Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
 
 
 
 
 
 
  22
  23#include "e1000.h"
  24
 
 
 
  25static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 
  26static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  27					  u16 *data, bool read, bool page_set);
  28static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  29static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  30					  u16 *data, bool read);
  31
  32/* Cable length tables */
  33static const u16 e1000_m88_cable_length_table[] = {
  34	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  35};
  36
  37#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  38		ARRAY_SIZE(e1000_m88_cable_length_table)
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  42	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  43	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  44	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  45	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  46	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  47	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  48	124
  49};
  50
  51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  52		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54/**
  55 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  56 *  @hw: pointer to the HW structure
  57 *
  58 *  Read the PHY management control register and check whether a PHY reset
  59 *  is blocked.  If a reset is not blocked return 0, otherwise
  60 *  return E1000_BLK_PHY_RESET (12).
  61 **/
  62s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  63{
  64	u32 manc;
  65
  66	manc = er32(MANC);
  67
  68	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
 
  69}
  70
  71/**
  72 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  76 *  revision in the hardware structure.
  77 **/
  78s32 e1000e_get_phy_id(struct e1000_hw *hw)
  79{
  80	struct e1000_phy_info *phy = &hw->phy;
  81	s32 ret_val = 0;
  82	u16 phy_id;
  83	u16 retry_count = 0;
  84
  85	if (!phy->ops.read_reg)
  86		return 0;
  87
  88	while (retry_count < 2) {
  89		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  90		if (ret_val)
  91			return ret_val;
  92
  93		phy->id = (u32)(phy_id << 16);
  94		usleep_range(20, 40);
  95		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  96		if (ret_val)
  97			return ret_val;
  98
  99		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 100		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 101
 102		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 103			return 0;
 104
 105		retry_count++;
 106	}
 107
 108	return 0;
 109}
 110
 111/**
 112 *  e1000e_phy_reset_dsp - Reset PHY DSP
 113 *  @hw: pointer to the HW structure
 114 *
 115 *  Reset the digital signal processor.
 116 **/
 117s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 118{
 119	s32 ret_val;
 120
 121	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 122	if (ret_val)
 123		return ret_val;
 124
 125	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 126}
 127
 128/**
 129 *  e1000e_read_phy_reg_mdic - Read MDI control register
 130 *  @hw: pointer to the HW structure
 131 *  @offset: register offset to be read
 132 *  @data: pointer to the read data
 133 *
 134 *  Reads the MDI control register in the PHY at offset and stores the
 135 *  information read to data.
 136 **/
 137s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 138{
 139	struct e1000_phy_info *phy = &hw->phy;
 140	u32 i, mdic = 0;
 141
 142	if (offset > MAX_PHY_REG_ADDRESS) {
 143		e_dbg("PHY Address %d is out of range\n", offset);
 144		return -E1000_ERR_PARAM;
 145	}
 146
 147	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 148	 * Control register.  The MAC will take care of interfacing with the
 149	 * PHY to retrieve the desired data.
 150	 */
 151	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 152		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 153		(E1000_MDIC_OP_READ));
 154
 155	ew32(MDIC, mdic);
 156
 157	/* Poll the ready bit to see if the MDI read completed
 
 158	 * Increasing the time out as testing showed failures with
 159	 * the lower time out
 160	 */
 161	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 162		udelay(50);
 163		mdic = er32(MDIC);
 164		if (mdic & E1000_MDIC_READY)
 165			break;
 166	}
 167	if (!(mdic & E1000_MDIC_READY)) {
 168		e_dbg("MDI Read did not complete\n");
 169		return -E1000_ERR_PHY;
 170	}
 171	if (mdic & E1000_MDIC_ERROR) {
 172		e_dbg("MDI Error\n");
 173		return -E1000_ERR_PHY;
 174	}
 175	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 176		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 177		      offset,
 178		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 179		return -E1000_ERR_PHY;
 180	}
 181	*data = (u16)mdic;
 182
 183	/* Allow some time after each MDIC transaction to avoid
 
 184	 * reading duplicate data in the next MDIC transaction.
 185	 */
 186	if (hw->mac.type == e1000_pch2lan)
 187		udelay(100);
 188
 189	return 0;
 190}
 191
 192/**
 193 *  e1000e_write_phy_reg_mdic - Write MDI control register
 194 *  @hw: pointer to the HW structure
 195 *  @offset: register offset to write to
 196 *  @data: data to write to register at offset
 197 *
 198 *  Writes data to MDI control register in the PHY at offset.
 199 **/
 200s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 201{
 202	struct e1000_phy_info *phy = &hw->phy;
 203	u32 i, mdic = 0;
 204
 205	if (offset > MAX_PHY_REG_ADDRESS) {
 206		e_dbg("PHY Address %d is out of range\n", offset);
 207		return -E1000_ERR_PARAM;
 208	}
 209
 210	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 211	 * Control register.  The MAC will take care of interfacing with the
 212	 * PHY to retrieve the desired data.
 213	 */
 214	mdic = (((u32)data) |
 215		(offset << E1000_MDIC_REG_SHIFT) |
 216		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 217		(E1000_MDIC_OP_WRITE));
 218
 219	ew32(MDIC, mdic);
 220
 221	/* Poll the ready bit to see if the MDI read completed
 
 222	 * Increasing the time out as testing showed failures with
 223	 * the lower time out
 224	 */
 225	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 226		udelay(50);
 227		mdic = er32(MDIC);
 228		if (mdic & E1000_MDIC_READY)
 229			break;
 230	}
 231	if (!(mdic & E1000_MDIC_READY)) {
 232		e_dbg("MDI Write did not complete\n");
 233		return -E1000_ERR_PHY;
 234	}
 235	if (mdic & E1000_MDIC_ERROR) {
 236		e_dbg("MDI Error\n");
 237		return -E1000_ERR_PHY;
 238	}
 239	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 240		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 241		      offset,
 242		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 243		return -E1000_ERR_PHY;
 244	}
 245
 246	/* Allow some time after each MDIC transaction to avoid
 
 247	 * reading duplicate data in the next MDIC transaction.
 248	 */
 249	if (hw->mac.type == e1000_pch2lan)
 250		udelay(100);
 251
 252	return 0;
 253}
 254
 255/**
 256 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 257 *  @hw: pointer to the HW structure
 258 *  @offset: register offset to be read
 259 *  @data: pointer to the read data
 260 *
 261 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 262 *  and storing the retrieved information in data.  Release any acquired
 263 *  semaphores before exiting.
 264 **/
 265s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 266{
 267	s32 ret_val;
 268
 269	ret_val = hw->phy.ops.acquire(hw);
 270	if (ret_val)
 271		return ret_val;
 272
 273	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 274					   data);
 275
 276	hw->phy.ops.release(hw);
 277
 278	return ret_val;
 279}
 280
 281/**
 282 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 283 *  @hw: pointer to the HW structure
 284 *  @offset: register offset to write to
 285 *  @data: data to write at register offset
 286 *
 287 *  Acquires semaphore, if necessary, then writes the data to PHY register
 288 *  at the offset.  Release any acquired semaphores before exiting.
 289 **/
 290s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 291{
 292	s32 ret_val;
 293
 294	ret_val = hw->phy.ops.acquire(hw);
 295	if (ret_val)
 296		return ret_val;
 297
 298	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 299					    data);
 300
 301	hw->phy.ops.release(hw);
 302
 303	return ret_val;
 304}
 305
 306/**
 307 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 308 *  @hw: pointer to the HW structure
 309 *  @page: page to set (shifted left when necessary)
 310 *
 311 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 312 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 313 *  must set it appropriately (if necessary) after this function returns.
 314 **/
 315s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 316{
 317	e_dbg("Setting page 0x%x\n", page);
 318
 319	hw->phy.addr = 1;
 320
 321	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 322}
 323
 324/**
 325 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 326 *  @hw: pointer to the HW structure
 327 *  @offset: register offset to be read
 328 *  @data: pointer to the read data
 329 *  @locked: semaphore has already been acquired or not
 330 *
 331 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 332 *  and stores the retrieved information in data.  Release any acquired
 333 *  semaphores before exiting.
 334 **/
 335static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 336				     bool locked)
 337{
 338	s32 ret_val = 0;
 339
 340	if (!locked) {
 341		if (!hw->phy.ops.acquire)
 342			return 0;
 343
 344		ret_val = hw->phy.ops.acquire(hw);
 345		if (ret_val)
 346			return ret_val;
 347	}
 348
 349	if (offset > MAX_PHY_MULTI_PAGE_REG)
 350		ret_val = e1000e_write_phy_reg_mdic(hw,
 351						    IGP01E1000_PHY_PAGE_SELECT,
 352						    (u16)offset);
 353	if (!ret_val)
 354		ret_val = e1000e_read_phy_reg_mdic(hw,
 355						   MAX_PHY_REG_ADDRESS & offset,
 356						   data);
 357	if (!locked)
 358		hw->phy.ops.release(hw);
 359
 360	return ret_val;
 361}
 362
 363/**
 364 *  e1000e_read_phy_reg_igp - Read igp PHY register
 365 *  @hw: pointer to the HW structure
 366 *  @offset: register offset to be read
 367 *  @data: pointer to the read data
 368 *
 369 *  Acquires semaphore then reads the PHY register at offset and stores the
 370 *  retrieved information in data.
 371 *  Release the acquired semaphore before exiting.
 372 **/
 373s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 374{
 375	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 376}
 377
 378/**
 379 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 380 *  @hw: pointer to the HW structure
 381 *  @offset: register offset to be read
 382 *  @data: pointer to the read data
 383 *
 384 *  Reads the PHY register at offset and stores the retrieved information
 385 *  in data.  Assumes semaphore already acquired.
 386 **/
 387s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 388{
 389	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 390}
 391
 392/**
 393 *  e1000e_write_phy_reg_igp - Write igp PHY register
 394 *  @hw: pointer to the HW structure
 395 *  @offset: register offset to write to
 396 *  @data: data to write at register offset
 397 *  @locked: semaphore has already been acquired or not
 398 *
 399 *  Acquires semaphore, if necessary, then writes the data to PHY register
 400 *  at the offset.  Release any acquired semaphores before exiting.
 401 **/
 402static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 403				      bool locked)
 404{
 405	s32 ret_val = 0;
 406
 407	if (!locked) {
 408		if (!hw->phy.ops.acquire)
 409			return 0;
 410
 411		ret_val = hw->phy.ops.acquire(hw);
 412		if (ret_val)
 413			return ret_val;
 414	}
 415
 416	if (offset > MAX_PHY_MULTI_PAGE_REG)
 417		ret_val = e1000e_write_phy_reg_mdic(hw,
 418						    IGP01E1000_PHY_PAGE_SELECT,
 419						    (u16)offset);
 420	if (!ret_val)
 421		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 422						    offset, data);
 
 423	if (!locked)
 424		hw->phy.ops.release(hw);
 425
 426	return ret_val;
 427}
 428
 429/**
 430 *  e1000e_write_phy_reg_igp - Write igp PHY register
 431 *  @hw: pointer to the HW structure
 432 *  @offset: register offset to write to
 433 *  @data: data to write at register offset
 434 *
 435 *  Acquires semaphore then writes the data to PHY register
 436 *  at the offset.  Release any acquired semaphores before exiting.
 437 **/
 438s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 439{
 440	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 441}
 442
 443/**
 444 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 445 *  @hw: pointer to the HW structure
 446 *  @offset: register offset to write to
 447 *  @data: data to write at register offset
 448 *
 449 *  Writes the data to PHY register at the offset.
 450 *  Assumes semaphore already acquired.
 451 **/
 452s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 453{
 454	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 455}
 456
 457/**
 458 *  __e1000_read_kmrn_reg - Read kumeran register
 459 *  @hw: pointer to the HW structure
 460 *  @offset: register offset to be read
 461 *  @data: pointer to the read data
 462 *  @locked: semaphore has already been acquired or not
 463 *
 464 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 465 *  using the kumeran interface.  The information retrieved is stored in data.
 466 *  Release any acquired semaphores before exiting.
 467 **/
 468static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 469				 bool locked)
 470{
 471	u32 kmrnctrlsta;
 472
 473	if (!locked) {
 474		s32 ret_val = 0;
 475
 476		if (!hw->phy.ops.acquire)
 477			return 0;
 478
 479		ret_val = hw->phy.ops.acquire(hw);
 480		if (ret_val)
 481			return ret_val;
 482	}
 483
 484	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 485		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 486	ew32(KMRNCTRLSTA, kmrnctrlsta);
 487	e1e_flush();
 488
 489	udelay(2);
 490
 491	kmrnctrlsta = er32(KMRNCTRLSTA);
 492	*data = (u16)kmrnctrlsta;
 493
 494	if (!locked)
 495		hw->phy.ops.release(hw);
 496
 497	return 0;
 498}
 499
 500/**
 501 *  e1000e_read_kmrn_reg -  Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *
 506 *  Acquires semaphore then reads the PHY register at offset using the
 507 *  kumeran interface.  The information retrieved is stored in data.
 508 *  Release the acquired semaphore before exiting.
 509 **/
 510s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 511{
 512	return __e1000_read_kmrn_reg(hw, offset, data, false);
 513}
 514
 515/**
 516 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 517 *  @hw: pointer to the HW structure
 518 *  @offset: register offset to be read
 519 *  @data: pointer to the read data
 520 *
 521 *  Reads the PHY register at offset using the kumeran interface.  The
 522 *  information retrieved is stored in data.
 523 *  Assumes semaphore already acquired.
 524 **/
 525s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 526{
 527	return __e1000_read_kmrn_reg(hw, offset, data, true);
 528}
 529
 530/**
 531 *  __e1000_write_kmrn_reg - Write kumeran register
 532 *  @hw: pointer to the HW structure
 533 *  @offset: register offset to write to
 534 *  @data: data to write at register offset
 535 *  @locked: semaphore has already been acquired or not
 536 *
 537 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 538 *  at the offset using the kumeran interface.  Release any acquired semaphores
 539 *  before exiting.
 540 **/
 541static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 542				  bool locked)
 543{
 544	u32 kmrnctrlsta;
 545
 546	if (!locked) {
 547		s32 ret_val = 0;
 548
 549		if (!hw->phy.ops.acquire)
 550			return 0;
 551
 552		ret_val = hw->phy.ops.acquire(hw);
 553		if (ret_val)
 554			return ret_val;
 555	}
 556
 557	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 558		       E1000_KMRNCTRLSTA_OFFSET) | data;
 559	ew32(KMRNCTRLSTA, kmrnctrlsta);
 560	e1e_flush();
 561
 562	udelay(2);
 563
 564	if (!locked)
 565		hw->phy.ops.release(hw);
 566
 567	return 0;
 568}
 569
 570/**
 571 *  e1000e_write_kmrn_reg -  Write kumeran register
 572 *  @hw: pointer to the HW structure
 573 *  @offset: register offset to write to
 574 *  @data: data to write at register offset
 575 *
 576 *  Acquires semaphore then writes the data to the PHY register at the offset
 577 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 578 **/
 579s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 580{
 581	return __e1000_write_kmrn_reg(hw, offset, data, false);
 582}
 583
 584/**
 585 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 586 *  @hw: pointer to the HW structure
 587 *  @offset: register offset to write to
 588 *  @data: data to write at register offset
 589 *
 590 *  Write the data to PHY register at the offset using the kumeran interface.
 591 *  Assumes semaphore already acquired.
 592 **/
 593s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 594{
 595	return __e1000_write_kmrn_reg(hw, offset, data, true);
 596}
 597
 598/**
 599 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 600 *  @hw: pointer to the HW structure
 601 *
 602 *  Sets up Master/slave mode
 603 **/
 604static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 605{
 606	s32 ret_val;
 607	u16 phy_data;
 608
 609	/* Resolve Master/Slave mode */
 610	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 611	if (ret_val)
 612		return ret_val;
 613
 614	/* load defaults for future use */
 615	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 616	    ((phy_data & CTL1000_AS_MASTER) ?
 617	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 618
 619	switch (hw->phy.ms_type) {
 620	case e1000_ms_force_master:
 621		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 622		break;
 623	case e1000_ms_force_slave:
 624		phy_data |= CTL1000_ENABLE_MASTER;
 625		phy_data &= ~(CTL1000_AS_MASTER);
 626		break;
 627	case e1000_ms_auto:
 628		phy_data &= ~CTL1000_ENABLE_MASTER;
 629		/* fall-through */
 630	default:
 631		break;
 632	}
 633
 634	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 635}
 636
 637/**
 638 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 639 *  @hw: pointer to the HW structure
 640 *
 641 *  Sets up Carrier-sense on Transmit and downshift values.
 642 **/
 643s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 644{
 645	s32 ret_val;
 646	u16 phy_data;
 647
 648	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 649	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 650	if (ret_val)
 651		return ret_val;
 652
 653	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 654
 655	/* Enable downshift */
 656	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 657
 658	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 659	if (ret_val)
 660		return ret_val;
 661
 662	/* Set MDI/MDIX mode */
 663	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 664	if (ret_val)
 665		return ret_val;
 666	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 667	/* Options:
 668	 *   0 - Auto (default)
 669	 *   1 - MDI mode
 670	 *   2 - MDI-X mode
 671	 */
 672	switch (hw->phy.mdix) {
 673	case 1:
 674		break;
 675	case 2:
 676		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 677		break;
 678	case 0:
 679	default:
 680		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 681		break;
 682	}
 683	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 684	if (ret_val)
 685		return ret_val;
 686
 687	return e1000_set_master_slave_mode(hw);
 688}
 689
 690/**
 691 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 692 *  @hw: pointer to the HW structure
 693 *
 694 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 695 *  and downshift values are set also.
 696 **/
 697s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 698{
 699	struct e1000_phy_info *phy = &hw->phy;
 700	s32 ret_val;
 701	u16 phy_data;
 702
 703	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 704	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 705	if (ret_val)
 706		return ret_val;
 707
 708	/* For BM PHY this bit is downshift enable */
 709	if (phy->type != e1000_phy_bm)
 710		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 711
 712	/* Options:
 
 713	 *   MDI/MDI-X = 0 (default)
 714	 *   0 - Auto for all speeds
 715	 *   1 - MDI mode
 716	 *   2 - MDI-X mode
 717	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 718	 */
 719	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 720
 721	switch (phy->mdix) {
 722	case 1:
 723		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 724		break;
 725	case 2:
 726		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 727		break;
 728	case 3:
 729		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 730		break;
 731	case 0:
 732	default:
 733		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 734		break;
 735	}
 736
 737	/* Options:
 
 738	 *   disable_polarity_correction = 0 (default)
 739	 *       Automatic Correction for Reversed Cable Polarity
 740	 *   0 - Disabled
 741	 *   1 - Enabled
 742	 */
 743	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 744	if (phy->disable_polarity_correction)
 745		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 746
 747	/* Enable downshift on BM (disabled by default) */
 748	if (phy->type == e1000_phy_bm) {
 749		/* For 82574/82583, first disable then enable downshift */
 750		if (phy->id == BME1000_E_PHY_ID_R2) {
 751			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 752			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 753					   phy_data);
 754			if (ret_val)
 755				return ret_val;
 756			/* Commit the changes. */
 757			ret_val = phy->ops.commit(hw);
 758			if (ret_val) {
 759				e_dbg("Error committing the PHY changes\n");
 760				return ret_val;
 761			}
 762		}
 763
 764		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 765	}
 766
 767	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 768	if (ret_val)
 769		return ret_val;
 770
 771	if ((phy->type == e1000_phy_m88) &&
 772	    (phy->revision < E1000_REVISION_4) &&
 773	    (phy->id != BME1000_E_PHY_ID_R2)) {
 774		/* Force TX_CLK in the Extended PHY Specific Control Register
 
 775		 * to 25MHz clock.
 776		 */
 777		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 778		if (ret_val)
 779			return ret_val;
 780
 781		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 782
 783		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 
 784			/* 82573L PHY - set the downshift counter to 5x. */
 785			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 786			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 787		} else {
 788			/* Configure Master and Slave downshift values */
 789			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 790				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 791			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 792				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 793		}
 794		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 795		if (ret_val)
 796			return ret_val;
 797	}
 798
 799	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 800		/* Set PHY page 0, register 29 to 0x0003 */
 801		ret_val = e1e_wphy(hw, 29, 0x0003);
 802		if (ret_val)
 803			return ret_val;
 804
 805		/* Set PHY page 0, register 30 to 0x0000 */
 806		ret_val = e1e_wphy(hw, 30, 0x0000);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	/* Commit the changes. */
 812	if (phy->ops.commit) {
 813		ret_val = phy->ops.commit(hw);
 814		if (ret_val) {
 815			e_dbg("Error committing the PHY changes\n");
 816			return ret_val;
 817		}
 818	}
 819
 820	if (phy->type == e1000_phy_82578) {
 821		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 822		if (ret_val)
 823			return ret_val;
 824
 825		/* 82578 PHY - set the downshift count to 1x. */
 826		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 827		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 828		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	return 0;
 834}
 835
 836/**
 837 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 841 *  igp PHY's.
 842 **/
 843s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 844{
 845	struct e1000_phy_info *phy = &hw->phy;
 846	s32 ret_val;
 847	u16 data;
 848
 849	ret_val = e1000_phy_hw_reset(hw);
 850	if (ret_val) {
 851		e_dbg("Error resetting the PHY.\n");
 852		return ret_val;
 853	}
 854
 855	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 
 856	 * timeout issues when LFS is enabled.
 857	 */
 858	msleep(100);
 859
 860	/* disable lplu d0 during driver init */
 861	if (hw->phy.ops.set_d0_lplu_state) {
 862		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 863		if (ret_val) {
 864			e_dbg("Error Disabling LPLU D0\n");
 865			return ret_val;
 866		}
 867	}
 868	/* Configure mdi-mdix settings */
 869	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 870	if (ret_val)
 871		return ret_val;
 872
 873	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 874
 875	switch (phy->mdix) {
 876	case 1:
 877		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 878		break;
 879	case 2:
 880		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 881		break;
 882	case 0:
 883	default:
 884		data |= IGP01E1000_PSCR_AUTO_MDIX;
 885		break;
 886	}
 887	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 888	if (ret_val)
 889		return ret_val;
 890
 891	/* set auto-master slave resolution settings */
 892	if (hw->mac.autoneg) {
 893		/* when autonegotiation advertisement is only 1000Mbps then we
 
 894		 * should disable SmartSpeed and enable Auto MasterSlave
 895		 * resolution as hardware default.
 896		 */
 897		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 898			/* Disable SmartSpeed */
 899			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 900					   &data);
 901			if (ret_val)
 902				return ret_val;
 903
 904			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 905			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 906					   data);
 907			if (ret_val)
 908				return ret_val;
 909
 910			/* Set auto Master/Slave resolution process */
 911			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 912			if (ret_val)
 913				return ret_val;
 914
 915			data &= ~CTL1000_ENABLE_MASTER;
 916			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 917			if (ret_val)
 918				return ret_val;
 919		}
 920
 921		ret_val = e1000_set_master_slave_mode(hw);
 922	}
 923
 924	return ret_val;
 925}
 926
 927/**
 928 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 929 *  @hw: pointer to the HW structure
 930 *
 931 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 932 *  register and if the PHY is already setup for auto-negotiation, then
 933 *  return successful.  Otherwise, setup advertisement and flow control to
 934 *  the appropriate values for the wanted auto-negotiation.
 935 **/
 936static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 937{
 938	struct e1000_phy_info *phy = &hw->phy;
 939	s32 ret_val;
 940	u16 mii_autoneg_adv_reg;
 941	u16 mii_1000t_ctrl_reg = 0;
 942
 943	phy->autoneg_advertised &= phy->autoneg_mask;
 944
 945	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 946	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 947	if (ret_val)
 948		return ret_val;
 949
 950	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 951		/* Read the MII 1000Base-T Control Register (Address 9). */
 952		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 953		if (ret_val)
 954			return ret_val;
 955	}
 956
 957	/* Need to parse both autoneg_advertised and fc and set up
 
 958	 * the appropriate PHY registers.  First we will parse for
 959	 * autoneg_advertised software override.  Since we can advertise
 960	 * a plethora of combinations, we need to check each bit
 961	 * individually.
 962	 */
 963
 964	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 
 965	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 966	 * the  1000Base-T Control Register (Address 9).
 967	 */
 968	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 969				 ADVERTISE_100HALF |
 970				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 971	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 
 972
 973	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 974
 975	/* Do we want to advertise 10 Mb Half Duplex? */
 976	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 977		e_dbg("Advertise 10mb Half duplex\n");
 978		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 979	}
 980
 981	/* Do we want to advertise 10 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 983		e_dbg("Advertise 10mb Full duplex\n");
 984		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 985	}
 986
 987	/* Do we want to advertise 100 Mb Half Duplex? */
 988	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 989		e_dbg("Advertise 100mb Half duplex\n");
 990		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 991	}
 992
 993	/* Do we want to advertise 100 Mb Full Duplex? */
 994	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 995		e_dbg("Advertise 100mb Full duplex\n");
 996		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 997	}
 998
 999	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1000	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1001		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002
1003	/* Do we want to advertise 1000 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1005		e_dbg("Advertise 1000mb Full duplex\n");
1006		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1007	}
1008
1009	/* Check for a software override of the flow control settings, and
 
1010	 * setup the PHY advertisement registers accordingly.  If
1011	 * auto-negotiation is enabled, then software will have to set the
1012	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1013	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1014	 * negotiation.
1015	 *
1016	 * The possible values of the "fc" parameter are:
1017	 *      0:  Flow control is completely disabled
1018	 *      1:  Rx flow control is enabled (we can receive pause frames
1019	 *          but not send pause frames).
1020	 *      2:  Tx flow control is enabled (we can send pause frames
1021	 *          but we do not support receiving pause frames).
1022	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1023	 *  other:  No software override.  The flow control configuration
1024	 *          in the EEPROM is used.
1025	 */
1026	switch (hw->fc.current_mode) {
1027	case e1000_fc_none:
1028		/* Flow control (Rx & Tx) is completely disabled by a
 
1029		 * software over-ride.
1030		 */
1031		mii_autoneg_adv_reg &=
1032		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1033		break;
1034	case e1000_fc_rx_pause:
1035		/* Rx Flow control is enabled, and Tx Flow control is
 
1036		 * disabled, by a software over-ride.
1037		 *
1038		 * Since there really isn't a way to advertise that we are
1039		 * capable of Rx Pause ONLY, we will advertise that we
1040		 * support both symmetric and asymmetric Rx PAUSE.  Later
1041		 * (in e1000e_config_fc_after_link_up) we will disable the
1042		 * hw's ability to send PAUSE frames.
1043		 */
1044		mii_autoneg_adv_reg |=
1045		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1046		break;
1047	case e1000_fc_tx_pause:
1048		/* Tx Flow control is enabled, and Rx Flow control is
 
1049		 * disabled, by a software over-ride.
1050		 */
1051		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1052		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1053		break;
1054	case e1000_fc_full:
1055		/* Flow control (both Rx and Tx) is enabled by a software
 
1056		 * over-ride.
1057		 */
1058		mii_autoneg_adv_reg |=
1059		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1060		break;
1061	default:
1062		e_dbg("Flow control param set incorrectly\n");
1063		return -E1000_ERR_CONFIG;
1064	}
1065
1066	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1067	if (ret_val)
1068		return ret_val;
1069
1070	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1071
1072	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1073		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1074
1075	return ret_val;
1076}
1077
1078/**
1079 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1080 *  @hw: pointer to the HW structure
1081 *
1082 *  Performs initial bounds checking on autoneg advertisement parameter, then
1083 *  configure to advertise the full capability.  Setup the PHY to autoneg
1084 *  and restart the negotiation process between the link partner.  If
1085 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 **/
1087static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1088{
1089	struct e1000_phy_info *phy = &hw->phy;
1090	s32 ret_val;
1091	u16 phy_ctrl;
1092
1093	/* Perform some bounds checking on the autoneg advertisement
 
1094	 * parameter.
1095	 */
1096	phy->autoneg_advertised &= phy->autoneg_mask;
1097
1098	/* If autoneg_advertised is zero, we assume it was not defaulted
 
1099	 * by the calling code so we set to advertise full capability.
1100	 */
1101	if (!phy->autoneg_advertised)
1102		phy->autoneg_advertised = phy->autoneg_mask;
1103
1104	e_dbg("Reconfiguring auto-neg advertisement params\n");
1105	ret_val = e1000_phy_setup_autoneg(hw);
1106	if (ret_val) {
1107		e_dbg("Error Setting up Auto-Negotiation\n");
1108		return ret_val;
1109	}
1110	e_dbg("Restarting Auto-Neg\n");
1111
1112	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 
1113	 * the Auto Neg Restart bit in the PHY control register.
1114	 */
1115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1116	if (ret_val)
1117		return ret_val;
1118
1119	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1121	if (ret_val)
1122		return ret_val;
1123
1124	/* Does the user want to wait for Auto-Neg to complete here, or
 
1125	 * check at a later time (for example, callback routine).
1126	 */
1127	if (phy->autoneg_wait_to_complete) {
1128		ret_val = e1000_wait_autoneg(hw);
1129		if (ret_val) {
1130			e_dbg("Error while waiting for autoneg to complete\n");
1131			return ret_val;
1132		}
1133	}
1134
1135	hw->mac.get_link_status = true;
1136
1137	return ret_val;
1138}
1139
1140/**
1141 *  e1000e_setup_copper_link - Configure copper link settings
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Calls the appropriate function to configure the link for auto-neg or forced
1145 *  speed and duplex.  Then we check for link, once link is established calls
1146 *  to configure collision distance and flow control are called.  If link is
1147 *  not established, we return -E1000_ERR_PHY (-2).
1148 **/
1149s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1150{
1151	s32 ret_val;
1152	bool link;
1153
1154	if (hw->mac.autoneg) {
1155		/* Setup autoneg and flow control advertisement and perform
 
1156		 * autonegotiation.
1157		 */
1158		ret_val = e1000_copper_link_autoneg(hw);
1159		if (ret_val)
1160			return ret_val;
1161	} else {
1162		/* PHY will be set to 10H, 10F, 100H or 100F
 
1163		 * depending on user settings.
1164		 */
1165		e_dbg("Forcing Speed and Duplex\n");
1166		ret_val = hw->phy.ops.force_speed_duplex(hw);
1167		if (ret_val) {
1168			e_dbg("Error Forcing Speed and Duplex\n");
1169			return ret_val;
1170		}
1171	}
1172
1173	/* Check link status. Wait up to 100 microseconds for link to become
 
1174	 * valid.
1175	 */
1176	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1177					      &link);
1178	if (ret_val)
1179		return ret_val;
1180
1181	if (link) {
1182		e_dbg("Valid link established!!!\n");
1183		hw->mac.ops.config_collision_dist(hw);
1184		ret_val = e1000e_config_fc_after_link_up(hw);
1185	} else {
1186		e_dbg("Unable to establish link!!!\n");
1187	}
1188
1189	return ret_val;
1190}
1191
1192/**
1193 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  Calls the PHY setup function to force speed and duplex.  Clears the
1197 *  auto-crossover to force MDI manually.  Waits for link and returns
1198 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 **/
1200s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201{
1202	struct e1000_phy_info *phy = &hw->phy;
1203	s32 ret_val;
1204	u16 phy_data;
1205	bool link;
1206
1207	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1208	if (ret_val)
1209		return ret_val;
1210
1211	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212
1213	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 
1218	 * forced whenever speed and duplex are forced.
1219	 */
1220	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221	if (ret_val)
1222		return ret_val;
1223
1224	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1226
1227	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228	if (ret_val)
1229		return ret_val;
1230
1231	e_dbg("IGP PSCR: %X\n", phy_data);
1232
1233	udelay(1);
1234
1235	if (phy->autoneg_wait_to_complete) {
1236		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237
1238		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1239						      100000, &link);
1240		if (ret_val)
1241			return ret_val;
1242
1243		if (!link)
1244			e_dbg("Link taking longer than expected.\n");
1245
1246		/* Try once more */
1247		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1248						      100000, &link);
1249	}
1250
1251	return ret_val;
1252}
1253
1254/**
1255 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  Calls the PHY setup function to force speed and duplex.  Clears the
1259 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1260 *  changes.  If time expires while waiting for link up, we reset the DSP.
1261 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1262 *  successful completion, else return corresponding error code.
1263 **/
1264s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1265{
1266	struct e1000_phy_info *phy = &hw->phy;
1267	s32 ret_val;
1268	u16 phy_data;
1269	bool link;
1270
1271	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 
1272	 * forced whenever speed and duplex are forced.
1273	 */
1274	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275	if (ret_val)
1276		return ret_val;
1277
1278	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1279	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280	if (ret_val)
1281		return ret_val;
1282
1283	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1284
1285	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1286	if (ret_val)
1287		return ret_val;
1288
1289	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1290
1291	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1292	if (ret_val)
1293		return ret_val;
1294
1295	/* Reset the phy to commit changes. */
1296	if (hw->phy.ops.commit) {
1297		ret_val = hw->phy.ops.commit(hw);
1298		if (ret_val)
1299			return ret_val;
1300	}
1301
1302	if (phy->autoneg_wait_to_complete) {
1303		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304
1305		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1306						      100000, &link);
1307		if (ret_val)
1308			return ret_val;
1309
1310		if (!link) {
1311			if (hw->phy.type != e1000_phy_m88) {
1312				e_dbg("Link taking longer than expected.\n");
1313			} else {
1314				/* We didn't get link.
 
1315				 * Reset the DSP and cross our fingers.
1316				 */
1317				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1318						   0x001d);
1319				if (ret_val)
1320					return ret_val;
1321				ret_val = e1000e_phy_reset_dsp(hw);
1322				if (ret_val)
1323					return ret_val;
1324			}
1325		}
1326
1327		/* Try once more */
1328		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1329						      100000, &link);
1330		if (ret_val)
1331			return ret_val;
1332	}
1333
1334	if (hw->phy.type != e1000_phy_m88)
1335		return 0;
1336
1337	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1338	if (ret_val)
1339		return ret_val;
1340
1341	/* Resetting the phy means we need to re-force TX_CLK in the
 
1342	 * Extended PHY Specific Control Register to 25MHz clock from
1343	 * the reset value of 2.5MHz.
1344	 */
1345	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1346	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1347	if (ret_val)
1348		return ret_val;
1349
1350	/* In addition, we must re-enable CRS on Tx for both half and full
 
1351	 * duplex.
1352	 */
1353	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354	if (ret_val)
1355		return ret_val;
1356
1357	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360	return ret_val;
1361}
1362
1363/**
1364 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 *  @hw: pointer to the HW structure
1366 *
1367 *  Forces the speed and duplex settings of the PHY.
1368 *  This is a function pointer entry point only called by
1369 *  PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373	struct e1000_phy_info *phy = &hw->phy;
1374	s32 ret_val;
1375	u16 data;
1376	bool link;
1377
1378	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1379	if (ret_val)
1380		return ret_val;
1381
1382	e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384	ret_val = e1e_wphy(hw, MII_BMCR, data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Disable MDI-X support for 10/100 */
1389	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390	if (ret_val)
1391		return ret_val;
1392
1393	data &= ~IFE_PMC_AUTO_MDIX;
1394	data &= ~IFE_PMC_FORCE_MDIX;
1395
1396	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397	if (ret_val)
1398		return ret_val;
1399
1400	e_dbg("IFE PMC: %X\n", data);
1401
1402	udelay(1);
1403
1404	if (phy->autoneg_wait_to_complete) {
1405		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408						      100000, &link);
1409		if (ret_val)
1410			return ret_val;
1411
1412		if (!link)
1413			e_dbg("Link taking longer than expected.\n");
1414
1415		/* Try once more */
1416		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417						      100000, &link);
1418		if (ret_val)
1419			return ret_val;
1420	}
1421
1422	return 0;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of MII_BMCR
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the MII_BMCR register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439	struct e1000_mac_info *mac = &hw->mac;
1440	u32 ctrl;
1441
1442	/* Turn off flow control when forcing speed/duplex */
1443	hw->fc.current_mode = e1000_fc_none;
1444
1445	/* Force speed/duplex on the mac */
1446	ctrl = er32(CTRL);
1447	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448	ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450	/* Disable Auto Speed Detection */
1451	ctrl &= ~E1000_CTRL_ASDE;
1452
1453	/* Disable autoneg on the phy */
1454	*phy_ctrl &= ~BMCR_ANENABLE;
1455
1456	/* Forcing Full or Half Duplex? */
1457	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458		ctrl &= ~E1000_CTRL_FD;
1459		*phy_ctrl &= ~BMCR_FULLDPLX;
1460		e_dbg("Half Duplex\n");
1461	} else {
1462		ctrl |= E1000_CTRL_FD;
1463		*phy_ctrl |= BMCR_FULLDPLX;
1464		e_dbg("Full Duplex\n");
1465	}
1466
1467	/* Forcing 10mb or 100mb? */
1468	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469		ctrl |= E1000_CTRL_SPD_100;
1470		*phy_ctrl |= BMCR_SPEED100;
1471		*phy_ctrl &= ~BMCR_SPEED1000;
1472		e_dbg("Forcing 100mb\n");
1473	} else {
1474		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
 
1476		e_dbg("Forcing 10mb\n");
1477	}
1478
1479	hw->mac.ops.config_collision_dist(hw);
1480
1481	ew32(CTRL, ctrl);
1482}
1483
1484/**
1485 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1486 *  @hw: pointer to the HW structure
1487 *  @active: boolean used to enable/disable lplu
1488 *
1489 *  Success returns 0, Failure returns 1
1490 *
1491 *  The low power link up (lplu) state is set to the power management level D3
1492 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1493 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1494 *  is used during Dx states where the power conservation is most important.
1495 *  During driver activity, SmartSpeed should be enabled so performance is
1496 *  maintained.
1497 **/
1498s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1499{
1500	struct e1000_phy_info *phy = &hw->phy;
1501	s32 ret_val;
1502	u16 data;
1503
1504	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1505	if (ret_val)
1506		return ret_val;
1507
1508	if (!active) {
1509		data &= ~IGP02E1000_PM_D3_LPLU;
1510		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1511		if (ret_val)
1512			return ret_val;
1513		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1514		 * during Dx states where the power conservation is most
1515		 * important.  During driver activity we should enable
1516		 * SmartSpeed, so performance is maintained.
1517		 */
1518		if (phy->smart_speed == e1000_smart_speed_on) {
1519			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1520					   &data);
1521			if (ret_val)
1522				return ret_val;
1523
1524			data |= IGP01E1000_PSCFR_SMART_SPEED;
1525			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526					   data);
1527			if (ret_val)
1528				return ret_val;
1529		} else if (phy->smart_speed == e1000_smart_speed_off) {
1530			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531					   &data);
1532			if (ret_val)
1533				return ret_val;
1534
1535			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537					   data);
1538			if (ret_val)
1539				return ret_val;
1540		}
1541	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1542		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1543		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1544		data |= IGP02E1000_PM_D3_LPLU;
1545		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1546		if (ret_val)
1547			return ret_val;
1548
1549		/* When LPLU is enabled, we should disable SmartSpeed */
1550		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1551		if (ret_val)
1552			return ret_val;
1553
1554		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1555		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1556	}
1557
1558	return ret_val;
1559}
1560
1561/**
1562 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1563 *  @hw: pointer to the HW structure
1564 *
1565 *  Success returns 0, Failure returns 1
1566 *
1567 *  A downshift is detected by querying the PHY link health.
1568 **/
1569s32 e1000e_check_downshift(struct e1000_hw *hw)
1570{
1571	struct e1000_phy_info *phy = &hw->phy;
1572	s32 ret_val;
1573	u16 phy_data, offset, mask;
1574
1575	switch (phy->type) {
1576	case e1000_phy_m88:
1577	case e1000_phy_gg82563:
1578	case e1000_phy_bm:
1579	case e1000_phy_82578:
1580		offset = M88E1000_PHY_SPEC_STATUS;
1581		mask = M88E1000_PSSR_DOWNSHIFT;
1582		break;
1583	case e1000_phy_igp_2:
1584	case e1000_phy_igp_3:
1585		offset = IGP01E1000_PHY_LINK_HEALTH;
1586		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1587		break;
1588	default:
1589		/* speed downshift not supported */
1590		phy->speed_downgraded = false;
1591		return 0;
1592	}
1593
1594	ret_val = e1e_rphy(hw, offset, &phy_data);
1595
1596	if (!ret_val)
1597		phy->speed_downgraded = !!(phy_data & mask);
1598
1599	return ret_val;
1600}
1601
1602/**
1603 *  e1000_check_polarity_m88 - Checks the polarity.
1604 *  @hw: pointer to the HW structure
1605 *
1606 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 *
1608 *  Polarity is determined based on the PHY specific status register.
1609 **/
1610s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1611{
1612	struct e1000_phy_info *phy = &hw->phy;
1613	s32 ret_val;
1614	u16 data;
1615
1616	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1617
1618	if (!ret_val)
1619		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1620				       ? e1000_rev_polarity_reversed
1621				       : e1000_rev_polarity_normal);
1622
1623	return ret_val;
1624}
1625
1626/**
1627 *  e1000_check_polarity_igp - Checks the polarity.
1628 *  @hw: pointer to the HW structure
1629 *
1630 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 *
1632 *  Polarity is determined based on the PHY port status register, and the
1633 *  current speed (since there is no polarity at 100Mbps).
1634 **/
1635s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1636{
1637	struct e1000_phy_info *phy = &hw->phy;
1638	s32 ret_val;
1639	u16 data, offset, mask;
1640
1641	/* Polarity is determined based on the speed of
 
1642	 * our connection.
1643	 */
1644	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1645	if (ret_val)
1646		return ret_val;
1647
1648	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1649	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1650		offset = IGP01E1000_PHY_PCS_INIT_REG;
1651		mask = IGP01E1000_PHY_POLARITY_MASK;
1652	} else {
1653		/* This really only applies to 10Mbps since
 
1654		 * there is no polarity for 100Mbps (always 0).
1655		 */
1656		offset = IGP01E1000_PHY_PORT_STATUS;
1657		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1658	}
1659
1660	ret_val = e1e_rphy(hw, offset, &data);
1661
1662	if (!ret_val)
1663		phy->cable_polarity = ((data & mask)
1664				       ? e1000_rev_polarity_reversed
1665				       : e1000_rev_polarity_normal);
1666
1667	return ret_val;
1668}
1669
1670/**
1671 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1672 *  @hw: pointer to the HW structure
1673 *
1674 *  Polarity is determined on the polarity reversal feature being enabled.
1675 **/
1676s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1677{
1678	struct e1000_phy_info *phy = &hw->phy;
1679	s32 ret_val;
1680	u16 phy_data, offset, mask;
1681
1682	/* Polarity is determined based on the reversal feature being enabled.
 
1683	 */
1684	if (phy->polarity_correction) {
1685		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1686		mask = IFE_PESC_POLARITY_REVERSED;
1687	} else {
1688		offset = IFE_PHY_SPECIAL_CONTROL;
1689		mask = IFE_PSC_FORCE_POLARITY;
1690	}
1691
1692	ret_val = e1e_rphy(hw, offset, &phy_data);
1693
1694	if (!ret_val)
1695		phy->cable_polarity = ((phy_data & mask)
1696				       ? e1000_rev_polarity_reversed
1697				       : e1000_rev_polarity_normal);
1698
1699	return ret_val;
1700}
1701
1702/**
1703 *  e1000_wait_autoneg - Wait for auto-neg completion
1704 *  @hw: pointer to the HW structure
1705 *
1706 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1707 *  limit to expire, which ever happens first.
1708 **/
1709static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1710{
1711	s32 ret_val = 0;
1712	u16 i, phy_status;
1713
1714	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1715	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1716		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1717		if (ret_val)
1718			break;
1719		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1720		if (ret_val)
1721			break;
1722		if (phy_status & BMSR_ANEGCOMPLETE)
1723			break;
1724		msleep(100);
1725	}
1726
1727	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
 
1728	 * has completed.
1729	 */
1730	return ret_val;
1731}
1732
1733/**
1734 *  e1000e_phy_has_link_generic - Polls PHY for link
1735 *  @hw: pointer to the HW structure
1736 *  @iterations: number of times to poll for link
1737 *  @usec_interval: delay between polling attempts
1738 *  @success: pointer to whether polling was successful or not
1739 *
1740 *  Polls the PHY status register for link, 'iterations' number of times.
1741 **/
1742s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1743				u32 usec_interval, bool *success)
1744{
1745	s32 ret_val = 0;
1746	u16 i, phy_status;
1747
1748	*success = false;
1749	for (i = 0; i < iterations; i++) {
1750		/* Some PHYs require the MII_BMSR register to be read
 
1751		 * twice due to the link bit being sticky.  No harm doing
1752		 * it across the board.
1753		 */
1754		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1755		if (ret_val) {
1756			/* If the first read fails, another entity may have
 
1757			 * ownership of the resources, wait and try again to
1758			 * see if they have relinquished the resources yet.
1759			 */
1760			if (usec_interval >= 1000)
1761				msleep(usec_interval / 1000);
1762			else
1763				udelay(usec_interval);
1764		}
1765		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1766		if (ret_val)
1767			break;
1768		if (phy_status & BMSR_LSTATUS) {
1769			*success = true;
1770			break;
1771		}
1772		if (usec_interval >= 1000)
1773			msleep(usec_interval / 1000);
1774		else
1775			udelay(usec_interval);
1776	}
1777
 
 
1778	return ret_val;
1779}
1780
1781/**
1782 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1783 *  @hw: pointer to the HW structure
1784 *
1785 *  Reads the PHY specific status register to retrieve the cable length
1786 *  information.  The cable length is determined by averaging the minimum and
1787 *  maximum values to get the "average" cable length.  The m88 PHY has four
1788 *  possible cable length values, which are:
1789 *	Register Value		Cable Length
1790 *	0			< 50 meters
1791 *	1			50 - 80 meters
1792 *	2			80 - 110 meters
1793 *	3			110 - 140 meters
1794 *	4			> 140 meters
1795 **/
1796s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1797{
1798	struct e1000_phy_info *phy = &hw->phy;
1799	s32 ret_val;
1800	u16 phy_data, index;
1801
1802	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1803	if (ret_val)
1804		return ret_val;
1805
1806	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1807		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1808
1809	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1810		return -E1000_ERR_PHY;
1811
1812	phy->min_cable_length = e1000_m88_cable_length_table[index];
1813	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1814
1815	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816
1817	return 0;
1818}
1819
1820/**
1821 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1822 *  @hw: pointer to the HW structure
1823 *
1824 *  The automatic gain control (agc) normalizes the amplitude of the
1825 *  received signal, adjusting for the attenuation produced by the
1826 *  cable.  By reading the AGC registers, which represent the
1827 *  combination of coarse and fine gain value, the value can be put
1828 *  into a lookup table to obtain the approximate cable length
1829 *  for each channel.
1830 **/
1831s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1832{
1833	struct e1000_phy_info *phy = &hw->phy;
1834	s32 ret_val;
1835	u16 phy_data, i, agc_value = 0;
1836	u16 cur_agc_index, max_agc_index = 0;
1837	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1838	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1839		IGP02E1000_PHY_AGC_A,
1840		IGP02E1000_PHY_AGC_B,
1841		IGP02E1000_PHY_AGC_C,
1842		IGP02E1000_PHY_AGC_D
1843	};
1844
1845	/* Read the AGC registers for all channels */
1846	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1847		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1848		if (ret_val)
1849			return ret_val;
1850
1851		/* Getting bits 15:9, which represent the combination of
 
1852		 * coarse and fine gain values.  The result is a number
1853		 * that can be put into the lookup table to obtain the
1854		 * approximate cable length.
1855		 */
1856		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1857				 IGP02E1000_AGC_LENGTH_MASK);
1858
1859		/* Array index bound check. */
1860		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1861		    (cur_agc_index == 0))
1862			return -E1000_ERR_PHY;
1863
1864		/* Remove min & max AGC values from calculation. */
1865		if (e1000_igp_2_cable_length_table[min_agc_index] >
1866		    e1000_igp_2_cable_length_table[cur_agc_index])
1867			min_agc_index = cur_agc_index;
1868		if (e1000_igp_2_cable_length_table[max_agc_index] <
1869		    e1000_igp_2_cable_length_table[cur_agc_index])
1870			max_agc_index = cur_agc_index;
1871
1872		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1873	}
1874
1875	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1876		      e1000_igp_2_cable_length_table[max_agc_index]);
1877	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1878
1879	/* Calculate cable length with the error range of +/- 10 meters. */
1880	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1881				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1882	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1883
1884	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1885
1886	return 0;
1887}
1888
1889/**
1890 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Valid for only copper links.  Read the PHY status register (sticky read)
1894 *  to verify that link is up.  Read the PHY special control register to
1895 *  determine the polarity and 10base-T extended distance.  Read the PHY
1896 *  special status register to determine MDI/MDIx and current speed.  If
1897 *  speed is 1000, then determine cable length, local and remote receiver.
1898 **/
1899s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1900{
1901	struct e1000_phy_info *phy = &hw->phy;
1902	s32 ret_val;
1903	u16 phy_data;
1904	bool link;
1905
1906	if (phy->media_type != e1000_media_type_copper) {
1907		e_dbg("Phy info is only valid for copper media\n");
1908		return -E1000_ERR_CONFIG;
1909	}
1910
1911	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1912	if (ret_val)
1913		return ret_val;
1914
1915	if (!link) {
1916		e_dbg("Phy info is only valid if link is up\n");
1917		return -E1000_ERR_CONFIG;
1918	}
1919
1920	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1921	if (ret_val)
1922		return ret_val;
1923
1924	phy->polarity_correction = !!(phy_data &
1925				      M88E1000_PSCR_POLARITY_REVERSAL);
1926
1927	ret_val = e1000_check_polarity_m88(hw);
1928	if (ret_val)
1929		return ret_val;
1930
1931	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1932	if (ret_val)
1933		return ret_val;
1934
1935	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1936
1937	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1938		ret_val = hw->phy.ops.get_cable_length(hw);
1939		if (ret_val)
1940			return ret_val;
1941
1942		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1943		if (ret_val)
1944			return ret_val;
1945
1946		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1947		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1948
1949		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1950		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1951	} else {
1952		/* Set values to "undefined" */
1953		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1954		phy->local_rx = e1000_1000t_rx_status_undefined;
1955		phy->remote_rx = e1000_1000t_rx_status_undefined;
1956	}
1957
1958	return ret_val;
1959}
1960
1961/**
1962 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1963 *  @hw: pointer to the HW structure
1964 *
1965 *  Read PHY status to determine if link is up.  If link is up, then
1966 *  set/determine 10base-T extended distance and polarity correction.  Read
1967 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1968 *  determine on the cable length, local and remote receiver.
1969 **/
1970s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1971{
1972	struct e1000_phy_info *phy = &hw->phy;
1973	s32 ret_val;
1974	u16 data;
1975	bool link;
1976
1977	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978	if (ret_val)
1979		return ret_val;
1980
1981	if (!link) {
1982		e_dbg("Phy info is only valid if link is up\n");
1983		return -E1000_ERR_CONFIG;
1984	}
1985
1986	phy->polarity_correction = true;
1987
1988	ret_val = e1000_check_polarity_igp(hw);
1989	if (ret_val)
1990		return ret_val;
1991
1992	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1993	if (ret_val)
1994		return ret_val;
1995
1996	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1997
1998	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1999	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2000		ret_val = phy->ops.get_cable_length(hw);
2001		if (ret_val)
2002			return ret_val;
2003
2004		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2005		if (ret_val)
2006			return ret_val;
2007
2008		phy->local_rx = (data & LPA_1000LOCALRXOK)
2009		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
2010
2011		phy->remote_rx = (data & LPA_1000REMRXOK)
2012		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
2013	} else {
2014		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2015		phy->local_rx = e1000_1000t_rx_status_undefined;
2016		phy->remote_rx = e1000_1000t_rx_status_undefined;
2017	}
2018
2019	return ret_val;
2020}
2021
2022/**
2023 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2024 *  @hw: pointer to the HW structure
2025 *
2026 *  Populates "phy" structure with various feature states.
2027 **/
2028s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2029{
2030	struct e1000_phy_info *phy = &hw->phy;
2031	s32 ret_val;
2032	u16 data;
2033	bool link;
2034
2035	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2036	if (ret_val)
2037		return ret_val;
2038
2039	if (!link) {
2040		e_dbg("Phy info is only valid if link is up\n");
2041		return -E1000_ERR_CONFIG;
2042	}
2043
2044	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2045	if (ret_val)
2046		return ret_val;
2047	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2048
2049	if (phy->polarity_correction) {
2050		ret_val = e1000_check_polarity_ife(hw);
2051		if (ret_val)
2052			return ret_val;
2053	} else {
2054		/* Polarity is forced */
2055		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2056				       ? e1000_rev_polarity_reversed
2057				       : e1000_rev_polarity_normal);
2058	}
2059
2060	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2061	if (ret_val)
2062		return ret_val;
2063
2064	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2065
2066	/* The following parameters are undefined for 10/100 operation. */
2067	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2068	phy->local_rx = e1000_1000t_rx_status_undefined;
2069	phy->remote_rx = e1000_1000t_rx_status_undefined;
2070
2071	return 0;
2072}
2073
2074/**
2075 *  e1000e_phy_sw_reset - PHY software reset
2076 *  @hw: pointer to the HW structure
2077 *
2078 *  Does a software reset of the PHY by reading the PHY control register and
2079 *  setting/write the control register reset bit to the PHY.
2080 **/
2081s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2082{
2083	s32 ret_val;
2084	u16 phy_ctrl;
2085
2086	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2087	if (ret_val)
2088		return ret_val;
2089
2090	phy_ctrl |= BMCR_RESET;
2091	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2092	if (ret_val)
2093		return ret_val;
2094
2095	udelay(1);
2096
2097	return ret_val;
2098}
2099
2100/**
2101 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2102 *  @hw: pointer to the HW structure
2103 *
2104 *  Verify the reset block is not blocking us from resetting.  Acquire
2105 *  semaphore (if necessary) and read/set/write the device control reset
2106 *  bit in the PHY.  Wait the appropriate delay time for the device to
2107 *  reset and release the semaphore (if necessary).
2108 **/
2109s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2110{
2111	struct e1000_phy_info *phy = &hw->phy;
2112	s32 ret_val;
2113	u32 ctrl;
2114
2115	if (phy->ops.check_reset_block) {
2116		ret_val = phy->ops.check_reset_block(hw);
2117		if (ret_val)
2118			return 0;
2119	}
2120
2121	ret_val = phy->ops.acquire(hw);
2122	if (ret_val)
2123		return ret_val;
2124
2125	ctrl = er32(CTRL);
2126	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2127	e1e_flush();
2128
2129	udelay(phy->reset_delay_us);
2130
2131	ew32(CTRL, ctrl);
2132	e1e_flush();
2133
2134	usleep_range(150, 300);
2135
2136	phy->ops.release(hw);
2137
2138	return phy->ops.get_cfg_done(hw);
2139}
2140
2141/**
2142 *  e1000e_get_cfg_done_generic - Generic configuration done
2143 *  @hw: pointer to the HW structure
2144 *
2145 *  Generic function to wait 10 milli-seconds for configuration to complete
2146 *  and return success.
2147 **/
2148s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2149{
2150	mdelay(10);
2151
2152	return 0;
2153}
2154
2155/**
2156 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2157 *  @hw: pointer to the HW structure
2158 *
2159 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 **/
2161s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2162{
2163	e_dbg("Running IGP 3 PHY init script\n");
2164
2165	/* PHY init IGP 3 */
2166	/* Enable rise/fall, 10-mode work in class-A */
2167	e1e_wphy(hw, 0x2F5B, 0x9018);
2168	/* Remove all caps from Replica path filter */
2169	e1e_wphy(hw, 0x2F52, 0x0000);
2170	/* Bias trimming for ADC, AFE and Driver (Default) */
2171	e1e_wphy(hw, 0x2FB1, 0x8B24);
2172	/* Increase Hybrid poly bias */
2173	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2174	/* Add 4% to Tx amplitude in Gig mode */
2175	e1e_wphy(hw, 0x2010, 0x10B0);
2176	/* Disable trimming (TTT) */
2177	e1e_wphy(hw, 0x2011, 0x0000);
2178	/* Poly DC correction to 94.6% + 2% for all channels */
2179	e1e_wphy(hw, 0x20DD, 0x249A);
2180	/* ABS DC correction to 95.9% */
2181	e1e_wphy(hw, 0x20DE, 0x00D3);
2182	/* BG temp curve trim */
2183	e1e_wphy(hw, 0x28B4, 0x04CE);
2184	/* Increasing ADC OPAMP stage 1 currents to max */
2185	e1e_wphy(hw, 0x2F70, 0x29E4);
2186	/* Force 1000 ( required for enabling PHY regs configuration) */
2187	e1e_wphy(hw, 0x0000, 0x0140);
2188	/* Set upd_freq to 6 */
2189	e1e_wphy(hw, 0x1F30, 0x1606);
2190	/* Disable NPDFE */
2191	e1e_wphy(hw, 0x1F31, 0xB814);
2192	/* Disable adaptive fixed FFE (Default) */
2193	e1e_wphy(hw, 0x1F35, 0x002A);
2194	/* Enable FFE hysteresis */
2195	e1e_wphy(hw, 0x1F3E, 0x0067);
2196	/* Fixed FFE for short cable lengths */
2197	e1e_wphy(hw, 0x1F54, 0x0065);
2198	/* Fixed FFE for medium cable lengths */
2199	e1e_wphy(hw, 0x1F55, 0x002A);
2200	/* Fixed FFE for long cable lengths */
2201	e1e_wphy(hw, 0x1F56, 0x002A);
2202	/* Enable Adaptive Clip Threshold */
2203	e1e_wphy(hw, 0x1F72, 0x3FB0);
2204	/* AHT reset limit to 1 */
2205	e1e_wphy(hw, 0x1F76, 0xC0FF);
2206	/* Set AHT master delay to 127 msec */
2207	e1e_wphy(hw, 0x1F77, 0x1DEC);
2208	/* Set scan bits for AHT */
2209	e1e_wphy(hw, 0x1F78, 0xF9EF);
2210	/* Set AHT Preset bits */
2211	e1e_wphy(hw, 0x1F79, 0x0210);
2212	/* Change integ_factor of channel A to 3 */
2213	e1e_wphy(hw, 0x1895, 0x0003);
2214	/* Change prop_factor of channels BCD to 8 */
2215	e1e_wphy(hw, 0x1796, 0x0008);
2216	/* Change cg_icount + enable integbp for channels BCD */
2217	e1e_wphy(hw, 0x1798, 0xD008);
2218	/* Change cg_icount + enable integbp + change prop_factor_master
 
2219	 * to 8 for channel A
2220	 */
2221	e1e_wphy(hw, 0x1898, 0xD918);
2222	/* Disable AHT in Slave mode on channel A */
2223	e1e_wphy(hw, 0x187A, 0x0800);
2224	/* Enable LPLU and disable AN to 1000 in non-D0a states,
 
2225	 * Enable SPD+B2B
2226	 */
2227	e1e_wphy(hw, 0x0019, 0x008D);
2228	/* Enable restart AN on an1000_dis change */
2229	e1e_wphy(hw, 0x001B, 0x2080);
2230	/* Enable wh_fifo read clock in 10/100 modes */
2231	e1e_wphy(hw, 0x0014, 0x0045);
2232	/* Restart AN, Speed selection is 1000 */
2233	e1e_wphy(hw, 0x0000, 0x1340);
2234
2235	return 0;
2236}
2237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238/**
2239 *  e1000e_get_phy_type_from_id - Get PHY type from id
2240 *  @phy_id: phy_id read from the phy
2241 *
2242 *  Returns the phy type from the id.
2243 **/
2244enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2245{
2246	enum e1000_phy_type phy_type = e1000_phy_unknown;
2247
2248	switch (phy_id) {
2249	case M88E1000_I_PHY_ID:
2250	case M88E1000_E_PHY_ID:
2251	case M88E1111_I_PHY_ID:
2252	case M88E1011_I_PHY_ID:
2253		phy_type = e1000_phy_m88;
2254		break;
2255	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2256		phy_type = e1000_phy_igp_2;
2257		break;
2258	case GG82563_E_PHY_ID:
2259		phy_type = e1000_phy_gg82563;
2260		break;
2261	case IGP03E1000_E_PHY_ID:
2262		phy_type = e1000_phy_igp_3;
2263		break;
2264	case IFE_E_PHY_ID:
2265	case IFE_PLUS_E_PHY_ID:
2266	case IFE_C_E_PHY_ID:
2267		phy_type = e1000_phy_ife;
2268		break;
2269	case BME1000_E_PHY_ID:
2270	case BME1000_E_PHY_ID_R2:
2271		phy_type = e1000_phy_bm;
2272		break;
2273	case I82578_E_PHY_ID:
2274		phy_type = e1000_phy_82578;
2275		break;
2276	case I82577_E_PHY_ID:
2277		phy_type = e1000_phy_82577;
2278		break;
2279	case I82579_E_PHY_ID:
2280		phy_type = e1000_phy_82579;
2281		break;
2282	case I217_E_PHY_ID:
2283		phy_type = e1000_phy_i217;
2284		break;
2285	default:
2286		phy_type = e1000_phy_unknown;
2287		break;
2288	}
2289	return phy_type;
2290}
2291
2292/**
2293 *  e1000e_determine_phy_address - Determines PHY address.
2294 *  @hw: pointer to the HW structure
2295 *
2296 *  This uses a trial and error method to loop through possible PHY
2297 *  addresses. It tests each by reading the PHY ID registers and
2298 *  checking for a match.
2299 **/
2300s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2301{
2302	u32 phy_addr = 0;
2303	u32 i;
2304	enum e1000_phy_type phy_type = e1000_phy_unknown;
2305
2306	hw->phy.id = phy_type;
2307
2308	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2309		hw->phy.addr = phy_addr;
2310		i = 0;
2311
2312		do {
2313			e1000e_get_phy_id(hw);
2314			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2315
2316			/* If phy_type is valid, break - we found our
 
2317			 * PHY address
2318			 */
2319			if (phy_type != e1000_phy_unknown)
2320				return 0;
2321
2322			usleep_range(1000, 2000);
2323			i++;
2324		} while (i < 10);
2325	}
2326
2327	return -E1000_ERR_PHY_TYPE;
2328}
2329
2330/**
2331 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2332 *  @page: page to access
2333 *
2334 *  Returns the phy address for the page requested.
2335 **/
2336static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2337{
2338	u32 phy_addr = 2;
2339
2340	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2341		phy_addr = 1;
2342
2343	return phy_addr;
2344}
2345
2346/**
2347 *  e1000e_write_phy_reg_bm - Write BM PHY register
2348 *  @hw: pointer to the HW structure
2349 *  @offset: register offset to write to
2350 *  @data: data to write at register offset
2351 *
2352 *  Acquires semaphore, if necessary, then writes the data to PHY register
2353 *  at the offset.  Release any acquired semaphores before exiting.
2354 **/
2355s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2356{
2357	s32 ret_val;
2358	u32 page = offset >> IGP_PAGE_SHIFT;
2359
2360	ret_val = hw->phy.ops.acquire(hw);
2361	if (ret_val)
2362		return ret_val;
2363
2364	/* Page 800 works differently than the rest so it has its own func */
2365	if (page == BM_WUC_PAGE) {
2366		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2367							 false, false);
2368		goto release;
2369	}
2370
2371	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2372
2373	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2374		u32 page_shift, page_select;
2375
2376		/* Page select is register 31 for phy address 1 and 22 for
 
2377		 * phy address 2 and 3. Page select is shifted only for
2378		 * phy address 1.
2379		 */
2380		if (hw->phy.addr == 1) {
2381			page_shift = IGP_PAGE_SHIFT;
2382			page_select = IGP01E1000_PHY_PAGE_SELECT;
2383		} else {
2384			page_shift = 0;
2385			page_select = BM_PHY_PAGE_SELECT;
2386		}
2387
2388		/* Page is shifted left, PHY expects (page x 32) */
2389		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2390						    (page << page_shift));
2391		if (ret_val)
2392			goto release;
2393	}
2394
2395	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396					    data);
2397
2398release:
2399	hw->phy.ops.release(hw);
2400	return ret_val;
2401}
2402
2403/**
2404 *  e1000e_read_phy_reg_bm - Read BM PHY register
2405 *  @hw: pointer to the HW structure
2406 *  @offset: register offset to be read
2407 *  @data: pointer to the read data
2408 *
2409 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2410 *  and storing the retrieved information in data.  Release any acquired
2411 *  semaphores before exiting.
2412 **/
2413s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2414{
2415	s32 ret_val;
2416	u32 page = offset >> IGP_PAGE_SHIFT;
2417
2418	ret_val = hw->phy.ops.acquire(hw);
2419	if (ret_val)
2420		return ret_val;
2421
2422	/* Page 800 works differently than the rest so it has its own func */
2423	if (page == BM_WUC_PAGE) {
2424		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2425							 true, false);
2426		goto release;
2427	}
2428
2429	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2430
2431	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432		u32 page_shift, page_select;
2433
2434		/* Page select is register 31 for phy address 1 and 22 for
 
2435		 * phy address 2 and 3. Page select is shifted only for
2436		 * phy address 1.
2437		 */
2438		if (hw->phy.addr == 1) {
2439			page_shift = IGP_PAGE_SHIFT;
2440			page_select = IGP01E1000_PHY_PAGE_SELECT;
2441		} else {
2442			page_shift = 0;
2443			page_select = BM_PHY_PAGE_SELECT;
2444		}
2445
2446		/* Page is shifted left, PHY expects (page x 32) */
2447		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2448						    (page << page_shift));
2449		if (ret_val)
2450			goto release;
2451	}
2452
2453	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2454					   data);
2455release:
2456	hw->phy.ops.release(hw);
2457	return ret_val;
2458}
2459
2460/**
2461 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2462 *  @hw: pointer to the HW structure
2463 *  @offset: register offset to be read
2464 *  @data: pointer to the read data
2465 *
2466 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2467 *  and storing the retrieved information in data.  Release any acquired
2468 *  semaphores before exiting.
2469 **/
2470s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472	s32 ret_val;
2473	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2474
2475	ret_val = hw->phy.ops.acquire(hw);
2476	if (ret_val)
2477		return ret_val;
2478
2479	/* Page 800 works differently than the rest so it has its own func */
2480	if (page == BM_WUC_PAGE) {
2481		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2482							 true, false);
2483		goto release;
2484	}
2485
2486	hw->phy.addr = 1;
2487
2488	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 
2489		/* Page is shifted left, PHY expects (page x 32) */
2490		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2491						    page);
2492
2493		if (ret_val)
2494			goto release;
2495	}
2496
2497	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2498					   data);
2499release:
2500	hw->phy.ops.release(hw);
2501	return ret_val;
2502}
2503
2504/**
2505 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2506 *  @hw: pointer to the HW structure
2507 *  @offset: register offset to write to
2508 *  @data: data to write at register offset
2509 *
2510 *  Acquires semaphore, if necessary, then writes the data to PHY register
2511 *  at the offset.  Release any acquired semaphores before exiting.
2512 **/
2513s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2514{
2515	s32 ret_val;
2516	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518	ret_val = hw->phy.ops.acquire(hw);
2519	if (ret_val)
2520		return ret_val;
2521
2522	/* Page 800 works differently than the rest so it has its own func */
2523	if (page == BM_WUC_PAGE) {
2524		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2525							 false, false);
2526		goto release;
2527	}
2528
2529	hw->phy.addr = 1;
2530
2531	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532		/* Page is shifted left, PHY expects (page x 32) */
2533		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2534						    page);
2535
2536		if (ret_val)
2537			goto release;
2538	}
2539
2540	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2541					    data);
2542
2543release:
2544	hw->phy.ops.release(hw);
2545	return ret_val;
2546}
2547
2548/**
2549 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2550 *  @hw: pointer to the HW structure
2551 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 *
2553 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2554 *  address to store contents of the BM_WUC_ENABLE_REG register.
2555 **/
2556s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2557{
2558	s32 ret_val;
2559	u16 temp;
2560
2561	/* All page select, port ctrl and wakeup registers use phy address 1 */
2562	hw->phy.addr = 1;
2563
2564	/* Select Port Control Registers page */
2565	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2566	if (ret_val) {
2567		e_dbg("Could not set Port Control page\n");
2568		return ret_val;
2569	}
2570
2571	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2572	if (ret_val) {
2573		e_dbg("Could not read PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Enable both PHY wakeup mode and Wakeup register page writes.
 
2579	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2580	 */
2581	temp = *phy_reg;
2582	temp |= BM_WUC_ENABLE_BIT;
2583	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2584
2585	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2586	if (ret_val) {
2587		e_dbg("Could not write PHY register %d.%d\n",
2588		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2589		return ret_val;
2590	}
2591
2592	/* Select Host Wakeup Registers page - caller now able to write
 
2593	 * registers on the Wakeup registers page
2594	 */
2595	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2596}
2597
2598/**
2599 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2600 *  @hw: pointer to the HW structure
2601 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 *
2603 *  Restore BM_WUC_ENABLE_REG to its original value.
2604 *
2605 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2606 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2607 *  caller.
2608 **/
2609s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2610{
2611	s32 ret_val;
2612
2613	/* Select Port Control Registers page */
2614	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2615	if (ret_val) {
2616		e_dbg("Could not set Port Control page\n");
2617		return ret_val;
2618	}
2619
2620	/* Restore 769.17 to its original value */
2621	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2622	if (ret_val)
2623		e_dbg("Could not restore PHY register %d.%d\n",
2624		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2625
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2631 *  @hw: pointer to the HW structure
2632 *  @offset: register offset to be read or written
2633 *  @data: pointer to the data to read or write
2634 *  @read: determines if operation is read or write
2635 *  @page_set: BM_WUC_PAGE already set and access enabled
2636 *
2637 *  Read the PHY register at offset and store the retrieved information in
2638 *  data, or write data to PHY register at offset.  Note the procedure to
2639 *  access the PHY wakeup registers is different than reading the other PHY
2640 *  registers. It works as such:
2641 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2642 *  2) Set page to 800 for host (801 if we were manageability)
2643 *  3) Write the address using the address opcode (0x11)
2644 *  4) Read or write the data using the data opcode (0x12)
2645 *  5) Restore 769.17.2 to its original value
2646 *
2647 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2648 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 *
2650 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2651 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2652 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 **/
2654static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2655					  u16 *data, bool read, bool page_set)
2656{
2657	s32 ret_val;
2658	u16 reg = BM_PHY_REG_NUM(offset);
2659	u16 page = BM_PHY_REG_PAGE(offset);
2660	u16 phy_reg = 0;
2661
2662	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2663	if ((hw->mac.type == e1000_pchlan) &&
2664	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2665		e_dbg("Attempting to access page %d while gig enabled.\n",
2666		      page);
2667
2668	if (!page_set) {
2669		/* Enable access to PHY wakeup registers */
2670		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2671		if (ret_val) {
2672			e_dbg("Could not enable PHY wakeup reg access\n");
2673			return ret_val;
2674		}
2675	}
2676
2677	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2678
2679	/* Write the Wakeup register page offset value using opcode 0x11 */
2680	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2681	if (ret_val) {
2682		e_dbg("Could not write address opcode to page %d\n", page);
2683		return ret_val;
2684	}
2685
2686	if (read) {
2687		/* Read the Wakeup register page value using opcode 0x12 */
2688		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2689						   data);
2690	} else {
2691		/* Write the Wakeup register page value using opcode 0x12 */
2692		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2693						    *data);
2694	}
2695
2696	if (ret_val) {
2697		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2698		return ret_val;
2699	}
2700
2701	if (!page_set)
2702		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2703
2704	return ret_val;
2705}
2706
2707/**
2708 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_up_phy_copper(struct e1000_hw *hw)
2716{
2717	u16 mii_reg = 0;
2718
2719	/* The PHY will retain its settings across a power down/up cycle */
2720	e1e_rphy(hw, MII_BMCR, &mii_reg);
2721	mii_reg &= ~BMCR_PDOWN;
2722	e1e_wphy(hw, MII_BMCR, mii_reg);
2723}
2724
2725/**
2726 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2727 * @hw: pointer to the HW structure
2728 *
2729 * In the case of a PHY power down to save power, or to turn off link during a
2730 * driver unload, or wake on lan is not enabled, restore the link to previous
2731 * settings.
2732 **/
2733void e1000_power_down_phy_copper(struct e1000_hw *hw)
2734{
2735	u16 mii_reg = 0;
2736
2737	/* The PHY will retain its settings across a power down/up cycle */
2738	e1e_rphy(hw, MII_BMCR, &mii_reg);
2739	mii_reg |= BMCR_PDOWN;
2740	e1e_wphy(hw, MII_BMCR, mii_reg);
2741	usleep_range(1000, 2000);
2742}
2743
2744/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2746 *  @hw: pointer to the HW structure
2747 *  @offset: register offset to be read
2748 *  @data: pointer to the read data
2749 *  @locked: semaphore has already been acquired or not
2750 *
2751 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2752 *  and stores the retrieved information in data.  Release any acquired
2753 *  semaphore before exiting.
2754 **/
2755static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2756				   bool locked, bool page_set)
2757{
2758	s32 ret_val;
2759	u16 page = BM_PHY_REG_PAGE(offset);
2760	u16 reg = BM_PHY_REG_NUM(offset);
2761	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2762
2763	if (!locked) {
2764		ret_val = hw->phy.ops.acquire(hw);
2765		if (ret_val)
2766			return ret_val;
2767	}
2768
2769	/* Page 800 works differently than the rest so it has its own func */
2770	if (page == BM_WUC_PAGE) {
2771		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2772							 true, page_set);
2773		goto out;
2774	}
2775
2776	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2777		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2778							 data, true);
2779		goto out;
2780	}
2781
2782	if (!page_set) {
2783		if (page == HV_INTC_FC_PAGE_START)
2784			page = 0;
2785
2786		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787			/* Page is shifted left, PHY expects (page x 32) */
2788			ret_val = e1000_set_page_igp(hw,
2789						     (page << IGP_PAGE_SHIFT));
2790
2791			hw->phy.addr = phy_addr;
2792
2793			if (ret_val)
2794				goto out;
2795		}
2796	}
2797
2798	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2799	      page << IGP_PAGE_SHIFT, reg);
2800
2801	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
 
2802out:
2803	if (!locked)
2804		hw->phy.ops.release(hw);
2805
2806	return ret_val;
2807}
2808
2809/**
2810 *  e1000_read_phy_reg_hv -  Read HV PHY register
2811 *  @hw: pointer to the HW structure
2812 *  @offset: register offset to be read
2813 *  @data: pointer to the read data
2814 *
2815 *  Acquires semaphore then reads the PHY register at offset and stores
2816 *  the retrieved information in data.  Release the acquired semaphore
2817 *  before exiting.
2818 **/
2819s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2820{
2821	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2822}
2823
2824/**
2825 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2826 *  @hw: pointer to the HW structure
2827 *  @offset: register offset to be read
2828 *  @data: pointer to the read data
2829 *
2830 *  Reads the PHY register at offset and stores the retrieved information
2831 *  in data.  Assumes semaphore already acquired.
2832 **/
2833s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2834{
2835	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2836}
2837
2838/**
2839 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2840 *  @hw: pointer to the HW structure
2841 *  @offset: register offset to write to
2842 *  @data: data to write at register offset
2843 *
2844 *  Reads the PHY register at offset and stores the retrieved information
2845 *  in data.  Assumes semaphore already acquired and page already set.
2846 **/
2847s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2848{
2849	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2850}
2851
2852/**
2853 *  __e1000_write_phy_reg_hv - Write HV PHY register
2854 *  @hw: pointer to the HW structure
2855 *  @offset: register offset to write to
2856 *  @data: data to write at register offset
2857 *  @locked: semaphore has already been acquired or not
2858 *
2859 *  Acquires semaphore, if necessary, then writes the data to PHY register
2860 *  at the offset.  Release any acquired semaphores before exiting.
2861 **/
2862static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2863				    bool locked, bool page_set)
2864{
2865	s32 ret_val;
2866	u16 page = BM_PHY_REG_PAGE(offset);
2867	u16 reg = BM_PHY_REG_NUM(offset);
2868	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2869
2870	if (!locked) {
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874	}
2875
2876	/* Page 800 works differently than the rest so it has its own func */
2877	if (page == BM_WUC_PAGE) {
2878		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2879							 false, page_set);
2880		goto out;
2881	}
2882
2883	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2884		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2885							 &data, false);
2886		goto out;
2887	}
2888
2889	if (!page_set) {
2890		if (page == HV_INTC_FC_PAGE_START)
2891			page = 0;
2892
2893		/* Workaround MDIO accesses being disabled after entering IEEE
 
2894		 * Power Down (when bit 11 of the PHY Control register is set)
2895		 */
2896		if ((hw->phy.type == e1000_phy_82578) &&
2897		    (hw->phy.revision >= 1) &&
2898		    (hw->phy.addr == 2) &&
2899		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2900			u16 data2 = 0x7EFF;
2901
2902			ret_val = e1000_access_phy_debug_regs_hv(hw,
2903								 BIT(6) | 0x3,
2904								 &data2, false);
2905			if (ret_val)
2906				goto out;
2907		}
2908
2909		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910			/* Page is shifted left, PHY expects (page x 32) */
2911			ret_val = e1000_set_page_igp(hw,
2912						     (page << IGP_PAGE_SHIFT));
2913
2914			hw->phy.addr = phy_addr;
2915
2916			if (ret_val)
2917				goto out;
2918		}
2919	}
2920
2921	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922	      page << IGP_PAGE_SHIFT, reg);
2923
2924	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925					    data);
2926
2927out:
2928	if (!locked)
2929		hw->phy.ops.release(hw);
2930
2931	return ret_val;
2932}
2933
2934/**
2935 *  e1000_write_phy_reg_hv - Write HV PHY register
2936 *  @hw: pointer to the HW structure
2937 *  @offset: register offset to write to
2938 *  @data: data to write at register offset
2939 *
2940 *  Acquires semaphore then writes the data to PHY register at the offset.
2941 *  Release the acquired semaphores before exiting.
2942 **/
2943s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944{
2945	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946}
2947
2948/**
2949 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 *  @hw: pointer to the HW structure
2951 *  @offset: register offset to write to
2952 *  @data: data to write at register offset
2953 *
2954 *  Writes the data to PHY register at the offset.  Assumes semaphore
2955 *  already acquired.
2956 **/
2957s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958{
2959	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960}
2961
2962/**
2963 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2964 *  @hw: pointer to the HW structure
2965 *  @offset: register offset to write to
2966 *  @data: data to write at register offset
2967 *
2968 *  Writes the data to PHY register at the offset.  Assumes semaphore
2969 *  already acquired and page already set.
2970 **/
2971s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972{
2973	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974}
2975
2976/**
2977 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 *  @page: page to be accessed
2979 **/
2980static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981{
2982	u32 phy_addr = 2;
2983
2984	if (page >= HV_INTC_FC_PAGE_START)
2985		phy_addr = 1;
2986
2987	return phy_addr;
2988}
2989
2990/**
2991 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to be read or written
2994 *  @data: pointer to the data to be read or written
2995 *  @read: determines if operation is read or write
2996 *
2997 *  Reads the PHY register at offset and stores the retreived information
2998 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2999 *  to access these regs uses the address port and data port to read/write.
3000 *  These accesses done with PHY address 2 and without using pages.
3001 **/
3002static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003					  u16 *data, bool read)
3004{
3005	s32 ret_val;
3006	u32 addr_reg;
3007	u32 data_reg;
3008
3009	/* This takes care of the difference with desktop vs mobile phy */
3010	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011		    I82578_ADDR_REG : I82577_ADDR_REG);
3012	data_reg = addr_reg + 1;
3013
3014	/* All operations in this function are phy address 2 */
3015	hw->phy.addr = 2;
3016
3017	/* masking with 0x3F to remove the page from offset */
3018	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019	if (ret_val) {
3020		e_dbg("Could not write the Address Offset port register\n");
3021		return ret_val;
3022	}
3023
3024	/* Read or write the data value next */
3025	if (read)
3026		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027	else
3028		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030	if (ret_val)
3031		e_dbg("Could not access the Data port register\n");
3032
3033	return ret_val;
3034}
3035
3036/**
3037 *  e1000_link_stall_workaround_hv - Si workaround
3038 *  @hw: pointer to the HW structure
3039 *
3040 *  This function works around a Si bug where the link partner can get
3041 *  a link up indication before the PHY does.  If small packets are sent
3042 *  by the link partner they can be placed in the packet buffer without
3043 *  being properly accounted for by the PHY and will stall preventing
3044 *  further packets from being received.  The workaround is to clear the
3045 *  packet buffer after the PHY detects link up.
3046 **/
3047s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048{
3049	s32 ret_val = 0;
3050	u16 data;
3051
3052	if (hw->phy.type != e1000_phy_82578)
3053		return 0;
3054
3055	/* Do not apply workaround if in PHY loopback bit 14 set */
3056	e1e_rphy(hw, MII_BMCR, &data);
3057	if (data & BMCR_LOOPBACK)
3058		return 0;
3059
3060	/* check if link is up and at 1Gbps */
3061	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062	if (ret_val)
3063		return ret_val;
3064
3065	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066		 BM_CS_STATUS_SPEED_MASK);
3067
3068	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069		     BM_CS_STATUS_SPEED_1000))
3070		return 0;
3071
3072	msleep(200);
3073
3074	/* flush the packets in the fifo buffer */
3075	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3078	if (ret_val)
3079		return ret_val;
3080
3081	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082}
3083
3084/**
3085 *  e1000_check_polarity_82577 - Checks the polarity.
3086 *  @hw: pointer to the HW structure
3087 *
3088 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 *  Polarity is determined based on the PHY specific status register.
3091 **/
3092s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093{
3094	struct e1000_phy_info *phy = &hw->phy;
3095	s32 ret_val;
3096	u16 data;
3097
3098	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100	if (!ret_val)
3101		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102				       ? e1000_rev_polarity_reversed
3103				       : e1000_rev_polarity_normal);
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 *  @hw: pointer to the HW structure
3111 *
3112 *  Calls the PHY setup function to force speed and duplex.
3113 **/
3114s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115{
3116	struct e1000_phy_info *phy = &hw->phy;
3117	s32 ret_val;
3118	u16 phy_data;
3119	bool link;
3120
3121	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122	if (ret_val)
3123		return ret_val;
3124
3125	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128	if (ret_val)
3129		return ret_val;
3130
3131	udelay(1);
3132
3133	if (phy->autoneg_wait_to_complete) {
3134		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137						      100000, &link);
3138		if (ret_val)
3139			return ret_val;
3140
3141		if (!link)
3142			e_dbg("Link taking longer than expected.\n");
3143
3144		/* Try once more */
3145		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146						      100000, &link);
3147	}
3148
3149	return ret_val;
3150}
3151
3152/**
3153 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 *  @hw: pointer to the HW structure
3155 *
3156 *  Read PHY status to determine if link is up.  If link is up, then
3157 *  set/determine 10base-T extended distance and polarity correction.  Read
3158 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3159 *  determine on the cable length, local and remote receiver.
3160 **/
3161s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162{
3163	struct e1000_phy_info *phy = &hw->phy;
3164	s32 ret_val;
3165	u16 data;
3166	bool link;
3167
3168	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169	if (ret_val)
3170		return ret_val;
3171
3172	if (!link) {
3173		e_dbg("Phy info is only valid if link is up\n");
3174		return -E1000_ERR_CONFIG;
3175	}
3176
3177	phy->polarity_correction = true;
3178
3179	ret_val = e1000_check_polarity_82577(hw);
3180	if (ret_val)
3181		return ret_val;
3182
3183	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184	if (ret_val)
3185		return ret_val;
3186
3187	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191		ret_val = hw->phy.ops.get_cable_length(hw);
3192		if (ret_val)
3193			return ret_val;
3194
3195		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196		if (ret_val)
3197			return ret_val;
3198
3199		phy->local_rx = (data & LPA_1000LOCALRXOK)
3200		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3201
3202		phy->remote_rx = (data & LPA_1000REMRXOK)
3203		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3204	} else {
3205		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206		phy->local_rx = e1000_1000t_rx_status_undefined;
3207		phy->remote_rx = e1000_1000t_rx_status_undefined;
3208	}
3209
3210	return 0;
3211}
3212
3213/**
3214 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 *  @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
3220s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221{
3222	struct e1000_phy_info *phy = &hw->phy;
3223	s32 ret_val;
3224	u16 phy_data, length;
3225
3226	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227	if (ret_val)
3228		return ret_val;
3229
3230	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234		return -E1000_ERR_PHY;
3235
3236	phy->cable_length = length;
3237
3238	return 0;
3239}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30
  31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
  36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  37					  u16 *data, bool read, bool page_set);
  38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  40                                          u16 *data, bool read);
  41
  42/* Cable length tables */
  43static const u16 e1000_m88_cable_length_table[] = {
  44	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
 
 
  45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  46		ARRAY_SIZE(e1000_m88_cable_length_table)
  47
  48static const u16 e1000_igp_2_cable_length_table[] = {
  49	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  50	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  51	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  52	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  53	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  54	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  55	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  56	124};
 
 
  57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  58		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  59
  60#define BM_PHY_REG_PAGE(offset) \
  61	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
  62#define BM_PHY_REG_NUM(offset) \
  63	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
  64	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
  65		~MAX_PHY_REG_ADDRESS)))
  66
  67#define HV_INTC_FC_PAGE_START             768
  68#define I82578_ADDR_REG                   29
  69#define I82577_ADDR_REG                   16
  70#define I82577_CFG_REG                    22
  71#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
  72#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
  73#define I82577_CTRL_REG                   23
  74
  75/* 82577 specific PHY registers */
  76#define I82577_PHY_CTRL_2            18
  77#define I82577_PHY_STATUS_2          26
  78#define I82577_PHY_DIAG_STATUS       31
  79
  80/* I82577 PHY Status 2 */
  81#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
  82#define I82577_PHY_STATUS2_MDIX           0x0800
  83#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
  84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
  85
  86/* I82577 PHY Control 2 */
  87#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
  88#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
  89
  90/* I82577 PHY Diagnostics Status */
  91#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
  92#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
  93
  94/* BM PHY Copper Specific Control 1 */
  95#define BM_CS_CTRL1                       16
  96
  97#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
  98#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
  99#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
 100
 101/**
 102 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Read the PHY management control register and check whether a PHY reset
 106 *  is blocked.  If a reset is not blocked return 0, otherwise
 107 *  return E1000_BLK_PHY_RESET (12).
 108 **/
 109s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
 110{
 111	u32 manc;
 112
 113	manc = er32(MANC);
 114
 115	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 116	       E1000_BLK_PHY_RESET : 0;
 117}
 118
 119/**
 120 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 121 *  @hw: pointer to the HW structure
 122 *
 123 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 124 *  revision in the hardware structure.
 125 **/
 126s32 e1000e_get_phy_id(struct e1000_hw *hw)
 127{
 128	struct e1000_phy_info *phy = &hw->phy;
 129	s32 ret_val = 0;
 130	u16 phy_id;
 131	u16 retry_count = 0;
 132
 133	if (!phy->ops.read_reg)
 134		return 0;
 135
 136	while (retry_count < 2) {
 137		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
 138		if (ret_val)
 139			return ret_val;
 140
 141		phy->id = (u32)(phy_id << 16);
 142		udelay(20);
 143		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
 144		if (ret_val)
 145			return ret_val;
 146
 147		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 148		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 149
 150		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 151			return 0;
 152
 153		retry_count++;
 154	}
 155
 156	return 0;
 157}
 158
 159/**
 160 *  e1000e_phy_reset_dsp - Reset PHY DSP
 161 *  @hw: pointer to the HW structure
 162 *
 163 *  Reset the digital signal processor.
 164 **/
 165s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 166{
 167	s32 ret_val;
 168
 169	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 170	if (ret_val)
 171		return ret_val;
 172
 173	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 174}
 175
 176/**
 177 *  e1000e_read_phy_reg_mdic - Read MDI control register
 178 *  @hw: pointer to the HW structure
 179 *  @offset: register offset to be read
 180 *  @data: pointer to the read data
 181 *
 182 *  Reads the MDI control register in the PHY at offset and stores the
 183 *  information read to data.
 184 **/
 185s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 186{
 187	struct e1000_phy_info *phy = &hw->phy;
 188	u32 i, mdic = 0;
 189
 190	if (offset > MAX_PHY_REG_ADDRESS) {
 191		e_dbg("PHY Address %d is out of range\n", offset);
 192		return -E1000_ERR_PARAM;
 193	}
 194
 195	/*
 196	 * Set up Op-code, Phy Address, and register offset in the MDI
 197	 * Control register.  The MAC will take care of interfacing with the
 198	 * PHY to retrieve the desired data.
 199	 */
 200	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 201		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 202		(E1000_MDIC_OP_READ));
 203
 204	ew32(MDIC, mdic);
 205
 206	/*
 207	 * Poll the ready bit to see if the MDI read completed
 208	 * Increasing the time out as testing showed failures with
 209	 * the lower time out
 210	 */
 211	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 212		udelay(50);
 213		mdic = er32(MDIC);
 214		if (mdic & E1000_MDIC_READY)
 215			break;
 216	}
 217	if (!(mdic & E1000_MDIC_READY)) {
 218		e_dbg("MDI Read did not complete\n");
 219		return -E1000_ERR_PHY;
 220	}
 221	if (mdic & E1000_MDIC_ERROR) {
 222		e_dbg("MDI Error\n");
 223		return -E1000_ERR_PHY;
 224	}
 225	*data = (u16) mdic;
 
 
 
 
 
 
 226
 227	/*
 228	 * Allow some time after each MDIC transaction to avoid
 229	 * reading duplicate data in the next MDIC transaction.
 230	 */
 231	if (hw->mac.type == e1000_pch2lan)
 232		udelay(100);
 233
 234	return 0;
 235}
 236
 237/**
 238 *  e1000e_write_phy_reg_mdic - Write MDI control register
 239 *  @hw: pointer to the HW structure
 240 *  @offset: register offset to write to
 241 *  @data: data to write to register at offset
 242 *
 243 *  Writes data to MDI control register in the PHY at offset.
 244 **/
 245s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 246{
 247	struct e1000_phy_info *phy = &hw->phy;
 248	u32 i, mdic = 0;
 249
 250	if (offset > MAX_PHY_REG_ADDRESS) {
 251		e_dbg("PHY Address %d is out of range\n", offset);
 252		return -E1000_ERR_PARAM;
 253	}
 254
 255	/*
 256	 * Set up Op-code, Phy Address, and register offset in the MDI
 257	 * Control register.  The MAC will take care of interfacing with the
 258	 * PHY to retrieve the desired data.
 259	 */
 260	mdic = (((u32)data) |
 261		(offset << E1000_MDIC_REG_SHIFT) |
 262		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 263		(E1000_MDIC_OP_WRITE));
 264
 265	ew32(MDIC, mdic);
 266
 267	/*
 268	 * Poll the ready bit to see if the MDI read completed
 269	 * Increasing the time out as testing showed failures with
 270	 * the lower time out
 271	 */
 272	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 273		udelay(50);
 274		mdic = er32(MDIC);
 275		if (mdic & E1000_MDIC_READY)
 276			break;
 277	}
 278	if (!(mdic & E1000_MDIC_READY)) {
 279		e_dbg("MDI Write did not complete\n");
 280		return -E1000_ERR_PHY;
 281	}
 282	if (mdic & E1000_MDIC_ERROR) {
 283		e_dbg("MDI Error\n");
 284		return -E1000_ERR_PHY;
 285	}
 
 
 
 
 
 
 286
 287	/*
 288	 * Allow some time after each MDIC transaction to avoid
 289	 * reading duplicate data in the next MDIC transaction.
 290	 */
 291	if (hw->mac.type == e1000_pch2lan)
 292		udelay(100);
 293
 294	return 0;
 295}
 296
 297/**
 298 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 299 *  @hw: pointer to the HW structure
 300 *  @offset: register offset to be read
 301 *  @data: pointer to the read data
 302 *
 303 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 304 *  and storing the retrieved information in data.  Release any acquired
 305 *  semaphores before exiting.
 306 **/
 307s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 308{
 309	s32 ret_val;
 310
 311	ret_val = hw->phy.ops.acquire(hw);
 312	if (ret_val)
 313		return ret_val;
 314
 315	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 316					   data);
 317
 318	hw->phy.ops.release(hw);
 319
 320	return ret_val;
 321}
 322
 323/**
 324 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to write to
 327 *  @data: data to write at register offset
 328 *
 329 *  Acquires semaphore, if necessary, then writes the data to PHY register
 330 *  at the offset.  Release any acquired semaphores before exiting.
 331 **/
 332s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 333{
 334	s32 ret_val;
 335
 336	ret_val = hw->phy.ops.acquire(hw);
 337	if (ret_val)
 338		return ret_val;
 339
 340	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 341					    data);
 342
 343	hw->phy.ops.release(hw);
 344
 345	return ret_val;
 346}
 347
 348/**
 349 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 350 *  @hw: pointer to the HW structure
 351 *  @page: page to set (shifted left when necessary)
 352 *
 353 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 354 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 355 *  must set it appropriately (if necessary) after this function returns.
 356 **/
 357s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 358{
 359	e_dbg("Setting page 0x%x\n", page);
 360
 361	hw->phy.addr = 1;
 362
 363	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 364}
 365
 366/**
 367 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 368 *  @hw: pointer to the HW structure
 369 *  @offset: register offset to be read
 370 *  @data: pointer to the read data
 371 *  @locked: semaphore has already been acquired or not
 372 *
 373 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 374 *  and stores the retrieved information in data.  Release any acquired
 375 *  semaphores before exiting.
 376 **/
 377static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 378                                    bool locked)
 379{
 380	s32 ret_val = 0;
 381
 382	if (!locked) {
 383		if (!hw->phy.ops.acquire)
 384			return 0;
 385
 386		ret_val = hw->phy.ops.acquire(hw);
 387		if (ret_val)
 388			return ret_val;
 389	}
 390
 391	if (offset > MAX_PHY_MULTI_PAGE_REG)
 392		ret_val = e1000e_write_phy_reg_mdic(hw,
 393						    IGP01E1000_PHY_PAGE_SELECT,
 394						    (u16)offset);
 395	if (!ret_val)
 396		ret_val = e1000e_read_phy_reg_mdic(hw,
 397						   MAX_PHY_REG_ADDRESS & offset,
 398						   data);
 399	if (!locked)
 400		hw->phy.ops.release(hw);
 401
 402	return ret_val;
 403}
 404
 405/**
 406 *  e1000e_read_phy_reg_igp - Read igp PHY register
 407 *  @hw: pointer to the HW structure
 408 *  @offset: register offset to be read
 409 *  @data: pointer to the read data
 410 *
 411 *  Acquires semaphore then reads the PHY register at offset and stores the
 412 *  retrieved information in data.
 413 *  Release the acquired semaphore before exiting.
 414 **/
 415s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 416{
 417	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 418}
 419
 420/**
 421 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: register offset to be read
 424 *  @data: pointer to the read data
 425 *
 426 *  Reads the PHY register at offset and stores the retrieved information
 427 *  in data.  Assumes semaphore already acquired.
 428 **/
 429s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 430{
 431	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 432}
 433
 434/**
 435 *  e1000e_write_phy_reg_igp - Write igp PHY register
 436 *  @hw: pointer to the HW structure
 437 *  @offset: register offset to write to
 438 *  @data: data to write at register offset
 439 *  @locked: semaphore has already been acquired or not
 440 *
 441 *  Acquires semaphore, if necessary, then writes the data to PHY register
 442 *  at the offset.  Release any acquired semaphores before exiting.
 443 **/
 444static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 445                                     bool locked)
 446{
 447	s32 ret_val = 0;
 448
 449	if (!locked) {
 450		if (!hw->phy.ops.acquire)
 451			return 0;
 452
 453		ret_val = hw->phy.ops.acquire(hw);
 454		if (ret_val)
 455			return ret_val;
 456	}
 457
 458	if (offset > MAX_PHY_MULTI_PAGE_REG)
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    IGP01E1000_PHY_PAGE_SELECT,
 461						    (u16)offset);
 462	if (!ret_val)
 463		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 464							offset,
 465						    data);
 466	if (!locked)
 467		hw->phy.ops.release(hw);
 468
 469	return ret_val;
 470}
 471
 472/**
 473 *  e1000e_write_phy_reg_igp - Write igp PHY register
 474 *  @hw: pointer to the HW structure
 475 *  @offset: register offset to write to
 476 *  @data: data to write at register offset
 477 *
 478 *  Acquires semaphore then writes the data to PHY register
 479 *  at the offset.  Release any acquired semaphores before exiting.
 480 **/
 481s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 482{
 483	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 484}
 485
 486/**
 487 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 488 *  @hw: pointer to the HW structure
 489 *  @offset: register offset to write to
 490 *  @data: data to write at register offset
 491 *
 492 *  Writes the data to PHY register at the offset.
 493 *  Assumes semaphore already acquired.
 494 **/
 495s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 496{
 497	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 498}
 499
 500/**
 501 *  __e1000_read_kmrn_reg - Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *  @locked: semaphore has already been acquired or not
 506 *
 507 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 508 *  using the kumeran interface.  The information retrieved is stored in data.
 509 *  Release any acquired semaphores before exiting.
 510 **/
 511static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 512                                 bool locked)
 513{
 514	u32 kmrnctrlsta;
 515
 516	if (!locked) {
 517		s32 ret_val = 0;
 518
 519		if (!hw->phy.ops.acquire)
 520			return 0;
 521
 522		ret_val = hw->phy.ops.acquire(hw);
 523		if (ret_val)
 524			return ret_val;
 525	}
 526
 527	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 528		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 529	ew32(KMRNCTRLSTA, kmrnctrlsta);
 530	e1e_flush();
 531
 532	udelay(2);
 533
 534	kmrnctrlsta = er32(KMRNCTRLSTA);
 535	*data = (u16)kmrnctrlsta;
 536
 537	if (!locked)
 538		hw->phy.ops.release(hw);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  e1000e_read_kmrn_reg -  Read kumeran register
 545 *  @hw: pointer to the HW structure
 546 *  @offset: register offset to be read
 547 *  @data: pointer to the read data
 548 *
 549 *  Acquires semaphore then reads the PHY register at offset using the
 550 *  kumeran interface.  The information retrieved is stored in data.
 551 *  Release the acquired semaphore before exiting.
 552 **/
 553s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 554{
 555	return __e1000_read_kmrn_reg(hw, offset, data, false);
 556}
 557
 558/**
 559 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 560 *  @hw: pointer to the HW structure
 561 *  @offset: register offset to be read
 562 *  @data: pointer to the read data
 563 *
 564 *  Reads the PHY register at offset using the kumeran interface.  The
 565 *  information retrieved is stored in data.
 566 *  Assumes semaphore already acquired.
 567 **/
 568s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 569{
 570	return __e1000_read_kmrn_reg(hw, offset, data, true);
 571}
 572
 573/**
 574 *  __e1000_write_kmrn_reg - Write kumeran register
 575 *  @hw: pointer to the HW structure
 576 *  @offset: register offset to write to
 577 *  @data: data to write at register offset
 578 *  @locked: semaphore has already been acquired or not
 579 *
 580 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 581 *  at the offset using the kumeran interface.  Release any acquired semaphores
 582 *  before exiting.
 583 **/
 584static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 585                                  bool locked)
 586{
 587	u32 kmrnctrlsta;
 588
 589	if (!locked) {
 590		s32 ret_val = 0;
 591
 592		if (!hw->phy.ops.acquire)
 593			return 0;
 594
 595		ret_val = hw->phy.ops.acquire(hw);
 596		if (ret_val)
 597			return ret_val;
 598	}
 599
 600	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 601		       E1000_KMRNCTRLSTA_OFFSET) | data;
 602	ew32(KMRNCTRLSTA, kmrnctrlsta);
 603	e1e_flush();
 604
 605	udelay(2);
 606
 607	if (!locked)
 608		hw->phy.ops.release(hw);
 609
 610	return 0;
 611}
 612
 613/**
 614 *  e1000e_write_kmrn_reg -  Write kumeran register
 615 *  @hw: pointer to the HW structure
 616 *  @offset: register offset to write to
 617 *  @data: data to write at register offset
 618 *
 619 *  Acquires semaphore then writes the data to the PHY register at the offset
 620 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 621 **/
 622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 623{
 624	return __e1000_write_kmrn_reg(hw, offset, data, false);
 625}
 626
 627/**
 628 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 629 *  @hw: pointer to the HW structure
 630 *  @offset: register offset to write to
 631 *  @data: data to write at register offset
 632 *
 633 *  Write the data to PHY register at the offset using the kumeran interface.
 634 *  Assumes semaphore already acquired.
 635 **/
 636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 637{
 638	return __e1000_write_kmrn_reg(hw, offset, data, true);
 639}
 640
 641/**
 642 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 643 *  @hw: pointer to the HW structure
 644 *
 645 *  Sets up Master/slave mode
 646 **/
 647static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 phy_data;
 651
 652	/* Resolve Master/Slave mode */
 653	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
 654	if (ret_val)
 655		return ret_val;
 656
 657	/* load defaults for future use */
 658	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
 659	    ((phy_data & CR_1000T_MS_VALUE) ?
 660	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 661
 662	switch (hw->phy.ms_type) {
 663	case e1000_ms_force_master:
 664		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 665		break;
 666	case e1000_ms_force_slave:
 667		phy_data |= CR_1000T_MS_ENABLE;
 668		phy_data &= ~(CR_1000T_MS_VALUE);
 669		break;
 670	case e1000_ms_auto:
 671		phy_data &= ~CR_1000T_MS_ENABLE;
 672		/* fall-through */
 673	default:
 674		break;
 675	}
 676
 677	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
 678}
 679
 680/**
 681 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 682 *  @hw: pointer to the HW structure
 683 *
 684 *  Sets up Carrier-sense on Transmit and downshift values.
 685 **/
 686s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689	u16 phy_data;
 690
 691	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 692	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 693	if (ret_val)
 694		return ret_val;
 695
 696	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 697
 698	/* Enable downshift */
 699	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 700
 701	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 702	if (ret_val)
 703		return ret_val;
 704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	return e1000_set_master_slave_mode(hw);
 706}
 707
 708/**
 709 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 710 *  @hw: pointer to the HW structure
 711 *
 712 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 713 *  and downshift values are set also.
 714 **/
 715s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 716{
 717	struct e1000_phy_info *phy = &hw->phy;
 718	s32 ret_val;
 719	u16 phy_data;
 720
 721	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 722	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 723	if (ret_val)
 724		return ret_val;
 725
 726	/* For BM PHY this bit is downshift enable */
 727	if (phy->type != e1000_phy_bm)
 728		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 729
 730	/*
 731	 * Options:
 732	 *   MDI/MDI-X = 0 (default)
 733	 *   0 - Auto for all speeds
 734	 *   1 - MDI mode
 735	 *   2 - MDI-X mode
 736	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 737	 */
 738	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 739
 740	switch (phy->mdix) {
 741	case 1:
 742		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 743		break;
 744	case 2:
 745		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 746		break;
 747	case 3:
 748		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 749		break;
 750	case 0:
 751	default:
 752		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 753		break;
 754	}
 755
 756	/*
 757	 * Options:
 758	 *   disable_polarity_correction = 0 (default)
 759	 *       Automatic Correction for Reversed Cable Polarity
 760	 *   0 - Disabled
 761	 *   1 - Enabled
 762	 */
 763	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 764	if (phy->disable_polarity_correction)
 765		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 766
 767	/* Enable downshift on BM (disabled by default) */
 768	if (phy->type == e1000_phy_bm) {
 769		/* For 82574/82583, first disable then enable downshift */
 770		if (phy->id == BME1000_E_PHY_ID_R2) {
 771			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 772			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 773					   phy_data);
 774			if (ret_val)
 775				return ret_val;
 776			/* Commit the changes. */
 777			ret_val = e1000e_commit_phy(hw);
 778			if (ret_val) {
 779				e_dbg("Error committing the PHY changes\n");
 780				return ret_val;
 781			}
 782		}
 783
 784		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 785	}
 786
 787	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 788	if (ret_val)
 789		return ret_val;
 790
 791	if ((phy->type == e1000_phy_m88) &&
 792	    (phy->revision < E1000_REVISION_4) &&
 793	    (phy->id != BME1000_E_PHY_ID_R2)) {
 794		/*
 795		 * Force TX_CLK in the Extended PHY Specific Control Register
 796		 * to 25MHz clock.
 797		 */
 798		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 799		if (ret_val)
 800			return ret_val;
 801
 802		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 803
 804		if ((phy->revision == 2) &&
 805		    (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	ret_val = e1000e_commit_phy(hw);
 835	if (ret_val) {
 836		e_dbg("Error committing the PHY changes\n");
 837		return ret_val;
 
 
 838	}
 839
 840	if (phy->type == e1000_phy_82578) {
 841		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 842		if (ret_val)
 843			return ret_val;
 844
 845		/* 82578 PHY - set the downshift count to 1x. */
 846		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 847		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 848		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 849		if (ret_val)
 850			return ret_val;
 851	}
 852
 853	return 0;
 854}
 855
 856/**
 857 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 858 *  @hw: pointer to the HW structure
 859 *
 860 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 861 *  igp PHY's.
 862 **/
 863s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 864{
 865	struct e1000_phy_info *phy = &hw->phy;
 866	s32 ret_val;
 867	u16 data;
 868
 869	ret_val = e1000_phy_hw_reset(hw);
 870	if (ret_val) {
 871		e_dbg("Error resetting the PHY.\n");
 872		return ret_val;
 873	}
 874
 875	/*
 876	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 877	 * timeout issues when LFS is enabled.
 878	 */
 879	msleep(100);
 880
 881	/* disable lplu d0 during driver init */
 882	ret_val = e1000_set_d0_lplu_state(hw, false);
 883	if (ret_val) {
 884		e_dbg("Error Disabling LPLU D0\n");
 885		return ret_val;
 
 
 886	}
 887	/* Configure mdi-mdix settings */
 888	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 889	if (ret_val)
 890		return ret_val;
 891
 892	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 893
 894	switch (phy->mdix) {
 895	case 1:
 896		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 897		break;
 898	case 2:
 899		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 0:
 902	default:
 903		data |= IGP01E1000_PSCR_AUTO_MDIX;
 904		break;
 905	}
 906	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 907	if (ret_val)
 908		return ret_val;
 909
 910	/* set auto-master slave resolution settings */
 911	if (hw->mac.autoneg) {
 912		/*
 913		 * when autonegotiation advertisement is only 1000Mbps then we
 914		 * should disable SmartSpeed and enable Auto MasterSlave
 915		 * resolution as hardware default.
 916		 */
 917		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 918			/* Disable SmartSpeed */
 919			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 920					   &data);
 921			if (ret_val)
 922				return ret_val;
 923
 924			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 925			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 926					   data);
 927			if (ret_val)
 928				return ret_val;
 929
 930			/* Set auto Master/Slave resolution process */
 931			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 932			if (ret_val)
 933				return ret_val;
 934
 935			data &= ~CR_1000T_MS_ENABLE;
 936			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 937			if (ret_val)
 938				return ret_val;
 939		}
 940
 941		ret_val = e1000_set_master_slave_mode(hw);
 942	}
 943
 944	return ret_val;
 945}
 946
 947/**
 948 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 949 *  @hw: pointer to the HW structure
 950 *
 951 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 952 *  register and if the PHY is already setup for auto-negotiation, then
 953 *  return successful.  Otherwise, setup advertisement and flow control to
 954 *  the appropriate values for the wanted auto-negotiation.
 955 **/
 956static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 957{
 958	struct e1000_phy_info *phy = &hw->phy;
 959	s32 ret_val;
 960	u16 mii_autoneg_adv_reg;
 961	u16 mii_1000t_ctrl_reg = 0;
 962
 963	phy->autoneg_advertised &= phy->autoneg_mask;
 964
 965	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 966	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 967	if (ret_val)
 968		return ret_val;
 969
 970	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 971		/* Read the MII 1000Base-T Control Register (Address 9). */
 972		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 973		if (ret_val)
 974			return ret_val;
 975	}
 976
 977	/*
 978	 * Need to parse both autoneg_advertised and fc and set up
 979	 * the appropriate PHY registers.  First we will parse for
 980	 * autoneg_advertised software override.  Since we can advertise
 981	 * a plethora of combinations, we need to check each bit
 982	 * individually.
 983	 */
 984
 985	/*
 986	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 991				 NWAY_AR_100TX_HD_CAPS |
 992				 NWAY_AR_10T_FD_CAPS   |
 993				 NWAY_AR_10T_HD_CAPS);
 994	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 995
 996	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 997
 998	/* Do we want to advertise 10 Mb Half Duplex? */
 999	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000		e_dbg("Advertise 10mb Half duplex\n");
1001		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1002	}
1003
1004	/* Do we want to advertise 10 Mb Full Duplex? */
1005	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006		e_dbg("Advertise 10mb Full duplex\n");
1007		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1008	}
1009
1010	/* Do we want to advertise 100 Mb Half Duplex? */
1011	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012		e_dbg("Advertise 100mb Half duplex\n");
1013		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1014	}
1015
1016	/* Do we want to advertise 100 Mb Full Duplex? */
1017	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018		e_dbg("Advertise 100mb Full duplex\n");
1019		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1020	}
1021
1022	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025
1026	/* Do we want to advertise 1000 Mb Full Duplex? */
1027	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028		e_dbg("Advertise 1000mb Full duplex\n");
1029		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1030	}
1031
1032	/*
1033	 * Check for a software override of the flow control settings, and
1034	 * setup the PHY advertisement registers accordingly.  If
1035	 * auto-negotiation is enabled, then software will have to set the
1036	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1037	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1038	 * negotiation.
1039	 *
1040	 * The possible values of the "fc" parameter are:
1041	 *      0:  Flow control is completely disabled
1042	 *      1:  Rx flow control is enabled (we can receive pause frames
1043	 *          but not send pause frames).
1044	 *      2:  Tx flow control is enabled (we can send pause frames
1045	 *          but we do not support receiving pause frames).
1046	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1047	 *  other:  No software override.  The flow control configuration
1048	 *          in the EEPROM is used.
1049	 */
1050	switch (hw->fc.current_mode) {
1051	case e1000_fc_none:
1052		/*
1053		 * Flow control (Rx & Tx) is completely disabled by a
1054		 * software over-ride.
1055		 */
1056		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1057		break;
1058	case e1000_fc_rx_pause:
1059		/*
1060		 * Rx Flow control is enabled, and Tx Flow control is
1061		 * disabled, by a software over-ride.
1062		 *
1063		 * Since there really isn't a way to advertise that we are
1064		 * capable of Rx Pause ONLY, we will advertise that we
1065		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066		 * (in e1000e_config_fc_after_link_up) we will disable the
1067		 * hw's ability to send PAUSE frames.
1068		 */
1069		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1070		break;
1071	case e1000_fc_tx_pause:
1072		/*
1073		 * Tx Flow control is enabled, and Rx Flow control is
1074		 * disabled, by a software over-ride.
1075		 */
1076		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1077		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1078		break;
1079	case e1000_fc_full:
1080		/*
1081		 * Flow control (both Rx and Tx) is enabled by a software
1082		 * over-ride.
1083		 */
1084		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
1085		break;
1086	default:
1087		e_dbg("Flow control param set incorrectly\n");
1088		return -E1000_ERR_CONFIG;
1089	}
1090
1091	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1092	if (ret_val)
1093		return ret_val;
1094
1095	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1096
1097	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1098		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1099
1100	return ret_val;
1101}
1102
1103/**
1104 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1105 *  @hw: pointer to the HW structure
1106 *
1107 *  Performs initial bounds checking on autoneg advertisement parameter, then
1108 *  configure to advertise the full capability.  Setup the PHY to autoneg
1109 *  and restart the negotiation process between the link partner.  If
1110 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1111 **/
1112static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1113{
1114	struct e1000_phy_info *phy = &hw->phy;
1115	s32 ret_val;
1116	u16 phy_ctrl;
1117
1118	/*
1119	 * Perform some bounds checking on the autoneg advertisement
1120	 * parameter.
1121	 */
1122	phy->autoneg_advertised &= phy->autoneg_mask;
1123
1124	/*
1125	 * If autoneg_advertised is zero, we assume it was not defaulted
1126	 * by the calling code so we set to advertise full capability.
1127	 */
1128	if (!phy->autoneg_advertised)
1129		phy->autoneg_advertised = phy->autoneg_mask;
1130
1131	e_dbg("Reconfiguring auto-neg advertisement params\n");
1132	ret_val = e1000_phy_setup_autoneg(hw);
1133	if (ret_val) {
1134		e_dbg("Error Setting up Auto-Negotiation\n");
1135		return ret_val;
1136	}
1137	e_dbg("Restarting Auto-Neg\n");
1138
1139	/*
1140	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1141	 * the Auto Neg Restart bit in the PHY control register.
1142	 */
1143	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1144	if (ret_val)
1145		return ret_val;
1146
1147	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1148	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1149	if (ret_val)
1150		return ret_val;
1151
1152	/*
1153	 * Does the user want to wait for Auto-Neg to complete here, or
1154	 * check at a later time (for example, callback routine).
1155	 */
1156	if (phy->autoneg_wait_to_complete) {
1157		ret_val = e1000_wait_autoneg(hw);
1158		if (ret_val) {
1159			e_dbg("Error while waiting for autoneg to complete\n");
1160			return ret_val;
1161		}
1162	}
1163
1164	hw->mac.get_link_status = true;
1165
1166	return ret_val;
1167}
1168
1169/**
1170 *  e1000e_setup_copper_link - Configure copper link settings
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Calls the appropriate function to configure the link for auto-neg or forced
1174 *  speed and duplex.  Then we check for link, once link is established calls
1175 *  to configure collision distance and flow control are called.  If link is
1176 *  not established, we return -E1000_ERR_PHY (-2).
1177 **/
1178s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1179{
1180	s32 ret_val;
1181	bool link;
1182
1183	if (hw->mac.autoneg) {
1184		/*
1185		 * Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/*
1193		 * PHY will be set to 10H, 10F, 100H or 100F
1194		 * depending on user settings.
1195		 */
1196		e_dbg("Forcing Speed and Duplex\n");
1197		ret_val = e1000_phy_force_speed_duplex(hw);
1198		if (ret_val) {
1199			e_dbg("Error Forcing Speed and Duplex\n");
1200			return ret_val;
1201		}
1202	}
1203
1204	/*
1205	 * Check link status. Wait up to 100 microseconds for link to become
1206	 * valid.
1207	 */
1208	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1209					      &link);
1210	if (ret_val)
1211		return ret_val;
1212
1213	if (link) {
1214		e_dbg("Valid link established!!!\n");
1215		hw->mac.ops.config_collision_dist(hw);
1216		ret_val = e1000e_config_fc_after_link_up(hw);
1217	} else {
1218		e_dbg("Unable to establish link!!!\n");
1219	}
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Calls the PHY setup function to force speed and duplex.  Clears the
1229 *  auto-crossover to force MDI manually.  Waits for link and returns
1230 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1231 **/
1232s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1233{
1234	struct e1000_phy_info *phy = &hw->phy;
1235	s32 ret_val;
1236	u16 phy_data;
1237	bool link;
1238
1239	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1240	if (ret_val)
1241		return ret_val;
1242
1243	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1244
1245	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1246	if (ret_val)
1247		return ret_val;
1248
1249	/*
1250	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251	 * forced whenever speed and duplex are forced.
1252	 */
1253	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254	if (ret_val)
1255		return ret_val;
1256
1257	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259
1260	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("IGP PSCR: %X\n", phy_data);
1265
1266	udelay(1);
1267
1268	if (phy->autoneg_wait_to_complete) {
1269		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270
1271		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272						      100000, &link);
1273		if (ret_val)
1274			return ret_val;
1275
1276		if (!link)
1277			e_dbg("Link taking longer than expected.\n");
1278
1279		/* Try once more */
1280		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281						      100000, &link);
1282	}
1283
1284	return ret_val;
1285}
1286
1287/**
1288 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Calls the PHY setup function to force speed and duplex.  Clears the
1292 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293 *  changes.  If time expires while waiting for link up, we reset the DSP.
1294 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295 *  successful completion, else return corresponding error code.
1296 **/
1297s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298{
1299	struct e1000_phy_info *phy = &hw->phy;
1300	s32 ret_val;
1301	u16 phy_data;
1302	bool link;
1303
1304	/*
1305	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1306	 * forced whenever speed and duplex are forced.
1307	 */
1308	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309	if (ret_val)
1310		return ret_val;
1311
1312	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314	if (ret_val)
1315		return ret_val;
1316
1317	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1318
1319	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1320	if (ret_val)
1321		return ret_val;
1322
1323	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1324
1325	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1326	if (ret_val)
1327		return ret_val;
1328
1329	/* Reset the phy to commit changes. */
1330	ret_val = e1000e_commit_phy(hw);
1331	if (ret_val)
1332		return ret_val;
 
 
1333
1334	if (phy->autoneg_wait_to_complete) {
1335		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336
1337		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338						     100000, &link);
1339		if (ret_val)
1340			return ret_val;
1341
1342		if (!link) {
1343			if (hw->phy.type != e1000_phy_m88) {
1344				e_dbg("Link taking longer than expected.\n");
1345			} else {
1346				/*
1347				 * We didn't get link.
1348				 * Reset the DSP and cross our fingers.
1349				 */
1350				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1351						   0x001d);
1352				if (ret_val)
1353					return ret_val;
1354				ret_val = e1000e_phy_reset_dsp(hw);
1355				if (ret_val)
1356					return ret_val;
1357			}
1358		}
1359
1360		/* Try once more */
1361		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1362						     100000, &link);
1363		if (ret_val)
1364			return ret_val;
1365	}
1366
1367	if (hw->phy.type != e1000_phy_m88)
1368		return 0;
1369
1370	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/*
1375	 * Resetting the phy means we need to re-force TX_CLK in the
1376	 * Extended PHY Specific Control Register to 25MHz clock from
1377	 * the reset value of 2.5MHz.
1378	 */
1379	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1380	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1381	if (ret_val)
1382		return ret_val;
1383
1384	/*
1385	 * In addition, we must re-enable CRS on Tx for both half and full
1386	 * duplex.
1387	 */
1388	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1393	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1394
1395	return ret_val;
1396}
1397
1398/**
1399 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Forces the speed and duplex settings of the PHY.
1403 *  This is a function pointer entry point only called by
1404 *  PHY setup routines.
1405 **/
1406s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1407{
1408	struct e1000_phy_info *phy = &hw->phy;
1409	s32 ret_val;
1410	u16 data;
1411	bool link;
1412
1413	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1414	if (ret_val)
1415		return ret_val;
1416
1417	e1000e_phy_force_speed_duplex_setup(hw, &data);
1418
1419	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	/* Disable MDI-X support for 10/100 */
1424	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1425	if (ret_val)
1426		return ret_val;
1427
1428	data &= ~IFE_PMC_AUTO_MDIX;
1429	data &= ~IFE_PMC_FORCE_MDIX;
1430
1431	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1432	if (ret_val)
1433		return ret_val;
1434
1435	e_dbg("IFE PMC: %X\n", data);
1436
1437	udelay(1);
1438
1439	if (phy->autoneg_wait_to_complete) {
1440		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1441
1442		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1443						      100000, &link);
1444		if (ret_val)
1445			return ret_val;
1446
1447		if (!link)
1448			e_dbg("Link taking longer than expected.\n");
1449
1450		/* Try once more */
1451		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1452						      100000, &link);
1453		if (ret_val)
1454			return ret_val;
1455	}
1456
1457	return 0;
1458}
1459
1460/**
1461 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1462 *  @hw: pointer to the HW structure
1463 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1464 *
1465 *  Forces speed and duplex on the PHY by doing the following: disable flow
1466 *  control, force speed/duplex on the MAC, disable auto speed detection,
1467 *  disable auto-negotiation, configure duplex, configure speed, configure
1468 *  the collision distance, write configuration to CTRL register.  The
1469 *  caller must write to the PHY_CONTROL register for these settings to
1470 *  take affect.
1471 **/
1472void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1473{
1474	struct e1000_mac_info *mac = &hw->mac;
1475	u32 ctrl;
1476
1477	/* Turn off flow control when forcing speed/duplex */
1478	hw->fc.current_mode = e1000_fc_none;
1479
1480	/* Force speed/duplex on the mac */
1481	ctrl = er32(CTRL);
1482	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1483	ctrl &= ~E1000_CTRL_SPD_SEL;
1484
1485	/* Disable Auto Speed Detection */
1486	ctrl &= ~E1000_CTRL_ASDE;
1487
1488	/* Disable autoneg on the phy */
1489	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1490
1491	/* Forcing Full or Half Duplex? */
1492	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1493		ctrl &= ~E1000_CTRL_FD;
1494		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1495		e_dbg("Half Duplex\n");
1496	} else {
1497		ctrl |= E1000_CTRL_FD;
1498		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1499		e_dbg("Full Duplex\n");
1500	}
1501
1502	/* Forcing 10mb or 100mb? */
1503	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1504		ctrl |= E1000_CTRL_SPD_100;
1505		*phy_ctrl |= MII_CR_SPEED_100;
1506		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1507		e_dbg("Forcing 100mb\n");
1508	} else {
1509		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1510		*phy_ctrl |= MII_CR_SPEED_10;
1511		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1512		e_dbg("Forcing 10mb\n");
1513	}
1514
1515	hw->mac.ops.config_collision_dist(hw);
1516
1517	ew32(CTRL, ctrl);
1518}
1519
1520/**
1521 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1522 *  @hw: pointer to the HW structure
1523 *  @active: boolean used to enable/disable lplu
1524 *
1525 *  Success returns 0, Failure returns 1
1526 *
1527 *  The low power link up (lplu) state is set to the power management level D3
1528 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1529 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1530 *  is used during Dx states where the power conservation is most important.
1531 *  During driver activity, SmartSpeed should be enabled so performance is
1532 *  maintained.
1533 **/
1534s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1535{
1536	struct e1000_phy_info *phy = &hw->phy;
1537	s32 ret_val;
1538	u16 data;
1539
1540	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1541	if (ret_val)
1542		return ret_val;
1543
1544	if (!active) {
1545		data &= ~IGP02E1000_PM_D3_LPLU;
1546		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1547		if (ret_val)
1548			return ret_val;
1549		/*
1550		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1551		 * during Dx states where the power conservation is most
1552		 * important.  During driver activity we should enable
1553		 * SmartSpeed, so performance is maintained.
1554		 */
1555		if (phy->smart_speed == e1000_smart_speed_on) {
1556			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557					   &data);
1558			if (ret_val)
1559				return ret_val;
1560
1561			data |= IGP01E1000_PSCFR_SMART_SPEED;
1562			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563					   data);
1564			if (ret_val)
1565				return ret_val;
1566		} else if (phy->smart_speed == e1000_smart_speed_off) {
1567			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568					   &data);
1569			if (ret_val)
1570				return ret_val;
1571
1572			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1573			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1574					   data);
1575			if (ret_val)
1576				return ret_val;
1577		}
1578	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1579		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1580		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1581		data |= IGP02E1000_PM_D3_LPLU;
1582		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1583		if (ret_val)
1584			return ret_val;
1585
1586		/* When LPLU is enabled, we should disable SmartSpeed */
1587		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1588		if (ret_val)
1589			return ret_val;
1590
1591		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1592		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1593	}
1594
1595	return ret_val;
1596}
1597
1598/**
1599 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1600 *  @hw: pointer to the HW structure
1601 *
1602 *  Success returns 0, Failure returns 1
1603 *
1604 *  A downshift is detected by querying the PHY link health.
1605 **/
1606s32 e1000e_check_downshift(struct e1000_hw *hw)
1607{
1608	struct e1000_phy_info *phy = &hw->phy;
1609	s32 ret_val;
1610	u16 phy_data, offset, mask;
1611
1612	switch (phy->type) {
1613	case e1000_phy_m88:
1614	case e1000_phy_gg82563:
1615	case e1000_phy_bm:
1616	case e1000_phy_82578:
1617		offset	= M88E1000_PHY_SPEC_STATUS;
1618		mask	= M88E1000_PSSR_DOWNSHIFT;
1619		break;
1620	case e1000_phy_igp_2:
1621	case e1000_phy_igp_3:
1622		offset	= IGP01E1000_PHY_LINK_HEALTH;
1623		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1624		break;
1625	default:
1626		/* speed downshift not supported */
1627		phy->speed_downgraded = false;
1628		return 0;
1629	}
1630
1631	ret_val = e1e_rphy(hw, offset, &phy_data);
1632
1633	if (!ret_val)
1634		phy->speed_downgraded = !!(phy_data & mask);
1635
1636	return ret_val;
1637}
1638
1639/**
1640 *  e1000_check_polarity_m88 - Checks the polarity.
1641 *  @hw: pointer to the HW structure
1642 *
1643 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1644 *
1645 *  Polarity is determined based on the PHY specific status register.
1646 **/
1647s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1648{
1649	struct e1000_phy_info *phy = &hw->phy;
1650	s32 ret_val;
1651	u16 data;
1652
1653	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1654
1655	if (!ret_val)
1656		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1657				      ? e1000_rev_polarity_reversed
1658				      : e1000_rev_polarity_normal;
1659
1660	return ret_val;
1661}
1662
1663/**
1664 *  e1000_check_polarity_igp - Checks the polarity.
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1668 *
1669 *  Polarity is determined based on the PHY port status register, and the
1670 *  current speed (since there is no polarity at 100Mbps).
1671 **/
1672s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1673{
1674	struct e1000_phy_info *phy = &hw->phy;
1675	s32 ret_val;
1676	u16 data, offset, mask;
1677
1678	/*
1679	 * Polarity is determined based on the speed of
1680	 * our connection.
1681	 */
1682	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1683	if (ret_val)
1684		return ret_val;
1685
1686	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1687	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1688		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1689		mask	= IGP01E1000_PHY_POLARITY_MASK;
1690	} else {
1691		/*
1692		 * This really only applies to 10Mbps since
1693		 * there is no polarity for 100Mbps (always 0).
1694		 */
1695		offset	= IGP01E1000_PHY_PORT_STATUS;
1696		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1697	}
1698
1699	ret_val = e1e_rphy(hw, offset, &data);
1700
1701	if (!ret_val)
1702		phy->cable_polarity = (data & mask)
1703				      ? e1000_rev_polarity_reversed
1704				      : e1000_rev_polarity_normal;
1705
1706	return ret_val;
1707}
1708
1709/**
1710 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Polarity is determined on the polarity reversal feature being enabled.
1714 **/
1715s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, offset, mask;
1720
1721	/*
1722	 * Polarity is determined based on the reversal feature being enabled.
1723	 */
1724	if (phy->polarity_correction) {
1725		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1726		mask = IFE_PESC_POLARITY_REVERSED;
1727	} else {
1728		offset = IFE_PHY_SPECIAL_CONTROL;
1729		mask = IFE_PSC_FORCE_POLARITY;
1730	}
1731
1732	ret_val = e1e_rphy(hw, offset, &phy_data);
1733
1734	if (!ret_val)
1735		phy->cable_polarity = (phy_data & mask)
1736		                       ? e1000_rev_polarity_reversed
1737		                       : e1000_rev_polarity_normal;
1738
1739	return ret_val;
1740}
1741
1742/**
1743 *  e1000_wait_autoneg - Wait for auto-neg completion
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1747 *  limit to expire, which ever happens first.
1748 **/
1749static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1755	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1756		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1757		if (ret_val)
1758			break;
1759		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1760		if (ret_val)
1761			break;
1762		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1763			break;
1764		msleep(100);
1765	}
1766
1767	/*
1768	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769	 * has completed.
1770	 */
1771	return ret_val;
1772}
1773
1774/**
1775 *  e1000e_phy_has_link_generic - Polls PHY for link
1776 *  @hw: pointer to the HW structure
1777 *  @iterations: number of times to poll for link
1778 *  @usec_interval: delay between polling attempts
1779 *  @success: pointer to whether polling was successful or not
1780 *
1781 *  Polls the PHY status register for link, 'iterations' number of times.
1782 **/
1783s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1784			       u32 usec_interval, bool *success)
1785{
1786	s32 ret_val = 0;
1787	u16 i, phy_status;
1788
 
1789	for (i = 0; i < iterations; i++) {
1790		/*
1791		 * Some PHYs require the PHY_STATUS register to be read
1792		 * twice due to the link bit being sticky.  No harm doing
1793		 * it across the board.
1794		 */
1795		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1796		if (ret_val)
1797			/*
1798			 * If the first read fails, another entity may have
1799			 * ownership of the resources, wait and try again to
1800			 * see if they have relinquished the resources yet.
1801			 */
1802			udelay(usec_interval);
1803		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
 
 
 
 
1804		if (ret_val)
1805			break;
1806		if (phy_status & MII_SR_LINK_STATUS)
 
1807			break;
 
1808		if (usec_interval >= 1000)
1809			mdelay(usec_interval/1000);
1810		else
1811			udelay(usec_interval);
1812	}
1813
1814	*success = (i < iterations);
1815
1816	return ret_val;
1817}
1818
1819/**
1820 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1821 *  @hw: pointer to the HW structure
1822 *
1823 *  Reads the PHY specific status register to retrieve the cable length
1824 *  information.  The cable length is determined by averaging the minimum and
1825 *  maximum values to get the "average" cable length.  The m88 PHY has four
1826 *  possible cable length values, which are:
1827 *	Register Value		Cable Length
1828 *	0			< 50 meters
1829 *	1			50 - 80 meters
1830 *	2			80 - 110 meters
1831 *	3			110 - 140 meters
1832 *	4			> 140 meters
1833 **/
1834s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1835{
1836	struct e1000_phy_info *phy = &hw->phy;
1837	s32 ret_val;
1838	u16 phy_data, index;
1839
1840	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1841	if (ret_val)
1842		return ret_val;
1843
1844	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1845	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1846
1847	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1848		return -E1000_ERR_PHY;
1849
1850	phy->min_cable_length = e1000_m88_cable_length_table[index];
1851	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1852
1853	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1854
1855	return 0;
1856}
1857
1858/**
1859 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1860 *  @hw: pointer to the HW structure
1861 *
1862 *  The automatic gain control (agc) normalizes the amplitude of the
1863 *  received signal, adjusting for the attenuation produced by the
1864 *  cable.  By reading the AGC registers, which represent the
1865 *  combination of coarse and fine gain value, the value can be put
1866 *  into a lookup table to obtain the approximate cable length
1867 *  for each channel.
1868 **/
1869s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1870{
1871	struct e1000_phy_info *phy = &hw->phy;
1872	s32 ret_val;
1873	u16 phy_data, i, agc_value = 0;
1874	u16 cur_agc_index, max_agc_index = 0;
1875	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1876	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1877	       IGP02E1000_PHY_AGC_A,
1878	       IGP02E1000_PHY_AGC_B,
1879	       IGP02E1000_PHY_AGC_C,
1880	       IGP02E1000_PHY_AGC_D
1881	};
1882
1883	/* Read the AGC registers for all channels */
1884	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1885		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		/*
1890		 * Getting bits 15:9, which represent the combination of
1891		 * coarse and fine gain values.  The result is a number
1892		 * that can be put into the lookup table to obtain the
1893		 * approximate cable length.
1894		 */
1895		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1896				IGP02E1000_AGC_LENGTH_MASK;
1897
1898		/* Array index bound check. */
1899		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1900		    (cur_agc_index == 0))
1901			return -E1000_ERR_PHY;
1902
1903		/* Remove min & max AGC values from calculation. */
1904		if (e1000_igp_2_cable_length_table[min_agc_index] >
1905		    e1000_igp_2_cable_length_table[cur_agc_index])
1906			min_agc_index = cur_agc_index;
1907		if (e1000_igp_2_cable_length_table[max_agc_index] <
1908		    e1000_igp_2_cable_length_table[cur_agc_index])
1909			max_agc_index = cur_agc_index;
1910
1911		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1912	}
1913
1914	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1915		      e1000_igp_2_cable_length_table[max_agc_index]);
1916	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1917
1918	/* Calculate cable length with the error range of +/- 10 meters. */
1919	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1920				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1921	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1922
1923	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1924
1925	return 0;
1926}
1927
1928/**
1929 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1930 *  @hw: pointer to the HW structure
1931 *
1932 *  Valid for only copper links.  Read the PHY status register (sticky read)
1933 *  to verify that link is up.  Read the PHY special control register to
1934 *  determine the polarity and 10base-T extended distance.  Read the PHY
1935 *  special status register to determine MDI/MDIx and current speed.  If
1936 *  speed is 1000, then determine cable length, local and remote receiver.
1937 **/
1938s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1939{
1940	struct e1000_phy_info *phy = &hw->phy;
1941	s32  ret_val;
1942	u16 phy_data;
1943	bool link;
1944
1945	if (phy->media_type != e1000_media_type_copper) {
1946		e_dbg("Phy info is only valid for copper media\n");
1947		return -E1000_ERR_CONFIG;
1948	}
1949
1950	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1951	if (ret_val)
1952		return ret_val;
1953
1954	if (!link) {
1955		e_dbg("Phy info is only valid if link is up\n");
1956		return -E1000_ERR_CONFIG;
1957	}
1958
1959	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1960	if (ret_val)
1961		return ret_val;
1962
1963	phy->polarity_correction = !!(phy_data &
1964				      M88E1000_PSCR_POLARITY_REVERSAL);
1965
1966	ret_val = e1000_check_polarity_m88(hw);
1967	if (ret_val)
1968		return ret_val;
1969
1970	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1971	if (ret_val)
1972		return ret_val;
1973
1974	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1975
1976	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1977		ret_val = e1000_get_cable_length(hw);
1978		if (ret_val)
1979			return ret_val;
1980
1981		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1982		if (ret_val)
1983			return ret_val;
1984
1985		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1986				? e1000_1000t_rx_status_ok
1987				: e1000_1000t_rx_status_not_ok;
1988
1989		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1990				 ? e1000_1000t_rx_status_ok
1991				 : e1000_1000t_rx_status_not_ok;
1992	} else {
1993		/* Set values to "undefined" */
1994		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1995		phy->local_rx = e1000_1000t_rx_status_undefined;
1996		phy->remote_rx = e1000_1000t_rx_status_undefined;
1997	}
1998
1999	return ret_val;
2000}
2001
2002/**
2003 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2004 *  @hw: pointer to the HW structure
2005 *
2006 *  Read PHY status to determine if link is up.  If link is up, then
2007 *  set/determine 10base-T extended distance and polarity correction.  Read
2008 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2009 *  determine on the cable length, local and remote receiver.
2010 **/
2011s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2012{
2013	struct e1000_phy_info *phy = &hw->phy;
2014	s32 ret_val;
2015	u16 data;
2016	bool link;
2017
2018	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2019	if (ret_val)
2020		return ret_val;
2021
2022	if (!link) {
2023		e_dbg("Phy info is only valid if link is up\n");
2024		return -E1000_ERR_CONFIG;
2025	}
2026
2027	phy->polarity_correction = true;
2028
2029	ret_val = e1000_check_polarity_igp(hw);
2030	if (ret_val)
2031		return ret_val;
2032
2033	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2038
2039	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2040	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2041		ret_val = e1000_get_cable_length(hw);
2042		if (ret_val)
2043			return ret_val;
2044
2045		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2046		if (ret_val)
2047			return ret_val;
2048
2049		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2050				? e1000_1000t_rx_status_ok
2051				: e1000_1000t_rx_status_not_ok;
2052
2053		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2054				 ? e1000_1000t_rx_status_ok
2055				 : e1000_1000t_rx_status_not_ok;
2056	} else {
2057		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2058		phy->local_rx = e1000_1000t_rx_status_undefined;
2059		phy->remote_rx = e1000_1000t_rx_status_undefined;
2060	}
2061
2062	return ret_val;
2063}
2064
2065/**
2066 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Populates "phy" structure with various feature states.
2070 **/
2071s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2072{
2073	struct e1000_phy_info *phy = &hw->phy;
2074	s32 ret_val;
2075	u16 data;
2076	bool link;
2077
2078	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2079	if (ret_val)
2080		return ret_val;
2081
2082	if (!link) {
2083		e_dbg("Phy info is only valid if link is up\n");
2084		return -E1000_ERR_CONFIG;
2085	}
2086
2087	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2088	if (ret_val)
2089		return ret_val;
2090	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2091
2092	if (phy->polarity_correction) {
2093		ret_val = e1000_check_polarity_ife(hw);
2094		if (ret_val)
2095			return ret_val;
2096	} else {
2097		/* Polarity is forced */
2098		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2099		                      ? e1000_rev_polarity_reversed
2100		                      : e1000_rev_polarity_normal;
2101	}
2102
2103	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2104	if (ret_val)
2105		return ret_val;
2106
2107	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2108
2109	/* The following parameters are undefined for 10/100 operation. */
2110	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2111	phy->local_rx = e1000_1000t_rx_status_undefined;
2112	phy->remote_rx = e1000_1000t_rx_status_undefined;
2113
2114	return 0;
2115}
2116
2117/**
2118 *  e1000e_phy_sw_reset - PHY software reset
2119 *  @hw: pointer to the HW structure
2120 *
2121 *  Does a software reset of the PHY by reading the PHY control register and
2122 *  setting/write the control register reset bit to the PHY.
2123 **/
2124s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2125{
2126	s32 ret_val;
2127	u16 phy_ctrl;
2128
2129	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2130	if (ret_val)
2131		return ret_val;
2132
2133	phy_ctrl |= MII_CR_RESET;
2134	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2135	if (ret_val)
2136		return ret_val;
2137
2138	udelay(1);
2139
2140	return ret_val;
2141}
2142
2143/**
2144 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2145 *  @hw: pointer to the HW structure
2146 *
2147 *  Verify the reset block is not blocking us from resetting.  Acquire
2148 *  semaphore (if necessary) and read/set/write the device control reset
2149 *  bit in the PHY.  Wait the appropriate delay time for the device to
2150 *  reset and release the semaphore (if necessary).
2151 **/
2152s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2153{
2154	struct e1000_phy_info *phy = &hw->phy;
2155	s32 ret_val;
2156	u32 ctrl;
2157
2158	if (phy->ops.check_reset_block) {
2159		ret_val = phy->ops.check_reset_block(hw);
2160		if (ret_val)
2161			return 0;
2162	}
2163
2164	ret_val = phy->ops.acquire(hw);
2165	if (ret_val)
2166		return ret_val;
2167
2168	ctrl = er32(CTRL);
2169	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2170	e1e_flush();
2171
2172	udelay(phy->reset_delay_us);
2173
2174	ew32(CTRL, ctrl);
2175	e1e_flush();
2176
2177	udelay(150);
2178
2179	phy->ops.release(hw);
2180
2181	return e1000_get_phy_cfg_done(hw);
2182}
2183
2184/**
2185 *  e1000e_get_cfg_done - Generic configuration done
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Generic function to wait 10 milli-seconds for configuration to complete
2189 *  and return success.
2190 **/
2191s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2192{
2193	mdelay(10);
2194
2195	return 0;
2196}
2197
2198/**
2199 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2200 *  @hw: pointer to the HW structure
2201 *
2202 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2203 **/
2204s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2205{
2206	e_dbg("Running IGP 3 PHY init script\n");
2207
2208	/* PHY init IGP 3 */
2209	/* Enable rise/fall, 10-mode work in class-A */
2210	e1e_wphy(hw, 0x2F5B, 0x9018);
2211	/* Remove all caps from Replica path filter */
2212	e1e_wphy(hw, 0x2F52, 0x0000);
2213	/* Bias trimming for ADC, AFE and Driver (Default) */
2214	e1e_wphy(hw, 0x2FB1, 0x8B24);
2215	/* Increase Hybrid poly bias */
2216	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2217	/* Add 4% to Tx amplitude in Gig mode */
2218	e1e_wphy(hw, 0x2010, 0x10B0);
2219	/* Disable trimming (TTT) */
2220	e1e_wphy(hw, 0x2011, 0x0000);
2221	/* Poly DC correction to 94.6% + 2% for all channels */
2222	e1e_wphy(hw, 0x20DD, 0x249A);
2223	/* ABS DC correction to 95.9% */
2224	e1e_wphy(hw, 0x20DE, 0x00D3);
2225	/* BG temp curve trim */
2226	e1e_wphy(hw, 0x28B4, 0x04CE);
2227	/* Increasing ADC OPAMP stage 1 currents to max */
2228	e1e_wphy(hw, 0x2F70, 0x29E4);
2229	/* Force 1000 ( required for enabling PHY regs configuration) */
2230	e1e_wphy(hw, 0x0000, 0x0140);
2231	/* Set upd_freq to 6 */
2232	e1e_wphy(hw, 0x1F30, 0x1606);
2233	/* Disable NPDFE */
2234	e1e_wphy(hw, 0x1F31, 0xB814);
2235	/* Disable adaptive fixed FFE (Default) */
2236	e1e_wphy(hw, 0x1F35, 0x002A);
2237	/* Enable FFE hysteresis */
2238	e1e_wphy(hw, 0x1F3E, 0x0067);
2239	/* Fixed FFE for short cable lengths */
2240	e1e_wphy(hw, 0x1F54, 0x0065);
2241	/* Fixed FFE for medium cable lengths */
2242	e1e_wphy(hw, 0x1F55, 0x002A);
2243	/* Fixed FFE for long cable lengths */
2244	e1e_wphy(hw, 0x1F56, 0x002A);
2245	/* Enable Adaptive Clip Threshold */
2246	e1e_wphy(hw, 0x1F72, 0x3FB0);
2247	/* AHT reset limit to 1 */
2248	e1e_wphy(hw, 0x1F76, 0xC0FF);
2249	/* Set AHT master delay to 127 msec */
2250	e1e_wphy(hw, 0x1F77, 0x1DEC);
2251	/* Set scan bits for AHT */
2252	e1e_wphy(hw, 0x1F78, 0xF9EF);
2253	/* Set AHT Preset bits */
2254	e1e_wphy(hw, 0x1F79, 0x0210);
2255	/* Change integ_factor of channel A to 3 */
2256	e1e_wphy(hw, 0x1895, 0x0003);
2257	/* Change prop_factor of channels BCD to 8 */
2258	e1e_wphy(hw, 0x1796, 0x0008);
2259	/* Change cg_icount + enable integbp for channels BCD */
2260	e1e_wphy(hw, 0x1798, 0xD008);
2261	/*
2262	 * Change cg_icount + enable integbp + change prop_factor_master
2263	 * to 8 for channel A
2264	 */
2265	e1e_wphy(hw, 0x1898, 0xD918);
2266	/* Disable AHT in Slave mode on channel A */
2267	e1e_wphy(hw, 0x187A, 0x0800);
2268	/*
2269	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2270	 * Enable SPD+B2B
2271	 */
2272	e1e_wphy(hw, 0x0019, 0x008D);
2273	/* Enable restart AN on an1000_dis change */
2274	e1e_wphy(hw, 0x001B, 0x2080);
2275	/* Enable wh_fifo read clock in 10/100 modes */
2276	e1e_wphy(hw, 0x0014, 0x0045);
2277	/* Restart AN, Speed selection is 1000 */
2278	e1e_wphy(hw, 0x0000, 0x1340);
2279
2280	return 0;
2281}
2282
2283/* Internal function pointers */
2284
2285/**
2286 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2287 *  @hw: pointer to the HW structure
2288 *
2289 *  Return success if silicon family did not implement a family specific
2290 *  get_cfg_done function.
2291 **/
2292static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2293{
2294	if (hw->phy.ops.get_cfg_done)
2295		return hw->phy.ops.get_cfg_done(hw);
2296
2297	return 0;
2298}
2299
2300/**
2301 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2302 *  @hw: pointer to the HW structure
2303 *
2304 *  When the silicon family has not implemented a forced speed/duplex
2305 *  function for the PHY, simply return 0.
2306 **/
2307static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2308{
2309	if (hw->phy.ops.force_speed_duplex)
2310		return hw->phy.ops.force_speed_duplex(hw);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000e_get_phy_type_from_id - Get PHY type from id
2317 *  @phy_id: phy_id read from the phy
2318 *
2319 *  Returns the phy type from the id.
2320 **/
2321enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2322{
2323	enum e1000_phy_type phy_type = e1000_phy_unknown;
2324
2325	switch (phy_id) {
2326	case M88E1000_I_PHY_ID:
2327	case M88E1000_E_PHY_ID:
2328	case M88E1111_I_PHY_ID:
2329	case M88E1011_I_PHY_ID:
2330		phy_type = e1000_phy_m88;
2331		break;
2332	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2333		phy_type = e1000_phy_igp_2;
2334		break;
2335	case GG82563_E_PHY_ID:
2336		phy_type = e1000_phy_gg82563;
2337		break;
2338	case IGP03E1000_E_PHY_ID:
2339		phy_type = e1000_phy_igp_3;
2340		break;
2341	case IFE_E_PHY_ID:
2342	case IFE_PLUS_E_PHY_ID:
2343	case IFE_C_E_PHY_ID:
2344		phy_type = e1000_phy_ife;
2345		break;
2346	case BME1000_E_PHY_ID:
2347	case BME1000_E_PHY_ID_R2:
2348		phy_type = e1000_phy_bm;
2349		break;
2350	case I82578_E_PHY_ID:
2351		phy_type = e1000_phy_82578;
2352		break;
2353	case I82577_E_PHY_ID:
2354		phy_type = e1000_phy_82577;
2355		break;
2356	case I82579_E_PHY_ID:
2357		phy_type = e1000_phy_82579;
2358		break;
2359	case I217_E_PHY_ID:
2360		phy_type = e1000_phy_i217;
2361		break;
2362	default:
2363		phy_type = e1000_phy_unknown;
2364		break;
2365	}
2366	return phy_type;
2367}
2368
2369/**
2370 *  e1000e_determine_phy_address - Determines PHY address.
2371 *  @hw: pointer to the HW structure
2372 *
2373 *  This uses a trial and error method to loop through possible PHY
2374 *  addresses. It tests each by reading the PHY ID registers and
2375 *  checking for a match.
2376 **/
2377s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2378{
2379	u32 phy_addr = 0;
2380	u32 i;
2381	enum e1000_phy_type phy_type = e1000_phy_unknown;
2382
2383	hw->phy.id = phy_type;
2384
2385	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2386		hw->phy.addr = phy_addr;
2387		i = 0;
2388
2389		do {
2390			e1000e_get_phy_id(hw);
2391			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2392
2393			/*
2394			 * If phy_type is valid, break - we found our
2395			 * PHY address
2396			 */
2397			if (phy_type  != e1000_phy_unknown)
2398				return 0;
2399
2400			usleep_range(1000, 2000);
2401			i++;
2402		} while (i < 10);
2403	}
2404
2405	return -E1000_ERR_PHY_TYPE;
2406}
2407
2408/**
2409 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2410 *  @page: page to access
2411 *
2412 *  Returns the phy address for the page requested.
2413 **/
2414static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2415{
2416	u32 phy_addr = 2;
2417
2418	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2419		phy_addr = 1;
2420
2421	return phy_addr;
2422}
2423
2424/**
2425 *  e1000e_write_phy_reg_bm - Write BM PHY register
2426 *  @hw: pointer to the HW structure
2427 *  @offset: register offset to write to
2428 *  @data: data to write at register offset
2429 *
2430 *  Acquires semaphore, if necessary, then writes the data to PHY register
2431 *  at the offset.  Release any acquired semaphores before exiting.
2432 **/
2433s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2434{
2435	s32 ret_val;
2436	u32 page = offset >> IGP_PAGE_SHIFT;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	/* Page 800 works differently than the rest so it has its own func */
2443	if (page == BM_WUC_PAGE) {
2444		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2445							 false, false);
2446		goto release;
2447	}
2448
2449	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2450
2451	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2452		u32 page_shift, page_select;
2453
2454		/*
2455		 * Page select is register 31 for phy address 1 and 22 for
2456		 * phy address 2 and 3. Page select is shifted only for
2457		 * phy address 1.
2458		 */
2459		if (hw->phy.addr == 1) {
2460			page_shift = IGP_PAGE_SHIFT;
2461			page_select = IGP01E1000_PHY_PAGE_SELECT;
2462		} else {
2463			page_shift = 0;
2464			page_select = BM_PHY_PAGE_SELECT;
2465		}
2466
2467		/* Page is shifted left, PHY expects (page x 32) */
2468		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2469		                                    (page << page_shift));
2470		if (ret_val)
2471			goto release;
2472	}
2473
2474	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2475	                                    data);
2476
2477release:
2478	hw->phy.ops.release(hw);
2479	return ret_val;
2480}
2481
2482/**
2483 *  e1000e_read_phy_reg_bm - Read BM PHY register
2484 *  @hw: pointer to the HW structure
2485 *  @offset: register offset to be read
2486 *  @data: pointer to the read data
2487 *
2488 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2489 *  and storing the retrieved information in data.  Release any acquired
2490 *  semaphores before exiting.
2491 **/
2492s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2493{
2494	s32 ret_val;
2495	u32 page = offset >> IGP_PAGE_SHIFT;
2496
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	/* Page 800 works differently than the rest so it has its own func */
2502	if (page == BM_WUC_PAGE) {
2503		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2504							 true, false);
2505		goto release;
2506	}
2507
2508	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2509
2510	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2511		u32 page_shift, page_select;
2512
2513		/*
2514		 * Page select is register 31 for phy address 1 and 22 for
2515		 * phy address 2 and 3. Page select is shifted only for
2516		 * phy address 1.
2517		 */
2518		if (hw->phy.addr == 1) {
2519			page_shift = IGP_PAGE_SHIFT;
2520			page_select = IGP01E1000_PHY_PAGE_SELECT;
2521		} else {
2522			page_shift = 0;
2523			page_select = BM_PHY_PAGE_SELECT;
2524		}
2525
2526		/* Page is shifted left, PHY expects (page x 32) */
2527		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2528		                                    (page << page_shift));
2529		if (ret_val)
2530			goto release;
2531	}
2532
2533	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2534	                                   data);
2535release:
2536	hw->phy.ops.release(hw);
2537	return ret_val;
2538}
2539
2540/**
2541 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2542 *  @hw: pointer to the HW structure
2543 *  @offset: register offset to be read
2544 *  @data: pointer to the read data
2545 *
2546 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2547 *  and storing the retrieved information in data.  Release any acquired
2548 *  semaphores before exiting.
2549 **/
2550s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2551{
2552	s32 ret_val;
2553	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2554
2555	ret_val = hw->phy.ops.acquire(hw);
2556	if (ret_val)
2557		return ret_val;
2558
2559	/* Page 800 works differently than the rest so it has its own func */
2560	if (page == BM_WUC_PAGE) {
2561		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2562							 true, false);
2563		goto release;
2564	}
2565
2566	hw->phy.addr = 1;
2567
2568	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2569
2570		/* Page is shifted left, PHY expects (page x 32) */
2571		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2572						    page);
2573
2574		if (ret_val)
2575			goto release;
2576	}
2577
2578	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2579					   data);
2580release:
2581	hw->phy.ops.release(hw);
2582	return ret_val;
2583}
2584
2585/**
2586 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2587 *  @hw: pointer to the HW structure
2588 *  @offset: register offset to write to
2589 *  @data: data to write at register offset
2590 *
2591 *  Acquires semaphore, if necessary, then writes the data to PHY register
2592 *  at the offset.  Release any acquired semaphores before exiting.
2593 **/
2594s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2595{
2596	s32 ret_val;
2597	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2598
2599	ret_val = hw->phy.ops.acquire(hw);
2600	if (ret_val)
2601		return ret_val;
2602
2603	/* Page 800 works differently than the rest so it has its own func */
2604	if (page == BM_WUC_PAGE) {
2605		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2606							 false, false);
2607		goto release;
2608	}
2609
2610	hw->phy.addr = 1;
2611
2612	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2613		/* Page is shifted left, PHY expects (page x 32) */
2614		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2615						    page);
2616
2617		if (ret_val)
2618			goto release;
2619	}
2620
2621	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2622					    data);
2623
2624release:
2625	hw->phy.ops.release(hw);
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2631 *  @hw: pointer to the HW structure
2632 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2633 *
2634 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2635 *  address to store contents of the BM_WUC_ENABLE_REG register.
2636 **/
2637s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2638{
2639	s32 ret_val;
2640	u16 temp;
2641
2642	/* All page select, port ctrl and wakeup registers use phy address 1 */
2643	hw->phy.addr = 1;
2644
2645	/* Select Port Control Registers page */
2646	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2647	if (ret_val) {
2648		e_dbg("Could not set Port Control page\n");
2649		return ret_val;
2650	}
2651
2652	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2653	if (ret_val) {
2654		e_dbg("Could not read PHY register %d.%d\n",
2655		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656		return ret_val;
2657	}
2658
2659	/*
2660	 * Enable both PHY wakeup mode and Wakeup register page writes.
2661	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2662	 */
2663	temp = *phy_reg;
2664	temp |= BM_WUC_ENABLE_BIT;
2665	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2666
2667	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2668	if (ret_val) {
2669		e_dbg("Could not write PHY register %d.%d\n",
2670		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671		return ret_val;
2672	}
2673
2674	/*
2675	 * Select Host Wakeup Registers page - caller now able to write
2676	 * registers on the Wakeup registers page
2677	 */
2678	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2679}
2680
2681/**
2682 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2683 *  @hw: pointer to the HW structure
2684 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2685 *
2686 *  Restore BM_WUC_ENABLE_REG to its original value.
2687 *
2688 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2689 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2690 *  caller.
2691 **/
2692s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2693{
2694	s32 ret_val = 0;
2695
2696	/* Select Port Control Registers page */
2697	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2698	if (ret_val) {
2699		e_dbg("Could not set Port Control page\n");
2700		return ret_val;
2701	}
2702
2703	/* Restore 769.17 to its original value */
2704	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2705	if (ret_val)
2706		e_dbg("Could not restore PHY register %d.%d\n",
2707		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2708
2709	return ret_val;
2710}
2711
2712/**
2713 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2714 *  @hw: pointer to the HW structure
2715 *  @offset: register offset to be read or written
2716 *  @data: pointer to the data to read or write
2717 *  @read: determines if operation is read or write
2718 *  @page_set: BM_WUC_PAGE already set and access enabled
2719 *
2720 *  Read the PHY register at offset and store the retrieved information in
2721 *  data, or write data to PHY register at offset.  Note the procedure to
2722 *  access the PHY wakeup registers is different than reading the other PHY
2723 *  registers. It works as such:
2724 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2725 *  2) Set page to 800 for host (801 if we were manageability)
2726 *  3) Write the address using the address opcode (0x11)
2727 *  4) Read or write the data using the data opcode (0x12)
2728 *  5) Restore 769.17.2 to its original value
2729 *
2730 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2731 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2732 *
2733 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2734 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2735 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2736 **/
2737static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2738					  u16 *data, bool read, bool page_set)
2739{
2740	s32 ret_val;
2741	u16 reg = BM_PHY_REG_NUM(offset);
2742	u16 page = BM_PHY_REG_PAGE(offset);
2743	u16 phy_reg = 0;
2744
2745	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2746	if ((hw->mac.type == e1000_pchlan) &&
2747	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2748		e_dbg("Attempting to access page %d while gig enabled.\n",
2749		      page);
2750
2751	if (!page_set) {
2752		/* Enable access to PHY wakeup registers */
2753		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2754		if (ret_val) {
2755			e_dbg("Could not enable PHY wakeup reg access\n");
2756			return ret_val;
2757		}
2758	}
2759
2760	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2761
2762	/* Write the Wakeup register page offset value using opcode 0x11 */
2763	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2764	if (ret_val) {
2765		e_dbg("Could not write address opcode to page %d\n", page);
2766		return ret_val;
2767	}
2768
2769	if (read) {
2770		/* Read the Wakeup register page value using opcode 0x12 */
2771		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772		                                   data);
2773	} else {
2774		/* Write the Wakeup register page value using opcode 0x12 */
2775		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2776						    *data);
2777	}
2778
2779	if (ret_val) {
2780		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2781		return ret_val;
2782	}
2783
2784	if (!page_set)
2785		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2792 * @hw: pointer to the HW structure
2793 *
2794 * In the case of a PHY power down to save power, or to turn off link during a
2795 * driver unload, or wake on lan is not enabled, restore the link to previous
2796 * settings.
2797 **/
2798void e1000_power_up_phy_copper(struct e1000_hw *hw)
2799{
2800	u16 mii_reg = 0;
2801
2802	/* The PHY will retain its settings across a power down/up cycle */
2803	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2804	mii_reg &= ~MII_CR_POWER_DOWN;
2805	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2806}
2807
2808/**
2809 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2810 * @hw: pointer to the HW structure
2811 *
2812 * In the case of a PHY power down to save power, or to turn off link during a
2813 * driver unload, or wake on lan is not enabled, restore the link to previous
2814 * settings.
2815 **/
2816void e1000_power_down_phy_copper(struct e1000_hw *hw)
2817{
2818	u16 mii_reg = 0;
2819
2820	/* The PHY will retain its settings across a power down/up cycle */
2821	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2822	mii_reg |= MII_CR_POWER_DOWN;
2823	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2824	usleep_range(1000, 2000);
2825}
2826
2827/**
2828 *  e1000e_commit_phy - Soft PHY reset
2829 *  @hw: pointer to the HW structure
2830 *
2831 *  Performs a soft PHY reset on those that apply. This is a function pointer
2832 *  entry point called by drivers.
2833 **/
2834s32 e1000e_commit_phy(struct e1000_hw *hw)
2835{
2836	if (hw->phy.ops.commit)
2837		return hw->phy.ops.commit(hw);
2838
2839	return 0;
2840}
2841
2842/**
2843 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2844 *  @hw: pointer to the HW structure
2845 *  @active: boolean used to enable/disable lplu
2846 *
2847 *  Success returns 0, Failure returns 1
2848 *
2849 *  The low power link up (lplu) state is set to the power management level D0
2850 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2851 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2852 *  is used during Dx states where the power conservation is most important.
2853 *  During driver activity, SmartSpeed should be enabled so performance is
2854 *  maintained.  This is a function pointer entry point called by drivers.
2855 **/
2856static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2857{
2858	if (hw->phy.ops.set_d0_lplu_state)
2859		return hw->phy.ops.set_d0_lplu_state(hw, active);
2860
2861	return 0;
2862}
2863
2864/**
2865 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2866 *  @hw: pointer to the HW structure
2867 *  @offset: register offset to be read
2868 *  @data: pointer to the read data
2869 *  @locked: semaphore has already been acquired or not
2870 *
2871 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2872 *  and stores the retrieved information in data.  Release any acquired
2873 *  semaphore before exiting.
2874 **/
2875static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2876				   bool locked, bool page_set)
2877{
2878	s32 ret_val;
2879	u16 page = BM_PHY_REG_PAGE(offset);
2880	u16 reg = BM_PHY_REG_NUM(offset);
2881	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2882
2883	if (!locked) {
2884		ret_val = hw->phy.ops.acquire(hw);
2885		if (ret_val)
2886			return ret_val;
2887	}
2888
2889	/* Page 800 works differently than the rest so it has its own func */
2890	if (page == BM_WUC_PAGE) {
2891		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2892							 true, page_set);
2893		goto out;
2894	}
2895
2896	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2897		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2898		                                         data, true);
2899		goto out;
2900	}
2901
2902	if (!page_set) {
2903		if (page == HV_INTC_FC_PAGE_START)
2904			page = 0;
2905
2906		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907			/* Page is shifted left, PHY expects (page x 32) */
2908			ret_val = e1000_set_page_igp(hw,
2909						     (page << IGP_PAGE_SHIFT));
2910
2911			hw->phy.addr = phy_addr;
2912
2913			if (ret_val)
2914				goto out;
2915		}
2916	}
2917
2918	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919	      page << IGP_PAGE_SHIFT, reg);
2920
2921	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922	                                  data);
2923out:
2924	if (!locked)
2925		hw->phy.ops.release(hw);
2926
2927	return ret_val;
2928}
2929
2930/**
2931 *  e1000_read_phy_reg_hv -  Read HV PHY register
2932 *  @hw: pointer to the HW structure
2933 *  @offset: register offset to be read
2934 *  @data: pointer to the read data
2935 *
2936 *  Acquires semaphore then reads the PHY register at offset and stores
2937 *  the retrieved information in data.  Release the acquired semaphore
2938 *  before exiting.
2939 **/
2940s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2941{
2942	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2947 *  @hw: pointer to the HW structure
2948 *  @offset: register offset to be read
2949 *  @data: pointer to the read data
2950 *
2951 *  Reads the PHY register at offset and stores the retrieved information
2952 *  in data.  Assumes semaphore already acquired.
2953 **/
2954s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2955{
2956	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2961 *  @hw: pointer to the HW structure
2962 *  @offset: register offset to write to
2963 *  @data: data to write at register offset
2964 *
2965 *  Reads the PHY register at offset and stores the retrieved information
2966 *  in data.  Assumes semaphore already acquired and page already set.
2967 **/
2968s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2969{
2970	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 *  __e1000_write_phy_reg_hv - Write HV PHY register
2975 *  @hw: pointer to the HW structure
2976 *  @offset: register offset to write to
2977 *  @data: data to write at register offset
2978 *  @locked: semaphore has already been acquired or not
2979 *
2980 *  Acquires semaphore, if necessary, then writes the data to PHY register
2981 *  at the offset.  Release any acquired semaphores before exiting.
2982 **/
2983static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2984				    bool locked, bool page_set)
2985{
2986	s32 ret_val;
2987	u16 page = BM_PHY_REG_PAGE(offset);
2988	u16 reg = BM_PHY_REG_NUM(offset);
2989	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2990
2991	if (!locked) {
2992		ret_val = hw->phy.ops.acquire(hw);
2993		if (ret_val)
2994			return ret_val;
2995	}
2996
2997	/* Page 800 works differently than the rest so it has its own func */
2998	if (page == BM_WUC_PAGE) {
2999		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3000							 false, page_set);
3001		goto out;
3002	}
3003
3004	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3005		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3006		                                         &data, false);
3007		goto out;
3008	}
3009
3010	if (!page_set) {
3011		if (page == HV_INTC_FC_PAGE_START)
3012			page = 0;
3013
3014		/*
3015		 * Workaround MDIO accesses being disabled after entering IEEE
3016		 * Power Down (when bit 11 of the PHY Control register is set)
3017		 */
3018		if ((hw->phy.type == e1000_phy_82578) &&
3019		    (hw->phy.revision >= 1) &&
3020		    (hw->phy.addr == 2) &&
3021		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3022			u16 data2 = 0x7EFF;
 
3023			ret_val = e1000_access_phy_debug_regs_hv(hw,
3024								 (1 << 6) | 0x3,
3025								 &data2, false);
3026			if (ret_val)
3027				goto out;
3028		}
3029
3030		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3031			/* Page is shifted left, PHY expects (page x 32) */
3032			ret_val = e1000_set_page_igp(hw,
3033						     (page << IGP_PAGE_SHIFT));
3034
3035			hw->phy.addr = phy_addr;
3036
3037			if (ret_val)
3038				goto out;
3039		}
3040	}
3041
3042	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3043	      page << IGP_PAGE_SHIFT, reg);
3044
3045	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3046	                                  data);
3047
3048out:
3049	if (!locked)
3050		hw->phy.ops.release(hw);
3051
3052	return ret_val;
3053}
3054
3055/**
3056 *  e1000_write_phy_reg_hv - Write HV PHY register
3057 *  @hw: pointer to the HW structure
3058 *  @offset: register offset to write to
3059 *  @data: data to write at register offset
3060 *
3061 *  Acquires semaphore then writes the data to PHY register at the offset.
3062 *  Release the acquired semaphores before exiting.
3063 **/
3064s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3065{
3066	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067}
3068
3069/**
3070 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3071 *  @hw: pointer to the HW structure
3072 *  @offset: register offset to write to
3073 *  @data: data to write at register offset
3074 *
3075 *  Writes the data to PHY register at the offset.  Assumes semaphore
3076 *  already acquired.
3077 **/
3078s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3079{
3080	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081}
3082
3083/**
3084 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3085 *  @hw: pointer to the HW structure
3086 *  @offset: register offset to write to
3087 *  @data: data to write at register offset
3088 *
3089 *  Writes the data to PHY register at the offset.  Assumes semaphore
3090 *  already acquired and page already set.
3091 **/
3092s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3093{
3094	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095}
3096
3097/**
3098 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3099 *  @page: page to be accessed
3100 **/
3101static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3102{
3103	u32 phy_addr = 2;
3104
3105	if (page >= HV_INTC_FC_PAGE_START)
3106		phy_addr = 1;
3107
3108	return phy_addr;
3109}
3110
3111/**
3112 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3113 *  @hw: pointer to the HW structure
3114 *  @offset: register offset to be read or written
3115 *  @data: pointer to the data to be read or written
3116 *  @read: determines if operation is read or write
3117 *
3118 *  Reads the PHY register at offset and stores the retreived information
3119 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3120 *  to access these regs uses the address port and data port to read/write.
3121 *  These accesses done with PHY address 2 and without using pages.
3122 **/
3123static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3124                                          u16 *data, bool read)
3125{
3126	s32 ret_val;
3127	u32 addr_reg = 0;
3128	u32 data_reg = 0;
3129
3130	/* This takes care of the difference with desktop vs mobile phy */
3131	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3132	           I82578_ADDR_REG : I82577_ADDR_REG;
3133	data_reg = addr_reg + 1;
3134
3135	/* All operations in this function are phy address 2 */
3136	hw->phy.addr = 2;
3137
3138	/* masking with 0x3F to remove the page from offset */
3139	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3140	if (ret_val) {
3141		e_dbg("Could not write the Address Offset port register\n");
3142		return ret_val;
3143	}
3144
3145	/* Read or write the data value next */
3146	if (read)
3147		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3148	else
3149		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3150
3151	if (ret_val)
3152		e_dbg("Could not access the Data port register\n");
3153
3154	return ret_val;
3155}
3156
3157/**
3158 *  e1000_link_stall_workaround_hv - Si workaround
3159 *  @hw: pointer to the HW structure
3160 *
3161 *  This function works around a Si bug where the link partner can get
3162 *  a link up indication before the PHY does.  If small packets are sent
3163 *  by the link partner they can be placed in the packet buffer without
3164 *  being properly accounted for by the PHY and will stall preventing
3165 *  further packets from being received.  The workaround is to clear the
3166 *  packet buffer after the PHY detects link up.
3167 **/
3168s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3169{
3170	s32 ret_val = 0;
3171	u16 data;
3172
3173	if (hw->phy.type != e1000_phy_82578)
3174		return 0;
3175
3176	/* Do not apply workaround if in PHY loopback bit 14 set */
3177	e1e_rphy(hw, PHY_CONTROL, &data);
3178	if (data & PHY_CONTROL_LB)
3179		return 0;
3180
3181	/* check if link is up and at 1Gbps */
3182	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183	if (ret_val)
3184		return ret_val;
3185
3186	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3187		BM_CS_STATUS_SPEED_MASK;
3188
3189	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3190		     BM_CS_STATUS_SPEED_1000))
3191		return 0;
3192
3193	msleep(200);
3194
3195	/* flush the packets in the fifo buffer */
3196	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3197			   HV_MUX_DATA_CTRL_FORCE_SPEED);
 
3198	if (ret_val)
3199		return ret_val;
3200
3201	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3202}
3203
3204/**
3205 *  e1000_check_polarity_82577 - Checks the polarity.
3206 *  @hw: pointer to the HW structure
3207 *
3208 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3209 *
3210 *  Polarity is determined based on the PHY specific status register.
3211 **/
3212s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3213{
3214	struct e1000_phy_info *phy = &hw->phy;
3215	s32 ret_val;
3216	u16 data;
3217
3218	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3219
3220	if (!ret_val)
3221		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3222		                      ? e1000_rev_polarity_reversed
3223		                      : e1000_rev_polarity_normal;
3224
3225	return ret_val;
3226}
3227
3228/**
3229 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3230 *  @hw: pointer to the HW structure
3231 *
3232 *  Calls the PHY setup function to force speed and duplex.
3233 **/
3234s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3235{
3236	struct e1000_phy_info *phy = &hw->phy;
3237	s32 ret_val;
3238	u16 phy_data;
3239	bool link;
3240
3241	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3242	if (ret_val)
3243		return ret_val;
3244
3245	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3246
3247	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3248	if (ret_val)
3249		return ret_val;
3250
3251	udelay(1);
3252
3253	if (phy->autoneg_wait_to_complete) {
3254		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3255
3256		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3257						      100000, &link);
3258		if (ret_val)
3259			return ret_val;
3260
3261		if (!link)
3262			e_dbg("Link taking longer than expected.\n");
3263
3264		/* Try once more */
3265		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3266						      100000, &link);
3267	}
3268
3269	return ret_val;
3270}
3271
3272/**
3273 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3274 *  @hw: pointer to the HW structure
3275 *
3276 *  Read PHY status to determine if link is up.  If link is up, then
3277 *  set/determine 10base-T extended distance and polarity correction.  Read
3278 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3279 *  determine on the cable length, local and remote receiver.
3280 **/
3281s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3282{
3283	struct e1000_phy_info *phy = &hw->phy;
3284	s32 ret_val;
3285	u16 data;
3286	bool link;
3287
3288	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3289	if (ret_val)
3290		return ret_val;
3291
3292	if (!link) {
3293		e_dbg("Phy info is only valid if link is up\n");
3294		return -E1000_ERR_CONFIG;
3295	}
3296
3297	phy->polarity_correction = true;
3298
3299	ret_val = e1000_check_polarity_82577(hw);
3300	if (ret_val)
3301		return ret_val;
3302
3303	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3304	if (ret_val)
3305		return ret_val;
3306
3307	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3308
3309	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3310	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3311		ret_val = hw->phy.ops.get_cable_length(hw);
3312		if (ret_val)
3313			return ret_val;
3314
3315		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3316		if (ret_val)
3317			return ret_val;
3318
3319		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3320		                ? e1000_1000t_rx_status_ok
3321		                : e1000_1000t_rx_status_not_ok;
3322
3323		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3324		                 ? e1000_1000t_rx_status_ok
3325		                 : e1000_1000t_rx_status_not_ok;
3326	} else {
3327		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3328		phy->local_rx = e1000_1000t_rx_status_undefined;
3329		phy->remote_rx = e1000_1000t_rx_status_undefined;
3330	}
3331
3332	return 0;
3333}
3334
3335/**
3336 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3337 *  @hw: pointer to the HW structure
3338 *
3339 * Reads the diagnostic status register and verifies result is valid before
3340 * placing it in the phy_cable_length field.
3341 **/
3342s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3343{
3344	struct e1000_phy_info *phy = &hw->phy;
3345	s32 ret_val;
3346	u16 phy_data, length;
3347
3348	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3349	if (ret_val)
3350		return ret_val;
3351
3352	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3353	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3354
3355	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3356		ret_val = -E1000_ERR_PHY;
3357
3358	phy->cable_length = length;
3359
3360	return 0;
3361}