Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
 
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
 
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119	[N_MEMORY] = { { [0] = 1UL } },
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303		return true;
 304
 305	return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 316	/* Always populate low zones for address-constrained allocations */
 317	if (zone_end < pgdat_end_pfn(pgdat))
 318		return true;
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 327}
 328#else
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 
 
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 
 
 
 
 
 
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566	__free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 583	atomic_set(compound_mapcount_ptr(page), -1);
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 609
 610	return true;
 
 
 
 
 
 
 
 
 
 
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 
 
 
 
 
 
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 670{
 671	struct page_ext *page_ext;
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 704}
 705
 706/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 723{
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 729
 
 
 730		return 1;
 731	}
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 743
 744		return 1;
 745	}
 746	return 0;
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 
 781	struct page *buddy;
 782	unsigned int max_order;
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 
 
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 872out:
 873	zone->free_area[order].nr_free++;
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 991
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
1033	arch_free_page(page, order);
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049	return false;
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
1053{
1054	return free_pages_prepare(page, 0, false);
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
 
1092
1093	while (count) {
 
1094		struct list_head *list;
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
1114		do {
1115			page = list_last_entry(list, struct page, lru);
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
1123			list_add_tail(&page->lru, &head);
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
1137	}
1138
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
 
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
1165	spin_lock(&zone->lock);
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
 
 
 
 
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
 
 
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
1238		}
1239	}
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
 
 
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
 
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
 
 
 
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513	unsigned long nr_pages = 0;
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
1665	}
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
 
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
 
 
 
 
 
 
1809			continue;
1810
 
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
1867{
1868	return false;
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
 
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
1894	}
1895
1896	return false;
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
1909	set_page_owner(page, order, gfp_flags);
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
 
 
 
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
 
 
 
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
 
 
 
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
 
 
 
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
 
 
 
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2371{
2372	struct free_area *area;
2373	int current_order;
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
 
 
 
 
 
 
 
2405
2406	return false;
 
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2443{
2444	struct page *page;
2445
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
2453			goto retry;
 
 
 
 
 
 
 
 
 
 
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
2470
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
 
 
 
 
 
 
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
 
 
2527	local_irq_restore(flags);
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
2550	local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
 
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
 
 
 
 
 
 
 
 
 
 
 
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
 
 
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2732{
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
2744{
2745	struct zone *zone = page_zone(page);
2746	struct per_cpu_pages *pcp;
 
2747	int migratetype;
 
 
 
 
2748
2749	migratetype = get_pcppage_migratetype(page);
 
 
 
 
2750	__count_vm_event(PGFREE);
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
 
 
 
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
2782	unsigned long pfn = page_to_pfn(page);
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
2799	int batch_count = 0;
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
2806		set_page_private(page, pfn);
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
2823			batch_count = 0;
2824			local_irq_save(flags);
2825		}
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
 
 
 
 
 
 
 
 
 
2844
2845	for (i = 1; i < (1 << order); i++)
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
2852{
 
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
 
 
 
 
 
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
 
2932	struct page *page;
 
2933
2934	do {
 
 
 
 
 
 
 
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
 
 
 
 
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2975 */
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004		}
 
 
 
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
 
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
 
 
 
 
 
 
 
 
 
 
 
 
 
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
 
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
 
 
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
 
 
 
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3217		return true;
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
 
 
 
 
 
 
 
3233}
3234
3235#ifdef CONFIG_NUMA
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
 
 
 
 
 
 
 
 
3240}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241#else	/* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
3248/*
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
 
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
 
 
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
 
3259
 
 
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
 
 
 
 
 
 
 
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
 
 
 
 
 
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
 
 
 
 
 
 
 
 
 
 
 
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
3305			int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
3369	return NULL;
 
 
 
 
 
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
 
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
 
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
 
 
 
 
3428
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
 
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
 
 
 
 
 
 
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
 
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
 
 
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3526		*did_some_progress = 1;
3527
 
 
 
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
 
 
 
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534					ALLOC_NO_WATERMARKS, ac);
3535	}
 
 
 
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
 
 
 
3553{
3554	struct page *page;
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
3560	noreclaim_flag = memalloc_noreclaim_save();
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
3563	memalloc_noreclaim_restore(noreclaim_flag);
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
3566		return NULL;
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
 
 
 
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
 
3779{
3780	struct page *page = NULL;
3781	bool drained = false;
3782
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
 
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
 
 
 
 
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
3851
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
 
 
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
 
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
 
 
 
 
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
 
 
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
4124
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
4147		}
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
 
 
 
 
 
 
 
 
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
 
 
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
4248
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
 
 
 
 
 
 
 
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
 
 
 
 
 
 
 
 
 
 
 
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
 
 
 
 
 
 
 
 
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
 
 
 
 
 
 
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
 
4292got_pg:
 
 
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
 
4355
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359		return NULL;
4360
4361	finalise_ac(gfp_mask, order, &ac);
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
 
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
 
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
4391	}
4392
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4394
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
4398
4399/*
4400 * Common helper functions.
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
4539	}
4540
4541	nc->pagecnt_bias--;
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
 
 
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
 
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
 
 
 
 
 
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
 
 
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 
 
 
 
 
 
 
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
4887		global_zone_page_state(NR_BOUNCE),
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
 
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
 
 
 
 
 
 
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
 
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
 
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
 
 
 
 
 
 
 
4989			K(zone_page_state(zone, NR_PAGETABLE)),
 
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
 
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
 
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
 
5067	return nr_zones;
5068}
5069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
 
 
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
 
 
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
 
 
 
 
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
 
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
 
 
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
 
 
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 
 
 
 
 
 
 
 
 
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
 
 
 
 
 
 
 
 
 
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
5262}
5263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
 
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
 
 
 
 
 
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
 
 
 
 
 
 
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 
 
 
 
 
 
5343
5344static void __build_all_zonelists(void *data)
 
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
 
 
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
 
 
 
 
 
 
 
 
 
 
 
 
 
5412}
5413
5414/*
 
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
 
 
5424	} else {
5425		__build_all_zonelists(pgdat);
 
 
 
 
 
 
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
 
 
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
 
 
 
 
 
 
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
 
5458{
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
 
 
5470
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
 
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
 
 
 
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
 
 
 
 
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
 
 
 
 
5510				continue;
5511			}
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
 
 
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
 
 
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
5539		}
 
 
 
 
 
5540	}
5541}
5542
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555#endif
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
 
 
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
 
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
 
 
 
 
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
 
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
 
 
 
 
 
 
 
 
5711
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
5723	 */
5724	zone->pageset = &boot_pageset;
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
 
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
5737
 
 
 
5738	pgdat->nr_zones = zone_idx(zone) + 1;
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
 
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 
 
 
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
 
 
 
 
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
 
 
 
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
 
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
 
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
 
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
 
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
 
 
 
 
 
 
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
 
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
 
 
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
 
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
 
 
 
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
 
6282		zone_seqlock_init(zone);
6283		zone_pcp_init(zone);
6284
 
 
 
 
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
 
 
6291		memmap_init(size, nid, j, zone_start_pfn);
 
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
6303		return;
6304
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
 
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6321		pgdat->node_mem_map = map + offset;
 
 
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
 
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6352
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
 
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
 
6432	nr_node_ids = highest + 1;
6433}
 
 
 
 
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
 
6498		return 0;
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
 
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
 
6767}
6768
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
 
 
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
 
7037{
 
7038
7039	lru_add_drain_cpu(cpu);
7040	drain_pages(cpu);
 
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
7058	return 0;
 
7059}
7060
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
 
 
 
 
 
 
 
 
 
 
7104		}
7105	}
 
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
 
 
 
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
7203
 
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
 
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
 
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
 
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
 
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
 
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
 
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
 
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
 
 
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
 
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
7615		return false;
 
 
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
7626		if (PageReserved(page))
7627			goto unmovable;
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
7656			continue;
7657
7658		if (__PageMovable(page))
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
 
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
7721
 
 
 
 
 
 
 
 
 
 
 
 
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
7731
7732	migrate_prep();
 
 
 
 
 
 
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
 
 
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
 
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7759	}
7760	if (ret < 0) {
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7763	}
7764	return 0;
 
 
 
 
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
 
 
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
 
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
7835
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
 
 
 
 
 
 
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
7922{
7923	unsigned int count = 0;
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
 
 
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
 
8027bool is_free_buddy_page(struct page *page)
8028{
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
8039			break;
8040	}
8041	spin_unlock_irqrestore(&zone->lock, flags);
8042
8043	return order < MAX_ORDER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8044}
v3.5.6
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
 
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/memory.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/memcontrol.h>
  59#include <linux/prefetch.h>
 
  60#include <linux/migrate.h>
  61#include <linux/page-debug-flags.h>
 
 
 
 
 
 
 
 
  62
 
  63#include <asm/tlbflush.h>
  64#include <asm/div64.h>
  65#include "internal.h"
  66
 
 
 
 
  67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  68DEFINE_PER_CPU(int, numa_node);
  69EXPORT_PER_CPU_SYMBOL(numa_node);
  70#endif
  71
 
 
  72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  73/*
  74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  77 * defined in <linux/topology.h>.
  78 */
  79DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 
 
 
 
 
 
 
 
 
  81#endif
  82
  83/*
  84 * Array of node states.
  85 */
  86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  87	[N_POSSIBLE] = NODE_MASK_ALL,
  88	[N_ONLINE] = { { [0] = 1UL } },
  89#ifndef CONFIG_NUMA
  90	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
  91#ifdef CONFIG_HIGHMEM
  92	[N_HIGH_MEMORY] = { { [0] = 1UL } },
  93#endif
 
  94	[N_CPU] = { { [0] = 1UL } },
  95#endif	/* NUMA */
  96};
  97EXPORT_SYMBOL(node_states);
  98
 
 
 
  99unsigned long totalram_pages __read_mostly;
 100unsigned long totalreserve_pages __read_mostly;
 
 
 
 
 
 101/*
 102 * When calculating the number of globally allowed dirty pages, there
 103 * is a certain number of per-zone reserves that should not be
 104 * considered dirtyable memory.  This is the sum of those reserves
 105 * over all existing zones that contribute dirtyable memory.
 
 
 106 */
 107unsigned long dirty_balance_reserve __read_mostly;
 
 
 
 108
 109int percpu_pagelist_fraction;
 110gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 111
 112#ifdef CONFIG_PM_SLEEP
 113/*
 114 * The following functions are used by the suspend/hibernate code to temporarily
 115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 116 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 119 * guaranteed not to run in parallel with that modification).
 120 */
 121
 122static gfp_t saved_gfp_mask;
 123
 124void pm_restore_gfp_mask(void)
 125{
 126	WARN_ON(!mutex_is_locked(&pm_mutex));
 127	if (saved_gfp_mask) {
 128		gfp_allowed_mask = saved_gfp_mask;
 129		saved_gfp_mask = 0;
 130	}
 131}
 132
 133void pm_restrict_gfp_mask(void)
 134{
 135	WARN_ON(!mutex_is_locked(&pm_mutex));
 136	WARN_ON(saved_gfp_mask);
 137	saved_gfp_mask = gfp_allowed_mask;
 138	gfp_allowed_mask &= ~GFP_IOFS;
 139}
 140
 141bool pm_suspended_storage(void)
 142{
 143	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
 144		return false;
 145	return true;
 146}
 147#endif /* CONFIG_PM_SLEEP */
 148
 149#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 150int pageblock_order __read_mostly;
 151#endif
 152
 153static void __free_pages_ok(struct page *page, unsigned int order);
 154
 155/*
 156 * results with 256, 32 in the lowmem_reserve sysctl:
 157 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 158 *	1G machine -> (16M dma, 784M normal, 224M high)
 159 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 160 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 161 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 162 *
 163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 164 * don't need any ZONE_NORMAL reservation
 165 */
 166int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 167#ifdef CONFIG_ZONE_DMA
 168	 256,
 169#endif
 170#ifdef CONFIG_ZONE_DMA32
 171	 256,
 172#endif
 
 173#ifdef CONFIG_HIGHMEM
 174	 32,
 175#endif
 176	 32,
 177};
 178
 179EXPORT_SYMBOL(totalram_pages);
 180
 181static char * const zone_names[MAX_NR_ZONES] = {
 182#ifdef CONFIG_ZONE_DMA
 183	 "DMA",
 184#endif
 185#ifdef CONFIG_ZONE_DMA32
 186	 "DMA32",
 187#endif
 188	 "Normal",
 189#ifdef CONFIG_HIGHMEM
 190	 "HighMem",
 191#endif
 192	 "Movable",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193};
 194
 195int min_free_kbytes = 1024;
 
 
 196
 197static unsigned long __meminitdata nr_kernel_pages;
 198static unsigned long __meminitdata nr_all_pages;
 199static unsigned long __meminitdata dma_reserve;
 200
 201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 202static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 203static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 204static unsigned long __initdata required_kernelcore;
 205static unsigned long __initdata required_movablecore;
 206static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 
 
 
 207
 208/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 209int movable_zone;
 210EXPORT_SYMBOL(movable_zone);
 211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 212
 213#if MAX_NUMNODES > 1
 214int nr_node_ids __read_mostly = MAX_NUMNODES;
 215int nr_online_nodes __read_mostly = 1;
 216EXPORT_SYMBOL(nr_node_ids);
 217EXPORT_SYMBOL(nr_online_nodes);
 218#endif
 219
 220int page_group_by_mobility_disabled __read_mostly;
 221
 222static void set_pageblock_migratetype(struct page *page, int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224
 225	if (unlikely(page_group_by_mobility_disabled))
 
 
 
 226		migratetype = MIGRATE_UNMOVABLE;
 227
 228	set_pageblock_flags_group(page, (unsigned long)migratetype,
 229					PB_migrate, PB_migrate_end);
 230}
 231
 232bool oom_killer_disabled __read_mostly;
 233
 234#ifdef CONFIG_DEBUG_VM
 235static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 236{
 237	int ret = 0;
 238	unsigned seq;
 239	unsigned long pfn = page_to_pfn(page);
 
 240
 241	do {
 242		seq = zone_span_seqbegin(zone);
 243		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 244			ret = 1;
 245		else if (pfn < zone->zone_start_pfn)
 246			ret = 1;
 247	} while (zone_span_seqretry(zone, seq));
 248
 
 
 
 
 
 249	return ret;
 250}
 251
 252static int page_is_consistent(struct zone *zone, struct page *page)
 253{
 254	if (!pfn_valid_within(page_to_pfn(page)))
 255		return 0;
 256	if (zone != page_zone(page))
 257		return 0;
 258
 259	return 1;
 260}
 261/*
 262 * Temporary debugging check for pages not lying within a given zone.
 263 */
 264static int bad_range(struct zone *zone, struct page *page)
 265{
 266	if (page_outside_zone_boundaries(zone, page))
 267		return 1;
 268	if (!page_is_consistent(zone, page))
 269		return 1;
 270
 271	return 0;
 272}
 273#else
 274static inline int bad_range(struct zone *zone, struct page *page)
 275{
 276	return 0;
 277}
 278#endif
 279
 280static void bad_page(struct page *page)
 
 281{
 282	static unsigned long resume;
 283	static unsigned long nr_shown;
 284	static unsigned long nr_unshown;
 285
 286	/* Don't complain about poisoned pages */
 287	if (PageHWPoison(page)) {
 288		reset_page_mapcount(page); /* remove PageBuddy */
 289		return;
 290	}
 291
 292	/*
 293	 * Allow a burst of 60 reports, then keep quiet for that minute;
 294	 * or allow a steady drip of one report per second.
 295	 */
 296	if (nr_shown == 60) {
 297		if (time_before(jiffies, resume)) {
 298			nr_unshown++;
 299			goto out;
 300		}
 301		if (nr_unshown) {
 302			printk(KERN_ALERT
 303			      "BUG: Bad page state: %lu messages suppressed\n",
 304				nr_unshown);
 305			nr_unshown = 0;
 306		}
 307		nr_shown = 0;
 308	}
 309	if (nr_shown++ == 0)
 310		resume = jiffies + 60 * HZ;
 311
 312	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 313		current->comm, page_to_pfn(page));
 314	dump_page(page);
 
 
 
 
 
 315
 316	print_modules();
 317	dump_stack();
 318out:
 319	/* Leave bad fields for debug, except PageBuddy could make trouble */
 320	reset_page_mapcount(page); /* remove PageBuddy */
 321	add_taint(TAINT_BAD_PAGE);
 322}
 323
 324/*
 325 * Higher-order pages are called "compound pages".  They are structured thusly:
 326 *
 327 * The first PAGE_SIZE page is called the "head page".
 328 *
 329 * The remaining PAGE_SIZE pages are called "tail pages".
 
 330 *
 331 * All pages have PG_compound set.  All tail pages have their ->first_page
 332 * pointing at the head page.
 333 *
 334 * The first tail page's ->lru.next holds the address of the compound page's
 335 * put_page() function.  Its ->lru.prev holds the order of allocation.
 336 * This usage means that zero-order pages may not be compound.
 337 */
 338
 339static void free_compound_page(struct page *page)
 340{
 341	__free_pages_ok(page, compound_order(page));
 342}
 343
 344void prep_compound_page(struct page *page, unsigned long order)
 345{
 346	int i;
 347	int nr_pages = 1 << order;
 348
 349	set_compound_page_dtor(page, free_compound_page);
 350	set_compound_order(page, order);
 351	__SetPageHead(page);
 352	for (i = 1; i < nr_pages; i++) {
 353		struct page *p = page + i;
 354		__SetPageTail(p);
 355		set_page_count(p, 0);
 356		p->first_page = page;
 
 357	}
 
 358}
 359
 360/* update __split_huge_page_refcount if you change this function */
 361static int destroy_compound_page(struct page *page, unsigned long order)
 
 
 
 
 
 
 362{
 363	int i;
 364	int nr_pages = 1 << order;
 365	int bad = 0;
 
 
 366
 367	if (unlikely(compound_order(page) != order) ||
 368	    unlikely(!PageHead(page))) {
 369		bad_page(page);
 370		bad++;
 371	}
 372
 373	__ClearPageHead(page);
 
 374
 375	for (i = 1; i < nr_pages; i++) {
 376		struct page *p = page + i;
 377
 378		if (unlikely(!PageTail(p) || (p->first_page != page))) {
 379			bad_page(page);
 380			bad++;
 381		}
 382		__ClearPageTail(p);
 383	}
 384
 385	return bad;
 386}
 387
 388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 389{
 390	int i;
 
 
 
 
 391
 392	/*
 393	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 394	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 395	 */
 396	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 397	for (i = 0; i < (1 << order); i++)
 398		clear_highpage(page + i);
 399}
 400
 401#ifdef CONFIG_DEBUG_PAGEALLOC
 402unsigned int _debug_guardpage_minorder;
 
 
 403
 404static int __init debug_guardpage_minorder_setup(char *buf)
 405{
 406	unsigned long res;
 407
 408	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 409		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 410		return 0;
 411	}
 412	_debug_guardpage_minorder = res;
 413	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 414	return 0;
 415}
 416__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 417
 418static inline void set_page_guard_flag(struct page *page)
 
 419{
 420	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421}
 422
 423static inline void clear_page_guard_flag(struct page *page)
 
 424{
 425	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427#else
 428static inline void set_page_guard_flag(struct page *page) { }
 429static inline void clear_page_guard_flag(struct page *page) { }
 
 
 
 430#endif
 431
 432static inline void set_page_order(struct page *page, int order)
 433{
 434	set_page_private(page, order);
 435	__SetPageBuddy(page);
 436}
 437
 438static inline void rmv_page_order(struct page *page)
 439{
 440	__ClearPageBuddy(page);
 441	set_page_private(page, 0);
 442}
 443
 444/*
 445 * Locate the struct page for both the matching buddy in our
 446 * pair (buddy1) and the combined O(n+1) page they form (page).
 447 *
 448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 449 * the following equation:
 450 *     B2 = B1 ^ (1 << O)
 451 * For example, if the starting buddy (buddy2) is #8 its order
 452 * 1 buddy is #10:
 453 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 454 *
 455 * 2) Any buddy B will have an order O+1 parent P which
 456 * satisfies the following equation:
 457 *     P = B & ~(1 << O)
 458 *
 459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 460 */
 461static inline unsigned long
 462__find_buddy_index(unsigned long page_idx, unsigned int order)
 463{
 464	return page_idx ^ (1 << order);
 465}
 466
 467/*
 468 * This function checks whether a page is free && is the buddy
 469 * we can do coalesce a page and its buddy if
 470 * (a) the buddy is not in a hole &&
 471 * (b) the buddy is in the buddy system &&
 472 * (c) a page and its buddy have the same order &&
 473 * (d) a page and its buddy are in the same zone.
 474 *
 475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
 476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
 
 
 477 *
 478 * For recording page's order, we use page_private(page).
 479 */
 480static inline int page_is_buddy(struct page *page, struct page *buddy,
 481								int order)
 482{
 483	if (!pfn_valid_within(page_to_pfn(buddy)))
 484		return 0;
 
 485
 486	if (page_zone_id(page) != page_zone_id(buddy))
 487		return 0;
 488
 489	if (page_is_guard(buddy) && page_order(buddy) == order) {
 490		VM_BUG_ON(page_count(buddy) != 0);
 491		return 1;
 492	}
 493
 494	if (PageBuddy(buddy) && page_order(buddy) == order) {
 495		VM_BUG_ON(page_count(buddy) != 0);
 
 
 
 
 
 
 
 
 
 496		return 1;
 497	}
 498	return 0;
 499}
 500
 501/*
 502 * Freeing function for a buddy system allocator.
 503 *
 504 * The concept of a buddy system is to maintain direct-mapped table
 505 * (containing bit values) for memory blocks of various "orders".
 506 * The bottom level table contains the map for the smallest allocatable
 507 * units of memory (here, pages), and each level above it describes
 508 * pairs of units from the levels below, hence, "buddies".
 509 * At a high level, all that happens here is marking the table entry
 510 * at the bottom level available, and propagating the changes upward
 511 * as necessary, plus some accounting needed to play nicely with other
 512 * parts of the VM system.
 513 * At each level, we keep a list of pages, which are heads of continuous
 514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
 515 * order is recorded in page_private(page) field.
 
 516 * So when we are allocating or freeing one, we can derive the state of the
 517 * other.  That is, if we allocate a small block, and both were
 518 * free, the remainder of the region must be split into blocks.
 519 * If a block is freed, and its buddy is also free, then this
 520 * triggers coalescing into a block of larger size.
 521 *
 522 * -- wli
 523 */
 524
 525static inline void __free_one_page(struct page *page,
 
 526		struct zone *zone, unsigned int order,
 527		int migratetype)
 528{
 529	unsigned long page_idx;
 530	unsigned long combined_idx;
 531	unsigned long uninitialized_var(buddy_idx);
 532	struct page *buddy;
 
 533
 534	if (unlikely(PageCompound(page)))
 535		if (unlikely(destroy_compound_page(page, order)))
 536			return;
 
 537
 538	VM_BUG_ON(migratetype == -1);
 
 
 539
 540	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 
 541
 542	VM_BUG_ON(page_idx & ((1 << order) - 1));
 543	VM_BUG_ON(bad_range(zone, page));
 
 
 544
 545	while (order < MAX_ORDER-1) {
 546		buddy_idx = __find_buddy_index(page_idx, order);
 547		buddy = page + (buddy_idx - page_idx);
 548		if (!page_is_buddy(page, buddy, order))
 549			break;
 550		/*
 551		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 552		 * merge with it and move up one order.
 553		 */
 554		if (page_is_guard(buddy)) {
 555			clear_page_guard_flag(buddy);
 556			set_page_private(page, 0);
 557			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
 558		} else {
 559			list_del(&buddy->lru);
 560			zone->free_area[order].nr_free--;
 561			rmv_page_order(buddy);
 562		}
 563		combined_idx = buddy_idx & page_idx;
 564		page = page + (combined_idx - page_idx);
 565		page_idx = combined_idx;
 566		order++;
 567	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568	set_page_order(page, order);
 569
 570	/*
 571	 * If this is not the largest possible page, check if the buddy
 572	 * of the next-highest order is free. If it is, it's possible
 573	 * that pages are being freed that will coalesce soon. In case,
 574	 * that is happening, add the free page to the tail of the list
 575	 * so it's less likely to be used soon and more likely to be merged
 576	 * as a higher order page
 577	 */
 578	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 579		struct page *higher_page, *higher_buddy;
 580		combined_idx = buddy_idx & page_idx;
 581		higher_page = page + (combined_idx - page_idx);
 582		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 583		higher_buddy = higher_page + (buddy_idx - combined_idx);
 584		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 
 585			list_add_tail(&page->lru,
 586				&zone->free_area[order].free_list[migratetype]);
 587			goto out;
 588		}
 589	}
 590
 591	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 592out:
 593	zone->free_area[order].nr_free++;
 594}
 595
 596/*
 597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
 598 * Page should not be on lru, so no need to fix that up.
 599 * free_pages_check() will verify...
 600 */
 601static inline void free_page_mlock(struct page *page)
 
 602{
 603	__dec_zone_page_state(page, NR_MLOCK);
 604	__count_vm_event(UNEVICTABLE_MLOCKFREED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605}
 606
 607static inline int free_pages_check(struct page *page)
 608{
 609	if (unlikely(page_mapcount(page) |
 610		(page->mapping != NULL)  |
 611		(atomic_read(&page->_count) != 0) |
 612		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
 613		(mem_cgroup_bad_page_check(page)))) {
 614		bad_page(page);
 615		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 617	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 618		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 619	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620}
 621
 622/*
 623 * Frees a number of pages from the PCP lists
 624 * Assumes all pages on list are in same zone, and of same order.
 625 * count is the number of pages to free.
 626 *
 627 * If the zone was previously in an "all pages pinned" state then look to
 628 * see if this freeing clears that state.
 629 *
 630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 631 * pinned" detection logic.
 632 */
 633static void free_pcppages_bulk(struct zone *zone, int count,
 634					struct per_cpu_pages *pcp)
 635{
 636	int migratetype = 0;
 637	int batch_free = 0;
 638	int to_free = count;
 639
 640	spin_lock(&zone->lock);
 641	zone->all_unreclaimable = 0;
 642	zone->pages_scanned = 0;
 643
 644	while (to_free) {
 645		struct page *page;
 646		struct list_head *list;
 647
 648		/*
 649		 * Remove pages from lists in a round-robin fashion. A
 650		 * batch_free count is maintained that is incremented when an
 651		 * empty list is encountered.  This is so more pages are freed
 652		 * off fuller lists instead of spinning excessively around empty
 653		 * lists
 654		 */
 655		do {
 656			batch_free++;
 657			if (++migratetype == MIGRATE_PCPTYPES)
 658				migratetype = 0;
 659			list = &pcp->lists[migratetype];
 660		} while (list_empty(list));
 661
 662		/* This is the only non-empty list. Free them all. */
 663		if (batch_free == MIGRATE_PCPTYPES)
 664			batch_free = to_free;
 665
 666		do {
 667			page = list_entry(list->prev, struct page, lru);
 668			/* must delete as __free_one_page list manipulates */
 669			list_del(&page->lru);
 670			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 671			__free_one_page(page, zone, 0, page_private(page));
 672			trace_mm_page_pcpu_drain(page, 0, page_private(page));
 673		} while (--to_free && --batch_free && !list_empty(list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674	}
 675	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
 676	spin_unlock(&zone->lock);
 677}
 678
 679static void free_one_page(struct zone *zone, struct page *page, int order,
 
 
 680				int migratetype)
 681{
 682	spin_lock(&zone->lock);
 683	zone->all_unreclaimable = 0;
 684	zone->pages_scanned = 0;
 
 
 
 
 
 685
 686	__free_one_page(page, zone, order, migratetype);
 687	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
 688	spin_unlock(&zone->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691static bool free_pages_prepare(struct page *page, unsigned int order)
 
 692{
 693	int i;
 694	int bad = 0;
 
 
 
 695
 696	trace_mm_page_free(page, order);
 697	kmemcheck_free_shadow(page, order);
 698
 699	if (PageAnon(page))
 700		page->mapping = NULL;
 701	for (i = 0; i < (1 << order); i++)
 702		bad += free_pages_check(page + i);
 703	if (bad)
 704		return false;
 705
 706	if (!PageHighMem(page)) {
 707		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 708		debug_check_no_obj_freed(page_address(page),
 709					   PAGE_SIZE << order);
 710	}
 711	arch_free_page(page, order);
 712	kernel_map_pages(page, 1 << order, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	return true;
 
 
 715}
 716
 717static void __free_pages_ok(struct page *page, unsigned int order)
 718{
 719	unsigned long flags;
 720	int wasMlocked = __TestClearPageMlocked(page);
 
 721
 722	if (!free_pages_prepare(page, order))
 723		return;
 724
 
 725	local_irq_save(flags);
 726	if (unlikely(wasMlocked))
 727		free_page_mlock(page);
 728	__count_vm_events(PGFREE, 1 << order);
 729	free_one_page(page_zone(page), page, order,
 730					get_pageblock_migratetype(page));
 731	local_irq_restore(flags);
 732}
 733
 734void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
 735{
 736	unsigned int nr_pages = 1 << order;
 
 737	unsigned int loop;
 738
 739	prefetchw(page);
 740	for (loop = 0; loop < nr_pages; loop++) {
 741		struct page *p = &page[loop];
 742
 743		if (loop + 1 < nr_pages)
 744			prefetchw(p + 1);
 745		__ClearPageReserved(p);
 746		set_page_count(p, 0);
 747	}
 
 
 748
 
 749	set_page_refcounted(page);
 750	__free_pages(page, order);
 751}
 752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753#ifdef CONFIG_CMA
 754/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
 755void __init init_cma_reserved_pageblock(struct page *page)
 756{
 757	unsigned i = pageblock_nr_pages;
 758	struct page *p = page;
 759
 760	do {
 761		__ClearPageReserved(p);
 762		set_page_count(p, 0);
 763	} while (++p, --i);
 764
 765	set_page_refcounted(page);
 766	set_pageblock_migratetype(page, MIGRATE_CMA);
 767	__free_pages(page, pageblock_order);
 768	totalram_pages += pageblock_nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 769}
 770#endif
 771
 772/*
 773 * The order of subdivision here is critical for the IO subsystem.
 774 * Please do not alter this order without good reasons and regression
 775 * testing. Specifically, as large blocks of memory are subdivided,
 776 * the order in which smaller blocks are delivered depends on the order
 777 * they're subdivided in this function. This is the primary factor
 778 * influencing the order in which pages are delivered to the IO
 779 * subsystem according to empirical testing, and this is also justified
 780 * by considering the behavior of a buddy system containing a single
 781 * large block of memory acted on by a series of small allocations.
 782 * This behavior is a critical factor in sglist merging's success.
 783 *
 784 * -- wli
 785 */
 786static inline void expand(struct zone *zone, struct page *page,
 787	int low, int high, struct free_area *area,
 788	int migratetype)
 789{
 790	unsigned long size = 1 << high;
 791
 792	while (high > low) {
 793		area--;
 794		high--;
 795		size >>= 1;
 796		VM_BUG_ON(bad_range(zone, &page[size]));
 797
 798#ifdef CONFIG_DEBUG_PAGEALLOC
 799		if (high < debug_guardpage_minorder()) {
 800			/*
 801			 * Mark as guard pages (or page), that will allow to
 802			 * merge back to allocator when buddy will be freed.
 803			 * Corresponding page table entries will not be touched,
 804			 * pages will stay not present in virtual address space
 805			 */
 806			INIT_LIST_HEAD(&page[size].lru);
 807			set_page_guard_flag(&page[size]);
 808			set_page_private(&page[size], high);
 809			/* Guard pages are not available for any usage */
 810			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
 811			continue;
 812		}
 813#endif
 814		list_add(&page[size].lru, &area->free_list[migratetype]);
 815		area->nr_free++;
 816		set_page_order(&page[size], high);
 817	}
 818}
 819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820/*
 821 * This page is about to be returned from the page allocator
 822 */
 823static inline int check_new_page(struct page *page)
 824{
 825	if (unlikely(page_mapcount(page) |
 826		(page->mapping != NULL)  |
 827		(atomic_read(&page->_count) != 0)  |
 828		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
 829		(mem_cgroup_bad_page_check(page)))) {
 830		bad_page(page);
 831		return 1;
 832	}
 833	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834}
 
 835
 836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 837{
 838	int i;
 839
 840	for (i = 0; i < (1 << order); i++) {
 841		struct page *p = page + i;
 
 842		if (unlikely(check_new_page(p)))
 843			return 1;
 844	}
 845
 
 
 
 
 
 
 846	set_page_private(page, 0);
 847	set_page_refcounted(page);
 848
 849	arch_alloc_page(page, order);
 850	kernel_map_pages(page, 1 << order, 1);
 
 
 
 
 
 
 
 
 
 851
 852	if (gfp_flags & __GFP_ZERO)
 853		prep_zero_page(page, order, gfp_flags);
 
 
 
 854
 855	if (order && (gfp_flags & __GFP_COMP))
 856		prep_compound_page(page, order);
 857
 858	return 0;
 
 
 
 
 
 
 
 
 
 859}
 860
 861/*
 862 * Go through the free lists for the given migratetype and remove
 863 * the smallest available page from the freelists
 864 */
 865static inline
 866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 867						int migratetype)
 868{
 869	unsigned int current_order;
 870	struct free_area * area;
 871	struct page *page;
 872
 873	/* Find a page of the appropriate size in the preferred list */
 874	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 875		area = &(zone->free_area[current_order]);
 876		if (list_empty(&area->free_list[migratetype]))
 
 
 877			continue;
 878
 879		page = list_entry(area->free_list[migratetype].next,
 880							struct page, lru);
 881		list_del(&page->lru);
 882		rmv_page_order(page);
 883		area->nr_free--;
 884		expand(zone, page, order, current_order, area, migratetype);
 
 885		return page;
 886	}
 887
 888	return NULL;
 889}
 890
 891
 892/*
 893 * This array describes the order lists are fallen back to when
 894 * the free lists for the desirable migrate type are depleted
 895 */
 896static int fallbacks[MIGRATE_TYPES][4] = {
 897	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 898	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 
 899#ifdef CONFIG_CMA
 900	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 901	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
 
 
 
 
 
 
 
 
 
 
 
 902#else
 903	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
 
 904#endif
 905	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
 906	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
 907};
 908
 909/*
 910 * Move the free pages in a range to the free lists of the requested type.
 911 * Note that start_page and end_pages are not aligned on a pageblock
 912 * boundary. If alignment is required, use move_freepages_block()
 913 */
 914static int move_freepages(struct zone *zone,
 915			  struct page *start_page, struct page *end_page,
 916			  int migratetype)
 917{
 918	struct page *page;
 919	unsigned long order;
 920	int pages_moved = 0;
 921
 922#ifndef CONFIG_HOLES_IN_ZONE
 923	/*
 924	 * page_zone is not safe to call in this context when
 925	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 926	 * anyway as we check zone boundaries in move_freepages_block().
 927	 * Remove at a later date when no bug reports exist related to
 928	 * grouping pages by mobility
 929	 */
 930	BUG_ON(page_zone(start_page) != page_zone(end_page));
 
 
 931#endif
 932
 
 
 
 933	for (page = start_page; page <= end_page;) {
 934		/* Make sure we are not inadvertently changing nodes */
 935		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 936
 937		if (!pfn_valid_within(page_to_pfn(page))) {
 938			page++;
 939			continue;
 940		}
 941
 
 
 
 942		if (!PageBuddy(page)) {
 
 
 
 
 
 
 
 
 
 943			page++;
 944			continue;
 945		}
 946
 947		order = page_order(page);
 948		list_move(&page->lru,
 949			  &zone->free_area[order].free_list[migratetype]);
 950		page += 1 << order;
 951		pages_moved += 1 << order;
 952	}
 953
 954	return pages_moved;
 955}
 956
 957static int move_freepages_block(struct zone *zone, struct page *page,
 958				int migratetype)
 959{
 960	unsigned long start_pfn, end_pfn;
 961	struct page *start_page, *end_page;
 962
 963	start_pfn = page_to_pfn(page);
 964	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 965	start_page = pfn_to_page(start_pfn);
 966	end_page = start_page + pageblock_nr_pages - 1;
 967	end_pfn = start_pfn + pageblock_nr_pages - 1;
 968
 969	/* Do not cross zone boundaries */
 970	if (start_pfn < zone->zone_start_pfn)
 971		start_page = page;
 972	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 973		return 0;
 974
 975	return move_freepages(zone, start_page, end_page, migratetype);
 
 976}
 977
 978static void change_pageblock_range(struct page *pageblock_page,
 979					int start_order, int migratetype)
 980{
 981	int nr_pageblocks = 1 << (start_order - pageblock_order);
 982
 983	while (nr_pageblocks--) {
 984		set_pageblock_migratetype(pageblock_page, migratetype);
 985		pageblock_page += pageblock_nr_pages;
 986	}
 987}
 988
 989/* Remove an element from the buddy allocator from the fallback list */
 990static inline struct page *
 991__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992{
 993	struct free_area * area;
 994	int current_order;
 
 
 995	struct page *page;
 996	int migratetype, i;
 
 997
 998	/* Find the largest possible block of pages in the other list */
 999	for (current_order = MAX_ORDER-1; current_order >= order;
1000						--current_order) {
1001		for (i = 0;; i++) {
1002			migratetype = fallbacks[start_migratetype][i];
 
 
 
 
1003
1004			/* MIGRATE_RESERVE handled later if necessary */
1005			if (migratetype == MIGRATE_RESERVE)
1006				break;
1007
1008			area = &(zone->free_area[current_order]);
1009			if (list_empty(&area->free_list[migratetype]))
 
 
1010				continue;
1011
1012			page = list_entry(area->free_list[migratetype].next,
1013					struct page, lru);
1014			area->nr_free--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016			/*
1017			 * If breaking a large block of pages, move all free
1018			 * pages to the preferred allocation list. If falling
1019			 * back for a reclaimable kernel allocation, be more
1020			 * aggressive about taking ownership of free pages
1021			 *
1022			 * On the other hand, never change migration
1023			 * type of MIGRATE_CMA pageblocks nor move CMA
1024			 * pages on different free lists. We don't
1025			 * want unmovable pages to be allocated from
1026			 * MIGRATE_CMA areas.
1027			 */
1028			if (!is_migrate_cma(migratetype) &&
1029			    (unlikely(current_order >= pageblock_order / 2) ||
1030			     start_migratetype == MIGRATE_RECLAIMABLE ||
1031			     page_group_by_mobility_disabled)) {
1032				int pages;
1033				pages = move_freepages_block(zone, page,
1034								start_migratetype);
1035
1036				/* Claim the whole block if over half of it is free */
1037				if (pages >= (1 << (pageblock_order-1)) ||
1038						page_group_by_mobility_disabled)
1039					set_pageblock_migratetype(page,
1040								start_migratetype);
1041
1042				migratetype = start_migratetype;
1043			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044
1045			/* Remove the page from the freelists */
1046			list_del(&page->lru);
1047			rmv_page_order(page);
 
 
 
 
 
 
 
 
1048
1049			/* Take ownership for orders >= pageblock_order */
1050			if (current_order >= pageblock_order &&
1051			    !is_migrate_cma(migratetype))
1052				change_pageblock_range(page, current_order,
1053							start_migratetype);
1054
1055			expand(zone, page, order, current_order, area,
1056			       is_migrate_cma(migratetype)
1057			     ? migratetype : start_migratetype);
1058
1059			trace_mm_page_alloc_extfrag(page, order, current_order,
1060				start_migratetype, migratetype);
1061
1062			return page;
1063		}
 
 
 
 
 
 
1064	}
1065
1066	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069/*
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1072 */
1073static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074						int migratetype)
1075{
1076	struct page *page;
1077
1078retry_reserve:
1079	page = __rmqueue_smallest(zone, order, migratetype);
 
 
 
1080
1081	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1082		page = __rmqueue_fallback(zone, order, migratetype);
1083
1084		/*
1085		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086		 * is used because __rmqueue_smallest is an inline function
1087		 * and we want just one call site
1088		 */
1089		if (!page) {
1090			migratetype = MIGRATE_RESERVE;
1091			goto retry_reserve;
1092		}
1093	}
1094
1095	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1096	return page;
1097}
1098
1099/*
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1103 */
1104static int rmqueue_bulk(struct zone *zone, unsigned int order,
1105			unsigned long count, struct list_head *list,
1106			int migratetype, int cold)
1107{
1108	int mt = migratetype, i;
1109
1110	spin_lock(&zone->lock);
1111	for (i = 0; i < count; ++i) {
1112		struct page *page = __rmqueue(zone, order, migratetype);
1113		if (unlikely(page == NULL))
1114			break;
1115
 
 
 
1116		/*
1117		 * Split buddy pages returned by expand() are received here
1118		 * in physical page order. The page is added to the callers and
1119		 * list and the list head then moves forward. From the callers
1120		 * perspective, the linked list is ordered by page number in
1121		 * some conditions. This is useful for IO devices that can
1122		 * merge IO requests if the physical pages are ordered
1123		 * properly.
 
1124		 */
1125		if (likely(cold == 0))
1126			list_add(&page->lru, list);
1127		else
1128			list_add_tail(&page->lru, list);
1129		if (IS_ENABLED(CONFIG_CMA)) {
1130			mt = get_pageblock_migratetype(page);
1131			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132				mt = migratetype;
1133		}
1134		set_page_private(page, mt);
1135		list = &page->lru;
1136	}
 
 
 
 
 
 
 
1137	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1138	spin_unlock(&zone->lock);
1139	return i;
1140}
1141
1142#ifdef CONFIG_NUMA
1143/*
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1146 * expired.
1147 *
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
1150 */
1151void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1152{
1153	unsigned long flags;
1154	int to_drain;
1155
1156	local_irq_save(flags);
1157	if (pcp->count >= pcp->batch)
1158		to_drain = pcp->batch;
1159	else
1160		to_drain = pcp->count;
1161	free_pcppages_bulk(zone, to_drain, pcp);
1162	pcp->count -= to_drain;
1163	local_irq_restore(flags);
1164}
1165#endif
1166
1167/*
1168 * Drain pages of the indicated processor.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169 *
1170 * The processor must either be the current processor and the
1171 * thread pinned to the current processor or a processor that
1172 * is not online.
1173 */
1174static void drain_pages(unsigned int cpu)
1175{
1176	unsigned long flags;
1177	struct zone *zone;
1178
1179	for_each_populated_zone(zone) {
1180		struct per_cpu_pageset *pset;
1181		struct per_cpu_pages *pcp;
1182
1183		local_irq_save(flags);
1184		pset = per_cpu_ptr(zone->pageset, cpu);
1185
1186		pcp = &pset->pcp;
1187		if (pcp->count) {
1188			free_pcppages_bulk(zone, pcp->count, pcp);
1189			pcp->count = 0;
1190		}
1191		local_irq_restore(flags);
1192	}
1193}
1194
1195/*
1196 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
1197 */
1198void drain_local_pages(void *arg)
 
 
 
 
 
 
 
 
 
 
1199{
1200	drain_pages(smp_processor_id());
 
 
 
 
 
 
 
 
 
1201}
1202
1203/*
1204 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1205 *
1206 * Note that this code is protected against sending an IPI to an offline
1207 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1208 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1209 * nothing keeps CPUs from showing up after we populated the cpumask and
1210 * before the call to on_each_cpu_mask().
1211 */
1212void drain_all_pages(void)
1213{
1214	int cpu;
1215	struct per_cpu_pageset *pcp;
1216	struct zone *zone;
1217
1218	/*
1219	 * Allocate in the BSS so we wont require allocation in
1220	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1221	 */
1222	static cpumask_t cpus_with_pcps;
1223
1224	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	 * We don't care about racing with CPU hotplug event
1226	 * as offline notification will cause the notified
1227	 * cpu to drain that CPU pcps and on_each_cpu_mask
1228	 * disables preemption as part of its processing
1229	 */
1230	for_each_online_cpu(cpu) {
 
 
1231		bool has_pcps = false;
1232		for_each_populated_zone(zone) {
 
1233			pcp = per_cpu_ptr(zone->pageset, cpu);
1234			if (pcp->pcp.count) {
1235				has_pcps = true;
1236				break;
 
 
 
 
 
 
1237			}
1238		}
 
1239		if (has_pcps)
1240			cpumask_set_cpu(cpu, &cpus_with_pcps);
1241		else
1242			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1243	}
1244	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
 
 
 
 
 
 
 
 
 
1245}
1246
1247#ifdef CONFIG_HIBERNATION
1248
 
 
 
 
 
1249void mark_free_pages(struct zone *zone)
1250{
1251	unsigned long pfn, max_zone_pfn;
1252	unsigned long flags;
1253	int order, t;
1254	struct list_head *curr;
1255
1256	if (!zone->spanned_pages)
1257		return;
1258
1259	spin_lock_irqsave(&zone->lock, flags);
1260
1261	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1262	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1263		if (pfn_valid(pfn)) {
1264			struct page *page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
1265
1266			if (!swsusp_page_is_forbidden(page))
1267				swsusp_unset_page_free(page);
1268		}
1269
1270	for_each_migratetype_order(order, t) {
1271		list_for_each(curr, &zone->free_area[order].free_list[t]) {
 
1272			unsigned long i;
1273
1274			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1275			for (i = 0; i < (1UL << order); i++)
 
 
 
 
1276				swsusp_set_page_free(pfn_to_page(pfn + i));
 
1277		}
1278	}
1279	spin_unlock_irqrestore(&zone->lock, flags);
1280}
1281#endif /* CONFIG_PM */
1282
1283/*
1284 * Free a 0-order page
1285 * cold == 1 ? free a cold page : free a hot page
1286 */
1287void free_hot_cold_page(struct page *page, int cold)
 
 
 
 
 
 
 
 
1288{
1289	struct zone *zone = page_zone(page);
1290	struct per_cpu_pages *pcp;
1291	unsigned long flags;
1292	int migratetype;
1293	int wasMlocked = __TestClearPageMlocked(page);
1294
1295	if (!free_pages_prepare(page, 0))
1296		return;
1297
1298	migratetype = get_pageblock_migratetype(page);
1299	set_page_private(page, migratetype);
1300	local_irq_save(flags);
1301	if (unlikely(wasMlocked))
1302		free_page_mlock(page);
1303	__count_vm_event(PGFREE);
1304
1305	/*
1306	 * We only track unmovable, reclaimable and movable on pcp lists.
1307	 * Free ISOLATE pages back to the allocator because they are being
1308	 * offlined but treat RESERVE as movable pages so we can get those
1309	 * areas back if necessary. Otherwise, we may have to free
1310	 * excessively into the page allocator
1311	 */
1312	if (migratetype >= MIGRATE_PCPTYPES) {
1313		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1314			free_one_page(zone, page, 0, migratetype);
1315			goto out;
1316		}
1317		migratetype = MIGRATE_MOVABLE;
1318	}
1319
1320	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1321	if (cold)
1322		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1323	else
1324		list_add(&page->lru, &pcp->lists[migratetype]);
1325	pcp->count++;
1326	if (pcp->count >= pcp->high) {
1327		free_pcppages_bulk(zone, pcp->batch, pcp);
1328		pcp->count -= pcp->batch;
1329	}
 
1330
1331out:
 
 
 
 
 
 
 
 
 
 
 
 
1332	local_irq_restore(flags);
1333}
1334
1335/*
1336 * Free a list of 0-order pages
1337 */
1338void free_hot_cold_page_list(struct list_head *list, int cold)
1339{
1340	struct page *page, *next;
 
 
1341
 
1342	list_for_each_entry_safe(page, next, list, lru) {
1343		trace_mm_page_free_batched(page, cold);
1344		free_hot_cold_page(page, cold);
 
 
1345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346}
1347
1348/*
1349 * split_page takes a non-compound higher-order page, and splits it into
1350 * n (1<<order) sub-pages: page[0..n]
1351 * Each sub-page must be freed individually.
1352 *
1353 * Note: this is probably too low level an operation for use in drivers.
1354 * Please consult with lkml before using this in your driver.
1355 */
1356void split_page(struct page *page, unsigned int order)
1357{
1358	int i;
1359
1360	VM_BUG_ON(PageCompound(page));
1361	VM_BUG_ON(!page_count(page));
1362
1363#ifdef CONFIG_KMEMCHECK
1364	/*
1365	 * Split shadow pages too, because free(page[0]) would
1366	 * otherwise free the whole shadow.
1367	 */
1368	if (kmemcheck_page_is_tracked(page))
1369		split_page(virt_to_page(page[0].shadow), order);
1370#endif
1371
1372	for (i = 1; i < (1 << order); i++)
1373		set_page_refcounted(page + i);
 
1374}
 
1375
1376/*
1377 * Similar to split_page except the page is already free. As this is only
1378 * being used for migration, the migratetype of the block also changes.
1379 * As this is called with interrupts disabled, the caller is responsible
1380 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1381 * are enabled.
1382 *
1383 * Note: this is probably too low level an operation for use in drivers.
1384 * Please consult with lkml before using this in your driver.
1385 */
1386int split_free_page(struct page *page)
1387{
1388	unsigned int order;
1389	unsigned long watermark;
1390	struct zone *zone;
 
1391
1392	BUG_ON(!PageBuddy(page));
1393
1394	zone = page_zone(page);
1395	order = page_order(page);
1396
1397	/* Obey watermarks as if the page was being allocated */
1398	watermark = low_wmark_pages(zone) + (1 << order);
1399	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1400		return 0;
 
 
 
 
 
 
 
 
 
1401
1402	/* Remove page from free list */
1403	list_del(&page->lru);
1404	zone->free_area[order].nr_free--;
1405	rmv_page_order(page);
1406	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1407
1408	/* Split into individual pages */
1409	set_page_refcounted(page);
1410	split_page(page, order);
1411
 
 
 
 
1412	if (order >= pageblock_order - 1) {
1413		struct page *endpage = page + (1 << order) - 1;
1414		for (; page < endpage; page += pageblock_nr_pages) {
1415			int mt = get_pageblock_migratetype(page);
1416			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
 
1417				set_pageblock_migratetype(page,
1418							  MIGRATE_MOVABLE);
1419		}
1420	}
1421
1422	return 1 << order;
 
1423}
1424
1425/*
1426 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1427 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1428 * or two.
1429 */
1430static inline
1431struct page *buffered_rmqueue(struct zone *preferred_zone,
1432			struct zone *zone, int order, gfp_t gfp_flags,
1433			int migratetype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434{
1435	unsigned long flags;
1436	struct page *page;
1437	int cold = !!(gfp_flags & __GFP_COLD);
1438
1439again:
1440	if (likely(order == 0)) {
1441		struct per_cpu_pages *pcp;
1442		struct list_head *list;
1443
1444		local_irq_save(flags);
1445		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1446		list = &pcp->lists[migratetype];
1447		if (list_empty(list)) {
1448			pcp->count += rmqueue_bulk(zone, 0,
1449					pcp->batch, list,
1450					migratetype, cold);
1451			if (unlikely(list_empty(list)))
1452				goto failed;
1453		}
1454
1455		if (cold)
1456			page = list_entry(list->prev, struct page, lru);
1457		else
1458			page = list_entry(list->next, struct page, lru);
1459
1460		list_del(&page->lru);
1461		pcp->count--;
1462	} else {
1463		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1464			/*
1465			 * __GFP_NOFAIL is not to be used in new code.
1466			 *
1467			 * All __GFP_NOFAIL callers should be fixed so that they
1468			 * properly detect and handle allocation failures.
1469			 *
1470			 * We most definitely don't want callers attempting to
1471			 * allocate greater than order-1 page units with
1472			 * __GFP_NOFAIL.
1473			 */
1474			WARN_ON_ONCE(order > 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475		}
1476		spin_lock_irqsave(&zone->lock, flags);
1477		page = __rmqueue(zone, order, migratetype);
1478		spin_unlock(&zone->lock);
1479		if (!page)
1480			goto failed;
1481		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1482	}
 
 
 
 
1483
1484	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1485	zone_statistics(preferred_zone, zone, gfp_flags);
1486	local_irq_restore(flags);
1487
1488	VM_BUG_ON(bad_range(zone, page));
1489	if (prep_new_page(page, order, gfp_flags))
1490		goto again;
1491	return page;
1492
1493failed:
1494	local_irq_restore(flags);
1495	return NULL;
1496}
1497
1498/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1499#define ALLOC_WMARK_MIN		WMARK_MIN
1500#define ALLOC_WMARK_LOW		WMARK_LOW
1501#define ALLOC_WMARK_HIGH	WMARK_HIGH
1502#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1503
1504/* Mask to get the watermark bits */
1505#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1506
1507#define ALLOC_HARDER		0x10 /* try to alloc harder */
1508#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1509#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1510
1511#ifdef CONFIG_FAIL_PAGE_ALLOC
1512
1513static struct {
1514	struct fault_attr attr;
1515
1516	u32 ignore_gfp_highmem;
1517	u32 ignore_gfp_wait;
1518	u32 min_order;
1519} fail_page_alloc = {
1520	.attr = FAULT_ATTR_INITIALIZER,
1521	.ignore_gfp_wait = 1,
1522	.ignore_gfp_highmem = 1,
1523	.min_order = 1,
1524};
1525
1526static int __init setup_fail_page_alloc(char *str)
1527{
1528	return setup_fault_attr(&fail_page_alloc.attr, str);
1529}
1530__setup("fail_page_alloc=", setup_fail_page_alloc);
1531
1532static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1533{
1534	if (order < fail_page_alloc.min_order)
1535		return 0;
1536	if (gfp_mask & __GFP_NOFAIL)
1537		return 0;
1538	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1539		return 0;
1540	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1541		return 0;
 
1542
1543	return should_fail(&fail_page_alloc.attr, 1 << order);
1544}
1545
1546#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1547
1548static int __init fail_page_alloc_debugfs(void)
1549{
1550	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1551	struct dentry *dir;
1552
1553	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1554					&fail_page_alloc.attr);
1555	if (IS_ERR(dir))
1556		return PTR_ERR(dir);
1557
1558	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1559				&fail_page_alloc.ignore_gfp_wait))
1560		goto fail;
1561	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1562				&fail_page_alloc.ignore_gfp_highmem))
1563		goto fail;
1564	if (!debugfs_create_u32("min-order", mode, dir,
1565				&fail_page_alloc.min_order))
1566		goto fail;
1567
1568	return 0;
1569fail:
1570	debugfs_remove_recursive(dir);
1571
1572	return -ENOMEM;
1573}
1574
1575late_initcall(fail_page_alloc_debugfs);
1576
1577#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1578
1579#else /* CONFIG_FAIL_PAGE_ALLOC */
1580
1581static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1582{
1583	return 0;
1584}
1585
1586#endif /* CONFIG_FAIL_PAGE_ALLOC */
1587
1588/*
1589 * Return true if free pages are above 'mark'. This takes into account the order
1590 * of the allocation.
1591 */
1592static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1593		      int classzone_idx, int alloc_flags, long free_pages)
 
 
 
1594{
1595	/* free_pages my go negative - that's OK */
1596	long min = mark;
1597	int o;
 
1598
 
1599	free_pages -= (1 << order) - 1;
 
1600	if (alloc_flags & ALLOC_HIGH)
1601		min -= min / 2;
1602	if (alloc_flags & ALLOC_HARDER)
1603		min -= min / 4;
1604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1606		return false;
1607	for (o = 0; o < order; o++) {
1608		/* At the next order, this order's pages become unavailable */
1609		free_pages -= z->free_area[o].nr_free << o;
1610
1611		/* Require fewer higher order pages to be free */
1612		min >>= 1;
 
1613
1614		if (free_pages <= min)
1615			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616	}
1617	return true;
1618}
1619
1620bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621		      int classzone_idx, int alloc_flags)
1622{
1623	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1624					zone_page_state(z, NR_FREE_PAGES));
1625}
1626
1627bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1628		      int classzone_idx, int alloc_flags)
1629{
1630	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 
1631
1632	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1633		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1636								free_pages);
1637}
1638
1639#ifdef CONFIG_NUMA
1640/*
1641 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1642 * skip over zones that are not allowed by the cpuset, or that have
1643 * been recently (in last second) found to be nearly full.  See further
1644 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1645 * that have to skip over a lot of full or unallowed zones.
1646 *
1647 * If the zonelist cache is present in the passed in zonelist, then
1648 * returns a pointer to the allowed node mask (either the current
1649 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1650 *
1651 * If the zonelist cache is not available for this zonelist, does
1652 * nothing and returns NULL.
1653 *
1654 * If the fullzones BITMAP in the zonelist cache is stale (more than
1655 * a second since last zap'd) then we zap it out (clear its bits.)
1656 *
1657 * We hold off even calling zlc_setup, until after we've checked the
1658 * first zone in the zonelist, on the theory that most allocations will
1659 * be satisfied from that first zone, so best to examine that zone as
1660 * quickly as we can.
1661 */
1662static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1663{
1664	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1665	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1666
1667	zlc = zonelist->zlcache_ptr;
1668	if (!zlc)
1669		return NULL;
1670
1671	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1672		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1673		zlc->last_full_zap = jiffies;
1674	}
1675
1676	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1677					&cpuset_current_mems_allowed :
1678					&node_states[N_HIGH_MEMORY];
1679	return allowednodes;
1680}
1681
1682/*
1683 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1684 * if it is worth looking at further for free memory:
1685 *  1) Check that the zone isn't thought to be full (doesn't have its
1686 *     bit set in the zonelist_cache fullzones BITMAP).
1687 *  2) Check that the zones node (obtained from the zonelist_cache
1688 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1689 * Return true (non-zero) if zone is worth looking at further, or
1690 * else return false (zero) if it is not.
1691 *
1692 * This check -ignores- the distinction between various watermarks,
1693 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1694 * found to be full for any variation of these watermarks, it will
1695 * be considered full for up to one second by all requests, unless
1696 * we are so low on memory on all allowed nodes that we are forced
1697 * into the second scan of the zonelist.
1698 *
1699 * In the second scan we ignore this zonelist cache and exactly
1700 * apply the watermarks to all zones, even it is slower to do so.
1701 * We are low on memory in the second scan, and should leave no stone
1702 * unturned looking for a free page.
1703 */
1704static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1705						nodemask_t *allowednodes)
1706{
1707	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1708	int i;				/* index of *z in zonelist zones */
1709	int n;				/* node that zone *z is on */
1710
1711	zlc = zonelist->zlcache_ptr;
1712	if (!zlc)
1713		return 1;
1714
1715	i = z - zonelist->_zonerefs;
1716	n = zlc->z_to_n[i];
1717
1718	/* This zone is worth trying if it is allowed but not full */
1719	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1720}
1721
1722/*
1723 * Given 'z' scanning a zonelist, set the corresponding bit in
1724 * zlc->fullzones, so that subsequent attempts to allocate a page
1725 * from that zone don't waste time re-examining it.
1726 */
1727static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1728{
1729	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1730	int i;				/* index of *z in zonelist zones */
1731
1732	zlc = zonelist->zlcache_ptr;
1733	if (!zlc)
1734		return;
1735
1736	i = z - zonelist->_zonerefs;
1737
1738	set_bit(i, zlc->fullzones);
1739}
1740
1741/*
1742 * clear all zones full, called after direct reclaim makes progress so that
1743 * a zone that was recently full is not skipped over for up to a second
1744 */
1745static void zlc_clear_zones_full(struct zonelist *zonelist)
1746{
1747	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1748
1749	zlc = zonelist->zlcache_ptr;
1750	if (!zlc)
1751		return;
1752
1753	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1754}
1755
1756#else	/* CONFIG_NUMA */
1757
1758static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1759{
1760	return NULL;
1761}
1762
1763static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1764				nodemask_t *allowednodes)
1765{
1766	return 1;
1767}
1768
1769static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1770{
1771}
1772
1773static void zlc_clear_zones_full(struct zonelist *zonelist)
1774{
 
1775}
1776#endif	/* CONFIG_NUMA */
1777
1778/*
1779 * get_page_from_freelist goes through the zonelist trying to allocate
1780 * a page.
1781 */
1782static struct page *
1783get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1784		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1785		struct zone *preferred_zone, int migratetype)
1786{
1787	struct zoneref *z;
1788	struct page *page = NULL;
1789	int classzone_idx;
1790	struct zone *zone;
1791	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1792	int zlc_active = 0;		/* set if using zonelist_cache */
1793	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1794
1795	classzone_idx = zone_idx(preferred_zone);
1796zonelist_scan:
1797	/*
1798	 * Scan zonelist, looking for a zone with enough free.
1799	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1800	 */
1801	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1802						high_zoneidx, nodemask) {
1803		if (NUMA_BUILD && zlc_active &&
1804			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1805				continue;
1806		if ((alloc_flags & ALLOC_CPUSET) &&
1807			!cpuset_zone_allowed_softwall(zone, gfp_mask))
 
1808				continue;
1809		/*
1810		 * When allocating a page cache page for writing, we
1811		 * want to get it from a zone that is within its dirty
1812		 * limit, such that no single zone holds more than its
1813		 * proportional share of globally allowed dirty pages.
1814		 * The dirty limits take into account the zone's
1815		 * lowmem reserves and high watermark so that kswapd
1816		 * should be able to balance it without having to
1817		 * write pages from its LRU list.
1818		 *
1819		 * This may look like it could increase pressure on
1820		 * lower zones by failing allocations in higher zones
1821		 * before they are full.  But the pages that do spill
1822		 * over are limited as the lower zones are protected
1823		 * by this very same mechanism.  It should not become
1824		 * a practical burden to them.
1825		 *
1826		 * XXX: For now, allow allocations to potentially
1827		 * exceed the per-zone dirty limit in the slowpath
1828		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1829		 * which is important when on a NUMA setup the allowed
1830		 * zones are together not big enough to reach the
1831		 * global limit.  The proper fix for these situations
1832		 * will require awareness of zones in the
1833		 * dirty-throttling and the flusher threads.
1834		 */
1835		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1836		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1837			goto this_zone_full;
1838
1839		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1840		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1841			unsigned long mark;
1842			int ret;
1843
1844			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1845			if (zone_watermark_ok(zone, order, mark,
1846				    classzone_idx, alloc_flags))
1847				goto try_this_zone;
1848
1849			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1850				/*
1851				 * we do zlc_setup if there are multiple nodes
1852				 * and before considering the first zone allowed
1853				 * by the cpuset.
1854				 */
1855				allowednodes = zlc_setup(zonelist, alloc_flags);
1856				zlc_active = 1;
1857				did_zlc_setup = 1;
1858			}
 
1859
1860			if (zone_reclaim_mode == 0)
1861				goto this_zone_full;
 
 
1862
 
1863			/*
1864			 * As we may have just activated ZLC, check if the first
1865			 * eligible zone has failed zone_reclaim recently.
1866			 */
1867			if (NUMA_BUILD && zlc_active &&
1868				!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
 
 
 
 
 
 
 
 
 
1869				continue;
1870
1871			ret = zone_reclaim(zone, gfp_mask, order);
1872			switch (ret) {
1873			case ZONE_RECLAIM_NOSCAN:
1874				/* did not scan */
1875				continue;
1876			case ZONE_RECLAIM_FULL:
1877				/* scanned but unreclaimable */
1878				continue;
1879			default:
1880				/* did we reclaim enough */
1881				if (!zone_watermark_ok(zone, order, mark,
1882						classzone_idx, alloc_flags))
1883					goto this_zone_full;
 
 
1884			}
1885		}
1886
1887try_this_zone:
1888		page = buffered_rmqueue(preferred_zone, zone, order,
1889						gfp_mask, migratetype);
1890		if (page)
1891			break;
1892this_zone_full:
1893		if (NUMA_BUILD)
1894			zlc_mark_zone_full(zonelist, z);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895	}
1896
1897	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1898		/* Disable zlc cache for second zonelist scan */
1899		zlc_active = 0;
1900		goto zonelist_scan;
1901	}
1902	return page;
1903}
1904
1905/*
1906 * Large machines with many possible nodes should not always dump per-node
1907 * meminfo in irq context.
1908 */
1909static inline bool should_suppress_show_mem(void)
1910{
1911	bool ret = false;
1912
1913#if NODES_SHIFT > 8
1914	ret = in_interrupt();
1915#endif
1916	return ret;
1917}
1918
1919static DEFINE_RATELIMIT_STATE(nopage_rs,
1920		DEFAULT_RATELIMIT_INTERVAL,
1921		DEFAULT_RATELIMIT_BURST);
1922
1923void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1924{
1925	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
1926
1927	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1928	    debug_guardpage_minorder() > 0)
1929		return;
1930
1931	/*
1932	 * This documents exceptions given to allocations in certain
1933	 * contexts that are allowed to allocate outside current's set
1934	 * of allowed nodes.
1935	 */
1936	if (!(gfp_mask & __GFP_NOMEMALLOC))
1937		if (test_thread_flag(TIF_MEMDIE) ||
1938		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1939			filter &= ~SHOW_MEM_FILTER_NODES;
1940	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1941		filter &= ~SHOW_MEM_FILTER_NODES;
1942
1943	if (fmt) {
1944		struct va_format vaf;
1945		va_list args;
1946
1947		va_start(args, fmt);
 
 
 
 
 
1948
1949		vaf.fmt = fmt;
1950		vaf.va = &args;
1951
1952		pr_warn("%pV", &vaf);
 
 
 
 
 
 
1953
1954		va_end(args);
1955	}
1956
1957	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1958		current->comm, order, gfp_mask);
1959
1960	dump_stack();
1961	if (!should_suppress_show_mem())
1962		show_mem(filter);
1963}
1964
1965static inline int
1966should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1967				unsigned long did_some_progress,
1968				unsigned long pages_reclaimed)
1969{
1970	/* Do not loop if specifically requested */
1971	if (gfp_mask & __GFP_NORETRY)
1972		return 0;
1973
1974	/* Always retry if specifically requested */
1975	if (gfp_mask & __GFP_NOFAIL)
1976		return 1;
1977
 
 
1978	/*
1979	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1980	 * making forward progress without invoking OOM. Suspend also disables
1981	 * storage devices so kswapd will not help. Bail if we are suspending.
1982	 */
1983	if (!did_some_progress && pm_suspended_storage())
1984		return 0;
 
1985
1986	/*
1987	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1988	 * means __GFP_NOFAIL, but that may not be true in other
1989	 * implementations.
1990	 */
1991	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1992		return 1;
1993
1994	/*
1995	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1996	 * specified, then we retry until we no longer reclaim any pages
1997	 * (above), or we've reclaimed an order of pages at least as
1998	 * large as the allocation's order. In both cases, if the
1999	 * allocation still fails, we stop retrying.
2000	 */
2001	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2002		return 1;
2003
2004	return 0;
2005}
2006
2007static inline struct page *
2008__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2009	struct zonelist *zonelist, enum zone_type high_zoneidx,
2010	nodemask_t *nodemask, struct zone *preferred_zone,
2011	int migratetype)
2012{
 
 
 
 
 
 
 
2013	struct page *page;
2014
2015	/* Acquire the OOM killer lock for the zones in zonelist */
2016	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
 
 
 
 
 
 
2017		schedule_timeout_uninterruptible(1);
2018		return NULL;
2019	}
2020
2021	/*
2022	 * Go through the zonelist yet one more time, keep very high watermark
2023	 * here, this is only to catch a parallel oom killing, we must fail if
2024	 * we're still under heavy pressure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025	 */
2026	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2027		order, zonelist, high_zoneidx,
2028		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2029		preferred_zone, migratetype);
2030	if (page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2031		goto out;
2032
2033	if (!(gfp_mask & __GFP_NOFAIL)) {
2034		/* The OOM killer will not help higher order allocs */
2035		if (order > PAGE_ALLOC_COSTLY_ORDER)
2036			goto out;
2037		/* The OOM killer does not needlessly kill tasks for lowmem */
2038		if (high_zoneidx < ZONE_NORMAL)
2039			goto out;
2040		/*
2041		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2042		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2043		 * The caller should handle page allocation failure by itself if
2044		 * it specifies __GFP_THISNODE.
2045		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2046		 */
2047		if (gfp_mask & __GFP_THISNODE)
2048			goto out;
 
2049	}
2050	/* Exhausted what can be done so it's blamo time */
2051	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2052
2053out:
2054	clear_zonelist_oom(zonelist, gfp_mask);
2055	return page;
2056}
2057
 
 
 
 
 
 
2058#ifdef CONFIG_COMPACTION
2059/* Try memory compaction for high-order allocations before reclaim */
2060static struct page *
2061__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2062	struct zonelist *zonelist, enum zone_type high_zoneidx,
2063	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2064	int migratetype, bool sync_migration,
2065	bool *deferred_compaction,
2066	unsigned long *did_some_progress)
2067{
2068	struct page *page;
 
2069
2070	if (!order)
2071		return NULL;
2072
2073	if (compaction_deferred(preferred_zone, order)) {
2074		*deferred_compaction = true;
 
 
 
 
2075		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	}
2077
2078	current->flags |= PF_MEMALLOC;
2079	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2080						nodemask, sync_migration);
2081	current->flags &= ~PF_MEMALLOC;
2082	if (*did_some_progress != COMPACT_SKIPPED) {
2083
2084		/* Page migration frees to the PCP lists but we want merging */
2085		drain_pages(get_cpu());
2086		put_cpu();
2087
2088		page = get_page_from_freelist(gfp_mask, nodemask,
2089				order, zonelist, high_zoneidx,
2090				alloc_flags, preferred_zone,
2091				migratetype);
2092		if (page) {
2093			preferred_zone->compact_considered = 0;
2094			preferred_zone->compact_defer_shift = 0;
2095			if (order >= preferred_zone->compact_order_failed)
2096				preferred_zone->compact_order_failed = order + 1;
2097			count_vm_event(COMPACTSUCCESS);
2098			return page;
2099		}
 
 
 
 
 
 
2100
2101		/*
2102		 * It's bad if compaction run occurs and fails.
2103		 * The most likely reason is that pages exist,
2104		 * but not enough to satisfy watermarks.
2105		 */
2106		count_vm_event(COMPACTFAIL);
 
2107
2108		/*
2109		 * As async compaction considers a subset of pageblocks, only
2110		 * defer if the failure was a sync compaction failure.
2111		 */
2112		if (sync_migration)
2113			defer_compaction(preferred_zone, order);
 
 
 
 
2114
2115		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
2116	}
2117
2118	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119}
2120#else
2121static inline struct page *
2122__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2123	struct zonelist *zonelist, enum zone_type high_zoneidx,
2124	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2125	int migratetype, bool sync_migration,
2126	bool *deferred_compaction,
2127	unsigned long *did_some_progress)
2128{
 
2129	return NULL;
2130}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131#endif /* CONFIG_COMPACTION */
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133/* Perform direct synchronous page reclaim */
2134static int
2135__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2136		  nodemask_t *nodemask)
2137{
2138	struct reclaim_state reclaim_state;
2139	int progress;
 
2140
2141	cond_resched();
2142
2143	/* We now go into synchronous reclaim */
2144	cpuset_memory_pressure_bump();
2145	current->flags |= PF_MEMALLOC;
2146	lockdep_set_current_reclaim_state(gfp_mask);
2147	reclaim_state.reclaimed_slab = 0;
2148	current->reclaim_state = &reclaim_state;
2149
2150	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
 
2151
2152	current->reclaim_state = NULL;
2153	lockdep_clear_current_reclaim_state();
2154	current->flags &= ~PF_MEMALLOC;
2155
2156	cond_resched();
2157
2158	return progress;
2159}
2160
2161/* The really slow allocator path where we enter direct reclaim */
2162static inline struct page *
2163__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2164	struct zonelist *zonelist, enum zone_type high_zoneidx,
2165	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166	int migratetype, unsigned long *did_some_progress)
2167{
2168	struct page *page = NULL;
2169	bool drained = false;
2170
2171	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2172					       nodemask);
2173	if (unlikely(!(*did_some_progress)))
2174		return NULL;
2175
2176	/* After successful reclaim, reconsider all zones for allocation */
2177	if (NUMA_BUILD)
2178		zlc_clear_zones_full(zonelist);
2179
2180retry:
2181	page = get_page_from_freelist(gfp_mask, nodemask, order,
2182					zonelist, high_zoneidx,
2183					alloc_flags, preferred_zone,
2184					migratetype);
2185
2186	/*
2187	 * If an allocation failed after direct reclaim, it could be because
2188	 * pages are pinned on the per-cpu lists. Drain them and try again
 
2189	 */
2190	if (!page && !drained) {
2191		drain_all_pages();
 
2192		drained = true;
2193		goto retry;
2194	}
2195
2196	return page;
2197}
2198
2199/*
2200 * This is called in the allocator slow-path if the allocation request is of
2201 * sufficient urgency to ignore watermarks and take other desperate measures
2202 */
2203static inline struct page *
2204__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2205	struct zonelist *zonelist, enum zone_type high_zoneidx,
2206	nodemask_t *nodemask, struct zone *preferred_zone,
2207	int migratetype)
2208{
2209	struct page *page;
2210
2211	do {
2212		page = get_page_from_freelist(gfp_mask, nodemask, order,
2213			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2214			preferred_zone, migratetype);
2215
2216		if (!page && gfp_mask & __GFP_NOFAIL)
2217			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2218	} while (!page && (gfp_mask & __GFP_NOFAIL));
2219
2220	return page;
2221}
2222
2223static inline
2224void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2225						enum zone_type high_zoneidx,
2226						enum zone_type classzone_idx)
2227{
2228	struct zoneref *z;
2229	struct zone *zone;
 
 
2230
2231	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2232		wakeup_kswapd(zone, order, classzone_idx);
 
 
 
 
2233}
2234
2235static inline int
2236gfp_to_alloc_flags(gfp_t gfp_mask)
2237{
2238	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2239	const gfp_t wait = gfp_mask & __GFP_WAIT;
2240
2241	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2242	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2243
2244	/*
2245	 * The caller may dip into page reserves a bit more if the caller
2246	 * cannot run direct reclaim, or if the caller has realtime scheduling
2247	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2248	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2249	 */
2250	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2251
2252	if (!wait) {
2253		/*
2254		 * Not worth trying to allocate harder for
2255		 * __GFP_NOMEMALLOC even if it can't schedule.
2256		 */
2257		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2258			alloc_flags |= ALLOC_HARDER;
2259		/*
2260		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2261		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2262		 */
2263		alloc_flags &= ~ALLOC_CPUSET;
2264	} else if (unlikely(rt_task(current)) && !in_interrupt())
2265		alloc_flags |= ALLOC_HARDER;
2266
2267	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2268		if (!in_interrupt() &&
2269		    ((current->flags & PF_MEMALLOC) ||
2270		     unlikely(test_thread_flag(TIF_MEMDIE))))
2271			alloc_flags |= ALLOC_NO_WATERMARKS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272	}
2273
2274	return alloc_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275}
2276
2277static inline struct page *
2278__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2279	struct zonelist *zonelist, enum zone_type high_zoneidx,
2280	nodemask_t *nodemask, struct zone *preferred_zone,
2281	int migratetype)
2282{
2283	const gfp_t wait = gfp_mask & __GFP_WAIT;
 
2284	struct page *page = NULL;
2285	int alloc_flags;
2286	unsigned long pages_reclaimed = 0;
2287	unsigned long did_some_progress;
2288	bool sync_migration = false;
2289	bool deferred_compaction = false;
 
 
 
 
2290
2291	/*
2292	 * In the slowpath, we sanity check order to avoid ever trying to
2293	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2294	 * be using allocators in order of preference for an area that is
2295	 * too large.
2296	 */
2297	if (order >= MAX_ORDER) {
2298		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2299		return NULL;
2300	}
2301
2302	/*
2303	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2304	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2305	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2306	 * using a larger set of nodes after it has established that the
2307	 * allowed per node queues are empty and that nodes are
2308	 * over allocated.
2309	 */
2310	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2311		goto nopage;
 
2312
2313restart:
2314	if (!(gfp_mask & __GFP_NO_KSWAPD))
2315		wake_all_kswapd(order, zonelist, high_zoneidx,
2316						zone_idx(preferred_zone));
 
2317
2318	/*
2319	 * OK, we're below the kswapd watermark and have kicked background
2320	 * reclaim. Now things get more complex, so set up alloc_flags according
2321	 * to how we want to proceed.
2322	 */
2323	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2324
2325	/*
2326	 * Find the true preferred zone if the allocation is unconstrained by
2327	 * cpusets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328	 */
2329	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2330		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2331					&preferred_zone);
2332
2333rebalance:
2334	/* This is the last chance, in general, before the goto nopage. */
2335	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2336			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2337			preferred_zone, migratetype);
2338	if (page)
2339		goto got_pg;
2340
2341	/* Allocate without watermarks if the context allows */
2342	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2343		page = __alloc_pages_high_priority(gfp_mask, order,
2344				zonelist, high_zoneidx, nodemask,
2345				preferred_zone, migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
2346		if (page)
2347			goto got_pg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348	}
2349
2350	/* Atomic allocations - we can't balance anything */
2351	if (!wait)
 
 
 
 
 
2352		goto nopage;
2353
2354	/* Avoid recursion of direct reclaim */
2355	if (current->flags & PF_MEMALLOC)
2356		goto nopage;
2357
2358	/* Avoid allocations with no watermarks from looping endlessly */
2359	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2360		goto nopage;
 
 
2361
2362	/*
2363	 * Try direct compaction. The first pass is asynchronous. Subsequent
2364	 * attempts after direct reclaim are synchronous
2365	 */
2366	page = __alloc_pages_direct_compact(gfp_mask, order,
2367					zonelist, high_zoneidx,
2368					nodemask,
2369					alloc_flags, preferred_zone,
2370					migratetype, sync_migration,
2371					&deferred_compaction,
2372					&did_some_progress);
2373	if (page)
2374		goto got_pg;
2375	sync_migration = true;
 
 
 
2376
2377	/*
2378	 * If compaction is deferred for high-order allocations, it is because
2379	 * sync compaction recently failed. In this is the case and the caller
2380	 * has requested the system not be heavily disrupted, fail the
2381	 * allocation now instead of entering direct reclaim
2382	 */
2383	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2384		goto nopage;
2385
2386	/* Try direct reclaim and then allocating */
2387	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2388					zonelist, high_zoneidx,
2389					nodemask,
2390					alloc_flags, preferred_zone,
2391					migratetype, &did_some_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392	if (page)
2393		goto got_pg;
2394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395	/*
2396	 * If we failed to make any progress reclaiming, then we are
2397	 * running out of options and have to consider going OOM
2398	 */
2399	if (!did_some_progress) {
2400		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2401			if (oom_killer_disabled)
2402				goto nopage;
2403			/* Coredumps can quickly deplete all memory reserves */
2404			if ((current->flags & PF_DUMPCORE) &&
2405			    !(gfp_mask & __GFP_NOFAIL))
2406				goto nopage;
2407			page = __alloc_pages_may_oom(gfp_mask, order,
2408					zonelist, high_zoneidx,
2409					nodemask, preferred_zone,
2410					migratetype);
2411			if (page)
2412				goto got_pg;
2413
2414			if (!(gfp_mask & __GFP_NOFAIL)) {
2415				/*
2416				 * The oom killer is not called for high-order
2417				 * allocations that may fail, so if no progress
2418				 * is being made, there are no other options and
2419				 * retrying is unlikely to help.
2420				 */
2421				if (order > PAGE_ALLOC_COSTLY_ORDER)
2422					goto nopage;
2423				/*
2424				 * The oom killer is not called for lowmem
2425				 * allocations to prevent needlessly killing
2426				 * innocent tasks.
2427				 */
2428				if (high_zoneidx < ZONE_NORMAL)
2429					goto nopage;
2430			}
2431
2432			goto restart;
2433		}
2434	}
 
 
 
 
2435
2436	/* Check if we should retry the allocation */
2437	pages_reclaimed += did_some_progress;
2438	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2439						pages_reclaimed)) {
2440		/* Wait for some write requests to complete then retry */
2441		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2442		goto rebalance;
2443	} else {
2444		/*
2445		 * High-order allocations do not necessarily loop after
2446		 * direct reclaim and reclaim/compaction depends on compaction
2447		 * being called after reclaim so call directly if necessary
 
2448		 */
2449		page = __alloc_pages_direct_compact(gfp_mask, order,
2450					zonelist, high_zoneidx,
2451					nodemask,
2452					alloc_flags, preferred_zone,
2453					migratetype, sync_migration,
2454					&deferred_compaction,
2455					&did_some_progress);
2456		if (page)
2457			goto got_pg;
 
 
 
2458	}
2459
2460nopage:
2461	warn_alloc_failed(gfp_mask, order, NULL);
2462	return page;
2463got_pg:
2464	if (kmemcheck_enabled)
2465		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2466	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467
 
 
 
 
 
 
 
2468}
2469
2470/*
2471 * This is the 'heart' of the zoned buddy allocator.
2472 */
2473struct page *
2474__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2475			struct zonelist *zonelist, nodemask_t *nodemask)
2476{
2477	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2478	struct zone *preferred_zone;
2479	struct page *page = NULL;
2480	int migratetype = allocflags_to_migratetype(gfp_mask);
2481	unsigned int cpuset_mems_cookie;
2482
2483	gfp_mask &= gfp_allowed_mask;
 
 
 
2484
2485	lockdep_trace_alloc(gfp_mask);
2486
2487	might_sleep_if(gfp_mask & __GFP_WAIT);
 
 
 
2488
2489	if (should_fail_alloc_page(gfp_mask, order))
2490		return NULL;
 
 
 
 
 
 
2491
2492	/*
2493	 * Check the zones suitable for the gfp_mask contain at least one
2494	 * valid zone. It's possible to have an empty zonelist as a result
2495	 * of GFP_THISNODE and a memoryless node
2496	 */
2497	if (unlikely(!zonelist->_zonerefs->zone))
2498		return NULL;
2499
2500retry_cpuset:
2501	cpuset_mems_cookie = get_mems_allowed();
2502
2503	/* The preferred zone is used for statistics later */
2504	first_zones_zonelist(zonelist, high_zoneidx,
2505				nodemask ? : &cpuset_current_mems_allowed,
2506				&preferred_zone);
2507	if (!preferred_zone)
2508		goto out;
2509
2510	/* First allocation attempt */
2511	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2512			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2513			preferred_zone, migratetype);
2514	if (unlikely(!page))
2515		page = __alloc_pages_slowpath(gfp_mask, order,
2516				zonelist, high_zoneidx, nodemask,
2517				preferred_zone, migratetype);
2518
2519	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2520
2521out:
2522	/*
2523	 * When updating a task's mems_allowed, it is possible to race with
2524	 * parallel threads in such a way that an allocation can fail while
2525	 * the mask is being updated. If a page allocation is about to fail,
2526	 * check if the cpuset changed during allocation and if so, retry.
2527	 */
2528	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2529		goto retry_cpuset;
2530
2531	return page;
2532}
2533EXPORT_SYMBOL(__alloc_pages_nodemask);
2534
2535/*
2536 * Common helper functions.
2537 */
2538unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2539{
2540	struct page *page;
2541
2542	/*
2543	 * __get_free_pages() returns a 32-bit address, which cannot represent
2544	 * a highmem page
2545	 */
2546	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2547
2548	page = alloc_pages(gfp_mask, order);
2549	if (!page)
2550		return 0;
2551	return (unsigned long) page_address(page);
2552}
2553EXPORT_SYMBOL(__get_free_pages);
2554
2555unsigned long get_zeroed_page(gfp_t gfp_mask)
2556{
2557	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2558}
2559EXPORT_SYMBOL(get_zeroed_page);
2560
2561void __free_pages(struct page *page, unsigned int order)
2562{
2563	if (put_page_testzero(page)) {
2564		if (order == 0)
2565			free_hot_cold_page(page, 0);
2566		else
2567			__free_pages_ok(page, order);
2568	}
2569}
2570
2571EXPORT_SYMBOL(__free_pages);
2572
2573void free_pages(unsigned long addr, unsigned int order)
2574{
2575	if (addr != 0) {
2576		VM_BUG_ON(!virt_addr_valid((void *)addr));
2577		__free_pages(virt_to_page((void *)addr), order);
2578	}
2579}
2580
2581EXPORT_SYMBOL(free_pages);
2582
2583static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584{
2585	if (addr) {
2586		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2587		unsigned long used = addr + PAGE_ALIGN(size);
2588
2589		split_page(virt_to_page((void *)addr), order);
2590		while (used < alloc_end) {
2591			free_page(used);
2592			used += PAGE_SIZE;
2593		}
2594	}
2595	return (void *)addr;
2596}
2597
2598/**
2599 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2600 * @size: the number of bytes to allocate
2601 * @gfp_mask: GFP flags for the allocation
2602 *
2603 * This function is similar to alloc_pages(), except that it allocates the
2604 * minimum number of pages to satisfy the request.  alloc_pages() can only
2605 * allocate memory in power-of-two pages.
2606 *
2607 * This function is also limited by MAX_ORDER.
2608 *
2609 * Memory allocated by this function must be released by free_pages_exact().
2610 */
2611void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2612{
2613	unsigned int order = get_order(size);
2614	unsigned long addr;
2615
2616	addr = __get_free_pages(gfp_mask, order);
2617	return make_alloc_exact(addr, order, size);
2618}
2619EXPORT_SYMBOL(alloc_pages_exact);
2620
2621/**
2622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2623 *			   pages on a node.
2624 * @nid: the preferred node ID where memory should be allocated
2625 * @size: the number of bytes to allocate
2626 * @gfp_mask: GFP flags for the allocation
2627 *
2628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2629 * back.
2630 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2631 * but is not exact.
2632 */
2633void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2634{
2635	unsigned order = get_order(size);
2636	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2637	if (!p)
2638		return NULL;
2639	return make_alloc_exact((unsigned long)page_address(p), order, size);
2640}
2641EXPORT_SYMBOL(alloc_pages_exact_nid);
2642
2643/**
2644 * free_pages_exact - release memory allocated via alloc_pages_exact()
2645 * @virt: the value returned by alloc_pages_exact.
2646 * @size: size of allocation, same value as passed to alloc_pages_exact().
2647 *
2648 * Release the memory allocated by a previous call to alloc_pages_exact.
2649 */
2650void free_pages_exact(void *virt, size_t size)
2651{
2652	unsigned long addr = (unsigned long)virt;
2653	unsigned long end = addr + PAGE_ALIGN(size);
2654
2655	while (addr < end) {
2656		free_page(addr);
2657		addr += PAGE_SIZE;
2658	}
2659}
2660EXPORT_SYMBOL(free_pages_exact);
2661
2662static unsigned int nr_free_zone_pages(int offset)
 
 
 
 
 
 
 
 
 
 
2663{
2664	struct zoneref *z;
2665	struct zone *zone;
2666
2667	/* Just pick one node, since fallback list is circular */
2668	unsigned int sum = 0;
2669
2670	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2671
2672	for_each_zone_zonelist(zone, z, zonelist, offset) {
2673		unsigned long size = zone->present_pages;
2674		unsigned long high = high_wmark_pages(zone);
2675		if (size > high)
2676			sum += size - high;
2677	}
2678
2679	return sum;
2680}
2681
2682/*
2683 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 
 
 
2684 */
2685unsigned int nr_free_buffer_pages(void)
2686{
2687	return nr_free_zone_pages(gfp_zone(GFP_USER));
2688}
2689EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2690
2691/*
2692 * Amount of free RAM allocatable within all zones
 
 
 
2693 */
2694unsigned int nr_free_pagecache_pages(void)
2695{
2696	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2697}
2698
2699static inline void show_node(struct zone *zone)
2700{
2701	if (NUMA_BUILD)
2702		printk("Node %d ", zone_to_nid(zone));
2703}
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705void si_meminfo(struct sysinfo *val)
2706{
2707	val->totalram = totalram_pages;
2708	val->sharedram = 0;
2709	val->freeram = global_page_state(NR_FREE_PAGES);
2710	val->bufferram = nr_blockdev_pages();
2711	val->totalhigh = totalhigh_pages;
2712	val->freehigh = nr_free_highpages();
2713	val->mem_unit = PAGE_SIZE;
2714}
2715
2716EXPORT_SYMBOL(si_meminfo);
2717
2718#ifdef CONFIG_NUMA
2719void si_meminfo_node(struct sysinfo *val, int nid)
2720{
 
 
 
 
2721	pg_data_t *pgdat = NODE_DATA(nid);
2722
2723	val->totalram = pgdat->node_present_pages;
2724	val->freeram = node_page_state(nid, NR_FREE_PAGES);
 
 
 
2725#ifdef CONFIG_HIGHMEM
2726	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2727	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2728			NR_FREE_PAGES);
 
 
 
 
 
 
 
2729#else
2730	val->totalhigh = 0;
2731	val->freehigh = 0;
2732#endif
2733	val->mem_unit = PAGE_SIZE;
2734}
2735#endif
2736
2737/*
2738 * Determine whether the node should be displayed or not, depending on whether
2739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2740 */
2741bool skip_free_areas_node(unsigned int flags, int nid)
2742{
2743	bool ret = false;
2744	unsigned int cpuset_mems_cookie;
2745
2746	if (!(flags & SHOW_MEM_FILTER_NODES))
2747		goto out;
 
 
 
 
 
2748
2749	do {
2750		cpuset_mems_cookie = get_mems_allowed();
2751		ret = !node_isset(nid, cpuset_current_mems_allowed);
2752	} while (!put_mems_allowed(cpuset_mems_cookie));
2753out:
2754	return ret;
2755}
2756
2757#define K(x) ((x) << (PAGE_SHIFT-10))
2758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759/*
2760 * Show free area list (used inside shift_scroll-lock stuff)
2761 * We also calculate the percentage fragmentation. We do this by counting the
2762 * memory on each free list with the exception of the first item on the list.
2763 * Suppresses nodes that are not allowed by current's cpuset if
2764 * SHOW_MEM_FILTER_NODES is passed.
 
 
2765 */
2766void show_free_areas(unsigned int filter)
2767{
 
2768	int cpu;
2769	struct zone *zone;
 
2770
2771	for_each_populated_zone(zone) {
2772		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2773			continue;
2774		show_node(zone);
2775		printk("%s per-cpu:\n", zone->name);
2776
2777		for_each_online_cpu(cpu) {
2778			struct per_cpu_pageset *pageset;
2779
2780			pageset = per_cpu_ptr(zone->pageset, cpu);
2781
2782			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2783			       cpu, pageset->pcp.high,
2784			       pageset->pcp.batch, pageset->pcp.count);
2785		}
2786	}
2787
2788	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2789		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2790		" unevictable:%lu"
2791		" dirty:%lu writeback:%lu unstable:%lu\n"
2792		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2793		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2794		global_page_state(NR_ACTIVE_ANON),
2795		global_page_state(NR_INACTIVE_ANON),
2796		global_page_state(NR_ISOLATED_ANON),
2797		global_page_state(NR_ACTIVE_FILE),
2798		global_page_state(NR_INACTIVE_FILE),
2799		global_page_state(NR_ISOLATED_FILE),
2800		global_page_state(NR_UNEVICTABLE),
2801		global_page_state(NR_FILE_DIRTY),
2802		global_page_state(NR_WRITEBACK),
2803		global_page_state(NR_UNSTABLE_NFS),
2804		global_page_state(NR_FREE_PAGES),
2805		global_page_state(NR_SLAB_RECLAIMABLE),
2806		global_page_state(NR_SLAB_UNRECLAIMABLE),
2807		global_page_state(NR_FILE_MAPPED),
2808		global_page_state(NR_SHMEM),
2809		global_page_state(NR_PAGETABLE),
2810		global_page_state(NR_BOUNCE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2811
2812	for_each_populated_zone(zone) {
2813		int i;
2814
2815		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2816			continue;
 
 
 
 
 
2817		show_node(zone);
2818		printk("%s"
 
2819			" free:%lukB"
2820			" min:%lukB"
2821			" low:%lukB"
2822			" high:%lukB"
2823			" active_anon:%lukB"
2824			" inactive_anon:%lukB"
2825			" active_file:%lukB"
2826			" inactive_file:%lukB"
2827			" unevictable:%lukB"
2828			" isolated(anon):%lukB"
2829			" isolated(file):%lukB"
2830			" present:%lukB"
 
2831			" mlocked:%lukB"
2832			" dirty:%lukB"
2833			" writeback:%lukB"
2834			" mapped:%lukB"
2835			" shmem:%lukB"
2836			" slab_reclaimable:%lukB"
2837			" slab_unreclaimable:%lukB"
2838			" kernel_stack:%lukB"
2839			" pagetables:%lukB"
2840			" unstable:%lukB"
2841			" bounce:%lukB"
2842			" writeback_tmp:%lukB"
2843			" pages_scanned:%lu"
2844			" all_unreclaimable? %s"
2845			"\n",
2846			zone->name,
2847			K(zone_page_state(zone, NR_FREE_PAGES)),
2848			K(min_wmark_pages(zone)),
2849			K(low_wmark_pages(zone)),
2850			K(high_wmark_pages(zone)),
2851			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2852			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2853			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2854			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2855			K(zone_page_state(zone, NR_UNEVICTABLE)),
2856			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2857			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2858			K(zone->present_pages),
 
2859			K(zone_page_state(zone, NR_MLOCK)),
2860			K(zone_page_state(zone, NR_FILE_DIRTY)),
2861			K(zone_page_state(zone, NR_WRITEBACK)),
2862			K(zone_page_state(zone, NR_FILE_MAPPED)),
2863			K(zone_page_state(zone, NR_SHMEM)),
2864			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2865			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2866			zone_page_state(zone, NR_KERNEL_STACK) *
2867				THREAD_SIZE / 1024,
2868			K(zone_page_state(zone, NR_PAGETABLE)),
2869			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2870			K(zone_page_state(zone, NR_BOUNCE)),
2871			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2872			zone->pages_scanned,
2873			(zone->all_unreclaimable ? "yes" : "no")
2874			);
2875		printk("lowmem_reserve[]:");
2876		for (i = 0; i < MAX_NR_ZONES; i++)
2877			printk(" %lu", zone->lowmem_reserve[i]);
2878		printk("\n");
2879	}
2880
2881	for_each_populated_zone(zone) {
2882 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
 
 
2883
2884		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2885			continue;
2886		show_node(zone);
2887		printk("%s: ", zone->name);
2888
2889		spin_lock_irqsave(&zone->lock, flags);
2890		for (order = 0; order < MAX_ORDER; order++) {
2891			nr[order] = zone->free_area[order].nr_free;
 
 
 
2892			total += nr[order] << order;
 
 
 
 
 
 
2893		}
2894		spin_unlock_irqrestore(&zone->lock, flags);
2895		for (order = 0; order < MAX_ORDER; order++)
2896			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2897		printk("= %lukB\n", K(total));
 
 
 
 
2898	}
2899
2900	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
 
 
2901
2902	show_swap_cache_info();
2903}
2904
2905static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2906{
2907	zoneref->zone = zone;
2908	zoneref->zone_idx = zone_idx(zone);
2909}
2910
2911/*
2912 * Builds allocation fallback zone lists.
2913 *
2914 * Add all populated zones of a node to the zonelist.
2915 */
2916static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2917				int nr_zones, enum zone_type zone_type)
2918{
2919	struct zone *zone;
2920
2921	BUG_ON(zone_type >= MAX_NR_ZONES);
2922	zone_type++;
2923
2924	do {
2925		zone_type--;
2926		zone = pgdat->node_zones + zone_type;
2927		if (populated_zone(zone)) {
2928			zoneref_set_zone(zone,
2929				&zonelist->_zonerefs[nr_zones++]);
2930			check_highest_zone(zone_type);
2931		}
 
2932
2933	} while (zone_type);
2934	return nr_zones;
2935}
2936
2937
2938/*
2939 *  zonelist_order:
2940 *  0 = automatic detection of better ordering.
2941 *  1 = order by ([node] distance, -zonetype)
2942 *  2 = order by (-zonetype, [node] distance)
2943 *
2944 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2945 *  the same zonelist. So only NUMA can configure this param.
2946 */
2947#define ZONELIST_ORDER_DEFAULT  0
2948#define ZONELIST_ORDER_NODE     1
2949#define ZONELIST_ORDER_ZONE     2
2950
2951/* zonelist order in the kernel.
2952 * set_zonelist_order() will set this to NODE or ZONE.
2953 */
2954static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2955static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2956
2957
2958#ifdef CONFIG_NUMA
2959/* The value user specified ....changed by config */
2960static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2961/* string for sysctl */
2962#define NUMA_ZONELIST_ORDER_LEN	16
2963char numa_zonelist_order[16] = "default";
2964
2965/*
2966 * interface for configure zonelist ordering.
2967 * command line option "numa_zonelist_order"
2968 *	= "[dD]efault	- default, automatic configuration.
2969 *	= "[nN]ode 	- order by node locality, then by zone within node
2970 *	= "[zZ]one      - order by zone, then by locality within zone
2971 */
2972
2973static int __parse_numa_zonelist_order(char *s)
2974{
2975	if (*s == 'd' || *s == 'D') {
2976		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2977	} else if (*s == 'n' || *s == 'N') {
2978		user_zonelist_order = ZONELIST_ORDER_NODE;
2979	} else if (*s == 'z' || *s == 'Z') {
2980		user_zonelist_order = ZONELIST_ORDER_ZONE;
2981	} else {
2982		printk(KERN_WARNING
2983			"Ignoring invalid numa_zonelist_order value:  "
2984			"%s\n", s);
2985		return -EINVAL;
2986	}
2987	return 0;
2988}
2989
2990static __init int setup_numa_zonelist_order(char *s)
2991{
2992	int ret;
2993
2994	if (!s)
2995		return 0;
2996
2997	ret = __parse_numa_zonelist_order(s);
2998	if (ret == 0)
2999		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3000
3001	return ret;
3002}
3003early_param("numa_zonelist_order", setup_numa_zonelist_order);
3004
 
 
3005/*
3006 * sysctl handler for numa_zonelist_order
3007 */
3008int numa_zonelist_order_handler(ctl_table *table, int write,
3009		void __user *buffer, size_t *length,
3010		loff_t *ppos)
3011{
3012	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3013	int ret;
3014	static DEFINE_MUTEX(zl_order_mutex);
3015
3016	mutex_lock(&zl_order_mutex);
3017	if (write)
3018		strcpy(saved_string, (char*)table->data);
3019	ret = proc_dostring(table, write, buffer, length, ppos);
3020	if (ret)
3021		goto out;
3022	if (write) {
3023		int oldval = user_zonelist_order;
3024		if (__parse_numa_zonelist_order((char*)table->data)) {
3025			/*
3026			 * bogus value.  restore saved string
3027			 */
3028			strncpy((char*)table->data, saved_string,
3029				NUMA_ZONELIST_ORDER_LEN);
3030			user_zonelist_order = oldval;
3031		} else if (oldval != user_zonelist_order) {
3032			mutex_lock(&zonelists_mutex);
3033			build_all_zonelists(NULL);
3034			mutex_unlock(&zonelists_mutex);
3035		}
3036	}
3037out:
3038	mutex_unlock(&zl_order_mutex);
3039	return ret;
3040}
3041
3042
3043#define MAX_NODE_LOAD (nr_online_nodes)
3044static int node_load[MAX_NUMNODES];
3045
3046/**
3047 * find_next_best_node - find the next node that should appear in a given node's fallback list
3048 * @node: node whose fallback list we're appending
3049 * @used_node_mask: nodemask_t of already used nodes
3050 *
3051 * We use a number of factors to determine which is the next node that should
3052 * appear on a given node's fallback list.  The node should not have appeared
3053 * already in @node's fallback list, and it should be the next closest node
3054 * according to the distance array (which contains arbitrary distance values
3055 * from each node to each node in the system), and should also prefer nodes
3056 * with no CPUs, since presumably they'll have very little allocation pressure
3057 * on them otherwise.
3058 * It returns -1 if no node is found.
3059 */
3060static int find_next_best_node(int node, nodemask_t *used_node_mask)
3061{
3062	int n, val;
3063	int min_val = INT_MAX;
3064	int best_node = -1;
3065	const struct cpumask *tmp = cpumask_of_node(0);
3066
3067	/* Use the local node if we haven't already */
3068	if (!node_isset(node, *used_node_mask)) {
3069		node_set(node, *used_node_mask);
3070		return node;
3071	}
3072
3073	for_each_node_state(n, N_HIGH_MEMORY) {
3074
3075		/* Don't want a node to appear more than once */
3076		if (node_isset(n, *used_node_mask))
3077			continue;
3078
3079		/* Use the distance array to find the distance */
3080		val = node_distance(node, n);
3081
3082		/* Penalize nodes under us ("prefer the next node") */
3083		val += (n < node);
3084
3085		/* Give preference to headless and unused nodes */
3086		tmp = cpumask_of_node(n);
3087		if (!cpumask_empty(tmp))
3088			val += PENALTY_FOR_NODE_WITH_CPUS;
3089
3090		/* Slight preference for less loaded node */
3091		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3092		val += node_load[n];
3093
3094		if (val < min_val) {
3095			min_val = val;
3096			best_node = n;
3097		}
3098	}
3099
3100	if (best_node >= 0)
3101		node_set(best_node, *used_node_mask);
3102
3103	return best_node;
3104}
3105
3106
3107/*
3108 * Build zonelists ordered by node and zones within node.
3109 * This results in maximum locality--normal zone overflows into local
3110 * DMA zone, if any--but risks exhausting DMA zone.
3111 */
3112static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
3113{
3114	int j;
3115	struct zonelist *zonelist;
 
 
 
 
 
 
 
3116
3117	zonelist = &pgdat->node_zonelists[0];
3118	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3119		;
3120	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3121							MAX_NR_ZONES - 1);
3122	zonelist->_zonerefs[j].zone = NULL;
3123	zonelist->_zonerefs[j].zone_idx = 0;
3124}
3125
3126/*
3127 * Build gfp_thisnode zonelists
3128 */
3129static void build_thisnode_zonelists(pg_data_t *pgdat)
3130{
3131	int j;
3132	struct zonelist *zonelist;
3133
3134	zonelist = &pgdat->node_zonelists[1];
3135	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3136	zonelist->_zonerefs[j].zone = NULL;
3137	zonelist->_zonerefs[j].zone_idx = 0;
 
3138}
3139
3140/*
3141 * Build zonelists ordered by zone and nodes within zones.
3142 * This results in conserving DMA zone[s] until all Normal memory is
3143 * exhausted, but results in overflowing to remote node while memory
3144 * may still exist in local DMA zone.
3145 */
3146static int node_order[MAX_NUMNODES];
3147
3148static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3149{
3150	int pos, j, node;
3151	int zone_type;		/* needs to be signed */
3152	struct zone *z;
3153	struct zonelist *zonelist;
3154
3155	zonelist = &pgdat->node_zonelists[0];
3156	pos = 0;
3157	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3158		for (j = 0; j < nr_nodes; j++) {
3159			node = node_order[j];
3160			z = &NODE_DATA(node)->node_zones[zone_type];
3161			if (populated_zone(z)) {
3162				zoneref_set_zone(z,
3163					&zonelist->_zonerefs[pos++]);
3164				check_highest_zone(zone_type);
3165			}
3166		}
3167	}
3168	zonelist->_zonerefs[pos].zone = NULL;
3169	zonelist->_zonerefs[pos].zone_idx = 0;
3170}
3171
3172static int default_zonelist_order(void)
3173{
3174	int nid, zone_type;
3175	unsigned long low_kmem_size,total_size;
3176	struct zone *z;
3177	int average_size;
3178	/*
3179         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3180	 * If they are really small and used heavily, the system can fall
3181	 * into OOM very easily.
3182	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3183	 */
3184	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3185	low_kmem_size = 0;
3186	total_size = 0;
3187	for_each_online_node(nid) {
3188		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3189			z = &NODE_DATA(nid)->node_zones[zone_type];
3190			if (populated_zone(z)) {
3191				if (zone_type < ZONE_NORMAL)
3192					low_kmem_size += z->present_pages;
3193				total_size += z->present_pages;
3194			} else if (zone_type == ZONE_NORMAL) {
3195				/*
3196				 * If any node has only lowmem, then node order
3197				 * is preferred to allow kernel allocations
3198				 * locally; otherwise, they can easily infringe
3199				 * on other nodes when there is an abundance of
3200				 * lowmem available to allocate from.
3201				 */
3202				return ZONELIST_ORDER_NODE;
3203			}
3204		}
3205	}
3206	if (!low_kmem_size ||  /* there are no DMA area. */
3207	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3208		return ZONELIST_ORDER_NODE;
3209	/*
3210	 * look into each node's config.
3211  	 * If there is a node whose DMA/DMA32 memory is very big area on
3212 	 * local memory, NODE_ORDER may be suitable.
3213         */
3214	average_size = total_size /
3215				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3216	for_each_online_node(nid) {
3217		low_kmem_size = 0;
3218		total_size = 0;
3219		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3220			z = &NODE_DATA(nid)->node_zones[zone_type];
3221			if (populated_zone(z)) {
3222				if (zone_type < ZONE_NORMAL)
3223					low_kmem_size += z->present_pages;
3224				total_size += z->present_pages;
3225			}
3226		}
3227		if (low_kmem_size &&
3228		    total_size > average_size && /* ignore small node */
3229		    low_kmem_size > total_size * 70/100)
3230			return ZONELIST_ORDER_NODE;
3231	}
3232	return ZONELIST_ORDER_ZONE;
3233}
3234
3235static void set_zonelist_order(void)
3236{
3237	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3238		current_zonelist_order = default_zonelist_order();
3239	else
3240		current_zonelist_order = user_zonelist_order;
3241}
3242
3243static void build_zonelists(pg_data_t *pgdat)
3244{
3245	int j, node, load;
3246	enum zone_type i;
3247	nodemask_t used_mask;
3248	int local_node, prev_node;
3249	struct zonelist *zonelist;
3250	int order = current_zonelist_order;
3251
3252	/* initialize zonelists */
3253	for (i = 0; i < MAX_ZONELISTS; i++) {
3254		zonelist = pgdat->node_zonelists + i;
3255		zonelist->_zonerefs[0].zone = NULL;
3256		zonelist->_zonerefs[0].zone_idx = 0;
3257	}
3258
3259	/* NUMA-aware ordering of nodes */
3260	local_node = pgdat->node_id;
3261	load = nr_online_nodes;
3262	prev_node = local_node;
3263	nodes_clear(used_mask);
3264
3265	memset(node_order, 0, sizeof(node_order));
3266	j = 0;
3267
3268	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3269		int distance = node_distance(local_node, node);
3270
3271		/*
3272		 * If another node is sufficiently far away then it is better
3273		 * to reclaim pages in a zone before going off node.
3274		 */
3275		if (distance > RECLAIM_DISTANCE)
3276			zone_reclaim_mode = 1;
3277
3278		/*
3279		 * We don't want to pressure a particular node.
3280		 * So adding penalty to the first node in same
3281		 * distance group to make it round-robin.
3282		 */
3283		if (distance != node_distance(local_node, prev_node))
 
3284			node_load[node] = load;
3285
 
3286		prev_node = node;
3287		load--;
3288		if (order == ZONELIST_ORDER_NODE)
3289			build_zonelists_in_node_order(pgdat, node);
3290		else
3291			node_order[j++] = node;	/* remember order */
3292	}
3293
3294	if (order == ZONELIST_ORDER_ZONE) {
3295		/* calculate node order -- i.e., DMA last! */
3296		build_zonelists_in_zone_order(pgdat, j);
3297	}
3298
 
3299	build_thisnode_zonelists(pgdat);
3300}
3301
3302/* Construct the zonelist performance cache - see further mmzone.h */
3303static void build_zonelist_cache(pg_data_t *pgdat)
3304{
3305	struct zonelist *zonelist;
3306	struct zonelist_cache *zlc;
3307	struct zoneref *z;
3308
3309	zonelist = &pgdat->node_zonelists[0];
3310	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3311	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3312	for (z = zonelist->_zonerefs; z->zone; z++)
3313		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3314}
3315
3316#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3317/*
3318 * Return node id of node used for "local" allocations.
3319 * I.e., first node id of first zone in arg node's generic zonelist.
3320 * Used for initializing percpu 'numa_mem', which is used primarily
3321 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3322 */
3323int local_memory_node(int node)
3324{
3325	struct zone *zone;
3326
3327	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3328				   gfp_zone(GFP_KERNEL),
3329				   NULL,
3330				   &zone);
3331	return zone->node;
3332}
3333#endif
3334
 
 
3335#else	/* CONFIG_NUMA */
3336
3337static void set_zonelist_order(void)
3338{
3339	current_zonelist_order = ZONELIST_ORDER_ZONE;
3340}
3341
3342static void build_zonelists(pg_data_t *pgdat)
3343{
3344	int node, local_node;
3345	enum zone_type j;
3346	struct zonelist *zonelist;
3347
3348	local_node = pgdat->node_id;
3349
3350	zonelist = &pgdat->node_zonelists[0];
3351	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
 
3352
3353	/*
3354	 * Now we build the zonelist so that it contains the zones
3355	 * of all the other nodes.
3356	 * We don't want to pressure a particular node, so when
3357	 * building the zones for node N, we make sure that the
3358	 * zones coming right after the local ones are those from
3359	 * node N+1 (modulo N)
3360	 */
3361	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3362		if (!node_online(node))
3363			continue;
3364		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3365							MAX_NR_ZONES - 1);
3366	}
3367	for (node = 0; node < local_node; node++) {
3368		if (!node_online(node))
3369			continue;
3370		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3371							MAX_NR_ZONES - 1);
3372	}
3373
3374	zonelist->_zonerefs[j].zone = NULL;
3375	zonelist->_zonerefs[j].zone_idx = 0;
3376}
3377
3378/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3379static void build_zonelist_cache(pg_data_t *pgdat)
3380{
3381	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3382}
3383
3384#endif	/* CONFIG_NUMA */
3385
3386/*
3387 * Boot pageset table. One per cpu which is going to be used for all
3388 * zones and all nodes. The parameters will be set in such a way
3389 * that an item put on a list will immediately be handed over to
3390 * the buddy list. This is safe since pageset manipulation is done
3391 * with interrupts disabled.
3392 *
3393 * The boot_pagesets must be kept even after bootup is complete for
3394 * unused processors and/or zones. They do play a role for bootstrapping
3395 * hotplugged processors.
3396 *
3397 * zoneinfo_show() and maybe other functions do
3398 * not check if the processor is online before following the pageset pointer.
3399 * Other parts of the kernel may not check if the zone is available.
3400 */
3401static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3402static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3403static void setup_zone_pageset(struct zone *zone);
3404
3405/*
3406 * Global mutex to protect against size modification of zonelists
3407 * as well as to serialize pageset setup for the new populated zone.
3408 */
3409DEFINE_MUTEX(zonelists_mutex);
3410
3411/* return values int ....just for stop_machine() */
3412static __init_refok int __build_all_zonelists(void *data)
3413{
3414	int nid;
3415	int cpu;
 
 
 
 
3416
3417#ifdef CONFIG_NUMA
3418	memset(node_load, 0, sizeof(node_load));
3419#endif
3420	for_each_online_node(nid) {
3421		pg_data_t *pgdat = NODE_DATA(nid);
3422
3423		build_zonelists(pgdat);
3424		build_zonelist_cache(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425	}
3426
 
 
 
 
 
 
 
 
 
 
3427	/*
3428	 * Initialize the boot_pagesets that are going to be used
3429	 * for bootstrapping processors. The real pagesets for
3430	 * each zone will be allocated later when the per cpu
3431	 * allocator is available.
3432	 *
3433	 * boot_pagesets are used also for bootstrapping offline
3434	 * cpus if the system is already booted because the pagesets
3435	 * are needed to initialize allocators on a specific cpu too.
3436	 * F.e. the percpu allocator needs the page allocator which
3437	 * needs the percpu allocator in order to allocate its pagesets
3438	 * (a chicken-egg dilemma).
3439	 */
3440	for_each_possible_cpu(cpu) {
3441		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3442
3443#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3444		/*
3445		 * We now know the "local memory node" for each node--
3446		 * i.e., the node of the first zone in the generic zonelist.
3447		 * Set up numa_mem percpu variable for on-line cpus.  During
3448		 * boot, only the boot cpu should be on-line;  we'll init the
3449		 * secondary cpus' numa_mem as they come on-line.  During
3450		 * node/memory hotplug, we'll fixup all on-line cpus.
3451		 */
3452		if (cpu_online(cpu))
3453			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3454#endif
3455	}
3456
3457	return 0;
3458}
3459
3460/*
3461 * Called with zonelists_mutex held always
3462 * unless system_state == SYSTEM_BOOTING.
 
 
 
3463 */
3464void __ref build_all_zonelists(void *data)
3465{
3466	set_zonelist_order();
3467
3468	if (system_state == SYSTEM_BOOTING) {
3469		__build_all_zonelists(NULL);
3470		mminit_verify_zonelist();
3471		cpuset_init_current_mems_allowed();
3472	} else {
3473		/* we have to stop all cpus to guarantee there is no user
3474		   of zonelist */
3475#ifdef CONFIG_MEMORY_HOTPLUG
3476		if (data)
3477			setup_zone_pageset((struct zone *)data);
3478#endif
3479		stop_machine(__build_all_zonelists, NULL, NULL);
3480		/* cpuset refresh routine should be here */
3481	}
3482	vm_total_pages = nr_free_pagecache_pages();
3483	/*
3484	 * Disable grouping by mobility if the number of pages in the
3485	 * system is too low to allow the mechanism to work. It would be
3486	 * more accurate, but expensive to check per-zone. This check is
3487	 * made on memory-hotadd so a system can start with mobility
3488	 * disabled and enable it later
3489	 */
3490	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3491		page_group_by_mobility_disabled = 1;
3492	else
3493		page_group_by_mobility_disabled = 0;
3494
3495	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3496		"Total pages: %ld\n",
3497			nr_online_nodes,
3498			zonelist_order_name[current_zonelist_order],
3499			page_group_by_mobility_disabled ? "off" : "on",
3500			vm_total_pages);
3501#ifdef CONFIG_NUMA
3502	printk("Policy zone: %s\n", zone_names[policy_zone]);
3503#endif
3504}
3505
3506/*
3507 * Helper functions to size the waitqueue hash table.
3508 * Essentially these want to choose hash table sizes sufficiently
3509 * large so that collisions trying to wait on pages are rare.
3510 * But in fact, the number of active page waitqueues on typical
3511 * systems is ridiculously low, less than 200. So this is even
3512 * conservative, even though it seems large.
3513 *
3514 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3515 * waitqueues, i.e. the size of the waitq table given the number of pages.
3516 */
3517#define PAGES_PER_WAITQUEUE	256
3518
3519#ifndef CONFIG_MEMORY_HOTPLUG
3520static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3521{
3522	unsigned long size = 1;
 
 
 
 
 
 
 
3523
3524	pages /= PAGES_PER_WAITQUEUE;
3525
3526	while (size < pages)
3527		size <<= 1;
3528
3529	/*
3530	 * Once we have dozens or even hundreds of threads sleeping
3531	 * on IO we've got bigger problems than wait queue collision.
3532	 * Limit the size of the wait table to a reasonable size.
3533	 */
3534	size = min(size, 4096UL);
3535
3536	return max(size, 4UL);
3537}
3538#else
3539/*
3540 * A zone's size might be changed by hot-add, so it is not possible to determine
3541 * a suitable size for its wait_table.  So we use the maximum size now.
3542 *
3543 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3544 *
3545 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3546 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3547 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3548 *
3549 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3550 * or more by the traditional way. (See above).  It equals:
3551 *
3552 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3553 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3554 *    powerpc (64K page size)             : =  (32G +16M)byte.
3555 */
3556static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3557{
3558	return 4096UL;
3559}
3560#endif
3561
3562/*
3563 * This is an integer logarithm so that shifts can be used later
3564 * to extract the more random high bits from the multiplicative
3565 * hash function before the remainder is taken.
3566 */
3567static inline unsigned long wait_table_bits(unsigned long size)
3568{
3569	return ffz(~size);
3570}
3571
3572#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3573
3574/*
3575 * Check if a pageblock contains reserved pages
3576 */
3577static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3578{
3579	unsigned long pfn;
3580
3581	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3582		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3583			return 1;
3584	}
3585	return 0;
3586}
 
3587
3588/*
3589 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3590 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3591 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3592 * higher will lead to a bigger reserve which will get freed as contiguous
3593 * blocks as reclaim kicks in
3594 */
3595static void setup_zone_migrate_reserve(struct zone *zone)
3596{
3597	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3598	struct page *page;
3599	unsigned long block_migratetype;
3600	int reserve;
3601
3602	/*
3603	 * Get the start pfn, end pfn and the number of blocks to reserve
3604	 * We have to be careful to be aligned to pageblock_nr_pages to
3605	 * make sure that we always check pfn_valid for the first page in
3606	 * the block.
3607	 */
3608	start_pfn = zone->zone_start_pfn;
3609	end_pfn = start_pfn + zone->spanned_pages;
3610	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3611	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3612							pageblock_order;
3613
3614	/*
3615	 * Reserve blocks are generally in place to help high-order atomic
3616	 * allocations that are short-lived. A min_free_kbytes value that
3617	 * would result in more than 2 reserve blocks for atomic allocations
3618	 * is assumed to be in place to help anti-fragmentation for the
3619	 * future allocation of hugepages at runtime.
3620	 */
3621	reserve = min(2, reserve);
3622
3623	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3624		if (!pfn_valid(pfn))
3625			continue;
3626		page = pfn_to_page(pfn);
3627
3628		/* Watch out for overlapping nodes */
3629		if (page_to_nid(page) != zone_to_nid(zone))
3630			continue;
 
 
3631
3632		block_migratetype = get_pageblock_migratetype(page);
3633
3634		/* Only test what is necessary when the reserves are not met */
3635		if (reserve > 0) {
3636			/*
3637			 * Blocks with reserved pages will never free, skip
3638			 * them.
3639			 */
3640			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3641			if (pageblock_is_reserved(pfn, block_end_pfn))
3642				continue;
3643
3644			/* If this block is reserved, account for it */
3645			if (block_migratetype == MIGRATE_RESERVE) {
3646				reserve--;
3647				continue;
3648			}
3649
3650			/* Suitable for reserving if this block is movable */
3651			if (block_migratetype == MIGRATE_MOVABLE) {
3652				set_pageblock_migratetype(page,
3653							MIGRATE_RESERVE);
3654				move_freepages_block(zone, page,
3655							MIGRATE_RESERVE);
3656				reserve--;
3657				continue;
3658			}
3659		}
 
3660
3661		/*
3662		 * If the reserve is met and this is a previous reserved block,
3663		 * take it back
3664		 */
3665		if (block_migratetype == MIGRATE_RESERVE) {
3666			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3667			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3668		}
3669	}
3670}
3671
3672/*
3673 * Initially all pages are reserved - free ones are freed
3674 * up by free_all_bootmem() once the early boot process is
3675 * done. Non-atomic initialization, single-pass.
3676 */
3677void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3678		unsigned long start_pfn, enum memmap_context context)
3679{
3680	struct page *page;
3681	unsigned long end_pfn = start_pfn + size;
3682	unsigned long pfn;
3683	struct zone *z;
3684
3685	if (highest_memmap_pfn < end_pfn - 1)
3686		highest_memmap_pfn = end_pfn - 1;
3687
3688	z = &NODE_DATA(nid)->node_zones[zone];
3689	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3690		/*
3691		 * There can be holes in boot-time mem_map[]s
3692		 * handed to this function.  They do not
3693		 * exist on hotplugged memory.
3694		 */
3695		if (context == MEMMAP_EARLY) {
3696			if (!early_pfn_valid(pfn))
3697				continue;
3698			if (!early_pfn_in_nid(pfn, nid))
3699				continue;
3700		}
3701		page = pfn_to_page(pfn);
3702		set_page_links(page, zone, nid, pfn);
3703		mminit_verify_page_links(page, zone, nid, pfn);
3704		init_page_count(page);
3705		reset_page_mapcount(page);
3706		SetPageReserved(page);
3707		/*
3708		 * Mark the block movable so that blocks are reserved for
3709		 * movable at startup. This will force kernel allocations
3710		 * to reserve their blocks rather than leaking throughout
3711		 * the address space during boot when many long-lived
3712		 * kernel allocations are made. Later some blocks near
3713		 * the start are marked MIGRATE_RESERVE by
3714		 * setup_zone_migrate_reserve()
3715		 *
3716		 * bitmap is created for zone's valid pfn range. but memmap
3717		 * can be created for invalid pages (for alignment)
3718		 * check here not to call set_pageblock_migratetype() against
3719		 * pfn out of zone.
 
 
 
3720		 */
3721		if ((z->zone_start_pfn <= pfn)
3722		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3723		    && !(pfn & (pageblock_nr_pages - 1)))
3724			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3725
3726		INIT_LIST_HEAD(&page->lru);
3727#ifdef WANT_PAGE_VIRTUAL
3728		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3729		if (!is_highmem_idx(zone))
3730			set_page_address(page, __va(pfn << PAGE_SHIFT));
3731#endif
3732	}
3733}
3734
3735static void __meminit zone_init_free_lists(struct zone *zone)
3736{
3737	int order, t;
3738	for_each_migratetype_order(order, t) {
3739		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3740		zone->free_area[order].nr_free = 0;
3741	}
3742}
3743
3744#ifndef __HAVE_ARCH_MEMMAP_INIT
3745#define memmap_init(size, nid, zone, start_pfn) \
3746	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3747#endif
3748
3749static int zone_batchsize(struct zone *zone)
3750{
3751#ifdef CONFIG_MMU
3752	int batch;
3753
3754	/*
3755	 * The per-cpu-pages pools are set to around 1000th of the
3756	 * size of the zone.  But no more than 1/2 of a meg.
3757	 *
3758	 * OK, so we don't know how big the cache is.  So guess.
3759	 */
3760	batch = zone->present_pages / 1024;
3761	if (batch * PAGE_SIZE > 512 * 1024)
3762		batch = (512 * 1024) / PAGE_SIZE;
3763	batch /= 4;		/* We effectively *= 4 below */
3764	if (batch < 1)
3765		batch = 1;
3766
3767	/*
3768	 * Clamp the batch to a 2^n - 1 value. Having a power
3769	 * of 2 value was found to be more likely to have
3770	 * suboptimal cache aliasing properties in some cases.
3771	 *
3772	 * For example if 2 tasks are alternately allocating
3773	 * batches of pages, one task can end up with a lot
3774	 * of pages of one half of the possible page colors
3775	 * and the other with pages of the other colors.
3776	 */
3777	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3778
3779	return batch;
3780
3781#else
3782	/* The deferral and batching of frees should be suppressed under NOMMU
3783	 * conditions.
3784	 *
3785	 * The problem is that NOMMU needs to be able to allocate large chunks
3786	 * of contiguous memory as there's no hardware page translation to
3787	 * assemble apparent contiguous memory from discontiguous pages.
3788	 *
3789	 * Queueing large contiguous runs of pages for batching, however,
3790	 * causes the pages to actually be freed in smaller chunks.  As there
3791	 * can be a significant delay between the individual batches being
3792	 * recycled, this leads to the once large chunks of space being
3793	 * fragmented and becoming unavailable for high-order allocations.
3794	 */
3795	return 0;
3796#endif
3797}
3798
3799static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3800{
3801	struct per_cpu_pages *pcp;
3802	int migratetype;
3803
3804	memset(p, 0, sizeof(*p));
3805
3806	pcp = &p->pcp;
3807	pcp->count = 0;
3808	pcp->high = 6 * batch;
3809	pcp->batch = max(1UL, 1 * batch);
3810	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3811		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3812}
3813
 
 
 
 
 
 
3814/*
3815 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3816 * to the value high for the pageset p.
3817 */
3818
3819static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3820				unsigned long high)
3821{
3822	struct per_cpu_pages *pcp;
 
 
3823
3824	pcp = &p->pcp;
3825	pcp->high = high;
3826	pcp->batch = max(1UL, high/4);
3827	if ((high/4) > (PAGE_SHIFT * 8))
3828		pcp->batch = PAGE_SHIFT * 8;
3829}
3830
3831static void setup_zone_pageset(struct zone *zone)
 
3832{
3833	int cpu;
 
 
 
 
 
 
3834
3835	zone->pageset = alloc_percpu(struct per_cpu_pageset);
 
 
3836
3837	for_each_possible_cpu(cpu) {
3838		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
 
3839
3840		setup_pageset(pcp, zone_batchsize(zone));
3841
3842		if (percpu_pagelist_fraction)
3843			setup_pagelist_highmark(pcp,
3844				(zone->present_pages /
3845					percpu_pagelist_fraction));
3846	}
3847}
3848
3849/*
3850 * Allocate per cpu pagesets and initialize them.
3851 * Before this call only boot pagesets were available.
3852 */
3853void __init setup_per_cpu_pageset(void)
3854{
 
3855	struct zone *zone;
3856
3857	for_each_populated_zone(zone)
3858		setup_zone_pageset(zone);
3859}
3860
3861static noinline __init_refok
3862int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3863{
3864	int i;
3865	struct pglist_data *pgdat = zone->zone_pgdat;
3866	size_t alloc_size;
3867
3868	/*
3869	 * The per-page waitqueue mechanism uses hashed waitqueues
3870	 * per zone.
3871	 */
3872	zone->wait_table_hash_nr_entries =
3873		 wait_table_hash_nr_entries(zone_size_pages);
3874	zone->wait_table_bits =
3875		wait_table_bits(zone->wait_table_hash_nr_entries);
3876	alloc_size = zone->wait_table_hash_nr_entries
3877					* sizeof(wait_queue_head_t);
3878
3879	if (!slab_is_available()) {
3880		zone->wait_table = (wait_queue_head_t *)
3881			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3882	} else {
3883		/*
3884		 * This case means that a zone whose size was 0 gets new memory
3885		 * via memory hot-add.
3886		 * But it may be the case that a new node was hot-added.  In
3887		 * this case vmalloc() will not be able to use this new node's
3888		 * memory - this wait_table must be initialized to use this new
3889		 * node itself as well.
3890		 * To use this new node's memory, further consideration will be
3891		 * necessary.
3892		 */
3893		zone->wait_table = vmalloc(alloc_size);
3894	}
3895	if (!zone->wait_table)
3896		return -ENOMEM;
3897
3898	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3899		init_waitqueue_head(zone->wait_table + i);
3900
3901	return 0;
3902}
3903
3904static int __zone_pcp_update(void *data)
3905{
3906	struct zone *zone = data;
3907	int cpu;
3908	unsigned long batch = zone_batchsize(zone), flags;
3909
3910	for_each_possible_cpu(cpu) {
3911		struct per_cpu_pageset *pset;
3912		struct per_cpu_pages *pcp;
3913
3914		pset = per_cpu_ptr(zone->pageset, cpu);
3915		pcp = &pset->pcp;
3916
3917		local_irq_save(flags);
3918		free_pcppages_bulk(zone, pcp->count, pcp);
3919		setup_pageset(pset, batch);
3920		local_irq_restore(flags);
3921	}
3922	return 0;
3923}
3924
3925void zone_pcp_update(struct zone *zone)
3926{
3927	stop_machine(__zone_pcp_update, zone, NULL);
3928}
3929
3930static __meminit void zone_pcp_init(struct zone *zone)
3931{
3932	/*
3933	 * per cpu subsystem is not up at this point. The following code
3934	 * relies on the ability of the linker to provide the
3935	 * offset of a (static) per cpu variable into the per cpu area.
3936	 */
3937	zone->pageset = &boot_pageset;
3938
3939	if (zone->present_pages)
3940		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3941			zone->name, zone->present_pages,
3942					 zone_batchsize(zone));
3943}
3944
3945__meminit int init_currently_empty_zone(struct zone *zone,
3946					unsigned long zone_start_pfn,
3947					unsigned long size,
3948					enum memmap_context context)
3949{
3950	struct pglist_data *pgdat = zone->zone_pgdat;
3951	int ret;
3952	ret = zone_wait_table_init(zone, size);
3953	if (ret)
3954		return ret;
3955	pgdat->nr_zones = zone_idx(zone) + 1;
3956
3957	zone->zone_start_pfn = zone_start_pfn;
3958
3959	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3960			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3961			pgdat->node_id,
3962			(unsigned long)zone_idx(zone),
3963			zone_start_pfn, (zone_start_pfn + size));
3964
3965	zone_init_free_lists(zone);
3966
3967	return 0;
3968}
3969
3970#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3971#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 
3972/*
3973 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3974 * Architectures may implement their own version but if add_active_range()
3975 * was used and there are no special requirements, this is a convenient
3976 * alternative
3977 */
3978int __meminit __early_pfn_to_nid(unsigned long pfn)
 
3979{
3980	unsigned long start_pfn, end_pfn;
3981	int i, nid;
3982
3983	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3984		if (start_pfn <= pfn && pfn < end_pfn)
3985			return nid;
3986	/* This is a memory hole */
3987	return -1;
3988}
3989#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3990
3991int __meminit early_pfn_to_nid(unsigned long pfn)
3992{
3993	int nid;
3994
3995	nid = __early_pfn_to_nid(pfn);
3996	if (nid >= 0)
3997		return nid;
3998	/* just returns 0 */
3999	return 0;
4000}
4001
4002#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4003bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4004{
4005	int nid;
 
 
4006
4007	nid = __early_pfn_to_nid(pfn);
4008	if (nid >= 0 && nid != node)
4009		return false;
4010	return true;
4011}
4012#endif
4013
4014/**
4015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4018 *
4019 * If an architecture guarantees that all ranges registered with
4020 * add_active_ranges() contain no holes and may be freed, this
4021 * this function may be used instead of calling free_bootmem() manually.
4022 */
4023void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4024{
4025	unsigned long start_pfn, end_pfn;
4026	int i, this_nid;
4027
4028	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4029		start_pfn = min(start_pfn, max_low_pfn);
4030		end_pfn = min(end_pfn, max_low_pfn);
4031
4032		if (start_pfn < end_pfn)
4033			free_bootmem_node(NODE_DATA(this_nid),
4034					  PFN_PHYS(start_pfn),
4035					  (end_pfn - start_pfn) << PAGE_SHIFT);
4036	}
4037}
4038
4039/**
4040 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4041 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4042 *
4043 * If an architecture guarantees that all ranges registered with
4044 * add_active_ranges() contain no holes and may be freed, this
4045 * function may be used instead of calling memory_present() manually.
4046 */
4047void __init sparse_memory_present_with_active_regions(int nid)
4048{
4049	unsigned long start_pfn, end_pfn;
4050	int i, this_nid;
4051
4052	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4053		memory_present(this_nid, start_pfn, end_pfn);
4054}
4055
4056/**
4057 * get_pfn_range_for_nid - Return the start and end page frames for a node
4058 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4059 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4060 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4061 *
4062 * It returns the start and end page frame of a node based on information
4063 * provided by an arch calling add_active_range(). If called for a node
4064 * with no available memory, a warning is printed and the start and end
4065 * PFNs will be 0.
4066 */
4067void __meminit get_pfn_range_for_nid(unsigned int nid,
4068			unsigned long *start_pfn, unsigned long *end_pfn)
4069{
4070	unsigned long this_start_pfn, this_end_pfn;
4071	int i;
4072
4073	*start_pfn = -1UL;
4074	*end_pfn = 0;
4075
4076	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4077		*start_pfn = min(*start_pfn, this_start_pfn);
4078		*end_pfn = max(*end_pfn, this_end_pfn);
4079	}
4080
4081	if (*start_pfn == -1UL)
4082		*start_pfn = 0;
4083}
4084
4085/*
4086 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4087 * assumption is made that zones within a node are ordered in monotonic
4088 * increasing memory addresses so that the "highest" populated zone is used
4089 */
4090static void __init find_usable_zone_for_movable(void)
4091{
4092	int zone_index;
4093	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4094		if (zone_index == ZONE_MOVABLE)
4095			continue;
4096
4097		if (arch_zone_highest_possible_pfn[zone_index] >
4098				arch_zone_lowest_possible_pfn[zone_index])
4099			break;
4100	}
4101
4102	VM_BUG_ON(zone_index == -1);
4103	movable_zone = zone_index;
4104}
4105
4106/*
4107 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4108 * because it is sized independent of architecture. Unlike the other zones,
4109 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4110 * in each node depending on the size of each node and how evenly kernelcore
4111 * is distributed. This helper function adjusts the zone ranges
4112 * provided by the architecture for a given node by using the end of the
4113 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4114 * zones within a node are in order of monotonic increases memory addresses
4115 */
4116static void __meminit adjust_zone_range_for_zone_movable(int nid,
4117					unsigned long zone_type,
4118					unsigned long node_start_pfn,
4119					unsigned long node_end_pfn,
4120					unsigned long *zone_start_pfn,
4121					unsigned long *zone_end_pfn)
4122{
4123	/* Only adjust if ZONE_MOVABLE is on this node */
4124	if (zone_movable_pfn[nid]) {
4125		/* Size ZONE_MOVABLE */
4126		if (zone_type == ZONE_MOVABLE) {
4127			*zone_start_pfn = zone_movable_pfn[nid];
4128			*zone_end_pfn = min(node_end_pfn,
4129				arch_zone_highest_possible_pfn[movable_zone]);
4130
4131		/* Adjust for ZONE_MOVABLE starting within this range */
4132		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4133				*zone_end_pfn > zone_movable_pfn[nid]) {
 
4134			*zone_end_pfn = zone_movable_pfn[nid];
4135
4136		/* Check if this whole range is within ZONE_MOVABLE */
4137		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4138			*zone_start_pfn = *zone_end_pfn;
4139	}
4140}
4141
4142/*
4143 * Return the number of pages a zone spans in a node, including holes
4144 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4145 */
4146static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4147					unsigned long zone_type,
 
 
 
 
4148					unsigned long *ignored)
4149{
4150	unsigned long node_start_pfn, node_end_pfn;
4151	unsigned long zone_start_pfn, zone_end_pfn;
 
4152
4153	/* Get the start and end of the node and zone */
4154	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4155	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4156	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4157	adjust_zone_range_for_zone_movable(nid, zone_type,
4158				node_start_pfn, node_end_pfn,
4159				&zone_start_pfn, &zone_end_pfn);
4160
4161	/* Check that this node has pages within the zone's required range */
4162	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4163		return 0;
4164
4165	/* Move the zone boundaries inside the node if necessary */
4166	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4167	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4168
4169	/* Return the spanned pages */
4170	return zone_end_pfn - zone_start_pfn;
4171}
4172
4173/*
4174 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4175 * then all holes in the requested range will be accounted for.
4176 */
4177unsigned long __meminit __absent_pages_in_range(int nid,
4178				unsigned long range_start_pfn,
4179				unsigned long range_end_pfn)
4180{
4181	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4182	unsigned long start_pfn, end_pfn;
4183	int i;
4184
4185	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4186		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4187		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4188		nr_absent -= end_pfn - start_pfn;
4189	}
4190	return nr_absent;
4191}
4192
4193/**
4194 * absent_pages_in_range - Return number of page frames in holes within a range
4195 * @start_pfn: The start PFN to start searching for holes
4196 * @end_pfn: The end PFN to stop searching for holes
4197 *
4198 * It returns the number of pages frames in memory holes within a range.
4199 */
4200unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4201							unsigned long end_pfn)
4202{
4203	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4204}
4205
4206/* Return the number of page frames in holes in a zone on a node */
4207static unsigned long __meminit zone_absent_pages_in_node(int nid,
4208					unsigned long zone_type,
 
 
4209					unsigned long *ignored)
4210{
4211	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4212	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4213	unsigned long node_start_pfn, node_end_pfn;
4214	unsigned long zone_start_pfn, zone_end_pfn;
 
 
 
 
 
4215
4216	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4217	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4218	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4219
4220	adjust_zone_range_for_zone_movable(nid, zone_type,
4221			node_start_pfn, node_end_pfn,
4222			&zone_start_pfn, &zone_end_pfn);
4223	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4224}
4225
4226#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4227static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4228					unsigned long zone_type,
 
 
 
 
4229					unsigned long *zones_size)
4230{
 
 
 
 
 
 
 
 
4231	return zones_size[zone_type];
4232}
4233
4234static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4235						unsigned long zone_type,
 
 
4236						unsigned long *zholes_size)
4237{
4238	if (!zholes_size)
4239		return 0;
4240
4241	return zholes_size[zone_type];
4242}
4243
4244#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4245
4246static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4247		unsigned long *zones_size, unsigned long *zholes_size)
 
 
 
4248{
4249	unsigned long realtotalpages, totalpages = 0;
4250	enum zone_type i;
4251
4252	for (i = 0; i < MAX_NR_ZONES; i++)
4253		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4254								zones_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4255	pgdat->node_spanned_pages = totalpages;
4256
4257	realtotalpages = totalpages;
4258	for (i = 0; i < MAX_NR_ZONES; i++)
4259		realtotalpages -=
4260			zone_absent_pages_in_node(pgdat->node_id, i,
4261								zholes_size);
4262	pgdat->node_present_pages = realtotalpages;
4263	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4264							realtotalpages);
4265}
4266
4267#ifndef CONFIG_SPARSEMEM
4268/*
4269 * Calculate the size of the zone->blockflags rounded to an unsigned long
4270 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4271 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4272 * round what is now in bits to nearest long in bits, then return it in
4273 * bytes.
4274 */
4275static unsigned long __init usemap_size(unsigned long zonesize)
4276{
4277	unsigned long usemapsize;
4278
 
4279	usemapsize = roundup(zonesize, pageblock_nr_pages);
4280	usemapsize = usemapsize >> pageblock_order;
4281	usemapsize *= NR_PAGEBLOCK_BITS;
4282	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4283
4284	return usemapsize / 8;
4285}
4286
4287static void __init setup_usemap(struct pglist_data *pgdat,
4288				struct zone *zone, unsigned long zonesize)
 
 
4289{
4290	unsigned long usemapsize = usemap_size(zonesize);
4291	zone->pageblock_flags = NULL;
4292	if (usemapsize)
4293		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4294								   usemapsize);
 
4295}
4296#else
4297static inline void setup_usemap(struct pglist_data *pgdat,
4298				struct zone *zone, unsigned long zonesize) {}
4299#endif /* CONFIG_SPARSEMEM */
4300
4301#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4302
4303/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4304void __init set_pageblock_order(void)
4305{
4306	unsigned int order;
4307
4308	/* Check that pageblock_nr_pages has not already been setup */
4309	if (pageblock_order)
4310		return;
4311
4312	if (HPAGE_SHIFT > PAGE_SHIFT)
4313		order = HUGETLB_PAGE_ORDER;
4314	else
4315		order = MAX_ORDER - 1;
4316
4317	/*
4318	 * Assume the largest contiguous order of interest is a huge page.
4319	 * This value may be variable depending on boot parameters on IA64 and
4320	 * powerpc.
4321	 */
4322	pageblock_order = order;
4323}
4324#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4325
4326/*
4327 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4328 * is unused as pageblock_order is set at compile-time. See
4329 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4330 * the kernel config
4331 */
4332void __init set_pageblock_order(void)
4333{
4334}
4335
4336#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4338/*
4339 * Set up the zone data structures:
4340 *   - mark all pages reserved
4341 *   - mark all memory queues empty
4342 *   - clear the memory bitmaps
 
 
4343 */
4344static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4345		unsigned long *zones_size, unsigned long *zholes_size)
4346{
4347	enum zone_type j;
4348	int nid = pgdat->node_id;
4349	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4350	int ret;
4351
4352	pgdat_resize_init(pgdat);
4353	pgdat->nr_zones = 0;
 
 
 
 
 
 
 
 
 
4354	init_waitqueue_head(&pgdat->kswapd_wait);
4355	pgdat->kswapd_max_order = 0;
4356	pgdat_page_cgroup_init(pgdat);
 
 
 
 
 
 
 
4357
4358	for (j = 0; j < MAX_NR_ZONES; j++) {
4359		struct zone *zone = pgdat->node_zones + j;
4360		unsigned long size, realsize, memmap_pages;
 
4361
4362		size = zone_spanned_pages_in_node(nid, j, zones_size);
4363		realsize = size - zone_absent_pages_in_node(nid, j,
4364								zholes_size);
4365
4366		/*
4367		 * Adjust realsize so that it accounts for how much memory
4368		 * is used by this zone for memmap. This affects the watermark
4369		 * and per-cpu initialisations
4370		 */
4371		memmap_pages =
4372			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4373		if (realsize >= memmap_pages) {
4374			realsize -= memmap_pages;
4375			if (memmap_pages)
4376				printk(KERN_DEBUG
4377				       "  %s zone: %lu pages used for memmap\n",
4378				       zone_names[j], memmap_pages);
4379		} else
4380			printk(KERN_WARNING
4381				"  %s zone: %lu pages exceeds realsize %lu\n",
4382				zone_names[j], memmap_pages, realsize);
4383
4384		/* Account for reserved pages */
4385		if (j == 0 && realsize > dma_reserve) {
4386			realsize -= dma_reserve;
4387			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4388					zone_names[0], dma_reserve);
4389		}
4390
4391		if (!is_highmem_idx(j))
4392			nr_kernel_pages += realsize;
4393		nr_all_pages += realsize;
 
 
 
4394
4395		zone->spanned_pages = size;
4396		zone->present_pages = realsize;
 
 
 
 
4397#ifdef CONFIG_NUMA
4398		zone->node = nid;
4399		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4400						/ 100;
4401		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4402#endif
4403		zone->name = zone_names[j];
 
4404		spin_lock_init(&zone->lock);
4405		spin_lock_init(&zone->lru_lock);
4406		zone_seqlock_init(zone);
4407		zone->zone_pgdat = pgdat;
4408
4409		zone_pcp_init(zone);
4410		lruvec_init(&zone->lruvec, zone);
4411		zap_zone_vm_stats(zone);
4412		zone->flags = 0;
4413		if (!size)
4414			continue;
4415
4416		set_pageblock_order();
4417		setup_usemap(pgdat, zone, size);
4418		ret = init_currently_empty_zone(zone, zone_start_pfn,
4419						size, MEMMAP_EARLY);
4420		BUG_ON(ret);
4421		memmap_init(size, nid, j, zone_start_pfn);
4422		zone_start_pfn += size;
4423	}
4424}
4425
4426static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 
4427{
 
 
 
4428	/* Skip empty nodes */
4429	if (!pgdat->node_spanned_pages)
4430		return;
4431
4432#ifdef CONFIG_FLAT_NODE_MEM_MAP
 
4433	/* ia64 gets its own node_mem_map, before this, without bootmem */
4434	if (!pgdat->node_mem_map) {
4435		unsigned long size, start, end;
4436		struct page *map;
4437
4438		/*
4439		 * The zone's endpoints aren't required to be MAX_ORDER
4440		 * aligned but the node_mem_map endpoints must be in order
4441		 * for the buddy allocator to function correctly.
4442		 */
4443		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4444		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4445		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4446		size =  (end - start) * sizeof(struct page);
4447		map = alloc_remap(pgdat->node_id, size);
4448		if (!map)
4449			map = alloc_bootmem_node_nopanic(pgdat, size);
4450		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4451	}
 
 
 
4452#ifndef CONFIG_NEED_MULTIPLE_NODES
4453	/*
4454	 * With no DISCONTIG, the global mem_map is just set as node 0's
4455	 */
4456	if (pgdat == NODE_DATA(0)) {
4457		mem_map = NODE_DATA(0)->node_mem_map;
4458#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4459		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4460			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4461#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4462	}
4463#endif
 
 
 
4464#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4465}
4466
4467void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4468		unsigned long node_start_pfn, unsigned long *zholes_size)
4469{
4470	pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
 
4471
4472	pgdat->node_id = nid;
4473	pgdat->node_start_pfn = node_start_pfn;
4474	calculate_node_totalpages(pgdat, zones_size, zholes_size);
 
 
 
 
 
 
 
 
 
 
4475
4476	alloc_node_mem_map(pgdat);
4477#ifdef CONFIG_FLAT_NODE_MEM_MAP
4478	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4479		nid, (unsigned long)pgdat,
4480		(unsigned long)pgdat->node_mem_map);
 
 
 
 
 
4481#endif
 
 
4482
4483	free_area_init_core(pgdat, zones_size, zholes_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4484}
 
4485
4486#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4487
4488#if MAX_NUMNODES > 1
4489/*
4490 * Figure out the number of possible node ids.
4491 */
4492static void __init setup_nr_node_ids(void)
4493{
4494	unsigned int node;
4495	unsigned int highest = 0;
4496
4497	for_each_node_mask(node, node_possible_map)
4498		highest = node;
4499	nr_node_ids = highest + 1;
4500}
4501#else
4502static inline void setup_nr_node_ids(void)
4503{
4504}
4505#endif
4506
4507/**
4508 * node_map_pfn_alignment - determine the maximum internode alignment
4509 *
4510 * This function should be called after node map is populated and sorted.
4511 * It calculates the maximum power of two alignment which can distinguish
4512 * all the nodes.
4513 *
4514 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4515 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4516 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4517 * shifted, 1GiB is enough and this function will indicate so.
4518 *
4519 * This is used to test whether pfn -> nid mapping of the chosen memory
4520 * model has fine enough granularity to avoid incorrect mapping for the
4521 * populated node map.
4522 *
4523 * Returns the determined alignment in pfn's.  0 if there is no alignment
4524 * requirement (single node).
4525 */
4526unsigned long __init node_map_pfn_alignment(void)
4527{
4528	unsigned long accl_mask = 0, last_end = 0;
4529	unsigned long start, end, mask;
4530	int last_nid = -1;
4531	int i, nid;
4532
4533	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4534		if (!start || last_nid < 0 || last_nid == nid) {
4535			last_nid = nid;
4536			last_end = end;
4537			continue;
4538		}
4539
4540		/*
4541		 * Start with a mask granular enough to pin-point to the
4542		 * start pfn and tick off bits one-by-one until it becomes
4543		 * too coarse to separate the current node from the last.
4544		 */
4545		mask = ~((1 << __ffs(start)) - 1);
4546		while (mask && last_end <= (start & (mask << 1)))
4547			mask <<= 1;
4548
4549		/* accumulate all internode masks */
4550		accl_mask |= mask;
4551	}
4552
4553	/* convert mask to number of pages */
4554	return ~accl_mask + 1;
4555}
4556
4557/* Find the lowest pfn for a node */
4558static unsigned long __init find_min_pfn_for_node(int nid)
4559{
4560	unsigned long min_pfn = ULONG_MAX;
4561	unsigned long start_pfn;
4562	int i;
4563
4564	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4565		min_pfn = min(min_pfn, start_pfn);
4566
4567	if (min_pfn == ULONG_MAX) {
4568		printk(KERN_WARNING
4569			"Could not find start_pfn for node %d\n", nid);
4570		return 0;
4571	}
4572
4573	return min_pfn;
4574}
4575
4576/**
4577 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4578 *
4579 * It returns the minimum PFN based on information provided via
4580 * add_active_range().
4581 */
4582unsigned long __init find_min_pfn_with_active_regions(void)
4583{
4584	return find_min_pfn_for_node(MAX_NUMNODES);
4585}
4586
4587/*
4588 * early_calculate_totalpages()
4589 * Sum pages in active regions for movable zone.
4590 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4591 */
4592static unsigned long __init early_calculate_totalpages(void)
4593{
4594	unsigned long totalpages = 0;
4595	unsigned long start_pfn, end_pfn;
4596	int i, nid;
4597
4598	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4599		unsigned long pages = end_pfn - start_pfn;
4600
4601		totalpages += pages;
4602		if (pages)
4603			node_set_state(nid, N_HIGH_MEMORY);
4604	}
4605  	return totalpages;
4606}
4607
4608/*
4609 * Find the PFN the Movable zone begins in each node. Kernel memory
4610 * is spread evenly between nodes as long as the nodes have enough
4611 * memory. When they don't, some nodes will have more kernelcore than
4612 * others
4613 */
4614static void __init find_zone_movable_pfns_for_nodes(void)
4615{
4616	int i, nid;
4617	unsigned long usable_startpfn;
4618	unsigned long kernelcore_node, kernelcore_remaining;
4619	/* save the state before borrow the nodemask */
4620	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4621	unsigned long totalpages = early_calculate_totalpages();
4622	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623
4624	/*
4625	 * If movablecore was specified, calculate what size of
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4626	 * kernelcore that corresponds so that memory usable for
4627	 * any allocation type is evenly spread. If both kernelcore
4628	 * and movablecore are specified, then the value of kernelcore
4629	 * will be used for required_kernelcore if it's greater than
4630	 * what movablecore would have allowed.
4631	 */
4632	if (required_movablecore) {
4633		unsigned long corepages;
4634
4635		/*
4636		 * Round-up so that ZONE_MOVABLE is at least as large as what
4637		 * was requested by the user
4638		 */
4639		required_movablecore =
4640			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 
4641		corepages = totalpages - required_movablecore;
4642
4643		required_kernelcore = max(required_kernelcore, corepages);
4644	}
4645
4646	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4647	if (!required_kernelcore)
 
 
 
4648		goto out;
4649
4650	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4651	find_usable_zone_for_movable();
4652	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4653
4654restart:
4655	/* Spread kernelcore memory as evenly as possible throughout nodes */
4656	kernelcore_node = required_kernelcore / usable_nodes;
4657	for_each_node_state(nid, N_HIGH_MEMORY) {
4658		unsigned long start_pfn, end_pfn;
4659
4660		/*
4661		 * Recalculate kernelcore_node if the division per node
4662		 * now exceeds what is necessary to satisfy the requested
4663		 * amount of memory for the kernel
4664		 */
4665		if (required_kernelcore < kernelcore_node)
4666			kernelcore_node = required_kernelcore / usable_nodes;
4667
4668		/*
4669		 * As the map is walked, we track how much memory is usable
4670		 * by the kernel using kernelcore_remaining. When it is
4671		 * 0, the rest of the node is usable by ZONE_MOVABLE
4672		 */
4673		kernelcore_remaining = kernelcore_node;
4674
4675		/* Go through each range of PFNs within this node */
4676		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4677			unsigned long size_pages;
4678
4679			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4680			if (start_pfn >= end_pfn)
4681				continue;
4682
4683			/* Account for what is only usable for kernelcore */
4684			if (start_pfn < usable_startpfn) {
4685				unsigned long kernel_pages;
4686				kernel_pages = min(end_pfn, usable_startpfn)
4687								- start_pfn;
4688
4689				kernelcore_remaining -= min(kernel_pages,
4690							kernelcore_remaining);
4691				required_kernelcore -= min(kernel_pages,
4692							required_kernelcore);
4693
4694				/* Continue if range is now fully accounted */
4695				if (end_pfn <= usable_startpfn) {
4696
4697					/*
4698					 * Push zone_movable_pfn to the end so
4699					 * that if we have to rebalance
4700					 * kernelcore across nodes, we will
4701					 * not double account here
4702					 */
4703					zone_movable_pfn[nid] = end_pfn;
4704					continue;
4705				}
4706				start_pfn = usable_startpfn;
4707			}
4708
4709			/*
4710			 * The usable PFN range for ZONE_MOVABLE is from
4711			 * start_pfn->end_pfn. Calculate size_pages as the
4712			 * number of pages used as kernelcore
4713			 */
4714			size_pages = end_pfn - start_pfn;
4715			if (size_pages > kernelcore_remaining)
4716				size_pages = kernelcore_remaining;
4717			zone_movable_pfn[nid] = start_pfn + size_pages;
4718
4719			/*
4720			 * Some kernelcore has been met, update counts and
4721			 * break if the kernelcore for this node has been
4722			 * satisified
4723			 */
4724			required_kernelcore -= min(required_kernelcore,
4725								size_pages);
4726			kernelcore_remaining -= size_pages;
4727			if (!kernelcore_remaining)
4728				break;
4729		}
4730	}
4731
4732	/*
4733	 * If there is still required_kernelcore, we do another pass with one
4734	 * less node in the count. This will push zone_movable_pfn[nid] further
4735	 * along on the nodes that still have memory until kernelcore is
4736	 * satisified
4737	 */
4738	usable_nodes--;
4739	if (usable_nodes && required_kernelcore > usable_nodes)
4740		goto restart;
4741
 
4742	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4743	for (nid = 0; nid < MAX_NUMNODES; nid++)
4744		zone_movable_pfn[nid] =
4745			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4746
4747out:
4748	/* restore the node_state */
4749	node_states[N_HIGH_MEMORY] = saved_node_state;
4750}
4751
4752/* Any regular memory on that node ? */
4753static void check_for_regular_memory(pg_data_t *pgdat)
4754{
4755#ifdef CONFIG_HIGHMEM
4756	enum zone_type zone_type;
4757
4758	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
 
 
 
4759		struct zone *zone = &pgdat->node_zones[zone_type];
4760		if (zone->present_pages) {
4761			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 
 
 
4762			break;
4763		}
4764	}
4765#endif
4766}
4767
4768/**
4769 * free_area_init_nodes - Initialise all pg_data_t and zone data
4770 * @max_zone_pfn: an array of max PFNs for each zone
4771 *
4772 * This will call free_area_init_node() for each active node in the system.
4773 * Using the page ranges provided by add_active_range(), the size of each
4774 * zone in each node and their holes is calculated. If the maximum PFN
4775 * between two adjacent zones match, it is assumed that the zone is empty.
4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778 * starts where the previous one ended. For example, ZONE_DMA32 starts
4779 * at arch_max_dma_pfn.
4780 */
4781void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4782{
4783	unsigned long start_pfn, end_pfn;
4784	int i, nid;
4785
4786	/* Record where the zone boundaries are */
4787	memset(arch_zone_lowest_possible_pfn, 0,
4788				sizeof(arch_zone_lowest_possible_pfn));
4789	memset(arch_zone_highest_possible_pfn, 0,
4790				sizeof(arch_zone_highest_possible_pfn));
4791	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4792	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4793	for (i = 1; i < MAX_NR_ZONES; i++) {
 
4794		if (i == ZONE_MOVABLE)
4795			continue;
4796		arch_zone_lowest_possible_pfn[i] =
4797			arch_zone_highest_possible_pfn[i-1];
4798		arch_zone_highest_possible_pfn[i] =
4799			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 
 
4800	}
4801	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4802	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4803
4804	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4805	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4806	find_zone_movable_pfns_for_nodes();
4807
4808	/* Print out the zone ranges */
4809	printk("Zone ranges:\n");
4810	for (i = 0; i < MAX_NR_ZONES; i++) {
4811		if (i == ZONE_MOVABLE)
4812			continue;
4813		printk(KERN_CONT "  %-8s ", zone_names[i]);
4814		if (arch_zone_lowest_possible_pfn[i] ==
4815				arch_zone_highest_possible_pfn[i])
4816			printk(KERN_CONT "empty\n");
4817		else
4818			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4819				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4820				(arch_zone_highest_possible_pfn[i]
 
4821					<< PAGE_SHIFT) - 1);
4822	}
4823
4824	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4825	printk("Movable zone start for each node\n");
4826	for (i = 0; i < MAX_NUMNODES; i++) {
4827		if (zone_movable_pfn[i])
4828			printk("  Node %d: %#010lx\n", i,
4829			       zone_movable_pfn[i] << PAGE_SHIFT);
4830	}
4831
4832	/* Print out the early_node_map[] */
4833	printk("Early memory node ranges\n");
4834	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4835		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
4836		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
 
4837
4838	/* Initialise every node */
4839	mminit_verify_pageflags_layout();
4840	setup_nr_node_ids();
4841	for_each_online_node(nid) {
4842		pg_data_t *pgdat = NODE_DATA(nid);
4843		free_area_init_node(nid, NULL,
4844				find_min_pfn_for_node(nid), NULL);
4845
4846		/* Any memory on that node */
4847		if (pgdat->node_present_pages)
4848			node_set_state(nid, N_HIGH_MEMORY);
4849		check_for_regular_memory(pgdat);
4850	}
 
4851}
4852
4853static int __init cmdline_parse_core(char *p, unsigned long *core)
 
4854{
4855	unsigned long long coremem;
 
 
4856	if (!p)
4857		return -EINVAL;
4858
4859	coremem = memparse(p, &p);
4860	*core = coremem >> PAGE_SHIFT;
 
 
 
4861
4862	/* Paranoid check that UL is enough for the coremem value */
4863	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 
 
 
4864
 
 
 
4865	return 0;
4866}
4867
4868/*
4869 * kernelcore=size sets the amount of memory for use for allocations that
4870 * cannot be reclaimed or migrated.
4871 */
4872static int __init cmdline_parse_kernelcore(char *p)
4873{
4874	return cmdline_parse_core(p, &required_kernelcore);
 
 
 
 
 
 
 
4875}
4876
4877/*
4878 * movablecore=size sets the amount of memory for use for allocations that
4879 * can be reclaimed or migrated.
4880 */
4881static int __init cmdline_parse_movablecore(char *p)
4882{
4883	return cmdline_parse_core(p, &required_movablecore);
 
4884}
4885
4886early_param("kernelcore", cmdline_parse_kernelcore);
4887early_param("movablecore", cmdline_parse_movablecore);
4888
4889#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4891/**
4892 * set_dma_reserve - set the specified number of pages reserved in the first zone
4893 * @new_dma_reserve: The number of pages to mark reserved
4894 *
4895 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4896 * In the DMA zone, a significant percentage may be consumed by kernel image
4897 * and other unfreeable allocations which can skew the watermarks badly. This
4898 * function may optionally be used to account for unfreeable pages in the
4899 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4900 * smaller per-cpu batchsize.
4901 */
4902void __init set_dma_reserve(unsigned long new_dma_reserve)
4903{
4904	dma_reserve = new_dma_reserve;
4905}
4906
4907void __init free_area_init(unsigned long *zones_size)
4908{
4909	free_area_init_node(0, zones_size,
4910			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 
4911}
4912
4913static int page_alloc_cpu_notify(struct notifier_block *self,
4914				 unsigned long action, void *hcpu)
4915{
4916	int cpu = (unsigned long)hcpu;
4917
4918	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4919		lru_add_drain_cpu(cpu);
4920		drain_pages(cpu);
4921
4922		/*
4923		 * Spill the event counters of the dead processor
4924		 * into the current processors event counters.
4925		 * This artificially elevates the count of the current
4926		 * processor.
4927		 */
4928		vm_events_fold_cpu(cpu);
4929
4930		/*
4931		 * Zero the differential counters of the dead processor
4932		 * so that the vm statistics are consistent.
4933		 *
4934		 * This is only okay since the processor is dead and cannot
4935		 * race with what we are doing.
4936		 */
4937		refresh_cpu_vm_stats(cpu);
4938	}
4939	return NOTIFY_OK;
4940}
4941
4942void __init page_alloc_init(void)
4943{
4944	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
 
 
 
4945}
4946
4947/*
4948 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4949 *	or min_free_kbytes changes.
4950 */
4951static void calculate_totalreserve_pages(void)
4952{
4953	struct pglist_data *pgdat;
4954	unsigned long reserve_pages = 0;
4955	enum zone_type i, j;
4956
4957	for_each_online_pgdat(pgdat) {
 
 
 
4958		for (i = 0; i < MAX_NR_ZONES; i++) {
4959			struct zone *zone = pgdat->node_zones + i;
4960			unsigned long max = 0;
4961
4962			/* Find valid and maximum lowmem_reserve in the zone */
4963			for (j = i; j < MAX_NR_ZONES; j++) {
4964				if (zone->lowmem_reserve[j] > max)
4965					max = zone->lowmem_reserve[j];
4966			}
4967
4968			/* we treat the high watermark as reserved pages. */
4969			max += high_wmark_pages(zone);
4970
4971			if (max > zone->present_pages)
4972				max = zone->present_pages;
 
 
 
4973			reserve_pages += max;
4974			/*
4975			 * Lowmem reserves are not available to
4976			 * GFP_HIGHUSER page cache allocations and
4977			 * kswapd tries to balance zones to their high
4978			 * watermark.  As a result, neither should be
4979			 * regarded as dirtyable memory, to prevent a
4980			 * situation where reclaim has to clean pages
4981			 * in order to balance the zones.
4982			 */
4983			zone->dirty_balance_reserve = max;
4984		}
4985	}
4986	dirty_balance_reserve = reserve_pages;
4987	totalreserve_pages = reserve_pages;
4988}
4989
4990/*
4991 * setup_per_zone_lowmem_reserve - called whenever
4992 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4993 *	has a correct pages reserved value, so an adequate number of
4994 *	pages are left in the zone after a successful __alloc_pages().
4995 */
4996static void setup_per_zone_lowmem_reserve(void)
4997{
4998	struct pglist_data *pgdat;
4999	enum zone_type j, idx;
5000
5001	for_each_online_pgdat(pgdat) {
5002		for (j = 0; j < MAX_NR_ZONES; j++) {
5003			struct zone *zone = pgdat->node_zones + j;
5004			unsigned long present_pages = zone->present_pages;
5005
5006			zone->lowmem_reserve[j] = 0;
5007
5008			idx = j;
5009			while (idx) {
5010				struct zone *lower_zone;
5011
5012				idx--;
 
5013
5014				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5015					sysctl_lowmem_reserve_ratio[idx] = 1;
5016
5017				lower_zone = pgdat->node_zones + idx;
5018				lower_zone->lowmem_reserve[j] = present_pages /
5019					sysctl_lowmem_reserve_ratio[idx];
5020				present_pages += lower_zone->present_pages;
 
5021			}
5022		}
5023	}
5024
5025	/* update totalreserve_pages */
5026	calculate_totalreserve_pages();
5027}
5028
5029static void __setup_per_zone_wmarks(void)
5030{
5031	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5032	unsigned long lowmem_pages = 0;
5033	struct zone *zone;
5034	unsigned long flags;
5035
5036	/* Calculate total number of !ZONE_HIGHMEM pages */
5037	for_each_zone(zone) {
5038		if (!is_highmem(zone))
5039			lowmem_pages += zone->present_pages;
5040	}
5041
5042	for_each_zone(zone) {
5043		u64 tmp;
5044
5045		spin_lock_irqsave(&zone->lock, flags);
5046		tmp = (u64)pages_min * zone->present_pages;
5047		do_div(tmp, lowmem_pages);
5048		if (is_highmem(zone)) {
5049			/*
5050			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5051			 * need highmem pages, so cap pages_min to a small
5052			 * value here.
5053			 *
5054			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5055			 * deltas controls asynch page reclaim, and so should
5056			 * not be capped for highmem.
5057			 */
5058			int min_pages;
5059
5060			min_pages = zone->present_pages / 1024;
5061			if (min_pages < SWAP_CLUSTER_MAX)
5062				min_pages = SWAP_CLUSTER_MAX;
5063			if (min_pages > 128)
5064				min_pages = 128;
5065			zone->watermark[WMARK_MIN] = min_pages;
5066		} else {
5067			/*
5068			 * If it's a lowmem zone, reserve a number of pages
5069			 * proportionate to the zone's size.
5070			 */
5071			zone->watermark[WMARK_MIN] = tmp;
5072		}
5073
5074		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5075		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
 
 
 
 
 
 
5076
5077		zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5078		zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5079		zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5080
5081		setup_zone_migrate_reserve(zone);
5082		spin_unlock_irqrestore(&zone->lock, flags);
5083	}
5084
5085	/* update totalreserve_pages */
5086	calculate_totalreserve_pages();
5087}
5088
5089/**
5090 * setup_per_zone_wmarks - called when min_free_kbytes changes
5091 * or when memory is hot-{added|removed}
5092 *
5093 * Ensures that the watermark[min,low,high] values for each zone are set
5094 * correctly with respect to min_free_kbytes.
5095 */
5096void setup_per_zone_wmarks(void)
5097{
5098	mutex_lock(&zonelists_mutex);
 
 
5099	__setup_per_zone_wmarks();
5100	mutex_unlock(&zonelists_mutex);
5101}
5102
5103/*
5104 * The inactive anon list should be small enough that the VM never has to
5105 * do too much work, but large enough that each inactive page has a chance
5106 * to be referenced again before it is swapped out.
5107 *
5108 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5109 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5110 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5111 * the anonymous pages are kept on the inactive list.
5112 *
5113 * total     target    max
5114 * memory    ratio     inactive anon
5115 * -------------------------------------
5116 *   10MB       1         5MB
5117 *  100MB       1        50MB
5118 *    1GB       3       250MB
5119 *   10GB      10       0.9GB
5120 *  100GB      31         3GB
5121 *    1TB     101        10GB
5122 *   10TB     320        32GB
5123 */
5124static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5125{
5126	unsigned int gb, ratio;
5127
5128	/* Zone size in gigabytes */
5129	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5130	if (gb)
5131		ratio = int_sqrt(10 * gb);
5132	else
5133		ratio = 1;
5134
5135	zone->inactive_ratio = ratio;
5136}
5137
5138static void __meminit setup_per_zone_inactive_ratio(void)
5139{
5140	struct zone *zone;
5141
5142	for_each_zone(zone)
5143		calculate_zone_inactive_ratio(zone);
5144}
5145
5146/*
5147 * Initialise min_free_kbytes.
5148 *
5149 * For small machines we want it small (128k min).  For large machines
5150 * we want it large (64MB max).  But it is not linear, because network
5151 * bandwidth does not increase linearly with machine size.  We use
5152 *
5153 * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5154 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5155 *
5156 * which yields
5157 *
5158 * 16MB:	512k
5159 * 32MB:	724k
5160 * 64MB:	1024k
5161 * 128MB:	1448k
5162 * 256MB:	2048k
5163 * 512MB:	2896k
5164 * 1024MB:	4096k
5165 * 2048MB:	5792k
5166 * 4096MB:	8192k
5167 * 8192MB:	11584k
5168 * 16384MB:	16384k
5169 */
5170int __meminit init_per_zone_wmark_min(void)
5171{
5172	unsigned long lowmem_kbytes;
 
5173
5174	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 
5175
5176	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5177	if (min_free_kbytes < 128)
5178		min_free_kbytes = 128;
5179	if (min_free_kbytes > 65536)
5180		min_free_kbytes = 65536;
 
 
 
 
 
5181	setup_per_zone_wmarks();
5182	refresh_zone_stat_thresholds();
5183	setup_per_zone_lowmem_reserve();
5184	setup_per_zone_inactive_ratio();
 
 
 
 
 
5185	return 0;
5186}
5187module_init(init_per_zone_wmark_min)
5188
5189/*
5190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
5191 *	that we can call two helper functions whenever min_free_kbytes
5192 *	changes.
5193 */
5194int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
5195	void __user *buffer, size_t *length, loff_t *ppos)
5196{
5197	proc_dointvec(table, write, buffer, length, ppos);
5198	if (write)
 
 
 
 
 
 
5199		setup_per_zone_wmarks();
 
5200	return 0;
5201}
5202
5203#ifdef CONFIG_NUMA
5204int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5205	void __user *buffer, size_t *length, loff_t *ppos)
5206{
5207	struct zone *zone;
5208	int rc;
5209
5210	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5211	if (rc)
5212		return rc;
5213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214	for_each_zone(zone)
5215		zone->min_unmapped_pages = (zone->present_pages *
5216				sysctl_min_unmapped_ratio) / 100;
5217	return 0;
5218}
5219
5220int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
 
5221	void __user *buffer, size_t *length, loff_t *ppos)
5222{
5223	struct zone *zone;
5224	int rc;
5225
5226	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5227	if (rc)
5228		return rc;
5229
 
 
 
 
 
 
 
 
 
 
 
 
 
5230	for_each_zone(zone)
5231		zone->min_slab_pages = (zone->present_pages *
5232				sysctl_min_slab_ratio) / 100;
 
 
 
 
 
 
 
 
 
 
 
 
 
5233	return 0;
5234}
5235#endif
5236
5237/*
5238 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5239 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5240 *	whenever sysctl_lowmem_reserve_ratio changes.
5241 *
5242 * The reserve ratio obviously has absolutely no relation with the
5243 * minimum watermarks. The lowmem reserve ratio can only make sense
5244 * if in function of the boot time zone sizes.
5245 */
5246int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5247	void __user *buffer, size_t *length, loff_t *ppos)
5248{
5249	proc_dointvec_minmax(table, write, buffer, length, ppos);
5250	setup_per_zone_lowmem_reserve();
5251	return 0;
5252}
5253
5254/*
5255 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5256 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5257 * can have before it gets flushed back to buddy allocator.
5258 */
5259
5260int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5261	void __user *buffer, size_t *length, loff_t *ppos)
5262{
5263	struct zone *zone;
5264	unsigned int cpu;
5265	int ret;
5266
 
 
 
5267	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5268	if (!write || (ret < 0))
5269		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
5270	for_each_populated_zone(zone) {
5271		for_each_possible_cpu(cpu) {
5272			unsigned long  high;
5273			high = zone->present_pages / percpu_pagelist_fraction;
5274			setup_pagelist_highmark(
5275				per_cpu_ptr(zone->pageset, cpu), high);
5276		}
5277	}
5278	return 0;
 
 
5279}
5280
 
5281int hashdist = HASHDIST_DEFAULT;
5282
5283#ifdef CONFIG_NUMA
5284static int __init set_hashdist(char *str)
5285{
5286	if (!str)
5287		return 0;
5288	hashdist = simple_strtoul(str, &str, 0);
5289	return 1;
5290}
5291__setup("hashdist=", set_hashdist);
5292#endif
5293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5294/*
5295 * allocate a large system hash table from bootmem
5296 * - it is assumed that the hash table must contain an exact power-of-2
5297 *   quantity of entries
5298 * - limit is the number of hash buckets, not the total allocation size
5299 */
5300void *__init alloc_large_system_hash(const char *tablename,
5301				     unsigned long bucketsize,
5302				     unsigned long numentries,
5303				     int scale,
5304				     int flags,
5305				     unsigned int *_hash_shift,
5306				     unsigned int *_hash_mask,
5307				     unsigned long low_limit,
5308				     unsigned long high_limit)
5309{
5310	unsigned long long max = high_limit;
5311	unsigned long log2qty, size;
5312	void *table = NULL;
 
5313
5314	/* allow the kernel cmdline to have a say */
5315	if (!numentries) {
5316		/* round applicable memory size up to nearest megabyte */
5317		numentries = nr_kernel_pages;
5318		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5319		numentries >>= 20 - PAGE_SHIFT;
5320		numentries <<= 20 - PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
5321
5322		/* limit to 1 bucket per 2^scale bytes of low memory */
5323		if (scale > PAGE_SHIFT)
5324			numentries >>= (scale - PAGE_SHIFT);
5325		else
5326			numentries <<= (PAGE_SHIFT - scale);
5327
5328		/* Make sure we've got at least a 0-order allocation.. */
5329		if (unlikely(flags & HASH_SMALL)) {
5330			/* Makes no sense without HASH_EARLY */
5331			WARN_ON(!(flags & HASH_EARLY));
5332			if (!(numentries >> *_hash_shift)) {
5333				numentries = 1UL << *_hash_shift;
5334				BUG_ON(!numentries);
5335			}
5336		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5337			numentries = PAGE_SIZE / bucketsize;
5338	}
5339	numentries = roundup_pow_of_two(numentries);
5340
5341	/* limit allocation size to 1/16 total memory by default */
5342	if (max == 0) {
5343		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5344		do_div(max, bucketsize);
5345	}
5346	max = min(max, 0x80000000ULL);
5347
5348	if (numentries < low_limit)
5349		numentries = low_limit;
5350	if (numentries > max)
5351		numentries = max;
5352
5353	log2qty = ilog2(numentries);
5354
 
5355	do {
5356		size = bucketsize << log2qty;
5357		if (flags & HASH_EARLY)
5358			table = alloc_bootmem_nopanic(size);
5359		else if (hashdist)
5360			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5361		else {
 
 
 
5362			/*
5363			 * If bucketsize is not a power-of-two, we may free
5364			 * some pages at the end of hash table which
5365			 * alloc_pages_exact() automatically does
5366			 */
5367			if (get_order(size) < MAX_ORDER) {
5368				table = alloc_pages_exact(size, GFP_ATOMIC);
5369				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5370			}
5371		}
5372	} while (!table && size > PAGE_SIZE && --log2qty);
5373
5374	if (!table)
5375		panic("Failed to allocate %s hash table\n", tablename);
5376
5377	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5378	       tablename,
5379	       (1UL << log2qty),
5380	       ilog2(size) - PAGE_SHIFT,
5381	       size);
5382
5383	if (_hash_shift)
5384		*_hash_shift = log2qty;
5385	if (_hash_mask)
5386		*_hash_mask = (1 << log2qty) - 1;
5387
5388	return table;
5389}
5390
5391/* Return a pointer to the bitmap storing bits affecting a block of pages */
5392static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5393							unsigned long pfn)
5394{
5395#ifdef CONFIG_SPARSEMEM
5396	return __pfn_to_section(pfn)->pageblock_flags;
5397#else
5398	return zone->pageblock_flags;
5399#endif /* CONFIG_SPARSEMEM */
5400}
5401
5402static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5403{
5404#ifdef CONFIG_SPARSEMEM
5405	pfn &= (PAGES_PER_SECTION-1);
5406	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5407#else
5408	pfn = pfn - zone->zone_start_pfn;
5409	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5410#endif /* CONFIG_SPARSEMEM */
5411}
5412
5413/**
5414 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5415 * @page: The page within the block of interest
5416 * @start_bitidx: The first bit of interest to retrieve
5417 * @end_bitidx: The last bit of interest
5418 * returns pageblock_bits flags
5419 */
5420unsigned long get_pageblock_flags_group(struct page *page,
5421					int start_bitidx, int end_bitidx)
5422{
5423	struct zone *zone;
5424	unsigned long *bitmap;
5425	unsigned long pfn, bitidx;
5426	unsigned long flags = 0;
5427	unsigned long value = 1;
5428
5429	zone = page_zone(page);
5430	pfn = page_to_pfn(page);
5431	bitmap = get_pageblock_bitmap(zone, pfn);
5432	bitidx = pfn_to_bitidx(zone, pfn);
5433
5434	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5435		if (test_bit(bitidx + start_bitidx, bitmap))
5436			flags |= value;
5437
5438	return flags;
5439}
5440
5441/**
5442 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5443 * @page: The page within the block of interest
5444 * @start_bitidx: The first bit of interest
5445 * @end_bitidx: The last bit of interest
5446 * @flags: The flags to set
5447 */
5448void set_pageblock_flags_group(struct page *page, unsigned long flags,
5449					int start_bitidx, int end_bitidx)
5450{
5451	struct zone *zone;
5452	unsigned long *bitmap;
5453	unsigned long pfn, bitidx;
5454	unsigned long value = 1;
5455
5456	zone = page_zone(page);
5457	pfn = page_to_pfn(page);
5458	bitmap = get_pageblock_bitmap(zone, pfn);
5459	bitidx = pfn_to_bitidx(zone, pfn);
5460	VM_BUG_ON(pfn < zone->zone_start_pfn);
5461	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5462
5463	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5464		if (flags & value)
5465			__set_bit(bitidx + start_bitidx, bitmap);
5466		else
5467			__clear_bit(bitidx + start_bitidx, bitmap);
5468}
5469
5470/*
5471 * This is designed as sub function...plz see page_isolation.c also.
5472 * set/clear page block's type to be ISOLATE.
5473 * page allocater never alloc memory from ISOLATE block.
5474 */
5475
5476static int
5477__count_immobile_pages(struct zone *zone, struct page *page, int count)
 
 
 
 
5478{
5479	unsigned long pfn, iter, found;
5480	int mt;
5481
5482	/*
5483	 * For avoiding noise data, lru_add_drain_all() should be called
5484	 * If ZONE_MOVABLE, the zone never contains immobile pages
 
 
 
 
 
 
 
 
 
5485	 */
5486	if (zone_idx(zone) == ZONE_MOVABLE)
5487		return true;
5488	mt = get_pageblock_migratetype(page);
5489	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5490		return true;
5491
5492	pfn = page_to_pfn(page);
5493	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5494		unsigned long check = pfn + iter;
5495
5496		if (!pfn_valid_within(check))
5497			continue;
5498
5499		page = pfn_to_page(check);
5500		if (!page_count(page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5501			if (PageBuddy(page))
5502				iter += (1 << page_order(page)) - 1;
5503			continue;
5504		}
 
 
 
 
 
 
 
 
 
 
 
5505		if (!PageLRU(page))
5506			found++;
5507		/*
5508		 * If there are RECLAIMABLE pages, we need to check it.
5509		 * But now, memory offline itself doesn't call shrink_slab()
5510		 * and it still to be fixed.
5511		 */
5512		/*
5513		 * If the page is not RAM, page_count()should be 0.
5514		 * we don't need more check. This is an _used_ not-movable page.
5515		 *
5516		 * The problematic thing here is PG_reserved pages. PG_reserved
5517		 * is set to both of a memory hole page and a _used_ kernel
5518		 * page at boot.
5519		 */
5520		if (found > count)
5521			return false;
5522	}
 
 
 
5523	return true;
5524}
5525
5526bool is_pageblock_removable_nolock(struct page *page)
5527{
5528	struct zone *zone;
5529	unsigned long pfn;
5530
5531	/*
5532	 * We have to be careful here because we are iterating over memory
5533	 * sections which are not zone aware so we might end up outside of
5534	 * the zone but still within the section.
5535	 * We have to take care about the node as well. If the node is offline
5536	 * its NODE_DATA will be NULL - see page_zone.
5537	 */
5538	if (!node_online(page_to_nid(page)))
5539		return false;
5540
5541	zone = page_zone(page);
5542	pfn = page_to_pfn(page);
5543	if (zone->zone_start_pfn > pfn ||
5544			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5545		return false;
5546
5547	return __count_immobile_pages(zone, page, 0);
5548}
5549
5550int set_migratetype_isolate(struct page *page)
5551{
5552	struct zone *zone;
5553	unsigned long flags, pfn;
5554	struct memory_isolate_notify arg;
5555	int notifier_ret;
5556	int ret = -EBUSY;
5557
5558	zone = page_zone(page);
5559
5560	spin_lock_irqsave(&zone->lock, flags);
5561
5562	pfn = page_to_pfn(page);
5563	arg.start_pfn = pfn;
5564	arg.nr_pages = pageblock_nr_pages;
5565	arg.pages_found = 0;
5566
5567	/*
5568	 * It may be possible to isolate a pageblock even if the
5569	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5570	 * notifier chain is used by balloon drivers to return the
5571	 * number of pages in a range that are held by the balloon
5572	 * driver to shrink memory. If all the pages are accounted for
5573	 * by balloons, are free, or on the LRU, isolation can continue.
5574	 * Later, for example, when memory hotplug notifier runs, these
5575	 * pages reported as "can be isolated" should be isolated(freed)
5576	 * by the balloon driver through the memory notifier chain.
5577	 */
5578	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5579	notifier_ret = notifier_to_errno(notifier_ret);
5580	if (notifier_ret)
5581		goto out;
5582	/*
5583	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5584	 * We just check MOVABLE pages.
5585	 */
5586	if (__count_immobile_pages(zone, page, arg.pages_found))
5587		ret = 0;
5588
5589	/*
5590	 * immobile means "not-on-lru" paes. If immobile is larger than
5591	 * removable-by-driver pages reported by notifier, we'll fail.
5592	 */
5593
5594out:
5595	if (!ret) {
5596		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5597		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5598	}
5599
5600	spin_unlock_irqrestore(&zone->lock, flags);
5601	if (!ret)
5602		drain_all_pages();
5603	return ret;
5604}
5605
5606void unset_migratetype_isolate(struct page *page, unsigned migratetype)
5607{
5608	struct zone *zone;
5609	unsigned long flags;
5610	zone = page_zone(page);
5611	spin_lock_irqsave(&zone->lock, flags);
5612	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5613		goto out;
5614	set_pageblock_migratetype(page, migratetype);
5615	move_freepages_block(zone, page, migratetype);
5616out:
5617	spin_unlock_irqrestore(&zone->lock, flags);
5618}
5619
5620#ifdef CONFIG_CMA
5621
5622static unsigned long pfn_max_align_down(unsigned long pfn)
5623{
5624	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5625			     pageblock_nr_pages) - 1);
5626}
5627
5628static unsigned long pfn_max_align_up(unsigned long pfn)
5629{
5630	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5631				pageblock_nr_pages));
5632}
5633
5634static struct page *
5635__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5636			     int **resultp)
5637{
5638	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5639
5640	if (PageHighMem(page))
5641		gfp_mask |= __GFP_HIGHMEM;
5642
5643	return alloc_page(gfp_mask);
5644}
5645
5646/* [start, end) must belong to a single zone. */
5647static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
 
5648{
5649	/* This function is based on compact_zone() from compaction.c. */
5650
5651	unsigned long pfn = start;
5652	unsigned int tries = 0;
5653	int ret = 0;
5654
5655	struct compact_control cc = {
5656		.nr_migratepages = 0,
5657		.order = -1,
5658		.zone = page_zone(pfn_to_page(start)),
5659		.sync = true,
5660	};
5661	INIT_LIST_HEAD(&cc.migratepages);
5662
5663	migrate_prep_local();
5664
5665	while (pfn < end || !list_empty(&cc.migratepages)) {
5666		if (fatal_signal_pending(current)) {
5667			ret = -EINTR;
5668			break;
5669		}
5670
5671		if (list_empty(&cc.migratepages)) {
5672			cc.nr_migratepages = 0;
5673			pfn = isolate_migratepages_range(cc.zone, &cc,
5674							 pfn, end);
5675			if (!pfn) {
5676				ret = -EINTR;
5677				break;
5678			}
5679			tries = 0;
5680		} else if (++tries == 5) {
5681			ret = ret < 0 ? ret : -EBUSY;
5682			break;
5683		}
5684
5685		ret = migrate_pages(&cc.migratepages,
5686				    __alloc_contig_migrate_alloc,
5687				    0, false, MIGRATE_SYNC);
 
 
 
5688	}
5689
5690	putback_lru_pages(&cc.migratepages);
5691	return ret > 0 ? 0 : ret;
5692}
5693
5694/*
5695 * Update zone's cma pages counter used for watermark level calculation.
5696 */
5697static inline void __update_cma_watermarks(struct zone *zone, int count)
5698{
5699	unsigned long flags;
5700	spin_lock_irqsave(&zone->lock, flags);
5701	zone->min_cma_pages += count;
5702	spin_unlock_irqrestore(&zone->lock, flags);
5703	setup_per_zone_wmarks();
5704}
5705
5706/*
5707 * Trigger memory pressure bump to reclaim some pages in order to be able to
5708 * allocate 'count' pages in single page units. Does similar work as
5709 *__alloc_pages_slowpath() function.
5710 */
5711static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5712{
5713	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5714	struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5715	int did_some_progress = 0;
5716	int order = 1;
5717
5718	/*
5719	 * Increase level of watermarks to force kswapd do his job
5720	 * to stabilise at new watermark level.
5721	 */
5722	__update_cma_watermarks(zone, count);
5723
5724	/* Obey watermarks as if the page was being allocated */
5725	while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5726		wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5727
5728		did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5729						      NULL);
5730		if (!did_some_progress) {
5731			/* Exhausted what can be done so it's blamo time */
5732			out_of_memory(zonelist, gfp_mask, order, NULL, false);
5733		}
5734	}
5735
5736	/* Restore original watermark levels. */
5737	__update_cma_watermarks(zone, -count);
5738
5739	return count;
5740}
5741
5742/**
5743 * alloc_contig_range() -- tries to allocate given range of pages
5744 * @start:	start PFN to allocate
5745 * @end:	one-past-the-last PFN to allocate
5746 * @migratetype:	migratetype of the underlaying pageblocks (either
5747 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5748 *			in range must have the same migratetype and it must
5749 *			be either of the two.
 
5750 *
5751 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5752 * aligned, however it's the caller's responsibility to guarantee that
5753 * we are the only thread that changes migrate type of pageblocks the
5754 * pages fall in.
5755 *
5756 * The PFN range must belong to a single zone.
 
 
5757 *
5758 * Returns zero on success or negative error code.  On success all
5759 * pages which PFN is in [start, end) are allocated for the caller and
5760 * need to be freed with free_contig_range().
5761 */
5762int alloc_contig_range(unsigned long start, unsigned long end,
5763		       unsigned migratetype)
5764{
5765	struct zone *zone = page_zone(pfn_to_page(start));
5766	unsigned long outer_start, outer_end;
5767	int ret = 0, order;
 
 
 
 
 
 
 
 
 
 
 
 
5768
5769	/*
5770	 * What we do here is we mark all pageblocks in range as
5771	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5772	 * have different sizes, and due to the way page allocator
5773	 * work, we align the range to biggest of the two pages so
5774	 * that page allocator won't try to merge buddies from
5775	 * different pageblocks and change MIGRATE_ISOLATE to some
5776	 * other migration type.
5777	 *
5778	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5779	 * migrate the pages from an unaligned range (ie. pages that
5780	 * we are interested in).  This will put all the pages in
5781	 * range back to page allocator as MIGRATE_ISOLATE.
5782	 *
5783	 * When this is done, we take the pages in range from page
5784	 * allocator removing them from the buddy system.  This way
5785	 * page allocator will never consider using them.
5786	 *
5787	 * This lets us mark the pageblocks back as
5788	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5789	 * aligned range but not in the unaligned, original range are
5790	 * put back to page allocator so that buddy can use them.
5791	 */
5792
5793	ret = start_isolate_page_range(pfn_max_align_down(start),
5794				       pfn_max_align_up(end), migratetype);
 
5795	if (ret)
5796		goto done;
5797
5798	ret = __alloc_contig_migrate_range(start, end);
5799	if (ret)
 
 
 
 
 
 
 
 
 
 
5800		goto done;
 
5801
5802	/*
5803	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5804	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5805	 * more, all pages in [start, end) are free in page allocator.
5806	 * What we are going to do is to allocate all pages from
5807	 * [start, end) (that is remove them from page allocator).
5808	 *
5809	 * The only problem is that pages at the beginning and at the
5810	 * end of interesting range may be not aligned with pages that
5811	 * page allocator holds, ie. they can be part of higher order
5812	 * pages.  Because of this, we reserve the bigger range and
5813	 * once this is done free the pages we are not interested in.
5814	 *
5815	 * We don't have to hold zone->lock here because the pages are
5816	 * isolated thus they won't get removed from buddy.
5817	 */
5818
5819	lru_add_drain_all();
5820	drain_all_pages();
5821
5822	order = 0;
5823	outer_start = start;
5824	while (!PageBuddy(pfn_to_page(outer_start))) {
5825		if (++order >= MAX_ORDER) {
5826			ret = -EBUSY;
5827			goto done;
5828		}
5829		outer_start &= ~0UL << order;
5830	}
5831
 
 
 
 
 
 
 
 
 
 
 
 
 
5832	/* Make sure the range is really isolated. */
5833	if (test_pages_isolated(outer_start, end)) {
5834		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5835		       outer_start, end);
5836		ret = -EBUSY;
5837		goto done;
5838	}
5839
5840	/*
5841	 * Reclaim enough pages to make sure that contiguous allocation
5842	 * will not starve the system.
5843	 */
5844	__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5845
5846	/* Grab isolated pages from freelists. */
5847	outer_end = isolate_freepages_range(outer_start, end);
5848	if (!outer_end) {
5849		ret = -EBUSY;
5850		goto done;
5851	}
5852
5853	/* Free head and tail (if any) */
5854	if (start != outer_start)
5855		free_contig_range(outer_start, start - outer_start);
5856	if (end != outer_end)
5857		free_contig_range(end, outer_end - end);
5858
5859done:
5860	undo_isolate_page_range(pfn_max_align_down(start),
5861				pfn_max_align_up(end), migratetype);
5862	return ret;
5863}
5864
5865void free_contig_range(unsigned long pfn, unsigned nr_pages)
5866{
5867	for (; nr_pages--; ++pfn)
5868		__free_page(pfn_to_page(pfn));
 
 
 
 
 
 
 
5869}
5870#endif
5871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5872#ifdef CONFIG_MEMORY_HOTREMOVE
5873/*
5874 * All pages in the range must be isolated before calling this.
 
5875 */
5876void
5877__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5878{
5879	struct page *page;
5880	struct zone *zone;
5881	int order, i;
5882	unsigned long pfn;
5883	unsigned long flags;
5884	/* find the first valid pfn */
5885	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5886		if (pfn_valid(pfn))
5887			break;
5888	if (pfn == end_pfn)
5889		return;
 
5890	zone = page_zone(pfn_to_page(pfn));
5891	spin_lock_irqsave(&zone->lock, flags);
5892	pfn = start_pfn;
5893	while (pfn < end_pfn) {
5894		if (!pfn_valid(pfn)) {
5895			pfn++;
5896			continue;
5897		}
5898		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
5899		BUG_ON(page_count(page));
5900		BUG_ON(!PageBuddy(page));
5901		order = page_order(page);
5902#ifdef CONFIG_DEBUG_VM
5903		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5904		       pfn, 1 << order, end_pfn);
5905#endif
5906		list_del(&page->lru);
5907		rmv_page_order(page);
5908		zone->free_area[order].nr_free--;
5909		__mod_zone_page_state(zone, NR_FREE_PAGES,
5910				      - (1UL << order));
5911		for (i = 0; i < (1 << order); i++)
5912			SetPageReserved((page+i));
5913		pfn += (1 << order);
5914	}
5915	spin_unlock_irqrestore(&zone->lock, flags);
5916}
5917#endif
5918
5919#ifdef CONFIG_MEMORY_FAILURE
5920bool is_free_buddy_page(struct page *page)
5921{
5922	struct zone *zone = page_zone(page);
5923	unsigned long pfn = page_to_pfn(page);
5924	unsigned long flags;
5925	int order;
5926
5927	spin_lock_irqsave(&zone->lock, flags);
5928	for (order = 0; order < MAX_ORDER; order++) {
5929		struct page *page_head = page - (pfn & ((1 << order) - 1));
5930
5931		if (PageBuddy(page_head) && page_order(page_head) >= order)
5932			break;
5933	}
5934	spin_unlock_irqrestore(&zone->lock, flags);
5935
5936	return order < MAX_ORDER;
5937}
5938#endif
5939
5940static const struct trace_print_flags pageflag_names[] = {
5941	{1UL << PG_locked,		"locked"	},
5942	{1UL << PG_error,		"error"		},
5943	{1UL << PG_referenced,		"referenced"	},
5944	{1UL << PG_uptodate,		"uptodate"	},
5945	{1UL << PG_dirty,		"dirty"		},
5946	{1UL << PG_lru,			"lru"		},
5947	{1UL << PG_active,		"active"	},
5948	{1UL << PG_slab,		"slab"		},
5949	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5950	{1UL << PG_arch_1,		"arch_1"	},
5951	{1UL << PG_reserved,		"reserved"	},
5952	{1UL << PG_private,		"private"	},
5953	{1UL << PG_private_2,		"private_2"	},
5954	{1UL << PG_writeback,		"writeback"	},
5955#ifdef CONFIG_PAGEFLAGS_EXTENDED
5956	{1UL << PG_head,		"head"		},
5957	{1UL << PG_tail,		"tail"		},
5958#else
5959	{1UL << PG_compound,		"compound"	},
5960#endif
5961	{1UL << PG_swapcache,		"swapcache"	},
5962	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5963	{1UL << PG_reclaim,		"reclaim"	},
5964	{1UL << PG_swapbacked,		"swapbacked"	},
5965	{1UL << PG_unevictable,		"unevictable"	},
5966#ifdef CONFIG_MMU
5967	{1UL << PG_mlocked,		"mlocked"	},
5968#endif
5969#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5970	{1UL << PG_uncached,		"uncached"	},
5971#endif
5972#ifdef CONFIG_MEMORY_FAILURE
5973	{1UL << PG_hwpoison,		"hwpoison"	},
5974#endif
5975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5976	{1UL << PG_compound_lock,	"compound_lock"	},
5977#endif
5978};
5979
5980static void dump_page_flags(unsigned long flags)
5981{
5982	const char *delim = "";
5983	unsigned long mask;
5984	int i;
5985
5986	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
5987
5988	printk(KERN_ALERT "page flags: %#lx(", flags);
5989
5990	/* remove zone id */
5991	flags &= (1UL << NR_PAGEFLAGS) - 1;
5992
5993	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
5994
5995		mask = pageflag_names[i].mask;
5996		if ((flags & mask) != mask)
5997			continue;
5998
5999		flags &= ~mask;
6000		printk("%s%s", delim, pageflag_names[i].name);
6001		delim = "|";
6002	}
6003
6004	/* check for left over flags */
6005	if (flags)
6006		printk("%s%#lx", delim, flags);
6007
6008	printk(")\n");
6009}
6010
6011void dump_page(struct page *page)
6012{
6013	printk(KERN_ALERT
6014	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6015		page, atomic_read(&page->_count), page_mapcount(page),
6016		page->mapping, page->index);
6017	dump_page_flags(page->flags);
6018	mem_cgroup_print_bad_page(page);
6019}