Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#include "e1000.h"
  24
  25static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  26static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  27					  u16 *data, bool read, bool page_set);
  28static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  29static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  30					  u16 *data, bool read);
  31
  32/* Cable length tables */
  33static const u16 e1000_m88_cable_length_table[] = {
  34	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  35};
  36
  37#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  38		ARRAY_SIZE(e1000_m88_cable_length_table)
  39
  40static const u16 e1000_igp_2_cable_length_table[] = {
  41	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  42	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  43	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  44	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  45	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  46	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  47	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  48	124
  49};
  50
  51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  52		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  53
  54/**
  55 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  56 *  @hw: pointer to the HW structure
  57 *
  58 *  Read the PHY management control register and check whether a PHY reset
  59 *  is blocked.  If a reset is not blocked return 0, otherwise
  60 *  return E1000_BLK_PHY_RESET (12).
  61 **/
  62s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  63{
  64	u32 manc;
  65
  66	manc = er32(MANC);
  67
  68	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  69}
  70
  71/**
  72 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  76 *  revision in the hardware structure.
  77 **/
  78s32 e1000e_get_phy_id(struct e1000_hw *hw)
  79{
  80	struct e1000_phy_info *phy = &hw->phy;
  81	s32 ret_val = 0;
  82	u16 phy_id;
  83	u16 retry_count = 0;
  84
  85	if (!phy->ops.read_reg)
  86		return 0;
  87
  88	while (retry_count < 2) {
  89		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  90		if (ret_val)
  91			return ret_val;
  92
  93		phy->id = (u32)(phy_id << 16);
  94		usleep_range(20, 40);
  95		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  96		if (ret_val)
  97			return ret_val;
  98
  99		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 100		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 101
 102		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 103			return 0;
 104
 105		retry_count++;
 106	}
 107
 108	return 0;
 109}
 110
 111/**
 112 *  e1000e_phy_reset_dsp - Reset PHY DSP
 113 *  @hw: pointer to the HW structure
 114 *
 115 *  Reset the digital signal processor.
 116 **/
 117s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 118{
 119	s32 ret_val;
 120
 121	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 122	if (ret_val)
 123		return ret_val;
 124
 125	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 126}
 127
 128/**
 129 *  e1000e_read_phy_reg_mdic - Read MDI control register
 130 *  @hw: pointer to the HW structure
 131 *  @offset: register offset to be read
 132 *  @data: pointer to the read data
 133 *
 134 *  Reads the MDI control register in the PHY at offset and stores the
 135 *  information read to data.
 136 **/
 137s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 138{
 139	struct e1000_phy_info *phy = &hw->phy;
 140	u32 i, mdic = 0;
 141
 142	if (offset > MAX_PHY_REG_ADDRESS) {
 143		e_dbg("PHY Address %d is out of range\n", offset);
 144		return -E1000_ERR_PARAM;
 145	}
 146
 147	/* Set up Op-code, Phy Address, and register offset in the MDI
 148	 * Control register.  The MAC will take care of interfacing with the
 149	 * PHY to retrieve the desired data.
 150	 */
 151	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 152		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 153		(E1000_MDIC_OP_READ));
 154
 155	ew32(MDIC, mdic);
 156
 157	/* Poll the ready bit to see if the MDI read completed
 158	 * Increasing the time out as testing showed failures with
 159	 * the lower time out
 160	 */
 161	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 162		udelay(50);
 163		mdic = er32(MDIC);
 164		if (mdic & E1000_MDIC_READY)
 165			break;
 166	}
 167	if (!(mdic & E1000_MDIC_READY)) {
 168		e_dbg("MDI Read did not complete\n");
 169		return -E1000_ERR_PHY;
 170	}
 171	if (mdic & E1000_MDIC_ERROR) {
 172		e_dbg("MDI Error\n");
 173		return -E1000_ERR_PHY;
 174	}
 175	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 176		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 177		      offset,
 178		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 179		return -E1000_ERR_PHY;
 180	}
 181	*data = (u16)mdic;
 182
 183	/* Allow some time after each MDIC transaction to avoid
 184	 * reading duplicate data in the next MDIC transaction.
 185	 */
 186	if (hw->mac.type == e1000_pch2lan)
 187		udelay(100);
 188
 189	return 0;
 190}
 191
 192/**
 193 *  e1000e_write_phy_reg_mdic - Write MDI control register
 194 *  @hw: pointer to the HW structure
 195 *  @offset: register offset to write to
 196 *  @data: data to write to register at offset
 197 *
 198 *  Writes data to MDI control register in the PHY at offset.
 199 **/
 200s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 201{
 202	struct e1000_phy_info *phy = &hw->phy;
 203	u32 i, mdic = 0;
 204
 205	if (offset > MAX_PHY_REG_ADDRESS) {
 206		e_dbg("PHY Address %d is out of range\n", offset);
 207		return -E1000_ERR_PARAM;
 208	}
 209
 210	/* Set up Op-code, Phy Address, and register offset in the MDI
 211	 * Control register.  The MAC will take care of interfacing with the
 212	 * PHY to retrieve the desired data.
 213	 */
 214	mdic = (((u32)data) |
 215		(offset << E1000_MDIC_REG_SHIFT) |
 216		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 217		(E1000_MDIC_OP_WRITE));
 218
 219	ew32(MDIC, mdic);
 220
 221	/* Poll the ready bit to see if the MDI read completed
 222	 * Increasing the time out as testing showed failures with
 223	 * the lower time out
 224	 */
 225	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 226		udelay(50);
 227		mdic = er32(MDIC);
 228		if (mdic & E1000_MDIC_READY)
 229			break;
 230	}
 231	if (!(mdic & E1000_MDIC_READY)) {
 232		e_dbg("MDI Write did not complete\n");
 233		return -E1000_ERR_PHY;
 234	}
 235	if (mdic & E1000_MDIC_ERROR) {
 236		e_dbg("MDI Error\n");
 237		return -E1000_ERR_PHY;
 238	}
 239	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 240		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 241		      offset,
 242		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 243		return -E1000_ERR_PHY;
 244	}
 245
 246	/* Allow some time after each MDIC transaction to avoid
 247	 * reading duplicate data in the next MDIC transaction.
 248	 */
 249	if (hw->mac.type == e1000_pch2lan)
 250		udelay(100);
 251
 252	return 0;
 253}
 254
 255/**
 256 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 257 *  @hw: pointer to the HW structure
 258 *  @offset: register offset to be read
 259 *  @data: pointer to the read data
 260 *
 261 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 262 *  and storing the retrieved information in data.  Release any acquired
 263 *  semaphores before exiting.
 264 **/
 265s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 266{
 267	s32 ret_val;
 268
 269	ret_val = hw->phy.ops.acquire(hw);
 270	if (ret_val)
 271		return ret_val;
 272
 273	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 274					   data);
 275
 276	hw->phy.ops.release(hw);
 277
 278	return ret_val;
 279}
 280
 281/**
 282 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 283 *  @hw: pointer to the HW structure
 284 *  @offset: register offset to write to
 285 *  @data: data to write at register offset
 286 *
 287 *  Acquires semaphore, if necessary, then writes the data to PHY register
 288 *  at the offset.  Release any acquired semaphores before exiting.
 289 **/
 290s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 291{
 292	s32 ret_val;
 293
 294	ret_val = hw->phy.ops.acquire(hw);
 295	if (ret_val)
 296		return ret_val;
 297
 298	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 299					    data);
 300
 301	hw->phy.ops.release(hw);
 302
 303	return ret_val;
 304}
 305
 306/**
 307 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 308 *  @hw: pointer to the HW structure
 309 *  @page: page to set (shifted left when necessary)
 310 *
 311 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 312 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 313 *  must set it appropriately (if necessary) after this function returns.
 314 **/
 315s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 316{
 317	e_dbg("Setting page 0x%x\n", page);
 318
 319	hw->phy.addr = 1;
 320
 321	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 322}
 323
 324/**
 325 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 326 *  @hw: pointer to the HW structure
 327 *  @offset: register offset to be read
 328 *  @data: pointer to the read data
 329 *  @locked: semaphore has already been acquired or not
 330 *
 331 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 332 *  and stores the retrieved information in data.  Release any acquired
 333 *  semaphores before exiting.
 334 **/
 335static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 336				     bool locked)
 337{
 338	s32 ret_val = 0;
 339
 340	if (!locked) {
 341		if (!hw->phy.ops.acquire)
 342			return 0;
 343
 344		ret_val = hw->phy.ops.acquire(hw);
 345		if (ret_val)
 346			return ret_val;
 347	}
 348
 349	if (offset > MAX_PHY_MULTI_PAGE_REG)
 350		ret_val = e1000e_write_phy_reg_mdic(hw,
 351						    IGP01E1000_PHY_PAGE_SELECT,
 352						    (u16)offset);
 353	if (!ret_val)
 354		ret_val = e1000e_read_phy_reg_mdic(hw,
 355						   MAX_PHY_REG_ADDRESS & offset,
 356						   data);
 357	if (!locked)
 358		hw->phy.ops.release(hw);
 359
 360	return ret_val;
 361}
 362
 363/**
 364 *  e1000e_read_phy_reg_igp - Read igp PHY register
 365 *  @hw: pointer to the HW structure
 366 *  @offset: register offset to be read
 367 *  @data: pointer to the read data
 368 *
 369 *  Acquires semaphore then reads the PHY register at offset and stores the
 370 *  retrieved information in data.
 371 *  Release the acquired semaphore before exiting.
 372 **/
 373s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 374{
 375	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 376}
 377
 378/**
 379 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 380 *  @hw: pointer to the HW structure
 381 *  @offset: register offset to be read
 382 *  @data: pointer to the read data
 383 *
 384 *  Reads the PHY register at offset and stores the retrieved information
 385 *  in data.  Assumes semaphore already acquired.
 386 **/
 387s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 388{
 389	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 390}
 391
 392/**
 393 *  e1000e_write_phy_reg_igp - Write igp PHY register
 394 *  @hw: pointer to the HW structure
 395 *  @offset: register offset to write to
 396 *  @data: data to write at register offset
 397 *  @locked: semaphore has already been acquired or not
 398 *
 399 *  Acquires semaphore, if necessary, then writes the data to PHY register
 400 *  at the offset.  Release any acquired semaphores before exiting.
 401 **/
 402static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 403				      bool locked)
 404{
 405	s32 ret_val = 0;
 406
 407	if (!locked) {
 408		if (!hw->phy.ops.acquire)
 409			return 0;
 410
 411		ret_val = hw->phy.ops.acquire(hw);
 412		if (ret_val)
 413			return ret_val;
 414	}
 415
 416	if (offset > MAX_PHY_MULTI_PAGE_REG)
 417		ret_val = e1000e_write_phy_reg_mdic(hw,
 418						    IGP01E1000_PHY_PAGE_SELECT,
 419						    (u16)offset);
 420	if (!ret_val)
 421		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 422						    offset, data);
 423	if (!locked)
 424		hw->phy.ops.release(hw);
 425
 426	return ret_val;
 427}
 428
 429/**
 430 *  e1000e_write_phy_reg_igp - Write igp PHY register
 431 *  @hw: pointer to the HW structure
 432 *  @offset: register offset to write to
 433 *  @data: data to write at register offset
 434 *
 435 *  Acquires semaphore then writes the data to PHY register
 436 *  at the offset.  Release any acquired semaphores before exiting.
 437 **/
 438s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 439{
 440	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 441}
 442
 443/**
 444 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 445 *  @hw: pointer to the HW structure
 446 *  @offset: register offset to write to
 447 *  @data: data to write at register offset
 448 *
 449 *  Writes the data to PHY register at the offset.
 450 *  Assumes semaphore already acquired.
 451 **/
 452s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 453{
 454	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 455}
 456
 457/**
 458 *  __e1000_read_kmrn_reg - Read kumeran register
 459 *  @hw: pointer to the HW structure
 460 *  @offset: register offset to be read
 461 *  @data: pointer to the read data
 462 *  @locked: semaphore has already been acquired or not
 463 *
 464 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 465 *  using the kumeran interface.  The information retrieved is stored in data.
 466 *  Release any acquired semaphores before exiting.
 467 **/
 468static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 469				 bool locked)
 470{
 471	u32 kmrnctrlsta;
 472
 473	if (!locked) {
 474		s32 ret_val = 0;
 475
 476		if (!hw->phy.ops.acquire)
 477			return 0;
 478
 479		ret_val = hw->phy.ops.acquire(hw);
 480		if (ret_val)
 481			return ret_val;
 482	}
 483
 484	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 485		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 486	ew32(KMRNCTRLSTA, kmrnctrlsta);
 487	e1e_flush();
 488
 489	udelay(2);
 490
 491	kmrnctrlsta = er32(KMRNCTRLSTA);
 492	*data = (u16)kmrnctrlsta;
 493
 494	if (!locked)
 495		hw->phy.ops.release(hw);
 496
 497	return 0;
 498}
 499
 500/**
 501 *  e1000e_read_kmrn_reg -  Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *
 506 *  Acquires semaphore then reads the PHY register at offset using the
 507 *  kumeran interface.  The information retrieved is stored in data.
 508 *  Release the acquired semaphore before exiting.
 509 **/
 510s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 511{
 512	return __e1000_read_kmrn_reg(hw, offset, data, false);
 513}
 514
 515/**
 516 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 517 *  @hw: pointer to the HW structure
 518 *  @offset: register offset to be read
 519 *  @data: pointer to the read data
 520 *
 521 *  Reads the PHY register at offset using the kumeran interface.  The
 522 *  information retrieved is stored in data.
 523 *  Assumes semaphore already acquired.
 524 **/
 525s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 526{
 527	return __e1000_read_kmrn_reg(hw, offset, data, true);
 528}
 529
 530/**
 531 *  __e1000_write_kmrn_reg - Write kumeran register
 532 *  @hw: pointer to the HW structure
 533 *  @offset: register offset to write to
 534 *  @data: data to write at register offset
 535 *  @locked: semaphore has already been acquired or not
 536 *
 537 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 538 *  at the offset using the kumeran interface.  Release any acquired semaphores
 539 *  before exiting.
 540 **/
 541static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 542				  bool locked)
 543{
 544	u32 kmrnctrlsta;
 545
 546	if (!locked) {
 547		s32 ret_val = 0;
 548
 549		if (!hw->phy.ops.acquire)
 550			return 0;
 551
 552		ret_val = hw->phy.ops.acquire(hw);
 553		if (ret_val)
 554			return ret_val;
 555	}
 556
 557	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 558		       E1000_KMRNCTRLSTA_OFFSET) | data;
 559	ew32(KMRNCTRLSTA, kmrnctrlsta);
 560	e1e_flush();
 561
 562	udelay(2);
 563
 564	if (!locked)
 565		hw->phy.ops.release(hw);
 566
 567	return 0;
 568}
 569
 570/**
 571 *  e1000e_write_kmrn_reg -  Write kumeran register
 572 *  @hw: pointer to the HW structure
 573 *  @offset: register offset to write to
 574 *  @data: data to write at register offset
 575 *
 576 *  Acquires semaphore then writes the data to the PHY register at the offset
 577 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 578 **/
 579s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 580{
 581	return __e1000_write_kmrn_reg(hw, offset, data, false);
 582}
 583
 584/**
 585 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 586 *  @hw: pointer to the HW structure
 587 *  @offset: register offset to write to
 588 *  @data: data to write at register offset
 589 *
 590 *  Write the data to PHY register at the offset using the kumeran interface.
 591 *  Assumes semaphore already acquired.
 592 **/
 593s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 594{
 595	return __e1000_write_kmrn_reg(hw, offset, data, true);
 596}
 597
 598/**
 599 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 600 *  @hw: pointer to the HW structure
 601 *
 602 *  Sets up Master/slave mode
 603 **/
 604static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 605{
 606	s32 ret_val;
 607	u16 phy_data;
 608
 609	/* Resolve Master/Slave mode */
 610	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 611	if (ret_val)
 612		return ret_val;
 613
 614	/* load defaults for future use */
 615	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 616	    ((phy_data & CTL1000_AS_MASTER) ?
 617	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 618
 619	switch (hw->phy.ms_type) {
 620	case e1000_ms_force_master:
 621		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 622		break;
 623	case e1000_ms_force_slave:
 624		phy_data |= CTL1000_ENABLE_MASTER;
 625		phy_data &= ~(CTL1000_AS_MASTER);
 626		break;
 627	case e1000_ms_auto:
 628		phy_data &= ~CTL1000_ENABLE_MASTER;
 629		/* fall-through */
 630	default:
 631		break;
 632	}
 633
 634	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 635}
 636
 637/**
 638 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 639 *  @hw: pointer to the HW structure
 640 *
 641 *  Sets up Carrier-sense on Transmit and downshift values.
 642 **/
 643s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 644{
 645	s32 ret_val;
 646	u16 phy_data;
 647
 648	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 649	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 650	if (ret_val)
 651		return ret_val;
 652
 653	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 654
 655	/* Enable downshift */
 656	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 657
 658	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 659	if (ret_val)
 660		return ret_val;
 661
 662	/* Set MDI/MDIX mode */
 663	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 664	if (ret_val)
 665		return ret_val;
 666	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 667	/* Options:
 668	 *   0 - Auto (default)
 669	 *   1 - MDI mode
 670	 *   2 - MDI-X mode
 671	 */
 672	switch (hw->phy.mdix) {
 673	case 1:
 674		break;
 675	case 2:
 676		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 677		break;
 678	case 0:
 679	default:
 680		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 681		break;
 682	}
 683	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 684	if (ret_val)
 685		return ret_val;
 686
 687	return e1000_set_master_slave_mode(hw);
 688}
 689
 690/**
 691 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 692 *  @hw: pointer to the HW structure
 693 *
 694 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 695 *  and downshift values are set also.
 696 **/
 697s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 698{
 699	struct e1000_phy_info *phy = &hw->phy;
 700	s32 ret_val;
 701	u16 phy_data;
 702
 703	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 704	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 705	if (ret_val)
 706		return ret_val;
 707
 708	/* For BM PHY this bit is downshift enable */
 709	if (phy->type != e1000_phy_bm)
 710		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 711
 712	/* Options:
 713	 *   MDI/MDI-X = 0 (default)
 714	 *   0 - Auto for all speeds
 715	 *   1 - MDI mode
 716	 *   2 - MDI-X mode
 717	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 718	 */
 719	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 720
 721	switch (phy->mdix) {
 722	case 1:
 723		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 724		break;
 725	case 2:
 726		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 727		break;
 728	case 3:
 729		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 730		break;
 731	case 0:
 732	default:
 733		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 734		break;
 735	}
 736
 737	/* Options:
 738	 *   disable_polarity_correction = 0 (default)
 739	 *       Automatic Correction for Reversed Cable Polarity
 740	 *   0 - Disabled
 741	 *   1 - Enabled
 742	 */
 743	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 744	if (phy->disable_polarity_correction)
 745		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 746
 747	/* Enable downshift on BM (disabled by default) */
 748	if (phy->type == e1000_phy_bm) {
 749		/* For 82574/82583, first disable then enable downshift */
 750		if (phy->id == BME1000_E_PHY_ID_R2) {
 751			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 752			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 753					   phy_data);
 754			if (ret_val)
 755				return ret_val;
 756			/* Commit the changes. */
 757			ret_val = phy->ops.commit(hw);
 758			if (ret_val) {
 759				e_dbg("Error committing the PHY changes\n");
 760				return ret_val;
 761			}
 762		}
 763
 764		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 765	}
 766
 767	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 768	if (ret_val)
 769		return ret_val;
 770
 771	if ((phy->type == e1000_phy_m88) &&
 772	    (phy->revision < E1000_REVISION_4) &&
 773	    (phy->id != BME1000_E_PHY_ID_R2)) {
 774		/* Force TX_CLK in the Extended PHY Specific Control Register
 775		 * to 25MHz clock.
 776		 */
 777		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 778		if (ret_val)
 779			return ret_val;
 780
 781		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 782
 783		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 784			/* 82573L PHY - set the downshift counter to 5x. */
 785			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 786			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 787		} else {
 788			/* Configure Master and Slave downshift values */
 789			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 790				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 791			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 792				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 793		}
 794		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 795		if (ret_val)
 796			return ret_val;
 797	}
 798
 799	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 800		/* Set PHY page 0, register 29 to 0x0003 */
 801		ret_val = e1e_wphy(hw, 29, 0x0003);
 802		if (ret_val)
 803			return ret_val;
 804
 805		/* Set PHY page 0, register 30 to 0x0000 */
 806		ret_val = e1e_wphy(hw, 30, 0x0000);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	/* Commit the changes. */
 812	if (phy->ops.commit) {
 813		ret_val = phy->ops.commit(hw);
 814		if (ret_val) {
 815			e_dbg("Error committing the PHY changes\n");
 816			return ret_val;
 817		}
 818	}
 819
 820	if (phy->type == e1000_phy_82578) {
 821		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 822		if (ret_val)
 823			return ret_val;
 824
 825		/* 82578 PHY - set the downshift count to 1x. */
 826		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 827		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 828		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	return 0;
 834}
 835
 836/**
 837 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 841 *  igp PHY's.
 842 **/
 843s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 844{
 845	struct e1000_phy_info *phy = &hw->phy;
 846	s32 ret_val;
 847	u16 data;
 848
 849	ret_val = e1000_phy_hw_reset(hw);
 850	if (ret_val) {
 851		e_dbg("Error resetting the PHY.\n");
 852		return ret_val;
 853	}
 854
 855	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 856	 * timeout issues when LFS is enabled.
 857	 */
 858	msleep(100);
 859
 860	/* disable lplu d0 during driver init */
 861	if (hw->phy.ops.set_d0_lplu_state) {
 862		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 863		if (ret_val) {
 864			e_dbg("Error Disabling LPLU D0\n");
 865			return ret_val;
 866		}
 867	}
 868	/* Configure mdi-mdix settings */
 869	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 870	if (ret_val)
 871		return ret_val;
 872
 873	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 874
 875	switch (phy->mdix) {
 876	case 1:
 877		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 878		break;
 879	case 2:
 880		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 881		break;
 882	case 0:
 883	default:
 884		data |= IGP01E1000_PSCR_AUTO_MDIX;
 885		break;
 886	}
 887	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 888	if (ret_val)
 889		return ret_val;
 890
 891	/* set auto-master slave resolution settings */
 892	if (hw->mac.autoneg) {
 893		/* when autonegotiation advertisement is only 1000Mbps then we
 894		 * should disable SmartSpeed and enable Auto MasterSlave
 895		 * resolution as hardware default.
 896		 */
 897		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 898			/* Disable SmartSpeed */
 899			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 900					   &data);
 901			if (ret_val)
 902				return ret_val;
 903
 904			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 905			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 906					   data);
 907			if (ret_val)
 908				return ret_val;
 909
 910			/* Set auto Master/Slave resolution process */
 911			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 912			if (ret_val)
 913				return ret_val;
 914
 915			data &= ~CTL1000_ENABLE_MASTER;
 916			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 917			if (ret_val)
 918				return ret_val;
 919		}
 920
 921		ret_val = e1000_set_master_slave_mode(hw);
 922	}
 923
 924	return ret_val;
 925}
 926
 927/**
 928 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 929 *  @hw: pointer to the HW structure
 930 *
 931 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 932 *  register and if the PHY is already setup for auto-negotiation, then
 933 *  return successful.  Otherwise, setup advertisement and flow control to
 934 *  the appropriate values for the wanted auto-negotiation.
 935 **/
 936static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 937{
 938	struct e1000_phy_info *phy = &hw->phy;
 939	s32 ret_val;
 940	u16 mii_autoneg_adv_reg;
 941	u16 mii_1000t_ctrl_reg = 0;
 942
 943	phy->autoneg_advertised &= phy->autoneg_mask;
 944
 945	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 946	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 947	if (ret_val)
 948		return ret_val;
 949
 950	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 951		/* Read the MII 1000Base-T Control Register (Address 9). */
 952		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 953		if (ret_val)
 954			return ret_val;
 955	}
 956
 957	/* Need to parse both autoneg_advertised and fc and set up
 958	 * the appropriate PHY registers.  First we will parse for
 959	 * autoneg_advertised software override.  Since we can advertise
 960	 * a plethora of combinations, we need to check each bit
 961	 * individually.
 962	 */
 963
 964	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 965	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 966	 * the  1000Base-T Control Register (Address 9).
 967	 */
 968	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 969				 ADVERTISE_100HALF |
 970				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 971	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 972
 973	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 974
 975	/* Do we want to advertise 10 Mb Half Duplex? */
 976	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 977		e_dbg("Advertise 10mb Half duplex\n");
 978		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 979	}
 980
 981	/* Do we want to advertise 10 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 983		e_dbg("Advertise 10mb Full duplex\n");
 984		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 985	}
 986
 987	/* Do we want to advertise 100 Mb Half Duplex? */
 988	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 989		e_dbg("Advertise 100mb Half duplex\n");
 990		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 991	}
 992
 993	/* Do we want to advertise 100 Mb Full Duplex? */
 994	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 995		e_dbg("Advertise 100mb Full duplex\n");
 996		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 997	}
 998
 999	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1000	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1001		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002
1003	/* Do we want to advertise 1000 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1005		e_dbg("Advertise 1000mb Full duplex\n");
1006		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1007	}
1008
1009	/* Check for a software override of the flow control settings, and
1010	 * setup the PHY advertisement registers accordingly.  If
1011	 * auto-negotiation is enabled, then software will have to set the
1012	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1013	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1014	 * negotiation.
1015	 *
1016	 * The possible values of the "fc" parameter are:
1017	 *      0:  Flow control is completely disabled
1018	 *      1:  Rx flow control is enabled (we can receive pause frames
1019	 *          but not send pause frames).
1020	 *      2:  Tx flow control is enabled (we can send pause frames
1021	 *          but we do not support receiving pause frames).
1022	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1023	 *  other:  No software override.  The flow control configuration
1024	 *          in the EEPROM is used.
1025	 */
1026	switch (hw->fc.current_mode) {
1027	case e1000_fc_none:
1028		/* Flow control (Rx & Tx) is completely disabled by a
1029		 * software over-ride.
1030		 */
1031		mii_autoneg_adv_reg &=
1032		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1033		break;
1034	case e1000_fc_rx_pause:
1035		/* Rx Flow control is enabled, and Tx Flow control is
1036		 * disabled, by a software over-ride.
1037		 *
1038		 * Since there really isn't a way to advertise that we are
1039		 * capable of Rx Pause ONLY, we will advertise that we
1040		 * support both symmetric and asymmetric Rx PAUSE.  Later
1041		 * (in e1000e_config_fc_after_link_up) we will disable the
1042		 * hw's ability to send PAUSE frames.
1043		 */
1044		mii_autoneg_adv_reg |=
1045		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1046		break;
1047	case e1000_fc_tx_pause:
1048		/* Tx Flow control is enabled, and Rx Flow control is
1049		 * disabled, by a software over-ride.
1050		 */
1051		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1052		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1053		break;
1054	case e1000_fc_full:
1055		/* Flow control (both Rx and Tx) is enabled by a software
1056		 * over-ride.
1057		 */
1058		mii_autoneg_adv_reg |=
1059		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1060		break;
1061	default:
1062		e_dbg("Flow control param set incorrectly\n");
1063		return -E1000_ERR_CONFIG;
1064	}
1065
1066	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1067	if (ret_val)
1068		return ret_val;
1069
1070	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1071
1072	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1073		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1074
1075	return ret_val;
1076}
1077
1078/**
1079 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1080 *  @hw: pointer to the HW structure
1081 *
1082 *  Performs initial bounds checking on autoneg advertisement parameter, then
1083 *  configure to advertise the full capability.  Setup the PHY to autoneg
1084 *  and restart the negotiation process between the link partner.  If
1085 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 **/
1087static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1088{
1089	struct e1000_phy_info *phy = &hw->phy;
1090	s32 ret_val;
1091	u16 phy_ctrl;
1092
1093	/* Perform some bounds checking on the autoneg advertisement
1094	 * parameter.
1095	 */
1096	phy->autoneg_advertised &= phy->autoneg_mask;
1097
1098	/* If autoneg_advertised is zero, we assume it was not defaulted
1099	 * by the calling code so we set to advertise full capability.
1100	 */
1101	if (!phy->autoneg_advertised)
1102		phy->autoneg_advertised = phy->autoneg_mask;
1103
1104	e_dbg("Reconfiguring auto-neg advertisement params\n");
1105	ret_val = e1000_phy_setup_autoneg(hw);
1106	if (ret_val) {
1107		e_dbg("Error Setting up Auto-Negotiation\n");
1108		return ret_val;
1109	}
1110	e_dbg("Restarting Auto-Neg\n");
1111
1112	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1113	 * the Auto Neg Restart bit in the PHY control register.
1114	 */
1115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1116	if (ret_val)
1117		return ret_val;
1118
1119	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1121	if (ret_val)
1122		return ret_val;
1123
1124	/* Does the user want to wait for Auto-Neg to complete here, or
1125	 * check at a later time (for example, callback routine).
1126	 */
1127	if (phy->autoneg_wait_to_complete) {
1128		ret_val = e1000_wait_autoneg(hw);
1129		if (ret_val) {
1130			e_dbg("Error while waiting for autoneg to complete\n");
1131			return ret_val;
1132		}
1133	}
1134
1135	hw->mac.get_link_status = true;
1136
1137	return ret_val;
1138}
1139
1140/**
1141 *  e1000e_setup_copper_link - Configure copper link settings
1142 *  @hw: pointer to the HW structure
1143 *
1144 *  Calls the appropriate function to configure the link for auto-neg or forced
1145 *  speed and duplex.  Then we check for link, once link is established calls
1146 *  to configure collision distance and flow control are called.  If link is
1147 *  not established, we return -E1000_ERR_PHY (-2).
1148 **/
1149s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1150{
1151	s32 ret_val;
1152	bool link;
1153
1154	if (hw->mac.autoneg) {
1155		/* Setup autoneg and flow control advertisement and perform
1156		 * autonegotiation.
1157		 */
1158		ret_val = e1000_copper_link_autoneg(hw);
1159		if (ret_val)
1160			return ret_val;
1161	} else {
1162		/* PHY will be set to 10H, 10F, 100H or 100F
1163		 * depending on user settings.
1164		 */
1165		e_dbg("Forcing Speed and Duplex\n");
1166		ret_val = hw->phy.ops.force_speed_duplex(hw);
1167		if (ret_val) {
1168			e_dbg("Error Forcing Speed and Duplex\n");
1169			return ret_val;
1170		}
1171	}
1172
1173	/* Check link status. Wait up to 100 microseconds for link to become
1174	 * valid.
1175	 */
1176	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1177					      &link);
1178	if (ret_val)
1179		return ret_val;
1180
1181	if (link) {
1182		e_dbg("Valid link established!!!\n");
1183		hw->mac.ops.config_collision_dist(hw);
1184		ret_val = e1000e_config_fc_after_link_up(hw);
1185	} else {
1186		e_dbg("Unable to establish link!!!\n");
1187	}
1188
1189	return ret_val;
1190}
1191
1192/**
1193 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1194 *  @hw: pointer to the HW structure
1195 *
1196 *  Calls the PHY setup function to force speed and duplex.  Clears the
1197 *  auto-crossover to force MDI manually.  Waits for link and returns
1198 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 **/
1200s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201{
1202	struct e1000_phy_info *phy = &hw->phy;
1203	s32 ret_val;
1204	u16 phy_data;
1205	bool link;
1206
1207	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1208	if (ret_val)
1209		return ret_val;
1210
1211	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212
1213	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1218	 * forced whenever speed and duplex are forced.
1219	 */
1220	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221	if (ret_val)
1222		return ret_val;
1223
1224	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1226
1227	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228	if (ret_val)
1229		return ret_val;
1230
1231	e_dbg("IGP PSCR: %X\n", phy_data);
1232
1233	udelay(1);
1234
1235	if (phy->autoneg_wait_to_complete) {
1236		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237
1238		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1239						      100000, &link);
1240		if (ret_val)
1241			return ret_val;
1242
1243		if (!link)
1244			e_dbg("Link taking longer than expected.\n");
1245
1246		/* Try once more */
1247		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1248						      100000, &link);
1249	}
1250
1251	return ret_val;
1252}
1253
1254/**
1255 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1256 *  @hw: pointer to the HW structure
1257 *
1258 *  Calls the PHY setup function to force speed and duplex.  Clears the
1259 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1260 *  changes.  If time expires while waiting for link up, we reset the DSP.
1261 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1262 *  successful completion, else return corresponding error code.
1263 **/
1264s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1265{
1266	struct e1000_phy_info *phy = &hw->phy;
1267	s32 ret_val;
1268	u16 phy_data;
1269	bool link;
1270
1271	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1272	 * forced whenever speed and duplex are forced.
1273	 */
1274	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275	if (ret_val)
1276		return ret_val;
1277
1278	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1279	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280	if (ret_val)
1281		return ret_val;
1282
1283	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1284
1285	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1286	if (ret_val)
1287		return ret_val;
1288
1289	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1290
1291	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1292	if (ret_val)
1293		return ret_val;
1294
1295	/* Reset the phy to commit changes. */
1296	if (hw->phy.ops.commit) {
1297		ret_val = hw->phy.ops.commit(hw);
1298		if (ret_val)
1299			return ret_val;
1300	}
1301
1302	if (phy->autoneg_wait_to_complete) {
1303		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304
1305		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1306						      100000, &link);
1307		if (ret_val)
1308			return ret_val;
1309
1310		if (!link) {
1311			if (hw->phy.type != e1000_phy_m88) {
1312				e_dbg("Link taking longer than expected.\n");
1313			} else {
1314				/* We didn't get link.
1315				 * Reset the DSP and cross our fingers.
1316				 */
1317				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1318						   0x001d);
1319				if (ret_val)
1320					return ret_val;
1321				ret_val = e1000e_phy_reset_dsp(hw);
1322				if (ret_val)
1323					return ret_val;
1324			}
1325		}
1326
1327		/* Try once more */
1328		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1329						      100000, &link);
1330		if (ret_val)
1331			return ret_val;
1332	}
1333
1334	if (hw->phy.type != e1000_phy_m88)
1335		return 0;
1336
1337	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1338	if (ret_val)
1339		return ret_val;
1340
1341	/* Resetting the phy means we need to re-force TX_CLK in the
1342	 * Extended PHY Specific Control Register to 25MHz clock from
1343	 * the reset value of 2.5MHz.
1344	 */
1345	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1346	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1347	if (ret_val)
1348		return ret_val;
1349
1350	/* In addition, we must re-enable CRS on Tx for both half and full
1351	 * duplex.
1352	 */
1353	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354	if (ret_val)
1355		return ret_val;
1356
1357	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360	return ret_val;
1361}
1362
1363/**
1364 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 *  @hw: pointer to the HW structure
1366 *
1367 *  Forces the speed and duplex settings of the PHY.
1368 *  This is a function pointer entry point only called by
1369 *  PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373	struct e1000_phy_info *phy = &hw->phy;
1374	s32 ret_val;
1375	u16 data;
1376	bool link;
1377
1378	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1379	if (ret_val)
1380		return ret_val;
1381
1382	e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384	ret_val = e1e_wphy(hw, MII_BMCR, data);
1385	if (ret_val)
1386		return ret_val;
1387
1388	/* Disable MDI-X support for 10/100 */
1389	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390	if (ret_val)
1391		return ret_val;
1392
1393	data &= ~IFE_PMC_AUTO_MDIX;
1394	data &= ~IFE_PMC_FORCE_MDIX;
1395
1396	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397	if (ret_val)
1398		return ret_val;
1399
1400	e_dbg("IFE PMC: %X\n", data);
1401
1402	udelay(1);
1403
1404	if (phy->autoneg_wait_to_complete) {
1405		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408						      100000, &link);
1409		if (ret_val)
1410			return ret_val;
1411
1412		if (!link)
1413			e_dbg("Link taking longer than expected.\n");
1414
1415		/* Try once more */
1416		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417						      100000, &link);
1418		if (ret_val)
1419			return ret_val;
1420	}
1421
1422	return 0;
1423}
1424
1425/**
1426 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 *  @hw: pointer to the HW structure
1428 *  @phy_ctrl: pointer to current value of MII_BMCR
1429 *
1430 *  Forces speed and duplex on the PHY by doing the following: disable flow
1431 *  control, force speed/duplex on the MAC, disable auto speed detection,
1432 *  disable auto-negotiation, configure duplex, configure speed, configure
1433 *  the collision distance, write configuration to CTRL register.  The
1434 *  caller must write to the MII_BMCR register for these settings to
1435 *  take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439	struct e1000_mac_info *mac = &hw->mac;
1440	u32 ctrl;
1441
1442	/* Turn off flow control when forcing speed/duplex */
1443	hw->fc.current_mode = e1000_fc_none;
1444
1445	/* Force speed/duplex on the mac */
1446	ctrl = er32(CTRL);
1447	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448	ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450	/* Disable Auto Speed Detection */
1451	ctrl &= ~E1000_CTRL_ASDE;
1452
1453	/* Disable autoneg on the phy */
1454	*phy_ctrl &= ~BMCR_ANENABLE;
1455
1456	/* Forcing Full or Half Duplex? */
1457	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458		ctrl &= ~E1000_CTRL_FD;
1459		*phy_ctrl &= ~BMCR_FULLDPLX;
1460		e_dbg("Half Duplex\n");
1461	} else {
1462		ctrl |= E1000_CTRL_FD;
1463		*phy_ctrl |= BMCR_FULLDPLX;
1464		e_dbg("Full Duplex\n");
1465	}
1466
1467	/* Forcing 10mb or 100mb? */
1468	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469		ctrl |= E1000_CTRL_SPD_100;
1470		*phy_ctrl |= BMCR_SPEED100;
1471		*phy_ctrl &= ~BMCR_SPEED1000;
1472		e_dbg("Forcing 100mb\n");
1473	} else {
1474		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1476		e_dbg("Forcing 10mb\n");
1477	}
1478
1479	hw->mac.ops.config_collision_dist(hw);
1480
1481	ew32(CTRL, ctrl);
1482}
1483
1484/**
1485 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1486 *  @hw: pointer to the HW structure
1487 *  @active: boolean used to enable/disable lplu
1488 *
1489 *  Success returns 0, Failure returns 1
1490 *
1491 *  The low power link up (lplu) state is set to the power management level D3
1492 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1493 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1494 *  is used during Dx states where the power conservation is most important.
1495 *  During driver activity, SmartSpeed should be enabled so performance is
1496 *  maintained.
1497 **/
1498s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1499{
1500	struct e1000_phy_info *phy = &hw->phy;
1501	s32 ret_val;
1502	u16 data;
1503
1504	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1505	if (ret_val)
1506		return ret_val;
1507
1508	if (!active) {
1509		data &= ~IGP02E1000_PM_D3_LPLU;
1510		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1511		if (ret_val)
1512			return ret_val;
1513		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1514		 * during Dx states where the power conservation is most
1515		 * important.  During driver activity we should enable
1516		 * SmartSpeed, so performance is maintained.
1517		 */
1518		if (phy->smart_speed == e1000_smart_speed_on) {
1519			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1520					   &data);
1521			if (ret_val)
1522				return ret_val;
1523
1524			data |= IGP01E1000_PSCFR_SMART_SPEED;
1525			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526					   data);
1527			if (ret_val)
1528				return ret_val;
1529		} else if (phy->smart_speed == e1000_smart_speed_off) {
1530			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531					   &data);
1532			if (ret_val)
1533				return ret_val;
1534
1535			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537					   data);
1538			if (ret_val)
1539				return ret_val;
1540		}
1541	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1542		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1543		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1544		data |= IGP02E1000_PM_D3_LPLU;
1545		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1546		if (ret_val)
1547			return ret_val;
1548
1549		/* When LPLU is enabled, we should disable SmartSpeed */
1550		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1551		if (ret_val)
1552			return ret_val;
1553
1554		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1555		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1556	}
1557
1558	return ret_val;
1559}
1560
1561/**
1562 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1563 *  @hw: pointer to the HW structure
1564 *
1565 *  Success returns 0, Failure returns 1
1566 *
1567 *  A downshift is detected by querying the PHY link health.
1568 **/
1569s32 e1000e_check_downshift(struct e1000_hw *hw)
1570{
1571	struct e1000_phy_info *phy = &hw->phy;
1572	s32 ret_val;
1573	u16 phy_data, offset, mask;
1574
1575	switch (phy->type) {
1576	case e1000_phy_m88:
1577	case e1000_phy_gg82563:
1578	case e1000_phy_bm:
1579	case e1000_phy_82578:
1580		offset = M88E1000_PHY_SPEC_STATUS;
1581		mask = M88E1000_PSSR_DOWNSHIFT;
1582		break;
1583	case e1000_phy_igp_2:
1584	case e1000_phy_igp_3:
1585		offset = IGP01E1000_PHY_LINK_HEALTH;
1586		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1587		break;
1588	default:
1589		/* speed downshift not supported */
1590		phy->speed_downgraded = false;
1591		return 0;
1592	}
1593
1594	ret_val = e1e_rphy(hw, offset, &phy_data);
1595
1596	if (!ret_val)
1597		phy->speed_downgraded = !!(phy_data & mask);
1598
1599	return ret_val;
1600}
1601
1602/**
1603 *  e1000_check_polarity_m88 - Checks the polarity.
1604 *  @hw: pointer to the HW structure
1605 *
1606 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 *
1608 *  Polarity is determined based on the PHY specific status register.
1609 **/
1610s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1611{
1612	struct e1000_phy_info *phy = &hw->phy;
1613	s32 ret_val;
1614	u16 data;
1615
1616	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1617
1618	if (!ret_val)
1619		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1620				       ? e1000_rev_polarity_reversed
1621				       : e1000_rev_polarity_normal);
1622
1623	return ret_val;
1624}
1625
1626/**
1627 *  e1000_check_polarity_igp - Checks the polarity.
1628 *  @hw: pointer to the HW structure
1629 *
1630 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 *
1632 *  Polarity is determined based on the PHY port status register, and the
1633 *  current speed (since there is no polarity at 100Mbps).
1634 **/
1635s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1636{
1637	struct e1000_phy_info *phy = &hw->phy;
1638	s32 ret_val;
1639	u16 data, offset, mask;
1640
1641	/* Polarity is determined based on the speed of
1642	 * our connection.
1643	 */
1644	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1645	if (ret_val)
1646		return ret_val;
1647
1648	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1649	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1650		offset = IGP01E1000_PHY_PCS_INIT_REG;
1651		mask = IGP01E1000_PHY_POLARITY_MASK;
1652	} else {
1653		/* This really only applies to 10Mbps since
1654		 * there is no polarity for 100Mbps (always 0).
1655		 */
1656		offset = IGP01E1000_PHY_PORT_STATUS;
1657		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1658	}
1659
1660	ret_val = e1e_rphy(hw, offset, &data);
1661
1662	if (!ret_val)
1663		phy->cable_polarity = ((data & mask)
1664				       ? e1000_rev_polarity_reversed
1665				       : e1000_rev_polarity_normal);
1666
1667	return ret_val;
1668}
1669
1670/**
1671 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1672 *  @hw: pointer to the HW structure
1673 *
1674 *  Polarity is determined on the polarity reversal feature being enabled.
1675 **/
1676s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1677{
1678	struct e1000_phy_info *phy = &hw->phy;
1679	s32 ret_val;
1680	u16 phy_data, offset, mask;
1681
1682	/* Polarity is determined based on the reversal feature being enabled.
1683	 */
1684	if (phy->polarity_correction) {
1685		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1686		mask = IFE_PESC_POLARITY_REVERSED;
1687	} else {
1688		offset = IFE_PHY_SPECIAL_CONTROL;
1689		mask = IFE_PSC_FORCE_POLARITY;
1690	}
1691
1692	ret_val = e1e_rphy(hw, offset, &phy_data);
1693
1694	if (!ret_val)
1695		phy->cable_polarity = ((phy_data & mask)
1696				       ? e1000_rev_polarity_reversed
1697				       : e1000_rev_polarity_normal);
1698
1699	return ret_val;
1700}
1701
1702/**
1703 *  e1000_wait_autoneg - Wait for auto-neg completion
1704 *  @hw: pointer to the HW structure
1705 *
1706 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1707 *  limit to expire, which ever happens first.
1708 **/
1709static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1710{
1711	s32 ret_val = 0;
1712	u16 i, phy_status;
1713
1714	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1715	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1716		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1717		if (ret_val)
1718			break;
1719		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1720		if (ret_val)
1721			break;
1722		if (phy_status & BMSR_ANEGCOMPLETE)
1723			break;
1724		msleep(100);
1725	}
1726
1727	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1728	 * has completed.
1729	 */
1730	return ret_val;
1731}
1732
1733/**
1734 *  e1000e_phy_has_link_generic - Polls PHY for link
1735 *  @hw: pointer to the HW structure
1736 *  @iterations: number of times to poll for link
1737 *  @usec_interval: delay between polling attempts
1738 *  @success: pointer to whether polling was successful or not
1739 *
1740 *  Polls the PHY status register for link, 'iterations' number of times.
1741 **/
1742s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1743				u32 usec_interval, bool *success)
1744{
1745	s32 ret_val = 0;
1746	u16 i, phy_status;
1747
1748	*success = false;
1749	for (i = 0; i < iterations; i++) {
1750		/* Some PHYs require the MII_BMSR register to be read
1751		 * twice due to the link bit being sticky.  No harm doing
1752		 * it across the board.
1753		 */
1754		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1755		if (ret_val) {
1756			/* If the first read fails, another entity may have
1757			 * ownership of the resources, wait and try again to
1758			 * see if they have relinquished the resources yet.
1759			 */
1760			if (usec_interval >= 1000)
1761				msleep(usec_interval / 1000);
1762			else
1763				udelay(usec_interval);
1764		}
1765		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1766		if (ret_val)
1767			break;
1768		if (phy_status & BMSR_LSTATUS) {
1769			*success = true;
1770			break;
1771		}
1772		if (usec_interval >= 1000)
1773			msleep(usec_interval / 1000);
1774		else
1775			udelay(usec_interval);
1776	}
1777
1778	return ret_val;
1779}
1780
1781/**
1782 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1783 *  @hw: pointer to the HW structure
1784 *
1785 *  Reads the PHY specific status register to retrieve the cable length
1786 *  information.  The cable length is determined by averaging the minimum and
1787 *  maximum values to get the "average" cable length.  The m88 PHY has four
1788 *  possible cable length values, which are:
1789 *	Register Value		Cable Length
1790 *	0			< 50 meters
1791 *	1			50 - 80 meters
1792 *	2			80 - 110 meters
1793 *	3			110 - 140 meters
1794 *	4			> 140 meters
1795 **/
1796s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1797{
1798	struct e1000_phy_info *phy = &hw->phy;
1799	s32 ret_val;
1800	u16 phy_data, index;
1801
1802	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1803	if (ret_val)
1804		return ret_val;
1805
1806	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1807		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1808
1809	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1810		return -E1000_ERR_PHY;
1811
1812	phy->min_cable_length = e1000_m88_cable_length_table[index];
1813	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1814
1815	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816
1817	return 0;
1818}
1819
1820/**
1821 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1822 *  @hw: pointer to the HW structure
1823 *
1824 *  The automatic gain control (agc) normalizes the amplitude of the
1825 *  received signal, adjusting for the attenuation produced by the
1826 *  cable.  By reading the AGC registers, which represent the
1827 *  combination of coarse and fine gain value, the value can be put
1828 *  into a lookup table to obtain the approximate cable length
1829 *  for each channel.
1830 **/
1831s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1832{
1833	struct e1000_phy_info *phy = &hw->phy;
1834	s32 ret_val;
1835	u16 phy_data, i, agc_value = 0;
1836	u16 cur_agc_index, max_agc_index = 0;
1837	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1838	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1839		IGP02E1000_PHY_AGC_A,
1840		IGP02E1000_PHY_AGC_B,
1841		IGP02E1000_PHY_AGC_C,
1842		IGP02E1000_PHY_AGC_D
1843	};
1844
1845	/* Read the AGC registers for all channels */
1846	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1847		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1848		if (ret_val)
1849			return ret_val;
1850
1851		/* Getting bits 15:9, which represent the combination of
1852		 * coarse and fine gain values.  The result is a number
1853		 * that can be put into the lookup table to obtain the
1854		 * approximate cable length.
1855		 */
1856		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1857				 IGP02E1000_AGC_LENGTH_MASK);
1858
1859		/* Array index bound check. */
1860		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1861		    (cur_agc_index == 0))
1862			return -E1000_ERR_PHY;
1863
1864		/* Remove min & max AGC values from calculation. */
1865		if (e1000_igp_2_cable_length_table[min_agc_index] >
1866		    e1000_igp_2_cable_length_table[cur_agc_index])
1867			min_agc_index = cur_agc_index;
1868		if (e1000_igp_2_cable_length_table[max_agc_index] <
1869		    e1000_igp_2_cable_length_table[cur_agc_index])
1870			max_agc_index = cur_agc_index;
1871
1872		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1873	}
1874
1875	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1876		      e1000_igp_2_cable_length_table[max_agc_index]);
1877	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1878
1879	/* Calculate cable length with the error range of +/- 10 meters. */
1880	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1881				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1882	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1883
1884	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1885
1886	return 0;
1887}
1888
1889/**
1890 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Valid for only copper links.  Read the PHY status register (sticky read)
1894 *  to verify that link is up.  Read the PHY special control register to
1895 *  determine the polarity and 10base-T extended distance.  Read the PHY
1896 *  special status register to determine MDI/MDIx and current speed.  If
1897 *  speed is 1000, then determine cable length, local and remote receiver.
1898 **/
1899s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1900{
1901	struct e1000_phy_info *phy = &hw->phy;
1902	s32 ret_val;
1903	u16 phy_data;
1904	bool link;
1905
1906	if (phy->media_type != e1000_media_type_copper) {
1907		e_dbg("Phy info is only valid for copper media\n");
1908		return -E1000_ERR_CONFIG;
1909	}
1910
1911	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1912	if (ret_val)
1913		return ret_val;
1914
1915	if (!link) {
1916		e_dbg("Phy info is only valid if link is up\n");
1917		return -E1000_ERR_CONFIG;
1918	}
1919
1920	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1921	if (ret_val)
1922		return ret_val;
1923
1924	phy->polarity_correction = !!(phy_data &
1925				      M88E1000_PSCR_POLARITY_REVERSAL);
1926
1927	ret_val = e1000_check_polarity_m88(hw);
1928	if (ret_val)
1929		return ret_val;
1930
1931	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1932	if (ret_val)
1933		return ret_val;
1934
1935	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1936
1937	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1938		ret_val = hw->phy.ops.get_cable_length(hw);
1939		if (ret_val)
1940			return ret_val;
1941
1942		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1943		if (ret_val)
1944			return ret_val;
1945
1946		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1947		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1948
1949		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1950		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1951	} else {
1952		/* Set values to "undefined" */
1953		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1954		phy->local_rx = e1000_1000t_rx_status_undefined;
1955		phy->remote_rx = e1000_1000t_rx_status_undefined;
1956	}
1957
1958	return ret_val;
1959}
1960
1961/**
1962 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1963 *  @hw: pointer to the HW structure
1964 *
1965 *  Read PHY status to determine if link is up.  If link is up, then
1966 *  set/determine 10base-T extended distance and polarity correction.  Read
1967 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1968 *  determine on the cable length, local and remote receiver.
1969 **/
1970s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1971{
1972	struct e1000_phy_info *phy = &hw->phy;
1973	s32 ret_val;
1974	u16 data;
1975	bool link;
1976
1977	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978	if (ret_val)
1979		return ret_val;
1980
1981	if (!link) {
1982		e_dbg("Phy info is only valid if link is up\n");
1983		return -E1000_ERR_CONFIG;
1984	}
1985
1986	phy->polarity_correction = true;
1987
1988	ret_val = e1000_check_polarity_igp(hw);
1989	if (ret_val)
1990		return ret_val;
1991
1992	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1993	if (ret_val)
1994		return ret_val;
1995
1996	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1997
1998	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1999	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2000		ret_val = phy->ops.get_cable_length(hw);
2001		if (ret_val)
2002			return ret_val;
2003
2004		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2005		if (ret_val)
2006			return ret_val;
2007
2008		phy->local_rx = (data & LPA_1000LOCALRXOK)
2009		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2010
2011		phy->remote_rx = (data & LPA_1000REMRXOK)
2012		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2013	} else {
2014		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2015		phy->local_rx = e1000_1000t_rx_status_undefined;
2016		phy->remote_rx = e1000_1000t_rx_status_undefined;
2017	}
2018
2019	return ret_val;
2020}
2021
2022/**
2023 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2024 *  @hw: pointer to the HW structure
2025 *
2026 *  Populates "phy" structure with various feature states.
2027 **/
2028s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2029{
2030	struct e1000_phy_info *phy = &hw->phy;
2031	s32 ret_val;
2032	u16 data;
2033	bool link;
2034
2035	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2036	if (ret_val)
2037		return ret_val;
2038
2039	if (!link) {
2040		e_dbg("Phy info is only valid if link is up\n");
2041		return -E1000_ERR_CONFIG;
2042	}
2043
2044	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2045	if (ret_val)
2046		return ret_val;
2047	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2048
2049	if (phy->polarity_correction) {
2050		ret_val = e1000_check_polarity_ife(hw);
2051		if (ret_val)
2052			return ret_val;
2053	} else {
2054		/* Polarity is forced */
2055		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2056				       ? e1000_rev_polarity_reversed
2057				       : e1000_rev_polarity_normal);
2058	}
2059
2060	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2061	if (ret_val)
2062		return ret_val;
2063
2064	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2065
2066	/* The following parameters are undefined for 10/100 operation. */
2067	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2068	phy->local_rx = e1000_1000t_rx_status_undefined;
2069	phy->remote_rx = e1000_1000t_rx_status_undefined;
2070
2071	return 0;
2072}
2073
2074/**
2075 *  e1000e_phy_sw_reset - PHY software reset
2076 *  @hw: pointer to the HW structure
2077 *
2078 *  Does a software reset of the PHY by reading the PHY control register and
2079 *  setting/write the control register reset bit to the PHY.
2080 **/
2081s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2082{
2083	s32 ret_val;
2084	u16 phy_ctrl;
2085
2086	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2087	if (ret_val)
2088		return ret_val;
2089
2090	phy_ctrl |= BMCR_RESET;
2091	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2092	if (ret_val)
2093		return ret_val;
2094
2095	udelay(1);
2096
2097	return ret_val;
2098}
2099
2100/**
2101 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2102 *  @hw: pointer to the HW structure
2103 *
2104 *  Verify the reset block is not blocking us from resetting.  Acquire
2105 *  semaphore (if necessary) and read/set/write the device control reset
2106 *  bit in the PHY.  Wait the appropriate delay time for the device to
2107 *  reset and release the semaphore (if necessary).
2108 **/
2109s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2110{
2111	struct e1000_phy_info *phy = &hw->phy;
2112	s32 ret_val;
2113	u32 ctrl;
2114
2115	if (phy->ops.check_reset_block) {
2116		ret_val = phy->ops.check_reset_block(hw);
2117		if (ret_val)
2118			return 0;
2119	}
2120
2121	ret_val = phy->ops.acquire(hw);
2122	if (ret_val)
2123		return ret_val;
2124
2125	ctrl = er32(CTRL);
2126	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2127	e1e_flush();
2128
2129	udelay(phy->reset_delay_us);
2130
2131	ew32(CTRL, ctrl);
2132	e1e_flush();
2133
2134	usleep_range(150, 300);
2135
2136	phy->ops.release(hw);
2137
2138	return phy->ops.get_cfg_done(hw);
2139}
2140
2141/**
2142 *  e1000e_get_cfg_done_generic - Generic configuration done
2143 *  @hw: pointer to the HW structure
2144 *
2145 *  Generic function to wait 10 milli-seconds for configuration to complete
2146 *  and return success.
2147 **/
2148s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2149{
2150	mdelay(10);
2151
2152	return 0;
2153}
2154
2155/**
2156 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2157 *  @hw: pointer to the HW structure
2158 *
2159 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 **/
2161s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2162{
2163	e_dbg("Running IGP 3 PHY init script\n");
2164
2165	/* PHY init IGP 3 */
2166	/* Enable rise/fall, 10-mode work in class-A */
2167	e1e_wphy(hw, 0x2F5B, 0x9018);
2168	/* Remove all caps from Replica path filter */
2169	e1e_wphy(hw, 0x2F52, 0x0000);
2170	/* Bias trimming for ADC, AFE and Driver (Default) */
2171	e1e_wphy(hw, 0x2FB1, 0x8B24);
2172	/* Increase Hybrid poly bias */
2173	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2174	/* Add 4% to Tx amplitude in Gig mode */
2175	e1e_wphy(hw, 0x2010, 0x10B0);
2176	/* Disable trimming (TTT) */
2177	e1e_wphy(hw, 0x2011, 0x0000);
2178	/* Poly DC correction to 94.6% + 2% for all channels */
2179	e1e_wphy(hw, 0x20DD, 0x249A);
2180	/* ABS DC correction to 95.9% */
2181	e1e_wphy(hw, 0x20DE, 0x00D3);
2182	/* BG temp curve trim */
2183	e1e_wphy(hw, 0x28B4, 0x04CE);
2184	/* Increasing ADC OPAMP stage 1 currents to max */
2185	e1e_wphy(hw, 0x2F70, 0x29E4);
2186	/* Force 1000 ( required for enabling PHY regs configuration) */
2187	e1e_wphy(hw, 0x0000, 0x0140);
2188	/* Set upd_freq to 6 */
2189	e1e_wphy(hw, 0x1F30, 0x1606);
2190	/* Disable NPDFE */
2191	e1e_wphy(hw, 0x1F31, 0xB814);
2192	/* Disable adaptive fixed FFE (Default) */
2193	e1e_wphy(hw, 0x1F35, 0x002A);
2194	/* Enable FFE hysteresis */
2195	e1e_wphy(hw, 0x1F3E, 0x0067);
2196	/* Fixed FFE for short cable lengths */
2197	e1e_wphy(hw, 0x1F54, 0x0065);
2198	/* Fixed FFE for medium cable lengths */
2199	e1e_wphy(hw, 0x1F55, 0x002A);
2200	/* Fixed FFE for long cable lengths */
2201	e1e_wphy(hw, 0x1F56, 0x002A);
2202	/* Enable Adaptive Clip Threshold */
2203	e1e_wphy(hw, 0x1F72, 0x3FB0);
2204	/* AHT reset limit to 1 */
2205	e1e_wphy(hw, 0x1F76, 0xC0FF);
2206	/* Set AHT master delay to 127 msec */
2207	e1e_wphy(hw, 0x1F77, 0x1DEC);
2208	/* Set scan bits for AHT */
2209	e1e_wphy(hw, 0x1F78, 0xF9EF);
2210	/* Set AHT Preset bits */
2211	e1e_wphy(hw, 0x1F79, 0x0210);
2212	/* Change integ_factor of channel A to 3 */
2213	e1e_wphy(hw, 0x1895, 0x0003);
2214	/* Change prop_factor of channels BCD to 8 */
2215	e1e_wphy(hw, 0x1796, 0x0008);
2216	/* Change cg_icount + enable integbp for channels BCD */
2217	e1e_wphy(hw, 0x1798, 0xD008);
2218	/* Change cg_icount + enable integbp + change prop_factor_master
2219	 * to 8 for channel A
2220	 */
2221	e1e_wphy(hw, 0x1898, 0xD918);
2222	/* Disable AHT in Slave mode on channel A */
2223	e1e_wphy(hw, 0x187A, 0x0800);
2224	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2225	 * Enable SPD+B2B
2226	 */
2227	e1e_wphy(hw, 0x0019, 0x008D);
2228	/* Enable restart AN on an1000_dis change */
2229	e1e_wphy(hw, 0x001B, 0x2080);
2230	/* Enable wh_fifo read clock in 10/100 modes */
2231	e1e_wphy(hw, 0x0014, 0x0045);
2232	/* Restart AN, Speed selection is 1000 */
2233	e1e_wphy(hw, 0x0000, 0x1340);
2234
2235	return 0;
2236}
2237
2238/**
2239 *  e1000e_get_phy_type_from_id - Get PHY type from id
2240 *  @phy_id: phy_id read from the phy
2241 *
2242 *  Returns the phy type from the id.
2243 **/
2244enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2245{
2246	enum e1000_phy_type phy_type = e1000_phy_unknown;
2247
2248	switch (phy_id) {
2249	case M88E1000_I_PHY_ID:
2250	case M88E1000_E_PHY_ID:
2251	case M88E1111_I_PHY_ID:
2252	case M88E1011_I_PHY_ID:
2253		phy_type = e1000_phy_m88;
2254		break;
2255	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2256		phy_type = e1000_phy_igp_2;
2257		break;
2258	case GG82563_E_PHY_ID:
2259		phy_type = e1000_phy_gg82563;
2260		break;
2261	case IGP03E1000_E_PHY_ID:
2262		phy_type = e1000_phy_igp_3;
2263		break;
2264	case IFE_E_PHY_ID:
2265	case IFE_PLUS_E_PHY_ID:
2266	case IFE_C_E_PHY_ID:
2267		phy_type = e1000_phy_ife;
2268		break;
2269	case BME1000_E_PHY_ID:
2270	case BME1000_E_PHY_ID_R2:
2271		phy_type = e1000_phy_bm;
2272		break;
2273	case I82578_E_PHY_ID:
2274		phy_type = e1000_phy_82578;
2275		break;
2276	case I82577_E_PHY_ID:
2277		phy_type = e1000_phy_82577;
2278		break;
2279	case I82579_E_PHY_ID:
2280		phy_type = e1000_phy_82579;
2281		break;
2282	case I217_E_PHY_ID:
2283		phy_type = e1000_phy_i217;
2284		break;
2285	default:
2286		phy_type = e1000_phy_unknown;
2287		break;
2288	}
2289	return phy_type;
2290}
2291
2292/**
2293 *  e1000e_determine_phy_address - Determines PHY address.
2294 *  @hw: pointer to the HW structure
2295 *
2296 *  This uses a trial and error method to loop through possible PHY
2297 *  addresses. It tests each by reading the PHY ID registers and
2298 *  checking for a match.
2299 **/
2300s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2301{
2302	u32 phy_addr = 0;
2303	u32 i;
2304	enum e1000_phy_type phy_type = e1000_phy_unknown;
2305
2306	hw->phy.id = phy_type;
2307
2308	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2309		hw->phy.addr = phy_addr;
2310		i = 0;
2311
2312		do {
2313			e1000e_get_phy_id(hw);
2314			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2315
2316			/* If phy_type is valid, break - we found our
2317			 * PHY address
2318			 */
2319			if (phy_type != e1000_phy_unknown)
2320				return 0;
2321
2322			usleep_range(1000, 2000);
2323			i++;
2324		} while (i < 10);
2325	}
2326
2327	return -E1000_ERR_PHY_TYPE;
2328}
2329
2330/**
2331 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2332 *  @page: page to access
 
2333 *
2334 *  Returns the phy address for the page requested.
2335 **/
2336static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2337{
2338	u32 phy_addr = 2;
2339
2340	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2341		phy_addr = 1;
2342
2343	return phy_addr;
2344}
2345
2346/**
2347 *  e1000e_write_phy_reg_bm - Write BM PHY register
2348 *  @hw: pointer to the HW structure
2349 *  @offset: register offset to write to
2350 *  @data: data to write at register offset
2351 *
2352 *  Acquires semaphore, if necessary, then writes the data to PHY register
2353 *  at the offset.  Release any acquired semaphores before exiting.
2354 **/
2355s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2356{
2357	s32 ret_val;
2358	u32 page = offset >> IGP_PAGE_SHIFT;
2359
2360	ret_val = hw->phy.ops.acquire(hw);
2361	if (ret_val)
2362		return ret_val;
2363
2364	/* Page 800 works differently than the rest so it has its own func */
2365	if (page == BM_WUC_PAGE) {
2366		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2367							 false, false);
2368		goto release;
2369	}
2370
2371	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2372
2373	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2374		u32 page_shift, page_select;
2375
2376		/* Page select is register 31 for phy address 1 and 22 for
2377		 * phy address 2 and 3. Page select is shifted only for
2378		 * phy address 1.
2379		 */
2380		if (hw->phy.addr == 1) {
2381			page_shift = IGP_PAGE_SHIFT;
2382			page_select = IGP01E1000_PHY_PAGE_SELECT;
2383		} else {
2384			page_shift = 0;
2385			page_select = BM_PHY_PAGE_SELECT;
2386		}
2387
2388		/* Page is shifted left, PHY expects (page x 32) */
2389		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2390						    (page << page_shift));
2391		if (ret_val)
2392			goto release;
2393	}
2394
2395	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396					    data);
2397
2398release:
2399	hw->phy.ops.release(hw);
2400	return ret_val;
2401}
2402
2403/**
2404 *  e1000e_read_phy_reg_bm - Read BM PHY register
2405 *  @hw: pointer to the HW structure
2406 *  @offset: register offset to be read
2407 *  @data: pointer to the read data
2408 *
2409 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2410 *  and storing the retrieved information in data.  Release any acquired
2411 *  semaphores before exiting.
2412 **/
2413s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2414{
2415	s32 ret_val;
2416	u32 page = offset >> IGP_PAGE_SHIFT;
2417
2418	ret_val = hw->phy.ops.acquire(hw);
2419	if (ret_val)
2420		return ret_val;
2421
2422	/* Page 800 works differently than the rest so it has its own func */
2423	if (page == BM_WUC_PAGE) {
2424		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2425							 true, false);
2426		goto release;
2427	}
2428
2429	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2430
2431	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432		u32 page_shift, page_select;
2433
2434		/* Page select is register 31 for phy address 1 and 22 for
2435		 * phy address 2 and 3. Page select is shifted only for
2436		 * phy address 1.
2437		 */
2438		if (hw->phy.addr == 1) {
2439			page_shift = IGP_PAGE_SHIFT;
2440			page_select = IGP01E1000_PHY_PAGE_SELECT;
2441		} else {
2442			page_shift = 0;
2443			page_select = BM_PHY_PAGE_SELECT;
2444		}
2445
2446		/* Page is shifted left, PHY expects (page x 32) */
2447		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2448						    (page << page_shift));
2449		if (ret_val)
2450			goto release;
2451	}
2452
2453	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2454					   data);
2455release:
2456	hw->phy.ops.release(hw);
2457	return ret_val;
2458}
2459
2460/**
2461 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2462 *  @hw: pointer to the HW structure
2463 *  @offset: register offset to be read
2464 *  @data: pointer to the read data
2465 *
2466 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2467 *  and storing the retrieved information in data.  Release any acquired
2468 *  semaphores before exiting.
2469 **/
2470s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472	s32 ret_val;
2473	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2474
2475	ret_val = hw->phy.ops.acquire(hw);
2476	if (ret_val)
2477		return ret_val;
2478
2479	/* Page 800 works differently than the rest so it has its own func */
2480	if (page == BM_WUC_PAGE) {
2481		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2482							 true, false);
2483		goto release;
2484	}
2485
2486	hw->phy.addr = 1;
2487
2488	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2489		/* Page is shifted left, PHY expects (page x 32) */
2490		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2491						    page);
2492
2493		if (ret_val)
2494			goto release;
2495	}
2496
2497	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2498					   data);
2499release:
2500	hw->phy.ops.release(hw);
2501	return ret_val;
2502}
2503
2504/**
2505 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2506 *  @hw: pointer to the HW structure
2507 *  @offset: register offset to write to
2508 *  @data: data to write at register offset
2509 *
2510 *  Acquires semaphore, if necessary, then writes the data to PHY register
2511 *  at the offset.  Release any acquired semaphores before exiting.
2512 **/
2513s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2514{
2515	s32 ret_val;
2516	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518	ret_val = hw->phy.ops.acquire(hw);
2519	if (ret_val)
2520		return ret_val;
2521
2522	/* Page 800 works differently than the rest so it has its own func */
2523	if (page == BM_WUC_PAGE) {
2524		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2525							 false, false);
2526		goto release;
2527	}
2528
2529	hw->phy.addr = 1;
2530
2531	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532		/* Page is shifted left, PHY expects (page x 32) */
2533		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2534						    page);
2535
2536		if (ret_val)
2537			goto release;
2538	}
2539
2540	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2541					    data);
2542
2543release:
2544	hw->phy.ops.release(hw);
2545	return ret_val;
2546}
2547
2548/**
2549 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2550 *  @hw: pointer to the HW structure
2551 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 *
2553 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2554 *  address to store contents of the BM_WUC_ENABLE_REG register.
2555 **/
2556s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2557{
2558	s32 ret_val;
2559	u16 temp;
2560
2561	/* All page select, port ctrl and wakeup registers use phy address 1 */
2562	hw->phy.addr = 1;
2563
2564	/* Select Port Control Registers page */
2565	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2566	if (ret_val) {
2567		e_dbg("Could not set Port Control page\n");
2568		return ret_val;
2569	}
2570
2571	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2572	if (ret_val) {
2573		e_dbg("Could not read PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Enable both PHY wakeup mode and Wakeup register page writes.
2579	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2580	 */
2581	temp = *phy_reg;
2582	temp |= BM_WUC_ENABLE_BIT;
2583	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2584
2585	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2586	if (ret_val) {
2587		e_dbg("Could not write PHY register %d.%d\n",
2588		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2589		return ret_val;
2590	}
2591
2592	/* Select Host Wakeup Registers page - caller now able to write
2593	 * registers on the Wakeup registers page
2594	 */
2595	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2596}
2597
2598/**
2599 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2600 *  @hw: pointer to the HW structure
2601 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 *
2603 *  Restore BM_WUC_ENABLE_REG to its original value.
2604 *
2605 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2606 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2607 *  caller.
2608 **/
2609s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2610{
2611	s32 ret_val;
2612
2613	/* Select Port Control Registers page */
2614	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2615	if (ret_val) {
2616		e_dbg("Could not set Port Control page\n");
2617		return ret_val;
2618	}
2619
2620	/* Restore 769.17 to its original value */
2621	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2622	if (ret_val)
2623		e_dbg("Could not restore PHY register %d.%d\n",
2624		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2625
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2631 *  @hw: pointer to the HW structure
2632 *  @offset: register offset to be read or written
2633 *  @data: pointer to the data to read or write
2634 *  @read: determines if operation is read or write
2635 *  @page_set: BM_WUC_PAGE already set and access enabled
2636 *
2637 *  Read the PHY register at offset and store the retrieved information in
2638 *  data, or write data to PHY register at offset.  Note the procedure to
2639 *  access the PHY wakeup registers is different than reading the other PHY
2640 *  registers. It works as such:
2641 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2642 *  2) Set page to 800 for host (801 if we were manageability)
2643 *  3) Write the address using the address opcode (0x11)
2644 *  4) Read or write the data using the data opcode (0x12)
2645 *  5) Restore 769.17.2 to its original value
2646 *
2647 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2648 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 *
2650 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2651 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2652 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 **/
2654static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2655					  u16 *data, bool read, bool page_set)
2656{
2657	s32 ret_val;
2658	u16 reg = BM_PHY_REG_NUM(offset);
2659	u16 page = BM_PHY_REG_PAGE(offset);
2660	u16 phy_reg = 0;
2661
2662	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2663	if ((hw->mac.type == e1000_pchlan) &&
2664	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2665		e_dbg("Attempting to access page %d while gig enabled.\n",
2666		      page);
2667
2668	if (!page_set) {
2669		/* Enable access to PHY wakeup registers */
2670		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2671		if (ret_val) {
2672			e_dbg("Could not enable PHY wakeup reg access\n");
2673			return ret_val;
2674		}
2675	}
2676
2677	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2678
2679	/* Write the Wakeup register page offset value using opcode 0x11 */
2680	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2681	if (ret_val) {
2682		e_dbg("Could not write address opcode to page %d\n", page);
2683		return ret_val;
2684	}
2685
2686	if (read) {
2687		/* Read the Wakeup register page value using opcode 0x12 */
2688		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2689						   data);
2690	} else {
2691		/* Write the Wakeup register page value using opcode 0x12 */
2692		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2693						    *data);
2694	}
2695
2696	if (ret_val) {
2697		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2698		return ret_val;
2699	}
2700
2701	if (!page_set)
2702		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2703
2704	return ret_val;
2705}
2706
2707/**
2708 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_up_phy_copper(struct e1000_hw *hw)
2716{
2717	u16 mii_reg = 0;
 
2718
2719	/* The PHY will retain its settings across a power down/up cycle */
2720	e1e_rphy(hw, MII_BMCR, &mii_reg);
 
 
 
 
2721	mii_reg &= ~BMCR_PDOWN;
2722	e1e_wphy(hw, MII_BMCR, mii_reg);
2723}
2724
2725/**
2726 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2727 * @hw: pointer to the HW structure
2728 *
2729 * In the case of a PHY power down to save power, or to turn off link during a
2730 * driver unload, or wake on lan is not enabled, restore the link to previous
2731 * settings.
2732 **/
2733void e1000_power_down_phy_copper(struct e1000_hw *hw)
2734{
2735	u16 mii_reg = 0;
 
2736
2737	/* The PHY will retain its settings across a power down/up cycle */
2738	e1e_rphy(hw, MII_BMCR, &mii_reg);
 
 
 
 
2739	mii_reg |= BMCR_PDOWN;
2740	e1e_wphy(hw, MII_BMCR, mii_reg);
2741	usleep_range(1000, 2000);
2742}
2743
2744/**
2745 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2746 *  @hw: pointer to the HW structure
2747 *  @offset: register offset to be read
2748 *  @data: pointer to the read data
2749 *  @locked: semaphore has already been acquired or not
 
2750 *
2751 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2752 *  and stores the retrieved information in data.  Release any acquired
2753 *  semaphore before exiting.
2754 **/
2755static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2756				   bool locked, bool page_set)
2757{
2758	s32 ret_val;
2759	u16 page = BM_PHY_REG_PAGE(offset);
2760	u16 reg = BM_PHY_REG_NUM(offset);
2761	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2762
2763	if (!locked) {
2764		ret_val = hw->phy.ops.acquire(hw);
2765		if (ret_val)
2766			return ret_val;
2767	}
2768
2769	/* Page 800 works differently than the rest so it has its own func */
2770	if (page == BM_WUC_PAGE) {
2771		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2772							 true, page_set);
2773		goto out;
2774	}
2775
2776	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2777		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2778							 data, true);
2779		goto out;
2780	}
2781
2782	if (!page_set) {
2783		if (page == HV_INTC_FC_PAGE_START)
2784			page = 0;
2785
2786		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787			/* Page is shifted left, PHY expects (page x 32) */
2788			ret_val = e1000_set_page_igp(hw,
2789						     (page << IGP_PAGE_SHIFT));
2790
2791			hw->phy.addr = phy_addr;
2792
2793			if (ret_val)
2794				goto out;
2795		}
2796	}
2797
2798	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2799	      page << IGP_PAGE_SHIFT, reg);
2800
2801	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2802out:
2803	if (!locked)
2804		hw->phy.ops.release(hw);
2805
2806	return ret_val;
2807}
2808
2809/**
2810 *  e1000_read_phy_reg_hv -  Read HV PHY register
2811 *  @hw: pointer to the HW structure
2812 *  @offset: register offset to be read
2813 *  @data: pointer to the read data
2814 *
2815 *  Acquires semaphore then reads the PHY register at offset and stores
2816 *  the retrieved information in data.  Release the acquired semaphore
2817 *  before exiting.
2818 **/
2819s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2820{
2821	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2822}
2823
2824/**
2825 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2826 *  @hw: pointer to the HW structure
2827 *  @offset: register offset to be read
2828 *  @data: pointer to the read data
2829 *
2830 *  Reads the PHY register at offset and stores the retrieved information
2831 *  in data.  Assumes semaphore already acquired.
2832 **/
2833s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2834{
2835	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2836}
2837
2838/**
2839 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2840 *  @hw: pointer to the HW structure
2841 *  @offset: register offset to write to
2842 *  @data: data to write at register offset
2843 *
2844 *  Reads the PHY register at offset and stores the retrieved information
2845 *  in data.  Assumes semaphore already acquired and page already set.
2846 **/
2847s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2848{
2849	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2850}
2851
2852/**
2853 *  __e1000_write_phy_reg_hv - Write HV PHY register
2854 *  @hw: pointer to the HW structure
2855 *  @offset: register offset to write to
2856 *  @data: data to write at register offset
2857 *  @locked: semaphore has already been acquired or not
 
2858 *
2859 *  Acquires semaphore, if necessary, then writes the data to PHY register
2860 *  at the offset.  Release any acquired semaphores before exiting.
2861 **/
2862static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2863				    bool locked, bool page_set)
2864{
2865	s32 ret_val;
2866	u16 page = BM_PHY_REG_PAGE(offset);
2867	u16 reg = BM_PHY_REG_NUM(offset);
2868	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2869
2870	if (!locked) {
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874	}
2875
2876	/* Page 800 works differently than the rest so it has its own func */
2877	if (page == BM_WUC_PAGE) {
2878		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2879							 false, page_set);
2880		goto out;
2881	}
2882
2883	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2884		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2885							 &data, false);
2886		goto out;
2887	}
2888
2889	if (!page_set) {
2890		if (page == HV_INTC_FC_PAGE_START)
2891			page = 0;
2892
2893		/* Workaround MDIO accesses being disabled after entering IEEE
2894		 * Power Down (when bit 11 of the PHY Control register is set)
2895		 */
2896		if ((hw->phy.type == e1000_phy_82578) &&
2897		    (hw->phy.revision >= 1) &&
2898		    (hw->phy.addr == 2) &&
2899		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2900			u16 data2 = 0x7EFF;
2901
2902			ret_val = e1000_access_phy_debug_regs_hv(hw,
2903								 BIT(6) | 0x3,
2904								 &data2, false);
2905			if (ret_val)
2906				goto out;
2907		}
2908
2909		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910			/* Page is shifted left, PHY expects (page x 32) */
2911			ret_val = e1000_set_page_igp(hw,
2912						     (page << IGP_PAGE_SHIFT));
2913
2914			hw->phy.addr = phy_addr;
2915
2916			if (ret_val)
2917				goto out;
2918		}
2919	}
2920
2921	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922	      page << IGP_PAGE_SHIFT, reg);
2923
2924	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925					    data);
2926
2927out:
2928	if (!locked)
2929		hw->phy.ops.release(hw);
2930
2931	return ret_val;
2932}
2933
2934/**
2935 *  e1000_write_phy_reg_hv - Write HV PHY register
2936 *  @hw: pointer to the HW structure
2937 *  @offset: register offset to write to
2938 *  @data: data to write at register offset
2939 *
2940 *  Acquires semaphore then writes the data to PHY register at the offset.
2941 *  Release the acquired semaphores before exiting.
2942 **/
2943s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944{
2945	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946}
2947
2948/**
2949 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 *  @hw: pointer to the HW structure
2951 *  @offset: register offset to write to
2952 *  @data: data to write at register offset
2953 *
2954 *  Writes the data to PHY register at the offset.  Assumes semaphore
2955 *  already acquired.
2956 **/
2957s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958{
2959	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960}
2961
2962/**
2963 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2964 *  @hw: pointer to the HW structure
2965 *  @offset: register offset to write to
2966 *  @data: data to write at register offset
2967 *
2968 *  Writes the data to PHY register at the offset.  Assumes semaphore
2969 *  already acquired and page already set.
2970 **/
2971s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972{
2973	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974}
2975
2976/**
2977 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 *  @page: page to be accessed
2979 **/
2980static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981{
2982	u32 phy_addr = 2;
2983
2984	if (page >= HV_INTC_FC_PAGE_START)
2985		phy_addr = 1;
2986
2987	return phy_addr;
2988}
2989
2990/**
2991 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to be read or written
2994 *  @data: pointer to the data to be read or written
2995 *  @read: determines if operation is read or write
2996 *
2997 *  Reads the PHY register at offset and stores the retreived information
2998 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2999 *  to access these regs uses the address port and data port to read/write.
3000 *  These accesses done with PHY address 2 and without using pages.
3001 **/
3002static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003					  u16 *data, bool read)
3004{
3005	s32 ret_val;
3006	u32 addr_reg;
3007	u32 data_reg;
3008
3009	/* This takes care of the difference with desktop vs mobile phy */
3010	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011		    I82578_ADDR_REG : I82577_ADDR_REG);
3012	data_reg = addr_reg + 1;
3013
3014	/* All operations in this function are phy address 2 */
3015	hw->phy.addr = 2;
3016
3017	/* masking with 0x3F to remove the page from offset */
3018	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019	if (ret_val) {
3020		e_dbg("Could not write the Address Offset port register\n");
3021		return ret_val;
3022	}
3023
3024	/* Read or write the data value next */
3025	if (read)
3026		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027	else
3028		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030	if (ret_val)
3031		e_dbg("Could not access the Data port register\n");
3032
3033	return ret_val;
3034}
3035
3036/**
3037 *  e1000_link_stall_workaround_hv - Si workaround
3038 *  @hw: pointer to the HW structure
3039 *
3040 *  This function works around a Si bug where the link partner can get
3041 *  a link up indication before the PHY does.  If small packets are sent
3042 *  by the link partner they can be placed in the packet buffer without
3043 *  being properly accounted for by the PHY and will stall preventing
3044 *  further packets from being received.  The workaround is to clear the
3045 *  packet buffer after the PHY detects link up.
3046 **/
3047s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048{
3049	s32 ret_val = 0;
3050	u16 data;
3051
3052	if (hw->phy.type != e1000_phy_82578)
3053		return 0;
3054
3055	/* Do not apply workaround if in PHY loopback bit 14 set */
3056	e1e_rphy(hw, MII_BMCR, &data);
 
 
 
 
3057	if (data & BMCR_LOOPBACK)
3058		return 0;
3059
3060	/* check if link is up and at 1Gbps */
3061	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062	if (ret_val)
3063		return ret_val;
3064
3065	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066		 BM_CS_STATUS_SPEED_MASK);
3067
3068	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069		     BM_CS_STATUS_SPEED_1000))
3070		return 0;
3071
3072	msleep(200);
3073
3074	/* flush the packets in the fifo buffer */
3075	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3078	if (ret_val)
3079		return ret_val;
3080
3081	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082}
3083
3084/**
3085 *  e1000_check_polarity_82577 - Checks the polarity.
3086 *  @hw: pointer to the HW structure
3087 *
3088 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 *  Polarity is determined based on the PHY specific status register.
3091 **/
3092s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093{
3094	struct e1000_phy_info *phy = &hw->phy;
3095	s32 ret_val;
3096	u16 data;
3097
3098	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100	if (!ret_val)
3101		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102				       ? e1000_rev_polarity_reversed
3103				       : e1000_rev_polarity_normal);
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 *  @hw: pointer to the HW structure
3111 *
3112 *  Calls the PHY setup function to force speed and duplex.
3113 **/
3114s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115{
3116	struct e1000_phy_info *phy = &hw->phy;
3117	s32 ret_val;
3118	u16 phy_data;
3119	bool link;
3120
3121	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122	if (ret_val)
3123		return ret_val;
3124
3125	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128	if (ret_val)
3129		return ret_val;
3130
3131	udelay(1);
3132
3133	if (phy->autoneg_wait_to_complete) {
3134		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137						      100000, &link);
3138		if (ret_val)
3139			return ret_val;
3140
3141		if (!link)
3142			e_dbg("Link taking longer than expected.\n");
3143
3144		/* Try once more */
3145		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146						      100000, &link);
3147	}
3148
3149	return ret_val;
3150}
3151
3152/**
3153 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 *  @hw: pointer to the HW structure
3155 *
3156 *  Read PHY status to determine if link is up.  If link is up, then
3157 *  set/determine 10base-T extended distance and polarity correction.  Read
3158 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3159 *  determine on the cable length, local and remote receiver.
3160 **/
3161s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162{
3163	struct e1000_phy_info *phy = &hw->phy;
3164	s32 ret_val;
3165	u16 data;
3166	bool link;
3167
3168	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169	if (ret_val)
3170		return ret_val;
3171
3172	if (!link) {
3173		e_dbg("Phy info is only valid if link is up\n");
3174		return -E1000_ERR_CONFIG;
3175	}
3176
3177	phy->polarity_correction = true;
3178
3179	ret_val = e1000_check_polarity_82577(hw);
3180	if (ret_val)
3181		return ret_val;
3182
3183	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184	if (ret_val)
3185		return ret_val;
3186
3187	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191		ret_val = hw->phy.ops.get_cable_length(hw);
3192		if (ret_val)
3193			return ret_val;
3194
3195		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196		if (ret_val)
3197			return ret_val;
3198
3199		phy->local_rx = (data & LPA_1000LOCALRXOK)
3200		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201
3202		phy->remote_rx = (data & LPA_1000REMRXOK)
3203		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204	} else {
3205		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206		phy->local_rx = e1000_1000t_rx_status_undefined;
3207		phy->remote_rx = e1000_1000t_rx_status_undefined;
3208	}
3209
3210	return 0;
3211}
3212
3213/**
3214 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 *  @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
3220s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221{
3222	struct e1000_phy_info *phy = &hw->phy;
3223	s32 ret_val;
3224	u16 phy_data, length;
3225
3226	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227	if (ret_val)
3228		return ret_val;
3229
3230	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234		return -E1000_ERR_PHY;
3235
3236	phy->cable_length = length;
3237
3238	return 0;
3239}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5
   6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   8					  u16 *data, bool read, bool page_set);
   9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  11					  u16 *data, bool read);
  12
  13/* Cable length tables */
  14static const u16 e1000_m88_cable_length_table[] = {
  15	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  16};
  17
  18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_m88_cable_length_table)
  20
  21static const u16 e1000_igp_2_cable_length_table[] = {
  22	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  23	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  24	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  25	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  26	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  27	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  28	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  29	124
  30};
  31
  32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  33		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  34
  35/**
  36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  37 *  @hw: pointer to the HW structure
  38 *
  39 *  Read the PHY management control register and check whether a PHY reset
  40 *  is blocked.  If a reset is not blocked return 0, otherwise
  41 *  return E1000_BLK_PHY_RESET (12).
  42 **/
  43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  44{
  45	u32 manc;
  46
  47	manc = er32(MANC);
  48
  49	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  50}
  51
  52/**
  53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  54 *  @hw: pointer to the HW structure
  55 *
  56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  57 *  revision in the hardware structure.
  58 **/
  59s32 e1000e_get_phy_id(struct e1000_hw *hw)
  60{
  61	struct e1000_phy_info *phy = &hw->phy;
  62	s32 ret_val = 0;
  63	u16 phy_id;
  64	u16 retry_count = 0;
  65
  66	if (!phy->ops.read_reg)
  67		return 0;
  68
  69	while (retry_count < 2) {
  70		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  71		if (ret_val)
  72			return ret_val;
  73
  74		phy->id = (u32)(phy_id << 16);
  75		usleep_range(20, 40);
  76		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  77		if (ret_val)
  78			return ret_val;
  79
  80		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  81		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  82
  83		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  84			return 0;
  85
  86		retry_count++;
  87	}
  88
  89	return 0;
  90}
  91
  92/**
  93 *  e1000e_phy_reset_dsp - Reset PHY DSP
  94 *  @hw: pointer to the HW structure
  95 *
  96 *  Reset the digital signal processor.
  97 **/
  98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99{
 100	s32 ret_val;
 101
 102	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 103	if (ret_val)
 104		return ret_val;
 105
 106	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 107}
 108
 109/**
 110 *  e1000e_read_phy_reg_mdic - Read MDI control register
 111 *  @hw: pointer to the HW structure
 112 *  @offset: register offset to be read
 113 *  @data: pointer to the read data
 114 *
 115 *  Reads the MDI control register in the PHY at offset and stores the
 116 *  information read to data.
 117 **/
 118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 119{
 120	struct e1000_phy_info *phy = &hw->phy;
 121	u32 i, mdic = 0;
 122
 123	if (offset > MAX_PHY_REG_ADDRESS) {
 124		e_dbg("PHY Address %d is out of range\n", offset);
 125		return -E1000_ERR_PARAM;
 126	}
 127
 128	/* Set up Op-code, Phy Address, and register offset in the MDI
 129	 * Control register.  The MAC will take care of interfacing with the
 130	 * PHY to retrieve the desired data.
 131	 */
 132	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 133		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 134		(E1000_MDIC_OP_READ));
 135
 136	ew32(MDIC, mdic);
 137
 138	/* Poll the ready bit to see if the MDI read completed
 139	 * Increasing the time out as testing showed failures with
 140	 * the lower time out
 141	 */
 142	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 143		udelay(50);
 144		mdic = er32(MDIC);
 145		if (mdic & E1000_MDIC_READY)
 146			break;
 147	}
 148	if (!(mdic & E1000_MDIC_READY)) {
 149		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 150		return -E1000_ERR_PHY;
 151	}
 152	if (mdic & E1000_MDIC_ERROR) {
 153		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 154		return -E1000_ERR_PHY;
 155	}
 156	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 157		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 158		      offset,
 159		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 169
 170	return 0;
 171}
 172
 173/**
 174 *  e1000e_write_phy_reg_mdic - Write MDI control register
 175 *  @hw: pointer to the HW structure
 176 *  @offset: register offset to write to
 177 *  @data: data to write to register at offset
 178 *
 179 *  Writes data to MDI control register in the PHY at offset.
 180 **/
 181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 182{
 183	struct e1000_phy_info *phy = &hw->phy;
 184	u32 i, mdic = 0;
 185
 186	if (offset > MAX_PHY_REG_ADDRESS) {
 187		e_dbg("PHY Address %d is out of range\n", offset);
 188		return -E1000_ERR_PARAM;
 189	}
 190
 191	/* Set up Op-code, Phy Address, and register offset in the MDI
 192	 * Control register.  The MAC will take care of interfacing with the
 193	 * PHY to retrieve the desired data.
 194	 */
 195	mdic = (((u32)data) |
 196		(offset << E1000_MDIC_REG_SHIFT) |
 197		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 198		(E1000_MDIC_OP_WRITE));
 199
 200	ew32(MDIC, mdic);
 201
 202	/* Poll the ready bit to see if the MDI read completed
 203	 * Increasing the time out as testing showed failures with
 204	 * the lower time out
 205	 */
 206	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 207		udelay(50);
 208		mdic = er32(MDIC);
 209		if (mdic & E1000_MDIC_READY)
 210			break;
 211	}
 212	if (!(mdic & E1000_MDIC_READY)) {
 213		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 214		return -E1000_ERR_PHY;
 215	}
 216	if (mdic & E1000_MDIC_ERROR) {
 217		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 218		return -E1000_ERR_PHY;
 219	}
 220	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 221		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 222		      offset,
 223		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 224		return -E1000_ERR_PHY;
 225	}
 226
 227	/* Allow some time after each MDIC transaction to avoid
 228	 * reading duplicate data in the next MDIC transaction.
 229	 */
 230	if (hw->mac.type == e1000_pch2lan)
 231		udelay(100);
 232
 233	return 0;
 234}
 235
 236/**
 237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 238 *  @hw: pointer to the HW structure
 239 *  @offset: register offset to be read
 240 *  @data: pointer to the read data
 241 *
 242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 243 *  and storing the retrieved information in data.  Release any acquired
 244 *  semaphores before exiting.
 245 **/
 246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 247{
 248	s32 ret_val;
 249
 250	ret_val = hw->phy.ops.acquire(hw);
 251	if (ret_val)
 252		return ret_val;
 253
 254	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 255					   data);
 256
 257	hw->phy.ops.release(hw);
 258
 259	return ret_val;
 260}
 261
 262/**
 263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 264 *  @hw: pointer to the HW structure
 265 *  @offset: register offset to write to
 266 *  @data: data to write at register offset
 267 *
 268 *  Acquires semaphore, if necessary, then writes the data to PHY register
 269 *  at the offset.  Release any acquired semaphores before exiting.
 270 **/
 271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273	s32 ret_val;
 274
 275	ret_val = hw->phy.ops.acquire(hw);
 276	if (ret_val)
 277		return ret_val;
 278
 279	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 280					    data);
 281
 282	hw->phy.ops.release(hw);
 283
 284	return ret_val;
 285}
 286
 287/**
 288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 289 *  @hw: pointer to the HW structure
 290 *  @page: page to set (shifted left when necessary)
 291 *
 292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 294 *  must set it appropriately (if necessary) after this function returns.
 295 **/
 296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 297{
 298	e_dbg("Setting page 0x%x\n", page);
 299
 300	hw->phy.addr = 1;
 301
 302	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 303}
 304
 305/**
 306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 307 *  @hw: pointer to the HW structure
 308 *  @offset: register offset to be read
 309 *  @data: pointer to the read data
 310 *  @locked: semaphore has already been acquired or not
 311 *
 312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 313 *  and stores the retrieved information in data.  Release any acquired
 314 *  semaphores before exiting.
 315 **/
 316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 317				     bool locked)
 318{
 319	s32 ret_val = 0;
 320
 321	if (!locked) {
 322		if (!hw->phy.ops.acquire)
 323			return 0;
 324
 325		ret_val = hw->phy.ops.acquire(hw);
 326		if (ret_val)
 327			return ret_val;
 328	}
 329
 330	if (offset > MAX_PHY_MULTI_PAGE_REG)
 331		ret_val = e1000e_write_phy_reg_mdic(hw,
 332						    IGP01E1000_PHY_PAGE_SELECT,
 333						    (u16)offset);
 334	if (!ret_val)
 335		ret_val = e1000e_read_phy_reg_mdic(hw,
 336						   MAX_PHY_REG_ADDRESS & offset,
 337						   data);
 338	if (!locked)
 339		hw->phy.ops.release(hw);
 340
 341	return ret_val;
 342}
 343
 344/**
 345 *  e1000e_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore then reads the PHY register at offset and stores the
 351 *  retrieved information in data.
 352 *  Release the acquired semaphore before exiting.
 353 **/
 354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 357}
 358
 359/**
 360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 361 *  @hw: pointer to the HW structure
 362 *  @offset: register offset to be read
 363 *  @data: pointer to the read data
 364 *
 365 *  Reads the PHY register at offset and stores the retrieved information
 366 *  in data.  Assumes semaphore already acquired.
 367 **/
 368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 369{
 370	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 371}
 372
 373/**
 374 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 375 *  @hw: pointer to the HW structure
 376 *  @offset: register offset to write to
 377 *  @data: data to write at register offset
 378 *  @locked: semaphore has already been acquired or not
 379 *
 380 *  Acquires semaphore, if necessary, then writes the data to PHY register
 381 *  at the offset.  Release any acquired semaphores before exiting.
 382 **/
 383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 384				      bool locked)
 385{
 386	s32 ret_val = 0;
 387
 388	if (!locked) {
 389		if (!hw->phy.ops.acquire)
 390			return 0;
 391
 392		ret_val = hw->phy.ops.acquire(hw);
 393		if (ret_val)
 394			return ret_val;
 395	}
 396
 397	if (offset > MAX_PHY_MULTI_PAGE_REG)
 398		ret_val = e1000e_write_phy_reg_mdic(hw,
 399						    IGP01E1000_PHY_PAGE_SELECT,
 400						    (u16)offset);
 401	if (!ret_val)
 402		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 403						    offset, data);
 404	if (!locked)
 405		hw->phy.ops.release(hw);
 406
 407	return ret_val;
 408}
 409
 410/**
 411 *  e1000e_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 422}
 423
 424/**
 425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 426 *  @hw: pointer to the HW structure
 427 *  @offset: register offset to write to
 428 *  @data: data to write at register offset
 429 *
 430 *  Writes the data to PHY register at the offset.
 431 *  Assumes semaphore already acquired.
 432 **/
 433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 434{
 435	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 436}
 437
 438/**
 439 *  __e1000_read_kmrn_reg - Read kumeran register
 440 *  @hw: pointer to the HW structure
 441 *  @offset: register offset to be read
 442 *  @data: pointer to the read data
 443 *  @locked: semaphore has already been acquired or not
 444 *
 445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 446 *  using the kumeran interface.  The information retrieved is stored in data.
 447 *  Release any acquired semaphores before exiting.
 448 **/
 449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 450				 bool locked)
 451{
 452	u32 kmrnctrlsta;
 453
 454	if (!locked) {
 455		s32 ret_val = 0;
 456
 457		if (!hw->phy.ops.acquire)
 458			return 0;
 459
 460		ret_val = hw->phy.ops.acquire(hw);
 461		if (ret_val)
 462			return ret_val;
 463	}
 464
 465	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 466		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 467	ew32(KMRNCTRLSTA, kmrnctrlsta);
 468	e1e_flush();
 469
 470	udelay(2);
 471
 472	kmrnctrlsta = er32(KMRNCTRLSTA);
 473	*data = (u16)kmrnctrlsta;
 474
 475	if (!locked)
 476		hw->phy.ops.release(hw);
 477
 478	return 0;
 479}
 480
 481/**
 482 *  e1000e_read_kmrn_reg -  Read kumeran register
 483 *  @hw: pointer to the HW structure
 484 *  @offset: register offset to be read
 485 *  @data: pointer to the read data
 486 *
 487 *  Acquires semaphore then reads the PHY register at offset using the
 488 *  kumeran interface.  The information retrieved is stored in data.
 489 *  Release the acquired semaphore before exiting.
 490 **/
 491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 492{
 493	return __e1000_read_kmrn_reg(hw, offset, data, false);
 494}
 495
 496/**
 497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 498 *  @hw: pointer to the HW structure
 499 *  @offset: register offset to be read
 500 *  @data: pointer to the read data
 501 *
 502 *  Reads the PHY register at offset using the kumeran interface.  The
 503 *  information retrieved is stored in data.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 507{
 508	return __e1000_read_kmrn_reg(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_write_kmrn_reg - Write kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to write to
 515 *  @data: data to write at register offset
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 519 *  at the offset using the kumeran interface.  Release any acquired semaphores
 520 *  before exiting.
 521 **/
 522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 523				  bool locked)
 524{
 525	u32 kmrnctrlsta;
 526
 527	if (!locked) {
 528		s32 ret_val = 0;
 529
 530		if (!hw->phy.ops.acquire)
 531			return 0;
 532
 533		ret_val = hw->phy.ops.acquire(hw);
 534		if (ret_val)
 535			return ret_val;
 536	}
 537
 538	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 539		       E1000_KMRNCTRLSTA_OFFSET) | data;
 540	ew32(KMRNCTRLSTA, kmrnctrlsta);
 541	e1e_flush();
 542
 543	udelay(2);
 544
 545	if (!locked)
 546		hw->phy.ops.release(hw);
 547
 548	return 0;
 549}
 550
 551/**
 552 *  e1000e_write_kmrn_reg -  Write kumeran register
 553 *  @hw: pointer to the HW structure
 554 *  @offset: register offset to write to
 555 *  @data: data to write at register offset
 556 *
 557 *  Acquires semaphore then writes the data to the PHY register at the offset
 558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 559 **/
 560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 561{
 562	return __e1000_write_kmrn_reg(hw, offset, data, false);
 563}
 564
 565/**
 566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 567 *  @hw: pointer to the HW structure
 568 *  @offset: register offset to write to
 569 *  @data: data to write at register offset
 570 *
 571 *  Write the data to PHY register at the offset using the kumeran interface.
 572 *  Assumes semaphore already acquired.
 573 **/
 574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 575{
 576	return __e1000_write_kmrn_reg(hw, offset, data, true);
 577}
 578
 579/**
 580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 581 *  @hw: pointer to the HW structure
 582 *
 583 *  Sets up Master/slave mode
 584 **/
 585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 586{
 587	s32 ret_val;
 588	u16 phy_data;
 589
 590	/* Resolve Master/Slave mode */
 591	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 592	if (ret_val)
 593		return ret_val;
 594
 595	/* load defaults for future use */
 596	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 597	    ((phy_data & CTL1000_AS_MASTER) ?
 598	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 599
 600	switch (hw->phy.ms_type) {
 601	case e1000_ms_force_master:
 602		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 603		break;
 604	case e1000_ms_force_slave:
 605		phy_data |= CTL1000_ENABLE_MASTER;
 606		phy_data &= ~(CTL1000_AS_MASTER);
 607		break;
 608	case e1000_ms_auto:
 609		phy_data &= ~CTL1000_ENABLE_MASTER;
 610		fallthrough;
 611	default:
 612		break;
 613	}
 614
 615	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 616}
 617
 618/**
 619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 620 *  @hw: pointer to the HW structure
 621 *
 622 *  Sets up Carrier-sense on Transmit and downshift values.
 623 **/
 624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 625{
 626	s32 ret_val;
 627	u16 phy_data;
 628
 629	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 630	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 631	if (ret_val)
 632		return ret_val;
 633
 634	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 635
 636	/* Enable downshift */
 637	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 638
 639	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 640	if (ret_val)
 641		return ret_val;
 642
 643	/* Set MDI/MDIX mode */
 644	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 645	if (ret_val)
 646		return ret_val;
 647	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 648	/* Options:
 649	 *   0 - Auto (default)
 650	 *   1 - MDI mode
 651	 *   2 - MDI-X mode
 652	 */
 653	switch (hw->phy.mdix) {
 654	case 1:
 655		break;
 656	case 2:
 657		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 658		break;
 659	case 0:
 660	default:
 661		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 662		break;
 663	}
 664	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 665	if (ret_val)
 666		return ret_val;
 667
 668	return e1000_set_master_slave_mode(hw);
 669}
 670
 671/**
 672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 673 *  @hw: pointer to the HW structure
 674 *
 675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 676 *  and downshift values are set also.
 677 **/
 678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 679{
 680	struct e1000_phy_info *phy = &hw->phy;
 681	s32 ret_val;
 682	u16 phy_data;
 683
 684	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 685	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688
 689	/* For BM PHY this bit is downshift enable */
 690	if (phy->type != e1000_phy_bm)
 691		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 692
 693	/* Options:
 694	 *   MDI/MDI-X = 0 (default)
 695	 *   0 - Auto for all speeds
 696	 *   1 - MDI mode
 697	 *   2 - MDI-X mode
 698	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 699	 */
 700	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 701
 702	switch (phy->mdix) {
 703	case 1:
 704		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 705		break;
 706	case 2:
 707		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 708		break;
 709	case 3:
 710		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 711		break;
 712	case 0:
 713	default:
 714		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 715		break;
 716	}
 717
 718	/* Options:
 719	 *   disable_polarity_correction = 0 (default)
 720	 *       Automatic Correction for Reversed Cable Polarity
 721	 *   0 - Disabled
 722	 *   1 - Enabled
 723	 */
 724	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 725	if (phy->disable_polarity_correction)
 726		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 727
 728	/* Enable downshift on BM (disabled by default) */
 729	if (phy->type == e1000_phy_bm) {
 730		/* For 82574/82583, first disable then enable downshift */
 731		if (phy->id == BME1000_E_PHY_ID_R2) {
 732			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 733			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 734					   phy_data);
 735			if (ret_val)
 736				return ret_val;
 737			/* Commit the changes. */
 738			ret_val = phy->ops.commit(hw);
 739			if (ret_val) {
 740				e_dbg("Error committing the PHY changes\n");
 741				return ret_val;
 742			}
 743		}
 744
 745		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 746	}
 747
 748	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 749	if (ret_val)
 750		return ret_val;
 751
 752	if ((phy->type == e1000_phy_m88) &&
 753	    (phy->revision < E1000_REVISION_4) &&
 754	    (phy->id != BME1000_E_PHY_ID_R2)) {
 755		/* Force TX_CLK in the Extended PHY Specific Control Register
 756		 * to 25MHz clock.
 757		 */
 758		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 759		if (ret_val)
 760			return ret_val;
 761
 762		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 763
 764		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 765			/* 82573L PHY - set the downshift counter to 5x. */
 766			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 767			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 768		} else {
 769			/* Configure Master and Slave downshift values */
 770			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 771				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 772			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 773				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 774		}
 775		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 776		if (ret_val)
 777			return ret_val;
 778	}
 779
 780	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 781		/* Set PHY page 0, register 29 to 0x0003 */
 782		ret_val = e1e_wphy(hw, 29, 0x0003);
 783		if (ret_val)
 784			return ret_val;
 785
 786		/* Set PHY page 0, register 30 to 0x0000 */
 787		ret_val = e1e_wphy(hw, 30, 0x0000);
 788		if (ret_val)
 789			return ret_val;
 790	}
 791
 792	/* Commit the changes. */
 793	if (phy->ops.commit) {
 794		ret_val = phy->ops.commit(hw);
 795		if (ret_val) {
 796			e_dbg("Error committing the PHY changes\n");
 797			return ret_val;
 798		}
 799	}
 800
 801	if (phy->type == e1000_phy_82578) {
 802		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 803		if (ret_val)
 804			return ret_val;
 805
 806		/* 82578 PHY - set the downshift count to 1x. */
 807		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 808		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 809		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 810		if (ret_val)
 811			return ret_val;
 812	}
 813
 814	return 0;
 815}
 816
 817/**
 818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 819 *  @hw: pointer to the HW structure
 820 *
 821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 822 *  igp PHY's.
 823 **/
 824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 825{
 826	struct e1000_phy_info *phy = &hw->phy;
 827	s32 ret_val;
 828	u16 data;
 829
 830	ret_val = e1000_phy_hw_reset(hw);
 831	if (ret_val) {
 832		e_dbg("Error resetting the PHY.\n");
 833		return ret_val;
 834	}
 835
 836	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 837	 * timeout issues when LFS is enabled.
 838	 */
 839	msleep(100);
 840
 841	/* disable lplu d0 during driver init */
 842	if (hw->phy.ops.set_d0_lplu_state) {
 843		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 844		if (ret_val) {
 845			e_dbg("Error Disabling LPLU D0\n");
 846			return ret_val;
 847		}
 848	}
 849	/* Configure mdi-mdix settings */
 850	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 851	if (ret_val)
 852		return ret_val;
 853
 854	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 855
 856	switch (phy->mdix) {
 857	case 1:
 858		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 2:
 861		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 862		break;
 863	case 0:
 864	default:
 865		data |= IGP01E1000_PSCR_AUTO_MDIX;
 866		break;
 867	}
 868	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	/* set auto-master slave resolution settings */
 873	if (hw->mac.autoneg) {
 874		/* when autonegotiation advertisement is only 1000Mbps then we
 875		 * should disable SmartSpeed and enable Auto MasterSlave
 876		 * resolution as hardware default.
 877		 */
 878		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 879			/* Disable SmartSpeed */
 880			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881					   &data);
 882			if (ret_val)
 883				return ret_val;
 884
 885			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 886			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 887					   data);
 888			if (ret_val)
 889				return ret_val;
 890
 891			/* Set auto Master/Slave resolution process */
 892			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 893			if (ret_val)
 894				return ret_val;
 895
 896			data &= ~CTL1000_ENABLE_MASTER;
 897			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 898			if (ret_val)
 899				return ret_val;
 900		}
 901
 902		ret_val = e1000_set_master_slave_mode(hw);
 903	}
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 910 *  @hw: pointer to the HW structure
 911 *
 912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 913 *  register and if the PHY is already setup for auto-negotiation, then
 914 *  return successful.  Otherwise, setup advertisement and flow control to
 915 *  the appropriate values for the wanted auto-negotiation.
 916 **/
 917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 918{
 919	struct e1000_phy_info *phy = &hw->phy;
 920	s32 ret_val;
 921	u16 mii_autoneg_adv_reg;
 922	u16 mii_1000t_ctrl_reg = 0;
 923
 924	phy->autoneg_advertised &= phy->autoneg_mask;
 925
 926	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 927	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 928	if (ret_val)
 929		return ret_val;
 930
 931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 932		/* Read the MII 1000Base-T Control Register (Address 9). */
 933		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 934		if (ret_val)
 935			return ret_val;
 936	}
 937
 938	/* Need to parse both autoneg_advertised and fc and set up
 939	 * the appropriate PHY registers.  First we will parse for
 940	 * autoneg_advertised software override.  Since we can advertise
 941	 * a plethora of combinations, we need to check each bit
 942	 * individually.
 943	 */
 944
 945	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 946	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 947	 * the  1000Base-T Control Register (Address 9).
 948	 */
 949	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 950				 ADVERTISE_100HALF |
 951				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 952	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 953
 954	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 955
 956	/* Do we want to advertise 10 Mb Half Duplex? */
 957	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 958		e_dbg("Advertise 10mb Half duplex\n");
 959		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 960	}
 961
 962	/* Do we want to advertise 10 Mb Full Duplex? */
 963	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 964		e_dbg("Advertise 10mb Full duplex\n");
 965		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 966	}
 967
 968	/* Do we want to advertise 100 Mb Half Duplex? */
 969	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 970		e_dbg("Advertise 100mb Half duplex\n");
 971		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 972	}
 973
 974	/* Do we want to advertise 100 Mb Full Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 976		e_dbg("Advertise 100mb Full duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 978	}
 979
 980	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 981	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 982		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 983
 984	/* Do we want to advertise 1000 Mb Full Duplex? */
 985	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 986		e_dbg("Advertise 1000mb Full duplex\n");
 987		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 988	}
 989
 990	/* Check for a software override of the flow control settings, and
 991	 * setup the PHY advertisement registers accordingly.  If
 992	 * auto-negotiation is enabled, then software will have to set the
 993	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 994	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 995	 * negotiation.
 996	 *
 997	 * The possible values of the "fc" parameter are:
 998	 *      0:  Flow control is completely disabled
 999	 *      1:  Rx flow control is enabled (we can receive pause frames
1000	 *          but not send pause frames).
1001	 *      2:  Tx flow control is enabled (we can send pause frames
1002	 *          but we do not support receiving pause frames).
1003	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004	 *  other:  No software override.  The flow control configuration
1005	 *          in the EEPROM is used.
1006	 */
1007	switch (hw->fc.current_mode) {
1008	case e1000_fc_none:
1009		/* Flow control (Rx & Tx) is completely disabled by a
1010		 * software over-ride.
1011		 */
1012		mii_autoneg_adv_reg &=
1013		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1014		break;
1015	case e1000_fc_rx_pause:
1016		/* Rx Flow control is enabled, and Tx Flow control is
1017		 * disabled, by a software over-ride.
1018		 *
1019		 * Since there really isn't a way to advertise that we are
1020		 * capable of Rx Pause ONLY, we will advertise that we
1021		 * support both symmetric and asymmetric Rx PAUSE.  Later
1022		 * (in e1000e_config_fc_after_link_up) we will disable the
1023		 * hw's ability to send PAUSE frames.
1024		 */
1025		mii_autoneg_adv_reg |=
1026		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1027		break;
1028	case e1000_fc_tx_pause:
1029		/* Tx Flow control is enabled, and Rx Flow control is
1030		 * disabled, by a software over-ride.
1031		 */
1032		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1034		break;
1035	case e1000_fc_full:
1036		/* Flow control (both Rx and Tx) is enabled by a software
1037		 * over-ride.
1038		 */
1039		mii_autoneg_adv_reg |=
1040		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1041		break;
1042	default:
1043		e_dbg("Flow control param set incorrectly\n");
1044		return -E1000_ERR_CONFIG;
1045	}
1046
1047	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048	if (ret_val)
1049		return ret_val;
1050
1051	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056	return ret_val;
1057}
1058
1059/**
1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 *  @hw: pointer to the HW structure
1062 *
1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
1065 *  and restart the negotiation process between the link partner.  If
1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067 **/
1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069{
1070	struct e1000_phy_info *phy = &hw->phy;
1071	s32 ret_val;
1072	u16 phy_ctrl;
1073
1074	/* Perform some bounds checking on the autoneg advertisement
1075	 * parameter.
1076	 */
1077	phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079	/* If autoneg_advertised is zero, we assume it was not defaulted
1080	 * by the calling code so we set to advertise full capability.
1081	 */
1082	if (!phy->autoneg_advertised)
1083		phy->autoneg_advertised = phy->autoneg_mask;
1084
1085	e_dbg("Reconfiguring auto-neg advertisement params\n");
1086	ret_val = e1000_phy_setup_autoneg(hw);
1087	if (ret_val) {
1088		e_dbg("Error Setting up Auto-Negotiation\n");
1089		return ret_val;
1090	}
1091	e_dbg("Restarting Auto-Neg\n");
1092
1093	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094	 * the Auto Neg Restart bit in the PHY control register.
1095	 */
1096	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097	if (ret_val)
1098		return ret_val;
1099
1100	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	/* Does the user want to wait for Auto-Neg to complete here, or
1106	 * check at a later time (for example, callback routine).
1107	 */
1108	if (phy->autoneg_wait_to_complete) {
1109		ret_val = e1000_wait_autoneg(hw);
1110		if (ret_val) {
1111			e_dbg("Error while waiting for autoneg to complete\n");
1112			return ret_val;
1113		}
1114	}
1115
1116	hw->mac.get_link_status = true;
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000e_setup_copper_link - Configure copper link settings
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Calls the appropriate function to configure the link for auto-neg or forced
1126 *  speed and duplex.  Then we check for link, once link is established calls
1127 *  to configure collision distance and flow control are called.  If link is
1128 *  not established, we return -E1000_ERR_PHY (-2).
1129 **/
1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131{
1132	s32 ret_val;
1133	bool link;
1134
1135	if (hw->mac.autoneg) {
1136		/* Setup autoneg and flow control advertisement and perform
1137		 * autonegotiation.
1138		 */
1139		ret_val = e1000_copper_link_autoneg(hw);
1140		if (ret_val)
1141			return ret_val;
1142	} else {
1143		/* PHY will be set to 10H, 10F, 100H or 100F
1144		 * depending on user settings.
1145		 */
1146		e_dbg("Forcing Speed and Duplex\n");
1147		ret_val = hw->phy.ops.force_speed_duplex(hw);
1148		if (ret_val) {
1149			e_dbg("Error Forcing Speed and Duplex\n");
1150			return ret_val;
1151		}
1152	}
1153
1154	/* Check link status. Wait up to 100 microseconds for link to become
1155	 * valid.
1156	 */
1157	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158					      &link);
1159	if (ret_val)
1160		return ret_val;
1161
1162	if (link) {
1163		e_dbg("Valid link established!!!\n");
1164		hw->mac.ops.config_collision_dist(hw);
1165		ret_val = e1000e_config_fc_after_link_up(hw);
1166	} else {
1167		e_dbg("Unable to establish link!!!\n");
1168	}
1169
1170	return ret_val;
1171}
1172
1173/**
1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
1178 *  auto-crossover to force MDI manually.  Waits for link and returns
1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180 **/
1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182{
1183	struct e1000_phy_info *phy = &hw->phy;
1184	s32 ret_val;
1185	u16 phy_data;
1186	bool link;
1187
1188	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189	if (ret_val)
1190		return ret_val;
1191
1192	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195	if (ret_val)
1196		return ret_val;
1197
1198	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1199	 * forced whenever speed and duplex are forced.
1200	 */
1201	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202	if (ret_val)
1203		return ret_val;
1204
1205	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209	if (ret_val)
1210		return ret_val;
1211
1212	e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214	udelay(1);
1215
1216	if (phy->autoneg_wait_to_complete) {
1217		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220						      100000, &link);
1221		if (ret_val)
1222			return ret_val;
1223
1224		if (!link)
1225			e_dbg("Link taking longer than expected.\n");
1226
1227		/* Try once more */
1228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229						      100000, &link);
1230	}
1231
1232	return ret_val;
1233}
1234
1235/**
1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 *  @hw: pointer to the HW structure
1238 *
1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243 *  successful completion, else return corresponding error code.
1244 **/
1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246{
1247	struct e1000_phy_info *phy = &hw->phy;
1248	s32 ret_val;
1249	u16 phy_data;
1250	bool link;
1251
1252	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1253	 * forced whenever speed and duplex are forced.
1254	 */
1255	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256	if (ret_val)
1257		return ret_val;
1258
1259	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267	if (ret_val)
1268		return ret_val;
1269
1270	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273	if (ret_val)
1274		return ret_val;
1275
1276	/* Reset the phy to commit changes. */
1277	if (hw->phy.ops.commit) {
1278		ret_val = hw->phy.ops.commit(hw);
1279		if (ret_val)
1280			return ret_val;
1281	}
1282
1283	if (phy->autoneg_wait_to_complete) {
1284		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287						      100000, &link);
1288		if (ret_val)
1289			return ret_val;
1290
1291		if (!link) {
1292			if (hw->phy.type != e1000_phy_m88) {
1293				e_dbg("Link taking longer than expected.\n");
1294			} else {
1295				/* We didn't get link.
1296				 * Reset the DSP and cross our fingers.
1297				 */
1298				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299						   0x001d);
1300				if (ret_val)
1301					return ret_val;
1302				ret_val = e1000e_phy_reset_dsp(hw);
1303				if (ret_val)
1304					return ret_val;
1305			}
1306		}
1307
1308		/* Try once more */
1309		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310						      100000, &link);
1311		if (ret_val)
1312			return ret_val;
1313	}
1314
1315	if (hw->phy.type != e1000_phy_m88)
1316		return 0;
1317
1318	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319	if (ret_val)
1320		return ret_val;
1321
1322	/* Resetting the phy means we need to re-force TX_CLK in the
1323	 * Extended PHY Specific Control Register to 25MHz clock from
1324	 * the reset value of 2.5MHz.
1325	 */
1326	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328	if (ret_val)
1329		return ret_val;
1330
1331	/* In addition, we must re-enable CRS on Tx for both half and full
1332	 * duplex.
1333	 */
1334	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335	if (ret_val)
1336		return ret_val;
1337
1338	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341	return ret_val;
1342}
1343
1344/**
1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Forces the speed and duplex settings of the PHY.
1349 *  This is a function pointer entry point only called by
1350 *  PHY setup routines.
1351 **/
1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353{
1354	struct e1000_phy_info *phy = &hw->phy;
1355	s32 ret_val;
1356	u16 data;
1357	bool link;
1358
1359	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360	if (ret_val)
1361		return ret_val;
1362
1363	e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365	ret_val = e1e_wphy(hw, MII_BMCR, data);
1366	if (ret_val)
1367		return ret_val;
1368
1369	/* Disable MDI-X support for 10/100 */
1370	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	data &= ~IFE_PMC_AUTO_MDIX;
1375	data &= ~IFE_PMC_FORCE_MDIX;
1376
1377	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e_dbg("IFE PMC: %X\n", data);
1382
1383	udelay(1);
1384
1385	if (phy->autoneg_wait_to_complete) {
1386		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389						      100000, &link);
1390		if (ret_val)
1391			return ret_val;
1392
1393		if (!link)
1394			e_dbg("Link taking longer than expected.\n");
1395
1396		/* Try once more */
1397		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398						      100000, &link);
1399		if (ret_val)
1400			return ret_val;
1401	}
1402
1403	return 0;
1404}
1405
1406/**
1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 *  @hw: pointer to the HW structure
1409 *  @phy_ctrl: pointer to current value of MII_BMCR
1410 *
1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
1413 *  disable auto-negotiation, configure duplex, configure speed, configure
1414 *  the collision distance, write configuration to CTRL register.  The
1415 *  caller must write to the MII_BMCR register for these settings to
1416 *  take affect.
1417 **/
1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419{
1420	struct e1000_mac_info *mac = &hw->mac;
1421	u32 ctrl;
1422
1423	/* Turn off flow control when forcing speed/duplex */
1424	hw->fc.current_mode = e1000_fc_none;
1425
1426	/* Force speed/duplex on the mac */
1427	ctrl = er32(CTRL);
1428	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429	ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431	/* Disable Auto Speed Detection */
1432	ctrl &= ~E1000_CTRL_ASDE;
1433
1434	/* Disable autoneg on the phy */
1435	*phy_ctrl &= ~BMCR_ANENABLE;
1436
1437	/* Forcing Full or Half Duplex? */
1438	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439		ctrl &= ~E1000_CTRL_FD;
1440		*phy_ctrl &= ~BMCR_FULLDPLX;
1441		e_dbg("Half Duplex\n");
1442	} else {
1443		ctrl |= E1000_CTRL_FD;
1444		*phy_ctrl |= BMCR_FULLDPLX;
1445		e_dbg("Full Duplex\n");
1446	}
1447
1448	/* Forcing 10mb or 100mb? */
1449	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450		ctrl |= E1000_CTRL_SPD_100;
1451		*phy_ctrl |= BMCR_SPEED100;
1452		*phy_ctrl &= ~BMCR_SPEED1000;
1453		e_dbg("Forcing 100mb\n");
1454	} else {
1455		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1457		e_dbg("Forcing 10mb\n");
1458	}
1459
1460	hw->mac.ops.config_collision_dist(hw);
1461
1462	ew32(CTRL, ctrl);
1463}
1464
1465/**
1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 *  @hw: pointer to the HW structure
1468 *  @active: boolean used to enable/disable lplu
1469 *
1470 *  Success returns 0, Failure returns 1
1471 *
1472 *  The low power link up (lplu) state is set to the power management level D3
1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475 *  is used during Dx states where the power conservation is most important.
1476 *  During driver activity, SmartSpeed should be enabled so performance is
1477 *  maintained.
1478 **/
1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480{
1481	struct e1000_phy_info *phy = &hw->phy;
1482	s32 ret_val;
1483	u16 data;
1484
1485	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486	if (ret_val)
1487		return ret_val;
1488
1489	if (!active) {
1490		data &= ~IGP02E1000_PM_D3_LPLU;
1491		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492		if (ret_val)
1493			return ret_val;
1494		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1495		 * during Dx states where the power conservation is most
1496		 * important.  During driver activity we should enable
1497		 * SmartSpeed, so performance is maintained.
1498		 */
1499		if (phy->smart_speed == e1000_smart_speed_on) {
1500			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501					   &data);
1502			if (ret_val)
1503				return ret_val;
1504
1505			data |= IGP01E1000_PSCFR_SMART_SPEED;
1506			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507					   data);
1508			if (ret_val)
1509				return ret_val;
1510		} else if (phy->smart_speed == e1000_smart_speed_off) {
1511			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   &data);
1513			if (ret_val)
1514				return ret_val;
1515
1516			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518					   data);
1519			if (ret_val)
1520				return ret_val;
1521		}
1522	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525		data |= IGP02E1000_PM_D3_LPLU;
1526		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527		if (ret_val)
1528			return ret_val;
1529
1530		/* When LPLU is enabled, we should disable SmartSpeed */
1531		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537	}
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Success returns 0, Failure returns 1
1547 *
1548 *  A downshift is detected by querying the PHY link health.
1549 **/
1550s32 e1000e_check_downshift(struct e1000_hw *hw)
1551{
1552	struct e1000_phy_info *phy = &hw->phy;
1553	s32 ret_val;
1554	u16 phy_data, offset, mask;
1555
1556	switch (phy->type) {
1557	case e1000_phy_m88:
1558	case e1000_phy_gg82563:
1559	case e1000_phy_bm:
1560	case e1000_phy_82578:
1561		offset = M88E1000_PHY_SPEC_STATUS;
1562		mask = M88E1000_PSSR_DOWNSHIFT;
1563		break;
1564	case e1000_phy_igp_2:
1565	case e1000_phy_igp_3:
1566		offset = IGP01E1000_PHY_LINK_HEALTH;
1567		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568		break;
1569	default:
1570		/* speed downshift not supported */
1571		phy->speed_downgraded = false;
1572		return 0;
1573	}
1574
1575	ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577	if (!ret_val)
1578		phy->speed_downgraded = !!(phy_data & mask);
1579
1580	return ret_val;
1581}
1582
1583/**
1584 *  e1000_check_polarity_m88 - Checks the polarity.
1585 *  @hw: pointer to the HW structure
1586 *
1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588 *
1589 *  Polarity is determined based on the PHY specific status register.
1590 **/
1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592{
1593	struct e1000_phy_info *phy = &hw->phy;
1594	s32 ret_val;
1595	u16 data;
1596
1597	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599	if (!ret_val)
1600		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601				       ? e1000_rev_polarity_reversed
1602				       : e1000_rev_polarity_normal);
1603
1604	return ret_val;
1605}
1606
1607/**
1608 *  e1000_check_polarity_igp - Checks the polarity.
1609 *  @hw: pointer to the HW structure
1610 *
1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612 *
1613 *  Polarity is determined based on the PHY port status register, and the
1614 *  current speed (since there is no polarity at 100Mbps).
1615 **/
1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617{
1618	struct e1000_phy_info *phy = &hw->phy;
1619	s32 ret_val;
1620	u16 data, offset, mask;
1621
1622	/* Polarity is determined based on the speed of
1623	 * our connection.
1624	 */
1625	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626	if (ret_val)
1627		return ret_val;
1628
1629	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1631		offset = IGP01E1000_PHY_PCS_INIT_REG;
1632		mask = IGP01E1000_PHY_POLARITY_MASK;
1633	} else {
1634		/* This really only applies to 10Mbps since
1635		 * there is no polarity for 100Mbps (always 0).
1636		 */
1637		offset = IGP01E1000_PHY_PORT_STATUS;
1638		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639	}
1640
1641	ret_val = e1e_rphy(hw, offset, &data);
1642
1643	if (!ret_val)
1644		phy->cable_polarity = ((data & mask)
1645				       ? e1000_rev_polarity_reversed
1646				       : e1000_rev_polarity_normal);
1647
1648	return ret_val;
1649}
1650
1651/**
1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Polarity is determined on the polarity reversal feature being enabled.
1656 **/
1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658{
1659	struct e1000_phy_info *phy = &hw->phy;
1660	s32 ret_val;
1661	u16 phy_data, offset, mask;
1662
1663	/* Polarity is determined based on the reversal feature being enabled.
1664	 */
1665	if (phy->polarity_correction) {
1666		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667		mask = IFE_PESC_POLARITY_REVERSED;
1668	} else {
1669		offset = IFE_PHY_SPECIAL_CONTROL;
1670		mask = IFE_PSC_FORCE_POLARITY;
1671	}
1672
1673	ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675	if (!ret_val)
1676		phy->cable_polarity = ((phy_data & mask)
1677				       ? e1000_rev_polarity_reversed
1678				       : e1000_rev_polarity_normal);
1679
1680	return ret_val;
1681}
1682
1683/**
1684 *  e1000_wait_autoneg - Wait for auto-neg completion
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688 *  limit to expire, which ever happens first.
1689 **/
1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691{
1692	s32 ret_val = 0;
1693	u16 i, phy_status;
1694
1695	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698		if (ret_val)
1699			break;
1700		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701		if (ret_val)
1702			break;
1703		if (phy_status & BMSR_ANEGCOMPLETE)
1704			break;
1705		msleep(100);
1706	}
1707
1708	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1709	 * has completed.
1710	 */
1711	return ret_val;
1712}
1713
1714/**
1715 *  e1000e_phy_has_link_generic - Polls PHY for link
1716 *  @hw: pointer to the HW structure
1717 *  @iterations: number of times to poll for link
1718 *  @usec_interval: delay between polling attempts
1719 *  @success: pointer to whether polling was successful or not
1720 *
1721 *  Polls the PHY status register for link, 'iterations' number of times.
1722 **/
1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724				u32 usec_interval, bool *success)
1725{
1726	s32 ret_val = 0;
1727	u16 i, phy_status;
1728
1729	*success = false;
1730	for (i = 0; i < iterations; i++) {
1731		/* Some PHYs require the MII_BMSR register to be read
1732		 * twice due to the link bit being sticky.  No harm doing
1733		 * it across the board.
1734		 */
1735		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736		if (ret_val) {
1737			/* If the first read fails, another entity may have
1738			 * ownership of the resources, wait and try again to
1739			 * see if they have relinquished the resources yet.
1740			 */
1741			if (usec_interval >= 1000)
1742				msleep(usec_interval / 1000);
1743			else
1744				udelay(usec_interval);
1745		}
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		if (phy_status & BMSR_LSTATUS) {
1750			*success = true;
1751			break;
1752		}
1753		if (usec_interval >= 1000)
1754			msleep(usec_interval / 1000);
1755		else
1756			udelay(usec_interval);
1757	}
1758
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Reads the PHY specific status register to retrieve the cable length
1767 *  information.  The cable length is determined by averaging the minimum and
1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
1769 *  possible cable length values, which are:
1770 *	Register Value		Cable Length
1771 *	0			< 50 meters
1772 *	1			50 - 80 meters
1773 *	2			80 - 110 meters
1774 *	3			110 - 140 meters
1775 *	4			> 140 meters
1776 **/
1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778{
1779	struct e1000_phy_info *phy = &hw->phy;
1780	s32 ret_val;
1781	u16 phy_data, index;
1782
1783	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784	if (ret_val)
1785		return ret_val;
1786
1787	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791		return -E1000_ERR_PHY;
1792
1793	phy->min_cable_length = e1000_m88_cable_length_table[index];
1794	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798	return 0;
1799}
1800
1801/**
1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  The automatic gain control (agc) normalizes the amplitude of the
1806 *  received signal, adjusting for the attenuation produced by the
1807 *  cable.  By reading the AGC registers, which represent the
1808 *  combination of coarse and fine gain value, the value can be put
1809 *  into a lookup table to obtain the approximate cable length
1810 *  for each channel.
1811 **/
1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813{
1814	struct e1000_phy_info *phy = &hw->phy;
1815	s32 ret_val;
1816	u16 phy_data, i, agc_value = 0;
1817	u16 cur_agc_index, max_agc_index = 0;
1818	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820		IGP02E1000_PHY_AGC_A,
1821		IGP02E1000_PHY_AGC_B,
1822		IGP02E1000_PHY_AGC_C,
1823		IGP02E1000_PHY_AGC_D
1824	};
1825
1826	/* Read the AGC registers for all channels */
1827	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829		if (ret_val)
1830			return ret_val;
1831
1832		/* Getting bits 15:9, which represent the combination of
1833		 * coarse and fine gain values.  The result is a number
1834		 * that can be put into the lookup table to obtain the
1835		 * approximate cable length.
1836		 */
1837		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838				 IGP02E1000_AGC_LENGTH_MASK);
1839
1840		/* Array index bound check. */
1841		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842		    (cur_agc_index == 0))
1843			return -E1000_ERR_PHY;
1844
1845		/* Remove min & max AGC values from calculation. */
1846		if (e1000_igp_2_cable_length_table[min_agc_index] >
1847		    e1000_igp_2_cable_length_table[cur_agc_index])
1848			min_agc_index = cur_agc_index;
1849		if (e1000_igp_2_cable_length_table[max_agc_index] <
1850		    e1000_igp_2_cable_length_table[cur_agc_index])
1851			max_agc_index = cur_agc_index;
1852
1853		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854	}
1855
1856	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857		      e1000_igp_2_cable_length_table[max_agc_index]);
1858	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860	/* Calculate cable length with the error range of +/- 10 meters. */
1861	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867	return 0;
1868}
1869
1870/**
1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872 *  @hw: pointer to the HW structure
1873 *
1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
1875 *  to verify that link is up.  Read the PHY special control register to
1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
1877 *  special status register to determine MDI/MDIx and current speed.  If
1878 *  speed is 1000, then determine cable length, local and remote receiver.
1879 **/
1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881{
1882	struct e1000_phy_info *phy = &hw->phy;
1883	s32 ret_val;
1884	u16 phy_data;
1885	bool link;
1886
1887	if (phy->media_type != e1000_media_type_copper) {
1888		e_dbg("Phy info is only valid for copper media\n");
1889		return -E1000_ERR_CONFIG;
1890	}
1891
1892	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893	if (ret_val)
1894		return ret_val;
1895
1896	if (!link) {
1897		e_dbg("Phy info is only valid if link is up\n");
1898		return -E1000_ERR_CONFIG;
1899	}
1900
1901	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902	if (ret_val)
1903		return ret_val;
1904
1905	phy->polarity_correction = !!(phy_data &
1906				      M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908	ret_val = e1000_check_polarity_m88(hw);
1909	if (ret_val)
1910		return ret_val;
1911
1912	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913	if (ret_val)
1914		return ret_val;
1915
1916	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919		ret_val = hw->phy.ops.get_cable_length(hw);
1920		if (ret_val)
1921			return ret_val;
1922
1923		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924		if (ret_val)
1925			return ret_val;
1926
1927		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1929
1930		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1932	} else {
1933		/* Set values to "undefined" */
1934		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935		phy->local_rx = e1000_1000t_rx_status_undefined;
1936		phy->remote_rx = e1000_1000t_rx_status_undefined;
1937	}
1938
1939	return ret_val;
1940}
1941
1942/**
1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 *  @hw: pointer to the HW structure
1945 *
1946 *  Read PHY status to determine if link is up.  If link is up, then
1947 *  set/determine 10base-T extended distance and polarity correction.  Read
1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949 *  determine on the cable length, local and remote receiver.
1950 **/
1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952{
1953	struct e1000_phy_info *phy = &hw->phy;
1954	s32 ret_val;
1955	u16 data;
1956	bool link;
1957
1958	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959	if (ret_val)
1960		return ret_val;
1961
1962	if (!link) {
1963		e_dbg("Phy info is only valid if link is up\n");
1964		return -E1000_ERR_CONFIG;
1965	}
1966
1967	phy->polarity_correction = true;
1968
1969	ret_val = e1000_check_polarity_igp(hw);
1970	if (ret_val)
1971		return ret_val;
1972
1973	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974	if (ret_val)
1975		return ret_val;
1976
1977	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1981		ret_val = phy->ops.get_cable_length(hw);
1982		if (ret_val)
1983			return ret_val;
1984
1985		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986		if (ret_val)
1987			return ret_val;
1988
1989		phy->local_rx = (data & LPA_1000LOCALRXOK)
1990		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1991
1992		phy->remote_rx = (data & LPA_1000REMRXOK)
1993		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1994	} else {
1995		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996		phy->local_rx = e1000_1000t_rx_status_undefined;
1997		phy->remote_rx = e1000_1000t_rx_status_undefined;
1998	}
1999
2000	return ret_val;
2001}
2002
2003/**
2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 *  @hw: pointer to the HW structure
2006 *
2007 *  Populates "phy" structure with various feature states.
2008 **/
2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010{
2011	struct e1000_phy_info *phy = &hw->phy;
2012	s32 ret_val;
2013	u16 data;
2014	bool link;
2015
2016	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017	if (ret_val)
2018		return ret_val;
2019
2020	if (!link) {
2021		e_dbg("Phy info is only valid if link is up\n");
2022		return -E1000_ERR_CONFIG;
2023	}
2024
2025	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026	if (ret_val)
2027		return ret_val;
2028	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030	if (phy->polarity_correction) {
2031		ret_val = e1000_check_polarity_ife(hw);
2032		if (ret_val)
2033			return ret_val;
2034	} else {
2035		/* Polarity is forced */
2036		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037				       ? e1000_rev_polarity_reversed
2038				       : e1000_rev_polarity_normal);
2039	}
2040
2041	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042	if (ret_val)
2043		return ret_val;
2044
2045	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047	/* The following parameters are undefined for 10/100 operation. */
2048	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049	phy->local_rx = e1000_1000t_rx_status_undefined;
2050	phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052	return 0;
2053}
2054
2055/**
2056 *  e1000e_phy_sw_reset - PHY software reset
2057 *  @hw: pointer to the HW structure
2058 *
2059 *  Does a software reset of the PHY by reading the PHY control register and
2060 *  setting/write the control register reset bit to the PHY.
2061 **/
2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063{
2064	s32 ret_val;
2065	u16 phy_ctrl;
2066
2067	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068	if (ret_val)
2069		return ret_val;
2070
2071	phy_ctrl |= BMCR_RESET;
2072	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073	if (ret_val)
2074		return ret_val;
2075
2076	udelay(1);
2077
2078	return ret_val;
2079}
2080
2081/**
2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083 *  @hw: pointer to the HW structure
2084 *
2085 *  Verify the reset block is not blocking us from resetting.  Acquire
2086 *  semaphore (if necessary) and read/set/write the device control reset
2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
2088 *  reset and release the semaphore (if necessary).
2089 **/
2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091{
2092	struct e1000_phy_info *phy = &hw->phy;
2093	s32 ret_val;
2094	u32 ctrl;
2095
2096	if (phy->ops.check_reset_block) {
2097		ret_val = phy->ops.check_reset_block(hw);
2098		if (ret_val)
2099			return 0;
2100	}
2101
2102	ret_val = phy->ops.acquire(hw);
2103	if (ret_val)
2104		return ret_val;
2105
2106	ctrl = er32(CTRL);
2107	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108	e1e_flush();
2109
2110	udelay(phy->reset_delay_us);
2111
2112	ew32(CTRL, ctrl);
2113	e1e_flush();
2114
2115	usleep_range(150, 300);
2116
2117	phy->ops.release(hw);
2118
2119	return phy->ops.get_cfg_done(hw);
2120}
2121
2122/**
2123 *  e1000e_get_cfg_done_generic - Generic configuration done
2124 *  @hw: pointer to the HW structure
2125 *
2126 *  Generic function to wait 10 milli-seconds for configuration to complete
2127 *  and return success.
2128 **/
2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130{
2131	mdelay(10);
2132
2133	return 0;
2134}
2135
2136/**
2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 *  @hw: pointer to the HW structure
2139 *
2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141 **/
2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143{
2144	e_dbg("Running IGP 3 PHY init script\n");
2145
2146	/* PHY init IGP 3 */
2147	/* Enable rise/fall, 10-mode work in class-A */
2148	e1e_wphy(hw, 0x2F5B, 0x9018);
2149	/* Remove all caps from Replica path filter */
2150	e1e_wphy(hw, 0x2F52, 0x0000);
2151	/* Bias trimming for ADC, AFE and Driver (Default) */
2152	e1e_wphy(hw, 0x2FB1, 0x8B24);
2153	/* Increase Hybrid poly bias */
2154	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155	/* Add 4% to Tx amplitude in Gig mode */
2156	e1e_wphy(hw, 0x2010, 0x10B0);
2157	/* Disable trimming (TTT) */
2158	e1e_wphy(hw, 0x2011, 0x0000);
2159	/* Poly DC correction to 94.6% + 2% for all channels */
2160	e1e_wphy(hw, 0x20DD, 0x249A);
2161	/* ABS DC correction to 95.9% */
2162	e1e_wphy(hw, 0x20DE, 0x00D3);
2163	/* BG temp curve trim */
2164	e1e_wphy(hw, 0x28B4, 0x04CE);
2165	/* Increasing ADC OPAMP stage 1 currents to max */
2166	e1e_wphy(hw, 0x2F70, 0x29E4);
2167	/* Force 1000 ( required for enabling PHY regs configuration) */
2168	e1e_wphy(hw, 0x0000, 0x0140);
2169	/* Set upd_freq to 6 */
2170	e1e_wphy(hw, 0x1F30, 0x1606);
2171	/* Disable NPDFE */
2172	e1e_wphy(hw, 0x1F31, 0xB814);
2173	/* Disable adaptive fixed FFE (Default) */
2174	e1e_wphy(hw, 0x1F35, 0x002A);
2175	/* Enable FFE hysteresis */
2176	e1e_wphy(hw, 0x1F3E, 0x0067);
2177	/* Fixed FFE for short cable lengths */
2178	e1e_wphy(hw, 0x1F54, 0x0065);
2179	/* Fixed FFE for medium cable lengths */
2180	e1e_wphy(hw, 0x1F55, 0x002A);
2181	/* Fixed FFE for long cable lengths */
2182	e1e_wphy(hw, 0x1F56, 0x002A);
2183	/* Enable Adaptive Clip Threshold */
2184	e1e_wphy(hw, 0x1F72, 0x3FB0);
2185	/* AHT reset limit to 1 */
2186	e1e_wphy(hw, 0x1F76, 0xC0FF);
2187	/* Set AHT master delay to 127 msec */
2188	e1e_wphy(hw, 0x1F77, 0x1DEC);
2189	/* Set scan bits for AHT */
2190	e1e_wphy(hw, 0x1F78, 0xF9EF);
2191	/* Set AHT Preset bits */
2192	e1e_wphy(hw, 0x1F79, 0x0210);
2193	/* Change integ_factor of channel A to 3 */
2194	e1e_wphy(hw, 0x1895, 0x0003);
2195	/* Change prop_factor of channels BCD to 8 */
2196	e1e_wphy(hw, 0x1796, 0x0008);
2197	/* Change cg_icount + enable integbp for channels BCD */
2198	e1e_wphy(hw, 0x1798, 0xD008);
2199	/* Change cg_icount + enable integbp + change prop_factor_master
2200	 * to 8 for channel A
2201	 */
2202	e1e_wphy(hw, 0x1898, 0xD918);
2203	/* Disable AHT in Slave mode on channel A */
2204	e1e_wphy(hw, 0x187A, 0x0800);
2205	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2206	 * Enable SPD+B2B
2207	 */
2208	e1e_wphy(hw, 0x0019, 0x008D);
2209	/* Enable restart AN on an1000_dis change */
2210	e1e_wphy(hw, 0x001B, 0x2080);
2211	/* Enable wh_fifo read clock in 10/100 modes */
2212	e1e_wphy(hw, 0x0014, 0x0045);
2213	/* Restart AN, Speed selection is 1000 */
2214	e1e_wphy(hw, 0x0000, 0x1340);
2215
2216	return 0;
2217}
2218
2219/**
2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
2221 *  @phy_id: phy_id read from the phy
2222 *
2223 *  Returns the phy type from the id.
2224 **/
2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226{
2227	enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229	switch (phy_id) {
2230	case M88E1000_I_PHY_ID:
2231	case M88E1000_E_PHY_ID:
2232	case M88E1111_I_PHY_ID:
2233	case M88E1011_I_PHY_ID:
2234		phy_type = e1000_phy_m88;
2235		break;
2236	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2237		phy_type = e1000_phy_igp_2;
2238		break;
2239	case GG82563_E_PHY_ID:
2240		phy_type = e1000_phy_gg82563;
2241		break;
2242	case IGP03E1000_E_PHY_ID:
2243		phy_type = e1000_phy_igp_3;
2244		break;
2245	case IFE_E_PHY_ID:
2246	case IFE_PLUS_E_PHY_ID:
2247	case IFE_C_E_PHY_ID:
2248		phy_type = e1000_phy_ife;
2249		break;
2250	case BME1000_E_PHY_ID:
2251	case BME1000_E_PHY_ID_R2:
2252		phy_type = e1000_phy_bm;
2253		break;
2254	case I82578_E_PHY_ID:
2255		phy_type = e1000_phy_82578;
2256		break;
2257	case I82577_E_PHY_ID:
2258		phy_type = e1000_phy_82577;
2259		break;
2260	case I82579_E_PHY_ID:
2261		phy_type = e1000_phy_82579;
2262		break;
2263	case I217_E_PHY_ID:
2264		phy_type = e1000_phy_i217;
2265		break;
2266	default:
2267		phy_type = e1000_phy_unknown;
2268		break;
2269	}
2270	return phy_type;
2271}
2272
2273/**
2274 *  e1000e_determine_phy_address - Determines PHY address.
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  This uses a trial and error method to loop through possible PHY
2278 *  addresses. It tests each by reading the PHY ID registers and
2279 *  checking for a match.
2280 **/
2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282{
2283	u32 phy_addr = 0;
2284	u32 i;
2285	enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287	hw->phy.id = phy_type;
2288
2289	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290		hw->phy.addr = phy_addr;
2291		i = 0;
2292
2293		do {
2294			e1000e_get_phy_id(hw);
2295			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297			/* If phy_type is valid, break - we found our
2298			 * PHY address
2299			 */
2300			if (phy_type != e1000_phy_unknown)
2301				return 0;
2302
2303			usleep_range(1000, 2000);
2304			i++;
2305		} while (i < 10);
2306	}
2307
2308	return -E1000_ERR_PHY_TYPE;
2309}
2310
2311/**
2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 *  @page: page to access
2314 *  @reg: register to check
2315 *
2316 *  Returns the phy address for the page requested.
2317 **/
2318static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2319{
2320	u32 phy_addr = 2;
2321
2322	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2323		phy_addr = 1;
2324
2325	return phy_addr;
2326}
2327
2328/**
2329 *  e1000e_write_phy_reg_bm - Write BM PHY register
2330 *  @hw: pointer to the HW structure
2331 *  @offset: register offset to write to
2332 *  @data: data to write at register offset
2333 *
2334 *  Acquires semaphore, if necessary, then writes the data to PHY register
2335 *  at the offset.  Release any acquired semaphores before exiting.
2336 **/
2337s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2338{
2339	s32 ret_val;
2340	u32 page = offset >> IGP_PAGE_SHIFT;
2341
2342	ret_val = hw->phy.ops.acquire(hw);
2343	if (ret_val)
2344		return ret_val;
2345
2346	/* Page 800 works differently than the rest so it has its own func */
2347	if (page == BM_WUC_PAGE) {
2348		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2349							 false, false);
2350		goto release;
2351	}
2352
2353	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2354
2355	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2356		u32 page_shift, page_select;
2357
2358		/* Page select is register 31 for phy address 1 and 22 for
2359		 * phy address 2 and 3. Page select is shifted only for
2360		 * phy address 1.
2361		 */
2362		if (hw->phy.addr == 1) {
2363			page_shift = IGP_PAGE_SHIFT;
2364			page_select = IGP01E1000_PHY_PAGE_SELECT;
2365		} else {
2366			page_shift = 0;
2367			page_select = BM_PHY_PAGE_SELECT;
2368		}
2369
2370		/* Page is shifted left, PHY expects (page x 32) */
2371		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2372						    (page << page_shift));
2373		if (ret_val)
2374			goto release;
2375	}
2376
2377	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2378					    data);
2379
2380release:
2381	hw->phy.ops.release(hw);
2382	return ret_val;
2383}
2384
2385/**
2386 *  e1000e_read_phy_reg_bm - Read BM PHY register
2387 *  @hw: pointer to the HW structure
2388 *  @offset: register offset to be read
2389 *  @data: pointer to the read data
2390 *
2391 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2392 *  and storing the retrieved information in data.  Release any acquired
2393 *  semaphores before exiting.
2394 **/
2395s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2396{
2397	s32 ret_val;
2398	u32 page = offset >> IGP_PAGE_SHIFT;
2399
2400	ret_val = hw->phy.ops.acquire(hw);
2401	if (ret_val)
2402		return ret_val;
2403
2404	/* Page 800 works differently than the rest so it has its own func */
2405	if (page == BM_WUC_PAGE) {
2406		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2407							 true, false);
2408		goto release;
2409	}
2410
2411	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2412
2413	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2414		u32 page_shift, page_select;
2415
2416		/* Page select is register 31 for phy address 1 and 22 for
2417		 * phy address 2 and 3. Page select is shifted only for
2418		 * phy address 1.
2419		 */
2420		if (hw->phy.addr == 1) {
2421			page_shift = IGP_PAGE_SHIFT;
2422			page_select = IGP01E1000_PHY_PAGE_SELECT;
2423		} else {
2424			page_shift = 0;
2425			page_select = BM_PHY_PAGE_SELECT;
2426		}
2427
2428		/* Page is shifted left, PHY expects (page x 32) */
2429		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2430						    (page << page_shift));
2431		if (ret_val)
2432			goto release;
2433	}
2434
2435	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2436					   data);
2437release:
2438	hw->phy.ops.release(hw);
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2444 *  @hw: pointer to the HW structure
2445 *  @offset: register offset to be read
2446 *  @data: pointer to the read data
2447 *
2448 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2449 *  and storing the retrieved information in data.  Release any acquired
2450 *  semaphores before exiting.
2451 **/
2452s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2453{
2454	s32 ret_val;
2455	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2456
2457	ret_val = hw->phy.ops.acquire(hw);
2458	if (ret_val)
2459		return ret_val;
2460
2461	/* Page 800 works differently than the rest so it has its own func */
2462	if (page == BM_WUC_PAGE) {
2463		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2464							 true, false);
2465		goto release;
2466	}
2467
2468	hw->phy.addr = 1;
2469
2470	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2471		/* Page is shifted left, PHY expects (page x 32) */
2472		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2473						    page);
2474
2475		if (ret_val)
2476			goto release;
2477	}
2478
2479	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2480					   data);
2481release:
2482	hw->phy.ops.release(hw);
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2488 *  @hw: pointer to the HW structure
2489 *  @offset: register offset to write to
2490 *  @data: data to write at register offset
2491 *
2492 *  Acquires semaphore, if necessary, then writes the data to PHY register
2493 *  at the offset.  Release any acquired semaphores before exiting.
2494 **/
2495s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2496{
2497	s32 ret_val;
2498	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2499
2500	ret_val = hw->phy.ops.acquire(hw);
2501	if (ret_val)
2502		return ret_val;
2503
2504	/* Page 800 works differently than the rest so it has its own func */
2505	if (page == BM_WUC_PAGE) {
2506		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2507							 false, false);
2508		goto release;
2509	}
2510
2511	hw->phy.addr = 1;
2512
2513	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2514		/* Page is shifted left, PHY expects (page x 32) */
2515		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2516						    page);
2517
2518		if (ret_val)
2519			goto release;
2520	}
2521
2522	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2523					    data);
2524
2525release:
2526	hw->phy.ops.release(hw);
2527	return ret_val;
2528}
2529
2530/**
2531 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2532 *  @hw: pointer to the HW structure
2533 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2534 *
2535 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2536 *  address to store contents of the BM_WUC_ENABLE_REG register.
2537 **/
2538s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2539{
2540	s32 ret_val;
2541	u16 temp;
2542
2543	/* All page select, port ctrl and wakeup registers use phy address 1 */
2544	hw->phy.addr = 1;
2545
2546	/* Select Port Control Registers page */
2547	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2548	if (ret_val) {
2549		e_dbg("Could not set Port Control page\n");
2550		return ret_val;
2551	}
2552
2553	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2554	if (ret_val) {
2555		e_dbg("Could not read PHY register %d.%d\n",
2556		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2557		return ret_val;
2558	}
2559
2560	/* Enable both PHY wakeup mode and Wakeup register page writes.
2561	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2562	 */
2563	temp = *phy_reg;
2564	temp |= BM_WUC_ENABLE_BIT;
2565	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2566
2567	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2568	if (ret_val) {
2569		e_dbg("Could not write PHY register %d.%d\n",
2570		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2571		return ret_val;
2572	}
2573
2574	/* Select Host Wakeup Registers page - caller now able to write
2575	 * registers on the Wakeup registers page
2576	 */
2577	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2578}
2579
2580/**
2581 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2582 *  @hw: pointer to the HW structure
2583 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2584 *
2585 *  Restore BM_WUC_ENABLE_REG to its original value.
2586 *
2587 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2588 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2589 *  caller.
2590 **/
2591s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2592{
2593	s32 ret_val;
2594
2595	/* Select Port Control Registers page */
2596	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2597	if (ret_val) {
2598		e_dbg("Could not set Port Control page\n");
2599		return ret_val;
2600	}
2601
2602	/* Restore 769.17 to its original value */
2603	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2604	if (ret_val)
2605		e_dbg("Could not restore PHY register %d.%d\n",
2606		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2607
2608	return ret_val;
2609}
2610
2611/**
2612 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2613 *  @hw: pointer to the HW structure
2614 *  @offset: register offset to be read or written
2615 *  @data: pointer to the data to read or write
2616 *  @read: determines if operation is read or write
2617 *  @page_set: BM_WUC_PAGE already set and access enabled
2618 *
2619 *  Read the PHY register at offset and store the retrieved information in
2620 *  data, or write data to PHY register at offset.  Note the procedure to
2621 *  access the PHY wakeup registers is different than reading the other PHY
2622 *  registers. It works as such:
2623 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2624 *  2) Set page to 800 for host (801 if we were manageability)
2625 *  3) Write the address using the address opcode (0x11)
2626 *  4) Read or write the data using the data opcode (0x12)
2627 *  5) Restore 769.17.2 to its original value
2628 *
2629 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2630 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2631 *
2632 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2633 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2634 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2635 **/
2636static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2637					  u16 *data, bool read, bool page_set)
2638{
2639	s32 ret_val;
2640	u16 reg = BM_PHY_REG_NUM(offset);
2641	u16 page = BM_PHY_REG_PAGE(offset);
2642	u16 phy_reg = 0;
2643
2644	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2645	if ((hw->mac.type == e1000_pchlan) &&
2646	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2647		e_dbg("Attempting to access page %d while gig enabled.\n",
2648		      page);
2649
2650	if (!page_set) {
2651		/* Enable access to PHY wakeup registers */
2652		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2653		if (ret_val) {
2654			e_dbg("Could not enable PHY wakeup reg access\n");
2655			return ret_val;
2656		}
2657	}
2658
2659	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2660
2661	/* Write the Wakeup register page offset value using opcode 0x11 */
2662	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2663	if (ret_val) {
2664		e_dbg("Could not write address opcode to page %d\n", page);
2665		return ret_val;
2666	}
2667
2668	if (read) {
2669		/* Read the Wakeup register page value using opcode 0x12 */
2670		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2671						   data);
2672	} else {
2673		/* Write the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						    *data);
2676	}
2677
2678	if (ret_val) {
2679		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2680		return ret_val;
2681	}
2682
2683	if (!page_set)
2684		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2685
2686	return ret_val;
2687}
2688
2689/**
2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2691 * @hw: pointer to the HW structure
2692 *
2693 * In the case of a PHY power down to save power, or to turn off link during a
2694 * driver unload, or wake on lan is not enabled, restore the link to previous
2695 * settings.
2696 **/
2697void e1000_power_up_phy_copper(struct e1000_hw *hw)
2698{
2699	u16 mii_reg = 0;
2700	int ret;
2701
2702	/* The PHY will retain its settings across a power down/up cycle */
2703	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2704	if (ret) {
2705		e_dbg("Error reading PHY register\n");
2706		return;
2707	}
2708	mii_reg &= ~BMCR_PDOWN;
2709	e1e_wphy(hw, MII_BMCR, mii_reg);
2710}
2711
2712/**
2713 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2714 * @hw: pointer to the HW structure
2715 *
2716 * In the case of a PHY power down to save power, or to turn off link during a
2717 * driver unload, or wake on lan is not enabled, restore the link to previous
2718 * settings.
2719 **/
2720void e1000_power_down_phy_copper(struct e1000_hw *hw)
2721{
2722	u16 mii_reg = 0;
2723	int ret;
2724
2725	/* The PHY will retain its settings across a power down/up cycle */
2726	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2727	if (ret) {
2728		e_dbg("Error reading PHY register\n");
2729		return;
2730	}
2731	mii_reg |= BMCR_PDOWN;
2732	e1e_wphy(hw, MII_BMCR, mii_reg);
2733	usleep_range(1000, 2000);
2734}
2735
2736/**
2737 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2738 *  @hw: pointer to the HW structure
2739 *  @offset: register offset to be read
2740 *  @data: pointer to the read data
2741 *  @locked: semaphore has already been acquired or not
2742 *  @page_set: BM_WUC_PAGE already set and access enabled
2743 *
2744 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2745 *  and stores the retrieved information in data.  Release any acquired
2746 *  semaphore before exiting.
2747 **/
2748static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2749				   bool locked, bool page_set)
2750{
2751	s32 ret_val;
2752	u16 page = BM_PHY_REG_PAGE(offset);
2753	u16 reg = BM_PHY_REG_NUM(offset);
2754	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2755
2756	if (!locked) {
2757		ret_val = hw->phy.ops.acquire(hw);
2758		if (ret_val)
2759			return ret_val;
2760	}
2761
2762	/* Page 800 works differently than the rest so it has its own func */
2763	if (page == BM_WUC_PAGE) {
2764		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2765							 true, page_set);
2766		goto out;
2767	}
2768
2769	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2770		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2771							 data, true);
2772		goto out;
2773	}
2774
2775	if (!page_set) {
2776		if (page == HV_INTC_FC_PAGE_START)
2777			page = 0;
2778
2779		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2780			/* Page is shifted left, PHY expects (page x 32) */
2781			ret_val = e1000_set_page_igp(hw,
2782						     (page << IGP_PAGE_SHIFT));
2783
2784			hw->phy.addr = phy_addr;
2785
2786			if (ret_val)
2787				goto out;
2788		}
2789	}
2790
2791	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2792	      page << IGP_PAGE_SHIFT, reg);
2793
2794	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2795out:
2796	if (!locked)
2797		hw->phy.ops.release(hw);
2798
2799	return ret_val;
2800}
2801
2802/**
2803 *  e1000_read_phy_reg_hv -  Read HV PHY register
2804 *  @hw: pointer to the HW structure
2805 *  @offset: register offset to be read
2806 *  @data: pointer to the read data
2807 *
2808 *  Acquires semaphore then reads the PHY register at offset and stores
2809 *  the retrieved information in data.  Release the acquired semaphore
2810 *  before exiting.
2811 **/
2812s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2813{
2814	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2815}
2816
2817/**
2818 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2819 *  @hw: pointer to the HW structure
2820 *  @offset: register offset to be read
2821 *  @data: pointer to the read data
2822 *
2823 *  Reads the PHY register at offset and stores the retrieved information
2824 *  in data.  Assumes semaphore already acquired.
2825 **/
2826s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2827{
2828	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2829}
2830
2831/**
2832 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2833 *  @hw: pointer to the HW structure
2834 *  @offset: register offset to write to
2835 *  @data: data to write at register offset
2836 *
2837 *  Reads the PHY register at offset and stores the retrieved information
2838 *  in data.  Assumes semaphore already acquired and page already set.
2839 **/
2840s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2841{
2842	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2843}
2844
2845/**
2846 *  __e1000_write_phy_reg_hv - Write HV PHY register
2847 *  @hw: pointer to the HW structure
2848 *  @offset: register offset to write to
2849 *  @data: data to write at register offset
2850 *  @locked: semaphore has already been acquired or not
2851 *  @page_set: BM_WUC_PAGE already set and access enabled
2852 *
2853 *  Acquires semaphore, if necessary, then writes the data to PHY register
2854 *  at the offset.  Release any acquired semaphores before exiting.
2855 **/
2856static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2857				    bool locked, bool page_set)
2858{
2859	s32 ret_val;
2860	u16 page = BM_PHY_REG_PAGE(offset);
2861	u16 reg = BM_PHY_REG_NUM(offset);
2862	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2863
2864	if (!locked) {
2865		ret_val = hw->phy.ops.acquire(hw);
2866		if (ret_val)
2867			return ret_val;
2868	}
2869
2870	/* Page 800 works differently than the rest so it has its own func */
2871	if (page == BM_WUC_PAGE) {
2872		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2873							 false, page_set);
2874		goto out;
2875	}
2876
2877	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2878		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2879							 &data, false);
2880		goto out;
2881	}
2882
2883	if (!page_set) {
2884		if (page == HV_INTC_FC_PAGE_START)
2885			page = 0;
2886
2887		/* Workaround MDIO accesses being disabled after entering IEEE
2888		 * Power Down (when bit 11 of the PHY Control register is set)
2889		 */
2890		if ((hw->phy.type == e1000_phy_82578) &&
2891		    (hw->phy.revision >= 1) &&
2892		    (hw->phy.addr == 2) &&
2893		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2894			u16 data2 = 0x7EFF;
2895
2896			ret_val = e1000_access_phy_debug_regs_hv(hw,
2897								 BIT(6) | 0x3,
2898								 &data2, false);
2899			if (ret_val)
2900				goto out;
2901		}
2902
2903		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2904			/* Page is shifted left, PHY expects (page x 32) */
2905			ret_val = e1000_set_page_igp(hw,
2906						     (page << IGP_PAGE_SHIFT));
2907
2908			hw->phy.addr = phy_addr;
2909
2910			if (ret_val)
2911				goto out;
2912		}
2913	}
2914
2915	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2916	      page << IGP_PAGE_SHIFT, reg);
2917
2918	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2919					    data);
2920
2921out:
2922	if (!locked)
2923		hw->phy.ops.release(hw);
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_write_phy_reg_hv - Write HV PHY register
2930 *  @hw: pointer to the HW structure
2931 *  @offset: register offset to write to
2932 *  @data: data to write at register offset
2933 *
2934 *  Acquires semaphore then writes the data to PHY register at the offset.
2935 *  Release the acquired semaphores before exiting.
2936 **/
2937s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2938{
2939	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2940}
2941
2942/**
2943 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2944 *  @hw: pointer to the HW structure
2945 *  @offset: register offset to write to
2946 *  @data: data to write at register offset
2947 *
2948 *  Writes the data to PHY register at the offset.  Assumes semaphore
2949 *  already acquired.
2950 **/
2951s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2952{
2953	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2954}
2955
2956/**
2957 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2958 *  @hw: pointer to the HW structure
2959 *  @offset: register offset to write to
2960 *  @data: data to write at register offset
2961 *
2962 *  Writes the data to PHY register at the offset.  Assumes semaphore
2963 *  already acquired and page already set.
2964 **/
2965s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2966{
2967	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2968}
2969
2970/**
2971 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2972 *  @page: page to be accessed
2973 **/
2974static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2975{
2976	u32 phy_addr = 2;
2977
2978	if (page >= HV_INTC_FC_PAGE_START)
2979		phy_addr = 1;
2980
2981	return phy_addr;
2982}
2983
2984/**
2985 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2986 *  @hw: pointer to the HW structure
2987 *  @offset: register offset to be read or written
2988 *  @data: pointer to the data to be read or written
2989 *  @read: determines if operation is read or write
2990 *
2991 *  Reads the PHY register at offset and stores the retrieved information
2992 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2993 *  to access these regs uses the address port and data port to read/write.
2994 *  These accesses done with PHY address 2 and without using pages.
2995 **/
2996static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2997					  u16 *data, bool read)
2998{
2999	s32 ret_val;
3000	u32 addr_reg;
3001	u32 data_reg;
3002
3003	/* This takes care of the difference with desktop vs mobile phy */
3004	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3005		    I82578_ADDR_REG : I82577_ADDR_REG);
3006	data_reg = addr_reg + 1;
3007
3008	/* All operations in this function are phy address 2 */
3009	hw->phy.addr = 2;
3010
3011	/* masking with 0x3F to remove the page from offset */
3012	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3013	if (ret_val) {
3014		e_dbg("Could not write the Address Offset port register\n");
3015		return ret_val;
3016	}
3017
3018	/* Read or write the data value next */
3019	if (read)
3020		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3021	else
3022		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3023
3024	if (ret_val)
3025		e_dbg("Could not access the Data port register\n");
3026
3027	return ret_val;
3028}
3029
3030/**
3031 *  e1000_link_stall_workaround_hv - Si workaround
3032 *  @hw: pointer to the HW structure
3033 *
3034 *  This function works around a Si bug where the link partner can get
3035 *  a link up indication before the PHY does.  If small packets are sent
3036 *  by the link partner they can be placed in the packet buffer without
3037 *  being properly accounted for by the PHY and will stall preventing
3038 *  further packets from being received.  The workaround is to clear the
3039 *  packet buffer after the PHY detects link up.
3040 **/
3041s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3042{
3043	s32 ret_val = 0;
3044	u16 data;
3045
3046	if (hw->phy.type != e1000_phy_82578)
3047		return 0;
3048
3049	/* Do not apply workaround if in PHY loopback bit 14 set */
3050	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3051	if (ret_val) {
3052		e_dbg("Error reading PHY register\n");
3053		return ret_val;
3054	}
3055	if (data & BMCR_LOOPBACK)
3056		return 0;
3057
3058	/* check if link is up and at 1Gbps */
3059	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060	if (ret_val)
3061		return ret_val;
3062
3063	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064		 BM_CS_STATUS_SPEED_MASK);
3065
3066	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067		     BM_CS_STATUS_SPEED_1000))
3068		return 0;
3069
3070	msleep(200);
3071
3072	/* flush the packets in the fifo buffer */
3073	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3076	if (ret_val)
3077		return ret_val;
3078
3079	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080}
3081
3082/**
3083 *  e1000_check_polarity_82577 - Checks the polarity.
3084 *  @hw: pointer to the HW structure
3085 *
3086 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087 *
3088 *  Polarity is determined based on the PHY specific status register.
3089 **/
3090s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091{
3092	struct e1000_phy_info *phy = &hw->phy;
3093	s32 ret_val;
3094	u16 data;
3095
3096	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097
3098	if (!ret_val)
3099		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100				       ? e1000_rev_polarity_reversed
3101				       : e1000_rev_polarity_normal);
3102
3103	return ret_val;
3104}
3105
3106/**
3107 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108 *  @hw: pointer to the HW structure
3109 *
3110 *  Calls the PHY setup function to force speed and duplex.
3111 **/
3112s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113{
3114	struct e1000_phy_info *phy = &hw->phy;
3115	s32 ret_val;
3116	u16 phy_data;
3117	bool link;
3118
3119	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120	if (ret_val)
3121		return ret_val;
3122
3123	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124
3125	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126	if (ret_val)
3127		return ret_val;
3128
3129	udelay(1);
3130
3131	if (phy->autoneg_wait_to_complete) {
3132		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133
3134		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135						      100000, &link);
3136		if (ret_val)
3137			return ret_val;
3138
3139		if (!link)
3140			e_dbg("Link taking longer than expected.\n");
3141
3142		/* Try once more */
3143		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144						      100000, &link);
3145	}
3146
3147	return ret_val;
3148}
3149
3150/**
3151 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152 *  @hw: pointer to the HW structure
3153 *
3154 *  Read PHY status to determine if link is up.  If link is up, then
3155 *  set/determine 10base-T extended distance and polarity correction.  Read
3156 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157 *  determine on the cable length, local and remote receiver.
3158 **/
3159s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160{
3161	struct e1000_phy_info *phy = &hw->phy;
3162	s32 ret_val;
3163	u16 data;
3164	bool link;
3165
3166	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167	if (ret_val)
3168		return ret_val;
3169
3170	if (!link) {
3171		e_dbg("Phy info is only valid if link is up\n");
3172		return -E1000_ERR_CONFIG;
3173	}
3174
3175	phy->polarity_correction = true;
3176
3177	ret_val = e1000_check_polarity_82577(hw);
3178	if (ret_val)
3179		return ret_val;
3180
3181	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182	if (ret_val)
3183		return ret_val;
3184
3185	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186
3187	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189		ret_val = hw->phy.ops.get_cable_length(hw);
3190		if (ret_val)
3191			return ret_val;
3192
3193		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194		if (ret_val)
3195			return ret_val;
3196
3197		phy->local_rx = (data & LPA_1000LOCALRXOK)
3198		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3199
3200		phy->remote_rx = (data & LPA_1000REMRXOK)
3201		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3202	} else {
3203		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204		phy->local_rx = e1000_1000t_rx_status_undefined;
3205		phy->remote_rx = e1000_1000t_rx_status_undefined;
3206	}
3207
3208	return 0;
3209}
3210
3211/**
3212 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213 *  @hw: pointer to the HW structure
3214 *
3215 * Reads the diagnostic status register and verifies result is valid before
3216 * placing it in the phy_cable_length field.
3217 **/
3218s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219{
3220	struct e1000_phy_info *phy = &hw->phy;
3221	s32 ret_val;
3222	u16 phy_data, length;
3223
3224	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225	if (ret_val)
3226		return ret_val;
3227
3228	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230
3231	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232		return -E1000_ERR_PHY;
3233
3234	phy->cable_length = length;
3235
3236	return 0;
3237}