Loading...
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/kmemleak.h>
21#include <linux/seq_file.h>
22#include <linux/memblock.h>
23
24#include <asm/sections.h>
25#include <linux/io.h>
26
27#include "internal.h"
28
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
45
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51#endif
52
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
56
57int memblock_debug __initdata_memblock;
58static bool system_has_some_mirror __initdata_memblock = false;
59static int memblock_can_resize __initdata_memblock;
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
62
63ulong __init_memblock choose_memblock_flags(void)
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
72}
73
74/*
75 * Address comparison utilities
76 */
77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
85{
86 unsigned long i;
87
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
93}
94
95/*
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
103 *
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 *
106 * RETURNS:
107 * Found address on success, 0 on failure.
108 */
109static phys_addr_t __init_memblock
110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
113{
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
116
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
120
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
124 }
125
126 return 0;
127}
128
129/**
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
137 *
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
139 *
140 * RETURNS:
141 * Found address on success, 0 on failure.
142 */
143static phys_addr_t __init_memblock
144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
147{
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
150
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
155
156 if (this_end < size)
157 continue;
158
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
162 }
163
164 return 0;
165}
166
167/**
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
175 *
176 * Find @size free area aligned to @align in the specified range and node.
177 *
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
183 *
184 * If bottom-up allocation failed, will try to allocate memory top-down.
185 *
186 * RETURNS:
187 * Found address on success, 0 on failure.
188 */
189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
192{
193 phys_addr_t kernel_end, ret;
194
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
198
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
203
204 /*
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
207 */
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
210
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
213
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
219
220 /*
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
225 *
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
229 */
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 }
232
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
235}
236
237/**
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 *
244 * Find @size free area aligned to @align in the specified range.
245 *
246 * RETURNS:
247 * Found address on success, 0 on failure.
248 */
249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
252{
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
255
256again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
259
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
265 }
266
267 return ret;
268}
269
270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271{
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
276
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 }
286}
287
288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289/**
290 * Discard memory and reserved arrays if they were allocated
291 */
292void __init memblock_discard(void)
293{
294 phys_addr_t addr, size;
295
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
301 }
302
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
308 }
309}
310#endif
311
312/**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330{
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427}
428
429/**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436{
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458}
459
460/**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
471 */
472static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476{
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487}
488
489/**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508{
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
514
515 if (!size)
516 return 0;
517
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
527 }
528repeat:
529 /*
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
533 */
534 base = obase;
535 nr_new = 0;
536
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552#endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
559 }
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
562 }
563
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
570 }
571
572 if (!nr_new)
573 return 0;
574
575 /*
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
578 */
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
588 }
589}
590
591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
593{
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
595}
596
597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598{
599 phys_addr_t end = base + size - 1;
600
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
603
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605}
606
607/**
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
614 *
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619 *
620 * RETURNS:
621 * 0 on success, -errno on failure.
622 */
623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
626{
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
630
631 *start_rgn = *end_rgn = 0;
632
633 if (!size)
634 return 0;
635
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
640
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
644
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
649
650 if (rbase < base) {
651 /*
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
654 */
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
662 /*
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
665 */
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
677 }
678 }
679
680 return 0;
681}
682
683static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
685{
686 int start_rgn, end_rgn;
687 int i, ret;
688
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
692
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
696}
697
698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699{
700 return memblock_remove_range(&memblock.memory, base, size);
701}
702
703
704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
709 &base, &end, (void *)_RET_IP_);
710
711 kmemleak_free_part_phys(base, size);
712 return memblock_remove_range(&memblock.reserved, base, size);
713}
714
715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
716{
717 phys_addr_t end = base + size - 1;
718
719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
720 &base, &end, (void *)_RET_IP_);
721
722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
723}
724
725/**
726 *
727 * This function isolates region [@base, @base + @size), and sets/clears flag
728 *
729 * Return 0 on success, -errno on failure.
730 */
731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
732 phys_addr_t size, int set, int flag)
733{
734 struct memblock_type *type = &memblock.memory;
735 int i, ret, start_rgn, end_rgn;
736
737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
738 if (ret)
739 return ret;
740
741 for (i = start_rgn; i < end_rgn; i++)
742 if (set)
743 memblock_set_region_flags(&type->regions[i], flag);
744 else
745 memblock_clear_region_flags(&type->regions[i], flag);
746
747 memblock_merge_regions(type);
748 return 0;
749}
750
751/**
752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
753 * @base: the base phys addr of the region
754 * @size: the size of the region
755 *
756 * Return 0 on success, -errno on failure.
757 */
758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
759{
760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
761}
762
763/**
764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
771{
772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
773}
774
775/**
776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
783{
784 system_has_some_mirror = true;
785
786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
787}
788
789/**
790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
791 * @base: the base phys addr of the region
792 * @size: the size of the region
793 *
794 * Return 0 on success, -errno on failure.
795 */
796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
797{
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
799}
800
801/**
802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
809{
810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
811}
812
813/**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824{
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843}
844
845/**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876{
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : (phys_addr_t)ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961}
962
963/**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985{
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 if (type_b != NULL)
995 idx_b = type_b->cnt;
996 else
997 idx_b = 0;
998 }
999
1000 for (; idx_a >= 0; idx_a--) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* only memory regions are associated with nodes, check it */
1008 if (nid != NUMA_NO_NODE && nid != m_nid)
1009 continue;
1010
1011 /* skip hotpluggable memory regions if needed */
1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013 continue;
1014
1015 /* if we want mirror memory skip non-mirror memory regions */
1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017 continue;
1018
1019 /* skip nomap memory unless we were asked for it explicitly */
1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021 continue;
1022
1023 if (!type_b) {
1024 if (out_start)
1025 *out_start = m_start;
1026 if (out_end)
1027 *out_end = m_end;
1028 if (out_nid)
1029 *out_nid = m_nid;
1030 idx_a--;
1031 *idx = (u32)idx_a | (u64)idx_b << 32;
1032 return;
1033 }
1034
1035 /* scan areas before each reservation */
1036 for (; idx_b >= 0; idx_b--) {
1037 struct memblock_region *r;
1038 phys_addr_t r_start;
1039 phys_addr_t r_end;
1040
1041 r = &type_b->regions[idx_b];
1042 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043 r_end = idx_b < type_b->cnt ?
1044 r->base : (phys_addr_t)ULLONG_MAX;
1045 /*
1046 * if idx_b advanced past idx_a,
1047 * break out to advance idx_a
1048 */
1049
1050 if (r_end <= m_start)
1051 break;
1052 /* if the two regions intersect, we're done */
1053 if (m_end > r_start) {
1054 if (out_start)
1055 *out_start = max(m_start, r_start);
1056 if (out_end)
1057 *out_end = min(m_end, r_end);
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 if (m_start >= r_start)
1061 idx_a--;
1062 else
1063 idx_b--;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069 /* signal end of iteration */
1070 *idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078 unsigned long *out_start_pfn,
1079 unsigned long *out_end_pfn, int *out_nid)
1080{
1081 struct memblock_type *type = &memblock.memory;
1082 struct memblock_region *r;
1083
1084 while (++*idx < type->cnt) {
1085 r = &type->regions[*idx];
1086
1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088 continue;
1089 if (nid == MAX_NUMNODES || nid == r->nid)
1090 break;
1091 }
1092 if (*idx >= type->cnt) {
1093 *idx = -1;
1094 return;
1095 }
1096
1097 if (out_start_pfn)
1098 *out_start_pfn = PFN_UP(r->base);
1099 if (out_end_pfn)
1100 *out_end_pfn = PFN_DOWN(r->base + r->size);
1101 if (out_nid)
1102 *out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119 struct memblock_type *type, int nid)
1120{
1121 int start_rgn, end_rgn;
1122 int i, ret;
1123
1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125 if (ret)
1126 return ret;
1127
1128 for (i = start_rgn; i < end_rgn; i++)
1129 memblock_set_region_node(&type->regions[i], nid);
1130
1131 memblock_merge_regions(type);
1132 return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137 phys_addr_t align, phys_addr_t start,
1138 phys_addr_t end, int nid, ulong flags)
1139{
1140 phys_addr_t found;
1141
1142 if (!align)
1143 align = SMP_CACHE_BYTES;
1144
1145 found = memblock_find_in_range_node(size, align, start, end, nid,
1146 flags);
1147 if (found && !memblock_reserve(found, size)) {
1148 /*
1149 * The min_count is set to 0 so that memblock allocations are
1150 * never reported as leaks.
1151 */
1152 kmemleak_alloc_phys(found, size, 0, 0);
1153 return found;
1154 }
1155 return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159 phys_addr_t start, phys_addr_t end,
1160 ulong flags)
1161{
1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163 flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167 phys_addr_t align, phys_addr_t max_addr,
1168 int nid, ulong flags)
1169{
1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175 ulong flags = choose_memblock_flags();
1176 phys_addr_t ret;
1177
1178again:
1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180 nid, flags);
1181
1182 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183 flags &= ~MEMBLOCK_MIRROR;
1184 goto again;
1185 }
1186 return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192 MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197 phys_addr_t alloc;
1198
1199 alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201 if (alloc == 0)
1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203 &size, &max_addr);
1204
1205 return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217 if (res)
1218 return res;
1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253{
1254 phys_addr_t alloc;
1255 void *ptr;
1256 ulong flags = choose_memblock_flags();
1257
1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 nid = NUMA_NO_NODE;
1260
1261 /*
1262 * Detect any accidental use of these APIs after slab is ready, as at
1263 * this moment memblock may be deinitialized already and its
1264 * internal data may be destroyed (after execution of free_all_bootmem)
1265 */
1266 if (WARN_ON_ONCE(slab_is_available()))
1267 return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269 if (!align)
1270 align = SMP_CACHE_BYTES;
1271
1272 if (max_addr > memblock.current_limit)
1273 max_addr = memblock.current_limit;
1274again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc && !memblock_reserve(alloc, size))
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc && !memblock_reserve(alloc, size))
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301done:
1302 ptr = phys_to_virt(alloc);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338{
1339 void *ptr;
1340
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344
1345 ptr = memblock_virt_alloc_internal(size, align,
1346 min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348 if (ptr && size > 0)
1349 memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351 return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 * is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 * allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372 phys_addr_t size, phys_addr_t align,
1373 phys_addr_t min_addr, phys_addr_t max_addr,
1374 int nid)
1375{
1376 void *ptr;
1377
1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr, (void *)_RET_IP_);
1381
1382 ptr = memblock_virt_alloc_internal(size, align,
1383 min_addr, max_addr, nid);
1384 if (ptr)
1385 memset(ptr, 0, size);
1386 return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 * is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 * allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408 phys_addr_t size, phys_addr_t align,
1409 phys_addr_t min_addr, phys_addr_t max_addr,
1410 int nid)
1411{
1412 void *ptr;
1413
1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416 (u64)max_addr, (void *)_RET_IP_);
1417 ptr = memblock_virt_alloc_internal(size, align,
1418 min_addr, max_addr, nid);
1419 if (ptr) {
1420 memset(ptr, 0, size);
1421 return ptr;
1422 }
1423
1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426 (u64)max_addr);
1427 return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441 __func__, (u64)base, (u64)base + size - 1,
1442 (void *)_RET_IP_);
1443 kmemleak_free_part_phys(base, size);
1444 memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system. Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458 u64 cursor, end;
1459
1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461 __func__, (u64)base, (u64)base + size - 1,
1462 (void *)_RET_IP_);
1463 kmemleak_free_part_phys(base, size);
1464 cursor = PFN_UP(base);
1465 end = PFN_DOWN(base + size);
1466
1467 for (; cursor < end; cursor++) {
1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469 totalram_pages++;
1470 }
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479 return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484 return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489 unsigned long pages = 0;
1490 struct memblock_region *r;
1491 unsigned long start_pfn, end_pfn;
1492
1493 for_each_memblock(memory, r) {
1494 start_pfn = memblock_region_memory_base_pfn(r);
1495 end_pfn = memblock_region_memory_end_pfn(r);
1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498 pages += end_pfn - start_pfn;
1499 }
1500
1501 return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507 return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512 int idx = memblock.memory.cnt - 1;
1513
1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520 struct memblock_region *r;
1521
1522 /*
1523 * translate the memory @limit size into the max address within one of
1524 * the memory memblock regions, if the @limit exceeds the total size
1525 * of those regions, max_addr will keep original value ULLONG_MAX
1526 */
1527 for_each_memblock(memory, r) {
1528 if (limit <= r->size) {
1529 max_addr = r->base + limit;
1530 break;
1531 }
1532 limit -= r->size;
1533 }
1534
1535 return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542 if (!limit)
1543 return;
1544
1545 max_addr = __find_max_addr(limit);
1546
1547 /* @limit exceeds the total size of the memory, do nothing */
1548 if (max_addr == (phys_addr_t)ULLONG_MAX)
1549 return;
1550
1551 /* truncate both memory and reserved regions */
1552 memblock_remove_range(&memblock.memory, max_addr,
1553 (phys_addr_t)ULLONG_MAX);
1554 memblock_remove_range(&memblock.reserved, max_addr,
1555 (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560 int start_rgn, end_rgn;
1561 int i, ret;
1562
1563 if (!size)
1564 return;
1565
1566 ret = memblock_isolate_range(&memblock.memory, base, size,
1567 &start_rgn, &end_rgn);
1568 if (ret)
1569 return;
1570
1571 /* remove all the MAP regions */
1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574 memblock_remove_region(&memblock.memory, i);
1575
1576 for (i = start_rgn - 1; i >= 0; i--)
1577 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578 memblock_remove_region(&memblock.memory, i);
1579
1580 /* truncate the reserved regions */
1581 memblock_remove_range(&memblock.reserved, 0, base);
1582 memblock_remove_range(&memblock.reserved,
1583 base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588 phys_addr_t max_addr;
1589
1590 if (!limit)
1591 return;
1592
1593 max_addr = __find_max_addr(limit);
1594
1595 /* @limit exceeds the total size of the memory, do nothing */
1596 if (max_addr == (phys_addr_t)ULLONG_MAX)
1597 return;
1598
1599 memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604 unsigned int left = 0, right = type->cnt;
1605
1606 do {
1607 unsigned int mid = (right + left) / 2;
1608
1609 if (addr < type->regions[mid].base)
1610 right = mid;
1611 else if (addr >= (type->regions[mid].base +
1612 type->regions[mid].size))
1613 left = mid + 1;
1614 else
1615 return mid;
1616 } while (left < right);
1617 return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622 return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627 return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632 int i = memblock_search(&memblock.memory, addr);
1633
1634 if (i == -1)
1635 return false;
1636 return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643 struct memblock_type *type = &memblock.memory;
1644 int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646 if (mid == -1)
1647 return -1;
1648
1649 *start_pfn = PFN_DOWN(type->regions[mid].base);
1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652 return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668 int idx = memblock_search(&memblock.memory, base);
1669 phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671 if (idx == -1)
1672 return false;
1673 return (memblock.memory.regions[idx].base +
1674 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689 memblock_cap_size(base, &size);
1690 return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695 phys_addr_t start, end, orig_start, orig_end;
1696 struct memblock_region *r;
1697
1698 for_each_memblock(memory, r) {
1699 orig_start = r->base;
1700 orig_end = r->base + r->size;
1701 start = round_up(orig_start, align);
1702 end = round_down(orig_end, align);
1703
1704 if (start == orig_start && end == orig_end)
1705 continue;
1706
1707 if (start < end) {
1708 r->base = start;
1709 r->size = end - start;
1710 } else {
1711 memblock_remove_region(&memblock.memory,
1712 r - memblock.memory.regions);
1713 r--;
1714 }
1715 }
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720 memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725 return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730 phys_addr_t base, end, size;
1731 unsigned long flags;
1732 int idx;
1733 struct memblock_region *rgn;
1734
1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1736
1737 for_each_memblock_type(idx, type, rgn) {
1738 char nid_buf[32] = "";
1739
1740 base = rgn->base;
1741 size = rgn->size;
1742 end = base + size - 1;
1743 flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747 memblock_get_region_node(rgn));
1748#endif
1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750 type->name, idx, &base, &end, &size, nid_buf, flags);
1751 }
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756 pr_info("MEMBLOCK configuration:\n");
1757 pr_info(" memory size = %pa reserved size = %pa\n",
1758 &memblock.memory.total_size,
1759 &memblock.reserved.total_size);
1760
1761 memblock_dump(&memblock.memory);
1762 memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764 memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770 memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775 if (p && strstr(p, "debug"))
1776 memblock_debug = 1;
1777 return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785 struct memblock_type *type = m->private;
1786 struct memblock_region *reg;
1787 int i;
1788 phys_addr_t end;
1789
1790 for (i = 0; i < type->cnt; i++) {
1791 reg = &type->regions[i];
1792 end = reg->base + reg->size - 1;
1793
1794 seq_printf(m, "%4d: ", i);
1795 seq_printf(m, "%pa..%pa\n", ®->base, &end);
1796 }
1797 return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803 struct dentry *root = debugfs_create_dir("memblock", NULL);
1804 if (!root)
1805 return -ENXIO;
1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812 return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
37
38int memblock_debug __initdata_memblock;
39static int memblock_can_resize __initdata_memblock;
40static int memblock_memory_in_slab __initdata_memblock = 0;
41static int memblock_reserved_in_slab __initdata_memblock = 0;
42
43/* inline so we don't get a warning when pr_debug is compiled out */
44static inline const char *memblock_type_name(struct memblock_type *type)
45{
46 if (type == &memblock.memory)
47 return "memory";
48 else if (type == &memblock.reserved)
49 return "reserved";
50 else
51 return "unknown";
52}
53
54/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
56{
57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
58}
59
60/*
61 * Address comparison utilities
62 */
63static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
65{
66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67}
68
69static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70 phys_addr_t base, phys_addr_t size)
71{
72 unsigned long i;
73
74 for (i = 0; i < type->cnt; i++) {
75 phys_addr_t rgnbase = type->regions[i].base;
76 phys_addr_t rgnsize = type->regions[i].size;
77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
78 break;
79 }
80
81 return (i < type->cnt) ? i : -1;
82}
83
84/**
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
91 *
92 * Find @size free area aligned to @align in the specified range and node.
93 *
94 * RETURNS:
95 * Found address on success, %0 on failure.
96 */
97phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98 phys_addr_t end, phys_addr_t size,
99 phys_addr_t align, int nid)
100{
101 phys_addr_t this_start, this_end, cand;
102 u64 i;
103
104 /* pump up @end */
105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106 end = memblock.current_limit;
107
108 /* avoid allocating the first page */
109 start = max_t(phys_addr_t, start, PAGE_SIZE);
110 end = max(start, end);
111
112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113 this_start = clamp(this_start, start, end);
114 this_end = clamp(this_end, start, end);
115
116 if (this_end < size)
117 continue;
118
119 cand = round_down(this_end - size, align);
120 if (cand >= this_start)
121 return cand;
122 }
123 return 0;
124}
125
126/**
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 *
133 * Find @size free area aligned to @align in the specified range.
134 *
135 * RETURNS:
136 * Found address on success, %0 on failure.
137 */
138phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139 phys_addr_t end, phys_addr_t size,
140 phys_addr_t align)
141{
142 return memblock_find_in_range_node(start, end, size, align,
143 MAX_NUMNODES);
144}
145
146static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
147{
148 type->total_size -= type->regions[r].size;
149 memmove(&type->regions[r], &type->regions[r + 1],
150 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
151 type->cnt--;
152
153 /* Special case for empty arrays */
154 if (type->cnt == 0) {
155 WARN_ON(type->total_size != 0);
156 type->cnt = 1;
157 type->regions[0].base = 0;
158 type->regions[0].size = 0;
159 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
160 }
161}
162
163phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
164 phys_addr_t *addr)
165{
166 if (memblock.reserved.regions == memblock_reserved_init_regions)
167 return 0;
168
169 *addr = __pa(memblock.reserved.regions);
170
171 return PAGE_ALIGN(sizeof(struct memblock_region) *
172 memblock.reserved.max);
173}
174
175/**
176 * memblock_double_array - double the size of the memblock regions array
177 * @type: memblock type of the regions array being doubled
178 * @new_area_start: starting address of memory range to avoid overlap with
179 * @new_area_size: size of memory range to avoid overlap with
180 *
181 * Double the size of the @type regions array. If memblock is being used to
182 * allocate memory for a new reserved regions array and there is a previously
183 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
184 * waiting to be reserved, ensure the memory used by the new array does
185 * not overlap.
186 *
187 * RETURNS:
188 * 0 on success, -1 on failure.
189 */
190static int __init_memblock memblock_double_array(struct memblock_type *type,
191 phys_addr_t new_area_start,
192 phys_addr_t new_area_size)
193{
194 struct memblock_region *new_array, *old_array;
195 phys_addr_t old_alloc_size, new_alloc_size;
196 phys_addr_t old_size, new_size, addr;
197 int use_slab = slab_is_available();
198 int *in_slab;
199
200 /* We don't allow resizing until we know about the reserved regions
201 * of memory that aren't suitable for allocation
202 */
203 if (!memblock_can_resize)
204 return -1;
205
206 /* Calculate new doubled size */
207 old_size = type->max * sizeof(struct memblock_region);
208 new_size = old_size << 1;
209 /*
210 * We need to allocated new one align to PAGE_SIZE,
211 * so we can free them completely later.
212 */
213 old_alloc_size = PAGE_ALIGN(old_size);
214 new_alloc_size = PAGE_ALIGN(new_size);
215
216 /* Retrieve the slab flag */
217 if (type == &memblock.memory)
218 in_slab = &memblock_memory_in_slab;
219 else
220 in_slab = &memblock_reserved_in_slab;
221
222 /* Try to find some space for it.
223 *
224 * WARNING: We assume that either slab_is_available() and we use it or
225 * we use MEMBLOCK for allocations. That means that this is unsafe to use
226 * when bootmem is currently active (unless bootmem itself is implemented
227 * on top of MEMBLOCK which isn't the case yet)
228 *
229 * This should however not be an issue for now, as we currently only
230 * call into MEMBLOCK while it's still active, or much later when slab is
231 * active for memory hotplug operations
232 */
233 if (use_slab) {
234 new_array = kmalloc(new_size, GFP_KERNEL);
235 addr = new_array ? __pa(new_array) : 0;
236 } else {
237 /* only exclude range when trying to double reserved.regions */
238 if (type != &memblock.reserved)
239 new_area_start = new_area_size = 0;
240
241 addr = memblock_find_in_range(new_area_start + new_area_size,
242 memblock.current_limit,
243 new_alloc_size, PAGE_SIZE);
244 if (!addr && new_area_size)
245 addr = memblock_find_in_range(0,
246 min(new_area_start, memblock.current_limit),
247 new_alloc_size, PAGE_SIZE);
248
249 new_array = addr ? __va(addr) : 0;
250 }
251 if (!addr) {
252 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
253 memblock_type_name(type), type->max, type->max * 2);
254 return -1;
255 }
256
257 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
258 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
259
260 /* Found space, we now need to move the array over before
261 * we add the reserved region since it may be our reserved
262 * array itself that is full.
263 */
264 memcpy(new_array, type->regions, old_size);
265 memset(new_array + type->max, 0, old_size);
266 old_array = type->regions;
267 type->regions = new_array;
268 type->max <<= 1;
269
270 /* Free old array. We needn't free it if the array is the
271 * static one
272 */
273 if (*in_slab)
274 kfree(old_array);
275 else if (old_array != memblock_memory_init_regions &&
276 old_array != memblock_reserved_init_regions)
277 memblock_free(__pa(old_array), old_alloc_size);
278
279 /* Reserve the new array if that comes from the memblock.
280 * Otherwise, we needn't do it
281 */
282 if (!use_slab)
283 BUG_ON(memblock_reserve(addr, new_alloc_size));
284
285 /* Update slab flag */
286 *in_slab = use_slab;
287
288 return 0;
289}
290
291/**
292 * memblock_merge_regions - merge neighboring compatible regions
293 * @type: memblock type to scan
294 *
295 * Scan @type and merge neighboring compatible regions.
296 */
297static void __init_memblock memblock_merge_regions(struct memblock_type *type)
298{
299 int i = 0;
300
301 /* cnt never goes below 1 */
302 while (i < type->cnt - 1) {
303 struct memblock_region *this = &type->regions[i];
304 struct memblock_region *next = &type->regions[i + 1];
305
306 if (this->base + this->size != next->base ||
307 memblock_get_region_node(this) !=
308 memblock_get_region_node(next)) {
309 BUG_ON(this->base + this->size > next->base);
310 i++;
311 continue;
312 }
313
314 this->size += next->size;
315 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
316 type->cnt--;
317 }
318}
319
320/**
321 * memblock_insert_region - insert new memblock region
322 * @type: memblock type to insert into
323 * @idx: index for the insertion point
324 * @base: base address of the new region
325 * @size: size of the new region
326 *
327 * Insert new memblock region [@base,@base+@size) into @type at @idx.
328 * @type must already have extra room to accomodate the new region.
329 */
330static void __init_memblock memblock_insert_region(struct memblock_type *type,
331 int idx, phys_addr_t base,
332 phys_addr_t size, int nid)
333{
334 struct memblock_region *rgn = &type->regions[idx];
335
336 BUG_ON(type->cnt >= type->max);
337 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
338 rgn->base = base;
339 rgn->size = size;
340 memblock_set_region_node(rgn, nid);
341 type->cnt++;
342 type->total_size += size;
343}
344
345/**
346 * memblock_add_region - add new memblock region
347 * @type: memblock type to add new region into
348 * @base: base address of the new region
349 * @size: size of the new region
350 * @nid: nid of the new region
351 *
352 * Add new memblock region [@base,@base+@size) into @type. The new region
353 * is allowed to overlap with existing ones - overlaps don't affect already
354 * existing regions. @type is guaranteed to be minimal (all neighbouring
355 * compatible regions are merged) after the addition.
356 *
357 * RETURNS:
358 * 0 on success, -errno on failure.
359 */
360static int __init_memblock memblock_add_region(struct memblock_type *type,
361 phys_addr_t base, phys_addr_t size, int nid)
362{
363 bool insert = false;
364 phys_addr_t obase = base;
365 phys_addr_t end = base + memblock_cap_size(base, &size);
366 int i, nr_new;
367
368 if (!size)
369 return 0;
370
371 /* special case for empty array */
372 if (type->regions[0].size == 0) {
373 WARN_ON(type->cnt != 1 || type->total_size);
374 type->regions[0].base = base;
375 type->regions[0].size = size;
376 memblock_set_region_node(&type->regions[0], nid);
377 type->total_size = size;
378 return 0;
379 }
380repeat:
381 /*
382 * The following is executed twice. Once with %false @insert and
383 * then with %true. The first counts the number of regions needed
384 * to accomodate the new area. The second actually inserts them.
385 */
386 base = obase;
387 nr_new = 0;
388
389 for (i = 0; i < type->cnt; i++) {
390 struct memblock_region *rgn = &type->regions[i];
391 phys_addr_t rbase = rgn->base;
392 phys_addr_t rend = rbase + rgn->size;
393
394 if (rbase >= end)
395 break;
396 if (rend <= base)
397 continue;
398 /*
399 * @rgn overlaps. If it separates the lower part of new
400 * area, insert that portion.
401 */
402 if (rbase > base) {
403 nr_new++;
404 if (insert)
405 memblock_insert_region(type, i++, base,
406 rbase - base, nid);
407 }
408 /* area below @rend is dealt with, forget about it */
409 base = min(rend, end);
410 }
411
412 /* insert the remaining portion */
413 if (base < end) {
414 nr_new++;
415 if (insert)
416 memblock_insert_region(type, i, base, end - base, nid);
417 }
418
419 /*
420 * If this was the first round, resize array and repeat for actual
421 * insertions; otherwise, merge and return.
422 */
423 if (!insert) {
424 while (type->cnt + nr_new > type->max)
425 if (memblock_double_array(type, obase, size) < 0)
426 return -ENOMEM;
427 insert = true;
428 goto repeat;
429 } else {
430 memblock_merge_regions(type);
431 return 0;
432 }
433}
434
435int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
436 int nid)
437{
438 return memblock_add_region(&memblock.memory, base, size, nid);
439}
440
441int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
442{
443 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
444}
445
446/**
447 * memblock_isolate_range - isolate given range into disjoint memblocks
448 * @type: memblock type to isolate range for
449 * @base: base of range to isolate
450 * @size: size of range to isolate
451 * @start_rgn: out parameter for the start of isolated region
452 * @end_rgn: out parameter for the end of isolated region
453 *
454 * Walk @type and ensure that regions don't cross the boundaries defined by
455 * [@base,@base+@size). Crossing regions are split at the boundaries,
456 * which may create at most two more regions. The index of the first
457 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
458 *
459 * RETURNS:
460 * 0 on success, -errno on failure.
461 */
462static int __init_memblock memblock_isolate_range(struct memblock_type *type,
463 phys_addr_t base, phys_addr_t size,
464 int *start_rgn, int *end_rgn)
465{
466 phys_addr_t end = base + memblock_cap_size(base, &size);
467 int i;
468
469 *start_rgn = *end_rgn = 0;
470
471 if (!size)
472 return 0;
473
474 /* we'll create at most two more regions */
475 while (type->cnt + 2 > type->max)
476 if (memblock_double_array(type, base, size) < 0)
477 return -ENOMEM;
478
479 for (i = 0; i < type->cnt; i++) {
480 struct memblock_region *rgn = &type->regions[i];
481 phys_addr_t rbase = rgn->base;
482 phys_addr_t rend = rbase + rgn->size;
483
484 if (rbase >= end)
485 break;
486 if (rend <= base)
487 continue;
488
489 if (rbase < base) {
490 /*
491 * @rgn intersects from below. Split and continue
492 * to process the next region - the new top half.
493 */
494 rgn->base = base;
495 rgn->size -= base - rbase;
496 type->total_size -= base - rbase;
497 memblock_insert_region(type, i, rbase, base - rbase,
498 memblock_get_region_node(rgn));
499 } else if (rend > end) {
500 /*
501 * @rgn intersects from above. Split and redo the
502 * current region - the new bottom half.
503 */
504 rgn->base = end;
505 rgn->size -= end - rbase;
506 type->total_size -= end - rbase;
507 memblock_insert_region(type, i--, rbase, end - rbase,
508 memblock_get_region_node(rgn));
509 } else {
510 /* @rgn is fully contained, record it */
511 if (!*end_rgn)
512 *start_rgn = i;
513 *end_rgn = i + 1;
514 }
515 }
516
517 return 0;
518}
519
520static int __init_memblock __memblock_remove(struct memblock_type *type,
521 phys_addr_t base, phys_addr_t size)
522{
523 int start_rgn, end_rgn;
524 int i, ret;
525
526 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
527 if (ret)
528 return ret;
529
530 for (i = end_rgn - 1; i >= start_rgn; i--)
531 memblock_remove_region(type, i);
532 return 0;
533}
534
535int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
536{
537 return __memblock_remove(&memblock.memory, base, size);
538}
539
540int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
541{
542 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
543 (unsigned long long)base,
544 (unsigned long long)base + size,
545 (void *)_RET_IP_);
546
547 return __memblock_remove(&memblock.reserved, base, size);
548}
549
550int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
551{
552 struct memblock_type *_rgn = &memblock.reserved;
553
554 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
555 (unsigned long long)base,
556 (unsigned long long)base + size,
557 (void *)_RET_IP_);
558
559 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
560}
561
562/**
563 * __next_free_mem_range - next function for for_each_free_mem_range()
564 * @idx: pointer to u64 loop variable
565 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
566 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
567 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
568 * @out_nid: ptr to int for nid of the range, can be %NULL
569 *
570 * Find the first free area from *@idx which matches @nid, fill the out
571 * parameters, and update *@idx for the next iteration. The lower 32bit of
572 * *@idx contains index into memory region and the upper 32bit indexes the
573 * areas before each reserved region. For example, if reserved regions
574 * look like the following,
575 *
576 * 0:[0-16), 1:[32-48), 2:[128-130)
577 *
578 * The upper 32bit indexes the following regions.
579 *
580 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
581 *
582 * As both region arrays are sorted, the function advances the two indices
583 * in lockstep and returns each intersection.
584 */
585void __init_memblock __next_free_mem_range(u64 *idx, int nid,
586 phys_addr_t *out_start,
587 phys_addr_t *out_end, int *out_nid)
588{
589 struct memblock_type *mem = &memblock.memory;
590 struct memblock_type *rsv = &memblock.reserved;
591 int mi = *idx & 0xffffffff;
592 int ri = *idx >> 32;
593
594 for ( ; mi < mem->cnt; mi++) {
595 struct memblock_region *m = &mem->regions[mi];
596 phys_addr_t m_start = m->base;
597 phys_addr_t m_end = m->base + m->size;
598
599 /* only memory regions are associated with nodes, check it */
600 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
601 continue;
602
603 /* scan areas before each reservation for intersection */
604 for ( ; ri < rsv->cnt + 1; ri++) {
605 struct memblock_region *r = &rsv->regions[ri];
606 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
607 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
608
609 /* if ri advanced past mi, break out to advance mi */
610 if (r_start >= m_end)
611 break;
612 /* if the two regions intersect, we're done */
613 if (m_start < r_end) {
614 if (out_start)
615 *out_start = max(m_start, r_start);
616 if (out_end)
617 *out_end = min(m_end, r_end);
618 if (out_nid)
619 *out_nid = memblock_get_region_node(m);
620 /*
621 * The region which ends first is advanced
622 * for the next iteration.
623 */
624 if (m_end <= r_end)
625 mi++;
626 else
627 ri++;
628 *idx = (u32)mi | (u64)ri << 32;
629 return;
630 }
631 }
632 }
633
634 /* signal end of iteration */
635 *idx = ULLONG_MAX;
636}
637
638/**
639 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
640 * @idx: pointer to u64 loop variable
641 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
642 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
643 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
644 * @out_nid: ptr to int for nid of the range, can be %NULL
645 *
646 * Reverse of __next_free_mem_range().
647 */
648void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
649 phys_addr_t *out_start,
650 phys_addr_t *out_end, int *out_nid)
651{
652 struct memblock_type *mem = &memblock.memory;
653 struct memblock_type *rsv = &memblock.reserved;
654 int mi = *idx & 0xffffffff;
655 int ri = *idx >> 32;
656
657 if (*idx == (u64)ULLONG_MAX) {
658 mi = mem->cnt - 1;
659 ri = rsv->cnt;
660 }
661
662 for ( ; mi >= 0; mi--) {
663 struct memblock_region *m = &mem->regions[mi];
664 phys_addr_t m_start = m->base;
665 phys_addr_t m_end = m->base + m->size;
666
667 /* only memory regions are associated with nodes, check it */
668 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
669 continue;
670
671 /* scan areas before each reservation for intersection */
672 for ( ; ri >= 0; ri--) {
673 struct memblock_region *r = &rsv->regions[ri];
674 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
675 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
676
677 /* if ri advanced past mi, break out to advance mi */
678 if (r_end <= m_start)
679 break;
680 /* if the two regions intersect, we're done */
681 if (m_end > r_start) {
682 if (out_start)
683 *out_start = max(m_start, r_start);
684 if (out_end)
685 *out_end = min(m_end, r_end);
686 if (out_nid)
687 *out_nid = memblock_get_region_node(m);
688
689 if (m_start >= r_start)
690 mi--;
691 else
692 ri--;
693 *idx = (u32)mi | (u64)ri << 32;
694 return;
695 }
696 }
697 }
698
699 *idx = ULLONG_MAX;
700}
701
702#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
703/*
704 * Common iterator interface used to define for_each_mem_range().
705 */
706void __init_memblock __next_mem_pfn_range(int *idx, int nid,
707 unsigned long *out_start_pfn,
708 unsigned long *out_end_pfn, int *out_nid)
709{
710 struct memblock_type *type = &memblock.memory;
711 struct memblock_region *r;
712
713 while (++*idx < type->cnt) {
714 r = &type->regions[*idx];
715
716 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
717 continue;
718 if (nid == MAX_NUMNODES || nid == r->nid)
719 break;
720 }
721 if (*idx >= type->cnt) {
722 *idx = -1;
723 return;
724 }
725
726 if (out_start_pfn)
727 *out_start_pfn = PFN_UP(r->base);
728 if (out_end_pfn)
729 *out_end_pfn = PFN_DOWN(r->base + r->size);
730 if (out_nid)
731 *out_nid = r->nid;
732}
733
734/**
735 * memblock_set_node - set node ID on memblock regions
736 * @base: base of area to set node ID for
737 * @size: size of area to set node ID for
738 * @nid: node ID to set
739 *
740 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
741 * Regions which cross the area boundaries are split as necessary.
742 *
743 * RETURNS:
744 * 0 on success, -errno on failure.
745 */
746int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
747 int nid)
748{
749 struct memblock_type *type = &memblock.memory;
750 int start_rgn, end_rgn;
751 int i, ret;
752
753 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
754 if (ret)
755 return ret;
756
757 for (i = start_rgn; i < end_rgn; i++)
758 type->regions[i].nid = nid;
759
760 memblock_merge_regions(type);
761 return 0;
762}
763#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
764
765static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
766 phys_addr_t align, phys_addr_t max_addr,
767 int nid)
768{
769 phys_addr_t found;
770
771 /* align @size to avoid excessive fragmentation on reserved array */
772 size = round_up(size, align);
773
774 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
775 if (found && !memblock_reserve(found, size))
776 return found;
777
778 return 0;
779}
780
781phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
782{
783 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
784}
785
786phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
787{
788 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
789}
790
791phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
792{
793 phys_addr_t alloc;
794
795 alloc = __memblock_alloc_base(size, align, max_addr);
796
797 if (alloc == 0)
798 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
799 (unsigned long long) size, (unsigned long long) max_addr);
800
801 return alloc;
802}
803
804phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
805{
806 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
807}
808
809phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
810{
811 phys_addr_t res = memblock_alloc_nid(size, align, nid);
812
813 if (res)
814 return res;
815 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
816}
817
818
819/*
820 * Remaining API functions
821 */
822
823phys_addr_t __init memblock_phys_mem_size(void)
824{
825 return memblock.memory.total_size;
826}
827
828/* lowest address */
829phys_addr_t __init_memblock memblock_start_of_DRAM(void)
830{
831 return memblock.memory.regions[0].base;
832}
833
834phys_addr_t __init_memblock memblock_end_of_DRAM(void)
835{
836 int idx = memblock.memory.cnt - 1;
837
838 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
839}
840
841void __init memblock_enforce_memory_limit(phys_addr_t limit)
842{
843 unsigned long i;
844 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
845
846 if (!limit)
847 return;
848
849 /* find out max address */
850 for (i = 0; i < memblock.memory.cnt; i++) {
851 struct memblock_region *r = &memblock.memory.regions[i];
852
853 if (limit <= r->size) {
854 max_addr = r->base + limit;
855 break;
856 }
857 limit -= r->size;
858 }
859
860 /* truncate both memory and reserved regions */
861 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
862 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
863}
864
865static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
866{
867 unsigned int left = 0, right = type->cnt;
868
869 do {
870 unsigned int mid = (right + left) / 2;
871
872 if (addr < type->regions[mid].base)
873 right = mid;
874 else if (addr >= (type->regions[mid].base +
875 type->regions[mid].size))
876 left = mid + 1;
877 else
878 return mid;
879 } while (left < right);
880 return -1;
881}
882
883int __init memblock_is_reserved(phys_addr_t addr)
884{
885 return memblock_search(&memblock.reserved, addr) != -1;
886}
887
888int __init_memblock memblock_is_memory(phys_addr_t addr)
889{
890 return memblock_search(&memblock.memory, addr) != -1;
891}
892
893/**
894 * memblock_is_region_memory - check if a region is a subset of memory
895 * @base: base of region to check
896 * @size: size of region to check
897 *
898 * Check if the region [@base, @base+@size) is a subset of a memory block.
899 *
900 * RETURNS:
901 * 0 if false, non-zero if true
902 */
903int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
904{
905 int idx = memblock_search(&memblock.memory, base);
906 phys_addr_t end = base + memblock_cap_size(base, &size);
907
908 if (idx == -1)
909 return 0;
910 return memblock.memory.regions[idx].base <= base &&
911 (memblock.memory.regions[idx].base +
912 memblock.memory.regions[idx].size) >= end;
913}
914
915/**
916 * memblock_is_region_reserved - check if a region intersects reserved memory
917 * @base: base of region to check
918 * @size: size of region to check
919 *
920 * Check if the region [@base, @base+@size) intersects a reserved memory block.
921 *
922 * RETURNS:
923 * 0 if false, non-zero if true
924 */
925int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
926{
927 memblock_cap_size(base, &size);
928 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
929}
930
931
932void __init_memblock memblock_set_current_limit(phys_addr_t limit)
933{
934 memblock.current_limit = limit;
935}
936
937static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
938{
939 unsigned long long base, size;
940 int i;
941
942 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
943
944 for (i = 0; i < type->cnt; i++) {
945 struct memblock_region *rgn = &type->regions[i];
946 char nid_buf[32] = "";
947
948 base = rgn->base;
949 size = rgn->size;
950#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
951 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
952 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
953 memblock_get_region_node(rgn));
954#endif
955 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
956 name, i, base, base + size - 1, size, nid_buf);
957 }
958}
959
960void __init_memblock __memblock_dump_all(void)
961{
962 pr_info("MEMBLOCK configuration:\n");
963 pr_info(" memory size = %#llx reserved size = %#llx\n",
964 (unsigned long long)memblock.memory.total_size,
965 (unsigned long long)memblock.reserved.total_size);
966
967 memblock_dump(&memblock.memory, "memory");
968 memblock_dump(&memblock.reserved, "reserved");
969}
970
971void __init memblock_allow_resize(void)
972{
973 memblock_can_resize = 1;
974}
975
976static int __init early_memblock(char *p)
977{
978 if (p && strstr(p, "debug"))
979 memblock_debug = 1;
980 return 0;
981}
982early_param("memblock", early_memblock);
983
984#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
985
986static int memblock_debug_show(struct seq_file *m, void *private)
987{
988 struct memblock_type *type = m->private;
989 struct memblock_region *reg;
990 int i;
991
992 for (i = 0; i < type->cnt; i++) {
993 reg = &type->regions[i];
994 seq_printf(m, "%4d: ", i);
995 if (sizeof(phys_addr_t) == 4)
996 seq_printf(m, "0x%08lx..0x%08lx\n",
997 (unsigned long)reg->base,
998 (unsigned long)(reg->base + reg->size - 1));
999 else
1000 seq_printf(m, "0x%016llx..0x%016llx\n",
1001 (unsigned long long)reg->base,
1002 (unsigned long long)(reg->base + reg->size - 1));
1003
1004 }
1005 return 0;
1006}
1007
1008static int memblock_debug_open(struct inode *inode, struct file *file)
1009{
1010 return single_open(file, memblock_debug_show, inode->i_private);
1011}
1012
1013static const struct file_operations memblock_debug_fops = {
1014 .open = memblock_debug_open,
1015 .read = seq_read,
1016 .llseek = seq_lseek,
1017 .release = single_release,
1018};
1019
1020static int __init memblock_init_debugfs(void)
1021{
1022 struct dentry *root = debugfs_create_dir("memblock", NULL);
1023 if (!root)
1024 return -ENXIO;
1025 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1026 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1027
1028 return 0;
1029}
1030__initcall(memblock_init_debugfs);
1031
1032#endif /* CONFIG_DEBUG_FS */