will be non-blocking.  To prevent this allocation from being
 644	 * stalled by pagecache activity.  But note that there may be
 645	 * stalls if we need to run get_block().  We could test
 646	 * PagePrivate for that.
 647	 *
 648	 * If this process is currently in __generic_file_write_iter() against
 649	 * this folio's queue, we can perform writeback even if that
 650	 * will block.
 651	 *
 652	 * If the folio is swapcache, write it back even if that would
 653	 * block, for some throttling. This happens by accident, because
 654	 * swap_backing_dev_info is bust: it doesn't reflect the
 655	 * congestion state of the swapdevs.  Easy to fix, if needed.
 656	 */
 657	if (!is_page_cache_freeable(folio))
 658		return PAGE_KEEP;
 659	if (!mapping) {
 660		/*
 661		 * Some data journaling orphaned folios can have
 662		 * folio->mapping == NULL while being dirty with clean buffers.
 663		 */
 664		if (folio_test_private(folio)) {
 665			if (try_to_free_buffers(folio)) {
 666				folio_clear_dirty(folio);
 667				pr_info("%s: orphaned folio\n", __func__);
 668				return PAGE_CLEAN;
 669			}
 670		}
 671		return PAGE_KEEP;
 672	}
 673	if (mapping->a_ops->writepage == NULL)
 674		return PAGE_ACTIVATE;
 
 
 675
 676	if (folio_clear_dirty_for_io(folio)) {
 677		int res;
 678		struct writeback_control wbc = {
 679			.sync_mode = WB_SYNC_NONE,
 680			.nr_to_write = SWAP_CLUSTER_MAX,
 681			.range_start = 0,
 682			.range_end = LLONG_MAX,
 683			.for_reclaim = 1,
 684			.swap_plug = plug,
 685		};
 686
 687		/*
 688		 * The large shmem folio can be split if CONFIG_THP_SWAP is
 689		 * not enabled or contiguous swap entries are failed to
 690		 * allocate.
 691		 */
 692		if (shmem_mapping(mapping) && folio_test_large(folio))
 693			wbc.list = folio_list;
 694
 695		folio_set_reclaim(folio);
 696		res = mapping->a_ops->writepage(&folio->page, &wbc);
 697		if (res < 0)
 698			handle_write_error(mapping, folio, res);
 699		if (res == AOP_WRITEPAGE_ACTIVATE) {
 700			folio_clear_reclaim(folio);
 701			return PAGE_ACTIVATE;
 702		}
 703
 704		if (!folio_test_writeback(folio)) {
 705			/* synchronous write or broken a_ops? */
 706			folio_clear_reclaim(folio);
 707		}
 708		trace_mm_vmscan_write_folio(folio);
 709		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
 710		return PAGE_SUCCESS;
 711	}
 712
 713	return PAGE_CLEAN;
 714}
 715
 716/*
 717 * Same as remove_mapping, but if the folio is removed from the mapping, it
 718 * gets returned with a refcount of 0.
 719 */
 720static int __remove_mapping(struct address_space *mapping, struct folio *folio,
 721			    bool reclaimed, struct mem_cgroup *target_memcg)
 722{
 
 723	int refcount;
 724	void *shadow = NULL;
 725
 726	BUG_ON(!folio_test_locked(folio));
 727	BUG_ON(mapping != folio_mapping(folio));
 728
 729	if (!folio_test_swapcache(folio))
 730		spin_lock(&mapping->host->i_lock);
 731	xa_lock_irq(&mapping->i_pages);
 732	/*
 733	 * The non racy check for a busy folio.
 734	 *
 735	 * Must be careful with the order of the tests. When someone has
 736	 * a ref to the folio, it may be possible that they dirty it then
 737	 * drop the reference. So if the dirty flag is tested before the
 738	 * refcount here, then the following race may occur:
 739	 *
 740	 * get_user_pages(&page);
 741	 * [user mapping goes away]
 742	 * write_to(page);
 743	 *				!folio_test_dirty(folio)    [good]
 744	 * folio_set_dirty(folio);
 745	 * folio_put(folio);
 746	 *				!refcount(folio)   [good, discard it]
 747	 *
 748	 * [oops, our write_to data is lost]
 749	 *
 750	 * Reversing the order of the tests ensures such a situation cannot
 751	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
 752	 * load is not satisfied before that of folio->_refcount.
 753	 *
 754	 * Note that if the dirty flag is always set via folio_mark_dirty,
 755	 * and thus under the i_pages lock, then this ordering is not required.
 756	 */
 757	refcount = 1 + folio_nr_pages(folio);
 758	if (!folio_ref_freeze(folio, refcount))
 
 
 
 759		goto cannot_free;
 760	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
 761	if (unlikely(folio_test_dirty(folio))) {
 762		folio_ref_unfreeze(folio, refcount);
 763		goto cannot_free;
 764	}
 765
 766	if (folio_test_swapcache(folio)) {
 767		swp_entry_t swap = folio->swap;
 768
 769		if (reclaimed && !mapping_exiting(mapping))
 770			shadow = workingset_eviction(folio, target_memcg);
 771		__delete_from_swap_cache(folio, swap, shadow);
 772		mem_cgroup_swapout(folio, swap);
 773		xa_unlock_irq(&mapping->i_pages);
 774		put_swap_folio(folio, swap);
 775	} else {
 776		void (*free_folio)(struct folio *);
 
 777
 778		free_folio = mapping->a_ops->free_folio;
 779		/*
 780		 * Remember a shadow entry for reclaimed file cache in
 781		 * order to detect refaults, thus thrashing, later on.
 782		 *
 783		 * But don't store shadows in an address space that is
 784		 * already exiting.  This is not just an optimization,
 785		 * inode reclaim needs to empty out the radix tree or
 786		 * the nodes are lost.  Don't plant shadows behind its
 787		 * back.
 788		 *
 789		 * We also don't store shadows for DAX mappings because the
 790		 * only page cache folios found in these are zero pages
 791		 * covering holes, and because we don't want to mix DAX
 792		 * exceptional entries and shadow exceptional entries in the
 793		 * same address_space.
 794		 */
 795		if (reclaimed && folio_is_file_lru(folio) &&
 796		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 797			shadow = workingset_eviction(folio, target_memcg);
 798		__filemap_remove_folio(folio, shadow);
 799		xa_unlock_irq(&mapping->i_pages);
 800		if (mapping_shrinkable(mapping))
 801			inode_add_lru(mapping->host);
 802		spin_unlock(&mapping->host->i_lock);
 803
 804		if (free_folio)
 805			free_folio(folio);
 806	}
 807
 808	return 1;
 809
 810cannot_free:
 811	xa_unlock_irq(&mapping->i_pages);
 812	if (!folio_test_swapcache(folio))
 813		spin_unlock(&mapping->host->i_lock);
 814	return 0;
 815}
 816
 817/**
 818 * remove_mapping() - Attempt to remove a folio from its mapping.
 819 * @mapping: The address space.
 820 * @folio: The folio to remove.
 821 *
 822 * If the folio is dirty, under writeback or if someone else has a ref
 823 * on it, removal will fail.
 824 * Return: The number of pages removed from the mapping.  0 if the folio
 825 * could not be removed.
 826 * Context: The caller should have a single refcount on the folio and
 827 * hold its lock.
 828 */
 829long remove_mapping(struct address_space *mapping, struct folio *folio)
 830{
 831	if (__remove_mapping(mapping, folio, false, NULL)) {
 832		/*
 833		 * Unfreezing the refcount with 1 effectively
 834		 * drops the pagecache ref for us without requiring another
 835		 * atomic operation.
 836		 */
 837		folio_ref_unfreeze(folio, 1);
 838		return folio_nr_pages(folio);
 839	}
 840	return 0;
 841}
 842
 843/**
 844 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 845 * @folio: Folio to be returned to an LRU list.
 846 *
 847 * Add previously isolated @folio to appropriate LRU list.
 848 * The folio may still be unevictable for other reasons.
 849 *
 850 * Context: lru_lock must not be held, interrupts must be enabled.
 851 */
 852void folio_putback_lru(struct folio *folio)
 853{
 854	folio_add_lru(folio);
 855	folio_put(folio);		/* drop ref from isolate */
 856}
 857
 858enum folio_references {
 859	FOLIOREF_RECLAIM,
 860	FOLIOREF_RECLAIM_CLEAN,
 861	FOLIOREF_KEEP,
 862	FOLIOREF_ACTIVATE,
 863};
 864
 865static enum folio_references folio_check_references(struct folio *folio,
 866						  struct scan_control *sc)
 867{
 868	int referenced_ptes, referenced_folio;
 869	unsigned long vm_flags;
 870
 871	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
 872					   &vm_flags);
 873	referenced_folio = folio_test_clear_referenced(folio);
 874
 875	/*
 876	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
 877	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
 878	 */
 879	if (vm_flags & VM_LOCKED)
 880		return FOLIOREF_ACTIVATE;
 881
 882	/*
 883	 * There are two cases to consider.
 884	 * 1) Rmap lock contention: rotate.
 885	 * 2) Skip the non-shared swapbacked folio mapped solely by
 886	 *    the exiting or OOM-reaped process.
 887	 */
 888	if (referenced_ptes == -1)
 889		return FOLIOREF_KEEP;
 890
 891	if (referenced_ptes) {
 
 
 892		/*
 893		 * All mapped folios start out with page table
 894		 * references from the instantiating fault, so we need
 895		 * to look twice if a mapped file/anon folio is used more
 896		 * than once.
 897		 *
 898		 * Mark it and spare it for another trip around the
 899		 * inactive list.  Another page table reference will
 900		 * lead to its activation.
 901		 *
 902		 * Note: the mark is set for activated folios as well
 903		 * so that recently deactivated but used folios are
 904		 * quickly recovered.
 905		 */
 906		folio_set_referenced(folio);
 907
 908		if (referenced_folio || referenced_ptes > 1)
 909			return FOLIOREF_ACTIVATE;
 910
 911		/*
 912		 * Activate file-backed executable folios after first usage.
 913		 */
 914		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
 915			return FOLIOREF_ACTIVATE;
 916
 917		return FOLIOREF_KEEP;
 918	}
 919
 920	/* Reclaim if clean, defer dirty folios to writeback */
 921	if (referenced_folio && folio_is_file_lru(folio))
 922		return FOLIOREF_RECLAIM_CLEAN;
 923
 924	return FOLIOREF_RECLAIM;
 925}
 926
 927/* Check if a folio is dirty or under writeback */
 928static void folio_check_dirty_writeback(struct folio *folio,
 929				       bool *dirty, bool *writeback)
 930{
 931	struct address_space *mapping;
 932
 933	/*
 934	 * Anonymous folios are not handled by flushers and must be written
 935	 * from reclaim context. Do not stall reclaim based on them.
 936	 * MADV_FREE anonymous folios are put into inactive file list too.
 937	 * They could be mistakenly treated as file lru. So further anon
 938	 * test is needed.
 939	 */
 940	if (!folio_is_file_lru(folio) ||
 941	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
 942		*dirty = false;
 943		*writeback = false;
 944		return;
 945	}
 946
 947	/* By default assume that the folio flags are accurate */
 948	*dirty = folio_test_dirty(folio);
 949	*writeback = folio_test_writeback(folio);
 950
 951	/* Verify dirty/writeback state if the filesystem supports it */
 952	if (!folio_test_private(folio))
 953		return;
 954
 955	mapping = folio_mapping(folio);
 956	if (mapping && mapping->a_ops->is_dirty_writeback)
 957		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
 958}
 959
 960struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
 961{
 962	struct folio *dst;
 963	nodemask_t *allowed_mask;
 964	struct migration_target_control *mtc;
 965
 966	mtc = (struct migration_target_control *)private;
 967
 968	allowed_mask = mtc->nmask;
 969	/*
 970	 * make sure we allocate from the target node first also trying to
 971	 * demote or reclaim pages from the target node via kswapd if we are
 972	 * low on free memory on target node. If we don't do this and if
 973	 * we have free memory on the slower(lower) memtier, we would start
 974	 * allocating pages from slower(lower) memory tiers without even forcing
 975	 * a demotion of cold pages from the target memtier. This can result
 976	 * in the kernel placing hot pages in slower(lower) memory tiers.
 977	 */
 978	mtc->nmask = NULL;
 979	mtc->gfp_mask |= __GFP_THISNODE;
 980	dst = alloc_migration_target(src, (unsigned long)mtc);
 981	if (dst)
 982		return dst;
 983
 984	mtc->gfp_mask &= ~__GFP_THISNODE;
 985	mtc->nmask = allowed_mask;
 986
 987	return alloc_migration_target(src, (unsigned long)mtc);
 988}
 989
 990/*
 991 * Take folios on @demote_folios and attempt to demote them to another node.
 992 * Folios which are not demoted are left on @demote_folios.
 993 */
 994static unsigned int demote_folio_list(struct list_head *demote_folios,
 995				     struct pglist_data *pgdat)
 996{
 997	int target_nid = next_demotion_node(pgdat->node_id);
 998	unsigned int nr_succeeded;
 999	nodemask_t allowed_mask;
1000
1001	struct migration_target_control mtc = {
1002		/*
1003		 * Allocate from 'node', or fail quickly and quietly.
1004		 * When this happens, 'page' will likely just be discarded
1005		 * instead of migrated.
1006		 */
1007		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1008			__GFP_NOMEMALLOC | GFP_NOWAIT,
1009		.nid = target_nid,
1010		.nmask = &allowed_mask,
1011		.reason = MR_DEMOTION,
1012	};
1013
1014	if (list_empty(demote_folios))
1015		return 0;
1016
1017	if (target_nid == NUMA_NO_NODE)
1018		return 0;
1019
1020	node_get_allowed_targets(pgdat, &allowed_mask);
1021
1022	/* Demotion ignores all cpuset and mempolicy settings */
1023	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1024		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1025		      &nr_succeeded);
1026
1027	return nr_succeeded;
1028}
1029
1030static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1031{
1032	if (gfp_mask & __GFP_FS)
1033		return true;
1034	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1035		return false;
1036	/*
1037	 * We can "enter_fs" for swap-cache with only __GFP_IO
1038	 * providing this isn't SWP_FS_OPS.
1039	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1040	 * but that will never affect SWP_FS_OPS, so the data_race
1041	 * is safe.
1042	 */
1043	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1044}
1045
1046/*
1047 * shrink_folio_list() returns the number of reclaimed pages
1048 */
1049static unsigned int shrink_folio_list(struct list_head *folio_list,
1050		struct pglist_data *pgdat, struct scan_control *sc,
1051		struct reclaim_stat *stat, bool ignore_references)
1052{
1053	struct folio_batch free_folios;
1054	LIST_HEAD(ret_folios);
1055	LIST_HEAD(demote_folios);
1056	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1057	unsigned int pgactivate = 0;
1058	bool do_demote_pass;
1059	struct swap_iocb *plug = NULL;
 
 
 
 
 
 
 
1060
1061	folio_batch_init(&free_folios);
1062	memset(stat, 0, sizeof(*stat));
1063	cond_resched();
1064	do_demote_pass = can_demote(pgdat->node_id, sc);
1065
1066retry:
1067	while (!list_empty(folio_list)) {
1068		struct address_space *mapping;
1069		struct folio *folio;
1070		enum folio_references references = FOLIOREF_RECLAIM;
 
1071		bool dirty, writeback;
1072		unsigned int nr_pages;
1073
1074		cond_resched();
1075
1076		folio = lru_to_folio(folio_list);
1077		list_del(&folio->lru);
1078
1079		if (!folio_trylock(folio))
1080			goto keep;
1081
1082		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1083
1084		nr_pages = folio_nr_pages(folio);
1085
1086		/* Account the number of base pages */
1087		sc->nr_scanned += nr_pages;
1088
1089		if (unlikely(!folio_evictable(folio)))
1090			goto activate_locked;
1091
1092		if (!sc->may_unmap && folio_mapped(folio))
1093			goto keep_locked;
1094
1095		/* folio_update_gen() tried to promote this page? */
1096		if (lru_gen_enabled() && !ignore_references &&
1097		    folio_mapped(folio) && folio_test_referenced(folio))
1098			goto keep_locked;
 
 
 
1099
1100		/*
1101		 * The number of dirty pages determines if a node is marked
1102		 * reclaim_congested. kswapd will stall and start writing
1103		 * folios if the tail of the LRU is all dirty unqueued folios.
 
1104		 */
1105		folio_check_dirty_writeback(folio, &dirty, &writeback);
1106		if (dirty || writeback)
1107			stat->nr_dirty += nr_pages;
1108
1109		if (dirty && !writeback)
1110			stat->nr_unqueued_dirty += nr_pages;
1111
1112		/*
1113		 * Treat this folio as congested if folios are cycling
1114		 * through the LRU so quickly that the folios marked
1115		 * for immediate reclaim are making it to the end of
1116		 * the LRU a second time.
1117		 */
1118		if (writeback && folio_test_reclaim(folio))
1119			stat->nr_congested += nr_pages;
 
 
 
1120
1121		/*
1122		 * If a folio at the tail of the LRU is under writeback, there
1123		 * are three cases to consider.
1124		 *
1125		 * 1) If reclaim is encountering an excessive number
1126		 *    of folios under writeback and this folio has both
1127		 *    the writeback and reclaim flags set, then it
1128		 *    indicates that folios are being queued for I/O but
1129		 *    are being recycled through the LRU before the I/O
1130		 *    can complete. Waiting on the folio itself risks an
1131		 *    indefinite stall if it is impossible to writeback
1132		 *    the folio due to I/O error or disconnected storage
1133		 *    so instead note that the LRU is being scanned too
1134		 *    quickly and the caller can stall after the folio
1135		 *    list has been processed.
1136		 *
1137		 * 2) Global or new memcg reclaim encounters a folio that is
1138		 *    not marked for immediate reclaim, or the caller does not
1139		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1140		 *    not to fs). In this case mark the folio for immediate
1141		 *    reclaim and continue scanning.
1142		 *
1143		 *    Require may_enter_fs() because we would wait on fs, which
1144		 *    may not have submitted I/O yet. And the loop driver might
1145		 *    enter reclaim, and deadlock if it waits on a folio for
1146		 *    which it is needed to do the write (loop masks off
1147		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1148		 *    would probably show more reasons.
1149		 *
1150		 * 3) Legacy memcg encounters a folio that already has the
1151		 *    reclaim flag set. memcg does not have any dirty folio
1152		 *    throttling so we could easily OOM just because too many
1153		 *    folios are in writeback and there is nothing else to
1154		 *    reclaim. Wait for the writeback to complete.
1155		 *
1156		 * In cases 1) and 2) we activate the folios to get them out of
1157		 * the way while we continue scanning for clean folios on the
1158		 * inactive list and refilling from the active list. The
1159		 * observation here is that waiting for disk writes is more
1160		 * expensive than potentially causing reloads down the line.
1161		 * Since they're marked for immediate reclaim, they won't put
1162		 * memory pressure on the cache working set any longer than it
1163		 * takes to write them to disk.
1164		 */
1165		if (folio_test_writeback(folio)) {
1166			/* Case 1 above */
1167			if (current_is_kswapd() &&
1168			    folio_test_reclaim(folio) &&
1169			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1170				stat->nr_immediate += nr_pages;
1171				goto activate_locked;
1172
1173			/* Case 2 above */
1174			} else if (writeback_throttling_sane(sc) ||
1175			    !folio_test_reclaim(folio) ||
1176			    !may_enter_fs(folio, sc->gfp_mask)) {
1177				/*
1178				 * This is slightly racy -
1179				 * folio_end_writeback() might have
1180				 * just cleared the reclaim flag, then
1181				 * setting the reclaim flag here ends up
1182				 * interpreted as the readahead flag - but
1183				 * that does not matter enough to care.
1184				 * What we do want is for this folio to
1185				 * have the reclaim flag set next time
1186				 * memcg reclaim reaches the tests above,
1187				 * so it will then wait for writeback to
1188				 * avoid OOM; and it's also appropriate
1189				 * in global reclaim.
1190				 */
1191				folio_set_reclaim(folio);
1192				stat->nr_writeback += nr_pages;
1193				goto activate_locked;
1194
1195			/* Case 3 above */
1196			} else {
1197				folio_unlock(folio);
1198				folio_wait_writeback(folio);
1199				/* then go back and try same folio again */
1200				list_add_tail(&folio->lru, folio_list);
1201				continue;
1202			}
1203		}
1204
1205		if (!ignore_references)
1206			references = folio_check_references(folio, sc);
1207
1208		switch (references) {
1209		case FOLIOREF_ACTIVATE:
1210			goto activate_locked;
1211		case FOLIOREF_KEEP:
1212			stat->nr_ref_keep += nr_pages;
1213			goto keep_locked;
1214		case FOLIOREF_RECLAIM:
1215		case FOLIOREF_RECLAIM_CLEAN:
1216			; /* try to reclaim the folio below */
1217		}
1218
1219		/*
1220		 * Before reclaiming the folio, try to relocate
1221		 * its contents to another node.
1222		 */
1223		if (do_demote_pass &&
1224		    (thp_migration_supported() || !folio_test_large(folio))) {
1225			list_add(&folio->lru, &demote_folios);
1226			folio_unlock(folio);
1227			continue;
1228		}
1229
1230		/*
1231		 * Anonymous process memory has backing store?
1232		 * Try to allocate it some swap space here.
1233		 * Lazyfree folio could be freed directly
1234		 */
1235		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1236			if (!folio_test_swapcache(folio)) {
1237				if (!(sc->gfp_mask & __GFP_IO))
1238					goto keep_locked;
1239				if (folio_maybe_dma_pinned(folio))
1240					goto keep_locked;
1241				if (folio_test_large(folio)) {
1242					/* cannot split folio, skip it */
1243					if (!can_split_folio(folio, 1, NULL))
1244						goto activate_locked;
1245					/*
1246					 * Split partially mapped folios right away.
1247					 * We can free the unmapped pages without IO.
 
1248					 */
1249					if (data_race(!list_empty(&folio->_deferred_list) &&
1250					    folio_test_partially_mapped(folio)) &&
1251					    split_folio_to_list(folio, folio_list))
1252						goto activate_locked;
1253				}
1254				if (!add_to_swap(folio)) {
1255					int __maybe_unused order = folio_order(folio);
1256
1257					if (!folio_test_large(folio))
1258						goto activate_locked_split;
1259					/* Fallback to swap normal pages */
1260					if (split_folio_to_list(folio, folio_list))
 
1261						goto activate_locked;
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263					if (nr_pages >= HPAGE_PMD_NR) {
1264						count_memcg_folio_events(folio,
1265							THP_SWPOUT_FALLBACK, 1);
1266						count_vm_event(THP_SWPOUT_FALLBACK);
1267					}
1268#endif
1269					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1270					if (!add_to_swap(folio))
1271						goto activate_locked_split;
1272				}
 
 
 
 
 
1273			}
 
 
 
 
1274		}
1275
1276		/*
1277		 * If the folio was split above, the tail pages will make
1278		 * their own pass through this function and be accounted
1279		 * then.
1280		 */
1281		if ((nr_pages > 1) && !folio_test_large(folio)) {
1282			sc->nr_scanned -= (nr_pages - 1);
1283			nr_pages = 1;
1284		}
1285
1286		/*
1287		 * The folio is mapped into the page tables of one or more
1288		 * processes. Try to unmap it here.
1289		 */
1290		if (folio_mapped(folio)) {
1291			enum ttu_flags flags = TTU_BATCH_FLUSH;
1292			bool was_swapbacked = folio_test_swapbacked(folio);
1293
1294			if (folio_test_pmd_mappable(folio))
1295				flags |= TTU_SPLIT_HUGE_PMD;
1296			/*
1297			 * Without TTU_SYNC, try_to_unmap will only begin to
1298			 * hold PTL from the first present PTE within a large
1299			 * folio. Some initial PTEs might be skipped due to
1300			 * races with parallel PTE writes in which PTEs can be
1301			 * cleared temporarily before being written new present
1302			 * values. This will lead to a large folio is still
1303			 * mapped while some subpages have been partially
1304			 * unmapped after try_to_unmap; TTU_SYNC helps
1305			 * try_to_unmap acquire PTL from the first PTE,
1306			 * eliminating the influence of temporary PTE values.
1307			 */
1308			if (folio_test_large(folio))
1309				flags |= TTU_SYNC;
1310
1311			try_to_unmap(folio, flags);
1312			if (folio_mapped(folio)) {
1313				stat->nr_unmap_fail += nr_pages;
1314				if (!was_swapbacked &&
1315				    folio_test_swapbacked(folio))
1316					stat->nr_lazyfree_fail += nr_pages;
1317				goto activate_locked;
1318			}
1319		}
1320
1321		/*
1322		 * Folio is unmapped now so it cannot be newly pinned anymore.
1323		 * No point in trying to reclaim folio if it is pinned.
1324		 * Furthermore we don't want to reclaim underlying fs metadata
1325		 * if the folio is pinned and thus potentially modified by the
1326		 * pinning process as that may upset the filesystem.
1327		 */
1328		if (folio_maybe_dma_pinned(folio))
1329			goto activate_locked;
1330
1331		mapping = folio_mapping(folio);
1332		if (folio_test_dirty(folio)) {
1333			/*
1334			 * Only kswapd can writeback filesystem folios
1335			 * to avoid risk of stack overflow. But avoid
1336			 * injecting inefficient single-folio I/O into
1337			 * flusher writeback as much as possible: only
1338			 * write folios when we've encountered many
1339			 * dirty folios, and when we've already scanned
1340			 * the rest of the LRU for clean folios and see
1341			 * the same dirty folios again (with the reclaim
1342			 * flag set).
1343			 */
1344			if (folio_is_file_lru(folio) &&
1345			    (!current_is_kswapd() ||
1346			     !folio_test_reclaim(folio) ||
1347			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1348				/*
1349				 * Immediately reclaim when written back.
1350				 * Similar in principle to folio_deactivate()
1351				 * except we already have the folio isolated
1352				 * and know it's dirty
1353				 */
1354				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1355						nr_pages);
1356				folio_set_reclaim(folio);
1357
1358				goto activate_locked;
1359			}
1360
1361			if (references == FOLIOREF_RECLAIM_CLEAN)
1362				goto keep_locked;
1363			if (!may_enter_fs(folio, sc->gfp_mask))
1364				goto keep_locked;
1365			if (!sc->may_writepage)
1366				goto keep_locked;
1367
1368			/*
1369			 * Folio is dirty. Flush the TLB if a writable entry
1370			 * potentially exists to avoid CPU writes after I/O
1371			 * starts and then write it out here.
1372			 */
1373			try_to_unmap_flush_dirty();
1374			switch (pageout(folio, mapping, &plug, folio_list)) {
1375			case PAGE_KEEP:
1376				goto keep_locked;
1377			case PAGE_ACTIVATE:
1378				/*
1379				 * If shmem folio is split when writeback to swap,
1380				 * the tail pages will make their own pass through
1381				 * this function and be accounted then.
1382				 */
1383				if (nr_pages > 1 && !folio_test_large(folio)) {
1384					sc->nr_scanned -= (nr_pages - 1);
1385					nr_pages = 1;
1386				}
1387				goto activate_locked;
1388			case PAGE_SUCCESS:
1389				if (nr_pages > 1 && !folio_test_large(folio)) {
1390					sc->nr_scanned -= (nr_pages - 1);
1391					nr_pages = 1;
1392				}
1393				stat->nr_pageout += nr_pages;
1394
1395				if (folio_test_writeback(folio))
1396					goto keep;
1397				if (folio_test_dirty(folio))
1398					goto keep;
1399
1400				/*
1401				 * A synchronous write - probably a ramdisk.  Go
1402				 * ahead and try to reclaim the folio.
1403				 */
1404				if (!folio_trylock(folio))
1405					goto keep;
1406				if (folio_test_dirty(folio) ||
1407				    folio_test_writeback(folio))
1408					goto keep_locked;
1409				mapping = folio_mapping(folio);
1410				fallthrough;
1411			case PAGE_CLEAN:
1412				; /* try to free the folio below */
1413			}
1414		}
1415
1416		/*
1417		 * If the folio has buffers, try to free the buffer
1418		 * mappings associated with this folio. If we succeed
1419		 * we try to free the folio as well.
1420		 *
1421		 * We do this even if the folio is dirty.
1422		 * filemap_release_folio() does not perform I/O, but it
1423		 * is possible for a folio to have the dirty flag set,
1424		 * but it is actually clean (all its buffers are clean).
1425		 * This happens if the buffers were written out directly,
1426		 * with submit_bh(). ext3 will do this, as well as
1427		 * the blockdev mapping.  filemap_release_folio() will
1428		 * discover that cleanness and will drop the buffers
1429		 * and mark the folio clean - it can be freed.
1430		 *
1431		 * Rarely, folios can have buffers and no ->mapping.
1432		 * These are the folios which were not successfully
1433		 * invalidated in truncate_cleanup_folio().  We try to
1434		 * drop those buffers here and if that worked, and the
1435		 * folio is no longer mapped into process address space
1436		 * (refcount == 1) it can be freed.  Otherwise, leave
1437		 * the folio on the LRU so it is swappable.
1438		 */
1439		if (folio_needs_release(folio)) {
1440			if (!filemap_release_folio(folio, sc->gfp_mask))
1441				goto activate_locked;
1442			if (!mapping && folio_ref_count(folio) == 1) {
1443				folio_unlock(folio);
1444				if (folio_put_testzero(folio))
1445					goto free_it;
1446				else {
1447					/*
1448					 * rare race with speculative reference.
1449					 * the speculative reference will free
1450					 * this folio shortly, so we may
1451					 * increment nr_reclaimed here (and
1452					 * leave it off the LRU).
1453					 */
1454					nr_reclaimed += nr_pages;
1455					continue;
1456				}
1457			}
1458		}
1459
1460		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1461			/* follow __remove_mapping for reference */
1462			if (!folio_ref_freeze(folio, 1))
1463				goto keep_locked;
1464			/*
1465			 * The folio has only one reference left, which is
1466			 * from the isolation. After the caller puts the
1467			 * folio back on the lru and drops the reference, the
1468			 * folio will be freed anyway. It doesn't matter
1469			 * which lru it goes on. So we don't bother checking
1470			 * the dirty flag here.
1471			 */
1472			count_vm_events(PGLAZYFREED, nr_pages);
1473			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1474		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1475							 sc->target_mem_cgroup))
1476			goto keep_locked;
 
 
 
 
 
 
 
 
 
 
1477
1478		folio_unlock(folio);
1479free_it:
1480		/*
1481		 * Folio may get swapped out as a whole, need to account
1482		 * all pages in it.
1483		 */
1484		nr_reclaimed += nr_pages;
1485
1486		folio_unqueue_deferred_split(folio);
1487		if (folio_batch_add(&free_folios, folio) == 0) {
1488			mem_cgroup_uncharge_folios(&free_folios);
1489			try_to_unmap_flush();
1490			free_unref_folios(&free_folios);
1491		}
1492		continue;
1493
1494activate_locked_split:
1495		/*
1496		 * The tail pages that are failed to add into swap cache
1497		 * reach here.  Fixup nr_scanned and nr_pages.
1498		 */
1499		if (nr_pages > 1) {
1500			sc->nr_scanned -= (nr_pages - 1);
1501			nr_pages = 1;
1502		}
1503activate_locked:
1504		/* Not a candidate for swapping, so reclaim swap space. */
1505		if (folio_test_swapcache(folio) &&
1506		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1507			folio_free_swap(folio);
1508		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1509		if (!folio_test_mlocked(folio)) {
1510			int type = folio_is_file_lru(folio);
1511			folio_set_active(folio);
1512			stat->nr_activate[type] += nr_pages;
1513			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1514		}
1515keep_locked:
1516		folio_unlock(folio);
1517keep:
1518		list_add(&folio->lru, &ret_folios);
1519		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1520				folio_test_unevictable(folio), folio);
1521	}
1522	/* 'folio_list' is always empty here */
1523
1524	/* Migrate folios selected for demotion */
1525	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1526	nr_reclaimed += nr_demoted;
1527	stat->nr_demoted += nr_demoted;
1528	/* Folios that could not be demoted are still in @demote_folios */
1529	if (!list_empty(&demote_folios)) {
1530		/* Folios which weren't demoted go back on @folio_list */
1531		list_splice_init(&demote_folios, folio_list);
1532
1533		/*
1534		 * goto retry to reclaim the undemoted folios in folio_list if
1535		 * desired.
1536		 *
1537		 * Reclaiming directly from top tier nodes is not often desired
1538		 * due to it breaking the LRU ordering: in general memory
1539		 * should be reclaimed from lower tier nodes and demoted from
1540		 * top tier nodes.
1541		 *
1542		 * However, disabling reclaim from top tier nodes entirely
1543		 * would cause ooms in edge scenarios where lower tier memory
1544		 * is unreclaimable for whatever reason, eg memory being
1545		 * mlocked or too hot to reclaim. We can disable reclaim
1546		 * from top tier nodes in proactive reclaim though as that is
1547		 * not real memory pressure.
1548		 */
1549		if (!sc->proactive) {
1550			do_demote_pass = false;
1551			goto retry;
1552		}
1553	}
1554
1555	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1556
1557	mem_cgroup_uncharge_folios(&free_folios);
1558	try_to_unmap_flush();
1559	free_unref_folios(&free_folios);
1560
1561	list_splice(&ret_folios, folio_list);
1562	count_vm_events(PGACTIVATE, pgactivate);
1563
1564	if (plug)
1565		swap_write_unplug(plug);
 
 
 
 
 
 
 
 
1566	return nr_reclaimed;
1567}
1568
1569unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1570					   struct list_head *folio_list)
1571{
1572	struct scan_control sc = {
1573		.gfp_mask = GFP_KERNEL,
 
1574		.may_unmap = 1,
1575	};
1576	struct reclaim_stat stat;
1577	unsigned int nr_reclaimed;
1578	struct folio *folio, *next;
1579	LIST_HEAD(clean_folios);
1580	unsigned int noreclaim_flag;
1581
1582	list_for_each_entry_safe(folio, next, folio_list, lru) {
1583		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1584		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1585		    !folio_test_unevictable(folio)) {
1586			folio_clear_active(folio);
1587			list_move(&folio->lru, &clean_folios);
1588		}
1589	}
1590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591	/*
1592	 * We should be safe here since we are only dealing with file pages and
1593	 * we are not kswapd and therefore cannot write dirty file pages. But
1594	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1595	 * change in the future.
 
 
1596	 */
1597	noreclaim_flag = memalloc_noreclaim_save();
1598	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1599					&stat, true);
1600	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602	list_splice(&clean_folios, folio_list);
1603	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1604			    -(long)nr_reclaimed);
1605	/*
1606	 * Since lazyfree pages are isolated from file LRU from the beginning,
1607	 * they will rotate back to anonymous LRU in the end if it failed to
1608	 * discard so isolated count will be mismatched.
1609	 * Compensate the isolated count for both LRU lists.
1610	 */
1611	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1612			    stat.nr_lazyfree_fail);
1613	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1614			    -(long)stat.nr_lazyfree_fail);
1615	return nr_reclaimed;
1616}
1617
 
1618/*
1619 * Update LRU sizes after isolating pages. The LRU size updates must
1620 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1621 */
1622static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1623			enum lru_list lru, unsigned long *nr_zone_taken)
1624{
1625	int zid;
1626
1627	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1628		if (!nr_zone_taken[zid])
1629			continue;
1630
1631		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
1632	}
1633
1634}
1635
1636/*
1637 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1638 *
1639 * lruvec->lru_lock is heavily contended.  Some of the functions that
1640 * shrink the lists perform better by taking out a batch of pages
1641 * and working on them outside the LRU lock.
1642 *
1643 * For pagecache intensive workloads, this function is the hottest
1644 * spot in the kernel (apart from copy_*_user functions).
1645 *
1646 * Lru_lock must be held before calling this function.
1647 *
1648 * @nr_to_scan:	The number of eligible pages to look through on the list.
1649 * @lruvec:	The LRU vector to pull pages from.
1650 * @dst:	The temp list to put pages on to.
1651 * @nr_scanned:	The number of pages that were scanned.
1652 * @sc:		The scan_control struct for this reclaim session
 
1653 * @lru:	LRU list id for isolating
1654 *
1655 * returns how many pages were moved onto *@dst.
1656 */
1657static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1658		struct lruvec *lruvec, struct list_head *dst,
1659		unsigned long *nr_scanned, struct scan_control *sc,
1660		enum lru_list lru)
1661{
1662	struct list_head *src = &lruvec->lists[lru];
1663	unsigned long nr_taken = 0;
1664	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1665	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1666	unsigned long skipped = 0;
1667	unsigned long scan, total_scan, nr_pages;
1668	LIST_HEAD(folios_skipped);
1669
1670	total_scan = 0;
1671	scan = 0;
1672	while (scan < nr_to_scan && !list_empty(src)) {
1673		struct list_head *move_to = src;
1674		struct folio *folio;
1675
1676		folio = lru_to_folio(src);
1677		prefetchw_prev_lru_folio(folio, src, flags);
1678
1679		nr_pages = folio_nr_pages(folio);
1680		total_scan += nr_pages;
1681
1682		if (folio_zonenum(folio) > sc->reclaim_idx) {
1683			nr_skipped[folio_zonenum(folio)] += nr_pages;
1684			move_to = &folios_skipped;
1685			goto move;
1686		}
1687
1688		/*
1689		 * Do not count skipped folios because that makes the function
1690		 * return with no isolated folios if the LRU mostly contains
1691		 * ineligible folios.  This causes the VM to not reclaim any
1692		 * folios, triggering a premature OOM.
1693		 * Account all pages in a folio.
1694		 */
1695		scan += nr_pages;
1696
1697		if (!folio_test_lru(folio))
1698			goto move;
1699		if (!sc->may_unmap && folio_mapped(folio))
1700			goto move;
1701
1702		/*
1703		 * Be careful not to clear the lru flag until after we're
1704		 * sure the folio is not being freed elsewhere -- the
1705		 * folio release code relies on it.
1706		 */
1707		if (unlikely(!folio_try_get(folio)))
1708			goto move;
1709
1710		if (!folio_test_clear_lru(folio)) {
1711			/* Another thread is already isolating this folio */
1712			folio_put(folio);
1713			goto move;
1714		}
1715
1716		nr_taken += nr_pages;
1717		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1718		move_to = dst;
1719move:
1720		list_move(&folio->lru, move_to);
1721	}
1722
1723	/*
1724	 * Splice any skipped folios to the start of the LRU list. Note that
1725	 * this disrupts the LRU order when reclaiming for lower zones but
1726	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1727	 * scanning would soon rescan the same folios to skip and waste lots
1728	 * of cpu cycles.
1729	 */
1730	if (!list_empty(&folios_skipped)) {
1731		int zid;
1732
1733		list_splice(&folios_skipped, src);
1734		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1735			if (!nr_skipped[zid])
1736				continue;
1737
1738			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1739			skipped += nr_skipped[zid];
1740		}
1741	}
1742	*nr_scanned = total_scan;
1743	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1744				    total_scan, skipped, nr_taken, lru);
1745	update_lru_sizes(lruvec, lru, nr_zone_taken);
1746	return nr_taken;
1747}
1748
1749/**
1750 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1751 * @folio: Folio to isolate from its LRU list.
1752 *
1753 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1754 * corresponding to whatever LRU list the folio was on.
1755 *
1756 * The folio will have its LRU flag cleared.  If it was found on the
1757 * active list, it will have the Active flag set.  If it was found on the
1758 * unevictable list, it will have the Unevictable flag set.  These flags
 
 
 
1759 * may need to be cleared by the caller before letting the page go.
1760 *
1761 * Context:
 
 
 
1762 *
1763 * (1) Must be called with an elevated refcount on the folio. This is a
1764 *     fundamental difference from isolate_lru_folios() (which is called
1765 *     without a stable reference).
1766 * (2) The lru_lock must not be held.
1767 * (3) Interrupts must be enabled.
1768 *
1769 * Return: true if the folio was removed from an LRU list.
1770 * false if the folio was not on an LRU list.
1771 */
1772bool folio_isolate_lru(struct folio *folio)
1773{
1774	bool ret = false;
1775
1776	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
 
1777
1778	if (folio_test_clear_lru(folio)) {
 
1779		struct lruvec *lruvec;
1780
1781		folio_get(folio);
1782		lruvec = folio_lruvec_lock_irq(folio);
1783		lruvec_del_folio(lruvec, folio);
1784		unlock_page_lruvec_irq(lruvec);
1785		ret = true;
 
 
 
 
 
1786	}
1787
1788	return ret;
1789}
1790
1791/*
1792 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1793 * then get rescheduled. When there are massive number of tasks doing page
1794 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1795 * the LRU list will go small and be scanned faster than necessary, leading to
1796 * unnecessary swapping, thrashing and OOM.
1797 */
1798static bool too_many_isolated(struct pglist_data *pgdat, int file,
1799		struct scan_control *sc)
1800{
1801	unsigned long inactive, isolated;
1802	bool too_many;
1803
1804	if (current_is_kswapd())
1805		return false;
1806
1807	if (!writeback_throttling_sane(sc))
1808		return false;
1809
1810	if (file) {
1811		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1812		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1813	} else {
1814		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1815		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1816	}
1817
1818	/*
1819	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1820	 * won't get blocked by normal direct-reclaimers, forming a circular
1821	 * deadlock.
1822	 */
1823	if (gfp_has_io_fs(sc->gfp_mask))
1824		inactive >>= 3;
1825
1826	too_many = isolated > inactive;
1827
1828	/* Wake up tasks throttled due to too_many_isolated. */
1829	if (!too_many)
1830		wake_throttle_isolated(pgdat);
1831
1832	return too_many;
1833}
1834
1835/*
1836 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1841		struct list_head *list)
1842{
1843	int nr_pages, nr_moved = 0;
1844	struct folio_batch free_folios;
 
1845
1846	folio_batch_init(&free_folios);
1847	while (!list_empty(list)) {
1848		struct folio *folio = lru_to_folio(list);
 
 
 
1849
1850		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1851		list_del(&folio->lru);
1852		if (unlikely(!folio_evictable(folio))) {
1853			spin_unlock_irq(&lruvec->lru_lock);
1854			folio_putback_lru(folio);
1855			spin_lock_irq(&lruvec->lru_lock);
1856			continue;
1857		}
1858
1859		/*
1860		 * The folio_set_lru needs to be kept here for list integrity.
1861		 * Otherwise:
1862		 *   #0 move_folios_to_lru             #1 release_pages
1863		 *   if (!folio_put_testzero())
1864		 *				      if (folio_put_testzero())
1865		 *				        !lru //skip lru_lock
1866		 *     folio_set_lru()
1867		 *     list_add(&folio->lru,)
1868		 *                                        list_add(&folio->lru,)
1869		 */
1870		folio_set_lru(folio);
1871
1872		if (unlikely(folio_put_testzero(folio))) {
1873			__folio_clear_lru_flags(folio);
1874
1875			folio_unqueue_deferred_split(folio);
1876			if (folio_batch_add(&free_folios, folio) == 0) {
1877				spin_unlock_irq(&lruvec->lru_lock);
1878				mem_cgroup_uncharge_folios(&free_folios);
1879				free_unref_folios(&free_folios);
1880				spin_lock_irq(&lruvec->lru_lock);
1881			}
1882
1883			continue;
 
 
 
1884		}
 
 
 
 
1885
1886		/*
1887		 * All pages were isolated from the same lruvec (and isolation
1888		 * inhibits memcg migration).
1889		 */
1890		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1891		lruvec_add_folio(lruvec, folio);
1892		nr_pages = folio_nr_pages(folio);
1893		nr_moved += nr_pages;
1894		if (folio_test_active(folio))
1895			workingset_age_nonresident(lruvec, nr_pages);
1896	}
1897
1898	if (free_folios.nr) {
1899		spin_unlock_irq(&lruvec->lru_lock);
1900		mem_cgroup_uncharge_folios(&free_folios);
1901		free_unref_folios(&free_folios);
1902		spin_lock_irq(&lruvec->lru_lock);
1903	}
1904
1905	return nr_moved;
 
 
 
1906}
1907
1908/*
1909 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1910 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1911 * we should not throttle.  Otherwise it is safe to do so.
 
1912 */
1913static int current_may_throttle(void)
1914{
1915	return !(current->flags & PF_LOCAL_THROTTLE);
 
 
1916}
1917
1918/*
1919 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1920 * of reclaimed pages
1921 */
1922static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1923		struct lruvec *lruvec, struct scan_control *sc,
1924		enum lru_list lru)
1925{
1926	LIST_HEAD(folio_list);
1927	unsigned long nr_scanned;
1928	unsigned int nr_reclaimed = 0;
1929	unsigned long nr_taken;
1930	struct reclaim_stat stat;
1931	bool file = is_file_lru(lru);
1932	enum vm_event_item item;
1933	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 
1934	bool stalled = false;
1935
1936	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1937		if (stalled)
1938			return 0;
1939
1940		/* wait a bit for the reclaimer. */
 
1941		stalled = true;
1942		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1943
1944		/* We are about to die and free our memory. Return now. */
1945		if (fatal_signal_pending(current))
1946			return SWAP_CLUSTER_MAX;
1947	}
1948
1949	lru_add_drain();
1950
1951	spin_lock_irq(&lruvec->lru_lock);
 
 
 
1952
1953	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1954				     &nr_scanned, sc, lru);
1955
1956	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1957	item = PGSCAN_KSWAPD + reclaimer_offset();
1958	if (!cgroup_reclaim(sc))
1959		__count_vm_events(item, nr_scanned);
1960	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1961	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1962
1963	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
1964
1965	if (nr_taken == 0)
1966		return 0;
1967
1968	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969
1970	spin_lock_irq(&lruvec->lru_lock);
1971	move_folios_to_lru(lruvec, &folio_list);
1972
1973	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1974					stat.nr_demoted);
1975	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1976	item = PGSTEAL_KSWAPD + reclaimer_offset();
1977	if (!cgroup_reclaim(sc))
1978		__count_vm_events(item, nr_reclaimed);
1979	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1980	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1981	spin_unlock_irq(&lruvec->lru_lock);
1982
1983	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
 
 
 
1984
1985	/*
1986	 * If dirty folios are scanned that are not queued for IO, it
1987	 * implies that flushers are not doing their job. This can
1988	 * happen when memory pressure pushes dirty folios to the end of
1989	 * the LRU before the dirty limits are breached and the dirty
1990	 * data has expired. It can also happen when the proportion of
1991	 * dirty folios grows not through writes but through memory
1992	 * pressure reclaiming all the clean cache. And in some cases,
1993	 * the flushers simply cannot keep up with the allocation
1994	 * rate. Nudge the flusher threads in case they are asleep.
1995	 */
1996	if (stat.nr_unqueued_dirty == nr_taken) {
1997		wakeup_flusher_threads(WB_REASON_VMSCAN);
1998		/*
1999		 * For cgroupv1 dirty throttling is achieved by waking up
2000		 * the kernel flusher here and later waiting on folios
2001		 * which are in writeback to finish (see shrink_folio_list()).
2002		 *
2003		 * Flusher may not be able to issue writeback quickly
2004		 * enough for cgroupv1 writeback throttling to work
2005		 * on a large system.
2006		 */
2007		if (!writeback_throttling_sane(sc))
2008			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2009	}
2010
2011	sc->nr.dirty += stat.nr_dirty;
2012	sc->nr.congested += stat.nr_congested;
2013	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2014	sc->nr.writeback += stat.nr_writeback;
2015	sc->nr.immediate += stat.nr_immediate;
2016	sc->nr.taken += nr_taken;
2017	if (file)
2018		sc->nr.file_taken += nr_taken;
2019
2020	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2021			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2022	return nr_reclaimed;
2023}
2024
2025/*
2026 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2027 *
2028 * We move them the other way if the folio is referenced by one or more
2029 * processes.
2030 *
2031 * If the folios are mostly unmapped, the processing is fast and it is
2032 * appropriate to hold lru_lock across the whole operation.  But if
2033 * the folios are mapped, the processing is slow (folio_referenced()), so
2034 * we should drop lru_lock around each folio.  It's impossible to balance
2035 * this, so instead we remove the folios from the LRU while processing them.
2036 * It is safe to rely on the active flag against the non-LRU folios in here
2037 * because nobody will play with that bit on a non-LRU folio.
2038 *
2039 * The downside is that we have to touch folio->_refcount against each folio.
2040 * But we had to alter folio->flags anyway.
 
 
2041 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042static void shrink_active_list(unsigned long nr_to_scan,
2043			       struct lruvec *lruvec,
2044			       struct scan_control *sc,
2045			       enum lru_list lru)
2046{
2047	unsigned long nr_taken;
2048	unsigned long nr_scanned;
2049	unsigned long vm_flags;
2050	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2051	LIST_HEAD(l_active);
2052	LIST_HEAD(l_inactive);
 
 
2053	unsigned nr_deactivate, nr_activate;
2054	unsigned nr_rotated = 0;
2055	bool file = is_file_lru(lru);
 
2056	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2057
2058	lru_add_drain();
2059
2060	spin_lock_irq(&lruvec->lru_lock);
 
2061
2062	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2063				     &nr_scanned, sc, lru);
 
 
2064
2065	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 
2066
2067	if (!cgroup_reclaim(sc))
2068		__count_vm_events(PGREFILL, nr_scanned);
2069	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2070
2071	spin_unlock_irq(&lruvec->lru_lock);
2072
2073	while (!list_empty(&l_hold)) {
2074		struct folio *folio;
2075
2076		cond_resched();
2077		folio = lru_to_folio(&l_hold);
2078		list_del(&folio->lru);
2079
2080		if (unlikely(!folio_evictable(folio))) {
2081			folio_putback_lru(folio);
2082			continue;
2083		}
2084
2085		if (unlikely(buffer_heads_over_limit)) {
2086			if (folio_needs_release(folio) &&
2087			    folio_trylock(folio)) {
2088				filemap_release_folio(folio, 0);
2089				folio_unlock(folio);
2090			}
2091		}
2092
2093		/* Referenced or rmap lock contention: rotate */
2094		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2095				     &vm_flags) != 0) {
2096			/*
2097			 * Identify referenced, file-backed active folios and
2098			 * give them one more trip around the active list. So
2099			 * that executable code get better chances to stay in
2100			 * memory under moderate memory pressure.  Anon folios
2101			 * are not likely to be evicted by use-once streaming
2102			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2103			 * so we ignore them here.
2104			 */
2105			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2106				nr_rotated += folio_nr_pages(folio);
2107				list_add(&folio->lru, &l_active);
2108				continue;
2109			}
2110		}
2111
2112		folio_clear_active(folio);	/* we are de-activating */
2113		folio_set_workingset(folio);
2114		list_add(&folio->lru, &l_inactive);
2115	}
2116
2117	/*
2118	 * Move folios back to the lru list.
2119	 */
2120	spin_lock_irq(&lruvec->lru_lock);
2121
2122	nr_activate = move_folios_to_lru(lruvec, &l_active);
2123	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2124
2125	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2126	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
 
2127
 
 
2128	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2129	spin_unlock_irq(&lruvec->lru_lock);
2130
2131	if (nr_rotated)
2132		lru_note_cost(lruvec, file, 0, nr_rotated);
2133	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2134			nr_deactivate, nr_rotated, sc->priority, file);
2135}
2136
2137static unsigned int reclaim_folio_list(struct list_head *folio_list,
2138				      struct pglist_data *pgdat)
2139{
2140	struct reclaim_stat stat;
2141	unsigned int nr_reclaimed;
2142	struct folio *folio;
2143	struct scan_control sc = {
2144		.gfp_mask = GFP_KERNEL,
2145		.may_writepage = 1,
2146		.may_unmap = 1,
2147		.may_swap = 1,
2148		.no_demotion = 1,
2149	};
2150
2151	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2152	while (!list_empty(folio_list)) {
2153		folio = lru_to_folio(folio_list);
2154		list_del(&folio->lru);
2155		folio_putback_lru(folio);
2156	}
2157	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2158
2159	return nr_reclaimed;
2160}
2161
2162unsigned long reclaim_pages(struct list_head *folio_list)
2163{
2164	int nid;
2165	unsigned int nr_reclaimed = 0;
2166	LIST_HEAD(node_folio_list);
2167	unsigned int noreclaim_flag;
2168
2169	if (list_empty(folio_list))
2170		return nr_reclaimed;
2171
2172	noreclaim_flag = memalloc_noreclaim_save();
2173
2174	nid = folio_nid(lru_to_folio(folio_list));
2175	do {
2176		struct folio *folio = lru_to_folio(folio_list);
2177
2178		if (nid == folio_nid(folio)) {
2179			folio_clear_active(folio);
2180			list_move(&folio->lru, &node_folio_list);
2181			continue;
2182		}
2183
2184		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2185		nid = folio_nid(lru_to_folio(folio_list));
2186	} while (!list_empty(folio_list));
2187
2188	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2189
2190	memalloc_noreclaim_restore(noreclaim_flag);
2191
2192	return nr_reclaimed;
2193}
2194
2195static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2196				 struct lruvec *lruvec, struct scan_control *sc)
2197{
2198	if (is_active_lru(lru)) {
2199		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2200			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2201		else
2202			sc->skipped_deactivate = 1;
2203		return 0;
2204	}
2205
2206	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2207}
2208
2209/*
2210 * The inactive anon list should be small enough that the VM never has
2211 * to do too much work.
2212 *
2213 * The inactive file list should be small enough to leave most memory
2214 * to the established workingset on the scan-resistant active list,
2215 * but large enough to avoid thrashing the aggregate readahead window.
2216 *
2217 * Both inactive lists should also be large enough that each inactive
2218 * folio has a chance to be referenced again before it is reclaimed.
2219 *
2220 * If that fails and refaulting is observed, the inactive list grows.
2221 *
2222 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2223 * on this LRU, maintained by the pageout code. An inactive_ratio
2224 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2225 *
2226 * total     target    max
2227 * memory    ratio     inactive
2228 * -------------------------------------
2229 *   10MB       1         5MB
2230 *  100MB       1        50MB
2231 *    1GB       3       250MB
2232 *   10GB      10       0.9GB
2233 *  100GB      31         3GB
2234 *    1TB     101        10GB
2235 *   10TB     320        32GB
2236 */
2237static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
 
 
2238{
2239	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
 
 
2240	unsigned long inactive, active;
2241	unsigned long inactive_ratio;
 
2242	unsigned long gb;
2243
2244	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2245	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2246
2247	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2248	if (gb)
2249		inactive_ratio = int_sqrt(10 * gb);
2250	else
2251		inactive_ratio = 1;
2252
2253	return inactive * inactive_ratio < active;
2254}
2255
2256enum scan_balance {
2257	SCAN_EQUAL,
2258	SCAN_FRACT,
2259	SCAN_ANON,
2260	SCAN_FILE,
2261};
2262
2263static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2264{
2265	unsigned long file;
2266	struct lruvec *target_lruvec;
2267
2268	if (lru_gen_enabled())
2269		return;
2270
2271	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2272
2273	/*
2274	 * Flush the memory cgroup stats in rate-limited way as we don't need
2275	 * most accurate stats here. We may switch to regular stats flushing
2276	 * in the future once it is cheap enough.
2277	 */
2278	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
 
2279
2280	/*
2281	 * Determine the scan balance between anon and file LRUs.
2282	 */
2283	spin_lock_irq(&target_lruvec->lru_lock);
2284	sc->anon_cost = target_lruvec->anon_cost;
2285	sc->file_cost = target_lruvec->file_cost;
2286	spin_unlock_irq(&target_lruvec->lru_lock);
2287
2288	/*
2289	 * Target desirable inactive:active list ratios for the anon
2290	 * and file LRU lists.
2291	 */
2292	if (!sc->force_deactivate) {
2293		unsigned long refaults;
2294
2295		/*
2296		 * When refaults are being observed, it means a new
2297		 * workingset is being established. Deactivate to get
2298		 * rid of any stale active pages quickly.
2299		 */
2300		refaults = lruvec_page_state(target_lruvec,
2301				WORKINGSET_ACTIVATE_ANON);
2302		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2303			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2304			sc->may_deactivate |= DEACTIVATE_ANON;
2305		else
2306			sc->may_deactivate &= ~DEACTIVATE_ANON;
2307
2308		refaults = lruvec_page_state(target_lruvec,
2309				WORKINGSET_ACTIVATE_FILE);
2310		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2311		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2312			sc->may_deactivate |= DEACTIVATE_FILE;
2313		else
2314			sc->may_deactivate &= ~DEACTIVATE_FILE;
2315	} else
2316		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2317
2318	/*
2319	 * If we have plenty of inactive file pages that aren't
2320	 * thrashing, try to reclaim those first before touching
2321	 * anonymous pages.
2322	 */
2323	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2324	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2325	    !sc->no_cache_trim_mode)
2326		sc->cache_trim_mode = 1;
2327	else
2328		sc->cache_trim_mode = 0;
2329
2330	/*
2331	 * Prevent the reclaimer from falling into the cache trap: as
2332	 * cache pages start out inactive, every cache fault will tip
2333	 * the scan balance towards the file LRU.  And as the file LRU
2334	 * shrinks, so does the window for rotation from references.
2335	 * This means we have a runaway feedback loop where a tiny
2336	 * thrashing file LRU becomes infinitely more attractive than
2337	 * anon pages.  Try to detect this based on file LRU size.
2338	 */
2339	if (!cgroup_reclaim(sc)) {
2340		unsigned long total_high_wmark = 0;
2341		unsigned long free, anon;
2342		int z;
 
 
 
 
 
2343
2344		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2345		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2346			   node_page_state(pgdat, NR_INACTIVE_FILE);
 
 
2347
2348		for (z = 0; z < MAX_NR_ZONES; z++) {
2349			struct zone *zone = &pgdat->node_zones[z];
2350
2351			if (!managed_zone(zone))
2352				continue;
 
 
 
 
 
 
 
 
2353
2354			total_high_wmark += high_wmark_pages(zone);
2355		}
2356
2357		/*
2358		 * Consider anon: if that's low too, this isn't a
2359		 * runaway file reclaim problem, but rather just
2360		 * extreme pressure. Reclaim as per usual then.
2361		 */
2362		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2363
2364		sc->file_is_tiny =
2365			file + free <= total_high_wmark &&
2366			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2367			anon >> sc->priority;
2368	}
2369}
2370
2371/*
2372 * Determine how aggressively the anon and file LRU lists should be
2373 * scanned.
2374 *
2375 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2376 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2377 */
2378static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2379			   unsigned long *nr)
2380{
 
 
 
 
 
 
 
2381	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2382	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2383	unsigned long anon_cost, file_cost, total_cost;
2384	int swappiness = sc_swappiness(sc, memcg);
2385	u64 fraction[ANON_AND_FILE];
2386	u64 denominator = 0;	/* gcc */
2387	enum scan_balance scan_balance;
 
2388	unsigned long ap, fp;
2389	enum lru_list lru;
2390
2391	/* If we have no swap space, do not bother scanning anon folios. */
2392	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2393		scan_balance = SCAN_FILE;
2394		goto out;
2395	}
2396
2397	/*
2398	 * Global reclaim will swap to prevent OOM even with no
2399	 * swappiness, but memcg users want to use this knob to
2400	 * disable swapping for individual groups completely when
2401	 * using the memory controller's swap limit feature would be
2402	 * too expensive.
2403	 */
2404	if (cgroup_reclaim(sc) && !swappiness) {
2405		scan_balance = SCAN_FILE;
2406		goto out;
2407	}
2408
2409	/*
2410	 * Do not apply any pressure balancing cleverness when the
2411	 * system is close to OOM, scan both anon and file equally
2412	 * (unless the swappiness setting disagrees with swapping).
2413	 */
2414	if (!sc->priority && swappiness) {
2415		scan_balance = SCAN_EQUAL;
2416		goto out;
2417	}
2418
2419	/*
2420	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2421	 */
2422	if (sc->file_is_tiny) {
2423		scan_balance = SCAN_ANON;
2424		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425	}
2426
2427	/*
2428	 * If there is enough inactive page cache, we do not reclaim
2429	 * anything from the anonymous working right now.
 
 
 
 
 
2430	 */
2431	if (sc->cache_trim_mode) {
 
2432		scan_balance = SCAN_FILE;
2433		goto out;
2434	}
2435
2436	scan_balance = SCAN_FRACT;
 
2437	/*
2438	 * Calculate the pressure balance between anon and file pages.
2439	 *
2440	 * The amount of pressure we put on each LRU is inversely
2441	 * proportional to the cost of reclaiming each list, as
2442	 * determined by the share of pages that are refaulting, times
2443	 * the relative IO cost of bringing back a swapped out
2444	 * anonymous page vs reloading a filesystem page (swappiness).
 
 
 
2445	 *
2446	 * Although we limit that influence to ensure no list gets
2447	 * left behind completely: at least a third of the pressure is
2448	 * applied, before swappiness.
2449	 *
2450	 * With swappiness at 100, anon and file have equal IO cost.
2451	 */
2452	total_cost = sc->anon_cost + sc->file_cost;
2453	anon_cost = total_cost + sc->anon_cost;
2454	file_cost = total_cost + sc->file_cost;
2455	total_cost = anon_cost + file_cost;
2456
2457	ap = swappiness * (total_cost + 1);
2458	ap /= anon_cost + 1;
 
 
2459
2460	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2461	fp /= file_cost + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462
2463	fraction[0] = ap;
2464	fraction[1] = fp;
2465	denominator = ap + fp;
2466out:
 
2467	for_each_evictable_lru(lru) {
2468		bool file = is_file_lru(lru);
2469		unsigned long lruvec_size;
2470		unsigned long low, min;
2471		unsigned long scan;
2472
2473		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2474		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2475				      &min, &low);
2476
2477		if (min || low) {
2478			/*
2479			 * Scale a cgroup's reclaim pressure by proportioning
2480			 * its current usage to its memory.low or memory.min
2481			 * setting.
2482			 *
2483			 * This is important, as otherwise scanning aggression
2484			 * becomes extremely binary -- from nothing as we
2485			 * approach the memory protection threshold, to totally
2486			 * nominal as we exceed it.  This results in requiring
2487			 * setting extremely liberal protection thresholds. It
2488			 * also means we simply get no protection at all if we
2489			 * set it too low, which is not ideal.
2490			 *
2491			 * If there is any protection in place, we reduce scan
2492			 * pressure by how much of the total memory used is
2493			 * within protection thresholds.
2494			 *
2495			 * There is one special case: in the first reclaim pass,
2496			 * we skip over all groups that are within their low
2497			 * protection. If that fails to reclaim enough pages to
2498			 * satisfy the reclaim goal, we come back and override
2499			 * the best-effort low protection. However, we still
2500			 * ideally want to honor how well-behaved groups are in
2501			 * that case instead of simply punishing them all
2502			 * equally. As such, we reclaim them based on how much
2503			 * memory they are using, reducing the scan pressure
2504			 * again by how much of the total memory used is under
2505			 * hard protection.
2506			 */
2507			unsigned long cgroup_size = mem_cgroup_size(memcg);
2508			unsigned long protection;
2509
2510			/* memory.low scaling, make sure we retry before OOM */
2511			if (!sc->memcg_low_reclaim && low > min) {
2512				protection = low;
2513				sc->memcg_low_skipped = 1;
2514			} else {
2515				protection = min;
2516			}
2517
2518			/* Avoid TOCTOU with earlier protection check */
2519			cgroup_size = max(cgroup_size, protection);
2520
2521			scan = lruvec_size - lruvec_size * protection /
2522				(cgroup_size + 1);
2523
2524			/*
2525			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2526			 * reclaim moving forwards, avoiding decrementing
2527			 * sc->priority further than desirable.
2528			 */
2529			scan = max(scan, SWAP_CLUSTER_MAX);
2530		} else {
2531			scan = lruvec_size;
2532		}
2533
2534		scan >>= sc->priority;
2535
2536		/*
2537		 * If the cgroup's already been deleted, make sure to
2538		 * scrape out the remaining cache.
2539		 */
2540		if (!scan && !mem_cgroup_online(memcg))
2541			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2542
2543		switch (scan_balance) {
2544		case SCAN_EQUAL:
2545			/* Scan lists relative to size */
2546			break;
2547		case SCAN_FRACT:
2548			/*
2549			 * Scan types proportional to swappiness and
2550			 * their relative recent reclaim efficiency.
2551			 * Make sure we don't miss the last page on
2552			 * the offlined memory cgroups because of a
2553			 * round-off error.
2554			 */
2555			scan = mem_cgroup_online(memcg) ?
2556			       div64_u64(scan * fraction[file], denominator) :
2557			       DIV64_U64_ROUND_UP(scan * fraction[file],
2558						  denominator);
2559			break;
2560		case SCAN_FILE:
2561		case SCAN_ANON:
2562			/* Scan one type exclusively */
2563			if ((scan_balance == SCAN_FILE) != file)
 
2564				scan = 0;
 
2565			break;
2566		default:
2567			/* Look ma, no brain */
2568			BUG();
2569		}
2570
 
2571		nr[lru] = scan;
2572	}
2573}
2574
2575/*
2576 * Anonymous LRU management is a waste if there is
2577 * ultimately no way to reclaim the memory.
2578 */
2579static bool can_age_anon_pages(struct pglist_data *pgdat,
2580			       struct scan_control *sc)
2581{
2582	/* Aging the anon LRU is valuable if swap is present: */
2583	if (total_swap_pages > 0)
2584		return true;
2585
2586	/* Also valuable if anon pages can be demoted: */
2587	return can_demote(pgdat->node_id, sc);
2588}
2589
2590#ifdef CONFIG_LRU_GEN
2591
2592#ifdef CONFIG_LRU_GEN_ENABLED
2593DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2594#define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2595#else
2596DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2597#define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2598#endif
2599
2600static bool should_walk_mmu(void)
2601{
2602	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2603}
2604
2605static bool should_clear_pmd_young(void)
2606{
2607	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2608}
2609
2610/******************************************************************************
2611 *                          shorthand helpers
2612 ******************************************************************************/
2613
2614#define DEFINE_MAX_SEQ(lruvec)						\
2615	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2616
2617#define DEFINE_MIN_SEQ(lruvec)						\
2618	unsigned long min_seq[ANON_AND_FILE] = {			\
2619		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2620		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2621	}
2622
2623#define for_each_gen_type_zone(gen, type, zone)				\
2624	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2625		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2626			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2627
2628#define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2629#define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2630
2631static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2632{
2633	struct pglist_data *pgdat = NODE_DATA(nid);
2634
2635#ifdef CONFIG_MEMCG
2636	if (memcg) {
2637		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2638
2639		/* see the comment in mem_cgroup_lruvec() */
2640		if (!lruvec->pgdat)
2641			lruvec->pgdat = pgdat;
2642
2643		return lruvec;
2644	}
2645#endif
2646	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2647
2648	return &pgdat->__lruvec;
2649}
2650
2651static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2652{
2653	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2654	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2655
2656	if (!sc->may_swap)
2657		return 0;
2658
2659	if (!can_demote(pgdat->node_id, sc) &&
2660	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2661		return 0;
2662
2663	return sc_swappiness(sc, memcg);
2664}
2665
2666static int get_nr_gens(struct lruvec *lruvec, int type)
2667{
2668	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2669}
2670
2671static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2672{
2673	/* see the comment on lru_gen_folio */
2674	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2675	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2676	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2677}
2678
2679/******************************************************************************
2680 *                          Bloom filters
2681 ******************************************************************************/
2682
2683/*
2684 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2685 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2686 * bits in a bitmap, k is the number of hash functions and n is the number of
2687 * inserted items.
2688 *
2689 * Page table walkers use one of the two filters to reduce their search space.
2690 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2691 * aging uses the double-buffering technique to flip to the other filter each
2692 * time it produces a new generation. For non-leaf entries that have enough
2693 * leaf entries, the aging carries them over to the next generation in
2694 * walk_pmd_range(); the eviction also report them when walking the rmap
2695 * in lru_gen_look_around().
2696 *
2697 * For future optimizations:
2698 * 1. It's not necessary to keep both filters all the time. The spare one can be
2699 *    freed after the RCU grace period and reallocated if needed again.
2700 * 2. And when reallocating, it's worth scaling its size according to the number
2701 *    of inserted entries in the other filter, to reduce the memory overhead on
2702 *    small systems and false positives on large systems.
2703 * 3. Jenkins' hash function is an alternative to Knuth's.
2704 */
2705#define BLOOM_FILTER_SHIFT	15
2706
2707static inline int filter_gen_from_seq(unsigned long seq)
2708{
2709	return seq % NR_BLOOM_FILTERS;
2710}
2711
2712static void get_item_key(void *item, int *key)
2713{
2714	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2715
2716	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2717
2718	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2719	key[1] = hash >> BLOOM_FILTER_SHIFT;
2720}
2721
2722static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2723			      void *item)
2724{
2725	int key[2];
2726	unsigned long *filter;
2727	int gen = filter_gen_from_seq(seq);
2728
2729	filter = READ_ONCE(mm_state->filters[gen]);
2730	if (!filter)
2731		return true;
2732
2733	get_item_key(item, key);
2734
2735	return test_bit(key[0], filter) && test_bit(key[1], filter);
2736}
2737
2738static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2739				void *item)
2740{
2741	int key[2];
2742	unsigned long *filter;
2743	int gen = filter_gen_from_seq(seq);
2744
2745	filter = READ_ONCE(mm_state->filters[gen]);
2746	if (!filter)
2747		return;
2748
2749	get_item_key(item, key);
2750
2751	if (!test_bit(key[0], filter))
2752		set_bit(key[0], filter);
2753	if (!test_bit(key[1], filter))
2754		set_bit(key[1], filter);
2755}
2756
2757static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2758{
2759	unsigned long *filter;
2760	int gen = filter_gen_from_seq(seq);
2761
2762	filter = mm_state->filters[gen];
2763	if (filter) {
2764		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2765		return;
2766	}
2767
2768	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2769			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2770	WRITE_ONCE(mm_state->filters[gen], filter);
2771}
2772
2773/******************************************************************************
2774 *                          mm_struct list
2775 ******************************************************************************/
2776
2777#ifdef CONFIG_LRU_GEN_WALKS_MMU
2778
2779static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2780{
2781	static struct lru_gen_mm_list mm_list = {
2782		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2783		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2784	};
2785
2786#ifdef CONFIG_MEMCG
2787	if (memcg)
2788		return &memcg->mm_list;
2789#endif
2790	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2791
2792	return &mm_list;
2793}
2794
2795static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2796{
2797	return &lruvec->mm_state;
2798}
2799
2800static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2801{
2802	int key;
2803	struct mm_struct *mm;
2804	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2805	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2806
2807	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2808	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2809
2810	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2811		return NULL;
2812
2813	clear_bit(key, &mm->lru_gen.bitmap);
2814
2815	return mmget_not_zero(mm) ? mm : NULL;
2816}
2817
2818void lru_gen_add_mm(struct mm_struct *mm)
2819{
2820	int nid;
2821	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2822	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2823
2824	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2825#ifdef CONFIG_MEMCG
2826	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2827	mm->lru_gen.memcg = memcg;
2828#endif
2829	spin_lock(&mm_list->lock);
2830
2831	for_each_node_state(nid, N_MEMORY) {
2832		struct lruvec *lruvec = get_lruvec(memcg, nid);
2833		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2834
2835		/* the first addition since the last iteration */
2836		if (mm_state->tail == &mm_list->fifo)
2837			mm_state->tail = &mm->lru_gen.list;
2838	}
2839
2840	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2841
2842	spin_unlock(&mm_list->lock);
2843}
2844
2845void lru_gen_del_mm(struct mm_struct *mm)
2846{
2847	int nid;
2848	struct lru_gen_mm_list *mm_list;
2849	struct mem_cgroup *memcg = NULL;
2850
2851	if (list_empty(&mm->lru_gen.list))
2852		return;
2853
2854#ifdef CONFIG_MEMCG
2855	memcg = mm->lru_gen.memcg;
2856#endif
2857	mm_list = get_mm_list(memcg);
2858
2859	spin_lock(&mm_list->lock);
2860
2861	for_each_node(nid) {
2862		struct lruvec *lruvec = get_lruvec(memcg, nid);
2863		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2864
2865		/* where the current iteration continues after */
2866		if (mm_state->head == &mm->lru_gen.list)
2867			mm_state->head = mm_state->head->prev;
2868
2869		/* where the last iteration ended before */
2870		if (mm_state->tail == &mm->lru_gen.list)
2871			mm_state->tail = mm_state->tail->next;
2872	}
2873
2874	list_del_init(&mm->lru_gen.list);
2875
2876	spin_unlock(&mm_list->lock);
2877
2878#ifdef CONFIG_MEMCG
2879	mem_cgroup_put(mm->lru_gen.memcg);
2880	mm->lru_gen.memcg = NULL;
2881#endif
2882}
2883
2884#ifdef CONFIG_MEMCG
2885void lru_gen_migrate_mm(struct mm_struct *mm)
2886{
2887	struct mem_cgroup *memcg;
2888	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2889
2890	VM_WARN_ON_ONCE(task->mm != mm);
2891	lockdep_assert_held(&task->alloc_lock);
2892
2893	/* for mm_update_next_owner() */
2894	if (mem_cgroup_disabled())
2895		return;
2896
2897	/* migration can happen before addition */
2898	if (!mm->lru_gen.memcg)
2899		return;
2900
2901	rcu_read_lock();
2902	memcg = mem_cgroup_from_task(task);
2903	rcu_read_unlock();
2904	if (memcg == mm->lru_gen.memcg)
2905		return;
2906
2907	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2908
2909	lru_gen_del_mm(mm);
2910	lru_gen_add_mm(mm);
2911}
2912#endif
2913
2914#else /* !CONFIG_LRU_GEN_WALKS_MMU */
2915
2916static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2917{
2918	return NULL;
2919}
2920
2921static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2922{
2923	return NULL;
2924}
2925
2926static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2927{
2928	return NULL;
2929}
2930
2931#endif
2932
2933static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2934{
2935	int i;
2936	int hist;
2937	struct lruvec *lruvec = walk->lruvec;
2938	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2939
2940	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2941
2942	hist = lru_hist_from_seq(walk->seq);
2943
2944	for (i = 0; i < NR_MM_STATS; i++) {
2945		WRITE_ONCE(mm_state->stats[hist][i],
2946			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2947		walk->mm_stats[i] = 0;
2948	}
2949
2950	if (NR_HIST_GENS > 1 && last) {
2951		hist = lru_hist_from_seq(walk->seq + 1);
2952
2953		for (i = 0; i < NR_MM_STATS; i++)
2954			WRITE_ONCE(mm_state->stats[hist][i], 0);
2955	}
2956}
2957
2958static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2959{
2960	bool first = false;
2961	bool last = false;
2962	struct mm_struct *mm = NULL;
2963	struct lruvec *lruvec = walk->lruvec;
2964	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2965	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2966	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2967
2968	/*
2969	 * mm_state->seq is incremented after each iteration of mm_list. There
2970	 * are three interesting cases for this page table walker:
2971	 * 1. It tries to start a new iteration with a stale max_seq: there is
2972	 *    nothing left to do.
2973	 * 2. It started the next iteration: it needs to reset the Bloom filter
2974	 *    so that a fresh set of PTE tables can be recorded.
2975	 * 3. It ended the current iteration: it needs to reset the mm stats
2976	 *    counters and tell its caller to increment max_seq.
2977	 */
2978	spin_lock(&mm_list->lock);
2979
2980	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2981
2982	if (walk->seq <= mm_state->seq)
2983		goto done;
2984
2985	if (!mm_state->head)
2986		mm_state->head = &mm_list->fifo;
2987
2988	if (mm_state->head == &mm_list->fifo)
2989		first = true;
2990
2991	do {
2992		mm_state->head = mm_state->head->next;
2993		if (mm_state->head == &mm_list->fifo) {
2994			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2995			last = true;
2996			break;
2997		}
2998
2999		/* force scan for those added after the last iteration */
3000		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3001			mm_state->tail = mm_state->head->next;
3002			walk->force_scan = true;
3003		}
3004	} while (!(mm = get_next_mm(walk)));
3005done:
3006	if (*iter || last)
3007		reset_mm_stats(walk, last);
3008
3009	spin_unlock(&mm_list->lock);
3010
3011	if (mm && first)
3012		reset_bloom_filter(mm_state, walk->seq + 1);
3013
3014	if (*iter)
3015		mmput_async(*iter);
3016
3017	*iter = mm;
3018
3019	return last;
3020}
3021
3022static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3023{
3024	bool success = false;
3025	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3026	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3027	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3028
3029	spin_lock(&mm_list->lock);
3030
3031	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3032
3033	if (seq > mm_state->seq) {
3034		mm_state->head = NULL;
3035		mm_state->tail = NULL;
3036		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3037		success = true;
3038	}
3039
3040	spin_unlock(&mm_list->lock);
3041
3042	return success;
3043}
3044
3045/******************************************************************************
3046 *                          PID controller
3047 ******************************************************************************/
3048
3049/*
3050 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3051 *
3052 * The P term is refaulted/(evicted+protected) from a tier in the generation
3053 * currently being evicted; the I term is the exponential moving average of the
3054 * P term over the generations previously evicted, using the smoothing factor
3055 * 1/2; the D term isn't supported.
3056 *
3057 * The setpoint (SP) is always the first tier of one type; the process variable
3058 * (PV) is either any tier of the other type or any other tier of the same
3059 * type.
3060 *
3061 * The error is the difference between the SP and the PV; the correction is to
3062 * turn off protection when SP>PV or turn on protection when SP<PV.
3063 *
3064 * For future optimizations:
3065 * 1. The D term may discount the other two terms over time so that long-lived
3066 *    generations can resist stale information.
3067 */
3068struct ctrl_pos {
3069	unsigned long refaulted;
3070	unsigned long total;
3071	int gain;
3072};
3073
3074static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3075			  struct ctrl_pos *pos)
3076{
3077	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3078	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3079
3080	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3081			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3082	pos->total = lrugen->avg_total[type][tier] +
3083		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3084	if (tier)
3085		pos->total += lrugen->protected[hist][type][tier - 1];
3086	pos->gain = gain;
3087}
3088
3089static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3090{
3091	int hist, tier;
3092	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3093	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3094	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3095
3096	lockdep_assert_held(&lruvec->lru_lock);
3097
3098	if (!carryover && !clear)
3099		return;
3100
3101	hist = lru_hist_from_seq(seq);
3102
3103	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3104		if (carryover) {
3105			unsigned long sum;
3106
3107			sum = lrugen->avg_refaulted[type][tier] +
3108			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3109			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3110
3111			sum = lrugen->avg_total[type][tier] +
3112			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3113			if (tier)
3114				sum += lrugen->protected[hist][type][tier - 1];
3115			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3116		}
3117
3118		if (clear) {
3119			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3120			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3121			if (tier)
3122				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3123		}
3124	}
3125}
3126
3127static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3128{
3129	/*
3130	 * Return true if the PV has a limited number of refaults or a lower
3131	 * refaulted/total than the SP.
3132	 */
3133	return pv->refaulted < MIN_LRU_BATCH ||
3134	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3135	       (sp->refaulted + 1) * pv->total * pv->gain;
3136}
3137
3138/******************************************************************************
3139 *                          the aging
3140 ******************************************************************************/
3141
3142/* promote pages accessed through page tables */
3143static int folio_update_gen(struct folio *folio, int gen)
3144{
3145	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3146
3147	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3148
3149	do {
3150		/* lru_gen_del_folio() has isolated this page? */
3151		if (!(old_flags & LRU_GEN_MASK)) {
3152			/* for shrink_folio_list() */
3153			new_flags = old_flags | BIT(PG_referenced);
3154			continue;
3155		}
3156
3157		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3158		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3159	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3160
3161	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3162}
3163
3164/* protect pages accessed multiple times through file descriptors */
3165static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3166{
3167	int type = folio_is_file_lru(folio);
3168	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3169	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3170	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3171
3172	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3173
3174	do {
3175		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3176		/* folio_update_gen() has promoted this page? */
3177		if (new_gen >= 0 && new_gen != old_gen)
3178			return new_gen;
3179
3180		new_gen = (old_gen + 1) % MAX_NR_GENS;
3181
3182		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3183		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3184		/* for folio_end_writeback() */
3185		if (reclaiming)
3186			new_flags |= BIT(PG_reclaim);
3187	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3188
3189	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3190
3191	return new_gen;
3192}
3193
3194static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3195			      int old_gen, int new_gen)
3196{
3197	int type = folio_is_file_lru(folio);
3198	int zone = folio_zonenum(folio);
3199	int delta = folio_nr_pages(folio);
3200
3201	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3202	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3203
3204	walk->batched++;
3205
3206	walk->nr_pages[old_gen][type][zone] -= delta;
3207	walk->nr_pages[new_gen][type][zone] += delta;
3208}
3209
3210static void reset_batch_size(struct lru_gen_mm_walk *walk)
3211{
3212	int gen, type, zone;
3213	struct lruvec *lruvec = walk->lruvec;
3214	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3215
3216	walk->batched = 0;
3217
3218	for_each_gen_type_zone(gen, type, zone) {
3219		enum lru_list lru = type * LRU_INACTIVE_FILE;
3220		int delta = walk->nr_pages[gen][type][zone];
3221
3222		if (!delta)
3223			continue;
3224
3225		walk->nr_pages[gen][type][zone] = 0;
3226		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3227			   lrugen->nr_pages[gen][type][zone] + delta);
3228
3229		if (lru_gen_is_active(lruvec, gen))
3230			lru += LRU_ACTIVE;
3231		__update_lru_size(lruvec, lru, zone, delta);
3232	}
3233}
3234
3235static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3236{
3237	struct address_space *mapping;
3238	struct vm_area_struct *vma = args->vma;
3239	struct lru_gen_mm_walk *walk = args->private;
3240
3241	if (!vma_is_accessible(vma))
3242		return true;
3243
3244	if (is_vm_hugetlb_page(vma))
3245		return true;
3246
3247	if (!vma_has_recency(vma))
3248		return true;
3249
3250	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3251		return true;
3252
3253	if (vma == get_gate_vma(vma->vm_mm))
3254		return true;
3255
3256	if (vma_is_anonymous(vma))
3257		return !walk->can_swap;
3258
3259	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3260		return true;
3261
3262	mapping = vma->vm_file->f_mapping;
3263	if (mapping_unevictable(mapping))
3264		return true;
3265
3266	if (shmem_mapping(mapping))
3267		return !walk->can_swap;
3268
3269	/* to exclude special mappings like dax, etc. */
3270	return !mapping->a_ops->read_folio;
3271}
3272
3273/*
3274 * Some userspace memory allocators map many single-page VMAs. Instead of
3275 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3276 * table to reduce zigzags and improve cache performance.
3277 */
3278static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3279			 unsigned long *vm_start, unsigned long *vm_end)
3280{
3281	unsigned long start = round_up(*vm_end, size);
3282	unsigned long end = (start | ~mask) + 1;
3283	VMA_ITERATOR(vmi, args->mm, start);
3284
3285	VM_WARN_ON_ONCE(mask & size);
3286	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3287
3288	for_each_vma(vmi, args->vma) {
3289		if (end && end <= args->vma->vm_start)
3290			return false;
3291
3292		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3293			continue;
3294
3295		*vm_start = max(start, args->vma->vm_start);
3296		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3297
3298		return true;
3299	}
3300
3301	return false;
3302}
3303
3304static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3305				 struct pglist_data *pgdat)
3306{
3307	unsigned long pfn = pte_pfn(pte);
3308
3309	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3310
3311	if (!pte_present(pte) || is_zero_pfn(pfn))
3312		return -1;
3313
3314	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3315		return -1;
3316
3317	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3318		return -1;
3319
3320	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3321		return -1;
3322
3323	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3324		return -1;
3325
3326	return pfn;
3327}
3328
3329static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3330				 struct pglist_data *pgdat)
3331{
3332	unsigned long pfn = pmd_pfn(pmd);
3333
3334	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3335
3336	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3337		return -1;
3338
3339	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3340		return -1;
3341
3342	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3343		return -1;
3344
3345	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3346		return -1;
3347
3348	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3349		return -1;
3350
3351	return pfn;
3352}
3353
3354static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3355				   struct pglist_data *pgdat, bool can_swap)
3356{
3357	struct folio *folio;
3358
3359	folio = pfn_folio(pfn);
3360	if (folio_nid(folio) != pgdat->node_id)
3361		return NULL;
3362
3363	if (folio_memcg(folio) != memcg)
3364		return NULL;
3365
3366	/* file VMAs can contain anon pages from COW */
3367	if (!folio_is_file_lru(folio) && !can_swap)
3368		return NULL;
3369
3370	return folio;
3371}
3372
3373static bool suitable_to_scan(int total, int young)
3374{
3375	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3376
3377	/* suitable if the average number of young PTEs per cacheline is >=1 */
3378	return young * n >= total;
3379}
3380
3381static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3382			   struct mm_walk *args)
3383{
3384	int i;
3385	pte_t *pte;
3386	spinlock_t *ptl;
3387	unsigned long addr;
3388	int total = 0;
3389	int young = 0;
3390	struct lru_gen_mm_walk *walk = args->private;
3391	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3392	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3393	DEFINE_MAX_SEQ(walk->lruvec);
3394	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3395	pmd_t pmdval;
3396
3397	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3398				       &ptl);
3399	if (!pte)
3400		return false;
3401	if (!spin_trylock(ptl)) {
3402		pte_unmap(pte);
3403		return false;
3404	}
3405
3406	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3407		pte_unmap_unlock(pte, ptl);
3408		return false;
3409	}
3410
3411	arch_enter_lazy_mmu_mode();
3412restart:
3413	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3414		unsigned long pfn;
3415		struct folio *folio;
3416		pte_t ptent = ptep_get(pte + i);
3417
3418		total++;
3419		walk->mm_stats[MM_LEAF_TOTAL]++;
3420
3421		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3422		if (pfn == -1)
3423			continue;
3424
3425		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3426		if (!folio)
3427			continue;
3428
3429		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3430			continue;
3431
3432		young++;
3433		walk->mm_stats[MM_LEAF_YOUNG]++;
3434
3435		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3436		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3437		      !folio_test_swapcache(folio)))
3438			folio_mark_dirty(folio);
3439
3440		old_gen = folio_update_gen(folio, new_gen);
3441		if (old_gen >= 0 && old_gen != new_gen)
3442			update_batch_size(walk, folio, old_gen, new_gen);
3443	}
3444
3445	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3446		goto restart;
3447
3448	arch_leave_lazy_mmu_mode();
3449	pte_unmap_unlock(pte, ptl);
3450
3451	return suitable_to_scan(total, young);
3452}
3453
3454static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3455				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3456{
3457	int i;
3458	pmd_t *pmd;
3459	spinlock_t *ptl;
3460	struct lru_gen_mm_walk *walk = args->private;
3461	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3462	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3463	DEFINE_MAX_SEQ(walk->lruvec);
3464	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3465
3466	VM_WARN_ON_ONCE(pud_leaf(*pud));
3467
3468	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3469	if (*first == -1) {
3470		*first = addr;
3471		bitmap_zero(bitmap, MIN_LRU_BATCH);
3472		return;
3473	}
3474
3475	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3476	if (i && i <= MIN_LRU_BATCH) {
3477		__set_bit(i - 1, bitmap);
3478		return;
3479	}
3480
3481	pmd = pmd_offset(pud, *first);
3482
3483	ptl = pmd_lockptr(args->mm, pmd);
3484	if (!spin_trylock(ptl))
3485		goto done;
3486
3487	arch_enter_lazy_mmu_mode();
3488
3489	do {
3490		unsigned long pfn;
3491		struct folio *folio;
3492
3493		/* don't round down the first address */
3494		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3495
3496		if (!pmd_present(pmd[i]))
3497			goto next;
3498
3499		if (!pmd_trans_huge(pmd[i])) {
3500			if (!walk->force_scan && should_clear_pmd_young() &&
3501			    !mm_has_notifiers(args->mm))
3502				pmdp_test_and_clear_young(vma, addr, pmd + i);
3503			goto next;
3504		}
3505
3506		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3507		if (pfn == -1)
3508			goto next;
3509
3510		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3511		if (!folio)
3512			goto next;
3513
3514		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3515			goto next;
3516
3517		walk->mm_stats[MM_LEAF_YOUNG]++;
3518
3519		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3520		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3521		      !folio_test_swapcache(folio)))
3522			folio_mark_dirty(folio);
3523
3524		old_gen = folio_update_gen(folio, new_gen);
3525		if (old_gen >= 0 && old_gen != new_gen)
3526			update_batch_size(walk, folio, old_gen, new_gen);
3527next:
3528		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3529	} while (i <= MIN_LRU_BATCH);
3530
3531	arch_leave_lazy_mmu_mode();
3532	spin_unlock(ptl);
3533done:
3534	*first = -1;
3535}
3536
3537static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3538			   struct mm_walk *args)
3539{
3540	int i;
3541	pmd_t *pmd;
3542	unsigned long next;
3543	unsigned long addr;
3544	struct vm_area_struct *vma;
3545	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3546	unsigned long first = -1;
3547	struct lru_gen_mm_walk *walk = args->private;
3548	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3549
3550	VM_WARN_ON_ONCE(pud_leaf(*pud));
3551
3552	/*
3553	 * Finish an entire PMD in two passes: the first only reaches to PTE
3554	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3555	 * the PMD lock to clear the accessed bit in PMD entries.
3556	 */
3557	pmd = pmd_offset(pud, start & PUD_MASK);
3558restart:
3559	/* walk_pte_range() may call get_next_vma() */
3560	vma = args->vma;
3561	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3562		pmd_t val = pmdp_get_lockless(pmd + i);
3563
3564		next = pmd_addr_end(addr, end);
3565
3566		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3567			walk->mm_stats[MM_LEAF_TOTAL]++;
3568			continue;
3569		}
3570
3571		if (pmd_trans_huge(val)) {
3572			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3573			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3574
3575			walk->mm_stats[MM_LEAF_TOTAL]++;
3576
3577			if (pfn != -1)
3578				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3579			continue;
3580		}
3581
3582		if (!walk->force_scan && should_clear_pmd_young() &&
3583		    !mm_has_notifiers(args->mm)) {
3584			if (!pmd_young(val))
3585				continue;
3586
3587			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3588		}
3589
3590		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3591			continue;
3592
3593		walk->mm_stats[MM_NONLEAF_FOUND]++;
3594
3595		if (!walk_pte_range(&val, addr, next, args))
3596			continue;
3597
3598		walk->mm_stats[MM_NONLEAF_ADDED]++;
3599
3600		/* carry over to the next generation */
3601		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3602	}
3603
3604	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3605
3606	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3607		goto restart;
3608}
3609
3610static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3611			  struct mm_walk *args)
3612{
3613	int i;
3614	pud_t *pud;
3615	unsigned long addr;
3616	unsigned long next;
3617	struct lru_gen_mm_walk *walk = args->private;
3618
3619	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3620
3621	pud = pud_offset(p4d, start & P4D_MASK);
3622restart:
3623	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3624		pud_t val = READ_ONCE(pud[i]);
3625
3626		next = pud_addr_end(addr, end);
3627
3628		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3629			continue;
3630
3631		walk_pmd_range(&val, addr, next, args);
3632
3633		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3634			end = (addr | ~PUD_MASK) + 1;
3635			goto done;
3636		}
3637	}
3638
3639	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3640		goto restart;
3641
3642	end = round_up(end, P4D_SIZE);
3643done:
3644	if (!end || !args->vma)
3645		return 1;
3646
3647	walk->next_addr = max(end, args->vma->vm_start);
3648
3649	return -EAGAIN;
3650}
3651
3652static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3653{
3654	static const struct mm_walk_ops mm_walk_ops = {
3655		.test_walk = should_skip_vma,
3656		.p4d_entry = walk_pud_range,
3657		.walk_lock = PGWALK_RDLOCK,
3658	};
3659	int err;
3660	struct lruvec *lruvec = walk->lruvec;
3661
3662	walk->next_addr = FIRST_USER_ADDRESS;
3663
3664	do {
3665		DEFINE_MAX_SEQ(lruvec);
3666
3667		err = -EBUSY;
3668
3669		/* another thread might have called inc_max_seq() */
3670		if (walk->seq != max_seq)
3671			break;
3672
3673		/* the caller might be holding the lock for write */
3674		if (mmap_read_trylock(mm)) {
3675			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3676
3677			mmap_read_unlock(mm);
3678		}
3679
3680		if (walk->batched) {
3681			spin_lock_irq(&lruvec->lru_lock);
3682			reset_batch_size(walk);
3683			spin_unlock_irq(&lruvec->lru_lock);
3684		}
3685
3686		cond_resched();
3687	} while (err == -EAGAIN);
3688}
3689
3690static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3691{
3692	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3693
3694	if (pgdat && current_is_kswapd()) {
3695		VM_WARN_ON_ONCE(walk);
3696
3697		walk = &pgdat->mm_walk;
3698	} else if (!walk && force_alloc) {
3699		VM_WARN_ON_ONCE(current_is_kswapd());
3700
3701		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3702	}
3703
3704	current->reclaim_state->mm_walk = walk;
3705
3706	return walk;
3707}
3708
3709static void clear_mm_walk(void)
3710{
3711	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3712
3713	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3714	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3715
3716	current->reclaim_state->mm_walk = NULL;
3717
3718	if (!current_is_kswapd())
3719		kfree(walk);
3720}
3721
3722static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3723{
3724	int zone;
3725	int remaining = MAX_LRU_BATCH;
3726	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3727	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3728
3729	if (type == LRU_GEN_ANON && !can_swap)
3730		goto done;
3731
3732	/* prevent cold/hot inversion if force_scan is true */
3733	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3734		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3735
3736		while (!list_empty(head)) {
3737			struct folio *folio = lru_to_folio(head);
3738
3739			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3740			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3741			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3742			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3743
3744			new_gen = folio_inc_gen(lruvec, folio, false);
3745			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3746
3747			if (!--remaining)
3748				return false;
3749		}
3750	}
3751done:
3752	reset_ctrl_pos(lruvec, type, true);
3753	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3754
3755	return true;
3756}
3757
3758static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3759{
3760	int gen, type, zone;
3761	bool success = false;
3762	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3763	DEFINE_MIN_SEQ(lruvec);
3764
3765	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3766
3767	/* find the oldest populated generation */
3768	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3769		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3770			gen = lru_gen_from_seq(min_seq[type]);
3771
3772			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3773				if (!list_empty(&lrugen->folios[gen][type][zone]))
3774					goto next;
3775			}
3776
3777			min_seq[type]++;
3778		}
3779next:
3780		;
3781	}
3782
3783	/* see the comment on lru_gen_folio */
3784	if (can_swap) {
3785		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3786		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3787	}
3788
3789	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3790		if (min_seq[type] == lrugen->min_seq[type])
3791			continue;
3792
3793		reset_ctrl_pos(lruvec, type, true);
3794		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3795		success = true;
3796	}
3797
3798	return success;
3799}
3800
3801static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3802			bool can_swap, bool force_scan)
3803{
3804	bool success;
3805	int prev, next;
3806	int type, zone;
3807	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3808restart:
3809	if (seq < READ_ONCE(lrugen->max_seq))
3810		return false;
3811
3812	spin_lock_irq(&lruvec->lru_lock);
3813
3814	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3815
3816	success = seq == lrugen->max_seq;
3817	if (!success)
3818		goto unlock;
3819
3820	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3821		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3822			continue;
3823
3824		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3825
3826		if (inc_min_seq(lruvec, type, can_swap))
3827			continue;
3828
3829		spin_unlock_irq(&lruvec->lru_lock);
3830		cond_resched();
3831		goto restart;
3832	}
3833
3834	/*
3835	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3836	 * the current max_seq need to be covered, since max_seq+1 can overlap
3837	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3838	 * overlap, cold/hot inversion happens.
3839	 */
3840	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3841	next = lru_gen_from_seq(lrugen->max_seq + 1);
3842
3843	for (type = 0; type < ANON_AND_FILE; type++) {
3844		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3845			enum lru_list lru = type * LRU_INACTIVE_FILE;
3846			long delta = lrugen->nr_pages[prev][type][zone] -
3847				     lrugen->nr_pages[next][type][zone];
3848
3849			if (!delta)
3850				continue;
3851
3852			__update_lru_size(lruvec, lru, zone, delta);
3853			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3854		}
3855	}
3856
3857	for (type = 0; type < ANON_AND_FILE; type++)
3858		reset_ctrl_pos(lruvec, type, false);
3859
3860	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3861	/* make sure preceding modifications appear */
3862	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3863unlock:
3864	spin_unlock_irq(&lruvec->lru_lock);
3865
3866	return success;
3867}
3868
3869static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3870			       bool can_swap, bool force_scan)
3871{
3872	bool success;
3873	struct lru_gen_mm_walk *walk;
3874	struct mm_struct *mm = NULL;
3875	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3876	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3877
3878	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3879
3880	if (!mm_state)
3881		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3882
3883	/* see the comment in iterate_mm_list() */
3884	if (seq <= READ_ONCE(mm_state->seq))
3885		return false;
3886
3887	/*
3888	 * If the hardware doesn't automatically set the accessed bit, fallback
3889	 * to lru_gen_look_around(), which only clears the accessed bit in a
3890	 * handful of PTEs. Spreading the work out over a period of time usually
3891	 * is less efficient, but it avoids bursty page faults.
3892	 */
3893	if (!should_walk_mmu()) {
3894		success = iterate_mm_list_nowalk(lruvec, seq);
3895		goto done;
3896	}
3897
3898	walk = set_mm_walk(NULL, true);
3899	if (!walk) {
3900		success = iterate_mm_list_nowalk(lruvec, seq);
3901		goto done;
3902	}
3903
3904	walk->lruvec = lruvec;
3905	walk->seq = seq;
3906	walk->can_swap = can_swap;
3907	walk->force_scan = force_scan;
3908
3909	do {
3910		success = iterate_mm_list(walk, &mm);
3911		if (mm)
3912			walk_mm(mm, walk);
3913	} while (mm);
3914done:
3915	if (success) {
3916		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3917		WARN_ON_ONCE(!success);
3918	}
3919
3920	return success;
3921}
3922
3923/******************************************************************************
3924 *                          working set protection
3925 ******************************************************************************/
3926
3927static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3928{
3929	int priority;
3930	unsigned long reclaimable;
3931
3932	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3933		return;
3934	/*
3935	 * Determine the initial priority based on
3936	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3937	 * where reclaimed_to_scanned_ratio = inactive / total.
3938	 */
3939	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3940	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3941		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3942
3943	/* round down reclaimable and round up sc->nr_to_reclaim */
3944	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3945
3946	/*
3947	 * The estimation is based on LRU pages only, so cap it to prevent
3948	 * overshoots of shrinker objects by large margins.
3949	 */
3950	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3951}
3952
3953static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3954{
3955	int gen, type, zone;
3956	unsigned long total = 0;
3957	bool can_swap = get_swappiness(lruvec, sc);
3958	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3959	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3960	DEFINE_MAX_SEQ(lruvec);
3961	DEFINE_MIN_SEQ(lruvec);
3962
3963	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3964		unsigned long seq;
3965
3966		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3967			gen = lru_gen_from_seq(seq);
3968
3969			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3970				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3971		}
3972	}
3973
3974	/* whether the size is big enough to be helpful */
3975	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3976}
3977
3978static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3979				  unsigned long min_ttl)
3980{
3981	int gen;
3982	unsigned long birth;
3983	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3984	DEFINE_MIN_SEQ(lruvec);
3985
3986	if (mem_cgroup_below_min(NULL, memcg))
3987		return false;
3988
3989	if (!lruvec_is_sizable(lruvec, sc))
3990		return false;
3991
3992	/* see the comment on lru_gen_folio */
3993	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3994	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3995
3996	return time_is_before_jiffies(birth + min_ttl);
3997}
3998
3999/* to protect the working set of the last N jiffies */
4000static unsigned long lru_gen_min_ttl __read_mostly;
4001
4002static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4003{
4004	struct mem_cgroup *memcg;
4005	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4006	bool reclaimable = !min_ttl;
4007
4008	VM_WARN_ON_ONCE(!current_is_kswapd());
4009
4010	set_initial_priority(pgdat, sc);
4011
4012	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4013	do {
4014		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4015
4016		mem_cgroup_calculate_protection(NULL, memcg);
4017
4018		if (!reclaimable)
4019			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4020	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4021
4022	/*
4023	 * The main goal is to OOM kill if every generation from all memcgs is
4024	 * younger than min_ttl. However, another possibility is all memcgs are
4025	 * either too small or below min.
4026	 */
4027	if (!reclaimable && mutex_trylock(&oom_lock)) {
4028		struct oom_control oc = {
4029			.gfp_mask = sc->gfp_mask,
4030		};
4031
4032		out_of_memory(&oc);
4033
4034		mutex_unlock(&oom_lock);
4035	}
4036}
4037
4038/******************************************************************************
4039 *                          rmap/PT walk feedback
4040 ******************************************************************************/
4041
4042/*
4043 * This function exploits spatial locality when shrink_folio_list() walks the
4044 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4045 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4046 * the PTE table to the Bloom filter. This forms a feedback loop between the
4047 * eviction and the aging.
4048 */
4049bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4050{
4051	int i;
4052	unsigned long start;
4053	unsigned long end;
4054	struct lru_gen_mm_walk *walk;
4055	int young = 1;
4056	pte_t *pte = pvmw->pte;
4057	unsigned long addr = pvmw->address;
4058	struct vm_area_struct *vma = pvmw->vma;
4059	struct folio *folio = pfn_folio(pvmw->pfn);
4060	bool can_swap = !folio_is_file_lru(folio);
4061	struct mem_cgroup *memcg = folio_memcg(folio);
4062	struct pglist_data *pgdat = folio_pgdat(folio);
4063	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4064	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4065	DEFINE_MAX_SEQ(lruvec);
4066	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4067
4068	lockdep_assert_held(pvmw->ptl);
4069	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4070
4071	if (!ptep_clear_young_notify(vma, addr, pte))
4072		return false;
4073
4074	if (spin_is_contended(pvmw->ptl))
4075		return true;
4076
4077	/* exclude special VMAs containing anon pages from COW */
4078	if (vma->vm_flags & VM_SPECIAL)
4079		return true;
4080
4081	/* avoid taking the LRU lock under the PTL when possible */
4082	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4083
4084	start = max(addr & PMD_MASK, vma->vm_start);
4085	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4086
4087	if (end - start == PAGE_SIZE)
4088		return true;
4089
4090	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4091		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4092			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4093		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4094			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4095		else {
4096			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4097			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4098		}
4099	}
4100
4101	arch_enter_lazy_mmu_mode();
4102
4103	pte -= (addr - start) / PAGE_SIZE;
4104
4105	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4106		unsigned long pfn;
4107		pte_t ptent = ptep_get(pte + i);
4108
4109		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4110		if (pfn == -1)
4111			continue;
4112
4113		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4114		if (!folio)
4115			continue;
4116
4117		if (!ptep_clear_young_notify(vma, addr, pte + i))
4118			continue;
4119
4120		young++;
4121
4122		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4123		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4124		      !folio_test_swapcache(folio)))
4125			folio_mark_dirty(folio);
4126
4127		if (walk) {
4128			old_gen = folio_update_gen(folio, new_gen);
4129			if (old_gen >= 0 && old_gen != new_gen)
4130				update_batch_size(walk, folio, old_gen, new_gen);
4131
4132			continue;
4133		}
4134
4135		old_gen = folio_lru_gen(folio);
4136		if (old_gen < 0)
4137			folio_set_referenced(folio);
4138		else if (old_gen != new_gen) {
4139			folio_clear_lru_refs(folio);
4140			folio_activate(folio);
4141		}
4142	}
4143
4144	arch_leave_lazy_mmu_mode();
4145
4146	/* feedback from rmap walkers to page table walkers */
4147	if (mm_state && suitable_to_scan(i, young))
4148		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4149
4150	return true;
4151}
4152
4153/******************************************************************************
4154 *                          memcg LRU
4155 ******************************************************************************/
4156
4157/* see the comment on MEMCG_NR_GENS */
4158enum {
4159	MEMCG_LRU_NOP,
4160	MEMCG_LRU_HEAD,
4161	MEMCG_LRU_TAIL,
4162	MEMCG_LRU_OLD,
4163	MEMCG_LRU_YOUNG,
4164};
4165
4166static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4167{
4168	int seg;
4169	int old, new;
4170	unsigned long flags;
4171	int bin = get_random_u32_below(MEMCG_NR_BINS);
4172	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4173
4174	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4175
4176	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4177
4178	seg = 0;
4179	new = old = lruvec->lrugen.gen;
4180
4181	/* see the comment on MEMCG_NR_GENS */
4182	if (op == MEMCG_LRU_HEAD)
4183		seg = MEMCG_LRU_HEAD;
4184	else if (op == MEMCG_LRU_TAIL)
4185		seg = MEMCG_LRU_TAIL;
4186	else if (op == MEMCG_LRU_OLD)
4187		new = get_memcg_gen(pgdat->memcg_lru.seq);
4188	else if (op == MEMCG_LRU_YOUNG)
4189		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4190	else
4191		VM_WARN_ON_ONCE(true);
4192
4193	WRITE_ONCE(lruvec->lrugen.seg, seg);
4194	WRITE_ONCE(lruvec->lrugen.gen, new);
4195
4196	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4197
4198	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4199		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4200	else
4201		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4202
4203	pgdat->memcg_lru.nr_memcgs[old]--;
4204	pgdat->memcg_lru.nr_memcgs[new]++;
4205
4206	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4207		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4208
4209	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4210}
4211
4212#ifdef CONFIG_MEMCG
4213
4214void lru_gen_online_memcg(struct mem_cgroup *memcg)
4215{
4216	int gen;
4217	int nid;
4218	int bin = get_random_u32_below(MEMCG_NR_BINS);
4219
4220	for_each_node(nid) {
4221		struct pglist_data *pgdat = NODE_DATA(nid);
4222		struct lruvec *lruvec = get_lruvec(memcg, nid);
4223
4224		spin_lock_irq(&pgdat->memcg_lru.lock);
4225
4226		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4227
4228		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4229
4230		lruvec->lrugen.gen = gen;
4231
4232		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4233		pgdat->memcg_lru.nr_memcgs[gen]++;
4234
4235		spin_unlock_irq(&pgdat->memcg_lru.lock);
4236	}
4237}
4238
4239void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4240{
4241	int nid;
4242
4243	for_each_node(nid) {
4244		struct lruvec *lruvec = get_lruvec(memcg, nid);
4245
4246		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4247	}
4248}
4249
4250void lru_gen_release_memcg(struct mem_cgroup *memcg)
4251{
4252	int gen;
4253	int nid;
4254
4255	for_each_node(nid) {
4256		struct pglist_data *pgdat = NODE_DATA(nid);
4257		struct lruvec *lruvec = get_lruvec(memcg, nid);
4258
4259		spin_lock_irq(&pgdat->memcg_lru.lock);
4260
4261		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4262			goto unlock;
4263
4264		gen = lruvec->lrugen.gen;
4265
4266		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4267		pgdat->memcg_lru.nr_memcgs[gen]--;
4268
4269		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4270			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4271unlock:
4272		spin_unlock_irq(&pgdat->memcg_lru.lock);
4273	}
4274}
4275
4276void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4277{
4278	struct lruvec *lruvec = get_lruvec(memcg, nid);
4279
4280	/* see the comment on MEMCG_NR_GENS */
4281	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4282		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4283}
4284
4285#endif /* CONFIG_MEMCG */
4286
4287/******************************************************************************
4288 *                          the eviction
4289 ******************************************************************************/
4290
4291static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4292		       int tier_idx)
4293{
4294	bool success;
4295	bool dirty, writeback;
4296	int gen = folio_lru_gen(folio);
4297	int type = folio_is_file_lru(folio);
4298	int zone = folio_zonenum(folio);
4299	int delta = folio_nr_pages(folio);
4300	int refs = folio_lru_refs(folio);
4301	int tier = lru_tier_from_refs(refs);
4302	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4303
4304	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4305
4306	/* unevictable */
4307	if (!folio_evictable(folio)) {
4308		success = lru_gen_del_folio(lruvec, folio, true);
4309		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4310		folio_set_unevictable(folio);
4311		lruvec_add_folio(lruvec, folio);
4312		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4313		return true;
4314	}
4315
4316	/* promoted */
4317	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4318		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4319		return true;
4320	}
4321
4322	/* protected */
4323	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4324		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4325
4326		gen = folio_inc_gen(lruvec, folio, false);
4327		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4328
4329		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4330			   lrugen->protected[hist][type][tier - 1] + delta);
4331		return true;
4332	}
4333
4334	/* ineligible */
4335	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4336		gen = folio_inc_gen(lruvec, folio, false);
4337		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4338		return true;
4339	}
4340
4341	dirty = folio_test_dirty(folio);
4342	writeback = folio_test_writeback(folio);
4343	if (type == LRU_GEN_FILE && dirty) {
4344		sc->nr.file_taken += delta;
4345		if (!writeback)
4346			sc->nr.unqueued_dirty += delta;
4347	}
4348
4349	/* waiting for writeback */
4350	if (folio_test_locked(folio) || writeback ||
4351	    (type == LRU_GEN_FILE && dirty)) {
4352		gen = folio_inc_gen(lruvec, folio, true);
4353		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4354		return true;
4355	}
4356
4357	return false;
4358}
4359
4360static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4361{
4362	bool success;
4363
4364	/* swap constrained */
4365	if (!(sc->gfp_mask & __GFP_IO) &&
4366	    (folio_test_dirty(folio) ||
4367	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4368		return false;
4369
4370	/* raced with release_pages() */
4371	if (!folio_try_get(folio))
4372		return false;
4373
4374	/* raced with another isolation */
4375	if (!folio_test_clear_lru(folio)) {
4376		folio_put(folio);
4377		return false;
4378	}
4379
4380	/* see the comment on MAX_NR_TIERS */
4381	if (!folio_test_referenced(folio))
4382		folio_clear_lru_refs(folio);
4383
4384	/* for shrink_folio_list() */
4385	folio_clear_reclaim(folio);
4386	folio_clear_referenced(folio);
4387
4388	success = lru_gen_del_folio(lruvec, folio, true);
4389	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4390
4391	return true;
4392}
4393
4394static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4395		       int type, int tier, struct list_head *list)
4396{
4397	int i;
4398	int gen;
4399	enum vm_event_item item;
4400	int sorted = 0;
4401	int scanned = 0;
4402	int isolated = 0;
4403	int skipped = 0;
4404	int remaining = MAX_LRU_BATCH;
4405	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4406	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4407
4408	VM_WARN_ON_ONCE(!list_empty(list));
4409
4410	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4411		return 0;
4412
4413	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4414
4415	for (i = MAX_NR_ZONES; i > 0; i--) {
4416		LIST_HEAD(moved);
4417		int skipped_zone = 0;
4418		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4419		struct list_head *head = &lrugen->folios[gen][type][zone];
4420
4421		while (!list_empty(head)) {
4422			struct folio *folio = lru_to_folio(head);
4423			int delta = folio_nr_pages(folio);
4424
4425			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4426			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4427			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4428			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4429
4430			scanned += delta;
4431
4432			if (sort_folio(lruvec, folio, sc, tier))
4433				sorted += delta;
4434			else if (isolate_folio(lruvec, folio, sc)) {
4435				list_add(&folio->lru, list);
4436				isolated += delta;
4437			} else {
4438				list_move(&folio->lru, &moved);
4439				skipped_zone += delta;
4440			}
4441
4442			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4443				break;
4444		}
4445
4446		if (skipped_zone) {
4447			list_splice(&moved, head);
4448			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4449			skipped += skipped_zone;
4450		}
4451
4452		if (!remaining || isolated >= MIN_LRU_BATCH)
4453			break;
4454	}
4455
4456	item = PGSCAN_KSWAPD + reclaimer_offset();
4457	if (!cgroup_reclaim(sc)) {
4458		__count_vm_events(item, isolated);
4459		__count_vm_events(PGREFILL, sorted);
4460	}
4461	__count_memcg_events(memcg, item, isolated);
4462	__count_memcg_events(memcg, PGREFILL, sorted);
4463	__count_vm_events(PGSCAN_ANON + type, isolated);
4464	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4465				scanned, skipped, isolated,
4466				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4467	if (type == LRU_GEN_FILE)
4468		sc->nr.file_taken += isolated;
4469	/*
4470	 * There might not be eligible folios due to reclaim_idx. Check the
4471	 * remaining to prevent livelock if it's not making progress.
4472	 */
4473	return isolated || !remaining ? scanned : 0;
4474}
4475
4476static int get_tier_idx(struct lruvec *lruvec, int type)
4477{
4478	int tier;
4479	struct ctrl_pos sp, pv;
4480
4481	/*
4482	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4483	 * This value is chosen because any other tier would have at least twice
4484	 * as many refaults as the first tier.
4485	 */
4486	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4487	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4488		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4489		if (!positive_ctrl_err(&sp, &pv))
4490			break;
4491	}
4492
4493	return tier - 1;
4494}
4495
4496static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4497{
4498	int type, tier;
4499	struct ctrl_pos sp, pv;
4500	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4501
4502	/*
4503	 * Compare the first tier of anon with that of file to determine which
4504	 * type to scan. Also need to compare other tiers of the selected type
4505	 * with the first tier of the other type to determine the last tier (of
4506	 * the selected type) to evict.
4507	 */
4508	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4509	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4510	type = positive_ctrl_err(&sp, &pv);
4511
4512	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4513	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4514		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4515		if (!positive_ctrl_err(&sp, &pv))
4516			break;
4517	}
4518
4519	*tier_idx = tier - 1;
4520
4521	return type;
4522}
4523
4524static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4525			  int *type_scanned, struct list_head *list)
4526{
4527	int i;
4528	int type;
4529	int scanned;
4530	int tier = -1;
4531	DEFINE_MIN_SEQ(lruvec);
4532
4533	/*
4534	 * Try to make the obvious choice first, and if anon and file are both
4535	 * available from the same generation,
4536	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4537	 *    first.
4538	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4539	 *    exist than clean swapcache.
4540	 */
4541	if (!swappiness)
4542		type = LRU_GEN_FILE;
4543	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4544		type = LRU_GEN_ANON;
4545	else if (swappiness == 1)
4546		type = LRU_GEN_FILE;
4547	else if (swappiness == MAX_SWAPPINESS)
4548		type = LRU_GEN_ANON;
4549	else if (!(sc->gfp_mask & __GFP_IO))
4550		type = LRU_GEN_FILE;
4551	else
4552		type = get_type_to_scan(lruvec, swappiness, &tier);
4553
4554	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4555		if (tier < 0)
4556			tier = get_tier_idx(lruvec, type);
4557
4558		scanned = scan_folios(lruvec, sc, type, tier, list);
4559		if (scanned)
4560			break;
4561
4562		type = !type;
4563		tier = -1;
4564	}
4565
4566	*type_scanned = type;
4567
4568	return scanned;
4569}
4570
4571static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4572{
4573	int type;
4574	int scanned;
4575	int reclaimed;
4576	LIST_HEAD(list);
4577	LIST_HEAD(clean);
4578	struct folio *folio;
4579	struct folio *next;
4580	enum vm_event_item item;
4581	struct reclaim_stat stat;
4582	struct lru_gen_mm_walk *walk;
4583	bool skip_retry = false;
4584	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4585	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4586
4587	spin_lock_irq(&lruvec->lru_lock);
4588
4589	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4590
4591	scanned += try_to_inc_min_seq(lruvec, swappiness);
4592
4593	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4594		scanned = 0;
4595
4596	spin_unlock_irq(&lruvec->lru_lock);
4597
4598	if (list_empty(&list))
4599		return scanned;
4600retry:
4601	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4602	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4603	sc->nr_reclaimed += reclaimed;
4604	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4605			scanned, reclaimed, &stat, sc->priority,
4606			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4607
4608	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4609		if (!folio_evictable(folio)) {
4610			list_del(&folio->lru);
4611			folio_putback_lru(folio);
4612			continue;
4613		}
4614
4615		if (folio_test_reclaim(folio) &&
4616		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4617			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4618			if (folio_test_workingset(folio))
4619				folio_set_referenced(folio);
4620			continue;
4621		}
4622
4623		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4624		    folio_mapped(folio) || folio_test_locked(folio) ||
4625		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4626			/* don't add rejected folios to the oldest generation */
4627			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4628				      BIT(PG_active));
4629			continue;
4630		}
4631
4632		/* retry folios that may have missed folio_rotate_reclaimable() */
4633		list_move(&folio->lru, &clean);
4634	}
4635
4636	spin_lock_irq(&lruvec->lru_lock);
4637
4638	move_folios_to_lru(lruvec, &list);
4639
4640	walk = current->reclaim_state->mm_walk;
4641	if (walk && walk->batched) {
4642		walk->lruvec = lruvec;
4643		reset_batch_size(walk);
4644	}
4645
4646	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
4647					stat.nr_demoted);
4648
4649	item = PGSTEAL_KSWAPD + reclaimer_offset();
4650	if (!cgroup_reclaim(sc))
4651		__count_vm_events(item, reclaimed);
4652	__count_memcg_events(memcg, item, reclaimed);
4653	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4654
4655	spin_unlock_irq(&lruvec->lru_lock);
4656
4657	list_splice_init(&clean, &list);
4658
4659	if (!list_empty(&list)) {
4660		skip_retry = true;
4661		goto retry;
4662	}
4663
4664	return scanned;
4665}
4666
4667static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4668			     bool can_swap, unsigned long *nr_to_scan)
4669{
4670	int gen, type, zone;
4671	unsigned long old = 0;
4672	unsigned long young = 0;
4673	unsigned long total = 0;
4674	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4675	DEFINE_MIN_SEQ(lruvec);
4676
4677	/* whether this lruvec is completely out of cold folios */
4678	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4679		*nr_to_scan = 0;
4680		return true;
4681	}
4682
4683	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4684		unsigned long seq;
4685
4686		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4687			unsigned long size = 0;
4688
4689			gen = lru_gen_from_seq(seq);
4690
4691			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4692				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4693
4694			total += size;
4695			if (seq == max_seq)
4696				young += size;
4697			else if (seq + MIN_NR_GENS == max_seq)
4698				old += size;
4699		}
4700	}
4701
4702	*nr_to_scan = total;
4703
4704	/*
4705	 * The aging tries to be lazy to reduce the overhead, while the eviction
4706	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4707	 * ideal number of generations is MIN_NR_GENS+1.
4708	 */
4709	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4710		return false;
4711
4712	/*
4713	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4714	 * of the total number of pages for each generation. A reasonable range
4715	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4716	 * aging cares about the upper bound of hot pages, while the eviction
4717	 * cares about the lower bound of cold pages.
4718	 */
4719	if (young * MIN_NR_GENS > total)
4720		return true;
4721	if (old * (MIN_NR_GENS + 2) < total)
4722		return true;
4723
4724	return false;
4725}
4726
4727/*
4728 * For future optimizations:
4729 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4730 *    reclaim.
4731 */
4732static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4733{
4734	bool success;
4735	unsigned long nr_to_scan;
4736	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4737	DEFINE_MAX_SEQ(lruvec);
4738
4739	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4740		return -1;
4741
4742	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4743
4744	/* try to scrape all its memory if this memcg was deleted */
4745	if (nr_to_scan && !mem_cgroup_online(memcg))
4746		return nr_to_scan;
4747
4748	/* try to get away with not aging at the default priority */
4749	if (!success || sc->priority == DEF_PRIORITY)
4750		return nr_to_scan >> sc->priority;
4751
4752	/* stop scanning this lruvec as it's low on cold folios */
4753	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4754}
4755
4756static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4757{
4758	int i;
4759	enum zone_watermarks mark;
4760
4761	/* don't abort memcg reclaim to ensure fairness */
4762	if (!root_reclaim(sc))
4763		return false;
4764
4765	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4766		return true;
4767
4768	/* check the order to exclude compaction-induced reclaim */
4769	if (!current_is_kswapd() || sc->order)
4770		return false;
4771
4772	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4773	       WMARK_PROMO : WMARK_HIGH;
4774
4775	for (i = 0; i <= sc->reclaim_idx; i++) {
4776		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4777		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4778
4779		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4780			return false;
4781	}
4782
4783	/* kswapd should abort if all eligible zones are safe */
4784	return true;
4785}
4786
4787static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4788{
4789	long nr_to_scan;
4790	unsigned long scanned = 0;
4791	int swappiness = get_swappiness(lruvec, sc);
4792
4793	while (true) {
4794		int delta;
4795
4796		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4797		if (nr_to_scan <= 0)
4798			break;
4799
4800		delta = evict_folios(lruvec, sc, swappiness);
4801		if (!delta)
4802			break;
4803
4804		scanned += delta;
4805		if (scanned >= nr_to_scan)
4806			break;
4807
4808		if (should_abort_scan(lruvec, sc))
4809			break;
4810
4811		cond_resched();
4812	}
4813
4814	/*
4815	 * If too many file cache in the coldest generation can't be evicted
4816	 * due to being dirty, wake up the flusher.
4817	 */
4818	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4819		wakeup_flusher_threads(WB_REASON_VMSCAN);
4820
4821	/* whether this lruvec should be rotated */
4822	return nr_to_scan < 0;
4823}
4824
4825static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4826{
4827	bool success;
4828	unsigned long scanned = sc->nr_scanned;
4829	unsigned long reclaimed = sc->nr_reclaimed;
4830	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4831	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4832
4833	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4834	if (mem_cgroup_below_min(NULL, memcg))
4835		return MEMCG_LRU_YOUNG;
4836
4837	if (mem_cgroup_below_low(NULL, memcg)) {
4838		/* see the comment on MEMCG_NR_GENS */
4839		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4840			return MEMCG_LRU_TAIL;
4841
4842		memcg_memory_event(memcg, MEMCG_LOW);
4843	}
4844
4845	success = try_to_shrink_lruvec(lruvec, sc);
4846
4847	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4848
4849	if (!sc->proactive)
4850		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4851			   sc->nr_reclaimed - reclaimed);
4852
4853	flush_reclaim_state(sc);
4854
4855	if (success && mem_cgroup_online(memcg))
4856		return MEMCG_LRU_YOUNG;
4857
4858	if (!success && lruvec_is_sizable(lruvec, sc))
4859		return 0;
4860
4861	/* one retry if offlined or too small */
4862	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4863	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4864}
4865
4866static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4867{
4868	int op;
4869	int gen;
4870	int bin;
4871	int first_bin;
4872	struct lruvec *lruvec;
4873	struct lru_gen_folio *lrugen;
4874	struct mem_cgroup *memcg;
4875	struct hlist_nulls_node *pos;
4876
4877	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4878	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4879restart:
4880	op = 0;
4881	memcg = NULL;
4882
4883	rcu_read_lock();
4884
4885	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4886		if (op) {
4887			lru_gen_rotate_memcg(lruvec, op);
4888			op = 0;
4889		}
4890
4891		mem_cgroup_put(memcg);
4892		memcg = NULL;
4893
4894		if (gen != READ_ONCE(lrugen->gen))
4895			continue;
4896
4897		lruvec = container_of(lrugen, struct lruvec, lrugen);
4898		memcg = lruvec_memcg(lruvec);
4899
4900		if (!mem_cgroup_tryget(memcg)) {
4901			lru_gen_release_memcg(memcg);
4902			memcg = NULL;
4903			continue;
4904		}
4905
4906		rcu_read_unlock();
4907
4908		op = shrink_one(lruvec, sc);
4909
4910		rcu_read_lock();
4911
4912		if (should_abort_scan(lruvec, sc))
4913			break;
4914	}
4915
4916	rcu_read_unlock();
4917
4918	if (op)
4919		lru_gen_rotate_memcg(lruvec, op);
4920
4921	mem_cgroup_put(memcg);
4922
4923	if (!is_a_nulls(pos))
4924		return;
4925
4926	/* restart if raced with lru_gen_rotate_memcg() */
4927	if (gen != get_nulls_value(pos))
4928		goto restart;
4929
4930	/* try the rest of the bins of the current generation */
4931	bin = get_memcg_bin(bin + 1);
4932	if (bin != first_bin)
4933		goto restart;
4934}
4935
4936static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4937{
4938	struct blk_plug plug;
4939
4940	VM_WARN_ON_ONCE(root_reclaim(sc));
4941	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4942
4943	lru_add_drain();
4944
4945	blk_start_plug(&plug);
4946
4947	set_mm_walk(NULL, sc->proactive);
4948
4949	if (try_to_shrink_lruvec(lruvec, sc))
4950		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4951
4952	clear_mm_walk();
4953
4954	blk_finish_plug(&plug);
4955}
4956
4957static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4958{
4959	struct blk_plug plug;
4960	unsigned long reclaimed = sc->nr_reclaimed;
4961
4962	VM_WARN_ON_ONCE(!root_reclaim(sc));
4963
4964	/*
4965	 * Unmapped clean folios are already prioritized. Scanning for more of
4966	 * them is likely futile and can cause high reclaim latency when there
4967	 * is a large number of memcgs.
4968	 */
4969	if (!sc->may_writepage || !sc->may_unmap)
4970		goto done;
4971
4972	lru_add_drain();
4973
4974	blk_start_plug(&plug);
4975
4976	set_mm_walk(pgdat, sc->proactive);
4977
4978	set_initial_priority(pgdat, sc);
4979
4980	if (current_is_kswapd())
4981		sc->nr_reclaimed = 0;
4982
4983	if (mem_cgroup_disabled())
4984		shrink_one(&pgdat->__lruvec, sc);
4985	else
4986		shrink_many(pgdat, sc);
4987
4988	if (current_is_kswapd())
4989		sc->nr_reclaimed += reclaimed;
4990
4991	clear_mm_walk();
4992
4993	blk_finish_plug(&plug);
4994done:
4995	if (sc->nr_reclaimed > reclaimed)
4996		pgdat->kswapd_failures = 0;
4997}
4998
4999/******************************************************************************
5000 *                          state change
5001 ******************************************************************************/
5002
5003static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5004{
5005	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5006
5007	if (lrugen->enabled) {
5008		enum lru_list lru;
5009
5010		for_each_evictable_lru(lru) {
5011			if (!list_empty(&lruvec->lists[lru]))
5012				return false;
5013		}
5014	} else {
5015		int gen, type, zone;
5016
5017		for_each_gen_type_zone(gen, type, zone) {
5018			if (!list_empty(&lrugen->folios[gen][type][zone]))
5019				return false;
5020		}
5021	}
5022
5023	return true;
5024}
5025
5026static bool fill_evictable(struct lruvec *lruvec)
5027{
5028	enum lru_list lru;
5029	int remaining = MAX_LRU_BATCH;
5030
5031	for_each_evictable_lru(lru) {
5032		int type = is_file_lru(lru);
5033		bool active = is_active_lru(lru);
5034		struct list_head *head = &lruvec->lists[lru];
5035
5036		while (!list_empty(head)) {
5037			bool success;
5038			struct folio *folio = lru_to_folio(head);
5039
5040			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5041			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5042			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5043			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5044
5045			lruvec_del_folio(lruvec, folio);
5046			success = lru_gen_add_folio(lruvec, folio, false);
5047			VM_WARN_ON_ONCE(!success);
5048
5049			if (!--remaining)
5050				return false;
5051		}
5052	}
5053
5054	return true;
5055}
5056
5057static bool drain_evictable(struct lruvec *lruvec)
5058{
5059	int gen, type, zone;
5060	int remaining = MAX_LRU_BATCH;
5061
5062	for_each_gen_type_zone(gen, type, zone) {
5063		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5064
5065		while (!list_empty(head)) {
5066			bool success;
5067			struct folio *folio = lru_to_folio(head);
5068
5069			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5070			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5071			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5072			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5073
5074			success = lru_gen_del_folio(lruvec, folio, false);
5075			VM_WARN_ON_ONCE(!success);
5076			lruvec_add_folio(lruvec, folio);
5077
5078			if (!--remaining)
5079				return false;
5080		}
5081	}
5082
5083	return true;
5084}
5085
5086static void lru_gen_change_state(bool enabled)
5087{
5088	static DEFINE_MUTEX(state_mutex);
5089
5090	struct mem_cgroup *memcg;
5091
5092	cgroup_lock();
5093	cpus_read_lock();
5094	get_online_mems();
5095	mutex_lock(&state_mutex);
5096
5097	if (enabled == lru_gen_enabled())
5098		goto unlock;
5099
5100	if (enabled)
5101		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5102	else
5103		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5104
5105	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5106	do {
5107		int nid;
5108
5109		for_each_node(nid) {
5110			struct lruvec *lruvec = get_lruvec(memcg, nid);
5111
5112			spin_lock_irq(&lruvec->lru_lock);
5113
5114			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5115			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5116
5117			lruvec->lrugen.enabled = enabled;
5118
5119			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5120				spin_unlock_irq(&lruvec->lru_lock);
5121				cond_resched();
5122				spin_lock_irq(&lruvec->lru_lock);
5123			}
5124
5125			spin_unlock_irq(&lruvec->lru_lock);
5126		}
5127
5128		cond_resched();
5129	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5130unlock:
5131	mutex_unlock(&state_mutex);
5132	put_online_mems();
5133	cpus_read_unlock();
5134	cgroup_unlock();
5135}
5136
5137/******************************************************************************
5138 *                          sysfs interface
5139 ******************************************************************************/
5140
5141static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5142{
5143	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5144}
5145
5146/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5147static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5148				const char *buf, size_t len)
5149{
5150	unsigned int msecs;
5151
5152	if (kstrtouint(buf, 0, &msecs))
5153		return -EINVAL;
5154
5155	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5156
5157	return len;
5158}
5159
5160static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5161
5162static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5163{
5164	unsigned int caps = 0;
5165
5166	if (get_cap(LRU_GEN_CORE))
5167		caps |= BIT(LRU_GEN_CORE);
5168
5169	if (should_walk_mmu())
5170		caps |= BIT(LRU_GEN_MM_WALK);
5171
5172	if (should_clear_pmd_young())
5173		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5174
5175	return sysfs_emit(buf, "0x%04x\n", caps);
5176}
5177
5178/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5179static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5180			     const char *buf, size_t len)
5181{
5182	int i;
5183	unsigned int caps;
5184
5185	if (tolower(*buf) == 'n')
5186		caps = 0;
5187	else if (tolower(*buf) == 'y')
5188		caps = -1;
5189	else if (kstrtouint(buf, 0, &caps))
5190		return -EINVAL;
5191
5192	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5193		bool enabled = caps & BIT(i);
5194
5195		if (i == LRU_GEN_CORE)
5196			lru_gen_change_state(enabled);
5197		else if (enabled)
5198			static_branch_enable(&lru_gen_caps[i]);
5199		else
5200			static_branch_disable(&lru_gen_caps[i]);
5201	}
5202
5203	return len;
5204}
5205
5206static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5207
5208static struct attribute *lru_gen_attrs[] = {
5209	&lru_gen_min_ttl_attr.attr,
5210	&lru_gen_enabled_attr.attr,
5211	NULL
5212};
5213
5214static const struct attribute_group lru_gen_attr_group = {
5215	.name = "lru_gen",
5216	.attrs = lru_gen_attrs,
5217};
5218
5219/******************************************************************************
5220 *                          debugfs interface
5221 ******************************************************************************/
5222
5223static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5224{
5225	struct mem_cgroup *memcg;
5226	loff_t nr_to_skip = *pos;
5227
5228	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5229	if (!m->private)
5230		return ERR_PTR(-ENOMEM);
5231
5232	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5233	do {
5234		int nid;
5235
5236		for_each_node_state(nid, N_MEMORY) {
5237			if (!nr_to_skip--)
5238				return get_lruvec(memcg, nid);
5239		}
5240	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5241
5242	return NULL;
5243}
5244
5245static void lru_gen_seq_stop(struct seq_file *m, void *v)
5246{
5247	if (!IS_ERR_OR_NULL(v))
5248		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5249
5250	kvfree(m->private);
5251	m->private = NULL;
5252}
5253
5254static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5255{
5256	int nid = lruvec_pgdat(v)->node_id;
5257	struct mem_cgroup *memcg = lruvec_memcg(v);
5258
5259	++*pos;
5260
5261	nid = next_memory_node(nid);
5262	if (nid == MAX_NUMNODES) {
5263		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5264		if (!memcg)
5265			return NULL;
5266
5267		nid = first_memory_node;
5268	}
5269
5270	return get_lruvec(memcg, nid);
5271}
5272
5273static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5274				  unsigned long max_seq, unsigned long *min_seq,
5275				  unsigned long seq)
5276{
5277	int i;
5278	int type, tier;
5279	int hist = lru_hist_from_seq(seq);
5280	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5281	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5282
5283	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5284		seq_printf(m, "            %10d", tier);
5285		for (type = 0; type < ANON_AND_FILE; type++) {
5286			const char *s = "xxx";
5287			unsigned long n[3] = {};
5288
5289			if (seq == max_seq) {
5290				s = "RTx";
5291				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5292				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5293			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5294				s = "rep";
5295				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5296				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5297				if (tier)
5298					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5299			}
5300
5301			for (i = 0; i < 3; i++)
5302				seq_printf(m, " %10lu%c", n[i], s[i]);
5303		}
5304		seq_putc(m, '\n');
5305	}
5306
5307	if (!mm_state)
5308		return;
5309
5310	seq_puts(m, "                      ");
5311	for (i = 0; i < NR_MM_STATS; i++) {
5312		const char *s = "xxxx";
5313		unsigned long n = 0;
5314
5315		if (seq == max_seq && NR_HIST_GENS == 1) {
5316			s = "TYFA";
5317			n = READ_ONCE(mm_state->stats[hist][i]);
5318		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5319			s = "tyfa";
5320			n = READ_ONCE(mm_state->stats[hist][i]);
5321		}
5322
5323		seq_printf(m, " %10lu%c", n, s[i]);
5324	}
5325	seq_putc(m, '\n');
5326}
5327
5328/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5329static int lru_gen_seq_show(struct seq_file *m, void *v)
5330{
5331	unsigned long seq;
5332	bool full = !debugfs_real_fops(m->file)->write;
5333	struct lruvec *lruvec = v;
5334	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5335	int nid = lruvec_pgdat(lruvec)->node_id;
5336	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5337	DEFINE_MAX_SEQ(lruvec);
5338	DEFINE_MIN_SEQ(lruvec);
5339
5340	if (nid == first_memory_node) {
5341		const char *path = memcg ? m->private : "";
5342
5343#ifdef CONFIG_MEMCG
5344		if (memcg)
5345			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5346#endif
5347		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5348	}
5349
5350	seq_printf(m, " node %5d\n", nid);
5351
5352	if (!full)
5353		seq = min_seq[LRU_GEN_ANON];
5354	else if (max_seq >= MAX_NR_GENS)
5355		seq = max_seq - MAX_NR_GENS + 1;
5356	else
5357		seq = 0;
5358
5359	for (; seq <= max_seq; seq++) {
5360		int type, zone;
5361		int gen = lru_gen_from_seq(seq);
5362		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5363
5364		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5365
5366		for (type = 0; type < ANON_AND_FILE; type++) {
5367			unsigned long size = 0;
5368			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5369
5370			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5371				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5372
5373			seq_printf(m, " %10lu%c", size, mark);
5374		}
5375
5376		seq_putc(m, '\n');
5377
5378		if (full)
5379			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5380	}
5381
5382	return 0;
5383}
5384
5385static const struct seq_operations lru_gen_seq_ops = {
5386	.start = lru_gen_seq_start,
5387	.stop = lru_gen_seq_stop,
5388	.next = lru_gen_seq_next,
5389	.show = lru_gen_seq_show,
5390};
5391
5392static int run_aging(struct lruvec *lruvec, unsigned long seq,
5393		     bool can_swap, bool force_scan)
5394{
5395	DEFINE_MAX_SEQ(lruvec);
5396	DEFINE_MIN_SEQ(lruvec);
5397
5398	if (seq < max_seq)
5399		return 0;
5400
5401	if (seq > max_seq)
5402		return -EINVAL;
5403
5404	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5405		return -ERANGE;
5406
5407	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5408
5409	return 0;
5410}
5411
5412static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5413			int swappiness, unsigned long nr_to_reclaim)
5414{
5415	DEFINE_MAX_SEQ(lruvec);
5416
5417	if (seq + MIN_NR_GENS > max_seq)
5418		return -EINVAL;
5419
5420	sc->nr_reclaimed = 0;
5421
5422	while (!signal_pending(current)) {
5423		DEFINE_MIN_SEQ(lruvec);
5424
5425		if (seq < min_seq[!swappiness])
5426			return 0;
5427
5428		if (sc->nr_reclaimed >= nr_to_reclaim)
5429			return 0;
5430
5431		if (!evict_folios(lruvec, sc, swappiness))
5432			return 0;
5433
5434		cond_resched();
5435	}
5436
5437	return -EINTR;
5438}
5439
5440static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5441		   struct scan_control *sc, int swappiness, unsigned long opt)
5442{
5443	struct lruvec *lruvec;
5444	int err = -EINVAL;
5445	struct mem_cgroup *memcg = NULL;
5446
5447	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5448		return -EINVAL;
5449
5450	if (!mem_cgroup_disabled()) {
5451		rcu_read_lock();
5452
5453		memcg = mem_cgroup_from_id(memcg_id);
5454		if (!mem_cgroup_tryget(memcg))
5455			memcg = NULL;
5456
5457		rcu_read_unlock();
5458
5459		if (!memcg)
5460			return -EINVAL;
5461	}
5462
5463	if (memcg_id != mem_cgroup_id(memcg))
5464		goto done;
5465
5466	lruvec = get_lruvec(memcg, nid);
5467
5468	if (swappiness < MIN_SWAPPINESS)
5469		swappiness = get_swappiness(lruvec, sc);
5470	else if (swappiness > MAX_SWAPPINESS)
5471		goto done;
5472
5473	switch (cmd) {
5474	case '+':
5475		err = run_aging(lruvec, seq, swappiness, opt);
5476		break;
5477	case '-':
5478		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5479		break;
5480	}
5481done:
5482	mem_cgroup_put(memcg);
5483
5484	return err;
5485}
5486
5487/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5488static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5489				 size_t len, loff_t *pos)
5490{
5491	void *buf;
5492	char *cur, *next;
5493	unsigned int flags;
5494	struct blk_plug plug;
5495	int err = -EINVAL;
5496	struct scan_control sc = {
5497		.may_writepage = true,
5498		.may_unmap = true,
5499		.may_swap = true,
5500		.reclaim_idx = MAX_NR_ZONES - 1,
5501		.gfp_mask = GFP_KERNEL,
5502	};
5503
5504	buf = kvmalloc(len + 1, GFP_KERNEL);
5505	if (!buf)
5506		return -ENOMEM;
5507
5508	if (copy_from_user(buf, src, len)) {
5509		kvfree(buf);
5510		return -EFAULT;
5511	}
5512
5513	set_task_reclaim_state(current, &sc.reclaim_state);
5514	flags = memalloc_noreclaim_save();
5515	blk_start_plug(&plug);
5516	if (!set_mm_walk(NULL, true)) {
5517		err = -ENOMEM;
5518		goto done;
5519	}
5520
5521	next = buf;
5522	next[len] = '\0';
5523
5524	while ((cur = strsep(&next, ",;\n"))) {
5525		int n;
5526		int end;
5527		char cmd;
5528		unsigned int memcg_id;
5529		unsigned int nid;
5530		unsigned long seq;
5531		unsigned int swappiness = -1;
5532		unsigned long opt = -1;
5533
5534		cur = skip_spaces(cur);
5535		if (!*cur)
5536			continue;
5537
5538		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5539			   &seq, &end, &swappiness, &end, &opt, &end);
5540		if (n < 4 || cur[end]) {
5541			err = -EINVAL;
5542			break;
5543		}
5544
5545		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5546		if (err)
5547			break;
5548	}
5549done:
5550	clear_mm_walk();
5551	blk_finish_plug(&plug);
5552	memalloc_noreclaim_restore(flags);
5553	set_task_reclaim_state(current, NULL);
5554
5555	kvfree(buf);
5556
5557	return err ? : len;
5558}
5559
5560static int lru_gen_seq_open(struct inode *inode, struct file *file)
5561{
5562	return seq_open(file, &lru_gen_seq_ops);
5563}
5564
5565static const struct file_operations lru_gen_rw_fops = {
5566	.open = lru_gen_seq_open,
5567	.read = seq_read,
5568	.write = lru_gen_seq_write,
5569	.llseek = seq_lseek,
5570	.release = seq_release,
5571};
5572
5573static const struct file_operations lru_gen_ro_fops = {
5574	.open = lru_gen_seq_open,
5575	.read = seq_read,
5576	.llseek = seq_lseek,
5577	.release = seq_release,
5578};
5579
5580/******************************************************************************
5581 *                          initialization
5582 ******************************************************************************/
5583
5584void lru_gen_init_pgdat(struct pglist_data *pgdat)
5585{
5586	int i, j;
5587
5588	spin_lock_init(&pgdat->memcg_lru.lock);
5589
5590	for (i = 0; i < MEMCG_NR_GENS; i++) {
5591		for (j = 0; j < MEMCG_NR_BINS; j++)
5592			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5593	}
5594}
5595
5596void lru_gen_init_lruvec(struct lruvec *lruvec)
5597{
5598	int i;
5599	int gen, type, zone;
5600	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5601	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5602
5603	lrugen->max_seq = MIN_NR_GENS + 1;
5604	lrugen->enabled = lru_gen_enabled();
5605
5606	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5607		lrugen->timestamps[i] = jiffies;
5608
5609	for_each_gen_type_zone(gen, type, zone)
5610		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5611
5612	if (mm_state)
5613		mm_state->seq = MIN_NR_GENS;
5614}
5615
5616#ifdef CONFIG_MEMCG
5617
5618void lru_gen_init_memcg(struct mem_cgroup *memcg)
5619{
5620	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5621
5622	if (!mm_list)
5623		return;
5624
5625	INIT_LIST_HEAD(&mm_list->fifo);
5626	spin_lock_init(&mm_list->lock);
5627}
5628
5629void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5630{
5631	int i;
5632	int nid;
5633	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5634
5635	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5636
5637	for_each_node(nid) {
5638		struct lruvec *lruvec = get_lruvec(memcg, nid);
5639		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5640
5641		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5642					   sizeof(lruvec->lrugen.nr_pages)));
5643
5644		lruvec->lrugen.list.next = LIST_POISON1;
5645
5646		if (!mm_state)
5647			continue;
5648
5649		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5650			bitmap_free(mm_state->filters[i]);
5651			mm_state->filters[i] = NULL;
5652		}
5653	}
5654}
5655
5656#endif /* CONFIG_MEMCG */
5657
5658static int __init init_lru_gen(void)
5659{
5660	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5661	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5662
5663	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5664		pr_err("lru_gen: failed to create sysfs group\n");
5665
5666	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5667	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5668
5669	return 0;
5670};
5671late_initcall(init_lru_gen);
5672
5673#else /* !CONFIG_LRU_GEN */
5674
5675static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5676{
5677	BUILD_BUG();
5678}
5679
5680static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5681{
5682	BUILD_BUG();
5683}
5684
5685static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5686{
5687	BUILD_BUG();
5688}
5689
5690#endif /* CONFIG_LRU_GEN */
5691
5692static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5693{
 
5694	unsigned long nr[NR_LRU_LISTS];
5695	unsigned long targets[NR_LRU_LISTS];
5696	unsigned long nr_to_scan;
5697	enum lru_list lru;
5698	unsigned long nr_reclaimed = 0;
5699	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5700	bool proportional_reclaim;
5701	struct blk_plug plug;
 
5702
5703	if (lru_gen_enabled() && !root_reclaim(sc)) {
5704		lru_gen_shrink_lruvec(lruvec, sc);
5705		return;
5706	}
5707
5708	get_scan_count(lruvec, sc, nr);
5709
5710	/* Record the original scan target for proportional adjustments later */
5711	memcpy(targets, nr, sizeof(nr));
5712
5713	/*
5714	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5715	 * event that can occur when there is little memory pressure e.g.
5716	 * multiple streaming readers/writers. Hence, we do not abort scanning
5717	 * when the requested number of pages are reclaimed when scanning at
5718	 * DEF_PRIORITY on the assumption that the fact we are direct
5719	 * reclaiming implies that kswapd is not keeping up and it is best to
5720	 * do a batch of work at once. For memcg reclaim one check is made to
5721	 * abort proportional reclaim if either the file or anon lru has already
5722	 * dropped to zero at the first pass.
5723	 */
5724	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5725				sc->priority == DEF_PRIORITY);
5726
5727	blk_start_plug(&plug);
5728	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5729					nr[LRU_INACTIVE_FILE]) {
5730		unsigned long nr_anon, nr_file, percentage;
5731		unsigned long nr_scanned;
5732
5733		for_each_evictable_lru(lru) {
5734			if (nr[lru]) {
5735				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5736				nr[lru] -= nr_to_scan;
5737
5738				nr_reclaimed += shrink_list(lru, nr_to_scan,
5739							    lruvec, sc);
5740			}
5741		}
5742
5743		cond_resched();
5744
5745		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5746			continue;
5747
5748		/*
5749		 * For kswapd and memcg, reclaim at least the number of pages
5750		 * requested. Ensure that the anon and file LRUs are scanned
5751		 * proportionally what was requested by get_scan_count(). We
5752		 * stop reclaiming one LRU and reduce the amount scanning
5753		 * proportional to the original scan target.
5754		 */
5755		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5756		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5757
5758		/*
5759		 * It's just vindictive to attack the larger once the smaller
5760		 * has gone to zero.  And given the way we stop scanning the
5761		 * smaller below, this makes sure that we only make one nudge
5762		 * towards proportionality once we've got nr_to_reclaim.
5763		 */
5764		if (!nr_file || !nr_anon)
5765			break;
5766
5767		if (nr_file > nr_anon) {
5768			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5769						targets[LRU_ACTIVE_ANON] + 1;
5770			lru = LRU_BASE;
5771			percentage = nr_anon * 100 / scan_target;
5772		} else {
5773			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5774						targets[LRU_ACTIVE_FILE] + 1;
5775			lru = LRU_FILE;
5776			percentage = nr_file * 100 / scan_target;
5777		}
5778
5779		/* Stop scanning the smaller of the LRU */
5780		nr[lru] = 0;
5781		nr[lru + LRU_ACTIVE] = 0;
5782
5783		/*
5784		 * Recalculate the other LRU scan count based on its original
5785		 * scan target and the percentage scanning already complete
5786		 */
5787		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5788		nr_scanned = targets[lru] - nr[lru];
5789		nr[lru] = targets[lru] * (100 - percentage) / 100;
5790		nr[lru] -= min(nr[lru], nr_scanned);
5791
5792		lru += LRU_ACTIVE;
5793		nr_scanned = targets[lru] - nr[lru];
5794		nr[lru] = targets[lru] * (100 - percentage) / 100;
5795		nr[lru] -= min(nr[lru], nr_scanned);
 
 
5796	}
5797	blk_finish_plug(&plug);
5798	sc->nr_reclaimed += nr_reclaimed;
5799
5800	/*
5801	 * Even if we did not try to evict anon pages at all, we want to
5802	 * rebalance the anon lru active/inactive ratio.
5803	 */
5804	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5805	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5806		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5807				   sc, LRU_ACTIVE_ANON);
5808}
5809
5810/* Use reclaim/compaction for costly allocs or under memory pressure */
5811static bool in_reclaim_compaction(struct scan_control *sc)
5812{
5813	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5814			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5815			 sc->priority < DEF_PRIORITY - 2))
5816		return true;
5817
5818	return false;
5819}
5820
5821/*
5822 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5823 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5824 * true if more pages should be reclaimed such that when the page allocator
5825 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5826 * It will give up earlier than that if there is difficulty reclaiming pages.
5827 */
5828static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5829					unsigned long nr_reclaimed,
 
5830					struct scan_control *sc)
5831{
5832	unsigned long pages_for_compaction;
5833	unsigned long inactive_lru_pages;
5834	int z;
5835
5836	/* If not in reclaim/compaction mode, stop */
5837	if (!in_reclaim_compaction(sc))
5838		return false;
5839
5840	/*
5841	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5842	 * number of pages that were scanned. This will return to the caller
5843	 * with the risk reclaim/compaction and the resulting allocation attempt
5844	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5845	 * allocations through requiring that the full LRU list has been scanned
5846	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5847	 * scan, but that approximation was wrong, and there were corner cases
5848	 * where always a non-zero amount of pages were scanned.
5849	 */
5850	if (!nr_reclaimed)
5851		return false;
5852
5853	/* If compaction would go ahead or the allocation would succeed, stop */
5854	for (z = 0; z <= sc->reclaim_idx; z++) {
5855		struct zone *zone = &pgdat->node_zones[z];
5856		if (!managed_zone(zone))
5857			continue;
5858
5859		/* Allocation can already succeed, nothing to do */
5860		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5861				      sc->reclaim_idx, 0))
5862			return false;
5863
5864		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
 
 
 
 
 
 
 
 
5865			return false;
5866	}
5867
5868	/*
5869	 * If we have not reclaimed enough pages for compaction and the
5870	 * inactive lists are large enough, continue reclaiming
5871	 */
5872	pages_for_compaction = compact_gap(sc->order);
5873	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5874	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5875		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
 
 
 
5876
5877	return inactive_lru_pages > pages_for_compaction;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5878}
5879
5880static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5881{
5882	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5883	struct mem_cgroup_reclaim_cookie reclaim = {
5884		.pgdat = pgdat,
5885	};
5886	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5887	struct mem_cgroup *memcg;
5888
5889	/*
5890	 * In most cases, direct reclaimers can do partial walks
5891	 * through the cgroup tree, using an iterator state that
5892	 * persists across invocations. This strikes a balance between
5893	 * fairness and allocation latency.
5894	 *
5895	 * For kswapd, reliable forward progress is more important
5896	 * than a quick return to idle. Always do full walks.
5897	 */
5898	if (current_is_kswapd() || sc->memcg_full_walk)
5899		partial = NULL;
5900
5901	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5902	do {
5903		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5904		unsigned long reclaimed;
5905		unsigned long scanned;
 
 
 
 
5906
5907		/*
5908		 * This loop can become CPU-bound when target memcgs
5909		 * aren't eligible for reclaim - either because they
5910		 * don't have any reclaimable pages, or because their
5911		 * memory is explicitly protected. Avoid soft lockups.
5912		 */
5913		cond_resched();
5914
5915		mem_cgroup_calculate_protection(target_memcg, memcg);
 
5916
5917		if (mem_cgroup_below_min(target_memcg, memcg)) {
5918			/*
5919			 * Hard protection.
5920			 * If there is no reclaimable memory, OOM.
5921			 */
5922			continue;
5923		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5924			/*
5925			 * Soft protection.
5926			 * Respect the protection only as long as
5927			 * there is an unprotected supply
5928			 * of reclaimable memory from other cgroups.
5929			 */
5930			if (!sc->memcg_low_reclaim) {
5931				sc->memcg_low_skipped = 1;
5932				continue;
5933			}
5934			memcg_memory_event(memcg, MEMCG_LOW);
5935		}
5936
5937		reclaimed = sc->nr_reclaimed;
5938		scanned = sc->nr_scanned;
5939
5940		shrink_lruvec(lruvec, sc);
 
 
 
 
 
 
 
5941
5942		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5943			    sc->priority);
5944
5945		/* Record the group's reclaim efficiency */
5946		if (!sc->proactive)
5947			vmpressure(sc->gfp_mask, memcg, false,
5948				   sc->nr_scanned - scanned,
5949				   sc->nr_reclaimed - reclaimed);
5950
5951		/* If partial walks are allowed, bail once goal is reached */
5952		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5953			mem_cgroup_iter_break(target_memcg, memcg);
5954			break;
5955		}
5956	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5957}
 
 
 
 
 
 
 
 
 
5958
5959static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5960{
5961	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5962	struct lruvec *target_lruvec;
5963	bool reclaimable = false;
5964
5965	if (lru_gen_enabled() && root_reclaim(sc)) {
5966		memset(&sc->nr, 0, sizeof(sc->nr));
5967		lru_gen_shrink_node(pgdat, sc);
5968		return;
5969	}
5970
5971	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 
 
 
5972
5973again:
5974	memset(&sc->nr, 0, sizeof(sc->nr));
5975
5976	nr_reclaimed = sc->nr_reclaimed;
5977	nr_scanned = sc->nr_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5978
5979	prepare_scan_control(pgdat, sc);
 
 
 
 
 
 
5980
5981	shrink_node_memcgs(pgdat, sc);
 
 
5982
5983	flush_reclaim_state(sc);
 
 
 
 
 
 
 
 
5984
5985	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5986
5987	/* Record the subtree's reclaim efficiency */
5988	if (!sc->proactive)
5989		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5990			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5991
5992	if (nr_node_reclaimed)
5993		reclaimable = true;
5994
5995	if (current_is_kswapd()) {
5996		/*
5997		 * If reclaim is isolating dirty pages under writeback,
5998		 * it implies that the long-lived page allocation rate
5999		 * is exceeding the page laundering rate. Either the
6000		 * global limits are not being effective at throttling
6001		 * processes due to the page distribution throughout
6002		 * zones or there is heavy usage of a slow backing
6003		 * device. The only option is to throttle from reclaim
6004		 * context which is not ideal as there is no guarantee
6005		 * the dirtying process is throttled in the same way
6006		 * balance_dirty_pages() manages.
6007		 *
6008		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6009		 * count the number of pages under pages flagged for
6010		 * immediate reclaim and stall if any are encountered
6011		 * in the nr_immediate check below.
6012		 */
6013		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6014			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6015
6016		/* Allow kswapd to start writing pages during reclaim.*/
6017		if (sc->nr.unqueued_dirty &&
6018			sc->nr.unqueued_dirty == sc->nr.file_taken)
6019			set_bit(PGDAT_DIRTY, &pgdat->flags);
6020
6021		/*
6022		 * If kswapd scans pages marked for immediate
6023		 * reclaim and under writeback (nr_immediate), it
6024		 * implies that pages are cycling through the LRU
6025		 * faster than they are written so forcibly stall
6026		 * until some pages complete writeback.
6027		 */
6028		if (sc->nr.immediate)
6029			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6030	}
6031
6032	/*
6033	 * Tag a node/memcg as congested if all the dirty pages were marked
6034	 * for writeback and immediate reclaim (counted in nr.congested).
6035	 *
6036	 * Legacy memcg will stall in page writeback so avoid forcibly
6037	 * stalling in reclaim_throttle().
6038	 */
6039	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6040		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6041			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6042
6043		if (current_is_kswapd())
6044			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6045	}
6046
6047	/*
6048	 * Stall direct reclaim for IO completions if the lruvec is
6049	 * node is congested. Allow kswapd to continue until it
6050	 * starts encountering unqueued dirty pages or cycling through
6051	 * the LRU too quickly.
6052	 */
6053	if (!current_is_kswapd() && current_may_throttle() &&
6054	    !sc->hibernation_mode &&
6055	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6056	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6057		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6058
6059	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6060		goto again;
6061
6062	/*
6063	 * Kswapd gives up on balancing particular nodes after too
6064	 * many failures to reclaim anything from them and goes to
6065	 * sleep. On reclaim progress, reset the failure counter. A
6066	 * successful direct reclaim run will revive a dormant kswapd.
6067	 */
6068	if (reclaimable)
6069		pgdat->kswapd_failures = 0;
6070	else if (sc->cache_trim_mode)
6071		sc->cache_trim_mode_failed = 1;
6072}
6073
6074/*
6075 * Returns true if compaction should go ahead for a costly-order request, or
6076 * the allocation would already succeed without compaction. Return false if we
6077 * should reclaim first.
6078 */
6079static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6080{
6081	unsigned long watermark;
 
6082
6083	if (!gfp_compaction_allowed(sc->gfp_mask))
6084		return false;
6085
6086	/* Allocation can already succeed, nothing to do */
6087	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6088			      sc->reclaim_idx, 0))
6089		return true;
6090
6091	/* Compaction cannot yet proceed. Do reclaim. */
6092	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6093		return false;
6094
6095	/*
6096	 * Compaction is already possible, but it takes time to run and there
6097	 * are potentially other callers using the pages just freed. So proceed
6098	 * with reclaim to make a buffer of free pages available to give
6099	 * compaction a reasonable chance of completing and allocating the page.
6100	 * Note that we won't actually reclaim the whole buffer in one attempt
6101	 * as the target watermark in should_continue_reclaim() is lower. But if
6102	 * we are already above the high+gap watermark, don't reclaim at all.
6103	 */
6104	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6105
6106	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6107}
6108
6109static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6110{
6111	/*
6112	 * If reclaim is making progress greater than 12% efficiency then
6113	 * wake all the NOPROGRESS throttled tasks.
6114	 */
6115	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6116		wait_queue_head_t *wqh;
6117
6118		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6119		if (waitqueue_active(wqh))
6120			wake_up(wqh);
6121
6122		return;
6123	}
6124
6125	/*
6126	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6127	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6128	 * under writeback and marked for immediate reclaim at the tail of the
6129	 * LRU.
6130	 */
6131	if (current_is_kswapd() || cgroup_reclaim(sc))
6132		return;
6133
6134	/* Throttle if making no progress at high prioities. */
6135	if (sc->priority == 1 && !sc->nr_reclaimed)
6136		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6137}
6138
6139/*
6140 * This is the direct reclaim path, for page-allocating processes.  We only
6141 * try to reclaim pages from zones which will satisfy the caller's allocation
6142 * request.
6143 *
6144 * If a zone is deemed to be full of pinned pages then just give it a light
6145 * scan then give up on it.
6146 */
6147static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6148{
6149	struct zoneref *z;
6150	struct zone *zone;
6151	unsigned long nr_soft_reclaimed;
6152	unsigned long nr_soft_scanned;
6153	gfp_t orig_mask;
6154	pg_data_t *last_pgdat = NULL;
6155	pg_data_t *first_pgdat = NULL;
6156
6157	/*
6158	 * If the number of buffer_heads in the machine exceeds the maximum
6159	 * allowed level, force direct reclaim to scan the highmem zone as
6160	 * highmem pages could be pinning lowmem pages storing buffer_heads
6161	 */
6162	orig_mask = sc->gfp_mask;
6163	if (buffer_heads_over_limit) {
6164		sc->gfp_mask |= __GFP_HIGHMEM;
6165		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6166	}
6167
6168	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6169					sc->reclaim_idx, sc->nodemask) {
6170		/*
6171		 * Take care memory controller reclaiming has small influence
6172		 * to global LRU.
6173		 */
6174		if (!cgroup_reclaim(sc)) {
6175			if (!cpuset_zone_allowed(zone,
6176						 GFP_KERNEL | __GFP_HARDWALL))
6177				continue;
6178
6179			/*
6180			 * If we already have plenty of memory free for
6181			 * compaction in this zone, don't free any more.
6182			 * Even though compaction is invoked for any
6183			 * non-zero order, only frequent costly order
6184			 * reclamation is disruptive enough to become a
6185			 * noticeable problem, like transparent huge
6186			 * page allocations.
6187			 */
6188			if (IS_ENABLED(CONFIG_COMPACTION) &&
6189			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6190			    compaction_ready(zone, sc)) {
6191				sc->compaction_ready = true;
6192				continue;
6193			}
6194
6195			/*
6196			 * Shrink each node in the zonelist once. If the
6197			 * zonelist is ordered by zone (not the default) then a
6198			 * node may be shrunk multiple times but in that case
6199			 * the user prefers lower zones being preserved.
6200			 */
6201			if (zone->zone_pgdat == last_pgdat)
6202				continue;
6203
6204			/*
6205			 * This steals pages from memory cgroups over softlimit
6206			 * and returns the number of reclaimed pages and
6207			 * scanned pages. This works for global memory pressure
6208			 * and balancing, not for a memcg's limit.
6209			 */
6210			nr_soft_scanned = 0;
6211			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6212								      sc->order, sc->gfp_mask,
6213								      &nr_soft_scanned);
6214			sc->nr_reclaimed += nr_soft_reclaimed;
6215			sc->nr_scanned += nr_soft_scanned;
6216			/* need some check for avoid more shrink_zone() */
6217		}
6218
6219		if (!first_pgdat)
6220			first_pgdat = zone->zone_pgdat;
6221
6222		/* See comment about same check for global reclaim above */
6223		if (zone->zone_pgdat == last_pgdat)
6224			continue;
6225		last_pgdat = zone->zone_pgdat;
6226		shrink_node(zone->zone_pgdat, sc);
6227	}
6228
6229	if (first_pgdat)
6230		consider_reclaim_throttle(first_pgdat, sc);
6231
6232	/*
6233	 * Restore to original mask to avoid the impact on the caller if we
6234	 * promoted it to __GFP_HIGHMEM.
6235	 */
6236	sc->gfp_mask = orig_mask;
6237}
6238
6239static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6240{
6241	struct lruvec *target_lruvec;
6242	unsigned long refaults;
 
 
 
 
6243
6244	if (lru_gen_enabled())
6245		return;
 
 
6246
6247	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6248	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6249	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6250	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6251	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6252}
6253
6254/*
6255 * This is the main entry point to direct page reclaim.
6256 *
6257 * If a full scan of the inactive list fails to free enough memory then we
6258 * are "out of memory" and something needs to be killed.
6259 *
6260 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6261 * high - the zone may be full of dirty or under-writeback pages, which this
6262 * caller can't do much about.  We kick the writeback threads and take explicit
6263 * naps in the hope that some of these pages can be written.  But if the
6264 * allocating task holds filesystem locks which prevent writeout this might not
6265 * work, and the allocation attempt will fail.
6266 *
6267 * returns:	0, if no pages reclaimed
6268 * 		else, the number of pages reclaimed
6269 */
6270static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6271					  struct scan_control *sc)
6272{
6273	int initial_priority = sc->priority;
6274	pg_data_t *last_pgdat;
6275	struct zoneref *z;
6276	struct zone *zone;
6277retry:
6278	delayacct_freepages_start();
6279
6280	if (!cgroup_reclaim(sc))
6281		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6282
6283	do {
6284		if (!sc->proactive)
6285			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6286					sc->priority);
6287		sc->nr_scanned = 0;
6288		shrink_zones(zonelist, sc);
6289
6290		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6291			break;
6292
6293		if (sc->compaction_ready)
6294			break;
6295
6296		/*
6297		 * If we're getting trouble reclaiming, start doing
6298		 * writepage even in laptop mode.
6299		 */
6300		if (sc->priority < DEF_PRIORITY - 2)
6301			sc->may_writepage = 1;
6302	} while (--sc->priority >= 0);
6303
6304	last_pgdat = NULL;
6305	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6306					sc->nodemask) {
6307		if (zone->zone_pgdat == last_pgdat)
6308			continue;
6309		last_pgdat = zone->zone_pgdat;
6310
6311		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6312
6313		if (cgroup_reclaim(sc)) {
6314			struct lruvec *lruvec;
6315
6316			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6317						   zone->zone_pgdat);
6318			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6319		}
6320	}
6321
6322	delayacct_freepages_end();
6323
6324	if (sc->nr_reclaimed)
6325		return sc->nr_reclaimed;
6326
6327	/* Aborted reclaim to try compaction? don't OOM, then */
6328	if (sc->compaction_ready)
6329		return 1;
6330
6331	/*
6332	 * In most cases, direct reclaimers can do partial walks
6333	 * through the cgroup tree to meet the reclaim goal while
6334	 * keeping latency low. Since the iterator state is shared
6335	 * among all direct reclaim invocations (to retain fairness
6336	 * among cgroups), though, high concurrency can result in
6337	 * individual threads not seeing enough cgroups to make
6338	 * meaningful forward progress. Avoid false OOMs in this case.
6339	 */
6340	if (!sc->memcg_full_walk) {
6341		sc->priority = initial_priority;
6342		sc->memcg_full_walk = 1;
6343		goto retry;
6344	}
6345
6346	/*
6347	 * We make inactive:active ratio decisions based on the node's
6348	 * composition of memory, but a restrictive reclaim_idx or a
6349	 * memory.low cgroup setting can exempt large amounts of
6350	 * memory from reclaim. Neither of which are very common, so
6351	 * instead of doing costly eligibility calculations of the
6352	 * entire cgroup subtree up front, we assume the estimates are
6353	 * good, and retry with forcible deactivation if that fails.
6354	 */
6355	if (sc->skipped_deactivate) {
6356		sc->priority = initial_priority;
6357		sc->force_deactivate = 1;
6358		sc->skipped_deactivate = 0;
6359		goto retry;
6360	}
6361
6362	/* Untapped cgroup reserves?  Don't OOM, retry. */
6363	if (sc->memcg_low_skipped) {
6364		sc->priority = initial_priority;
6365		sc->force_deactivate = 0;
6366		sc->memcg_low_reclaim = 1;
6367		sc->memcg_low_skipped = 0;
6368		goto retry;
6369	}
6370
6371	return 0;
6372}
6373
6374static bool allow_direct_reclaim(pg_data_t *pgdat)
6375{
6376	struct zone *zone;
6377	unsigned long pfmemalloc_reserve = 0;
6378	unsigned long free_pages = 0;
6379	int i;
6380	bool wmark_ok;
6381
6382	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6383		return true;
6384
6385	for (i = 0; i <= ZONE_NORMAL; i++) {
6386		zone = &pgdat->node_zones[i];
6387		if (!managed_zone(zone))
6388			continue;
6389
6390		if (!zone_reclaimable_pages(zone))
6391			continue;
6392
6393		pfmemalloc_reserve += min_wmark_pages(zone);
6394		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6395	}
6396
6397	/* If there are no reserves (unexpected config) then do not throttle */
6398	if (!pfmemalloc_reserve)
6399		return true;
6400
6401	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6402
6403	/* kswapd must be awake if processes are being throttled */
6404	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6405		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6406			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6407
6408		wake_up_interruptible(&pgdat->kswapd_wait);
6409	}
6410
6411	return wmark_ok;
6412}
6413
6414/*
6415 * Throttle direct reclaimers if backing storage is backed by the network
6416 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6417 * depleted. kswapd will continue to make progress and wake the processes
6418 * when the low watermark is reached.
6419 *
6420 * Returns true if a fatal signal was delivered during throttling. If this
6421 * happens, the page allocator should not consider triggering the OOM killer.
6422 */
6423static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6424					nodemask_t *nodemask)
6425{
6426	struct zoneref *z;
6427	struct zone *zone;
6428	pg_data_t *pgdat = NULL;
6429
6430	/*
6431	 * Kernel threads should not be throttled as they may be indirectly
6432	 * responsible for cleaning pages necessary for reclaim to make forward
6433	 * progress. kjournald for example may enter direct reclaim while
6434	 * committing a transaction where throttling it could forcing other
6435	 * processes to block on log_wait_commit().
6436	 */
6437	if (current->flags & PF_KTHREAD)
6438		goto out;
6439
6440	/*
6441	 * If a fatal signal is pending, this process should not throttle.
6442	 * It should return quickly so it can exit and free its memory
6443	 */
6444	if (fatal_signal_pending(current))
6445		goto out;
6446
6447	/*
6448	 * Check if the pfmemalloc reserves are ok by finding the first node
6449	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6450	 * GFP_KERNEL will be required for allocating network buffers when
6451	 * swapping over the network so ZONE_HIGHMEM is unusable.
6452	 *
6453	 * Throttling is based on the first usable node and throttled processes
6454	 * wait on a queue until kswapd makes progress and wakes them. There
6455	 * is an affinity then between processes waking up and where reclaim
6456	 * progress has been made assuming the process wakes on the same node.
6457	 * More importantly, processes running on remote nodes will not compete
6458	 * for remote pfmemalloc reserves and processes on different nodes
6459	 * should make reasonable progress.
6460	 */
6461	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6462					gfp_zone(gfp_mask), nodemask) {
6463		if (zone_idx(zone) > ZONE_NORMAL)
6464			continue;
6465
6466		/* Throttle based on the first usable node */
6467		pgdat = zone->zone_pgdat;
6468		if (allow_direct_reclaim(pgdat))
6469			goto out;
6470		break;
6471	}
6472
6473	/* If no zone was usable by the allocation flags then do not throttle */
6474	if (!pgdat)
6475		goto out;
6476
6477	/* Account for the throttling */
6478	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6479
6480	/*
6481	 * If the caller cannot enter the filesystem, it's possible that it
6482	 * is due to the caller holding an FS lock or performing a journal
6483	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6484	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6485	 * blocked waiting on the same lock. Instead, throttle for up to a
6486	 * second before continuing.
6487	 */
6488	if (!(gfp_mask & __GFP_FS))
6489		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6490			allow_direct_reclaim(pgdat), HZ);
6491	else
6492		/* Throttle until kswapd wakes the process */
6493		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6494			allow_direct_reclaim(pgdat));
6495
 
 
 
 
 
 
 
 
6496	if (fatal_signal_pending(current))
6497		return true;
6498
6499out:
6500	return false;
6501}
6502
6503unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6504				gfp_t gfp_mask, nodemask_t *nodemask)
6505{
6506	unsigned long nr_reclaimed;
6507	struct scan_control sc = {
6508		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6509		.gfp_mask = current_gfp_context(gfp_mask),
6510		.reclaim_idx = gfp_zone(gfp_mask),
6511		.order = order,
6512		.nodemask = nodemask,
6513		.priority = DEF_PRIORITY,
6514		.may_writepage = !laptop_mode,
6515		.may_unmap = 1,
6516		.may_swap = 1,
6517	};
6518
6519	/*
6520	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6521	 * Confirm they are large enough for max values.
6522	 */
6523	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6524	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6525	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6526
6527	/*
6528	 * Do not enter reclaim if fatal signal was delivered while throttled.
6529	 * 1 is returned so that the page allocator does not OOM kill at this
6530	 * point.
6531	 */
6532	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6533		return 1;
6534
6535	set_task_reclaim_state(current, &sc.reclaim_state);
6536	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
 
 
6537
6538	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6539
6540	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6541	set_task_reclaim_state(current, NULL);
6542
6543	return nr_reclaimed;
6544}
6545
6546#ifdef CONFIG_MEMCG
6547
6548/* Only used by soft limit reclaim. Do not reuse for anything else. */
6549unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6550						gfp_t gfp_mask, bool noswap,
6551						pg_data_t *pgdat,
6552						unsigned long *nr_scanned)
6553{
6554	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6555	struct scan_control sc = {
6556		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6557		.target_mem_cgroup = memcg,
6558		.may_writepage = !laptop_mode,
6559		.may_unmap = 1,
6560		.reclaim_idx = MAX_NR_ZONES - 1,
6561		.may_swap = !noswap,
6562	};
6563
6564	WARN_ON_ONCE(!current->reclaim_state);
6565
6566	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6567			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6568
6569	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6570						      sc.gfp_mask);
 
 
6571
6572	/*
6573	 * NOTE: Although we can get the priority field, using it
6574	 * here is not a good idea, since it limits the pages we can scan.
6575	 * if we don't reclaim here, the shrink_node from balance_pgdat
6576	 * will pick up pages from other mem cgroup's as well. We hack
6577	 * the priority and make it zero.
6578	 */
6579	shrink_lruvec(lruvec, &sc);
6580
6581	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6582
6583	*nr_scanned = sc.nr_scanned;
6584
6585	return sc.nr_reclaimed;
6586}
6587
6588unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6589					   unsigned long nr_pages,
6590					   gfp_t gfp_mask,
6591					   unsigned int reclaim_options,
6592					   int *swappiness)
6593{
 
6594	unsigned long nr_reclaimed;
 
6595	unsigned int noreclaim_flag;
6596	struct scan_control sc = {
6597		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6598		.proactive_swappiness = swappiness,
6599		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6600				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6601		.reclaim_idx = MAX_NR_ZONES - 1,
6602		.target_mem_cgroup = memcg,
6603		.priority = DEF_PRIORITY,
6604		.may_writepage = !laptop_mode,
6605		.may_unmap = 1,
6606		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6607		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6608	};
 
6609	/*
6610	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6611	 * equal pressure on all the nodes. This is based on the assumption that
6612	 * the reclaim does not bail out early.
6613	 */
6614	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
 
 
 
 
 
6615
6616	set_task_reclaim_state(current, &sc.reclaim_state);
6617	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6618	noreclaim_flag = memalloc_noreclaim_save();
6619
6620	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 
6621
6622	memalloc_noreclaim_restore(noreclaim_flag);
6623	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6624	set_task_reclaim_state(current, NULL);
6625
6626	return nr_reclaimed;
6627}
6628#endif
6629
6630static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 
6631{
6632	struct mem_cgroup *memcg;
6633	struct lruvec *lruvec;
6634
6635	if (lru_gen_enabled()) {
6636		lru_gen_age_node(pgdat, sc);
6637		return;
6638	}
6639
6640	if (!can_age_anon_pages(pgdat, sc))
6641		return;
 
6642
6643	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6644	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6645		return;
6646
6647	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6648	do {
6649		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6650		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6651				   sc, LRU_ACTIVE_ANON);
6652		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6653	} while (memcg);
6654}
6655
6656static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6657{
6658	int i;
6659	struct zone *zone;
6660
6661	/*
6662	 * Check for watermark boosts top-down as the higher zones
6663	 * are more likely to be boosted. Both watermarks and boosts
6664	 * should not be checked at the same time as reclaim would
6665	 * start prematurely when there is no boosting and a lower
6666	 * zone is balanced.
6667	 */
6668	for (i = highest_zoneidx; i >= 0; i--) {
6669		zone = pgdat->node_zones + i;
6670		if (!managed_zone(zone))
6671			continue;
6672
6673		if (zone->watermark_boost)
6674			return true;
6675	}
6676
6677	return false;
6678}
6679
6680/*
6681 * Returns true if there is an eligible zone balanced for the request order
6682 * and highest_zoneidx
6683 */
6684static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6685{
6686	int i;
6687	unsigned long mark = -1;
6688	struct zone *zone;
6689
6690	/*
6691	 * Check watermarks bottom-up as lower zones are more likely to
6692	 * meet watermarks.
6693	 */
6694	for (i = 0; i <= highest_zoneidx; i++) {
6695		zone = pgdat->node_zones + i;
6696
6697		if (!managed_zone(zone))
6698			continue;
6699
6700		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6701			mark = promo_wmark_pages(zone);
6702		else
6703			mark = high_wmark_pages(zone);
6704		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6705			return true;
6706	}
6707
6708	/*
6709	 * If a node has no managed zone within highest_zoneidx, it does not
6710	 * need balancing by definition. This can happen if a zone-restricted
6711	 * allocation tries to wake a remote kswapd.
6712	 */
6713	if (mark == -1)
6714		return true;
6715
6716	return false;
6717}
6718
6719/* Clear pgdat state for congested, dirty or under writeback. */
6720static void clear_pgdat_congested(pg_data_t *pgdat)
6721{
6722	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6723
6724	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6725	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6726	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6727	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6728}
6729
6730/*
6731 * Prepare kswapd for sleeping. This verifies that there are no processes
6732 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6733 *
6734 * Returns true if kswapd is ready to sleep
6735 */
6736static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6737				int highest_zoneidx)
6738{
6739	/*
6740	 * The throttled processes are normally woken up in balance_pgdat() as
6741	 * soon as allow_direct_reclaim() is true. But there is a potential
6742	 * race between when kswapd checks the watermarks and a process gets
6743	 * throttled. There is also a potential race if processes get
6744	 * throttled, kswapd wakes, a large process exits thereby balancing the
6745	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6746	 * the wake up checks. If kswapd is going to sleep, no process should
6747	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6748	 * the wake up is premature, processes will wake kswapd and get
6749	 * throttled again. The difference from wake ups in balance_pgdat() is
6750	 * that here we are under prepare_to_wait().
6751	 */
6752	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6753		wake_up_all(&pgdat->pfmemalloc_wait);
6754
6755	/* Hopeless node, leave it to direct reclaim */
6756	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6757		return true;
6758
6759	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6760		clear_pgdat_congested(pgdat);
6761		return true;
6762	}
6763
6764	return false;
6765}
6766
6767/*
6768 * kswapd shrinks a node of pages that are at or below the highest usable
6769 * zone that is currently unbalanced.
6770 *
6771 * Returns true if kswapd scanned at least the requested number of pages to
6772 * reclaim or if the lack of progress was due to pages under writeback.
6773 * This is used to determine if the scanning priority needs to be raised.
6774 */
6775static bool kswapd_shrink_node(pg_data_t *pgdat,
6776			       struct scan_control *sc)
6777{
6778	struct zone *zone;
6779	int z;
6780	unsigned long nr_reclaimed = sc->nr_reclaimed;
6781
6782	/* Reclaim a number of pages proportional to the number of zones */
6783	sc->nr_to_reclaim = 0;
6784	for (z = 0; z <= sc->reclaim_idx; z++) {
6785		zone = pgdat->node_zones + z;
6786		if (!managed_zone(zone))
6787			continue;
6788
6789		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6790	}
6791
6792	/*
6793	 * Historically care was taken to put equal pressure on all zones but
6794	 * now pressure is applied based on node LRU order.
6795	 */
6796	shrink_node(pgdat, sc);
6797
6798	/*
6799	 * Fragmentation may mean that the system cannot be rebalanced for
6800	 * high-order allocations. If twice the allocation size has been
6801	 * reclaimed then recheck watermarks only at order-0 to prevent
6802	 * excessive reclaim. Assume that a process requested a high-order
6803	 * can direct reclaim/compact.
6804	 */
6805	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6806		sc->order = 0;
6807
6808	/* account for progress from mm_account_reclaimed_pages() */
6809	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6810}
6811
6812/* Page allocator PCP high watermark is lowered if reclaim is active. */
6813static inline void
6814update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6815{
6816	int i;
6817	struct zone *zone;
6818
6819	for (i = 0; i <= highest_zoneidx; i++) {
6820		zone = pgdat->node_zones + i;
6821
6822		if (!managed_zone(zone))
6823			continue;
6824
6825		if (active)
6826			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6827		else
6828			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6829	}
6830}
6831
6832static inline void
6833set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6834{
6835	update_reclaim_active(pgdat, highest_zoneidx, true);
6836}
6837
6838static inline void
6839clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6840{
6841	update_reclaim_active(pgdat, highest_zoneidx, false);
6842}
6843
6844/*
6845 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6846 * that are eligible for use by the caller until at least one zone is
6847 * balanced.
6848 *
6849 * Returns the order kswapd finished reclaiming at.
6850 *
6851 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6852 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6853 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6854 * or lower is eligible for reclaim until at least one usable zone is
6855 * balanced.
6856 */
6857static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6858{
6859	int i;
6860	unsigned long nr_soft_reclaimed;
6861	unsigned long nr_soft_scanned;
6862	unsigned long pflags;
6863	unsigned long nr_boost_reclaim;
6864	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6865	bool boosted;
6866	struct zone *zone;
6867	struct scan_control sc = {
6868		.gfp_mask = GFP_KERNEL,
6869		.order = order,
 
 
6870		.may_unmap = 1,
 
6871	};
6872
6873	set_task_reclaim_state(current, &sc.reclaim_state);
6874	psi_memstall_enter(&pflags);
6875	__fs_reclaim_acquire(_THIS_IP_);
6876
6877	count_vm_event(PAGEOUTRUN);
6878
6879	/*
6880	 * Account for the reclaim boost. Note that the zone boost is left in
6881	 * place so that parallel allocations that are near the watermark will
6882	 * stall or direct reclaim until kswapd is finished.
6883	 */
6884	nr_boost_reclaim = 0;
6885	for (i = 0; i <= highest_zoneidx; i++) {
6886		zone = pgdat->node_zones + i;
6887		if (!managed_zone(zone))
6888			continue;
6889
6890		nr_boost_reclaim += zone->watermark_boost;
6891		zone_boosts[i] = zone->watermark_boost;
6892	}
6893	boosted = nr_boost_reclaim;
6894
6895restart:
6896	set_reclaim_active(pgdat, highest_zoneidx);
6897	sc.priority = DEF_PRIORITY;
6898	do {
6899		unsigned long nr_reclaimed = sc.nr_reclaimed;
6900		bool raise_priority = true;
6901		bool balanced;
6902		bool ret;
6903		bool was_frozen;
6904
6905		sc.reclaim_idx = highest_zoneidx;
6906
6907		/*
6908		 * If the number of buffer_heads exceeds the maximum allowed
6909		 * then consider reclaiming from all zones. This has a dual
6910		 * purpose -- on 64-bit systems it is expected that
6911		 * buffer_heads are stripped during active rotation. On 32-bit
6912		 * systems, highmem pages can pin lowmem memory and shrinking
6913		 * buffers can relieve lowmem pressure. Reclaim may still not
6914		 * go ahead if all eligible zones for the original allocation
6915		 * request are balanced to avoid excessive reclaim from kswapd.
6916		 */
6917		if (buffer_heads_over_limit) {
6918			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6919				zone = pgdat->node_zones + i;
6920				if (!managed_zone(zone))
6921					continue;
6922
6923				sc.reclaim_idx = i;
6924				break;
6925			}
6926		}
6927
6928		/*
6929		 * If the pgdat is imbalanced then ignore boosting and preserve
6930		 * the watermarks for a later time and restart. Note that the
6931		 * zone watermarks will be still reset at the end of balancing
6932		 * on the grounds that the normal reclaim should be enough to
6933		 * re-evaluate if boosting is required when kswapd next wakes.
6934		 */
6935		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6936		if (!balanced && nr_boost_reclaim) {
6937			nr_boost_reclaim = 0;
6938			goto restart;
6939		}
6940
6941		/*
6942		 * If boosting is not active then only reclaim if there are no
6943		 * eligible zones. Note that sc.reclaim_idx is not used as
6944		 * buffer_heads_over_limit may have adjusted it.
6945		 */
6946		if (!nr_boost_reclaim && balanced)
6947			goto out;
6948
6949		/* Limit the priority of boosting to avoid reclaim writeback */
6950		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6951			raise_priority = false;
6952
6953		/*
6954		 * Do not writeback or swap pages for boosted reclaim. The
6955		 * intent is to relieve pressure not issue sub-optimal IO
6956		 * from reclaim context. If no pages are reclaimed, the
6957		 * reclaim will be aborted.
6958		 */
6959		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6960		sc.may_swap = !nr_boost_reclaim;
6961
6962		/*
6963		 * Do some background aging, to give pages a chance to be
6964		 * referenced before reclaiming. All pages are rotated
6965		 * regardless of classzone as this is about consistent aging.
6966		 */
6967		kswapd_age_node(pgdat, &sc);
6968
6969		/*
6970		 * If we're getting trouble reclaiming, start doing writepage
6971		 * even in laptop mode.
6972		 */
6973		if (sc.priority < DEF_PRIORITY - 2)
6974			sc.may_writepage = 1;
6975
6976		/* Call soft limit reclaim before calling shrink_node. */
6977		sc.nr_scanned = 0;
6978		nr_soft_scanned = 0;
6979		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6980							      sc.gfp_mask, &nr_soft_scanned);
6981		sc.nr_reclaimed += nr_soft_reclaimed;
6982
6983		/*
6984		 * There should be no need to raise the scanning priority if
6985		 * enough pages are already being scanned that that high
6986		 * watermark would be met at 100% efficiency.
6987		 */
6988		if (kswapd_shrink_node(pgdat, &sc))
6989			raise_priority = false;
6990
6991		/*
6992		 * If the low watermark is met there is no need for processes
6993		 * to be throttled on pfmemalloc_wait as they should not be
6994		 * able to safely make forward progress. Wake them
6995		 */
6996		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6997				allow_direct_reclaim(pgdat))
6998			wake_up_all(&pgdat->pfmemalloc_wait);
6999
7000		/* Check if kswapd should be suspending */
7001		__fs_reclaim_release(_THIS_IP_);
7002		ret = kthread_freezable_should_stop(&was_frozen);
7003		__fs_reclaim_acquire(_THIS_IP_);
7004		if (was_frozen || ret)
7005			break;
7006
7007		/*
7008		 * Raise priority if scanning rate is too low or there was no
7009		 * progress in reclaiming pages
7010		 */
7011		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7012		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7013
7014		/*
7015		 * If reclaim made no progress for a boost, stop reclaim as
7016		 * IO cannot be queued and it could be an infinite loop in
7017		 * extreme circumstances.
7018		 */
7019		if (nr_boost_reclaim && !nr_reclaimed)
7020			break;
7021
7022		if (raise_priority || !nr_reclaimed)
7023			sc.priority--;
7024	} while (sc.priority >= 1);
7025
7026	/*
7027	 * Restart only if it went through the priority loop all the way,
7028	 * but cache_trim_mode didn't work.
7029	 */
7030	if (!sc.nr_reclaimed && sc.priority < 1 &&
7031	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7032		sc.no_cache_trim_mode = 1;
7033		goto restart;
7034	}
7035
7036	if (!sc.nr_reclaimed)
7037		pgdat->kswapd_failures++;
7038
7039out:
7040	clear_reclaim_active(pgdat, highest_zoneidx);
7041
7042	/* If reclaim was boosted, account for the reclaim done in this pass */
7043	if (boosted) {
7044		unsigned long flags;
7045
7046		for (i = 0; i <= highest_zoneidx; i++) {
7047			if (!zone_boosts[i])
7048				continue;
7049
7050			/* Increments are under the zone lock */
7051			zone = pgdat->node_zones + i;
7052			spin_lock_irqsave(&zone->lock, flags);
7053			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7054			spin_unlock_irqrestore(&zone->lock, flags);
7055		}
7056
7057		/*
7058		 * As there is now likely space, wakeup kcompact to defragment
7059		 * pageblocks.
7060		 */
7061		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7062	}
7063
7064	snapshot_refaults(NULL, pgdat);
7065	__fs_reclaim_release(_THIS_IP_);
7066	psi_memstall_leave(&pflags);
7067	set_task_reclaim_state(current, NULL);
7068
7069	/*
7070	 * Return the order kswapd stopped reclaiming at as
7071	 * prepare_kswapd_sleep() takes it into account. If another caller
7072	 * entered the allocator slow path while kswapd was awake, order will
7073	 * remain at the higher level.
7074	 */
7075	return sc.order;
7076}
7077
7078/*
7079 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7080 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7081 * not a valid index then either kswapd runs for first time or kswapd couldn't
7082 * sleep after previous reclaim attempt (node is still unbalanced). In that
7083 * case return the zone index of the previous kswapd reclaim cycle.
7084 */
7085static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7086					   enum zone_type prev_highest_zoneidx)
7087{
7088	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
 
7089
7090	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7091}
7092
7093static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7094				unsigned int highest_zoneidx)
7095{
7096	long remaining = 0;
7097	DEFINE_WAIT(wait);
7098
7099	if (freezing(current) || kthread_should_stop())
7100		return;
7101
7102	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7103
7104	/*
7105	 * Try to sleep for a short interval. Note that kcompactd will only be
7106	 * woken if it is possible to sleep for a short interval. This is
7107	 * deliberate on the assumption that if reclaim cannot keep an
7108	 * eligible zone balanced that it's also unlikely that compaction will
7109	 * succeed.
7110	 */
7111	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7112		/*
7113		 * Compaction records what page blocks it recently failed to
7114		 * isolate pages from and skips them in the future scanning.
7115		 * When kswapd is going to sleep, it is reasonable to assume
7116		 * that pages and compaction may succeed so reset the cache.
7117		 */
7118		reset_isolation_suitable(pgdat);
7119
7120		/*
7121		 * We have freed the memory, now we should compact it to make
7122		 * allocation of the requested order possible.
7123		 */
7124		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7125
7126		remaining = schedule_timeout(HZ/10);
7127
7128		/*
7129		 * If woken prematurely then reset kswapd_highest_zoneidx and
7130		 * order. The values will either be from a wakeup request or
7131		 * the previous request that slept prematurely.
7132		 */
7133		if (remaining) {
7134			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7135					kswapd_highest_zoneidx(pgdat,
7136							highest_zoneidx));
7137
7138			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7139				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7140		}
7141
7142		finish_wait(&pgdat->kswapd_wait, &wait);
7143		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7144	}
7145
7146	/*
7147	 * After a short sleep, check if it was a premature sleep. If not, then
7148	 * go fully to sleep until explicitly woken up.
7149	 */
7150	if (!remaining &&
7151	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7152		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7153
7154		/*
7155		 * vmstat counters are not perfectly accurate and the estimated
7156		 * value for counters such as NR_FREE_PAGES can deviate from the
7157		 * true value by nr_online_cpus * threshold. To avoid the zone
7158		 * watermarks being breached while under pressure, we reduce the
7159		 * per-cpu vmstat threshold while kswapd is awake and restore
7160		 * them before going back to sleep.
7161		 */
7162		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7163
7164		if (!kthread_should_stop())
7165			schedule();
7166
7167		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7168	} else {
7169		if (remaining)
7170			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7171		else
7172			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7173	}
7174	finish_wait(&pgdat->kswapd_wait, &wait);
7175}
7176
7177/*
7178 * The background pageout daemon, started as a kernel thread
7179 * from the init process.
7180 *
7181 * This basically trickles out pages so that we have _some_
7182 * free memory available even if there is no other activity
7183 * that frees anything up. This is needed for things like routing
7184 * etc, where we otherwise might have all activity going on in
7185 * asynchronous contexts that cannot page things out.
7186 *
7187 * If there are applications that are active memory-allocators
7188 * (most normal use), this basically shouldn't matter.
7189 */
7190static int kswapd(void *p)
7191{
7192	unsigned int alloc_order, reclaim_order;
7193	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7194	pg_data_t *pgdat = (pg_data_t *)p;
7195	struct task_struct *tsk = current;
 
 
 
 
7196	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7197
7198	if (!cpumask_empty(cpumask))
7199		set_cpus_allowed_ptr(tsk, cpumask);
 
7200
7201	/*
7202	 * Tell the memory management that we're a "memory allocator",
7203	 * and that if we need more memory we should get access to it
7204	 * regardless (see "__alloc_pages()"). "kswapd" should
7205	 * never get caught in the normal page freeing logic.
7206	 *
7207	 * (Kswapd normally doesn't need memory anyway, but sometimes
7208	 * you need a small amount of memory in order to be able to
7209	 * page out something else, and this flag essentially protects
7210	 * us from recursively trying to free more memory as we're
7211	 * trying to free the first piece of memory in the first place).
7212	 */
7213	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7214	set_freezable();
7215
7216	WRITE_ONCE(pgdat->kswapd_order, 0);
7217	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7218	atomic_set(&pgdat->nr_writeback_throttled, 0);
7219	for ( ; ; ) {
7220		bool was_frozen;
7221
7222		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7223		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7224							highest_zoneidx);
7225
7226kswapd_try_sleep:
7227		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7228					highest_zoneidx);
7229
7230		/* Read the new order and highest_zoneidx */
7231		alloc_order = READ_ONCE(pgdat->kswapd_order);
7232		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7233							highest_zoneidx);
7234		WRITE_ONCE(pgdat->kswapd_order, 0);
7235		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7236
7237		if (kthread_freezable_should_stop(&was_frozen))
 
7238			break;
7239
7240		/*
7241		 * We can speed up thawing tasks if we don't call balance_pgdat
7242		 * after returning from the refrigerator
7243		 */
7244		if (was_frozen)
7245			continue;
7246
7247		/*
7248		 * Reclaim begins at the requested order but if a high-order
7249		 * reclaim fails then kswapd falls back to reclaiming for
7250		 * order-0. If that happens, kswapd will consider sleeping
7251		 * for the order it finished reclaiming at (reclaim_order)
7252		 * but kcompactd is woken to compact for the original
7253		 * request (alloc_order).
7254		 */
7255		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7256						alloc_order);
7257		reclaim_order = balance_pgdat(pgdat, alloc_order,
7258						highest_zoneidx);
 
7259		if (reclaim_order < alloc_order)
7260			goto kswapd_try_sleep;
7261	}
7262
7263	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
 
7264
7265	return 0;
7266}
7267
7268/*
7269 * A zone is low on free memory or too fragmented for high-order memory.  If
7270 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7271 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7272 * has failed or is not needed, still wake up kcompactd if only compaction is
7273 * needed.
7274 */
7275void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7276		   enum zone_type highest_zoneidx)
7277{
7278	pg_data_t *pgdat;
7279	enum zone_type curr_idx;
7280
7281	if (!managed_zone(zone))
7282		return;
7283
7284	if (!cpuset_zone_allowed(zone, gfp_flags))
7285		return;
7286
7287	pgdat = zone->zone_pgdat;
7288	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7289
7290	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7291		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7292
7293	if (READ_ONCE(pgdat->kswapd_order) < order)
7294		WRITE_ONCE(pgdat->kswapd_order, order);
7295
7296	if (!waitqueue_active(&pgdat->kswapd_wait))
7297		return;
7298
7299	/* Hopeless node, leave it to direct reclaim if possible */
7300	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7301	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7302	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7303		/*
7304		 * There may be plenty of free memory available, but it's too
7305		 * fragmented for high-order allocations.  Wake up kcompactd
7306		 * and rely on compaction_suitable() to determine if it's
7307		 * needed.  If it fails, it will defer subsequent attempts to
7308		 * ratelimit its work.
7309		 */
7310		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7311			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7312		return;
7313	}
7314
7315	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7316				      gfp_flags);
7317	wake_up_interruptible(&pgdat->kswapd_wait);
7318}
7319
7320#ifdef CONFIG_HIBERNATION
7321/*
7322 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7323 * freed pages.
7324 *
7325 * Rather than trying to age LRUs the aim is to preserve the overall
7326 * LRU order by reclaiming preferentially
7327 * inactive > active > active referenced > active mapped
7328 */
7329unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7330{
 
7331	struct scan_control sc = {
7332		.nr_to_reclaim = nr_to_reclaim,
7333		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7334		.reclaim_idx = MAX_NR_ZONES - 1,
7335		.priority = DEF_PRIORITY,
7336		.may_writepage = 1,
7337		.may_unmap = 1,
7338		.may_swap = 1,
7339		.hibernation_mode = 1,
7340	};
7341	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
7342	unsigned long nr_reclaimed;
7343	unsigned int noreclaim_flag;
7344
 
7345	fs_reclaim_acquire(sc.gfp_mask);
7346	noreclaim_flag = memalloc_noreclaim_save();
7347	set_task_reclaim_state(current, &sc.reclaim_state);
7348
7349	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7350
7351	set_task_reclaim_state(current, NULL);
 
7352	memalloc_noreclaim_restore(noreclaim_flag);
7353	fs_reclaim_release(sc.gfp_mask);
7354
7355	return nr_reclaimed;
7356}
7357#endif /* CONFIG_HIBERNATION */
7358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7359/*
7360 * This kswapd start function will be called by init and node-hot-add.
 
7361 */
7362void __meminit kswapd_run(int nid)
7363{
7364	pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
7365
7366	pgdat_kswapd_lock(pgdat);
7367	if (!pgdat->kswapd) {
7368		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7369		if (IS_ERR(pgdat->kswapd)) {
7370			/* failure at boot is fatal */
7371			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7372				   nid, PTR_ERR(pgdat->kswapd));
7373			BUG_ON(system_state < SYSTEM_RUNNING);
7374			pgdat->kswapd = NULL;
7375		}
7376	}
7377	pgdat_kswapd_unlock(pgdat);
7378}
7379
7380/*
7381 * Called by memory hotplug when all memory in a node is offlined.  Caller must
7382 * be holding mem_hotplug_begin/done().
7383 */
7384void __meminit kswapd_stop(int nid)
7385{
7386	pg_data_t *pgdat = NODE_DATA(nid);
7387	struct task_struct *kswapd;
7388
7389	pgdat_kswapd_lock(pgdat);
7390	kswapd = pgdat->kswapd;
7391	if (kswapd) {
7392		kthread_stop(kswapd);
7393		pgdat->kswapd = NULL;
7394	}
7395	pgdat_kswapd_unlock(pgdat);
7396}
7397
7398static int __init kswapd_init(void)
7399{
7400	int nid;
7401
7402	swap_setup();
7403	for_each_node_state(nid, N_MEMORY)
7404 		kswapd_run(nid);
 
 
 
 
7405	return 0;
7406}
7407
7408module_init(kswapd_init)
7409
7410#ifdef CONFIG_NUMA
7411/*
7412 * Node reclaim mode
7413 *
7414 * If non-zero call node_reclaim when the number of free pages falls below
7415 * the watermarks.
7416 */
7417int node_reclaim_mode __read_mostly;
7418
 
 
 
 
 
7419/*
7420 * Priority for NODE_RECLAIM. This determines the fraction of pages
7421 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7422 * a zone.
7423 */
7424#define NODE_RECLAIM_PRIORITY 4
7425
7426/*
7427 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7428 * occur.
7429 */
7430int sysctl_min_unmapped_ratio = 1;
7431
7432/*
7433 * If the number of slab pages in a zone grows beyond this percentage then
7434 * slab reclaim needs to occur.
7435 */
7436int sysctl_min_slab_ratio = 5;
7437
7438static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7439{
7440	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7441	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7442		node_page_state(pgdat, NR_ACTIVE_FILE);
7443
7444	/*
7445	 * It's possible for there to be more file mapped pages than
7446	 * accounted for by the pages on the file LRU lists because
7447	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7448	 */
7449	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7450}
7451
7452/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7453static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7454{
7455	unsigned long nr_pagecache_reclaimable;
7456	unsigned long delta = 0;
7457
7458	/*
7459	 * If RECLAIM_UNMAP is set, then all file pages are considered
7460	 * potentially reclaimable. Otherwise, we have to worry about
7461	 * pages like swapcache and node_unmapped_file_pages() provides
7462	 * a better estimate
7463	 */
7464	if (node_reclaim_mode & RECLAIM_UNMAP)
7465		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7466	else
7467		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7468
7469	/* If we can't clean pages, remove dirty pages from consideration */
7470	if (!(node_reclaim_mode & RECLAIM_WRITE))
7471		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7472
7473	/* Watch for any possible underflows due to delta */
7474	if (unlikely(delta > nr_pagecache_reclaimable))
7475		delta = nr_pagecache_reclaimable;
7476
7477	return nr_pagecache_reclaimable - delta;
7478}
7479
7480/*
7481 * Try to free up some pages from this node through reclaim.
7482 */
7483static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7484{
7485	/* Minimum pages needed in order to stay on node */
7486	const unsigned long nr_pages = 1 << order;
7487	struct task_struct *p = current;
 
7488	unsigned int noreclaim_flag;
7489	struct scan_control sc = {
7490		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7491		.gfp_mask = current_gfp_context(gfp_mask),
7492		.order = order,
7493		.priority = NODE_RECLAIM_PRIORITY,
7494		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7495		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7496		.may_swap = 1,
7497		.reclaim_idx = gfp_zone(gfp_mask),
7498	};
7499	unsigned long pflags;
7500
7501	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7502					   sc.gfp_mask);
7503
7504	cond_resched();
7505	psi_memstall_enter(&pflags);
7506	delayacct_freepages_start();
7507	fs_reclaim_acquire(sc.gfp_mask);
7508	/*
7509	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
 
 
7510	 */
7511	noreclaim_flag = memalloc_noreclaim_save();
7512	set_task_reclaim_state(p, &sc.reclaim_state);
 
 
 
7513
7514	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7515	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7516		/*
7517		 * Free memory by calling shrink node with increasing
7518		 * priorities until we have enough memory freed.
7519		 */
7520		do {
7521			shrink_node(pgdat, &sc);
7522		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7523	}
7524
7525	set_task_reclaim_state(p, NULL);
 
 
7526	memalloc_noreclaim_restore(noreclaim_flag);
7527	fs_reclaim_release(sc.gfp_mask);
7528	psi_memstall_leave(&pflags);
7529	delayacct_freepages_end();
7530
7531	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7532
7533	return sc.nr_reclaimed >= nr_pages;
7534}
7535
7536int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7537{
7538	int ret;
7539
7540	/*
7541	 * Node reclaim reclaims unmapped file backed pages and
7542	 * slab pages if we are over the defined limits.
7543	 *
7544	 * A small portion of unmapped file backed pages is needed for
7545	 * file I/O otherwise pages read by file I/O will be immediately
7546	 * thrown out if the node is overallocated. So we do not reclaim
7547	 * if less than a specified percentage of the node is used by
7548	 * unmapped file backed pages.
7549	 */
7550	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7551	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7552	    pgdat->min_slab_pages)
7553		return NODE_RECLAIM_FULL;
7554
7555	/*
7556	 * Do not scan if the allocation should not be delayed.
7557	 */
7558	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7559		return NODE_RECLAIM_NOSCAN;
7560
7561	/*
7562	 * Only run node reclaim on the local node or on nodes that do not
7563	 * have associated processors. This will favor the local processor
7564	 * over remote processors and spread off node memory allocations
7565	 * as wide as possible.
7566	 */
7567	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7568		return NODE_RECLAIM_NOSCAN;
7569
7570	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7571		return NODE_RECLAIM_NOSCAN;
7572
7573	ret = __node_reclaim(pgdat, gfp_mask, order);
7574	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7575
7576	if (ret)
7577		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7578	else
7579		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7580
7581	return ret;
7582}
7583#endif
7584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7585/**
7586 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7587 * lru list
7588 * @fbatch: Batch of lru folios to check.
7589 *
7590 * Checks folios for evictability, if an evictable folio is in the unevictable
7591 * lru list, moves it to the appropriate evictable lru list. This function
7592 * should be only used for lru folios.
7593 */
7594void check_move_unevictable_folios(struct folio_batch *fbatch)
7595{
7596	struct lruvec *lruvec = NULL;
 
7597	int pgscanned = 0;
7598	int pgrescued = 0;
7599	int i;
7600
7601	for (i = 0; i < fbatch->nr; i++) {
7602		struct folio *folio = fbatch->folios[i];
7603		int nr_pages = folio_nr_pages(folio);
7604
7605		pgscanned += nr_pages;
 
 
 
 
 
 
 
7606
7607		/* block memcg migration while the folio moves between lrus */
7608		if (!folio_test_clear_lru(folio))
7609			continue;
7610
7611		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7612		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7613			lruvec_del_folio(lruvec, folio);
7614			folio_clear_unevictable(folio);
7615			lruvec_add_folio(lruvec, folio);
7616			pgrescued += nr_pages;
 
 
7617		}
7618		folio_set_lru(folio);
7619	}
7620
7621	if (lruvec) {
7622		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7623		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7624		unlock_page_lruvec_irq(lruvec);
7625	} else if (pgscanned) {
7626		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7627	}
7628}
7629EXPORT_SYMBOL_GPL(check_move_unevictable_folios);