Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
 
 
 
 
 
 
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/init.h>
  28#include <linux/pci.h>
  29#include <linux/vmalloc.h>
  30#include <linux/pagemap.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/interrupt.h>
  34#include <linux/tcp.h>
  35#include <linux/ipv6.h>
  36#include <linux/slab.h>
  37#include <net/checksum.h>
  38#include <net/ip6_checksum.h>
 
  39#include <linux/ethtool.h>
  40#include <linux/if_vlan.h>
  41#include <linux/cpu.h>
  42#include <linux/smp.h>
  43#include <linux/pm_qos.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/aer.h>
  46#include <linux/prefetch.h>
  47
  48#include "e1000.h"
  49
  50#define DRV_EXTRAVERSION "-k"
  51
  52#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  53char e1000e_driver_name[] = "e1000e";
  54const char e1000e_driver_version[] = DRV_VERSION;
  55
  56#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  57static int debug = -1;
  58module_param(debug, int, 0);
  59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  60
 
 
  61static const struct e1000_info *e1000_info_tbl[] = {
  62	[board_82571]		= &e1000_82571_info,
  63	[board_82572]		= &e1000_82572_info,
  64	[board_82573]		= &e1000_82573_info,
  65	[board_82574]		= &e1000_82574_info,
  66	[board_82583]		= &e1000_82583_info,
  67	[board_80003es2lan]	= &e1000_es2_info,
  68	[board_ich8lan]		= &e1000_ich8_info,
  69	[board_ich9lan]		= &e1000_ich9_info,
  70	[board_ich10lan]	= &e1000_ich10_info,
  71	[board_pchlan]		= &e1000_pch_info,
  72	[board_pch2lan]		= &e1000_pch2_info,
  73	[board_pch_lpt]		= &e1000_pch_lpt_info,
  74	[board_pch_spt]		= &e1000_pch_spt_info,
  75	[board_pch_cnp]		= &e1000_pch_cnp_info,
  76};
  77
  78struct e1000_reg_info {
  79	u32 ofs;
  80	char *name;
  81};
  82
 
 
 
 
 
 
 
 
 
 
 
 
  83static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 
  84	/* General Registers */
  85	{E1000_CTRL, "CTRL"},
  86	{E1000_STATUS, "STATUS"},
  87	{E1000_CTRL_EXT, "CTRL_EXT"},
  88
  89	/* Interrupt Registers */
  90	{E1000_ICR, "ICR"},
  91
  92	/* Rx Registers */
  93	{E1000_RCTL, "RCTL"},
  94	{E1000_RDLEN(0), "RDLEN"},
  95	{E1000_RDH(0), "RDH"},
  96	{E1000_RDT(0), "RDT"},
  97	{E1000_RDTR, "RDTR"},
  98	{E1000_RXDCTL(0), "RXDCTL"},
  99	{E1000_ERT, "ERT"},
 100	{E1000_RDBAL(0), "RDBAL"},
 101	{E1000_RDBAH(0), "RDBAH"},
 102	{E1000_RDFH, "RDFH"},
 103	{E1000_RDFT, "RDFT"},
 104	{E1000_RDFHS, "RDFHS"},
 105	{E1000_RDFTS, "RDFTS"},
 106	{E1000_RDFPC, "RDFPC"},
 107
 108	/* Tx Registers */
 109	{E1000_TCTL, "TCTL"},
 110	{E1000_TDBAL(0), "TDBAL"},
 111	{E1000_TDBAH(0), "TDBAH"},
 112	{E1000_TDLEN(0), "TDLEN"},
 113	{E1000_TDH(0), "TDH"},
 114	{E1000_TDT(0), "TDT"},
 115	{E1000_TIDV, "TIDV"},
 116	{E1000_TXDCTL(0), "TXDCTL"},
 117	{E1000_TADV, "TADV"},
 118	{E1000_TARC(0), "TARC"},
 119	{E1000_TDFH, "TDFH"},
 120	{E1000_TDFT, "TDFT"},
 121	{E1000_TDFHS, "TDFHS"},
 122	{E1000_TDFTS, "TDFTS"},
 123	{E1000_TDFPC, "TDFPC"},
 124
 125	/* List Terminator */
 126	{0, NULL}
 127};
 128
 129/**
 130 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 131 * @hw: pointer to the HW structure
 132 *
 133 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 134 * be accessing the registers at the same time.  Normally, this is handled in
 135 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 136 * accesses later than it should which could result in the register to have
 137 * an incorrect value.  Workaround this by checking the FWSM register which
 138 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 139 * and try again a number of times.
 140 **/
 141s32 __ew32_prepare(struct e1000_hw *hw)
 142{
 143	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 144
 145	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 146		udelay(50);
 147
 148	return i;
 149}
 150
 151void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 152{
 153	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 154		__ew32_prepare(hw);
 155
 156	writel(val, hw->hw_addr + reg);
 157}
 158
 159/**
 160 * e1000_regdump - register printout routine
 161 * @hw: pointer to the HW structure
 162 * @reginfo: pointer to the register info table
 163 **/
 164static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 165{
 166	int n = 0;
 167	char rname[16];
 168	u32 regs[8];
 169
 170	switch (reginfo->ofs) {
 171	case E1000_RXDCTL(0):
 172		for (n = 0; n < 2; n++)
 173			regs[n] = __er32(hw, E1000_RXDCTL(n));
 174		break;
 175	case E1000_TXDCTL(0):
 176		for (n = 0; n < 2; n++)
 177			regs[n] = __er32(hw, E1000_TXDCTL(n));
 178		break;
 179	case E1000_TARC(0):
 180		for (n = 0; n < 2; n++)
 181			regs[n] = __er32(hw, E1000_TARC(n));
 182		break;
 183	default:
 184		pr_info("%-15s %08x\n",
 185			reginfo->name, __er32(hw, reginfo->ofs));
 186		return;
 187	}
 188
 189	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 190	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 191}
 192
 193static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 194				 struct e1000_buffer *bi)
 195{
 196	int i;
 197	struct e1000_ps_page *ps_page;
 198
 199	for (i = 0; i < adapter->rx_ps_pages; i++) {
 200		ps_page = &bi->ps_pages[i];
 201
 202		if (ps_page->page) {
 203			pr_info("packet dump for ps_page %d:\n", i);
 204			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 205				       16, 1, page_address(ps_page->page),
 206				       PAGE_SIZE, true);
 207		}
 208	}
 209}
 210
 211/**
 212 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 213 * @adapter: board private structure
 214 **/
 215static void e1000e_dump(struct e1000_adapter *adapter)
 216{
 217	struct net_device *netdev = adapter->netdev;
 218	struct e1000_hw *hw = &adapter->hw;
 219	struct e1000_reg_info *reginfo;
 220	struct e1000_ring *tx_ring = adapter->tx_ring;
 221	struct e1000_tx_desc *tx_desc;
 222	struct my_u0 {
 223		__le64 a;
 224		__le64 b;
 225	} *u0;
 226	struct e1000_buffer *buffer_info;
 227	struct e1000_ring *rx_ring = adapter->rx_ring;
 228	union e1000_rx_desc_packet_split *rx_desc_ps;
 229	union e1000_rx_desc_extended *rx_desc;
 230	struct my_u1 {
 231		__le64 a;
 232		__le64 b;
 233		__le64 c;
 234		__le64 d;
 235	} *u1;
 236	u32 staterr;
 237	int i = 0;
 238
 239	if (!netif_msg_hw(adapter))
 240		return;
 241
 242	/* Print netdevice Info */
 243	if (netdev) {
 244		dev_info(&adapter->pdev->dev, "Net device Info\n");
 245		pr_info("Device Name     state            trans_start\n");
 246		pr_info("%-15s %016lX %016lX\n", netdev->name,
 247			netdev->state, dev_trans_start(netdev));
 
 248	}
 249
 250	/* Print Registers */
 251	dev_info(&adapter->pdev->dev, "Register Dump\n");
 252	pr_info(" Register Name   Value\n");
 253	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 254	     reginfo->name; reginfo++) {
 255		e1000_regdump(hw, reginfo);
 256	}
 257
 258	/* Print Tx Ring Summary */
 259	if (!netdev || !netif_running(netdev))
 260		return;
 261
 262	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 263	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 264	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 265	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 266		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 267		(unsigned long long)buffer_info->dma,
 268		buffer_info->length,
 269		buffer_info->next_to_watch,
 270		(unsigned long long)buffer_info->time_stamp);
 271
 272	/* Print Tx Ring */
 273	if (!netif_msg_tx_done(adapter))
 274		goto rx_ring_summary;
 275
 276	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 277
 278	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 279	 *
 280	 * Legacy Transmit Descriptor
 281	 *   +--------------------------------------------------------------+
 282	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 283	 *   +--------------------------------------------------------------+
 284	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 285	 *   +--------------------------------------------------------------+
 286	 *   63       48 47        36 35    32 31     24 23    16 15        0
 287	 *
 288	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 289	 *   63      48 47    40 39       32 31             16 15    8 7      0
 290	 *   +----------------------------------------------------------------+
 291	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 292	 *   +----------------------------------------------------------------+
 293	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 294	 *   +----------------------------------------------------------------+
 295	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 296	 *
 297	 * Extended Data Descriptor (DTYP=0x1)
 298	 *   +----------------------------------------------------------------+
 299	 * 0 |                     Buffer Address [63:0]                      |
 300	 *   +----------------------------------------------------------------+
 301	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 302	 *   +----------------------------------------------------------------+
 303	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 304	 */
 305	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 306	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 307	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 308	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 309		const char *next_desc;
 310		tx_desc = E1000_TX_DESC(*tx_ring, i);
 311		buffer_info = &tx_ring->buffer_info[i];
 312		u0 = (struct my_u0 *)tx_desc;
 313		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 314			next_desc = " NTC/U";
 315		else if (i == tx_ring->next_to_use)
 316			next_desc = " NTU";
 317		else if (i == tx_ring->next_to_clean)
 318			next_desc = " NTC";
 319		else
 320			next_desc = "";
 321		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 322			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 323			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 324			i,
 325			(unsigned long long)le64_to_cpu(u0->a),
 326			(unsigned long long)le64_to_cpu(u0->b),
 327			(unsigned long long)buffer_info->dma,
 328			buffer_info->length, buffer_info->next_to_watch,
 329			(unsigned long long)buffer_info->time_stamp,
 330			buffer_info->skb, next_desc);
 331
 332		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 333			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 334				       16, 1, buffer_info->skb->data,
 335				       buffer_info->skb->len, true);
 336	}
 337
 338	/* Print Rx Ring Summary */
 339rx_ring_summary:
 340	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 341	pr_info("Queue [NTU] [NTC]\n");
 342	pr_info(" %5d %5X %5X\n",
 343		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 344
 345	/* Print Rx Ring */
 346	if (!netif_msg_rx_status(adapter))
 347		return;
 348
 349	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 350	switch (adapter->rx_ps_pages) {
 351	case 1:
 352	case 2:
 353	case 3:
 354		/* [Extended] Packet Split Receive Descriptor Format
 355		 *
 356		 *    +-----------------------------------------------------+
 357		 *  0 |                Buffer Address 0 [63:0]              |
 358		 *    +-----------------------------------------------------+
 359		 *  8 |                Buffer Address 1 [63:0]              |
 360		 *    +-----------------------------------------------------+
 361		 * 16 |                Buffer Address 2 [63:0]              |
 362		 *    +-----------------------------------------------------+
 363		 * 24 |                Buffer Address 3 [63:0]              |
 364		 *    +-----------------------------------------------------+
 365		 */
 366		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 367		/* [Extended] Receive Descriptor (Write-Back) Format
 368		 *
 369		 *   63       48 47    32 31     13 12    8 7    4 3        0
 370		 *   +------------------------------------------------------+
 371		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 372		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 373		 *   +------------------------------------------------------+
 374		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 375		 *   +------------------------------------------------------+
 376		 *   63       48 47    32 31            20 19               0
 377		 */
 378		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 379		for (i = 0; i < rx_ring->count; i++) {
 380			const char *next_desc;
 381			buffer_info = &rx_ring->buffer_info[i];
 382			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 383			u1 = (struct my_u1 *)rx_desc_ps;
 384			staterr =
 385			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 386
 387			if (i == rx_ring->next_to_use)
 388				next_desc = " NTU";
 389			else if (i == rx_ring->next_to_clean)
 390				next_desc = " NTC";
 391			else
 392				next_desc = "";
 393
 394			if (staterr & E1000_RXD_STAT_DD) {
 395				/* Descriptor Done */
 396				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 397					"RWB", i,
 398					(unsigned long long)le64_to_cpu(u1->a),
 399					(unsigned long long)le64_to_cpu(u1->b),
 400					(unsigned long long)le64_to_cpu(u1->c),
 401					(unsigned long long)le64_to_cpu(u1->d),
 402					buffer_info->skb, next_desc);
 403			} else {
 404				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 405					"R  ", i,
 406					(unsigned long long)le64_to_cpu(u1->a),
 407					(unsigned long long)le64_to_cpu(u1->b),
 408					(unsigned long long)le64_to_cpu(u1->c),
 409					(unsigned long long)le64_to_cpu(u1->d),
 410					(unsigned long long)buffer_info->dma,
 411					buffer_info->skb, next_desc);
 412
 413				if (netif_msg_pktdata(adapter))
 414					e1000e_dump_ps_pages(adapter,
 415							     buffer_info);
 
 
 416			}
 417		}
 418		break;
 419	default:
 420	case 0:
 421		/* Extended Receive Descriptor (Read) Format
 422		 *
 423		 *   +-----------------------------------------------------+
 424		 * 0 |                Buffer Address [63:0]                |
 425		 *   +-----------------------------------------------------+
 426		 * 8 |                      Reserved                       |
 427		 *   +-----------------------------------------------------+
 428		 */
 429		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 430		/* Extended Receive Descriptor (Write-Back) Format
 431		 *
 432		 *   63       48 47    32 31    24 23            4 3        0
 433		 *   +------------------------------------------------------+
 434		 *   |     RSS Hash      |        |               |         |
 435		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 436		 *   | Packet   | IP     |        |               |  Type   |
 437		 *   | Checksum | Ident  |        |               |         |
 438		 *   +------------------------------------------------------+
 439		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 440		 *   +------------------------------------------------------+
 441		 *   63       48 47    32 31            20 19               0
 442		 */
 443		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 444
 445		for (i = 0; i < rx_ring->count; i++) {
 446			const char *next_desc;
 447
 448			buffer_info = &rx_ring->buffer_info[i];
 449			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 450			u1 = (struct my_u1 *)rx_desc;
 451			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 452
 453			if (i == rx_ring->next_to_use)
 454				next_desc = " NTU";
 455			else if (i == rx_ring->next_to_clean)
 456				next_desc = " NTC";
 457			else
 458				next_desc = "";
 459
 460			if (staterr & E1000_RXD_STAT_DD) {
 461				/* Descriptor Done */
 462				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 463					"RWB", i,
 464					(unsigned long long)le64_to_cpu(u1->a),
 465					(unsigned long long)le64_to_cpu(u1->b),
 466					buffer_info->skb, next_desc);
 467			} else {
 468				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 469					"R  ", i,
 470					(unsigned long long)le64_to_cpu(u1->a),
 471					(unsigned long long)le64_to_cpu(u1->b),
 472					(unsigned long long)buffer_info->dma,
 473					buffer_info->skb, next_desc);
 474
 475				if (netif_msg_pktdata(adapter) &&
 476				    buffer_info->skb)
 477					print_hex_dump(KERN_INFO, "",
 478						       DUMP_PREFIX_ADDRESS, 16,
 479						       1,
 480						       buffer_info->skb->data,
 
 481						       adapter->rx_buffer_len,
 482						       true);
 483			}
 484		}
 485	}
 486}
 487
 488/**
 489 * e1000_desc_unused - calculate if we have unused descriptors
 490 **/
 491static int e1000_desc_unused(struct e1000_ring *ring)
 492{
 493	if (ring->next_to_clean > ring->next_to_use)
 494		return ring->next_to_clean - ring->next_to_use - 1;
 495
 496	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 497}
 498
 499/**
 500 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 501 * @adapter: board private structure
 502 * @hwtstamps: time stamp structure to update
 503 * @systim: unsigned 64bit system time value.
 504 *
 505 * Convert the system time value stored in the RX/TXSTMP registers into a
 506 * hwtstamp which can be used by the upper level time stamping functions.
 507 *
 508 * The 'systim_lock' spinlock is used to protect the consistency of the
 509 * system time value. This is needed because reading the 64 bit time
 510 * value involves reading two 32 bit registers. The first read latches the
 511 * value.
 512 **/
 513static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 514				      struct skb_shared_hwtstamps *hwtstamps,
 515				      u64 systim)
 516{
 517	u64 ns;
 518	unsigned long flags;
 519
 520	spin_lock_irqsave(&adapter->systim_lock, flags);
 521	ns = timecounter_cyc2time(&adapter->tc, systim);
 522	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 523
 524	memset(hwtstamps, 0, sizeof(*hwtstamps));
 525	hwtstamps->hwtstamp = ns_to_ktime(ns);
 526}
 527
 528/**
 529 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 530 * @adapter: board private structure
 531 * @status: descriptor extended error and status field
 532 * @skb: particular skb to include time stamp
 533 *
 534 * If the time stamp is valid, convert it into the timecounter ns value
 535 * and store that result into the shhwtstamps structure which is passed
 536 * up the network stack.
 537 **/
 538static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 539			       struct sk_buff *skb)
 540{
 541	struct e1000_hw *hw = &adapter->hw;
 542	u64 rxstmp;
 543
 544	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 545	    !(status & E1000_RXDEXT_STATERR_TST) ||
 546	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 547		return;
 548
 549	/* The Rx time stamp registers contain the time stamp.  No other
 550	 * received packet will be time stamped until the Rx time stamp
 551	 * registers are read.  Because only one packet can be time stamped
 552	 * at a time, the register values must belong to this packet and
 553	 * therefore none of the other additional attributes need to be
 554	 * compared.
 555	 */
 556	rxstmp = (u64)er32(RXSTMPL);
 557	rxstmp |= (u64)er32(RXSTMPH) << 32;
 558	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 559
 560	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 561}
 562
 563/**
 564 * e1000_receive_skb - helper function to handle Rx indications
 565 * @adapter: board private structure
 566 * @staterr: descriptor extended error and status field as written by hardware
 567 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 568 * @skb: pointer to sk_buff to be indicated to stack
 569 **/
 570static void e1000_receive_skb(struct e1000_adapter *adapter,
 571			      struct net_device *netdev, struct sk_buff *skb,
 572			      u32 staterr, __le16 vlan)
 573{
 574	u16 tag = le16_to_cpu(vlan);
 575
 576	e1000e_rx_hwtstamp(adapter, staterr, skb);
 577
 578	skb->protocol = eth_type_trans(skb, netdev);
 579
 580	if (staterr & E1000_RXD_STAT_VP)
 581		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 582
 583	napi_gro_receive(&adapter->napi, skb);
 584}
 585
 586/**
 587 * e1000_rx_checksum - Receive Checksum Offload
 588 * @adapter: board private structure
 589 * @status_err: receive descriptor status and error fields
 590 * @csum: receive descriptor csum field
 591 * @sk_buff: socket buffer with received data
 592 **/
 593static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 594			      struct sk_buff *skb)
 595{
 596	u16 status = (u16)status_err;
 597	u8 errors = (u8)(status_err >> 24);
 598
 599	skb_checksum_none_assert(skb);
 600
 601	/* Rx checksum disabled */
 602	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 603		return;
 604
 605	/* Ignore Checksum bit is set */
 606	if (status & E1000_RXD_STAT_IXSM)
 607		return;
 608
 609	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 610	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 611		/* let the stack verify checksum errors */
 612		adapter->hw_csum_err++;
 613		return;
 614	}
 615
 616	/* TCP/UDP Checksum has not been calculated */
 617	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 618		return;
 619
 620	/* It must be a TCP or UDP packet with a valid checksum */
 621	skb->ip_summed = CHECKSUM_UNNECESSARY;
 622	adapter->hw_csum_good++;
 623}
 624
 625static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 626{
 627	struct e1000_adapter *adapter = rx_ring->adapter;
 628	struct e1000_hw *hw = &adapter->hw;
 629	s32 ret_val = __ew32_prepare(hw);
 630
 631	writel(i, rx_ring->tail);
 632
 633	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 634		u32 rctl = er32(RCTL);
 635
 636		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 637		e_err("ME firmware caused invalid RDT - resetting\n");
 638		schedule_work(&adapter->reset_task);
 639	}
 640}
 641
 642static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 643{
 644	struct e1000_adapter *adapter = tx_ring->adapter;
 645	struct e1000_hw *hw = &adapter->hw;
 646	s32 ret_val = __ew32_prepare(hw);
 647
 648	writel(i, tx_ring->tail);
 649
 650	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 651		u32 tctl = er32(TCTL);
 652
 653		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 654		e_err("ME firmware caused invalid TDT - resetting\n");
 655		schedule_work(&adapter->reset_task);
 656	}
 657}
 658
 659/**
 660 * e1000_alloc_rx_buffers - Replace used receive buffers
 661 * @rx_ring: Rx descriptor ring
 662 **/
 663static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 664				   int cleaned_count, gfp_t gfp)
 665{
 666	struct e1000_adapter *adapter = rx_ring->adapter;
 667	struct net_device *netdev = adapter->netdev;
 668	struct pci_dev *pdev = adapter->pdev;
 669	union e1000_rx_desc_extended *rx_desc;
 670	struct e1000_buffer *buffer_info;
 671	struct sk_buff *skb;
 672	unsigned int i;
 673	unsigned int bufsz = adapter->rx_buffer_len;
 674
 675	i = rx_ring->next_to_use;
 676	buffer_info = &rx_ring->buffer_info[i];
 677
 678	while (cleaned_count--) {
 679		skb = buffer_info->skb;
 680		if (skb) {
 681			skb_trim(skb, 0);
 682			goto map_skb;
 683		}
 684
 685		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 686		if (!skb) {
 687			/* Better luck next round */
 688			adapter->alloc_rx_buff_failed++;
 689			break;
 690		}
 691
 692		buffer_info->skb = skb;
 693map_skb:
 694		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 695						  adapter->rx_buffer_len,
 696						  DMA_FROM_DEVICE);
 697		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 698			dev_err(&pdev->dev, "Rx DMA map failed\n");
 699			adapter->rx_dma_failed++;
 700			break;
 701		}
 702
 703		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 704		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 705
 706		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 707			/* Force memory writes to complete before letting h/w
 
 708			 * know there are new descriptors to fetch.  (Only
 709			 * applicable for weak-ordered memory model archs,
 710			 * such as IA-64).
 711			 */
 712			wmb();
 713			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 714				e1000e_update_rdt_wa(rx_ring, i);
 715			else
 716				writel(i, rx_ring->tail);
 717		}
 718		i++;
 719		if (i == rx_ring->count)
 720			i = 0;
 721		buffer_info = &rx_ring->buffer_info[i];
 722	}
 723
 724	rx_ring->next_to_use = i;
 725}
 726
 727/**
 728 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 729 * @rx_ring: Rx descriptor ring
 730 **/
 731static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 732				      int cleaned_count, gfp_t gfp)
 733{
 734	struct e1000_adapter *adapter = rx_ring->adapter;
 735	struct net_device *netdev = adapter->netdev;
 736	struct pci_dev *pdev = adapter->pdev;
 737	union e1000_rx_desc_packet_split *rx_desc;
 738	struct e1000_buffer *buffer_info;
 739	struct e1000_ps_page *ps_page;
 740	struct sk_buff *skb;
 741	unsigned int i, j;
 742
 743	i = rx_ring->next_to_use;
 744	buffer_info = &rx_ring->buffer_info[i];
 745
 746	while (cleaned_count--) {
 747		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 748
 749		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 750			ps_page = &buffer_info->ps_pages[j];
 751			if (j >= adapter->rx_ps_pages) {
 752				/* all unused desc entries get hw null ptr */
 753				rx_desc->read.buffer_addr[j + 1] =
 754				    ~cpu_to_le64(0);
 755				continue;
 756			}
 757			if (!ps_page->page) {
 758				ps_page->page = alloc_page(gfp);
 759				if (!ps_page->page) {
 760					adapter->alloc_rx_buff_failed++;
 761					goto no_buffers;
 762				}
 763				ps_page->dma = dma_map_page(&pdev->dev,
 764							    ps_page->page,
 765							    0, PAGE_SIZE,
 766							    DMA_FROM_DEVICE);
 767				if (dma_mapping_error(&pdev->dev,
 768						      ps_page->dma)) {
 769					dev_err(&adapter->pdev->dev,
 770						"Rx DMA page map failed\n");
 771					adapter->rx_dma_failed++;
 772					goto no_buffers;
 773				}
 774			}
 775			/* Refresh the desc even if buffer_addrs
 
 776			 * didn't change because each write-back
 777			 * erases this info.
 778			 */
 779			rx_desc->read.buffer_addr[j + 1] =
 780			    cpu_to_le64(ps_page->dma);
 781		}
 782
 783		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 
 784						  gfp);
 785
 786		if (!skb) {
 787			adapter->alloc_rx_buff_failed++;
 788			break;
 789		}
 790
 791		buffer_info->skb = skb;
 792		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 793						  adapter->rx_ps_bsize0,
 794						  DMA_FROM_DEVICE);
 795		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 796			dev_err(&pdev->dev, "Rx DMA map failed\n");
 797			adapter->rx_dma_failed++;
 798			/* cleanup skb */
 799			dev_kfree_skb_any(skb);
 800			buffer_info->skb = NULL;
 801			break;
 802		}
 803
 804		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 805
 806		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 807			/* Force memory writes to complete before letting h/w
 
 808			 * know there are new descriptors to fetch.  (Only
 809			 * applicable for weak-ordered memory model archs,
 810			 * such as IA-64).
 811			 */
 812			wmb();
 813			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 814				e1000e_update_rdt_wa(rx_ring, i << 1);
 815			else
 816				writel(i << 1, rx_ring->tail);
 817		}
 818
 819		i++;
 820		if (i == rx_ring->count)
 821			i = 0;
 822		buffer_info = &rx_ring->buffer_info[i];
 823	}
 824
 825no_buffers:
 826	rx_ring->next_to_use = i;
 827}
 828
 829/**
 830 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 831 * @rx_ring: Rx descriptor ring
 832 * @cleaned_count: number of buffers to allocate this pass
 833 **/
 834
 835static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 836					 int cleaned_count, gfp_t gfp)
 837{
 838	struct e1000_adapter *adapter = rx_ring->adapter;
 839	struct net_device *netdev = adapter->netdev;
 840	struct pci_dev *pdev = adapter->pdev;
 841	union e1000_rx_desc_extended *rx_desc;
 842	struct e1000_buffer *buffer_info;
 843	struct sk_buff *skb;
 844	unsigned int i;
 845	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 846
 847	i = rx_ring->next_to_use;
 848	buffer_info = &rx_ring->buffer_info[i];
 849
 850	while (cleaned_count--) {
 851		skb = buffer_info->skb;
 852		if (skb) {
 853			skb_trim(skb, 0);
 854			goto check_page;
 855		}
 856
 857		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 858		if (unlikely(!skb)) {
 859			/* Better luck next round */
 860			adapter->alloc_rx_buff_failed++;
 861			break;
 862		}
 863
 864		buffer_info->skb = skb;
 865check_page:
 866		/* allocate a new page if necessary */
 867		if (!buffer_info->page) {
 868			buffer_info->page = alloc_page(gfp);
 869			if (unlikely(!buffer_info->page)) {
 870				adapter->alloc_rx_buff_failed++;
 871				break;
 872			}
 873		}
 874
 875		if (!buffer_info->dma) {
 876			buffer_info->dma = dma_map_page(&pdev->dev,
 877							buffer_info->page, 0,
 878							PAGE_SIZE,
 879							DMA_FROM_DEVICE);
 880			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 881				adapter->alloc_rx_buff_failed++;
 882				break;
 883			}
 884		}
 885
 886		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 887		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 888
 889		if (unlikely(++i == rx_ring->count))
 890			i = 0;
 891		buffer_info = &rx_ring->buffer_info[i];
 892	}
 893
 894	if (likely(rx_ring->next_to_use != i)) {
 895		rx_ring->next_to_use = i;
 896		if (unlikely(i-- == 0))
 897			i = (rx_ring->count - 1);
 898
 899		/* Force memory writes to complete before letting h/w
 900		 * know there are new descriptors to fetch.  (Only
 901		 * applicable for weak-ordered memory model archs,
 902		 * such as IA-64).
 903		 */
 904		wmb();
 905		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 906			e1000e_update_rdt_wa(rx_ring, i);
 907		else
 908			writel(i, rx_ring->tail);
 909	}
 910}
 911
 912static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 913				 struct sk_buff *skb)
 914{
 915	if (netdev->features & NETIF_F_RXHASH)
 916		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 917}
 918
 919/**
 920 * e1000_clean_rx_irq - Send received data up the network stack
 921 * @rx_ring: Rx descriptor ring
 922 *
 923 * the return value indicates whether actual cleaning was done, there
 924 * is no guarantee that everything was cleaned
 925 **/
 926static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 927			       int work_to_do)
 928{
 929	struct e1000_adapter *adapter = rx_ring->adapter;
 930	struct net_device *netdev = adapter->netdev;
 931	struct pci_dev *pdev = adapter->pdev;
 932	struct e1000_hw *hw = &adapter->hw;
 933	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 934	struct e1000_buffer *buffer_info, *next_buffer;
 935	u32 length, staterr;
 936	unsigned int i;
 937	int cleaned_count = 0;
 938	bool cleaned = false;
 939	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 940
 941	i = rx_ring->next_to_clean;
 942	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 943	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 944	buffer_info = &rx_ring->buffer_info[i];
 945
 946	while (staterr & E1000_RXD_STAT_DD) {
 947		struct sk_buff *skb;
 948
 949		if (*work_done >= work_to_do)
 950			break;
 951		(*work_done)++;
 952		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 953
 954		skb = buffer_info->skb;
 955		buffer_info->skb = NULL;
 956
 957		prefetch(skb->data - NET_IP_ALIGN);
 958
 959		i++;
 960		if (i == rx_ring->count)
 961			i = 0;
 962		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 963		prefetch(next_rxd);
 964
 965		next_buffer = &rx_ring->buffer_info[i];
 966
 967		cleaned = true;
 968		cleaned_count++;
 969		dma_unmap_single(&pdev->dev, buffer_info->dma,
 970				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 
 
 971		buffer_info->dma = 0;
 972
 973		length = le16_to_cpu(rx_desc->wb.upper.length);
 974
 975		/* !EOP means multiple descriptors were used to store a single
 
 976		 * packet, if that's the case we need to toss it.  In fact, we
 977		 * need to toss every packet with the EOP bit clear and the
 978		 * next frame that _does_ have the EOP bit set, as it is by
 979		 * definition only a frame fragment
 980		 */
 981		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 982			adapter->flags2 |= FLAG2_IS_DISCARDING;
 983
 984		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 985			/* All receives must fit into a single buffer */
 986			e_dbg("Receive packet consumed multiple buffers\n");
 987			/* recycle */
 988			buffer_info->skb = skb;
 989			if (staterr & E1000_RXD_STAT_EOP)
 990				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 991			goto next_desc;
 992		}
 993
 994		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 995			     !(netdev->features & NETIF_F_RXALL))) {
 996			/* recycle */
 997			buffer_info->skb = skb;
 998			goto next_desc;
 999		}
1000
1001		/* adjust length to remove Ethernet CRC */
1002		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1003			/* If configured to store CRC, don't subtract FCS,
1004			 * but keep the FCS bytes out of the total_rx_bytes
1005			 * counter
1006			 */
1007			if (netdev->features & NETIF_F_RXFCS)
1008				total_rx_bytes -= 4;
1009			else
1010				length -= 4;
1011		}
1012
1013		total_rx_bytes += length;
1014		total_rx_packets++;
1015
1016		/* code added for copybreak, this should improve
 
1017		 * performance for small packets with large amounts
1018		 * of reassembly being done in the stack
1019		 */
1020		if (length < copybreak) {
1021			struct sk_buff *new_skb =
1022				napi_alloc_skb(&adapter->napi, length);
1023			if (new_skb) {
1024				skb_copy_to_linear_data_offset(new_skb,
1025							       -NET_IP_ALIGN,
1026							       (skb->data -
1027								NET_IP_ALIGN),
1028							       (length +
1029								NET_IP_ALIGN));
1030				/* save the skb in buffer_info as good */
1031				buffer_info->skb = skb;
1032				skb = new_skb;
1033			}
1034			/* else just continue with the old one */
1035		}
1036		/* end copybreak code */
1037		skb_put(skb, length);
1038
1039		/* Receive Checksum Offload */
1040		e1000_rx_checksum(adapter, staterr, skb);
1041
1042		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1043
1044		e1000_receive_skb(adapter, netdev, skb, staterr,
1045				  rx_desc->wb.upper.vlan);
1046
1047next_desc:
1048		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1049
1050		/* return some buffers to hardware, one at a time is too slow */
1051		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1052			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1053					      GFP_ATOMIC);
1054			cleaned_count = 0;
1055		}
1056
1057		/* use prefetched values */
1058		rx_desc = next_rxd;
1059		buffer_info = next_buffer;
1060
1061		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1062	}
1063	rx_ring->next_to_clean = i;
1064
1065	cleaned_count = e1000_desc_unused(rx_ring);
1066	if (cleaned_count)
1067		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1068
1069	adapter->total_rx_bytes += total_rx_bytes;
1070	adapter->total_rx_packets += total_rx_packets;
1071	return cleaned;
1072}
1073
1074static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1075			    struct e1000_buffer *buffer_info,
1076			    bool drop)
1077{
1078	struct e1000_adapter *adapter = tx_ring->adapter;
1079
1080	if (buffer_info->dma) {
1081		if (buffer_info->mapped_as_page)
1082			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1083				       buffer_info->length, DMA_TO_DEVICE);
1084		else
1085			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1086					 buffer_info->length, DMA_TO_DEVICE);
1087		buffer_info->dma = 0;
1088	}
1089	if (buffer_info->skb) {
1090		if (drop)
1091			dev_kfree_skb_any(buffer_info->skb);
1092		else
1093			dev_consume_skb_any(buffer_info->skb);
1094		buffer_info->skb = NULL;
1095	}
1096	buffer_info->time_stamp = 0;
1097}
1098
1099static void e1000_print_hw_hang(struct work_struct *work)
1100{
1101	struct e1000_adapter *adapter = container_of(work,
1102						     struct e1000_adapter,
1103						     print_hang_task);
1104	struct net_device *netdev = adapter->netdev;
1105	struct e1000_ring *tx_ring = adapter->tx_ring;
1106	unsigned int i = tx_ring->next_to_clean;
1107	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1108	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1109	struct e1000_hw *hw = &adapter->hw;
1110	u16 phy_status, phy_1000t_status, phy_ext_status;
1111	u16 pci_status;
1112
1113	if (test_bit(__E1000_DOWN, &adapter->state))
1114		return;
1115
1116	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1117		/* May be block on write-back, flush and detect again
 
 
1118		 * flush pending descriptor writebacks to memory
1119		 */
1120		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121		/* execute the writes immediately */
1122		e1e_flush();
1123		/* Due to rare timing issues, write to TIDV again to ensure
 
1124		 * the write is successful
1125		 */
1126		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1127		/* execute the writes immediately */
1128		e1e_flush();
1129		adapter->tx_hang_recheck = true;
1130		return;
1131	}
1132	adapter->tx_hang_recheck = false;
1133
1134	if (er32(TDH(0)) == er32(TDT(0))) {
1135		e_dbg("false hang detected, ignoring\n");
1136		return;
1137	}
1138
1139	/* Real hang detected */
 
1140	netif_stop_queue(netdev);
1141
1142	e1e_rphy(hw, MII_BMSR, &phy_status);
1143	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1144	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1145
1146	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1147
1148	/* detected Hardware unit hang */
1149	e_err("Detected Hardware Unit Hang:\n"
1150	      "  TDH                  <%x>\n"
1151	      "  TDT                  <%x>\n"
1152	      "  next_to_use          <%x>\n"
1153	      "  next_to_clean        <%x>\n"
1154	      "buffer_info[next_to_clean]:\n"
1155	      "  time_stamp           <%lx>\n"
1156	      "  next_to_watch        <%x>\n"
1157	      "  jiffies              <%lx>\n"
1158	      "  next_to_watch.status <%x>\n"
1159	      "MAC Status             <%x>\n"
1160	      "PHY Status             <%x>\n"
1161	      "PHY 1000BASE-T Status  <%x>\n"
1162	      "PHY Extended Status    <%x>\n"
1163	      "PCI Status             <%x>\n",
1164	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1165	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1166	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1167	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1168
1169	e1000e_dump(adapter);
 
 
 
 
 
 
 
1170
1171	/* Suggest workaround for known h/w issue */
1172	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1173		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1174}
1175
1176/**
1177 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1178 * @work: pointer to work struct
1179 *
1180 * This work function polls the TSYNCTXCTL valid bit to determine when a
1181 * timestamp has been taken for the current stored skb.  The timestamp must
1182 * be for this skb because only one such packet is allowed in the queue.
1183 */
1184static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1185{
1186	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1187						     tx_hwtstamp_work);
1188	struct e1000_hw *hw = &adapter->hw;
1189
1190	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1191		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1192		struct skb_shared_hwtstamps shhwtstamps;
1193		u64 txstmp;
1194
1195		txstmp = er32(TXSTMPL);
1196		txstmp |= (u64)er32(TXSTMPH) << 32;
1197
1198		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1199
1200		/* Clear the global tx_hwtstamp_skb pointer and force writes
1201		 * prior to notifying the stack of a Tx timestamp.
1202		 */
1203		adapter->tx_hwtstamp_skb = NULL;
1204		wmb(); /* force write prior to skb_tstamp_tx */
1205
1206		skb_tstamp_tx(skb, &shhwtstamps);
1207		dev_consume_skb_any(skb);
1208	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1209			      + adapter->tx_timeout_factor * HZ)) {
1210		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1211		adapter->tx_hwtstamp_skb = NULL;
1212		adapter->tx_hwtstamp_timeouts++;
1213		e_warn("clearing Tx timestamp hang\n");
1214	} else {
1215		/* reschedule to check later */
1216		schedule_work(&adapter->tx_hwtstamp_work);
1217	}
1218}
1219
1220/**
1221 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1222 * @tx_ring: Tx descriptor ring
1223 *
1224 * the return value indicates whether actual cleaning was done, there
1225 * is no guarantee that everything was cleaned
1226 **/
1227static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1228{
1229	struct e1000_adapter *adapter = tx_ring->adapter;
1230	struct net_device *netdev = adapter->netdev;
1231	struct e1000_hw *hw = &adapter->hw;
1232	struct e1000_tx_desc *tx_desc, *eop_desc;
1233	struct e1000_buffer *buffer_info;
1234	unsigned int i, eop;
1235	unsigned int count = 0;
1236	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1237	unsigned int bytes_compl = 0, pkts_compl = 0;
1238
1239	i = tx_ring->next_to_clean;
1240	eop = tx_ring->buffer_info[i].next_to_watch;
1241	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1242
1243	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1244	       (count < tx_ring->count)) {
1245		bool cleaned = false;
1246
1247		dma_rmb();		/* read buffer_info after eop_desc */
1248		for (; !cleaned; count++) {
1249			tx_desc = E1000_TX_DESC(*tx_ring, i);
1250			buffer_info = &tx_ring->buffer_info[i];
1251			cleaned = (i == eop);
1252
1253			if (cleaned) {
1254				total_tx_packets += buffer_info->segs;
1255				total_tx_bytes += buffer_info->bytecount;
1256				if (buffer_info->skb) {
1257					bytes_compl += buffer_info->skb->len;
1258					pkts_compl++;
1259				}
1260			}
1261
1262			e1000_put_txbuf(tx_ring, buffer_info, false);
1263			tx_desc->upper.data = 0;
1264
1265			i++;
1266			if (i == tx_ring->count)
1267				i = 0;
1268		}
1269
1270		if (i == tx_ring->next_to_use)
1271			break;
1272		eop = tx_ring->buffer_info[i].next_to_watch;
1273		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1274	}
1275
1276	tx_ring->next_to_clean = i;
1277
1278	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1279
1280#define TX_WAKE_THRESHOLD 32
1281	if (count && netif_carrier_ok(netdev) &&
1282	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1283		/* Make sure that anybody stopping the queue after this
1284		 * sees the new next_to_clean.
1285		 */
1286		smp_mb();
1287
1288		if (netif_queue_stopped(netdev) &&
1289		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1290			netif_wake_queue(netdev);
1291			++adapter->restart_queue;
1292		}
1293	}
1294
1295	if (adapter->detect_tx_hung) {
1296		/* Detect a transmit hang in hardware, this serializes the
 
1297		 * check with the clearing of time_stamp and movement of i
1298		 */
1299		adapter->detect_tx_hung = false;
1300		if (tx_ring->buffer_info[i].time_stamp &&
1301		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1302			       + (adapter->tx_timeout_factor * HZ)) &&
1303		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1304			schedule_work(&adapter->print_hang_task);
1305		else
1306			adapter->tx_hang_recheck = false;
1307	}
1308	adapter->total_tx_bytes += total_tx_bytes;
1309	adapter->total_tx_packets += total_tx_packets;
1310	return count < tx_ring->count;
1311}
1312
1313/**
1314 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1315 * @rx_ring: Rx descriptor ring
1316 *
1317 * the return value indicates whether actual cleaning was done, there
1318 * is no guarantee that everything was cleaned
1319 **/
1320static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1321				  int work_to_do)
1322{
1323	struct e1000_adapter *adapter = rx_ring->adapter;
1324	struct e1000_hw *hw = &adapter->hw;
1325	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1326	struct net_device *netdev = adapter->netdev;
1327	struct pci_dev *pdev = adapter->pdev;
1328	struct e1000_buffer *buffer_info, *next_buffer;
1329	struct e1000_ps_page *ps_page;
1330	struct sk_buff *skb;
1331	unsigned int i, j;
1332	u32 length, staterr;
1333	int cleaned_count = 0;
1334	bool cleaned = false;
1335	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1336
1337	i = rx_ring->next_to_clean;
1338	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1339	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1340	buffer_info = &rx_ring->buffer_info[i];
1341
1342	while (staterr & E1000_RXD_STAT_DD) {
1343		if (*work_done >= work_to_do)
1344			break;
1345		(*work_done)++;
1346		skb = buffer_info->skb;
1347		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1348
1349		/* in the packet split case this is header only */
1350		prefetch(skb->data - NET_IP_ALIGN);
1351
1352		i++;
1353		if (i == rx_ring->count)
1354			i = 0;
1355		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1356		prefetch(next_rxd);
1357
1358		next_buffer = &rx_ring->buffer_info[i];
1359
1360		cleaned = true;
1361		cleaned_count++;
1362		dma_unmap_single(&pdev->dev, buffer_info->dma,
1363				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1364		buffer_info->dma = 0;
1365
1366		/* see !EOP comment in other Rx routine */
1367		if (!(staterr & E1000_RXD_STAT_EOP))
1368			adapter->flags2 |= FLAG2_IS_DISCARDING;
1369
1370		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1371			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1372			dev_kfree_skb_irq(skb);
1373			if (staterr & E1000_RXD_STAT_EOP)
1374				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1375			goto next_desc;
1376		}
1377
1378		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1379			     !(netdev->features & NETIF_F_RXALL))) {
1380			dev_kfree_skb_irq(skb);
1381			goto next_desc;
1382		}
1383
1384		length = le16_to_cpu(rx_desc->wb.middle.length0);
1385
1386		if (!length) {
1387			e_dbg("Last part of the packet spanning multiple descriptors\n");
1388			dev_kfree_skb_irq(skb);
1389			goto next_desc;
1390		}
1391
1392		/* Good Receive */
1393		skb_put(skb, length);
1394
1395		{
1396			/* this looks ugly, but it seems compiler issues make
 
1397			 * it more efficient than reusing j
1398			 */
1399			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1400
1401			/* page alloc/put takes too long and effects small
 
1402			 * packet throughput, so unsplit small packets and
1403			 * save the alloc/put only valid in softirq (napi)
1404			 * context to call kmap_*
1405			 */
1406			if (l1 && (l1 <= copybreak) &&
1407			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1408				u8 *vaddr;
1409
1410				ps_page = &buffer_info->ps_pages[0];
1411
1412				/* there is no documentation about how to call
 
1413				 * kmap_atomic, so we can't hold the mapping
1414				 * very long
1415				 */
1416				dma_sync_single_for_cpu(&pdev->dev,
1417							ps_page->dma,
1418							PAGE_SIZE,
1419							DMA_FROM_DEVICE);
1420				vaddr = kmap_atomic(ps_page->page);
1421				memcpy(skb_tail_pointer(skb), vaddr, l1);
1422				kunmap_atomic(vaddr);
1423				dma_sync_single_for_device(&pdev->dev,
1424							   ps_page->dma,
1425							   PAGE_SIZE,
1426							   DMA_FROM_DEVICE);
1427
1428				/* remove the CRC */
1429				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1430					if (!(netdev->features & NETIF_F_RXFCS))
1431						l1 -= 4;
1432				}
1433
1434				skb_put(skb, l1);
1435				goto copydone;
1436			}	/* if */
1437		}
1438
1439		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1440			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1441			if (!length)
1442				break;
1443
1444			ps_page = &buffer_info->ps_pages[j];
1445			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1446				       DMA_FROM_DEVICE);
1447			ps_page->dma = 0;
1448			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1449			ps_page->page = NULL;
1450			skb->len += length;
1451			skb->data_len += length;
1452			skb->truesize += PAGE_SIZE;
1453		}
1454
1455		/* strip the ethernet crc, problem is we're using pages now so
1456		 * this whole operation can get a little cpu intensive
1457		 */
1458		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1459			if (!(netdev->features & NETIF_F_RXFCS))
1460				pskb_trim(skb, skb->len - 4);
1461		}
1462
1463copydone:
1464		total_rx_bytes += skb->len;
1465		total_rx_packets++;
1466
1467		e1000_rx_checksum(adapter, staterr, skb);
1468
1469		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1470
1471		if (rx_desc->wb.upper.header_status &
1472		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1473			adapter->rx_hdr_split++;
1474
1475		e1000_receive_skb(adapter, netdev, skb, staterr,
1476				  rx_desc->wb.middle.vlan);
1477
1478next_desc:
1479		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1480		buffer_info->skb = NULL;
1481
1482		/* return some buffers to hardware, one at a time is too slow */
1483		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1484			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1485					      GFP_ATOMIC);
1486			cleaned_count = 0;
1487		}
1488
1489		/* use prefetched values */
1490		rx_desc = next_rxd;
1491		buffer_info = next_buffer;
1492
1493		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1494	}
1495	rx_ring->next_to_clean = i;
1496
1497	cleaned_count = e1000_desc_unused(rx_ring);
1498	if (cleaned_count)
1499		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1500
1501	adapter->total_rx_bytes += total_rx_bytes;
1502	adapter->total_rx_packets += total_rx_packets;
1503	return cleaned;
1504}
1505
1506/**
1507 * e1000_consume_page - helper function
1508 **/
1509static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1510			       u16 length)
1511{
1512	bi->page = NULL;
1513	skb->len += length;
1514	skb->data_len += length;
1515	skb->truesize += PAGE_SIZE;
1516}
1517
1518/**
1519 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1520 * @adapter: board private structure
1521 *
1522 * the return value indicates whether actual cleaning was done, there
1523 * is no guarantee that everything was cleaned
1524 **/
1525static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1526				     int work_to_do)
1527{
1528	struct e1000_adapter *adapter = rx_ring->adapter;
1529	struct net_device *netdev = adapter->netdev;
1530	struct pci_dev *pdev = adapter->pdev;
1531	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1532	struct e1000_buffer *buffer_info, *next_buffer;
1533	u32 length, staterr;
1534	unsigned int i;
1535	int cleaned_count = 0;
1536	bool cleaned = false;
1537	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1538	struct skb_shared_info *shinfo;
1539
1540	i = rx_ring->next_to_clean;
1541	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1542	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1543	buffer_info = &rx_ring->buffer_info[i];
1544
1545	while (staterr & E1000_RXD_STAT_DD) {
1546		struct sk_buff *skb;
1547
1548		if (*work_done >= work_to_do)
1549			break;
1550		(*work_done)++;
1551		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1552
1553		skb = buffer_info->skb;
1554		buffer_info->skb = NULL;
1555
1556		++i;
1557		if (i == rx_ring->count)
1558			i = 0;
1559		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1560		prefetch(next_rxd);
1561
1562		next_buffer = &rx_ring->buffer_info[i];
1563
1564		cleaned = true;
1565		cleaned_count++;
1566		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1567			       DMA_FROM_DEVICE);
1568		buffer_info->dma = 0;
1569
1570		length = le16_to_cpu(rx_desc->wb.upper.length);
1571
1572		/* errors is only valid for DD + EOP descriptors */
1573		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1574			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1575			      !(netdev->features & NETIF_F_RXALL)))) {
1576			/* recycle both page and skb */
1577			buffer_info->skb = skb;
1578			/* an error means any chain goes out the window too */
1579			if (rx_ring->rx_skb_top)
1580				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1581			rx_ring->rx_skb_top = NULL;
1582			goto next_desc;
1583		}
 
1584#define rxtop (rx_ring->rx_skb_top)
1585		if (!(staterr & E1000_RXD_STAT_EOP)) {
1586			/* this descriptor is only the beginning (or middle) */
1587			if (!rxtop) {
1588				/* this is the beginning of a chain */
1589				rxtop = skb;
1590				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1591						   0, length);
1592			} else {
1593				/* this is the middle of a chain */
1594				shinfo = skb_shinfo(rxtop);
1595				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596						   buffer_info->page, 0,
1597						   length);
1598				/* re-use the skb, only consumed the page */
1599				buffer_info->skb = skb;
1600			}
1601			e1000_consume_page(buffer_info, rxtop, length);
1602			goto next_desc;
1603		} else {
1604			if (rxtop) {
1605				/* end of the chain */
1606				shinfo = skb_shinfo(rxtop);
1607				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1608						   buffer_info->page, 0,
1609						   length);
1610				/* re-use the current skb, we only consumed the
1611				 * page
1612				 */
1613				buffer_info->skb = skb;
1614				skb = rxtop;
1615				rxtop = NULL;
1616				e1000_consume_page(buffer_info, skb, length);
1617			} else {
1618				/* no chain, got EOP, this buf is the packet
1619				 * copybreak to save the put_page/alloc_page
1620				 */
1621				if (length <= copybreak &&
1622				    skb_tailroom(skb) >= length) {
1623					u8 *vaddr;
1624					vaddr = kmap_atomic(buffer_info->page);
1625					memcpy(skb_tail_pointer(skb), vaddr,
1626					       length);
1627					kunmap_atomic(vaddr);
1628					/* re-use the page, so don't erase
1629					 * buffer_info->page
1630					 */
1631					skb_put(skb, length);
1632				} else {
1633					skb_fill_page_desc(skb, 0,
1634							   buffer_info->page, 0,
1635							   length);
1636					e1000_consume_page(buffer_info, skb,
1637							   length);
1638				}
1639			}
1640		}
1641
1642		/* Receive Checksum Offload */
1643		e1000_rx_checksum(adapter, staterr, skb);
1644
1645		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1646
1647		/* probably a little skewed due to removing CRC */
1648		total_rx_bytes += skb->len;
1649		total_rx_packets++;
1650
1651		/* eth type trans needs skb->data to point to something */
1652		if (!pskb_may_pull(skb, ETH_HLEN)) {
1653			e_err("pskb_may_pull failed.\n");
1654			dev_kfree_skb_irq(skb);
1655			goto next_desc;
1656		}
1657
1658		e1000_receive_skb(adapter, netdev, skb, staterr,
1659				  rx_desc->wb.upper.vlan);
1660
1661next_desc:
1662		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1663
1664		/* return some buffers to hardware, one at a time is too slow */
1665		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1666			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1667					      GFP_ATOMIC);
1668			cleaned_count = 0;
1669		}
1670
1671		/* use prefetched values */
1672		rx_desc = next_rxd;
1673		buffer_info = next_buffer;
1674
1675		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1676	}
1677	rx_ring->next_to_clean = i;
1678
1679	cleaned_count = e1000_desc_unused(rx_ring);
1680	if (cleaned_count)
1681		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1682
1683	adapter->total_rx_bytes += total_rx_bytes;
1684	adapter->total_rx_packets += total_rx_packets;
1685	return cleaned;
1686}
1687
1688/**
1689 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1690 * @rx_ring: Rx descriptor ring
1691 **/
1692static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1693{
1694	struct e1000_adapter *adapter = rx_ring->adapter;
1695	struct e1000_buffer *buffer_info;
1696	struct e1000_ps_page *ps_page;
1697	struct pci_dev *pdev = adapter->pdev;
1698	unsigned int i, j;
1699
1700	/* Free all the Rx ring sk_buffs */
1701	for (i = 0; i < rx_ring->count; i++) {
1702		buffer_info = &rx_ring->buffer_info[i];
1703		if (buffer_info->dma) {
1704			if (adapter->clean_rx == e1000_clean_rx_irq)
1705				dma_unmap_single(&pdev->dev, buffer_info->dma,
1706						 adapter->rx_buffer_len,
1707						 DMA_FROM_DEVICE);
1708			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1709				dma_unmap_page(&pdev->dev, buffer_info->dma,
1710					       PAGE_SIZE, DMA_FROM_DEVICE);
 
1711			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1712				dma_unmap_single(&pdev->dev, buffer_info->dma,
1713						 adapter->rx_ps_bsize0,
1714						 DMA_FROM_DEVICE);
1715			buffer_info->dma = 0;
1716		}
1717
1718		if (buffer_info->page) {
1719			put_page(buffer_info->page);
1720			buffer_info->page = NULL;
1721		}
1722
1723		if (buffer_info->skb) {
1724			dev_kfree_skb(buffer_info->skb);
1725			buffer_info->skb = NULL;
1726		}
1727
1728		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1729			ps_page = &buffer_info->ps_pages[j];
1730			if (!ps_page->page)
1731				break;
1732			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1733				       DMA_FROM_DEVICE);
1734			ps_page->dma = 0;
1735			put_page(ps_page->page);
1736			ps_page->page = NULL;
1737		}
1738	}
1739
1740	/* there also may be some cached data from a chained receive */
1741	if (rx_ring->rx_skb_top) {
1742		dev_kfree_skb(rx_ring->rx_skb_top);
1743		rx_ring->rx_skb_top = NULL;
1744	}
1745
1746	/* Zero out the descriptor ring */
1747	memset(rx_ring->desc, 0, rx_ring->size);
1748
1749	rx_ring->next_to_clean = 0;
1750	rx_ring->next_to_use = 0;
1751	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1752}
1753
1754static void e1000e_downshift_workaround(struct work_struct *work)
1755{
1756	struct e1000_adapter *adapter = container_of(work,
1757						     struct e1000_adapter,
1758						     downshift_task);
1759
1760	if (test_bit(__E1000_DOWN, &adapter->state))
1761		return;
1762
1763	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1764}
1765
1766/**
1767 * e1000_intr_msi - Interrupt Handler
1768 * @irq: interrupt number
1769 * @data: pointer to a network interface device structure
1770 **/
1771static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1772{
1773	struct net_device *netdev = data;
1774	struct e1000_adapter *adapter = netdev_priv(netdev);
1775	struct e1000_hw *hw = &adapter->hw;
1776	u32 icr = er32(ICR);
1777
1778	/* read ICR disables interrupts using IAM */
 
 
 
1779	if (icr & E1000_ICR_LSC) {
1780		hw->mac.get_link_status = true;
1781		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1782		 * disconnect (LSC) before accessing any PHY registers
1783		 */
1784		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1785		    (!(er32(STATUS) & E1000_STATUS_LU)))
1786			schedule_work(&adapter->downshift_task);
1787
1788		/* 80003ES2LAN workaround-- For packet buffer work-around on
 
1789		 * link down event; disable receives here in the ISR and reset
1790		 * adapter in watchdog
1791		 */
1792		if (netif_carrier_ok(netdev) &&
1793		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1794			/* disable receives */
1795			u32 rctl = er32(RCTL);
1796
1797			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1798			adapter->flags |= FLAG_RESTART_NOW;
1799		}
1800		/* guard against interrupt when we're going down */
1801		if (!test_bit(__E1000_DOWN, &adapter->state))
1802			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1803	}
1804
1805	/* Reset on uncorrectable ECC error */
1806	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1807		u32 pbeccsts = er32(PBECCSTS);
1808
1809		adapter->corr_errors +=
1810		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1811		adapter->uncorr_errors +=
1812		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1813		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1814
1815		/* Do the reset outside of interrupt context */
1816		schedule_work(&adapter->reset_task);
1817
1818		/* return immediately since reset is imminent */
1819		return IRQ_HANDLED;
1820	}
1821
1822	if (napi_schedule_prep(&adapter->napi)) {
1823		adapter->total_tx_bytes = 0;
1824		adapter->total_tx_packets = 0;
1825		adapter->total_rx_bytes = 0;
1826		adapter->total_rx_packets = 0;
1827		__napi_schedule(&adapter->napi);
1828	}
1829
1830	return IRQ_HANDLED;
1831}
1832
1833/**
1834 * e1000_intr - Interrupt Handler
1835 * @irq: interrupt number
1836 * @data: pointer to a network interface device structure
1837 **/
1838static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1839{
1840	struct net_device *netdev = data;
1841	struct e1000_adapter *adapter = netdev_priv(netdev);
1842	struct e1000_hw *hw = &adapter->hw;
1843	u32 rctl, icr = er32(ICR);
1844
1845	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1846		return IRQ_NONE;	/* Not our interrupt */
1847
1848	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 
1849	 * not set, then the adapter didn't send an interrupt
1850	 */
1851	if (!(icr & E1000_ICR_INT_ASSERTED))
1852		return IRQ_NONE;
1853
1854	/* Interrupt Auto-Mask...upon reading ICR,
 
1855	 * interrupts are masked.  No need for the
1856	 * IMC write
1857	 */
1858
1859	if (icr & E1000_ICR_LSC) {
1860		hw->mac.get_link_status = true;
1861		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1862		 * disconnect (LSC) before accessing any PHY registers
1863		 */
1864		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1865		    (!(er32(STATUS) & E1000_STATUS_LU)))
1866			schedule_work(&adapter->downshift_task);
1867
1868		/* 80003ES2LAN workaround--
 
1869		 * For packet buffer work-around on link down event;
1870		 * disable receives here in the ISR and
1871		 * reset adapter in watchdog
1872		 */
1873		if (netif_carrier_ok(netdev) &&
1874		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1875			/* disable receives */
1876			rctl = er32(RCTL);
1877			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1878			adapter->flags |= FLAG_RESTART_NOW;
1879		}
1880		/* guard against interrupt when we're going down */
1881		if (!test_bit(__E1000_DOWN, &adapter->state))
1882			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1883	}
1884
1885	/* Reset on uncorrectable ECC error */
1886	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1887		u32 pbeccsts = er32(PBECCSTS);
1888
1889		adapter->corr_errors +=
1890		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1891		adapter->uncorr_errors +=
1892		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1893		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894
1895		/* Do the reset outside of interrupt context */
1896		schedule_work(&adapter->reset_task);
1897
1898		/* return immediately since reset is imminent */
1899		return IRQ_HANDLED;
1900	}
1901
1902	if (napi_schedule_prep(&adapter->napi)) {
1903		adapter->total_tx_bytes = 0;
1904		adapter->total_tx_packets = 0;
1905		adapter->total_rx_bytes = 0;
1906		adapter->total_rx_packets = 0;
1907		__napi_schedule(&adapter->napi);
1908	}
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	u32 icr = er32(ICR);
1919
 
 
 
 
 
 
1920	if (icr & adapter->eiac_mask)
1921		ew32(ICS, (icr & adapter->eiac_mask));
1922
1923	if (icr & E1000_ICR_LSC) {
 
 
1924		hw->mac.get_link_status = true;
1925		/* guard against interrupt when we're going down */
1926		if (!test_bit(__E1000_DOWN, &adapter->state))
1927			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1928	}
1929
 
1930	if (!test_bit(__E1000_DOWN, &adapter->state))
1931		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1932
1933	return IRQ_HANDLED;
1934}
1935
1936static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
 
1937{
1938	struct net_device *netdev = data;
1939	struct e1000_adapter *adapter = netdev_priv(netdev);
1940	struct e1000_hw *hw = &adapter->hw;
1941	struct e1000_ring *tx_ring = adapter->tx_ring;
1942
 
1943	adapter->total_tx_bytes = 0;
1944	adapter->total_tx_packets = 0;
1945
1946	if (!e1000_clean_tx_irq(tx_ring))
1947		/* Ring was not completely cleaned, so fire another interrupt */
1948		ew32(ICS, tx_ring->ims_val);
1949
1950	if (!test_bit(__E1000_DOWN, &adapter->state))
1951		ew32(IMS, adapter->tx_ring->ims_val);
1952
1953	return IRQ_HANDLED;
1954}
1955
1956static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1957{
1958	struct net_device *netdev = data;
1959	struct e1000_adapter *adapter = netdev_priv(netdev);
1960	struct e1000_ring *rx_ring = adapter->rx_ring;
1961
1962	/* Write the ITR value calculated at the end of the
1963	 * previous interrupt.
1964	 */
1965	if (rx_ring->set_itr) {
1966		u32 itr = rx_ring->itr_val ?
1967			  1000000000 / (rx_ring->itr_val * 256) : 0;
1968
1969		writel(itr, rx_ring->itr_register);
1970		rx_ring->set_itr = 0;
1971	}
1972
1973	if (napi_schedule_prep(&adapter->napi)) {
1974		adapter->total_rx_bytes = 0;
1975		adapter->total_rx_packets = 0;
1976		__napi_schedule(&adapter->napi);
1977	}
1978	return IRQ_HANDLED;
1979}
1980
1981/**
1982 * e1000_configure_msix - Configure MSI-X hardware
1983 *
1984 * e1000_configure_msix sets up the hardware to properly
1985 * generate MSI-X interrupts.
1986 **/
1987static void e1000_configure_msix(struct e1000_adapter *adapter)
1988{
1989	struct e1000_hw *hw = &adapter->hw;
1990	struct e1000_ring *rx_ring = adapter->rx_ring;
1991	struct e1000_ring *tx_ring = adapter->tx_ring;
1992	int vector = 0;
1993	u32 ctrl_ext, ivar = 0;
1994
1995	adapter->eiac_mask = 0;
1996
1997	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998	if (hw->mac.type == e1000_82574) {
1999		u32 rfctl = er32(RFCTL);
2000
2001		rfctl |= E1000_RFCTL_ACK_DIS;
2002		ew32(RFCTL, rfctl);
2003	}
2004
 
2005	/* Configure Rx vector */
2006	rx_ring->ims_val = E1000_IMS_RXQ0;
2007	adapter->eiac_mask |= rx_ring->ims_val;
2008	if (rx_ring->itr_val)
2009		writel(1000000000 / (rx_ring->itr_val * 256),
2010		       rx_ring->itr_register);
2011	else
2012		writel(1, rx_ring->itr_register);
2013	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015	/* Configure Tx vector */
2016	tx_ring->ims_val = E1000_IMS_TXQ0;
2017	vector++;
2018	if (tx_ring->itr_val)
2019		writel(1000000000 / (tx_ring->itr_val * 256),
2020		       tx_ring->itr_register);
2021	else
2022		writel(1, tx_ring->itr_register);
2023	adapter->eiac_mask |= tx_ring->ims_val;
2024	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026	/* set vector for Other Causes, e.g. link changes */
2027	vector++;
2028	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029	if (rx_ring->itr_val)
2030		writel(1000000000 / (rx_ring->itr_val * 256),
2031		       hw->hw_addr + E1000_EITR_82574(vector));
2032	else
2033		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035	/* Cause Tx interrupts on every write back */
2036	ivar |= BIT(31);
2037
2038	ew32(IVAR, ivar);
2039
2040	/* enable MSI-X PBA support */
2041	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2042	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
 
2043	ew32(CTRL_EXT, ctrl_ext);
2044	e1e_flush();
2045}
2046
2047void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049	if (adapter->msix_entries) {
2050		pci_disable_msix(adapter->pdev);
2051		kfree(adapter->msix_entries);
2052		adapter->msix_entries = NULL;
2053	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2054		pci_disable_msi(adapter->pdev);
2055		adapter->flags &= ~FLAG_MSI_ENABLED;
2056	}
2057}
2058
2059/**
2060 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2061 *
2062 * Attempt to configure interrupts using the best available
2063 * capabilities of the hardware and kernel.
2064 **/
2065void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2066{
2067	int err;
2068	int i;
2069
2070	switch (adapter->int_mode) {
2071	case E1000E_INT_MODE_MSIX:
2072		if (adapter->flags & FLAG_HAS_MSIX) {
2073			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2074			adapter->msix_entries = kcalloc(adapter->num_vectors,
2075							sizeof(struct
2076							       msix_entry),
2077							GFP_KERNEL);
2078			if (adapter->msix_entries) {
2079				struct e1000_adapter *a = adapter;
2080
2081				for (i = 0; i < adapter->num_vectors; i++)
2082					adapter->msix_entries[i].entry = i;
2083
2084				err = pci_enable_msix_range(a->pdev,
2085							    a->msix_entries,
2086							    a->num_vectors,
2087							    a->num_vectors);
2088				if (err > 0)
2089					return;
2090			}
2091			/* MSI-X failed, so fall through and try MSI */
2092			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2093			e1000e_reset_interrupt_capability(adapter);
2094		}
2095		adapter->int_mode = E1000E_INT_MODE_MSI;
2096		/* Fall through */
2097	case E1000E_INT_MODE_MSI:
2098		if (!pci_enable_msi(adapter->pdev)) {
2099			adapter->flags |= FLAG_MSI_ENABLED;
2100		} else {
2101			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2102			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2103		}
2104		/* Fall through */
2105	case E1000E_INT_MODE_LEGACY:
2106		/* Don't do anything; this is the system default */
2107		break;
2108	}
2109
2110	/* store the number of vectors being used */
2111	adapter->num_vectors = 1;
2112}
2113
2114/**
2115 * e1000_request_msix - Initialize MSI-X interrupts
2116 *
2117 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 * kernel.
2119 **/
2120static int e1000_request_msix(struct e1000_adapter *adapter)
2121{
2122	struct net_device *netdev = adapter->netdev;
2123	int err = 0, vector = 0;
2124
2125	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2126		snprintf(adapter->rx_ring->name,
2127			 sizeof(adapter->rx_ring->name) - 1,
2128			 "%s-rx-0", netdev->name);
2129	else
2130		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2131	err = request_irq(adapter->msix_entries[vector].vector,
2132			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2133			  netdev);
2134	if (err)
2135		return err;
2136	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2137	    E1000_EITR_82574(vector);
2138	adapter->rx_ring->itr_val = adapter->itr;
2139	vector++;
2140
2141	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2142		snprintf(adapter->tx_ring->name,
2143			 sizeof(adapter->tx_ring->name) - 1,
2144			 "%s-tx-0", netdev->name);
2145	else
2146		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2147	err = request_irq(adapter->msix_entries[vector].vector,
2148			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2149			  netdev);
2150	if (err)
2151		return err;
2152	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2153	    E1000_EITR_82574(vector);
2154	adapter->tx_ring->itr_val = adapter->itr;
2155	vector++;
2156
2157	err = request_irq(adapter->msix_entries[vector].vector,
2158			  e1000_msix_other, 0, netdev->name, netdev);
2159	if (err)
2160		return err;
2161
2162	e1000_configure_msix(adapter);
2163
2164	return 0;
2165}
2166
2167/**
2168 * e1000_request_irq - initialize interrupts
2169 *
2170 * Attempts to configure interrupts using the best available
2171 * capabilities of the hardware and kernel.
2172 **/
2173static int e1000_request_irq(struct e1000_adapter *adapter)
2174{
2175	struct net_device *netdev = adapter->netdev;
2176	int err;
2177
2178	if (adapter->msix_entries) {
2179		err = e1000_request_msix(adapter);
2180		if (!err)
2181			return err;
2182		/* fall back to MSI */
2183		e1000e_reset_interrupt_capability(adapter);
2184		adapter->int_mode = E1000E_INT_MODE_MSI;
2185		e1000e_set_interrupt_capability(adapter);
2186	}
2187	if (adapter->flags & FLAG_MSI_ENABLED) {
2188		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2189				  netdev->name, netdev);
2190		if (!err)
2191			return err;
2192
2193		/* fall back to legacy interrupt */
2194		e1000e_reset_interrupt_capability(adapter);
2195		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2196	}
2197
2198	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2199			  netdev->name, netdev);
2200	if (err)
2201		e_err("Unable to allocate interrupt, Error: %d\n", err);
2202
2203	return err;
2204}
2205
2206static void e1000_free_irq(struct e1000_adapter *adapter)
2207{
2208	struct net_device *netdev = adapter->netdev;
2209
2210	if (adapter->msix_entries) {
2211		int vector = 0;
2212
2213		free_irq(adapter->msix_entries[vector].vector, netdev);
2214		vector++;
2215
2216		free_irq(adapter->msix_entries[vector].vector, netdev);
2217		vector++;
2218
2219		/* Other Causes interrupt vector */
2220		free_irq(adapter->msix_entries[vector].vector, netdev);
2221		return;
2222	}
2223
2224	free_irq(adapter->pdev->irq, netdev);
2225}
2226
2227/**
2228 * e1000_irq_disable - Mask off interrupt generation on the NIC
2229 **/
2230static void e1000_irq_disable(struct e1000_adapter *adapter)
2231{
2232	struct e1000_hw *hw = &adapter->hw;
2233
2234	ew32(IMC, ~0);
2235	if (adapter->msix_entries)
2236		ew32(EIAC_82574, 0);
2237	e1e_flush();
2238
2239	if (adapter->msix_entries) {
2240		int i;
2241
2242		for (i = 0; i < adapter->num_vectors; i++)
2243			synchronize_irq(adapter->msix_entries[i].vector);
2244	} else {
2245		synchronize_irq(adapter->pdev->irq);
2246	}
2247}
2248
2249/**
2250 * e1000_irq_enable - Enable default interrupt generation settings
2251 **/
2252static void e1000_irq_enable(struct e1000_adapter *adapter)
2253{
2254	struct e1000_hw *hw = &adapter->hw;
2255
2256	if (adapter->msix_entries) {
2257		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2258		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2259		     IMS_OTHER_MASK);
2260	} else if (hw->mac.type >= e1000_pch_lpt) {
2261		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262	} else {
2263		ew32(IMS, IMS_ENABLE_MASK);
2264	}
2265	e1e_flush();
2266}
2267
2268/**
2269 * e1000e_get_hw_control - get control of the h/w from f/w
2270 * @adapter: address of board private structure
2271 *
2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273 * For ASF and Pass Through versions of f/w this means that
2274 * the driver is loaded. For AMT version (only with 82573)
2275 * of the f/w this means that the network i/f is open.
2276 **/
2277void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278{
2279	struct e1000_hw *hw = &adapter->hw;
2280	u32 ctrl_ext;
2281	u32 swsm;
2282
2283	/* Let firmware know the driver has taken over */
2284	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285		swsm = er32(SWSM);
2286		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288		ctrl_ext = er32(CTRL_EXT);
2289		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290	}
2291}
2292
2293/**
2294 * e1000e_release_hw_control - release control of the h/w to f/w
2295 * @adapter: address of board private structure
2296 *
2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298 * For ASF and Pass Through versions of f/w this means that the
2299 * driver is no longer loaded. For AMT version (only with 82573) i
2300 * of the f/w this means that the network i/f is closed.
2301 *
2302 **/
2303void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304{
2305	struct e1000_hw *hw = &adapter->hw;
2306	u32 ctrl_ext;
2307	u32 swsm;
2308
2309	/* Let firmware taken over control of h/w */
2310	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311		swsm = er32(SWSM);
2312		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314		ctrl_ext = er32(CTRL_EXT);
2315		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316	}
2317}
2318
2319/**
2320 * e1000_alloc_ring_dma - allocate memory for a ring structure
2321 **/
2322static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323				struct e1000_ring *ring)
2324{
2325	struct pci_dev *pdev = adapter->pdev;
2326
2327	ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328					 GFP_KERNEL);
2329	if (!ring->desc)
2330		return -ENOMEM;
2331
2332	return 0;
2333}
2334
2335/**
2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337 * @tx_ring: Tx descriptor ring
2338 *
2339 * Return 0 on success, negative on failure
2340 **/
2341int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342{
2343	struct e1000_adapter *adapter = tx_ring->adapter;
2344	int err = -ENOMEM, size;
2345
2346	size = sizeof(struct e1000_buffer) * tx_ring->count;
2347	tx_ring->buffer_info = vzalloc(size);
2348	if (!tx_ring->buffer_info)
2349		goto err;
2350
2351	/* round up to nearest 4K */
2352	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353	tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355	err = e1000_alloc_ring_dma(adapter, tx_ring);
2356	if (err)
2357		goto err;
2358
2359	tx_ring->next_to_use = 0;
2360	tx_ring->next_to_clean = 0;
2361
2362	return 0;
2363err:
2364	vfree(tx_ring->buffer_info);
2365	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366	return err;
2367}
2368
2369/**
2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371 * @rx_ring: Rx descriptor ring
2372 *
2373 * Returns 0 on success, negative on failure
2374 **/
2375int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376{
2377	struct e1000_adapter *adapter = rx_ring->adapter;
2378	struct e1000_buffer *buffer_info;
2379	int i, size, desc_len, err = -ENOMEM;
2380
2381	size = sizeof(struct e1000_buffer) * rx_ring->count;
2382	rx_ring->buffer_info = vzalloc(size);
2383	if (!rx_ring->buffer_info)
2384		goto err;
2385
2386	for (i = 0; i < rx_ring->count; i++) {
2387		buffer_info = &rx_ring->buffer_info[i];
2388		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389						sizeof(struct e1000_ps_page),
2390						GFP_KERNEL);
2391		if (!buffer_info->ps_pages)
2392			goto err_pages;
2393	}
2394
2395	desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397	/* Round up to nearest 4K */
2398	rx_ring->size = rx_ring->count * desc_len;
2399	rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401	err = e1000_alloc_ring_dma(adapter, rx_ring);
2402	if (err)
2403		goto err_pages;
2404
2405	rx_ring->next_to_clean = 0;
2406	rx_ring->next_to_use = 0;
2407	rx_ring->rx_skb_top = NULL;
2408
2409	return 0;
2410
2411err_pages:
2412	for (i = 0; i < rx_ring->count; i++) {
2413		buffer_info = &rx_ring->buffer_info[i];
2414		kfree(buffer_info->ps_pages);
2415	}
2416err:
2417	vfree(rx_ring->buffer_info);
2418	e_err("Unable to allocate memory for the receive descriptor ring\n");
2419	return err;
2420}
2421
2422/**
2423 * e1000_clean_tx_ring - Free Tx Buffers
2424 * @tx_ring: Tx descriptor ring
2425 **/
2426static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427{
2428	struct e1000_adapter *adapter = tx_ring->adapter;
2429	struct e1000_buffer *buffer_info;
2430	unsigned long size;
2431	unsigned int i;
2432
2433	for (i = 0; i < tx_ring->count; i++) {
2434		buffer_info = &tx_ring->buffer_info[i];
2435		e1000_put_txbuf(tx_ring, buffer_info, false);
2436	}
2437
2438	netdev_reset_queue(adapter->netdev);
2439	size = sizeof(struct e1000_buffer) * tx_ring->count;
2440	memset(tx_ring->buffer_info, 0, size);
2441
2442	memset(tx_ring->desc, 0, tx_ring->size);
2443
2444	tx_ring->next_to_use = 0;
2445	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2446}
2447
2448/**
2449 * e1000e_free_tx_resources - Free Tx Resources per Queue
2450 * @tx_ring: Tx descriptor ring
2451 *
2452 * Free all transmit software resources
2453 **/
2454void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2455{
2456	struct e1000_adapter *adapter = tx_ring->adapter;
2457	struct pci_dev *pdev = adapter->pdev;
2458
2459	e1000_clean_tx_ring(tx_ring);
2460
2461	vfree(tx_ring->buffer_info);
2462	tx_ring->buffer_info = NULL;
2463
2464	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2465			  tx_ring->dma);
2466	tx_ring->desc = NULL;
2467}
2468
2469/**
2470 * e1000e_free_rx_resources - Free Rx Resources
2471 * @rx_ring: Rx descriptor ring
2472 *
2473 * Free all receive software resources
2474 **/
2475void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2476{
2477	struct e1000_adapter *adapter = rx_ring->adapter;
2478	struct pci_dev *pdev = adapter->pdev;
2479	int i;
2480
2481	e1000_clean_rx_ring(rx_ring);
2482
2483	for (i = 0; i < rx_ring->count; i++)
2484		kfree(rx_ring->buffer_info[i].ps_pages);
2485
2486	vfree(rx_ring->buffer_info);
2487	rx_ring->buffer_info = NULL;
2488
2489	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2490			  rx_ring->dma);
2491	rx_ring->desc = NULL;
2492}
2493
2494/**
2495 * e1000_update_itr - update the dynamic ITR value based on statistics
2496 * @adapter: pointer to adapter
2497 * @itr_setting: current adapter->itr
2498 * @packets: the number of packets during this measurement interval
2499 * @bytes: the number of bytes during this measurement interval
2500 *
2501 *      Stores a new ITR value based on packets and byte
2502 *      counts during the last interrupt.  The advantage of per interrupt
2503 *      computation is faster updates and more accurate ITR for the current
2504 *      traffic pattern.  Constants in this function were computed
2505 *      based on theoretical maximum wire speed and thresholds were set based
2506 *      on testing data as well as attempting to minimize response time
2507 *      while increasing bulk throughput.  This functionality is controlled
2508 *      by the InterruptThrottleRate module parameter.
2509 **/
2510static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
 
 
2511{
2512	unsigned int retval = itr_setting;
2513
2514	if (packets == 0)
2515		return itr_setting;
2516
2517	switch (itr_setting) {
2518	case lowest_latency:
2519		/* handle TSO and jumbo frames */
2520		if (bytes / packets > 8000)
2521			retval = bulk_latency;
2522		else if ((packets < 5) && (bytes > 512))
2523			retval = low_latency;
2524		break;
2525	case low_latency:	/* 50 usec aka 20000 ints/s */
2526		if (bytes > 10000) {
2527			/* this if handles the TSO accounting */
2528			if (bytes / packets > 8000)
2529				retval = bulk_latency;
2530			else if ((packets < 10) || ((bytes / packets) > 1200))
2531				retval = bulk_latency;
2532			else if ((packets > 35))
2533				retval = lowest_latency;
2534		} else if (bytes / packets > 2000) {
2535			retval = bulk_latency;
2536		} else if (packets <= 2 && bytes < 512) {
2537			retval = lowest_latency;
2538		}
2539		break;
2540	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2541		if (bytes > 25000) {
2542			if (packets > 35)
2543				retval = low_latency;
2544		} else if (bytes < 6000) {
2545			retval = low_latency;
2546		}
2547		break;
2548	}
2549
2550	return retval;
2551}
2552
2553static void e1000_set_itr(struct e1000_adapter *adapter)
2554{
 
2555	u16 current_itr;
2556	u32 new_itr = adapter->itr;
2557
2558	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559	if (adapter->link_speed != SPEED_1000) {
2560		current_itr = 0;
2561		new_itr = 4000;
2562		goto set_itr_now;
2563	}
2564
2565	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2566		new_itr = 0;
2567		goto set_itr_now;
2568	}
2569
2570	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2571					   adapter->total_tx_packets,
2572					   adapter->total_tx_bytes);
 
2573	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575		adapter->tx_itr = low_latency;
2576
2577	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2578					   adapter->total_rx_packets,
2579					   adapter->total_rx_bytes);
 
2580	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2581	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2582		adapter->rx_itr = low_latency;
2583
2584	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585
2586	/* counts and packets in update_itr are dependent on these numbers */
2587	switch (current_itr) {
 
2588	case lowest_latency:
2589		new_itr = 70000;
2590		break;
2591	case low_latency:
2592		new_itr = 20000;	/* aka hwitr = ~200 */
2593		break;
2594	case bulk_latency:
2595		new_itr = 4000;
2596		break;
2597	default:
2598		break;
2599	}
2600
2601set_itr_now:
2602	if (new_itr != adapter->itr) {
2603		/* this attempts to bias the interrupt rate towards Bulk
 
2604		 * by adding intermediate steps when interrupt rate is
2605		 * increasing
2606		 */
2607		new_itr = new_itr > adapter->itr ?
2608		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
 
2609		adapter->itr = new_itr;
2610		adapter->rx_ring->itr_val = new_itr;
2611		if (adapter->msix_entries)
2612			adapter->rx_ring->set_itr = 1;
2613		else
2614			e1000e_write_itr(adapter, new_itr);
2615	}
2616}
2617
2618/**
2619 * e1000e_write_itr - write the ITR value to the appropriate registers
2620 * @adapter: address of board private structure
2621 * @itr: new ITR value to program
2622 *
2623 * e1000e_write_itr determines if the adapter is in MSI-X mode
2624 * and, if so, writes the EITR registers with the ITR value.
2625 * Otherwise, it writes the ITR value into the ITR register.
2626 **/
2627void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2631
2632	if (adapter->msix_entries) {
2633		int vector;
2634
2635		for (vector = 0; vector < adapter->num_vectors; vector++)
2636			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2637	} else {
2638		ew32(ITR, new_itr);
2639	}
2640}
2641
2642/**
2643 * e1000_alloc_queues - Allocate memory for all rings
2644 * @adapter: board private structure to initialize
2645 **/
2646static int e1000_alloc_queues(struct e1000_adapter *adapter)
2647{
2648	int size = sizeof(struct e1000_ring);
2649
2650	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2651	if (!adapter->tx_ring)
2652		goto err;
2653	adapter->tx_ring->count = adapter->tx_ring_count;
2654	adapter->tx_ring->adapter = adapter;
2655
2656	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2657	if (!adapter->rx_ring)
2658		goto err;
2659	adapter->rx_ring->count = adapter->rx_ring_count;
2660	adapter->rx_ring->adapter = adapter;
2661
2662	return 0;
2663err:
2664	e_err("Unable to allocate memory for queues\n");
2665	kfree(adapter->rx_ring);
2666	kfree(adapter->tx_ring);
2667	return -ENOMEM;
2668}
2669
2670/**
2671 * e1000e_poll - NAPI Rx polling callback
2672 * @napi: struct associated with this polling callback
2673 * @weight: number of packets driver is allowed to process this poll
2674 **/
2675static int e1000e_poll(struct napi_struct *napi, int weight)
2676{
2677	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2678						     napi);
2679	struct e1000_hw *hw = &adapter->hw;
2680	struct net_device *poll_dev = adapter->netdev;
2681	int tx_cleaned = 1, work_done = 0;
2682
2683	adapter = netdev_priv(poll_dev);
2684
2685	if (!adapter->msix_entries ||
2686	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2687		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2688
2689	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2690
2691	if (!tx_cleaned)
2692		work_done = weight;
2693
2694	/* If weight not fully consumed, exit the polling mode */
2695	if (work_done < weight) {
2696		if (adapter->itr_setting & 3)
2697			e1000_set_itr(adapter);
2698		napi_complete_done(napi, work_done);
2699		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2700			if (adapter->msix_entries)
2701				ew32(IMS, adapter->rx_ring->ims_val);
2702			else
2703				e1000_irq_enable(adapter);
2704		}
2705	}
2706
2707	return work_done;
2708}
2709
2710static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2711				 __always_unused __be16 proto, u16 vid)
2712{
2713	struct e1000_adapter *adapter = netdev_priv(netdev);
2714	struct e1000_hw *hw = &adapter->hw;
2715	u32 vfta, index;
2716
2717	/* don't update vlan cookie if already programmed */
2718	if ((adapter->hw.mng_cookie.status &
2719	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2720	    (vid == adapter->mng_vlan_id))
2721		return 0;
2722
2723	/* add VID to filter table */
2724	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725		index = (vid >> 5) & 0x7F;
2726		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727		vfta |= BIT((vid & 0x1F));
2728		hw->mac.ops.write_vfta(hw, index, vfta);
2729	}
2730
2731	set_bit(vid, adapter->active_vlans);
2732
2733	return 0;
2734}
2735
2736static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2737				  __always_unused __be16 proto, u16 vid)
2738{
2739	struct e1000_adapter *adapter = netdev_priv(netdev);
2740	struct e1000_hw *hw = &adapter->hw;
2741	u32 vfta, index;
2742
2743	if ((adapter->hw.mng_cookie.status &
2744	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2745	    (vid == adapter->mng_vlan_id)) {
2746		/* release control to f/w */
2747		e1000e_release_hw_control(adapter);
2748		return 0;
2749	}
2750
2751	/* remove VID from filter table */
2752	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2753		index = (vid >> 5) & 0x7F;
2754		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2755		vfta &= ~BIT((vid & 0x1F));
2756		hw->mac.ops.write_vfta(hw, index, vfta);
2757	}
2758
2759	clear_bit(vid, adapter->active_vlans);
2760
2761	return 0;
2762}
2763
2764/**
2765 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2766 * @adapter: board private structure to initialize
2767 **/
2768static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2769{
2770	struct net_device *netdev = adapter->netdev;
2771	struct e1000_hw *hw = &adapter->hw;
2772	u32 rctl;
2773
2774	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2775		/* disable VLAN receive filtering */
2776		rctl = er32(RCTL);
2777		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2778		ew32(RCTL, rctl);
2779
2780		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2781			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2782					       adapter->mng_vlan_id);
2783			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2784		}
2785	}
2786}
2787
2788/**
2789 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2790 * @adapter: board private structure to initialize
2791 **/
2792static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2793{
2794	struct e1000_hw *hw = &adapter->hw;
2795	u32 rctl;
2796
2797	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2798		/* enable VLAN receive filtering */
2799		rctl = er32(RCTL);
2800		rctl |= E1000_RCTL_VFE;
2801		rctl &= ~E1000_RCTL_CFIEN;
2802		ew32(RCTL, rctl);
2803	}
2804}
2805
2806/**
2807 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2811{
2812	struct e1000_hw *hw = &adapter->hw;
2813	u32 ctrl;
2814
2815	/* disable VLAN tag insert/strip */
2816	ctrl = er32(CTRL);
2817	ctrl &= ~E1000_CTRL_VME;
2818	ew32(CTRL, ctrl);
2819}
2820
2821/**
2822 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2823 * @adapter: board private structure to initialize
2824 **/
2825static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	u32 ctrl;
2829
2830	/* enable VLAN tag insert/strip */
2831	ctrl = er32(CTRL);
2832	ctrl |= E1000_CTRL_VME;
2833	ew32(CTRL, ctrl);
2834}
2835
2836static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2837{
2838	struct net_device *netdev = adapter->netdev;
2839	u16 vid = adapter->hw.mng_cookie.vlan_id;
2840	u16 old_vid = adapter->mng_vlan_id;
2841
2842	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2843		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 
2844		adapter->mng_vlan_id = vid;
2845	}
2846
2847	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2848		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2849}
2850
2851static void e1000_restore_vlan(struct e1000_adapter *adapter)
2852{
2853	u16 vid;
2854
2855	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2856
2857	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2858	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2859}
2860
2861static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2862{
2863	struct e1000_hw *hw = &adapter->hw;
2864	u32 manc, manc2h, mdef, i, j;
2865
2866	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2867		return;
2868
2869	manc = er32(MANC);
2870
2871	/* enable receiving management packets to the host. this will probably
 
2872	 * generate destination unreachable messages from the host OS, but
2873	 * the packets will be handled on SMBUS
2874	 */
2875	manc |= E1000_MANC_EN_MNG2HOST;
2876	manc2h = er32(MANC2H);
2877
2878	switch (hw->mac.type) {
2879	default:
2880		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2881		break;
2882	case e1000_82574:
2883	case e1000_82583:
2884		/* Check if IPMI pass-through decision filter already exists;
 
2885		 * if so, enable it.
2886		 */
2887		for (i = 0, j = 0; i < 8; i++) {
2888			mdef = er32(MDEF(i));
2889
2890			/* Ignore filters with anything other than IPMI ports */
2891			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2892				continue;
2893
2894			/* Enable this decision filter in MANC2H */
2895			if (mdef)
2896				manc2h |= BIT(i);
2897
2898			j |= mdef;
2899		}
2900
2901		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902			break;
2903
2904		/* Create new decision filter in an empty filter */
2905		for (i = 0, j = 0; i < 8; i++)
2906			if (er32(MDEF(i)) == 0) {
2907				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2908					       E1000_MDEF_PORT_664));
2909				manc2h |= BIT(1);
2910				j++;
2911				break;
2912			}
2913
2914		if (!j)
2915			e_warn("Unable to create IPMI pass-through filter\n");
2916		break;
2917	}
2918
2919	ew32(MANC2H, manc2h);
2920	ew32(MANC, manc);
2921}
2922
2923/**
2924 * e1000_configure_tx - Configure Transmit Unit after Reset
2925 * @adapter: board private structure
2926 *
2927 * Configure the Tx unit of the MAC after a reset.
2928 **/
2929static void e1000_configure_tx(struct e1000_adapter *adapter)
2930{
2931	struct e1000_hw *hw = &adapter->hw;
2932	struct e1000_ring *tx_ring = adapter->tx_ring;
2933	u64 tdba;
2934	u32 tdlen, tctl, tarc;
2935
2936	/* Setup the HW Tx Head and Tail descriptor pointers */
2937	tdba = tx_ring->dma;
2938	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2939	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2940	ew32(TDBAH(0), (tdba >> 32));
2941	ew32(TDLEN(0), tdlen);
2942	ew32(TDH(0), 0);
2943	ew32(TDT(0), 0);
2944	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2945	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2946
2947	writel(0, tx_ring->head);
2948	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2949		e1000e_update_tdt_wa(tx_ring, 0);
2950	else
2951		writel(0, tx_ring->tail);
2952
2953	/* Set the Tx Interrupt Delay register */
2954	ew32(TIDV, adapter->tx_int_delay);
2955	/* Tx irq moderation */
2956	ew32(TADV, adapter->tx_abs_int_delay);
2957
2958	if (adapter->flags2 & FLAG2_DMA_BURST) {
2959		u32 txdctl = er32(TXDCTL(0));
2960
2961		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962			    E1000_TXDCTL_WTHRESH);
2963		/* set up some performance related parameters to encourage the
 
2964		 * hardware to use the bus more efficiently in bursts, depends
2965		 * on the tx_int_delay to be enabled,
2966		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967		 * hthresh = 1 ==> prefetch when one or more available
2968		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969		 * BEWARE: this seems to work but should be considered first if
2970		 * there are Tx hangs or other Tx related bugs
2971		 */
2972		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973		ew32(TXDCTL(0), txdctl);
2974	}
2975	/* erratum work around: set txdctl the same for both queues */
2976	ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978	/* Program the Transmit Control Register */
2979	tctl = er32(TCTL);
2980	tctl &= ~E1000_TCTL_CT;
2981	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985		tarc = er32(TARC(0));
2986		/* set the speed mode bit, we'll clear it if we're not at
 
2987		 * gigabit link later
2988		 */
2989#define SPEED_MODE_BIT BIT(21)
2990		tarc |= SPEED_MODE_BIT;
2991		ew32(TARC(0), tarc);
2992	}
2993
2994	/* errata: program both queues to unweighted RR */
2995	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996		tarc = er32(TARC(0));
2997		tarc |= 1;
2998		ew32(TARC(0), tarc);
2999		tarc = er32(TARC(1));
3000		tarc |= 1;
3001		ew32(TARC(1), tarc);
3002	}
3003
3004	/* Setup Transmit Descriptor Settings for eop descriptor */
3005	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007	/* only set IDE if we are delaying interrupts using the timers */
3008	if (adapter->tx_int_delay)
3009		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011	/* enable Report Status bit */
3012	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014	ew32(TCTL, tctl);
3015
3016	hw->mac.ops.config_collision_dist(hw);
3017
3018	/* SPT and KBL Si errata workaround to avoid data corruption */
3019	if (hw->mac.type == e1000_pch_spt) {
3020		u32 reg_val;
3021
3022		reg_val = er32(IOSFPC);
3023		reg_val |= E1000_RCTL_RDMTS_HEX;
3024		ew32(IOSFPC, reg_val);
3025
3026		reg_val = er32(TARC(0));
3027		/* SPT and KBL Si errata workaround to avoid Tx hang.
3028		 * Dropping the number of outstanding requests from
3029		 * 3 to 2 in order to avoid a buffer overrun.
3030		 */
3031		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3032		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3033		ew32(TARC(0), reg_val);
3034	}
3035}
3036
3037/**
3038 * e1000_setup_rctl - configure the receive control registers
3039 * @adapter: Board private structure
3040 **/
3041#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3042			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3043static void e1000_setup_rctl(struct e1000_adapter *adapter)
3044{
3045	struct e1000_hw *hw = &adapter->hw;
3046	u32 rctl, rfctl;
3047	u32 pages = 0;
3048
3049	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3050	 * If jumbo frames not set, program related MAC/PHY registers
3051	 * to h/w defaults
3052	 */
3053	if (hw->mac.type >= e1000_pch2lan) {
3054		s32 ret_val;
3055
3056		if (adapter->netdev->mtu > ETH_DATA_LEN)
3057			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3058		else
3059			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3060
3061		if (ret_val)
3062			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3063	}
3064
3065	/* Program MC offset vector base */
3066	rctl = er32(RCTL);
3067	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3068	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3069	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3070	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3071
3072	/* Do not Store bad packets */
3073	rctl &= ~E1000_RCTL_SBP;
3074
3075	/* Enable Long Packet receive */
3076	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3077		rctl &= ~E1000_RCTL_LPE;
3078	else
3079		rctl |= E1000_RCTL_LPE;
3080
3081	/* Some systems expect that the CRC is included in SMBUS traffic. The
3082	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3083	 * host memory when this is enabled
3084	 */
3085	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3086		rctl |= E1000_RCTL_SECRC;
3087
3088	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3089	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3090		u16 phy_data;
3091
3092		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3093		phy_data &= 0xfff8;
3094		phy_data |= BIT(2);
3095		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3096
3097		e1e_rphy(hw, 22, &phy_data);
3098		phy_data &= 0x0fff;
3099		phy_data |= BIT(14);
3100		e1e_wphy(hw, 0x10, 0x2823);
3101		e1e_wphy(hw, 0x11, 0x0003);
3102		e1e_wphy(hw, 22, phy_data);
3103	}
3104
3105	/* Setup buffer sizes */
3106	rctl &= ~E1000_RCTL_SZ_4096;
3107	rctl |= E1000_RCTL_BSEX;
3108	switch (adapter->rx_buffer_len) {
3109	case 2048:
3110	default:
3111		rctl |= E1000_RCTL_SZ_2048;
3112		rctl &= ~E1000_RCTL_BSEX;
3113		break;
3114	case 4096:
3115		rctl |= E1000_RCTL_SZ_4096;
3116		break;
3117	case 8192:
3118		rctl |= E1000_RCTL_SZ_8192;
3119		break;
3120	case 16384:
3121		rctl |= E1000_RCTL_SZ_16384;
3122		break;
3123	}
3124
3125	/* Enable Extended Status in all Receive Descriptors */
3126	rfctl = er32(RFCTL);
3127	rfctl |= E1000_RFCTL_EXTEN;
3128	ew32(RFCTL, rfctl);
3129
3130	/* 82571 and greater support packet-split where the protocol
 
3131	 * header is placed in skb->data and the packet data is
3132	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3133	 * In the case of a non-split, skb->data is linearly filled,
3134	 * followed by the page buffers.  Therefore, skb->data is
3135	 * sized to hold the largest protocol header.
3136	 *
3137	 * allocations using alloc_page take too long for regular MTU
3138	 * so only enable packet split for jumbo frames
3139	 *
3140	 * Using pages when the page size is greater than 16k wastes
3141	 * a lot of memory, since we allocate 3 pages at all times
3142	 * per packet.
3143	 */
3144	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3145	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3146		adapter->rx_ps_pages = pages;
3147	else
3148		adapter->rx_ps_pages = 0;
3149
3150	if (adapter->rx_ps_pages) {
3151		u32 psrctl = 0;
3152
3153		/* Enable Packet split descriptors */
3154		rctl |= E1000_RCTL_DTYP_PS;
3155
3156		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
 
3157
3158		switch (adapter->rx_ps_pages) {
3159		case 3:
3160			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3161			/* fall-through */
3162		case 2:
3163			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3164			/* fall-through */
3165		case 1:
3166			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
 
3167			break;
3168		}
3169
3170		ew32(PSRCTL, psrctl);
3171	}
3172
3173	/* This is useful for sniffing bad packets. */
3174	if (adapter->netdev->features & NETIF_F_RXALL) {
3175		/* UPE and MPE will be handled by normal PROMISC logic
3176		 * in e1000e_set_rx_mode
3177		 */
3178		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3179			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3180			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3181
3182		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3183			  E1000_RCTL_DPF |	/* Allow filtered pause */
3184			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3185		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3186		 * and that breaks VLANs.
3187		 */
3188	}
3189
3190	ew32(RCTL, rctl);
3191	/* just started the receive unit, no need to restart */
3192	adapter->flags &= ~FLAG_RESTART_NOW;
3193}
3194
3195/**
3196 * e1000_configure_rx - Configure Receive Unit after Reset
3197 * @adapter: board private structure
3198 *
3199 * Configure the Rx unit of the MAC after a reset.
3200 **/
3201static void e1000_configure_rx(struct e1000_adapter *adapter)
3202{
3203	struct e1000_hw *hw = &adapter->hw;
3204	struct e1000_ring *rx_ring = adapter->rx_ring;
3205	u64 rdba;
3206	u32 rdlen, rctl, rxcsum, ctrl_ext;
3207
3208	if (adapter->rx_ps_pages) {
3209		/* this is a 32 byte descriptor */
3210		rdlen = rx_ring->count *
3211		    sizeof(union e1000_rx_desc_packet_split);
3212		adapter->clean_rx = e1000_clean_rx_irq_ps;
3213		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3214	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3215		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3216		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3217		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3218	} else {
3219		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3220		adapter->clean_rx = e1000_clean_rx_irq;
3221		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3222	}
3223
3224	/* disable receives while setting up the descriptors */
3225	rctl = er32(RCTL);
3226	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3227		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3228	e1e_flush();
3229	usleep_range(10000, 20000);
3230
3231	if (adapter->flags2 & FLAG2_DMA_BURST) {
3232		/* set the writeback threshold (only takes effect if the RDTR
 
3233		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3234		 * enable prefetching of 0x20 Rx descriptors
3235		 * granularity = 01
3236		 * wthresh = 04,
3237		 * hthresh = 04,
3238		 * pthresh = 0x20
3239		 */
3240		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3241		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
 
 
 
 
 
 
 
 
 
3242	}
3243
3244	/* set the Receive Delay Timer Register */
3245	ew32(RDTR, adapter->rx_int_delay);
3246
3247	/* irq moderation */
3248	ew32(RADV, adapter->rx_abs_int_delay);
3249	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3250		e1000e_write_itr(adapter, adapter->itr);
3251
3252	ctrl_ext = er32(CTRL_EXT);
3253	/* Auto-Mask interrupts upon ICR access */
3254	ctrl_ext |= E1000_CTRL_EXT_IAME;
3255	ew32(IAM, 0xffffffff);
3256	ew32(CTRL_EXT, ctrl_ext);
3257	e1e_flush();
3258
3259	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 
3260	 * the Base and Length of the Rx Descriptor Ring
3261	 */
3262	rdba = rx_ring->dma;
3263	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3264	ew32(RDBAH(0), (rdba >> 32));
3265	ew32(RDLEN(0), rdlen);
3266	ew32(RDH(0), 0);
3267	ew32(RDT(0), 0);
3268	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3269	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3270
3271	writel(0, rx_ring->head);
3272	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3273		e1000e_update_rdt_wa(rx_ring, 0);
3274	else
3275		writel(0, rx_ring->tail);
3276
3277	/* Enable Receive Checksum Offload for TCP and UDP */
3278	rxcsum = er32(RXCSUM);
3279	if (adapter->netdev->features & NETIF_F_RXCSUM)
3280		rxcsum |= E1000_RXCSUM_TUOFL;
3281	else
3282		rxcsum &= ~E1000_RXCSUM_TUOFL;
3283	ew32(RXCSUM, rxcsum);
3284
3285	/* With jumbo frames, excessive C-state transition latencies result
3286	 * in dropped transactions.
3287	 */
3288	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3289		u32 lat =
3290		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3291		     adapter->max_frame_size) * 8 / 1000;
3292
3293		if (adapter->flags & FLAG_IS_ICH) {
3294			u32 rxdctl = er32(RXDCTL(0));
3295
3296			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
 
 
 
3297		}
3298
3299		dev_info(&adapter->pdev->dev,
3300			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3301		pm_qos_update_request(&adapter->pm_qos_req, lat);
3302	} else {
3303		pm_qos_update_request(&adapter->pm_qos_req,
3304				      PM_QOS_DEFAULT_VALUE);
3305	}
3306
3307	/* Enable Receives */
3308	ew32(RCTL, rctl);
3309}
3310
3311/**
3312 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3313 * @netdev: network interface device structure
3314 *
3315 * Writes multicast address list to the MTA hash table.
3316 * Returns: -ENOMEM on failure
3317 *                0 on no addresses written
3318 *                X on writing X addresses to MTA
3319 */
3320static int e1000e_write_mc_addr_list(struct net_device *netdev)
3321{
3322	struct e1000_adapter *adapter = netdev_priv(netdev);
3323	struct e1000_hw *hw = &adapter->hw;
3324	struct netdev_hw_addr *ha;
3325	u8 *mta_list;
3326	int i;
3327
3328	if (netdev_mc_empty(netdev)) {
3329		/* nothing to program, so clear mc list */
3330		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3331		return 0;
3332	}
3333
3334	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3335	if (!mta_list)
3336		return -ENOMEM;
3337
3338	/* update_mc_addr_list expects a packed array of only addresses. */
3339	i = 0;
3340	netdev_for_each_mc_addr(ha, netdev)
3341	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3342
3343	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3344	kfree(mta_list);
3345
3346	return netdev_mc_count(netdev);
3347}
3348
3349/**
3350 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3351 * @netdev: network interface device structure
3352 *
3353 * Writes unicast address list to the RAR table.
3354 * Returns: -ENOMEM on failure/insufficient address space
3355 *                0 on no addresses written
3356 *                X on writing X addresses to the RAR table
3357 **/
3358static int e1000e_write_uc_addr_list(struct net_device *netdev)
3359{
3360	struct e1000_adapter *adapter = netdev_priv(netdev);
3361	struct e1000_hw *hw = &adapter->hw;
3362	unsigned int rar_entries;
3363	int count = 0;
3364
3365	rar_entries = hw->mac.ops.rar_get_count(hw);
3366
3367	/* save a rar entry for our hardware address */
3368	rar_entries--;
3369
3370	/* save a rar entry for the LAA workaround */
3371	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3372		rar_entries--;
3373
3374	/* return ENOMEM indicating insufficient memory for addresses */
3375	if (netdev_uc_count(netdev) > rar_entries)
3376		return -ENOMEM;
3377
3378	if (!netdev_uc_empty(netdev) && rar_entries) {
3379		struct netdev_hw_addr *ha;
3380
3381		/* write the addresses in reverse order to avoid write
 
3382		 * combining
3383		 */
3384		netdev_for_each_uc_addr(ha, netdev) {
3385			int ret_val;
3386
3387			if (!rar_entries)
3388				break;
3389			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3390			if (ret_val < 0)
3391				return -ENOMEM;
3392			count++;
3393		}
3394	}
3395
3396	/* zero out the remaining RAR entries not used above */
3397	for (; rar_entries > 0; rar_entries--) {
3398		ew32(RAH(rar_entries), 0);
3399		ew32(RAL(rar_entries), 0);
3400	}
3401	e1e_flush();
3402
3403	return count;
3404}
3405
3406/**
3407 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3408 * @netdev: network interface device structure
3409 *
3410 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3411 * address list or the network interface flags are updated.  This routine is
3412 * responsible for configuring the hardware for proper unicast, multicast,
3413 * promiscuous mode, and all-multi behavior.
3414 **/
3415static void e1000e_set_rx_mode(struct net_device *netdev)
3416{
3417	struct e1000_adapter *adapter = netdev_priv(netdev);
3418	struct e1000_hw *hw = &adapter->hw;
3419	u32 rctl;
3420
3421	if (pm_runtime_suspended(netdev->dev.parent))
3422		return;
3423
3424	/* Check for Promiscuous and All Multicast modes */
3425	rctl = er32(RCTL);
3426
3427	/* clear the affected bits */
3428	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3429
3430	if (netdev->flags & IFF_PROMISC) {
3431		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3432		/* Do not hardware filter VLANs in promisc mode */
3433		e1000e_vlan_filter_disable(adapter);
3434	} else {
3435		int count;
3436
3437		if (netdev->flags & IFF_ALLMULTI) {
3438			rctl |= E1000_RCTL_MPE;
3439		} else {
3440			/* Write addresses to the MTA, if the attempt fails
 
3441			 * then we should just turn on promiscuous mode so
3442			 * that we can at least receive multicast traffic
3443			 */
3444			count = e1000e_write_mc_addr_list(netdev);
3445			if (count < 0)
3446				rctl |= E1000_RCTL_MPE;
3447		}
3448		e1000e_vlan_filter_enable(adapter);
3449		/* Write addresses to available RAR registers, if there is not
 
3450		 * sufficient space to store all the addresses then enable
3451		 * unicast promiscuous mode
3452		 */
3453		count = e1000e_write_uc_addr_list(netdev);
3454		if (count < 0)
3455			rctl |= E1000_RCTL_UPE;
3456	}
3457
3458	ew32(RCTL, rctl);
3459
3460	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3461		e1000e_vlan_strip_enable(adapter);
3462	else
3463		e1000e_vlan_strip_disable(adapter);
3464}
3465
3466static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3467{
3468	struct e1000_hw *hw = &adapter->hw;
3469	u32 mrqc, rxcsum;
3470	u32 rss_key[10];
3471	int i;
 
 
 
 
3472
3473	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3474	for (i = 0; i < 10; i++)
3475		ew32(RSSRK(i), rss_key[i]);
3476
3477	/* Direct all traffic to queue 0 */
3478	for (i = 0; i < 32; i++)
3479		ew32(RETA(i), 0);
3480
3481	/* Disable raw packet checksumming so that RSS hash is placed in
 
3482	 * descriptor on writeback.
3483	 */
3484	rxcsum = er32(RXCSUM);
3485	rxcsum |= E1000_RXCSUM_PCSD;
3486
3487	ew32(RXCSUM, rxcsum);
3488
3489	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3490		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3491		E1000_MRQC_RSS_FIELD_IPV6 |
3492		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3493		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3494
3495	ew32(MRQC, mrqc);
3496}
3497
3498/**
3499 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3500 * @adapter: board private structure
3501 * @timinca: pointer to returned time increment attributes
3502 *
3503 * Get attributes for incrementing the System Time Register SYSTIML/H at
3504 * the default base frequency, and set the cyclecounter shift value.
3505 **/
3506s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3507{
3508	struct e1000_hw *hw = &adapter->hw;
3509	u32 incvalue, incperiod, shift;
3510
3511	/* Make sure clock is enabled on I217/I218/I219  before checking
3512	 * the frequency
3513	 */
3514	if ((hw->mac.type >= e1000_pch_lpt) &&
3515	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517		u32 fextnvm7 = er32(FEXTNVM7);
3518
3519		if (!(fextnvm7 & BIT(0))) {
3520			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3521			e1e_flush();
3522		}
3523	}
3524
3525	switch (hw->mac.type) {
3526	case e1000_pch2lan:
3527		/* Stable 96MHz frequency */
3528		incperiod = INCPERIOD_96MHZ;
3529		incvalue = INCVALUE_96MHZ;
3530		shift = INCVALUE_SHIFT_96MHZ;
3531		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3532		break;
3533	case e1000_pch_lpt:
3534		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3535			/* Stable 96MHz frequency */
3536			incperiod = INCPERIOD_96MHZ;
3537			incvalue = INCVALUE_96MHZ;
3538			shift = INCVALUE_SHIFT_96MHZ;
3539			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3540		} else {
3541			/* Stable 25MHz frequency */
3542			incperiod = INCPERIOD_25MHZ;
3543			incvalue = INCVALUE_25MHZ;
3544			shift = INCVALUE_SHIFT_25MHZ;
3545			adapter->cc.shift = shift;
3546		}
3547		break;
3548	case e1000_pch_spt:
3549		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550			/* Stable 24MHz frequency */
3551			incperiod = INCPERIOD_24MHZ;
3552			incvalue = INCVALUE_24MHZ;
3553			shift = INCVALUE_SHIFT_24MHZ;
3554			adapter->cc.shift = shift;
3555			break;
3556		}
3557		return -EINVAL;
3558	case e1000_pch_cnp:
3559		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3560			/* Stable 24MHz frequency */
3561			incperiod = INCPERIOD_24MHZ;
3562			incvalue = INCVALUE_24MHZ;
3563			shift = INCVALUE_SHIFT_24MHZ;
3564			adapter->cc.shift = shift;
3565		} else {
3566			/* Stable 38400KHz frequency */
3567			incperiod = INCPERIOD_38400KHZ;
3568			incvalue = INCVALUE_38400KHZ;
3569			shift = INCVALUE_SHIFT_38400KHZ;
3570			adapter->cc.shift = shift;
3571		}
3572		break;
3573	case e1000_82574:
3574	case e1000_82583:
3575		/* Stable 25MHz frequency */
3576		incperiod = INCPERIOD_25MHZ;
3577		incvalue = INCVALUE_25MHZ;
3578		shift = INCVALUE_SHIFT_25MHZ;
3579		adapter->cc.shift = shift;
3580		break;
3581	default:
3582		return -EINVAL;
3583	}
3584
3585	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3586		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3587
3588	return 0;
3589}
3590
3591/**
3592 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3593 * @adapter: board private structure
3594 *
3595 * Outgoing time stamping can be enabled and disabled. Play nice and
3596 * disable it when requested, although it shouldn't cause any overhead
3597 * when no packet needs it. At most one packet in the queue may be
3598 * marked for time stamping, otherwise it would be impossible to tell
3599 * for sure to which packet the hardware time stamp belongs.
3600 *
3601 * Incoming time stamping has to be configured via the hardware filters.
3602 * Not all combinations are supported, in particular event type has to be
3603 * specified. Matching the kind of event packet is not supported, with the
3604 * exception of "all V2 events regardless of level 2 or 4".
3605 **/
3606static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3607				  struct hwtstamp_config *config)
3608{
3609	struct e1000_hw *hw = &adapter->hw;
3610	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3611	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3612	u32 rxmtrl = 0;
3613	u16 rxudp = 0;
3614	bool is_l4 = false;
3615	bool is_l2 = false;
3616	u32 regval;
3617
3618	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3619		return -EINVAL;
3620
3621	/* flags reserved for future extensions - must be zero */
3622	if (config->flags)
3623		return -EINVAL;
3624
3625	switch (config->tx_type) {
3626	case HWTSTAMP_TX_OFF:
3627		tsync_tx_ctl = 0;
3628		break;
3629	case HWTSTAMP_TX_ON:
3630		break;
3631	default:
3632		return -ERANGE;
3633	}
3634
3635	switch (config->rx_filter) {
3636	case HWTSTAMP_FILTER_NONE:
3637		tsync_rx_ctl = 0;
3638		break;
3639	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3640		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3641		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3642		is_l4 = true;
3643		break;
3644	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3646		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3647		is_l4 = true;
3648		break;
3649	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3650		/* Also time stamps V2 L2 Path Delay Request/Response */
3651		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3652		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653		is_l2 = true;
3654		break;
3655	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3656		/* Also time stamps V2 L2 Path Delay Request/Response. */
3657		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3658		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3659		is_l2 = true;
3660		break;
3661	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3662		/* Hardware cannot filter just V2 L4 Sync messages;
3663		 * fall-through to V2 (both L2 and L4) Sync.
3664		 */
3665	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3666		/* Also time stamps V2 Path Delay Request/Response. */
3667		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3668		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3669		is_l2 = true;
3670		is_l4 = true;
3671		break;
3672	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3673		/* Hardware cannot filter just V2 L4 Delay Request messages;
3674		 * fall-through to V2 (both L2 and L4) Delay Request.
3675		 */
3676	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3677		/* Also time stamps V2 Path Delay Request/Response. */
3678		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3679		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3680		is_l2 = true;
3681		is_l4 = true;
3682		break;
3683	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3684	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3685		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3686		 * fall-through to all V2 (both L2 and L4) Events.
3687		 */
3688	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3689		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3690		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3691		is_l2 = true;
3692		is_l4 = true;
3693		break;
3694	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3695		/* For V1, the hardware can only filter Sync messages or
3696		 * Delay Request messages but not both so fall-through to
3697		 * time stamp all packets.
3698		 */
3699	case HWTSTAMP_FILTER_NTP_ALL:
3700	case HWTSTAMP_FILTER_ALL:
3701		is_l2 = true;
3702		is_l4 = true;
3703		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3704		config->rx_filter = HWTSTAMP_FILTER_ALL;
3705		break;
3706	default:
3707		return -ERANGE;
3708	}
3709
3710	adapter->hwtstamp_config = *config;
3711
3712	/* enable/disable Tx h/w time stamping */
3713	regval = er32(TSYNCTXCTL);
3714	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3715	regval |= tsync_tx_ctl;
3716	ew32(TSYNCTXCTL, regval);
3717	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3718	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3719		e_err("Timesync Tx Control register not set as expected\n");
3720		return -EAGAIN;
3721	}
3722
3723	/* enable/disable Rx h/w time stamping */
3724	regval = er32(TSYNCRXCTL);
3725	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3726	regval |= tsync_rx_ctl;
3727	ew32(TSYNCRXCTL, regval);
3728	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3729				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3730	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3731		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3732		e_err("Timesync Rx Control register not set as expected\n");
3733		return -EAGAIN;
3734	}
3735
3736	/* L2: define ethertype filter for time stamped packets */
3737	if (is_l2)
3738		rxmtrl |= ETH_P_1588;
3739
3740	/* define which PTP packets get time stamped */
3741	ew32(RXMTRL, rxmtrl);
3742
3743	/* Filter by destination port */
3744	if (is_l4) {
3745		rxudp = PTP_EV_PORT;
3746		cpu_to_be16s(&rxudp);
3747	}
3748	ew32(RXUDP, rxudp);
3749
3750	e1e_flush();
3751
3752	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3753	er32(RXSTMPH);
3754	er32(TXSTMPH);
3755
3756	return 0;
3757}
3758
3759/**
3760 * e1000_configure - configure the hardware for Rx and Tx
3761 * @adapter: private board structure
3762 **/
3763static void e1000_configure(struct e1000_adapter *adapter)
3764{
3765	struct e1000_ring *rx_ring = adapter->rx_ring;
3766
3767	e1000e_set_rx_mode(adapter->netdev);
3768
3769	e1000_restore_vlan(adapter);
3770	e1000_init_manageability_pt(adapter);
3771
3772	e1000_configure_tx(adapter);
3773
3774	if (adapter->netdev->features & NETIF_F_RXHASH)
3775		e1000e_setup_rss_hash(adapter);
3776	e1000_setup_rctl(adapter);
3777	e1000_configure_rx(adapter);
3778	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3779}
3780
3781/**
3782 * e1000e_power_up_phy - restore link in case the phy was powered down
3783 * @adapter: address of board private structure
3784 *
3785 * The phy may be powered down to save power and turn off link when the
3786 * driver is unloaded and wake on lan is not enabled (among others)
3787 * *** this routine MUST be followed by a call to e1000e_reset ***
3788 **/
3789void e1000e_power_up_phy(struct e1000_adapter *adapter)
3790{
3791	if (adapter->hw.phy.ops.power_up)
3792		adapter->hw.phy.ops.power_up(&adapter->hw);
3793
3794	adapter->hw.mac.ops.setup_link(&adapter->hw);
3795}
3796
3797/**
3798 * e1000_power_down_phy - Power down the PHY
3799 *
3800 * Power down the PHY so no link is implied when interface is down.
3801 * The PHY cannot be powered down if management or WoL is active.
3802 */
3803static void e1000_power_down_phy(struct e1000_adapter *adapter)
3804{
3805	if (adapter->hw.phy.ops.power_down)
3806		adapter->hw.phy.ops.power_down(&adapter->hw);
3807}
3808
3809/**
3810 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3811 *
3812 * We want to clear all pending descriptors from the TX ring.
3813 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3814 * the data of the next descriptor. We don't care about the data we are about
3815 * to reset the HW.
3816 */
3817static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3818{
3819	struct e1000_hw *hw = &adapter->hw;
3820	struct e1000_ring *tx_ring = adapter->tx_ring;
3821	struct e1000_tx_desc *tx_desc = NULL;
3822	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3823	u16 size = 512;
3824
3825	tctl = er32(TCTL);
3826	ew32(TCTL, tctl | E1000_TCTL_EN);
3827	tdt = er32(TDT(0));
3828	BUG_ON(tdt != tx_ring->next_to_use);
3829	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3830	tx_desc->buffer_addr = tx_ring->dma;
3831
3832	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3833	tx_desc->upper.data = 0;
3834	/* flush descriptors to memory before notifying the HW */
3835	wmb();
3836	tx_ring->next_to_use++;
3837	if (tx_ring->next_to_use == tx_ring->count)
3838		tx_ring->next_to_use = 0;
3839	ew32(TDT(0), tx_ring->next_to_use);
3840	mmiowb();
3841	usleep_range(200, 250);
3842}
3843
3844/**
3845 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3846 *
3847 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3848 */
3849static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3850{
3851	u32 rctl, rxdctl;
3852	struct e1000_hw *hw = &adapter->hw;
3853
3854	rctl = er32(RCTL);
3855	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3856	e1e_flush();
3857	usleep_range(100, 150);
3858
3859	rxdctl = er32(RXDCTL(0));
3860	/* zero the lower 14 bits (prefetch and host thresholds) */
3861	rxdctl &= 0xffffc000;
3862
3863	/* update thresholds: prefetch threshold to 31, host threshold to 1
3864	 * and make sure the granularity is "descriptors" and not "cache lines"
3865	 */
3866	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3867
3868	ew32(RXDCTL(0), rxdctl);
3869	/* momentarily enable the RX ring for the changes to take effect */
3870	ew32(RCTL, rctl | E1000_RCTL_EN);
3871	e1e_flush();
3872	usleep_range(100, 150);
3873	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3874}
3875
3876/**
3877 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3878 *
3879 * In i219, the descriptor rings must be emptied before resetting the HW
3880 * or before changing the device state to D3 during runtime (runtime PM).
3881 *
3882 * Failure to do this will cause the HW to enter a unit hang state which can
3883 * only be released by PCI reset on the device
3884 *
3885 */
3886
3887static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3888{
3889	u16 hang_state;
3890	u32 fext_nvm11, tdlen;
3891	struct e1000_hw *hw = &adapter->hw;
3892
3893	/* First, disable MULR fix in FEXTNVM11 */
3894	fext_nvm11 = er32(FEXTNVM11);
3895	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3896	ew32(FEXTNVM11, fext_nvm11);
3897	/* do nothing if we're not in faulty state, or if the queue is empty */
3898	tdlen = er32(TDLEN(0));
3899	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900			     &hang_state);
3901	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3902		return;
3903	e1000_flush_tx_ring(adapter);
3904	/* recheck, maybe the fault is caused by the rx ring */
3905	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3906			     &hang_state);
3907	if (hang_state & FLUSH_DESC_REQUIRED)
3908		e1000_flush_rx_ring(adapter);
3909}
3910
3911/**
3912 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3913 * @adapter: board private structure
3914 *
3915 * When the MAC is reset, all hardware bits for timesync will be reset to the
3916 * default values. This function will restore the settings last in place.
3917 * Since the clock SYSTIME registers are reset, we will simply restore the
3918 * cyclecounter to the kernel real clock time.
3919 **/
3920static void e1000e_systim_reset(struct e1000_adapter *adapter)
3921{
3922	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3923	struct e1000_hw *hw = &adapter->hw;
3924	unsigned long flags;
3925	u32 timinca;
3926	s32 ret_val;
3927
3928	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3929		return;
3930
3931	if (info->adjfreq) {
3932		/* restore the previous ptp frequency delta */
3933		ret_val = info->adjfreq(info, adapter->ptp_delta);
3934	} else {
3935		/* set the default base frequency if no adjustment possible */
3936		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3937		if (!ret_val)
3938			ew32(TIMINCA, timinca);
3939	}
3940
3941	if (ret_val) {
3942		dev_warn(&adapter->pdev->dev,
3943			 "Failed to restore TIMINCA clock rate delta: %d\n",
3944			 ret_val);
3945		return;
3946	}
3947
3948	/* reset the systim ns time counter */
3949	spin_lock_irqsave(&adapter->systim_lock, flags);
3950	timecounter_init(&adapter->tc, &adapter->cc,
3951			 ktime_to_ns(ktime_get_real()));
3952	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3953
3954	/* restore the previous hwtstamp configuration settings */
3955	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3956}
3957
3958/**
3959 * e1000e_reset - bring the hardware into a known good state
3960 *
3961 * This function boots the hardware and enables some settings that
3962 * require a configuration cycle of the hardware - those cannot be
3963 * set/changed during runtime. After reset the device needs to be
3964 * properly configured for Rx, Tx etc.
3965 */
3966void e1000e_reset(struct e1000_adapter *adapter)
3967{
3968	struct e1000_mac_info *mac = &adapter->hw.mac;
3969	struct e1000_fc_info *fc = &adapter->hw.fc;
3970	struct e1000_hw *hw = &adapter->hw;
3971	u32 tx_space, min_tx_space, min_rx_space;
3972	u32 pba = adapter->pba;
3973	u16 hwm;
3974
3975	/* reset Packet Buffer Allocation to default */
3976	ew32(PBA, pba);
3977
3978	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3979		/* To maintain wire speed transmits, the Tx FIFO should be
 
3980		 * large enough to accommodate two full transmit packets,
3981		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3982		 * the Rx FIFO should be large enough to accommodate at least
3983		 * one full receive packet and is similarly rounded up and
3984		 * expressed in KB.
3985		 */
3986		pba = er32(PBA);
3987		/* upper 16 bits has Tx packet buffer allocation size in KB */
3988		tx_space = pba >> 16;
3989		/* lower 16 bits has Rx packet buffer allocation size in KB */
3990		pba &= 0xffff;
3991		/* the Tx fifo also stores 16 bytes of information about the Tx
 
3992		 * but don't include ethernet FCS because hardware appends it
3993		 */
3994		min_tx_space = (adapter->max_frame_size +
3995				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
 
3996		min_tx_space = ALIGN(min_tx_space, 1024);
3997		min_tx_space >>= 10;
3998		/* software strips receive CRC, so leave room for it */
3999		min_rx_space = adapter->max_frame_size;
4000		min_rx_space = ALIGN(min_rx_space, 1024);
4001		min_rx_space >>= 10;
4002
4003		/* If current Tx allocation is less than the min Tx FIFO size,
 
4004		 * and the min Tx FIFO size is less than the current Rx FIFO
4005		 * allocation, take space away from current Rx allocation
4006		 */
4007		if ((tx_space < min_tx_space) &&
4008		    ((min_tx_space - tx_space) < pba)) {
4009			pba -= min_tx_space - tx_space;
4010
4011			/* if short on Rx space, Rx wins and must trump Tx
4012			 * adjustment
 
4013			 */
4014			if (pba < min_rx_space)
4015				pba = min_rx_space;
4016		}
4017
4018		ew32(PBA, pba);
4019	}
4020
4021	/* flow control settings
 
4022	 *
4023	 * The high water mark must be low enough to fit one full frame
4024	 * (or the size used for early receive) above it in the Rx FIFO.
4025	 * Set it to the lower of:
4026	 * - 90% of the Rx FIFO size, and
4027	 * - the full Rx FIFO size minus one full frame
4028	 */
4029	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4030		fc->pause_time = 0xFFFF;
4031	else
4032		fc->pause_time = E1000_FC_PAUSE_TIME;
4033	fc->send_xon = true;
4034	fc->current_mode = fc->requested_mode;
4035
4036	switch (hw->mac.type) {
4037	case e1000_ich9lan:
4038	case e1000_ich10lan:
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			pba = 14;
4041			ew32(PBA, pba);
4042			fc->high_water = 0x2800;
4043			fc->low_water = fc->high_water - 8;
4044			break;
4045		}
4046		/* fall-through */
4047	default:
4048		hwm = min(((pba << 10) * 9 / 10),
4049			  ((pba << 10) - adapter->max_frame_size));
4050
4051		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4052		fc->low_water = fc->high_water - 8;
4053		break;
4054	case e1000_pchlan:
4055		/* Workaround PCH LOM adapter hangs with certain network
 
4056		 * loads.  If hangs persist, try disabling Tx flow control.
4057		 */
4058		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4059			fc->high_water = 0x3500;
4060			fc->low_water = 0x1500;
4061		} else {
4062			fc->high_water = 0x5000;
4063			fc->low_water = 0x3000;
4064		}
4065		fc->refresh_time = 0x1000;
4066		break;
4067	case e1000_pch2lan:
4068	case e1000_pch_lpt:
4069	case e1000_pch_spt:
4070	case e1000_pch_cnp:
 
4071		fc->refresh_time = 0x0400;
4072
4073		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074			fc->high_water = 0x05C20;
4075			fc->low_water = 0x05048;
4076			fc->pause_time = 0x0650;
4077			break;
4078		}
4079
4080		pba = 14;
4081		ew32(PBA, pba);
4082		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4083		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4084		break;
4085	}
4086
4087	/* Alignment of Tx data is on an arbitrary byte boundary with the
 
4088	 * maximum size per Tx descriptor limited only to the transmit
4089	 * allocation of the packet buffer minus 96 bytes with an upper
4090	 * limit of 24KB due to receive synchronization limitations.
4091	 */
4092	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4093				       24 << 10);
4094
4095	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
 
4096	 * fit in receive buffer.
4097	 */
4098	if (adapter->itr_setting & 0x3) {
4099		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4100			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4101				dev_info(&adapter->pdev->dev,
4102					 "Interrupt Throttle Rate off\n");
4103				adapter->flags2 |= FLAG2_DISABLE_AIM;
4104				e1000e_write_itr(adapter, 0);
4105			}
4106		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4107			dev_info(&adapter->pdev->dev,
4108				 "Interrupt Throttle Rate on\n");
4109			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4110			adapter->itr = 20000;
4111			e1000e_write_itr(adapter, adapter->itr);
4112		}
4113	}
4114
4115	if (hw->mac.type >= e1000_pch_spt)
4116		e1000_flush_desc_rings(adapter);
4117	/* Allow time for pending master requests to run */
4118	mac->ops.reset_hw(hw);
4119
4120	/* For parts with AMT enabled, let the firmware know
 
4121	 * that the network interface is in control
4122	 */
4123	if (adapter->flags & FLAG_HAS_AMT)
4124		e1000e_get_hw_control(adapter);
4125
4126	ew32(WUC, 0);
4127
4128	if (mac->ops.init_hw(hw))
4129		e_err("Hardware Error\n");
4130
4131	e1000_update_mng_vlan(adapter);
4132
4133	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4134	ew32(VET, ETH_P_8021Q);
4135
4136	e1000e_reset_adaptive(hw);
4137
4138	/* restore systim and hwtstamp settings */
4139	e1000e_systim_reset(adapter);
4140
4141	/* Set EEE advertisement as appropriate */
4142	if (adapter->flags2 & FLAG2_HAS_EEE) {
4143		s32 ret_val;
4144		u16 adv_addr;
4145
4146		switch (hw->phy.type) {
4147		case e1000_phy_82579:
4148			adv_addr = I82579_EEE_ADVERTISEMENT;
4149			break;
4150		case e1000_phy_i217:
4151			adv_addr = I217_EEE_ADVERTISEMENT;
4152			break;
4153		default:
4154			dev_err(&adapter->pdev->dev,
4155				"Invalid PHY type setting EEE advertisement\n");
4156			return;
4157		}
4158
4159		ret_val = hw->phy.ops.acquire(hw);
4160		if (ret_val) {
4161			dev_err(&adapter->pdev->dev,
4162				"EEE advertisement - unable to acquire PHY\n");
4163			return;
4164		}
4165
4166		e1000_write_emi_reg_locked(hw, adv_addr,
4167					   hw->dev_spec.ich8lan.eee_disable ?
4168					   0 : adapter->eee_advert);
4169
4170		hw->phy.ops.release(hw);
4171	}
4172
4173	if (!netif_running(adapter->netdev) &&
4174	    !test_bit(__E1000_TESTING, &adapter->state))
4175		e1000_power_down_phy(adapter);
 
 
4176
4177	e1000_get_phy_info(hw);
4178
4179	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4180	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4181		u16 phy_data = 0;
4182		/* speed up time to link by disabling smart power down, ignore
 
4183		 * the return value of this function because there is nothing
4184		 * different we would do if it failed
4185		 */
4186		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4187		phy_data &= ~IGP02E1000_PM_SPD;
4188		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4189	}
4190	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4191		u32 reg;
4192
4193		/* Fextnvm7 @ 0xe4[2] = 1 */
4194		reg = er32(FEXTNVM7);
4195		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4196		ew32(FEXTNVM7, reg);
4197		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4198		reg = er32(FEXTNVM9);
4199		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4200		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4201		ew32(FEXTNVM9, reg);
4202	}
4203
4204}
4205
4206/**
4207 * e1000e_trigger_lsc - trigger an LSC interrupt
4208 * @adapter: 
4209 *
4210 * Fire a link status change interrupt to start the watchdog.
4211 **/
4212static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4213{
4214	struct e1000_hw *hw = &adapter->hw;
4215
4216	if (adapter->msix_entries)
4217		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4218	else
4219		ew32(ICS, E1000_ICS_LSC);
4220}
4221
4222void e1000e_up(struct e1000_adapter *adapter)
4223{
4224	/* hardware has been reset, we need to reload some things */
4225	e1000_configure(adapter);
4226
4227	clear_bit(__E1000_DOWN, &adapter->state);
4228
4229	if (adapter->msix_entries)
4230		e1000_configure_msix(adapter);
4231	e1000_irq_enable(adapter);
4232
4233	netif_start_queue(adapter->netdev);
4234
4235	e1000e_trigger_lsc(adapter);
 
 
 
 
 
 
4236}
4237
4238static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4239{
4240	struct e1000_hw *hw = &adapter->hw;
4241
4242	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4243		return;
4244
4245	/* flush pending descriptor writebacks to memory */
4246	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4247	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4248
4249	/* execute the writes immediately */
4250	e1e_flush();
4251
4252	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
 
4253	 * write is successful
4254	 */
4255	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257
4258	/* execute the writes immediately */
4259	e1e_flush();
4260}
4261
4262static void e1000e_update_stats(struct e1000_adapter *adapter);
4263
4264/**
4265 * e1000e_down - quiesce the device and optionally reset the hardware
4266 * @adapter: board private structure
4267 * @reset: boolean flag to reset the hardware or not
4268 */
4269void e1000e_down(struct e1000_adapter *adapter, bool reset)
4270{
4271	struct net_device *netdev = adapter->netdev;
4272	struct e1000_hw *hw = &adapter->hw;
4273	u32 tctl, rctl;
4274
4275	/* signal that we're down so the interrupt handler does not
 
4276	 * reschedule our watchdog timer
4277	 */
4278	set_bit(__E1000_DOWN, &adapter->state);
4279
4280	netif_carrier_off(netdev);
4281
4282	/* disable receives in the hardware */
4283	rctl = er32(RCTL);
4284	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4285		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4286	/* flush and sleep below */
4287
4288	netif_stop_queue(netdev);
4289
4290	/* disable transmits in the hardware */
4291	tctl = er32(TCTL);
4292	tctl &= ~E1000_TCTL_EN;
4293	ew32(TCTL, tctl);
4294
4295	/* flush both disables and wait for them to finish */
4296	e1e_flush();
4297	usleep_range(10000, 20000);
4298
4299	e1000_irq_disable(adapter);
4300
4301	napi_synchronize(&adapter->napi);
4302
4303	del_timer_sync(&adapter->watchdog_timer);
4304	del_timer_sync(&adapter->phy_info_timer);
4305
 
 
4306	spin_lock(&adapter->stats64_lock);
4307	e1000e_update_stats(adapter);
4308	spin_unlock(&adapter->stats64_lock);
4309
4310	e1000e_flush_descriptors(adapter);
 
 
4311
4312	adapter->link_speed = 0;
4313	adapter->link_duplex = 0;
4314
4315	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4316	if ((hw->mac.type >= e1000_pch2lan) &&
4317	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4318	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4319		e_dbg("failed to disable jumbo frame workaround mode\n");
4320
4321	if (!pci_channel_offline(adapter->pdev)) {
4322		if (reset)
4323			e1000e_reset(adapter);
4324		else if (hw->mac.type >= e1000_pch_spt)
4325			e1000_flush_desc_rings(adapter);
4326	}
4327	e1000_clean_tx_ring(adapter->tx_ring);
4328	e1000_clean_rx_ring(adapter->rx_ring);
4329}
4330
4331void e1000e_reinit_locked(struct e1000_adapter *adapter)
4332{
4333	might_sleep();
4334	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4335		usleep_range(1000, 2000);
4336	e1000e_down(adapter, true);
4337	e1000e_up(adapter);
4338	clear_bit(__E1000_RESETTING, &adapter->state);
4339}
4340
4341/**
4342 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4343 * @hw: pointer to the HW structure
4344 * @systim: time value read, sanitized and returned
4345 *
4346 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4347 * check to see that the time is incrementing at a reasonable
4348 * rate and is a multiple of incvalue.
4349 **/
4350static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4351{
4352	u64 time_delta, rem, temp;
4353	u64 systim_next;
4354	u32 incvalue;
4355	int i;
4356
4357	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4358	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4359		/* latch SYSTIMH on read of SYSTIML */
4360		systim_next = (u64)er32(SYSTIML);
4361		systim_next |= (u64)er32(SYSTIMH) << 32;
4362
4363		time_delta = systim_next - systim;
4364		temp = time_delta;
4365		/* VMWare users have seen incvalue of zero, don't div / 0 */
4366		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4367
4368		systim = systim_next;
4369
4370		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4371			break;
4372	}
4373
4374	return systim;
4375}
4376
4377/**
4378 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4379 * @cc: cyclecounter structure
4380 **/
4381static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4382{
4383	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4384						     cc);
4385	struct e1000_hw *hw = &adapter->hw;
4386	u32 systimel, systimeh;
4387	u64 systim;
4388	/* SYSTIMH latching upon SYSTIML read does not work well.
4389	 * This means that if SYSTIML overflows after we read it but before
4390	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391	 * will experience a huge non linear increment in the systime value
4392	 * to fix that we test for overflow and if true, we re-read systime.
4393	 */
4394	systimel = er32(SYSTIML);
4395	systimeh = er32(SYSTIMH);
4396	/* Is systimel is so large that overflow is possible? */
4397	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4398		u32 systimel_2 = er32(SYSTIML);
4399		if (systimel > systimel_2) {
4400			/* There was an overflow, read again SYSTIMH, and use
4401			 * systimel_2
4402			 */
4403			systimeh = er32(SYSTIMH);
4404			systimel = systimel_2;
4405		}
4406	}
4407	systim = (u64)systimel;
4408	systim |= (u64)systimeh << 32;
4409
4410	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4411		systim = e1000e_sanitize_systim(hw, systim);
4412
4413	return systim;
4414}
4415
4416/**
4417 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4418 * @adapter: board private structure to initialize
4419 *
4420 * e1000_sw_init initializes the Adapter private data structure.
4421 * Fields are initialized based on PCI device information and
4422 * OS network device settings (MTU size).
4423 **/
4424static int e1000_sw_init(struct e1000_adapter *adapter)
4425{
4426	struct net_device *netdev = adapter->netdev;
4427
4428	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4429	adapter->rx_ps_bsize0 = 128;
4430	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4431	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4432	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4433	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4434
4435	spin_lock_init(&adapter->stats64_lock);
4436
4437	e1000e_set_interrupt_capability(adapter);
4438
4439	if (e1000_alloc_queues(adapter))
4440		return -ENOMEM;
4441
4442	/* Setup hardware time stamping cyclecounter */
4443	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4444		adapter->cc.read = e1000e_cyclecounter_read;
4445		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4446		adapter->cc.mult = 1;
4447		/* cc.shift set in e1000e_get_base_tininca() */
4448
4449		spin_lock_init(&adapter->systim_lock);
4450		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4451	}
4452
4453	/* Explicitly disable IRQ since the NIC can be in any state. */
4454	e1000_irq_disable(adapter);
4455
4456	set_bit(__E1000_DOWN, &adapter->state);
4457	return 0;
4458}
4459
4460/**
4461 * e1000_intr_msi_test - Interrupt Handler
4462 * @irq: interrupt number
4463 * @data: pointer to a network interface device structure
4464 **/
4465static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4466{
4467	struct net_device *netdev = data;
4468	struct e1000_adapter *adapter = netdev_priv(netdev);
4469	struct e1000_hw *hw = &adapter->hw;
4470	u32 icr = er32(ICR);
4471
4472	e_dbg("icr is %08X\n", icr);
4473	if (icr & E1000_ICR_RXSEQ) {
4474		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4475		/* Force memory writes to complete before acknowledging the
4476		 * interrupt is handled.
4477		 */
4478		wmb();
4479	}
4480
4481	return IRQ_HANDLED;
4482}
4483
4484/**
4485 * e1000_test_msi_interrupt - Returns 0 for successful test
4486 * @adapter: board private struct
4487 *
4488 * code flow taken from tg3.c
4489 **/
4490static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4491{
4492	struct net_device *netdev = adapter->netdev;
4493	struct e1000_hw *hw = &adapter->hw;
4494	int err;
4495
4496	/* poll_enable hasn't been called yet, so don't need disable */
4497	/* clear any pending events */
4498	er32(ICR);
4499
4500	/* free the real vector and request a test handler */
4501	e1000_free_irq(adapter);
4502	e1000e_reset_interrupt_capability(adapter);
4503
4504	/* Assume that the test fails, if it succeeds then the test
4505	 * MSI irq handler will unset this flag
4506	 */
4507	adapter->flags |= FLAG_MSI_TEST_FAILED;
4508
4509	err = pci_enable_msi(adapter->pdev);
4510	if (err)
4511		goto msi_test_failed;
4512
4513	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4514			  netdev->name, netdev);
4515	if (err) {
4516		pci_disable_msi(adapter->pdev);
4517		goto msi_test_failed;
4518	}
4519
4520	/* Force memory writes to complete before enabling and firing an
4521	 * interrupt.
4522	 */
4523	wmb();
4524
4525	e1000_irq_enable(adapter);
4526
4527	/* fire an unusual interrupt on the test handler */
4528	ew32(ICS, E1000_ICS_RXSEQ);
4529	e1e_flush();
4530	msleep(100);
4531
4532	e1000_irq_disable(adapter);
4533
4534	rmb();			/* read flags after interrupt has been fired */
4535
4536	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4537		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4538		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4539	} else {
4540		e_dbg("MSI interrupt test succeeded!\n");
4541	}
4542
4543	free_irq(adapter->pdev->irq, netdev);
4544	pci_disable_msi(adapter->pdev);
4545
4546msi_test_failed:
4547	e1000e_set_interrupt_capability(adapter);
4548	return e1000_request_irq(adapter);
4549}
4550
4551/**
4552 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4553 * @adapter: board private struct
4554 *
4555 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4556 **/
4557static int e1000_test_msi(struct e1000_adapter *adapter)
4558{
4559	int err;
4560	u16 pci_cmd;
4561
4562	if (!(adapter->flags & FLAG_MSI_ENABLED))
4563		return 0;
4564
4565	/* disable SERR in case the MSI write causes a master abort */
4566	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4567	if (pci_cmd & PCI_COMMAND_SERR)
4568		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4569				      pci_cmd & ~PCI_COMMAND_SERR);
4570
4571	err = e1000_test_msi_interrupt(adapter);
4572
4573	/* re-enable SERR */
4574	if (pci_cmd & PCI_COMMAND_SERR) {
4575		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576		pci_cmd |= PCI_COMMAND_SERR;
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4578	}
4579
4580	return err;
4581}
4582
4583/**
4584 * e1000e_open - Called when a network interface is made active
4585 * @netdev: network interface device structure
4586 *
4587 * Returns 0 on success, negative value on failure
4588 *
4589 * The open entry point is called when a network interface is made
4590 * active by the system (IFF_UP).  At this point all resources needed
4591 * for transmit and receive operations are allocated, the interrupt
4592 * handler is registered with the OS, the watchdog timer is started,
4593 * and the stack is notified that the interface is ready.
4594 **/
4595int e1000e_open(struct net_device *netdev)
4596{
4597	struct e1000_adapter *adapter = netdev_priv(netdev);
4598	struct e1000_hw *hw = &adapter->hw;
4599	struct pci_dev *pdev = adapter->pdev;
4600	int err;
4601
4602	/* disallow open during test */
4603	if (test_bit(__E1000_TESTING, &adapter->state))
4604		return -EBUSY;
4605
4606	pm_runtime_get_sync(&pdev->dev);
4607
4608	netif_carrier_off(netdev);
4609
4610	/* allocate transmit descriptors */
4611	err = e1000e_setup_tx_resources(adapter->tx_ring);
4612	if (err)
4613		goto err_setup_tx;
4614
4615	/* allocate receive descriptors */
4616	err = e1000e_setup_rx_resources(adapter->rx_ring);
4617	if (err)
4618		goto err_setup_rx;
4619
4620	/* If AMT is enabled, let the firmware know that the network
 
4621	 * interface is now open and reset the part to a known state.
4622	 */
4623	if (adapter->flags & FLAG_HAS_AMT) {
4624		e1000e_get_hw_control(adapter);
4625		e1000e_reset(adapter);
4626	}
4627
4628	e1000e_power_up_phy(adapter);
4629
4630	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4631	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
 
4632		e1000_update_mng_vlan(adapter);
4633
4634	/* DMA latency requirement to workaround jumbo issue */
4635	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4636			   PM_QOS_DEFAULT_VALUE);
 
 
4637
4638	/* before we allocate an interrupt, we must be ready to handle it.
 
4639	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4640	 * as soon as we call pci_request_irq, so we have to setup our
4641	 * clean_rx handler before we do so.
4642	 */
4643	e1000_configure(adapter);
4644
4645	err = e1000_request_irq(adapter);
4646	if (err)
4647		goto err_req_irq;
4648
4649	/* Work around PCIe errata with MSI interrupts causing some chipsets to
 
4650	 * ignore e1000e MSI messages, which means we need to test our MSI
4651	 * interrupt now
4652	 */
4653	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4654		err = e1000_test_msi(adapter);
4655		if (err) {
4656			e_err("Interrupt allocation failed\n");
4657			goto err_req_irq;
4658		}
4659	}
4660
4661	/* From here on the code is the same as e1000e_up() */
4662	clear_bit(__E1000_DOWN, &adapter->state);
4663
4664	napi_enable(&adapter->napi);
4665
4666	e1000_irq_enable(adapter);
4667
4668	adapter->tx_hang_recheck = false;
4669	netif_start_queue(netdev);
4670
4671	hw->mac.get_link_status = true;
4672	pm_runtime_put(&pdev->dev);
4673
4674	e1000e_trigger_lsc(adapter);
 
 
 
 
4675
4676	return 0;
4677
4678err_req_irq:
4679	pm_qos_remove_request(&adapter->pm_qos_req);
4680	e1000e_release_hw_control(adapter);
4681	e1000_power_down_phy(adapter);
4682	e1000e_free_rx_resources(adapter->rx_ring);
4683err_setup_rx:
4684	e1000e_free_tx_resources(adapter->tx_ring);
4685err_setup_tx:
4686	e1000e_reset(adapter);
4687	pm_runtime_put_sync(&pdev->dev);
4688
4689	return err;
4690}
4691
4692/**
4693 * e1000e_close - Disables a network interface
4694 * @netdev: network interface device structure
4695 *
4696 * Returns 0, this is not allowed to fail
4697 *
4698 * The close entry point is called when an interface is de-activated
4699 * by the OS.  The hardware is still under the drivers control, but
4700 * needs to be disabled.  A global MAC reset is issued to stop the
4701 * hardware, and all transmit and receive resources are freed.
4702 **/
4703int e1000e_close(struct net_device *netdev)
4704{
4705	struct e1000_adapter *adapter = netdev_priv(netdev);
4706	struct pci_dev *pdev = adapter->pdev;
4707	int count = E1000_CHECK_RESET_COUNT;
4708
4709	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4710		usleep_range(10000, 20000);
4711
4712	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4713
4714	pm_runtime_get_sync(&pdev->dev);
4715
 
 
4716	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4717		e1000e_down(adapter, true);
4718		e1000_free_irq(adapter);
4719
4720		/* Link status message must follow this format */
4721		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4722	}
4723
4724	napi_disable(&adapter->napi);
4725
4726	e1000e_free_tx_resources(adapter->tx_ring);
4727	e1000e_free_rx_resources(adapter->rx_ring);
4728
4729	/* kill manageability vlan ID if supported, but not if a vlan with
 
4730	 * the same ID is registered on the host OS (let 8021q kill it)
4731	 */
4732	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4733		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4734				       adapter->mng_vlan_id);
4735
4736	/* If AMT is enabled, let the firmware know that the network
 
4737	 * interface is now closed
4738	 */
4739	if ((adapter->flags & FLAG_HAS_AMT) &&
4740	    !test_bit(__E1000_TESTING, &adapter->state))
4741		e1000e_release_hw_control(adapter);
4742
4743	pm_qos_remove_request(&adapter->pm_qos_req);
 
4744
4745	pm_runtime_put_sync(&pdev->dev);
4746
4747	return 0;
4748}
4749
4750/**
4751 * e1000_set_mac - Change the Ethernet Address of the NIC
4752 * @netdev: network interface device structure
4753 * @p: pointer to an address structure
4754 *
4755 * Returns 0 on success, negative on failure
4756 **/
4757static int e1000_set_mac(struct net_device *netdev, void *p)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct sockaddr *addr = p;
4762
4763	if (!is_valid_ether_addr(addr->sa_data))
4764		return -EADDRNOTAVAIL;
4765
4766	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4767	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4768
4769	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4770
4771	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4772		/* activate the work around */
4773		e1000e_set_laa_state_82571(&adapter->hw, 1);
4774
4775		/* Hold a copy of the LAA in RAR[14] This is done so that
 
4776		 * between the time RAR[0] gets clobbered  and the time it
4777		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4778		 * of the RARs and no incoming packets directed to this port
4779		 * are dropped. Eventually the LAA will be in RAR[0] and
4780		 * RAR[14]
4781		 */
4782		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4783				    adapter->hw.mac.rar_entry_count - 1);
4784	}
4785
4786	return 0;
4787}
4788
4789/**
4790 * e1000e_update_phy_task - work thread to update phy
4791 * @work: pointer to our work struct
4792 *
4793 * this worker thread exists because we must acquire a
4794 * semaphore to read the phy, which we could msleep while
4795 * waiting for it, and we can't msleep in a timer.
4796 **/
4797static void e1000e_update_phy_task(struct work_struct *work)
4798{
4799	struct e1000_adapter *adapter = container_of(work,
4800						     struct e1000_adapter,
4801						     update_phy_task);
4802	struct e1000_hw *hw = &adapter->hw;
4803
4804	if (test_bit(__E1000_DOWN, &adapter->state))
4805		return;
4806
4807	e1000_get_phy_info(hw);
4808
4809	/* Enable EEE on 82579 after link up */
4810	if (hw->phy.type >= e1000_phy_82579)
4811		e1000_set_eee_pchlan(hw);
4812}
4813
4814/**
4815 * e1000_update_phy_info - timre call-back to update PHY info
4816 * @data: pointer to adapter cast into an unsigned long
4817 *
4818 * Need to wait a few seconds after link up to get diagnostic information from
4819 * the phy
4820 **/
4821static void e1000_update_phy_info(struct timer_list *t)
4822{
4823	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4824
4825	if (test_bit(__E1000_DOWN, &adapter->state))
4826		return;
4827
4828	schedule_work(&adapter->update_phy_task);
4829}
4830
4831/**
4832 * e1000e_update_phy_stats - Update the PHY statistics counters
4833 * @adapter: board private structure
4834 *
4835 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4836 **/
4837static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4838{
4839	struct e1000_hw *hw = &adapter->hw;
4840	s32 ret_val;
4841	u16 phy_data;
4842
4843	ret_val = hw->phy.ops.acquire(hw);
4844	if (ret_val)
4845		return;
4846
4847	/* A page set is expensive so check if already on desired page.
 
4848	 * If not, set to the page with the PHY status registers.
4849	 */
4850	hw->phy.addr = 1;
4851	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4852					   &phy_data);
4853	if (ret_val)
4854		goto release;
4855	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4856		ret_val = hw->phy.ops.set_page(hw,
4857					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4858		if (ret_val)
4859			goto release;
4860	}
4861
4862	/* Single Collision Count */
4863	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4864	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4865	if (!ret_val)
4866		adapter->stats.scc += phy_data;
4867
4868	/* Excessive Collision Count */
4869	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4870	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4871	if (!ret_val)
4872		adapter->stats.ecol += phy_data;
4873
4874	/* Multiple Collision Count */
4875	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4876	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4877	if (!ret_val)
4878		adapter->stats.mcc += phy_data;
4879
4880	/* Late Collision Count */
4881	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4882	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4883	if (!ret_val)
4884		adapter->stats.latecol += phy_data;
4885
4886	/* Collision Count - also used for adaptive IFS */
4887	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4888	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4889	if (!ret_val)
4890		hw->mac.collision_delta = phy_data;
4891
4892	/* Defer Count */
4893	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4894	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4895	if (!ret_val)
4896		adapter->stats.dc += phy_data;
4897
4898	/* Transmit with no CRS */
4899	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4900	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4901	if (!ret_val)
4902		adapter->stats.tncrs += phy_data;
4903
4904release:
4905	hw->phy.ops.release(hw);
4906}
4907
4908/**
4909 * e1000e_update_stats - Update the board statistics counters
4910 * @adapter: board private structure
4911 **/
4912static void e1000e_update_stats(struct e1000_adapter *adapter)
4913{
4914	struct net_device *netdev = adapter->netdev;
4915	struct e1000_hw *hw = &adapter->hw;
4916	struct pci_dev *pdev = adapter->pdev;
4917
4918	/* Prevent stats update while adapter is being reset, or if the pci
 
4919	 * connection is down.
4920	 */
4921	if (adapter->link_speed == 0)
4922		return;
4923	if (pci_channel_offline(pdev))
4924		return;
4925
4926	adapter->stats.crcerrs += er32(CRCERRS);
4927	adapter->stats.gprc += er32(GPRC);
4928	adapter->stats.gorc += er32(GORCL);
4929	er32(GORCH);		/* Clear gorc */
4930	adapter->stats.bprc += er32(BPRC);
4931	adapter->stats.mprc += er32(MPRC);
4932	adapter->stats.roc += er32(ROC);
4933
4934	adapter->stats.mpc += er32(MPC);
4935
4936	/* Half-duplex statistics */
4937	if (adapter->link_duplex == HALF_DUPLEX) {
4938		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4939			e1000e_update_phy_stats(adapter);
4940		} else {
4941			adapter->stats.scc += er32(SCC);
4942			adapter->stats.ecol += er32(ECOL);
4943			adapter->stats.mcc += er32(MCC);
4944			adapter->stats.latecol += er32(LATECOL);
4945			adapter->stats.dc += er32(DC);
4946
4947			hw->mac.collision_delta = er32(COLC);
4948
4949			if ((hw->mac.type != e1000_82574) &&
4950			    (hw->mac.type != e1000_82583))
4951				adapter->stats.tncrs += er32(TNCRS);
4952		}
4953		adapter->stats.colc += hw->mac.collision_delta;
4954	}
4955
4956	adapter->stats.xonrxc += er32(XONRXC);
4957	adapter->stats.xontxc += er32(XONTXC);
4958	adapter->stats.xoffrxc += er32(XOFFRXC);
4959	adapter->stats.xofftxc += er32(XOFFTXC);
4960	adapter->stats.gptc += er32(GPTC);
4961	adapter->stats.gotc += er32(GOTCL);
4962	er32(GOTCH);		/* Clear gotc */
4963	adapter->stats.rnbc += er32(RNBC);
4964	adapter->stats.ruc += er32(RUC);
4965
4966	adapter->stats.mptc += er32(MPTC);
4967	adapter->stats.bptc += er32(BPTC);
4968
4969	/* used for adaptive IFS */
4970
4971	hw->mac.tx_packet_delta = er32(TPT);
4972	adapter->stats.tpt += hw->mac.tx_packet_delta;
4973
4974	adapter->stats.algnerrc += er32(ALGNERRC);
4975	adapter->stats.rxerrc += er32(RXERRC);
4976	adapter->stats.cexterr += er32(CEXTERR);
4977	adapter->stats.tsctc += er32(TSCTC);
4978	adapter->stats.tsctfc += er32(TSCTFC);
4979
4980	/* Fill out the OS statistics structure */
4981	netdev->stats.multicast = adapter->stats.mprc;
4982	netdev->stats.collisions = adapter->stats.colc;
4983
4984	/* Rx Errors */
4985
4986	/* RLEC on some newer hardware can be incorrect so build
 
4987	 * our own version based on RUC and ROC
4988	 */
4989	netdev->stats.rx_errors = adapter->stats.rxerrc +
4990	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4991	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
 
4992	netdev->stats.rx_length_errors = adapter->stats.ruc +
4993	    adapter->stats.roc;
4994	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4995	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4996	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4997
4998	/* Tx Errors */
4999	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
5000	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5001	netdev->stats.tx_window_errors = adapter->stats.latecol;
5002	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5003
5004	/* Tx Dropped needs to be maintained elsewhere */
5005
5006	/* Management Stats */
5007	adapter->stats.mgptc += er32(MGTPTC);
5008	adapter->stats.mgprc += er32(MGTPRC);
5009	adapter->stats.mgpdc += er32(MGTPDC);
5010
5011	/* Correctable ECC Errors */
5012	if (hw->mac.type >= e1000_pch_lpt) {
5013		u32 pbeccsts = er32(PBECCSTS);
5014
5015		adapter->corr_errors +=
5016		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5017		adapter->uncorr_errors +=
5018		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5019		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5020	}
5021}
5022
5023/**
5024 * e1000_phy_read_status - Update the PHY register status snapshot
5025 * @adapter: board private structure
5026 **/
5027static void e1000_phy_read_status(struct e1000_adapter *adapter)
5028{
5029	struct e1000_hw *hw = &adapter->hw;
5030	struct e1000_phy_regs *phy = &adapter->phy_regs;
5031
5032	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5033	    (er32(STATUS) & E1000_STATUS_LU) &&
5034	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5035		int ret_val;
5036
5037		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5038		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5039		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5040		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5041		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5042		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5043		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5044		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5045		if (ret_val)
5046			e_warn("Error reading PHY register\n");
5047	} else {
5048		/* Do not read PHY registers if link is not up
 
5049		 * Set values to typical power-on defaults
5050		 */
5051		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5052		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5053			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5054			     BMSR_ERCAP);
5055		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5056				  ADVERTISE_ALL | ADVERTISE_CSMA);
5057		phy->lpa = 0;
5058		phy->expansion = EXPANSION_ENABLENPAGE;
5059		phy->ctrl1000 = ADVERTISE_1000FULL;
5060		phy->stat1000 = 0;
5061		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5062	}
5063}
5064
5065static void e1000_print_link_info(struct e1000_adapter *adapter)
5066{
5067	struct e1000_hw *hw = &adapter->hw;
5068	u32 ctrl = er32(CTRL);
5069
5070	/* Link status message must follow this format for user tools */
5071	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5072		adapter->netdev->name, adapter->link_speed,
 
5073		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5074		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5075		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5076		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5077}
5078
5079static bool e1000e_has_link(struct e1000_adapter *adapter)
5080{
5081	struct e1000_hw *hw = &adapter->hw;
5082	bool link_active = false;
5083	s32 ret_val = 0;
5084
5085	/* get_link_status is set on LSC (link status) interrupt or
 
5086	 * Rx sequence error interrupt.  get_link_status will stay
5087	 * true until the check_for_link establishes link
5088	 * for copper adapters ONLY
5089	 */
5090	switch (hw->phy.media_type) {
5091	case e1000_media_type_copper:
5092		if (hw->mac.get_link_status) {
5093			ret_val = hw->mac.ops.check_for_link(hw);
5094			link_active = !hw->mac.get_link_status;
5095		} else {
5096			link_active = true;
5097		}
5098		break;
5099	case e1000_media_type_fiber:
5100		ret_val = hw->mac.ops.check_for_link(hw);
5101		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5102		break;
5103	case e1000_media_type_internal_serdes:
5104		ret_val = hw->mac.ops.check_for_link(hw);
5105		link_active = hw->mac.serdes_has_link;
5106		break;
5107	default:
5108	case e1000_media_type_unknown:
5109		break;
5110	}
5111
5112	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5113	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5114		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5115		e_info("Gigabit has been disabled, downgrading speed\n");
5116	}
5117
5118	return link_active;
5119}
5120
5121static void e1000e_enable_receives(struct e1000_adapter *adapter)
5122{
5123	/* make sure the receive unit is started */
5124	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5125	    (adapter->flags & FLAG_RESTART_NOW)) {
5126		struct e1000_hw *hw = &adapter->hw;
5127		u32 rctl = er32(RCTL);
5128
5129		ew32(RCTL, rctl | E1000_RCTL_EN);
5130		adapter->flags &= ~FLAG_RESTART_NOW;
5131	}
5132}
5133
5134static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5135{
5136	struct e1000_hw *hw = &adapter->hw;
5137
5138	/* With 82574 controllers, PHY needs to be checked periodically
 
5139	 * for hung state and reset, if two calls return true
5140	 */
5141	if (e1000_check_phy_82574(hw))
5142		adapter->phy_hang_count++;
5143	else
5144		adapter->phy_hang_count = 0;
5145
5146	if (adapter->phy_hang_count > 1) {
5147		adapter->phy_hang_count = 0;
5148		e_dbg("PHY appears hung - resetting\n");
5149		schedule_work(&adapter->reset_task);
5150	}
5151}
5152
5153/**
5154 * e1000_watchdog - Timer Call-back
5155 * @data: pointer to adapter cast into an unsigned long
5156 **/
5157static void e1000_watchdog(struct timer_list *t)
5158{
5159	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5160
5161	/* Do the rest outside of interrupt context */
5162	schedule_work(&adapter->watchdog_task);
5163
5164	/* TODO: make this use queue_delayed_work() */
5165}
5166
5167static void e1000_watchdog_task(struct work_struct *work)
5168{
5169	struct e1000_adapter *adapter = container_of(work,
5170						     struct e1000_adapter,
5171						     watchdog_task);
5172	struct net_device *netdev = adapter->netdev;
5173	struct e1000_mac_info *mac = &adapter->hw.mac;
5174	struct e1000_phy_info *phy = &adapter->hw.phy;
5175	struct e1000_ring *tx_ring = adapter->tx_ring;
5176	struct e1000_hw *hw = &adapter->hw;
5177	u32 link, tctl;
5178
5179	if (test_bit(__E1000_DOWN, &adapter->state))
5180		return;
5181
5182	link = e1000e_has_link(adapter);
5183	if ((netif_carrier_ok(netdev)) && link) {
5184		/* Cancel scheduled suspend requests. */
5185		pm_runtime_resume(netdev->dev.parent);
5186
5187		e1000e_enable_receives(adapter);
5188		goto link_up;
5189	}
5190
5191	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5192	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5193		e1000_update_mng_vlan(adapter);
5194
5195	if (link) {
5196		if (!netif_carrier_ok(netdev)) {
5197			bool txb2b = true;
5198
5199			/* Cancel scheduled suspend requests. */
5200			pm_runtime_resume(netdev->dev.parent);
5201
5202			/* update snapshot of PHY registers on LSC */
5203			e1000_phy_read_status(adapter);
5204			mac->ops.get_link_up_info(&adapter->hw,
5205						  &adapter->link_speed,
5206						  &adapter->link_duplex);
5207			e1000_print_link_info(adapter);
5208
5209			/* check if SmartSpeed worked */
5210			e1000e_check_downshift(hw);
5211			if (phy->speed_downgraded)
5212				netdev_warn(netdev,
5213					    "Link Speed was downgraded by SmartSpeed\n");
5214
5215			/* On supported PHYs, check for duplex mismatch only
5216			 * if link has autonegotiated at 10/100 half
5217			 */
5218			if ((hw->phy.type == e1000_phy_igp_3 ||
5219			     hw->phy.type == e1000_phy_bm) &&
5220			    hw->mac.autoneg &&
5221			    (adapter->link_speed == SPEED_10 ||
5222			     adapter->link_speed == SPEED_100) &&
5223			    (adapter->link_duplex == HALF_DUPLEX)) {
5224				u16 autoneg_exp;
5225
5226				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5227
5228				if (!(autoneg_exp & EXPANSION_NWAY))
5229					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5230			}
5231
5232			/* adjust timeout factor according to speed/duplex */
5233			adapter->tx_timeout_factor = 1;
5234			switch (adapter->link_speed) {
5235			case SPEED_10:
5236				txb2b = false;
5237				adapter->tx_timeout_factor = 16;
5238				break;
5239			case SPEED_100:
5240				txb2b = false;
5241				adapter->tx_timeout_factor = 10;
5242				break;
5243			}
5244
5245			/* workaround: re-program speed mode bit after
 
5246			 * link-up event
5247			 */
5248			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5249			    !txb2b) {
5250				u32 tarc0;
5251
5252				tarc0 = er32(TARC(0));
5253				tarc0 &= ~SPEED_MODE_BIT;
5254				ew32(TARC(0), tarc0);
5255			}
5256
5257			/* disable TSO for pcie and 10/100 speeds, to avoid
 
5258			 * some hardware issues
5259			 */
5260			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5261				switch (adapter->link_speed) {
5262				case SPEED_10:
5263				case SPEED_100:
5264					e_info("10/100 speed: disabling TSO\n");
5265					netdev->features &= ~NETIF_F_TSO;
5266					netdev->features &= ~NETIF_F_TSO6;
5267					break;
5268				case SPEED_1000:
5269					netdev->features |= NETIF_F_TSO;
5270					netdev->features |= NETIF_F_TSO6;
5271					break;
5272				default:
5273					/* oops */
5274					break;
5275				}
5276			}
5277
5278			/* enable transmits in the hardware, need to do this
 
5279			 * after setting TARC(0)
5280			 */
5281			tctl = er32(TCTL);
5282			tctl |= E1000_TCTL_EN;
5283			ew32(TCTL, tctl);
5284
5285			/* Perform any post-link-up configuration before
 
5286			 * reporting link up.
5287			 */
5288			if (phy->ops.cfg_on_link_up)
5289				phy->ops.cfg_on_link_up(hw);
5290
5291			netif_carrier_on(netdev);
5292
5293			if (!test_bit(__E1000_DOWN, &adapter->state))
5294				mod_timer(&adapter->phy_info_timer,
5295					  round_jiffies(jiffies + 2 * HZ));
5296		}
5297	} else {
5298		if (netif_carrier_ok(netdev)) {
5299			adapter->link_speed = 0;
5300			adapter->link_duplex = 0;
5301			/* Link status message must follow this format */
5302			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
 
5303			netif_carrier_off(netdev);
5304			if (!test_bit(__E1000_DOWN, &adapter->state))
5305				mod_timer(&adapter->phy_info_timer,
5306					  round_jiffies(jiffies + 2 * HZ));
5307
5308			/* 8000ES2LAN requires a Rx packet buffer work-around
5309			 * on link down event; reset the controller to flush
5310			 * the Rx packet buffer.
5311			 */
5312			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5313				adapter->flags |= FLAG_RESTART_NOW;
5314			else
5315				pm_schedule_suspend(netdev->dev.parent,
5316						    LINK_TIMEOUT);
5317		}
5318	}
5319
5320link_up:
5321	spin_lock(&adapter->stats64_lock);
5322	e1000e_update_stats(adapter);
5323
5324	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5325	adapter->tpt_old = adapter->stats.tpt;
5326	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5327	adapter->colc_old = adapter->stats.colc;
5328
5329	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5330	adapter->gorc_old = adapter->stats.gorc;
5331	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5332	adapter->gotc_old = adapter->stats.gotc;
5333	spin_unlock(&adapter->stats64_lock);
5334
5335	/* If the link is lost the controller stops DMA, but
5336	 * if there is queued Tx work it cannot be done.  So
5337	 * reset the controller to flush the Tx packet buffers.
5338	 */
5339	if (!netif_carrier_ok(netdev) &&
5340	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5341		adapter->flags |= FLAG_RESTART_NOW;
5342
5343	/* If reset is necessary, do it outside of interrupt context. */
5344	if (adapter->flags & FLAG_RESTART_NOW) {
 
 
 
 
 
 
5345		schedule_work(&adapter->reset_task);
5346		/* return immediately since reset is imminent */
5347		return;
5348	}
5349
5350	e1000e_update_adaptive(&adapter->hw);
5351
5352	/* Simple mode for Interrupt Throttle Rate (ITR) */
5353	if (adapter->itr_setting == 4) {
5354		/* Symmetric Tx/Rx gets a reduced ITR=2000;
 
5355		 * Total asymmetrical Tx or Rx gets ITR=8000;
5356		 * everyone else is between 2000-8000.
5357		 */
5358		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5359		u32 dif = (adapter->gotc > adapter->gorc ?
5360			   adapter->gotc - adapter->gorc :
5361			   adapter->gorc - adapter->gotc) / 10000;
5362		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5363
5364		e1000e_write_itr(adapter, itr);
5365	}
5366
5367	/* Cause software interrupt to ensure Rx ring is cleaned */
5368	if (adapter->msix_entries)
5369		ew32(ICS, adapter->rx_ring->ims_val);
5370	else
5371		ew32(ICS, E1000_ICS_RXDMT0);
5372
5373	/* flush pending descriptors to memory before detecting Tx hang */
5374	e1000e_flush_descriptors(adapter);
5375
5376	/* Force detection of hung controller every watchdog period */
5377	adapter->detect_tx_hung = true;
5378
5379	/* With 82571 controllers, LAA may be overwritten due to controller
 
5380	 * reset from the other port. Set the appropriate LAA in RAR[0]
5381	 */
5382	if (e1000e_get_laa_state_82571(hw))
5383		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5384
5385	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5386		e1000e_check_82574_phy_workaround(adapter);
5387
5388	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5389	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5390		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5391		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5392			er32(RXSTMPH);
5393			adapter->rx_hwtstamp_cleared++;
5394		} else {
5395			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5396		}
5397	}
5398
5399	/* Reset the timer */
5400	if (!test_bit(__E1000_DOWN, &adapter->state))
5401		mod_timer(&adapter->watchdog_timer,
5402			  round_jiffies(jiffies + 2 * HZ));
5403}
5404
5405#define E1000_TX_FLAGS_CSUM		0x00000001
5406#define E1000_TX_FLAGS_VLAN		0x00000002
5407#define E1000_TX_FLAGS_TSO		0x00000004
5408#define E1000_TX_FLAGS_IPV4		0x00000008
5409#define E1000_TX_FLAGS_NO_FCS		0x00000010
5410#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5411#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5412#define E1000_TX_FLAGS_VLAN_SHIFT	16
5413
5414static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5415		     __be16 protocol)
5416{
5417	struct e1000_context_desc *context_desc;
5418	struct e1000_buffer *buffer_info;
5419	unsigned int i;
5420	u32 cmd_length = 0;
5421	u16 ipcse = 0, mss;
5422	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5423	int err;
5424
5425	if (!skb_is_gso(skb))
5426		return 0;
5427
5428	err = skb_cow_head(skb, 0);
5429	if (err < 0)
5430		return err;
 
 
 
5431
5432	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5433	mss = skb_shinfo(skb)->gso_size;
5434	if (protocol == htons(ETH_P_IP)) {
5435		struct iphdr *iph = ip_hdr(skb);
5436		iph->tot_len = 0;
5437		iph->check = 0;
5438		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5439							 0, IPPROTO_TCP, 0);
5440		cmd_length = E1000_TXD_CMD_IP;
5441		ipcse = skb_transport_offset(skb) - 1;
5442	} else if (skb_is_gso_v6(skb)) {
5443		ipv6_hdr(skb)->payload_len = 0;
5444		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5445						       &ipv6_hdr(skb)->daddr,
5446						       0, IPPROTO_TCP, 0);
5447		ipcse = 0;
5448	}
5449	ipcss = skb_network_offset(skb);
5450	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5451	tucss = skb_transport_offset(skb);
5452	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 
5453
5454	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5455		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5456
5457	i = tx_ring->next_to_use;
5458	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5459	buffer_info = &tx_ring->buffer_info[i];
5460
5461	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5462	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5463	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5464	context_desc->upper_setup.tcp_fields.tucss = tucss;
5465	context_desc->upper_setup.tcp_fields.tucso = tucso;
5466	context_desc->upper_setup.tcp_fields.tucse = 0;
5467	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5468	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5469	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5470
5471	buffer_info->time_stamp = jiffies;
5472	buffer_info->next_to_watch = i;
5473
5474	i++;
5475	if (i == tx_ring->count)
5476		i = 0;
5477	tx_ring->next_to_use = i;
5478
5479	return 1;
5480}
5481
5482static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5483			  __be16 protocol)
5484{
5485	struct e1000_adapter *adapter = tx_ring->adapter;
5486	struct e1000_context_desc *context_desc;
5487	struct e1000_buffer *buffer_info;
5488	unsigned int i;
5489	u8 css;
5490	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5491
5492	if (skb->ip_summed != CHECKSUM_PARTIAL)
5493		return false;
 
 
 
 
 
5494
5495	switch (protocol) {
5496	case cpu_to_be16(ETH_P_IP):
5497		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5498			cmd_len |= E1000_TXD_CMD_TCP;
5499		break;
5500	case cpu_to_be16(ETH_P_IPV6):
5501		/* XXX not handling all IPV6 headers */
5502		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5503			cmd_len |= E1000_TXD_CMD_TCP;
5504		break;
5505	default:
5506		if (unlikely(net_ratelimit()))
5507			e_warn("checksum_partial proto=%x!\n",
5508			       be16_to_cpu(protocol));
5509		break;
5510	}
5511
5512	css = skb_checksum_start_offset(skb);
5513
5514	i = tx_ring->next_to_use;
5515	buffer_info = &tx_ring->buffer_info[i];
5516	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5517
5518	context_desc->lower_setup.ip_config = 0;
5519	context_desc->upper_setup.tcp_fields.tucss = css;
5520	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
 
5521	context_desc->upper_setup.tcp_fields.tucse = 0;
5522	context_desc->tcp_seg_setup.data = 0;
5523	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5524
5525	buffer_info->time_stamp = jiffies;
5526	buffer_info->next_to_watch = i;
5527
5528	i++;
5529	if (i == tx_ring->count)
5530		i = 0;
5531	tx_ring->next_to_use = i;
5532
5533	return true;
5534}
5535
5536static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5537			unsigned int first, unsigned int max_per_txd,
5538			unsigned int nr_frags)
5539{
5540	struct e1000_adapter *adapter = tx_ring->adapter;
5541	struct pci_dev *pdev = adapter->pdev;
5542	struct e1000_buffer *buffer_info;
5543	unsigned int len = skb_headlen(skb);
5544	unsigned int offset = 0, size, count = 0, i;
5545	unsigned int f, bytecount, segs;
5546
5547	i = tx_ring->next_to_use;
5548
5549	while (len) {
5550		buffer_info = &tx_ring->buffer_info[i];
5551		size = min(len, max_per_txd);
5552
5553		buffer_info->length = size;
5554		buffer_info->time_stamp = jiffies;
5555		buffer_info->next_to_watch = i;
5556		buffer_info->dma = dma_map_single(&pdev->dev,
5557						  skb->data + offset,
5558						  size, DMA_TO_DEVICE);
5559		buffer_info->mapped_as_page = false;
5560		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5561			goto dma_error;
5562
5563		len -= size;
5564		offset += size;
5565		count++;
5566
5567		if (len) {
5568			i++;
5569			if (i == tx_ring->count)
5570				i = 0;
5571		}
5572	}
5573
5574	for (f = 0; f < nr_frags; f++) {
5575		const struct skb_frag_struct *frag;
5576
5577		frag = &skb_shinfo(skb)->frags[f];
5578		len = skb_frag_size(frag);
5579		offset = 0;
5580
5581		while (len) {
5582			i++;
5583			if (i == tx_ring->count)
5584				i = 0;
5585
5586			buffer_info = &tx_ring->buffer_info[i];
5587			size = min(len, max_per_txd);
5588
5589			buffer_info->length = size;
5590			buffer_info->time_stamp = jiffies;
5591			buffer_info->next_to_watch = i;
5592			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5593							    offset, size,
5594							    DMA_TO_DEVICE);
5595			buffer_info->mapped_as_page = true;
5596			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5597				goto dma_error;
5598
5599			len -= size;
5600			offset += size;
5601			count++;
5602		}
5603	}
5604
5605	segs = skb_shinfo(skb)->gso_segs ? : 1;
5606	/* multiply data chunks by size of headers */
5607	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5608
5609	tx_ring->buffer_info[i].skb = skb;
5610	tx_ring->buffer_info[i].segs = segs;
5611	tx_ring->buffer_info[i].bytecount = bytecount;
5612	tx_ring->buffer_info[first].next_to_watch = i;
5613
5614	return count;
5615
5616dma_error:
5617	dev_err(&pdev->dev, "Tx DMA map failed\n");
5618	buffer_info->dma = 0;
5619	if (count)
5620		count--;
5621
5622	while (count--) {
5623		if (i == 0)
5624			i += tx_ring->count;
5625		i--;
5626		buffer_info = &tx_ring->buffer_info[i];
5627		e1000_put_txbuf(tx_ring, buffer_info, true);
5628	}
5629
5630	return 0;
5631}
5632
5633static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5634{
5635	struct e1000_adapter *adapter = tx_ring->adapter;
5636	struct e1000_tx_desc *tx_desc = NULL;
5637	struct e1000_buffer *buffer_info;
5638	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5639	unsigned int i;
5640
5641	if (tx_flags & E1000_TX_FLAGS_TSO) {
5642		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5643		    E1000_TXD_CMD_TSE;
5644		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5645
5646		if (tx_flags & E1000_TX_FLAGS_IPV4)
5647			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5648	}
5649
5650	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5651		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5652		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5653	}
5654
5655	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5656		txd_lower |= E1000_TXD_CMD_VLE;
5657		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5658	}
5659
5660	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5661		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5662
5663	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5664		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5665		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5666	}
5667
5668	i = tx_ring->next_to_use;
5669
5670	do {
5671		buffer_info = &tx_ring->buffer_info[i];
5672		tx_desc = E1000_TX_DESC(*tx_ring, i);
5673		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5674		tx_desc->lower.data = cpu_to_le32(txd_lower |
5675						  buffer_info->length);
5676		tx_desc->upper.data = cpu_to_le32(txd_upper);
5677
5678		i++;
5679		if (i == tx_ring->count)
5680			i = 0;
5681	} while (--count > 0);
5682
5683	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5684
5685	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5686	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5687		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5688
5689	/* Force memory writes to complete before letting h/w
 
5690	 * know there are new descriptors to fetch.  (Only
5691	 * applicable for weak-ordered memory model archs,
5692	 * such as IA-64).
5693	 */
5694	wmb();
5695
5696	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
5697}
5698
5699#define MINIMUM_DHCP_PACKET_SIZE 282
5700static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5701				    struct sk_buff *skb)
5702{
5703	struct e1000_hw *hw = &adapter->hw;
5704	u16 length, offset;
5705
5706	if (skb_vlan_tag_present(skb) &&
5707	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5708	      (adapter->hw.mng_cookie.status &
5709	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5710		return 0;
 
5711
5712	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5713		return 0;
5714
5715	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5716		return 0;
5717
5718	{
5719		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5720		struct udphdr *udp;
5721
5722		if (ip->protocol != IPPROTO_UDP)
5723			return 0;
5724
5725		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5726		if (ntohs(udp->dest) != 67)
5727			return 0;
5728
5729		offset = (u8 *)udp + 8 - skb->data;
5730		length = skb->len - offset;
5731		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5732	}
5733
5734	return 0;
5735}
5736
5737static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5738{
5739	struct e1000_adapter *adapter = tx_ring->adapter;
5740
5741	netif_stop_queue(adapter->netdev);
5742	/* Herbert's original patch had:
 
5743	 *  smp_mb__after_netif_stop_queue();
5744	 * but since that doesn't exist yet, just open code it.
5745	 */
5746	smp_mb();
5747
5748	/* We need to check again in a case another CPU has just
 
5749	 * made room available.
5750	 */
5751	if (e1000_desc_unused(tx_ring) < size)
5752		return -EBUSY;
5753
5754	/* A reprieve! */
5755	netif_start_queue(adapter->netdev);
5756	++adapter->restart_queue;
5757	return 0;
5758}
5759
5760static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5761{
5762	BUG_ON(size > tx_ring->count);
5763
5764	if (e1000_desc_unused(tx_ring) >= size)
5765		return 0;
5766	return __e1000_maybe_stop_tx(tx_ring, size);
5767}
5768
5769static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5770				    struct net_device *netdev)
5771{
5772	struct e1000_adapter *adapter = netdev_priv(netdev);
5773	struct e1000_ring *tx_ring = adapter->tx_ring;
5774	unsigned int first;
5775	unsigned int tx_flags = 0;
5776	unsigned int len = skb_headlen(skb);
5777	unsigned int nr_frags;
5778	unsigned int mss;
5779	int count = 0;
5780	int tso;
5781	unsigned int f;
5782	__be16 protocol = vlan_get_protocol(skb);
5783
5784	if (test_bit(__E1000_DOWN, &adapter->state)) {
5785		dev_kfree_skb_any(skb);
5786		return NETDEV_TX_OK;
5787	}
5788
5789	if (skb->len <= 0) {
5790		dev_kfree_skb_any(skb);
5791		return NETDEV_TX_OK;
5792	}
5793
5794	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5795	 * pad skb in order to meet this minimum size requirement
5796	 */
5797	if (skb_put_padto(skb, 17))
5798		return NETDEV_TX_OK;
5799
5800	mss = skb_shinfo(skb)->gso_size;
5801	if (mss) {
5802		u8 hdr_len;
5803
5804		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
 
5805		 * points to just header, pull a few bytes of payload from
5806		 * frags into skb->data
5807		 */
5808		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5809		/* we do this workaround for ES2LAN, but it is un-necessary,
 
5810		 * avoiding it could save a lot of cycles
5811		 */
5812		if (skb->data_len && (hdr_len == len)) {
5813			unsigned int pull_size;
5814
5815			pull_size = min_t(unsigned int, 4, skb->data_len);
5816			if (!__pskb_pull_tail(skb, pull_size)) {
5817				e_err("__pskb_pull_tail failed.\n");
5818				dev_kfree_skb_any(skb);
5819				return NETDEV_TX_OK;
5820			}
5821			len = skb_headlen(skb);
5822		}
5823	}
5824
5825	/* reserve a descriptor for the offload context */
5826	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5827		count++;
5828	count++;
5829
5830	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5831
5832	nr_frags = skb_shinfo(skb)->nr_frags;
5833	for (f = 0; f < nr_frags; f++)
5834		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5835				      adapter->tx_fifo_limit);
5836
5837	if (adapter->hw.mac.tx_pkt_filtering)
5838		e1000_transfer_dhcp_info(adapter, skb);
5839
5840	/* need: count + 2 desc gap to keep tail from touching
 
5841	 * head, otherwise try next time
5842	 */
5843	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5844		return NETDEV_TX_BUSY;
5845
5846	if (skb_vlan_tag_present(skb)) {
5847		tx_flags |= E1000_TX_FLAGS_VLAN;
5848		tx_flags |= (skb_vlan_tag_get(skb) <<
5849			     E1000_TX_FLAGS_VLAN_SHIFT);
5850	}
5851
5852	first = tx_ring->next_to_use;
5853
5854	tso = e1000_tso(tx_ring, skb, protocol);
5855	if (tso < 0) {
5856		dev_kfree_skb_any(skb);
5857		return NETDEV_TX_OK;
5858	}
5859
5860	if (tso)
5861		tx_flags |= E1000_TX_FLAGS_TSO;
5862	else if (e1000_tx_csum(tx_ring, skb, protocol))
5863		tx_flags |= E1000_TX_FLAGS_CSUM;
5864
5865	/* Old method was to assume IPv4 packet by default if TSO was enabled.
 
5866	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5867	 * no longer assume, we must.
5868	 */
5869	if (protocol == htons(ETH_P_IP))
5870		tx_flags |= E1000_TX_FLAGS_IPV4;
5871
5872	if (unlikely(skb->no_fcs))
5873		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5874
5875	/* if count is 0 then mapping error has occurred */
5876	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5877			     nr_frags);
5878	if (count) {
5879		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5880		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5881			if (!adapter->tx_hwtstamp_skb) {
5882				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5883				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5884				adapter->tx_hwtstamp_skb = skb_get(skb);
5885				adapter->tx_hwtstamp_start = jiffies;
5886				schedule_work(&adapter->tx_hwtstamp_work);
5887			} else {
5888				adapter->tx_hwtstamp_skipped++;
5889			}
5890		}
5891
5892		skb_tx_timestamp(skb);
5893
5894		netdev_sent_queue(netdev, skb->len);
5895		e1000_tx_queue(tx_ring, tx_flags, count);
5896		/* Make sure there is space in the ring for the next send. */
5897		e1000_maybe_stop_tx(tx_ring,
5898				    (MAX_SKB_FRAGS *
5899				     DIV_ROUND_UP(PAGE_SIZE,
5900						  adapter->tx_fifo_limit) + 2));
5901
5902		if (!skb->xmit_more ||
5903		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5904			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5905				e1000e_update_tdt_wa(tx_ring,
5906						     tx_ring->next_to_use);
5907			else
5908				writel(tx_ring->next_to_use, tx_ring->tail);
5909
5910			/* we need this if more than one processor can write
5911			 * to our tail at a time, it synchronizes IO on
5912			 *IA64/Altix systems
5913			 */
5914			mmiowb();
5915		}
5916	} else {
5917		dev_kfree_skb_any(skb);
5918		tx_ring->buffer_info[first].time_stamp = 0;
5919		tx_ring->next_to_use = first;
5920	}
5921
5922	return NETDEV_TX_OK;
5923}
5924
5925/**
5926 * e1000_tx_timeout - Respond to a Tx Hang
5927 * @netdev: network interface device structure
5928 **/
5929static void e1000_tx_timeout(struct net_device *netdev)
5930{
5931	struct e1000_adapter *adapter = netdev_priv(netdev);
5932
5933	/* Do the reset outside of interrupt context */
5934	adapter->tx_timeout_count++;
5935	schedule_work(&adapter->reset_task);
5936}
5937
5938static void e1000_reset_task(struct work_struct *work)
5939{
5940	struct e1000_adapter *adapter;
5941	adapter = container_of(work, struct e1000_adapter, reset_task);
5942
5943	/* don't run the task if already down */
5944	if (test_bit(__E1000_DOWN, &adapter->state))
5945		return;
5946
5947	if (!(adapter->flags & FLAG_RESTART_NOW)) {
 
5948		e1000e_dump(adapter);
5949		e_err("Reset adapter unexpectedly\n");
5950	}
5951	e1000e_reinit_locked(adapter);
5952}
5953
5954/**
5955 * e1000_get_stats64 - Get System Network Statistics
5956 * @netdev: network interface device structure
5957 * @stats: rtnl_link_stats64 pointer
5958 *
5959 * Returns the address of the device statistics structure.
5960 **/
5961void e1000e_get_stats64(struct net_device *netdev,
5962			struct rtnl_link_stats64 *stats)
5963{
5964	struct e1000_adapter *adapter = netdev_priv(netdev);
5965
 
5966	spin_lock(&adapter->stats64_lock);
5967	e1000e_update_stats(adapter);
5968	/* Fill out the OS statistics structure */
5969	stats->rx_bytes = adapter->stats.gorc;
5970	stats->rx_packets = adapter->stats.gprc;
5971	stats->tx_bytes = adapter->stats.gotc;
5972	stats->tx_packets = adapter->stats.gptc;
5973	stats->multicast = adapter->stats.mprc;
5974	stats->collisions = adapter->stats.colc;
5975
5976	/* Rx Errors */
5977
5978	/* RLEC on some newer hardware can be incorrect so build
 
5979	 * our own version based on RUC and ROC
5980	 */
5981	stats->rx_errors = adapter->stats.rxerrc +
5982	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5983	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5984	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
 
 
5985	stats->rx_crc_errors = adapter->stats.crcerrs;
5986	stats->rx_frame_errors = adapter->stats.algnerrc;
5987	stats->rx_missed_errors = adapter->stats.mpc;
5988
5989	/* Tx Errors */
5990	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
5991	stats->tx_aborted_errors = adapter->stats.ecol;
5992	stats->tx_window_errors = adapter->stats.latecol;
5993	stats->tx_carrier_errors = adapter->stats.tncrs;
5994
5995	/* Tx Dropped needs to be maintained elsewhere */
5996
5997	spin_unlock(&adapter->stats64_lock);
 
5998}
5999
6000/**
6001 * e1000_change_mtu - Change the Maximum Transfer Unit
6002 * @netdev: network interface device structure
6003 * @new_mtu: new value for maximum frame size
6004 *
6005 * Returns 0 on success, negative on failure
6006 **/
6007static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6008{
6009	struct e1000_adapter *adapter = netdev_priv(netdev);
6010	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6011
6012	/* Jumbo frame support */
6013	if ((new_mtu > ETH_DATA_LEN) &&
6014	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6015		e_err("Jumbo Frames not supported.\n");
6016		return -EINVAL;
6017	}
6018
 
 
 
 
 
 
 
6019	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6020	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6021	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6022	    (new_mtu > ETH_DATA_LEN)) {
6023		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6024		return -EINVAL;
6025	}
6026
6027	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6028		usleep_range(1000, 2000);
6029	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6030	adapter->max_frame_size = max_frame;
6031	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6032	netdev->mtu = new_mtu;
6033
6034	pm_runtime_get_sync(netdev->dev.parent);
6035
6036	if (netif_running(netdev))
6037		e1000e_down(adapter, true);
6038
6039	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 
6040	 * means we reserve 2 more, this pushes us to allocate from the next
6041	 * larger slab size.
6042	 * i.e. RXBUFFER_2048 --> size-4096 slab
6043	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6044	 * fragmented skbs
6045	 */
6046
6047	if (max_frame <= 2048)
6048		adapter->rx_buffer_len = 2048;
6049	else
6050		adapter->rx_buffer_len = 4096;
6051
6052	/* adjust allocation if LPE protects us, and we aren't using SBP */
6053	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6054		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
6055
6056	if (netif_running(netdev))
6057		e1000e_up(adapter);
6058	else
6059		e1000e_reset(adapter);
6060
6061	pm_runtime_put_sync(netdev->dev.parent);
6062
6063	clear_bit(__E1000_RESETTING, &adapter->state);
6064
6065	return 0;
6066}
6067
6068static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6069			   int cmd)
6070{
6071	struct e1000_adapter *adapter = netdev_priv(netdev);
6072	struct mii_ioctl_data *data = if_mii(ifr);
6073
6074	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6075		return -EOPNOTSUPP;
6076
6077	switch (cmd) {
6078	case SIOCGMIIPHY:
6079		data->phy_id = adapter->hw.phy.addr;
6080		break;
6081	case SIOCGMIIREG:
6082		e1000_phy_read_status(adapter);
6083
6084		switch (data->reg_num & 0x1F) {
6085		case MII_BMCR:
6086			data->val_out = adapter->phy_regs.bmcr;
6087			break;
6088		case MII_BMSR:
6089			data->val_out = adapter->phy_regs.bmsr;
6090			break;
6091		case MII_PHYSID1:
6092			data->val_out = (adapter->hw.phy.id >> 16);
6093			break;
6094		case MII_PHYSID2:
6095			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6096			break;
6097		case MII_ADVERTISE:
6098			data->val_out = adapter->phy_regs.advertise;
6099			break;
6100		case MII_LPA:
6101			data->val_out = adapter->phy_regs.lpa;
6102			break;
6103		case MII_EXPANSION:
6104			data->val_out = adapter->phy_regs.expansion;
6105			break;
6106		case MII_CTRL1000:
6107			data->val_out = adapter->phy_regs.ctrl1000;
6108			break;
6109		case MII_STAT1000:
6110			data->val_out = adapter->phy_regs.stat1000;
6111			break;
6112		case MII_ESTATUS:
6113			data->val_out = adapter->phy_regs.estatus;
6114			break;
6115		default:
6116			return -EIO;
6117		}
6118		break;
6119	case SIOCSMIIREG:
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123	return 0;
6124}
6125
6126/**
6127 * e1000e_hwtstamp_ioctl - control hardware time stamping
6128 * @netdev: network interface device structure
6129 * @ifreq: interface request
6130 *
6131 * Outgoing time stamping can be enabled and disabled. Play nice and
6132 * disable it when requested, although it shouldn't cause any overhead
6133 * when no packet needs it. At most one packet in the queue may be
6134 * marked for time stamping, otherwise it would be impossible to tell
6135 * for sure to which packet the hardware time stamp belongs.
6136 *
6137 * Incoming time stamping has to be configured via the hardware filters.
6138 * Not all combinations are supported, in particular event type has to be
6139 * specified. Matching the kind of event packet is not supported, with the
6140 * exception of "all V2 events regardless of level 2 or 4".
6141 **/
6142static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6143{
6144	struct e1000_adapter *adapter = netdev_priv(netdev);
6145	struct hwtstamp_config config;
6146	int ret_val;
6147
6148	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6149		return -EFAULT;
6150
6151	ret_val = e1000e_config_hwtstamp(adapter, &config);
6152	if (ret_val)
6153		return ret_val;
6154
6155	switch (config.rx_filter) {
6156	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6157	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6158	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6159	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6160	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6161	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6162		/* With V2 type filters which specify a Sync or Delay Request,
6163		 * Path Delay Request/Response messages are also time stamped
6164		 * by hardware so notify the caller the requested packets plus
6165		 * some others are time stamped.
6166		 */
6167		config.rx_filter = HWTSTAMP_FILTER_SOME;
6168		break;
6169	default:
6170		break;
6171	}
6172
6173	return copy_to_user(ifr->ifr_data, &config,
6174			    sizeof(config)) ? -EFAULT : 0;
6175}
6176
6177static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6178{
6179	struct e1000_adapter *adapter = netdev_priv(netdev);
6180
6181	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6182			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6183}
6184
6185static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6186{
6187	switch (cmd) {
6188	case SIOCGMIIPHY:
6189	case SIOCGMIIREG:
6190	case SIOCSMIIREG:
6191		return e1000_mii_ioctl(netdev, ifr, cmd);
6192	case SIOCSHWTSTAMP:
6193		return e1000e_hwtstamp_set(netdev, ifr);
6194	case SIOCGHWTSTAMP:
6195		return e1000e_hwtstamp_get(netdev, ifr);
6196	default:
6197		return -EOPNOTSUPP;
6198	}
6199}
6200
6201static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6202{
6203	struct e1000_hw *hw = &adapter->hw;
6204	u32 i, mac_reg, wuc;
6205	u16 phy_reg, wuc_enable;
6206	int retval;
6207
6208	/* copy MAC RARs to PHY RARs */
6209	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6210
6211	retval = hw->phy.ops.acquire(hw);
6212	if (retval) {
6213		e_err("Could not acquire PHY\n");
6214		return retval;
6215	}
6216
6217	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6218	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6219	if (retval)
6220		goto release;
6221
6222	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6223	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6224		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6225		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6226					   (u16)(mac_reg & 0xFFFF));
6227		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6228					   (u16)((mac_reg >> 16) & 0xFFFF));
6229	}
6230
6231	/* configure PHY Rx Control register */
6232	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6233	mac_reg = er32(RCTL);
6234	if (mac_reg & E1000_RCTL_UPE)
6235		phy_reg |= BM_RCTL_UPE;
6236	if (mac_reg & E1000_RCTL_MPE)
6237		phy_reg |= BM_RCTL_MPE;
6238	phy_reg &= ~(BM_RCTL_MO_MASK);
6239	if (mac_reg & E1000_RCTL_MO_3)
6240		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6241			    << BM_RCTL_MO_SHIFT);
6242	if (mac_reg & E1000_RCTL_BAM)
6243		phy_reg |= BM_RCTL_BAM;
6244	if (mac_reg & E1000_RCTL_PMCF)
6245		phy_reg |= BM_RCTL_PMCF;
6246	mac_reg = er32(CTRL);
6247	if (mac_reg & E1000_CTRL_RFCE)
6248		phy_reg |= BM_RCTL_RFCE;
6249	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6250
6251	wuc = E1000_WUC_PME_EN;
6252	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6253		wuc |= E1000_WUC_APME;
6254
6255	/* enable PHY wakeup in MAC register */
6256	ew32(WUFC, wufc);
6257	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6258		   E1000_WUC_PME_STATUS | wuc));
6259
6260	/* configure and enable PHY wakeup in PHY registers */
6261	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6262	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6263
6264	/* activate PHY wakeup */
6265	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6266	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267	if (retval)
6268		e_err("Could not set PHY Host Wakeup bit\n");
6269release:
6270	hw->phy.ops.release(hw);
6271
6272	return retval;
6273}
6274
6275static void e1000e_flush_lpic(struct pci_dev *pdev)
 
6276{
6277	struct net_device *netdev = pci_get_drvdata(pdev);
6278	struct e1000_adapter *adapter = netdev_priv(netdev);
6279	struct e1000_hw *hw = &adapter->hw;
6280	u32 ret_val;
6281
6282	pm_runtime_get_sync(netdev->dev.parent);
6283
6284	ret_val = hw->phy.ops.acquire(hw);
6285	if (ret_val)
6286		goto fl_out;
6287
6288	pr_info("EEE TX LPI TIMER: %08X\n",
6289		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6290
6291	hw->phy.ops.release(hw);
6292
6293fl_out:
6294	pm_runtime_put_sync(netdev->dev.parent);
6295}
6296
6297static int e1000e_pm_freeze(struct device *dev)
6298{
6299	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6300	struct e1000_adapter *adapter = netdev_priv(netdev);
6301
6302	netif_device_detach(netdev);
6303
6304	if (netif_running(netdev)) {
6305		int count = E1000_CHECK_RESET_COUNT;
6306
6307		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6308			usleep_range(10000, 20000);
6309
6310		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6311
6312		/* Quiesce the device without resetting the hardware */
6313		e1000e_down(adapter, false);
6314		e1000_free_irq(adapter);
6315	}
6316	e1000e_reset_interrupt_capability(adapter);
6317
6318	/* Allow time for pending master requests to run */
6319	e1000e_disable_pcie_master(&adapter->hw);
6320
6321	return 0;
6322}
6323
6324static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6325{
6326	struct net_device *netdev = pci_get_drvdata(pdev);
6327	struct e1000_adapter *adapter = netdev_priv(netdev);
6328	struct e1000_hw *hw = &adapter->hw;
6329	u32 ctrl, ctrl_ext, rctl, status;
6330	/* Runtime suspend should only enable wakeup for link changes */
6331	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6332	int retval = 0;
6333
6334	status = er32(STATUS);
6335	if (status & E1000_STATUS_LU)
6336		wufc &= ~E1000_WUFC_LNKC;
6337
6338	if (wufc) {
6339		e1000_setup_rctl(adapter);
6340		e1000e_set_rx_mode(netdev);
6341
6342		/* turn on all-multi mode if wake on multicast is enabled */
6343		if (wufc & E1000_WUFC_MC) {
6344			rctl = er32(RCTL);
6345			rctl |= E1000_RCTL_MPE;
6346			ew32(RCTL, rctl);
6347		}
6348
6349		ctrl = er32(CTRL);
 
 
 
 
6350		ctrl |= E1000_CTRL_ADVD3WUC;
6351		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6352			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6353		ew32(CTRL, ctrl);
6354
6355		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6356		    adapter->hw.phy.media_type ==
6357		    e1000_media_type_internal_serdes) {
6358			/* keep the laser running in D3 */
6359			ctrl_ext = er32(CTRL_EXT);
6360			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6361			ew32(CTRL_EXT, ctrl_ext);
6362		}
6363
6364		if (!runtime)
6365			e1000e_power_up_phy(adapter);
6366
6367		if (adapter->flags & FLAG_IS_ICH)
6368			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6369
 
 
 
6370		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6371			/* enable wakeup by the PHY */
6372			retval = e1000_init_phy_wakeup(adapter, wufc);
6373			if (retval)
6374				return retval;
6375		} else {
6376			/* enable wakeup by the MAC */
6377			ew32(WUFC, wufc);
6378			ew32(WUC, E1000_WUC_PME_EN);
6379		}
6380	} else {
6381		ew32(WUC, 0);
6382		ew32(WUFC, 0);
6383
6384		e1000_power_down_phy(adapter);
6385	}
6386
6387	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6388		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6389	} else if (hw->mac.type >= e1000_pch_lpt) {
6390		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6391			/* ULP does not support wake from unicast, multicast
6392			 * or broadcast.
6393			 */
6394			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6395
6396		if (retval)
6397			return retval;
6398	}
6399
6400	/* Ensure that the appropriate bits are set in LPI_CTRL
6401	 * for EEE in Sx
6402	 */
6403	if ((hw->phy.type >= e1000_phy_i217) &&
6404	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6405		u16 lpi_ctrl = 0;
6406
6407		retval = hw->phy.ops.acquire(hw);
6408		if (!retval) {
6409			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6410						 &lpi_ctrl);
6411			if (!retval) {
6412				if (adapter->eee_advert &
6413				    hw->dev_spec.ich8lan.eee_lp_ability &
6414				    I82579_EEE_100_SUPPORTED)
6415					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6416				if (adapter->eee_advert &
6417				    hw->dev_spec.ich8lan.eee_lp_ability &
6418				    I82579_EEE_1000_SUPPORTED)
6419					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6420
6421				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6422							 lpi_ctrl);
6423			}
6424		}
6425		hw->phy.ops.release(hw);
6426	}
6427
6428	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 
6429	 * would have already happened in close and is redundant.
6430	 */
6431	e1000e_release_hw_control(adapter);
6432
6433	pci_clear_master(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6434
6435	/* The pci-e switch on some quad port adapters will report a
 
 
 
 
 
 
 
6436	 * correctable error when the MAC transitions from D0 to D3.  To
6437	 * prevent this we need to mask off the correctable errors on the
6438	 * downstream port of the pci-e switch.
6439	 *
6440	 * We don't have the associated upstream bridge while assigning
6441	 * the PCI device into guest. For example, the KVM on power is
6442	 * one of the cases.
6443	 */
6444	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6445		struct pci_dev *us_dev = pdev->bus->self;
 
6446		u16 devctl;
6447
6448		if (!us_dev)
6449			return 0;
6450
6451		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6452		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6453					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6454
6455		pci_save_state(pdev);
6456		pci_prepare_to_sleep(pdev);
6457
6458		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
 
 
6459	}
6460
6461	return 0;
6462}
6463
6464/**
6465 * __e1000e_disable_aspm - Disable ASPM states
6466 * @pdev: pointer to PCI device struct
6467 * @state: bit-mask of ASPM states to disable
6468 * @locked: indication if this context holds pci_bus_sem locked.
6469 *
6470 * Some devices *must* have certain ASPM states disabled per hardware errata.
6471 **/
6472static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6473{
6474	struct pci_dev *parent = pdev->bus->self;
6475	u16 aspm_dis_mask = 0;
6476	u16 pdev_aspmc, parent_aspmc;
6477
6478	switch (state) {
6479	case PCIE_LINK_STATE_L0S:
6480	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6481		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6482		/* fall-through - can't have L1 without L0s */
6483	case PCIE_LINK_STATE_L1:
6484		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6485		break;
6486	default:
6487		return;
6488	}
6489
6490	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492
6493	if (parent) {
6494		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6495					  &parent_aspmc);
6496		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497	}
6498
6499	/* Nothing to do if the ASPM states to be disabled already are */
6500	if (!(pdev_aspmc & aspm_dis_mask) &&
6501	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6502		return;
6503
6504	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6505		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6506		 "L0s" : "",
6507		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6508		 "L1" : "");
6509
6510#ifdef CONFIG_PCIEASPM
6511	if (locked)
6512		pci_disable_link_state_locked(pdev, state);
6513	else
6514		pci_disable_link_state(pdev, state);
 
 
 
 
 
6515
6516	/* Double-check ASPM control.  If not disabled by the above, the
6517	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6518	 * not enabled); override by writing PCI config space directly.
6519	 */
6520	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6521	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
 
 
6522
6523	if (!(aspm_dis_mask & pdev_aspmc))
6524		return;
6525#endif
6526
6527	/* Both device and parent should have the same ASPM setting.
6528	 * Disable ASPM in downstream component first and then upstream.
6529	 */
6530	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6531
6532	if (parent)
6533		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6534					   aspm_dis_mask);
6535}
6536
6537/**
6538 * e1000e_disable_aspm - Disable ASPM states.
6539 * @pdev: pointer to PCI device struct
6540 * @state: bit-mask of ASPM states to disable
6541 *
6542 * This function acquires the pci_bus_sem!
6543 * Some devices *must* have certain ASPM states disabled per hardware errata.
6544 **/
6545static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6546{
6547	__e1000e_disable_aspm(pdev, state, 0);
 
 
 
 
6548}
6549
6550/**
6551 * e1000e_disable_aspm_locked   Disable ASPM states.
6552 * @pdev: pointer to PCI device struct
6553 * @state: bit-mask of ASPM states to disable
6554 *
6555 * This function must be called with pci_bus_sem acquired!
6556 * Some devices *must* have certain ASPM states disabled per hardware errata.
6557 **/
6558static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6559{
6560	__e1000e_disable_aspm(pdev, state, 1);
6561}
6562
6563#ifdef CONFIG_PM
6564static int __e1000_resume(struct pci_dev *pdev)
6565{
6566	struct net_device *netdev = pci_get_drvdata(pdev);
6567	struct e1000_adapter *adapter = netdev_priv(netdev);
6568	struct e1000_hw *hw = &adapter->hw;
6569	u16 aspm_disable_flag = 0;
 
6570
6571	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6572		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6573	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6574		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6575	if (aspm_disable_flag)
6576		e1000e_disable_aspm(pdev, aspm_disable_flag);
6577
6578	pci_set_master(pdev);
 
 
 
 
 
 
 
 
 
6579
6580	if (hw->mac.type >= e1000_pch2lan)
6581		e1000_resume_workarounds_pchlan(&adapter->hw);
6582
6583	e1000e_power_up_phy(adapter);
6584
6585	/* report the system wakeup cause from S3/S4 */
6586	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6587		u16 phy_data;
6588
6589		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6590		if (phy_data) {
6591			e_info("PHY Wakeup cause - %s\n",
6592			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6593			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6594			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6595			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6596			       phy_data & E1000_WUS_LNKC ?
6597			       "Link Status Change" : "other");
6598		}
6599		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6600	} else {
6601		u32 wus = er32(WUS);
6602
6603		if (wus) {
6604			e_info("MAC Wakeup cause - %s\n",
6605			       wus & E1000_WUS_EX ? "Unicast Packet" :
6606			       wus & E1000_WUS_MC ? "Multicast Packet" :
6607			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6608			       wus & E1000_WUS_MAG ? "Magic Packet" :
6609			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6610			       "other");
6611		}
6612		ew32(WUS, ~0);
6613	}
6614
6615	e1000e_reset(adapter);
6616
6617	e1000_init_manageability_pt(adapter);
6618
6619	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
 
 
 
 
 
6620	 * is up.  For all other cases, let the f/w know that the h/w is now
6621	 * under the control of the driver.
6622	 */
6623	if (!(adapter->flags & FLAG_HAS_AMT))
6624		e1000e_get_hw_control(adapter);
6625
6626	return 0;
6627}
6628
6629#ifdef CONFIG_PM_SLEEP
6630static int e1000e_pm_thaw(struct device *dev)
6631{
6632	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6633	struct e1000_adapter *adapter = netdev_priv(netdev);
6634
6635	e1000e_set_interrupt_capability(adapter);
6636	if (netif_running(netdev)) {
6637		u32 err = e1000_request_irq(adapter);
6638
6639		if (err)
6640			return err;
6641
6642		e1000e_up(adapter);
6643	}
6644
6645	netif_device_attach(netdev);
6646
6647	return 0;
6648}
6649
6650static int e1000e_pm_suspend(struct device *dev)
6651{
6652	struct pci_dev *pdev = to_pci_dev(dev);
6653	int rc;
6654
6655	e1000e_flush_lpic(pdev);
6656
6657	e1000e_pm_freeze(dev);
6658
6659	rc = __e1000_shutdown(pdev, false);
6660	if (rc)
6661		e1000e_pm_thaw(dev);
6662
6663	return rc;
6664}
6665
6666static int e1000e_pm_resume(struct device *dev)
6667{
6668	struct pci_dev *pdev = to_pci_dev(dev);
6669	int rc;
 
6670
6671	rc = __e1000_resume(pdev);
6672	if (rc)
6673		return rc;
6674
6675	return e1000e_pm_thaw(dev);
6676}
6677#endif /* CONFIG_PM_SLEEP */
6678
6679static int e1000e_pm_runtime_idle(struct device *dev)
 
6680{
6681	struct pci_dev *pdev = to_pci_dev(dev);
6682	struct net_device *netdev = pci_get_drvdata(pdev);
6683	struct e1000_adapter *adapter = netdev_priv(netdev);
6684	u16 eee_lp;
6685
6686	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
 
6687
6688	if (!e1000e_has_link(adapter)) {
6689		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6690		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6691	}
6692
6693	return -EBUSY;
6694}
6695
6696static int e1000e_pm_runtime_resume(struct device *dev)
6697{
6698	struct pci_dev *pdev = to_pci_dev(dev);
6699	struct net_device *netdev = pci_get_drvdata(pdev);
6700	struct e1000_adapter *adapter = netdev_priv(netdev);
6701	int rc;
6702
6703	rc = __e1000_resume(pdev);
6704	if (rc)
6705		return rc;
6706
6707	if (netdev->flags & IFF_UP)
6708		e1000e_up(adapter);
 
 
 
6709
6710	return rc;
6711}
6712
6713static int e1000e_pm_runtime_suspend(struct device *dev)
6714{
6715	struct pci_dev *pdev = to_pci_dev(dev);
6716	struct net_device *netdev = pci_get_drvdata(pdev);
6717	struct e1000_adapter *adapter = netdev_priv(netdev);
6718
6719	if (netdev->flags & IFF_UP) {
6720		int count = E1000_CHECK_RESET_COUNT;
6721
6722		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6723			usleep_range(10000, 20000);
6724
6725		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6726
6727		/* Down the device without resetting the hardware */
6728		e1000e_down(adapter, false);
6729	}
6730
6731	if (__e1000_shutdown(pdev, true)) {
6732		e1000e_pm_runtime_resume(dev);
6733		return -EBUSY;
6734	}
6735
6736	return 0;
 
6737}
 
6738#endif /* CONFIG_PM */
6739
6740static void e1000_shutdown(struct pci_dev *pdev)
6741{
6742	e1000e_flush_lpic(pdev);
6743
6744	e1000e_pm_freeze(&pdev->dev);
6745
6746	__e1000_shutdown(pdev, false);
 
6747}
6748
6749#ifdef CONFIG_NET_POLL_CONTROLLER
6750
6751static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6752{
6753	struct net_device *netdev = data;
6754	struct e1000_adapter *adapter = netdev_priv(netdev);
6755
6756	if (adapter->msix_entries) {
6757		int vector, msix_irq;
6758
6759		vector = 0;
6760		msix_irq = adapter->msix_entries[vector].vector;
6761		if (disable_hardirq(msix_irq))
6762			e1000_intr_msix_rx(msix_irq, netdev);
6763		enable_irq(msix_irq);
6764
6765		vector++;
6766		msix_irq = adapter->msix_entries[vector].vector;
6767		if (disable_hardirq(msix_irq))
6768			e1000_intr_msix_tx(msix_irq, netdev);
6769		enable_irq(msix_irq);
6770
6771		vector++;
6772		msix_irq = adapter->msix_entries[vector].vector;
6773		if (disable_hardirq(msix_irq))
6774			e1000_msix_other(msix_irq, netdev);
6775		enable_irq(msix_irq);
6776	}
6777
6778	return IRQ_HANDLED;
6779}
6780
6781/**
6782 * e1000_netpoll
6783 * @netdev: network interface device structure
6784 *
6785 * Polling 'interrupt' - used by things like netconsole to send skbs
6786 * without having to re-enable interrupts. It's not called while
6787 * the interrupt routine is executing.
6788 */
6789static void e1000_netpoll(struct net_device *netdev)
6790{
6791	struct e1000_adapter *adapter = netdev_priv(netdev);
6792
6793	switch (adapter->int_mode) {
6794	case E1000E_INT_MODE_MSIX:
6795		e1000_intr_msix(adapter->pdev->irq, netdev);
6796		break;
6797	case E1000E_INT_MODE_MSI:
6798		if (disable_hardirq(adapter->pdev->irq))
6799			e1000_intr_msi(adapter->pdev->irq, netdev);
6800		enable_irq(adapter->pdev->irq);
6801		break;
6802	default:		/* E1000E_INT_MODE_LEGACY */
6803		if (disable_hardirq(adapter->pdev->irq))
6804			e1000_intr(adapter->pdev->irq, netdev);
6805		enable_irq(adapter->pdev->irq);
6806		break;
6807	}
6808}
6809#endif
6810
6811/**
6812 * e1000_io_error_detected - called when PCI error is detected
6813 * @pdev: Pointer to PCI device
6814 * @state: The current pci connection state
6815 *
6816 * This function is called after a PCI bus error affecting
6817 * this device has been detected.
6818 */
6819static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6820						pci_channel_state_t state)
6821{
6822	struct net_device *netdev = pci_get_drvdata(pdev);
6823	struct e1000_adapter *adapter = netdev_priv(netdev);
6824
6825	netif_device_detach(netdev);
6826
6827	if (state == pci_channel_io_perm_failure)
6828		return PCI_ERS_RESULT_DISCONNECT;
6829
6830	if (netif_running(netdev))
6831		e1000e_down(adapter, true);
6832	pci_disable_device(pdev);
6833
6834	/* Request a slot slot reset. */
6835	return PCI_ERS_RESULT_NEED_RESET;
6836}
6837
6838/**
6839 * e1000_io_slot_reset - called after the pci bus has been reset.
6840 * @pdev: Pointer to PCI device
6841 *
6842 * Restart the card from scratch, as if from a cold-boot. Implementation
6843 * resembles the first-half of the e1000e_pm_resume routine.
6844 */
6845static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6846{
6847	struct net_device *netdev = pci_get_drvdata(pdev);
6848	struct e1000_adapter *adapter = netdev_priv(netdev);
6849	struct e1000_hw *hw = &adapter->hw;
6850	u16 aspm_disable_flag = 0;
6851	int err;
6852	pci_ers_result_t result;
6853
6854	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6855		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6856	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6857		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6858	if (aspm_disable_flag)
6859		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6860
6861	err = pci_enable_device_mem(pdev);
6862	if (err) {
6863		dev_err(&pdev->dev,
6864			"Cannot re-enable PCI device after reset.\n");
6865		result = PCI_ERS_RESULT_DISCONNECT;
6866	} else {
 
6867		pdev->state_saved = true;
6868		pci_restore_state(pdev);
6869		pci_set_master(pdev);
6870
6871		pci_enable_wake(pdev, PCI_D3hot, 0);
6872		pci_enable_wake(pdev, PCI_D3cold, 0);
6873
6874		e1000e_reset(adapter);
6875		ew32(WUS, ~0);
6876		result = PCI_ERS_RESULT_RECOVERED;
6877	}
6878
6879	pci_cleanup_aer_uncorrect_error_status(pdev);
6880
6881	return result;
6882}
6883
6884/**
6885 * e1000_io_resume - called when traffic can start flowing again.
6886 * @pdev: Pointer to PCI device
6887 *
6888 * This callback is called when the error recovery driver tells us that
6889 * its OK to resume normal operation. Implementation resembles the
6890 * second-half of the e1000e_pm_resume routine.
6891 */
6892static void e1000_io_resume(struct pci_dev *pdev)
6893{
6894	struct net_device *netdev = pci_get_drvdata(pdev);
6895	struct e1000_adapter *adapter = netdev_priv(netdev);
6896
6897	e1000_init_manageability_pt(adapter);
6898
6899	if (netif_running(netdev))
6900		e1000e_up(adapter);
 
 
 
 
 
6901
6902	netif_device_attach(netdev);
6903
6904	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
6905	 * is up.  For all other cases, let the f/w know that the h/w is now
6906	 * under the control of the driver.
6907	 */
6908	if (!(adapter->flags & FLAG_HAS_AMT))
6909		e1000e_get_hw_control(adapter);
 
6910}
6911
6912static void e1000_print_device_info(struct e1000_adapter *adapter)
6913{
6914	struct e1000_hw *hw = &adapter->hw;
6915	struct net_device *netdev = adapter->netdev;
6916	u32 ret_val;
6917	u8 pba_str[E1000_PBANUM_LENGTH];
6918
6919	/* print bus type/speed/width info */
6920	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6921	       /* bus width */
6922	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6923		"Width x1"),
6924	       /* MAC address */
6925	       netdev->dev_addr);
6926	e_info("Intel(R) PRO/%s Network Connection\n",
6927	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6928	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6929						E1000_PBANUM_LENGTH);
6930	if (ret_val)
6931		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6932	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6933	       hw->mac.type, hw->phy.type, pba_str);
6934}
6935
6936static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6937{
6938	struct e1000_hw *hw = &adapter->hw;
6939	int ret_val;
6940	u16 buf = 0;
6941
6942	if (hw->mac.type != e1000_82573)
6943		return;
6944
6945	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6946	le16_to_cpus(&buf);
6947	if (!ret_val && (!(buf & BIT(0)))) {
6948		/* Deep Smart Power Down (DSPD) */
6949		dev_warn(&adapter->pdev->dev,
6950			 "Warning: detected DSPD enabled in EEPROM\n");
6951	}
6952}
6953
6954static netdev_features_t e1000_fix_features(struct net_device *netdev,
6955					    netdev_features_t features)
6956{
6957	struct e1000_adapter *adapter = netdev_priv(netdev);
6958	struct e1000_hw *hw = &adapter->hw;
6959
6960	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6961	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6962		features &= ~NETIF_F_RXFCS;
6963
6964	/* Since there is no support for separate Rx/Tx vlan accel
6965	 * enable/disable make sure Tx flag is always in same state as Rx.
6966	 */
6967	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6968		features |= NETIF_F_HW_VLAN_CTAG_TX;
6969	else
6970		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6971
6972	return features;
6973}
6974
6975static int e1000_set_features(struct net_device *netdev,
6976			      netdev_features_t features)
6977{
6978	struct e1000_adapter *adapter = netdev_priv(netdev);
6979	netdev_features_t changed = features ^ netdev->features;
6980
6981	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6982		adapter->flags |= FLAG_TSO_FORCE;
6983
6984	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6985			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6986			 NETIF_F_RXALL)))
6987		return 0;
6988
6989	if (changed & NETIF_F_RXFCS) {
6990		if (features & NETIF_F_RXFCS) {
6991			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6992		} else {
6993			/* We need to take it back to defaults, which might mean
6994			 * stripping is still disabled at the adapter level.
6995			 */
6996			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6997				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6998			else
6999				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7000		}
7001	}
7002
7003	netdev->features = features;
7004
7005	if (netif_running(netdev))
7006		e1000e_reinit_locked(adapter);
7007	else
7008		e1000e_reset(adapter);
7009
7010	return 0;
7011}
7012
7013static const struct net_device_ops e1000e_netdev_ops = {
7014	.ndo_open		= e1000e_open,
7015	.ndo_stop		= e1000e_close,
7016	.ndo_start_xmit		= e1000_xmit_frame,
7017	.ndo_get_stats64	= e1000e_get_stats64,
7018	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7019	.ndo_set_mac_address	= e1000_set_mac,
7020	.ndo_change_mtu		= e1000_change_mtu,
7021	.ndo_do_ioctl		= e1000_ioctl,
7022	.ndo_tx_timeout		= e1000_tx_timeout,
7023	.ndo_validate_addr	= eth_validate_addr,
7024
7025	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7026	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7027#ifdef CONFIG_NET_POLL_CONTROLLER
7028	.ndo_poll_controller	= e1000_netpoll,
7029#endif
7030	.ndo_set_features = e1000_set_features,
7031	.ndo_fix_features = e1000_fix_features,
7032	.ndo_features_check	= passthru_features_check,
7033};
7034
7035/**
7036 * e1000_probe - Device Initialization Routine
7037 * @pdev: PCI device information struct
7038 * @ent: entry in e1000_pci_tbl
7039 *
7040 * Returns 0 on success, negative on failure
7041 *
7042 * e1000_probe initializes an adapter identified by a pci_dev structure.
7043 * The OS initialization, configuring of the adapter private structure,
7044 * and a hardware reset occur.
7045 **/
7046static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 
7047{
7048	struct net_device *netdev;
7049	struct e1000_adapter *adapter;
7050	struct e1000_hw *hw;
7051	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7052	resource_size_t mmio_start, mmio_len;
7053	resource_size_t flash_start, flash_len;
7054	static int cards_found;
7055	u16 aspm_disable_flag = 0;
7056	int bars, i, err, pci_using_dac;
7057	u16 eeprom_data = 0;
7058	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7059	s32 ret_val = 0;
7060
7061	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7062		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7063	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7064		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7065	if (aspm_disable_flag)
7066		e1000e_disable_aspm(pdev, aspm_disable_flag);
7067
7068	err = pci_enable_device_mem(pdev);
7069	if (err)
7070		return err;
7071
7072	pci_using_dac = 0;
7073	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7074	if (!err) {
7075		pci_using_dac = 1;
 
 
7076	} else {
7077		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7078		if (err) {
7079			dev_err(&pdev->dev,
7080				"No usable DMA configuration, aborting\n");
7081			goto err_dma;
 
 
 
7082		}
7083	}
7084
7085	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7086	err = pci_request_selected_regions_exclusive(pdev, bars,
7087						     e1000e_driver_name);
7088	if (err)
7089		goto err_pci_reg;
7090
7091	/* AER (Advanced Error Reporting) hooks */
7092	pci_enable_pcie_error_reporting(pdev);
7093
7094	pci_set_master(pdev);
7095	/* PCI config space info */
7096	err = pci_save_state(pdev);
7097	if (err)
7098		goto err_alloc_etherdev;
7099
7100	err = -ENOMEM;
7101	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7102	if (!netdev)
7103		goto err_alloc_etherdev;
7104
7105	SET_NETDEV_DEV(netdev, &pdev->dev);
7106
7107	netdev->irq = pdev->irq;
7108
7109	pci_set_drvdata(pdev, netdev);
7110	adapter = netdev_priv(netdev);
7111	hw = &adapter->hw;
7112	adapter->netdev = netdev;
7113	adapter->pdev = pdev;
7114	adapter->ei = ei;
7115	adapter->pba = ei->pba;
7116	adapter->flags = ei->flags;
7117	adapter->flags2 = ei->flags2;
7118	adapter->hw.adapter = adapter;
7119	adapter->hw.mac.type = ei->mac;
7120	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7121	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7122
7123	mmio_start = pci_resource_start(pdev, 0);
7124	mmio_len = pci_resource_len(pdev, 0);
7125
7126	err = -EIO;
7127	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7128	if (!adapter->hw.hw_addr)
7129		goto err_ioremap;
7130
7131	if ((adapter->flags & FLAG_HAS_FLASH) &&
7132	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7133	    (hw->mac.type < e1000_pch_spt)) {
7134		flash_start = pci_resource_start(pdev, 1);
7135		flash_len = pci_resource_len(pdev, 1);
7136		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7137		if (!adapter->hw.flash_address)
7138			goto err_flashmap;
7139	}
7140
7141	/* Set default EEE advertisement */
7142	if (adapter->flags2 & FLAG2_HAS_EEE)
7143		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7144
7145	/* construct the net_device struct */
7146	netdev->netdev_ops = &e1000e_netdev_ops;
7147	e1000e_set_ethtool_ops(netdev);
7148	netdev->watchdog_timeo = 5 * HZ;
7149	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7150	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7151
7152	netdev->mem_start = mmio_start;
7153	netdev->mem_end = mmio_start + mmio_len;
7154
7155	adapter->bd_number = cards_found++;
7156
7157	e1000e_check_options(adapter);
7158
7159	/* setup adapter struct */
7160	err = e1000_sw_init(adapter);
7161	if (err)
7162		goto err_sw_init;
7163
7164	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7165	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7166	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7167
7168	err = ei->get_variants(adapter);
7169	if (err)
7170		goto err_hw_init;
7171
7172	if ((adapter->flags & FLAG_IS_ICH) &&
7173	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7174	    (hw->mac.type < e1000_pch_spt))
7175		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7176
7177	hw->mac.ops.get_bus_info(&adapter->hw);
7178
7179	adapter->hw.phy.autoneg_wait_to_complete = 0;
7180
7181	/* Copper options */
7182	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7183		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7184		adapter->hw.phy.disable_polarity_correction = 0;
7185		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7186	}
7187
7188	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7189		dev_info(&pdev->dev,
7190			 "PHY reset is blocked due to SOL/IDER session.\n");
7191
7192	/* Set initial default active device features */
7193	netdev->features = (NETIF_F_SG |
7194			    NETIF_F_HW_VLAN_CTAG_RX |
7195			    NETIF_F_HW_VLAN_CTAG_TX |
7196			    NETIF_F_TSO |
7197			    NETIF_F_TSO6 |
7198			    NETIF_F_RXHASH |
7199			    NETIF_F_RXCSUM |
7200			    NETIF_F_HW_CSUM);
7201
7202	/* Set user-changeable features (subset of all device features) */
7203	netdev->hw_features = netdev->features;
7204	netdev->hw_features |= NETIF_F_RXFCS;
7205	netdev->priv_flags |= IFF_SUPP_NOFCS;
7206	netdev->hw_features |= NETIF_F_RXALL;
7207
7208	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7209		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7210
7211	netdev->vlan_features |= (NETIF_F_SG |
7212				  NETIF_F_TSO |
7213				  NETIF_F_TSO6 |
7214				  NETIF_F_HW_CSUM);
7215
7216	netdev->priv_flags |= IFF_UNICAST_FLT;
7217
7218	if (pci_using_dac) {
7219		netdev->features |= NETIF_F_HIGHDMA;
7220		netdev->vlan_features |= NETIF_F_HIGHDMA;
7221	}
7222
7223	/* MTU range: 68 - max_hw_frame_size */
7224	netdev->min_mtu = ETH_MIN_MTU;
7225	netdev->max_mtu = adapter->max_hw_frame_size -
7226			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7227
7228	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7229		adapter->flags |= FLAG_MNG_PT_ENABLED;
7230
7231	/* before reading the NVM, reset the controller to
 
7232	 * put the device in a known good starting state
7233	 */
7234	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7235
7236	/* systems with ASPM and others may see the checksum fail on the first
 
7237	 * attempt. Let's give it a few tries
7238	 */
7239	for (i = 0;; i++) {
7240		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7241			break;
7242		if (i == 2) {
7243			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7244			err = -EIO;
7245			goto err_eeprom;
7246		}
7247	}
7248
7249	e1000_eeprom_checks(adapter);
7250
7251	/* copy the MAC address */
7252	if (e1000e_read_mac_addr(&adapter->hw))
7253		dev_err(&pdev->dev,
7254			"NVM Read Error while reading MAC address\n");
7255
7256	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
 
7257
7258	if (!is_valid_ether_addr(netdev->dev_addr)) {
7259		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7260			netdev->dev_addr);
7261		err = -EIO;
7262		goto err_eeprom;
7263	}
7264
7265	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7266	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
 
 
 
 
 
7267
7268	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7269	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7270	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7271	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7272	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7273
7274	/* Initialize link parameters. User can change them with ethtool */
7275	adapter->hw.mac.autoneg = 1;
7276	adapter->fc_autoneg = true;
7277	adapter->hw.fc.requested_mode = e1000_fc_default;
7278	adapter->hw.fc.current_mode = e1000_fc_default;
7279	adapter->hw.phy.autoneg_advertised = 0x2f;
7280
7281	/* Initial Wake on LAN setting - If APM wake is enabled in
 
 
 
 
 
7282	 * the EEPROM, enable the ACPI Magic Packet filter
7283	 */
7284	if (adapter->flags & FLAG_APME_IN_WUC) {
7285		/* APME bit in EEPROM is mapped to WUC.APME */
7286		eeprom_data = er32(WUC);
7287		eeprom_apme_mask = E1000_WUC_APME;
7288		if ((hw->mac.type > e1000_ich10lan) &&
7289		    (eeprom_data & E1000_WUC_PHY_WAKE))
7290			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7291	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7292		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7293		    (adapter->hw.bus.func == 1))
7294			ret_val = e1000_read_nvm(&adapter->hw,
7295					      NVM_INIT_CONTROL3_PORT_B,
7296					      1, &eeprom_data);
7297		else
7298			ret_val = e1000_read_nvm(&adapter->hw,
7299					      NVM_INIT_CONTROL3_PORT_A,
7300					      1, &eeprom_data);
7301	}
7302
7303	/* fetch WoL from EEPROM */
7304	if (ret_val)
7305		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7306	else if (eeprom_data & eeprom_apme_mask)
7307		adapter->eeprom_wol |= E1000_WUFC_MAG;
7308
7309	/* now that we have the eeprom settings, apply the special cases
 
7310	 * where the eeprom may be wrong or the board simply won't support
7311	 * wake on lan on a particular port
7312	 */
7313	if (!(adapter->flags & FLAG_HAS_WOL))
7314		adapter->eeprom_wol = 0;
7315
7316	/* initialize the wol settings based on the eeprom settings */
7317	adapter->wol = adapter->eeprom_wol;
7318
7319	/* make sure adapter isn't asleep if manageability is enabled */
7320	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7321	    (hw->mac.ops.check_mng_mode(hw)))
7322		device_wakeup_enable(&pdev->dev);
7323
7324	/* save off EEPROM version number */
7325	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7326
7327	if (ret_val) {
7328		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7329		adapter->eeprom_vers = 0;
7330	}
7331
7332	/* init PTP hardware clock */
7333	e1000e_ptp_init(adapter);
7334
7335	/* reset the hardware with the new settings */
7336	e1000e_reset(adapter);
7337
7338	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
7339	 * is up.  For all other cases, let the f/w know that the h/w is now
7340	 * under the control of the driver.
7341	 */
7342	if (!(adapter->flags & FLAG_HAS_AMT))
7343		e1000e_get_hw_control(adapter);
7344
7345	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7346	err = register_netdev(netdev);
7347	if (err)
7348		goto err_register;
7349
7350	/* carrier off reporting is important to ethtool even BEFORE open */
7351	netif_carrier_off(netdev);
7352
7353	e1000_print_device_info(adapter);
7354
7355	if (pci_dev_run_wake(pdev))
7356		pm_runtime_put_noidle(&pdev->dev);
7357
7358	return 0;
7359
7360err_register:
7361	if (!(adapter->flags & FLAG_HAS_AMT))
7362		e1000e_release_hw_control(adapter);
7363err_eeprom:
7364	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7365		e1000_phy_hw_reset(&adapter->hw);
7366err_hw_init:
7367	kfree(adapter->tx_ring);
7368	kfree(adapter->rx_ring);
7369err_sw_init:
7370	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7371		iounmap(adapter->hw.flash_address);
7372	e1000e_reset_interrupt_capability(adapter);
7373err_flashmap:
7374	iounmap(adapter->hw.hw_addr);
7375err_ioremap:
7376	free_netdev(netdev);
7377err_alloc_etherdev:
7378	pci_release_mem_regions(pdev);
 
7379err_pci_reg:
7380err_dma:
7381	pci_disable_device(pdev);
7382	return err;
7383}
7384
7385/**
7386 * e1000_remove - Device Removal Routine
7387 * @pdev: PCI device information struct
7388 *
7389 * e1000_remove is called by the PCI subsystem to alert the driver
7390 * that it should release a PCI device.  The could be caused by a
7391 * Hot-Plug event, or because the driver is going to be removed from
7392 * memory.
7393 **/
7394static void e1000_remove(struct pci_dev *pdev)
7395{
7396	struct net_device *netdev = pci_get_drvdata(pdev);
7397	struct e1000_adapter *adapter = netdev_priv(netdev);
7398	bool down = test_bit(__E1000_DOWN, &adapter->state);
7399
7400	e1000e_ptp_remove(adapter);
7401
7402	/* The timers may be rescheduled, so explicitly disable them
7403	 * from being rescheduled.
7404	 */
7405	if (!down)
7406		set_bit(__E1000_DOWN, &adapter->state);
7407	del_timer_sync(&adapter->watchdog_timer);
7408	del_timer_sync(&adapter->phy_info_timer);
7409
7410	cancel_work_sync(&adapter->reset_task);
7411	cancel_work_sync(&adapter->watchdog_task);
7412	cancel_work_sync(&adapter->downshift_task);
7413	cancel_work_sync(&adapter->update_phy_task);
7414	cancel_work_sync(&adapter->print_hang_task);
7415
7416	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7417		cancel_work_sync(&adapter->tx_hwtstamp_work);
7418		if (adapter->tx_hwtstamp_skb) {
7419			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7420			adapter->tx_hwtstamp_skb = NULL;
7421		}
7422	}
7423
7424	/* Don't lie to e1000_close() down the road. */
7425	if (!down)
7426		clear_bit(__E1000_DOWN, &adapter->state);
7427	unregister_netdev(netdev);
7428
7429	if (pci_dev_run_wake(pdev))
7430		pm_runtime_get_noresume(&pdev->dev);
7431
7432	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 
7433	 * would have already happened in close and is redundant.
7434	 */
7435	e1000e_release_hw_control(adapter);
7436
7437	e1000e_reset_interrupt_capability(adapter);
7438	kfree(adapter->tx_ring);
7439	kfree(adapter->rx_ring);
7440
7441	iounmap(adapter->hw.hw_addr);
7442	if ((adapter->hw.flash_address) &&
7443	    (adapter->hw.mac.type < e1000_pch_spt))
7444		iounmap(adapter->hw.flash_address);
7445	pci_release_mem_regions(pdev);
 
7446
7447	free_netdev(netdev);
7448
7449	/* AER disable */
7450	pci_disable_pcie_error_reporting(pdev);
7451
7452	pci_disable_device(pdev);
7453}
7454
7455/* PCI Error Recovery (ERS) */
7456static const struct pci_error_handlers e1000_err_handler = {
7457	.error_detected = e1000_io_error_detected,
7458	.slot_reset = e1000_io_slot_reset,
7459	.resume = e1000_io_resume,
7460};
7461
7462static const struct pci_device_id e1000_pci_tbl[] = {
7463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7467	  board_82571 },
7468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7471	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7473
7474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7475	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7477	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7478
7479	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7481	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7482
7483	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7484	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7486
7487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7488	  board_80003es2lan },
7489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7490	  board_80003es2lan },
7491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7492	  board_80003es2lan },
7493	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7494	  board_80003es2lan },
7495
7496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7503	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7504
7505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7507	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7511	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7514
7515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7516	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7518
7519	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7522
7523	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7524	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7525	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7526	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7527
7528	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7529	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7530
7531	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7532	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7533	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7534	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7535	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7536	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7537	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7538	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7539	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7540	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7541	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7542	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7543	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7544	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7545	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7546	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7547	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7548	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7549	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7550	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7551	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7552	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7553	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7554	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7555	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7556
7557	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7558};
7559MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7560
 
7561static const struct dev_pm_ops e1000_pm_ops = {
7562#ifdef CONFIG_PM_SLEEP
7563	.suspend	= e1000e_pm_suspend,
7564	.resume		= e1000e_pm_resume,
7565	.freeze		= e1000e_pm_freeze,
7566	.thaw		= e1000e_pm_thaw,
7567	.poweroff	= e1000e_pm_suspend,
7568	.restore	= e1000e_pm_resume,
7569#endif
7570	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7571			   e1000e_pm_runtime_idle)
7572};
 
7573
7574/* PCI Device API Driver */
7575static struct pci_driver e1000_driver = {
7576	.name     = e1000e_driver_name,
7577	.id_table = e1000_pci_tbl,
7578	.probe    = e1000_probe,
7579	.remove   = e1000_remove,
 
7580	.driver   = {
7581		.pm = &e1000_pm_ops,
7582	},
 
7583	.shutdown = e1000_shutdown,
7584	.err_handler = &e1000_err_handler
7585};
7586
7587/**
7588 * e1000_init_module - Driver Registration Routine
7589 *
7590 * e1000_init_module is the first routine called when the driver is
7591 * loaded. All it does is register with the PCI subsystem.
7592 **/
7593static int __init e1000_init_module(void)
7594{
 
7595	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7596		e1000e_driver_version);
7597	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
7598
7599	return pci_register_driver(&e1000_driver);
7600}
7601module_init(e1000_init_module);
7602
7603/**
7604 * e1000_exit_module - Driver Exit Cleanup Routine
7605 *
7606 * e1000_exit_module is called just before the driver is removed
7607 * from memory.
7608 **/
7609static void __exit e1000_exit_module(void)
7610{
7611	pci_unregister_driver(&e1000_driver);
7612}
7613module_exit(e1000_exit_module);
 
7614
7615MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7616MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7617MODULE_LICENSE("GPL");
7618MODULE_VERSION(DRV_VERSION);
7619
7620/* netdev.c */
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/init.h>
  34#include <linux/pci.h>
  35#include <linux/vmalloc.h>
  36#include <linux/pagemap.h>
  37#include <linux/delay.h>
  38#include <linux/netdevice.h>
  39#include <linux/interrupt.h>
  40#include <linux/tcp.h>
  41#include <linux/ipv6.h>
  42#include <linux/slab.h>
  43#include <net/checksum.h>
  44#include <net/ip6_checksum.h>
  45#include <linux/mii.h>
  46#include <linux/ethtool.h>
  47#include <linux/if_vlan.h>
  48#include <linux/cpu.h>
  49#include <linux/smp.h>
  50#include <linux/pm_qos.h>
  51#include <linux/pm_runtime.h>
  52#include <linux/aer.h>
  53#include <linux/prefetch.h>
  54
  55#include "e1000.h"
  56
  57#define DRV_EXTRAVERSION "-k"
  58
  59#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
  60char e1000e_driver_name[] = "e1000e";
  61const char e1000e_driver_version[] = DRV_VERSION;
  62
  63#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  64static int debug = -1;
  65module_param(debug, int, 0);
  66MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67
  68static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
  69
  70static const struct e1000_info *e1000_info_tbl[] = {
  71	[board_82571]		= &e1000_82571_info,
  72	[board_82572]		= &e1000_82572_info,
  73	[board_82573]		= &e1000_82573_info,
  74	[board_82574]		= &e1000_82574_info,
  75	[board_82583]		= &e1000_82583_info,
  76	[board_80003es2lan]	= &e1000_es2_info,
  77	[board_ich8lan]		= &e1000_ich8_info,
  78	[board_ich9lan]		= &e1000_ich9_info,
  79	[board_ich10lan]	= &e1000_ich10_info,
  80	[board_pchlan]		= &e1000_pch_info,
  81	[board_pch2lan]		= &e1000_pch2_info,
  82	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
 
  83};
  84
  85struct e1000_reg_info {
  86	u32 ofs;
  87	char *name;
  88};
  89
  90#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
  91#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
  92#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
  93#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
  94#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
  95
  96#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
  97#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
  98#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
  99#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
 100#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
 101
 102static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 103
 104	/* General Registers */
 105	{E1000_CTRL, "CTRL"},
 106	{E1000_STATUS, "STATUS"},
 107	{E1000_CTRL_EXT, "CTRL_EXT"},
 108
 109	/* Interrupt Registers */
 110	{E1000_ICR, "ICR"},
 111
 112	/* Rx Registers */
 113	{E1000_RCTL, "RCTL"},
 114	{E1000_RDLEN(0), "RDLEN"},
 115	{E1000_RDH(0), "RDH"},
 116	{E1000_RDT(0), "RDT"},
 117	{E1000_RDTR, "RDTR"},
 118	{E1000_RXDCTL(0), "RXDCTL"},
 119	{E1000_ERT, "ERT"},
 120	{E1000_RDBAL(0), "RDBAL"},
 121	{E1000_RDBAH(0), "RDBAH"},
 122	{E1000_RDFH, "RDFH"},
 123	{E1000_RDFT, "RDFT"},
 124	{E1000_RDFHS, "RDFHS"},
 125	{E1000_RDFTS, "RDFTS"},
 126	{E1000_RDFPC, "RDFPC"},
 127
 128	/* Tx Registers */
 129	{E1000_TCTL, "TCTL"},
 130	{E1000_TDBAL(0), "TDBAL"},
 131	{E1000_TDBAH(0), "TDBAH"},
 132	{E1000_TDLEN(0), "TDLEN"},
 133	{E1000_TDH(0), "TDH"},
 134	{E1000_TDT(0), "TDT"},
 135	{E1000_TIDV, "TIDV"},
 136	{E1000_TXDCTL(0), "TXDCTL"},
 137	{E1000_TADV, "TADV"},
 138	{E1000_TARC(0), "TARC"},
 139	{E1000_TDFH, "TDFH"},
 140	{E1000_TDFT, "TDFT"},
 141	{E1000_TDFHS, "TDFHS"},
 142	{E1000_TDFTS, "TDFTS"},
 143	{E1000_TDFPC, "TDFPC"},
 144
 145	/* List Terminator */
 146	{0, NULL}
 147};
 148
 149/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150 * e1000_regdump - register printout routine
 151 */
 
 
 152static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 153{
 154	int n = 0;
 155	char rname[16];
 156	u32 regs[8];
 157
 158	switch (reginfo->ofs) {
 159	case E1000_RXDCTL(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_RXDCTL(n));
 162		break;
 163	case E1000_TXDCTL(0):
 164		for (n = 0; n < 2; n++)
 165			regs[n] = __er32(hw, E1000_TXDCTL(n));
 166		break;
 167	case E1000_TARC(0):
 168		for (n = 0; n < 2; n++)
 169			regs[n] = __er32(hw, E1000_TARC(n));
 170		break;
 171	default:
 172		pr_info("%-15s %08x\n",
 173			reginfo->name, __er32(hw, reginfo->ofs));
 174		return;
 175	}
 176
 177	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 178	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 179}
 180
 181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 183 */
 
 184static void e1000e_dump(struct e1000_adapter *adapter)
 185{
 186	struct net_device *netdev = adapter->netdev;
 187	struct e1000_hw *hw = &adapter->hw;
 188	struct e1000_reg_info *reginfo;
 189	struct e1000_ring *tx_ring = adapter->tx_ring;
 190	struct e1000_tx_desc *tx_desc;
 191	struct my_u0 {
 192		__le64 a;
 193		__le64 b;
 194	} *u0;
 195	struct e1000_buffer *buffer_info;
 196	struct e1000_ring *rx_ring = adapter->rx_ring;
 197	union e1000_rx_desc_packet_split *rx_desc_ps;
 198	union e1000_rx_desc_extended *rx_desc;
 199	struct my_u1 {
 200		__le64 a;
 201		__le64 b;
 202		__le64 c;
 203		__le64 d;
 204	} *u1;
 205	u32 staterr;
 206	int i = 0;
 207
 208	if (!netif_msg_hw(adapter))
 209		return;
 210
 211	/* Print netdevice Info */
 212	if (netdev) {
 213		dev_info(&adapter->pdev->dev, "Net device Info\n");
 214		pr_info("Device Name     state            trans_start      last_rx\n");
 215		pr_info("%-15s %016lX %016lX %016lX\n",
 216			netdev->name, netdev->state, netdev->trans_start,
 217			netdev->last_rx);
 218	}
 219
 220	/* Print Registers */
 221	dev_info(&adapter->pdev->dev, "Register Dump\n");
 222	pr_info(" Register Name   Value\n");
 223	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 224	     reginfo->name; reginfo++) {
 225		e1000_regdump(hw, reginfo);
 226	}
 227
 228	/* Print Tx Ring Summary */
 229	if (!netdev || !netif_running(netdev))
 230		return;
 231
 232	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 233	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 234	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 235	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 236		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 237		(unsigned long long)buffer_info->dma,
 238		buffer_info->length,
 239		buffer_info->next_to_watch,
 240		(unsigned long long)buffer_info->time_stamp);
 241
 242	/* Print Tx Ring */
 243	if (!netif_msg_tx_done(adapter))
 244		goto rx_ring_summary;
 245
 246	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 247
 248	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 249	 *
 250	 * Legacy Transmit Descriptor
 251	 *   +--------------------------------------------------------------+
 252	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 253	 *   +--------------------------------------------------------------+
 254	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 255	 *   +--------------------------------------------------------------+
 256	 *   63       48 47        36 35    32 31     24 23    16 15        0
 257	 *
 258	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 259	 *   63      48 47    40 39       32 31             16 15    8 7      0
 260	 *   +----------------------------------------------------------------+
 261	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 262	 *   +----------------------------------------------------------------+
 263	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 264	 *   +----------------------------------------------------------------+
 265	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 266	 *
 267	 * Extended Data Descriptor (DTYP=0x1)
 268	 *   +----------------------------------------------------------------+
 269	 * 0 |                     Buffer Address [63:0]                      |
 270	 *   +----------------------------------------------------------------+
 271	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 272	 *   +----------------------------------------------------------------+
 273	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 274	 */
 275	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 276	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 277	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 278	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 279		const char *next_desc;
 280		tx_desc = E1000_TX_DESC(*tx_ring, i);
 281		buffer_info = &tx_ring->buffer_info[i];
 282		u0 = (struct my_u0 *)tx_desc;
 283		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 284			next_desc = " NTC/U";
 285		else if (i == tx_ring->next_to_use)
 286			next_desc = " NTU";
 287		else if (i == tx_ring->next_to_clean)
 288			next_desc = " NTC";
 289		else
 290			next_desc = "";
 291		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 292			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 293			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 294			i,
 295			(unsigned long long)le64_to_cpu(u0->a),
 296			(unsigned long long)le64_to_cpu(u0->b),
 297			(unsigned long long)buffer_info->dma,
 298			buffer_info->length, buffer_info->next_to_watch,
 299			(unsigned long long)buffer_info->time_stamp,
 300			buffer_info->skb, next_desc);
 301
 302		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
 303			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 304				       16, 1, phys_to_virt(buffer_info->dma),
 305				       buffer_info->length, true);
 306	}
 307
 308	/* Print Rx Ring Summary */
 309rx_ring_summary:
 310	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 311	pr_info("Queue [NTU] [NTC]\n");
 312	pr_info(" %5d %5X %5X\n",
 313		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 314
 315	/* Print Rx Ring */
 316	if (!netif_msg_rx_status(adapter))
 317		return;
 318
 319	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 320	switch (adapter->rx_ps_pages) {
 321	case 1:
 322	case 2:
 323	case 3:
 324		/* [Extended] Packet Split Receive Descriptor Format
 325		 *
 326		 *    +-----------------------------------------------------+
 327		 *  0 |                Buffer Address 0 [63:0]              |
 328		 *    +-----------------------------------------------------+
 329		 *  8 |                Buffer Address 1 [63:0]              |
 330		 *    +-----------------------------------------------------+
 331		 * 16 |                Buffer Address 2 [63:0]              |
 332		 *    +-----------------------------------------------------+
 333		 * 24 |                Buffer Address 3 [63:0]              |
 334		 *    +-----------------------------------------------------+
 335		 */
 336		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 337		/* [Extended] Receive Descriptor (Write-Back) Format
 338		 *
 339		 *   63       48 47    32 31     13 12    8 7    4 3        0
 340		 *   +------------------------------------------------------+
 341		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 342		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 343		 *   +------------------------------------------------------+
 344		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 345		 *   +------------------------------------------------------+
 346		 *   63       48 47    32 31            20 19               0
 347		 */
 348		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 349		for (i = 0; i < rx_ring->count; i++) {
 350			const char *next_desc;
 351			buffer_info = &rx_ring->buffer_info[i];
 352			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 353			u1 = (struct my_u1 *)rx_desc_ps;
 354			staterr =
 355			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 356
 357			if (i == rx_ring->next_to_use)
 358				next_desc = " NTU";
 359			else if (i == rx_ring->next_to_clean)
 360				next_desc = " NTC";
 361			else
 362				next_desc = "";
 363
 364			if (staterr & E1000_RXD_STAT_DD) {
 365				/* Descriptor Done */
 366				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 367					"RWB", i,
 368					(unsigned long long)le64_to_cpu(u1->a),
 369					(unsigned long long)le64_to_cpu(u1->b),
 370					(unsigned long long)le64_to_cpu(u1->c),
 371					(unsigned long long)le64_to_cpu(u1->d),
 372					buffer_info->skb, next_desc);
 373			} else {
 374				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 375					"R  ", i,
 376					(unsigned long long)le64_to_cpu(u1->a),
 377					(unsigned long long)le64_to_cpu(u1->b),
 378					(unsigned long long)le64_to_cpu(u1->c),
 379					(unsigned long long)le64_to_cpu(u1->d),
 380					(unsigned long long)buffer_info->dma,
 381					buffer_info->skb, next_desc);
 382
 383				if (netif_msg_pktdata(adapter))
 384					print_hex_dump(KERN_INFO, "",
 385						DUMP_PREFIX_ADDRESS, 16, 1,
 386						phys_to_virt(buffer_info->dma),
 387						adapter->rx_ps_bsize0, true);
 388			}
 389		}
 390		break;
 391	default:
 392	case 0:
 393		/* Extended Receive Descriptor (Read) Format
 394		 *
 395		 *   +-----------------------------------------------------+
 396		 * 0 |                Buffer Address [63:0]                |
 397		 *   +-----------------------------------------------------+
 398		 * 8 |                      Reserved                       |
 399		 *   +-----------------------------------------------------+
 400		 */
 401		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 402		/* Extended Receive Descriptor (Write-Back) Format
 403		 *
 404		 *   63       48 47    32 31    24 23            4 3        0
 405		 *   +------------------------------------------------------+
 406		 *   |     RSS Hash      |        |               |         |
 407		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 408		 *   | Packet   | IP     |        |               |  Type   |
 409		 *   | Checksum | Ident  |        |               |         |
 410		 *   +------------------------------------------------------+
 411		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 412		 *   +------------------------------------------------------+
 413		 *   63       48 47    32 31            20 19               0
 414		 */
 415		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 416
 417		for (i = 0; i < rx_ring->count; i++) {
 418			const char *next_desc;
 419
 420			buffer_info = &rx_ring->buffer_info[i];
 421			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 422			u1 = (struct my_u1 *)rx_desc;
 423			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 424
 425			if (i == rx_ring->next_to_use)
 426				next_desc = " NTU";
 427			else if (i == rx_ring->next_to_clean)
 428				next_desc = " NTC";
 429			else
 430				next_desc = "";
 431
 432			if (staterr & E1000_RXD_STAT_DD) {
 433				/* Descriptor Done */
 434				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 435					"RWB", i,
 436					(unsigned long long)le64_to_cpu(u1->a),
 437					(unsigned long long)le64_to_cpu(u1->b),
 438					buffer_info->skb, next_desc);
 439			} else {
 440				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 441					"R  ", i,
 442					(unsigned long long)le64_to_cpu(u1->a),
 443					(unsigned long long)le64_to_cpu(u1->b),
 444					(unsigned long long)buffer_info->dma,
 445					buffer_info->skb, next_desc);
 446
 447				if (netif_msg_pktdata(adapter))
 
 448					print_hex_dump(KERN_INFO, "",
 449						       DUMP_PREFIX_ADDRESS, 16,
 450						       1,
 451						       phys_to_virt
 452						       (buffer_info->dma),
 453						       adapter->rx_buffer_len,
 454						       true);
 455			}
 456		}
 457	}
 458}
 459
 460/**
 461 * e1000_desc_unused - calculate if we have unused descriptors
 462 **/
 463static int e1000_desc_unused(struct e1000_ring *ring)
 464{
 465	if (ring->next_to_clean > ring->next_to_use)
 466		return ring->next_to_clean - ring->next_to_use - 1;
 467
 468	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 469}
 470
 471/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472 * e1000_receive_skb - helper function to handle Rx indications
 473 * @adapter: board private structure
 474 * @status: descriptor status field as written by hardware
 475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 476 * @skb: pointer to sk_buff to be indicated to stack
 477 **/
 478static void e1000_receive_skb(struct e1000_adapter *adapter,
 479			      struct net_device *netdev, struct sk_buff *skb,
 480			      u8 status, __le16 vlan)
 481{
 482	u16 tag = le16_to_cpu(vlan);
 
 
 
 483	skb->protocol = eth_type_trans(skb, netdev);
 484
 485	if (status & E1000_RXD_STAT_VP)
 486		__vlan_hwaccel_put_tag(skb, tag);
 487
 488	napi_gro_receive(&adapter->napi, skb);
 489}
 490
 491/**
 492 * e1000_rx_checksum - Receive Checksum Offload
 493 * @adapter: board private structure
 494 * @status_err: receive descriptor status and error fields
 495 * @csum: receive descriptor csum field
 496 * @sk_buff: socket buffer with received data
 497 **/
 498static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 499			      struct sk_buff *skb)
 500{
 501	u16 status = (u16)status_err;
 502	u8 errors = (u8)(status_err >> 24);
 503
 504	skb_checksum_none_assert(skb);
 505
 506	/* Rx checksum disabled */
 507	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 508		return;
 509
 510	/* Ignore Checksum bit is set */
 511	if (status & E1000_RXD_STAT_IXSM)
 512		return;
 513
 514	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 515	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 516		/* let the stack verify checksum errors */
 517		adapter->hw_csum_err++;
 518		return;
 519	}
 520
 521	/* TCP/UDP Checksum has not been calculated */
 522	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 523		return;
 524
 525	/* It must be a TCP or UDP packet with a valid checksum */
 526	skb->ip_summed = CHECKSUM_UNNECESSARY;
 527	adapter->hw_csum_good++;
 528}
 529
 530static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 531{
 532	struct e1000_adapter *adapter = rx_ring->adapter;
 533	struct e1000_hw *hw = &adapter->hw;
 534	s32 ret_val = __ew32_prepare(hw);
 535
 536	writel(i, rx_ring->tail);
 537
 538	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 539		u32 rctl = er32(RCTL);
 
 540		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 541		e_err("ME firmware caused invalid RDT - resetting\n");
 542		schedule_work(&adapter->reset_task);
 543	}
 544}
 545
 546static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 547{
 548	struct e1000_adapter *adapter = tx_ring->adapter;
 549	struct e1000_hw *hw = &adapter->hw;
 550	s32 ret_val = __ew32_prepare(hw);
 551
 552	writel(i, tx_ring->tail);
 553
 554	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 555		u32 tctl = er32(TCTL);
 
 556		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 557		e_err("ME firmware caused invalid TDT - resetting\n");
 558		schedule_work(&adapter->reset_task);
 559	}
 560}
 561
 562/**
 563 * e1000_alloc_rx_buffers - Replace used receive buffers
 564 * @rx_ring: Rx descriptor ring
 565 **/
 566static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 567				   int cleaned_count, gfp_t gfp)
 568{
 569	struct e1000_adapter *adapter = rx_ring->adapter;
 570	struct net_device *netdev = adapter->netdev;
 571	struct pci_dev *pdev = adapter->pdev;
 572	union e1000_rx_desc_extended *rx_desc;
 573	struct e1000_buffer *buffer_info;
 574	struct sk_buff *skb;
 575	unsigned int i;
 576	unsigned int bufsz = adapter->rx_buffer_len;
 577
 578	i = rx_ring->next_to_use;
 579	buffer_info = &rx_ring->buffer_info[i];
 580
 581	while (cleaned_count--) {
 582		skb = buffer_info->skb;
 583		if (skb) {
 584			skb_trim(skb, 0);
 585			goto map_skb;
 586		}
 587
 588		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 589		if (!skb) {
 590			/* Better luck next round */
 591			adapter->alloc_rx_buff_failed++;
 592			break;
 593		}
 594
 595		buffer_info->skb = skb;
 596map_skb:
 597		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 598						  adapter->rx_buffer_len,
 599						  DMA_FROM_DEVICE);
 600		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 601			dev_err(&pdev->dev, "Rx DMA map failed\n");
 602			adapter->rx_dma_failed++;
 603			break;
 604		}
 605
 606		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 607		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 608
 609		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 610			/*
 611			 * Force memory writes to complete before letting h/w
 612			 * know there are new descriptors to fetch.  (Only
 613			 * applicable for weak-ordered memory model archs,
 614			 * such as IA-64).
 615			 */
 616			wmb();
 617			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 618				e1000e_update_rdt_wa(rx_ring, i);
 619			else
 620				writel(i, rx_ring->tail);
 621		}
 622		i++;
 623		if (i == rx_ring->count)
 624			i = 0;
 625		buffer_info = &rx_ring->buffer_info[i];
 626	}
 627
 628	rx_ring->next_to_use = i;
 629}
 630
 631/**
 632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 633 * @rx_ring: Rx descriptor ring
 634 **/
 635static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 636				      int cleaned_count, gfp_t gfp)
 637{
 638	struct e1000_adapter *adapter = rx_ring->adapter;
 639	struct net_device *netdev = adapter->netdev;
 640	struct pci_dev *pdev = adapter->pdev;
 641	union e1000_rx_desc_packet_split *rx_desc;
 642	struct e1000_buffer *buffer_info;
 643	struct e1000_ps_page *ps_page;
 644	struct sk_buff *skb;
 645	unsigned int i, j;
 646
 647	i = rx_ring->next_to_use;
 648	buffer_info = &rx_ring->buffer_info[i];
 649
 650	while (cleaned_count--) {
 651		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 652
 653		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 654			ps_page = &buffer_info->ps_pages[j];
 655			if (j >= adapter->rx_ps_pages) {
 656				/* all unused desc entries get hw null ptr */
 657				rx_desc->read.buffer_addr[j + 1] =
 658				    ~cpu_to_le64(0);
 659				continue;
 660			}
 661			if (!ps_page->page) {
 662				ps_page->page = alloc_page(gfp);
 663				if (!ps_page->page) {
 664					adapter->alloc_rx_buff_failed++;
 665					goto no_buffers;
 666				}
 667				ps_page->dma = dma_map_page(&pdev->dev,
 668							    ps_page->page,
 669							    0, PAGE_SIZE,
 670							    DMA_FROM_DEVICE);
 671				if (dma_mapping_error(&pdev->dev,
 672						      ps_page->dma)) {
 673					dev_err(&adapter->pdev->dev,
 674						"Rx DMA page map failed\n");
 675					adapter->rx_dma_failed++;
 676					goto no_buffers;
 677				}
 678			}
 679			/*
 680			 * Refresh the desc even if buffer_addrs
 681			 * didn't change because each write-back
 682			 * erases this info.
 683			 */
 684			rx_desc->read.buffer_addr[j + 1] =
 685			    cpu_to_le64(ps_page->dma);
 686		}
 687
 688		skb = __netdev_alloc_skb_ip_align(netdev,
 689						  adapter->rx_ps_bsize0,
 690						  gfp);
 691
 692		if (!skb) {
 693			adapter->alloc_rx_buff_failed++;
 694			break;
 695		}
 696
 697		buffer_info->skb = skb;
 698		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 699						  adapter->rx_ps_bsize0,
 700						  DMA_FROM_DEVICE);
 701		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 702			dev_err(&pdev->dev, "Rx DMA map failed\n");
 703			adapter->rx_dma_failed++;
 704			/* cleanup skb */
 705			dev_kfree_skb_any(skb);
 706			buffer_info->skb = NULL;
 707			break;
 708		}
 709
 710		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 711
 712		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 713			/*
 714			 * Force memory writes to complete before letting h/w
 715			 * know there are new descriptors to fetch.  (Only
 716			 * applicable for weak-ordered memory model archs,
 717			 * such as IA-64).
 718			 */
 719			wmb();
 720			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 721				e1000e_update_rdt_wa(rx_ring, i << 1);
 722			else
 723				writel(i << 1, rx_ring->tail);
 724		}
 725
 726		i++;
 727		if (i == rx_ring->count)
 728			i = 0;
 729		buffer_info = &rx_ring->buffer_info[i];
 730	}
 731
 732no_buffers:
 733	rx_ring->next_to_use = i;
 734}
 735
 736/**
 737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 738 * @rx_ring: Rx descriptor ring
 739 * @cleaned_count: number of buffers to allocate this pass
 740 **/
 741
 742static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 743					 int cleaned_count, gfp_t gfp)
 744{
 745	struct e1000_adapter *adapter = rx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct pci_dev *pdev = adapter->pdev;
 748	union e1000_rx_desc_extended *rx_desc;
 749	struct e1000_buffer *buffer_info;
 750	struct sk_buff *skb;
 751	unsigned int i;
 752	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
 753
 754	i = rx_ring->next_to_use;
 755	buffer_info = &rx_ring->buffer_info[i];
 756
 757	while (cleaned_count--) {
 758		skb = buffer_info->skb;
 759		if (skb) {
 760			skb_trim(skb, 0);
 761			goto check_page;
 762		}
 763
 764		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 765		if (unlikely(!skb)) {
 766			/* Better luck next round */
 767			adapter->alloc_rx_buff_failed++;
 768			break;
 769		}
 770
 771		buffer_info->skb = skb;
 772check_page:
 773		/* allocate a new page if necessary */
 774		if (!buffer_info->page) {
 775			buffer_info->page = alloc_page(gfp);
 776			if (unlikely(!buffer_info->page)) {
 777				adapter->alloc_rx_buff_failed++;
 778				break;
 779			}
 780		}
 781
 782		if (!buffer_info->dma)
 783			buffer_info->dma = dma_map_page(&pdev->dev,
 784			                                buffer_info->page, 0,
 785			                                PAGE_SIZE,
 786							DMA_FROM_DEVICE);
 
 
 
 
 
 787
 788		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 789		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(++i == rx_ring->count))
 792			i = 0;
 793		buffer_info = &rx_ring->buffer_info[i];
 794	}
 795
 796	if (likely(rx_ring->next_to_use != i)) {
 797		rx_ring->next_to_use = i;
 798		if (unlikely(i-- == 0))
 799			i = (rx_ring->count - 1);
 800
 801		/* Force memory writes to complete before letting h/w
 802		 * know there are new descriptors to fetch.  (Only
 803		 * applicable for weak-ordered memory model archs,
 804		 * such as IA-64). */
 
 805		wmb();
 806		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 807			e1000e_update_rdt_wa(rx_ring, i);
 808		else
 809			writel(i, rx_ring->tail);
 810	}
 811}
 812
 813static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 814				 struct sk_buff *skb)
 815{
 816	if (netdev->features & NETIF_F_RXHASH)
 817		skb->rxhash = le32_to_cpu(rss);
 818}
 819
 820/**
 821 * e1000_clean_rx_irq - Send received data up the network stack
 822 * @rx_ring: Rx descriptor ring
 823 *
 824 * the return value indicates whether actual cleaning was done, there
 825 * is no guarantee that everything was cleaned
 826 **/
 827static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 828			       int work_to_do)
 829{
 830	struct e1000_adapter *adapter = rx_ring->adapter;
 831	struct net_device *netdev = adapter->netdev;
 832	struct pci_dev *pdev = adapter->pdev;
 833	struct e1000_hw *hw = &adapter->hw;
 834	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 835	struct e1000_buffer *buffer_info, *next_buffer;
 836	u32 length, staterr;
 837	unsigned int i;
 838	int cleaned_count = 0;
 839	bool cleaned = false;
 840	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 841
 842	i = rx_ring->next_to_clean;
 843	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 844	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 845	buffer_info = &rx_ring->buffer_info[i];
 846
 847	while (staterr & E1000_RXD_STAT_DD) {
 848		struct sk_buff *skb;
 849
 850		if (*work_done >= work_to_do)
 851			break;
 852		(*work_done)++;
 853		rmb();	/* read descriptor and rx_buffer_info after status DD */
 854
 855		skb = buffer_info->skb;
 856		buffer_info->skb = NULL;
 857
 858		prefetch(skb->data - NET_IP_ALIGN);
 859
 860		i++;
 861		if (i == rx_ring->count)
 862			i = 0;
 863		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 864		prefetch(next_rxd);
 865
 866		next_buffer = &rx_ring->buffer_info[i];
 867
 868		cleaned = true;
 869		cleaned_count++;
 870		dma_unmap_single(&pdev->dev,
 871				 buffer_info->dma,
 872				 adapter->rx_buffer_len,
 873				 DMA_FROM_DEVICE);
 874		buffer_info->dma = 0;
 875
 876		length = le16_to_cpu(rx_desc->wb.upper.length);
 877
 878		/*
 879		 * !EOP means multiple descriptors were used to store a single
 880		 * packet, if that's the case we need to toss it.  In fact, we
 881		 * need to toss every packet with the EOP bit clear and the
 882		 * next frame that _does_ have the EOP bit set, as it is by
 883		 * definition only a frame fragment
 884		 */
 885		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 886			adapter->flags2 |= FLAG2_IS_DISCARDING;
 887
 888		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 889			/* All receives must fit into a single buffer */
 890			e_dbg("Receive packet consumed multiple buffers\n");
 891			/* recycle */
 892			buffer_info->skb = skb;
 893			if (staterr & E1000_RXD_STAT_EOP)
 894				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 895			goto next_desc;
 896		}
 897
 898		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 899			     !(netdev->features & NETIF_F_RXALL))) {
 900			/* recycle */
 901			buffer_info->skb = skb;
 902			goto next_desc;
 903		}
 904
 905		/* adjust length to remove Ethernet CRC */
 906		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 907			/* If configured to store CRC, don't subtract FCS,
 908			 * but keep the FCS bytes out of the total_rx_bytes
 909			 * counter
 910			 */
 911			if (netdev->features & NETIF_F_RXFCS)
 912				total_rx_bytes -= 4;
 913			else
 914				length -= 4;
 915		}
 916
 917		total_rx_bytes += length;
 918		total_rx_packets++;
 919
 920		/*
 921		 * code added for copybreak, this should improve
 922		 * performance for small packets with large amounts
 923		 * of reassembly being done in the stack
 924		 */
 925		if (length < copybreak) {
 926			struct sk_buff *new_skb =
 927			    netdev_alloc_skb_ip_align(netdev, length);
 928			if (new_skb) {
 929				skb_copy_to_linear_data_offset(new_skb,
 930							       -NET_IP_ALIGN,
 931							       (skb->data -
 932								NET_IP_ALIGN),
 933							       (length +
 934								NET_IP_ALIGN));
 935				/* save the skb in buffer_info as good */
 936				buffer_info->skb = skb;
 937				skb = new_skb;
 938			}
 939			/* else just continue with the old one */
 940		}
 941		/* end copybreak code */
 942		skb_put(skb, length);
 943
 944		/* Receive Checksum Offload */
 945		e1000_rx_checksum(adapter, staterr, skb);
 946
 947		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
 948
 949		e1000_receive_skb(adapter, netdev, skb, staterr,
 950				  rx_desc->wb.upper.vlan);
 951
 952next_desc:
 953		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
 954
 955		/* return some buffers to hardware, one at a time is too slow */
 956		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
 957			adapter->alloc_rx_buf(rx_ring, cleaned_count,
 958					      GFP_ATOMIC);
 959			cleaned_count = 0;
 960		}
 961
 962		/* use prefetched values */
 963		rx_desc = next_rxd;
 964		buffer_info = next_buffer;
 965
 966		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 967	}
 968	rx_ring->next_to_clean = i;
 969
 970	cleaned_count = e1000_desc_unused(rx_ring);
 971	if (cleaned_count)
 972		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
 973
 974	adapter->total_rx_bytes += total_rx_bytes;
 975	adapter->total_rx_packets += total_rx_packets;
 976	return cleaned;
 977}
 978
 979static void e1000_put_txbuf(struct e1000_ring *tx_ring,
 980			    struct e1000_buffer *buffer_info)
 
 981{
 982	struct e1000_adapter *adapter = tx_ring->adapter;
 983
 984	if (buffer_info->dma) {
 985		if (buffer_info->mapped_as_page)
 986			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 987				       buffer_info->length, DMA_TO_DEVICE);
 988		else
 989			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 990					 buffer_info->length, DMA_TO_DEVICE);
 991		buffer_info->dma = 0;
 992	}
 993	if (buffer_info->skb) {
 994		dev_kfree_skb_any(buffer_info->skb);
 
 
 
 995		buffer_info->skb = NULL;
 996	}
 997	buffer_info->time_stamp = 0;
 998}
 999
1000static void e1000_print_hw_hang(struct work_struct *work)
1001{
1002	struct e1000_adapter *adapter = container_of(work,
1003	                                             struct e1000_adapter,
1004	                                             print_hang_task);
1005	struct net_device *netdev = adapter->netdev;
1006	struct e1000_ring *tx_ring = adapter->tx_ring;
1007	unsigned int i = tx_ring->next_to_clean;
1008	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010	struct e1000_hw *hw = &adapter->hw;
1011	u16 phy_status, phy_1000t_status, phy_ext_status;
1012	u16 pci_status;
1013
1014	if (test_bit(__E1000_DOWN, &adapter->state))
1015		return;
1016
1017	if (!adapter->tx_hang_recheck &&
1018	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1019		/*
1020		 * May be block on write-back, flush and detect again
1021		 * flush pending descriptor writebacks to memory
1022		 */
1023		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024		/* execute the writes immediately */
1025		e1e_flush();
1026		/*
1027		 * Due to rare timing issues, write to TIDV again to ensure
1028		 * the write is successful
1029		 */
1030		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031		/* execute the writes immediately */
1032		e1e_flush();
1033		adapter->tx_hang_recheck = true;
1034		return;
1035	}
 
 
 
 
 
 
 
1036	/* Real hang detected */
1037	adapter->tx_hang_recheck = false;
1038	netif_stop_queue(netdev);
1039
1040	e1e_rphy(hw, PHY_STATUS, &phy_status);
1041	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046	/* detected Hardware unit hang */
1047	e_err("Detected Hardware Unit Hang:\n"
1048	      "  TDH                  <%x>\n"
1049	      "  TDT                  <%x>\n"
1050	      "  next_to_use          <%x>\n"
1051	      "  next_to_clean        <%x>\n"
1052	      "buffer_info[next_to_clean]:\n"
1053	      "  time_stamp           <%lx>\n"
1054	      "  next_to_watch        <%x>\n"
1055	      "  jiffies              <%lx>\n"
1056	      "  next_to_watch.status <%x>\n"
1057	      "MAC Status             <%x>\n"
1058	      "PHY Status             <%x>\n"
1059	      "PHY 1000BASE-T Status  <%x>\n"
1060	      "PHY Extended Status    <%x>\n"
1061	      "PCI Status             <%x>\n",
1062	      readl(tx_ring->head),
1063	      readl(tx_ring->tail),
1064	      tx_ring->next_to_use,
1065	      tx_ring->next_to_clean,
1066	      tx_ring->buffer_info[eop].time_stamp,
1067	      eop,
1068	      jiffies,
1069	      eop_desc->upper.fields.status,
1070	      er32(STATUS),
1071	      phy_status,
1072	      phy_1000t_status,
1073	      phy_ext_status,
1074	      pci_status);
1075
1076	/* Suggest workaround for known h/w issue */
1077	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079}
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089{
1090	struct e1000_adapter *adapter = tx_ring->adapter;
1091	struct net_device *netdev = adapter->netdev;
1092	struct e1000_hw *hw = &adapter->hw;
1093	struct e1000_tx_desc *tx_desc, *eop_desc;
1094	struct e1000_buffer *buffer_info;
1095	unsigned int i, eop;
1096	unsigned int count = 0;
1097	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098	unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100	i = tx_ring->next_to_clean;
1101	eop = tx_ring->buffer_info[i].next_to_watch;
1102	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105	       (count < tx_ring->count)) {
1106		bool cleaned = false;
1107		rmb(); /* read buffer_info after eop_desc */
 
1108		for (; !cleaned; count++) {
1109			tx_desc = E1000_TX_DESC(*tx_ring, i);
1110			buffer_info = &tx_ring->buffer_info[i];
1111			cleaned = (i == eop);
1112
1113			if (cleaned) {
1114				total_tx_packets += buffer_info->segs;
1115				total_tx_bytes += buffer_info->bytecount;
1116				if (buffer_info->skb) {
1117					bytes_compl += buffer_info->skb->len;
1118					pkts_compl++;
1119				}
1120			}
1121
1122			e1000_put_txbuf(tx_ring, buffer_info);
1123			tx_desc->upper.data = 0;
1124
1125			i++;
1126			if (i == tx_ring->count)
1127				i = 0;
1128		}
1129
1130		if (i == tx_ring->next_to_use)
1131			break;
1132		eop = tx_ring->buffer_info[i].next_to_watch;
1133		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134	}
1135
1136	tx_ring->next_to_clean = i;
1137
1138	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140#define TX_WAKE_THRESHOLD 32
1141	if (count && netif_carrier_ok(netdev) &&
1142	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143		/* Make sure that anybody stopping the queue after this
1144		 * sees the new next_to_clean.
1145		 */
1146		smp_mb();
1147
1148		if (netif_queue_stopped(netdev) &&
1149		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1150			netif_wake_queue(netdev);
1151			++adapter->restart_queue;
1152		}
1153	}
1154
1155	if (adapter->detect_tx_hung) {
1156		/*
1157		 * Detect a transmit hang in hardware, this serializes the
1158		 * check with the clearing of time_stamp and movement of i
1159		 */
1160		adapter->detect_tx_hung = false;
1161		if (tx_ring->buffer_info[i].time_stamp &&
1162		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163			       + (adapter->tx_timeout_factor * HZ)) &&
1164		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165			schedule_work(&adapter->print_hang_task);
1166		else
1167			adapter->tx_hang_recheck = false;
1168	}
1169	adapter->total_tx_bytes += total_tx_bytes;
1170	adapter->total_tx_packets += total_tx_packets;
1171	return count < tx_ring->count;
1172}
1173
1174/**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182				  int work_to_do)
1183{
1184	struct e1000_adapter *adapter = rx_ring->adapter;
1185	struct e1000_hw *hw = &adapter->hw;
1186	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187	struct net_device *netdev = adapter->netdev;
1188	struct pci_dev *pdev = adapter->pdev;
1189	struct e1000_buffer *buffer_info, *next_buffer;
1190	struct e1000_ps_page *ps_page;
1191	struct sk_buff *skb;
1192	unsigned int i, j;
1193	u32 length, staterr;
1194	int cleaned_count = 0;
1195	bool cleaned = false;
1196	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198	i = rx_ring->next_to_clean;
1199	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201	buffer_info = &rx_ring->buffer_info[i];
1202
1203	while (staterr & E1000_RXD_STAT_DD) {
1204		if (*work_done >= work_to_do)
1205			break;
1206		(*work_done)++;
1207		skb = buffer_info->skb;
1208		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209
1210		/* in the packet split case this is header only */
1211		prefetch(skb->data - NET_IP_ALIGN);
1212
1213		i++;
1214		if (i == rx_ring->count)
1215			i = 0;
1216		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217		prefetch(next_rxd);
1218
1219		next_buffer = &rx_ring->buffer_info[i];
1220
1221		cleaned = true;
1222		cleaned_count++;
1223		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225		buffer_info->dma = 0;
1226
1227		/* see !EOP comment in other Rx routine */
1228		if (!(staterr & E1000_RXD_STAT_EOP))
1229			adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233			dev_kfree_skb_irq(skb);
1234			if (staterr & E1000_RXD_STAT_EOP)
1235				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236			goto next_desc;
1237		}
1238
1239		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240			     !(netdev->features & NETIF_F_RXALL))) {
1241			dev_kfree_skb_irq(skb);
1242			goto next_desc;
1243		}
1244
1245		length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247		if (!length) {
1248			e_dbg("Last part of the packet spanning multiple descriptors\n");
1249			dev_kfree_skb_irq(skb);
1250			goto next_desc;
1251		}
1252
1253		/* Good Receive */
1254		skb_put(skb, length);
1255
1256		{
1257			/*
1258			 * this looks ugly, but it seems compiler issues make
1259			 * it more efficient than reusing j
1260			 */
1261			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263			/*
1264			 * page alloc/put takes too long and effects small
1265			 * packet throughput, so unsplit small packets and
1266			 * save the alloc/put only valid in softirq (napi)
1267			 * context to call kmap_*
1268			 */
1269			if (l1 && (l1 <= copybreak) &&
1270			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1271				u8 *vaddr;
1272
1273				ps_page = &buffer_info->ps_pages[0];
1274
1275				/*
1276				 * there is no documentation about how to call
1277				 * kmap_atomic, so we can't hold the mapping
1278				 * very long
1279				 */
1280				dma_sync_single_for_cpu(&pdev->dev,
1281							ps_page->dma,
1282							PAGE_SIZE,
1283							DMA_FROM_DEVICE);
1284				vaddr = kmap_atomic(ps_page->page);
1285				memcpy(skb_tail_pointer(skb), vaddr, l1);
1286				kunmap_atomic(vaddr);
1287				dma_sync_single_for_device(&pdev->dev,
1288							   ps_page->dma,
1289							   PAGE_SIZE,
1290							   DMA_FROM_DEVICE);
1291
1292				/* remove the CRC */
1293				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294					if (!(netdev->features & NETIF_F_RXFCS))
1295						l1 -= 4;
1296				}
1297
1298				skb_put(skb, l1);
1299				goto copydone;
1300			} /* if */
1301		}
1302
1303		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305			if (!length)
1306				break;
1307
1308			ps_page = &buffer_info->ps_pages[j];
1309			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310				       DMA_FROM_DEVICE);
1311			ps_page->dma = 0;
1312			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313			ps_page->page = NULL;
1314			skb->len += length;
1315			skb->data_len += length;
1316			skb->truesize += PAGE_SIZE;
1317		}
1318
1319		/* strip the ethernet crc, problem is we're using pages now so
1320		 * this whole operation can get a little cpu intensive
1321		 */
1322		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323			if (!(netdev->features & NETIF_F_RXFCS))
1324				pskb_trim(skb, skb->len - 4);
1325		}
1326
1327copydone:
1328		total_rx_bytes += skb->len;
1329		total_rx_packets++;
1330
1331		e1000_rx_checksum(adapter, staterr, skb);
1332
1333		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335		if (rx_desc->wb.upper.header_status &
1336			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337			adapter->rx_hdr_split++;
1338
1339		e1000_receive_skb(adapter, netdev, skb,
1340				  staterr, rx_desc->wb.middle.vlan);
1341
1342next_desc:
1343		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344		buffer_info->skb = NULL;
1345
1346		/* return some buffers to hardware, one at a time is too slow */
1347		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349					      GFP_ATOMIC);
1350			cleaned_count = 0;
1351		}
1352
1353		/* use prefetched values */
1354		rx_desc = next_rxd;
1355		buffer_info = next_buffer;
1356
1357		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358	}
1359	rx_ring->next_to_clean = i;
1360
1361	cleaned_count = e1000_desc_unused(rx_ring);
1362	if (cleaned_count)
1363		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365	adapter->total_rx_bytes += total_rx_bytes;
1366	adapter->total_rx_packets += total_rx_packets;
1367	return cleaned;
1368}
1369
1370/**
1371 * e1000_consume_page - helper function
1372 **/
1373static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374                               u16 length)
1375{
1376	bi->page = NULL;
1377	skb->len += length;
1378	skb->data_len += length;
1379	skb->truesize += PAGE_SIZE;
1380}
1381
1382/**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390				     int work_to_do)
1391{
1392	struct e1000_adapter *adapter = rx_ring->adapter;
1393	struct net_device *netdev = adapter->netdev;
1394	struct pci_dev *pdev = adapter->pdev;
1395	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396	struct e1000_buffer *buffer_info, *next_buffer;
1397	u32 length, staterr;
1398	unsigned int i;
1399	int cleaned_count = 0;
1400	bool cleaned = false;
1401	unsigned int total_rx_bytes=0, total_rx_packets=0;
 
1402
1403	i = rx_ring->next_to_clean;
1404	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406	buffer_info = &rx_ring->buffer_info[i];
1407
1408	while (staterr & E1000_RXD_STAT_DD) {
1409		struct sk_buff *skb;
1410
1411		if (*work_done >= work_to_do)
1412			break;
1413		(*work_done)++;
1414		rmb();	/* read descriptor and rx_buffer_info after status DD */
1415
1416		skb = buffer_info->skb;
1417		buffer_info->skb = NULL;
1418
1419		++i;
1420		if (i == rx_ring->count)
1421			i = 0;
1422		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423		prefetch(next_rxd);
1424
1425		next_buffer = &rx_ring->buffer_info[i];
1426
1427		cleaned = true;
1428		cleaned_count++;
1429		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430			       DMA_FROM_DEVICE);
1431		buffer_info->dma = 0;
1432
1433		length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435		/* errors is only valid for DD + EOP descriptors */
1436		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438			      !(netdev->features & NETIF_F_RXALL)))) {
1439			/* recycle both page and skb */
1440			buffer_info->skb = skb;
1441			/* an error means any chain goes out the window too */
1442			if (rx_ring->rx_skb_top)
1443				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444			rx_ring->rx_skb_top = NULL;
1445			goto next_desc;
1446		}
1447
1448#define rxtop (rx_ring->rx_skb_top)
1449		if (!(staterr & E1000_RXD_STAT_EOP)) {
1450			/* this descriptor is only the beginning (or middle) */
1451			if (!rxtop) {
1452				/* this is the beginning of a chain */
1453				rxtop = skb;
1454				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455				                   0, length);
1456			} else {
1457				/* this is the middle of a chain */
1458				skb_fill_page_desc(rxtop,
1459				    skb_shinfo(rxtop)->nr_frags,
1460				    buffer_info->page, 0, length);
 
1461				/* re-use the skb, only consumed the page */
1462				buffer_info->skb = skb;
1463			}
1464			e1000_consume_page(buffer_info, rxtop, length);
1465			goto next_desc;
1466		} else {
1467			if (rxtop) {
1468				/* end of the chain */
1469				skb_fill_page_desc(rxtop,
1470				    skb_shinfo(rxtop)->nr_frags,
1471				    buffer_info->page, 0, length);
 
1472				/* re-use the current skb, we only consumed the
1473				 * page */
 
1474				buffer_info->skb = skb;
1475				skb = rxtop;
1476				rxtop = NULL;
1477				e1000_consume_page(buffer_info, skb, length);
1478			} else {
1479				/* no chain, got EOP, this buf is the packet
1480				 * copybreak to save the put_page/alloc_page */
 
1481				if (length <= copybreak &&
1482				    skb_tailroom(skb) >= length) {
1483					u8 *vaddr;
1484					vaddr = kmap_atomic(buffer_info->page);
1485					memcpy(skb_tail_pointer(skb), vaddr,
1486					       length);
1487					kunmap_atomic(vaddr);
1488					/* re-use the page, so don't erase
1489					 * buffer_info->page */
 
1490					skb_put(skb, length);
1491				} else {
1492					skb_fill_page_desc(skb, 0,
1493					                   buffer_info->page, 0,
1494				                           length);
1495					e1000_consume_page(buffer_info, skb,
1496					                   length);
1497				}
1498			}
1499		}
1500
1501		/* Receive Checksum Offload */
1502		e1000_rx_checksum(adapter, staterr, skb);
1503
1504		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506		/* probably a little skewed due to removing CRC */
1507		total_rx_bytes += skb->len;
1508		total_rx_packets++;
1509
1510		/* eth type trans needs skb->data to point to something */
1511		if (!pskb_may_pull(skb, ETH_HLEN)) {
1512			e_err("pskb_may_pull failed.\n");
1513			dev_kfree_skb_irq(skb);
1514			goto next_desc;
1515		}
1516
1517		e1000_receive_skb(adapter, netdev, skb, staterr,
1518				  rx_desc->wb.upper.vlan);
1519
1520next_desc:
1521		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523		/* return some buffers to hardware, one at a time is too slow */
1524		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526					      GFP_ATOMIC);
1527			cleaned_count = 0;
1528		}
1529
1530		/* use prefetched values */
1531		rx_desc = next_rxd;
1532		buffer_info = next_buffer;
1533
1534		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535	}
1536	rx_ring->next_to_clean = i;
1537
1538	cleaned_count = e1000_desc_unused(rx_ring);
1539	if (cleaned_count)
1540		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542	adapter->total_rx_bytes += total_rx_bytes;
1543	adapter->total_rx_packets += total_rx_packets;
1544	return cleaned;
1545}
1546
1547/**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552{
1553	struct e1000_adapter *adapter = rx_ring->adapter;
1554	struct e1000_buffer *buffer_info;
1555	struct e1000_ps_page *ps_page;
1556	struct pci_dev *pdev = adapter->pdev;
1557	unsigned int i, j;
1558
1559	/* Free all the Rx ring sk_buffs */
1560	for (i = 0; i < rx_ring->count; i++) {
1561		buffer_info = &rx_ring->buffer_info[i];
1562		if (buffer_info->dma) {
1563			if (adapter->clean_rx == e1000_clean_rx_irq)
1564				dma_unmap_single(&pdev->dev, buffer_info->dma,
1565						 adapter->rx_buffer_len,
1566						 DMA_FROM_DEVICE);
1567			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568				dma_unmap_page(&pdev->dev, buffer_info->dma,
1569				               PAGE_SIZE,
1570					       DMA_FROM_DEVICE);
1571			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572				dma_unmap_single(&pdev->dev, buffer_info->dma,
1573						 adapter->rx_ps_bsize0,
1574						 DMA_FROM_DEVICE);
1575			buffer_info->dma = 0;
1576		}
1577
1578		if (buffer_info->page) {
1579			put_page(buffer_info->page);
1580			buffer_info->page = NULL;
1581		}
1582
1583		if (buffer_info->skb) {
1584			dev_kfree_skb(buffer_info->skb);
1585			buffer_info->skb = NULL;
1586		}
1587
1588		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589			ps_page = &buffer_info->ps_pages[j];
1590			if (!ps_page->page)
1591				break;
1592			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593				       DMA_FROM_DEVICE);
1594			ps_page->dma = 0;
1595			put_page(ps_page->page);
1596			ps_page->page = NULL;
1597		}
1598	}
1599
1600	/* there also may be some cached data from a chained receive */
1601	if (rx_ring->rx_skb_top) {
1602		dev_kfree_skb(rx_ring->rx_skb_top);
1603		rx_ring->rx_skb_top = NULL;
1604	}
1605
1606	/* Zero out the descriptor ring */
1607	memset(rx_ring->desc, 0, rx_ring->size);
1608
1609	rx_ring->next_to_clean = 0;
1610	rx_ring->next_to_use = 0;
1611	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613	writel(0, rx_ring->head);
1614	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615		e1000e_update_rdt_wa(rx_ring, 0);
1616	else
1617		writel(0, rx_ring->tail);
1618}
1619
1620static void e1000e_downshift_workaround(struct work_struct *work)
1621{
1622	struct e1000_adapter *adapter = container_of(work,
1623					struct e1000_adapter, downshift_task);
 
1624
1625	if (test_bit(__E1000_DOWN, &adapter->state))
1626		return;
1627
1628	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629}
1630
1631/**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636static irqreturn_t e1000_intr_msi(int irq, void *data)
1637{
1638	struct net_device *netdev = data;
1639	struct e1000_adapter *adapter = netdev_priv(netdev);
1640	struct e1000_hw *hw = &adapter->hw;
1641	u32 icr = er32(ICR);
1642
1643	/*
1644	 * read ICR disables interrupts using IAM
1645	 */
1646
1647	if (icr & E1000_ICR_LSC) {
1648		hw->mac.get_link_status = true;
1649		/*
1650		 * ICH8 workaround-- Call gig speed drop workaround on cable
1651		 * disconnect (LSC) before accessing any PHY registers
1652		 */
1653		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654		    (!(er32(STATUS) & E1000_STATUS_LU)))
1655			schedule_work(&adapter->downshift_task);
1656
1657		/*
1658		 * 80003ES2LAN workaround-- For packet buffer work-around on
1659		 * link down event; disable receives here in the ISR and reset
1660		 * adapter in watchdog
1661		 */
1662		if (netif_carrier_ok(netdev) &&
1663		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664			/* disable receives */
1665			u32 rctl = er32(RCTL);
 
1666			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667			adapter->flags |= FLAG_RX_RESTART_NOW;
1668		}
1669		/* guard against interrupt when we're going down */
1670		if (!test_bit(__E1000_DOWN, &adapter->state))
1671			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672	}
1673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	if (napi_schedule_prep(&adapter->napi)) {
1675		adapter->total_tx_bytes = 0;
1676		adapter->total_tx_packets = 0;
1677		adapter->total_rx_bytes = 0;
1678		adapter->total_rx_packets = 0;
1679		__napi_schedule(&adapter->napi);
1680	}
1681
1682	return IRQ_HANDLED;
1683}
1684
1685/**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690static irqreturn_t e1000_intr(int irq, void *data)
1691{
1692	struct net_device *netdev = data;
1693	struct e1000_adapter *adapter = netdev_priv(netdev);
1694	struct e1000_hw *hw = &adapter->hw;
1695	u32 rctl, icr = er32(ICR);
1696
1697	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698		return IRQ_NONE;  /* Not our interrupt */
1699
1700	/*
1701	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702	 * not set, then the adapter didn't send an interrupt
1703	 */
1704	if (!(icr & E1000_ICR_INT_ASSERTED))
1705		return IRQ_NONE;
1706
1707	/*
1708	 * Interrupt Auto-Mask...upon reading ICR,
1709	 * interrupts are masked.  No need for the
1710	 * IMC write
1711	 */
1712
1713	if (icr & E1000_ICR_LSC) {
1714		hw->mac.get_link_status = true;
1715		/*
1716		 * ICH8 workaround-- Call gig speed drop workaround on cable
1717		 * disconnect (LSC) before accessing any PHY registers
1718		 */
1719		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720		    (!(er32(STATUS) & E1000_STATUS_LU)))
1721			schedule_work(&adapter->downshift_task);
1722
1723		/*
1724		 * 80003ES2LAN workaround--
1725		 * For packet buffer work-around on link down event;
1726		 * disable receives here in the ISR and
1727		 * reset adapter in watchdog
1728		 */
1729		if (netif_carrier_ok(netdev) &&
1730		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731			/* disable receives */
1732			rctl = er32(RCTL);
1733			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734			adapter->flags |= FLAG_RX_RESTART_NOW;
1735		}
1736		/* guard against interrupt when we're going down */
1737		if (!test_bit(__E1000_DOWN, &adapter->state))
1738			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739	}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	if (napi_schedule_prep(&adapter->napi)) {
1742		adapter->total_tx_bytes = 0;
1743		adapter->total_tx_packets = 0;
1744		adapter->total_rx_bytes = 0;
1745		adapter->total_rx_packets = 0;
1746		__napi_schedule(&adapter->napi);
1747	}
1748
1749	return IRQ_HANDLED;
1750}
1751
1752static irqreturn_t e1000_msix_other(int irq, void *data)
1753{
1754	struct net_device *netdev = data;
1755	struct e1000_adapter *adapter = netdev_priv(netdev);
1756	struct e1000_hw *hw = &adapter->hw;
1757	u32 icr = er32(ICR);
1758
1759	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			ew32(IMS, E1000_IMS_OTHER);
1762		return IRQ_NONE;
1763	}
1764
1765	if (icr & adapter->eiac_mask)
1766		ew32(ICS, (icr & adapter->eiac_mask));
1767
1768	if (icr & E1000_ICR_OTHER) {
1769		if (!(icr & E1000_ICR_LSC))
1770			goto no_link_interrupt;
1771		hw->mac.get_link_status = true;
1772		/* guard against interrupt when we're going down */
1773		if (!test_bit(__E1000_DOWN, &adapter->state))
1774			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775	}
1776
1777no_link_interrupt:
1778	if (!test_bit(__E1000_DOWN, &adapter->state))
1779		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781	return IRQ_HANDLED;
1782}
1783
1784
1785static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786{
1787	struct net_device *netdev = data;
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	struct e1000_hw *hw = &adapter->hw;
1790	struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793	adapter->total_tx_bytes = 0;
1794	adapter->total_tx_packets = 0;
1795
1796	if (!e1000_clean_tx_irq(tx_ring))
1797		/* Ring was not completely cleaned, so fire another interrupt */
1798		ew32(ICS, tx_ring->ims_val);
1799
 
 
 
1800	return IRQ_HANDLED;
1801}
1802
1803static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804{
1805	struct net_device *netdev = data;
1806	struct e1000_adapter *adapter = netdev_priv(netdev);
1807	struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809	/* Write the ITR value calculated at the end of the
1810	 * previous interrupt.
1811	 */
1812	if (rx_ring->set_itr) {
1813		writel(1000000000 / (rx_ring->itr_val * 256),
1814		       rx_ring->itr_register);
 
 
1815		rx_ring->set_itr = 0;
1816	}
1817
1818	if (napi_schedule_prep(&adapter->napi)) {
1819		adapter->total_rx_bytes = 0;
1820		adapter->total_rx_packets = 0;
1821		__napi_schedule(&adapter->napi);
1822	}
1823	return IRQ_HANDLED;
1824}
1825
1826/**
1827 * e1000_configure_msix - Configure MSI-X hardware
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832static void e1000_configure_msix(struct e1000_adapter *adapter)
1833{
1834	struct e1000_hw *hw = &adapter->hw;
1835	struct e1000_ring *rx_ring = adapter->rx_ring;
1836	struct e1000_ring *tx_ring = adapter->tx_ring;
1837	int vector = 0;
1838	u32 ctrl_ext, ivar = 0;
1839
1840	adapter->eiac_mask = 0;
1841
1842	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843	if (hw->mac.type == e1000_82574) {
1844		u32 rfctl = er32(RFCTL);
 
1845		rfctl |= E1000_RFCTL_ACK_DIS;
1846		ew32(RFCTL, rfctl);
1847	}
1848
1849#define E1000_IVAR_INT_ALLOC_VALID	0x8
1850	/* Configure Rx vector */
1851	rx_ring->ims_val = E1000_IMS_RXQ0;
1852	adapter->eiac_mask |= rx_ring->ims_val;
1853	if (rx_ring->itr_val)
1854		writel(1000000000 / (rx_ring->itr_val * 256),
1855		       rx_ring->itr_register);
1856	else
1857		writel(1, rx_ring->itr_register);
1858	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860	/* Configure Tx vector */
1861	tx_ring->ims_val = E1000_IMS_TXQ0;
1862	vector++;
1863	if (tx_ring->itr_val)
1864		writel(1000000000 / (tx_ring->itr_val * 256),
1865		       tx_ring->itr_register);
1866	else
1867		writel(1, tx_ring->itr_register);
1868	adapter->eiac_mask |= tx_ring->ims_val;
1869	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871	/* set vector for Other Causes, e.g. link changes */
1872	vector++;
1873	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874	if (rx_ring->itr_val)
1875		writel(1000000000 / (rx_ring->itr_val * 256),
1876		       hw->hw_addr + E1000_EITR_82574(vector));
1877	else
1878		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880	/* Cause Tx interrupts on every write back */
1881	ivar |= (1 << 31);
1882
1883	ew32(IVAR, ivar);
1884
1885	/* enable MSI-X PBA support */
1886	ctrl_ext = er32(CTRL_EXT);
1887	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889	/* Auto-Mask Other interrupts upon ICR read */
1890#define E1000_EIAC_MASK_82574   0x01F00000
1891	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893	ew32(CTRL_EXT, ctrl_ext);
1894	e1e_flush();
1895}
1896
1897void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898{
1899	if (adapter->msix_entries) {
1900		pci_disable_msix(adapter->pdev);
1901		kfree(adapter->msix_entries);
1902		adapter->msix_entries = NULL;
1903	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1904		pci_disable_msi(adapter->pdev);
1905		adapter->flags &= ~FLAG_MSI_ENABLED;
1906	}
1907}
1908
1909/**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916{
1917	int err;
1918	int i;
1919
1920	switch (adapter->int_mode) {
1921	case E1000E_INT_MODE_MSIX:
1922		if (adapter->flags & FLAG_HAS_MSIX) {
1923			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925						      sizeof(struct msix_entry),
1926						      GFP_KERNEL);
 
1927			if (adapter->msix_entries) {
 
 
1928				for (i = 0; i < adapter->num_vectors; i++)
1929					adapter->msix_entries[i].entry = i;
1930
1931				err = pci_enable_msix(adapter->pdev,
1932						      adapter->msix_entries,
1933						      adapter->num_vectors);
1934				if (err == 0)
 
1935					return;
1936			}
1937			/* MSI-X failed, so fall through and try MSI */
1938			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939			e1000e_reset_interrupt_capability(adapter);
1940		}
1941		adapter->int_mode = E1000E_INT_MODE_MSI;
1942		/* Fall through */
1943	case E1000E_INT_MODE_MSI:
1944		if (!pci_enable_msi(adapter->pdev)) {
1945			adapter->flags |= FLAG_MSI_ENABLED;
1946		} else {
1947			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949		}
1950		/* Fall through */
1951	case E1000E_INT_MODE_LEGACY:
1952		/* Don't do anything; this is the system default */
1953		break;
1954	}
1955
1956	/* store the number of vectors being used */
1957	adapter->num_vectors = 1;
1958}
1959
1960/**
1961 * e1000_request_msix - Initialize MSI-X interrupts
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966static int e1000_request_msix(struct e1000_adapter *adapter)
1967{
1968	struct net_device *netdev = adapter->netdev;
1969	int err = 0, vector = 0;
1970
1971	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972		snprintf(adapter->rx_ring->name,
1973			 sizeof(adapter->rx_ring->name) - 1,
1974			 "%s-rx-0", netdev->name);
1975	else
1976		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977	err = request_irq(adapter->msix_entries[vector].vector,
1978			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979			  netdev);
1980	if (err)
1981		return err;
1982	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983	    E1000_EITR_82574(vector);
1984	adapter->rx_ring->itr_val = adapter->itr;
1985	vector++;
1986
1987	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988		snprintf(adapter->tx_ring->name,
1989			 sizeof(adapter->tx_ring->name) - 1,
1990			 "%s-tx-0", netdev->name);
1991	else
1992		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993	err = request_irq(adapter->msix_entries[vector].vector,
1994			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995			  netdev);
1996	if (err)
1997		return err;
1998	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999	    E1000_EITR_82574(vector);
2000	adapter->tx_ring->itr_val = adapter->itr;
2001	vector++;
2002
2003	err = request_irq(adapter->msix_entries[vector].vector,
2004			  e1000_msix_other, 0, netdev->name, netdev);
2005	if (err)
2006		return err;
2007
2008	e1000_configure_msix(adapter);
2009
2010	return 0;
2011}
2012
2013/**
2014 * e1000_request_irq - initialize interrupts
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019static int e1000_request_irq(struct e1000_adapter *adapter)
2020{
2021	struct net_device *netdev = adapter->netdev;
2022	int err;
2023
2024	if (adapter->msix_entries) {
2025		err = e1000_request_msix(adapter);
2026		if (!err)
2027			return err;
2028		/* fall back to MSI */
2029		e1000e_reset_interrupt_capability(adapter);
2030		adapter->int_mode = E1000E_INT_MODE_MSI;
2031		e1000e_set_interrupt_capability(adapter);
2032	}
2033	if (adapter->flags & FLAG_MSI_ENABLED) {
2034		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035				  netdev->name, netdev);
2036		if (!err)
2037			return err;
2038
2039		/* fall back to legacy interrupt */
2040		e1000e_reset_interrupt_capability(adapter);
2041		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042	}
2043
2044	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045			  netdev->name, netdev);
2046	if (err)
2047		e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049	return err;
2050}
2051
2052static void e1000_free_irq(struct e1000_adapter *adapter)
2053{
2054	struct net_device *netdev = adapter->netdev;
2055
2056	if (adapter->msix_entries) {
2057		int vector = 0;
2058
2059		free_irq(adapter->msix_entries[vector].vector, netdev);
2060		vector++;
2061
2062		free_irq(adapter->msix_entries[vector].vector, netdev);
2063		vector++;
2064
2065		/* Other Causes interrupt vector */
2066		free_irq(adapter->msix_entries[vector].vector, netdev);
2067		return;
2068	}
2069
2070	free_irq(adapter->pdev->irq, netdev);
2071}
2072
2073/**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
2075 **/
2076static void e1000_irq_disable(struct e1000_adapter *adapter)
2077{
2078	struct e1000_hw *hw = &adapter->hw;
2079
2080	ew32(IMC, ~0);
2081	if (adapter->msix_entries)
2082		ew32(EIAC_82574, 0);
2083	e1e_flush();
2084
2085	if (adapter->msix_entries) {
2086		int i;
 
2087		for (i = 0; i < adapter->num_vectors; i++)
2088			synchronize_irq(adapter->msix_entries[i].vector);
2089	} else {
2090		synchronize_irq(adapter->pdev->irq);
2091	}
2092}
2093
2094/**
2095 * e1000_irq_enable - Enable default interrupt generation settings
2096 **/
2097static void e1000_irq_enable(struct e1000_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100
2101	if (adapter->msix_entries) {
2102		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
 
 
 
2104	} else {
2105		ew32(IMS, IMS_ENABLE_MASK);
2106	}
2107	e1e_flush();
2108}
2109
2110/**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120{
2121	struct e1000_hw *hw = &adapter->hw;
2122	u32 ctrl_ext;
2123	u32 swsm;
2124
2125	/* Let firmware know the driver has taken over */
2126	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127		swsm = er32(SWSM);
2128		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130		ctrl_ext = er32(CTRL_EXT);
2131		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132	}
2133}
2134
2135/**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146{
2147	struct e1000_hw *hw = &adapter->hw;
2148	u32 ctrl_ext;
2149	u32 swsm;
2150
2151	/* Let firmware taken over control of h/w */
2152	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153		swsm = er32(SWSM);
2154		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156		ctrl_ext = er32(CTRL_EXT);
2157		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158	}
2159}
2160
2161/**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
2163 **/
2164static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165				struct e1000_ring *ring)
2166{
2167	struct pci_dev *pdev = adapter->pdev;
2168
2169	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170					GFP_KERNEL);
2171	if (!ring->desc)
2172		return -ENOMEM;
2173
2174	return 0;
2175}
2176
2177/**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184{
2185	struct e1000_adapter *adapter = tx_ring->adapter;
2186	int err = -ENOMEM, size;
2187
2188	size = sizeof(struct e1000_buffer) * tx_ring->count;
2189	tx_ring->buffer_info = vzalloc(size);
2190	if (!tx_ring->buffer_info)
2191		goto err;
2192
2193	/* round up to nearest 4K */
2194	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195	tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197	err = e1000_alloc_ring_dma(adapter, tx_ring);
2198	if (err)
2199		goto err;
2200
2201	tx_ring->next_to_use = 0;
2202	tx_ring->next_to_clean = 0;
2203
2204	return 0;
2205err:
2206	vfree(tx_ring->buffer_info);
2207	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208	return err;
2209}
2210
2211/**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218{
2219	struct e1000_adapter *adapter = rx_ring->adapter;
2220	struct e1000_buffer *buffer_info;
2221	int i, size, desc_len, err = -ENOMEM;
2222
2223	size = sizeof(struct e1000_buffer) * rx_ring->count;
2224	rx_ring->buffer_info = vzalloc(size);
2225	if (!rx_ring->buffer_info)
2226		goto err;
2227
2228	for (i = 0; i < rx_ring->count; i++) {
2229		buffer_info = &rx_ring->buffer_info[i];
2230		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231						sizeof(struct e1000_ps_page),
2232						GFP_KERNEL);
2233		if (!buffer_info->ps_pages)
2234			goto err_pages;
2235	}
2236
2237	desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239	/* Round up to nearest 4K */
2240	rx_ring->size = rx_ring->count * desc_len;
2241	rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243	err = e1000_alloc_ring_dma(adapter, rx_ring);
2244	if (err)
2245		goto err_pages;
2246
2247	rx_ring->next_to_clean = 0;
2248	rx_ring->next_to_use = 0;
2249	rx_ring->rx_skb_top = NULL;
2250
2251	return 0;
2252
2253err_pages:
2254	for (i = 0; i < rx_ring->count; i++) {
2255		buffer_info = &rx_ring->buffer_info[i];
2256		kfree(buffer_info->ps_pages);
2257	}
2258err:
2259	vfree(rx_ring->buffer_info);
2260	e_err("Unable to allocate memory for the receive descriptor ring\n");
2261	return err;
2262}
2263
2264/**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269{
2270	struct e1000_adapter *adapter = tx_ring->adapter;
2271	struct e1000_buffer *buffer_info;
2272	unsigned long size;
2273	unsigned int i;
2274
2275	for (i = 0; i < tx_ring->count; i++) {
2276		buffer_info = &tx_ring->buffer_info[i];
2277		e1000_put_txbuf(tx_ring, buffer_info);
2278	}
2279
2280	netdev_reset_queue(adapter->netdev);
2281	size = sizeof(struct e1000_buffer) * tx_ring->count;
2282	memset(tx_ring->buffer_info, 0, size);
2283
2284	memset(tx_ring->desc, 0, tx_ring->size);
2285
2286	tx_ring->next_to_use = 0;
2287	tx_ring->next_to_clean = 0;
2288
2289	writel(0, tx_ring->head);
2290	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291		e1000e_update_tdt_wa(tx_ring, 0);
2292	else
2293		writel(0, tx_ring->tail);
2294}
2295
2296/**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303{
2304	struct e1000_adapter *adapter = tx_ring->adapter;
2305	struct pci_dev *pdev = adapter->pdev;
2306
2307	e1000_clean_tx_ring(tx_ring);
2308
2309	vfree(tx_ring->buffer_info);
2310	tx_ring->buffer_info = NULL;
2311
2312	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313			  tx_ring->dma);
2314	tx_ring->desc = NULL;
2315}
2316
2317/**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324{
2325	struct e1000_adapter *adapter = rx_ring->adapter;
2326	struct pci_dev *pdev = adapter->pdev;
2327	int i;
2328
2329	e1000_clean_rx_ring(rx_ring);
2330
2331	for (i = 0; i < rx_ring->count; i++)
2332		kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334	vfree(rx_ring->buffer_info);
2335	rx_ring->buffer_info = NULL;
2336
2337	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338			  rx_ring->dma);
2339	rx_ring->desc = NULL;
2340}
2341
2342/**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 *      Stores a new ITR value based on packets and byte
2350 *      counts during the last interrupt.  The advantage of per interrupt
2351 *      computation is faster updates and more accurate ITR for the current
2352 *      traffic pattern.  Constants in this function were computed
2353 *      based on theoretical maximum wire speed and thresholds were set based
2354 *      on testing data as well as attempting to minimize response time
2355 *      while increasing bulk throughput.  This functionality is controlled
2356 *      by the InterruptThrottleRate module parameter.
2357 **/
2358static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359				     u16 itr_setting, int packets,
2360				     int bytes)
2361{
2362	unsigned int retval = itr_setting;
2363
2364	if (packets == 0)
2365		return itr_setting;
2366
2367	switch (itr_setting) {
2368	case lowest_latency:
2369		/* handle TSO and jumbo frames */
2370		if (bytes/packets > 8000)
2371			retval = bulk_latency;
2372		else if ((packets < 5) && (bytes > 512))
2373			retval = low_latency;
2374		break;
2375	case low_latency:  /* 50 usec aka 20000 ints/s */
2376		if (bytes > 10000) {
2377			/* this if handles the TSO accounting */
2378			if (bytes/packets > 8000)
2379				retval = bulk_latency;
2380			else if ((packets < 10) || ((bytes/packets) > 1200))
2381				retval = bulk_latency;
2382			else if ((packets > 35))
2383				retval = lowest_latency;
2384		} else if (bytes/packets > 2000) {
2385			retval = bulk_latency;
2386		} else if (packets <= 2 && bytes < 512) {
2387			retval = lowest_latency;
2388		}
2389		break;
2390	case bulk_latency: /* 250 usec aka 4000 ints/s */
2391		if (bytes > 25000) {
2392			if (packets > 35)
2393				retval = low_latency;
2394		} else if (bytes < 6000) {
2395			retval = low_latency;
2396		}
2397		break;
2398	}
2399
2400	return retval;
2401}
2402
2403static void e1000_set_itr(struct e1000_adapter *adapter)
2404{
2405	struct e1000_hw *hw = &adapter->hw;
2406	u16 current_itr;
2407	u32 new_itr = adapter->itr;
2408
2409	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410	if (adapter->link_speed != SPEED_1000) {
2411		current_itr = 0;
2412		new_itr = 4000;
2413		goto set_itr_now;
2414	}
2415
2416	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417		new_itr = 0;
2418		goto set_itr_now;
2419	}
2420
2421	adapter->tx_itr = e1000_update_itr(adapter,
2422				    adapter->tx_itr,
2423				    adapter->total_tx_packets,
2424				    adapter->total_tx_bytes);
2425	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2426	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427		adapter->tx_itr = low_latency;
2428
2429	adapter->rx_itr = e1000_update_itr(adapter,
2430				    adapter->rx_itr,
2431				    adapter->total_rx_packets,
2432				    adapter->total_rx_bytes);
2433	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2434	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435		adapter->rx_itr = low_latency;
2436
2437	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
 
2439	switch (current_itr) {
2440	/* counts and packets in update_itr are dependent on these numbers */
2441	case lowest_latency:
2442		new_itr = 70000;
2443		break;
2444	case low_latency:
2445		new_itr = 20000; /* aka hwitr = ~200 */
2446		break;
2447	case bulk_latency:
2448		new_itr = 4000;
2449		break;
2450	default:
2451		break;
2452	}
2453
2454set_itr_now:
2455	if (new_itr != adapter->itr) {
2456		/*
2457		 * this attempts to bias the interrupt rate towards Bulk
2458		 * by adding intermediate steps when interrupt rate is
2459		 * increasing
2460		 */
2461		new_itr = new_itr > adapter->itr ?
2462			     min(adapter->itr + (new_itr >> 2), new_itr) :
2463			     new_itr;
2464		adapter->itr = new_itr;
2465		adapter->rx_ring->itr_val = new_itr;
2466		if (adapter->msix_entries)
2467			adapter->rx_ring->set_itr = 1;
2468		else
2469			if (new_itr)
2470				ew32(ITR, 1000000000 / (new_itr * 256));
2471			else
2472				ew32(ITR, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	}
2474}
2475
2476/**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481{
2482	int size = sizeof(struct e1000_ring);
2483
2484	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485	if (!adapter->tx_ring)
2486		goto err;
2487	adapter->tx_ring->count = adapter->tx_ring_count;
2488	adapter->tx_ring->adapter = adapter;
2489
2490	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491	if (!adapter->rx_ring)
2492		goto err;
2493	adapter->rx_ring->count = adapter->rx_ring_count;
2494	adapter->rx_ring->adapter = adapter;
2495
2496	return 0;
2497err:
2498	e_err("Unable to allocate memory for queues\n");
2499	kfree(adapter->rx_ring);
2500	kfree(adapter->tx_ring);
2501	return -ENOMEM;
2502}
2503
2504/**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509static int e1000e_poll(struct napi_struct *napi, int weight)
2510{
2511	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512						     napi);
2513	struct e1000_hw *hw = &adapter->hw;
2514	struct net_device *poll_dev = adapter->netdev;
2515	int tx_cleaned = 1, work_done = 0;
2516
2517	adapter = netdev_priv(poll_dev);
2518
2519	if (!adapter->msix_entries ||
2520	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525	if (!tx_cleaned)
2526		work_done = weight;
2527
2528	/* If weight not fully consumed, exit the polling mode */
2529	if (work_done < weight) {
2530		if (adapter->itr_setting & 3)
2531			e1000_set_itr(adapter);
2532		napi_complete(napi);
2533		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534			if (adapter->msix_entries)
2535				ew32(IMS, adapter->rx_ring->ims_val);
2536			else
2537				e1000_irq_enable(adapter);
2538		}
2539	}
2540
2541	return work_done;
2542}
2543
2544static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 
2545{
2546	struct e1000_adapter *adapter = netdev_priv(netdev);
2547	struct e1000_hw *hw = &adapter->hw;
2548	u32 vfta, index;
2549
2550	/* don't update vlan cookie if already programmed */
2551	if ((adapter->hw.mng_cookie.status &
2552	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553	    (vid == adapter->mng_vlan_id))
2554		return 0;
2555
2556	/* add VID to filter table */
2557	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558		index = (vid >> 5) & 0x7F;
2559		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560		vfta |= (1 << (vid & 0x1F));
2561		hw->mac.ops.write_vfta(hw, index, vfta);
2562	}
2563
2564	set_bit(vid, adapter->active_vlans);
2565
2566	return 0;
2567}
2568
2569static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 
2570{
2571	struct e1000_adapter *adapter = netdev_priv(netdev);
2572	struct e1000_hw *hw = &adapter->hw;
2573	u32 vfta, index;
2574
2575	if ((adapter->hw.mng_cookie.status &
2576	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577	    (vid == adapter->mng_vlan_id)) {
2578		/* release control to f/w */
2579		e1000e_release_hw_control(adapter);
2580		return 0;
2581	}
2582
2583	/* remove VID from filter table */
2584	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585		index = (vid >> 5) & 0x7F;
2586		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587		vfta &= ~(1 << (vid & 0x1F));
2588		hw->mac.ops.write_vfta(hw, index, vfta);
2589	}
2590
2591	clear_bit(vid, adapter->active_vlans);
2592
2593	return 0;
2594}
2595
2596/**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601{
2602	struct net_device *netdev = adapter->netdev;
2603	struct e1000_hw *hw = &adapter->hw;
2604	u32 rctl;
2605
2606	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607		/* disable VLAN receive filtering */
2608		rctl = er32(RCTL);
2609		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610		ew32(RCTL, rctl);
2611
2612		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 
2614			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615		}
2616	}
2617}
2618
2619/**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624{
2625	struct e1000_hw *hw = &adapter->hw;
2626	u32 rctl;
2627
2628	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629		/* enable VLAN receive filtering */
2630		rctl = er32(RCTL);
2631		rctl |= E1000_RCTL_VFE;
2632		rctl &= ~E1000_RCTL_CFIEN;
2633		ew32(RCTL, rctl);
2634	}
2635}
2636
2637/**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642{
2643	struct e1000_hw *hw = &adapter->hw;
2644	u32 ctrl;
2645
2646	/* disable VLAN tag insert/strip */
2647	ctrl = er32(CTRL);
2648	ctrl &= ~E1000_CTRL_VME;
2649	ew32(CTRL, ctrl);
2650}
2651
2652/**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657{
2658	struct e1000_hw *hw = &adapter->hw;
2659	u32 ctrl;
2660
2661	/* enable VLAN tag insert/strip */
2662	ctrl = er32(CTRL);
2663	ctrl |= E1000_CTRL_VME;
2664	ew32(CTRL, ctrl);
2665}
2666
2667static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668{
2669	struct net_device *netdev = adapter->netdev;
2670	u16 vid = adapter->hw.mng_cookie.vlan_id;
2671	u16 old_vid = adapter->mng_vlan_id;
2672
2673	if (adapter->hw.mng_cookie.status &
2674	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675		e1000_vlan_rx_add_vid(netdev, vid);
2676		adapter->mng_vlan_id = vid;
2677	}
2678
2679	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680		e1000_vlan_rx_kill_vid(netdev, old_vid);
2681}
2682
2683static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684{
2685	u16 vid;
2686
2687	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691}
2692
2693static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694{
2695	struct e1000_hw *hw = &adapter->hw;
2696	u32 manc, manc2h, mdef, i, j;
2697
2698	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699		return;
2700
2701	manc = er32(MANC);
2702
2703	/*
2704	 * enable receiving management packets to the host. this will probably
2705	 * generate destination unreachable messages from the host OS, but
2706	 * the packets will be handled on SMBUS
2707	 */
2708	manc |= E1000_MANC_EN_MNG2HOST;
2709	manc2h = er32(MANC2H);
2710
2711	switch (hw->mac.type) {
2712	default:
2713		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714		break;
2715	case e1000_82574:
2716	case e1000_82583:
2717		/*
2718		 * Check if IPMI pass-through decision filter already exists;
2719		 * if so, enable it.
2720		 */
2721		for (i = 0, j = 0; i < 8; i++) {
2722			mdef = er32(MDEF(i));
2723
2724			/* Ignore filters with anything other than IPMI ports */
2725			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726				continue;
2727
2728			/* Enable this decision filter in MANC2H */
2729			if (mdef)
2730				manc2h |= (1 << i);
2731
2732			j |= mdef;
2733		}
2734
2735		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736			break;
2737
2738		/* Create new decision filter in an empty filter */
2739		for (i = 0, j = 0; i < 8; i++)
2740			if (er32(MDEF(i)) == 0) {
2741				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742					       E1000_MDEF_PORT_664));
2743				manc2h |= (1 << 1);
2744				j++;
2745				break;
2746			}
2747
2748		if (!j)
2749			e_warn("Unable to create IPMI pass-through filter\n");
2750		break;
2751	}
2752
2753	ew32(MANC2H, manc2h);
2754	ew32(MANC, manc);
2755}
2756
2757/**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763static void e1000_configure_tx(struct e1000_adapter *adapter)
2764{
2765	struct e1000_hw *hw = &adapter->hw;
2766	struct e1000_ring *tx_ring = adapter->tx_ring;
2767	u64 tdba;
2768	u32 tdlen, tarc;
2769
2770	/* Setup the HW Tx Head and Tail descriptor pointers */
2771	tdba = tx_ring->dma;
2772	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774	ew32(TDBAH(0), (tdba >> 32));
2775	ew32(TDLEN(0), tdlen);
2776	ew32(TDH(0), 0);
2777	ew32(TDT(0), 0);
2778	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
 
 
 
 
 
 
2781	/* Set the Tx Interrupt Delay register */
2782	ew32(TIDV, adapter->tx_int_delay);
2783	/* Tx irq moderation */
2784	ew32(TADV, adapter->tx_abs_int_delay);
2785
2786	if (adapter->flags2 & FLAG2_DMA_BURST) {
2787		u32 txdctl = er32(TXDCTL(0));
 
2788		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789			    E1000_TXDCTL_WTHRESH);
2790		/*
2791		 * set up some performance related parameters to encourage the
2792		 * hardware to use the bus more efficiently in bursts, depends
2793		 * on the tx_int_delay to be enabled,
2794		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795		 * hthresh = 1 ==> prefetch when one or more available
2796		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797		 * BEWARE: this seems to work but should be considered first if
2798		 * there are Tx hangs or other Tx related bugs
2799		 */
2800		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801		ew32(TXDCTL(0), txdctl);
2802	}
2803	/* erratum work around: set txdctl the same for both queues */
2804	ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
 
 
 
 
 
 
2806	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807		tarc = er32(TARC(0));
2808		/*
2809		 * set the speed mode bit, we'll clear it if we're not at
2810		 * gigabit link later
2811		 */
2812#define SPEED_MODE_BIT (1 << 21)
2813		tarc |= SPEED_MODE_BIT;
2814		ew32(TARC(0), tarc);
2815	}
2816
2817	/* errata: program both queues to unweighted RR */
2818	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819		tarc = er32(TARC(0));
2820		tarc |= 1;
2821		ew32(TARC(0), tarc);
2822		tarc = er32(TARC(1));
2823		tarc |= 1;
2824		ew32(TARC(1), tarc);
2825	}
2826
2827	/* Setup Transmit Descriptor Settings for eop descriptor */
2828	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830	/* only set IDE if we are delaying interrupts using the timers */
2831	if (adapter->tx_int_delay)
2832		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834	/* enable Report Status bit */
2835	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
 
 
2837	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840/**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 rctl, rfctl;
2850	u32 pages = 0;
2851
2852	/* Workaround Si errata on PCHx - configure jumbo frame flow */
 
 
 
2853	if (hw->mac.type >= e1000_pch2lan) {
2854		s32 ret_val;
2855
2856		if (adapter->netdev->mtu > ETH_DATA_LEN)
2857			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858		else
2859			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861		if (ret_val)
2862			e_dbg("failed to enable jumbo frame workaround mode\n");
2863	}
2864
2865	/* Program MC offset vector base */
2866	rctl = er32(RCTL);
2867	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872	/* Do not Store bad packets */
2873	rctl &= ~E1000_RCTL_SBP;
2874
2875	/* Enable Long Packet receive */
2876	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877		rctl &= ~E1000_RCTL_LPE;
2878	else
2879		rctl |= E1000_RCTL_LPE;
2880
2881	/* Some systems expect that the CRC is included in SMBUS traffic. The
2882	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883	 * host memory when this is enabled
2884	 */
2885	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886		rctl |= E1000_RCTL_SECRC;
2887
2888	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890		u16 phy_data;
2891
2892		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893		phy_data &= 0xfff8;
2894		phy_data |= (1 << 2);
2895		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897		e1e_rphy(hw, 22, &phy_data);
2898		phy_data &= 0x0fff;
2899		phy_data |= (1 << 14);
2900		e1e_wphy(hw, 0x10, 0x2823);
2901		e1e_wphy(hw, 0x11, 0x0003);
2902		e1e_wphy(hw, 22, phy_data);
2903	}
2904
2905	/* Setup buffer sizes */
2906	rctl &= ~E1000_RCTL_SZ_4096;
2907	rctl |= E1000_RCTL_BSEX;
2908	switch (adapter->rx_buffer_len) {
2909	case 2048:
2910	default:
2911		rctl |= E1000_RCTL_SZ_2048;
2912		rctl &= ~E1000_RCTL_BSEX;
2913		break;
2914	case 4096:
2915		rctl |= E1000_RCTL_SZ_4096;
2916		break;
2917	case 8192:
2918		rctl |= E1000_RCTL_SZ_8192;
2919		break;
2920	case 16384:
2921		rctl |= E1000_RCTL_SZ_16384;
2922		break;
2923	}
2924
2925	/* Enable Extended Status in all Receive Descriptors */
2926	rfctl = er32(RFCTL);
2927	rfctl |= E1000_RFCTL_EXTEN;
2928	ew32(RFCTL, rfctl);
2929
2930	/*
2931	 * 82571 and greater support packet-split where the protocol
2932	 * header is placed in skb->data and the packet data is
2933	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934	 * In the case of a non-split, skb->data is linearly filled,
2935	 * followed by the page buffers.  Therefore, skb->data is
2936	 * sized to hold the largest protocol header.
2937	 *
2938	 * allocations using alloc_page take too long for regular MTU
2939	 * so only enable packet split for jumbo frames
2940	 *
2941	 * Using pages when the page size is greater than 16k wastes
2942	 * a lot of memory, since we allocate 3 pages at all times
2943	 * per packet.
2944	 */
2945	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947		adapter->rx_ps_pages = pages;
2948	else
2949		adapter->rx_ps_pages = 0;
2950
2951	if (adapter->rx_ps_pages) {
2952		u32 psrctl = 0;
2953
2954		/* Enable Packet split descriptors */
2955		rctl |= E1000_RCTL_DTYP_PS;
2956
2957		psrctl |= adapter->rx_ps_bsize0 >>
2958			E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960		switch (adapter->rx_ps_pages) {
2961		case 3:
2962			psrctl |= PAGE_SIZE <<
2963				E1000_PSRCTL_BSIZE3_SHIFT;
2964		case 2:
2965			psrctl |= PAGE_SIZE <<
2966				E1000_PSRCTL_BSIZE2_SHIFT;
2967		case 1:
2968			psrctl |= PAGE_SIZE >>
2969				E1000_PSRCTL_BSIZE1_SHIFT;
2970			break;
2971		}
2972
2973		ew32(PSRCTL, psrctl);
2974	}
2975
2976	/* This is useful for sniffing bad packets. */
2977	if (adapter->netdev->features & NETIF_F_RXALL) {
2978		/* UPE and MPE will be handled by normal PROMISC logic
2979		 * in e1000e_set_rx_mode */
2980		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985			  E1000_RCTL_DPF | /* Allow filtered pause */
2986			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 
2987		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988		 * and that breaks VLANs.
2989		 */
2990	}
2991
2992	ew32(RCTL, rctl);
2993	/* just started the receive unit, no need to restart */
2994	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995}
2996
2997/**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003static void e1000_configure_rx(struct e1000_adapter *adapter)
3004{
3005	struct e1000_hw *hw = &adapter->hw;
3006	struct e1000_ring *rx_ring = adapter->rx_ring;
3007	u64 rdba;
3008	u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010	if (adapter->rx_ps_pages) {
3011		/* this is a 32 byte descriptor */
3012		rdlen = rx_ring->count *
3013		    sizeof(union e1000_rx_desc_packet_split);
3014		adapter->clean_rx = e1000_clean_rx_irq_ps;
3015		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020	} else {
3021		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022		adapter->clean_rx = e1000_clean_rx_irq;
3023		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024	}
3025
3026	/* disable receives while setting up the descriptors */
3027	rctl = er32(RCTL);
3028	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030	e1e_flush();
3031	usleep_range(10000, 20000);
3032
3033	if (adapter->flags2 & FLAG2_DMA_BURST) {
3034		/*
3035		 * set the writeback threshold (only takes effect if the RDTR
3036		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037		 * enable prefetching of 0x20 Rx descriptors
3038		 * granularity = 01
3039		 * wthresh = 04,
3040		 * hthresh = 04,
3041		 * pthresh = 0x20
3042		 */
3043		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046		/*
3047		 * override the delay timers for enabling bursting, only if
3048		 * the value was not set by the user via module options
3049		 */
3050		if (adapter->rx_int_delay == DEFAULT_RDTR)
3051			adapter->rx_int_delay = BURST_RDTR;
3052		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053			adapter->rx_abs_int_delay = BURST_RADV;
3054	}
3055
3056	/* set the Receive Delay Timer Register */
3057	ew32(RDTR, adapter->rx_int_delay);
3058
3059	/* irq moderation */
3060	ew32(RADV, adapter->rx_abs_int_delay);
3061	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062		ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064	ctrl_ext = er32(CTRL_EXT);
3065	/* Auto-Mask interrupts upon ICR access */
3066	ctrl_ext |= E1000_CTRL_EXT_IAME;
3067	ew32(IAM, 0xffffffff);
3068	ew32(CTRL_EXT, ctrl_ext);
3069	e1e_flush();
3070
3071	/*
3072	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073	 * the Base and Length of the Rx Descriptor Ring
3074	 */
3075	rdba = rx_ring->dma;
3076	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077	ew32(RDBAH(0), (rdba >> 32));
3078	ew32(RDLEN(0), rdlen);
3079	ew32(RDH(0), 0);
3080	ew32(RDT(0), 0);
3081	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
 
 
 
 
 
 
3084	/* Enable Receive Checksum Offload for TCP and UDP */
3085	rxcsum = er32(RXCSUM);
3086	if (adapter->netdev->features & NETIF_F_RXCSUM)
3087		rxcsum |= E1000_RXCSUM_TUOFL;
3088	else
3089		rxcsum &= ~E1000_RXCSUM_TUOFL;
3090	ew32(RXCSUM, rxcsum);
3091
3092	if (adapter->hw.mac.type == e1000_pch2lan) {
3093		/*
3094		 * With jumbo frames, excessive C-state transition
3095		 * latencies result in dropped transactions.
3096		 */
3097		if (adapter->netdev->mtu > ETH_DATA_LEN) {
 
 
 
3098			u32 rxdctl = er32(RXDCTL(0));
3099			ew32(RXDCTL(0), rxdctl | 0x3);
3100			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101		} else {
3102			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103					      PM_QOS_DEFAULT_VALUE);
3104		}
 
 
 
 
 
 
 
3105	}
3106
3107	/* Enable Receives */
3108	ew32(RCTL, rctl);
3109}
3110
3111/**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 *                0 on no addresses written
3118 *                X on writing X addresses to MTA
3119 */
3120static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121{
3122	struct e1000_adapter *adapter = netdev_priv(netdev);
3123	struct e1000_hw *hw = &adapter->hw;
3124	struct netdev_hw_addr *ha;
3125	u8 *mta_list;
3126	int i;
3127
3128	if (netdev_mc_empty(netdev)) {
3129		/* nothing to program, so clear mc list */
3130		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131		return 0;
3132	}
3133
3134	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135	if (!mta_list)
3136		return -ENOMEM;
3137
3138	/* update_mc_addr_list expects a packed array of only addresses. */
3139	i = 0;
3140	netdev_for_each_mc_addr(ha, netdev)
3141		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144	kfree(mta_list);
3145
3146	return netdev_mc_count(netdev);
3147}
3148
3149/**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 *                0 on no addresses written
3156 *                X on writing X addresses to the RAR table
3157 **/
3158static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159{
3160	struct e1000_adapter *adapter = netdev_priv(netdev);
3161	struct e1000_hw *hw = &adapter->hw;
3162	unsigned int rar_entries = hw->mac.rar_entry_count;
3163	int count = 0;
3164
 
 
3165	/* save a rar entry for our hardware address */
3166	rar_entries--;
3167
3168	/* save a rar entry for the LAA workaround */
3169	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170		rar_entries--;
3171
3172	/* return ENOMEM indicating insufficient memory for addresses */
3173	if (netdev_uc_count(netdev) > rar_entries)
3174		return -ENOMEM;
3175
3176	if (!netdev_uc_empty(netdev) && rar_entries) {
3177		struct netdev_hw_addr *ha;
3178
3179		/*
3180		 * write the addresses in reverse order to avoid write
3181		 * combining
3182		 */
3183		netdev_for_each_uc_addr(ha, netdev) {
 
 
3184			if (!rar_entries)
3185				break;
3186			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3187			count++;
3188		}
3189	}
3190
3191	/* zero out the remaining RAR entries not used above */
3192	for (; rar_entries > 0; rar_entries--) {
3193		ew32(RAH(rar_entries), 0);
3194		ew32(RAL(rar_entries), 0);
3195	}
3196	e1e_flush();
3197
3198	return count;
3199}
3200
3201/**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated.  This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210static void e1000e_set_rx_mode(struct net_device *netdev)
3211{
3212	struct e1000_adapter *adapter = netdev_priv(netdev);
3213	struct e1000_hw *hw = &adapter->hw;
3214	u32 rctl;
3215
 
 
 
3216	/* Check for Promiscuous and All Multicast modes */
3217	rctl = er32(RCTL);
3218
3219	/* clear the affected bits */
3220	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222	if (netdev->flags & IFF_PROMISC) {
3223		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224		/* Do not hardware filter VLANs in promisc mode */
3225		e1000e_vlan_filter_disable(adapter);
3226	} else {
3227		int count;
3228
3229		if (netdev->flags & IFF_ALLMULTI) {
3230			rctl |= E1000_RCTL_MPE;
3231		} else {
3232			/*
3233			 * Write addresses to the MTA, if the attempt fails
3234			 * then we should just turn on promiscuous mode so
3235			 * that we can at least receive multicast traffic
3236			 */
3237			count = e1000e_write_mc_addr_list(netdev);
3238			if (count < 0)
3239				rctl |= E1000_RCTL_MPE;
3240		}
3241		e1000e_vlan_filter_enable(adapter);
3242		/*
3243		 * Write addresses to available RAR registers, if there is not
3244		 * sufficient space to store all the addresses then enable
3245		 * unicast promiscuous mode
3246		 */
3247		count = e1000e_write_uc_addr_list(netdev);
3248		if (count < 0)
3249			rctl |= E1000_RCTL_UPE;
3250	}
3251
3252	ew32(RCTL, rctl);
3253
3254	if (netdev->features & NETIF_F_HW_VLAN_RX)
3255		e1000e_vlan_strip_enable(adapter);
3256	else
3257		e1000e_vlan_strip_disable(adapter);
3258}
3259
3260static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261{
3262	struct e1000_hw *hw = &adapter->hw;
3263	u32 mrqc, rxcsum;
 
3264	int i;
3265	static const u32 rsskey[10] = {
3266		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268	};
3269
3270	/* Fill out hash function seed */
3271	for (i = 0; i < 10; i++)
3272		ew32(RSSRK(i), rsskey[i]);
3273
3274	/* Direct all traffic to queue 0 */
3275	for (i = 0; i < 32; i++)
3276		ew32(RETA(i), 0);
3277
3278	/*
3279	 * Disable raw packet checksumming so that RSS hash is placed in
3280	 * descriptor on writeback.
3281	 */
3282	rxcsum = er32(RXCSUM);
3283	rxcsum |= E1000_RXCSUM_PCSD;
3284
3285	ew32(RXCSUM, rxcsum);
3286
3287	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289		E1000_MRQC_RSS_FIELD_IPV6 |
3290		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293	ew32(MRQC, mrqc);
3294}
3295
3296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300static void e1000_configure(struct e1000_adapter *adapter)
3301{
3302	struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304	e1000e_set_rx_mode(adapter->netdev);
3305
3306	e1000_restore_vlan(adapter);
3307	e1000_init_manageability_pt(adapter);
3308
3309	e1000_configure_tx(adapter);
3310
3311	if (adapter->netdev->features & NETIF_F_RXHASH)
3312		e1000e_setup_rss_hash(adapter);
3313	e1000_setup_rctl(adapter);
3314	e1000_configure_rx(adapter);
3315	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316}
3317
3318/**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327{
3328	if (adapter->hw.phy.ops.power_up)
3329		adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331	adapter->hw.mac.ops.setup_link(&adapter->hw);
3332}
3333
3334/**
3335 * e1000_power_down_phy - Power down the PHY
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341{
3342	/* WoL is enabled */
3343	if (adapter->wol)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344		return;
 
 
 
 
 
 
 
3345
3346	if (adapter->hw.phy.ops.power_down)
3347		adapter->hw.phy.ops.power_down(&adapter->hw);
3348}
3349
3350/**
3351 * e1000e_reset - bring the hardware into a known good state
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358void e1000e_reset(struct e1000_adapter *adapter)
3359{
3360	struct e1000_mac_info *mac = &adapter->hw.mac;
3361	struct e1000_fc_info *fc = &adapter->hw.fc;
3362	struct e1000_hw *hw = &adapter->hw;
3363	u32 tx_space, min_tx_space, min_rx_space;
3364	u32 pba = adapter->pba;
3365	u16 hwm;
3366
3367	/* reset Packet Buffer Allocation to default */
3368	ew32(PBA, pba);
3369
3370	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371		/*
3372		 * To maintain wire speed transmits, the Tx FIFO should be
3373		 * large enough to accommodate two full transmit packets,
3374		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3375		 * the Rx FIFO should be large enough to accommodate at least
3376		 * one full receive packet and is similarly rounded up and
3377		 * expressed in KB.
3378		 */
3379		pba = er32(PBA);
3380		/* upper 16 bits has Tx packet buffer allocation size in KB */
3381		tx_space = pba >> 16;
3382		/* lower 16 bits has Rx packet buffer allocation size in KB */
3383		pba &= 0xffff;
3384		/*
3385		 * the Tx fifo also stores 16 bytes of information about the Tx
3386		 * but don't include ethernet FCS because hardware appends it
3387		 */
3388		min_tx_space = (adapter->max_frame_size +
3389				sizeof(struct e1000_tx_desc) -
3390				ETH_FCS_LEN) * 2;
3391		min_tx_space = ALIGN(min_tx_space, 1024);
3392		min_tx_space >>= 10;
3393		/* software strips receive CRC, so leave room for it */
3394		min_rx_space = adapter->max_frame_size;
3395		min_rx_space = ALIGN(min_rx_space, 1024);
3396		min_rx_space >>= 10;
3397
3398		/*
3399		 * If current Tx allocation is less than the min Tx FIFO size,
3400		 * and the min Tx FIFO size is less than the current Rx FIFO
3401		 * allocation, take space away from current Rx allocation
3402		 */
3403		if ((tx_space < min_tx_space) &&
3404		    ((min_tx_space - tx_space) < pba)) {
3405			pba -= min_tx_space - tx_space;
3406
3407			/*
3408			 * if short on Rx space, Rx wins and must trump Tx
3409			 * adjustment or use Early Receive if available
3410			 */
3411			if (pba < min_rx_space)
3412				pba = min_rx_space;
3413		}
3414
3415		ew32(PBA, pba);
3416	}
3417
3418	/*
3419	 * flow control settings
3420	 *
3421	 * The high water mark must be low enough to fit one full frame
3422	 * (or the size used for early receive) above it in the Rx FIFO.
3423	 * Set it to the lower of:
3424	 * - 90% of the Rx FIFO size, and
3425	 * - the full Rx FIFO size minus one full frame
3426	 */
3427	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428		fc->pause_time = 0xFFFF;
3429	else
3430		fc->pause_time = E1000_FC_PAUSE_TIME;
3431	fc->send_xon = true;
3432	fc->current_mode = fc->requested_mode;
3433
3434	switch (hw->mac.type) {
3435	case e1000_ich9lan:
3436	case e1000_ich10lan:
3437		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438			pba = 14;
3439			ew32(PBA, pba);
3440			fc->high_water = 0x2800;
3441			fc->low_water = fc->high_water - 8;
3442			break;
3443		}
3444		/* fall-through */
3445	default:
3446		hwm = min(((pba << 10) * 9 / 10),
3447			  ((pba << 10) - adapter->max_frame_size));
3448
3449		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450		fc->low_water = fc->high_water - 8;
3451		break;
3452	case e1000_pchlan:
3453		/*
3454		 * Workaround PCH LOM adapter hangs with certain network
3455		 * loads.  If hangs persist, try disabling Tx flow control.
3456		 */
3457		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458			fc->high_water = 0x3500;
3459			fc->low_water  = 0x1500;
3460		} else {
3461			fc->high_water = 0x5000;
3462			fc->low_water  = 0x3000;
3463		}
3464		fc->refresh_time = 0x1000;
3465		break;
3466	case e1000_pch2lan:
3467	case e1000_pch_lpt:
3468		fc->high_water = 0x05C20;
3469		fc->low_water = 0x05048;
3470		fc->pause_time = 0x0650;
3471		fc->refresh_time = 0x0400;
3472		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473			pba = 14;
3474			ew32(PBA, pba);
 
 
 
3475		}
 
 
 
 
 
3476		break;
3477	}
3478
3479	/*
3480	 * Alignment of Tx data is on an arbitrary byte boundary with the
3481	 * maximum size per Tx descriptor limited only to the transmit
3482	 * allocation of the packet buffer minus 96 bytes with an upper
3483	 * limit of 24KB due to receive synchronization limitations.
3484	 */
3485	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3486				       24 << 10);
3487
3488	/*
3489	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490	 * fit in receive buffer.
3491	 */
3492	if (adapter->itr_setting & 0x3) {
3493		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3495				dev_info(&adapter->pdev->dev,
3496					"Interrupt Throttle Rate turned off\n");
3497				adapter->flags2 |= FLAG2_DISABLE_AIM;
3498				ew32(ITR, 0);
3499			}
3500		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3501			dev_info(&adapter->pdev->dev,
3502				 "Interrupt Throttle Rate turned on\n");
3503			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3504			adapter->itr = 20000;
3505			ew32(ITR, 1000000000 / (adapter->itr * 256));
3506		}
3507	}
3508
 
 
3509	/* Allow time for pending master requests to run */
3510	mac->ops.reset_hw(hw);
3511
3512	/*
3513	 * For parts with AMT enabled, let the firmware know
3514	 * that the network interface is in control
3515	 */
3516	if (adapter->flags & FLAG_HAS_AMT)
3517		e1000e_get_hw_control(adapter);
3518
3519	ew32(WUC, 0);
3520
3521	if (mac->ops.init_hw(hw))
3522		e_err("Hardware Error\n");
3523
3524	e1000_update_mng_vlan(adapter);
3525
3526	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3527	ew32(VET, ETH_P_8021Q);
3528
3529	e1000e_reset_adaptive(hw);
3530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	if (!netif_running(adapter->netdev) &&
3532	    !test_bit(__E1000_TESTING, &adapter->state)) {
3533		e1000_power_down_phy(adapter);
3534		return;
3535	}
3536
3537	e1000_get_phy_info(hw);
3538
3539	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3540	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541		u16 phy_data = 0;
3542		/*
3543		 * speed up time to link by disabling smart power down, ignore
3544		 * the return value of this function because there is nothing
3545		 * different we would do if it failed
3546		 */
3547		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3548		phy_data &= ~IGP02E1000_PM_SPD;
3549		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3550	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}
3552
3553int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3554{
3555	struct e1000_hw *hw = &adapter->hw;
3556
 
 
 
 
 
 
 
 
3557	/* hardware has been reset, we need to reload some things */
3558	e1000_configure(adapter);
3559
3560	clear_bit(__E1000_DOWN, &adapter->state);
3561
3562	if (adapter->msix_entries)
3563		e1000_configure_msix(adapter);
3564	e1000_irq_enable(adapter);
3565
3566	netif_start_queue(adapter->netdev);
3567
3568	/* fire a link change interrupt to start the watchdog */
3569	if (adapter->msix_entries)
3570		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3571	else
3572		ew32(ICS, E1000_ICS_LSC);
3573
3574	return 0;
3575}
3576
3577static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3578{
3579	struct e1000_hw *hw = &adapter->hw;
3580
3581	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3582		return;
3583
3584	/* flush pending descriptor writebacks to memory */
3585	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3586	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3587
3588	/* execute the writes immediately */
3589	e1e_flush();
3590
3591	/*
3592	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3593	 * write is successful
3594	 */
3595	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3596	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3597
3598	/* execute the writes immediately */
3599	e1e_flush();
3600}
3601
3602static void e1000e_update_stats(struct e1000_adapter *adapter);
3603
3604void e1000e_down(struct e1000_adapter *adapter)
 
 
 
 
 
3605{
3606	struct net_device *netdev = adapter->netdev;
3607	struct e1000_hw *hw = &adapter->hw;
3608	u32 tctl, rctl;
3609
3610	/*
3611	 * signal that we're down so the interrupt handler does not
3612	 * reschedule our watchdog timer
3613	 */
3614	set_bit(__E1000_DOWN, &adapter->state);
3615
 
 
3616	/* disable receives in the hardware */
3617	rctl = er32(RCTL);
3618	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3619		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3620	/* flush and sleep below */
3621
3622	netif_stop_queue(netdev);
3623
3624	/* disable transmits in the hardware */
3625	tctl = er32(TCTL);
3626	tctl &= ~E1000_TCTL_EN;
3627	ew32(TCTL, tctl);
3628
3629	/* flush both disables and wait for them to finish */
3630	e1e_flush();
3631	usleep_range(10000, 20000);
3632
3633	e1000_irq_disable(adapter);
3634
 
 
3635	del_timer_sync(&adapter->watchdog_timer);
3636	del_timer_sync(&adapter->phy_info_timer);
3637
3638	netif_carrier_off(netdev);
3639
3640	spin_lock(&adapter->stats64_lock);
3641	e1000e_update_stats(adapter);
3642	spin_unlock(&adapter->stats64_lock);
3643
3644	e1000e_flush_descriptors(adapter);
3645	e1000_clean_tx_ring(adapter->tx_ring);
3646	e1000_clean_rx_ring(adapter->rx_ring);
3647
3648	adapter->link_speed = 0;
3649	adapter->link_duplex = 0;
3650
3651	if (!pci_channel_offline(adapter->pdev))
3652		e1000e_reset(adapter);
3653
3654	/*
3655	 * TODO: for power management, we could drop the link and
3656	 * pci_disable_device here.
3657	 */
 
 
 
 
 
 
 
3658}
3659
3660void e1000e_reinit_locked(struct e1000_adapter *adapter)
3661{
3662	might_sleep();
3663	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3664		usleep_range(1000, 2000);
3665	e1000e_down(adapter);
3666	e1000e_up(adapter);
3667	clear_bit(__E1000_RESETTING, &adapter->state);
3668}
3669
3670/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3672 * @adapter: board private structure to initialize
3673 *
3674 * e1000_sw_init initializes the Adapter private data structure.
3675 * Fields are initialized based on PCI device information and
3676 * OS network device settings (MTU size).
3677 **/
3678static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3679{
3680	struct net_device *netdev = adapter->netdev;
3681
3682	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3683	adapter->rx_ps_bsize0 = 128;
3684	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3685	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3686	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3687	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3688
3689	spin_lock_init(&adapter->stats64_lock);
3690
3691	e1000e_set_interrupt_capability(adapter);
3692
3693	if (e1000_alloc_queues(adapter))
3694		return -ENOMEM;
3695
 
 
 
 
 
 
 
 
 
 
 
3696	/* Explicitly disable IRQ since the NIC can be in any state. */
3697	e1000_irq_disable(adapter);
3698
3699	set_bit(__E1000_DOWN, &adapter->state);
3700	return 0;
3701}
3702
3703/**
3704 * e1000_intr_msi_test - Interrupt Handler
3705 * @irq: interrupt number
3706 * @data: pointer to a network interface device structure
3707 **/
3708static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3709{
3710	struct net_device *netdev = data;
3711	struct e1000_adapter *adapter = netdev_priv(netdev);
3712	struct e1000_hw *hw = &adapter->hw;
3713	u32 icr = er32(ICR);
3714
3715	e_dbg("icr is %08X\n", icr);
3716	if (icr & E1000_ICR_RXSEQ) {
3717		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
 
 
 
3718		wmb();
3719	}
3720
3721	return IRQ_HANDLED;
3722}
3723
3724/**
3725 * e1000_test_msi_interrupt - Returns 0 for successful test
3726 * @adapter: board private struct
3727 *
3728 * code flow taken from tg3.c
3729 **/
3730static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3731{
3732	struct net_device *netdev = adapter->netdev;
3733	struct e1000_hw *hw = &adapter->hw;
3734	int err;
3735
3736	/* poll_enable hasn't been called yet, so don't need disable */
3737	/* clear any pending events */
3738	er32(ICR);
3739
3740	/* free the real vector and request a test handler */
3741	e1000_free_irq(adapter);
3742	e1000e_reset_interrupt_capability(adapter);
3743
3744	/* Assume that the test fails, if it succeeds then the test
3745	 * MSI irq handler will unset this flag */
 
3746	adapter->flags |= FLAG_MSI_TEST_FAILED;
3747
3748	err = pci_enable_msi(adapter->pdev);
3749	if (err)
3750		goto msi_test_failed;
3751
3752	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3753			  netdev->name, netdev);
3754	if (err) {
3755		pci_disable_msi(adapter->pdev);
3756		goto msi_test_failed;
3757	}
3758
 
 
 
3759	wmb();
3760
3761	e1000_irq_enable(adapter);
3762
3763	/* fire an unusual interrupt on the test handler */
3764	ew32(ICS, E1000_ICS_RXSEQ);
3765	e1e_flush();
3766	msleep(100);
3767
3768	e1000_irq_disable(adapter);
3769
3770	rmb();
3771
3772	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3773		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3774		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3775	} else {
3776		e_dbg("MSI interrupt test succeeded!\n");
3777	}
3778
3779	free_irq(adapter->pdev->irq, netdev);
3780	pci_disable_msi(adapter->pdev);
3781
3782msi_test_failed:
3783	e1000e_set_interrupt_capability(adapter);
3784	return e1000_request_irq(adapter);
3785}
3786
3787/**
3788 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3789 * @adapter: board private struct
3790 *
3791 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3792 **/
3793static int e1000_test_msi(struct e1000_adapter *adapter)
3794{
3795	int err;
3796	u16 pci_cmd;
3797
3798	if (!(adapter->flags & FLAG_MSI_ENABLED))
3799		return 0;
3800
3801	/* disable SERR in case the MSI write causes a master abort */
3802	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803	if (pci_cmd & PCI_COMMAND_SERR)
3804		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3805				      pci_cmd & ~PCI_COMMAND_SERR);
3806
3807	err = e1000_test_msi_interrupt(adapter);
3808
3809	/* re-enable SERR */
3810	if (pci_cmd & PCI_COMMAND_SERR) {
3811		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3812		pci_cmd |= PCI_COMMAND_SERR;
3813		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3814	}
3815
3816	return err;
3817}
3818
3819/**
3820 * e1000_open - Called when a network interface is made active
3821 * @netdev: network interface device structure
3822 *
3823 * Returns 0 on success, negative value on failure
3824 *
3825 * The open entry point is called when a network interface is made
3826 * active by the system (IFF_UP).  At this point all resources needed
3827 * for transmit and receive operations are allocated, the interrupt
3828 * handler is registered with the OS, the watchdog timer is started,
3829 * and the stack is notified that the interface is ready.
3830 **/
3831static int e1000_open(struct net_device *netdev)
3832{
3833	struct e1000_adapter *adapter = netdev_priv(netdev);
3834	struct e1000_hw *hw = &adapter->hw;
3835	struct pci_dev *pdev = adapter->pdev;
3836	int err;
3837
3838	/* disallow open during test */
3839	if (test_bit(__E1000_TESTING, &adapter->state))
3840		return -EBUSY;
3841
3842	pm_runtime_get_sync(&pdev->dev);
3843
3844	netif_carrier_off(netdev);
3845
3846	/* allocate transmit descriptors */
3847	err = e1000e_setup_tx_resources(adapter->tx_ring);
3848	if (err)
3849		goto err_setup_tx;
3850
3851	/* allocate receive descriptors */
3852	err = e1000e_setup_rx_resources(adapter->rx_ring);
3853	if (err)
3854		goto err_setup_rx;
3855
3856	/*
3857	 * If AMT is enabled, let the firmware know that the network
3858	 * interface is now open and reset the part to a known state.
3859	 */
3860	if (adapter->flags & FLAG_HAS_AMT) {
3861		e1000e_get_hw_control(adapter);
3862		e1000e_reset(adapter);
3863	}
3864
3865	e1000e_power_up_phy(adapter);
3866
3867	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3868	if ((adapter->hw.mng_cookie.status &
3869	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3870		e1000_update_mng_vlan(adapter);
3871
3872	/* DMA latency requirement to workaround jumbo issue */
3873	if (adapter->hw.mac.type == e1000_pch2lan)
3874		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3875				   PM_QOS_CPU_DMA_LATENCY,
3876				   PM_QOS_DEFAULT_VALUE);
3877
3878	/*
3879	 * before we allocate an interrupt, we must be ready to handle it.
3880	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3881	 * as soon as we call pci_request_irq, so we have to setup our
3882	 * clean_rx handler before we do so.
3883	 */
3884	e1000_configure(adapter);
3885
3886	err = e1000_request_irq(adapter);
3887	if (err)
3888		goto err_req_irq;
3889
3890	/*
3891	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3892	 * ignore e1000e MSI messages, which means we need to test our MSI
3893	 * interrupt now
3894	 */
3895	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3896		err = e1000_test_msi(adapter);
3897		if (err) {
3898			e_err("Interrupt allocation failed\n");
3899			goto err_req_irq;
3900		}
3901	}
3902
3903	/* From here on the code is the same as e1000e_up() */
3904	clear_bit(__E1000_DOWN, &adapter->state);
3905
3906	napi_enable(&adapter->napi);
3907
3908	e1000_irq_enable(adapter);
3909
3910	adapter->tx_hang_recheck = false;
3911	netif_start_queue(netdev);
3912
3913	adapter->idle_check = true;
3914	pm_runtime_put(&pdev->dev);
3915
3916	/* fire a link status change interrupt to start the watchdog */
3917	if (adapter->msix_entries)
3918		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3919	else
3920		ew32(ICS, E1000_ICS_LSC);
3921
3922	return 0;
3923
3924err_req_irq:
 
3925	e1000e_release_hw_control(adapter);
3926	e1000_power_down_phy(adapter);
3927	e1000e_free_rx_resources(adapter->rx_ring);
3928err_setup_rx:
3929	e1000e_free_tx_resources(adapter->tx_ring);
3930err_setup_tx:
3931	e1000e_reset(adapter);
3932	pm_runtime_put_sync(&pdev->dev);
3933
3934	return err;
3935}
3936
3937/**
3938 * e1000_close - Disables a network interface
3939 * @netdev: network interface device structure
3940 *
3941 * Returns 0, this is not allowed to fail
3942 *
3943 * The close entry point is called when an interface is de-activated
3944 * by the OS.  The hardware is still under the drivers control, but
3945 * needs to be disabled.  A global MAC reset is issued to stop the
3946 * hardware, and all transmit and receive resources are freed.
3947 **/
3948static int e1000_close(struct net_device *netdev)
3949{
3950	struct e1000_adapter *adapter = netdev_priv(netdev);
3951	struct pci_dev *pdev = adapter->pdev;
3952	int count = E1000_CHECK_RESET_COUNT;
3953
3954	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3955		usleep_range(10000, 20000);
3956
3957	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3958
3959	pm_runtime_get_sync(&pdev->dev);
3960
3961	napi_disable(&adapter->napi);
3962
3963	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3964		e1000e_down(adapter);
3965		e1000_free_irq(adapter);
 
 
 
3966	}
3967	e1000_power_down_phy(adapter);
 
3968
3969	e1000e_free_tx_resources(adapter->tx_ring);
3970	e1000e_free_rx_resources(adapter->rx_ring);
3971
3972	/*
3973	 * kill manageability vlan ID if supported, but not if a vlan with
3974	 * the same ID is registered on the host OS (let 8021q kill it)
3975	 */
3976	if (adapter->hw.mng_cookie.status &
3977	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3978		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3979
3980	/*
3981	 * If AMT is enabled, let the firmware know that the network
3982	 * interface is now closed
3983	 */
3984	if ((adapter->flags & FLAG_HAS_AMT) &&
3985	    !test_bit(__E1000_TESTING, &adapter->state))
3986		e1000e_release_hw_control(adapter);
3987
3988	if (adapter->hw.mac.type == e1000_pch2lan)
3989		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990
3991	pm_runtime_put_sync(&pdev->dev);
3992
3993	return 0;
3994}
 
3995/**
3996 * e1000_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002static int e1000_set_mac(struct net_device *netdev, void *p)
4003{
4004	struct e1000_adapter *adapter = netdev_priv(netdev);
4005	struct e1000_hw *hw = &adapter->hw;
4006	struct sockaddr *addr = p;
4007
4008	if (!is_valid_ether_addr(addr->sa_data))
4009		return -EADDRNOTAVAIL;
4010
4011	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4013
4014	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4015
4016	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4017		/* activate the work around */
4018		e1000e_set_laa_state_82571(&adapter->hw, 1);
4019
4020		/*
4021		 * Hold a copy of the LAA in RAR[14] This is done so that
4022		 * between the time RAR[0] gets clobbered  and the time it
4023		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4024		 * of the RARs and no incoming packets directed to this port
4025		 * are dropped. Eventually the LAA will be in RAR[0] and
4026		 * RAR[14]
4027		 */
4028		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4029				    adapter->hw.mac.rar_entry_count - 1);
4030	}
4031
4032	return 0;
4033}
4034
4035/**
4036 * e1000e_update_phy_task - work thread to update phy
4037 * @work: pointer to our work struct
4038 *
4039 * this worker thread exists because we must acquire a
4040 * semaphore to read the phy, which we could msleep while
4041 * waiting for it, and we can't msleep in a timer.
4042 **/
4043static void e1000e_update_phy_task(struct work_struct *work)
4044{
4045	struct e1000_adapter *adapter = container_of(work,
4046					struct e1000_adapter, update_phy_task);
 
 
4047
4048	if (test_bit(__E1000_DOWN, &adapter->state))
4049		return;
4050
4051	e1000_get_phy_info(&adapter->hw);
 
 
 
 
4052}
4053
4054/*
 
 
 
4055 * Need to wait a few seconds after link up to get diagnostic information from
4056 * the phy
4057 */
4058static void e1000_update_phy_info(unsigned long data)
4059{
4060	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061
4062	if (test_bit(__E1000_DOWN, &adapter->state))
4063		return;
4064
4065	schedule_work(&adapter->update_phy_task);
4066}
4067
4068/**
4069 * e1000e_update_phy_stats - Update the PHY statistics counters
4070 * @adapter: board private structure
4071 *
4072 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 **/
4074static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4075{
4076	struct e1000_hw *hw = &adapter->hw;
4077	s32 ret_val;
4078	u16 phy_data;
4079
4080	ret_val = hw->phy.ops.acquire(hw);
4081	if (ret_val)
4082		return;
4083
4084	/*
4085	 * A page set is expensive so check if already on desired page.
4086	 * If not, set to the page with the PHY status registers.
4087	 */
4088	hw->phy.addr = 1;
4089	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4090					   &phy_data);
4091	if (ret_val)
4092		goto release;
4093	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4094		ret_val = hw->phy.ops.set_page(hw,
4095					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096		if (ret_val)
4097			goto release;
4098	}
4099
4100	/* Single Collision Count */
4101	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4102	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103	if (!ret_val)
4104		adapter->stats.scc += phy_data;
4105
4106	/* Excessive Collision Count */
4107	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4108	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109	if (!ret_val)
4110		adapter->stats.ecol += phy_data;
4111
4112	/* Multiple Collision Count */
4113	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4114	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115	if (!ret_val)
4116		adapter->stats.mcc += phy_data;
4117
4118	/* Late Collision Count */
4119	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4120	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121	if (!ret_val)
4122		adapter->stats.latecol += phy_data;
4123
4124	/* Collision Count - also used for adaptive IFS */
4125	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4126	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127	if (!ret_val)
4128		hw->mac.collision_delta = phy_data;
4129
4130	/* Defer Count */
4131	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4132	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133	if (!ret_val)
4134		adapter->stats.dc += phy_data;
4135
4136	/* Transmit with no CRS */
4137	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4138	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139	if (!ret_val)
4140		adapter->stats.tncrs += phy_data;
4141
4142release:
4143	hw->phy.ops.release(hw);
4144}
4145
4146/**
4147 * e1000e_update_stats - Update the board statistics counters
4148 * @adapter: board private structure
4149 **/
4150static void e1000e_update_stats(struct e1000_adapter *adapter)
4151{
4152	struct net_device *netdev = adapter->netdev;
4153	struct e1000_hw *hw = &adapter->hw;
4154	struct pci_dev *pdev = adapter->pdev;
4155
4156	/*
4157	 * Prevent stats update while adapter is being reset, or if the pci
4158	 * connection is down.
4159	 */
4160	if (adapter->link_speed == 0)
4161		return;
4162	if (pci_channel_offline(pdev))
4163		return;
4164
4165	adapter->stats.crcerrs += er32(CRCERRS);
4166	adapter->stats.gprc += er32(GPRC);
4167	adapter->stats.gorc += er32(GORCL);
4168	er32(GORCH); /* Clear gorc */
4169	adapter->stats.bprc += er32(BPRC);
4170	adapter->stats.mprc += er32(MPRC);
4171	adapter->stats.roc += er32(ROC);
4172
4173	adapter->stats.mpc += er32(MPC);
4174
4175	/* Half-duplex statistics */
4176	if (adapter->link_duplex == HALF_DUPLEX) {
4177		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4178			e1000e_update_phy_stats(adapter);
4179		} else {
4180			adapter->stats.scc += er32(SCC);
4181			adapter->stats.ecol += er32(ECOL);
4182			adapter->stats.mcc += er32(MCC);
4183			adapter->stats.latecol += er32(LATECOL);
4184			adapter->stats.dc += er32(DC);
4185
4186			hw->mac.collision_delta = er32(COLC);
4187
4188			if ((hw->mac.type != e1000_82574) &&
4189			    (hw->mac.type != e1000_82583))
4190				adapter->stats.tncrs += er32(TNCRS);
4191		}
4192		adapter->stats.colc += hw->mac.collision_delta;
4193	}
4194
4195	adapter->stats.xonrxc += er32(XONRXC);
4196	adapter->stats.xontxc += er32(XONTXC);
4197	adapter->stats.xoffrxc += er32(XOFFRXC);
4198	adapter->stats.xofftxc += er32(XOFFTXC);
4199	adapter->stats.gptc += er32(GPTC);
4200	adapter->stats.gotc += er32(GOTCL);
4201	er32(GOTCH); /* Clear gotc */
4202	adapter->stats.rnbc += er32(RNBC);
4203	adapter->stats.ruc += er32(RUC);
4204
4205	adapter->stats.mptc += er32(MPTC);
4206	adapter->stats.bptc += er32(BPTC);
4207
4208	/* used for adaptive IFS */
4209
4210	hw->mac.tx_packet_delta = er32(TPT);
4211	adapter->stats.tpt += hw->mac.tx_packet_delta;
4212
4213	adapter->stats.algnerrc += er32(ALGNERRC);
4214	adapter->stats.rxerrc += er32(RXERRC);
4215	adapter->stats.cexterr += er32(CEXTERR);
4216	adapter->stats.tsctc += er32(TSCTC);
4217	adapter->stats.tsctfc += er32(TSCTFC);
4218
4219	/* Fill out the OS statistics structure */
4220	netdev->stats.multicast = adapter->stats.mprc;
4221	netdev->stats.collisions = adapter->stats.colc;
4222
4223	/* Rx Errors */
4224
4225	/*
4226	 * RLEC on some newer hardware can be incorrect so build
4227	 * our own version based on RUC and ROC
4228	 */
4229	netdev->stats.rx_errors = adapter->stats.rxerrc +
4230		adapter->stats.crcerrs + adapter->stats.algnerrc +
4231		adapter->stats.ruc + adapter->stats.roc +
4232		adapter->stats.cexterr;
4233	netdev->stats.rx_length_errors = adapter->stats.ruc +
4234					      adapter->stats.roc;
4235	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4236	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4237	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238
4239	/* Tx Errors */
4240	netdev->stats.tx_errors = adapter->stats.ecol +
4241				       adapter->stats.latecol;
4242	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4243	netdev->stats.tx_window_errors = adapter->stats.latecol;
4244	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245
4246	/* Tx Dropped needs to be maintained elsewhere */
4247
4248	/* Management Stats */
4249	adapter->stats.mgptc += er32(MGTPTC);
4250	adapter->stats.mgprc += er32(MGTPRC);
4251	adapter->stats.mgpdc += er32(MGTPDC);
 
 
 
 
 
 
 
 
 
 
 
4252}
4253
4254/**
4255 * e1000_phy_read_status - Update the PHY register status snapshot
4256 * @adapter: board private structure
4257 **/
4258static void e1000_phy_read_status(struct e1000_adapter *adapter)
4259{
4260	struct e1000_hw *hw = &adapter->hw;
4261	struct e1000_phy_regs *phy = &adapter->phy_regs;
4262
4263	if ((er32(STATUS) & E1000_STATUS_LU) &&
 
4264	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265		int ret_val;
4266
4267		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4268		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4269		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4270		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4271		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4272		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4273		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4274		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4275		if (ret_val)
4276			e_warn("Error reading PHY register\n");
4277	} else {
4278		/*
4279		 * Do not read PHY registers if link is not up
4280		 * Set values to typical power-on defaults
4281		 */
4282		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4283		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4284			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4285			     BMSR_ERCAP);
4286		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4287				  ADVERTISE_ALL | ADVERTISE_CSMA);
4288		phy->lpa = 0;
4289		phy->expansion = EXPANSION_ENABLENPAGE;
4290		phy->ctrl1000 = ADVERTISE_1000FULL;
4291		phy->stat1000 = 0;
4292		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4293	}
4294}
4295
4296static void e1000_print_link_info(struct e1000_adapter *adapter)
4297{
4298	struct e1000_hw *hw = &adapter->hw;
4299	u32 ctrl = er32(CTRL);
4300
4301	/* Link status message must follow this format for user tools */
4302	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4303		adapter->netdev->name,
4304		adapter->link_speed,
4305		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4306		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4307		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4308		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309}
4310
4311static bool e1000e_has_link(struct e1000_adapter *adapter)
4312{
4313	struct e1000_hw *hw = &adapter->hw;
4314	bool link_active = false;
4315	s32 ret_val = 0;
4316
4317	/*
4318	 * get_link_status is set on LSC (link status) interrupt or
4319	 * Rx sequence error interrupt.  get_link_status will stay
4320	 * false until the check_for_link establishes link
4321	 * for copper adapters ONLY
4322	 */
4323	switch (hw->phy.media_type) {
4324	case e1000_media_type_copper:
4325		if (hw->mac.get_link_status) {
4326			ret_val = hw->mac.ops.check_for_link(hw);
4327			link_active = !hw->mac.get_link_status;
4328		} else {
4329			link_active = true;
4330		}
4331		break;
4332	case e1000_media_type_fiber:
4333		ret_val = hw->mac.ops.check_for_link(hw);
4334		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4335		break;
4336	case e1000_media_type_internal_serdes:
4337		ret_val = hw->mac.ops.check_for_link(hw);
4338		link_active = adapter->hw.mac.serdes_has_link;
4339		break;
4340	default:
4341	case e1000_media_type_unknown:
4342		break;
4343	}
4344
4345	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4346	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4347		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348		e_info("Gigabit has been disabled, downgrading speed\n");
4349	}
4350
4351	return link_active;
4352}
4353
4354static void e1000e_enable_receives(struct e1000_adapter *adapter)
4355{
4356	/* make sure the receive unit is started */
4357	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4358	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4359		struct e1000_hw *hw = &adapter->hw;
4360		u32 rctl = er32(RCTL);
 
4361		ew32(RCTL, rctl | E1000_RCTL_EN);
4362		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4363	}
4364}
4365
4366static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4367{
4368	struct e1000_hw *hw = &adapter->hw;
4369
4370	/*
4371	 * With 82574 controllers, PHY needs to be checked periodically
4372	 * for hung state and reset, if two calls return true
4373	 */
4374	if (e1000_check_phy_82574(hw))
4375		adapter->phy_hang_count++;
4376	else
4377		adapter->phy_hang_count = 0;
4378
4379	if (adapter->phy_hang_count > 1) {
4380		adapter->phy_hang_count = 0;
 
4381		schedule_work(&adapter->reset_task);
4382	}
4383}
4384
4385/**
4386 * e1000_watchdog - Timer Call-back
4387 * @data: pointer to adapter cast into an unsigned long
4388 **/
4389static void e1000_watchdog(unsigned long data)
4390{
4391	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4392
4393	/* Do the rest outside of interrupt context */
4394	schedule_work(&adapter->watchdog_task);
4395
4396	/* TODO: make this use queue_delayed_work() */
4397}
4398
4399static void e1000_watchdog_task(struct work_struct *work)
4400{
4401	struct e1000_adapter *adapter = container_of(work,
4402					struct e1000_adapter, watchdog_task);
 
4403	struct net_device *netdev = adapter->netdev;
4404	struct e1000_mac_info *mac = &adapter->hw.mac;
4405	struct e1000_phy_info *phy = &adapter->hw.phy;
4406	struct e1000_ring *tx_ring = adapter->tx_ring;
4407	struct e1000_hw *hw = &adapter->hw;
4408	u32 link, tctl;
4409
4410	if (test_bit(__E1000_DOWN, &adapter->state))
4411		return;
4412
4413	link = e1000e_has_link(adapter);
4414	if ((netif_carrier_ok(netdev)) && link) {
4415		/* Cancel scheduled suspend requests. */
4416		pm_runtime_resume(netdev->dev.parent);
4417
4418		e1000e_enable_receives(adapter);
4419		goto link_up;
4420	}
4421
4422	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4423	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4424		e1000_update_mng_vlan(adapter);
4425
4426	if (link) {
4427		if (!netif_carrier_ok(netdev)) {
4428			bool txb2b = true;
4429
4430			/* Cancel scheduled suspend requests. */
4431			pm_runtime_resume(netdev->dev.parent);
4432
4433			/* update snapshot of PHY registers on LSC */
4434			e1000_phy_read_status(adapter);
4435			mac->ops.get_link_up_info(&adapter->hw,
4436						   &adapter->link_speed,
4437						   &adapter->link_duplex);
4438			e1000_print_link_info(adapter);
4439			/*
4440			 * On supported PHYs, check for duplex mismatch only
 
 
 
 
 
 
4441			 * if link has autonegotiated at 10/100 half
4442			 */
4443			if ((hw->phy.type == e1000_phy_igp_3 ||
4444			     hw->phy.type == e1000_phy_bm) &&
4445			    (hw->mac.autoneg == true) &&
4446			    (adapter->link_speed == SPEED_10 ||
4447			     adapter->link_speed == SPEED_100) &&
4448			    (adapter->link_duplex == HALF_DUPLEX)) {
4449				u16 autoneg_exp;
4450
4451				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4452
4453				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4455			}
4456
4457			/* adjust timeout factor according to speed/duplex */
4458			adapter->tx_timeout_factor = 1;
4459			switch (adapter->link_speed) {
4460			case SPEED_10:
4461				txb2b = false;
4462				adapter->tx_timeout_factor = 16;
4463				break;
4464			case SPEED_100:
4465				txb2b = false;
4466				adapter->tx_timeout_factor = 10;
4467				break;
4468			}
4469
4470			/*
4471			 * workaround: re-program speed mode bit after
4472			 * link-up event
4473			 */
4474			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4475			    !txb2b) {
4476				u32 tarc0;
 
4477				tarc0 = er32(TARC(0));
4478				tarc0 &= ~SPEED_MODE_BIT;
4479				ew32(TARC(0), tarc0);
4480			}
4481
4482			/*
4483			 * disable TSO for pcie and 10/100 speeds, to avoid
4484			 * some hardware issues
4485			 */
4486			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4487				switch (adapter->link_speed) {
4488				case SPEED_10:
4489				case SPEED_100:
4490					e_info("10/100 speed: disabling TSO\n");
4491					netdev->features &= ~NETIF_F_TSO;
4492					netdev->features &= ~NETIF_F_TSO6;
4493					break;
4494				case SPEED_1000:
4495					netdev->features |= NETIF_F_TSO;
4496					netdev->features |= NETIF_F_TSO6;
4497					break;
4498				default:
4499					/* oops */
4500					break;
4501				}
4502			}
4503
4504			/*
4505			 * enable transmits in the hardware, need to do this
4506			 * after setting TARC(0)
4507			 */
4508			tctl = er32(TCTL);
4509			tctl |= E1000_TCTL_EN;
4510			ew32(TCTL, tctl);
4511
4512                        /*
4513			 * Perform any post-link-up configuration before
4514			 * reporting link up.
4515			 */
4516			if (phy->ops.cfg_on_link_up)
4517				phy->ops.cfg_on_link_up(hw);
4518
4519			netif_carrier_on(netdev);
4520
4521			if (!test_bit(__E1000_DOWN, &adapter->state))
4522				mod_timer(&adapter->phy_info_timer,
4523					  round_jiffies(jiffies + 2 * HZ));
4524		}
4525	} else {
4526		if (netif_carrier_ok(netdev)) {
4527			adapter->link_speed = 0;
4528			adapter->link_duplex = 0;
4529			/* Link status message must follow this format */
4530			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4531			       adapter->netdev->name);
4532			netif_carrier_off(netdev);
4533			if (!test_bit(__E1000_DOWN, &adapter->state))
4534				mod_timer(&adapter->phy_info_timer,
4535					  round_jiffies(jiffies + 2 * HZ));
4536
 
 
 
 
4537			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4538				schedule_work(&adapter->reset_task);
4539			else
4540				pm_schedule_suspend(netdev->dev.parent,
4541							LINK_TIMEOUT);
4542		}
4543	}
4544
4545link_up:
4546	spin_lock(&adapter->stats64_lock);
4547	e1000e_update_stats(adapter);
4548
4549	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4550	adapter->tpt_old = adapter->stats.tpt;
4551	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4552	adapter->colc_old = adapter->stats.colc;
4553
4554	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4555	adapter->gorc_old = adapter->stats.gorc;
4556	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4557	adapter->gotc_old = adapter->stats.gotc;
4558	spin_unlock(&adapter->stats64_lock);
4559
4560	e1000e_update_adaptive(&adapter->hw);
 
 
 
 
 
 
4561
4562	if (!netif_carrier_ok(netdev) &&
4563	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4564		/*
4565		 * We've lost link, so the controller stops DMA,
4566		 * but we've got queued Tx work that's never going
4567		 * to get done, so reset controller to flush Tx.
4568		 * (Do the reset outside of interrupt context).
4569		 */
4570		schedule_work(&adapter->reset_task);
4571		/* return immediately since reset is imminent */
4572		return;
4573	}
4574
 
 
4575	/* Simple mode for Interrupt Throttle Rate (ITR) */
4576	if (adapter->itr_setting == 4) {
4577		/*
4578		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4579		 * Total asymmetrical Tx or Rx gets ITR=8000;
4580		 * everyone else is between 2000-8000.
4581		 */
4582		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4583		u32 dif = (adapter->gotc > adapter->gorc ?
4584			    adapter->gotc - adapter->gorc :
4585			    adapter->gorc - adapter->gotc) / 10000;
4586		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4587
4588		ew32(ITR, 1000000000 / (itr * 256));
4589	}
4590
4591	/* Cause software interrupt to ensure Rx ring is cleaned */
4592	if (adapter->msix_entries)
4593		ew32(ICS, adapter->rx_ring->ims_val);
4594	else
4595		ew32(ICS, E1000_ICS_RXDMT0);
4596
4597	/* flush pending descriptors to memory before detecting Tx hang */
4598	e1000e_flush_descriptors(adapter);
4599
4600	/* Force detection of hung controller every watchdog period */
4601	adapter->detect_tx_hung = true;
4602
4603	/*
4604	 * With 82571 controllers, LAA may be overwritten due to controller
4605	 * reset from the other port. Set the appropriate LAA in RAR[0]
4606	 */
4607	if (e1000e_get_laa_state_82571(hw))
4608		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4609
4610	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4611		e1000e_check_82574_phy_workaround(adapter);
4612
 
 
 
 
 
 
 
 
 
 
 
4613	/* Reset the timer */
4614	if (!test_bit(__E1000_DOWN, &adapter->state))
4615		mod_timer(&adapter->watchdog_timer,
4616			  round_jiffies(jiffies + 2 * HZ));
4617}
4618
4619#define E1000_TX_FLAGS_CSUM		0x00000001
4620#define E1000_TX_FLAGS_VLAN		0x00000002
4621#define E1000_TX_FLAGS_TSO		0x00000004
4622#define E1000_TX_FLAGS_IPV4		0x00000008
4623#define E1000_TX_FLAGS_NO_FCS		0x00000010
 
4624#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4625#define E1000_TX_FLAGS_VLAN_SHIFT	16
4626
4627static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4628{
4629	struct e1000_context_desc *context_desc;
4630	struct e1000_buffer *buffer_info;
4631	unsigned int i;
4632	u32 cmd_length = 0;
4633	u16 ipcse = 0, tucse, mss;
4634	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 
4635
4636	if (!skb_is_gso(skb))
4637		return 0;
4638
4639	if (skb_header_cloned(skb)) {
4640		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4641
4642		if (err)
4643			return err;
4644	}
4645
4646	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4647	mss = skb_shinfo(skb)->gso_size;
4648	if (skb->protocol == htons(ETH_P_IP)) {
4649		struct iphdr *iph = ip_hdr(skb);
4650		iph->tot_len = 0;
4651		iph->check = 0;
4652		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4653		                                         0, IPPROTO_TCP, 0);
4654		cmd_length = E1000_TXD_CMD_IP;
4655		ipcse = skb_transport_offset(skb) - 1;
4656	} else if (skb_is_gso_v6(skb)) {
4657		ipv6_hdr(skb)->payload_len = 0;
4658		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659		                                       &ipv6_hdr(skb)->daddr,
4660		                                       0, IPPROTO_TCP, 0);
4661		ipcse = 0;
4662	}
4663	ipcss = skb_network_offset(skb);
4664	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4665	tucss = skb_transport_offset(skb);
4666	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4667	tucse = 0;
4668
4669	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4670	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4671
4672	i = tx_ring->next_to_use;
4673	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4674	buffer_info = &tx_ring->buffer_info[i];
4675
4676	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4677	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4678	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4679	context_desc->upper_setup.tcp_fields.tucss = tucss;
4680	context_desc->upper_setup.tcp_fields.tucso = tucso;
4681	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4682	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4683	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4684	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4685
4686	buffer_info->time_stamp = jiffies;
4687	buffer_info->next_to_watch = i;
4688
4689	i++;
4690	if (i == tx_ring->count)
4691		i = 0;
4692	tx_ring->next_to_use = i;
4693
4694	return 1;
4695}
4696
4697static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4698{
4699	struct e1000_adapter *adapter = tx_ring->adapter;
4700	struct e1000_context_desc *context_desc;
4701	struct e1000_buffer *buffer_info;
4702	unsigned int i;
4703	u8 css;
4704	u32 cmd_len = E1000_TXD_CMD_DEXT;
4705	__be16 protocol;
4706
4707	if (skb->ip_summed != CHECKSUM_PARTIAL)
4708		return 0;
4709
4710	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4711		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4712	else
4713		protocol = skb->protocol;
4714
4715	switch (protocol) {
4716	case cpu_to_be16(ETH_P_IP):
4717		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4718			cmd_len |= E1000_TXD_CMD_TCP;
4719		break;
4720	case cpu_to_be16(ETH_P_IPV6):
4721		/* XXX not handling all IPV6 headers */
4722		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4723			cmd_len |= E1000_TXD_CMD_TCP;
4724		break;
4725	default:
4726		if (unlikely(net_ratelimit()))
4727			e_warn("checksum_partial proto=%x!\n",
4728			       be16_to_cpu(protocol));
4729		break;
4730	}
4731
4732	css = skb_checksum_start_offset(skb);
4733
4734	i = tx_ring->next_to_use;
4735	buffer_info = &tx_ring->buffer_info[i];
4736	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4737
4738	context_desc->lower_setup.ip_config = 0;
4739	context_desc->upper_setup.tcp_fields.tucss = css;
4740	context_desc->upper_setup.tcp_fields.tucso =
4741				css + skb->csum_offset;
4742	context_desc->upper_setup.tcp_fields.tucse = 0;
4743	context_desc->tcp_seg_setup.data = 0;
4744	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4745
4746	buffer_info->time_stamp = jiffies;
4747	buffer_info->next_to_watch = i;
4748
4749	i++;
4750	if (i == tx_ring->count)
4751		i = 0;
4752	tx_ring->next_to_use = i;
4753
4754	return 1;
4755}
4756
4757static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4758			unsigned int first, unsigned int max_per_txd,
4759			unsigned int nr_frags)
4760{
4761	struct e1000_adapter *adapter = tx_ring->adapter;
4762	struct pci_dev *pdev = adapter->pdev;
4763	struct e1000_buffer *buffer_info;
4764	unsigned int len = skb_headlen(skb);
4765	unsigned int offset = 0, size, count = 0, i;
4766	unsigned int f, bytecount, segs;
4767
4768	i = tx_ring->next_to_use;
4769
4770	while (len) {
4771		buffer_info = &tx_ring->buffer_info[i];
4772		size = min(len, max_per_txd);
4773
4774		buffer_info->length = size;
4775		buffer_info->time_stamp = jiffies;
4776		buffer_info->next_to_watch = i;
4777		buffer_info->dma = dma_map_single(&pdev->dev,
4778						  skb->data + offset,
4779						  size, DMA_TO_DEVICE);
4780		buffer_info->mapped_as_page = false;
4781		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4782			goto dma_error;
4783
4784		len -= size;
4785		offset += size;
4786		count++;
4787
4788		if (len) {
4789			i++;
4790			if (i == tx_ring->count)
4791				i = 0;
4792		}
4793	}
4794
4795	for (f = 0; f < nr_frags; f++) {
4796		const struct skb_frag_struct *frag;
4797
4798		frag = &skb_shinfo(skb)->frags[f];
4799		len = skb_frag_size(frag);
4800		offset = 0;
4801
4802		while (len) {
4803			i++;
4804			if (i == tx_ring->count)
4805				i = 0;
4806
4807			buffer_info = &tx_ring->buffer_info[i];
4808			size = min(len, max_per_txd);
4809
4810			buffer_info->length = size;
4811			buffer_info->time_stamp = jiffies;
4812			buffer_info->next_to_watch = i;
4813			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4814						offset, size, DMA_TO_DEVICE);
 
4815			buffer_info->mapped_as_page = true;
4816			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4817				goto dma_error;
4818
4819			len -= size;
4820			offset += size;
4821			count++;
4822		}
4823	}
4824
4825	segs = skb_shinfo(skb)->gso_segs ? : 1;
4826	/* multiply data chunks by size of headers */
4827	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4828
4829	tx_ring->buffer_info[i].skb = skb;
4830	tx_ring->buffer_info[i].segs = segs;
4831	tx_ring->buffer_info[i].bytecount = bytecount;
4832	tx_ring->buffer_info[first].next_to_watch = i;
4833
4834	return count;
4835
4836dma_error:
4837	dev_err(&pdev->dev, "Tx DMA map failed\n");
4838	buffer_info->dma = 0;
4839	if (count)
4840		count--;
4841
4842	while (count--) {
4843		if (i == 0)
4844			i += tx_ring->count;
4845		i--;
4846		buffer_info = &tx_ring->buffer_info[i];
4847		e1000_put_txbuf(tx_ring, buffer_info);
4848	}
4849
4850	return 0;
4851}
4852
4853static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4854{
4855	struct e1000_adapter *adapter = tx_ring->adapter;
4856	struct e1000_tx_desc *tx_desc = NULL;
4857	struct e1000_buffer *buffer_info;
4858	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4859	unsigned int i;
4860
4861	if (tx_flags & E1000_TX_FLAGS_TSO) {
4862		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4863			     E1000_TXD_CMD_TSE;
4864		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4865
4866		if (tx_flags & E1000_TX_FLAGS_IPV4)
4867			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4868	}
4869
4870	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4871		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4872		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4873	}
4874
4875	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4876		txd_lower |= E1000_TXD_CMD_VLE;
4877		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4878	}
4879
4880	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4881		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4882
 
 
 
 
 
4883	i = tx_ring->next_to_use;
4884
4885	do {
4886		buffer_info = &tx_ring->buffer_info[i];
4887		tx_desc = E1000_TX_DESC(*tx_ring, i);
4888		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4889		tx_desc->lower.data =
4890			cpu_to_le32(txd_lower | buffer_info->length);
4891		tx_desc->upper.data = cpu_to_le32(txd_upper);
4892
4893		i++;
4894		if (i == tx_ring->count)
4895			i = 0;
4896	} while (--count > 0);
4897
4898	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4899
4900	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4901	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4902		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4903
4904	/*
4905	 * Force memory writes to complete before letting h/w
4906	 * know there are new descriptors to fetch.  (Only
4907	 * applicable for weak-ordered memory model archs,
4908	 * such as IA-64).
4909	 */
4910	wmb();
4911
4912	tx_ring->next_to_use = i;
4913
4914	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4915		e1000e_update_tdt_wa(tx_ring, i);
4916	else
4917		writel(i, tx_ring->tail);
4918
4919	/*
4920	 * we need this if more than one processor can write to our tail
4921	 * at a time, it synchronizes IO on IA64/Altix systems
4922	 */
4923	mmiowb();
4924}
4925
4926#define MINIMUM_DHCP_PACKET_SIZE 282
4927static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4928				    struct sk_buff *skb)
4929{
4930	struct e1000_hw *hw =  &adapter->hw;
4931	u16 length, offset;
4932
4933	if (vlan_tx_tag_present(skb)) {
4934		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4935		    (adapter->hw.mng_cookie.status &
4936			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4937			return 0;
4938	}
4939
4940	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4941		return 0;
4942
4943	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4944		return 0;
4945
4946	{
4947		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4948		struct udphdr *udp;
4949
4950		if (ip->protocol != IPPROTO_UDP)
4951			return 0;
4952
4953		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4954		if (ntohs(udp->dest) != 67)
4955			return 0;
4956
4957		offset = (u8 *)udp + 8 - skb->data;
4958		length = skb->len - offset;
4959		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4960	}
4961
4962	return 0;
4963}
4964
4965static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4966{
4967	struct e1000_adapter *adapter = tx_ring->adapter;
4968
4969	netif_stop_queue(adapter->netdev);
4970	/*
4971	 * Herbert's original patch had:
4972	 *  smp_mb__after_netif_stop_queue();
4973	 * but since that doesn't exist yet, just open code it.
4974	 */
4975	smp_mb();
4976
4977	/*
4978	 * We need to check again in a case another CPU has just
4979	 * made room available.
4980	 */
4981	if (e1000_desc_unused(tx_ring) < size)
4982		return -EBUSY;
4983
4984	/* A reprieve! */
4985	netif_start_queue(adapter->netdev);
4986	++adapter->restart_queue;
4987	return 0;
4988}
4989
4990static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4991{
4992	BUG_ON(size > tx_ring->count);
4993
4994	if (e1000_desc_unused(tx_ring) >= size)
4995		return 0;
4996	return __e1000_maybe_stop_tx(tx_ring, size);
4997}
4998
4999static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5000				    struct net_device *netdev)
5001{
5002	struct e1000_adapter *adapter = netdev_priv(netdev);
5003	struct e1000_ring *tx_ring = adapter->tx_ring;
5004	unsigned int first;
5005	unsigned int tx_flags = 0;
5006	unsigned int len = skb_headlen(skb);
5007	unsigned int nr_frags;
5008	unsigned int mss;
5009	int count = 0;
5010	int tso;
5011	unsigned int f;
 
5012
5013	if (test_bit(__E1000_DOWN, &adapter->state)) {
5014		dev_kfree_skb_any(skb);
5015		return NETDEV_TX_OK;
5016	}
5017
5018	if (skb->len <= 0) {
5019		dev_kfree_skb_any(skb);
5020		return NETDEV_TX_OK;
5021	}
5022
 
 
 
 
 
 
5023	mss = skb_shinfo(skb)->gso_size;
5024	if (mss) {
5025		u8 hdr_len;
5026
5027		/*
5028		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5029		 * points to just header, pull a few bytes of payload from
5030		 * frags into skb->data
5031		 */
5032		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5033		/*
5034		 * we do this workaround for ES2LAN, but it is un-necessary,
5035		 * avoiding it could save a lot of cycles
5036		 */
5037		if (skb->data_len && (hdr_len == len)) {
5038			unsigned int pull_size;
5039
5040			pull_size = min_t(unsigned int, 4, skb->data_len);
5041			if (!__pskb_pull_tail(skb, pull_size)) {
5042				e_err("__pskb_pull_tail failed.\n");
5043				dev_kfree_skb_any(skb);
5044				return NETDEV_TX_OK;
5045			}
5046			len = skb_headlen(skb);
5047		}
5048	}
5049
5050	/* reserve a descriptor for the offload context */
5051	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5052		count++;
5053	count++;
5054
5055	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5056
5057	nr_frags = skb_shinfo(skb)->nr_frags;
5058	for (f = 0; f < nr_frags; f++)
5059		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5060				      adapter->tx_fifo_limit);
5061
5062	if (adapter->hw.mac.tx_pkt_filtering)
5063		e1000_transfer_dhcp_info(adapter, skb);
5064
5065	/*
5066	 * need: count + 2 desc gap to keep tail from touching
5067	 * head, otherwise try next time
5068	 */
5069	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5070		return NETDEV_TX_BUSY;
5071
5072	if (vlan_tx_tag_present(skb)) {
5073		tx_flags |= E1000_TX_FLAGS_VLAN;
5074		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5075	}
5076
5077	first = tx_ring->next_to_use;
5078
5079	tso = e1000_tso(tx_ring, skb);
5080	if (tso < 0) {
5081		dev_kfree_skb_any(skb);
5082		return NETDEV_TX_OK;
5083	}
5084
5085	if (tso)
5086		tx_flags |= E1000_TX_FLAGS_TSO;
5087	else if (e1000_tx_csum(tx_ring, skb))
5088		tx_flags |= E1000_TX_FLAGS_CSUM;
5089
5090	/*
5091	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5092	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5093	 * no longer assume, we must.
5094	 */
5095	if (skb->protocol == htons(ETH_P_IP))
5096		tx_flags |= E1000_TX_FLAGS_IPV4;
5097
5098	if (unlikely(skb->no_fcs))
5099		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5100
5101	/* if count is 0 then mapping error has occurred */
5102	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5103			     nr_frags);
5104	if (count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
5105		skb_tx_timestamp(skb);
5106
5107		netdev_sent_queue(netdev, skb->len);
5108		e1000_tx_queue(tx_ring, tx_flags, count);
5109		/* Make sure there is space in the ring for the next send. */
5110		e1000_maybe_stop_tx(tx_ring,
5111				    (MAX_SKB_FRAGS *
5112				     DIV_ROUND_UP(PAGE_SIZE,
5113						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5114	} else {
5115		dev_kfree_skb_any(skb);
5116		tx_ring->buffer_info[first].time_stamp = 0;
5117		tx_ring->next_to_use = first;
5118	}
5119
5120	return NETDEV_TX_OK;
5121}
5122
5123/**
5124 * e1000_tx_timeout - Respond to a Tx Hang
5125 * @netdev: network interface device structure
5126 **/
5127static void e1000_tx_timeout(struct net_device *netdev)
5128{
5129	struct e1000_adapter *adapter = netdev_priv(netdev);
5130
5131	/* Do the reset outside of interrupt context */
5132	adapter->tx_timeout_count++;
5133	schedule_work(&adapter->reset_task);
5134}
5135
5136static void e1000_reset_task(struct work_struct *work)
5137{
5138	struct e1000_adapter *adapter;
5139	adapter = container_of(work, struct e1000_adapter, reset_task);
5140
5141	/* don't run the task if already down */
5142	if (test_bit(__E1000_DOWN, &adapter->state))
5143		return;
5144
5145	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5147		e1000e_dump(adapter);
5148		e_err("Reset adapter\n");
5149	}
5150	e1000e_reinit_locked(adapter);
5151}
5152
5153/**
5154 * e1000_get_stats64 - Get System Network Statistics
5155 * @netdev: network interface device structure
5156 * @stats: rtnl_link_stats64 pointer
5157 *
5158 * Returns the address of the device statistics structure.
5159 **/
5160struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5161                                             struct rtnl_link_stats64 *stats)
5162{
5163	struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5166	spin_lock(&adapter->stats64_lock);
5167	e1000e_update_stats(adapter);
5168	/* Fill out the OS statistics structure */
5169	stats->rx_bytes = adapter->stats.gorc;
5170	stats->rx_packets = adapter->stats.gprc;
5171	stats->tx_bytes = adapter->stats.gotc;
5172	stats->tx_packets = adapter->stats.gptc;
5173	stats->multicast = adapter->stats.mprc;
5174	stats->collisions = adapter->stats.colc;
5175
5176	/* Rx Errors */
5177
5178	/*
5179	 * RLEC on some newer hardware can be incorrect so build
5180	 * our own version based on RUC and ROC
5181	 */
5182	stats->rx_errors = adapter->stats.rxerrc +
5183		adapter->stats.crcerrs + adapter->stats.algnerrc +
5184		adapter->stats.ruc + adapter->stats.roc +
5185		adapter->stats.cexterr;
5186	stats->rx_length_errors = adapter->stats.ruc +
5187					      adapter->stats.roc;
5188	stats->rx_crc_errors = adapter->stats.crcerrs;
5189	stats->rx_frame_errors = adapter->stats.algnerrc;
5190	stats->rx_missed_errors = adapter->stats.mpc;
5191
5192	/* Tx Errors */
5193	stats->tx_errors = adapter->stats.ecol +
5194				       adapter->stats.latecol;
5195	stats->tx_aborted_errors = adapter->stats.ecol;
5196	stats->tx_window_errors = adapter->stats.latecol;
5197	stats->tx_carrier_errors = adapter->stats.tncrs;
5198
5199	/* Tx Dropped needs to be maintained elsewhere */
5200
5201	spin_unlock(&adapter->stats64_lock);
5202	return stats;
5203}
5204
5205/**
5206 * e1000_change_mtu - Change the Maximum Transfer Unit
5207 * @netdev: network interface device structure
5208 * @new_mtu: new value for maximum frame size
5209 *
5210 * Returns 0 on success, negative on failure
5211 **/
5212static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5216
5217	/* Jumbo frame support */
5218	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5219	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5220		e_err("Jumbo Frames not supported.\n");
5221		return -EINVAL;
5222	}
5223
5224	/* Supported frame sizes */
5225	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5226	    (max_frame > adapter->max_hw_frame_size)) {
5227		e_err("Unsupported MTU setting\n");
5228		return -EINVAL;
5229	}
5230
5231	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5232	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5233	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5234	    (new_mtu > ETH_DATA_LEN)) {
5235		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5236		return -EINVAL;
5237	}
5238
5239	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5240		usleep_range(1000, 2000);
5241	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5242	adapter->max_frame_size = max_frame;
5243	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5244	netdev->mtu = new_mtu;
 
 
 
5245	if (netif_running(netdev))
5246		e1000e_down(adapter);
5247
5248	/*
5249	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5250	 * means we reserve 2 more, this pushes us to allocate from the next
5251	 * larger slab size.
5252	 * i.e. RXBUFFER_2048 --> size-4096 slab
5253	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5254	 * fragmented skbs
5255	 */
5256
5257	if (max_frame <= 2048)
5258		adapter->rx_buffer_len = 2048;
5259	else
5260		adapter->rx_buffer_len = 4096;
5261
5262	/* adjust allocation if LPE protects us, and we aren't using SBP */
5263	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5264	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5265		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5266					 + ETH_FCS_LEN;
5267
5268	if (netif_running(netdev))
5269		e1000e_up(adapter);
5270	else
5271		e1000e_reset(adapter);
5272
 
 
5273	clear_bit(__E1000_RESETTING, &adapter->state);
5274
5275	return 0;
5276}
5277
5278static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5279			   int cmd)
5280{
5281	struct e1000_adapter *adapter = netdev_priv(netdev);
5282	struct mii_ioctl_data *data = if_mii(ifr);
5283
5284	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5285		return -EOPNOTSUPP;
5286
5287	switch (cmd) {
5288	case SIOCGMIIPHY:
5289		data->phy_id = adapter->hw.phy.addr;
5290		break;
5291	case SIOCGMIIREG:
5292		e1000_phy_read_status(adapter);
5293
5294		switch (data->reg_num & 0x1F) {
5295		case MII_BMCR:
5296			data->val_out = adapter->phy_regs.bmcr;
5297			break;
5298		case MII_BMSR:
5299			data->val_out = adapter->phy_regs.bmsr;
5300			break;
5301		case MII_PHYSID1:
5302			data->val_out = (adapter->hw.phy.id >> 16);
5303			break;
5304		case MII_PHYSID2:
5305			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5306			break;
5307		case MII_ADVERTISE:
5308			data->val_out = adapter->phy_regs.advertise;
5309			break;
5310		case MII_LPA:
5311			data->val_out = adapter->phy_regs.lpa;
5312			break;
5313		case MII_EXPANSION:
5314			data->val_out = adapter->phy_regs.expansion;
5315			break;
5316		case MII_CTRL1000:
5317			data->val_out = adapter->phy_regs.ctrl1000;
5318			break;
5319		case MII_STAT1000:
5320			data->val_out = adapter->phy_regs.stat1000;
5321			break;
5322		case MII_ESTATUS:
5323			data->val_out = adapter->phy_regs.estatus;
5324			break;
5325		default:
5326			return -EIO;
5327		}
5328		break;
5329	case SIOCSMIIREG:
5330	default:
5331		return -EOPNOTSUPP;
5332	}
5333	return 0;
5334}
5335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5336static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5337{
5338	switch (cmd) {
5339	case SIOCGMIIPHY:
5340	case SIOCGMIIREG:
5341	case SIOCSMIIREG:
5342		return e1000_mii_ioctl(netdev, ifr, cmd);
 
 
 
 
5343	default:
5344		return -EOPNOTSUPP;
5345	}
5346}
5347
5348static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5349{
5350	struct e1000_hw *hw = &adapter->hw;
5351	u32 i, mac_reg;
5352	u16 phy_reg, wuc_enable;
5353	int retval = 0;
5354
5355	/* copy MAC RARs to PHY RARs */
5356	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5357
5358	retval = hw->phy.ops.acquire(hw);
5359	if (retval) {
5360		e_err("Could not acquire PHY\n");
5361		return retval;
5362	}
5363
5364	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5365	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5366	if (retval)
5367		goto release;
5368
5369	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5370	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5371		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5372		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5373					   (u16)(mac_reg & 0xFFFF));
5374		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5375					   (u16)((mac_reg >> 16) & 0xFFFF));
5376	}
5377
5378	/* configure PHY Rx Control register */
5379	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5380	mac_reg = er32(RCTL);
5381	if (mac_reg & E1000_RCTL_UPE)
5382		phy_reg |= BM_RCTL_UPE;
5383	if (mac_reg & E1000_RCTL_MPE)
5384		phy_reg |= BM_RCTL_MPE;
5385	phy_reg &= ~(BM_RCTL_MO_MASK);
5386	if (mac_reg & E1000_RCTL_MO_3)
5387		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5388				<< BM_RCTL_MO_SHIFT);
5389	if (mac_reg & E1000_RCTL_BAM)
5390		phy_reg |= BM_RCTL_BAM;
5391	if (mac_reg & E1000_RCTL_PMCF)
5392		phy_reg |= BM_RCTL_PMCF;
5393	mac_reg = er32(CTRL);
5394	if (mac_reg & E1000_CTRL_RFCE)
5395		phy_reg |= BM_RCTL_RFCE;
5396	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5397
 
 
 
 
5398	/* enable PHY wakeup in MAC register */
5399	ew32(WUFC, wufc);
5400	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
 
5401
5402	/* configure and enable PHY wakeup in PHY registers */
5403	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5404	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5405
5406	/* activate PHY wakeup */
5407	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5408	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5409	if (retval)
5410		e_err("Could not set PHY Host Wakeup bit\n");
5411release:
5412	hw->phy.ops.release(hw);
5413
5414	return retval;
5415}
5416
5417static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5418			    bool runtime)
5419{
5420	struct net_device *netdev = pci_get_drvdata(pdev);
5421	struct e1000_adapter *adapter = netdev_priv(netdev);
5422	struct e1000_hw *hw = &adapter->hw;
5423	u32 ctrl, ctrl_ext, rctl, status;
5424	/* Runtime suspend should only enable wakeup for link changes */
5425	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5426	int retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5427
5428	netif_device_detach(netdev);
5429
5430	if (netif_running(netdev)) {
5431		int count = E1000_CHECK_RESET_COUNT;
5432
5433		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5434			usleep_range(10000, 20000);
5435
5436		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5437		e1000e_down(adapter);
 
 
5438		e1000_free_irq(adapter);
5439	}
5440	e1000e_reset_interrupt_capability(adapter);
5441
5442	retval = pci_save_state(pdev);
5443	if (retval)
5444		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
5445
5446	status = er32(STATUS);
5447	if (status & E1000_STATUS_LU)
5448		wufc &= ~E1000_WUFC_LNKC;
5449
5450	if (wufc) {
5451		e1000_setup_rctl(adapter);
5452		e1000e_set_rx_mode(netdev);
5453
5454		/* turn on all-multi mode if wake on multicast is enabled */
5455		if (wufc & E1000_WUFC_MC) {
5456			rctl = er32(RCTL);
5457			rctl |= E1000_RCTL_MPE;
5458			ew32(RCTL, rctl);
5459		}
5460
5461		ctrl = er32(CTRL);
5462		/* advertise wake from D3Cold */
5463		#define E1000_CTRL_ADVD3WUC 0x00100000
5464		/* phy power management enable */
5465		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5466		ctrl |= E1000_CTRL_ADVD3WUC;
5467		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5468			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5469		ew32(CTRL, ctrl);
5470
5471		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5472		    adapter->hw.phy.media_type ==
5473		    e1000_media_type_internal_serdes) {
5474			/* keep the laser running in D3 */
5475			ctrl_ext = er32(CTRL_EXT);
5476			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5477			ew32(CTRL_EXT, ctrl_ext);
5478		}
5479
 
 
 
5480		if (adapter->flags & FLAG_IS_ICH)
5481			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5482
5483		/* Allow time for pending master requests to run */
5484		e1000e_disable_pcie_master(&adapter->hw);
5485
5486		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5487			/* enable wakeup by the PHY */
5488			retval = e1000_init_phy_wakeup(adapter, wufc);
5489			if (retval)
5490				return retval;
5491		} else {
5492			/* enable wakeup by the MAC */
5493			ew32(WUFC, wufc);
5494			ew32(WUC, E1000_WUC_PME_EN);
5495		}
5496	} else {
5497		ew32(WUC, 0);
5498		ew32(WUFC, 0);
 
 
5499	}
5500
5501	*enable_wake = !!wufc;
 
 
 
 
 
 
 
 
 
 
 
5502
5503	/* make sure adapter isn't asleep if manageability is enabled */
5504	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5505	    (hw->mac.ops.check_mng_mode(hw)))
5506		*enable_wake = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5507
5508	if (adapter->hw.phy.type == e1000_phy_igp_3)
5509		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
 
 
 
 
5510
5511	/*
5512	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5513	 * would have already happened in close and is redundant.
5514	 */
5515	e1000e_release_hw_control(adapter);
5516
5517	pci_disable_device(pdev);
5518
5519	return 0;
5520}
5521
5522static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5523{
5524	if (sleep && wake) {
5525		pci_prepare_to_sleep(pdev);
5526		return;
5527	}
5528
5529	pci_wake_from_d3(pdev, wake);
5530	pci_set_power_state(pdev, PCI_D3hot);
5531}
5532
5533static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5534                                    bool wake)
5535{
5536	struct net_device *netdev = pci_get_drvdata(pdev);
5537	struct e1000_adapter *adapter = netdev_priv(netdev);
5538
5539	/*
5540	 * The pci-e switch on some quad port adapters will report a
5541	 * correctable error when the MAC transitions from D0 to D3.  To
5542	 * prevent this we need to mask off the correctable errors on the
5543	 * downstream port of the pci-e switch.
 
 
 
 
5544	 */
5545	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5546		struct pci_dev *us_dev = pdev->bus->self;
5547		int pos = pci_pcie_cap(us_dev);
5548		u16 devctl;
5549
5550		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5551		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5552		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
 
 
 
5553
5554		e1000_power_off(pdev, sleep, wake);
 
5555
5556		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5557	} else {
5558		e1000_power_off(pdev, sleep, wake);
5559	}
 
 
5560}
5561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5562#ifdef CONFIG_PCIEASPM
5563static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5564{
5565	pci_disable_link_state_locked(pdev, state);
5566}
5567#else
5568static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5569{
5570	int pos;
5571	u16 reg16;
5572
5573	/*
5574	 * Both device and parent should have the same ASPM setting.
5575	 * Disable ASPM in downstream component first and then upstream.
5576	 */
5577	pos = pci_pcie_cap(pdev);
5578	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5579	reg16 &= ~state;
5580	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5581
5582	if (!pdev->bus->self)
5583		return;
 
5584
5585	pos = pci_pcie_cap(pdev->bus->self);
5586	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5587	reg16 &= ~state;
5588	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
 
 
 
 
5589}
5590#endif
 
 
 
 
 
 
 
 
5591static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5592{
5593	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5594		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5595		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5596
5597	__e1000e_disable_aspm(pdev, state);
5598}
5599
5600#ifdef CONFIG_PM
5601static bool e1000e_pm_ready(struct e1000_adapter *adapter)
 
 
 
 
 
 
 
5602{
5603	return !!adapter->tx_ring->buffer_info;
5604}
5605
 
5606static int __e1000_resume(struct pci_dev *pdev)
5607{
5608	struct net_device *netdev = pci_get_drvdata(pdev);
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610	struct e1000_hw *hw = &adapter->hw;
5611	u16 aspm_disable_flag = 0;
5612	u32 err;
5613
5614	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5615		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5616	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5617		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5618	if (aspm_disable_flag)
5619		e1000e_disable_aspm(pdev, aspm_disable_flag);
5620
5621	pci_set_power_state(pdev, PCI_D0);
5622	pci_restore_state(pdev);
5623	pci_save_state(pdev);
5624
5625	e1000e_set_interrupt_capability(adapter);
5626	if (netif_running(netdev)) {
5627		err = e1000_request_irq(adapter);
5628		if (err)
5629			return err;
5630	}
5631
5632	if (hw->mac.type >= e1000_pch2lan)
5633		e1000_resume_workarounds_pchlan(&adapter->hw);
5634
5635	e1000e_power_up_phy(adapter);
5636
5637	/* report the system wakeup cause from S3/S4 */
5638	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5639		u16 phy_data;
5640
5641		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5642		if (phy_data) {
5643			e_info("PHY Wakeup cause - %s\n",
5644				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5645				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5646				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5647				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5648				phy_data & E1000_WUS_LNKC ?
5649				"Link Status Change" : "other");
5650		}
5651		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5652	} else {
5653		u32 wus = er32(WUS);
 
5654		if (wus) {
5655			e_info("MAC Wakeup cause - %s\n",
5656				wus & E1000_WUS_EX ? "Unicast Packet" :
5657				wus & E1000_WUS_MC ? "Multicast Packet" :
5658				wus & E1000_WUS_BC ? "Broadcast Packet" :
5659				wus & E1000_WUS_MAG ? "Magic Packet" :
5660				wus & E1000_WUS_LNKC ? "Link Status Change" :
5661				"other");
5662		}
5663		ew32(WUS, ~0);
5664	}
5665
5666	e1000e_reset(adapter);
5667
5668	e1000_init_manageability_pt(adapter);
5669
5670	if (netif_running(netdev))
5671		e1000e_up(adapter);
5672
5673	netif_device_attach(netdev);
5674
5675	/*
5676	 * If the controller has AMT, do not set DRV_LOAD until the interface
5677	 * is up.  For all other cases, let the f/w know that the h/w is now
5678	 * under the control of the driver.
5679	 */
5680	if (!(adapter->flags & FLAG_HAS_AMT))
5681		e1000e_get_hw_control(adapter);
5682
5683	return 0;
5684}
5685
5686#ifdef CONFIG_PM_SLEEP
5687static int e1000_suspend(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5688{
5689	struct pci_dev *pdev = to_pci_dev(dev);
5690	int retval;
5691	bool wake;
 
 
 
5692
5693	retval = __e1000_shutdown(pdev, &wake, false);
5694	if (!retval)
5695		e1000_complete_shutdown(pdev, true, wake);
5696
5697	return retval;
5698}
5699
5700static int e1000_resume(struct device *dev)
5701{
5702	struct pci_dev *pdev = to_pci_dev(dev);
5703	struct net_device *netdev = pci_get_drvdata(pdev);
5704	struct e1000_adapter *adapter = netdev_priv(netdev);
5705
5706	if (e1000e_pm_ready(adapter))
5707		adapter->idle_check = true;
 
5708
5709	return __e1000_resume(pdev);
5710}
5711#endif /* CONFIG_PM_SLEEP */
5712
5713#ifdef CONFIG_PM_RUNTIME
5714static int e1000_runtime_suspend(struct device *dev)
5715{
5716	struct pci_dev *pdev = to_pci_dev(dev);
5717	struct net_device *netdev = pci_get_drvdata(pdev);
5718	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5719
5720	if (e1000e_pm_ready(adapter)) {
5721		bool wake;
5722
5723		__e1000_shutdown(pdev, &wake, true);
 
 
5724	}
5725
5726	return 0;
5727}
5728
5729static int e1000_idle(struct device *dev)
5730{
5731	struct pci_dev *pdev = to_pci_dev(dev);
5732	struct net_device *netdev = pci_get_drvdata(pdev);
5733	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5734
5735	if (!e1000e_pm_ready(adapter))
5736		return 0;
 
5737
5738	if (adapter->idle_check) {
5739		adapter->idle_check = false;
5740		if (!e1000e_has_link(adapter))
5741			pm_schedule_suspend(dev, MSEC_PER_SEC);
5742	}
5743
5744	return -EBUSY;
5745}
5746
5747static int e1000_runtime_resume(struct device *dev)
5748{
5749	struct pci_dev *pdev = to_pci_dev(dev);
5750	struct net_device *netdev = pci_get_drvdata(pdev);
5751	struct e1000_adapter *adapter = netdev_priv(netdev);
5752
5753	if (!e1000e_pm_ready(adapter))
5754		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755
5756	adapter->idle_check = !dev->power.runtime_auto;
5757	return __e1000_resume(pdev);
5758}
5759#endif /* CONFIG_PM_RUNTIME */
5760#endif /* CONFIG_PM */
5761
5762static void e1000_shutdown(struct pci_dev *pdev)
5763{
5764	bool wake = false;
5765
5766	__e1000_shutdown(pdev, &wake, false);
5767
5768	if (system_state == SYSTEM_POWER_OFF)
5769		e1000_complete_shutdown(pdev, false, wake);
5770}
5771
5772#ifdef CONFIG_NET_POLL_CONTROLLER
5773
5774static irqreturn_t e1000_intr_msix(int irq, void *data)
5775{
5776	struct net_device *netdev = data;
5777	struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779	if (adapter->msix_entries) {
5780		int vector, msix_irq;
5781
5782		vector = 0;
5783		msix_irq = adapter->msix_entries[vector].vector;
5784		disable_irq(msix_irq);
5785		e1000_intr_msix_rx(msix_irq, netdev);
5786		enable_irq(msix_irq);
5787
5788		vector++;
5789		msix_irq = adapter->msix_entries[vector].vector;
5790		disable_irq(msix_irq);
5791		e1000_intr_msix_tx(msix_irq, netdev);
5792		enable_irq(msix_irq);
5793
5794		vector++;
5795		msix_irq = adapter->msix_entries[vector].vector;
5796		disable_irq(msix_irq);
5797		e1000_msix_other(msix_irq, netdev);
5798		enable_irq(msix_irq);
5799	}
5800
5801	return IRQ_HANDLED;
5802}
5803
5804/*
 
 
 
5805 * Polling 'interrupt' - used by things like netconsole to send skbs
5806 * without having to re-enable interrupts. It's not called while
5807 * the interrupt routine is executing.
5808 */
5809static void e1000_netpoll(struct net_device *netdev)
5810{
5811	struct e1000_adapter *adapter = netdev_priv(netdev);
5812
5813	switch (adapter->int_mode) {
5814	case E1000E_INT_MODE_MSIX:
5815		e1000_intr_msix(adapter->pdev->irq, netdev);
5816		break;
5817	case E1000E_INT_MODE_MSI:
5818		disable_irq(adapter->pdev->irq);
5819		e1000_intr_msi(adapter->pdev->irq, netdev);
5820		enable_irq(adapter->pdev->irq);
5821		break;
5822	default: /* E1000E_INT_MODE_LEGACY */
5823		disable_irq(adapter->pdev->irq);
5824		e1000_intr(adapter->pdev->irq, netdev);
5825		enable_irq(adapter->pdev->irq);
5826		break;
5827	}
5828}
5829#endif
5830
5831/**
5832 * e1000_io_error_detected - called when PCI error is detected
5833 * @pdev: Pointer to PCI device
5834 * @state: The current pci connection state
5835 *
5836 * This function is called after a PCI bus error affecting
5837 * this device has been detected.
5838 */
5839static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5840						pci_channel_state_t state)
5841{
5842	struct net_device *netdev = pci_get_drvdata(pdev);
5843	struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845	netif_device_detach(netdev);
5846
5847	if (state == pci_channel_io_perm_failure)
5848		return PCI_ERS_RESULT_DISCONNECT;
5849
5850	if (netif_running(netdev))
5851		e1000e_down(adapter);
5852	pci_disable_device(pdev);
5853
5854	/* Request a slot slot reset. */
5855	return PCI_ERS_RESULT_NEED_RESET;
5856}
5857
5858/**
5859 * e1000_io_slot_reset - called after the pci bus has been reset.
5860 * @pdev: Pointer to PCI device
5861 *
5862 * Restart the card from scratch, as if from a cold-boot. Implementation
5863 * resembles the first-half of the e1000_resume routine.
5864 */
5865static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5866{
5867	struct net_device *netdev = pci_get_drvdata(pdev);
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869	struct e1000_hw *hw = &adapter->hw;
5870	u16 aspm_disable_flag = 0;
5871	int err;
5872	pci_ers_result_t result;
5873
5874	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5875		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5876	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5877		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5878	if (aspm_disable_flag)
5879		e1000e_disable_aspm(pdev, aspm_disable_flag);
5880
5881	err = pci_enable_device_mem(pdev);
5882	if (err) {
5883		dev_err(&pdev->dev,
5884			"Cannot re-enable PCI device after reset.\n");
5885		result = PCI_ERS_RESULT_DISCONNECT;
5886	} else {
5887		pci_set_master(pdev);
5888		pdev->state_saved = true;
5889		pci_restore_state(pdev);
 
5890
5891		pci_enable_wake(pdev, PCI_D3hot, 0);
5892		pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894		e1000e_reset(adapter);
5895		ew32(WUS, ~0);
5896		result = PCI_ERS_RESULT_RECOVERED;
5897	}
5898
5899	pci_cleanup_aer_uncorrect_error_status(pdev);
5900
5901	return result;
5902}
5903
5904/**
5905 * e1000_io_resume - called when traffic can start flowing again.
5906 * @pdev: Pointer to PCI device
5907 *
5908 * This callback is called when the error recovery driver tells us that
5909 * its OK to resume normal operation. Implementation resembles the
5910 * second-half of the e1000_resume routine.
5911 */
5912static void e1000_io_resume(struct pci_dev *pdev)
5913{
5914	struct net_device *netdev = pci_get_drvdata(pdev);
5915	struct e1000_adapter *adapter = netdev_priv(netdev);
5916
5917	e1000_init_manageability_pt(adapter);
5918
5919	if (netif_running(netdev)) {
5920		if (e1000e_up(adapter)) {
5921			dev_err(&pdev->dev,
5922				"can't bring device back up after reset\n");
5923			return;
5924		}
5925	}
5926
5927	netif_device_attach(netdev);
5928
5929	/*
5930	 * If the controller has AMT, do not set DRV_LOAD until the interface
5931	 * is up.  For all other cases, let the f/w know that the h/w is now
5932	 * under the control of the driver.
5933	 */
5934	if (!(adapter->flags & FLAG_HAS_AMT))
5935		e1000e_get_hw_control(adapter);
5936
5937}
5938
5939static void e1000_print_device_info(struct e1000_adapter *adapter)
5940{
5941	struct e1000_hw *hw = &adapter->hw;
5942	struct net_device *netdev = adapter->netdev;
5943	u32 ret_val;
5944	u8 pba_str[E1000_PBANUM_LENGTH];
5945
5946	/* print bus type/speed/width info */
5947	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5948	       /* bus width */
5949	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5950	        "Width x1"),
5951	       /* MAC address */
5952	       netdev->dev_addr);
5953	e_info("Intel(R) PRO/%s Network Connection\n",
5954	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5955	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5956						E1000_PBANUM_LENGTH);
5957	if (ret_val)
5958		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5959	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5960	       hw->mac.type, hw->phy.type, pba_str);
5961}
5962
5963static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5964{
5965	struct e1000_hw *hw = &adapter->hw;
5966	int ret_val;
5967	u16 buf = 0;
5968
5969	if (hw->mac.type != e1000_82573)
5970		return;
5971
5972	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5973	le16_to_cpus(&buf);
5974	if (!ret_val && (!(buf & (1 << 0)))) {
5975		/* Deep Smart Power Down (DSPD) */
5976		dev_warn(&adapter->pdev->dev,
5977			 "Warning: detected DSPD enabled in EEPROM\n");
5978	}
5979}
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981static int e1000_set_features(struct net_device *netdev,
5982			      netdev_features_t features)
5983{
5984	struct e1000_adapter *adapter = netdev_priv(netdev);
5985	netdev_features_t changed = features ^ netdev->features;
5986
5987	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5988		adapter->flags |= FLAG_TSO_FORCE;
5989
5990	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5991			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5992			 NETIF_F_RXALL)))
5993		return 0;
5994
5995	if (changed & NETIF_F_RXFCS) {
5996		if (features & NETIF_F_RXFCS) {
5997			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
5998		} else {
5999			/* We need to take it back to defaults, which might mean
6000			 * stripping is still disabled at the adapter level.
6001			 */
6002			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6003				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6004			else
6005				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6006		}
6007	}
6008
6009	netdev->features = features;
6010
6011	if (netif_running(netdev))
6012		e1000e_reinit_locked(adapter);
6013	else
6014		e1000e_reset(adapter);
6015
6016	return 0;
6017}
6018
6019static const struct net_device_ops e1000e_netdev_ops = {
6020	.ndo_open		= e1000_open,
6021	.ndo_stop		= e1000_close,
6022	.ndo_start_xmit		= e1000_xmit_frame,
6023	.ndo_get_stats64	= e1000e_get_stats64,
6024	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6025	.ndo_set_mac_address	= e1000_set_mac,
6026	.ndo_change_mtu		= e1000_change_mtu,
6027	.ndo_do_ioctl		= e1000_ioctl,
6028	.ndo_tx_timeout		= e1000_tx_timeout,
6029	.ndo_validate_addr	= eth_validate_addr,
6030
6031	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6032	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6033#ifdef CONFIG_NET_POLL_CONTROLLER
6034	.ndo_poll_controller	= e1000_netpoll,
6035#endif
6036	.ndo_set_features = e1000_set_features,
 
 
6037};
6038
6039/**
6040 * e1000_probe - Device Initialization Routine
6041 * @pdev: PCI device information struct
6042 * @ent: entry in e1000_pci_tbl
6043 *
6044 * Returns 0 on success, negative on failure
6045 *
6046 * e1000_probe initializes an adapter identified by a pci_dev structure.
6047 * The OS initialization, configuring of the adapter private structure,
6048 * and a hardware reset occur.
6049 **/
6050static int __devinit e1000_probe(struct pci_dev *pdev,
6051				 const struct pci_device_id *ent)
6052{
6053	struct net_device *netdev;
6054	struct e1000_adapter *adapter;
6055	struct e1000_hw *hw;
6056	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6057	resource_size_t mmio_start, mmio_len;
6058	resource_size_t flash_start, flash_len;
6059	static int cards_found;
6060	u16 aspm_disable_flag = 0;
6061	int i, err, pci_using_dac;
6062	u16 eeprom_data = 0;
6063	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
6064
6065	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6066		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6067	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6068		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6069	if (aspm_disable_flag)
6070		e1000e_disable_aspm(pdev, aspm_disable_flag);
6071
6072	err = pci_enable_device_mem(pdev);
6073	if (err)
6074		return err;
6075
6076	pci_using_dac = 0;
6077	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6078	if (!err) {
6079		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6080		if (!err)
6081			pci_using_dac = 1;
6082	} else {
6083		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6084		if (err) {
6085			err = dma_set_coherent_mask(&pdev->dev,
6086						    DMA_BIT_MASK(32));
6087			if (err) {
6088				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6089				goto err_dma;
6090			}
6091		}
6092	}
6093
6094	err = pci_request_selected_regions_exclusive(pdev,
6095	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6096	                                  e1000e_driver_name);
6097	if (err)
6098		goto err_pci_reg;
6099
6100	/* AER (Advanced Error Reporting) hooks */
6101	pci_enable_pcie_error_reporting(pdev);
6102
6103	pci_set_master(pdev);
6104	/* PCI config space info */
6105	err = pci_save_state(pdev);
6106	if (err)
6107		goto err_alloc_etherdev;
6108
6109	err = -ENOMEM;
6110	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6111	if (!netdev)
6112		goto err_alloc_etherdev;
6113
6114	SET_NETDEV_DEV(netdev, &pdev->dev);
6115
6116	netdev->irq = pdev->irq;
6117
6118	pci_set_drvdata(pdev, netdev);
6119	adapter = netdev_priv(netdev);
6120	hw = &adapter->hw;
6121	adapter->netdev = netdev;
6122	adapter->pdev = pdev;
6123	adapter->ei = ei;
6124	adapter->pba = ei->pba;
6125	adapter->flags = ei->flags;
6126	adapter->flags2 = ei->flags2;
6127	adapter->hw.adapter = adapter;
6128	adapter->hw.mac.type = ei->mac;
6129	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6130	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6131
6132	mmio_start = pci_resource_start(pdev, 0);
6133	mmio_len = pci_resource_len(pdev, 0);
6134
6135	err = -EIO;
6136	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6137	if (!adapter->hw.hw_addr)
6138		goto err_ioremap;
6139
6140	if ((adapter->flags & FLAG_HAS_FLASH) &&
6141	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6142		flash_start = pci_resource_start(pdev, 1);
6143		flash_len = pci_resource_len(pdev, 1);
6144		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6145		if (!adapter->hw.flash_address)
6146			goto err_flashmap;
6147	}
6148
 
 
 
 
6149	/* construct the net_device struct */
6150	netdev->netdev_ops		= &e1000e_netdev_ops;
6151	e1000e_set_ethtool_ops(netdev);
6152	netdev->watchdog_timeo		= 5 * HZ;
6153	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6154	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6155
6156	netdev->mem_start = mmio_start;
6157	netdev->mem_end = mmio_start + mmio_len;
6158
6159	adapter->bd_number = cards_found++;
6160
6161	e1000e_check_options(adapter);
6162
6163	/* setup adapter struct */
6164	err = e1000_sw_init(adapter);
6165	if (err)
6166		goto err_sw_init;
6167
6168	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6169	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6170	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6171
6172	err = ei->get_variants(adapter);
6173	if (err)
6174		goto err_hw_init;
6175
6176	if ((adapter->flags & FLAG_IS_ICH) &&
6177	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6178		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6179
6180	hw->mac.ops.get_bus_info(&adapter->hw);
6181
6182	adapter->hw.phy.autoneg_wait_to_complete = 0;
6183
6184	/* Copper options */
6185	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6186		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6187		adapter->hw.phy.disable_polarity_correction = 0;
6188		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6189	}
6190
6191	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6192		e_info("PHY reset is blocked due to SOL/IDER session.\n");
 
6193
6194	/* Set initial default active device features */
6195	netdev->features = (NETIF_F_SG |
6196			    NETIF_F_HW_VLAN_RX |
6197			    NETIF_F_HW_VLAN_TX |
6198			    NETIF_F_TSO |
6199			    NETIF_F_TSO6 |
6200			    NETIF_F_RXHASH |
6201			    NETIF_F_RXCSUM |
6202			    NETIF_F_HW_CSUM);
6203
6204	/* Set user-changeable features (subset of all device features) */
6205	netdev->hw_features = netdev->features;
6206	netdev->hw_features |= NETIF_F_RXFCS;
6207	netdev->priv_flags |= IFF_SUPP_NOFCS;
6208	netdev->hw_features |= NETIF_F_RXALL;
6209
6210	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6211		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6212
6213	netdev->vlan_features |= (NETIF_F_SG |
6214				  NETIF_F_TSO |
6215				  NETIF_F_TSO6 |
6216				  NETIF_F_HW_CSUM);
6217
6218	netdev->priv_flags |= IFF_UNICAST_FLT;
6219
6220	if (pci_using_dac) {
6221		netdev->features |= NETIF_F_HIGHDMA;
6222		netdev->vlan_features |= NETIF_F_HIGHDMA;
6223	}
6224
 
 
 
 
 
6225	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6226		adapter->flags |= FLAG_MNG_PT_ENABLED;
6227
6228	/*
6229	 * before reading the NVM, reset the controller to
6230	 * put the device in a known good starting state
6231	 */
6232	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6233
6234	/*
6235	 * systems with ASPM and others may see the checksum fail on the first
6236	 * attempt. Let's give it a few tries
6237	 */
6238	for (i = 0;; i++) {
6239		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6240			break;
6241		if (i == 2) {
6242			e_err("The NVM Checksum Is Not Valid\n");
6243			err = -EIO;
6244			goto err_eeprom;
6245		}
6246	}
6247
6248	e1000_eeprom_checks(adapter);
6249
6250	/* copy the MAC address */
6251	if (e1000e_read_mac_addr(&adapter->hw))
6252		e_err("NVM Read Error while reading MAC address\n");
 
6253
6254	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6255	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6256
6257	if (!is_valid_ether_addr(netdev->perm_addr)) {
6258		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
 
6259		err = -EIO;
6260		goto err_eeprom;
6261	}
6262
6263	init_timer(&adapter->watchdog_timer);
6264	adapter->watchdog_timer.function = e1000_watchdog;
6265	adapter->watchdog_timer.data = (unsigned long) adapter;
6266
6267	init_timer(&adapter->phy_info_timer);
6268	adapter->phy_info_timer.function = e1000_update_phy_info;
6269	adapter->phy_info_timer.data = (unsigned long) adapter;
6270
6271	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6272	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6273	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6274	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6275	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6276
6277	/* Initialize link parameters. User can change them with ethtool */
6278	adapter->hw.mac.autoneg = 1;
6279	adapter->fc_autoneg = true;
6280	adapter->hw.fc.requested_mode = e1000_fc_default;
6281	adapter->hw.fc.current_mode = e1000_fc_default;
6282	adapter->hw.phy.autoneg_advertised = 0x2f;
6283
6284	/* ring size defaults */
6285	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6286	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6287
6288	/*
6289	 * Initial Wake on LAN setting - If APM wake is enabled in
6290	 * the EEPROM, enable the ACPI Magic Packet filter
6291	 */
6292	if (adapter->flags & FLAG_APME_IN_WUC) {
6293		/* APME bit in EEPROM is mapped to WUC.APME */
6294		eeprom_data = er32(WUC);
6295		eeprom_apme_mask = E1000_WUC_APME;
6296		if ((hw->mac.type > e1000_ich10lan) &&
6297		    (eeprom_data & E1000_WUC_PHY_WAKE))
6298			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6299	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6300		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6301		    (adapter->hw.bus.func == 1))
6302			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6303				       1, &eeprom_data);
 
6304		else
6305			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6306				       1, &eeprom_data);
 
6307	}
6308
6309	/* fetch WoL from EEPROM */
6310	if (eeprom_data & eeprom_apme_mask)
 
 
6311		adapter->eeprom_wol |= E1000_WUFC_MAG;
6312
6313	/*
6314	 * now that we have the eeprom settings, apply the special cases
6315	 * where the eeprom may be wrong or the board simply won't support
6316	 * wake on lan on a particular port
6317	 */
6318	if (!(adapter->flags & FLAG_HAS_WOL))
6319		adapter->eeprom_wol = 0;
6320
6321	/* initialize the wol settings based on the eeprom settings */
6322	adapter->wol = adapter->eeprom_wol;
6323	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 
 
 
 
6324
6325	/* save off EEPROM version number */
6326	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
 
 
 
6327
6328	/* reset the hardware with the new settings */
6329	e1000e_reset(adapter);
6330
6331	/*
6332	 * If the controller has AMT, do not set DRV_LOAD until the interface
6333	 * is up.  For all other cases, let the f/w know that the h/w is now
6334	 * under the control of the driver.
6335	 */
6336	if (!(adapter->flags & FLAG_HAS_AMT))
6337		e1000e_get_hw_control(adapter);
6338
6339	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6340	err = register_netdev(netdev);
6341	if (err)
6342		goto err_register;
6343
6344	/* carrier off reporting is important to ethtool even BEFORE open */
6345	netif_carrier_off(netdev);
6346
6347	e1000_print_device_info(adapter);
6348
6349	if (pci_dev_run_wake(pdev))
6350		pm_runtime_put_noidle(&pdev->dev);
6351
6352	return 0;
6353
6354err_register:
6355	if (!(adapter->flags & FLAG_HAS_AMT))
6356		e1000e_release_hw_control(adapter);
6357err_eeprom:
6358	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6359		e1000_phy_hw_reset(&adapter->hw);
6360err_hw_init:
6361	kfree(adapter->tx_ring);
6362	kfree(adapter->rx_ring);
6363err_sw_init:
6364	if (adapter->hw.flash_address)
6365		iounmap(adapter->hw.flash_address);
6366	e1000e_reset_interrupt_capability(adapter);
6367err_flashmap:
6368	iounmap(adapter->hw.hw_addr);
6369err_ioremap:
6370	free_netdev(netdev);
6371err_alloc_etherdev:
6372	pci_release_selected_regions(pdev,
6373	                             pci_select_bars(pdev, IORESOURCE_MEM));
6374err_pci_reg:
6375err_dma:
6376	pci_disable_device(pdev);
6377	return err;
6378}
6379
6380/**
6381 * e1000_remove - Device Removal Routine
6382 * @pdev: PCI device information struct
6383 *
6384 * e1000_remove is called by the PCI subsystem to alert the driver
6385 * that it should release a PCI device.  The could be caused by a
6386 * Hot-Plug event, or because the driver is going to be removed from
6387 * memory.
6388 **/
6389static void __devexit e1000_remove(struct pci_dev *pdev)
6390{
6391	struct net_device *netdev = pci_get_drvdata(pdev);
6392	struct e1000_adapter *adapter = netdev_priv(netdev);
6393	bool down = test_bit(__E1000_DOWN, &adapter->state);
6394
6395	/*
6396	 * The timers may be rescheduled, so explicitly disable them
 
6397	 * from being rescheduled.
6398	 */
6399	if (!down)
6400		set_bit(__E1000_DOWN, &adapter->state);
6401	del_timer_sync(&adapter->watchdog_timer);
6402	del_timer_sync(&adapter->phy_info_timer);
6403
6404	cancel_work_sync(&adapter->reset_task);
6405	cancel_work_sync(&adapter->watchdog_task);
6406	cancel_work_sync(&adapter->downshift_task);
6407	cancel_work_sync(&adapter->update_phy_task);
6408	cancel_work_sync(&adapter->print_hang_task);
6409
6410	if (!(netdev->flags & IFF_UP))
6411		e1000_power_down_phy(adapter);
 
 
 
 
 
6412
6413	/* Don't lie to e1000_close() down the road. */
6414	if (!down)
6415		clear_bit(__E1000_DOWN, &adapter->state);
6416	unregister_netdev(netdev);
6417
6418	if (pci_dev_run_wake(pdev))
6419		pm_runtime_get_noresume(&pdev->dev);
6420
6421	/*
6422	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6423	 * would have already happened in close and is redundant.
6424	 */
6425	e1000e_release_hw_control(adapter);
6426
6427	e1000e_reset_interrupt_capability(adapter);
6428	kfree(adapter->tx_ring);
6429	kfree(adapter->rx_ring);
6430
6431	iounmap(adapter->hw.hw_addr);
6432	if (adapter->hw.flash_address)
 
6433		iounmap(adapter->hw.flash_address);
6434	pci_release_selected_regions(pdev,
6435	                             pci_select_bars(pdev, IORESOURCE_MEM));
6436
6437	free_netdev(netdev);
6438
6439	/* AER disable */
6440	pci_disable_pcie_error_reporting(pdev);
6441
6442	pci_disable_device(pdev);
6443}
6444
6445/* PCI Error Recovery (ERS) */
6446static struct pci_error_handlers e1000_err_handler = {
6447	.error_detected = e1000_io_error_detected,
6448	.slot_reset = e1000_io_slot_reset,
6449	.resume = e1000_io_resume,
6450};
6451
6452static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6453	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6454	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6455	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6456	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
 
6457	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6458	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6459	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6460	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6461	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6462
6463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6467
6468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6471
6472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6473	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6475
6476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6477	  board_80003es2lan },
6478	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6479	  board_80003es2lan },
6480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6481	  board_80003es2lan },
6482	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6483	  board_80003es2lan },
6484
6485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6486	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6488	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6490	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6492	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6493
6494	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6495	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6503
6504	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6507
6508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6511
6512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6514	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6516
6517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6518	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6519
6520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6522
6523	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6524};
6525MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6526
6527#ifdef CONFIG_PM
6528static const struct dev_pm_ops e1000_pm_ops = {
6529	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6530	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6531				e1000_runtime_resume, e1000_idle)
 
 
 
 
 
 
 
6532};
6533#endif
6534
6535/* PCI Device API Driver */
6536static struct pci_driver e1000_driver = {
6537	.name     = e1000e_driver_name,
6538	.id_table = e1000_pci_tbl,
6539	.probe    = e1000_probe,
6540	.remove   = __devexit_p(e1000_remove),
6541#ifdef CONFIG_PM
6542	.driver   = {
6543		.pm = &e1000_pm_ops,
6544	},
6545#endif
6546	.shutdown = e1000_shutdown,
6547	.err_handler = &e1000_err_handler
6548};
6549
6550/**
6551 * e1000_init_module - Driver Registration Routine
6552 *
6553 * e1000_init_module is the first routine called when the driver is
6554 * loaded. All it does is register with the PCI subsystem.
6555 **/
6556static int __init e1000_init_module(void)
6557{
6558	int ret;
6559	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6560		e1000e_driver_version);
6561	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6562	ret = pci_register_driver(&e1000_driver);
6563
6564	return ret;
6565}
6566module_init(e1000_init_module);
6567
6568/**
6569 * e1000_exit_module - Driver Exit Cleanup Routine
6570 *
6571 * e1000_exit_module is called just before the driver is removed
6572 * from memory.
6573 **/
6574static void __exit e1000_exit_module(void)
6575{
6576	pci_unregister_driver(&e1000_driver);
6577}
6578module_exit(e1000_exit_module);
6579
6580
6581MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6582MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6583MODULE_LICENSE("GPL");
6584MODULE_VERSION(DRV_VERSION);
6585
6586/* netdev.c */