Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/init.h>
  28#include <linux/pci.h>
  29#include <linux/vmalloc.h>
  30#include <linux/pagemap.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/interrupt.h>
  34#include <linux/tcp.h>
  35#include <linux/ipv6.h>
  36#include <linux/slab.h>
  37#include <net/checksum.h>
  38#include <net/ip6_checksum.h>
  39#include <linux/ethtool.h>
  40#include <linux/if_vlan.h>
  41#include <linux/cpu.h>
  42#include <linux/smp.h>
  43#include <linux/pm_qos.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/aer.h>
  46#include <linux/prefetch.h>
  47
  48#include "e1000.h"
  49
  50#define DRV_EXTRAVERSION "-k"
  51
  52#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  53char e1000e_driver_name[] = "e1000e";
  54const char e1000e_driver_version[] = DRV_VERSION;
  55
  56#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  57static int debug = -1;
  58module_param(debug, int, 0);
  59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  60
  61static const struct e1000_info *e1000_info_tbl[] = {
  62	[board_82571]		= &e1000_82571_info,
  63	[board_82572]		= &e1000_82572_info,
  64	[board_82573]		= &e1000_82573_info,
  65	[board_82574]		= &e1000_82574_info,
  66	[board_82583]		= &e1000_82583_info,
  67	[board_80003es2lan]	= &e1000_es2_info,
  68	[board_ich8lan]		= &e1000_ich8_info,
  69	[board_ich9lan]		= &e1000_ich9_info,
  70	[board_ich10lan]	= &e1000_ich10_info,
  71	[board_pchlan]		= &e1000_pch_info,
  72	[board_pch2lan]		= &e1000_pch2_info,
  73	[board_pch_lpt]		= &e1000_pch_lpt_info,
  74	[board_pch_spt]		= &e1000_pch_spt_info,
  75	[board_pch_cnp]		= &e1000_pch_cnp_info,
  76};
  77
  78struct e1000_reg_info {
  79	u32 ofs;
  80	char *name;
  81};
  82
  83static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  84	/* General Registers */
  85	{E1000_CTRL, "CTRL"},
  86	{E1000_STATUS, "STATUS"},
  87	{E1000_CTRL_EXT, "CTRL_EXT"},
  88
  89	/* Interrupt Registers */
  90	{E1000_ICR, "ICR"},
  91
  92	/* Rx Registers */
  93	{E1000_RCTL, "RCTL"},
  94	{E1000_RDLEN(0), "RDLEN"},
  95	{E1000_RDH(0), "RDH"},
  96	{E1000_RDT(0), "RDT"},
  97	{E1000_RDTR, "RDTR"},
  98	{E1000_RXDCTL(0), "RXDCTL"},
  99	{E1000_ERT, "ERT"},
 100	{E1000_RDBAL(0), "RDBAL"},
 101	{E1000_RDBAH(0), "RDBAH"},
 102	{E1000_RDFH, "RDFH"},
 103	{E1000_RDFT, "RDFT"},
 104	{E1000_RDFHS, "RDFHS"},
 105	{E1000_RDFTS, "RDFTS"},
 106	{E1000_RDFPC, "RDFPC"},
 107
 108	/* Tx Registers */
 109	{E1000_TCTL, "TCTL"},
 110	{E1000_TDBAL(0), "TDBAL"},
 111	{E1000_TDBAH(0), "TDBAH"},
 112	{E1000_TDLEN(0), "TDLEN"},
 113	{E1000_TDH(0), "TDH"},
 114	{E1000_TDT(0), "TDT"},
 115	{E1000_TIDV, "TIDV"},
 116	{E1000_TXDCTL(0), "TXDCTL"},
 117	{E1000_TADV, "TADV"},
 118	{E1000_TARC(0), "TARC"},
 119	{E1000_TDFH, "TDFH"},
 120	{E1000_TDFT, "TDFT"},
 121	{E1000_TDFHS, "TDFHS"},
 122	{E1000_TDFTS, "TDFTS"},
 123	{E1000_TDFPC, "TDFPC"},
 124
 125	/* List Terminator */
 126	{0, NULL}
 127};
 128
 129/**
 130 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 131 * @hw: pointer to the HW structure
 132 *
 133 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 134 * be accessing the registers at the same time.  Normally, this is handled in
 135 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 136 * accesses later than it should which could result in the register to have
 137 * an incorrect value.  Workaround this by checking the FWSM register which
 138 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 139 * and try again a number of times.
 140 **/
 141s32 __ew32_prepare(struct e1000_hw *hw)
 142{
 143	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 144
 145	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 146		udelay(50);
 147
 148	return i;
 149}
 150
 151void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 152{
 153	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 154		__ew32_prepare(hw);
 155
 156	writel(val, hw->hw_addr + reg);
 157}
 158
 159/**
 160 * e1000_regdump - register printout routine
 161 * @hw: pointer to the HW structure
 162 * @reginfo: pointer to the register info table
 163 **/
 164static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 165{
 166	int n = 0;
 167	char rname[16];
 168	u32 regs[8];
 169
 170	switch (reginfo->ofs) {
 171	case E1000_RXDCTL(0):
 172		for (n = 0; n < 2; n++)
 173			regs[n] = __er32(hw, E1000_RXDCTL(n));
 174		break;
 175	case E1000_TXDCTL(0):
 176		for (n = 0; n < 2; n++)
 177			regs[n] = __er32(hw, E1000_TXDCTL(n));
 178		break;
 179	case E1000_TARC(0):
 180		for (n = 0; n < 2; n++)
 181			regs[n] = __er32(hw, E1000_TARC(n));
 182		break;
 183	default:
 184		pr_info("%-15s %08x\n",
 185			reginfo->name, __er32(hw, reginfo->ofs));
 186		return;
 187	}
 188
 189	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 190	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 191}
 192
 193static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 194				 struct e1000_buffer *bi)
 195{
 196	int i;
 197	struct e1000_ps_page *ps_page;
 198
 199	for (i = 0; i < adapter->rx_ps_pages; i++) {
 200		ps_page = &bi->ps_pages[i];
 201
 202		if (ps_page->page) {
 203			pr_info("packet dump for ps_page %d:\n", i);
 204			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 205				       16, 1, page_address(ps_page->page),
 206				       PAGE_SIZE, true);
 207		}
 208	}
 209}
 210
 211/**
 212 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 213 * @adapter: board private structure
 214 **/
 215static void e1000e_dump(struct e1000_adapter *adapter)
 216{
 217	struct net_device *netdev = adapter->netdev;
 218	struct e1000_hw *hw = &adapter->hw;
 219	struct e1000_reg_info *reginfo;
 220	struct e1000_ring *tx_ring = adapter->tx_ring;
 221	struct e1000_tx_desc *tx_desc;
 222	struct my_u0 {
 223		__le64 a;
 224		__le64 b;
 225	} *u0;
 226	struct e1000_buffer *buffer_info;
 227	struct e1000_ring *rx_ring = adapter->rx_ring;
 228	union e1000_rx_desc_packet_split *rx_desc_ps;
 229	union e1000_rx_desc_extended *rx_desc;
 230	struct my_u1 {
 231		__le64 a;
 232		__le64 b;
 233		__le64 c;
 234		__le64 d;
 235	} *u1;
 236	u32 staterr;
 237	int i = 0;
 238
 239	if (!netif_msg_hw(adapter))
 240		return;
 241
 242	/* Print netdevice Info */
 243	if (netdev) {
 244		dev_info(&adapter->pdev->dev, "Net device Info\n");
 245		pr_info("Device Name     state            trans_start\n");
 246		pr_info("%-15s %016lX %016lX\n", netdev->name,
 247			netdev->state, dev_trans_start(netdev));
 248	}
 249
 250	/* Print Registers */
 251	dev_info(&adapter->pdev->dev, "Register Dump\n");
 252	pr_info(" Register Name   Value\n");
 253	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 254	     reginfo->name; reginfo++) {
 255		e1000_regdump(hw, reginfo);
 256	}
 257
 258	/* Print Tx Ring Summary */
 259	if (!netdev || !netif_running(netdev))
 260		return;
 261
 262	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 263	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 264	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 265	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 266		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 267		(unsigned long long)buffer_info->dma,
 268		buffer_info->length,
 269		buffer_info->next_to_watch,
 270		(unsigned long long)buffer_info->time_stamp);
 271
 272	/* Print Tx Ring */
 273	if (!netif_msg_tx_done(adapter))
 274		goto rx_ring_summary;
 275
 276	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 277
 278	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 279	 *
 280	 * Legacy Transmit Descriptor
 281	 *   +--------------------------------------------------------------+
 282	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 283	 *   +--------------------------------------------------------------+
 284	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 285	 *   +--------------------------------------------------------------+
 286	 *   63       48 47        36 35    32 31     24 23    16 15        0
 287	 *
 288	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 289	 *   63      48 47    40 39       32 31             16 15    8 7      0
 290	 *   +----------------------------------------------------------------+
 291	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 292	 *   +----------------------------------------------------------------+
 293	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 294	 *   +----------------------------------------------------------------+
 295	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 296	 *
 297	 * Extended Data Descriptor (DTYP=0x1)
 298	 *   +----------------------------------------------------------------+
 299	 * 0 |                     Buffer Address [63:0]                      |
 300	 *   +----------------------------------------------------------------+
 301	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 302	 *   +----------------------------------------------------------------+
 303	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 304	 */
 305	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 306	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 307	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 308	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 309		const char *next_desc;
 310		tx_desc = E1000_TX_DESC(*tx_ring, i);
 311		buffer_info = &tx_ring->buffer_info[i];
 312		u0 = (struct my_u0 *)tx_desc;
 313		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 314			next_desc = " NTC/U";
 315		else if (i == tx_ring->next_to_use)
 316			next_desc = " NTU";
 317		else if (i == tx_ring->next_to_clean)
 318			next_desc = " NTC";
 319		else
 320			next_desc = "";
 321		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 322			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 323			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 324			i,
 325			(unsigned long long)le64_to_cpu(u0->a),
 326			(unsigned long long)le64_to_cpu(u0->b),
 327			(unsigned long long)buffer_info->dma,
 328			buffer_info->length, buffer_info->next_to_watch,
 329			(unsigned long long)buffer_info->time_stamp,
 330			buffer_info->skb, next_desc);
 331
 332		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 333			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 334				       16, 1, buffer_info->skb->data,
 335				       buffer_info->skb->len, true);
 336	}
 337
 338	/* Print Rx Ring Summary */
 339rx_ring_summary:
 340	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 341	pr_info("Queue [NTU] [NTC]\n");
 342	pr_info(" %5d %5X %5X\n",
 343		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 344
 345	/* Print Rx Ring */
 346	if (!netif_msg_rx_status(adapter))
 347		return;
 348
 349	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 350	switch (adapter->rx_ps_pages) {
 351	case 1:
 352	case 2:
 353	case 3:
 354		/* [Extended] Packet Split Receive Descriptor Format
 355		 *
 356		 *    +-----------------------------------------------------+
 357		 *  0 |                Buffer Address 0 [63:0]              |
 358		 *    +-----------------------------------------------------+
 359		 *  8 |                Buffer Address 1 [63:0]              |
 360		 *    +-----------------------------------------------------+
 361		 * 16 |                Buffer Address 2 [63:0]              |
 362		 *    +-----------------------------------------------------+
 363		 * 24 |                Buffer Address 3 [63:0]              |
 364		 *    +-----------------------------------------------------+
 365		 */
 366		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 367		/* [Extended] Receive Descriptor (Write-Back) Format
 368		 *
 369		 *   63       48 47    32 31     13 12    8 7    4 3        0
 370		 *   +------------------------------------------------------+
 371		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 372		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 373		 *   +------------------------------------------------------+
 374		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 375		 *   +------------------------------------------------------+
 376		 *   63       48 47    32 31            20 19               0
 377		 */
 378		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 379		for (i = 0; i < rx_ring->count; i++) {
 380			const char *next_desc;
 381			buffer_info = &rx_ring->buffer_info[i];
 382			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 383			u1 = (struct my_u1 *)rx_desc_ps;
 384			staterr =
 385			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 386
 387			if (i == rx_ring->next_to_use)
 388				next_desc = " NTU";
 389			else if (i == rx_ring->next_to_clean)
 390				next_desc = " NTC";
 391			else
 392				next_desc = "";
 393
 394			if (staterr & E1000_RXD_STAT_DD) {
 395				/* Descriptor Done */
 396				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 397					"RWB", i,
 398					(unsigned long long)le64_to_cpu(u1->a),
 399					(unsigned long long)le64_to_cpu(u1->b),
 400					(unsigned long long)le64_to_cpu(u1->c),
 401					(unsigned long long)le64_to_cpu(u1->d),
 402					buffer_info->skb, next_desc);
 403			} else {
 404				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 405					"R  ", i,
 406					(unsigned long long)le64_to_cpu(u1->a),
 407					(unsigned long long)le64_to_cpu(u1->b),
 408					(unsigned long long)le64_to_cpu(u1->c),
 409					(unsigned long long)le64_to_cpu(u1->d),
 410					(unsigned long long)buffer_info->dma,
 411					buffer_info->skb, next_desc);
 412
 413				if (netif_msg_pktdata(adapter))
 414					e1000e_dump_ps_pages(adapter,
 415							     buffer_info);
 416			}
 417		}
 418		break;
 419	default:
 420	case 0:
 421		/* Extended Receive Descriptor (Read) Format
 422		 *
 423		 *   +-----------------------------------------------------+
 424		 * 0 |                Buffer Address [63:0]                |
 425		 *   +-----------------------------------------------------+
 426		 * 8 |                      Reserved                       |
 427		 *   +-----------------------------------------------------+
 428		 */
 429		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 430		/* Extended Receive Descriptor (Write-Back) Format
 431		 *
 432		 *   63       48 47    32 31    24 23            4 3        0
 433		 *   +------------------------------------------------------+
 434		 *   |     RSS Hash      |        |               |         |
 435		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 436		 *   | Packet   | IP     |        |               |  Type   |
 437		 *   | Checksum | Ident  |        |               |         |
 438		 *   +------------------------------------------------------+
 439		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 440		 *   +------------------------------------------------------+
 441		 *   63       48 47    32 31            20 19               0
 442		 */
 443		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 444
 445		for (i = 0; i < rx_ring->count; i++) {
 446			const char *next_desc;
 447
 448			buffer_info = &rx_ring->buffer_info[i];
 449			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 450			u1 = (struct my_u1 *)rx_desc;
 451			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 452
 453			if (i == rx_ring->next_to_use)
 454				next_desc = " NTU";
 455			else if (i == rx_ring->next_to_clean)
 456				next_desc = " NTC";
 457			else
 458				next_desc = "";
 459
 460			if (staterr & E1000_RXD_STAT_DD) {
 461				/* Descriptor Done */
 462				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 463					"RWB", i,
 464					(unsigned long long)le64_to_cpu(u1->a),
 465					(unsigned long long)le64_to_cpu(u1->b),
 466					buffer_info->skb, next_desc);
 467			} else {
 468				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 469					"R  ", i,
 470					(unsigned long long)le64_to_cpu(u1->a),
 471					(unsigned long long)le64_to_cpu(u1->b),
 472					(unsigned long long)buffer_info->dma,
 473					buffer_info->skb, next_desc);
 474
 475				if (netif_msg_pktdata(adapter) &&
 476				    buffer_info->skb)
 477					print_hex_dump(KERN_INFO, "",
 478						       DUMP_PREFIX_ADDRESS, 16,
 479						       1,
 480						       buffer_info->skb->data,
 481						       adapter->rx_buffer_len,
 482						       true);
 483			}
 484		}
 485	}
 486}
 487
 488/**
 489 * e1000_desc_unused - calculate if we have unused descriptors
 490 **/
 491static int e1000_desc_unused(struct e1000_ring *ring)
 492{
 493	if (ring->next_to_clean > ring->next_to_use)
 494		return ring->next_to_clean - ring->next_to_use - 1;
 495
 496	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 497}
 498
 499/**
 500 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 501 * @adapter: board private structure
 502 * @hwtstamps: time stamp structure to update
 503 * @systim: unsigned 64bit system time value.
 504 *
 505 * Convert the system time value stored in the RX/TXSTMP registers into a
 506 * hwtstamp which can be used by the upper level time stamping functions.
 507 *
 508 * The 'systim_lock' spinlock is used to protect the consistency of the
 509 * system time value. This is needed because reading the 64 bit time
 510 * value involves reading two 32 bit registers. The first read latches the
 511 * value.
 512 **/
 513static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 514				      struct skb_shared_hwtstamps *hwtstamps,
 515				      u64 systim)
 516{
 517	u64 ns;
 518	unsigned long flags;
 519
 520	spin_lock_irqsave(&adapter->systim_lock, flags);
 521	ns = timecounter_cyc2time(&adapter->tc, systim);
 522	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 523
 524	memset(hwtstamps, 0, sizeof(*hwtstamps));
 525	hwtstamps->hwtstamp = ns_to_ktime(ns);
 526}
 527
 528/**
 529 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 530 * @adapter: board private structure
 531 * @status: descriptor extended error and status field
 532 * @skb: particular skb to include time stamp
 533 *
 534 * If the time stamp is valid, convert it into the timecounter ns value
 535 * and store that result into the shhwtstamps structure which is passed
 536 * up the network stack.
 537 **/
 538static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 539			       struct sk_buff *skb)
 540{
 541	struct e1000_hw *hw = &adapter->hw;
 542	u64 rxstmp;
 543
 544	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 545	    !(status & E1000_RXDEXT_STATERR_TST) ||
 546	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 547		return;
 548
 549	/* The Rx time stamp registers contain the time stamp.  No other
 550	 * received packet will be time stamped until the Rx time stamp
 551	 * registers are read.  Because only one packet can be time stamped
 552	 * at a time, the register values must belong to this packet and
 553	 * therefore none of the other additional attributes need to be
 554	 * compared.
 555	 */
 556	rxstmp = (u64)er32(RXSTMPL);
 557	rxstmp |= (u64)er32(RXSTMPH) << 32;
 558	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 559
 560	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 561}
 562
 563/**
 564 * e1000_receive_skb - helper function to handle Rx indications
 565 * @adapter: board private structure
 566 * @staterr: descriptor extended error and status field as written by hardware
 567 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 568 * @skb: pointer to sk_buff to be indicated to stack
 569 **/
 570static void e1000_receive_skb(struct e1000_adapter *adapter,
 571			      struct net_device *netdev, struct sk_buff *skb,
 572			      u32 staterr, __le16 vlan)
 573{
 574	u16 tag = le16_to_cpu(vlan);
 575
 576	e1000e_rx_hwtstamp(adapter, staterr, skb);
 577
 578	skb->protocol = eth_type_trans(skb, netdev);
 579
 580	if (staterr & E1000_RXD_STAT_VP)
 581		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 582
 583	napi_gro_receive(&adapter->napi, skb);
 584}
 585
 586/**
 587 * e1000_rx_checksum - Receive Checksum Offload
 588 * @adapter: board private structure
 589 * @status_err: receive descriptor status and error fields
 590 * @csum: receive descriptor csum field
 591 * @sk_buff: socket buffer with received data
 592 **/
 593static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 594			      struct sk_buff *skb)
 595{
 596	u16 status = (u16)status_err;
 597	u8 errors = (u8)(status_err >> 24);
 598
 599	skb_checksum_none_assert(skb);
 600
 601	/* Rx checksum disabled */
 602	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 603		return;
 604
 605	/* Ignore Checksum bit is set */
 606	if (status & E1000_RXD_STAT_IXSM)
 607		return;
 608
 609	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 610	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 611		/* let the stack verify checksum errors */
 612		adapter->hw_csum_err++;
 613		return;
 614	}
 615
 616	/* TCP/UDP Checksum has not been calculated */
 617	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 618		return;
 619
 620	/* It must be a TCP or UDP packet with a valid checksum */
 621	skb->ip_summed = CHECKSUM_UNNECESSARY;
 622	adapter->hw_csum_good++;
 623}
 624
 625static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 626{
 627	struct e1000_adapter *adapter = rx_ring->adapter;
 628	struct e1000_hw *hw = &adapter->hw;
 629	s32 ret_val = __ew32_prepare(hw);
 630
 631	writel(i, rx_ring->tail);
 632
 633	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 634		u32 rctl = er32(RCTL);
 635
 636		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 637		e_err("ME firmware caused invalid RDT - resetting\n");
 638		schedule_work(&adapter->reset_task);
 639	}
 640}
 641
 642static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 643{
 644	struct e1000_adapter *adapter = tx_ring->adapter;
 645	struct e1000_hw *hw = &adapter->hw;
 646	s32 ret_val = __ew32_prepare(hw);
 647
 648	writel(i, tx_ring->tail);
 649
 650	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 651		u32 tctl = er32(TCTL);
 652
 653		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 654		e_err("ME firmware caused invalid TDT - resetting\n");
 655		schedule_work(&adapter->reset_task);
 656	}
 657}
 658
 659/**
 660 * e1000_alloc_rx_buffers - Replace used receive buffers
 661 * @rx_ring: Rx descriptor ring
 662 **/
 663static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 664				   int cleaned_count, gfp_t gfp)
 665{
 666	struct e1000_adapter *adapter = rx_ring->adapter;
 667	struct net_device *netdev = adapter->netdev;
 668	struct pci_dev *pdev = adapter->pdev;
 669	union e1000_rx_desc_extended *rx_desc;
 670	struct e1000_buffer *buffer_info;
 671	struct sk_buff *skb;
 672	unsigned int i;
 673	unsigned int bufsz = adapter->rx_buffer_len;
 674
 675	i = rx_ring->next_to_use;
 676	buffer_info = &rx_ring->buffer_info[i];
 677
 678	while (cleaned_count--) {
 679		skb = buffer_info->skb;
 680		if (skb) {
 681			skb_trim(skb, 0);
 682			goto map_skb;
 683		}
 684
 685		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 686		if (!skb) {
 687			/* Better luck next round */
 688			adapter->alloc_rx_buff_failed++;
 689			break;
 690		}
 691
 692		buffer_info->skb = skb;
 693map_skb:
 694		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 695						  adapter->rx_buffer_len,
 696						  DMA_FROM_DEVICE);
 697		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 698			dev_err(&pdev->dev, "Rx DMA map failed\n");
 699			adapter->rx_dma_failed++;
 700			break;
 701		}
 702
 703		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 704		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 705
 706		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 707			/* Force memory writes to complete before letting h/w
 708			 * know there are new descriptors to fetch.  (Only
 709			 * applicable for weak-ordered memory model archs,
 710			 * such as IA-64).
 711			 */
 712			wmb();
 713			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 714				e1000e_update_rdt_wa(rx_ring, i);
 715			else
 716				writel(i, rx_ring->tail);
 717		}
 718		i++;
 719		if (i == rx_ring->count)
 720			i = 0;
 721		buffer_info = &rx_ring->buffer_info[i];
 722	}
 723
 724	rx_ring->next_to_use = i;
 725}
 726
 727/**
 728 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 729 * @rx_ring: Rx descriptor ring
 730 **/
 731static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 732				      int cleaned_count, gfp_t gfp)
 733{
 734	struct e1000_adapter *adapter = rx_ring->adapter;
 735	struct net_device *netdev = adapter->netdev;
 736	struct pci_dev *pdev = adapter->pdev;
 737	union e1000_rx_desc_packet_split *rx_desc;
 738	struct e1000_buffer *buffer_info;
 739	struct e1000_ps_page *ps_page;
 740	struct sk_buff *skb;
 741	unsigned int i, j;
 742
 743	i = rx_ring->next_to_use;
 744	buffer_info = &rx_ring->buffer_info[i];
 745
 746	while (cleaned_count--) {
 747		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 748
 749		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 750			ps_page = &buffer_info->ps_pages[j];
 751			if (j >= adapter->rx_ps_pages) {
 752				/* all unused desc entries get hw null ptr */
 753				rx_desc->read.buffer_addr[j + 1] =
 754				    ~cpu_to_le64(0);
 755				continue;
 756			}
 757			if (!ps_page->page) {
 758				ps_page->page = alloc_page(gfp);
 759				if (!ps_page->page) {
 760					adapter->alloc_rx_buff_failed++;
 761					goto no_buffers;
 762				}
 763				ps_page->dma = dma_map_page(&pdev->dev,
 764							    ps_page->page,
 765							    0, PAGE_SIZE,
 766							    DMA_FROM_DEVICE);
 767				if (dma_mapping_error(&pdev->dev,
 768						      ps_page->dma)) {
 769					dev_err(&adapter->pdev->dev,
 770						"Rx DMA page map failed\n");
 771					adapter->rx_dma_failed++;
 772					goto no_buffers;
 773				}
 774			}
 775			/* Refresh the desc even if buffer_addrs
 776			 * didn't change because each write-back
 777			 * erases this info.
 778			 */
 779			rx_desc->read.buffer_addr[j + 1] =
 780			    cpu_to_le64(ps_page->dma);
 781		}
 782
 783		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 784						  gfp);
 785
 786		if (!skb) {
 787			adapter->alloc_rx_buff_failed++;
 788			break;
 789		}
 790
 791		buffer_info->skb = skb;
 792		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 793						  adapter->rx_ps_bsize0,
 794						  DMA_FROM_DEVICE);
 795		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 796			dev_err(&pdev->dev, "Rx DMA map failed\n");
 797			adapter->rx_dma_failed++;
 798			/* cleanup skb */
 799			dev_kfree_skb_any(skb);
 800			buffer_info->skb = NULL;
 801			break;
 802		}
 803
 804		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 805
 806		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 807			/* Force memory writes to complete before letting h/w
 808			 * know there are new descriptors to fetch.  (Only
 809			 * applicable for weak-ordered memory model archs,
 810			 * such as IA-64).
 811			 */
 812			wmb();
 813			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 814				e1000e_update_rdt_wa(rx_ring, i << 1);
 815			else
 816				writel(i << 1, rx_ring->tail);
 817		}
 818
 819		i++;
 820		if (i == rx_ring->count)
 821			i = 0;
 822		buffer_info = &rx_ring->buffer_info[i];
 823	}
 824
 825no_buffers:
 826	rx_ring->next_to_use = i;
 827}
 828
 829/**
 830 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 831 * @rx_ring: Rx descriptor ring
 832 * @cleaned_count: number of buffers to allocate this pass
 833 **/
 834
 835static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 836					 int cleaned_count, gfp_t gfp)
 837{
 838	struct e1000_adapter *adapter = rx_ring->adapter;
 839	struct net_device *netdev = adapter->netdev;
 840	struct pci_dev *pdev = adapter->pdev;
 841	union e1000_rx_desc_extended *rx_desc;
 842	struct e1000_buffer *buffer_info;
 843	struct sk_buff *skb;
 844	unsigned int i;
 845	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 846
 847	i = rx_ring->next_to_use;
 848	buffer_info = &rx_ring->buffer_info[i];
 849
 850	while (cleaned_count--) {
 851		skb = buffer_info->skb;
 852		if (skb) {
 853			skb_trim(skb, 0);
 854			goto check_page;
 855		}
 856
 857		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 858		if (unlikely(!skb)) {
 859			/* Better luck next round */
 860			adapter->alloc_rx_buff_failed++;
 861			break;
 862		}
 863
 864		buffer_info->skb = skb;
 865check_page:
 866		/* allocate a new page if necessary */
 867		if (!buffer_info->page) {
 868			buffer_info->page = alloc_page(gfp);
 869			if (unlikely(!buffer_info->page)) {
 870				adapter->alloc_rx_buff_failed++;
 871				break;
 872			}
 873		}
 874
 875		if (!buffer_info->dma) {
 876			buffer_info->dma = dma_map_page(&pdev->dev,
 877							buffer_info->page, 0,
 878							PAGE_SIZE,
 879							DMA_FROM_DEVICE);
 880			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 881				adapter->alloc_rx_buff_failed++;
 882				break;
 883			}
 884		}
 885
 886		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 887		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 888
 889		if (unlikely(++i == rx_ring->count))
 890			i = 0;
 891		buffer_info = &rx_ring->buffer_info[i];
 892	}
 893
 894	if (likely(rx_ring->next_to_use != i)) {
 895		rx_ring->next_to_use = i;
 896		if (unlikely(i-- == 0))
 897			i = (rx_ring->count - 1);
 898
 899		/* Force memory writes to complete before letting h/w
 900		 * know there are new descriptors to fetch.  (Only
 901		 * applicable for weak-ordered memory model archs,
 902		 * such as IA-64).
 903		 */
 904		wmb();
 905		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 906			e1000e_update_rdt_wa(rx_ring, i);
 907		else
 908			writel(i, rx_ring->tail);
 909	}
 910}
 911
 912static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 913				 struct sk_buff *skb)
 914{
 915	if (netdev->features & NETIF_F_RXHASH)
 916		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 917}
 918
 919/**
 920 * e1000_clean_rx_irq - Send received data up the network stack
 921 * @rx_ring: Rx descriptor ring
 922 *
 923 * the return value indicates whether actual cleaning was done, there
 924 * is no guarantee that everything was cleaned
 925 **/
 926static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 927			       int work_to_do)
 928{
 929	struct e1000_adapter *adapter = rx_ring->adapter;
 930	struct net_device *netdev = adapter->netdev;
 931	struct pci_dev *pdev = adapter->pdev;
 932	struct e1000_hw *hw = &adapter->hw;
 933	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 934	struct e1000_buffer *buffer_info, *next_buffer;
 935	u32 length, staterr;
 936	unsigned int i;
 937	int cleaned_count = 0;
 938	bool cleaned = false;
 939	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 940
 941	i = rx_ring->next_to_clean;
 942	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 943	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 944	buffer_info = &rx_ring->buffer_info[i];
 945
 946	while (staterr & E1000_RXD_STAT_DD) {
 947		struct sk_buff *skb;
 948
 949		if (*work_done >= work_to_do)
 950			break;
 951		(*work_done)++;
 952		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 953
 954		skb = buffer_info->skb;
 955		buffer_info->skb = NULL;
 956
 957		prefetch(skb->data - NET_IP_ALIGN);
 958
 959		i++;
 960		if (i == rx_ring->count)
 961			i = 0;
 962		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 963		prefetch(next_rxd);
 964
 965		next_buffer = &rx_ring->buffer_info[i];
 966
 967		cleaned = true;
 968		cleaned_count++;
 969		dma_unmap_single(&pdev->dev, buffer_info->dma,
 970				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 971		buffer_info->dma = 0;
 972
 973		length = le16_to_cpu(rx_desc->wb.upper.length);
 974
 975		/* !EOP means multiple descriptors were used to store a single
 976		 * packet, if that's the case we need to toss it.  In fact, we
 977		 * need to toss every packet with the EOP bit clear and the
 978		 * next frame that _does_ have the EOP bit set, as it is by
 979		 * definition only a frame fragment
 980		 */
 981		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 982			adapter->flags2 |= FLAG2_IS_DISCARDING;
 983
 984		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 985			/* All receives must fit into a single buffer */
 986			e_dbg("Receive packet consumed multiple buffers\n");
 987			/* recycle */
 988			buffer_info->skb = skb;
 989			if (staterr & E1000_RXD_STAT_EOP)
 990				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 991			goto next_desc;
 992		}
 993
 994		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 995			     !(netdev->features & NETIF_F_RXALL))) {
 996			/* recycle */
 997			buffer_info->skb = skb;
 998			goto next_desc;
 999		}
1000
1001		/* adjust length to remove Ethernet CRC */
1002		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1003			/* If configured to store CRC, don't subtract FCS,
1004			 * but keep the FCS bytes out of the total_rx_bytes
1005			 * counter
1006			 */
1007			if (netdev->features & NETIF_F_RXFCS)
1008				total_rx_bytes -= 4;
1009			else
1010				length -= 4;
1011		}
1012
1013		total_rx_bytes += length;
1014		total_rx_packets++;
1015
1016		/* code added for copybreak, this should improve
1017		 * performance for small packets with large amounts
1018		 * of reassembly being done in the stack
1019		 */
1020		if (length < copybreak) {
1021			struct sk_buff *new_skb =
1022				napi_alloc_skb(&adapter->napi, length);
1023			if (new_skb) {
1024				skb_copy_to_linear_data_offset(new_skb,
1025							       -NET_IP_ALIGN,
1026							       (skb->data -
1027								NET_IP_ALIGN),
1028							       (length +
1029								NET_IP_ALIGN));
1030				/* save the skb in buffer_info as good */
1031				buffer_info->skb = skb;
1032				skb = new_skb;
1033			}
1034			/* else just continue with the old one */
1035		}
1036		/* end copybreak code */
1037		skb_put(skb, length);
1038
1039		/* Receive Checksum Offload */
1040		e1000_rx_checksum(adapter, staterr, skb);
1041
1042		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1043
1044		e1000_receive_skb(adapter, netdev, skb, staterr,
1045				  rx_desc->wb.upper.vlan);
1046
1047next_desc:
1048		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1049
1050		/* return some buffers to hardware, one at a time is too slow */
1051		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1052			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1053					      GFP_ATOMIC);
1054			cleaned_count = 0;
1055		}
1056
1057		/* use prefetched values */
1058		rx_desc = next_rxd;
1059		buffer_info = next_buffer;
1060
1061		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1062	}
1063	rx_ring->next_to_clean = i;
1064
1065	cleaned_count = e1000_desc_unused(rx_ring);
1066	if (cleaned_count)
1067		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1068
1069	adapter->total_rx_bytes += total_rx_bytes;
1070	adapter->total_rx_packets += total_rx_packets;
1071	return cleaned;
1072}
1073
1074static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1075			    struct e1000_buffer *buffer_info,
1076			    bool drop)
1077{
1078	struct e1000_adapter *adapter = tx_ring->adapter;
1079
1080	if (buffer_info->dma) {
1081		if (buffer_info->mapped_as_page)
1082			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1083				       buffer_info->length, DMA_TO_DEVICE);
1084		else
1085			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1086					 buffer_info->length, DMA_TO_DEVICE);
1087		buffer_info->dma = 0;
1088	}
1089	if (buffer_info->skb) {
1090		if (drop)
1091			dev_kfree_skb_any(buffer_info->skb);
1092		else
1093			dev_consume_skb_any(buffer_info->skb);
1094		buffer_info->skb = NULL;
1095	}
1096	buffer_info->time_stamp = 0;
1097}
1098
1099static void e1000_print_hw_hang(struct work_struct *work)
1100{
1101	struct e1000_adapter *adapter = container_of(work,
1102						     struct e1000_adapter,
1103						     print_hang_task);
1104	struct net_device *netdev = adapter->netdev;
1105	struct e1000_ring *tx_ring = adapter->tx_ring;
1106	unsigned int i = tx_ring->next_to_clean;
1107	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1108	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1109	struct e1000_hw *hw = &adapter->hw;
1110	u16 phy_status, phy_1000t_status, phy_ext_status;
1111	u16 pci_status;
1112
1113	if (test_bit(__E1000_DOWN, &adapter->state))
1114		return;
1115
1116	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1117		/* May be block on write-back, flush and detect again
1118		 * flush pending descriptor writebacks to memory
1119		 */
1120		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121		/* execute the writes immediately */
1122		e1e_flush();
1123		/* Due to rare timing issues, write to TIDV again to ensure
1124		 * the write is successful
1125		 */
1126		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1127		/* execute the writes immediately */
1128		e1e_flush();
1129		adapter->tx_hang_recheck = true;
1130		return;
1131	}
1132	adapter->tx_hang_recheck = false;
1133
1134	if (er32(TDH(0)) == er32(TDT(0))) {
1135		e_dbg("false hang detected, ignoring\n");
1136		return;
1137	}
1138
1139	/* Real hang detected */
1140	netif_stop_queue(netdev);
1141
1142	e1e_rphy(hw, MII_BMSR, &phy_status);
1143	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1144	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1145
1146	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1147
1148	/* detected Hardware unit hang */
1149	e_err("Detected Hardware Unit Hang:\n"
1150	      "  TDH                  <%x>\n"
1151	      "  TDT                  <%x>\n"
1152	      "  next_to_use          <%x>\n"
1153	      "  next_to_clean        <%x>\n"
1154	      "buffer_info[next_to_clean]:\n"
1155	      "  time_stamp           <%lx>\n"
1156	      "  next_to_watch        <%x>\n"
1157	      "  jiffies              <%lx>\n"
1158	      "  next_to_watch.status <%x>\n"
1159	      "MAC Status             <%x>\n"
1160	      "PHY Status             <%x>\n"
1161	      "PHY 1000BASE-T Status  <%x>\n"
1162	      "PHY Extended Status    <%x>\n"
1163	      "PCI Status             <%x>\n",
1164	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1165	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1166	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1167	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1168
1169	e1000e_dump(adapter);
1170
1171	/* Suggest workaround for known h/w issue */
1172	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1173		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1174}
1175
1176/**
1177 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1178 * @work: pointer to work struct
1179 *
1180 * This work function polls the TSYNCTXCTL valid bit to determine when a
1181 * timestamp has been taken for the current stored skb.  The timestamp must
1182 * be for this skb because only one such packet is allowed in the queue.
1183 */
1184static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1185{
1186	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1187						     tx_hwtstamp_work);
1188	struct e1000_hw *hw = &adapter->hw;
1189
1190	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1191		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1192		struct skb_shared_hwtstamps shhwtstamps;
1193		u64 txstmp;
1194
1195		txstmp = er32(TXSTMPL);
1196		txstmp |= (u64)er32(TXSTMPH) << 32;
1197
1198		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1199
1200		/* Clear the global tx_hwtstamp_skb pointer and force writes
1201		 * prior to notifying the stack of a Tx timestamp.
1202		 */
1203		adapter->tx_hwtstamp_skb = NULL;
1204		wmb(); /* force write prior to skb_tstamp_tx */
1205
1206		skb_tstamp_tx(skb, &shhwtstamps);
1207		dev_consume_skb_any(skb);
1208	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1209			      + adapter->tx_timeout_factor * HZ)) {
1210		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1211		adapter->tx_hwtstamp_skb = NULL;
1212		adapter->tx_hwtstamp_timeouts++;
1213		e_warn("clearing Tx timestamp hang\n");
1214	} else {
1215		/* reschedule to check later */
1216		schedule_work(&adapter->tx_hwtstamp_work);
1217	}
1218}
1219
1220/**
1221 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1222 * @tx_ring: Tx descriptor ring
1223 *
1224 * the return value indicates whether actual cleaning was done, there
1225 * is no guarantee that everything was cleaned
1226 **/
1227static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1228{
1229	struct e1000_adapter *adapter = tx_ring->adapter;
1230	struct net_device *netdev = adapter->netdev;
1231	struct e1000_hw *hw = &adapter->hw;
1232	struct e1000_tx_desc *tx_desc, *eop_desc;
1233	struct e1000_buffer *buffer_info;
1234	unsigned int i, eop;
1235	unsigned int count = 0;
1236	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1237	unsigned int bytes_compl = 0, pkts_compl = 0;
1238
1239	i = tx_ring->next_to_clean;
1240	eop = tx_ring->buffer_info[i].next_to_watch;
1241	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1242
1243	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1244	       (count < tx_ring->count)) {
1245		bool cleaned = false;
1246
1247		dma_rmb();		/* read buffer_info after eop_desc */
1248		for (; !cleaned; count++) {
1249			tx_desc = E1000_TX_DESC(*tx_ring, i);
1250			buffer_info = &tx_ring->buffer_info[i];
1251			cleaned = (i == eop);
1252
1253			if (cleaned) {
1254				total_tx_packets += buffer_info->segs;
1255				total_tx_bytes += buffer_info->bytecount;
1256				if (buffer_info->skb) {
1257					bytes_compl += buffer_info->skb->len;
1258					pkts_compl++;
1259				}
1260			}
1261
1262			e1000_put_txbuf(tx_ring, buffer_info, false);
1263			tx_desc->upper.data = 0;
1264
1265			i++;
1266			if (i == tx_ring->count)
1267				i = 0;
1268		}
1269
1270		if (i == tx_ring->next_to_use)
1271			break;
1272		eop = tx_ring->buffer_info[i].next_to_watch;
1273		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1274	}
1275
1276	tx_ring->next_to_clean = i;
1277
1278	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1279
1280#define TX_WAKE_THRESHOLD 32
1281	if (count && netif_carrier_ok(netdev) &&
1282	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1283		/* Make sure that anybody stopping the queue after this
1284		 * sees the new next_to_clean.
1285		 */
1286		smp_mb();
1287
1288		if (netif_queue_stopped(netdev) &&
1289		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1290			netif_wake_queue(netdev);
1291			++adapter->restart_queue;
1292		}
1293	}
1294
1295	if (adapter->detect_tx_hung) {
1296		/* Detect a transmit hang in hardware, this serializes the
1297		 * check with the clearing of time_stamp and movement of i
1298		 */
1299		adapter->detect_tx_hung = false;
1300		if (tx_ring->buffer_info[i].time_stamp &&
1301		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1302			       + (adapter->tx_timeout_factor * HZ)) &&
1303		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1304			schedule_work(&adapter->print_hang_task);
1305		else
1306			adapter->tx_hang_recheck = false;
1307	}
1308	adapter->total_tx_bytes += total_tx_bytes;
1309	adapter->total_tx_packets += total_tx_packets;
1310	return count < tx_ring->count;
1311}
1312
1313/**
1314 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1315 * @rx_ring: Rx descriptor ring
1316 *
1317 * the return value indicates whether actual cleaning was done, there
1318 * is no guarantee that everything was cleaned
1319 **/
1320static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1321				  int work_to_do)
1322{
1323	struct e1000_adapter *adapter = rx_ring->adapter;
1324	struct e1000_hw *hw = &adapter->hw;
1325	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1326	struct net_device *netdev = adapter->netdev;
1327	struct pci_dev *pdev = adapter->pdev;
1328	struct e1000_buffer *buffer_info, *next_buffer;
1329	struct e1000_ps_page *ps_page;
1330	struct sk_buff *skb;
1331	unsigned int i, j;
1332	u32 length, staterr;
1333	int cleaned_count = 0;
1334	bool cleaned = false;
1335	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1336
1337	i = rx_ring->next_to_clean;
1338	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1339	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1340	buffer_info = &rx_ring->buffer_info[i];
1341
1342	while (staterr & E1000_RXD_STAT_DD) {
1343		if (*work_done >= work_to_do)
1344			break;
1345		(*work_done)++;
1346		skb = buffer_info->skb;
1347		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1348
1349		/* in the packet split case this is header only */
1350		prefetch(skb->data - NET_IP_ALIGN);
1351
1352		i++;
1353		if (i == rx_ring->count)
1354			i = 0;
1355		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1356		prefetch(next_rxd);
1357
1358		next_buffer = &rx_ring->buffer_info[i];
1359
1360		cleaned = true;
1361		cleaned_count++;
1362		dma_unmap_single(&pdev->dev, buffer_info->dma,
1363				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1364		buffer_info->dma = 0;
1365
1366		/* see !EOP comment in other Rx routine */
1367		if (!(staterr & E1000_RXD_STAT_EOP))
1368			adapter->flags2 |= FLAG2_IS_DISCARDING;
1369
1370		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1371			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1372			dev_kfree_skb_irq(skb);
1373			if (staterr & E1000_RXD_STAT_EOP)
1374				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1375			goto next_desc;
1376		}
1377
1378		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1379			     !(netdev->features & NETIF_F_RXALL))) {
1380			dev_kfree_skb_irq(skb);
1381			goto next_desc;
1382		}
1383
1384		length = le16_to_cpu(rx_desc->wb.middle.length0);
1385
1386		if (!length) {
1387			e_dbg("Last part of the packet spanning multiple descriptors\n");
1388			dev_kfree_skb_irq(skb);
1389			goto next_desc;
1390		}
1391
1392		/* Good Receive */
1393		skb_put(skb, length);
1394
1395		{
1396			/* this looks ugly, but it seems compiler issues make
1397			 * it more efficient than reusing j
1398			 */
1399			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1400
1401			/* page alloc/put takes too long and effects small
1402			 * packet throughput, so unsplit small packets and
1403			 * save the alloc/put only valid in softirq (napi)
1404			 * context to call kmap_*
1405			 */
1406			if (l1 && (l1 <= copybreak) &&
1407			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1408				u8 *vaddr;
1409
1410				ps_page = &buffer_info->ps_pages[0];
1411
1412				/* there is no documentation about how to call
1413				 * kmap_atomic, so we can't hold the mapping
1414				 * very long
1415				 */
1416				dma_sync_single_for_cpu(&pdev->dev,
1417							ps_page->dma,
1418							PAGE_SIZE,
1419							DMA_FROM_DEVICE);
1420				vaddr = kmap_atomic(ps_page->page);
1421				memcpy(skb_tail_pointer(skb), vaddr, l1);
1422				kunmap_atomic(vaddr);
1423				dma_sync_single_for_device(&pdev->dev,
1424							   ps_page->dma,
1425							   PAGE_SIZE,
1426							   DMA_FROM_DEVICE);
1427
1428				/* remove the CRC */
1429				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1430					if (!(netdev->features & NETIF_F_RXFCS))
1431						l1 -= 4;
1432				}
1433
1434				skb_put(skb, l1);
1435				goto copydone;
1436			}	/* if */
1437		}
1438
1439		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1440			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1441			if (!length)
1442				break;
1443
1444			ps_page = &buffer_info->ps_pages[j];
1445			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1446				       DMA_FROM_DEVICE);
1447			ps_page->dma = 0;
1448			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1449			ps_page->page = NULL;
1450			skb->len += length;
1451			skb->data_len += length;
1452			skb->truesize += PAGE_SIZE;
1453		}
1454
1455		/* strip the ethernet crc, problem is we're using pages now so
1456		 * this whole operation can get a little cpu intensive
1457		 */
1458		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1459			if (!(netdev->features & NETIF_F_RXFCS))
1460				pskb_trim(skb, skb->len - 4);
1461		}
1462
1463copydone:
1464		total_rx_bytes += skb->len;
1465		total_rx_packets++;
1466
1467		e1000_rx_checksum(adapter, staterr, skb);
1468
1469		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1470
1471		if (rx_desc->wb.upper.header_status &
1472		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1473			adapter->rx_hdr_split++;
1474
1475		e1000_receive_skb(adapter, netdev, skb, staterr,
1476				  rx_desc->wb.middle.vlan);
1477
1478next_desc:
1479		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1480		buffer_info->skb = NULL;
1481
1482		/* return some buffers to hardware, one at a time is too slow */
1483		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1484			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1485					      GFP_ATOMIC);
1486			cleaned_count = 0;
1487		}
1488
1489		/* use prefetched values */
1490		rx_desc = next_rxd;
1491		buffer_info = next_buffer;
1492
1493		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1494	}
1495	rx_ring->next_to_clean = i;
1496
1497	cleaned_count = e1000_desc_unused(rx_ring);
1498	if (cleaned_count)
1499		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1500
1501	adapter->total_rx_bytes += total_rx_bytes;
1502	adapter->total_rx_packets += total_rx_packets;
1503	return cleaned;
1504}
1505
1506/**
1507 * e1000_consume_page - helper function
1508 **/
1509static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1510			       u16 length)
1511{
1512	bi->page = NULL;
1513	skb->len += length;
1514	skb->data_len += length;
1515	skb->truesize += PAGE_SIZE;
1516}
1517
1518/**
1519 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1520 * @adapter: board private structure
1521 *
1522 * the return value indicates whether actual cleaning was done, there
1523 * is no guarantee that everything was cleaned
1524 **/
1525static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1526				     int work_to_do)
1527{
1528	struct e1000_adapter *adapter = rx_ring->adapter;
1529	struct net_device *netdev = adapter->netdev;
1530	struct pci_dev *pdev = adapter->pdev;
1531	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1532	struct e1000_buffer *buffer_info, *next_buffer;
1533	u32 length, staterr;
1534	unsigned int i;
1535	int cleaned_count = 0;
1536	bool cleaned = false;
1537	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1538	struct skb_shared_info *shinfo;
1539
1540	i = rx_ring->next_to_clean;
1541	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1542	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1543	buffer_info = &rx_ring->buffer_info[i];
1544
1545	while (staterr & E1000_RXD_STAT_DD) {
1546		struct sk_buff *skb;
1547
1548		if (*work_done >= work_to_do)
1549			break;
1550		(*work_done)++;
1551		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1552
1553		skb = buffer_info->skb;
1554		buffer_info->skb = NULL;
1555
1556		++i;
1557		if (i == rx_ring->count)
1558			i = 0;
1559		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1560		prefetch(next_rxd);
1561
1562		next_buffer = &rx_ring->buffer_info[i];
1563
1564		cleaned = true;
1565		cleaned_count++;
1566		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1567			       DMA_FROM_DEVICE);
1568		buffer_info->dma = 0;
1569
1570		length = le16_to_cpu(rx_desc->wb.upper.length);
1571
1572		/* errors is only valid for DD + EOP descriptors */
1573		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1574			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1575			      !(netdev->features & NETIF_F_RXALL)))) {
1576			/* recycle both page and skb */
1577			buffer_info->skb = skb;
1578			/* an error means any chain goes out the window too */
1579			if (rx_ring->rx_skb_top)
1580				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1581			rx_ring->rx_skb_top = NULL;
1582			goto next_desc;
1583		}
1584#define rxtop (rx_ring->rx_skb_top)
1585		if (!(staterr & E1000_RXD_STAT_EOP)) {
1586			/* this descriptor is only the beginning (or middle) */
1587			if (!rxtop) {
1588				/* this is the beginning of a chain */
1589				rxtop = skb;
1590				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1591						   0, length);
1592			} else {
1593				/* this is the middle of a chain */
1594				shinfo = skb_shinfo(rxtop);
1595				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596						   buffer_info->page, 0,
1597						   length);
1598				/* re-use the skb, only consumed the page */
1599				buffer_info->skb = skb;
1600			}
1601			e1000_consume_page(buffer_info, rxtop, length);
1602			goto next_desc;
1603		} else {
1604			if (rxtop) {
1605				/* end of the chain */
1606				shinfo = skb_shinfo(rxtop);
1607				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1608						   buffer_info->page, 0,
1609						   length);
1610				/* re-use the current skb, we only consumed the
1611				 * page
1612				 */
1613				buffer_info->skb = skb;
1614				skb = rxtop;
1615				rxtop = NULL;
1616				e1000_consume_page(buffer_info, skb, length);
1617			} else {
1618				/* no chain, got EOP, this buf is the packet
1619				 * copybreak to save the put_page/alloc_page
1620				 */
1621				if (length <= copybreak &&
1622				    skb_tailroom(skb) >= length) {
1623					u8 *vaddr;
1624					vaddr = kmap_atomic(buffer_info->page);
1625					memcpy(skb_tail_pointer(skb), vaddr,
1626					       length);
1627					kunmap_atomic(vaddr);
1628					/* re-use the page, so don't erase
1629					 * buffer_info->page
1630					 */
1631					skb_put(skb, length);
1632				} else {
1633					skb_fill_page_desc(skb, 0,
1634							   buffer_info->page, 0,
1635							   length);
1636					e1000_consume_page(buffer_info, skb,
1637							   length);
1638				}
1639			}
1640		}
1641
1642		/* Receive Checksum Offload */
1643		e1000_rx_checksum(adapter, staterr, skb);
1644
1645		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1646
1647		/* probably a little skewed due to removing CRC */
1648		total_rx_bytes += skb->len;
1649		total_rx_packets++;
1650
1651		/* eth type trans needs skb->data to point to something */
1652		if (!pskb_may_pull(skb, ETH_HLEN)) {
1653			e_err("pskb_may_pull failed.\n");
1654			dev_kfree_skb_irq(skb);
1655			goto next_desc;
1656		}
1657
1658		e1000_receive_skb(adapter, netdev, skb, staterr,
1659				  rx_desc->wb.upper.vlan);
1660
1661next_desc:
1662		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1663
1664		/* return some buffers to hardware, one at a time is too slow */
1665		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1666			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1667					      GFP_ATOMIC);
1668			cleaned_count = 0;
1669		}
1670
1671		/* use prefetched values */
1672		rx_desc = next_rxd;
1673		buffer_info = next_buffer;
1674
1675		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1676	}
1677	rx_ring->next_to_clean = i;
1678
1679	cleaned_count = e1000_desc_unused(rx_ring);
1680	if (cleaned_count)
1681		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1682
1683	adapter->total_rx_bytes += total_rx_bytes;
1684	adapter->total_rx_packets += total_rx_packets;
1685	return cleaned;
1686}
1687
1688/**
1689 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1690 * @rx_ring: Rx descriptor ring
1691 **/
1692static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1693{
1694	struct e1000_adapter *adapter = rx_ring->adapter;
1695	struct e1000_buffer *buffer_info;
1696	struct e1000_ps_page *ps_page;
1697	struct pci_dev *pdev = adapter->pdev;
1698	unsigned int i, j;
1699
1700	/* Free all the Rx ring sk_buffs */
1701	for (i = 0; i < rx_ring->count; i++) {
1702		buffer_info = &rx_ring->buffer_info[i];
1703		if (buffer_info->dma) {
1704			if (adapter->clean_rx == e1000_clean_rx_irq)
1705				dma_unmap_single(&pdev->dev, buffer_info->dma,
1706						 adapter->rx_buffer_len,
1707						 DMA_FROM_DEVICE);
1708			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1709				dma_unmap_page(&pdev->dev, buffer_info->dma,
1710					       PAGE_SIZE, DMA_FROM_DEVICE);
1711			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1712				dma_unmap_single(&pdev->dev, buffer_info->dma,
1713						 adapter->rx_ps_bsize0,
1714						 DMA_FROM_DEVICE);
1715			buffer_info->dma = 0;
1716		}
1717
1718		if (buffer_info->page) {
1719			put_page(buffer_info->page);
1720			buffer_info->page = NULL;
1721		}
1722
1723		if (buffer_info->skb) {
1724			dev_kfree_skb(buffer_info->skb);
1725			buffer_info->skb = NULL;
1726		}
1727
1728		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1729			ps_page = &buffer_info->ps_pages[j];
1730			if (!ps_page->page)
1731				break;
1732			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1733				       DMA_FROM_DEVICE);
1734			ps_page->dma = 0;
1735			put_page(ps_page->page);
1736			ps_page->page = NULL;
1737		}
1738	}
1739
1740	/* there also may be some cached data from a chained receive */
1741	if (rx_ring->rx_skb_top) {
1742		dev_kfree_skb(rx_ring->rx_skb_top);
1743		rx_ring->rx_skb_top = NULL;
1744	}
1745
1746	/* Zero out the descriptor ring */
1747	memset(rx_ring->desc, 0, rx_ring->size);
1748
1749	rx_ring->next_to_clean = 0;
1750	rx_ring->next_to_use = 0;
1751	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1752}
1753
1754static void e1000e_downshift_workaround(struct work_struct *work)
1755{
1756	struct e1000_adapter *adapter = container_of(work,
1757						     struct e1000_adapter,
1758						     downshift_task);
1759
1760	if (test_bit(__E1000_DOWN, &adapter->state))
1761		return;
1762
1763	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1764}
1765
1766/**
1767 * e1000_intr_msi - Interrupt Handler
1768 * @irq: interrupt number
1769 * @data: pointer to a network interface device structure
1770 **/
1771static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1772{
1773	struct net_device *netdev = data;
1774	struct e1000_adapter *adapter = netdev_priv(netdev);
1775	struct e1000_hw *hw = &adapter->hw;
1776	u32 icr = er32(ICR);
1777
1778	/* read ICR disables interrupts using IAM */
1779	if (icr & E1000_ICR_LSC) {
1780		hw->mac.get_link_status = true;
1781		/* ICH8 workaround-- Call gig speed drop workaround on cable
1782		 * disconnect (LSC) before accessing any PHY registers
1783		 */
1784		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1785		    (!(er32(STATUS) & E1000_STATUS_LU)))
1786			schedule_work(&adapter->downshift_task);
1787
1788		/* 80003ES2LAN workaround-- For packet buffer work-around on
1789		 * link down event; disable receives here in the ISR and reset
1790		 * adapter in watchdog
1791		 */
1792		if (netif_carrier_ok(netdev) &&
1793		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1794			/* disable receives */
1795			u32 rctl = er32(RCTL);
1796
1797			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1798			adapter->flags |= FLAG_RESTART_NOW;
1799		}
1800		/* guard against interrupt when we're going down */
1801		if (!test_bit(__E1000_DOWN, &adapter->state))
1802			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1803	}
1804
1805	/* Reset on uncorrectable ECC error */
1806	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1807		u32 pbeccsts = er32(PBECCSTS);
1808
1809		adapter->corr_errors +=
1810		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1811		adapter->uncorr_errors +=
1812		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1813		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1814
1815		/* Do the reset outside of interrupt context */
1816		schedule_work(&adapter->reset_task);
1817
1818		/* return immediately since reset is imminent */
1819		return IRQ_HANDLED;
1820	}
1821
1822	if (napi_schedule_prep(&adapter->napi)) {
1823		adapter->total_tx_bytes = 0;
1824		adapter->total_tx_packets = 0;
1825		adapter->total_rx_bytes = 0;
1826		adapter->total_rx_packets = 0;
1827		__napi_schedule(&adapter->napi);
1828	}
1829
1830	return IRQ_HANDLED;
1831}
1832
1833/**
1834 * e1000_intr - Interrupt Handler
1835 * @irq: interrupt number
1836 * @data: pointer to a network interface device structure
1837 **/
1838static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1839{
1840	struct net_device *netdev = data;
1841	struct e1000_adapter *adapter = netdev_priv(netdev);
1842	struct e1000_hw *hw = &adapter->hw;
1843	u32 rctl, icr = er32(ICR);
1844
1845	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1846		return IRQ_NONE;	/* Not our interrupt */
1847
1848	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1849	 * not set, then the adapter didn't send an interrupt
1850	 */
1851	if (!(icr & E1000_ICR_INT_ASSERTED))
1852		return IRQ_NONE;
1853
1854	/* Interrupt Auto-Mask...upon reading ICR,
1855	 * interrupts are masked.  No need for the
1856	 * IMC write
1857	 */
1858
1859	if (icr & E1000_ICR_LSC) {
1860		hw->mac.get_link_status = true;
1861		/* ICH8 workaround-- Call gig speed drop workaround on cable
1862		 * disconnect (LSC) before accessing any PHY registers
1863		 */
1864		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1865		    (!(er32(STATUS) & E1000_STATUS_LU)))
1866			schedule_work(&adapter->downshift_task);
1867
1868		/* 80003ES2LAN workaround--
1869		 * For packet buffer work-around on link down event;
1870		 * disable receives here in the ISR and
1871		 * reset adapter in watchdog
1872		 */
1873		if (netif_carrier_ok(netdev) &&
1874		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1875			/* disable receives */
1876			rctl = er32(RCTL);
1877			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1878			adapter->flags |= FLAG_RESTART_NOW;
1879		}
1880		/* guard against interrupt when we're going down */
1881		if (!test_bit(__E1000_DOWN, &adapter->state))
1882			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1883	}
1884
1885	/* Reset on uncorrectable ECC error */
1886	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1887		u32 pbeccsts = er32(PBECCSTS);
1888
1889		adapter->corr_errors +=
1890		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1891		adapter->uncorr_errors +=
1892		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1893		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894
1895		/* Do the reset outside of interrupt context */
1896		schedule_work(&adapter->reset_task);
1897
1898		/* return immediately since reset is imminent */
1899		return IRQ_HANDLED;
1900	}
1901
1902	if (napi_schedule_prep(&adapter->napi)) {
1903		adapter->total_tx_bytes = 0;
1904		adapter->total_tx_packets = 0;
1905		adapter->total_rx_bytes = 0;
1906		adapter->total_rx_packets = 0;
1907		__napi_schedule(&adapter->napi);
1908	}
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	u32 icr = er32(ICR);
1919
 
 
 
 
 
 
1920	if (icr & adapter->eiac_mask)
1921		ew32(ICS, (icr & adapter->eiac_mask));
1922
1923	if (icr & E1000_ICR_LSC) {
 
 
1924		hw->mac.get_link_status = true;
1925		/* guard against interrupt when we're going down */
1926		if (!test_bit(__E1000_DOWN, &adapter->state))
1927			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1928	}
1929
 
1930	if (!test_bit(__E1000_DOWN, &adapter->state))
1931		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1932
1933	return IRQ_HANDLED;
1934}
1935
1936static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1937{
1938	struct net_device *netdev = data;
1939	struct e1000_adapter *adapter = netdev_priv(netdev);
1940	struct e1000_hw *hw = &adapter->hw;
1941	struct e1000_ring *tx_ring = adapter->tx_ring;
1942
1943	adapter->total_tx_bytes = 0;
1944	adapter->total_tx_packets = 0;
1945
1946	if (!e1000_clean_tx_irq(tx_ring))
1947		/* Ring was not completely cleaned, so fire another interrupt */
1948		ew32(ICS, tx_ring->ims_val);
1949
1950	if (!test_bit(__E1000_DOWN, &adapter->state))
1951		ew32(IMS, adapter->tx_ring->ims_val);
1952
1953	return IRQ_HANDLED;
1954}
1955
1956static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1957{
1958	struct net_device *netdev = data;
1959	struct e1000_adapter *adapter = netdev_priv(netdev);
1960	struct e1000_ring *rx_ring = adapter->rx_ring;
1961
1962	/* Write the ITR value calculated at the end of the
1963	 * previous interrupt.
1964	 */
1965	if (rx_ring->set_itr) {
1966		u32 itr = rx_ring->itr_val ?
1967			  1000000000 / (rx_ring->itr_val * 256) : 0;
1968
1969		writel(itr, rx_ring->itr_register);
1970		rx_ring->set_itr = 0;
1971	}
1972
1973	if (napi_schedule_prep(&adapter->napi)) {
1974		adapter->total_rx_bytes = 0;
1975		adapter->total_rx_packets = 0;
1976		__napi_schedule(&adapter->napi);
1977	}
1978	return IRQ_HANDLED;
1979}
1980
1981/**
1982 * e1000_configure_msix - Configure MSI-X hardware
1983 *
1984 * e1000_configure_msix sets up the hardware to properly
1985 * generate MSI-X interrupts.
1986 **/
1987static void e1000_configure_msix(struct e1000_adapter *adapter)
1988{
1989	struct e1000_hw *hw = &adapter->hw;
1990	struct e1000_ring *rx_ring = adapter->rx_ring;
1991	struct e1000_ring *tx_ring = adapter->tx_ring;
1992	int vector = 0;
1993	u32 ctrl_ext, ivar = 0;
1994
1995	adapter->eiac_mask = 0;
1996
1997	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998	if (hw->mac.type == e1000_82574) {
1999		u32 rfctl = er32(RFCTL);
2000
2001		rfctl |= E1000_RFCTL_ACK_DIS;
2002		ew32(RFCTL, rfctl);
2003	}
2004
2005	/* Configure Rx vector */
2006	rx_ring->ims_val = E1000_IMS_RXQ0;
2007	adapter->eiac_mask |= rx_ring->ims_val;
2008	if (rx_ring->itr_val)
2009		writel(1000000000 / (rx_ring->itr_val * 256),
2010		       rx_ring->itr_register);
2011	else
2012		writel(1, rx_ring->itr_register);
2013	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015	/* Configure Tx vector */
2016	tx_ring->ims_val = E1000_IMS_TXQ0;
2017	vector++;
2018	if (tx_ring->itr_val)
2019		writel(1000000000 / (tx_ring->itr_val * 256),
2020		       tx_ring->itr_register);
2021	else
2022		writel(1, tx_ring->itr_register);
2023	adapter->eiac_mask |= tx_ring->ims_val;
2024	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026	/* set vector for Other Causes, e.g. link changes */
2027	vector++;
2028	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029	if (rx_ring->itr_val)
2030		writel(1000000000 / (rx_ring->itr_val * 256),
2031		       hw->hw_addr + E1000_EITR_82574(vector));
2032	else
2033		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035	/* Cause Tx interrupts on every write back */
2036	ivar |= BIT(31);
2037
2038	ew32(IVAR, ivar);
2039
2040	/* enable MSI-X PBA support */
2041	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2042	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
2043	ew32(CTRL_EXT, ctrl_ext);
2044	e1e_flush();
2045}
2046
2047void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049	if (adapter->msix_entries) {
2050		pci_disable_msix(adapter->pdev);
2051		kfree(adapter->msix_entries);
2052		adapter->msix_entries = NULL;
2053	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2054		pci_disable_msi(adapter->pdev);
2055		adapter->flags &= ~FLAG_MSI_ENABLED;
2056	}
2057}
2058
2059/**
2060 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2061 *
2062 * Attempt to configure interrupts using the best available
2063 * capabilities of the hardware and kernel.
2064 **/
2065void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2066{
2067	int err;
2068	int i;
2069
2070	switch (adapter->int_mode) {
2071	case E1000E_INT_MODE_MSIX:
2072		if (adapter->flags & FLAG_HAS_MSIX) {
2073			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2074			adapter->msix_entries = kcalloc(adapter->num_vectors,
2075							sizeof(struct
2076							       msix_entry),
2077							GFP_KERNEL);
2078			if (adapter->msix_entries) {
2079				struct e1000_adapter *a = adapter;
2080
2081				for (i = 0; i < adapter->num_vectors; i++)
2082					adapter->msix_entries[i].entry = i;
2083
2084				err = pci_enable_msix_range(a->pdev,
2085							    a->msix_entries,
2086							    a->num_vectors,
2087							    a->num_vectors);
2088				if (err > 0)
2089					return;
2090			}
2091			/* MSI-X failed, so fall through and try MSI */
2092			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2093			e1000e_reset_interrupt_capability(adapter);
2094		}
2095		adapter->int_mode = E1000E_INT_MODE_MSI;
2096		/* Fall through */
2097	case E1000E_INT_MODE_MSI:
2098		if (!pci_enable_msi(adapter->pdev)) {
2099			adapter->flags |= FLAG_MSI_ENABLED;
2100		} else {
2101			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2102			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2103		}
2104		/* Fall through */
2105	case E1000E_INT_MODE_LEGACY:
2106		/* Don't do anything; this is the system default */
2107		break;
2108	}
2109
2110	/* store the number of vectors being used */
2111	adapter->num_vectors = 1;
2112}
2113
2114/**
2115 * e1000_request_msix - Initialize MSI-X interrupts
2116 *
2117 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 * kernel.
2119 **/
2120static int e1000_request_msix(struct e1000_adapter *adapter)
2121{
2122	struct net_device *netdev = adapter->netdev;
2123	int err = 0, vector = 0;
2124
2125	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2126		snprintf(adapter->rx_ring->name,
2127			 sizeof(adapter->rx_ring->name) - 1,
2128			 "%s-rx-0", netdev->name);
2129	else
2130		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2131	err = request_irq(adapter->msix_entries[vector].vector,
2132			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2133			  netdev);
2134	if (err)
2135		return err;
2136	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2137	    E1000_EITR_82574(vector);
2138	adapter->rx_ring->itr_val = adapter->itr;
2139	vector++;
2140
2141	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2142		snprintf(adapter->tx_ring->name,
2143			 sizeof(adapter->tx_ring->name) - 1,
2144			 "%s-tx-0", netdev->name);
2145	else
2146		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2147	err = request_irq(adapter->msix_entries[vector].vector,
2148			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2149			  netdev);
2150	if (err)
2151		return err;
2152	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2153	    E1000_EITR_82574(vector);
2154	adapter->tx_ring->itr_val = adapter->itr;
2155	vector++;
2156
2157	err = request_irq(adapter->msix_entries[vector].vector,
2158			  e1000_msix_other, 0, netdev->name, netdev);
2159	if (err)
2160		return err;
2161
2162	e1000_configure_msix(adapter);
2163
2164	return 0;
2165}
2166
2167/**
2168 * e1000_request_irq - initialize interrupts
2169 *
2170 * Attempts to configure interrupts using the best available
2171 * capabilities of the hardware and kernel.
2172 **/
2173static int e1000_request_irq(struct e1000_adapter *adapter)
2174{
2175	struct net_device *netdev = adapter->netdev;
2176	int err;
2177
2178	if (adapter->msix_entries) {
2179		err = e1000_request_msix(adapter);
2180		if (!err)
2181			return err;
2182		/* fall back to MSI */
2183		e1000e_reset_interrupt_capability(adapter);
2184		adapter->int_mode = E1000E_INT_MODE_MSI;
2185		e1000e_set_interrupt_capability(adapter);
2186	}
2187	if (adapter->flags & FLAG_MSI_ENABLED) {
2188		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2189				  netdev->name, netdev);
2190		if (!err)
2191			return err;
2192
2193		/* fall back to legacy interrupt */
2194		e1000e_reset_interrupt_capability(adapter);
2195		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2196	}
2197
2198	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2199			  netdev->name, netdev);
2200	if (err)
2201		e_err("Unable to allocate interrupt, Error: %d\n", err);
2202
2203	return err;
2204}
2205
2206static void e1000_free_irq(struct e1000_adapter *adapter)
2207{
2208	struct net_device *netdev = adapter->netdev;
2209
2210	if (adapter->msix_entries) {
2211		int vector = 0;
2212
2213		free_irq(adapter->msix_entries[vector].vector, netdev);
2214		vector++;
2215
2216		free_irq(adapter->msix_entries[vector].vector, netdev);
2217		vector++;
2218
2219		/* Other Causes interrupt vector */
2220		free_irq(adapter->msix_entries[vector].vector, netdev);
2221		return;
2222	}
2223
2224	free_irq(adapter->pdev->irq, netdev);
2225}
2226
2227/**
2228 * e1000_irq_disable - Mask off interrupt generation on the NIC
2229 **/
2230static void e1000_irq_disable(struct e1000_adapter *adapter)
2231{
2232	struct e1000_hw *hw = &adapter->hw;
2233
2234	ew32(IMC, ~0);
2235	if (adapter->msix_entries)
2236		ew32(EIAC_82574, 0);
2237	e1e_flush();
2238
2239	if (adapter->msix_entries) {
2240		int i;
2241
2242		for (i = 0; i < adapter->num_vectors; i++)
2243			synchronize_irq(adapter->msix_entries[i].vector);
2244	} else {
2245		synchronize_irq(adapter->pdev->irq);
2246	}
2247}
2248
2249/**
2250 * e1000_irq_enable - Enable default interrupt generation settings
2251 **/
2252static void e1000_irq_enable(struct e1000_adapter *adapter)
2253{
2254	struct e1000_hw *hw = &adapter->hw;
2255
2256	if (adapter->msix_entries) {
2257		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2258		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2259		     IMS_OTHER_MASK);
2260	} else if (hw->mac.type >= e1000_pch_lpt) {
2261		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262	} else {
2263		ew32(IMS, IMS_ENABLE_MASK);
2264	}
2265	e1e_flush();
2266}
2267
2268/**
2269 * e1000e_get_hw_control - get control of the h/w from f/w
2270 * @adapter: address of board private structure
2271 *
2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273 * For ASF and Pass Through versions of f/w this means that
2274 * the driver is loaded. For AMT version (only with 82573)
2275 * of the f/w this means that the network i/f is open.
2276 **/
2277void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278{
2279	struct e1000_hw *hw = &adapter->hw;
2280	u32 ctrl_ext;
2281	u32 swsm;
2282
2283	/* Let firmware know the driver has taken over */
2284	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285		swsm = er32(SWSM);
2286		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288		ctrl_ext = er32(CTRL_EXT);
2289		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290	}
2291}
2292
2293/**
2294 * e1000e_release_hw_control - release control of the h/w to f/w
2295 * @adapter: address of board private structure
2296 *
2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298 * For ASF and Pass Through versions of f/w this means that the
2299 * driver is no longer loaded. For AMT version (only with 82573) i
2300 * of the f/w this means that the network i/f is closed.
2301 *
2302 **/
2303void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304{
2305	struct e1000_hw *hw = &adapter->hw;
2306	u32 ctrl_ext;
2307	u32 swsm;
2308
2309	/* Let firmware taken over control of h/w */
2310	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311		swsm = er32(SWSM);
2312		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314		ctrl_ext = er32(CTRL_EXT);
2315		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316	}
2317}
2318
2319/**
2320 * e1000_alloc_ring_dma - allocate memory for a ring structure
2321 **/
2322static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323				struct e1000_ring *ring)
2324{
2325	struct pci_dev *pdev = adapter->pdev;
2326
2327	ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328					 GFP_KERNEL);
2329	if (!ring->desc)
2330		return -ENOMEM;
2331
2332	return 0;
2333}
2334
2335/**
2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337 * @tx_ring: Tx descriptor ring
2338 *
2339 * Return 0 on success, negative on failure
2340 **/
2341int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342{
2343	struct e1000_adapter *adapter = tx_ring->adapter;
2344	int err = -ENOMEM, size;
2345
2346	size = sizeof(struct e1000_buffer) * tx_ring->count;
2347	tx_ring->buffer_info = vzalloc(size);
2348	if (!tx_ring->buffer_info)
2349		goto err;
2350
2351	/* round up to nearest 4K */
2352	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353	tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355	err = e1000_alloc_ring_dma(adapter, tx_ring);
2356	if (err)
2357		goto err;
2358
2359	tx_ring->next_to_use = 0;
2360	tx_ring->next_to_clean = 0;
2361
2362	return 0;
2363err:
2364	vfree(tx_ring->buffer_info);
2365	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366	return err;
2367}
2368
2369/**
2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371 * @rx_ring: Rx descriptor ring
2372 *
2373 * Returns 0 on success, negative on failure
2374 **/
2375int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376{
2377	struct e1000_adapter *adapter = rx_ring->adapter;
2378	struct e1000_buffer *buffer_info;
2379	int i, size, desc_len, err = -ENOMEM;
2380
2381	size = sizeof(struct e1000_buffer) * rx_ring->count;
2382	rx_ring->buffer_info = vzalloc(size);
2383	if (!rx_ring->buffer_info)
2384		goto err;
2385
2386	for (i = 0; i < rx_ring->count; i++) {
2387		buffer_info = &rx_ring->buffer_info[i];
2388		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389						sizeof(struct e1000_ps_page),
2390						GFP_KERNEL);
2391		if (!buffer_info->ps_pages)
2392			goto err_pages;
2393	}
2394
2395	desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397	/* Round up to nearest 4K */
2398	rx_ring->size = rx_ring->count * desc_len;
2399	rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401	err = e1000_alloc_ring_dma(adapter, rx_ring);
2402	if (err)
2403		goto err_pages;
2404
2405	rx_ring->next_to_clean = 0;
2406	rx_ring->next_to_use = 0;
2407	rx_ring->rx_skb_top = NULL;
2408
2409	return 0;
2410
2411err_pages:
2412	for (i = 0; i < rx_ring->count; i++) {
2413		buffer_info = &rx_ring->buffer_info[i];
2414		kfree(buffer_info->ps_pages);
2415	}
2416err:
2417	vfree(rx_ring->buffer_info);
2418	e_err("Unable to allocate memory for the receive descriptor ring\n");
2419	return err;
2420}
2421
2422/**
2423 * e1000_clean_tx_ring - Free Tx Buffers
2424 * @tx_ring: Tx descriptor ring
2425 **/
2426static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427{
2428	struct e1000_adapter *adapter = tx_ring->adapter;
2429	struct e1000_buffer *buffer_info;
2430	unsigned long size;
2431	unsigned int i;
2432
2433	for (i = 0; i < tx_ring->count; i++) {
2434		buffer_info = &tx_ring->buffer_info[i];
2435		e1000_put_txbuf(tx_ring, buffer_info, false);
2436	}
2437
2438	netdev_reset_queue(adapter->netdev);
2439	size = sizeof(struct e1000_buffer) * tx_ring->count;
2440	memset(tx_ring->buffer_info, 0, size);
2441
2442	memset(tx_ring->desc, 0, tx_ring->size);
2443
2444	tx_ring->next_to_use = 0;
2445	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2446}
2447
2448/**
2449 * e1000e_free_tx_resources - Free Tx Resources per Queue
2450 * @tx_ring: Tx descriptor ring
2451 *
2452 * Free all transmit software resources
2453 **/
2454void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2455{
2456	struct e1000_adapter *adapter = tx_ring->adapter;
2457	struct pci_dev *pdev = adapter->pdev;
2458
2459	e1000_clean_tx_ring(tx_ring);
2460
2461	vfree(tx_ring->buffer_info);
2462	tx_ring->buffer_info = NULL;
2463
2464	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2465			  tx_ring->dma);
2466	tx_ring->desc = NULL;
2467}
2468
2469/**
2470 * e1000e_free_rx_resources - Free Rx Resources
2471 * @rx_ring: Rx descriptor ring
2472 *
2473 * Free all receive software resources
2474 **/
2475void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2476{
2477	struct e1000_adapter *adapter = rx_ring->adapter;
2478	struct pci_dev *pdev = adapter->pdev;
2479	int i;
2480
2481	e1000_clean_rx_ring(rx_ring);
2482
2483	for (i = 0; i < rx_ring->count; i++)
2484		kfree(rx_ring->buffer_info[i].ps_pages);
2485
2486	vfree(rx_ring->buffer_info);
2487	rx_ring->buffer_info = NULL;
2488
2489	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2490			  rx_ring->dma);
2491	rx_ring->desc = NULL;
2492}
2493
2494/**
2495 * e1000_update_itr - update the dynamic ITR value based on statistics
2496 * @adapter: pointer to adapter
2497 * @itr_setting: current adapter->itr
2498 * @packets: the number of packets during this measurement interval
2499 * @bytes: the number of bytes during this measurement interval
2500 *
2501 *      Stores a new ITR value based on packets and byte
2502 *      counts during the last interrupt.  The advantage of per interrupt
2503 *      computation is faster updates and more accurate ITR for the current
2504 *      traffic pattern.  Constants in this function were computed
2505 *      based on theoretical maximum wire speed and thresholds were set based
2506 *      on testing data as well as attempting to minimize response time
2507 *      while increasing bulk throughput.  This functionality is controlled
2508 *      by the InterruptThrottleRate module parameter.
2509 **/
2510static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2511{
2512	unsigned int retval = itr_setting;
2513
2514	if (packets == 0)
2515		return itr_setting;
2516
2517	switch (itr_setting) {
2518	case lowest_latency:
2519		/* handle TSO and jumbo frames */
2520		if (bytes / packets > 8000)
2521			retval = bulk_latency;
2522		else if ((packets < 5) && (bytes > 512))
2523			retval = low_latency;
2524		break;
2525	case low_latency:	/* 50 usec aka 20000 ints/s */
2526		if (bytes > 10000) {
2527			/* this if handles the TSO accounting */
2528			if (bytes / packets > 8000)
2529				retval = bulk_latency;
2530			else if ((packets < 10) || ((bytes / packets) > 1200))
2531				retval = bulk_latency;
2532			else if ((packets > 35))
2533				retval = lowest_latency;
2534		} else if (bytes / packets > 2000) {
2535			retval = bulk_latency;
2536		} else if (packets <= 2 && bytes < 512) {
2537			retval = lowest_latency;
2538		}
2539		break;
2540	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2541		if (bytes > 25000) {
2542			if (packets > 35)
2543				retval = low_latency;
2544		} else if (bytes < 6000) {
2545			retval = low_latency;
2546		}
2547		break;
2548	}
2549
2550	return retval;
2551}
2552
2553static void e1000_set_itr(struct e1000_adapter *adapter)
2554{
2555	u16 current_itr;
2556	u32 new_itr = adapter->itr;
2557
2558	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559	if (adapter->link_speed != SPEED_1000) {
2560		current_itr = 0;
2561		new_itr = 4000;
2562		goto set_itr_now;
2563	}
2564
2565	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2566		new_itr = 0;
2567		goto set_itr_now;
2568	}
2569
2570	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2571					   adapter->total_tx_packets,
2572					   adapter->total_tx_bytes);
2573	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575		adapter->tx_itr = low_latency;
2576
2577	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2578					   adapter->total_rx_packets,
2579					   adapter->total_rx_bytes);
2580	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2581	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2582		adapter->rx_itr = low_latency;
2583
2584	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585
2586	/* counts and packets in update_itr are dependent on these numbers */
2587	switch (current_itr) {
2588	case lowest_latency:
2589		new_itr = 70000;
2590		break;
2591	case low_latency:
2592		new_itr = 20000;	/* aka hwitr = ~200 */
2593		break;
2594	case bulk_latency:
2595		new_itr = 4000;
2596		break;
2597	default:
2598		break;
2599	}
2600
2601set_itr_now:
2602	if (new_itr != adapter->itr) {
2603		/* this attempts to bias the interrupt rate towards Bulk
2604		 * by adding intermediate steps when interrupt rate is
2605		 * increasing
2606		 */
2607		new_itr = new_itr > adapter->itr ?
2608		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2609		adapter->itr = new_itr;
2610		adapter->rx_ring->itr_val = new_itr;
2611		if (adapter->msix_entries)
2612			adapter->rx_ring->set_itr = 1;
2613		else
2614			e1000e_write_itr(adapter, new_itr);
2615	}
2616}
2617
2618/**
2619 * e1000e_write_itr - write the ITR value to the appropriate registers
2620 * @adapter: address of board private structure
2621 * @itr: new ITR value to program
2622 *
2623 * e1000e_write_itr determines if the adapter is in MSI-X mode
2624 * and, if so, writes the EITR registers with the ITR value.
2625 * Otherwise, it writes the ITR value into the ITR register.
2626 **/
2627void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2631
2632	if (adapter->msix_entries) {
2633		int vector;
2634
2635		for (vector = 0; vector < adapter->num_vectors; vector++)
2636			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2637	} else {
2638		ew32(ITR, new_itr);
2639	}
2640}
2641
2642/**
2643 * e1000_alloc_queues - Allocate memory for all rings
2644 * @adapter: board private structure to initialize
2645 **/
2646static int e1000_alloc_queues(struct e1000_adapter *adapter)
2647{
2648	int size = sizeof(struct e1000_ring);
2649
2650	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2651	if (!adapter->tx_ring)
2652		goto err;
2653	adapter->tx_ring->count = adapter->tx_ring_count;
2654	adapter->tx_ring->adapter = adapter;
2655
2656	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2657	if (!adapter->rx_ring)
2658		goto err;
2659	adapter->rx_ring->count = adapter->rx_ring_count;
2660	adapter->rx_ring->adapter = adapter;
2661
2662	return 0;
2663err:
2664	e_err("Unable to allocate memory for queues\n");
2665	kfree(adapter->rx_ring);
2666	kfree(adapter->tx_ring);
2667	return -ENOMEM;
2668}
2669
2670/**
2671 * e1000e_poll - NAPI Rx polling callback
2672 * @napi: struct associated with this polling callback
2673 * @weight: number of packets driver is allowed to process this poll
2674 **/
2675static int e1000e_poll(struct napi_struct *napi, int weight)
2676{
2677	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2678						     napi);
2679	struct e1000_hw *hw = &adapter->hw;
2680	struct net_device *poll_dev = adapter->netdev;
2681	int tx_cleaned = 1, work_done = 0;
2682
2683	adapter = netdev_priv(poll_dev);
2684
2685	if (!adapter->msix_entries ||
2686	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2687		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2688
2689	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2690
2691	if (!tx_cleaned)
2692		work_done = weight;
2693
2694	/* If weight not fully consumed, exit the polling mode */
2695	if (work_done < weight) {
2696		if (adapter->itr_setting & 3)
2697			e1000_set_itr(adapter);
2698		napi_complete_done(napi, work_done);
2699		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2700			if (adapter->msix_entries)
2701				ew32(IMS, adapter->rx_ring->ims_val);
2702			else
2703				e1000_irq_enable(adapter);
2704		}
2705	}
2706
2707	return work_done;
2708}
2709
2710static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2711				 __always_unused __be16 proto, u16 vid)
2712{
2713	struct e1000_adapter *adapter = netdev_priv(netdev);
2714	struct e1000_hw *hw = &adapter->hw;
2715	u32 vfta, index;
2716
2717	/* don't update vlan cookie if already programmed */
2718	if ((adapter->hw.mng_cookie.status &
2719	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2720	    (vid == adapter->mng_vlan_id))
2721		return 0;
2722
2723	/* add VID to filter table */
2724	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725		index = (vid >> 5) & 0x7F;
2726		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727		vfta |= BIT((vid & 0x1F));
2728		hw->mac.ops.write_vfta(hw, index, vfta);
2729	}
2730
2731	set_bit(vid, adapter->active_vlans);
2732
2733	return 0;
2734}
2735
2736static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2737				  __always_unused __be16 proto, u16 vid)
2738{
2739	struct e1000_adapter *adapter = netdev_priv(netdev);
2740	struct e1000_hw *hw = &adapter->hw;
2741	u32 vfta, index;
2742
2743	if ((adapter->hw.mng_cookie.status &
2744	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2745	    (vid == adapter->mng_vlan_id)) {
2746		/* release control to f/w */
2747		e1000e_release_hw_control(adapter);
2748		return 0;
2749	}
2750
2751	/* remove VID from filter table */
2752	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2753		index = (vid >> 5) & 0x7F;
2754		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2755		vfta &= ~BIT((vid & 0x1F));
2756		hw->mac.ops.write_vfta(hw, index, vfta);
2757	}
2758
2759	clear_bit(vid, adapter->active_vlans);
2760
2761	return 0;
2762}
2763
2764/**
2765 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2766 * @adapter: board private structure to initialize
2767 **/
2768static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2769{
2770	struct net_device *netdev = adapter->netdev;
2771	struct e1000_hw *hw = &adapter->hw;
2772	u32 rctl;
2773
2774	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2775		/* disable VLAN receive filtering */
2776		rctl = er32(RCTL);
2777		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2778		ew32(RCTL, rctl);
2779
2780		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2781			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2782					       adapter->mng_vlan_id);
2783			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2784		}
2785	}
2786}
2787
2788/**
2789 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2790 * @adapter: board private structure to initialize
2791 **/
2792static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2793{
2794	struct e1000_hw *hw = &adapter->hw;
2795	u32 rctl;
2796
2797	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2798		/* enable VLAN receive filtering */
2799		rctl = er32(RCTL);
2800		rctl |= E1000_RCTL_VFE;
2801		rctl &= ~E1000_RCTL_CFIEN;
2802		ew32(RCTL, rctl);
2803	}
2804}
2805
2806/**
2807 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2811{
2812	struct e1000_hw *hw = &adapter->hw;
2813	u32 ctrl;
2814
2815	/* disable VLAN tag insert/strip */
2816	ctrl = er32(CTRL);
2817	ctrl &= ~E1000_CTRL_VME;
2818	ew32(CTRL, ctrl);
2819}
2820
2821/**
2822 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2823 * @adapter: board private structure to initialize
2824 **/
2825static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	u32 ctrl;
2829
2830	/* enable VLAN tag insert/strip */
2831	ctrl = er32(CTRL);
2832	ctrl |= E1000_CTRL_VME;
2833	ew32(CTRL, ctrl);
2834}
2835
2836static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2837{
2838	struct net_device *netdev = adapter->netdev;
2839	u16 vid = adapter->hw.mng_cookie.vlan_id;
2840	u16 old_vid = adapter->mng_vlan_id;
2841
2842	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2843		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2844		adapter->mng_vlan_id = vid;
2845	}
2846
2847	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2848		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2849}
2850
2851static void e1000_restore_vlan(struct e1000_adapter *adapter)
2852{
2853	u16 vid;
2854
2855	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2856
2857	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2858	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2859}
2860
2861static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2862{
2863	struct e1000_hw *hw = &adapter->hw;
2864	u32 manc, manc2h, mdef, i, j;
2865
2866	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2867		return;
2868
2869	manc = er32(MANC);
2870
2871	/* enable receiving management packets to the host. this will probably
2872	 * generate destination unreachable messages from the host OS, but
2873	 * the packets will be handled on SMBUS
2874	 */
2875	manc |= E1000_MANC_EN_MNG2HOST;
2876	manc2h = er32(MANC2H);
2877
2878	switch (hw->mac.type) {
2879	default:
2880		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2881		break;
2882	case e1000_82574:
2883	case e1000_82583:
2884		/* Check if IPMI pass-through decision filter already exists;
2885		 * if so, enable it.
2886		 */
2887		for (i = 0, j = 0; i < 8; i++) {
2888			mdef = er32(MDEF(i));
2889
2890			/* Ignore filters with anything other than IPMI ports */
2891			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2892				continue;
2893
2894			/* Enable this decision filter in MANC2H */
2895			if (mdef)
2896				manc2h |= BIT(i);
2897
2898			j |= mdef;
2899		}
2900
2901		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902			break;
2903
2904		/* Create new decision filter in an empty filter */
2905		for (i = 0, j = 0; i < 8; i++)
2906			if (er32(MDEF(i)) == 0) {
2907				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2908					       E1000_MDEF_PORT_664));
2909				manc2h |= BIT(1);
2910				j++;
2911				break;
2912			}
2913
2914		if (!j)
2915			e_warn("Unable to create IPMI pass-through filter\n");
2916		break;
2917	}
2918
2919	ew32(MANC2H, manc2h);
2920	ew32(MANC, manc);
2921}
2922
2923/**
2924 * e1000_configure_tx - Configure Transmit Unit after Reset
2925 * @adapter: board private structure
2926 *
2927 * Configure the Tx unit of the MAC after a reset.
2928 **/
2929static void e1000_configure_tx(struct e1000_adapter *adapter)
2930{
2931	struct e1000_hw *hw = &adapter->hw;
2932	struct e1000_ring *tx_ring = adapter->tx_ring;
2933	u64 tdba;
2934	u32 tdlen, tctl, tarc;
2935
2936	/* Setup the HW Tx Head and Tail descriptor pointers */
2937	tdba = tx_ring->dma;
2938	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2939	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2940	ew32(TDBAH(0), (tdba >> 32));
2941	ew32(TDLEN(0), tdlen);
2942	ew32(TDH(0), 0);
2943	ew32(TDT(0), 0);
2944	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2945	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2946
2947	writel(0, tx_ring->head);
2948	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2949		e1000e_update_tdt_wa(tx_ring, 0);
2950	else
2951		writel(0, tx_ring->tail);
2952
2953	/* Set the Tx Interrupt Delay register */
2954	ew32(TIDV, adapter->tx_int_delay);
2955	/* Tx irq moderation */
2956	ew32(TADV, adapter->tx_abs_int_delay);
2957
2958	if (adapter->flags2 & FLAG2_DMA_BURST) {
2959		u32 txdctl = er32(TXDCTL(0));
2960
2961		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962			    E1000_TXDCTL_WTHRESH);
2963		/* set up some performance related parameters to encourage the
2964		 * hardware to use the bus more efficiently in bursts, depends
2965		 * on the tx_int_delay to be enabled,
2966		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967		 * hthresh = 1 ==> prefetch when one or more available
2968		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969		 * BEWARE: this seems to work but should be considered first if
2970		 * there are Tx hangs or other Tx related bugs
2971		 */
2972		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973		ew32(TXDCTL(0), txdctl);
2974	}
2975	/* erratum work around: set txdctl the same for both queues */
2976	ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978	/* Program the Transmit Control Register */
2979	tctl = er32(TCTL);
2980	tctl &= ~E1000_TCTL_CT;
2981	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985		tarc = er32(TARC(0));
2986		/* set the speed mode bit, we'll clear it if we're not at
2987		 * gigabit link later
2988		 */
2989#define SPEED_MODE_BIT BIT(21)
2990		tarc |= SPEED_MODE_BIT;
2991		ew32(TARC(0), tarc);
2992	}
2993
2994	/* errata: program both queues to unweighted RR */
2995	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996		tarc = er32(TARC(0));
2997		tarc |= 1;
2998		ew32(TARC(0), tarc);
2999		tarc = er32(TARC(1));
3000		tarc |= 1;
3001		ew32(TARC(1), tarc);
3002	}
3003
3004	/* Setup Transmit Descriptor Settings for eop descriptor */
3005	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007	/* only set IDE if we are delaying interrupts using the timers */
3008	if (adapter->tx_int_delay)
3009		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011	/* enable Report Status bit */
3012	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014	ew32(TCTL, tctl);
3015
3016	hw->mac.ops.config_collision_dist(hw);
3017
3018	/* SPT and KBL Si errata workaround to avoid data corruption */
3019	if (hw->mac.type == e1000_pch_spt) {
3020		u32 reg_val;
3021
3022		reg_val = er32(IOSFPC);
3023		reg_val |= E1000_RCTL_RDMTS_HEX;
3024		ew32(IOSFPC, reg_val);
3025
3026		reg_val = er32(TARC(0));
3027		/* SPT and KBL Si errata workaround to avoid Tx hang.
3028		 * Dropping the number of outstanding requests from
3029		 * 3 to 2 in order to avoid a buffer overrun.
3030		 */
3031		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3032		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3033		ew32(TARC(0), reg_val);
3034	}
3035}
3036
3037/**
3038 * e1000_setup_rctl - configure the receive control registers
3039 * @adapter: Board private structure
3040 **/
3041#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3042			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3043static void e1000_setup_rctl(struct e1000_adapter *adapter)
3044{
3045	struct e1000_hw *hw = &adapter->hw;
3046	u32 rctl, rfctl;
3047	u32 pages = 0;
3048
3049	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3050	 * If jumbo frames not set, program related MAC/PHY registers
3051	 * to h/w defaults
3052	 */
3053	if (hw->mac.type >= e1000_pch2lan) {
3054		s32 ret_val;
3055
3056		if (adapter->netdev->mtu > ETH_DATA_LEN)
3057			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3058		else
3059			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3060
3061		if (ret_val)
3062			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3063	}
3064
3065	/* Program MC offset vector base */
3066	rctl = er32(RCTL);
3067	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3068	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3069	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3070	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3071
3072	/* Do not Store bad packets */
3073	rctl &= ~E1000_RCTL_SBP;
3074
3075	/* Enable Long Packet receive */
3076	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3077		rctl &= ~E1000_RCTL_LPE;
3078	else
3079		rctl |= E1000_RCTL_LPE;
3080
3081	/* Some systems expect that the CRC is included in SMBUS traffic. The
3082	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3083	 * host memory when this is enabled
3084	 */
3085	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3086		rctl |= E1000_RCTL_SECRC;
3087
3088	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3089	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3090		u16 phy_data;
3091
3092		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3093		phy_data &= 0xfff8;
3094		phy_data |= BIT(2);
3095		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3096
3097		e1e_rphy(hw, 22, &phy_data);
3098		phy_data &= 0x0fff;
3099		phy_data |= BIT(14);
3100		e1e_wphy(hw, 0x10, 0x2823);
3101		e1e_wphy(hw, 0x11, 0x0003);
3102		e1e_wphy(hw, 22, phy_data);
3103	}
3104
3105	/* Setup buffer sizes */
3106	rctl &= ~E1000_RCTL_SZ_4096;
3107	rctl |= E1000_RCTL_BSEX;
3108	switch (adapter->rx_buffer_len) {
3109	case 2048:
3110	default:
3111		rctl |= E1000_RCTL_SZ_2048;
3112		rctl &= ~E1000_RCTL_BSEX;
3113		break;
3114	case 4096:
3115		rctl |= E1000_RCTL_SZ_4096;
3116		break;
3117	case 8192:
3118		rctl |= E1000_RCTL_SZ_8192;
3119		break;
3120	case 16384:
3121		rctl |= E1000_RCTL_SZ_16384;
3122		break;
3123	}
3124
3125	/* Enable Extended Status in all Receive Descriptors */
3126	rfctl = er32(RFCTL);
3127	rfctl |= E1000_RFCTL_EXTEN;
3128	ew32(RFCTL, rfctl);
3129
3130	/* 82571 and greater support packet-split where the protocol
3131	 * header is placed in skb->data and the packet data is
3132	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3133	 * In the case of a non-split, skb->data is linearly filled,
3134	 * followed by the page buffers.  Therefore, skb->data is
3135	 * sized to hold the largest protocol header.
3136	 *
3137	 * allocations using alloc_page take too long for regular MTU
3138	 * so only enable packet split for jumbo frames
3139	 *
3140	 * Using pages when the page size is greater than 16k wastes
3141	 * a lot of memory, since we allocate 3 pages at all times
3142	 * per packet.
3143	 */
3144	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3145	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3146		adapter->rx_ps_pages = pages;
3147	else
3148		adapter->rx_ps_pages = 0;
3149
3150	if (adapter->rx_ps_pages) {
3151		u32 psrctl = 0;
3152
3153		/* Enable Packet split descriptors */
3154		rctl |= E1000_RCTL_DTYP_PS;
3155
3156		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3157
3158		switch (adapter->rx_ps_pages) {
3159		case 3:
3160			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3161			/* fall-through */
3162		case 2:
3163			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3164			/* fall-through */
3165		case 1:
3166			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3167			break;
3168		}
3169
3170		ew32(PSRCTL, psrctl);
3171	}
3172
3173	/* This is useful for sniffing bad packets. */
3174	if (adapter->netdev->features & NETIF_F_RXALL) {
3175		/* UPE and MPE will be handled by normal PROMISC logic
3176		 * in e1000e_set_rx_mode
3177		 */
3178		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3179			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3180			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3181
3182		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3183			  E1000_RCTL_DPF |	/* Allow filtered pause */
3184			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3185		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3186		 * and that breaks VLANs.
3187		 */
3188	}
3189
3190	ew32(RCTL, rctl);
3191	/* just started the receive unit, no need to restart */
3192	adapter->flags &= ~FLAG_RESTART_NOW;
3193}
3194
3195/**
3196 * e1000_configure_rx - Configure Receive Unit after Reset
3197 * @adapter: board private structure
3198 *
3199 * Configure the Rx unit of the MAC after a reset.
3200 **/
3201static void e1000_configure_rx(struct e1000_adapter *adapter)
3202{
3203	struct e1000_hw *hw = &adapter->hw;
3204	struct e1000_ring *rx_ring = adapter->rx_ring;
3205	u64 rdba;
3206	u32 rdlen, rctl, rxcsum, ctrl_ext;
3207
3208	if (adapter->rx_ps_pages) {
3209		/* this is a 32 byte descriptor */
3210		rdlen = rx_ring->count *
3211		    sizeof(union e1000_rx_desc_packet_split);
3212		adapter->clean_rx = e1000_clean_rx_irq_ps;
3213		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3214	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3215		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3216		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3217		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3218	} else {
3219		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3220		adapter->clean_rx = e1000_clean_rx_irq;
3221		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3222	}
3223
3224	/* disable receives while setting up the descriptors */
3225	rctl = er32(RCTL);
3226	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3227		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3228	e1e_flush();
3229	usleep_range(10000, 20000);
3230
3231	if (adapter->flags2 & FLAG2_DMA_BURST) {
3232		/* set the writeback threshold (only takes effect if the RDTR
3233		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3234		 * enable prefetching of 0x20 Rx descriptors
3235		 * granularity = 01
3236		 * wthresh = 04,
3237		 * hthresh = 04,
3238		 * pthresh = 0x20
3239		 */
3240		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3241		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
 
 
 
 
 
 
 
 
3242	}
3243
3244	/* set the Receive Delay Timer Register */
3245	ew32(RDTR, adapter->rx_int_delay);
3246
3247	/* irq moderation */
3248	ew32(RADV, adapter->rx_abs_int_delay);
3249	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3250		e1000e_write_itr(adapter, adapter->itr);
3251
3252	ctrl_ext = er32(CTRL_EXT);
3253	/* Auto-Mask interrupts upon ICR access */
3254	ctrl_ext |= E1000_CTRL_EXT_IAME;
3255	ew32(IAM, 0xffffffff);
3256	ew32(CTRL_EXT, ctrl_ext);
3257	e1e_flush();
3258
3259	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3260	 * the Base and Length of the Rx Descriptor Ring
3261	 */
3262	rdba = rx_ring->dma;
3263	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3264	ew32(RDBAH(0), (rdba >> 32));
3265	ew32(RDLEN(0), rdlen);
3266	ew32(RDH(0), 0);
3267	ew32(RDT(0), 0);
3268	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3269	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3270
3271	writel(0, rx_ring->head);
3272	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3273		e1000e_update_rdt_wa(rx_ring, 0);
3274	else
3275		writel(0, rx_ring->tail);
3276
3277	/* Enable Receive Checksum Offload for TCP and UDP */
3278	rxcsum = er32(RXCSUM);
3279	if (adapter->netdev->features & NETIF_F_RXCSUM)
3280		rxcsum |= E1000_RXCSUM_TUOFL;
3281	else
3282		rxcsum &= ~E1000_RXCSUM_TUOFL;
3283	ew32(RXCSUM, rxcsum);
3284
3285	/* With jumbo frames, excessive C-state transition latencies result
3286	 * in dropped transactions.
3287	 */
3288	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3289		u32 lat =
3290		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3291		     adapter->max_frame_size) * 8 / 1000;
3292
3293		if (adapter->flags & FLAG_IS_ICH) {
3294			u32 rxdctl = er32(RXDCTL(0));
3295
3296			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3297		}
3298
3299		dev_info(&adapter->pdev->dev,
3300			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3301		pm_qos_update_request(&adapter->pm_qos_req, lat);
3302	} else {
3303		pm_qos_update_request(&adapter->pm_qos_req,
3304				      PM_QOS_DEFAULT_VALUE);
3305	}
3306
3307	/* Enable Receives */
3308	ew32(RCTL, rctl);
3309}
3310
3311/**
3312 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3313 * @netdev: network interface device structure
3314 *
3315 * Writes multicast address list to the MTA hash table.
3316 * Returns: -ENOMEM on failure
3317 *                0 on no addresses written
3318 *                X on writing X addresses to MTA
3319 */
3320static int e1000e_write_mc_addr_list(struct net_device *netdev)
3321{
3322	struct e1000_adapter *adapter = netdev_priv(netdev);
3323	struct e1000_hw *hw = &adapter->hw;
3324	struct netdev_hw_addr *ha;
3325	u8 *mta_list;
3326	int i;
3327
3328	if (netdev_mc_empty(netdev)) {
3329		/* nothing to program, so clear mc list */
3330		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3331		return 0;
3332	}
3333
3334	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3335	if (!mta_list)
3336		return -ENOMEM;
3337
3338	/* update_mc_addr_list expects a packed array of only addresses. */
3339	i = 0;
3340	netdev_for_each_mc_addr(ha, netdev)
3341	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3342
3343	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3344	kfree(mta_list);
3345
3346	return netdev_mc_count(netdev);
3347}
3348
3349/**
3350 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3351 * @netdev: network interface device structure
3352 *
3353 * Writes unicast address list to the RAR table.
3354 * Returns: -ENOMEM on failure/insufficient address space
3355 *                0 on no addresses written
3356 *                X on writing X addresses to the RAR table
3357 **/
3358static int e1000e_write_uc_addr_list(struct net_device *netdev)
3359{
3360	struct e1000_adapter *adapter = netdev_priv(netdev);
3361	struct e1000_hw *hw = &adapter->hw;
3362	unsigned int rar_entries;
3363	int count = 0;
3364
3365	rar_entries = hw->mac.ops.rar_get_count(hw);
3366
3367	/* save a rar entry for our hardware address */
3368	rar_entries--;
3369
3370	/* save a rar entry for the LAA workaround */
3371	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3372		rar_entries--;
3373
3374	/* return ENOMEM indicating insufficient memory for addresses */
3375	if (netdev_uc_count(netdev) > rar_entries)
3376		return -ENOMEM;
3377
3378	if (!netdev_uc_empty(netdev) && rar_entries) {
3379		struct netdev_hw_addr *ha;
3380
3381		/* write the addresses in reverse order to avoid write
3382		 * combining
3383		 */
3384		netdev_for_each_uc_addr(ha, netdev) {
3385			int ret_val;
3386
3387			if (!rar_entries)
3388				break;
3389			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3390			if (ret_val < 0)
3391				return -ENOMEM;
3392			count++;
3393		}
3394	}
3395
3396	/* zero out the remaining RAR entries not used above */
3397	for (; rar_entries > 0; rar_entries--) {
3398		ew32(RAH(rar_entries), 0);
3399		ew32(RAL(rar_entries), 0);
3400	}
3401	e1e_flush();
3402
3403	return count;
3404}
3405
3406/**
3407 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3408 * @netdev: network interface device structure
3409 *
3410 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3411 * address list or the network interface flags are updated.  This routine is
3412 * responsible for configuring the hardware for proper unicast, multicast,
3413 * promiscuous mode, and all-multi behavior.
3414 **/
3415static void e1000e_set_rx_mode(struct net_device *netdev)
3416{
3417	struct e1000_adapter *adapter = netdev_priv(netdev);
3418	struct e1000_hw *hw = &adapter->hw;
3419	u32 rctl;
3420
3421	if (pm_runtime_suspended(netdev->dev.parent))
3422		return;
3423
3424	/* Check for Promiscuous and All Multicast modes */
3425	rctl = er32(RCTL);
3426
3427	/* clear the affected bits */
3428	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3429
3430	if (netdev->flags & IFF_PROMISC) {
3431		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3432		/* Do not hardware filter VLANs in promisc mode */
3433		e1000e_vlan_filter_disable(adapter);
3434	} else {
3435		int count;
3436
3437		if (netdev->flags & IFF_ALLMULTI) {
3438			rctl |= E1000_RCTL_MPE;
3439		} else {
3440			/* Write addresses to the MTA, if the attempt fails
3441			 * then we should just turn on promiscuous mode so
3442			 * that we can at least receive multicast traffic
3443			 */
3444			count = e1000e_write_mc_addr_list(netdev);
3445			if (count < 0)
3446				rctl |= E1000_RCTL_MPE;
3447		}
3448		e1000e_vlan_filter_enable(adapter);
3449		/* Write addresses to available RAR registers, if there is not
3450		 * sufficient space to store all the addresses then enable
3451		 * unicast promiscuous mode
3452		 */
3453		count = e1000e_write_uc_addr_list(netdev);
3454		if (count < 0)
3455			rctl |= E1000_RCTL_UPE;
3456	}
3457
3458	ew32(RCTL, rctl);
3459
3460	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3461		e1000e_vlan_strip_enable(adapter);
3462	else
3463		e1000e_vlan_strip_disable(adapter);
3464}
3465
3466static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3467{
3468	struct e1000_hw *hw = &adapter->hw;
3469	u32 mrqc, rxcsum;
3470	u32 rss_key[10];
3471	int i;
 
 
 
 
3472
3473	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3474	for (i = 0; i < 10; i++)
3475		ew32(RSSRK(i), rss_key[i]);
3476
3477	/* Direct all traffic to queue 0 */
3478	for (i = 0; i < 32; i++)
3479		ew32(RETA(i), 0);
3480
3481	/* Disable raw packet checksumming so that RSS hash is placed in
3482	 * descriptor on writeback.
3483	 */
3484	rxcsum = er32(RXCSUM);
3485	rxcsum |= E1000_RXCSUM_PCSD;
3486
3487	ew32(RXCSUM, rxcsum);
3488
3489	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3490		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3491		E1000_MRQC_RSS_FIELD_IPV6 |
3492		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3493		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3494
3495	ew32(MRQC, mrqc);
3496}
3497
3498/**
3499 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3500 * @adapter: board private structure
3501 * @timinca: pointer to returned time increment attributes
3502 *
3503 * Get attributes for incrementing the System Time Register SYSTIML/H at
3504 * the default base frequency, and set the cyclecounter shift value.
3505 **/
3506s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3507{
3508	struct e1000_hw *hw = &adapter->hw;
3509	u32 incvalue, incperiod, shift;
3510
3511	/* Make sure clock is enabled on I217/I218/I219  before checking
3512	 * the frequency
3513	 */
3514	if ((hw->mac.type >= e1000_pch_lpt) &&
3515	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517		u32 fextnvm7 = er32(FEXTNVM7);
3518
3519		if (!(fextnvm7 & BIT(0))) {
3520			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3521			e1e_flush();
3522		}
3523	}
3524
3525	switch (hw->mac.type) {
3526	case e1000_pch2lan:
3527		/* Stable 96MHz frequency */
3528		incperiod = INCPERIOD_96MHZ;
3529		incvalue = INCVALUE_96MHZ;
3530		shift = INCVALUE_SHIFT_96MHZ;
3531		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3532		break;
3533	case e1000_pch_lpt:
3534		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
 
 
 
 
3535			/* Stable 96MHz frequency */
3536			incperiod = INCPERIOD_96MHZ;
3537			incvalue = INCVALUE_96MHZ;
3538			shift = INCVALUE_SHIFT_96MHZ;
3539			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3540		} else {
3541			/* Stable 25MHz frequency */
3542			incperiod = INCPERIOD_25MHZ;
3543			incvalue = INCVALUE_25MHZ;
3544			shift = INCVALUE_SHIFT_25MHZ;
3545			adapter->cc.shift = shift;
3546		}
3547		break;
3548	case e1000_pch_spt:
3549		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550			/* Stable 24MHz frequency */
3551			incperiod = INCPERIOD_24MHZ;
3552			incvalue = INCVALUE_24MHZ;
3553			shift = INCVALUE_SHIFT_24MHZ;
3554			adapter->cc.shift = shift;
3555			break;
3556		}
3557		return -EINVAL;
3558	case e1000_pch_cnp:
3559		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3560			/* Stable 24MHz frequency */
3561			incperiod = INCPERIOD_24MHZ;
3562			incvalue = INCVALUE_24MHZ;
3563			shift = INCVALUE_SHIFT_24MHZ;
3564			adapter->cc.shift = shift;
3565		} else {
3566			/* Stable 38400KHz frequency */
3567			incperiod = INCPERIOD_38400KHZ;
3568			incvalue = INCVALUE_38400KHZ;
3569			shift = INCVALUE_SHIFT_38400KHZ;
3570			adapter->cc.shift = shift;
3571		}
3572		break;
3573	case e1000_82574:
3574	case e1000_82583:
3575		/* Stable 25MHz frequency */
3576		incperiod = INCPERIOD_25MHZ;
3577		incvalue = INCVALUE_25MHZ;
3578		shift = INCVALUE_SHIFT_25MHZ;
3579		adapter->cc.shift = shift;
3580		break;
3581	default:
3582		return -EINVAL;
3583	}
3584
3585	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3586		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3587
3588	return 0;
3589}
3590
3591/**
3592 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3593 * @adapter: board private structure
3594 *
3595 * Outgoing time stamping can be enabled and disabled. Play nice and
3596 * disable it when requested, although it shouldn't cause any overhead
3597 * when no packet needs it. At most one packet in the queue may be
3598 * marked for time stamping, otherwise it would be impossible to tell
3599 * for sure to which packet the hardware time stamp belongs.
3600 *
3601 * Incoming time stamping has to be configured via the hardware filters.
3602 * Not all combinations are supported, in particular event type has to be
3603 * specified. Matching the kind of event packet is not supported, with the
3604 * exception of "all V2 events regardless of level 2 or 4".
3605 **/
3606static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3607				  struct hwtstamp_config *config)
3608{
3609	struct e1000_hw *hw = &adapter->hw;
3610	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3611	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3612	u32 rxmtrl = 0;
3613	u16 rxudp = 0;
3614	bool is_l4 = false;
3615	bool is_l2 = false;
3616	u32 regval;
 
3617
3618	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3619		return -EINVAL;
3620
3621	/* flags reserved for future extensions - must be zero */
3622	if (config->flags)
3623		return -EINVAL;
3624
3625	switch (config->tx_type) {
3626	case HWTSTAMP_TX_OFF:
3627		tsync_tx_ctl = 0;
3628		break;
3629	case HWTSTAMP_TX_ON:
3630		break;
3631	default:
3632		return -ERANGE;
3633	}
3634
3635	switch (config->rx_filter) {
3636	case HWTSTAMP_FILTER_NONE:
3637		tsync_rx_ctl = 0;
3638		break;
3639	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3640		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3641		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3642		is_l4 = true;
3643		break;
3644	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3646		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3647		is_l4 = true;
3648		break;
3649	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3650		/* Also time stamps V2 L2 Path Delay Request/Response */
3651		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3652		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653		is_l2 = true;
3654		break;
3655	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3656		/* Also time stamps V2 L2 Path Delay Request/Response. */
3657		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3658		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3659		is_l2 = true;
3660		break;
3661	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3662		/* Hardware cannot filter just V2 L4 Sync messages;
3663		 * fall-through to V2 (both L2 and L4) Sync.
3664		 */
3665	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3666		/* Also time stamps V2 Path Delay Request/Response. */
3667		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3668		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3669		is_l2 = true;
3670		is_l4 = true;
3671		break;
3672	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3673		/* Hardware cannot filter just V2 L4 Delay Request messages;
3674		 * fall-through to V2 (both L2 and L4) Delay Request.
3675		 */
3676	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3677		/* Also time stamps V2 Path Delay Request/Response. */
3678		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3679		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3680		is_l2 = true;
3681		is_l4 = true;
3682		break;
3683	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3684	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3685		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3686		 * fall-through to all V2 (both L2 and L4) Events.
3687		 */
3688	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3689		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3690		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3691		is_l2 = true;
3692		is_l4 = true;
3693		break;
3694	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3695		/* For V1, the hardware can only filter Sync messages or
3696		 * Delay Request messages but not both so fall-through to
3697		 * time stamp all packets.
3698		 */
3699	case HWTSTAMP_FILTER_NTP_ALL:
3700	case HWTSTAMP_FILTER_ALL:
3701		is_l2 = true;
3702		is_l4 = true;
3703		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3704		config->rx_filter = HWTSTAMP_FILTER_ALL;
3705		break;
3706	default:
3707		return -ERANGE;
3708	}
3709
3710	adapter->hwtstamp_config = *config;
3711
3712	/* enable/disable Tx h/w time stamping */
3713	regval = er32(TSYNCTXCTL);
3714	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3715	regval |= tsync_tx_ctl;
3716	ew32(TSYNCTXCTL, regval);
3717	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3718	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3719		e_err("Timesync Tx Control register not set as expected\n");
3720		return -EAGAIN;
3721	}
3722
3723	/* enable/disable Rx h/w time stamping */
3724	regval = er32(TSYNCRXCTL);
3725	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3726	regval |= tsync_rx_ctl;
3727	ew32(TSYNCRXCTL, regval);
3728	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3729				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3730	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3731		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3732		e_err("Timesync Rx Control register not set as expected\n");
3733		return -EAGAIN;
3734	}
3735
3736	/* L2: define ethertype filter for time stamped packets */
3737	if (is_l2)
3738		rxmtrl |= ETH_P_1588;
3739
3740	/* define which PTP packets get time stamped */
3741	ew32(RXMTRL, rxmtrl);
3742
3743	/* Filter by destination port */
3744	if (is_l4) {
3745		rxudp = PTP_EV_PORT;
3746		cpu_to_be16s(&rxudp);
3747	}
3748	ew32(RXUDP, rxudp);
3749
3750	e1e_flush();
3751
3752	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3753	er32(RXSTMPH);
3754	er32(TXSTMPH);
3755
 
 
 
 
 
 
 
 
 
 
3756	return 0;
3757}
3758
3759/**
3760 * e1000_configure - configure the hardware for Rx and Tx
3761 * @adapter: private board structure
3762 **/
3763static void e1000_configure(struct e1000_adapter *adapter)
3764{
3765	struct e1000_ring *rx_ring = adapter->rx_ring;
3766
3767	e1000e_set_rx_mode(adapter->netdev);
3768
3769	e1000_restore_vlan(adapter);
3770	e1000_init_manageability_pt(adapter);
3771
3772	e1000_configure_tx(adapter);
3773
3774	if (adapter->netdev->features & NETIF_F_RXHASH)
3775		e1000e_setup_rss_hash(adapter);
3776	e1000_setup_rctl(adapter);
3777	e1000_configure_rx(adapter);
3778	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3779}
3780
3781/**
3782 * e1000e_power_up_phy - restore link in case the phy was powered down
3783 * @adapter: address of board private structure
3784 *
3785 * The phy may be powered down to save power and turn off link when the
3786 * driver is unloaded and wake on lan is not enabled (among others)
3787 * *** this routine MUST be followed by a call to e1000e_reset ***
3788 **/
3789void e1000e_power_up_phy(struct e1000_adapter *adapter)
3790{
3791	if (adapter->hw.phy.ops.power_up)
3792		adapter->hw.phy.ops.power_up(&adapter->hw);
3793
3794	adapter->hw.mac.ops.setup_link(&adapter->hw);
3795}
3796
3797/**
3798 * e1000_power_down_phy - Power down the PHY
3799 *
3800 * Power down the PHY so no link is implied when interface is down.
3801 * The PHY cannot be powered down if management or WoL is active.
3802 */
3803static void e1000_power_down_phy(struct e1000_adapter *adapter)
3804{
3805	if (adapter->hw.phy.ops.power_down)
3806		adapter->hw.phy.ops.power_down(&adapter->hw);
3807}
3808
3809/**
3810 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3811 *
3812 * We want to clear all pending descriptors from the TX ring.
3813 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3814 * the data of the next descriptor. We don't care about the data we are about
3815 * to reset the HW.
3816 */
3817static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3818{
3819	struct e1000_hw *hw = &adapter->hw;
3820	struct e1000_ring *tx_ring = adapter->tx_ring;
3821	struct e1000_tx_desc *tx_desc = NULL;
3822	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3823	u16 size = 512;
3824
3825	tctl = er32(TCTL);
3826	ew32(TCTL, tctl | E1000_TCTL_EN);
3827	tdt = er32(TDT(0));
3828	BUG_ON(tdt != tx_ring->next_to_use);
3829	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3830	tx_desc->buffer_addr = tx_ring->dma;
3831
3832	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3833	tx_desc->upper.data = 0;
3834	/* flush descriptors to memory before notifying the HW */
3835	wmb();
3836	tx_ring->next_to_use++;
3837	if (tx_ring->next_to_use == tx_ring->count)
3838		tx_ring->next_to_use = 0;
3839	ew32(TDT(0), tx_ring->next_to_use);
3840	mmiowb();
3841	usleep_range(200, 250);
3842}
3843
3844/**
3845 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3846 *
3847 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3848 */
3849static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3850{
3851	u32 rctl, rxdctl;
3852	struct e1000_hw *hw = &adapter->hw;
3853
3854	rctl = er32(RCTL);
3855	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3856	e1e_flush();
3857	usleep_range(100, 150);
3858
3859	rxdctl = er32(RXDCTL(0));
3860	/* zero the lower 14 bits (prefetch and host thresholds) */
3861	rxdctl &= 0xffffc000;
3862
3863	/* update thresholds: prefetch threshold to 31, host threshold to 1
3864	 * and make sure the granularity is "descriptors" and not "cache lines"
3865	 */
3866	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3867
3868	ew32(RXDCTL(0), rxdctl);
3869	/* momentarily enable the RX ring for the changes to take effect */
3870	ew32(RCTL, rctl | E1000_RCTL_EN);
3871	e1e_flush();
3872	usleep_range(100, 150);
3873	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3874}
3875
3876/**
3877 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3878 *
3879 * In i219, the descriptor rings must be emptied before resetting the HW
3880 * or before changing the device state to D3 during runtime (runtime PM).
3881 *
3882 * Failure to do this will cause the HW to enter a unit hang state which can
3883 * only be released by PCI reset on the device
3884 *
3885 */
3886
3887static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3888{
3889	u16 hang_state;
3890	u32 fext_nvm11, tdlen;
3891	struct e1000_hw *hw = &adapter->hw;
3892
3893	/* First, disable MULR fix in FEXTNVM11 */
3894	fext_nvm11 = er32(FEXTNVM11);
3895	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3896	ew32(FEXTNVM11, fext_nvm11);
3897	/* do nothing if we're not in faulty state, or if the queue is empty */
3898	tdlen = er32(TDLEN(0));
3899	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900			     &hang_state);
3901	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3902		return;
3903	e1000_flush_tx_ring(adapter);
3904	/* recheck, maybe the fault is caused by the rx ring */
3905	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3906			     &hang_state);
3907	if (hang_state & FLUSH_DESC_REQUIRED)
3908		e1000_flush_rx_ring(adapter);
3909}
3910
3911/**
3912 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3913 * @adapter: board private structure
3914 *
3915 * When the MAC is reset, all hardware bits for timesync will be reset to the
3916 * default values. This function will restore the settings last in place.
3917 * Since the clock SYSTIME registers are reset, we will simply restore the
3918 * cyclecounter to the kernel real clock time.
3919 **/
3920static void e1000e_systim_reset(struct e1000_adapter *adapter)
3921{
3922	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3923	struct e1000_hw *hw = &adapter->hw;
3924	unsigned long flags;
3925	u32 timinca;
3926	s32 ret_val;
3927
3928	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3929		return;
3930
3931	if (info->adjfreq) {
3932		/* restore the previous ptp frequency delta */
3933		ret_val = info->adjfreq(info, adapter->ptp_delta);
3934	} else {
3935		/* set the default base frequency if no adjustment possible */
3936		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3937		if (!ret_val)
3938			ew32(TIMINCA, timinca);
3939	}
3940
3941	if (ret_val) {
3942		dev_warn(&adapter->pdev->dev,
3943			 "Failed to restore TIMINCA clock rate delta: %d\n",
3944			 ret_val);
3945		return;
3946	}
3947
3948	/* reset the systim ns time counter */
3949	spin_lock_irqsave(&adapter->systim_lock, flags);
3950	timecounter_init(&adapter->tc, &adapter->cc,
3951			 ktime_to_ns(ktime_get_real()));
3952	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3953
3954	/* restore the previous hwtstamp configuration settings */
3955	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3956}
3957
3958/**
3959 * e1000e_reset - bring the hardware into a known good state
3960 *
3961 * This function boots the hardware and enables some settings that
3962 * require a configuration cycle of the hardware - those cannot be
3963 * set/changed during runtime. After reset the device needs to be
3964 * properly configured for Rx, Tx etc.
3965 */
3966void e1000e_reset(struct e1000_adapter *adapter)
3967{
3968	struct e1000_mac_info *mac = &adapter->hw.mac;
3969	struct e1000_fc_info *fc = &adapter->hw.fc;
3970	struct e1000_hw *hw = &adapter->hw;
3971	u32 tx_space, min_tx_space, min_rx_space;
3972	u32 pba = adapter->pba;
3973	u16 hwm;
3974
3975	/* reset Packet Buffer Allocation to default */
3976	ew32(PBA, pba);
3977
3978	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3979		/* To maintain wire speed transmits, the Tx FIFO should be
3980		 * large enough to accommodate two full transmit packets,
3981		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3982		 * the Rx FIFO should be large enough to accommodate at least
3983		 * one full receive packet and is similarly rounded up and
3984		 * expressed in KB.
3985		 */
3986		pba = er32(PBA);
3987		/* upper 16 bits has Tx packet buffer allocation size in KB */
3988		tx_space = pba >> 16;
3989		/* lower 16 bits has Rx packet buffer allocation size in KB */
3990		pba &= 0xffff;
3991		/* the Tx fifo also stores 16 bytes of information about the Tx
3992		 * but don't include ethernet FCS because hardware appends it
3993		 */
3994		min_tx_space = (adapter->max_frame_size +
3995				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3996		min_tx_space = ALIGN(min_tx_space, 1024);
3997		min_tx_space >>= 10;
3998		/* software strips receive CRC, so leave room for it */
3999		min_rx_space = adapter->max_frame_size;
4000		min_rx_space = ALIGN(min_rx_space, 1024);
4001		min_rx_space >>= 10;
4002
4003		/* If current Tx allocation is less than the min Tx FIFO size,
4004		 * and the min Tx FIFO size is less than the current Rx FIFO
4005		 * allocation, take space away from current Rx allocation
4006		 */
4007		if ((tx_space < min_tx_space) &&
4008		    ((min_tx_space - tx_space) < pba)) {
4009			pba -= min_tx_space - tx_space;
4010
4011			/* if short on Rx space, Rx wins and must trump Tx
4012			 * adjustment
4013			 */
4014			if (pba < min_rx_space)
4015				pba = min_rx_space;
4016		}
4017
4018		ew32(PBA, pba);
4019	}
4020
4021	/* flow control settings
4022	 *
4023	 * The high water mark must be low enough to fit one full frame
4024	 * (or the size used for early receive) above it in the Rx FIFO.
4025	 * Set it to the lower of:
4026	 * - 90% of the Rx FIFO size, and
4027	 * - the full Rx FIFO size minus one full frame
4028	 */
4029	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4030		fc->pause_time = 0xFFFF;
4031	else
4032		fc->pause_time = E1000_FC_PAUSE_TIME;
4033	fc->send_xon = true;
4034	fc->current_mode = fc->requested_mode;
4035
4036	switch (hw->mac.type) {
4037	case e1000_ich9lan:
4038	case e1000_ich10lan:
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			pba = 14;
4041			ew32(PBA, pba);
4042			fc->high_water = 0x2800;
4043			fc->low_water = fc->high_water - 8;
4044			break;
4045		}
4046		/* fall-through */
4047	default:
4048		hwm = min(((pba << 10) * 9 / 10),
4049			  ((pba << 10) - adapter->max_frame_size));
4050
4051		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4052		fc->low_water = fc->high_water - 8;
4053		break;
4054	case e1000_pchlan:
4055		/* Workaround PCH LOM adapter hangs with certain network
4056		 * loads.  If hangs persist, try disabling Tx flow control.
4057		 */
4058		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4059			fc->high_water = 0x3500;
4060			fc->low_water = 0x1500;
4061		} else {
4062			fc->high_water = 0x5000;
4063			fc->low_water = 0x3000;
4064		}
4065		fc->refresh_time = 0x1000;
4066		break;
4067	case e1000_pch2lan:
4068	case e1000_pch_lpt:
4069	case e1000_pch_spt:
4070	case e1000_pch_cnp:
4071		fc->refresh_time = 0x0400;
4072
4073		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074			fc->high_water = 0x05C20;
4075			fc->low_water = 0x05048;
4076			fc->pause_time = 0x0650;
4077			break;
4078		}
4079
4080		pba = 14;
4081		ew32(PBA, pba);
4082		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4083		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4084		break;
4085	}
4086
4087	/* Alignment of Tx data is on an arbitrary byte boundary with the
4088	 * maximum size per Tx descriptor limited only to the transmit
4089	 * allocation of the packet buffer minus 96 bytes with an upper
4090	 * limit of 24KB due to receive synchronization limitations.
4091	 */
4092	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4093				       24 << 10);
4094
4095	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4096	 * fit in receive buffer.
4097	 */
4098	if (adapter->itr_setting & 0x3) {
4099		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4100			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4101				dev_info(&adapter->pdev->dev,
4102					 "Interrupt Throttle Rate off\n");
4103				adapter->flags2 |= FLAG2_DISABLE_AIM;
4104				e1000e_write_itr(adapter, 0);
4105			}
4106		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4107			dev_info(&adapter->pdev->dev,
4108				 "Interrupt Throttle Rate on\n");
4109			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4110			adapter->itr = 20000;
4111			e1000e_write_itr(adapter, adapter->itr);
4112		}
4113	}
4114
4115	if (hw->mac.type >= e1000_pch_spt)
4116		e1000_flush_desc_rings(adapter);
4117	/* Allow time for pending master requests to run */
4118	mac->ops.reset_hw(hw);
4119
4120	/* For parts with AMT enabled, let the firmware know
4121	 * that the network interface is in control
4122	 */
4123	if (adapter->flags & FLAG_HAS_AMT)
4124		e1000e_get_hw_control(adapter);
4125
4126	ew32(WUC, 0);
4127
4128	if (mac->ops.init_hw(hw))
4129		e_err("Hardware Error\n");
4130
4131	e1000_update_mng_vlan(adapter);
4132
4133	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4134	ew32(VET, ETH_P_8021Q);
4135
4136	e1000e_reset_adaptive(hw);
4137
4138	/* restore systim and hwtstamp settings */
4139	e1000e_systim_reset(adapter);
4140
4141	/* Set EEE advertisement as appropriate */
4142	if (adapter->flags2 & FLAG2_HAS_EEE) {
4143		s32 ret_val;
4144		u16 adv_addr;
4145
4146		switch (hw->phy.type) {
4147		case e1000_phy_82579:
4148			adv_addr = I82579_EEE_ADVERTISEMENT;
4149			break;
4150		case e1000_phy_i217:
4151			adv_addr = I217_EEE_ADVERTISEMENT;
4152			break;
4153		default:
4154			dev_err(&adapter->pdev->dev,
4155				"Invalid PHY type setting EEE advertisement\n");
4156			return;
4157		}
4158
4159		ret_val = hw->phy.ops.acquire(hw);
4160		if (ret_val) {
4161			dev_err(&adapter->pdev->dev,
4162				"EEE advertisement - unable to acquire PHY\n");
4163			return;
4164		}
4165
4166		e1000_write_emi_reg_locked(hw, adv_addr,
4167					   hw->dev_spec.ich8lan.eee_disable ?
4168					   0 : adapter->eee_advert);
4169
4170		hw->phy.ops.release(hw);
4171	}
4172
4173	if (!netif_running(adapter->netdev) &&
4174	    !test_bit(__E1000_TESTING, &adapter->state))
4175		e1000_power_down_phy(adapter);
4176
4177	e1000_get_phy_info(hw);
4178
4179	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4180	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4181		u16 phy_data = 0;
4182		/* speed up time to link by disabling smart power down, ignore
4183		 * the return value of this function because there is nothing
4184		 * different we would do if it failed
4185		 */
4186		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4187		phy_data &= ~IGP02E1000_PM_SPD;
4188		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4189	}
4190	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4191		u32 reg;
4192
4193		/* Fextnvm7 @ 0xe4[2] = 1 */
4194		reg = er32(FEXTNVM7);
4195		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4196		ew32(FEXTNVM7, reg);
4197		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4198		reg = er32(FEXTNVM9);
4199		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4200		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4201		ew32(FEXTNVM9, reg);
4202	}
4203
4204}
4205
4206/**
4207 * e1000e_trigger_lsc - trigger an LSC interrupt
4208 * @adapter: 
4209 *
4210 * Fire a link status change interrupt to start the watchdog.
4211 **/
4212static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4213{
4214	struct e1000_hw *hw = &adapter->hw;
4215
4216	if (adapter->msix_entries)
4217		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4218	else
4219		ew32(ICS, E1000_ICS_LSC);
4220}
4221
4222void e1000e_up(struct e1000_adapter *adapter)
4223{
4224	/* hardware has been reset, we need to reload some things */
4225	e1000_configure(adapter);
4226
4227	clear_bit(__E1000_DOWN, &adapter->state);
4228
4229	if (adapter->msix_entries)
4230		e1000_configure_msix(adapter);
4231	e1000_irq_enable(adapter);
4232
4233	netif_start_queue(adapter->netdev);
4234
4235	e1000e_trigger_lsc(adapter);
 
 
 
 
 
 
4236}
4237
4238static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4239{
4240	struct e1000_hw *hw = &adapter->hw;
4241
4242	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4243		return;
4244
4245	/* flush pending descriptor writebacks to memory */
4246	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4247	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4248
4249	/* execute the writes immediately */
4250	e1e_flush();
4251
4252	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4253	 * write is successful
4254	 */
4255	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257
4258	/* execute the writes immediately */
4259	e1e_flush();
4260}
4261
4262static void e1000e_update_stats(struct e1000_adapter *adapter);
4263
4264/**
4265 * e1000e_down - quiesce the device and optionally reset the hardware
4266 * @adapter: board private structure
4267 * @reset: boolean flag to reset the hardware or not
4268 */
4269void e1000e_down(struct e1000_adapter *adapter, bool reset)
4270{
4271	struct net_device *netdev = adapter->netdev;
4272	struct e1000_hw *hw = &adapter->hw;
4273	u32 tctl, rctl;
4274
4275	/* signal that we're down so the interrupt handler does not
4276	 * reschedule our watchdog timer
4277	 */
4278	set_bit(__E1000_DOWN, &adapter->state);
4279
4280	netif_carrier_off(netdev);
4281
4282	/* disable receives in the hardware */
4283	rctl = er32(RCTL);
4284	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4285		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4286	/* flush and sleep below */
4287
4288	netif_stop_queue(netdev);
4289
4290	/* disable transmits in the hardware */
4291	tctl = er32(TCTL);
4292	tctl &= ~E1000_TCTL_EN;
4293	ew32(TCTL, tctl);
4294
4295	/* flush both disables and wait for them to finish */
4296	e1e_flush();
4297	usleep_range(10000, 20000);
4298
4299	e1000_irq_disable(adapter);
4300
4301	napi_synchronize(&adapter->napi);
4302
4303	del_timer_sync(&adapter->watchdog_timer);
4304	del_timer_sync(&adapter->phy_info_timer);
4305
 
 
4306	spin_lock(&adapter->stats64_lock);
4307	e1000e_update_stats(adapter);
4308	spin_unlock(&adapter->stats64_lock);
4309
4310	e1000e_flush_descriptors(adapter);
 
 
4311
4312	adapter->link_speed = 0;
4313	adapter->link_duplex = 0;
4314
4315	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4316	if ((hw->mac.type >= e1000_pch2lan) &&
4317	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4318	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4319		e_dbg("failed to disable jumbo frame workaround mode\n");
4320
4321	if (!pci_channel_offline(adapter->pdev)) {
4322		if (reset)
4323			e1000e_reset(adapter);
4324		else if (hw->mac.type >= e1000_pch_spt)
4325			e1000_flush_desc_rings(adapter);
4326	}
4327	e1000_clean_tx_ring(adapter->tx_ring);
4328	e1000_clean_rx_ring(adapter->rx_ring);
4329}
4330
4331void e1000e_reinit_locked(struct e1000_adapter *adapter)
4332{
4333	might_sleep();
4334	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4335		usleep_range(1000, 2000);
4336	e1000e_down(adapter, true);
4337	e1000e_up(adapter);
4338	clear_bit(__E1000_RESETTING, &adapter->state);
4339}
4340
4341/**
4342 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4343 * @hw: pointer to the HW structure
4344 * @systim: time value read, sanitized and returned
4345 *
4346 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4347 * check to see that the time is incrementing at a reasonable
4348 * rate and is a multiple of incvalue.
4349 **/
4350static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4351{
4352	u64 time_delta, rem, temp;
4353	u64 systim_next;
4354	u32 incvalue;
4355	int i;
4356
4357	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4358	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4359		/* latch SYSTIMH on read of SYSTIML */
4360		systim_next = (u64)er32(SYSTIML);
4361		systim_next |= (u64)er32(SYSTIMH) << 32;
4362
4363		time_delta = systim_next - systim;
4364		temp = time_delta;
4365		/* VMWare users have seen incvalue of zero, don't div / 0 */
4366		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4367
4368		systim = systim_next;
4369
4370		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4371			break;
4372	}
4373
4374	return systim;
4375}
4376
4377/**
4378 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4379 * @cc: cyclecounter structure
4380 **/
4381static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4382{
4383	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4384						     cc);
4385	struct e1000_hw *hw = &adapter->hw;
4386	u32 systimel, systimeh;
4387	u64 systim;
4388	/* SYSTIMH latching upon SYSTIML read does not work well.
4389	 * This means that if SYSTIML overflows after we read it but before
4390	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391	 * will experience a huge non linear increment in the systime value
4392	 * to fix that we test for overflow and if true, we re-read systime.
4393	 */
4394	systimel = er32(SYSTIML);
4395	systimeh = er32(SYSTIMH);
4396	/* Is systimel is so large that overflow is possible? */
4397	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4398		u32 systimel_2 = er32(SYSTIML);
4399		if (systimel > systimel_2) {
4400			/* There was an overflow, read again SYSTIMH, and use
4401			 * systimel_2
4402			 */
4403			systimeh = er32(SYSTIMH);
4404			systimel = systimel_2;
4405		}
4406	}
4407	systim = (u64)systimel;
4408	systim |= (u64)systimeh << 32;
4409
4410	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4411		systim = e1000e_sanitize_systim(hw, systim);
 
4412
4413	return systim;
4414}
4415
4416/**
4417 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4418 * @adapter: board private structure to initialize
4419 *
4420 * e1000_sw_init initializes the Adapter private data structure.
4421 * Fields are initialized based on PCI device information and
4422 * OS network device settings (MTU size).
4423 **/
4424static int e1000_sw_init(struct e1000_adapter *adapter)
4425{
4426	struct net_device *netdev = adapter->netdev;
4427
4428	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4429	adapter->rx_ps_bsize0 = 128;
4430	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4431	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4432	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4433	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4434
4435	spin_lock_init(&adapter->stats64_lock);
4436
4437	e1000e_set_interrupt_capability(adapter);
4438
4439	if (e1000_alloc_queues(adapter))
4440		return -ENOMEM;
4441
4442	/* Setup hardware time stamping cyclecounter */
4443	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4444		adapter->cc.read = e1000e_cyclecounter_read;
4445		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4446		adapter->cc.mult = 1;
4447		/* cc.shift set in e1000e_get_base_tininca() */
4448
4449		spin_lock_init(&adapter->systim_lock);
4450		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4451	}
4452
4453	/* Explicitly disable IRQ since the NIC can be in any state. */
4454	e1000_irq_disable(adapter);
4455
4456	set_bit(__E1000_DOWN, &adapter->state);
4457	return 0;
4458}
4459
4460/**
4461 * e1000_intr_msi_test - Interrupt Handler
4462 * @irq: interrupt number
4463 * @data: pointer to a network interface device structure
4464 **/
4465static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4466{
4467	struct net_device *netdev = data;
4468	struct e1000_adapter *adapter = netdev_priv(netdev);
4469	struct e1000_hw *hw = &adapter->hw;
4470	u32 icr = er32(ICR);
4471
4472	e_dbg("icr is %08X\n", icr);
4473	if (icr & E1000_ICR_RXSEQ) {
4474		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4475		/* Force memory writes to complete before acknowledging the
4476		 * interrupt is handled.
4477		 */
4478		wmb();
4479	}
4480
4481	return IRQ_HANDLED;
4482}
4483
4484/**
4485 * e1000_test_msi_interrupt - Returns 0 for successful test
4486 * @adapter: board private struct
4487 *
4488 * code flow taken from tg3.c
4489 **/
4490static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4491{
4492	struct net_device *netdev = adapter->netdev;
4493	struct e1000_hw *hw = &adapter->hw;
4494	int err;
4495
4496	/* poll_enable hasn't been called yet, so don't need disable */
4497	/* clear any pending events */
4498	er32(ICR);
4499
4500	/* free the real vector and request a test handler */
4501	e1000_free_irq(adapter);
4502	e1000e_reset_interrupt_capability(adapter);
4503
4504	/* Assume that the test fails, if it succeeds then the test
4505	 * MSI irq handler will unset this flag
4506	 */
4507	adapter->flags |= FLAG_MSI_TEST_FAILED;
4508
4509	err = pci_enable_msi(adapter->pdev);
4510	if (err)
4511		goto msi_test_failed;
4512
4513	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4514			  netdev->name, netdev);
4515	if (err) {
4516		pci_disable_msi(adapter->pdev);
4517		goto msi_test_failed;
4518	}
4519
4520	/* Force memory writes to complete before enabling and firing an
4521	 * interrupt.
4522	 */
4523	wmb();
4524
4525	e1000_irq_enable(adapter);
4526
4527	/* fire an unusual interrupt on the test handler */
4528	ew32(ICS, E1000_ICS_RXSEQ);
4529	e1e_flush();
4530	msleep(100);
4531
4532	e1000_irq_disable(adapter);
4533
4534	rmb();			/* read flags after interrupt has been fired */
4535
4536	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4537		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4538		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4539	} else {
4540		e_dbg("MSI interrupt test succeeded!\n");
4541	}
4542
4543	free_irq(adapter->pdev->irq, netdev);
4544	pci_disable_msi(adapter->pdev);
4545
4546msi_test_failed:
4547	e1000e_set_interrupt_capability(adapter);
4548	return e1000_request_irq(adapter);
4549}
4550
4551/**
4552 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4553 * @adapter: board private struct
4554 *
4555 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4556 **/
4557static int e1000_test_msi(struct e1000_adapter *adapter)
4558{
4559	int err;
4560	u16 pci_cmd;
4561
4562	if (!(adapter->flags & FLAG_MSI_ENABLED))
4563		return 0;
4564
4565	/* disable SERR in case the MSI write causes a master abort */
4566	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4567	if (pci_cmd & PCI_COMMAND_SERR)
4568		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4569				      pci_cmd & ~PCI_COMMAND_SERR);
4570
4571	err = e1000_test_msi_interrupt(adapter);
4572
4573	/* re-enable SERR */
4574	if (pci_cmd & PCI_COMMAND_SERR) {
4575		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576		pci_cmd |= PCI_COMMAND_SERR;
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4578	}
4579
4580	return err;
4581}
4582
4583/**
4584 * e1000e_open - Called when a network interface is made active
4585 * @netdev: network interface device structure
4586 *
4587 * Returns 0 on success, negative value on failure
4588 *
4589 * The open entry point is called when a network interface is made
4590 * active by the system (IFF_UP).  At this point all resources needed
4591 * for transmit and receive operations are allocated, the interrupt
4592 * handler is registered with the OS, the watchdog timer is started,
4593 * and the stack is notified that the interface is ready.
4594 **/
4595int e1000e_open(struct net_device *netdev)
4596{
4597	struct e1000_adapter *adapter = netdev_priv(netdev);
4598	struct e1000_hw *hw = &adapter->hw;
4599	struct pci_dev *pdev = adapter->pdev;
4600	int err;
4601
4602	/* disallow open during test */
4603	if (test_bit(__E1000_TESTING, &adapter->state))
4604		return -EBUSY;
4605
4606	pm_runtime_get_sync(&pdev->dev);
4607
4608	netif_carrier_off(netdev);
4609
4610	/* allocate transmit descriptors */
4611	err = e1000e_setup_tx_resources(adapter->tx_ring);
4612	if (err)
4613		goto err_setup_tx;
4614
4615	/* allocate receive descriptors */
4616	err = e1000e_setup_rx_resources(adapter->rx_ring);
4617	if (err)
4618		goto err_setup_rx;
4619
4620	/* If AMT is enabled, let the firmware know that the network
4621	 * interface is now open and reset the part to a known state.
4622	 */
4623	if (adapter->flags & FLAG_HAS_AMT) {
4624		e1000e_get_hw_control(adapter);
4625		e1000e_reset(adapter);
4626	}
4627
4628	e1000e_power_up_phy(adapter);
4629
4630	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4631	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4632		e1000_update_mng_vlan(adapter);
4633
4634	/* DMA latency requirement to workaround jumbo issue */
4635	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4636			   PM_QOS_DEFAULT_VALUE);
4637
4638	/* before we allocate an interrupt, we must be ready to handle it.
4639	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4640	 * as soon as we call pci_request_irq, so we have to setup our
4641	 * clean_rx handler before we do so.
4642	 */
4643	e1000_configure(adapter);
4644
4645	err = e1000_request_irq(adapter);
4646	if (err)
4647		goto err_req_irq;
4648
4649	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4650	 * ignore e1000e MSI messages, which means we need to test our MSI
4651	 * interrupt now
4652	 */
4653	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4654		err = e1000_test_msi(adapter);
4655		if (err) {
4656			e_err("Interrupt allocation failed\n");
4657			goto err_req_irq;
4658		}
4659	}
4660
4661	/* From here on the code is the same as e1000e_up() */
4662	clear_bit(__E1000_DOWN, &adapter->state);
4663
4664	napi_enable(&adapter->napi);
4665
4666	e1000_irq_enable(adapter);
4667
4668	adapter->tx_hang_recheck = false;
4669	netif_start_queue(netdev);
4670
4671	hw->mac.get_link_status = true;
4672	pm_runtime_put(&pdev->dev);
4673
4674	e1000e_trigger_lsc(adapter);
 
 
 
 
4675
4676	return 0;
4677
4678err_req_irq:
4679	pm_qos_remove_request(&adapter->pm_qos_req);
4680	e1000e_release_hw_control(adapter);
4681	e1000_power_down_phy(adapter);
4682	e1000e_free_rx_resources(adapter->rx_ring);
4683err_setup_rx:
4684	e1000e_free_tx_resources(adapter->tx_ring);
4685err_setup_tx:
4686	e1000e_reset(adapter);
4687	pm_runtime_put_sync(&pdev->dev);
4688
4689	return err;
4690}
4691
4692/**
4693 * e1000e_close - Disables a network interface
4694 * @netdev: network interface device structure
4695 *
4696 * Returns 0, this is not allowed to fail
4697 *
4698 * The close entry point is called when an interface is de-activated
4699 * by the OS.  The hardware is still under the drivers control, but
4700 * needs to be disabled.  A global MAC reset is issued to stop the
4701 * hardware, and all transmit and receive resources are freed.
4702 **/
4703int e1000e_close(struct net_device *netdev)
4704{
4705	struct e1000_adapter *adapter = netdev_priv(netdev);
4706	struct pci_dev *pdev = adapter->pdev;
4707	int count = E1000_CHECK_RESET_COUNT;
4708
4709	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4710		usleep_range(10000, 20000);
4711
4712	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4713
4714	pm_runtime_get_sync(&pdev->dev);
4715
4716	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4717		e1000e_down(adapter, true);
4718		e1000_free_irq(adapter);
4719
4720		/* Link status message must follow this format */
4721		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4722	}
4723
4724	napi_disable(&adapter->napi);
4725
4726	e1000e_free_tx_resources(adapter->tx_ring);
4727	e1000e_free_rx_resources(adapter->rx_ring);
4728
4729	/* kill manageability vlan ID if supported, but not if a vlan with
4730	 * the same ID is registered on the host OS (let 8021q kill it)
4731	 */
4732	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4733		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4734				       adapter->mng_vlan_id);
4735
4736	/* If AMT is enabled, let the firmware know that the network
4737	 * interface is now closed
4738	 */
4739	if ((adapter->flags & FLAG_HAS_AMT) &&
4740	    !test_bit(__E1000_TESTING, &adapter->state))
4741		e1000e_release_hw_control(adapter);
4742
4743	pm_qos_remove_request(&adapter->pm_qos_req);
4744
4745	pm_runtime_put_sync(&pdev->dev);
4746
4747	return 0;
4748}
4749
4750/**
4751 * e1000_set_mac - Change the Ethernet Address of the NIC
4752 * @netdev: network interface device structure
4753 * @p: pointer to an address structure
4754 *
4755 * Returns 0 on success, negative on failure
4756 **/
4757static int e1000_set_mac(struct net_device *netdev, void *p)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct sockaddr *addr = p;
4762
4763	if (!is_valid_ether_addr(addr->sa_data))
4764		return -EADDRNOTAVAIL;
4765
4766	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4767	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4768
4769	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4770
4771	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4772		/* activate the work around */
4773		e1000e_set_laa_state_82571(&adapter->hw, 1);
4774
4775		/* Hold a copy of the LAA in RAR[14] This is done so that
4776		 * between the time RAR[0] gets clobbered  and the time it
4777		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4778		 * of the RARs and no incoming packets directed to this port
4779		 * are dropped. Eventually the LAA will be in RAR[0] and
4780		 * RAR[14]
4781		 */
4782		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4783				    adapter->hw.mac.rar_entry_count - 1);
4784	}
4785
4786	return 0;
4787}
4788
4789/**
4790 * e1000e_update_phy_task - work thread to update phy
4791 * @work: pointer to our work struct
4792 *
4793 * this worker thread exists because we must acquire a
4794 * semaphore to read the phy, which we could msleep while
4795 * waiting for it, and we can't msleep in a timer.
4796 **/
4797static void e1000e_update_phy_task(struct work_struct *work)
4798{
4799	struct e1000_adapter *adapter = container_of(work,
4800						     struct e1000_adapter,
4801						     update_phy_task);
4802	struct e1000_hw *hw = &adapter->hw;
4803
4804	if (test_bit(__E1000_DOWN, &adapter->state))
4805		return;
4806
4807	e1000_get_phy_info(hw);
4808
4809	/* Enable EEE on 82579 after link up */
4810	if (hw->phy.type >= e1000_phy_82579)
4811		e1000_set_eee_pchlan(hw);
4812}
4813
4814/**
4815 * e1000_update_phy_info - timre call-back to update PHY info
4816 * @data: pointer to adapter cast into an unsigned long
4817 *
4818 * Need to wait a few seconds after link up to get diagnostic information from
4819 * the phy
4820 **/
4821static void e1000_update_phy_info(struct timer_list *t)
4822{
4823	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4824
4825	if (test_bit(__E1000_DOWN, &adapter->state))
4826		return;
4827
4828	schedule_work(&adapter->update_phy_task);
4829}
4830
4831/**
4832 * e1000e_update_phy_stats - Update the PHY statistics counters
4833 * @adapter: board private structure
4834 *
4835 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4836 **/
4837static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4838{
4839	struct e1000_hw *hw = &adapter->hw;
4840	s32 ret_val;
4841	u16 phy_data;
4842
4843	ret_val = hw->phy.ops.acquire(hw);
4844	if (ret_val)
4845		return;
4846
4847	/* A page set is expensive so check if already on desired page.
4848	 * If not, set to the page with the PHY status registers.
4849	 */
4850	hw->phy.addr = 1;
4851	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4852					   &phy_data);
4853	if (ret_val)
4854		goto release;
4855	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4856		ret_val = hw->phy.ops.set_page(hw,
4857					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4858		if (ret_val)
4859			goto release;
4860	}
4861
4862	/* Single Collision Count */
4863	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4864	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4865	if (!ret_val)
4866		adapter->stats.scc += phy_data;
4867
4868	/* Excessive Collision Count */
4869	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4870	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4871	if (!ret_val)
4872		adapter->stats.ecol += phy_data;
4873
4874	/* Multiple Collision Count */
4875	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4876	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4877	if (!ret_val)
4878		adapter->stats.mcc += phy_data;
4879
4880	/* Late Collision Count */
4881	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4882	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4883	if (!ret_val)
4884		adapter->stats.latecol += phy_data;
4885
4886	/* Collision Count - also used for adaptive IFS */
4887	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4888	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4889	if (!ret_val)
4890		hw->mac.collision_delta = phy_data;
4891
4892	/* Defer Count */
4893	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4894	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4895	if (!ret_val)
4896		adapter->stats.dc += phy_data;
4897
4898	/* Transmit with no CRS */
4899	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4900	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4901	if (!ret_val)
4902		adapter->stats.tncrs += phy_data;
4903
4904release:
4905	hw->phy.ops.release(hw);
4906}
4907
4908/**
4909 * e1000e_update_stats - Update the board statistics counters
4910 * @adapter: board private structure
4911 **/
4912static void e1000e_update_stats(struct e1000_adapter *adapter)
4913{
4914	struct net_device *netdev = adapter->netdev;
4915	struct e1000_hw *hw = &adapter->hw;
4916	struct pci_dev *pdev = adapter->pdev;
4917
4918	/* Prevent stats update while adapter is being reset, or if the pci
4919	 * connection is down.
4920	 */
4921	if (adapter->link_speed == 0)
4922		return;
4923	if (pci_channel_offline(pdev))
4924		return;
4925
4926	adapter->stats.crcerrs += er32(CRCERRS);
4927	adapter->stats.gprc += er32(GPRC);
4928	adapter->stats.gorc += er32(GORCL);
4929	er32(GORCH);		/* Clear gorc */
4930	adapter->stats.bprc += er32(BPRC);
4931	adapter->stats.mprc += er32(MPRC);
4932	adapter->stats.roc += er32(ROC);
4933
4934	adapter->stats.mpc += er32(MPC);
4935
4936	/* Half-duplex statistics */
4937	if (adapter->link_duplex == HALF_DUPLEX) {
4938		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4939			e1000e_update_phy_stats(adapter);
4940		} else {
4941			adapter->stats.scc += er32(SCC);
4942			adapter->stats.ecol += er32(ECOL);
4943			adapter->stats.mcc += er32(MCC);
4944			adapter->stats.latecol += er32(LATECOL);
4945			adapter->stats.dc += er32(DC);
4946
4947			hw->mac.collision_delta = er32(COLC);
4948
4949			if ((hw->mac.type != e1000_82574) &&
4950			    (hw->mac.type != e1000_82583))
4951				adapter->stats.tncrs += er32(TNCRS);
4952		}
4953		adapter->stats.colc += hw->mac.collision_delta;
4954	}
4955
4956	adapter->stats.xonrxc += er32(XONRXC);
4957	adapter->stats.xontxc += er32(XONTXC);
4958	adapter->stats.xoffrxc += er32(XOFFRXC);
4959	adapter->stats.xofftxc += er32(XOFFTXC);
4960	adapter->stats.gptc += er32(GPTC);
4961	adapter->stats.gotc += er32(GOTCL);
4962	er32(GOTCH);		/* Clear gotc */
4963	adapter->stats.rnbc += er32(RNBC);
4964	adapter->stats.ruc += er32(RUC);
4965
4966	adapter->stats.mptc += er32(MPTC);
4967	adapter->stats.bptc += er32(BPTC);
4968
4969	/* used for adaptive IFS */
4970
4971	hw->mac.tx_packet_delta = er32(TPT);
4972	adapter->stats.tpt += hw->mac.tx_packet_delta;
4973
4974	adapter->stats.algnerrc += er32(ALGNERRC);
4975	adapter->stats.rxerrc += er32(RXERRC);
4976	adapter->stats.cexterr += er32(CEXTERR);
4977	adapter->stats.tsctc += er32(TSCTC);
4978	adapter->stats.tsctfc += er32(TSCTFC);
4979
4980	/* Fill out the OS statistics structure */
4981	netdev->stats.multicast = adapter->stats.mprc;
4982	netdev->stats.collisions = adapter->stats.colc;
4983
4984	/* Rx Errors */
4985
4986	/* RLEC on some newer hardware can be incorrect so build
4987	 * our own version based on RUC and ROC
4988	 */
4989	netdev->stats.rx_errors = adapter->stats.rxerrc +
4990	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4991	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4992	netdev->stats.rx_length_errors = adapter->stats.ruc +
4993	    adapter->stats.roc;
4994	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4995	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4996	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4997
4998	/* Tx Errors */
4999	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5000	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5001	netdev->stats.tx_window_errors = adapter->stats.latecol;
5002	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5003
5004	/* Tx Dropped needs to be maintained elsewhere */
5005
5006	/* Management Stats */
5007	adapter->stats.mgptc += er32(MGTPTC);
5008	adapter->stats.mgprc += er32(MGTPRC);
5009	adapter->stats.mgpdc += er32(MGTPDC);
5010
5011	/* Correctable ECC Errors */
5012	if (hw->mac.type >= e1000_pch_lpt) {
5013		u32 pbeccsts = er32(PBECCSTS);
5014
5015		adapter->corr_errors +=
5016		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5017		adapter->uncorr_errors +=
5018		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5019		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5020	}
5021}
5022
5023/**
5024 * e1000_phy_read_status - Update the PHY register status snapshot
5025 * @adapter: board private structure
5026 **/
5027static void e1000_phy_read_status(struct e1000_adapter *adapter)
5028{
5029	struct e1000_hw *hw = &adapter->hw;
5030	struct e1000_phy_regs *phy = &adapter->phy_regs;
5031
5032	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5033	    (er32(STATUS) & E1000_STATUS_LU) &&
5034	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5035		int ret_val;
5036
5037		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5038		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5039		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5040		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5041		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5042		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5043		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5044		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5045		if (ret_val)
5046			e_warn("Error reading PHY register\n");
5047	} else {
5048		/* Do not read PHY registers if link is not up
5049		 * Set values to typical power-on defaults
5050		 */
5051		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5052		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5053			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5054			     BMSR_ERCAP);
5055		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5056				  ADVERTISE_ALL | ADVERTISE_CSMA);
5057		phy->lpa = 0;
5058		phy->expansion = EXPANSION_ENABLENPAGE;
5059		phy->ctrl1000 = ADVERTISE_1000FULL;
5060		phy->stat1000 = 0;
5061		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5062	}
5063}
5064
5065static void e1000_print_link_info(struct e1000_adapter *adapter)
5066{
5067	struct e1000_hw *hw = &adapter->hw;
5068	u32 ctrl = er32(CTRL);
5069
5070	/* Link status message must follow this format for user tools */
5071	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5072		adapter->netdev->name, adapter->link_speed,
5073		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5074		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5075		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5076		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5077}
5078
5079static bool e1000e_has_link(struct e1000_adapter *adapter)
5080{
5081	struct e1000_hw *hw = &adapter->hw;
5082	bool link_active = false;
5083	s32 ret_val = 0;
5084
5085	/* get_link_status is set on LSC (link status) interrupt or
5086	 * Rx sequence error interrupt.  get_link_status will stay
5087	 * true until the check_for_link establishes link
5088	 * for copper adapters ONLY
5089	 */
5090	switch (hw->phy.media_type) {
5091	case e1000_media_type_copper:
5092		if (hw->mac.get_link_status) {
5093			ret_val = hw->mac.ops.check_for_link(hw);
5094			link_active = !hw->mac.get_link_status;
5095		} else {
5096			link_active = true;
5097		}
5098		break;
5099	case e1000_media_type_fiber:
5100		ret_val = hw->mac.ops.check_for_link(hw);
5101		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5102		break;
5103	case e1000_media_type_internal_serdes:
5104		ret_val = hw->mac.ops.check_for_link(hw);
5105		link_active = hw->mac.serdes_has_link;
5106		break;
5107	default:
5108	case e1000_media_type_unknown:
5109		break;
5110	}
5111
5112	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5113	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5114		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5115		e_info("Gigabit has been disabled, downgrading speed\n");
5116	}
5117
5118	return link_active;
5119}
5120
5121static void e1000e_enable_receives(struct e1000_adapter *adapter)
5122{
5123	/* make sure the receive unit is started */
5124	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5125	    (adapter->flags & FLAG_RESTART_NOW)) {
5126		struct e1000_hw *hw = &adapter->hw;
5127		u32 rctl = er32(RCTL);
5128
5129		ew32(RCTL, rctl | E1000_RCTL_EN);
5130		adapter->flags &= ~FLAG_RESTART_NOW;
5131	}
5132}
5133
5134static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5135{
5136	struct e1000_hw *hw = &adapter->hw;
5137
5138	/* With 82574 controllers, PHY needs to be checked periodically
5139	 * for hung state and reset, if two calls return true
5140	 */
5141	if (e1000_check_phy_82574(hw))
5142		adapter->phy_hang_count++;
5143	else
5144		adapter->phy_hang_count = 0;
5145
5146	if (adapter->phy_hang_count > 1) {
5147		adapter->phy_hang_count = 0;
5148		e_dbg("PHY appears hung - resetting\n");
5149		schedule_work(&adapter->reset_task);
5150	}
5151}
5152
5153/**
5154 * e1000_watchdog - Timer Call-back
5155 * @data: pointer to adapter cast into an unsigned long
5156 **/
5157static void e1000_watchdog(struct timer_list *t)
5158{
5159	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5160
5161	/* Do the rest outside of interrupt context */
5162	schedule_work(&adapter->watchdog_task);
5163
5164	/* TODO: make this use queue_delayed_work() */
5165}
5166
5167static void e1000_watchdog_task(struct work_struct *work)
5168{
5169	struct e1000_adapter *adapter = container_of(work,
5170						     struct e1000_adapter,
5171						     watchdog_task);
5172	struct net_device *netdev = adapter->netdev;
5173	struct e1000_mac_info *mac = &adapter->hw.mac;
5174	struct e1000_phy_info *phy = &adapter->hw.phy;
5175	struct e1000_ring *tx_ring = adapter->tx_ring;
5176	struct e1000_hw *hw = &adapter->hw;
5177	u32 link, tctl;
5178
5179	if (test_bit(__E1000_DOWN, &adapter->state))
5180		return;
5181
5182	link = e1000e_has_link(adapter);
5183	if ((netif_carrier_ok(netdev)) && link) {
5184		/* Cancel scheduled suspend requests. */
5185		pm_runtime_resume(netdev->dev.parent);
5186
5187		e1000e_enable_receives(adapter);
5188		goto link_up;
5189	}
5190
5191	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5192	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5193		e1000_update_mng_vlan(adapter);
5194
5195	if (link) {
5196		if (!netif_carrier_ok(netdev)) {
5197			bool txb2b = true;
5198
5199			/* Cancel scheduled suspend requests. */
5200			pm_runtime_resume(netdev->dev.parent);
5201
5202			/* update snapshot of PHY registers on LSC */
5203			e1000_phy_read_status(adapter);
5204			mac->ops.get_link_up_info(&adapter->hw,
5205						  &adapter->link_speed,
5206						  &adapter->link_duplex);
5207			e1000_print_link_info(adapter);
5208
5209			/* check if SmartSpeed worked */
5210			e1000e_check_downshift(hw);
5211			if (phy->speed_downgraded)
5212				netdev_warn(netdev,
5213					    "Link Speed was downgraded by SmartSpeed\n");
5214
5215			/* On supported PHYs, check for duplex mismatch only
5216			 * if link has autonegotiated at 10/100 half
5217			 */
5218			if ((hw->phy.type == e1000_phy_igp_3 ||
5219			     hw->phy.type == e1000_phy_bm) &&
5220			    hw->mac.autoneg &&
5221			    (adapter->link_speed == SPEED_10 ||
5222			     adapter->link_speed == SPEED_100) &&
5223			    (adapter->link_duplex == HALF_DUPLEX)) {
5224				u16 autoneg_exp;
5225
5226				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5227
5228				if (!(autoneg_exp & EXPANSION_NWAY))
5229					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5230			}
5231
5232			/* adjust timeout factor according to speed/duplex */
5233			adapter->tx_timeout_factor = 1;
5234			switch (adapter->link_speed) {
5235			case SPEED_10:
5236				txb2b = false;
5237				adapter->tx_timeout_factor = 16;
5238				break;
5239			case SPEED_100:
5240				txb2b = false;
5241				adapter->tx_timeout_factor = 10;
5242				break;
5243			}
5244
5245			/* workaround: re-program speed mode bit after
5246			 * link-up event
5247			 */
5248			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5249			    !txb2b) {
5250				u32 tarc0;
5251
5252				tarc0 = er32(TARC(0));
5253				tarc0 &= ~SPEED_MODE_BIT;
5254				ew32(TARC(0), tarc0);
5255			}
5256
5257			/* disable TSO for pcie and 10/100 speeds, to avoid
5258			 * some hardware issues
5259			 */
5260			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5261				switch (adapter->link_speed) {
5262				case SPEED_10:
5263				case SPEED_100:
5264					e_info("10/100 speed: disabling TSO\n");
5265					netdev->features &= ~NETIF_F_TSO;
5266					netdev->features &= ~NETIF_F_TSO6;
5267					break;
5268				case SPEED_1000:
5269					netdev->features |= NETIF_F_TSO;
5270					netdev->features |= NETIF_F_TSO6;
5271					break;
5272				default:
5273					/* oops */
5274					break;
5275				}
5276			}
5277
5278			/* enable transmits in the hardware, need to do this
5279			 * after setting TARC(0)
5280			 */
5281			tctl = er32(TCTL);
5282			tctl |= E1000_TCTL_EN;
5283			ew32(TCTL, tctl);
5284
5285			/* Perform any post-link-up configuration before
5286			 * reporting link up.
5287			 */
5288			if (phy->ops.cfg_on_link_up)
5289				phy->ops.cfg_on_link_up(hw);
5290
5291			netif_carrier_on(netdev);
5292
5293			if (!test_bit(__E1000_DOWN, &adapter->state))
5294				mod_timer(&adapter->phy_info_timer,
5295					  round_jiffies(jiffies + 2 * HZ));
5296		}
5297	} else {
5298		if (netif_carrier_ok(netdev)) {
5299			adapter->link_speed = 0;
5300			adapter->link_duplex = 0;
5301			/* Link status message must follow this format */
5302			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5303			netif_carrier_off(netdev);
5304			if (!test_bit(__E1000_DOWN, &adapter->state))
5305				mod_timer(&adapter->phy_info_timer,
5306					  round_jiffies(jiffies + 2 * HZ));
5307
5308			/* 8000ES2LAN requires a Rx packet buffer work-around
5309			 * on link down event; reset the controller to flush
5310			 * the Rx packet buffer.
5311			 */
5312			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5313				adapter->flags |= FLAG_RESTART_NOW;
5314			else
5315				pm_schedule_suspend(netdev->dev.parent,
5316						    LINK_TIMEOUT);
5317		}
5318	}
5319
5320link_up:
5321	spin_lock(&adapter->stats64_lock);
5322	e1000e_update_stats(adapter);
5323
5324	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5325	adapter->tpt_old = adapter->stats.tpt;
5326	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5327	adapter->colc_old = adapter->stats.colc;
5328
5329	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5330	adapter->gorc_old = adapter->stats.gorc;
5331	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5332	adapter->gotc_old = adapter->stats.gotc;
5333	spin_unlock(&adapter->stats64_lock);
5334
5335	/* If the link is lost the controller stops DMA, but
5336	 * if there is queued Tx work it cannot be done.  So
5337	 * reset the controller to flush the Tx packet buffers.
5338	 */
5339	if (!netif_carrier_ok(netdev) &&
5340	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5341		adapter->flags |= FLAG_RESTART_NOW;
5342
5343	/* If reset is necessary, do it outside of interrupt context. */
5344	if (adapter->flags & FLAG_RESTART_NOW) {
5345		schedule_work(&adapter->reset_task);
5346		/* return immediately since reset is imminent */
5347		return;
5348	}
5349
5350	e1000e_update_adaptive(&adapter->hw);
5351
5352	/* Simple mode for Interrupt Throttle Rate (ITR) */
5353	if (adapter->itr_setting == 4) {
5354		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5355		 * Total asymmetrical Tx or Rx gets ITR=8000;
5356		 * everyone else is between 2000-8000.
5357		 */
5358		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5359		u32 dif = (adapter->gotc > adapter->gorc ?
5360			   adapter->gotc - adapter->gorc :
5361			   adapter->gorc - adapter->gotc) / 10000;
5362		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5363
5364		e1000e_write_itr(adapter, itr);
5365	}
5366
5367	/* Cause software interrupt to ensure Rx ring is cleaned */
5368	if (adapter->msix_entries)
5369		ew32(ICS, adapter->rx_ring->ims_val);
5370	else
5371		ew32(ICS, E1000_ICS_RXDMT0);
5372
5373	/* flush pending descriptors to memory before detecting Tx hang */
5374	e1000e_flush_descriptors(adapter);
5375
5376	/* Force detection of hung controller every watchdog period */
5377	adapter->detect_tx_hung = true;
5378
5379	/* With 82571 controllers, LAA may be overwritten due to controller
5380	 * reset from the other port. Set the appropriate LAA in RAR[0]
5381	 */
5382	if (e1000e_get_laa_state_82571(hw))
5383		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5384
5385	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5386		e1000e_check_82574_phy_workaround(adapter);
5387
5388	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5389	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5390		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5391		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5392			er32(RXSTMPH);
5393			adapter->rx_hwtstamp_cleared++;
5394		} else {
5395			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5396		}
5397	}
5398
5399	/* Reset the timer */
5400	if (!test_bit(__E1000_DOWN, &adapter->state))
5401		mod_timer(&adapter->watchdog_timer,
5402			  round_jiffies(jiffies + 2 * HZ));
5403}
5404
5405#define E1000_TX_FLAGS_CSUM		0x00000001
5406#define E1000_TX_FLAGS_VLAN		0x00000002
5407#define E1000_TX_FLAGS_TSO		0x00000004
5408#define E1000_TX_FLAGS_IPV4		0x00000008
5409#define E1000_TX_FLAGS_NO_FCS		0x00000010
5410#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5411#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5412#define E1000_TX_FLAGS_VLAN_SHIFT	16
5413
5414static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5415		     __be16 protocol)
5416{
5417	struct e1000_context_desc *context_desc;
5418	struct e1000_buffer *buffer_info;
5419	unsigned int i;
5420	u32 cmd_length = 0;
5421	u16 ipcse = 0, mss;
5422	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5423	int err;
5424
5425	if (!skb_is_gso(skb))
5426		return 0;
5427
5428	err = skb_cow_head(skb, 0);
5429	if (err < 0)
5430		return err;
5431
5432	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5433	mss = skb_shinfo(skb)->gso_size;
5434	if (protocol == htons(ETH_P_IP)) {
5435		struct iphdr *iph = ip_hdr(skb);
5436		iph->tot_len = 0;
5437		iph->check = 0;
5438		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5439							 0, IPPROTO_TCP, 0);
5440		cmd_length = E1000_TXD_CMD_IP;
5441		ipcse = skb_transport_offset(skb) - 1;
5442	} else if (skb_is_gso_v6(skb)) {
5443		ipv6_hdr(skb)->payload_len = 0;
5444		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5445						       &ipv6_hdr(skb)->daddr,
5446						       0, IPPROTO_TCP, 0);
5447		ipcse = 0;
5448	}
5449	ipcss = skb_network_offset(skb);
5450	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5451	tucss = skb_transport_offset(skb);
5452	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5453
5454	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5455		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5456
5457	i = tx_ring->next_to_use;
5458	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5459	buffer_info = &tx_ring->buffer_info[i];
5460
5461	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5462	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5463	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5464	context_desc->upper_setup.tcp_fields.tucss = tucss;
5465	context_desc->upper_setup.tcp_fields.tucso = tucso;
5466	context_desc->upper_setup.tcp_fields.tucse = 0;
5467	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5468	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5469	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5470
5471	buffer_info->time_stamp = jiffies;
5472	buffer_info->next_to_watch = i;
5473
5474	i++;
5475	if (i == tx_ring->count)
5476		i = 0;
5477	tx_ring->next_to_use = i;
5478
5479	return 1;
5480}
5481
5482static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5483			  __be16 protocol)
5484{
5485	struct e1000_adapter *adapter = tx_ring->adapter;
5486	struct e1000_context_desc *context_desc;
5487	struct e1000_buffer *buffer_info;
5488	unsigned int i;
5489	u8 css;
5490	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5491
5492	if (skb->ip_summed != CHECKSUM_PARTIAL)
5493		return false;
 
 
 
 
 
5494
5495	switch (protocol) {
5496	case cpu_to_be16(ETH_P_IP):
5497		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5498			cmd_len |= E1000_TXD_CMD_TCP;
5499		break;
5500	case cpu_to_be16(ETH_P_IPV6):
5501		/* XXX not handling all IPV6 headers */
5502		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5503			cmd_len |= E1000_TXD_CMD_TCP;
5504		break;
5505	default:
5506		if (unlikely(net_ratelimit()))
5507			e_warn("checksum_partial proto=%x!\n",
5508			       be16_to_cpu(protocol));
5509		break;
5510	}
5511
5512	css = skb_checksum_start_offset(skb);
5513
5514	i = tx_ring->next_to_use;
5515	buffer_info = &tx_ring->buffer_info[i];
5516	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5517
5518	context_desc->lower_setup.ip_config = 0;
5519	context_desc->upper_setup.tcp_fields.tucss = css;
5520	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5521	context_desc->upper_setup.tcp_fields.tucse = 0;
5522	context_desc->tcp_seg_setup.data = 0;
5523	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5524
5525	buffer_info->time_stamp = jiffies;
5526	buffer_info->next_to_watch = i;
5527
5528	i++;
5529	if (i == tx_ring->count)
5530		i = 0;
5531	tx_ring->next_to_use = i;
5532
5533	return true;
5534}
5535
5536static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5537			unsigned int first, unsigned int max_per_txd,
5538			unsigned int nr_frags)
5539{
5540	struct e1000_adapter *adapter = tx_ring->adapter;
5541	struct pci_dev *pdev = adapter->pdev;
5542	struct e1000_buffer *buffer_info;
5543	unsigned int len = skb_headlen(skb);
5544	unsigned int offset = 0, size, count = 0, i;
5545	unsigned int f, bytecount, segs;
5546
5547	i = tx_ring->next_to_use;
5548
5549	while (len) {
5550		buffer_info = &tx_ring->buffer_info[i];
5551		size = min(len, max_per_txd);
5552
5553		buffer_info->length = size;
5554		buffer_info->time_stamp = jiffies;
5555		buffer_info->next_to_watch = i;
5556		buffer_info->dma = dma_map_single(&pdev->dev,
5557						  skb->data + offset,
5558						  size, DMA_TO_DEVICE);
5559		buffer_info->mapped_as_page = false;
5560		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5561			goto dma_error;
5562
5563		len -= size;
5564		offset += size;
5565		count++;
5566
5567		if (len) {
5568			i++;
5569			if (i == tx_ring->count)
5570				i = 0;
5571		}
5572	}
5573
5574	for (f = 0; f < nr_frags; f++) {
5575		const struct skb_frag_struct *frag;
5576
5577		frag = &skb_shinfo(skb)->frags[f];
5578		len = skb_frag_size(frag);
5579		offset = 0;
5580
5581		while (len) {
5582			i++;
5583			if (i == tx_ring->count)
5584				i = 0;
5585
5586			buffer_info = &tx_ring->buffer_info[i];
5587			size = min(len, max_per_txd);
5588
5589			buffer_info->length = size;
5590			buffer_info->time_stamp = jiffies;
5591			buffer_info->next_to_watch = i;
5592			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5593							    offset, size,
5594							    DMA_TO_DEVICE);
5595			buffer_info->mapped_as_page = true;
5596			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5597				goto dma_error;
5598
5599			len -= size;
5600			offset += size;
5601			count++;
5602		}
5603	}
5604
5605	segs = skb_shinfo(skb)->gso_segs ? : 1;
5606	/* multiply data chunks by size of headers */
5607	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5608
5609	tx_ring->buffer_info[i].skb = skb;
5610	tx_ring->buffer_info[i].segs = segs;
5611	tx_ring->buffer_info[i].bytecount = bytecount;
5612	tx_ring->buffer_info[first].next_to_watch = i;
5613
5614	return count;
5615
5616dma_error:
5617	dev_err(&pdev->dev, "Tx DMA map failed\n");
5618	buffer_info->dma = 0;
5619	if (count)
5620		count--;
5621
5622	while (count--) {
5623		if (i == 0)
5624			i += tx_ring->count;
5625		i--;
5626		buffer_info = &tx_ring->buffer_info[i];
5627		e1000_put_txbuf(tx_ring, buffer_info, true);
5628	}
5629
5630	return 0;
5631}
5632
5633static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5634{
5635	struct e1000_adapter *adapter = tx_ring->adapter;
5636	struct e1000_tx_desc *tx_desc = NULL;
5637	struct e1000_buffer *buffer_info;
5638	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5639	unsigned int i;
5640
5641	if (tx_flags & E1000_TX_FLAGS_TSO) {
5642		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5643		    E1000_TXD_CMD_TSE;
5644		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5645
5646		if (tx_flags & E1000_TX_FLAGS_IPV4)
5647			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5648	}
5649
5650	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5651		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5652		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5653	}
5654
5655	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5656		txd_lower |= E1000_TXD_CMD_VLE;
5657		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5658	}
5659
5660	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5661		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5662
5663	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5664		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5665		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5666	}
5667
5668	i = tx_ring->next_to_use;
5669
5670	do {
5671		buffer_info = &tx_ring->buffer_info[i];
5672		tx_desc = E1000_TX_DESC(*tx_ring, i);
5673		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5674		tx_desc->lower.data = cpu_to_le32(txd_lower |
5675						  buffer_info->length);
5676		tx_desc->upper.data = cpu_to_le32(txd_upper);
5677
5678		i++;
5679		if (i == tx_ring->count)
5680			i = 0;
5681	} while (--count > 0);
5682
5683	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5684
5685	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5686	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5687		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5688
5689	/* Force memory writes to complete before letting h/w
5690	 * know there are new descriptors to fetch.  (Only
5691	 * applicable for weak-ordered memory model archs,
5692	 * such as IA-64).
5693	 */
5694	wmb();
5695
5696	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
5697}
5698
5699#define MINIMUM_DHCP_PACKET_SIZE 282
5700static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5701				    struct sk_buff *skb)
5702{
5703	struct e1000_hw *hw = &adapter->hw;
5704	u16 length, offset;
5705
5706	if (skb_vlan_tag_present(skb) &&
5707	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5708	      (adapter->hw.mng_cookie.status &
5709	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5710		return 0;
5711
5712	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5713		return 0;
5714
5715	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5716		return 0;
5717
5718	{
5719		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5720		struct udphdr *udp;
5721
5722		if (ip->protocol != IPPROTO_UDP)
5723			return 0;
5724
5725		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5726		if (ntohs(udp->dest) != 67)
5727			return 0;
5728
5729		offset = (u8 *)udp + 8 - skb->data;
5730		length = skb->len - offset;
5731		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5732	}
5733
5734	return 0;
5735}
5736
5737static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5738{
5739	struct e1000_adapter *adapter = tx_ring->adapter;
5740
5741	netif_stop_queue(adapter->netdev);
5742	/* Herbert's original patch had:
5743	 *  smp_mb__after_netif_stop_queue();
5744	 * but since that doesn't exist yet, just open code it.
5745	 */
5746	smp_mb();
5747
5748	/* We need to check again in a case another CPU has just
5749	 * made room available.
5750	 */
5751	if (e1000_desc_unused(tx_ring) < size)
5752		return -EBUSY;
5753
5754	/* A reprieve! */
5755	netif_start_queue(adapter->netdev);
5756	++adapter->restart_queue;
5757	return 0;
5758}
5759
5760static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5761{
5762	BUG_ON(size > tx_ring->count);
5763
5764	if (e1000_desc_unused(tx_ring) >= size)
5765		return 0;
5766	return __e1000_maybe_stop_tx(tx_ring, size);
5767}
5768
5769static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5770				    struct net_device *netdev)
5771{
5772	struct e1000_adapter *adapter = netdev_priv(netdev);
5773	struct e1000_ring *tx_ring = adapter->tx_ring;
5774	unsigned int first;
5775	unsigned int tx_flags = 0;
5776	unsigned int len = skb_headlen(skb);
5777	unsigned int nr_frags;
5778	unsigned int mss;
5779	int count = 0;
5780	int tso;
5781	unsigned int f;
5782	__be16 protocol = vlan_get_protocol(skb);
5783
5784	if (test_bit(__E1000_DOWN, &adapter->state)) {
5785		dev_kfree_skb_any(skb);
5786		return NETDEV_TX_OK;
5787	}
5788
5789	if (skb->len <= 0) {
5790		dev_kfree_skb_any(skb);
5791		return NETDEV_TX_OK;
5792	}
5793
5794	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5795	 * pad skb in order to meet this minimum size requirement
5796	 */
5797	if (skb_put_padto(skb, 17))
5798		return NETDEV_TX_OK;
 
 
 
 
5799
5800	mss = skb_shinfo(skb)->gso_size;
5801	if (mss) {
5802		u8 hdr_len;
5803
5804		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5805		 * points to just header, pull a few bytes of payload from
5806		 * frags into skb->data
5807		 */
5808		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5809		/* we do this workaround for ES2LAN, but it is un-necessary,
5810		 * avoiding it could save a lot of cycles
5811		 */
5812		if (skb->data_len && (hdr_len == len)) {
5813			unsigned int pull_size;
5814
5815			pull_size = min_t(unsigned int, 4, skb->data_len);
5816			if (!__pskb_pull_tail(skb, pull_size)) {
5817				e_err("__pskb_pull_tail failed.\n");
5818				dev_kfree_skb_any(skb);
5819				return NETDEV_TX_OK;
5820			}
5821			len = skb_headlen(skb);
5822		}
5823	}
5824
5825	/* reserve a descriptor for the offload context */
5826	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5827		count++;
5828	count++;
5829
5830	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5831
5832	nr_frags = skb_shinfo(skb)->nr_frags;
5833	for (f = 0; f < nr_frags; f++)
5834		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5835				      adapter->tx_fifo_limit);
5836
5837	if (adapter->hw.mac.tx_pkt_filtering)
5838		e1000_transfer_dhcp_info(adapter, skb);
5839
5840	/* need: count + 2 desc gap to keep tail from touching
5841	 * head, otherwise try next time
5842	 */
5843	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5844		return NETDEV_TX_BUSY;
5845
5846	if (skb_vlan_tag_present(skb)) {
5847		tx_flags |= E1000_TX_FLAGS_VLAN;
5848		tx_flags |= (skb_vlan_tag_get(skb) <<
5849			     E1000_TX_FLAGS_VLAN_SHIFT);
5850	}
5851
5852	first = tx_ring->next_to_use;
5853
5854	tso = e1000_tso(tx_ring, skb, protocol);
5855	if (tso < 0) {
5856		dev_kfree_skb_any(skb);
5857		return NETDEV_TX_OK;
5858	}
5859
5860	if (tso)
5861		tx_flags |= E1000_TX_FLAGS_TSO;
5862	else if (e1000_tx_csum(tx_ring, skb, protocol))
5863		tx_flags |= E1000_TX_FLAGS_CSUM;
5864
5865	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5866	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5867	 * no longer assume, we must.
5868	 */
5869	if (protocol == htons(ETH_P_IP))
5870		tx_flags |= E1000_TX_FLAGS_IPV4;
5871
5872	if (unlikely(skb->no_fcs))
5873		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5874
5875	/* if count is 0 then mapping error has occurred */
5876	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5877			     nr_frags);
5878	if (count) {
5879		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5880		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5881			if (!adapter->tx_hwtstamp_skb) {
5882				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5883				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5884				adapter->tx_hwtstamp_skb = skb_get(skb);
5885				adapter->tx_hwtstamp_start = jiffies;
5886				schedule_work(&adapter->tx_hwtstamp_work);
5887			} else {
5888				adapter->tx_hwtstamp_skipped++;
5889			}
5890		}
5891
5892		skb_tx_timestamp(skb);
5893
5894		netdev_sent_queue(netdev, skb->len);
5895		e1000_tx_queue(tx_ring, tx_flags, count);
5896		/* Make sure there is space in the ring for the next send. */
5897		e1000_maybe_stop_tx(tx_ring,
5898				    (MAX_SKB_FRAGS *
5899				     DIV_ROUND_UP(PAGE_SIZE,
5900						  adapter->tx_fifo_limit) + 2));
5901
5902		if (!skb->xmit_more ||
5903		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5904			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5905				e1000e_update_tdt_wa(tx_ring,
5906						     tx_ring->next_to_use);
5907			else
5908				writel(tx_ring->next_to_use, tx_ring->tail);
5909
5910			/* we need this if more than one processor can write
5911			 * to our tail at a time, it synchronizes IO on
5912			 *IA64/Altix systems
5913			 */
5914			mmiowb();
5915		}
5916	} else {
5917		dev_kfree_skb_any(skb);
5918		tx_ring->buffer_info[first].time_stamp = 0;
5919		tx_ring->next_to_use = first;
5920	}
5921
5922	return NETDEV_TX_OK;
5923}
5924
5925/**
5926 * e1000_tx_timeout - Respond to a Tx Hang
5927 * @netdev: network interface device structure
5928 **/
5929static void e1000_tx_timeout(struct net_device *netdev)
5930{
5931	struct e1000_adapter *adapter = netdev_priv(netdev);
5932
5933	/* Do the reset outside of interrupt context */
5934	adapter->tx_timeout_count++;
5935	schedule_work(&adapter->reset_task);
5936}
5937
5938static void e1000_reset_task(struct work_struct *work)
5939{
5940	struct e1000_adapter *adapter;
5941	adapter = container_of(work, struct e1000_adapter, reset_task);
5942
5943	/* don't run the task if already down */
5944	if (test_bit(__E1000_DOWN, &adapter->state))
5945		return;
5946
5947	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5948		e1000e_dump(adapter);
5949		e_err("Reset adapter unexpectedly\n");
5950	}
5951	e1000e_reinit_locked(adapter);
5952}
5953
5954/**
5955 * e1000_get_stats64 - Get System Network Statistics
5956 * @netdev: network interface device structure
5957 * @stats: rtnl_link_stats64 pointer
5958 *
5959 * Returns the address of the device statistics structure.
5960 **/
5961void e1000e_get_stats64(struct net_device *netdev,
5962			struct rtnl_link_stats64 *stats)
5963{
5964	struct e1000_adapter *adapter = netdev_priv(netdev);
5965
 
5966	spin_lock(&adapter->stats64_lock);
5967	e1000e_update_stats(adapter);
5968	/* Fill out the OS statistics structure */
5969	stats->rx_bytes = adapter->stats.gorc;
5970	stats->rx_packets = adapter->stats.gprc;
5971	stats->tx_bytes = adapter->stats.gotc;
5972	stats->tx_packets = adapter->stats.gptc;
5973	stats->multicast = adapter->stats.mprc;
5974	stats->collisions = adapter->stats.colc;
5975
5976	/* Rx Errors */
5977
5978	/* RLEC on some newer hardware can be incorrect so build
5979	 * our own version based on RUC and ROC
5980	 */
5981	stats->rx_errors = adapter->stats.rxerrc +
5982	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5983	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5984	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5985	stats->rx_crc_errors = adapter->stats.crcerrs;
5986	stats->rx_frame_errors = adapter->stats.algnerrc;
5987	stats->rx_missed_errors = adapter->stats.mpc;
5988
5989	/* Tx Errors */
5990	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5991	stats->tx_aborted_errors = adapter->stats.ecol;
5992	stats->tx_window_errors = adapter->stats.latecol;
5993	stats->tx_carrier_errors = adapter->stats.tncrs;
5994
5995	/* Tx Dropped needs to be maintained elsewhere */
5996
5997	spin_unlock(&adapter->stats64_lock);
 
5998}
5999
6000/**
6001 * e1000_change_mtu - Change the Maximum Transfer Unit
6002 * @netdev: network interface device structure
6003 * @new_mtu: new value for maximum frame size
6004 *
6005 * Returns 0 on success, negative on failure
6006 **/
6007static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6008{
6009	struct e1000_adapter *adapter = netdev_priv(netdev);
6010	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6011
6012	/* Jumbo frame support */
6013	if ((new_mtu > ETH_DATA_LEN) &&
6014	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6015		e_err("Jumbo Frames not supported.\n");
6016		return -EINVAL;
6017	}
6018
 
 
 
 
 
 
 
6019	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6020	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6021	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6022	    (new_mtu > ETH_DATA_LEN)) {
6023		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6024		return -EINVAL;
6025	}
6026
6027	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6028		usleep_range(1000, 2000);
6029	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6030	adapter->max_frame_size = max_frame;
6031	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6032	netdev->mtu = new_mtu;
6033
6034	pm_runtime_get_sync(netdev->dev.parent);
6035
6036	if (netif_running(netdev))
6037		e1000e_down(adapter, true);
6038
6039	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6040	 * means we reserve 2 more, this pushes us to allocate from the next
6041	 * larger slab size.
6042	 * i.e. RXBUFFER_2048 --> size-4096 slab
6043	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6044	 * fragmented skbs
6045	 */
6046
6047	if (max_frame <= 2048)
6048		adapter->rx_buffer_len = 2048;
6049	else
6050		adapter->rx_buffer_len = 4096;
6051
6052	/* adjust allocation if LPE protects us, and we aren't using SBP */
6053	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6054		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
6055
6056	if (netif_running(netdev))
6057		e1000e_up(adapter);
6058	else
6059		e1000e_reset(adapter);
6060
6061	pm_runtime_put_sync(netdev->dev.parent);
6062
6063	clear_bit(__E1000_RESETTING, &adapter->state);
6064
6065	return 0;
6066}
6067
6068static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6069			   int cmd)
6070{
6071	struct e1000_adapter *adapter = netdev_priv(netdev);
6072	struct mii_ioctl_data *data = if_mii(ifr);
6073
6074	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6075		return -EOPNOTSUPP;
6076
6077	switch (cmd) {
6078	case SIOCGMIIPHY:
6079		data->phy_id = adapter->hw.phy.addr;
6080		break;
6081	case SIOCGMIIREG:
6082		e1000_phy_read_status(adapter);
6083
6084		switch (data->reg_num & 0x1F) {
6085		case MII_BMCR:
6086			data->val_out = adapter->phy_regs.bmcr;
6087			break;
6088		case MII_BMSR:
6089			data->val_out = adapter->phy_regs.bmsr;
6090			break;
6091		case MII_PHYSID1:
6092			data->val_out = (adapter->hw.phy.id >> 16);
6093			break;
6094		case MII_PHYSID2:
6095			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6096			break;
6097		case MII_ADVERTISE:
6098			data->val_out = adapter->phy_regs.advertise;
6099			break;
6100		case MII_LPA:
6101			data->val_out = adapter->phy_regs.lpa;
6102			break;
6103		case MII_EXPANSION:
6104			data->val_out = adapter->phy_regs.expansion;
6105			break;
6106		case MII_CTRL1000:
6107			data->val_out = adapter->phy_regs.ctrl1000;
6108			break;
6109		case MII_STAT1000:
6110			data->val_out = adapter->phy_regs.stat1000;
6111			break;
6112		case MII_ESTATUS:
6113			data->val_out = adapter->phy_regs.estatus;
6114			break;
6115		default:
6116			return -EIO;
6117		}
6118		break;
6119	case SIOCSMIIREG:
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123	return 0;
6124}
6125
6126/**
6127 * e1000e_hwtstamp_ioctl - control hardware time stamping
6128 * @netdev: network interface device structure
6129 * @ifreq: interface request
6130 *
6131 * Outgoing time stamping can be enabled and disabled. Play nice and
6132 * disable it when requested, although it shouldn't cause any overhead
6133 * when no packet needs it. At most one packet in the queue may be
6134 * marked for time stamping, otherwise it would be impossible to tell
6135 * for sure to which packet the hardware time stamp belongs.
6136 *
6137 * Incoming time stamping has to be configured via the hardware filters.
6138 * Not all combinations are supported, in particular event type has to be
6139 * specified. Matching the kind of event packet is not supported, with the
6140 * exception of "all V2 events regardless of level 2 or 4".
6141 **/
6142static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6143{
6144	struct e1000_adapter *adapter = netdev_priv(netdev);
6145	struct hwtstamp_config config;
6146	int ret_val;
6147
6148	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6149		return -EFAULT;
6150
6151	ret_val = e1000e_config_hwtstamp(adapter, &config);
6152	if (ret_val)
6153		return ret_val;
6154
6155	switch (config.rx_filter) {
6156	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6157	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6158	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6159	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6160	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6161	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6162		/* With V2 type filters which specify a Sync or Delay Request,
6163		 * Path Delay Request/Response messages are also time stamped
6164		 * by hardware so notify the caller the requested packets plus
6165		 * some others are time stamped.
6166		 */
6167		config.rx_filter = HWTSTAMP_FILTER_SOME;
6168		break;
6169	default:
6170		break;
6171	}
6172
6173	return copy_to_user(ifr->ifr_data, &config,
6174			    sizeof(config)) ? -EFAULT : 0;
6175}
6176
6177static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6178{
6179	struct e1000_adapter *adapter = netdev_priv(netdev);
6180
6181	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6182			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6183}
6184
6185static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6186{
6187	switch (cmd) {
6188	case SIOCGMIIPHY:
6189	case SIOCGMIIREG:
6190	case SIOCSMIIREG:
6191		return e1000_mii_ioctl(netdev, ifr, cmd);
6192	case SIOCSHWTSTAMP:
6193		return e1000e_hwtstamp_set(netdev, ifr);
6194	case SIOCGHWTSTAMP:
6195		return e1000e_hwtstamp_get(netdev, ifr);
6196	default:
6197		return -EOPNOTSUPP;
6198	}
6199}
6200
6201static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6202{
6203	struct e1000_hw *hw = &adapter->hw;
6204	u32 i, mac_reg, wuc;
6205	u16 phy_reg, wuc_enable;
6206	int retval;
6207
6208	/* copy MAC RARs to PHY RARs */
6209	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6210
6211	retval = hw->phy.ops.acquire(hw);
6212	if (retval) {
6213		e_err("Could not acquire PHY\n");
6214		return retval;
6215	}
6216
6217	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6218	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6219	if (retval)
6220		goto release;
6221
6222	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6223	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6224		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6225		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6226					   (u16)(mac_reg & 0xFFFF));
6227		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6228					   (u16)((mac_reg >> 16) & 0xFFFF));
6229	}
6230
6231	/* configure PHY Rx Control register */
6232	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6233	mac_reg = er32(RCTL);
6234	if (mac_reg & E1000_RCTL_UPE)
6235		phy_reg |= BM_RCTL_UPE;
6236	if (mac_reg & E1000_RCTL_MPE)
6237		phy_reg |= BM_RCTL_MPE;
6238	phy_reg &= ~(BM_RCTL_MO_MASK);
6239	if (mac_reg & E1000_RCTL_MO_3)
6240		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6241			    << BM_RCTL_MO_SHIFT);
6242	if (mac_reg & E1000_RCTL_BAM)
6243		phy_reg |= BM_RCTL_BAM;
6244	if (mac_reg & E1000_RCTL_PMCF)
6245		phy_reg |= BM_RCTL_PMCF;
6246	mac_reg = er32(CTRL);
6247	if (mac_reg & E1000_CTRL_RFCE)
6248		phy_reg |= BM_RCTL_RFCE;
6249	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6250
6251	wuc = E1000_WUC_PME_EN;
6252	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6253		wuc |= E1000_WUC_APME;
6254
6255	/* enable PHY wakeup in MAC register */
6256	ew32(WUFC, wufc);
6257	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6258		   E1000_WUC_PME_STATUS | wuc));
6259
6260	/* configure and enable PHY wakeup in PHY registers */
6261	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6262	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6263
6264	/* activate PHY wakeup */
6265	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6266	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267	if (retval)
6268		e_err("Could not set PHY Host Wakeup bit\n");
6269release:
6270	hw->phy.ops.release(hw);
6271
6272	return retval;
6273}
6274
6275static void e1000e_flush_lpic(struct pci_dev *pdev)
6276{
6277	struct net_device *netdev = pci_get_drvdata(pdev);
6278	struct e1000_adapter *adapter = netdev_priv(netdev);
6279	struct e1000_hw *hw = &adapter->hw;
6280	u32 ret_val;
6281
6282	pm_runtime_get_sync(netdev->dev.parent);
6283
6284	ret_val = hw->phy.ops.acquire(hw);
6285	if (ret_val)
6286		goto fl_out;
6287
6288	pr_info("EEE TX LPI TIMER: %08X\n",
6289		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6290
6291	hw->phy.ops.release(hw);
6292
6293fl_out:
6294	pm_runtime_put_sync(netdev->dev.parent);
6295}
6296
6297static int e1000e_pm_freeze(struct device *dev)
6298{
6299	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6300	struct e1000_adapter *adapter = netdev_priv(netdev);
6301
6302	netif_device_detach(netdev);
6303
6304	if (netif_running(netdev)) {
6305		int count = E1000_CHECK_RESET_COUNT;
6306
6307		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6308			usleep_range(10000, 20000);
6309
6310		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6311
6312		/* Quiesce the device without resetting the hardware */
6313		e1000e_down(adapter, false);
6314		e1000_free_irq(adapter);
6315	}
6316	e1000e_reset_interrupt_capability(adapter);
6317
6318	/* Allow time for pending master requests to run */
6319	e1000e_disable_pcie_master(&adapter->hw);
6320
6321	return 0;
6322}
6323
6324static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6325{
6326	struct net_device *netdev = pci_get_drvdata(pdev);
6327	struct e1000_adapter *adapter = netdev_priv(netdev);
6328	struct e1000_hw *hw = &adapter->hw;
6329	u32 ctrl, ctrl_ext, rctl, status;
6330	/* Runtime suspend should only enable wakeup for link changes */
6331	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6332	int retval = 0;
6333
6334	status = er32(STATUS);
6335	if (status & E1000_STATUS_LU)
6336		wufc &= ~E1000_WUFC_LNKC;
6337
6338	if (wufc) {
6339		e1000_setup_rctl(adapter);
6340		e1000e_set_rx_mode(netdev);
6341
6342		/* turn on all-multi mode if wake on multicast is enabled */
6343		if (wufc & E1000_WUFC_MC) {
6344			rctl = er32(RCTL);
6345			rctl |= E1000_RCTL_MPE;
6346			ew32(RCTL, rctl);
6347		}
6348
6349		ctrl = er32(CTRL);
6350		ctrl |= E1000_CTRL_ADVD3WUC;
6351		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6352			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6353		ew32(CTRL, ctrl);
6354
6355		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6356		    adapter->hw.phy.media_type ==
6357		    e1000_media_type_internal_serdes) {
6358			/* keep the laser running in D3 */
6359			ctrl_ext = er32(CTRL_EXT);
6360			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6361			ew32(CTRL_EXT, ctrl_ext);
6362		}
6363
6364		if (!runtime)
6365			e1000e_power_up_phy(adapter);
6366
6367		if (adapter->flags & FLAG_IS_ICH)
6368			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6369
6370		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6371			/* enable wakeup by the PHY */
6372			retval = e1000_init_phy_wakeup(adapter, wufc);
6373			if (retval)
6374				return retval;
6375		} else {
6376			/* enable wakeup by the MAC */
6377			ew32(WUFC, wufc);
6378			ew32(WUC, E1000_WUC_PME_EN);
6379		}
6380	} else {
6381		ew32(WUC, 0);
6382		ew32(WUFC, 0);
6383
6384		e1000_power_down_phy(adapter);
6385	}
6386
6387	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6388		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6389	} else if (hw->mac.type >= e1000_pch_lpt) {
6390		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6391			/* ULP does not support wake from unicast, multicast
6392			 * or broadcast.
6393			 */
6394			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6395
6396		if (retval)
6397			return retval;
6398	}
6399
6400	/* Ensure that the appropriate bits are set in LPI_CTRL
6401	 * for EEE in Sx
6402	 */
6403	if ((hw->phy.type >= e1000_phy_i217) &&
6404	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6405		u16 lpi_ctrl = 0;
6406
6407		retval = hw->phy.ops.acquire(hw);
6408		if (!retval) {
6409			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6410						 &lpi_ctrl);
6411			if (!retval) {
6412				if (adapter->eee_advert &
6413				    hw->dev_spec.ich8lan.eee_lp_ability &
6414				    I82579_EEE_100_SUPPORTED)
6415					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6416				if (adapter->eee_advert &
6417				    hw->dev_spec.ich8lan.eee_lp_ability &
6418				    I82579_EEE_1000_SUPPORTED)
6419					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6420
6421				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6422							 lpi_ctrl);
6423			}
6424		}
6425		hw->phy.ops.release(hw);
6426	}
6427
6428	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6429	 * would have already happened in close and is redundant.
6430	 */
6431	e1000e_release_hw_control(adapter);
6432
6433	pci_clear_master(pdev);
6434
6435	/* The pci-e switch on some quad port adapters will report a
6436	 * correctable error when the MAC transitions from D0 to D3.  To
6437	 * prevent this we need to mask off the correctable errors on the
6438	 * downstream port of the pci-e switch.
6439	 *
6440	 * We don't have the associated upstream bridge while assigning
6441	 * the PCI device into guest. For example, the KVM on power is
6442	 * one of the cases.
6443	 */
6444	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6445		struct pci_dev *us_dev = pdev->bus->self;
6446		u16 devctl;
6447
6448		if (!us_dev)
6449			return 0;
6450
6451		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6452		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6453					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6454
6455		pci_save_state(pdev);
6456		pci_prepare_to_sleep(pdev);
6457
6458		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6459	}
6460
6461	return 0;
6462}
6463
6464/**
6465 * __e1000e_disable_aspm - Disable ASPM states
6466 * @pdev: pointer to PCI device struct
6467 * @state: bit-mask of ASPM states to disable
6468 * @locked: indication if this context holds pci_bus_sem locked.
6469 *
6470 * Some devices *must* have certain ASPM states disabled per hardware errata.
6471 **/
6472static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6473{
6474	struct pci_dev *parent = pdev->bus->self;
6475	u16 aspm_dis_mask = 0;
6476	u16 pdev_aspmc, parent_aspmc;
6477
6478	switch (state) {
6479	case PCIE_LINK_STATE_L0S:
6480	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6481		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6482		/* fall-through - can't have L1 without L0s */
6483	case PCIE_LINK_STATE_L1:
6484		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6485		break;
6486	default:
6487		return;
6488	}
6489
6490	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492
6493	if (parent) {
6494		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6495					  &parent_aspmc);
6496		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497	}
6498
6499	/* Nothing to do if the ASPM states to be disabled already are */
6500	if (!(pdev_aspmc & aspm_dis_mask) &&
6501	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6502		return;
6503
6504	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6505		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6506		 "L0s" : "",
6507		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6508		 "L1" : "");
6509
6510#ifdef CONFIG_PCIEASPM
6511	if (locked)
6512		pci_disable_link_state_locked(pdev, state);
6513	else
6514		pci_disable_link_state(pdev, state);
6515
6516	/* Double-check ASPM control.  If not disabled by the above, the
6517	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6518	 * not enabled); override by writing PCI config space directly.
6519	 */
6520	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6521	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6522
6523	if (!(aspm_dis_mask & pdev_aspmc))
6524		return;
6525#endif
6526
6527	/* Both device and parent should have the same ASPM setting.
6528	 * Disable ASPM in downstream component first and then upstream.
6529	 */
6530	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6531
6532	if (parent)
6533		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6534					   aspm_dis_mask);
6535}
6536
6537/**
6538 * e1000e_disable_aspm - Disable ASPM states.
6539 * @pdev: pointer to PCI device struct
6540 * @state: bit-mask of ASPM states to disable
6541 *
6542 * This function acquires the pci_bus_sem!
6543 * Some devices *must* have certain ASPM states disabled per hardware errata.
6544 **/
6545static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6546{
6547	__e1000e_disable_aspm(pdev, state, 0);
6548}
6549
6550/**
6551 * e1000e_disable_aspm_locked   Disable ASPM states.
6552 * @pdev: pointer to PCI device struct
6553 * @state: bit-mask of ASPM states to disable
6554 *
6555 * This function must be called with pci_bus_sem acquired!
6556 * Some devices *must* have certain ASPM states disabled per hardware errata.
6557 **/
6558static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6559{
6560	__e1000e_disable_aspm(pdev, state, 1);
6561}
6562
6563#ifdef CONFIG_PM
6564static int __e1000_resume(struct pci_dev *pdev)
6565{
6566	struct net_device *netdev = pci_get_drvdata(pdev);
6567	struct e1000_adapter *adapter = netdev_priv(netdev);
6568	struct e1000_hw *hw = &adapter->hw;
6569	u16 aspm_disable_flag = 0;
6570
6571	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6572		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6573	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6574		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6575	if (aspm_disable_flag)
6576		e1000e_disable_aspm(pdev, aspm_disable_flag);
6577
6578	pci_set_master(pdev);
6579
6580	if (hw->mac.type >= e1000_pch2lan)
6581		e1000_resume_workarounds_pchlan(&adapter->hw);
6582
6583	e1000e_power_up_phy(adapter);
6584
6585	/* report the system wakeup cause from S3/S4 */
6586	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6587		u16 phy_data;
6588
6589		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6590		if (phy_data) {
6591			e_info("PHY Wakeup cause - %s\n",
6592			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6593			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6594			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6595			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6596			       phy_data & E1000_WUS_LNKC ?
6597			       "Link Status Change" : "other");
6598		}
6599		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6600	} else {
6601		u32 wus = er32(WUS);
6602
6603		if (wus) {
6604			e_info("MAC Wakeup cause - %s\n",
6605			       wus & E1000_WUS_EX ? "Unicast Packet" :
6606			       wus & E1000_WUS_MC ? "Multicast Packet" :
6607			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6608			       wus & E1000_WUS_MAG ? "Magic Packet" :
6609			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6610			       "other");
6611		}
6612		ew32(WUS, ~0);
6613	}
6614
6615	e1000e_reset(adapter);
6616
6617	e1000_init_manageability_pt(adapter);
6618
6619	/* If the controller has AMT, do not set DRV_LOAD until the interface
6620	 * is up.  For all other cases, let the f/w know that the h/w is now
6621	 * under the control of the driver.
6622	 */
6623	if (!(adapter->flags & FLAG_HAS_AMT))
6624		e1000e_get_hw_control(adapter);
6625
6626	return 0;
6627}
6628
6629#ifdef CONFIG_PM_SLEEP
6630static int e1000e_pm_thaw(struct device *dev)
6631{
6632	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6633	struct e1000_adapter *adapter = netdev_priv(netdev);
6634
6635	e1000e_set_interrupt_capability(adapter);
6636	if (netif_running(netdev)) {
6637		u32 err = e1000_request_irq(adapter);
6638
6639		if (err)
6640			return err;
6641
6642		e1000e_up(adapter);
6643	}
6644
6645	netif_device_attach(netdev);
6646
6647	return 0;
6648}
6649
6650static int e1000e_pm_suspend(struct device *dev)
6651{
6652	struct pci_dev *pdev = to_pci_dev(dev);
6653	int rc;
6654
6655	e1000e_flush_lpic(pdev);
6656
6657	e1000e_pm_freeze(dev);
6658
6659	rc = __e1000_shutdown(pdev, false);
6660	if (rc)
6661		e1000e_pm_thaw(dev);
6662
6663	return rc;
6664}
6665
6666static int e1000e_pm_resume(struct device *dev)
6667{
6668	struct pci_dev *pdev = to_pci_dev(dev);
6669	int rc;
6670
6671	rc = __e1000_resume(pdev);
6672	if (rc)
6673		return rc;
6674
6675	return e1000e_pm_thaw(dev);
6676}
6677#endif /* CONFIG_PM_SLEEP */
6678
 
6679static int e1000e_pm_runtime_idle(struct device *dev)
6680{
6681	struct pci_dev *pdev = to_pci_dev(dev);
6682	struct net_device *netdev = pci_get_drvdata(pdev);
6683	struct e1000_adapter *adapter = netdev_priv(netdev);
6684	u16 eee_lp;
6685
6686	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6687
6688	if (!e1000e_has_link(adapter)) {
6689		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6690		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6691	}
6692
6693	return -EBUSY;
6694}
6695
6696static int e1000e_pm_runtime_resume(struct device *dev)
6697{
6698	struct pci_dev *pdev = to_pci_dev(dev);
6699	struct net_device *netdev = pci_get_drvdata(pdev);
6700	struct e1000_adapter *adapter = netdev_priv(netdev);
6701	int rc;
6702
6703	rc = __e1000_resume(pdev);
6704	if (rc)
6705		return rc;
6706
6707	if (netdev->flags & IFF_UP)
6708		e1000e_up(adapter);
6709
6710	return rc;
6711}
6712
6713static int e1000e_pm_runtime_suspend(struct device *dev)
6714{
6715	struct pci_dev *pdev = to_pci_dev(dev);
6716	struct net_device *netdev = pci_get_drvdata(pdev);
6717	struct e1000_adapter *adapter = netdev_priv(netdev);
6718
6719	if (netdev->flags & IFF_UP) {
6720		int count = E1000_CHECK_RESET_COUNT;
6721
6722		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6723			usleep_range(10000, 20000);
6724
6725		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6726
6727		/* Down the device without resetting the hardware */
6728		e1000e_down(adapter, false);
6729	}
6730
6731	if (__e1000_shutdown(pdev, true)) {
6732		e1000e_pm_runtime_resume(dev);
6733		return -EBUSY;
6734	}
6735
6736	return 0;
6737}
 
6738#endif /* CONFIG_PM */
6739
6740static void e1000_shutdown(struct pci_dev *pdev)
6741{
6742	e1000e_flush_lpic(pdev);
6743
6744	e1000e_pm_freeze(&pdev->dev);
6745
6746	__e1000_shutdown(pdev, false);
6747}
6748
6749#ifdef CONFIG_NET_POLL_CONTROLLER
6750
6751static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6752{
6753	struct net_device *netdev = data;
6754	struct e1000_adapter *adapter = netdev_priv(netdev);
6755
6756	if (adapter->msix_entries) {
6757		int vector, msix_irq;
6758
6759		vector = 0;
6760		msix_irq = adapter->msix_entries[vector].vector;
6761		if (disable_hardirq(msix_irq))
6762			e1000_intr_msix_rx(msix_irq, netdev);
6763		enable_irq(msix_irq);
6764
6765		vector++;
6766		msix_irq = adapter->msix_entries[vector].vector;
6767		if (disable_hardirq(msix_irq))
6768			e1000_intr_msix_tx(msix_irq, netdev);
6769		enable_irq(msix_irq);
6770
6771		vector++;
6772		msix_irq = adapter->msix_entries[vector].vector;
6773		if (disable_hardirq(msix_irq))
6774			e1000_msix_other(msix_irq, netdev);
6775		enable_irq(msix_irq);
6776	}
6777
6778	return IRQ_HANDLED;
6779}
6780
6781/**
6782 * e1000_netpoll
6783 * @netdev: network interface device structure
6784 *
6785 * Polling 'interrupt' - used by things like netconsole to send skbs
6786 * without having to re-enable interrupts. It's not called while
6787 * the interrupt routine is executing.
6788 */
6789static void e1000_netpoll(struct net_device *netdev)
6790{
6791	struct e1000_adapter *adapter = netdev_priv(netdev);
6792
6793	switch (adapter->int_mode) {
6794	case E1000E_INT_MODE_MSIX:
6795		e1000_intr_msix(adapter->pdev->irq, netdev);
6796		break;
6797	case E1000E_INT_MODE_MSI:
6798		if (disable_hardirq(adapter->pdev->irq))
6799			e1000_intr_msi(adapter->pdev->irq, netdev);
6800		enable_irq(adapter->pdev->irq);
6801		break;
6802	default:		/* E1000E_INT_MODE_LEGACY */
6803		if (disable_hardirq(adapter->pdev->irq))
6804			e1000_intr(adapter->pdev->irq, netdev);
6805		enable_irq(adapter->pdev->irq);
6806		break;
6807	}
6808}
6809#endif
6810
6811/**
6812 * e1000_io_error_detected - called when PCI error is detected
6813 * @pdev: Pointer to PCI device
6814 * @state: The current pci connection state
6815 *
6816 * This function is called after a PCI bus error affecting
6817 * this device has been detected.
6818 */
6819static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6820						pci_channel_state_t state)
6821{
6822	struct net_device *netdev = pci_get_drvdata(pdev);
6823	struct e1000_adapter *adapter = netdev_priv(netdev);
6824
6825	netif_device_detach(netdev);
6826
6827	if (state == pci_channel_io_perm_failure)
6828		return PCI_ERS_RESULT_DISCONNECT;
6829
6830	if (netif_running(netdev))
6831		e1000e_down(adapter, true);
6832	pci_disable_device(pdev);
6833
6834	/* Request a slot slot reset. */
6835	return PCI_ERS_RESULT_NEED_RESET;
6836}
6837
6838/**
6839 * e1000_io_slot_reset - called after the pci bus has been reset.
6840 * @pdev: Pointer to PCI device
6841 *
6842 * Restart the card from scratch, as if from a cold-boot. Implementation
6843 * resembles the first-half of the e1000e_pm_resume routine.
6844 */
6845static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6846{
6847	struct net_device *netdev = pci_get_drvdata(pdev);
6848	struct e1000_adapter *adapter = netdev_priv(netdev);
6849	struct e1000_hw *hw = &adapter->hw;
6850	u16 aspm_disable_flag = 0;
6851	int err;
6852	pci_ers_result_t result;
6853
6854	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6855		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6856	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6857		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6858	if (aspm_disable_flag)
6859		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6860
6861	err = pci_enable_device_mem(pdev);
6862	if (err) {
6863		dev_err(&pdev->dev,
6864			"Cannot re-enable PCI device after reset.\n");
6865		result = PCI_ERS_RESULT_DISCONNECT;
6866	} else {
6867		pdev->state_saved = true;
6868		pci_restore_state(pdev);
6869		pci_set_master(pdev);
6870
6871		pci_enable_wake(pdev, PCI_D3hot, 0);
6872		pci_enable_wake(pdev, PCI_D3cold, 0);
6873
6874		e1000e_reset(adapter);
6875		ew32(WUS, ~0);
6876		result = PCI_ERS_RESULT_RECOVERED;
6877	}
6878
6879	pci_cleanup_aer_uncorrect_error_status(pdev);
6880
6881	return result;
6882}
6883
6884/**
6885 * e1000_io_resume - called when traffic can start flowing again.
6886 * @pdev: Pointer to PCI device
6887 *
6888 * This callback is called when the error recovery driver tells us that
6889 * its OK to resume normal operation. Implementation resembles the
6890 * second-half of the e1000e_pm_resume routine.
6891 */
6892static void e1000_io_resume(struct pci_dev *pdev)
6893{
6894	struct net_device *netdev = pci_get_drvdata(pdev);
6895	struct e1000_adapter *adapter = netdev_priv(netdev);
6896
6897	e1000_init_manageability_pt(adapter);
6898
6899	if (netif_running(netdev))
6900		e1000e_up(adapter);
 
 
 
 
 
6901
6902	netif_device_attach(netdev);
6903
6904	/* If the controller has AMT, do not set DRV_LOAD until the interface
6905	 * is up.  For all other cases, let the f/w know that the h/w is now
6906	 * under the control of the driver.
6907	 */
6908	if (!(adapter->flags & FLAG_HAS_AMT))
6909		e1000e_get_hw_control(adapter);
6910}
6911
6912static void e1000_print_device_info(struct e1000_adapter *adapter)
6913{
6914	struct e1000_hw *hw = &adapter->hw;
6915	struct net_device *netdev = adapter->netdev;
6916	u32 ret_val;
6917	u8 pba_str[E1000_PBANUM_LENGTH];
6918
6919	/* print bus type/speed/width info */
6920	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6921	       /* bus width */
6922	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6923		"Width x1"),
6924	       /* MAC address */
6925	       netdev->dev_addr);
6926	e_info("Intel(R) PRO/%s Network Connection\n",
6927	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6928	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6929						E1000_PBANUM_LENGTH);
6930	if (ret_val)
6931		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6932	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6933	       hw->mac.type, hw->phy.type, pba_str);
6934}
6935
6936static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6937{
6938	struct e1000_hw *hw = &adapter->hw;
6939	int ret_val;
6940	u16 buf = 0;
6941
6942	if (hw->mac.type != e1000_82573)
6943		return;
6944
6945	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6946	le16_to_cpus(&buf);
6947	if (!ret_val && (!(buf & BIT(0)))) {
6948		/* Deep Smart Power Down (DSPD) */
6949		dev_warn(&adapter->pdev->dev,
6950			 "Warning: detected DSPD enabled in EEPROM\n");
6951	}
6952}
6953
6954static netdev_features_t e1000_fix_features(struct net_device *netdev,
6955					    netdev_features_t features)
6956{
6957	struct e1000_adapter *adapter = netdev_priv(netdev);
6958	struct e1000_hw *hw = &adapter->hw;
6959
6960	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6961	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6962		features &= ~NETIF_F_RXFCS;
6963
6964	/* Since there is no support for separate Rx/Tx vlan accel
6965	 * enable/disable make sure Tx flag is always in same state as Rx.
6966	 */
6967	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6968		features |= NETIF_F_HW_VLAN_CTAG_TX;
6969	else
6970		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6971
6972	return features;
6973}
6974
6975static int e1000_set_features(struct net_device *netdev,
6976			      netdev_features_t features)
6977{
6978	struct e1000_adapter *adapter = netdev_priv(netdev);
6979	netdev_features_t changed = features ^ netdev->features;
6980
6981	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6982		adapter->flags |= FLAG_TSO_FORCE;
6983
6984	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6985			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6986			 NETIF_F_RXALL)))
6987		return 0;
6988
6989	if (changed & NETIF_F_RXFCS) {
6990		if (features & NETIF_F_RXFCS) {
6991			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6992		} else {
6993			/* We need to take it back to defaults, which might mean
6994			 * stripping is still disabled at the adapter level.
6995			 */
6996			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6997				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6998			else
6999				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7000		}
7001	}
7002
7003	netdev->features = features;
7004
7005	if (netif_running(netdev))
7006		e1000e_reinit_locked(adapter);
7007	else
7008		e1000e_reset(adapter);
7009
7010	return 0;
7011}
7012
7013static const struct net_device_ops e1000e_netdev_ops = {
7014	.ndo_open		= e1000e_open,
7015	.ndo_stop		= e1000e_close,
7016	.ndo_start_xmit		= e1000_xmit_frame,
7017	.ndo_get_stats64	= e1000e_get_stats64,
7018	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7019	.ndo_set_mac_address	= e1000_set_mac,
7020	.ndo_change_mtu		= e1000_change_mtu,
7021	.ndo_do_ioctl		= e1000_ioctl,
7022	.ndo_tx_timeout		= e1000_tx_timeout,
7023	.ndo_validate_addr	= eth_validate_addr,
7024
7025	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7026	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7027#ifdef CONFIG_NET_POLL_CONTROLLER
7028	.ndo_poll_controller	= e1000_netpoll,
7029#endif
7030	.ndo_set_features = e1000_set_features,
7031	.ndo_fix_features = e1000_fix_features,
7032	.ndo_features_check	= passthru_features_check,
7033};
7034
7035/**
7036 * e1000_probe - Device Initialization Routine
7037 * @pdev: PCI device information struct
7038 * @ent: entry in e1000_pci_tbl
7039 *
7040 * Returns 0 on success, negative on failure
7041 *
7042 * e1000_probe initializes an adapter identified by a pci_dev structure.
7043 * The OS initialization, configuring of the adapter private structure,
7044 * and a hardware reset occur.
7045 **/
7046static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7047{
7048	struct net_device *netdev;
7049	struct e1000_adapter *adapter;
7050	struct e1000_hw *hw;
7051	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7052	resource_size_t mmio_start, mmio_len;
7053	resource_size_t flash_start, flash_len;
7054	static int cards_found;
7055	u16 aspm_disable_flag = 0;
7056	int bars, i, err, pci_using_dac;
7057	u16 eeprom_data = 0;
7058	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7059	s32 ret_val = 0;
7060
7061	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7062		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7063	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7064		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7065	if (aspm_disable_flag)
7066		e1000e_disable_aspm(pdev, aspm_disable_flag);
7067
7068	err = pci_enable_device_mem(pdev);
7069	if (err)
7070		return err;
7071
7072	pci_using_dac = 0;
7073	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7074	if (!err) {
7075		pci_using_dac = 1;
7076	} else {
7077		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7078		if (err) {
7079			dev_err(&pdev->dev,
7080				"No usable DMA configuration, aborting\n");
7081			goto err_dma;
7082		}
7083	}
7084
7085	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7086	err = pci_request_selected_regions_exclusive(pdev, bars,
7087						     e1000e_driver_name);
7088	if (err)
7089		goto err_pci_reg;
7090
7091	/* AER (Advanced Error Reporting) hooks */
7092	pci_enable_pcie_error_reporting(pdev);
7093
7094	pci_set_master(pdev);
7095	/* PCI config space info */
7096	err = pci_save_state(pdev);
7097	if (err)
7098		goto err_alloc_etherdev;
7099
7100	err = -ENOMEM;
7101	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7102	if (!netdev)
7103		goto err_alloc_etherdev;
7104
7105	SET_NETDEV_DEV(netdev, &pdev->dev);
7106
7107	netdev->irq = pdev->irq;
7108
7109	pci_set_drvdata(pdev, netdev);
7110	adapter = netdev_priv(netdev);
7111	hw = &adapter->hw;
7112	adapter->netdev = netdev;
7113	adapter->pdev = pdev;
7114	adapter->ei = ei;
7115	adapter->pba = ei->pba;
7116	adapter->flags = ei->flags;
7117	adapter->flags2 = ei->flags2;
7118	adapter->hw.adapter = adapter;
7119	adapter->hw.mac.type = ei->mac;
7120	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7121	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7122
7123	mmio_start = pci_resource_start(pdev, 0);
7124	mmio_len = pci_resource_len(pdev, 0);
7125
7126	err = -EIO;
7127	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7128	if (!adapter->hw.hw_addr)
7129		goto err_ioremap;
7130
7131	if ((adapter->flags & FLAG_HAS_FLASH) &&
7132	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7133	    (hw->mac.type < e1000_pch_spt)) {
7134		flash_start = pci_resource_start(pdev, 1);
7135		flash_len = pci_resource_len(pdev, 1);
7136		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7137		if (!adapter->hw.flash_address)
7138			goto err_flashmap;
7139	}
7140
7141	/* Set default EEE advertisement */
7142	if (adapter->flags2 & FLAG2_HAS_EEE)
7143		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7144
7145	/* construct the net_device struct */
7146	netdev->netdev_ops = &e1000e_netdev_ops;
7147	e1000e_set_ethtool_ops(netdev);
7148	netdev->watchdog_timeo = 5 * HZ;
7149	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7150	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7151
7152	netdev->mem_start = mmio_start;
7153	netdev->mem_end = mmio_start + mmio_len;
7154
7155	adapter->bd_number = cards_found++;
7156
7157	e1000e_check_options(adapter);
7158
7159	/* setup adapter struct */
7160	err = e1000_sw_init(adapter);
7161	if (err)
7162		goto err_sw_init;
7163
7164	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7165	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7166	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7167
7168	err = ei->get_variants(adapter);
7169	if (err)
7170		goto err_hw_init;
7171
7172	if ((adapter->flags & FLAG_IS_ICH) &&
7173	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7174	    (hw->mac.type < e1000_pch_spt))
7175		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7176
7177	hw->mac.ops.get_bus_info(&adapter->hw);
7178
7179	adapter->hw.phy.autoneg_wait_to_complete = 0;
7180
7181	/* Copper options */
7182	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7183		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7184		adapter->hw.phy.disable_polarity_correction = 0;
7185		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7186	}
7187
7188	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7189		dev_info(&pdev->dev,
7190			 "PHY reset is blocked due to SOL/IDER session.\n");
7191
7192	/* Set initial default active device features */
7193	netdev->features = (NETIF_F_SG |
7194			    NETIF_F_HW_VLAN_CTAG_RX |
7195			    NETIF_F_HW_VLAN_CTAG_TX |
7196			    NETIF_F_TSO |
7197			    NETIF_F_TSO6 |
7198			    NETIF_F_RXHASH |
7199			    NETIF_F_RXCSUM |
7200			    NETIF_F_HW_CSUM);
7201
7202	/* Set user-changeable features (subset of all device features) */
7203	netdev->hw_features = netdev->features;
7204	netdev->hw_features |= NETIF_F_RXFCS;
7205	netdev->priv_flags |= IFF_SUPP_NOFCS;
7206	netdev->hw_features |= NETIF_F_RXALL;
7207
7208	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7209		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7210
7211	netdev->vlan_features |= (NETIF_F_SG |
7212				  NETIF_F_TSO |
7213				  NETIF_F_TSO6 |
7214				  NETIF_F_HW_CSUM);
7215
7216	netdev->priv_flags |= IFF_UNICAST_FLT;
7217
7218	if (pci_using_dac) {
7219		netdev->features |= NETIF_F_HIGHDMA;
7220		netdev->vlan_features |= NETIF_F_HIGHDMA;
7221	}
7222
7223	/* MTU range: 68 - max_hw_frame_size */
7224	netdev->min_mtu = ETH_MIN_MTU;
7225	netdev->max_mtu = adapter->max_hw_frame_size -
7226			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7227
7228	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7229		adapter->flags |= FLAG_MNG_PT_ENABLED;
7230
7231	/* before reading the NVM, reset the controller to
7232	 * put the device in a known good starting state
7233	 */
7234	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7235
7236	/* systems with ASPM and others may see the checksum fail on the first
7237	 * attempt. Let's give it a few tries
7238	 */
7239	for (i = 0;; i++) {
7240		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7241			break;
7242		if (i == 2) {
7243			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7244			err = -EIO;
7245			goto err_eeprom;
7246		}
7247	}
7248
7249	e1000_eeprom_checks(adapter);
7250
7251	/* copy the MAC address */
7252	if (e1000e_read_mac_addr(&adapter->hw))
7253		dev_err(&pdev->dev,
7254			"NVM Read Error while reading MAC address\n");
7255
7256	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7257
7258	if (!is_valid_ether_addr(netdev->dev_addr)) {
7259		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7260			netdev->dev_addr);
7261		err = -EIO;
7262		goto err_eeprom;
7263	}
7264
7265	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7266	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
 
 
 
 
 
7267
7268	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7269	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7270	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7271	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7272	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7273
7274	/* Initialize link parameters. User can change them with ethtool */
7275	adapter->hw.mac.autoneg = 1;
7276	adapter->fc_autoneg = true;
7277	adapter->hw.fc.requested_mode = e1000_fc_default;
7278	adapter->hw.fc.current_mode = e1000_fc_default;
7279	adapter->hw.phy.autoneg_advertised = 0x2f;
7280
7281	/* Initial Wake on LAN setting - If APM wake is enabled in
7282	 * the EEPROM, enable the ACPI Magic Packet filter
7283	 */
7284	if (adapter->flags & FLAG_APME_IN_WUC) {
7285		/* APME bit in EEPROM is mapped to WUC.APME */
7286		eeprom_data = er32(WUC);
7287		eeprom_apme_mask = E1000_WUC_APME;
7288		if ((hw->mac.type > e1000_ich10lan) &&
7289		    (eeprom_data & E1000_WUC_PHY_WAKE))
7290			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7291	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7292		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7293		    (adapter->hw.bus.func == 1))
7294			ret_val = e1000_read_nvm(&adapter->hw,
7295					      NVM_INIT_CONTROL3_PORT_B,
7296					      1, &eeprom_data);
7297		else
7298			ret_val = e1000_read_nvm(&adapter->hw,
7299					      NVM_INIT_CONTROL3_PORT_A,
7300					      1, &eeprom_data);
7301	}
7302
7303	/* fetch WoL from EEPROM */
7304	if (ret_val)
7305		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7306	else if (eeprom_data & eeprom_apme_mask)
7307		adapter->eeprom_wol |= E1000_WUFC_MAG;
7308
7309	/* now that we have the eeprom settings, apply the special cases
7310	 * where the eeprom may be wrong or the board simply won't support
7311	 * wake on lan on a particular port
7312	 */
7313	if (!(adapter->flags & FLAG_HAS_WOL))
7314		adapter->eeprom_wol = 0;
7315
7316	/* initialize the wol settings based on the eeprom settings */
7317	adapter->wol = adapter->eeprom_wol;
7318
7319	/* make sure adapter isn't asleep if manageability is enabled */
7320	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7321	    (hw->mac.ops.check_mng_mode(hw)))
7322		device_wakeup_enable(&pdev->dev);
7323
7324	/* save off EEPROM version number */
7325	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7326
7327	if (ret_val) {
7328		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7329		adapter->eeprom_vers = 0;
7330	}
7331
7332	/* init PTP hardware clock */
7333	e1000e_ptp_init(adapter);
7334
7335	/* reset the hardware with the new settings */
7336	e1000e_reset(adapter);
7337
7338	/* If the controller has AMT, do not set DRV_LOAD until the interface
7339	 * is up.  For all other cases, let the f/w know that the h/w is now
7340	 * under the control of the driver.
7341	 */
7342	if (!(adapter->flags & FLAG_HAS_AMT))
7343		e1000e_get_hw_control(adapter);
7344
7345	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7346	err = register_netdev(netdev);
7347	if (err)
7348		goto err_register;
7349
7350	/* carrier off reporting is important to ethtool even BEFORE open */
7351	netif_carrier_off(netdev);
7352
 
 
 
7353	e1000_print_device_info(adapter);
7354
7355	if (pci_dev_run_wake(pdev))
7356		pm_runtime_put_noidle(&pdev->dev);
7357
7358	return 0;
7359
7360err_register:
7361	if (!(adapter->flags & FLAG_HAS_AMT))
7362		e1000e_release_hw_control(adapter);
7363err_eeprom:
7364	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7365		e1000_phy_hw_reset(&adapter->hw);
7366err_hw_init:
7367	kfree(adapter->tx_ring);
7368	kfree(adapter->rx_ring);
7369err_sw_init:
7370	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7371		iounmap(adapter->hw.flash_address);
7372	e1000e_reset_interrupt_capability(adapter);
7373err_flashmap:
7374	iounmap(adapter->hw.hw_addr);
7375err_ioremap:
7376	free_netdev(netdev);
7377err_alloc_etherdev:
7378	pci_release_mem_regions(pdev);
 
7379err_pci_reg:
7380err_dma:
7381	pci_disable_device(pdev);
7382	return err;
7383}
7384
7385/**
7386 * e1000_remove - Device Removal Routine
7387 * @pdev: PCI device information struct
7388 *
7389 * e1000_remove is called by the PCI subsystem to alert the driver
7390 * that it should release a PCI device.  The could be caused by a
7391 * Hot-Plug event, or because the driver is going to be removed from
7392 * memory.
7393 **/
7394static void e1000_remove(struct pci_dev *pdev)
7395{
7396	struct net_device *netdev = pci_get_drvdata(pdev);
7397	struct e1000_adapter *adapter = netdev_priv(netdev);
7398	bool down = test_bit(__E1000_DOWN, &adapter->state);
7399
7400	e1000e_ptp_remove(adapter);
7401
7402	/* The timers may be rescheduled, so explicitly disable them
7403	 * from being rescheduled.
7404	 */
7405	if (!down)
7406		set_bit(__E1000_DOWN, &adapter->state);
7407	del_timer_sync(&adapter->watchdog_timer);
7408	del_timer_sync(&adapter->phy_info_timer);
7409
7410	cancel_work_sync(&adapter->reset_task);
7411	cancel_work_sync(&adapter->watchdog_task);
7412	cancel_work_sync(&adapter->downshift_task);
7413	cancel_work_sync(&adapter->update_phy_task);
7414	cancel_work_sync(&adapter->print_hang_task);
7415
7416	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7417		cancel_work_sync(&adapter->tx_hwtstamp_work);
7418		if (adapter->tx_hwtstamp_skb) {
7419			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7420			adapter->tx_hwtstamp_skb = NULL;
7421		}
7422	}
7423
7424	/* Don't lie to e1000_close() down the road. */
7425	if (!down)
7426		clear_bit(__E1000_DOWN, &adapter->state);
7427	unregister_netdev(netdev);
7428
7429	if (pci_dev_run_wake(pdev))
7430		pm_runtime_get_noresume(&pdev->dev);
7431
7432	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7433	 * would have already happened in close and is redundant.
7434	 */
7435	e1000e_release_hw_control(adapter);
7436
7437	e1000e_reset_interrupt_capability(adapter);
7438	kfree(adapter->tx_ring);
7439	kfree(adapter->rx_ring);
7440
7441	iounmap(adapter->hw.hw_addr);
7442	if ((adapter->hw.flash_address) &&
7443	    (adapter->hw.mac.type < e1000_pch_spt))
7444		iounmap(adapter->hw.flash_address);
7445	pci_release_mem_regions(pdev);
 
7446
7447	free_netdev(netdev);
7448
7449	/* AER disable */
7450	pci_disable_pcie_error_reporting(pdev);
7451
7452	pci_disable_device(pdev);
7453}
7454
7455/* PCI Error Recovery (ERS) */
7456static const struct pci_error_handlers e1000_err_handler = {
7457	.error_detected = e1000_io_error_detected,
7458	.slot_reset = e1000_io_slot_reset,
7459	.resume = e1000_io_resume,
7460};
7461
7462static const struct pci_device_id e1000_pci_tbl[] = {
7463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7467	  board_82571 },
7468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7471	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7473
7474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7475	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7477	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7478
7479	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7481	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7482
7483	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7484	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7486
7487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7488	  board_80003es2lan },
7489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7490	  board_80003es2lan },
7491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7492	  board_80003es2lan },
7493	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7494	  board_80003es2lan },
7495
7496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7503	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7504
7505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7507	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7511	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7514
7515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7516	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7518
7519	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7522
7523	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7524	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7525	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7526	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7527
7528	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7529	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7530
7531	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7532	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7533	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7534	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7535	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7536	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7537	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7538	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7539	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7540	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7541	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7542	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7543	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7544	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7545	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7546	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7547	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7548	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7549	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7550	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7551	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7552	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7553	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7554	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7555	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7556
7557	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7558};
7559MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7560
7561static const struct dev_pm_ops e1000_pm_ops = {
7562#ifdef CONFIG_PM_SLEEP
7563	.suspend	= e1000e_pm_suspend,
7564	.resume		= e1000e_pm_resume,
7565	.freeze		= e1000e_pm_freeze,
7566	.thaw		= e1000e_pm_thaw,
7567	.poweroff	= e1000e_pm_suspend,
7568	.restore	= e1000e_pm_resume,
7569#endif
7570	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7571			   e1000e_pm_runtime_idle)
7572};
7573
7574/* PCI Device API Driver */
7575static struct pci_driver e1000_driver = {
7576	.name     = e1000e_driver_name,
7577	.id_table = e1000_pci_tbl,
7578	.probe    = e1000_probe,
7579	.remove   = e1000_remove,
7580	.driver   = {
7581		.pm = &e1000_pm_ops,
7582	},
7583	.shutdown = e1000_shutdown,
7584	.err_handler = &e1000_err_handler
7585};
7586
7587/**
7588 * e1000_init_module - Driver Registration Routine
7589 *
7590 * e1000_init_module is the first routine called when the driver is
7591 * loaded. All it does is register with the PCI subsystem.
7592 **/
7593static int __init e1000_init_module(void)
7594{
 
7595	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7596		e1000e_driver_version);
7597	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
7598
7599	return pci_register_driver(&e1000_driver);
7600}
7601module_init(e1000_init_module);
7602
7603/**
7604 * e1000_exit_module - Driver Exit Cleanup Routine
7605 *
7606 * e1000_exit_module is called just before the driver is removed
7607 * from memory.
7608 **/
7609static void __exit e1000_exit_module(void)
7610{
7611	pci_unregister_driver(&e1000_driver);
7612}
7613module_exit(e1000_exit_module);
7614
7615MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7616MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7617MODULE_LICENSE("GPL");
7618MODULE_VERSION(DRV_VERSION);
7619
7620/* netdev.c */
v3.15
 
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/vmalloc.h>
  29#include <linux/pagemap.h>
  30#include <linux/delay.h>
  31#include <linux/netdevice.h>
  32#include <linux/interrupt.h>
  33#include <linux/tcp.h>
  34#include <linux/ipv6.h>
  35#include <linux/slab.h>
  36#include <net/checksum.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/ethtool.h>
  39#include <linux/if_vlan.h>
  40#include <linux/cpu.h>
  41#include <linux/smp.h>
  42#include <linux/pm_qos.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/aer.h>
  45#include <linux/prefetch.h>
  46
  47#include "e1000.h"
  48
  49#define DRV_EXTRAVERSION "-k"
  50
  51#define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
  52char e1000e_driver_name[] = "e1000e";
  53const char e1000e_driver_version[] = DRV_VERSION;
  54
  55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  56static int debug = -1;
  57module_param(debug, int, 0);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static const struct e1000_info *e1000_info_tbl[] = {
  61	[board_82571]		= &e1000_82571_info,
  62	[board_82572]		= &e1000_82572_info,
  63	[board_82573]		= &e1000_82573_info,
  64	[board_82574]		= &e1000_82574_info,
  65	[board_82583]		= &e1000_82583_info,
  66	[board_80003es2lan]	= &e1000_es2_info,
  67	[board_ich8lan]		= &e1000_ich8_info,
  68	[board_ich9lan]		= &e1000_ich9_info,
  69	[board_ich10lan]	= &e1000_ich10_info,
  70	[board_pchlan]		= &e1000_pch_info,
  71	[board_pch2lan]		= &e1000_pch2_info,
  72	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
 
  73};
  74
  75struct e1000_reg_info {
  76	u32 ofs;
  77	char *name;
  78};
  79
  80static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  81	/* General Registers */
  82	{E1000_CTRL, "CTRL"},
  83	{E1000_STATUS, "STATUS"},
  84	{E1000_CTRL_EXT, "CTRL_EXT"},
  85
  86	/* Interrupt Registers */
  87	{E1000_ICR, "ICR"},
  88
  89	/* Rx Registers */
  90	{E1000_RCTL, "RCTL"},
  91	{E1000_RDLEN(0), "RDLEN"},
  92	{E1000_RDH(0), "RDH"},
  93	{E1000_RDT(0), "RDT"},
  94	{E1000_RDTR, "RDTR"},
  95	{E1000_RXDCTL(0), "RXDCTL"},
  96	{E1000_ERT, "ERT"},
  97	{E1000_RDBAL(0), "RDBAL"},
  98	{E1000_RDBAH(0), "RDBAH"},
  99	{E1000_RDFH, "RDFH"},
 100	{E1000_RDFT, "RDFT"},
 101	{E1000_RDFHS, "RDFHS"},
 102	{E1000_RDFTS, "RDFTS"},
 103	{E1000_RDFPC, "RDFPC"},
 104
 105	/* Tx Registers */
 106	{E1000_TCTL, "TCTL"},
 107	{E1000_TDBAL(0), "TDBAL"},
 108	{E1000_TDBAH(0), "TDBAH"},
 109	{E1000_TDLEN(0), "TDLEN"},
 110	{E1000_TDH(0), "TDH"},
 111	{E1000_TDT(0), "TDT"},
 112	{E1000_TIDV, "TIDV"},
 113	{E1000_TXDCTL(0), "TXDCTL"},
 114	{E1000_TADV, "TADV"},
 115	{E1000_TARC(0), "TARC"},
 116	{E1000_TDFH, "TDFH"},
 117	{E1000_TDFT, "TDFT"},
 118	{E1000_TDFHS, "TDFHS"},
 119	{E1000_TDFTS, "TDFTS"},
 120	{E1000_TDFPC, "TDFPC"},
 121
 122	/* List Terminator */
 123	{0, NULL}
 124};
 125
 126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127 * e1000_regdump - register printout routine
 128 * @hw: pointer to the HW structure
 129 * @reginfo: pointer to the register info table
 130 **/
 131static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 132{
 133	int n = 0;
 134	char rname[16];
 135	u32 regs[8];
 136
 137	switch (reginfo->ofs) {
 138	case E1000_RXDCTL(0):
 139		for (n = 0; n < 2; n++)
 140			regs[n] = __er32(hw, E1000_RXDCTL(n));
 141		break;
 142	case E1000_TXDCTL(0):
 143		for (n = 0; n < 2; n++)
 144			regs[n] = __er32(hw, E1000_TXDCTL(n));
 145		break;
 146	case E1000_TARC(0):
 147		for (n = 0; n < 2; n++)
 148			regs[n] = __er32(hw, E1000_TARC(n));
 149		break;
 150	default:
 151		pr_info("%-15s %08x\n",
 152			reginfo->name, __er32(hw, reginfo->ofs));
 153		return;
 154	}
 155
 156	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 157	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 158}
 159
 160static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 161				 struct e1000_buffer *bi)
 162{
 163	int i;
 164	struct e1000_ps_page *ps_page;
 165
 166	for (i = 0; i < adapter->rx_ps_pages; i++) {
 167		ps_page = &bi->ps_pages[i];
 168
 169		if (ps_page->page) {
 170			pr_info("packet dump for ps_page %d:\n", i);
 171			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 172				       16, 1, page_address(ps_page->page),
 173				       PAGE_SIZE, true);
 174		}
 175	}
 176}
 177
 178/**
 179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 180 * @adapter: board private structure
 181 **/
 182static void e1000e_dump(struct e1000_adapter *adapter)
 183{
 184	struct net_device *netdev = adapter->netdev;
 185	struct e1000_hw *hw = &adapter->hw;
 186	struct e1000_reg_info *reginfo;
 187	struct e1000_ring *tx_ring = adapter->tx_ring;
 188	struct e1000_tx_desc *tx_desc;
 189	struct my_u0 {
 190		__le64 a;
 191		__le64 b;
 192	} *u0;
 193	struct e1000_buffer *buffer_info;
 194	struct e1000_ring *rx_ring = adapter->rx_ring;
 195	union e1000_rx_desc_packet_split *rx_desc_ps;
 196	union e1000_rx_desc_extended *rx_desc;
 197	struct my_u1 {
 198		__le64 a;
 199		__le64 b;
 200		__le64 c;
 201		__le64 d;
 202	} *u1;
 203	u32 staterr;
 204	int i = 0;
 205
 206	if (!netif_msg_hw(adapter))
 207		return;
 208
 209	/* Print netdevice Info */
 210	if (netdev) {
 211		dev_info(&adapter->pdev->dev, "Net device Info\n");
 212		pr_info("Device Name     state            trans_start      last_rx\n");
 213		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 214			netdev->state, netdev->trans_start, netdev->last_rx);
 215	}
 216
 217	/* Print Registers */
 218	dev_info(&adapter->pdev->dev, "Register Dump\n");
 219	pr_info(" Register Name   Value\n");
 220	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 221	     reginfo->name; reginfo++) {
 222		e1000_regdump(hw, reginfo);
 223	}
 224
 225	/* Print Tx Ring Summary */
 226	if (!netdev || !netif_running(netdev))
 227		return;
 228
 229	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 230	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 231	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 232	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 233		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 234		(unsigned long long)buffer_info->dma,
 235		buffer_info->length,
 236		buffer_info->next_to_watch,
 237		(unsigned long long)buffer_info->time_stamp);
 238
 239	/* Print Tx Ring */
 240	if (!netif_msg_tx_done(adapter))
 241		goto rx_ring_summary;
 242
 243	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 244
 245	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 246	 *
 247	 * Legacy Transmit Descriptor
 248	 *   +--------------------------------------------------------------+
 249	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 250	 *   +--------------------------------------------------------------+
 251	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 252	 *   +--------------------------------------------------------------+
 253	 *   63       48 47        36 35    32 31     24 23    16 15        0
 254	 *
 255	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 256	 *   63      48 47    40 39       32 31             16 15    8 7      0
 257	 *   +----------------------------------------------------------------+
 258	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 259	 *   +----------------------------------------------------------------+
 260	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 261	 *   +----------------------------------------------------------------+
 262	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 263	 *
 264	 * Extended Data Descriptor (DTYP=0x1)
 265	 *   +----------------------------------------------------------------+
 266	 * 0 |                     Buffer Address [63:0]                      |
 267	 *   +----------------------------------------------------------------+
 268	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 269	 *   +----------------------------------------------------------------+
 270	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 271	 */
 272	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 273	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 274	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 275	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 276		const char *next_desc;
 277		tx_desc = E1000_TX_DESC(*tx_ring, i);
 278		buffer_info = &tx_ring->buffer_info[i];
 279		u0 = (struct my_u0 *)tx_desc;
 280		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 281			next_desc = " NTC/U";
 282		else if (i == tx_ring->next_to_use)
 283			next_desc = " NTU";
 284		else if (i == tx_ring->next_to_clean)
 285			next_desc = " NTC";
 286		else
 287			next_desc = "";
 288		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 289			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 290			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 291			i,
 292			(unsigned long long)le64_to_cpu(u0->a),
 293			(unsigned long long)le64_to_cpu(u0->b),
 294			(unsigned long long)buffer_info->dma,
 295			buffer_info->length, buffer_info->next_to_watch,
 296			(unsigned long long)buffer_info->time_stamp,
 297			buffer_info->skb, next_desc);
 298
 299		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 300			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 301				       16, 1, buffer_info->skb->data,
 302				       buffer_info->skb->len, true);
 303	}
 304
 305	/* Print Rx Ring Summary */
 306rx_ring_summary:
 307	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 308	pr_info("Queue [NTU] [NTC]\n");
 309	pr_info(" %5d %5X %5X\n",
 310		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 311
 312	/* Print Rx Ring */
 313	if (!netif_msg_rx_status(adapter))
 314		return;
 315
 316	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 317	switch (adapter->rx_ps_pages) {
 318	case 1:
 319	case 2:
 320	case 3:
 321		/* [Extended] Packet Split Receive Descriptor Format
 322		 *
 323		 *    +-----------------------------------------------------+
 324		 *  0 |                Buffer Address 0 [63:0]              |
 325		 *    +-----------------------------------------------------+
 326		 *  8 |                Buffer Address 1 [63:0]              |
 327		 *    +-----------------------------------------------------+
 328		 * 16 |                Buffer Address 2 [63:0]              |
 329		 *    +-----------------------------------------------------+
 330		 * 24 |                Buffer Address 3 [63:0]              |
 331		 *    +-----------------------------------------------------+
 332		 */
 333		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 334		/* [Extended] Receive Descriptor (Write-Back) Format
 335		 *
 336		 *   63       48 47    32 31     13 12    8 7    4 3        0
 337		 *   +------------------------------------------------------+
 338		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 339		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 340		 *   +------------------------------------------------------+
 341		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 342		 *   +------------------------------------------------------+
 343		 *   63       48 47    32 31            20 19               0
 344		 */
 345		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 346		for (i = 0; i < rx_ring->count; i++) {
 347			const char *next_desc;
 348			buffer_info = &rx_ring->buffer_info[i];
 349			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 350			u1 = (struct my_u1 *)rx_desc_ps;
 351			staterr =
 352			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 353
 354			if (i == rx_ring->next_to_use)
 355				next_desc = " NTU";
 356			else if (i == rx_ring->next_to_clean)
 357				next_desc = " NTC";
 358			else
 359				next_desc = "";
 360
 361			if (staterr & E1000_RXD_STAT_DD) {
 362				/* Descriptor Done */
 363				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 364					"RWB", i,
 365					(unsigned long long)le64_to_cpu(u1->a),
 366					(unsigned long long)le64_to_cpu(u1->b),
 367					(unsigned long long)le64_to_cpu(u1->c),
 368					(unsigned long long)le64_to_cpu(u1->d),
 369					buffer_info->skb, next_desc);
 370			} else {
 371				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 372					"R  ", i,
 373					(unsigned long long)le64_to_cpu(u1->a),
 374					(unsigned long long)le64_to_cpu(u1->b),
 375					(unsigned long long)le64_to_cpu(u1->c),
 376					(unsigned long long)le64_to_cpu(u1->d),
 377					(unsigned long long)buffer_info->dma,
 378					buffer_info->skb, next_desc);
 379
 380				if (netif_msg_pktdata(adapter))
 381					e1000e_dump_ps_pages(adapter,
 382							     buffer_info);
 383			}
 384		}
 385		break;
 386	default:
 387	case 0:
 388		/* Extended Receive Descriptor (Read) Format
 389		 *
 390		 *   +-----------------------------------------------------+
 391		 * 0 |                Buffer Address [63:0]                |
 392		 *   +-----------------------------------------------------+
 393		 * 8 |                      Reserved                       |
 394		 *   +-----------------------------------------------------+
 395		 */
 396		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 397		/* Extended Receive Descriptor (Write-Back) Format
 398		 *
 399		 *   63       48 47    32 31    24 23            4 3        0
 400		 *   +------------------------------------------------------+
 401		 *   |     RSS Hash      |        |               |         |
 402		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 403		 *   | Packet   | IP     |        |               |  Type   |
 404		 *   | Checksum | Ident  |        |               |         |
 405		 *   +------------------------------------------------------+
 406		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 407		 *   +------------------------------------------------------+
 408		 *   63       48 47    32 31            20 19               0
 409		 */
 410		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 411
 412		for (i = 0; i < rx_ring->count; i++) {
 413			const char *next_desc;
 414
 415			buffer_info = &rx_ring->buffer_info[i];
 416			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 417			u1 = (struct my_u1 *)rx_desc;
 418			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 419
 420			if (i == rx_ring->next_to_use)
 421				next_desc = " NTU";
 422			else if (i == rx_ring->next_to_clean)
 423				next_desc = " NTC";
 424			else
 425				next_desc = "";
 426
 427			if (staterr & E1000_RXD_STAT_DD) {
 428				/* Descriptor Done */
 429				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 430					"RWB", i,
 431					(unsigned long long)le64_to_cpu(u1->a),
 432					(unsigned long long)le64_to_cpu(u1->b),
 433					buffer_info->skb, next_desc);
 434			} else {
 435				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 436					"R  ", i,
 437					(unsigned long long)le64_to_cpu(u1->a),
 438					(unsigned long long)le64_to_cpu(u1->b),
 439					(unsigned long long)buffer_info->dma,
 440					buffer_info->skb, next_desc);
 441
 442				if (netif_msg_pktdata(adapter) &&
 443				    buffer_info->skb)
 444					print_hex_dump(KERN_INFO, "",
 445						       DUMP_PREFIX_ADDRESS, 16,
 446						       1,
 447						       buffer_info->skb->data,
 448						       adapter->rx_buffer_len,
 449						       true);
 450			}
 451		}
 452	}
 453}
 454
 455/**
 456 * e1000_desc_unused - calculate if we have unused descriptors
 457 **/
 458static int e1000_desc_unused(struct e1000_ring *ring)
 459{
 460	if (ring->next_to_clean > ring->next_to_use)
 461		return ring->next_to_clean - ring->next_to_use - 1;
 462
 463	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 464}
 465
 466/**
 467 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 468 * @adapter: board private structure
 469 * @hwtstamps: time stamp structure to update
 470 * @systim: unsigned 64bit system time value.
 471 *
 472 * Convert the system time value stored in the RX/TXSTMP registers into a
 473 * hwtstamp which can be used by the upper level time stamping functions.
 474 *
 475 * The 'systim_lock' spinlock is used to protect the consistency of the
 476 * system time value. This is needed because reading the 64 bit time
 477 * value involves reading two 32 bit registers. The first read latches the
 478 * value.
 479 **/
 480static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 481				      struct skb_shared_hwtstamps *hwtstamps,
 482				      u64 systim)
 483{
 484	u64 ns;
 485	unsigned long flags;
 486
 487	spin_lock_irqsave(&adapter->systim_lock, flags);
 488	ns = timecounter_cyc2time(&adapter->tc, systim);
 489	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 490
 491	memset(hwtstamps, 0, sizeof(*hwtstamps));
 492	hwtstamps->hwtstamp = ns_to_ktime(ns);
 493}
 494
 495/**
 496 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 497 * @adapter: board private structure
 498 * @status: descriptor extended error and status field
 499 * @skb: particular skb to include time stamp
 500 *
 501 * If the time stamp is valid, convert it into the timecounter ns value
 502 * and store that result into the shhwtstamps structure which is passed
 503 * up the network stack.
 504 **/
 505static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 506			       struct sk_buff *skb)
 507{
 508	struct e1000_hw *hw = &adapter->hw;
 509	u64 rxstmp;
 510
 511	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 512	    !(status & E1000_RXDEXT_STATERR_TST) ||
 513	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 514		return;
 515
 516	/* The Rx time stamp registers contain the time stamp.  No other
 517	 * received packet will be time stamped until the Rx time stamp
 518	 * registers are read.  Because only one packet can be time stamped
 519	 * at a time, the register values must belong to this packet and
 520	 * therefore none of the other additional attributes need to be
 521	 * compared.
 522	 */
 523	rxstmp = (u64)er32(RXSTMPL);
 524	rxstmp |= (u64)er32(RXSTMPH) << 32;
 525	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 526
 527	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 528}
 529
 530/**
 531 * e1000_receive_skb - helper function to handle Rx indications
 532 * @adapter: board private structure
 533 * @staterr: descriptor extended error and status field as written by hardware
 534 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 535 * @skb: pointer to sk_buff to be indicated to stack
 536 **/
 537static void e1000_receive_skb(struct e1000_adapter *adapter,
 538			      struct net_device *netdev, struct sk_buff *skb,
 539			      u32 staterr, __le16 vlan)
 540{
 541	u16 tag = le16_to_cpu(vlan);
 542
 543	e1000e_rx_hwtstamp(adapter, staterr, skb);
 544
 545	skb->protocol = eth_type_trans(skb, netdev);
 546
 547	if (staterr & E1000_RXD_STAT_VP)
 548		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 549
 550	napi_gro_receive(&adapter->napi, skb);
 551}
 552
 553/**
 554 * e1000_rx_checksum - Receive Checksum Offload
 555 * @adapter: board private structure
 556 * @status_err: receive descriptor status and error fields
 557 * @csum: receive descriptor csum field
 558 * @sk_buff: socket buffer with received data
 559 **/
 560static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 561			      struct sk_buff *skb)
 562{
 563	u16 status = (u16)status_err;
 564	u8 errors = (u8)(status_err >> 24);
 565
 566	skb_checksum_none_assert(skb);
 567
 568	/* Rx checksum disabled */
 569	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 570		return;
 571
 572	/* Ignore Checksum bit is set */
 573	if (status & E1000_RXD_STAT_IXSM)
 574		return;
 575
 576	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 577	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 578		/* let the stack verify checksum errors */
 579		adapter->hw_csum_err++;
 580		return;
 581	}
 582
 583	/* TCP/UDP Checksum has not been calculated */
 584	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 585		return;
 586
 587	/* It must be a TCP or UDP packet with a valid checksum */
 588	skb->ip_summed = CHECKSUM_UNNECESSARY;
 589	adapter->hw_csum_good++;
 590}
 591
 592static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 593{
 594	struct e1000_adapter *adapter = rx_ring->adapter;
 595	struct e1000_hw *hw = &adapter->hw;
 596	s32 ret_val = __ew32_prepare(hw);
 597
 598	writel(i, rx_ring->tail);
 599
 600	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 601		u32 rctl = er32(RCTL);
 
 602		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 603		e_err("ME firmware caused invalid RDT - resetting\n");
 604		schedule_work(&adapter->reset_task);
 605	}
 606}
 607
 608static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 609{
 610	struct e1000_adapter *adapter = tx_ring->adapter;
 611	struct e1000_hw *hw = &adapter->hw;
 612	s32 ret_val = __ew32_prepare(hw);
 613
 614	writel(i, tx_ring->tail);
 615
 616	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 617		u32 tctl = er32(TCTL);
 
 618		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 619		e_err("ME firmware caused invalid TDT - resetting\n");
 620		schedule_work(&adapter->reset_task);
 621	}
 622}
 623
 624/**
 625 * e1000_alloc_rx_buffers - Replace used receive buffers
 626 * @rx_ring: Rx descriptor ring
 627 **/
 628static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 629				   int cleaned_count, gfp_t gfp)
 630{
 631	struct e1000_adapter *adapter = rx_ring->adapter;
 632	struct net_device *netdev = adapter->netdev;
 633	struct pci_dev *pdev = adapter->pdev;
 634	union e1000_rx_desc_extended *rx_desc;
 635	struct e1000_buffer *buffer_info;
 636	struct sk_buff *skb;
 637	unsigned int i;
 638	unsigned int bufsz = adapter->rx_buffer_len;
 639
 640	i = rx_ring->next_to_use;
 641	buffer_info = &rx_ring->buffer_info[i];
 642
 643	while (cleaned_count--) {
 644		skb = buffer_info->skb;
 645		if (skb) {
 646			skb_trim(skb, 0);
 647			goto map_skb;
 648		}
 649
 650		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 651		if (!skb) {
 652			/* Better luck next round */
 653			adapter->alloc_rx_buff_failed++;
 654			break;
 655		}
 656
 657		buffer_info->skb = skb;
 658map_skb:
 659		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 660						  adapter->rx_buffer_len,
 661						  DMA_FROM_DEVICE);
 662		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 663			dev_err(&pdev->dev, "Rx DMA map failed\n");
 664			adapter->rx_dma_failed++;
 665			break;
 666		}
 667
 668		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 669		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 670
 671		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 672			/* Force memory writes to complete before letting h/w
 673			 * know there are new descriptors to fetch.  (Only
 674			 * applicable for weak-ordered memory model archs,
 675			 * such as IA-64).
 676			 */
 677			wmb();
 678			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 679				e1000e_update_rdt_wa(rx_ring, i);
 680			else
 681				writel(i, rx_ring->tail);
 682		}
 683		i++;
 684		if (i == rx_ring->count)
 685			i = 0;
 686		buffer_info = &rx_ring->buffer_info[i];
 687	}
 688
 689	rx_ring->next_to_use = i;
 690}
 691
 692/**
 693 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 694 * @rx_ring: Rx descriptor ring
 695 **/
 696static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 697				      int cleaned_count, gfp_t gfp)
 698{
 699	struct e1000_adapter *adapter = rx_ring->adapter;
 700	struct net_device *netdev = adapter->netdev;
 701	struct pci_dev *pdev = adapter->pdev;
 702	union e1000_rx_desc_packet_split *rx_desc;
 703	struct e1000_buffer *buffer_info;
 704	struct e1000_ps_page *ps_page;
 705	struct sk_buff *skb;
 706	unsigned int i, j;
 707
 708	i = rx_ring->next_to_use;
 709	buffer_info = &rx_ring->buffer_info[i];
 710
 711	while (cleaned_count--) {
 712		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 713
 714		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 715			ps_page = &buffer_info->ps_pages[j];
 716			if (j >= adapter->rx_ps_pages) {
 717				/* all unused desc entries get hw null ptr */
 718				rx_desc->read.buffer_addr[j + 1] =
 719				    ~cpu_to_le64(0);
 720				continue;
 721			}
 722			if (!ps_page->page) {
 723				ps_page->page = alloc_page(gfp);
 724				if (!ps_page->page) {
 725					adapter->alloc_rx_buff_failed++;
 726					goto no_buffers;
 727				}
 728				ps_page->dma = dma_map_page(&pdev->dev,
 729							    ps_page->page,
 730							    0, PAGE_SIZE,
 731							    DMA_FROM_DEVICE);
 732				if (dma_mapping_error(&pdev->dev,
 733						      ps_page->dma)) {
 734					dev_err(&adapter->pdev->dev,
 735						"Rx DMA page map failed\n");
 736					adapter->rx_dma_failed++;
 737					goto no_buffers;
 738				}
 739			}
 740			/* Refresh the desc even if buffer_addrs
 741			 * didn't change because each write-back
 742			 * erases this info.
 743			 */
 744			rx_desc->read.buffer_addr[j + 1] =
 745			    cpu_to_le64(ps_page->dma);
 746		}
 747
 748		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 749						  gfp);
 750
 751		if (!skb) {
 752			adapter->alloc_rx_buff_failed++;
 753			break;
 754		}
 755
 756		buffer_info->skb = skb;
 757		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 758						  adapter->rx_ps_bsize0,
 759						  DMA_FROM_DEVICE);
 760		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 761			dev_err(&pdev->dev, "Rx DMA map failed\n");
 762			adapter->rx_dma_failed++;
 763			/* cleanup skb */
 764			dev_kfree_skb_any(skb);
 765			buffer_info->skb = NULL;
 766			break;
 767		}
 768
 769		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 770
 771		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 772			/* Force memory writes to complete before letting h/w
 773			 * know there are new descriptors to fetch.  (Only
 774			 * applicable for weak-ordered memory model archs,
 775			 * such as IA-64).
 776			 */
 777			wmb();
 778			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 779				e1000e_update_rdt_wa(rx_ring, i << 1);
 780			else
 781				writel(i << 1, rx_ring->tail);
 782		}
 783
 784		i++;
 785		if (i == rx_ring->count)
 786			i = 0;
 787		buffer_info = &rx_ring->buffer_info[i];
 788	}
 789
 790no_buffers:
 791	rx_ring->next_to_use = i;
 792}
 793
 794/**
 795 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 796 * @rx_ring: Rx descriptor ring
 797 * @cleaned_count: number of buffers to allocate this pass
 798 **/
 799
 800static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 801					 int cleaned_count, gfp_t gfp)
 802{
 803	struct e1000_adapter *adapter = rx_ring->adapter;
 804	struct net_device *netdev = adapter->netdev;
 805	struct pci_dev *pdev = adapter->pdev;
 806	union e1000_rx_desc_extended *rx_desc;
 807	struct e1000_buffer *buffer_info;
 808	struct sk_buff *skb;
 809	unsigned int i;
 810	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 811
 812	i = rx_ring->next_to_use;
 813	buffer_info = &rx_ring->buffer_info[i];
 814
 815	while (cleaned_count--) {
 816		skb = buffer_info->skb;
 817		if (skb) {
 818			skb_trim(skb, 0);
 819			goto check_page;
 820		}
 821
 822		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 823		if (unlikely(!skb)) {
 824			/* Better luck next round */
 825			adapter->alloc_rx_buff_failed++;
 826			break;
 827		}
 828
 829		buffer_info->skb = skb;
 830check_page:
 831		/* allocate a new page if necessary */
 832		if (!buffer_info->page) {
 833			buffer_info->page = alloc_page(gfp);
 834			if (unlikely(!buffer_info->page)) {
 835				adapter->alloc_rx_buff_failed++;
 836				break;
 837			}
 838		}
 839
 840		if (!buffer_info->dma) {
 841			buffer_info->dma = dma_map_page(&pdev->dev,
 842							buffer_info->page, 0,
 843							PAGE_SIZE,
 844							DMA_FROM_DEVICE);
 845			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 846				adapter->alloc_rx_buff_failed++;
 847				break;
 848			}
 849		}
 850
 851		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 852		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 853
 854		if (unlikely(++i == rx_ring->count))
 855			i = 0;
 856		buffer_info = &rx_ring->buffer_info[i];
 857	}
 858
 859	if (likely(rx_ring->next_to_use != i)) {
 860		rx_ring->next_to_use = i;
 861		if (unlikely(i-- == 0))
 862			i = (rx_ring->count - 1);
 863
 864		/* Force memory writes to complete before letting h/w
 865		 * know there are new descriptors to fetch.  (Only
 866		 * applicable for weak-ordered memory model archs,
 867		 * such as IA-64).
 868		 */
 869		wmb();
 870		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 871			e1000e_update_rdt_wa(rx_ring, i);
 872		else
 873			writel(i, rx_ring->tail);
 874	}
 875}
 876
 877static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 878				 struct sk_buff *skb)
 879{
 880	if (netdev->features & NETIF_F_RXHASH)
 881		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 882}
 883
 884/**
 885 * e1000_clean_rx_irq - Send received data up the network stack
 886 * @rx_ring: Rx descriptor ring
 887 *
 888 * the return value indicates whether actual cleaning was done, there
 889 * is no guarantee that everything was cleaned
 890 **/
 891static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 892			       int work_to_do)
 893{
 894	struct e1000_adapter *adapter = rx_ring->adapter;
 895	struct net_device *netdev = adapter->netdev;
 896	struct pci_dev *pdev = adapter->pdev;
 897	struct e1000_hw *hw = &adapter->hw;
 898	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 899	struct e1000_buffer *buffer_info, *next_buffer;
 900	u32 length, staterr;
 901	unsigned int i;
 902	int cleaned_count = 0;
 903	bool cleaned = false;
 904	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 905
 906	i = rx_ring->next_to_clean;
 907	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 908	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 909	buffer_info = &rx_ring->buffer_info[i];
 910
 911	while (staterr & E1000_RXD_STAT_DD) {
 912		struct sk_buff *skb;
 913
 914		if (*work_done >= work_to_do)
 915			break;
 916		(*work_done)++;
 917		rmb();	/* read descriptor and rx_buffer_info after status DD */
 918
 919		skb = buffer_info->skb;
 920		buffer_info->skb = NULL;
 921
 922		prefetch(skb->data - NET_IP_ALIGN);
 923
 924		i++;
 925		if (i == rx_ring->count)
 926			i = 0;
 927		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 928		prefetch(next_rxd);
 929
 930		next_buffer = &rx_ring->buffer_info[i];
 931
 932		cleaned = true;
 933		cleaned_count++;
 934		dma_unmap_single(&pdev->dev, buffer_info->dma,
 935				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 936		buffer_info->dma = 0;
 937
 938		length = le16_to_cpu(rx_desc->wb.upper.length);
 939
 940		/* !EOP means multiple descriptors were used to store a single
 941		 * packet, if that's the case we need to toss it.  In fact, we
 942		 * need to toss every packet with the EOP bit clear and the
 943		 * next frame that _does_ have the EOP bit set, as it is by
 944		 * definition only a frame fragment
 945		 */
 946		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 947			adapter->flags2 |= FLAG2_IS_DISCARDING;
 948
 949		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 950			/* All receives must fit into a single buffer */
 951			e_dbg("Receive packet consumed multiple buffers\n");
 952			/* recycle */
 953			buffer_info->skb = skb;
 954			if (staterr & E1000_RXD_STAT_EOP)
 955				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 956			goto next_desc;
 957		}
 958
 959		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 960			     !(netdev->features & NETIF_F_RXALL))) {
 961			/* recycle */
 962			buffer_info->skb = skb;
 963			goto next_desc;
 964		}
 965
 966		/* adjust length to remove Ethernet CRC */
 967		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 968			/* If configured to store CRC, don't subtract FCS,
 969			 * but keep the FCS bytes out of the total_rx_bytes
 970			 * counter
 971			 */
 972			if (netdev->features & NETIF_F_RXFCS)
 973				total_rx_bytes -= 4;
 974			else
 975				length -= 4;
 976		}
 977
 978		total_rx_bytes += length;
 979		total_rx_packets++;
 980
 981		/* code added for copybreak, this should improve
 982		 * performance for small packets with large amounts
 983		 * of reassembly being done in the stack
 984		 */
 985		if (length < copybreak) {
 986			struct sk_buff *new_skb =
 987			    netdev_alloc_skb_ip_align(netdev, length);
 988			if (new_skb) {
 989				skb_copy_to_linear_data_offset(new_skb,
 990							       -NET_IP_ALIGN,
 991							       (skb->data -
 992								NET_IP_ALIGN),
 993							       (length +
 994								NET_IP_ALIGN));
 995				/* save the skb in buffer_info as good */
 996				buffer_info->skb = skb;
 997				skb = new_skb;
 998			}
 999			/* else just continue with the old one */
1000		}
1001		/* end copybreak code */
1002		skb_put(skb, length);
1003
1004		/* Receive Checksum Offload */
1005		e1000_rx_checksum(adapter, staterr, skb);
1006
1007		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1008
1009		e1000_receive_skb(adapter, netdev, skb, staterr,
1010				  rx_desc->wb.upper.vlan);
1011
1012next_desc:
1013		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1014
1015		/* return some buffers to hardware, one at a time is too slow */
1016		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1017			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1018					      GFP_ATOMIC);
1019			cleaned_count = 0;
1020		}
1021
1022		/* use prefetched values */
1023		rx_desc = next_rxd;
1024		buffer_info = next_buffer;
1025
1026		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1027	}
1028	rx_ring->next_to_clean = i;
1029
1030	cleaned_count = e1000_desc_unused(rx_ring);
1031	if (cleaned_count)
1032		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1033
1034	adapter->total_rx_bytes += total_rx_bytes;
1035	adapter->total_rx_packets += total_rx_packets;
1036	return cleaned;
1037}
1038
1039static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1040			    struct e1000_buffer *buffer_info)
 
1041{
1042	struct e1000_adapter *adapter = tx_ring->adapter;
1043
1044	if (buffer_info->dma) {
1045		if (buffer_info->mapped_as_page)
1046			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1047				       buffer_info->length, DMA_TO_DEVICE);
1048		else
1049			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1050					 buffer_info->length, DMA_TO_DEVICE);
1051		buffer_info->dma = 0;
1052	}
1053	if (buffer_info->skb) {
1054		dev_kfree_skb_any(buffer_info->skb);
 
 
 
1055		buffer_info->skb = NULL;
1056	}
1057	buffer_info->time_stamp = 0;
1058}
1059
1060static void e1000_print_hw_hang(struct work_struct *work)
1061{
1062	struct e1000_adapter *adapter = container_of(work,
1063						     struct e1000_adapter,
1064						     print_hang_task);
1065	struct net_device *netdev = adapter->netdev;
1066	struct e1000_ring *tx_ring = adapter->tx_ring;
1067	unsigned int i = tx_ring->next_to_clean;
1068	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1069	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1070	struct e1000_hw *hw = &adapter->hw;
1071	u16 phy_status, phy_1000t_status, phy_ext_status;
1072	u16 pci_status;
1073
1074	if (test_bit(__E1000_DOWN, &adapter->state))
1075		return;
1076
1077	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1078		/* May be block on write-back, flush and detect again
1079		 * flush pending descriptor writebacks to memory
1080		 */
1081		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1082		/* execute the writes immediately */
1083		e1e_flush();
1084		/* Due to rare timing issues, write to TIDV again to ensure
1085		 * the write is successful
1086		 */
1087		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1088		/* execute the writes immediately */
1089		e1e_flush();
1090		adapter->tx_hang_recheck = true;
1091		return;
1092	}
1093	adapter->tx_hang_recheck = false;
1094
1095	if (er32(TDH(0)) == er32(TDT(0))) {
1096		e_dbg("false hang detected, ignoring\n");
1097		return;
1098	}
1099
1100	/* Real hang detected */
1101	netif_stop_queue(netdev);
1102
1103	e1e_rphy(hw, MII_BMSR, &phy_status);
1104	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1105	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1106
1107	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1108
1109	/* detected Hardware unit hang */
1110	e_err("Detected Hardware Unit Hang:\n"
1111	      "  TDH                  <%x>\n"
1112	      "  TDT                  <%x>\n"
1113	      "  next_to_use          <%x>\n"
1114	      "  next_to_clean        <%x>\n"
1115	      "buffer_info[next_to_clean]:\n"
1116	      "  time_stamp           <%lx>\n"
1117	      "  next_to_watch        <%x>\n"
1118	      "  jiffies              <%lx>\n"
1119	      "  next_to_watch.status <%x>\n"
1120	      "MAC Status             <%x>\n"
1121	      "PHY Status             <%x>\n"
1122	      "PHY 1000BASE-T Status  <%x>\n"
1123	      "PHY Extended Status    <%x>\n"
1124	      "PCI Status             <%x>\n",
1125	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1126	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1127	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1128	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1129
1130	e1000e_dump(adapter);
1131
1132	/* Suggest workaround for known h/w issue */
1133	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1134		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1135}
1136
1137/**
1138 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1139 * @work: pointer to work struct
1140 *
1141 * This work function polls the TSYNCTXCTL valid bit to determine when a
1142 * timestamp has been taken for the current stored skb.  The timestamp must
1143 * be for this skb because only one such packet is allowed in the queue.
1144 */
1145static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1146{
1147	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1148						     tx_hwtstamp_work);
1149	struct e1000_hw *hw = &adapter->hw;
1150
1151	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
 
1152		struct skb_shared_hwtstamps shhwtstamps;
1153		u64 txstmp;
1154
1155		txstmp = er32(TXSTMPL);
1156		txstmp |= (u64)er32(TXSTMPH) << 32;
1157
1158		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1159
1160		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1161		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
 
1162		adapter->tx_hwtstamp_skb = NULL;
 
 
 
 
1163	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1164			      + adapter->tx_timeout_factor * HZ)) {
1165		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166		adapter->tx_hwtstamp_skb = NULL;
1167		adapter->tx_hwtstamp_timeouts++;
1168		e_warn("clearing Tx timestamp hang\n");
1169	} else {
1170		/* reschedule to check later */
1171		schedule_work(&adapter->tx_hwtstamp_work);
1172	}
1173}
1174
1175/**
1176 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1177 * @tx_ring: Tx descriptor ring
1178 *
1179 * the return value indicates whether actual cleaning was done, there
1180 * is no guarantee that everything was cleaned
1181 **/
1182static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1183{
1184	struct e1000_adapter *adapter = tx_ring->adapter;
1185	struct net_device *netdev = adapter->netdev;
1186	struct e1000_hw *hw = &adapter->hw;
1187	struct e1000_tx_desc *tx_desc, *eop_desc;
1188	struct e1000_buffer *buffer_info;
1189	unsigned int i, eop;
1190	unsigned int count = 0;
1191	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1192	unsigned int bytes_compl = 0, pkts_compl = 0;
1193
1194	i = tx_ring->next_to_clean;
1195	eop = tx_ring->buffer_info[i].next_to_watch;
1196	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1197
1198	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1199	       (count < tx_ring->count)) {
1200		bool cleaned = false;
1201		rmb();		/* read buffer_info after eop_desc */
 
1202		for (; !cleaned; count++) {
1203			tx_desc = E1000_TX_DESC(*tx_ring, i);
1204			buffer_info = &tx_ring->buffer_info[i];
1205			cleaned = (i == eop);
1206
1207			if (cleaned) {
1208				total_tx_packets += buffer_info->segs;
1209				total_tx_bytes += buffer_info->bytecount;
1210				if (buffer_info->skb) {
1211					bytes_compl += buffer_info->skb->len;
1212					pkts_compl++;
1213				}
1214			}
1215
1216			e1000_put_txbuf(tx_ring, buffer_info);
1217			tx_desc->upper.data = 0;
1218
1219			i++;
1220			if (i == tx_ring->count)
1221				i = 0;
1222		}
1223
1224		if (i == tx_ring->next_to_use)
1225			break;
1226		eop = tx_ring->buffer_info[i].next_to_watch;
1227		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228	}
1229
1230	tx_ring->next_to_clean = i;
1231
1232	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1233
1234#define TX_WAKE_THRESHOLD 32
1235	if (count && netif_carrier_ok(netdev) &&
1236	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1237		/* Make sure that anybody stopping the queue after this
1238		 * sees the new next_to_clean.
1239		 */
1240		smp_mb();
1241
1242		if (netif_queue_stopped(netdev) &&
1243		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1244			netif_wake_queue(netdev);
1245			++adapter->restart_queue;
1246		}
1247	}
1248
1249	if (adapter->detect_tx_hung) {
1250		/* Detect a transmit hang in hardware, this serializes the
1251		 * check with the clearing of time_stamp and movement of i
1252		 */
1253		adapter->detect_tx_hung = false;
1254		if (tx_ring->buffer_info[i].time_stamp &&
1255		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1256			       + (adapter->tx_timeout_factor * HZ)) &&
1257		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1258			schedule_work(&adapter->print_hang_task);
1259		else
1260			adapter->tx_hang_recheck = false;
1261	}
1262	adapter->total_tx_bytes += total_tx_bytes;
1263	adapter->total_tx_packets += total_tx_packets;
1264	return count < tx_ring->count;
1265}
1266
1267/**
1268 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1269 * @rx_ring: Rx descriptor ring
1270 *
1271 * the return value indicates whether actual cleaning was done, there
1272 * is no guarantee that everything was cleaned
1273 **/
1274static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1275				  int work_to_do)
1276{
1277	struct e1000_adapter *adapter = rx_ring->adapter;
1278	struct e1000_hw *hw = &adapter->hw;
1279	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1280	struct net_device *netdev = adapter->netdev;
1281	struct pci_dev *pdev = adapter->pdev;
1282	struct e1000_buffer *buffer_info, *next_buffer;
1283	struct e1000_ps_page *ps_page;
1284	struct sk_buff *skb;
1285	unsigned int i, j;
1286	u32 length, staterr;
1287	int cleaned_count = 0;
1288	bool cleaned = false;
1289	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1290
1291	i = rx_ring->next_to_clean;
1292	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1293	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1294	buffer_info = &rx_ring->buffer_info[i];
1295
1296	while (staterr & E1000_RXD_STAT_DD) {
1297		if (*work_done >= work_to_do)
1298			break;
1299		(*work_done)++;
1300		skb = buffer_info->skb;
1301		rmb();	/* read descriptor and rx_buffer_info after status DD */
1302
1303		/* in the packet split case this is header only */
1304		prefetch(skb->data - NET_IP_ALIGN);
1305
1306		i++;
1307		if (i == rx_ring->count)
1308			i = 0;
1309		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1310		prefetch(next_rxd);
1311
1312		next_buffer = &rx_ring->buffer_info[i];
1313
1314		cleaned = true;
1315		cleaned_count++;
1316		dma_unmap_single(&pdev->dev, buffer_info->dma,
1317				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1318		buffer_info->dma = 0;
1319
1320		/* see !EOP comment in other Rx routine */
1321		if (!(staterr & E1000_RXD_STAT_EOP))
1322			adapter->flags2 |= FLAG2_IS_DISCARDING;
1323
1324		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1325			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1326			dev_kfree_skb_irq(skb);
1327			if (staterr & E1000_RXD_STAT_EOP)
1328				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1329			goto next_desc;
1330		}
1331
1332		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1333			     !(netdev->features & NETIF_F_RXALL))) {
1334			dev_kfree_skb_irq(skb);
1335			goto next_desc;
1336		}
1337
1338		length = le16_to_cpu(rx_desc->wb.middle.length0);
1339
1340		if (!length) {
1341			e_dbg("Last part of the packet spanning multiple descriptors\n");
1342			dev_kfree_skb_irq(skb);
1343			goto next_desc;
1344		}
1345
1346		/* Good Receive */
1347		skb_put(skb, length);
1348
1349		{
1350			/* this looks ugly, but it seems compiler issues make
1351			 * it more efficient than reusing j
1352			 */
1353			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1354
1355			/* page alloc/put takes too long and effects small
1356			 * packet throughput, so unsplit small packets and
1357			 * save the alloc/put only valid in softirq (napi)
1358			 * context to call kmap_*
1359			 */
1360			if (l1 && (l1 <= copybreak) &&
1361			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1362				u8 *vaddr;
1363
1364				ps_page = &buffer_info->ps_pages[0];
1365
1366				/* there is no documentation about how to call
1367				 * kmap_atomic, so we can't hold the mapping
1368				 * very long
1369				 */
1370				dma_sync_single_for_cpu(&pdev->dev,
1371							ps_page->dma,
1372							PAGE_SIZE,
1373							DMA_FROM_DEVICE);
1374				vaddr = kmap_atomic(ps_page->page);
1375				memcpy(skb_tail_pointer(skb), vaddr, l1);
1376				kunmap_atomic(vaddr);
1377				dma_sync_single_for_device(&pdev->dev,
1378							   ps_page->dma,
1379							   PAGE_SIZE,
1380							   DMA_FROM_DEVICE);
1381
1382				/* remove the CRC */
1383				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1384					if (!(netdev->features & NETIF_F_RXFCS))
1385						l1 -= 4;
1386				}
1387
1388				skb_put(skb, l1);
1389				goto copydone;
1390			}	/* if */
1391		}
1392
1393		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1394			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1395			if (!length)
1396				break;
1397
1398			ps_page = &buffer_info->ps_pages[j];
1399			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1400				       DMA_FROM_DEVICE);
1401			ps_page->dma = 0;
1402			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1403			ps_page->page = NULL;
1404			skb->len += length;
1405			skb->data_len += length;
1406			skb->truesize += PAGE_SIZE;
1407		}
1408
1409		/* strip the ethernet crc, problem is we're using pages now so
1410		 * this whole operation can get a little cpu intensive
1411		 */
1412		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413			if (!(netdev->features & NETIF_F_RXFCS))
1414				pskb_trim(skb, skb->len - 4);
1415		}
1416
1417copydone:
1418		total_rx_bytes += skb->len;
1419		total_rx_packets++;
1420
1421		e1000_rx_checksum(adapter, staterr, skb);
1422
1423		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1424
1425		if (rx_desc->wb.upper.header_status &
1426		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1427			adapter->rx_hdr_split++;
1428
1429		e1000_receive_skb(adapter, netdev, skb, staterr,
1430				  rx_desc->wb.middle.vlan);
1431
1432next_desc:
1433		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1434		buffer_info->skb = NULL;
1435
1436		/* return some buffers to hardware, one at a time is too slow */
1437		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1438			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1439					      GFP_ATOMIC);
1440			cleaned_count = 0;
1441		}
1442
1443		/* use prefetched values */
1444		rx_desc = next_rxd;
1445		buffer_info = next_buffer;
1446
1447		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1448	}
1449	rx_ring->next_to_clean = i;
1450
1451	cleaned_count = e1000_desc_unused(rx_ring);
1452	if (cleaned_count)
1453		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1454
1455	adapter->total_rx_bytes += total_rx_bytes;
1456	adapter->total_rx_packets += total_rx_packets;
1457	return cleaned;
1458}
1459
1460/**
1461 * e1000_consume_page - helper function
1462 **/
1463static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1464			       u16 length)
1465{
1466	bi->page = NULL;
1467	skb->len += length;
1468	skb->data_len += length;
1469	skb->truesize += PAGE_SIZE;
1470}
1471
1472/**
1473 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1474 * @adapter: board private structure
1475 *
1476 * the return value indicates whether actual cleaning was done, there
1477 * is no guarantee that everything was cleaned
1478 **/
1479static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1480				     int work_to_do)
1481{
1482	struct e1000_adapter *adapter = rx_ring->adapter;
1483	struct net_device *netdev = adapter->netdev;
1484	struct pci_dev *pdev = adapter->pdev;
1485	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1486	struct e1000_buffer *buffer_info, *next_buffer;
1487	u32 length, staterr;
1488	unsigned int i;
1489	int cleaned_count = 0;
1490	bool cleaned = false;
1491	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1492	struct skb_shared_info *shinfo;
1493
1494	i = rx_ring->next_to_clean;
1495	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1496	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1497	buffer_info = &rx_ring->buffer_info[i];
1498
1499	while (staterr & E1000_RXD_STAT_DD) {
1500		struct sk_buff *skb;
1501
1502		if (*work_done >= work_to_do)
1503			break;
1504		(*work_done)++;
1505		rmb();	/* read descriptor and rx_buffer_info after status DD */
1506
1507		skb = buffer_info->skb;
1508		buffer_info->skb = NULL;
1509
1510		++i;
1511		if (i == rx_ring->count)
1512			i = 0;
1513		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1514		prefetch(next_rxd);
1515
1516		next_buffer = &rx_ring->buffer_info[i];
1517
1518		cleaned = true;
1519		cleaned_count++;
1520		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1521			       DMA_FROM_DEVICE);
1522		buffer_info->dma = 0;
1523
1524		length = le16_to_cpu(rx_desc->wb.upper.length);
1525
1526		/* errors is only valid for DD + EOP descriptors */
1527		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1528			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1529			      !(netdev->features & NETIF_F_RXALL)))) {
1530			/* recycle both page and skb */
1531			buffer_info->skb = skb;
1532			/* an error means any chain goes out the window too */
1533			if (rx_ring->rx_skb_top)
1534				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1535			rx_ring->rx_skb_top = NULL;
1536			goto next_desc;
1537		}
1538#define rxtop (rx_ring->rx_skb_top)
1539		if (!(staterr & E1000_RXD_STAT_EOP)) {
1540			/* this descriptor is only the beginning (or middle) */
1541			if (!rxtop) {
1542				/* this is the beginning of a chain */
1543				rxtop = skb;
1544				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1545						   0, length);
1546			} else {
1547				/* this is the middle of a chain */
1548				shinfo = skb_shinfo(rxtop);
1549				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1550						   buffer_info->page, 0,
1551						   length);
1552				/* re-use the skb, only consumed the page */
1553				buffer_info->skb = skb;
1554			}
1555			e1000_consume_page(buffer_info, rxtop, length);
1556			goto next_desc;
1557		} else {
1558			if (rxtop) {
1559				/* end of the chain */
1560				shinfo = skb_shinfo(rxtop);
1561				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1562						   buffer_info->page, 0,
1563						   length);
1564				/* re-use the current skb, we only consumed the
1565				 * page
1566				 */
1567				buffer_info->skb = skb;
1568				skb = rxtop;
1569				rxtop = NULL;
1570				e1000_consume_page(buffer_info, skb, length);
1571			} else {
1572				/* no chain, got EOP, this buf is the packet
1573				 * copybreak to save the put_page/alloc_page
1574				 */
1575				if (length <= copybreak &&
1576				    skb_tailroom(skb) >= length) {
1577					u8 *vaddr;
1578					vaddr = kmap_atomic(buffer_info->page);
1579					memcpy(skb_tail_pointer(skb), vaddr,
1580					       length);
1581					kunmap_atomic(vaddr);
1582					/* re-use the page, so don't erase
1583					 * buffer_info->page
1584					 */
1585					skb_put(skb, length);
1586				} else {
1587					skb_fill_page_desc(skb, 0,
1588							   buffer_info->page, 0,
1589							   length);
1590					e1000_consume_page(buffer_info, skb,
1591							   length);
1592				}
1593			}
1594		}
1595
1596		/* Receive Checksum Offload */
1597		e1000_rx_checksum(adapter, staterr, skb);
1598
1599		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1600
1601		/* probably a little skewed due to removing CRC */
1602		total_rx_bytes += skb->len;
1603		total_rx_packets++;
1604
1605		/* eth type trans needs skb->data to point to something */
1606		if (!pskb_may_pull(skb, ETH_HLEN)) {
1607			e_err("pskb_may_pull failed.\n");
1608			dev_kfree_skb_irq(skb);
1609			goto next_desc;
1610		}
1611
1612		e1000_receive_skb(adapter, netdev, skb, staterr,
1613				  rx_desc->wb.upper.vlan);
1614
1615next_desc:
1616		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1617
1618		/* return some buffers to hardware, one at a time is too slow */
1619		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1620			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1621					      GFP_ATOMIC);
1622			cleaned_count = 0;
1623		}
1624
1625		/* use prefetched values */
1626		rx_desc = next_rxd;
1627		buffer_info = next_buffer;
1628
1629		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1630	}
1631	rx_ring->next_to_clean = i;
1632
1633	cleaned_count = e1000_desc_unused(rx_ring);
1634	if (cleaned_count)
1635		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1636
1637	adapter->total_rx_bytes += total_rx_bytes;
1638	adapter->total_rx_packets += total_rx_packets;
1639	return cleaned;
1640}
1641
1642/**
1643 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1644 * @rx_ring: Rx descriptor ring
1645 **/
1646static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1647{
1648	struct e1000_adapter *adapter = rx_ring->adapter;
1649	struct e1000_buffer *buffer_info;
1650	struct e1000_ps_page *ps_page;
1651	struct pci_dev *pdev = adapter->pdev;
1652	unsigned int i, j;
1653
1654	/* Free all the Rx ring sk_buffs */
1655	for (i = 0; i < rx_ring->count; i++) {
1656		buffer_info = &rx_ring->buffer_info[i];
1657		if (buffer_info->dma) {
1658			if (adapter->clean_rx == e1000_clean_rx_irq)
1659				dma_unmap_single(&pdev->dev, buffer_info->dma,
1660						 adapter->rx_buffer_len,
1661						 DMA_FROM_DEVICE);
1662			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1663				dma_unmap_page(&pdev->dev, buffer_info->dma,
1664					       PAGE_SIZE, DMA_FROM_DEVICE);
1665			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1666				dma_unmap_single(&pdev->dev, buffer_info->dma,
1667						 adapter->rx_ps_bsize0,
1668						 DMA_FROM_DEVICE);
1669			buffer_info->dma = 0;
1670		}
1671
1672		if (buffer_info->page) {
1673			put_page(buffer_info->page);
1674			buffer_info->page = NULL;
1675		}
1676
1677		if (buffer_info->skb) {
1678			dev_kfree_skb(buffer_info->skb);
1679			buffer_info->skb = NULL;
1680		}
1681
1682		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1683			ps_page = &buffer_info->ps_pages[j];
1684			if (!ps_page->page)
1685				break;
1686			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1687				       DMA_FROM_DEVICE);
1688			ps_page->dma = 0;
1689			put_page(ps_page->page);
1690			ps_page->page = NULL;
1691		}
1692	}
1693
1694	/* there also may be some cached data from a chained receive */
1695	if (rx_ring->rx_skb_top) {
1696		dev_kfree_skb(rx_ring->rx_skb_top);
1697		rx_ring->rx_skb_top = NULL;
1698	}
1699
1700	/* Zero out the descriptor ring */
1701	memset(rx_ring->desc, 0, rx_ring->size);
1702
1703	rx_ring->next_to_clean = 0;
1704	rx_ring->next_to_use = 0;
1705	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1706
1707	writel(0, rx_ring->head);
1708	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1709		e1000e_update_rdt_wa(rx_ring, 0);
1710	else
1711		writel(0, rx_ring->tail);
1712}
1713
1714static void e1000e_downshift_workaround(struct work_struct *work)
1715{
1716	struct e1000_adapter *adapter = container_of(work,
1717						     struct e1000_adapter,
1718						     downshift_task);
1719
1720	if (test_bit(__E1000_DOWN, &adapter->state))
1721		return;
1722
1723	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1724}
1725
1726/**
1727 * e1000_intr_msi - Interrupt Handler
1728 * @irq: interrupt number
1729 * @data: pointer to a network interface device structure
1730 **/
1731static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1732{
1733	struct net_device *netdev = data;
1734	struct e1000_adapter *adapter = netdev_priv(netdev);
1735	struct e1000_hw *hw = &adapter->hw;
1736	u32 icr = er32(ICR);
1737
1738	/* read ICR disables interrupts using IAM */
1739	if (icr & E1000_ICR_LSC) {
1740		hw->mac.get_link_status = true;
1741		/* ICH8 workaround-- Call gig speed drop workaround on cable
1742		 * disconnect (LSC) before accessing any PHY registers
1743		 */
1744		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1745		    (!(er32(STATUS) & E1000_STATUS_LU)))
1746			schedule_work(&adapter->downshift_task);
1747
1748		/* 80003ES2LAN workaround-- For packet buffer work-around on
1749		 * link down event; disable receives here in the ISR and reset
1750		 * adapter in watchdog
1751		 */
1752		if (netif_carrier_ok(netdev) &&
1753		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1754			/* disable receives */
1755			u32 rctl = er32(RCTL);
 
1756			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1757			adapter->flags |= FLAG_RESTART_NOW;
1758		}
1759		/* guard against interrupt when we're going down */
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1762	}
1763
1764	/* Reset on uncorrectable ECC error */
1765	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1766		u32 pbeccsts = er32(PBECCSTS);
1767
1768		adapter->corr_errors +=
1769		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1770		adapter->uncorr_errors +=
1771		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1772		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1773
1774		/* Do the reset outside of interrupt context */
1775		schedule_work(&adapter->reset_task);
1776
1777		/* return immediately since reset is imminent */
1778		return IRQ_HANDLED;
1779	}
1780
1781	if (napi_schedule_prep(&adapter->napi)) {
1782		adapter->total_tx_bytes = 0;
1783		adapter->total_tx_packets = 0;
1784		adapter->total_rx_bytes = 0;
1785		adapter->total_rx_packets = 0;
1786		__napi_schedule(&adapter->napi);
1787	}
1788
1789	return IRQ_HANDLED;
1790}
1791
1792/**
1793 * e1000_intr - Interrupt Handler
1794 * @irq: interrupt number
1795 * @data: pointer to a network interface device structure
1796 **/
1797static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1798{
1799	struct net_device *netdev = data;
1800	struct e1000_adapter *adapter = netdev_priv(netdev);
1801	struct e1000_hw *hw = &adapter->hw;
1802	u32 rctl, icr = er32(ICR);
1803
1804	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1805		return IRQ_NONE;	/* Not our interrupt */
1806
1807	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1808	 * not set, then the adapter didn't send an interrupt
1809	 */
1810	if (!(icr & E1000_ICR_INT_ASSERTED))
1811		return IRQ_NONE;
1812
1813	/* Interrupt Auto-Mask...upon reading ICR,
1814	 * interrupts are masked.  No need for the
1815	 * IMC write
1816	 */
1817
1818	if (icr & E1000_ICR_LSC) {
1819		hw->mac.get_link_status = true;
1820		/* ICH8 workaround-- Call gig speed drop workaround on cable
1821		 * disconnect (LSC) before accessing any PHY registers
1822		 */
1823		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1824		    (!(er32(STATUS) & E1000_STATUS_LU)))
1825			schedule_work(&adapter->downshift_task);
1826
1827		/* 80003ES2LAN workaround--
1828		 * For packet buffer work-around on link down event;
1829		 * disable receives here in the ISR and
1830		 * reset adapter in watchdog
1831		 */
1832		if (netif_carrier_ok(netdev) &&
1833		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1834			/* disable receives */
1835			rctl = er32(RCTL);
1836			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1837			adapter->flags |= FLAG_RESTART_NOW;
1838		}
1839		/* guard against interrupt when we're going down */
1840		if (!test_bit(__E1000_DOWN, &adapter->state))
1841			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1842	}
1843
1844	/* Reset on uncorrectable ECC error */
1845	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1846		u32 pbeccsts = er32(PBECCSTS);
1847
1848		adapter->corr_errors +=
1849		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1850		adapter->uncorr_errors +=
1851		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1852		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1853
1854		/* Do the reset outside of interrupt context */
1855		schedule_work(&adapter->reset_task);
1856
1857		/* return immediately since reset is imminent */
1858		return IRQ_HANDLED;
1859	}
1860
1861	if (napi_schedule_prep(&adapter->napi)) {
1862		adapter->total_tx_bytes = 0;
1863		adapter->total_tx_packets = 0;
1864		adapter->total_rx_bytes = 0;
1865		adapter->total_rx_packets = 0;
1866		__napi_schedule(&adapter->napi);
1867	}
1868
1869	return IRQ_HANDLED;
1870}
1871
1872static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1873{
1874	struct net_device *netdev = data;
1875	struct e1000_adapter *adapter = netdev_priv(netdev);
1876	struct e1000_hw *hw = &adapter->hw;
1877	u32 icr = er32(ICR);
1878
1879	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1880		if (!test_bit(__E1000_DOWN, &adapter->state))
1881			ew32(IMS, E1000_IMS_OTHER);
1882		return IRQ_NONE;
1883	}
1884
1885	if (icr & adapter->eiac_mask)
1886		ew32(ICS, (icr & adapter->eiac_mask));
1887
1888	if (icr & E1000_ICR_OTHER) {
1889		if (!(icr & E1000_ICR_LSC))
1890			goto no_link_interrupt;
1891		hw->mac.get_link_status = true;
1892		/* guard against interrupt when we're going down */
1893		if (!test_bit(__E1000_DOWN, &adapter->state))
1894			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1895	}
1896
1897no_link_interrupt:
1898	if (!test_bit(__E1000_DOWN, &adapter->state))
1899		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1900
1901	return IRQ_HANDLED;
1902}
1903
1904static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1905{
1906	struct net_device *netdev = data;
1907	struct e1000_adapter *adapter = netdev_priv(netdev);
1908	struct e1000_hw *hw = &adapter->hw;
1909	struct e1000_ring *tx_ring = adapter->tx_ring;
1910
1911	adapter->total_tx_bytes = 0;
1912	adapter->total_tx_packets = 0;
1913
1914	if (!e1000_clean_tx_irq(tx_ring))
1915		/* Ring was not completely cleaned, so fire another interrupt */
1916		ew32(ICS, tx_ring->ims_val);
1917
 
 
 
1918	return IRQ_HANDLED;
1919}
1920
1921static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1922{
1923	struct net_device *netdev = data;
1924	struct e1000_adapter *adapter = netdev_priv(netdev);
1925	struct e1000_ring *rx_ring = adapter->rx_ring;
1926
1927	/* Write the ITR value calculated at the end of the
1928	 * previous interrupt.
1929	 */
1930	if (rx_ring->set_itr) {
1931		writel(1000000000 / (rx_ring->itr_val * 256),
1932		       rx_ring->itr_register);
 
 
1933		rx_ring->set_itr = 0;
1934	}
1935
1936	if (napi_schedule_prep(&adapter->napi)) {
1937		adapter->total_rx_bytes = 0;
1938		adapter->total_rx_packets = 0;
1939		__napi_schedule(&adapter->napi);
1940	}
1941	return IRQ_HANDLED;
1942}
1943
1944/**
1945 * e1000_configure_msix - Configure MSI-X hardware
1946 *
1947 * e1000_configure_msix sets up the hardware to properly
1948 * generate MSI-X interrupts.
1949 **/
1950static void e1000_configure_msix(struct e1000_adapter *adapter)
1951{
1952	struct e1000_hw *hw = &adapter->hw;
1953	struct e1000_ring *rx_ring = adapter->rx_ring;
1954	struct e1000_ring *tx_ring = adapter->tx_ring;
1955	int vector = 0;
1956	u32 ctrl_ext, ivar = 0;
1957
1958	adapter->eiac_mask = 0;
1959
1960	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1961	if (hw->mac.type == e1000_82574) {
1962		u32 rfctl = er32(RFCTL);
 
1963		rfctl |= E1000_RFCTL_ACK_DIS;
1964		ew32(RFCTL, rfctl);
1965	}
1966
1967	/* Configure Rx vector */
1968	rx_ring->ims_val = E1000_IMS_RXQ0;
1969	adapter->eiac_mask |= rx_ring->ims_val;
1970	if (rx_ring->itr_val)
1971		writel(1000000000 / (rx_ring->itr_val * 256),
1972		       rx_ring->itr_register);
1973	else
1974		writel(1, rx_ring->itr_register);
1975	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1976
1977	/* Configure Tx vector */
1978	tx_ring->ims_val = E1000_IMS_TXQ0;
1979	vector++;
1980	if (tx_ring->itr_val)
1981		writel(1000000000 / (tx_ring->itr_val * 256),
1982		       tx_ring->itr_register);
1983	else
1984		writel(1, tx_ring->itr_register);
1985	adapter->eiac_mask |= tx_ring->ims_val;
1986	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1987
1988	/* set vector for Other Causes, e.g. link changes */
1989	vector++;
1990	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1991	if (rx_ring->itr_val)
1992		writel(1000000000 / (rx_ring->itr_val * 256),
1993		       hw->hw_addr + E1000_EITR_82574(vector));
1994	else
1995		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1996
1997	/* Cause Tx interrupts on every write back */
1998	ivar |= (1 << 31);
1999
2000	ew32(IVAR, ivar);
2001
2002	/* enable MSI-X PBA support */
2003	ctrl_ext = er32(CTRL_EXT);
2004	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2005
2006	/* Auto-Mask Other interrupts upon ICR read */
2007	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2008	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2009	ew32(CTRL_EXT, ctrl_ext);
2010	e1e_flush();
2011}
2012
2013void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2014{
2015	if (adapter->msix_entries) {
2016		pci_disable_msix(adapter->pdev);
2017		kfree(adapter->msix_entries);
2018		adapter->msix_entries = NULL;
2019	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2020		pci_disable_msi(adapter->pdev);
2021		adapter->flags &= ~FLAG_MSI_ENABLED;
2022	}
2023}
2024
2025/**
2026 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2027 *
2028 * Attempt to configure interrupts using the best available
2029 * capabilities of the hardware and kernel.
2030 **/
2031void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2032{
2033	int err;
2034	int i;
2035
2036	switch (adapter->int_mode) {
2037	case E1000E_INT_MODE_MSIX:
2038		if (adapter->flags & FLAG_HAS_MSIX) {
2039			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2040			adapter->msix_entries = kcalloc(adapter->num_vectors,
2041							sizeof(struct
2042							       msix_entry),
2043							GFP_KERNEL);
2044			if (adapter->msix_entries) {
2045				struct e1000_adapter *a = adapter;
2046
2047				for (i = 0; i < adapter->num_vectors; i++)
2048					adapter->msix_entries[i].entry = i;
2049
2050				err = pci_enable_msix_range(a->pdev,
2051							    a->msix_entries,
2052							    a->num_vectors,
2053							    a->num_vectors);
2054				if (err > 0)
2055					return;
2056			}
2057			/* MSI-X failed, so fall through and try MSI */
2058			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2059			e1000e_reset_interrupt_capability(adapter);
2060		}
2061		adapter->int_mode = E1000E_INT_MODE_MSI;
2062		/* Fall through */
2063	case E1000E_INT_MODE_MSI:
2064		if (!pci_enable_msi(adapter->pdev)) {
2065			adapter->flags |= FLAG_MSI_ENABLED;
2066		} else {
2067			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2068			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2069		}
2070		/* Fall through */
2071	case E1000E_INT_MODE_LEGACY:
2072		/* Don't do anything; this is the system default */
2073		break;
2074	}
2075
2076	/* store the number of vectors being used */
2077	adapter->num_vectors = 1;
2078}
2079
2080/**
2081 * e1000_request_msix - Initialize MSI-X interrupts
2082 *
2083 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2084 * kernel.
2085 **/
2086static int e1000_request_msix(struct e1000_adapter *adapter)
2087{
2088	struct net_device *netdev = adapter->netdev;
2089	int err = 0, vector = 0;
2090
2091	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2092		snprintf(adapter->rx_ring->name,
2093			 sizeof(adapter->rx_ring->name) - 1,
2094			 "%s-rx-0", netdev->name);
2095	else
2096		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2097	err = request_irq(adapter->msix_entries[vector].vector,
2098			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2099			  netdev);
2100	if (err)
2101		return err;
2102	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2103	    E1000_EITR_82574(vector);
2104	adapter->rx_ring->itr_val = adapter->itr;
2105	vector++;
2106
2107	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2108		snprintf(adapter->tx_ring->name,
2109			 sizeof(adapter->tx_ring->name) - 1,
2110			 "%s-tx-0", netdev->name);
2111	else
2112		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2113	err = request_irq(adapter->msix_entries[vector].vector,
2114			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2115			  netdev);
2116	if (err)
2117		return err;
2118	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2119	    E1000_EITR_82574(vector);
2120	adapter->tx_ring->itr_val = adapter->itr;
2121	vector++;
2122
2123	err = request_irq(adapter->msix_entries[vector].vector,
2124			  e1000_msix_other, 0, netdev->name, netdev);
2125	if (err)
2126		return err;
2127
2128	e1000_configure_msix(adapter);
2129
2130	return 0;
2131}
2132
2133/**
2134 * e1000_request_irq - initialize interrupts
2135 *
2136 * Attempts to configure interrupts using the best available
2137 * capabilities of the hardware and kernel.
2138 **/
2139static int e1000_request_irq(struct e1000_adapter *adapter)
2140{
2141	struct net_device *netdev = adapter->netdev;
2142	int err;
2143
2144	if (adapter->msix_entries) {
2145		err = e1000_request_msix(adapter);
2146		if (!err)
2147			return err;
2148		/* fall back to MSI */
2149		e1000e_reset_interrupt_capability(adapter);
2150		adapter->int_mode = E1000E_INT_MODE_MSI;
2151		e1000e_set_interrupt_capability(adapter);
2152	}
2153	if (adapter->flags & FLAG_MSI_ENABLED) {
2154		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2155				  netdev->name, netdev);
2156		if (!err)
2157			return err;
2158
2159		/* fall back to legacy interrupt */
2160		e1000e_reset_interrupt_capability(adapter);
2161		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2162	}
2163
2164	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2165			  netdev->name, netdev);
2166	if (err)
2167		e_err("Unable to allocate interrupt, Error: %d\n", err);
2168
2169	return err;
2170}
2171
2172static void e1000_free_irq(struct e1000_adapter *adapter)
2173{
2174	struct net_device *netdev = adapter->netdev;
2175
2176	if (adapter->msix_entries) {
2177		int vector = 0;
2178
2179		free_irq(adapter->msix_entries[vector].vector, netdev);
2180		vector++;
2181
2182		free_irq(adapter->msix_entries[vector].vector, netdev);
2183		vector++;
2184
2185		/* Other Causes interrupt vector */
2186		free_irq(adapter->msix_entries[vector].vector, netdev);
2187		return;
2188	}
2189
2190	free_irq(adapter->pdev->irq, netdev);
2191}
2192
2193/**
2194 * e1000_irq_disable - Mask off interrupt generation on the NIC
2195 **/
2196static void e1000_irq_disable(struct e1000_adapter *adapter)
2197{
2198	struct e1000_hw *hw = &adapter->hw;
2199
2200	ew32(IMC, ~0);
2201	if (adapter->msix_entries)
2202		ew32(EIAC_82574, 0);
2203	e1e_flush();
2204
2205	if (adapter->msix_entries) {
2206		int i;
 
2207		for (i = 0; i < adapter->num_vectors; i++)
2208			synchronize_irq(adapter->msix_entries[i].vector);
2209	} else {
2210		synchronize_irq(adapter->pdev->irq);
2211	}
2212}
2213
2214/**
2215 * e1000_irq_enable - Enable default interrupt generation settings
2216 **/
2217static void e1000_irq_enable(struct e1000_adapter *adapter)
2218{
2219	struct e1000_hw *hw = &adapter->hw;
2220
2221	if (adapter->msix_entries) {
2222		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2223		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2224	} else if (hw->mac.type == e1000_pch_lpt) {
 
2225		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2226	} else {
2227		ew32(IMS, IMS_ENABLE_MASK);
2228	}
2229	e1e_flush();
2230}
2231
2232/**
2233 * e1000e_get_hw_control - get control of the h/w from f/w
2234 * @adapter: address of board private structure
2235 *
2236 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2237 * For ASF and Pass Through versions of f/w this means that
2238 * the driver is loaded. For AMT version (only with 82573)
2239 * of the f/w this means that the network i/f is open.
2240 **/
2241void e1000e_get_hw_control(struct e1000_adapter *adapter)
2242{
2243	struct e1000_hw *hw = &adapter->hw;
2244	u32 ctrl_ext;
2245	u32 swsm;
2246
2247	/* Let firmware know the driver has taken over */
2248	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2249		swsm = er32(SWSM);
2250		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2251	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2252		ctrl_ext = er32(CTRL_EXT);
2253		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2254	}
2255}
2256
2257/**
2258 * e1000e_release_hw_control - release control of the h/w to f/w
2259 * @adapter: address of board private structure
2260 *
2261 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2262 * For ASF and Pass Through versions of f/w this means that the
2263 * driver is no longer loaded. For AMT version (only with 82573) i
2264 * of the f/w this means that the network i/f is closed.
2265 *
2266 **/
2267void e1000e_release_hw_control(struct e1000_adapter *adapter)
2268{
2269	struct e1000_hw *hw = &adapter->hw;
2270	u32 ctrl_ext;
2271	u32 swsm;
2272
2273	/* Let firmware taken over control of h/w */
2274	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2275		swsm = er32(SWSM);
2276		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2277	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2278		ctrl_ext = er32(CTRL_EXT);
2279		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2280	}
2281}
2282
2283/**
2284 * e1000_alloc_ring_dma - allocate memory for a ring structure
2285 **/
2286static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2287				struct e1000_ring *ring)
2288{
2289	struct pci_dev *pdev = adapter->pdev;
2290
2291	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2292					GFP_KERNEL);
2293	if (!ring->desc)
2294		return -ENOMEM;
2295
2296	return 0;
2297}
2298
2299/**
2300 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2301 * @tx_ring: Tx descriptor ring
2302 *
2303 * Return 0 on success, negative on failure
2304 **/
2305int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2306{
2307	struct e1000_adapter *adapter = tx_ring->adapter;
2308	int err = -ENOMEM, size;
2309
2310	size = sizeof(struct e1000_buffer) * tx_ring->count;
2311	tx_ring->buffer_info = vzalloc(size);
2312	if (!tx_ring->buffer_info)
2313		goto err;
2314
2315	/* round up to nearest 4K */
2316	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2317	tx_ring->size = ALIGN(tx_ring->size, 4096);
2318
2319	err = e1000_alloc_ring_dma(adapter, tx_ring);
2320	if (err)
2321		goto err;
2322
2323	tx_ring->next_to_use = 0;
2324	tx_ring->next_to_clean = 0;
2325
2326	return 0;
2327err:
2328	vfree(tx_ring->buffer_info);
2329	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2330	return err;
2331}
2332
2333/**
2334 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2335 * @rx_ring: Rx descriptor ring
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2340{
2341	struct e1000_adapter *adapter = rx_ring->adapter;
2342	struct e1000_buffer *buffer_info;
2343	int i, size, desc_len, err = -ENOMEM;
2344
2345	size = sizeof(struct e1000_buffer) * rx_ring->count;
2346	rx_ring->buffer_info = vzalloc(size);
2347	if (!rx_ring->buffer_info)
2348		goto err;
2349
2350	for (i = 0; i < rx_ring->count; i++) {
2351		buffer_info = &rx_ring->buffer_info[i];
2352		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2353						sizeof(struct e1000_ps_page),
2354						GFP_KERNEL);
2355		if (!buffer_info->ps_pages)
2356			goto err_pages;
2357	}
2358
2359	desc_len = sizeof(union e1000_rx_desc_packet_split);
2360
2361	/* Round up to nearest 4K */
2362	rx_ring->size = rx_ring->count * desc_len;
2363	rx_ring->size = ALIGN(rx_ring->size, 4096);
2364
2365	err = e1000_alloc_ring_dma(adapter, rx_ring);
2366	if (err)
2367		goto err_pages;
2368
2369	rx_ring->next_to_clean = 0;
2370	rx_ring->next_to_use = 0;
2371	rx_ring->rx_skb_top = NULL;
2372
2373	return 0;
2374
2375err_pages:
2376	for (i = 0; i < rx_ring->count; i++) {
2377		buffer_info = &rx_ring->buffer_info[i];
2378		kfree(buffer_info->ps_pages);
2379	}
2380err:
2381	vfree(rx_ring->buffer_info);
2382	e_err("Unable to allocate memory for the receive descriptor ring\n");
2383	return err;
2384}
2385
2386/**
2387 * e1000_clean_tx_ring - Free Tx Buffers
2388 * @tx_ring: Tx descriptor ring
2389 **/
2390static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2391{
2392	struct e1000_adapter *adapter = tx_ring->adapter;
2393	struct e1000_buffer *buffer_info;
2394	unsigned long size;
2395	unsigned int i;
2396
2397	for (i = 0; i < tx_ring->count; i++) {
2398		buffer_info = &tx_ring->buffer_info[i];
2399		e1000_put_txbuf(tx_ring, buffer_info);
2400	}
2401
2402	netdev_reset_queue(adapter->netdev);
2403	size = sizeof(struct e1000_buffer) * tx_ring->count;
2404	memset(tx_ring->buffer_info, 0, size);
2405
2406	memset(tx_ring->desc, 0, tx_ring->size);
2407
2408	tx_ring->next_to_use = 0;
2409	tx_ring->next_to_clean = 0;
2410
2411	writel(0, tx_ring->head);
2412	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2413		e1000e_update_tdt_wa(tx_ring, 0);
2414	else
2415		writel(0, tx_ring->tail);
2416}
2417
2418/**
2419 * e1000e_free_tx_resources - Free Tx Resources per Queue
2420 * @tx_ring: Tx descriptor ring
2421 *
2422 * Free all transmit software resources
2423 **/
2424void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2425{
2426	struct e1000_adapter *adapter = tx_ring->adapter;
2427	struct pci_dev *pdev = adapter->pdev;
2428
2429	e1000_clean_tx_ring(tx_ring);
2430
2431	vfree(tx_ring->buffer_info);
2432	tx_ring->buffer_info = NULL;
2433
2434	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2435			  tx_ring->dma);
2436	tx_ring->desc = NULL;
2437}
2438
2439/**
2440 * e1000e_free_rx_resources - Free Rx Resources
2441 * @rx_ring: Rx descriptor ring
2442 *
2443 * Free all receive software resources
2444 **/
2445void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2446{
2447	struct e1000_adapter *adapter = rx_ring->adapter;
2448	struct pci_dev *pdev = adapter->pdev;
2449	int i;
2450
2451	e1000_clean_rx_ring(rx_ring);
2452
2453	for (i = 0; i < rx_ring->count; i++)
2454		kfree(rx_ring->buffer_info[i].ps_pages);
2455
2456	vfree(rx_ring->buffer_info);
2457	rx_ring->buffer_info = NULL;
2458
2459	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2460			  rx_ring->dma);
2461	rx_ring->desc = NULL;
2462}
2463
2464/**
2465 * e1000_update_itr - update the dynamic ITR value based on statistics
2466 * @adapter: pointer to adapter
2467 * @itr_setting: current adapter->itr
2468 * @packets: the number of packets during this measurement interval
2469 * @bytes: the number of bytes during this measurement interval
2470 *
2471 *      Stores a new ITR value based on packets and byte
2472 *      counts during the last interrupt.  The advantage of per interrupt
2473 *      computation is faster updates and more accurate ITR for the current
2474 *      traffic pattern.  Constants in this function were computed
2475 *      based on theoretical maximum wire speed and thresholds were set based
2476 *      on testing data as well as attempting to minimize response time
2477 *      while increasing bulk throughput.  This functionality is controlled
2478 *      by the InterruptThrottleRate module parameter.
2479 **/
2480static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2481{
2482	unsigned int retval = itr_setting;
2483
2484	if (packets == 0)
2485		return itr_setting;
2486
2487	switch (itr_setting) {
2488	case lowest_latency:
2489		/* handle TSO and jumbo frames */
2490		if (bytes / packets > 8000)
2491			retval = bulk_latency;
2492		else if ((packets < 5) && (bytes > 512))
2493			retval = low_latency;
2494		break;
2495	case low_latency:	/* 50 usec aka 20000 ints/s */
2496		if (bytes > 10000) {
2497			/* this if handles the TSO accounting */
2498			if (bytes / packets > 8000)
2499				retval = bulk_latency;
2500			else if ((packets < 10) || ((bytes / packets) > 1200))
2501				retval = bulk_latency;
2502			else if ((packets > 35))
2503				retval = lowest_latency;
2504		} else if (bytes / packets > 2000) {
2505			retval = bulk_latency;
2506		} else if (packets <= 2 && bytes < 512) {
2507			retval = lowest_latency;
2508		}
2509		break;
2510	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2511		if (bytes > 25000) {
2512			if (packets > 35)
2513				retval = low_latency;
2514		} else if (bytes < 6000) {
2515			retval = low_latency;
2516		}
2517		break;
2518	}
2519
2520	return retval;
2521}
2522
2523static void e1000_set_itr(struct e1000_adapter *adapter)
2524{
2525	u16 current_itr;
2526	u32 new_itr = adapter->itr;
2527
2528	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2529	if (adapter->link_speed != SPEED_1000) {
2530		current_itr = 0;
2531		new_itr = 4000;
2532		goto set_itr_now;
2533	}
2534
2535	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2536		new_itr = 0;
2537		goto set_itr_now;
2538	}
2539
2540	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2541					   adapter->total_tx_packets,
2542					   adapter->total_tx_bytes);
2543	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2544	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2545		adapter->tx_itr = low_latency;
2546
2547	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2548					   adapter->total_rx_packets,
2549					   adapter->total_rx_bytes);
2550	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2551	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2552		adapter->rx_itr = low_latency;
2553
2554	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2555
2556	/* counts and packets in update_itr are dependent on these numbers */
2557	switch (current_itr) {
2558	case lowest_latency:
2559		new_itr = 70000;
2560		break;
2561	case low_latency:
2562		new_itr = 20000;	/* aka hwitr = ~200 */
2563		break;
2564	case bulk_latency:
2565		new_itr = 4000;
2566		break;
2567	default:
2568		break;
2569	}
2570
2571set_itr_now:
2572	if (new_itr != adapter->itr) {
2573		/* this attempts to bias the interrupt rate towards Bulk
2574		 * by adding intermediate steps when interrupt rate is
2575		 * increasing
2576		 */
2577		new_itr = new_itr > adapter->itr ?
2578		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2579		adapter->itr = new_itr;
2580		adapter->rx_ring->itr_val = new_itr;
2581		if (adapter->msix_entries)
2582			adapter->rx_ring->set_itr = 1;
2583		else
2584			e1000e_write_itr(adapter, new_itr);
2585	}
2586}
2587
2588/**
2589 * e1000e_write_itr - write the ITR value to the appropriate registers
2590 * @adapter: address of board private structure
2591 * @itr: new ITR value to program
2592 *
2593 * e1000e_write_itr determines if the adapter is in MSI-X mode
2594 * and, if so, writes the EITR registers with the ITR value.
2595 * Otherwise, it writes the ITR value into the ITR register.
2596 **/
2597void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2598{
2599	struct e1000_hw *hw = &adapter->hw;
2600	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2601
2602	if (adapter->msix_entries) {
2603		int vector;
2604
2605		for (vector = 0; vector < adapter->num_vectors; vector++)
2606			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2607	} else {
2608		ew32(ITR, new_itr);
2609	}
2610}
2611
2612/**
2613 * e1000_alloc_queues - Allocate memory for all rings
2614 * @adapter: board private structure to initialize
2615 **/
2616static int e1000_alloc_queues(struct e1000_adapter *adapter)
2617{
2618	int size = sizeof(struct e1000_ring);
2619
2620	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2621	if (!adapter->tx_ring)
2622		goto err;
2623	adapter->tx_ring->count = adapter->tx_ring_count;
2624	adapter->tx_ring->adapter = adapter;
2625
2626	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2627	if (!adapter->rx_ring)
2628		goto err;
2629	adapter->rx_ring->count = adapter->rx_ring_count;
2630	adapter->rx_ring->adapter = adapter;
2631
2632	return 0;
2633err:
2634	e_err("Unable to allocate memory for queues\n");
2635	kfree(adapter->rx_ring);
2636	kfree(adapter->tx_ring);
2637	return -ENOMEM;
2638}
2639
2640/**
2641 * e1000e_poll - NAPI Rx polling callback
2642 * @napi: struct associated with this polling callback
2643 * @weight: number of packets driver is allowed to process this poll
2644 **/
2645static int e1000e_poll(struct napi_struct *napi, int weight)
2646{
2647	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2648						     napi);
2649	struct e1000_hw *hw = &adapter->hw;
2650	struct net_device *poll_dev = adapter->netdev;
2651	int tx_cleaned = 1, work_done = 0;
2652
2653	adapter = netdev_priv(poll_dev);
2654
2655	if (!adapter->msix_entries ||
2656	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2657		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2658
2659	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2660
2661	if (!tx_cleaned)
2662		work_done = weight;
2663
2664	/* If weight not fully consumed, exit the polling mode */
2665	if (work_done < weight) {
2666		if (adapter->itr_setting & 3)
2667			e1000_set_itr(adapter);
2668		napi_complete(napi);
2669		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2670			if (adapter->msix_entries)
2671				ew32(IMS, adapter->rx_ring->ims_val);
2672			else
2673				e1000_irq_enable(adapter);
2674		}
2675	}
2676
2677	return work_done;
2678}
2679
2680static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2681				 __always_unused __be16 proto, u16 vid)
2682{
2683	struct e1000_adapter *adapter = netdev_priv(netdev);
2684	struct e1000_hw *hw = &adapter->hw;
2685	u32 vfta, index;
2686
2687	/* don't update vlan cookie if already programmed */
2688	if ((adapter->hw.mng_cookie.status &
2689	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2690	    (vid == adapter->mng_vlan_id))
2691		return 0;
2692
2693	/* add VID to filter table */
2694	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2695		index = (vid >> 5) & 0x7F;
2696		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2697		vfta |= (1 << (vid & 0x1F));
2698		hw->mac.ops.write_vfta(hw, index, vfta);
2699	}
2700
2701	set_bit(vid, adapter->active_vlans);
2702
2703	return 0;
2704}
2705
2706static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2707				  __always_unused __be16 proto, u16 vid)
2708{
2709	struct e1000_adapter *adapter = netdev_priv(netdev);
2710	struct e1000_hw *hw = &adapter->hw;
2711	u32 vfta, index;
2712
2713	if ((adapter->hw.mng_cookie.status &
2714	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715	    (vid == adapter->mng_vlan_id)) {
2716		/* release control to f/w */
2717		e1000e_release_hw_control(adapter);
2718		return 0;
2719	}
2720
2721	/* remove VID from filter table */
2722	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2723		index = (vid >> 5) & 0x7F;
2724		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2725		vfta &= ~(1 << (vid & 0x1F));
2726		hw->mac.ops.write_vfta(hw, index, vfta);
2727	}
2728
2729	clear_bit(vid, adapter->active_vlans);
2730
2731	return 0;
2732}
2733
2734/**
2735 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2736 * @adapter: board private structure to initialize
2737 **/
2738static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2739{
2740	struct net_device *netdev = adapter->netdev;
2741	struct e1000_hw *hw = &adapter->hw;
2742	u32 rctl;
2743
2744	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2745		/* disable VLAN receive filtering */
2746		rctl = er32(RCTL);
2747		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2748		ew32(RCTL, rctl);
2749
2750		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2751			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2752					       adapter->mng_vlan_id);
2753			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2754		}
2755	}
2756}
2757
2758/**
2759 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
2762static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2763{
2764	struct e1000_hw *hw = &adapter->hw;
2765	u32 rctl;
2766
2767	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768		/* enable VLAN receive filtering */
2769		rctl = er32(RCTL);
2770		rctl |= E1000_RCTL_VFE;
2771		rctl &= ~E1000_RCTL_CFIEN;
2772		ew32(RCTL, rctl);
2773	}
2774}
2775
2776/**
2777 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2778 * @adapter: board private structure to initialize
2779 **/
2780static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2781{
2782	struct e1000_hw *hw = &adapter->hw;
2783	u32 ctrl;
2784
2785	/* disable VLAN tag insert/strip */
2786	ctrl = er32(CTRL);
2787	ctrl &= ~E1000_CTRL_VME;
2788	ew32(CTRL, ctrl);
2789}
2790
2791/**
2792 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2794 **/
2795static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2796{
2797	struct e1000_hw *hw = &adapter->hw;
2798	u32 ctrl;
2799
2800	/* enable VLAN tag insert/strip */
2801	ctrl = er32(CTRL);
2802	ctrl |= E1000_CTRL_VME;
2803	ew32(CTRL, ctrl);
2804}
2805
2806static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2807{
2808	struct net_device *netdev = adapter->netdev;
2809	u16 vid = adapter->hw.mng_cookie.vlan_id;
2810	u16 old_vid = adapter->mng_vlan_id;
2811
2812	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2813		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2814		adapter->mng_vlan_id = vid;
2815	}
2816
2817	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2818		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2819}
2820
2821static void e1000_restore_vlan(struct e1000_adapter *adapter)
2822{
2823	u16 vid;
2824
2825	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2826
2827	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2828	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2829}
2830
2831static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2832{
2833	struct e1000_hw *hw = &adapter->hw;
2834	u32 manc, manc2h, mdef, i, j;
2835
2836	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2837		return;
2838
2839	manc = er32(MANC);
2840
2841	/* enable receiving management packets to the host. this will probably
2842	 * generate destination unreachable messages from the host OS, but
2843	 * the packets will be handled on SMBUS
2844	 */
2845	manc |= E1000_MANC_EN_MNG2HOST;
2846	manc2h = er32(MANC2H);
2847
2848	switch (hw->mac.type) {
2849	default:
2850		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2851		break;
2852	case e1000_82574:
2853	case e1000_82583:
2854		/* Check if IPMI pass-through decision filter already exists;
2855		 * if so, enable it.
2856		 */
2857		for (i = 0, j = 0; i < 8; i++) {
2858			mdef = er32(MDEF(i));
2859
2860			/* Ignore filters with anything other than IPMI ports */
2861			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2862				continue;
2863
2864			/* Enable this decision filter in MANC2H */
2865			if (mdef)
2866				manc2h |= (1 << i);
2867
2868			j |= mdef;
2869		}
2870
2871		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2872			break;
2873
2874		/* Create new decision filter in an empty filter */
2875		for (i = 0, j = 0; i < 8; i++)
2876			if (er32(MDEF(i)) == 0) {
2877				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2878					       E1000_MDEF_PORT_664));
2879				manc2h |= (1 << 1);
2880				j++;
2881				break;
2882			}
2883
2884		if (!j)
2885			e_warn("Unable to create IPMI pass-through filter\n");
2886		break;
2887	}
2888
2889	ew32(MANC2H, manc2h);
2890	ew32(MANC, manc);
2891}
2892
2893/**
2894 * e1000_configure_tx - Configure Transmit Unit after Reset
2895 * @adapter: board private structure
2896 *
2897 * Configure the Tx unit of the MAC after a reset.
2898 **/
2899static void e1000_configure_tx(struct e1000_adapter *adapter)
2900{
2901	struct e1000_hw *hw = &adapter->hw;
2902	struct e1000_ring *tx_ring = adapter->tx_ring;
2903	u64 tdba;
2904	u32 tdlen, tctl, tarc;
2905
2906	/* Setup the HW Tx Head and Tail descriptor pointers */
2907	tdba = tx_ring->dma;
2908	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2909	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2910	ew32(TDBAH(0), (tdba >> 32));
2911	ew32(TDLEN(0), tdlen);
2912	ew32(TDH(0), 0);
2913	ew32(TDT(0), 0);
2914	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2915	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2916
 
 
 
 
 
 
2917	/* Set the Tx Interrupt Delay register */
2918	ew32(TIDV, adapter->tx_int_delay);
2919	/* Tx irq moderation */
2920	ew32(TADV, adapter->tx_abs_int_delay);
2921
2922	if (adapter->flags2 & FLAG2_DMA_BURST) {
2923		u32 txdctl = er32(TXDCTL(0));
 
2924		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2925			    E1000_TXDCTL_WTHRESH);
2926		/* set up some performance related parameters to encourage the
2927		 * hardware to use the bus more efficiently in bursts, depends
2928		 * on the tx_int_delay to be enabled,
2929		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2930		 * hthresh = 1 ==> prefetch when one or more available
2931		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2932		 * BEWARE: this seems to work but should be considered first if
2933		 * there are Tx hangs or other Tx related bugs
2934		 */
2935		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2936		ew32(TXDCTL(0), txdctl);
2937	}
2938	/* erratum work around: set txdctl the same for both queues */
2939	ew32(TXDCTL(1), er32(TXDCTL(0)));
2940
2941	/* Program the Transmit Control Register */
2942	tctl = er32(TCTL);
2943	tctl &= ~E1000_TCTL_CT;
2944	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2945		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2946
2947	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2948		tarc = er32(TARC(0));
2949		/* set the speed mode bit, we'll clear it if we're not at
2950		 * gigabit link later
2951		 */
2952#define SPEED_MODE_BIT (1 << 21)
2953		tarc |= SPEED_MODE_BIT;
2954		ew32(TARC(0), tarc);
2955	}
2956
2957	/* errata: program both queues to unweighted RR */
2958	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2959		tarc = er32(TARC(0));
2960		tarc |= 1;
2961		ew32(TARC(0), tarc);
2962		tarc = er32(TARC(1));
2963		tarc |= 1;
2964		ew32(TARC(1), tarc);
2965	}
2966
2967	/* Setup Transmit Descriptor Settings for eop descriptor */
2968	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2969
2970	/* only set IDE if we are delaying interrupts using the timers */
2971	if (adapter->tx_int_delay)
2972		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2973
2974	/* enable Report Status bit */
2975	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2976
2977	ew32(TCTL, tctl);
2978
2979	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980}
2981
2982/**
2983 * e1000_setup_rctl - configure the receive control registers
2984 * @adapter: Board private structure
2985 **/
2986#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2987			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2988static void e1000_setup_rctl(struct e1000_adapter *adapter)
2989{
2990	struct e1000_hw *hw = &adapter->hw;
2991	u32 rctl, rfctl;
2992	u32 pages = 0;
2993
2994	/* Workaround Si errata on PCHx - configure jumbo frame flow.
2995	 * If jumbo frames not set, program related MAC/PHY registers
2996	 * to h/w defaults
2997	 */
2998	if (hw->mac.type >= e1000_pch2lan) {
2999		s32 ret_val;
3000
3001		if (adapter->netdev->mtu > ETH_DATA_LEN)
3002			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3003		else
3004			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3005
3006		if (ret_val)
3007			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3008	}
3009
3010	/* Program MC offset vector base */
3011	rctl = er32(RCTL);
3012	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3013	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3014	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3015	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3016
3017	/* Do not Store bad packets */
3018	rctl &= ~E1000_RCTL_SBP;
3019
3020	/* Enable Long Packet receive */
3021	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3022		rctl &= ~E1000_RCTL_LPE;
3023	else
3024		rctl |= E1000_RCTL_LPE;
3025
3026	/* Some systems expect that the CRC is included in SMBUS traffic. The
3027	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3028	 * host memory when this is enabled
3029	 */
3030	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3031		rctl |= E1000_RCTL_SECRC;
3032
3033	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3034	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3035		u16 phy_data;
3036
3037		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3038		phy_data &= 0xfff8;
3039		phy_data |= (1 << 2);
3040		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3041
3042		e1e_rphy(hw, 22, &phy_data);
3043		phy_data &= 0x0fff;
3044		phy_data |= (1 << 14);
3045		e1e_wphy(hw, 0x10, 0x2823);
3046		e1e_wphy(hw, 0x11, 0x0003);
3047		e1e_wphy(hw, 22, phy_data);
3048	}
3049
3050	/* Setup buffer sizes */
3051	rctl &= ~E1000_RCTL_SZ_4096;
3052	rctl |= E1000_RCTL_BSEX;
3053	switch (adapter->rx_buffer_len) {
3054	case 2048:
3055	default:
3056		rctl |= E1000_RCTL_SZ_2048;
3057		rctl &= ~E1000_RCTL_BSEX;
3058		break;
3059	case 4096:
3060		rctl |= E1000_RCTL_SZ_4096;
3061		break;
3062	case 8192:
3063		rctl |= E1000_RCTL_SZ_8192;
3064		break;
3065	case 16384:
3066		rctl |= E1000_RCTL_SZ_16384;
3067		break;
3068	}
3069
3070	/* Enable Extended Status in all Receive Descriptors */
3071	rfctl = er32(RFCTL);
3072	rfctl |= E1000_RFCTL_EXTEN;
3073	ew32(RFCTL, rfctl);
3074
3075	/* 82571 and greater support packet-split where the protocol
3076	 * header is placed in skb->data and the packet data is
3077	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3078	 * In the case of a non-split, skb->data is linearly filled,
3079	 * followed by the page buffers.  Therefore, skb->data is
3080	 * sized to hold the largest protocol header.
3081	 *
3082	 * allocations using alloc_page take too long for regular MTU
3083	 * so only enable packet split for jumbo frames
3084	 *
3085	 * Using pages when the page size is greater than 16k wastes
3086	 * a lot of memory, since we allocate 3 pages at all times
3087	 * per packet.
3088	 */
3089	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3090	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3091		adapter->rx_ps_pages = pages;
3092	else
3093		adapter->rx_ps_pages = 0;
3094
3095	if (adapter->rx_ps_pages) {
3096		u32 psrctl = 0;
3097
3098		/* Enable Packet split descriptors */
3099		rctl |= E1000_RCTL_DTYP_PS;
3100
3101		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3102
3103		switch (adapter->rx_ps_pages) {
3104		case 3:
3105			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3106			/* fall-through */
3107		case 2:
3108			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3109			/* fall-through */
3110		case 1:
3111			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3112			break;
3113		}
3114
3115		ew32(PSRCTL, psrctl);
3116	}
3117
3118	/* This is useful for sniffing bad packets. */
3119	if (adapter->netdev->features & NETIF_F_RXALL) {
3120		/* UPE and MPE will be handled by normal PROMISC logic
3121		 * in e1000e_set_rx_mode
3122		 */
3123		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3124			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3125			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3126
3127		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3128			  E1000_RCTL_DPF |	/* Allow filtered pause */
3129			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3130		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3131		 * and that breaks VLANs.
3132		 */
3133	}
3134
3135	ew32(RCTL, rctl);
3136	/* just started the receive unit, no need to restart */
3137	adapter->flags &= ~FLAG_RESTART_NOW;
3138}
3139
3140/**
3141 * e1000_configure_rx - Configure Receive Unit after Reset
3142 * @adapter: board private structure
3143 *
3144 * Configure the Rx unit of the MAC after a reset.
3145 **/
3146static void e1000_configure_rx(struct e1000_adapter *adapter)
3147{
3148	struct e1000_hw *hw = &adapter->hw;
3149	struct e1000_ring *rx_ring = adapter->rx_ring;
3150	u64 rdba;
3151	u32 rdlen, rctl, rxcsum, ctrl_ext;
3152
3153	if (adapter->rx_ps_pages) {
3154		/* this is a 32 byte descriptor */
3155		rdlen = rx_ring->count *
3156		    sizeof(union e1000_rx_desc_packet_split);
3157		adapter->clean_rx = e1000_clean_rx_irq_ps;
3158		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3159	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3160		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3161		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3162		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3163	} else {
3164		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3165		adapter->clean_rx = e1000_clean_rx_irq;
3166		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3167	}
3168
3169	/* disable receives while setting up the descriptors */
3170	rctl = er32(RCTL);
3171	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3172		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3173	e1e_flush();
3174	usleep_range(10000, 20000);
3175
3176	if (adapter->flags2 & FLAG2_DMA_BURST) {
3177		/* set the writeback threshold (only takes effect if the RDTR
3178		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3179		 * enable prefetching of 0x20 Rx descriptors
3180		 * granularity = 01
3181		 * wthresh = 04,
3182		 * hthresh = 04,
3183		 * pthresh = 0x20
3184		 */
3185		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3186		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3187
3188		/* override the delay timers for enabling bursting, only if
3189		 * the value was not set by the user via module options
3190		 */
3191		if (adapter->rx_int_delay == DEFAULT_RDTR)
3192			adapter->rx_int_delay = BURST_RDTR;
3193		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3194			adapter->rx_abs_int_delay = BURST_RADV;
3195	}
3196
3197	/* set the Receive Delay Timer Register */
3198	ew32(RDTR, adapter->rx_int_delay);
3199
3200	/* irq moderation */
3201	ew32(RADV, adapter->rx_abs_int_delay);
3202	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3203		e1000e_write_itr(adapter, adapter->itr);
3204
3205	ctrl_ext = er32(CTRL_EXT);
3206	/* Auto-Mask interrupts upon ICR access */
3207	ctrl_ext |= E1000_CTRL_EXT_IAME;
3208	ew32(IAM, 0xffffffff);
3209	ew32(CTRL_EXT, ctrl_ext);
3210	e1e_flush();
3211
3212	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3213	 * the Base and Length of the Rx Descriptor Ring
3214	 */
3215	rdba = rx_ring->dma;
3216	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3217	ew32(RDBAH(0), (rdba >> 32));
3218	ew32(RDLEN(0), rdlen);
3219	ew32(RDH(0), 0);
3220	ew32(RDT(0), 0);
3221	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3222	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3223
 
 
 
 
 
 
3224	/* Enable Receive Checksum Offload for TCP and UDP */
3225	rxcsum = er32(RXCSUM);
3226	if (adapter->netdev->features & NETIF_F_RXCSUM)
3227		rxcsum |= E1000_RXCSUM_TUOFL;
3228	else
3229		rxcsum &= ~E1000_RXCSUM_TUOFL;
3230	ew32(RXCSUM, rxcsum);
3231
3232	/* With jumbo frames, excessive C-state transition latencies result
3233	 * in dropped transactions.
3234	 */
3235	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3236		u32 lat =
3237		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3238		     adapter->max_frame_size) * 8 / 1000;
3239
3240		if (adapter->flags & FLAG_IS_ICH) {
3241			u32 rxdctl = er32(RXDCTL(0));
3242			ew32(RXDCTL(0), rxdctl | 0x3);
 
3243		}
3244
3245		pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
 
 
3246	} else {
3247		pm_qos_update_request(&adapter->netdev->pm_qos_req,
3248				      PM_QOS_DEFAULT_VALUE);
3249	}
3250
3251	/* Enable Receives */
3252	ew32(RCTL, rctl);
3253}
3254
3255/**
3256 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3257 * @netdev: network interface device structure
3258 *
3259 * Writes multicast address list to the MTA hash table.
3260 * Returns: -ENOMEM on failure
3261 *                0 on no addresses written
3262 *                X on writing X addresses to MTA
3263 */
3264static int e1000e_write_mc_addr_list(struct net_device *netdev)
3265{
3266	struct e1000_adapter *adapter = netdev_priv(netdev);
3267	struct e1000_hw *hw = &adapter->hw;
3268	struct netdev_hw_addr *ha;
3269	u8 *mta_list;
3270	int i;
3271
3272	if (netdev_mc_empty(netdev)) {
3273		/* nothing to program, so clear mc list */
3274		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3275		return 0;
3276	}
3277
3278	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3279	if (!mta_list)
3280		return -ENOMEM;
3281
3282	/* update_mc_addr_list expects a packed array of only addresses. */
3283	i = 0;
3284	netdev_for_each_mc_addr(ha, netdev)
3285	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3286
3287	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3288	kfree(mta_list);
3289
3290	return netdev_mc_count(netdev);
3291}
3292
3293/**
3294 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3295 * @netdev: network interface device structure
3296 *
3297 * Writes unicast address list to the RAR table.
3298 * Returns: -ENOMEM on failure/insufficient address space
3299 *                0 on no addresses written
3300 *                X on writing X addresses to the RAR table
3301 **/
3302static int e1000e_write_uc_addr_list(struct net_device *netdev)
3303{
3304	struct e1000_adapter *adapter = netdev_priv(netdev);
3305	struct e1000_hw *hw = &adapter->hw;
3306	unsigned int rar_entries = hw->mac.rar_entry_count;
3307	int count = 0;
3308
 
 
3309	/* save a rar entry for our hardware address */
3310	rar_entries--;
3311
3312	/* save a rar entry for the LAA workaround */
3313	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3314		rar_entries--;
3315
3316	/* return ENOMEM indicating insufficient memory for addresses */
3317	if (netdev_uc_count(netdev) > rar_entries)
3318		return -ENOMEM;
3319
3320	if (!netdev_uc_empty(netdev) && rar_entries) {
3321		struct netdev_hw_addr *ha;
3322
3323		/* write the addresses in reverse order to avoid write
3324		 * combining
3325		 */
3326		netdev_for_each_uc_addr(ha, netdev) {
 
 
3327			if (!rar_entries)
3328				break;
3329			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3330			count++;
3331		}
3332	}
3333
3334	/* zero out the remaining RAR entries not used above */
3335	for (; rar_entries > 0; rar_entries--) {
3336		ew32(RAH(rar_entries), 0);
3337		ew32(RAL(rar_entries), 0);
3338	}
3339	e1e_flush();
3340
3341	return count;
3342}
3343
3344/**
3345 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3346 * @netdev: network interface device structure
3347 *
3348 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3349 * address list or the network interface flags are updated.  This routine is
3350 * responsible for configuring the hardware for proper unicast, multicast,
3351 * promiscuous mode, and all-multi behavior.
3352 **/
3353static void e1000e_set_rx_mode(struct net_device *netdev)
3354{
3355	struct e1000_adapter *adapter = netdev_priv(netdev);
3356	struct e1000_hw *hw = &adapter->hw;
3357	u32 rctl;
3358
3359	if (pm_runtime_suspended(netdev->dev.parent))
3360		return;
3361
3362	/* Check for Promiscuous and All Multicast modes */
3363	rctl = er32(RCTL);
3364
3365	/* clear the affected bits */
3366	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3367
3368	if (netdev->flags & IFF_PROMISC) {
3369		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3370		/* Do not hardware filter VLANs in promisc mode */
3371		e1000e_vlan_filter_disable(adapter);
3372	} else {
3373		int count;
3374
3375		if (netdev->flags & IFF_ALLMULTI) {
3376			rctl |= E1000_RCTL_MPE;
3377		} else {
3378			/* Write addresses to the MTA, if the attempt fails
3379			 * then we should just turn on promiscuous mode so
3380			 * that we can at least receive multicast traffic
3381			 */
3382			count = e1000e_write_mc_addr_list(netdev);
3383			if (count < 0)
3384				rctl |= E1000_RCTL_MPE;
3385		}
3386		e1000e_vlan_filter_enable(adapter);
3387		/* Write addresses to available RAR registers, if there is not
3388		 * sufficient space to store all the addresses then enable
3389		 * unicast promiscuous mode
3390		 */
3391		count = e1000e_write_uc_addr_list(netdev);
3392		if (count < 0)
3393			rctl |= E1000_RCTL_UPE;
3394	}
3395
3396	ew32(RCTL, rctl);
3397
3398	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3399		e1000e_vlan_strip_enable(adapter);
3400	else
3401		e1000e_vlan_strip_disable(adapter);
3402}
3403
3404static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3405{
3406	struct e1000_hw *hw = &adapter->hw;
3407	u32 mrqc, rxcsum;
 
3408	int i;
3409	static const u32 rsskey[10] = {
3410		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3411		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3412	};
3413
3414	/* Fill out hash function seed */
3415	for (i = 0; i < 10; i++)
3416		ew32(RSSRK(i), rsskey[i]);
3417
3418	/* Direct all traffic to queue 0 */
3419	for (i = 0; i < 32; i++)
3420		ew32(RETA(i), 0);
3421
3422	/* Disable raw packet checksumming so that RSS hash is placed in
3423	 * descriptor on writeback.
3424	 */
3425	rxcsum = er32(RXCSUM);
3426	rxcsum |= E1000_RXCSUM_PCSD;
3427
3428	ew32(RXCSUM, rxcsum);
3429
3430	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3431		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3432		E1000_MRQC_RSS_FIELD_IPV6 |
3433		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3434		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3435
3436	ew32(MRQC, mrqc);
3437}
3438
3439/**
3440 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3441 * @adapter: board private structure
3442 * @timinca: pointer to returned time increment attributes
3443 *
3444 * Get attributes for incrementing the System Time Register SYSTIML/H at
3445 * the default base frequency, and set the cyclecounter shift value.
3446 **/
3447s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3448{
3449	struct e1000_hw *hw = &adapter->hw;
3450	u32 incvalue, incperiod, shift;
3451
3452	/* Make sure clock is enabled on I217 before checking the frequency */
3453	if ((hw->mac.type == e1000_pch_lpt) &&
 
 
3454	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3455	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3456		u32 fextnvm7 = er32(FEXTNVM7);
3457
3458		if (!(fextnvm7 & (1 << 0))) {
3459			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3460			e1e_flush();
3461		}
3462	}
3463
3464	switch (hw->mac.type) {
3465	case e1000_pch2lan:
 
 
 
 
 
 
3466	case e1000_pch_lpt:
3467		/* On I217, the clock frequency is 25MHz or 96MHz as
3468		 * indicated by the System Clock Frequency Indication
3469		 */
3470		if ((hw->mac.type != e1000_pch_lpt) ||
3471		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3472			/* Stable 96MHz frequency */
3473			incperiod = INCPERIOD_96MHz;
3474			incvalue = INCVALUE_96MHz;
3475			shift = INCVALUE_SHIFT_96MHz;
3476			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3477			break;
3478		}
3479		/* fall-through */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480	case e1000_82574:
3481	case e1000_82583:
3482		/* Stable 25MHz frequency */
3483		incperiod = INCPERIOD_25MHz;
3484		incvalue = INCVALUE_25MHz;
3485		shift = INCVALUE_SHIFT_25MHz;
3486		adapter->cc.shift = shift;
3487		break;
3488	default:
3489		return -EINVAL;
3490	}
3491
3492	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3493		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3494
3495	return 0;
3496}
3497
3498/**
3499 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3500 * @adapter: board private structure
3501 *
3502 * Outgoing time stamping can be enabled and disabled. Play nice and
3503 * disable it when requested, although it shouldn't cause any overhead
3504 * when no packet needs it. At most one packet in the queue may be
3505 * marked for time stamping, otherwise it would be impossible to tell
3506 * for sure to which packet the hardware time stamp belongs.
3507 *
3508 * Incoming time stamping has to be configured via the hardware filters.
3509 * Not all combinations are supported, in particular event type has to be
3510 * specified. Matching the kind of event packet is not supported, with the
3511 * exception of "all V2 events regardless of level 2 or 4".
3512 **/
3513static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3514				  struct hwtstamp_config *config)
3515{
3516	struct e1000_hw *hw = &adapter->hw;
3517	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3518	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3519	u32 rxmtrl = 0;
3520	u16 rxudp = 0;
3521	bool is_l4 = false;
3522	bool is_l2 = false;
3523	u32 regval;
3524	s32 ret_val;
3525
3526	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3527		return -EINVAL;
3528
3529	/* flags reserved for future extensions - must be zero */
3530	if (config->flags)
3531		return -EINVAL;
3532
3533	switch (config->tx_type) {
3534	case HWTSTAMP_TX_OFF:
3535		tsync_tx_ctl = 0;
3536		break;
3537	case HWTSTAMP_TX_ON:
3538		break;
3539	default:
3540		return -ERANGE;
3541	}
3542
3543	switch (config->rx_filter) {
3544	case HWTSTAMP_FILTER_NONE:
3545		tsync_rx_ctl = 0;
3546		break;
3547	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3548		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3549		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3550		is_l4 = true;
3551		break;
3552	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3553		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3554		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3555		is_l4 = true;
3556		break;
3557	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3558		/* Also time stamps V2 L2 Path Delay Request/Response */
3559		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3560		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3561		is_l2 = true;
3562		break;
3563	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3564		/* Also time stamps V2 L2 Path Delay Request/Response. */
3565		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3566		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3567		is_l2 = true;
3568		break;
3569	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3570		/* Hardware cannot filter just V2 L4 Sync messages;
3571		 * fall-through to V2 (both L2 and L4) Sync.
3572		 */
3573	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3574		/* Also time stamps V2 Path Delay Request/Response. */
3575		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3576		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3577		is_l2 = true;
3578		is_l4 = true;
3579		break;
3580	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3581		/* Hardware cannot filter just V2 L4 Delay Request messages;
3582		 * fall-through to V2 (both L2 and L4) Delay Request.
3583		 */
3584	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3585		/* Also time stamps V2 Path Delay Request/Response. */
3586		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3587		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3588		is_l2 = true;
3589		is_l4 = true;
3590		break;
3591	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3592	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3593		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3594		 * fall-through to all V2 (both L2 and L4) Events.
3595		 */
3596	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3597		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3598		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3599		is_l2 = true;
3600		is_l4 = true;
3601		break;
3602	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3603		/* For V1, the hardware can only filter Sync messages or
3604		 * Delay Request messages but not both so fall-through to
3605		 * time stamp all packets.
3606		 */
 
3607	case HWTSTAMP_FILTER_ALL:
3608		is_l2 = true;
3609		is_l4 = true;
3610		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3611		config->rx_filter = HWTSTAMP_FILTER_ALL;
3612		break;
3613	default:
3614		return -ERANGE;
3615	}
3616
3617	adapter->hwtstamp_config = *config;
3618
3619	/* enable/disable Tx h/w time stamping */
3620	regval = er32(TSYNCTXCTL);
3621	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3622	regval |= tsync_tx_ctl;
3623	ew32(TSYNCTXCTL, regval);
3624	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3625	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3626		e_err("Timesync Tx Control register not set as expected\n");
3627		return -EAGAIN;
3628	}
3629
3630	/* enable/disable Rx h/w time stamping */
3631	regval = er32(TSYNCRXCTL);
3632	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3633	regval |= tsync_rx_ctl;
3634	ew32(TSYNCRXCTL, regval);
3635	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3636				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3637	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3638		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3639		e_err("Timesync Rx Control register not set as expected\n");
3640		return -EAGAIN;
3641	}
3642
3643	/* L2: define ethertype filter for time stamped packets */
3644	if (is_l2)
3645		rxmtrl |= ETH_P_1588;
3646
3647	/* define which PTP packets get time stamped */
3648	ew32(RXMTRL, rxmtrl);
3649
3650	/* Filter by destination port */
3651	if (is_l4) {
3652		rxudp = PTP_EV_PORT;
3653		cpu_to_be16s(&rxudp);
3654	}
3655	ew32(RXUDP, rxudp);
3656
3657	e1e_flush();
3658
3659	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3660	er32(RXSTMPH);
3661	er32(TXSTMPH);
3662
3663	/* Get and set the System Time Register SYSTIM base frequency */
3664	ret_val = e1000e_get_base_timinca(adapter, &regval);
3665	if (ret_val)
3666		return ret_val;
3667	ew32(TIMINCA, regval);
3668
3669	/* reset the ns time counter */
3670	timecounter_init(&adapter->tc, &adapter->cc,
3671			 ktime_to_ns(ktime_get_real()));
3672
3673	return 0;
3674}
3675
3676/**
3677 * e1000_configure - configure the hardware for Rx and Tx
3678 * @adapter: private board structure
3679 **/
3680static void e1000_configure(struct e1000_adapter *adapter)
3681{
3682	struct e1000_ring *rx_ring = adapter->rx_ring;
3683
3684	e1000e_set_rx_mode(adapter->netdev);
3685
3686	e1000_restore_vlan(adapter);
3687	e1000_init_manageability_pt(adapter);
3688
3689	e1000_configure_tx(adapter);
3690
3691	if (adapter->netdev->features & NETIF_F_RXHASH)
3692		e1000e_setup_rss_hash(adapter);
3693	e1000_setup_rctl(adapter);
3694	e1000_configure_rx(adapter);
3695	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3696}
3697
3698/**
3699 * e1000e_power_up_phy - restore link in case the phy was powered down
3700 * @adapter: address of board private structure
3701 *
3702 * The phy may be powered down to save power and turn off link when the
3703 * driver is unloaded and wake on lan is not enabled (among others)
3704 * *** this routine MUST be followed by a call to e1000e_reset ***
3705 **/
3706void e1000e_power_up_phy(struct e1000_adapter *adapter)
3707{
3708	if (adapter->hw.phy.ops.power_up)
3709		adapter->hw.phy.ops.power_up(&adapter->hw);
3710
3711	adapter->hw.mac.ops.setup_link(&adapter->hw);
3712}
3713
3714/**
3715 * e1000_power_down_phy - Power down the PHY
3716 *
3717 * Power down the PHY so no link is implied when interface is down.
3718 * The PHY cannot be powered down if management or WoL is active.
3719 */
3720static void e1000_power_down_phy(struct e1000_adapter *adapter)
3721{
3722	if (adapter->hw.phy.ops.power_down)
3723		adapter->hw.phy.ops.power_down(&adapter->hw);
3724}
3725
3726/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727 * e1000e_reset - bring the hardware into a known good state
3728 *
3729 * This function boots the hardware and enables some settings that
3730 * require a configuration cycle of the hardware - those cannot be
3731 * set/changed during runtime. After reset the device needs to be
3732 * properly configured for Rx, Tx etc.
3733 */
3734void e1000e_reset(struct e1000_adapter *adapter)
3735{
3736	struct e1000_mac_info *mac = &adapter->hw.mac;
3737	struct e1000_fc_info *fc = &adapter->hw.fc;
3738	struct e1000_hw *hw = &adapter->hw;
3739	u32 tx_space, min_tx_space, min_rx_space;
3740	u32 pba = adapter->pba;
3741	u16 hwm;
3742
3743	/* reset Packet Buffer Allocation to default */
3744	ew32(PBA, pba);
3745
3746	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3747		/* To maintain wire speed transmits, the Tx FIFO should be
3748		 * large enough to accommodate two full transmit packets,
3749		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3750		 * the Rx FIFO should be large enough to accommodate at least
3751		 * one full receive packet and is similarly rounded up and
3752		 * expressed in KB.
3753		 */
3754		pba = er32(PBA);
3755		/* upper 16 bits has Tx packet buffer allocation size in KB */
3756		tx_space = pba >> 16;
3757		/* lower 16 bits has Rx packet buffer allocation size in KB */
3758		pba &= 0xffff;
3759		/* the Tx fifo also stores 16 bytes of information about the Tx
3760		 * but don't include ethernet FCS because hardware appends it
3761		 */
3762		min_tx_space = (adapter->max_frame_size +
3763				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3764		min_tx_space = ALIGN(min_tx_space, 1024);
3765		min_tx_space >>= 10;
3766		/* software strips receive CRC, so leave room for it */
3767		min_rx_space = adapter->max_frame_size;
3768		min_rx_space = ALIGN(min_rx_space, 1024);
3769		min_rx_space >>= 10;
3770
3771		/* If current Tx allocation is less than the min Tx FIFO size,
3772		 * and the min Tx FIFO size is less than the current Rx FIFO
3773		 * allocation, take space away from current Rx allocation
3774		 */
3775		if ((tx_space < min_tx_space) &&
3776		    ((min_tx_space - tx_space) < pba)) {
3777			pba -= min_tx_space - tx_space;
3778
3779			/* if short on Rx space, Rx wins and must trump Tx
3780			 * adjustment
3781			 */
3782			if (pba < min_rx_space)
3783				pba = min_rx_space;
3784		}
3785
3786		ew32(PBA, pba);
3787	}
3788
3789	/* flow control settings
3790	 *
3791	 * The high water mark must be low enough to fit one full frame
3792	 * (or the size used for early receive) above it in the Rx FIFO.
3793	 * Set it to the lower of:
3794	 * - 90% of the Rx FIFO size, and
3795	 * - the full Rx FIFO size minus one full frame
3796	 */
3797	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3798		fc->pause_time = 0xFFFF;
3799	else
3800		fc->pause_time = E1000_FC_PAUSE_TIME;
3801	fc->send_xon = true;
3802	fc->current_mode = fc->requested_mode;
3803
3804	switch (hw->mac.type) {
3805	case e1000_ich9lan:
3806	case e1000_ich10lan:
3807		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3808			pba = 14;
3809			ew32(PBA, pba);
3810			fc->high_water = 0x2800;
3811			fc->low_water = fc->high_water - 8;
3812			break;
3813		}
3814		/* fall-through */
3815	default:
3816		hwm = min(((pba << 10) * 9 / 10),
3817			  ((pba << 10) - adapter->max_frame_size));
3818
3819		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3820		fc->low_water = fc->high_water - 8;
3821		break;
3822	case e1000_pchlan:
3823		/* Workaround PCH LOM adapter hangs with certain network
3824		 * loads.  If hangs persist, try disabling Tx flow control.
3825		 */
3826		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3827			fc->high_water = 0x3500;
3828			fc->low_water = 0x1500;
3829		} else {
3830			fc->high_water = 0x5000;
3831			fc->low_water = 0x3000;
3832		}
3833		fc->refresh_time = 0x1000;
3834		break;
3835	case e1000_pch2lan:
3836	case e1000_pch_lpt:
 
 
3837		fc->refresh_time = 0x0400;
3838
3839		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3840			fc->high_water = 0x05C20;
3841			fc->low_water = 0x05048;
3842			fc->pause_time = 0x0650;
3843			break;
3844		}
3845
3846		pba = 14;
3847		ew32(PBA, pba);
3848		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3849		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3850		break;
3851	}
3852
3853	/* Alignment of Tx data is on an arbitrary byte boundary with the
3854	 * maximum size per Tx descriptor limited only to the transmit
3855	 * allocation of the packet buffer minus 96 bytes with an upper
3856	 * limit of 24KB due to receive synchronization limitations.
3857	 */
3858	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3859				       24 << 10);
3860
3861	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3862	 * fit in receive buffer.
3863	 */
3864	if (adapter->itr_setting & 0x3) {
3865		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3866			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3867				dev_info(&adapter->pdev->dev,
3868					 "Interrupt Throttle Rate off\n");
3869				adapter->flags2 |= FLAG2_DISABLE_AIM;
3870				e1000e_write_itr(adapter, 0);
3871			}
3872		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3873			dev_info(&adapter->pdev->dev,
3874				 "Interrupt Throttle Rate on\n");
3875			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3876			adapter->itr = 20000;
3877			e1000e_write_itr(adapter, adapter->itr);
3878		}
3879	}
3880
 
 
3881	/* Allow time for pending master requests to run */
3882	mac->ops.reset_hw(hw);
3883
3884	/* For parts with AMT enabled, let the firmware know
3885	 * that the network interface is in control
3886	 */
3887	if (adapter->flags & FLAG_HAS_AMT)
3888		e1000e_get_hw_control(adapter);
3889
3890	ew32(WUC, 0);
3891
3892	if (mac->ops.init_hw(hw))
3893		e_err("Hardware Error\n");
3894
3895	e1000_update_mng_vlan(adapter);
3896
3897	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3898	ew32(VET, ETH_P_8021Q);
3899
3900	e1000e_reset_adaptive(hw);
3901
3902	/* initialize systim and reset the ns time counter */
3903	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3904
3905	/* Set EEE advertisement as appropriate */
3906	if (adapter->flags2 & FLAG2_HAS_EEE) {
3907		s32 ret_val;
3908		u16 adv_addr;
3909
3910		switch (hw->phy.type) {
3911		case e1000_phy_82579:
3912			adv_addr = I82579_EEE_ADVERTISEMENT;
3913			break;
3914		case e1000_phy_i217:
3915			adv_addr = I217_EEE_ADVERTISEMENT;
3916			break;
3917		default:
3918			dev_err(&adapter->pdev->dev,
3919				"Invalid PHY type setting EEE advertisement\n");
3920			return;
3921		}
3922
3923		ret_val = hw->phy.ops.acquire(hw);
3924		if (ret_val) {
3925			dev_err(&adapter->pdev->dev,
3926				"EEE advertisement - unable to acquire PHY\n");
3927			return;
3928		}
3929
3930		e1000_write_emi_reg_locked(hw, adv_addr,
3931					   hw->dev_spec.ich8lan.eee_disable ?
3932					   0 : adapter->eee_advert);
3933
3934		hw->phy.ops.release(hw);
3935	}
3936
3937	if (!netif_running(adapter->netdev) &&
3938	    !test_bit(__E1000_TESTING, &adapter->state))
3939		e1000_power_down_phy(adapter);
3940
3941	e1000_get_phy_info(hw);
3942
3943	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3944	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3945		u16 phy_data = 0;
3946		/* speed up time to link by disabling smart power down, ignore
3947		 * the return value of this function because there is nothing
3948		 * different we would do if it failed
3949		 */
3950		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3951		phy_data &= ~IGP02E1000_PM_SPD;
3952		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3953	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3954}
3955
3956int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3957{
3958	struct e1000_hw *hw = &adapter->hw;
3959
 
 
 
 
 
 
 
 
3960	/* hardware has been reset, we need to reload some things */
3961	e1000_configure(adapter);
3962
3963	clear_bit(__E1000_DOWN, &adapter->state);
3964
3965	if (adapter->msix_entries)
3966		e1000_configure_msix(adapter);
3967	e1000_irq_enable(adapter);
3968
3969	netif_start_queue(adapter->netdev);
3970
3971	/* fire a link change interrupt to start the watchdog */
3972	if (adapter->msix_entries)
3973		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3974	else
3975		ew32(ICS, E1000_ICS_LSC);
3976
3977	return 0;
3978}
3979
3980static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3981{
3982	struct e1000_hw *hw = &adapter->hw;
3983
3984	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3985		return;
3986
3987	/* flush pending descriptor writebacks to memory */
3988	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3989	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3990
3991	/* execute the writes immediately */
3992	e1e_flush();
3993
3994	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
3995	 * write is successful
3996	 */
3997	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3998	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3999
4000	/* execute the writes immediately */
4001	e1e_flush();
4002}
4003
4004static void e1000e_update_stats(struct e1000_adapter *adapter);
4005
4006/**
4007 * e1000e_down - quiesce the device and optionally reset the hardware
4008 * @adapter: board private structure
4009 * @reset: boolean flag to reset the hardware or not
4010 */
4011void e1000e_down(struct e1000_adapter *adapter, bool reset)
4012{
4013	struct net_device *netdev = adapter->netdev;
4014	struct e1000_hw *hw = &adapter->hw;
4015	u32 tctl, rctl;
4016
4017	/* signal that we're down so the interrupt handler does not
4018	 * reschedule our watchdog timer
4019	 */
4020	set_bit(__E1000_DOWN, &adapter->state);
4021
 
 
4022	/* disable receives in the hardware */
4023	rctl = er32(RCTL);
4024	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4025		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4026	/* flush and sleep below */
4027
4028	netif_stop_queue(netdev);
4029
4030	/* disable transmits in the hardware */
4031	tctl = er32(TCTL);
4032	tctl &= ~E1000_TCTL_EN;
4033	ew32(TCTL, tctl);
4034
4035	/* flush both disables and wait for them to finish */
4036	e1e_flush();
4037	usleep_range(10000, 20000);
4038
4039	e1000_irq_disable(adapter);
4040
4041	napi_synchronize(&adapter->napi);
4042
4043	del_timer_sync(&adapter->watchdog_timer);
4044	del_timer_sync(&adapter->phy_info_timer);
4045
4046	netif_carrier_off(netdev);
4047
4048	spin_lock(&adapter->stats64_lock);
4049	e1000e_update_stats(adapter);
4050	spin_unlock(&adapter->stats64_lock);
4051
4052	e1000e_flush_descriptors(adapter);
4053	e1000_clean_tx_ring(adapter->tx_ring);
4054	e1000_clean_rx_ring(adapter->rx_ring);
4055
4056	adapter->link_speed = 0;
4057	adapter->link_duplex = 0;
4058
4059	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4060	if ((hw->mac.type >= e1000_pch2lan) &&
4061	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4062	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4063		e_dbg("failed to disable jumbo frame workaround mode\n");
4064
4065	if (reset && !pci_channel_offline(adapter->pdev))
4066		e1000e_reset(adapter);
 
 
 
 
 
 
4067}
4068
4069void e1000e_reinit_locked(struct e1000_adapter *adapter)
4070{
4071	might_sleep();
4072	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4073		usleep_range(1000, 2000);
4074	e1000e_down(adapter, true);
4075	e1000e_up(adapter);
4076	clear_bit(__E1000_RESETTING, &adapter->state);
4077}
4078
4079/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4080 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4081 * @cc: cyclecounter structure
4082 **/
4083static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4084{
4085	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4086						     cc);
4087	struct e1000_hw *hw = &adapter->hw;
4088	cycle_t systim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089
4090	/* latch SYSTIMH on read of SYSTIML */
4091	systim = (cycle_t)er32(SYSTIML);
4092	systim |= (cycle_t)er32(SYSTIMH) << 32;
4093
4094	return systim;
4095}
4096
4097/**
4098 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4099 * @adapter: board private structure to initialize
4100 *
4101 * e1000_sw_init initializes the Adapter private data structure.
4102 * Fields are initialized based on PCI device information and
4103 * OS network device settings (MTU size).
4104 **/
4105static int e1000_sw_init(struct e1000_adapter *adapter)
4106{
4107	struct net_device *netdev = adapter->netdev;
4108
4109	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4110	adapter->rx_ps_bsize0 = 128;
4111	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4112	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4113	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4114	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4115
4116	spin_lock_init(&adapter->stats64_lock);
4117
4118	e1000e_set_interrupt_capability(adapter);
4119
4120	if (e1000_alloc_queues(adapter))
4121		return -ENOMEM;
4122
4123	/* Setup hardware time stamping cyclecounter */
4124	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4125		adapter->cc.read = e1000e_cyclecounter_read;
4126		adapter->cc.mask = CLOCKSOURCE_MASK(64);
4127		adapter->cc.mult = 1;
4128		/* cc.shift set in e1000e_get_base_tininca() */
4129
4130		spin_lock_init(&adapter->systim_lock);
4131		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4132	}
4133
4134	/* Explicitly disable IRQ since the NIC can be in any state. */
4135	e1000_irq_disable(adapter);
4136
4137	set_bit(__E1000_DOWN, &adapter->state);
4138	return 0;
4139}
4140
4141/**
4142 * e1000_intr_msi_test - Interrupt Handler
4143 * @irq: interrupt number
4144 * @data: pointer to a network interface device structure
4145 **/
4146static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4147{
4148	struct net_device *netdev = data;
4149	struct e1000_adapter *adapter = netdev_priv(netdev);
4150	struct e1000_hw *hw = &adapter->hw;
4151	u32 icr = er32(ICR);
4152
4153	e_dbg("icr is %08X\n", icr);
4154	if (icr & E1000_ICR_RXSEQ) {
4155		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4156		/* Force memory writes to complete before acknowledging the
4157		 * interrupt is handled.
4158		 */
4159		wmb();
4160	}
4161
4162	return IRQ_HANDLED;
4163}
4164
4165/**
4166 * e1000_test_msi_interrupt - Returns 0 for successful test
4167 * @adapter: board private struct
4168 *
4169 * code flow taken from tg3.c
4170 **/
4171static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4172{
4173	struct net_device *netdev = adapter->netdev;
4174	struct e1000_hw *hw = &adapter->hw;
4175	int err;
4176
4177	/* poll_enable hasn't been called yet, so don't need disable */
4178	/* clear any pending events */
4179	er32(ICR);
4180
4181	/* free the real vector and request a test handler */
4182	e1000_free_irq(adapter);
4183	e1000e_reset_interrupt_capability(adapter);
4184
4185	/* Assume that the test fails, if it succeeds then the test
4186	 * MSI irq handler will unset this flag
4187	 */
4188	adapter->flags |= FLAG_MSI_TEST_FAILED;
4189
4190	err = pci_enable_msi(adapter->pdev);
4191	if (err)
4192		goto msi_test_failed;
4193
4194	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4195			  netdev->name, netdev);
4196	if (err) {
4197		pci_disable_msi(adapter->pdev);
4198		goto msi_test_failed;
4199	}
4200
4201	/* Force memory writes to complete before enabling and firing an
4202	 * interrupt.
4203	 */
4204	wmb();
4205
4206	e1000_irq_enable(adapter);
4207
4208	/* fire an unusual interrupt on the test handler */
4209	ew32(ICS, E1000_ICS_RXSEQ);
4210	e1e_flush();
4211	msleep(100);
4212
4213	e1000_irq_disable(adapter);
4214
4215	rmb();			/* read flags after interrupt has been fired */
4216
4217	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4218		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4219		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4220	} else {
4221		e_dbg("MSI interrupt test succeeded!\n");
4222	}
4223
4224	free_irq(adapter->pdev->irq, netdev);
4225	pci_disable_msi(adapter->pdev);
4226
4227msi_test_failed:
4228	e1000e_set_interrupt_capability(adapter);
4229	return e1000_request_irq(adapter);
4230}
4231
4232/**
4233 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4234 * @adapter: board private struct
4235 *
4236 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4237 **/
4238static int e1000_test_msi(struct e1000_adapter *adapter)
4239{
4240	int err;
4241	u16 pci_cmd;
4242
4243	if (!(adapter->flags & FLAG_MSI_ENABLED))
4244		return 0;
4245
4246	/* disable SERR in case the MSI write causes a master abort */
4247	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4248	if (pci_cmd & PCI_COMMAND_SERR)
4249		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4250				      pci_cmd & ~PCI_COMMAND_SERR);
4251
4252	err = e1000_test_msi_interrupt(adapter);
4253
4254	/* re-enable SERR */
4255	if (pci_cmd & PCI_COMMAND_SERR) {
4256		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4257		pci_cmd |= PCI_COMMAND_SERR;
4258		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4259	}
4260
4261	return err;
4262}
4263
4264/**
4265 * e1000_open - Called when a network interface is made active
4266 * @netdev: network interface device structure
4267 *
4268 * Returns 0 on success, negative value on failure
4269 *
4270 * The open entry point is called when a network interface is made
4271 * active by the system (IFF_UP).  At this point all resources needed
4272 * for transmit and receive operations are allocated, the interrupt
4273 * handler is registered with the OS, the watchdog timer is started,
4274 * and the stack is notified that the interface is ready.
4275 **/
4276static int e1000_open(struct net_device *netdev)
4277{
4278	struct e1000_adapter *adapter = netdev_priv(netdev);
4279	struct e1000_hw *hw = &adapter->hw;
4280	struct pci_dev *pdev = adapter->pdev;
4281	int err;
4282
4283	/* disallow open during test */
4284	if (test_bit(__E1000_TESTING, &adapter->state))
4285		return -EBUSY;
4286
4287	pm_runtime_get_sync(&pdev->dev);
4288
4289	netif_carrier_off(netdev);
4290
4291	/* allocate transmit descriptors */
4292	err = e1000e_setup_tx_resources(adapter->tx_ring);
4293	if (err)
4294		goto err_setup_tx;
4295
4296	/* allocate receive descriptors */
4297	err = e1000e_setup_rx_resources(adapter->rx_ring);
4298	if (err)
4299		goto err_setup_rx;
4300
4301	/* If AMT is enabled, let the firmware know that the network
4302	 * interface is now open and reset the part to a known state.
4303	 */
4304	if (adapter->flags & FLAG_HAS_AMT) {
4305		e1000e_get_hw_control(adapter);
4306		e1000e_reset(adapter);
4307	}
4308
4309	e1000e_power_up_phy(adapter);
4310
4311	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4312	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4313		e1000_update_mng_vlan(adapter);
4314
4315	/* DMA latency requirement to workaround jumbo issue */
4316	pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4317			   PM_QOS_DEFAULT_VALUE);
4318
4319	/* before we allocate an interrupt, we must be ready to handle it.
4320	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4321	 * as soon as we call pci_request_irq, so we have to setup our
4322	 * clean_rx handler before we do so.
4323	 */
4324	e1000_configure(adapter);
4325
4326	err = e1000_request_irq(adapter);
4327	if (err)
4328		goto err_req_irq;
4329
4330	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4331	 * ignore e1000e MSI messages, which means we need to test our MSI
4332	 * interrupt now
4333	 */
4334	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4335		err = e1000_test_msi(adapter);
4336		if (err) {
4337			e_err("Interrupt allocation failed\n");
4338			goto err_req_irq;
4339		}
4340	}
4341
4342	/* From here on the code is the same as e1000e_up() */
4343	clear_bit(__E1000_DOWN, &adapter->state);
4344
4345	napi_enable(&adapter->napi);
4346
4347	e1000_irq_enable(adapter);
4348
4349	adapter->tx_hang_recheck = false;
4350	netif_start_queue(netdev);
4351
4352	hw->mac.get_link_status = true;
4353	pm_runtime_put(&pdev->dev);
4354
4355	/* fire a link status change interrupt to start the watchdog */
4356	if (adapter->msix_entries)
4357		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4358	else
4359		ew32(ICS, E1000_ICS_LSC);
4360
4361	return 0;
4362
4363err_req_irq:
 
4364	e1000e_release_hw_control(adapter);
4365	e1000_power_down_phy(adapter);
4366	e1000e_free_rx_resources(adapter->rx_ring);
4367err_setup_rx:
4368	e1000e_free_tx_resources(adapter->tx_ring);
4369err_setup_tx:
4370	e1000e_reset(adapter);
4371	pm_runtime_put_sync(&pdev->dev);
4372
4373	return err;
4374}
4375
4376/**
4377 * e1000_close - Disables a network interface
4378 * @netdev: network interface device structure
4379 *
4380 * Returns 0, this is not allowed to fail
4381 *
4382 * The close entry point is called when an interface is de-activated
4383 * by the OS.  The hardware is still under the drivers control, but
4384 * needs to be disabled.  A global MAC reset is issued to stop the
4385 * hardware, and all transmit and receive resources are freed.
4386 **/
4387static int e1000_close(struct net_device *netdev)
4388{
4389	struct e1000_adapter *adapter = netdev_priv(netdev);
4390	struct pci_dev *pdev = adapter->pdev;
4391	int count = E1000_CHECK_RESET_COUNT;
4392
4393	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4394		usleep_range(10000, 20000);
4395
4396	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4397
4398	pm_runtime_get_sync(&pdev->dev);
4399
4400	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4401		e1000e_down(adapter, true);
4402		e1000_free_irq(adapter);
4403
4404		/* Link status message must follow this format */
4405		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4406	}
4407
4408	napi_disable(&adapter->napi);
4409
4410	e1000e_free_tx_resources(adapter->tx_ring);
4411	e1000e_free_rx_resources(adapter->rx_ring);
4412
4413	/* kill manageability vlan ID if supported, but not if a vlan with
4414	 * the same ID is registered on the host OS (let 8021q kill it)
4415	 */
4416	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4417		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4418				       adapter->mng_vlan_id);
4419
4420	/* If AMT is enabled, let the firmware know that the network
4421	 * interface is now closed
4422	 */
4423	if ((adapter->flags & FLAG_HAS_AMT) &&
4424	    !test_bit(__E1000_TESTING, &adapter->state))
4425		e1000e_release_hw_control(adapter);
4426
4427	pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4428
4429	pm_runtime_put_sync(&pdev->dev);
4430
4431	return 0;
4432}
4433
4434/**
4435 * e1000_set_mac - Change the Ethernet Address of the NIC
4436 * @netdev: network interface device structure
4437 * @p: pointer to an address structure
4438 *
4439 * Returns 0 on success, negative on failure
4440 **/
4441static int e1000_set_mac(struct net_device *netdev, void *p)
4442{
4443	struct e1000_adapter *adapter = netdev_priv(netdev);
4444	struct e1000_hw *hw = &adapter->hw;
4445	struct sockaddr *addr = p;
4446
4447	if (!is_valid_ether_addr(addr->sa_data))
4448		return -EADDRNOTAVAIL;
4449
4450	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4451	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4452
4453	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4454
4455	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4456		/* activate the work around */
4457		e1000e_set_laa_state_82571(&adapter->hw, 1);
4458
4459		/* Hold a copy of the LAA in RAR[14] This is done so that
4460		 * between the time RAR[0] gets clobbered  and the time it
4461		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4462		 * of the RARs and no incoming packets directed to this port
4463		 * are dropped. Eventually the LAA will be in RAR[0] and
4464		 * RAR[14]
4465		 */
4466		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4467				    adapter->hw.mac.rar_entry_count - 1);
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * e1000e_update_phy_task - work thread to update phy
4475 * @work: pointer to our work struct
4476 *
4477 * this worker thread exists because we must acquire a
4478 * semaphore to read the phy, which we could msleep while
4479 * waiting for it, and we can't msleep in a timer.
4480 **/
4481static void e1000e_update_phy_task(struct work_struct *work)
4482{
4483	struct e1000_adapter *adapter = container_of(work,
4484						     struct e1000_adapter,
4485						     update_phy_task);
4486	struct e1000_hw *hw = &adapter->hw;
4487
4488	if (test_bit(__E1000_DOWN, &adapter->state))
4489		return;
4490
4491	e1000_get_phy_info(hw);
4492
4493	/* Enable EEE on 82579 after link up */
4494	if (hw->phy.type == e1000_phy_82579)
4495		e1000_set_eee_pchlan(hw);
4496}
4497
4498/**
4499 * e1000_update_phy_info - timre call-back to update PHY info
4500 * @data: pointer to adapter cast into an unsigned long
4501 *
4502 * Need to wait a few seconds after link up to get diagnostic information from
4503 * the phy
4504 **/
4505static void e1000_update_phy_info(unsigned long data)
4506{
4507	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4508
4509	if (test_bit(__E1000_DOWN, &adapter->state))
4510		return;
4511
4512	schedule_work(&adapter->update_phy_task);
4513}
4514
4515/**
4516 * e1000e_update_phy_stats - Update the PHY statistics counters
4517 * @adapter: board private structure
4518 *
4519 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4520 **/
4521static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4522{
4523	struct e1000_hw *hw = &adapter->hw;
4524	s32 ret_val;
4525	u16 phy_data;
4526
4527	ret_val = hw->phy.ops.acquire(hw);
4528	if (ret_val)
4529		return;
4530
4531	/* A page set is expensive so check if already on desired page.
4532	 * If not, set to the page with the PHY status registers.
4533	 */
4534	hw->phy.addr = 1;
4535	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4536					   &phy_data);
4537	if (ret_val)
4538		goto release;
4539	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4540		ret_val = hw->phy.ops.set_page(hw,
4541					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4542		if (ret_val)
4543			goto release;
4544	}
4545
4546	/* Single Collision Count */
4547	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4548	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4549	if (!ret_val)
4550		adapter->stats.scc += phy_data;
4551
4552	/* Excessive Collision Count */
4553	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4554	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4555	if (!ret_val)
4556		adapter->stats.ecol += phy_data;
4557
4558	/* Multiple Collision Count */
4559	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4560	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4561	if (!ret_val)
4562		adapter->stats.mcc += phy_data;
4563
4564	/* Late Collision Count */
4565	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4566	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4567	if (!ret_val)
4568		adapter->stats.latecol += phy_data;
4569
4570	/* Collision Count - also used for adaptive IFS */
4571	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4572	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4573	if (!ret_val)
4574		hw->mac.collision_delta = phy_data;
4575
4576	/* Defer Count */
4577	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4578	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4579	if (!ret_val)
4580		adapter->stats.dc += phy_data;
4581
4582	/* Transmit with no CRS */
4583	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4584	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4585	if (!ret_val)
4586		adapter->stats.tncrs += phy_data;
4587
4588release:
4589	hw->phy.ops.release(hw);
4590}
4591
4592/**
4593 * e1000e_update_stats - Update the board statistics counters
4594 * @adapter: board private structure
4595 **/
4596static void e1000e_update_stats(struct e1000_adapter *adapter)
4597{
4598	struct net_device *netdev = adapter->netdev;
4599	struct e1000_hw *hw = &adapter->hw;
4600	struct pci_dev *pdev = adapter->pdev;
4601
4602	/* Prevent stats update while adapter is being reset, or if the pci
4603	 * connection is down.
4604	 */
4605	if (adapter->link_speed == 0)
4606		return;
4607	if (pci_channel_offline(pdev))
4608		return;
4609
4610	adapter->stats.crcerrs += er32(CRCERRS);
4611	adapter->stats.gprc += er32(GPRC);
4612	adapter->stats.gorc += er32(GORCL);
4613	er32(GORCH);		/* Clear gorc */
4614	adapter->stats.bprc += er32(BPRC);
4615	adapter->stats.mprc += er32(MPRC);
4616	adapter->stats.roc += er32(ROC);
4617
4618	adapter->stats.mpc += er32(MPC);
4619
4620	/* Half-duplex statistics */
4621	if (adapter->link_duplex == HALF_DUPLEX) {
4622		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4623			e1000e_update_phy_stats(adapter);
4624		} else {
4625			adapter->stats.scc += er32(SCC);
4626			adapter->stats.ecol += er32(ECOL);
4627			adapter->stats.mcc += er32(MCC);
4628			adapter->stats.latecol += er32(LATECOL);
4629			adapter->stats.dc += er32(DC);
4630
4631			hw->mac.collision_delta = er32(COLC);
4632
4633			if ((hw->mac.type != e1000_82574) &&
4634			    (hw->mac.type != e1000_82583))
4635				adapter->stats.tncrs += er32(TNCRS);
4636		}
4637		adapter->stats.colc += hw->mac.collision_delta;
4638	}
4639
4640	adapter->stats.xonrxc += er32(XONRXC);
4641	adapter->stats.xontxc += er32(XONTXC);
4642	adapter->stats.xoffrxc += er32(XOFFRXC);
4643	adapter->stats.xofftxc += er32(XOFFTXC);
4644	adapter->stats.gptc += er32(GPTC);
4645	adapter->stats.gotc += er32(GOTCL);
4646	er32(GOTCH);		/* Clear gotc */
4647	adapter->stats.rnbc += er32(RNBC);
4648	adapter->stats.ruc += er32(RUC);
4649
4650	adapter->stats.mptc += er32(MPTC);
4651	adapter->stats.bptc += er32(BPTC);
4652
4653	/* used for adaptive IFS */
4654
4655	hw->mac.tx_packet_delta = er32(TPT);
4656	adapter->stats.tpt += hw->mac.tx_packet_delta;
4657
4658	adapter->stats.algnerrc += er32(ALGNERRC);
4659	adapter->stats.rxerrc += er32(RXERRC);
4660	adapter->stats.cexterr += er32(CEXTERR);
4661	adapter->stats.tsctc += er32(TSCTC);
4662	adapter->stats.tsctfc += er32(TSCTFC);
4663
4664	/* Fill out the OS statistics structure */
4665	netdev->stats.multicast = adapter->stats.mprc;
4666	netdev->stats.collisions = adapter->stats.colc;
4667
4668	/* Rx Errors */
4669
4670	/* RLEC on some newer hardware can be incorrect so build
4671	 * our own version based on RUC and ROC
4672	 */
4673	netdev->stats.rx_errors = adapter->stats.rxerrc +
4674	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4675	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4676	netdev->stats.rx_length_errors = adapter->stats.ruc +
4677	    adapter->stats.roc;
4678	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4679	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4680	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4681
4682	/* Tx Errors */
4683	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4684	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4685	netdev->stats.tx_window_errors = adapter->stats.latecol;
4686	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4687
4688	/* Tx Dropped needs to be maintained elsewhere */
4689
4690	/* Management Stats */
4691	adapter->stats.mgptc += er32(MGTPTC);
4692	adapter->stats.mgprc += er32(MGTPRC);
4693	adapter->stats.mgpdc += er32(MGTPDC);
4694
4695	/* Correctable ECC Errors */
4696	if (hw->mac.type == e1000_pch_lpt) {
4697		u32 pbeccsts = er32(PBECCSTS);
 
4698		adapter->corr_errors +=
4699		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4700		adapter->uncorr_errors +=
4701		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4702		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4703	}
4704}
4705
4706/**
4707 * e1000_phy_read_status - Update the PHY register status snapshot
4708 * @adapter: board private structure
4709 **/
4710static void e1000_phy_read_status(struct e1000_adapter *adapter)
4711{
4712	struct e1000_hw *hw = &adapter->hw;
4713	struct e1000_phy_regs *phy = &adapter->phy_regs;
4714
4715	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4716	    (er32(STATUS) & E1000_STATUS_LU) &&
4717	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4718		int ret_val;
4719
4720		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4721		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4722		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4723		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4724		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4725		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4726		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4727		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4728		if (ret_val)
4729			e_warn("Error reading PHY register\n");
4730	} else {
4731		/* Do not read PHY registers if link is not up
4732		 * Set values to typical power-on defaults
4733		 */
4734		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4735		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4736			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4737			     BMSR_ERCAP);
4738		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4739				  ADVERTISE_ALL | ADVERTISE_CSMA);
4740		phy->lpa = 0;
4741		phy->expansion = EXPANSION_ENABLENPAGE;
4742		phy->ctrl1000 = ADVERTISE_1000FULL;
4743		phy->stat1000 = 0;
4744		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4745	}
4746}
4747
4748static void e1000_print_link_info(struct e1000_adapter *adapter)
4749{
4750	struct e1000_hw *hw = &adapter->hw;
4751	u32 ctrl = er32(CTRL);
4752
4753	/* Link status message must follow this format for user tools */
4754	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4755		adapter->netdev->name, adapter->link_speed,
4756		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4757		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4758		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4759		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4760}
4761
4762static bool e1000e_has_link(struct e1000_adapter *adapter)
4763{
4764	struct e1000_hw *hw = &adapter->hw;
4765	bool link_active = false;
4766	s32 ret_val = 0;
4767
4768	/* get_link_status is set on LSC (link status) interrupt or
4769	 * Rx sequence error interrupt.  get_link_status will stay
4770	 * false until the check_for_link establishes link
4771	 * for copper adapters ONLY
4772	 */
4773	switch (hw->phy.media_type) {
4774	case e1000_media_type_copper:
4775		if (hw->mac.get_link_status) {
4776			ret_val = hw->mac.ops.check_for_link(hw);
4777			link_active = !hw->mac.get_link_status;
4778		} else {
4779			link_active = true;
4780		}
4781		break;
4782	case e1000_media_type_fiber:
4783		ret_val = hw->mac.ops.check_for_link(hw);
4784		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4785		break;
4786	case e1000_media_type_internal_serdes:
4787		ret_val = hw->mac.ops.check_for_link(hw);
4788		link_active = adapter->hw.mac.serdes_has_link;
4789		break;
4790	default:
4791	case e1000_media_type_unknown:
4792		break;
4793	}
4794
4795	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4796	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4797		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4798		e_info("Gigabit has been disabled, downgrading speed\n");
4799	}
4800
4801	return link_active;
4802}
4803
4804static void e1000e_enable_receives(struct e1000_adapter *adapter)
4805{
4806	/* make sure the receive unit is started */
4807	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4808	    (adapter->flags & FLAG_RESTART_NOW)) {
4809		struct e1000_hw *hw = &adapter->hw;
4810		u32 rctl = er32(RCTL);
 
4811		ew32(RCTL, rctl | E1000_RCTL_EN);
4812		adapter->flags &= ~FLAG_RESTART_NOW;
4813	}
4814}
4815
4816static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4817{
4818	struct e1000_hw *hw = &adapter->hw;
4819
4820	/* With 82574 controllers, PHY needs to be checked periodically
4821	 * for hung state and reset, if two calls return true
4822	 */
4823	if (e1000_check_phy_82574(hw))
4824		adapter->phy_hang_count++;
4825	else
4826		adapter->phy_hang_count = 0;
4827
4828	if (adapter->phy_hang_count > 1) {
4829		adapter->phy_hang_count = 0;
4830		e_dbg("PHY appears hung - resetting\n");
4831		schedule_work(&adapter->reset_task);
4832	}
4833}
4834
4835/**
4836 * e1000_watchdog - Timer Call-back
4837 * @data: pointer to adapter cast into an unsigned long
4838 **/
4839static void e1000_watchdog(unsigned long data)
4840{
4841	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4842
4843	/* Do the rest outside of interrupt context */
4844	schedule_work(&adapter->watchdog_task);
4845
4846	/* TODO: make this use queue_delayed_work() */
4847}
4848
4849static void e1000_watchdog_task(struct work_struct *work)
4850{
4851	struct e1000_adapter *adapter = container_of(work,
4852						     struct e1000_adapter,
4853						     watchdog_task);
4854	struct net_device *netdev = adapter->netdev;
4855	struct e1000_mac_info *mac = &adapter->hw.mac;
4856	struct e1000_phy_info *phy = &adapter->hw.phy;
4857	struct e1000_ring *tx_ring = adapter->tx_ring;
4858	struct e1000_hw *hw = &adapter->hw;
4859	u32 link, tctl;
4860
4861	if (test_bit(__E1000_DOWN, &adapter->state))
4862		return;
4863
4864	link = e1000e_has_link(adapter);
4865	if ((netif_carrier_ok(netdev)) && link) {
4866		/* Cancel scheduled suspend requests. */
4867		pm_runtime_resume(netdev->dev.parent);
4868
4869		e1000e_enable_receives(adapter);
4870		goto link_up;
4871	}
4872
4873	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4874	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4875		e1000_update_mng_vlan(adapter);
4876
4877	if (link) {
4878		if (!netif_carrier_ok(netdev)) {
4879			bool txb2b = true;
4880
4881			/* Cancel scheduled suspend requests. */
4882			pm_runtime_resume(netdev->dev.parent);
4883
4884			/* update snapshot of PHY registers on LSC */
4885			e1000_phy_read_status(adapter);
4886			mac->ops.get_link_up_info(&adapter->hw,
4887						  &adapter->link_speed,
4888						  &adapter->link_duplex);
4889			e1000_print_link_info(adapter);
4890
4891			/* check if SmartSpeed worked */
4892			e1000e_check_downshift(hw);
4893			if (phy->speed_downgraded)
4894				netdev_warn(netdev,
4895					    "Link Speed was downgraded by SmartSpeed\n");
4896
4897			/* On supported PHYs, check for duplex mismatch only
4898			 * if link has autonegotiated at 10/100 half
4899			 */
4900			if ((hw->phy.type == e1000_phy_igp_3 ||
4901			     hw->phy.type == e1000_phy_bm) &&
4902			    hw->mac.autoneg &&
4903			    (adapter->link_speed == SPEED_10 ||
4904			     adapter->link_speed == SPEED_100) &&
4905			    (adapter->link_duplex == HALF_DUPLEX)) {
4906				u16 autoneg_exp;
4907
4908				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4909
4910				if (!(autoneg_exp & EXPANSION_NWAY))
4911					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4912			}
4913
4914			/* adjust timeout factor according to speed/duplex */
4915			adapter->tx_timeout_factor = 1;
4916			switch (adapter->link_speed) {
4917			case SPEED_10:
4918				txb2b = false;
4919				adapter->tx_timeout_factor = 16;
4920				break;
4921			case SPEED_100:
4922				txb2b = false;
4923				adapter->tx_timeout_factor = 10;
4924				break;
4925			}
4926
4927			/* workaround: re-program speed mode bit after
4928			 * link-up event
4929			 */
4930			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4931			    !txb2b) {
4932				u32 tarc0;
 
4933				tarc0 = er32(TARC(0));
4934				tarc0 &= ~SPEED_MODE_BIT;
4935				ew32(TARC(0), tarc0);
4936			}
4937
4938			/* disable TSO for pcie and 10/100 speeds, to avoid
4939			 * some hardware issues
4940			 */
4941			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4942				switch (adapter->link_speed) {
4943				case SPEED_10:
4944				case SPEED_100:
4945					e_info("10/100 speed: disabling TSO\n");
4946					netdev->features &= ~NETIF_F_TSO;
4947					netdev->features &= ~NETIF_F_TSO6;
4948					break;
4949				case SPEED_1000:
4950					netdev->features |= NETIF_F_TSO;
4951					netdev->features |= NETIF_F_TSO6;
4952					break;
4953				default:
4954					/* oops */
4955					break;
4956				}
4957			}
4958
4959			/* enable transmits in the hardware, need to do this
4960			 * after setting TARC(0)
4961			 */
4962			tctl = er32(TCTL);
4963			tctl |= E1000_TCTL_EN;
4964			ew32(TCTL, tctl);
4965
4966			/* Perform any post-link-up configuration before
4967			 * reporting link up.
4968			 */
4969			if (phy->ops.cfg_on_link_up)
4970				phy->ops.cfg_on_link_up(hw);
4971
4972			netif_carrier_on(netdev);
4973
4974			if (!test_bit(__E1000_DOWN, &adapter->state))
4975				mod_timer(&adapter->phy_info_timer,
4976					  round_jiffies(jiffies + 2 * HZ));
4977		}
4978	} else {
4979		if (netif_carrier_ok(netdev)) {
4980			adapter->link_speed = 0;
4981			adapter->link_duplex = 0;
4982			/* Link status message must follow this format */
4983			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4984			netif_carrier_off(netdev);
4985			if (!test_bit(__E1000_DOWN, &adapter->state))
4986				mod_timer(&adapter->phy_info_timer,
4987					  round_jiffies(jiffies + 2 * HZ));
4988
4989			/* 8000ES2LAN requires a Rx packet buffer work-around
4990			 * on link down event; reset the controller to flush
4991			 * the Rx packet buffer.
4992			 */
4993			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4994				adapter->flags |= FLAG_RESTART_NOW;
4995			else
4996				pm_schedule_suspend(netdev->dev.parent,
4997						    LINK_TIMEOUT);
4998		}
4999	}
5000
5001link_up:
5002	spin_lock(&adapter->stats64_lock);
5003	e1000e_update_stats(adapter);
5004
5005	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5006	adapter->tpt_old = adapter->stats.tpt;
5007	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5008	adapter->colc_old = adapter->stats.colc;
5009
5010	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5011	adapter->gorc_old = adapter->stats.gorc;
5012	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5013	adapter->gotc_old = adapter->stats.gotc;
5014	spin_unlock(&adapter->stats64_lock);
5015
5016	/* If the link is lost the controller stops DMA, but
5017	 * if there is queued Tx work it cannot be done.  So
5018	 * reset the controller to flush the Tx packet buffers.
5019	 */
5020	if (!netif_carrier_ok(netdev) &&
5021	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5022		adapter->flags |= FLAG_RESTART_NOW;
5023
5024	/* If reset is necessary, do it outside of interrupt context. */
5025	if (adapter->flags & FLAG_RESTART_NOW) {
5026		schedule_work(&adapter->reset_task);
5027		/* return immediately since reset is imminent */
5028		return;
5029	}
5030
5031	e1000e_update_adaptive(&adapter->hw);
5032
5033	/* Simple mode for Interrupt Throttle Rate (ITR) */
5034	if (adapter->itr_setting == 4) {
5035		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5036		 * Total asymmetrical Tx or Rx gets ITR=8000;
5037		 * everyone else is between 2000-8000.
5038		 */
5039		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5040		u32 dif = (adapter->gotc > adapter->gorc ?
5041			   adapter->gotc - adapter->gorc :
5042			   adapter->gorc - adapter->gotc) / 10000;
5043		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5044
5045		e1000e_write_itr(adapter, itr);
5046	}
5047
5048	/* Cause software interrupt to ensure Rx ring is cleaned */
5049	if (adapter->msix_entries)
5050		ew32(ICS, adapter->rx_ring->ims_val);
5051	else
5052		ew32(ICS, E1000_ICS_RXDMT0);
5053
5054	/* flush pending descriptors to memory before detecting Tx hang */
5055	e1000e_flush_descriptors(adapter);
5056
5057	/* Force detection of hung controller every watchdog period */
5058	adapter->detect_tx_hung = true;
5059
5060	/* With 82571 controllers, LAA may be overwritten due to controller
5061	 * reset from the other port. Set the appropriate LAA in RAR[0]
5062	 */
5063	if (e1000e_get_laa_state_82571(hw))
5064		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5065
5066	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5067		e1000e_check_82574_phy_workaround(adapter);
5068
5069	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5070	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5071		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5072		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5073			er32(RXSTMPH);
5074			adapter->rx_hwtstamp_cleared++;
5075		} else {
5076			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5077		}
5078	}
5079
5080	/* Reset the timer */
5081	if (!test_bit(__E1000_DOWN, &adapter->state))
5082		mod_timer(&adapter->watchdog_timer,
5083			  round_jiffies(jiffies + 2 * HZ));
5084}
5085
5086#define E1000_TX_FLAGS_CSUM		0x00000001
5087#define E1000_TX_FLAGS_VLAN		0x00000002
5088#define E1000_TX_FLAGS_TSO		0x00000004
5089#define E1000_TX_FLAGS_IPV4		0x00000008
5090#define E1000_TX_FLAGS_NO_FCS		0x00000010
5091#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5092#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5093#define E1000_TX_FLAGS_VLAN_SHIFT	16
5094
5095static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
5096{
5097	struct e1000_context_desc *context_desc;
5098	struct e1000_buffer *buffer_info;
5099	unsigned int i;
5100	u32 cmd_length = 0;
5101	u16 ipcse = 0, mss;
5102	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5103	int err;
5104
5105	if (!skb_is_gso(skb))
5106		return 0;
5107
5108	err = skb_cow_head(skb, 0);
5109	if (err < 0)
5110		return err;
5111
5112	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5113	mss = skb_shinfo(skb)->gso_size;
5114	if (skb->protocol == htons(ETH_P_IP)) {
5115		struct iphdr *iph = ip_hdr(skb);
5116		iph->tot_len = 0;
5117		iph->check = 0;
5118		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5119							 0, IPPROTO_TCP, 0);
5120		cmd_length = E1000_TXD_CMD_IP;
5121		ipcse = skb_transport_offset(skb) - 1;
5122	} else if (skb_is_gso_v6(skb)) {
5123		ipv6_hdr(skb)->payload_len = 0;
5124		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5125						       &ipv6_hdr(skb)->daddr,
5126						       0, IPPROTO_TCP, 0);
5127		ipcse = 0;
5128	}
5129	ipcss = skb_network_offset(skb);
5130	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5131	tucss = skb_transport_offset(skb);
5132	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5133
5134	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5135		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5136
5137	i = tx_ring->next_to_use;
5138	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5139	buffer_info = &tx_ring->buffer_info[i];
5140
5141	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5142	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5143	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5144	context_desc->upper_setup.tcp_fields.tucss = tucss;
5145	context_desc->upper_setup.tcp_fields.tucso = tucso;
5146	context_desc->upper_setup.tcp_fields.tucse = 0;
5147	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5148	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5149	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5150
5151	buffer_info->time_stamp = jiffies;
5152	buffer_info->next_to_watch = i;
5153
5154	i++;
5155	if (i == tx_ring->count)
5156		i = 0;
5157	tx_ring->next_to_use = i;
5158
5159	return 1;
5160}
5161
5162static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
5163{
5164	struct e1000_adapter *adapter = tx_ring->adapter;
5165	struct e1000_context_desc *context_desc;
5166	struct e1000_buffer *buffer_info;
5167	unsigned int i;
5168	u8 css;
5169	u32 cmd_len = E1000_TXD_CMD_DEXT;
5170	__be16 protocol;
5171
5172	if (skb->ip_summed != CHECKSUM_PARTIAL)
5173		return 0;
5174
5175	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5176		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5177	else
5178		protocol = skb->protocol;
5179
5180	switch (protocol) {
5181	case cpu_to_be16(ETH_P_IP):
5182		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5183			cmd_len |= E1000_TXD_CMD_TCP;
5184		break;
5185	case cpu_to_be16(ETH_P_IPV6):
5186		/* XXX not handling all IPV6 headers */
5187		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5188			cmd_len |= E1000_TXD_CMD_TCP;
5189		break;
5190	default:
5191		if (unlikely(net_ratelimit()))
5192			e_warn("checksum_partial proto=%x!\n",
5193			       be16_to_cpu(protocol));
5194		break;
5195	}
5196
5197	css = skb_checksum_start_offset(skb);
5198
5199	i = tx_ring->next_to_use;
5200	buffer_info = &tx_ring->buffer_info[i];
5201	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5202
5203	context_desc->lower_setup.ip_config = 0;
5204	context_desc->upper_setup.tcp_fields.tucss = css;
5205	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5206	context_desc->upper_setup.tcp_fields.tucse = 0;
5207	context_desc->tcp_seg_setup.data = 0;
5208	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5209
5210	buffer_info->time_stamp = jiffies;
5211	buffer_info->next_to_watch = i;
5212
5213	i++;
5214	if (i == tx_ring->count)
5215		i = 0;
5216	tx_ring->next_to_use = i;
5217
5218	return 1;
5219}
5220
5221static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5222			unsigned int first, unsigned int max_per_txd,
5223			unsigned int nr_frags)
5224{
5225	struct e1000_adapter *adapter = tx_ring->adapter;
5226	struct pci_dev *pdev = adapter->pdev;
5227	struct e1000_buffer *buffer_info;
5228	unsigned int len = skb_headlen(skb);
5229	unsigned int offset = 0, size, count = 0, i;
5230	unsigned int f, bytecount, segs;
5231
5232	i = tx_ring->next_to_use;
5233
5234	while (len) {
5235		buffer_info = &tx_ring->buffer_info[i];
5236		size = min(len, max_per_txd);
5237
5238		buffer_info->length = size;
5239		buffer_info->time_stamp = jiffies;
5240		buffer_info->next_to_watch = i;
5241		buffer_info->dma = dma_map_single(&pdev->dev,
5242						  skb->data + offset,
5243						  size, DMA_TO_DEVICE);
5244		buffer_info->mapped_as_page = false;
5245		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5246			goto dma_error;
5247
5248		len -= size;
5249		offset += size;
5250		count++;
5251
5252		if (len) {
5253			i++;
5254			if (i == tx_ring->count)
5255				i = 0;
5256		}
5257	}
5258
5259	for (f = 0; f < nr_frags; f++) {
5260		const struct skb_frag_struct *frag;
5261
5262		frag = &skb_shinfo(skb)->frags[f];
5263		len = skb_frag_size(frag);
5264		offset = 0;
5265
5266		while (len) {
5267			i++;
5268			if (i == tx_ring->count)
5269				i = 0;
5270
5271			buffer_info = &tx_ring->buffer_info[i];
5272			size = min(len, max_per_txd);
5273
5274			buffer_info->length = size;
5275			buffer_info->time_stamp = jiffies;
5276			buffer_info->next_to_watch = i;
5277			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5278							    offset, size,
5279							    DMA_TO_DEVICE);
5280			buffer_info->mapped_as_page = true;
5281			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5282				goto dma_error;
5283
5284			len -= size;
5285			offset += size;
5286			count++;
5287		}
5288	}
5289
5290	segs = skb_shinfo(skb)->gso_segs ? : 1;
5291	/* multiply data chunks by size of headers */
5292	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5293
5294	tx_ring->buffer_info[i].skb = skb;
5295	tx_ring->buffer_info[i].segs = segs;
5296	tx_ring->buffer_info[i].bytecount = bytecount;
5297	tx_ring->buffer_info[first].next_to_watch = i;
5298
5299	return count;
5300
5301dma_error:
5302	dev_err(&pdev->dev, "Tx DMA map failed\n");
5303	buffer_info->dma = 0;
5304	if (count)
5305		count--;
5306
5307	while (count--) {
5308		if (i == 0)
5309			i += tx_ring->count;
5310		i--;
5311		buffer_info = &tx_ring->buffer_info[i];
5312		e1000_put_txbuf(tx_ring, buffer_info);
5313	}
5314
5315	return 0;
5316}
5317
5318static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5319{
5320	struct e1000_adapter *adapter = tx_ring->adapter;
5321	struct e1000_tx_desc *tx_desc = NULL;
5322	struct e1000_buffer *buffer_info;
5323	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5324	unsigned int i;
5325
5326	if (tx_flags & E1000_TX_FLAGS_TSO) {
5327		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5328		    E1000_TXD_CMD_TSE;
5329		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5330
5331		if (tx_flags & E1000_TX_FLAGS_IPV4)
5332			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5333	}
5334
5335	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5336		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5337		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5338	}
5339
5340	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5341		txd_lower |= E1000_TXD_CMD_VLE;
5342		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5343	}
5344
5345	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5346		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5347
5348	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5349		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5350		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5351	}
5352
5353	i = tx_ring->next_to_use;
5354
5355	do {
5356		buffer_info = &tx_ring->buffer_info[i];
5357		tx_desc = E1000_TX_DESC(*tx_ring, i);
5358		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5359		tx_desc->lower.data = cpu_to_le32(txd_lower |
5360						  buffer_info->length);
5361		tx_desc->upper.data = cpu_to_le32(txd_upper);
5362
5363		i++;
5364		if (i == tx_ring->count)
5365			i = 0;
5366	} while (--count > 0);
5367
5368	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5369
5370	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5371	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5372		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5373
5374	/* Force memory writes to complete before letting h/w
5375	 * know there are new descriptors to fetch.  (Only
5376	 * applicable for weak-ordered memory model archs,
5377	 * such as IA-64).
5378	 */
5379	wmb();
5380
5381	tx_ring->next_to_use = i;
5382
5383	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5384		e1000e_update_tdt_wa(tx_ring, i);
5385	else
5386		writel(i, tx_ring->tail);
5387
5388	/* we need this if more than one processor can write to our tail
5389	 * at a time, it synchronizes IO on IA64/Altix systems
5390	 */
5391	mmiowb();
5392}
5393
5394#define MINIMUM_DHCP_PACKET_SIZE 282
5395static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5396				    struct sk_buff *skb)
5397{
5398	struct e1000_hw *hw = &adapter->hw;
5399	u16 length, offset;
5400
5401	if (vlan_tx_tag_present(skb) &&
5402	    !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5403	      (adapter->hw.mng_cookie.status &
5404	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5405		return 0;
5406
5407	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5408		return 0;
5409
5410	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5411		return 0;
5412
5413	{
5414		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5415		struct udphdr *udp;
5416
5417		if (ip->protocol != IPPROTO_UDP)
5418			return 0;
5419
5420		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5421		if (ntohs(udp->dest) != 67)
5422			return 0;
5423
5424		offset = (u8 *)udp + 8 - skb->data;
5425		length = skb->len - offset;
5426		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5427	}
5428
5429	return 0;
5430}
5431
5432static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5433{
5434	struct e1000_adapter *adapter = tx_ring->adapter;
5435
5436	netif_stop_queue(adapter->netdev);
5437	/* Herbert's original patch had:
5438	 *  smp_mb__after_netif_stop_queue();
5439	 * but since that doesn't exist yet, just open code it.
5440	 */
5441	smp_mb();
5442
5443	/* We need to check again in a case another CPU has just
5444	 * made room available.
5445	 */
5446	if (e1000_desc_unused(tx_ring) < size)
5447		return -EBUSY;
5448
5449	/* A reprieve! */
5450	netif_start_queue(adapter->netdev);
5451	++adapter->restart_queue;
5452	return 0;
5453}
5454
5455static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5456{
5457	BUG_ON(size > tx_ring->count);
5458
5459	if (e1000_desc_unused(tx_ring) >= size)
5460		return 0;
5461	return __e1000_maybe_stop_tx(tx_ring, size);
5462}
5463
5464static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5465				    struct net_device *netdev)
5466{
5467	struct e1000_adapter *adapter = netdev_priv(netdev);
5468	struct e1000_ring *tx_ring = adapter->tx_ring;
5469	unsigned int first;
5470	unsigned int tx_flags = 0;
5471	unsigned int len = skb_headlen(skb);
5472	unsigned int nr_frags;
5473	unsigned int mss;
5474	int count = 0;
5475	int tso;
5476	unsigned int f;
 
5477
5478	if (test_bit(__E1000_DOWN, &adapter->state)) {
5479		dev_kfree_skb_any(skb);
5480		return NETDEV_TX_OK;
5481	}
5482
5483	if (skb->len <= 0) {
5484		dev_kfree_skb_any(skb);
5485		return NETDEV_TX_OK;
5486	}
5487
5488	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5489	 * pad skb in order to meet this minimum size requirement
5490	 */
5491	if (unlikely(skb->len < 17)) {
5492		if (skb_pad(skb, 17 - skb->len))
5493			return NETDEV_TX_OK;
5494		skb->len = 17;
5495		skb_set_tail_pointer(skb, 17);
5496	}
5497
5498	mss = skb_shinfo(skb)->gso_size;
5499	if (mss) {
5500		u8 hdr_len;
5501
5502		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5503		 * points to just header, pull a few bytes of payload from
5504		 * frags into skb->data
5505		 */
5506		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5507		/* we do this workaround for ES2LAN, but it is un-necessary,
5508		 * avoiding it could save a lot of cycles
5509		 */
5510		if (skb->data_len && (hdr_len == len)) {
5511			unsigned int pull_size;
5512
5513			pull_size = min_t(unsigned int, 4, skb->data_len);
5514			if (!__pskb_pull_tail(skb, pull_size)) {
5515				e_err("__pskb_pull_tail failed.\n");
5516				dev_kfree_skb_any(skb);
5517				return NETDEV_TX_OK;
5518			}
5519			len = skb_headlen(skb);
5520		}
5521	}
5522
5523	/* reserve a descriptor for the offload context */
5524	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5525		count++;
5526	count++;
5527
5528	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5529
5530	nr_frags = skb_shinfo(skb)->nr_frags;
5531	for (f = 0; f < nr_frags; f++)
5532		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5533				      adapter->tx_fifo_limit);
5534
5535	if (adapter->hw.mac.tx_pkt_filtering)
5536		e1000_transfer_dhcp_info(adapter, skb);
5537
5538	/* need: count + 2 desc gap to keep tail from touching
5539	 * head, otherwise try next time
5540	 */
5541	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5542		return NETDEV_TX_BUSY;
5543
5544	if (vlan_tx_tag_present(skb)) {
5545		tx_flags |= E1000_TX_FLAGS_VLAN;
5546		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5547	}
5548
5549	first = tx_ring->next_to_use;
5550
5551	tso = e1000_tso(tx_ring, skb);
5552	if (tso < 0) {
5553		dev_kfree_skb_any(skb);
5554		return NETDEV_TX_OK;
5555	}
5556
5557	if (tso)
5558		tx_flags |= E1000_TX_FLAGS_TSO;
5559	else if (e1000_tx_csum(tx_ring, skb))
5560		tx_flags |= E1000_TX_FLAGS_CSUM;
5561
5562	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5563	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5564	 * no longer assume, we must.
5565	 */
5566	if (skb->protocol == htons(ETH_P_IP))
5567		tx_flags |= E1000_TX_FLAGS_IPV4;
5568
5569	if (unlikely(skb->no_fcs))
5570		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5571
5572	/* if count is 0 then mapping error has occurred */
5573	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5574			     nr_frags);
5575	if (count) {
5576		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5577			     !adapter->tx_hwtstamp_skb)) {
5578			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5579			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5580			adapter->tx_hwtstamp_skb = skb_get(skb);
5581			adapter->tx_hwtstamp_start = jiffies;
5582			schedule_work(&adapter->tx_hwtstamp_work);
5583		} else {
5584			skb_tx_timestamp(skb);
 
 
5585		}
5586
 
 
5587		netdev_sent_queue(netdev, skb->len);
5588		e1000_tx_queue(tx_ring, tx_flags, count);
5589		/* Make sure there is space in the ring for the next send. */
5590		e1000_maybe_stop_tx(tx_ring,
5591				    (MAX_SKB_FRAGS *
5592				     DIV_ROUND_UP(PAGE_SIZE,
5593						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5594	} else {
5595		dev_kfree_skb_any(skb);
5596		tx_ring->buffer_info[first].time_stamp = 0;
5597		tx_ring->next_to_use = first;
5598	}
5599
5600	return NETDEV_TX_OK;
5601}
5602
5603/**
5604 * e1000_tx_timeout - Respond to a Tx Hang
5605 * @netdev: network interface device structure
5606 **/
5607static void e1000_tx_timeout(struct net_device *netdev)
5608{
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610
5611	/* Do the reset outside of interrupt context */
5612	adapter->tx_timeout_count++;
5613	schedule_work(&adapter->reset_task);
5614}
5615
5616static void e1000_reset_task(struct work_struct *work)
5617{
5618	struct e1000_adapter *adapter;
5619	adapter = container_of(work, struct e1000_adapter, reset_task);
5620
5621	/* don't run the task if already down */
5622	if (test_bit(__E1000_DOWN, &adapter->state))
5623		return;
5624
5625	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5626		e1000e_dump(adapter);
5627		e_err("Reset adapter unexpectedly\n");
5628	}
5629	e1000e_reinit_locked(adapter);
5630}
5631
5632/**
5633 * e1000_get_stats64 - Get System Network Statistics
5634 * @netdev: network interface device structure
5635 * @stats: rtnl_link_stats64 pointer
5636 *
5637 * Returns the address of the device statistics structure.
5638 **/
5639struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5640					     struct rtnl_link_stats64 *stats)
5641{
5642	struct e1000_adapter *adapter = netdev_priv(netdev);
5643
5644	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5645	spin_lock(&adapter->stats64_lock);
5646	e1000e_update_stats(adapter);
5647	/* Fill out the OS statistics structure */
5648	stats->rx_bytes = adapter->stats.gorc;
5649	stats->rx_packets = adapter->stats.gprc;
5650	stats->tx_bytes = adapter->stats.gotc;
5651	stats->tx_packets = adapter->stats.gptc;
5652	stats->multicast = adapter->stats.mprc;
5653	stats->collisions = adapter->stats.colc;
5654
5655	/* Rx Errors */
5656
5657	/* RLEC on some newer hardware can be incorrect so build
5658	 * our own version based on RUC and ROC
5659	 */
5660	stats->rx_errors = adapter->stats.rxerrc +
5661	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5662	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5663	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5664	stats->rx_crc_errors = adapter->stats.crcerrs;
5665	stats->rx_frame_errors = adapter->stats.algnerrc;
5666	stats->rx_missed_errors = adapter->stats.mpc;
5667
5668	/* Tx Errors */
5669	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5670	stats->tx_aborted_errors = adapter->stats.ecol;
5671	stats->tx_window_errors = adapter->stats.latecol;
5672	stats->tx_carrier_errors = adapter->stats.tncrs;
5673
5674	/* Tx Dropped needs to be maintained elsewhere */
5675
5676	spin_unlock(&adapter->stats64_lock);
5677	return stats;
5678}
5679
5680/**
5681 * e1000_change_mtu - Change the Maximum Transfer Unit
5682 * @netdev: network interface device structure
5683 * @new_mtu: new value for maximum frame size
5684 *
5685 * Returns 0 on success, negative on failure
5686 **/
5687static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5688{
5689	struct e1000_adapter *adapter = netdev_priv(netdev);
5690	int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5691
5692	/* Jumbo frame support */
5693	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5694	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5695		e_err("Jumbo Frames not supported.\n");
5696		return -EINVAL;
5697	}
5698
5699	/* Supported frame sizes */
5700	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5701	    (max_frame > adapter->max_hw_frame_size)) {
5702		e_err("Unsupported MTU setting\n");
5703		return -EINVAL;
5704	}
5705
5706	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5707	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5708	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5709	    (new_mtu > ETH_DATA_LEN)) {
5710		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5711		return -EINVAL;
5712	}
5713
5714	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5715		usleep_range(1000, 2000);
5716	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5717	adapter->max_frame_size = max_frame;
5718	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5719	netdev->mtu = new_mtu;
5720
5721	pm_runtime_get_sync(netdev->dev.parent);
5722
5723	if (netif_running(netdev))
5724		e1000e_down(adapter, true);
5725
5726	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5727	 * means we reserve 2 more, this pushes us to allocate from the next
5728	 * larger slab size.
5729	 * i.e. RXBUFFER_2048 --> size-4096 slab
5730	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5731	 * fragmented skbs
5732	 */
5733
5734	if (max_frame <= 2048)
5735		adapter->rx_buffer_len = 2048;
5736	else
5737		adapter->rx_buffer_len = 4096;
5738
5739	/* adjust allocation if LPE protects us, and we aren't using SBP */
5740	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5741	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5742		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5743		    + ETH_FCS_LEN;
5744
5745	if (netif_running(netdev))
5746		e1000e_up(adapter);
5747	else
5748		e1000e_reset(adapter);
5749
5750	pm_runtime_put_sync(netdev->dev.parent);
5751
5752	clear_bit(__E1000_RESETTING, &adapter->state);
5753
5754	return 0;
5755}
5756
5757static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5758			   int cmd)
5759{
5760	struct e1000_adapter *adapter = netdev_priv(netdev);
5761	struct mii_ioctl_data *data = if_mii(ifr);
5762
5763	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5764		return -EOPNOTSUPP;
5765
5766	switch (cmd) {
5767	case SIOCGMIIPHY:
5768		data->phy_id = adapter->hw.phy.addr;
5769		break;
5770	case SIOCGMIIREG:
5771		e1000_phy_read_status(adapter);
5772
5773		switch (data->reg_num & 0x1F) {
5774		case MII_BMCR:
5775			data->val_out = adapter->phy_regs.bmcr;
5776			break;
5777		case MII_BMSR:
5778			data->val_out = adapter->phy_regs.bmsr;
5779			break;
5780		case MII_PHYSID1:
5781			data->val_out = (adapter->hw.phy.id >> 16);
5782			break;
5783		case MII_PHYSID2:
5784			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5785			break;
5786		case MII_ADVERTISE:
5787			data->val_out = adapter->phy_regs.advertise;
5788			break;
5789		case MII_LPA:
5790			data->val_out = adapter->phy_regs.lpa;
5791			break;
5792		case MII_EXPANSION:
5793			data->val_out = adapter->phy_regs.expansion;
5794			break;
5795		case MII_CTRL1000:
5796			data->val_out = adapter->phy_regs.ctrl1000;
5797			break;
5798		case MII_STAT1000:
5799			data->val_out = adapter->phy_regs.stat1000;
5800			break;
5801		case MII_ESTATUS:
5802			data->val_out = adapter->phy_regs.estatus;
5803			break;
5804		default:
5805			return -EIO;
5806		}
5807		break;
5808	case SIOCSMIIREG:
5809	default:
5810		return -EOPNOTSUPP;
5811	}
5812	return 0;
5813}
5814
5815/**
5816 * e1000e_hwtstamp_ioctl - control hardware time stamping
5817 * @netdev: network interface device structure
5818 * @ifreq: interface request
5819 *
5820 * Outgoing time stamping can be enabled and disabled. Play nice and
5821 * disable it when requested, although it shouldn't cause any overhead
5822 * when no packet needs it. At most one packet in the queue may be
5823 * marked for time stamping, otherwise it would be impossible to tell
5824 * for sure to which packet the hardware time stamp belongs.
5825 *
5826 * Incoming time stamping has to be configured via the hardware filters.
5827 * Not all combinations are supported, in particular event type has to be
5828 * specified. Matching the kind of event packet is not supported, with the
5829 * exception of "all V2 events regardless of level 2 or 4".
5830 **/
5831static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5832{
5833	struct e1000_adapter *adapter = netdev_priv(netdev);
5834	struct hwtstamp_config config;
5835	int ret_val;
5836
5837	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5838		return -EFAULT;
5839
5840	ret_val = e1000e_config_hwtstamp(adapter, &config);
5841	if (ret_val)
5842		return ret_val;
5843
5844	switch (config.rx_filter) {
5845	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5846	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5847	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5848	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5849	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5850	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5851		/* With V2 type filters which specify a Sync or Delay Request,
5852		 * Path Delay Request/Response messages are also time stamped
5853		 * by hardware so notify the caller the requested packets plus
5854		 * some others are time stamped.
5855		 */
5856		config.rx_filter = HWTSTAMP_FILTER_SOME;
5857		break;
5858	default:
5859		break;
5860	}
5861
5862	return copy_to_user(ifr->ifr_data, &config,
5863			    sizeof(config)) ? -EFAULT : 0;
5864}
5865
5866static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5867{
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869
5870	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5871			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5872}
5873
5874static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5875{
5876	switch (cmd) {
5877	case SIOCGMIIPHY:
5878	case SIOCGMIIREG:
5879	case SIOCSMIIREG:
5880		return e1000_mii_ioctl(netdev, ifr, cmd);
5881	case SIOCSHWTSTAMP:
5882		return e1000e_hwtstamp_set(netdev, ifr);
5883	case SIOCGHWTSTAMP:
5884		return e1000e_hwtstamp_get(netdev, ifr);
5885	default:
5886		return -EOPNOTSUPP;
5887	}
5888}
5889
5890static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5891{
5892	struct e1000_hw *hw = &adapter->hw;
5893	u32 i, mac_reg, wuc;
5894	u16 phy_reg, wuc_enable;
5895	int retval;
5896
5897	/* copy MAC RARs to PHY RARs */
5898	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5899
5900	retval = hw->phy.ops.acquire(hw);
5901	if (retval) {
5902		e_err("Could not acquire PHY\n");
5903		return retval;
5904	}
5905
5906	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5907	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5908	if (retval)
5909		goto release;
5910
5911	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5912	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5913		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5914		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5915					   (u16)(mac_reg & 0xFFFF));
5916		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5917					   (u16)((mac_reg >> 16) & 0xFFFF));
5918	}
5919
5920	/* configure PHY Rx Control register */
5921	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5922	mac_reg = er32(RCTL);
5923	if (mac_reg & E1000_RCTL_UPE)
5924		phy_reg |= BM_RCTL_UPE;
5925	if (mac_reg & E1000_RCTL_MPE)
5926		phy_reg |= BM_RCTL_MPE;
5927	phy_reg &= ~(BM_RCTL_MO_MASK);
5928	if (mac_reg & E1000_RCTL_MO_3)
5929		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5930			    << BM_RCTL_MO_SHIFT);
5931	if (mac_reg & E1000_RCTL_BAM)
5932		phy_reg |= BM_RCTL_BAM;
5933	if (mac_reg & E1000_RCTL_PMCF)
5934		phy_reg |= BM_RCTL_PMCF;
5935	mac_reg = er32(CTRL);
5936	if (mac_reg & E1000_CTRL_RFCE)
5937		phy_reg |= BM_RCTL_RFCE;
5938	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5939
5940	wuc = E1000_WUC_PME_EN;
5941	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
5942		wuc |= E1000_WUC_APME;
5943
5944	/* enable PHY wakeup in MAC register */
5945	ew32(WUFC, wufc);
5946	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
5947		   E1000_WUC_PME_STATUS | wuc));
5948
5949	/* configure and enable PHY wakeup in PHY registers */
5950	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5951	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
5952
5953	/* activate PHY wakeup */
5954	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5955	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5956	if (retval)
5957		e_err("Could not set PHY Host Wakeup bit\n");
5958release:
5959	hw->phy.ops.release(hw);
5960
5961	return retval;
5962}
5963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5964static int e1000e_pm_freeze(struct device *dev)
5965{
5966	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
5967	struct e1000_adapter *adapter = netdev_priv(netdev);
5968
5969	netif_device_detach(netdev);
5970
5971	if (netif_running(netdev)) {
5972		int count = E1000_CHECK_RESET_COUNT;
5973
5974		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5975			usleep_range(10000, 20000);
5976
5977		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5978
5979		/* Quiesce the device without resetting the hardware */
5980		e1000e_down(adapter, false);
5981		e1000_free_irq(adapter);
5982	}
5983	e1000e_reset_interrupt_capability(adapter);
5984
5985	/* Allow time for pending master requests to run */
5986	e1000e_disable_pcie_master(&adapter->hw);
5987
5988	return 0;
5989}
5990
5991static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5992{
5993	struct net_device *netdev = pci_get_drvdata(pdev);
5994	struct e1000_adapter *adapter = netdev_priv(netdev);
5995	struct e1000_hw *hw = &adapter->hw;
5996	u32 ctrl, ctrl_ext, rctl, status;
5997	/* Runtime suspend should only enable wakeup for link changes */
5998	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5999	int retval = 0;
6000
6001	status = er32(STATUS);
6002	if (status & E1000_STATUS_LU)
6003		wufc &= ~E1000_WUFC_LNKC;
6004
6005	if (wufc) {
6006		e1000_setup_rctl(adapter);
6007		e1000e_set_rx_mode(netdev);
6008
6009		/* turn on all-multi mode if wake on multicast is enabled */
6010		if (wufc & E1000_WUFC_MC) {
6011			rctl = er32(RCTL);
6012			rctl |= E1000_RCTL_MPE;
6013			ew32(RCTL, rctl);
6014		}
6015
6016		ctrl = er32(CTRL);
6017		ctrl |= E1000_CTRL_ADVD3WUC;
6018		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6019			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6020		ew32(CTRL, ctrl);
6021
6022		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6023		    adapter->hw.phy.media_type ==
6024		    e1000_media_type_internal_serdes) {
6025			/* keep the laser running in D3 */
6026			ctrl_ext = er32(CTRL_EXT);
6027			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6028			ew32(CTRL_EXT, ctrl_ext);
6029		}
6030
6031		if (!runtime)
6032			e1000e_power_up_phy(adapter);
6033
6034		if (adapter->flags & FLAG_IS_ICH)
6035			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6036
6037		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6038			/* enable wakeup by the PHY */
6039			retval = e1000_init_phy_wakeup(adapter, wufc);
6040			if (retval)
6041				return retval;
6042		} else {
6043			/* enable wakeup by the MAC */
6044			ew32(WUFC, wufc);
6045			ew32(WUC, E1000_WUC_PME_EN);
6046		}
6047	} else {
6048		ew32(WUC, 0);
6049		ew32(WUFC, 0);
6050
6051		e1000_power_down_phy(adapter);
6052	}
6053
6054	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6055		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6056	} else if (hw->mac.type == e1000_pch_lpt) {
6057		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6058			/* ULP does not support wake from unicast, multicast
6059			 * or broadcast.
6060			 */
6061			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6062
6063		if (retval)
6064			return retval;
6065	}
6066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6067
6068	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6069	 * would have already happened in close and is redundant.
6070	 */
6071	e1000e_release_hw_control(adapter);
6072
6073	pci_clear_master(pdev);
6074
6075	/* The pci-e switch on some quad port adapters will report a
6076	 * correctable error when the MAC transitions from D0 to D3.  To
6077	 * prevent this we need to mask off the correctable errors on the
6078	 * downstream port of the pci-e switch.
6079	 *
6080	 * We don't have the associated upstream bridge while assigning
6081	 * the PCI device into guest. For example, the KVM on power is
6082	 * one of the cases.
6083	 */
6084	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6085		struct pci_dev *us_dev = pdev->bus->self;
6086		u16 devctl;
6087
6088		if (!us_dev)
6089			return 0;
6090
6091		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6092		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6093					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6094
6095		pci_save_state(pdev);
6096		pci_prepare_to_sleep(pdev);
6097
6098		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6099	}
6100
6101	return 0;
6102}
6103
6104/**
6105 * e1000e_disable_aspm - Disable ASPM states
6106 * @pdev: pointer to PCI device struct
6107 * @state: bit-mask of ASPM states to disable
 
6108 *
6109 * Some devices *must* have certain ASPM states disabled per hardware errata.
6110 **/
6111static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6112{
6113	struct pci_dev *parent = pdev->bus->self;
6114	u16 aspm_dis_mask = 0;
6115	u16 pdev_aspmc, parent_aspmc;
6116
6117	switch (state) {
6118	case PCIE_LINK_STATE_L0S:
6119	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6120		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6121		/* fall-through - can't have L1 without L0s */
6122	case PCIE_LINK_STATE_L1:
6123		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6124		break;
6125	default:
6126		return;
6127	}
6128
6129	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6130	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6131
6132	if (parent) {
6133		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6134					  &parent_aspmc);
6135		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6136	}
6137
6138	/* Nothing to do if the ASPM states to be disabled already are */
6139	if (!(pdev_aspmc & aspm_dis_mask) &&
6140	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6141		return;
6142
6143	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6144		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6145		 "L0s" : "",
6146		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6147		 "L1" : "");
6148
6149#ifdef CONFIG_PCIEASPM
6150	pci_disable_link_state_locked(pdev, state);
 
 
 
6151
6152	/* Double-check ASPM control.  If not disabled by the above, the
6153	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6154	 * not enabled); override by writing PCI config space directly.
6155	 */
6156	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6157	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6158
6159	if (!(aspm_dis_mask & pdev_aspmc))
6160		return;
6161#endif
6162
6163	/* Both device and parent should have the same ASPM setting.
6164	 * Disable ASPM in downstream component first and then upstream.
6165	 */
6166	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6167
6168	if (parent)
6169		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6170					   aspm_dis_mask);
6171}
6172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6173#ifdef CONFIG_PM
6174static int __e1000_resume(struct pci_dev *pdev)
6175{
6176	struct net_device *netdev = pci_get_drvdata(pdev);
6177	struct e1000_adapter *adapter = netdev_priv(netdev);
6178	struct e1000_hw *hw = &adapter->hw;
6179	u16 aspm_disable_flag = 0;
6180
6181	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6182		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6183	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6184		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6185	if (aspm_disable_flag)
6186		e1000e_disable_aspm(pdev, aspm_disable_flag);
6187
6188	pci_set_master(pdev);
6189
6190	if (hw->mac.type >= e1000_pch2lan)
6191		e1000_resume_workarounds_pchlan(&adapter->hw);
6192
6193	e1000e_power_up_phy(adapter);
6194
6195	/* report the system wakeup cause from S3/S4 */
6196	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6197		u16 phy_data;
6198
6199		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6200		if (phy_data) {
6201			e_info("PHY Wakeup cause - %s\n",
6202			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6203			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6204			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6205			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6206			       phy_data & E1000_WUS_LNKC ?
6207			       "Link Status Change" : "other");
6208		}
6209		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6210	} else {
6211		u32 wus = er32(WUS);
 
6212		if (wus) {
6213			e_info("MAC Wakeup cause - %s\n",
6214			       wus & E1000_WUS_EX ? "Unicast Packet" :
6215			       wus & E1000_WUS_MC ? "Multicast Packet" :
6216			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6217			       wus & E1000_WUS_MAG ? "Magic Packet" :
6218			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6219			       "other");
6220		}
6221		ew32(WUS, ~0);
6222	}
6223
6224	e1000e_reset(adapter);
6225
6226	e1000_init_manageability_pt(adapter);
6227
6228	/* If the controller has AMT, do not set DRV_LOAD until the interface
6229	 * is up.  For all other cases, let the f/w know that the h/w is now
6230	 * under the control of the driver.
6231	 */
6232	if (!(adapter->flags & FLAG_HAS_AMT))
6233		e1000e_get_hw_control(adapter);
6234
6235	return 0;
6236}
6237
6238#ifdef CONFIG_PM_SLEEP
6239static int e1000e_pm_thaw(struct device *dev)
6240{
6241	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6242	struct e1000_adapter *adapter = netdev_priv(netdev);
6243
6244	e1000e_set_interrupt_capability(adapter);
6245	if (netif_running(netdev)) {
6246		u32 err = e1000_request_irq(adapter);
6247
6248		if (err)
6249			return err;
6250
6251		e1000e_up(adapter);
6252	}
6253
6254	netif_device_attach(netdev);
6255
6256	return 0;
6257}
6258
6259static int e1000e_pm_suspend(struct device *dev)
6260{
6261	struct pci_dev *pdev = to_pci_dev(dev);
 
 
 
6262
6263	e1000e_pm_freeze(dev);
6264
6265	return __e1000_shutdown(pdev, false);
 
 
 
 
6266}
6267
6268static int e1000e_pm_resume(struct device *dev)
6269{
6270	struct pci_dev *pdev = to_pci_dev(dev);
6271	int rc;
6272
6273	rc = __e1000_resume(pdev);
6274	if (rc)
6275		return rc;
6276
6277	return e1000e_pm_thaw(dev);
6278}
6279#endif /* CONFIG_PM_SLEEP */
6280
6281#ifdef CONFIG_PM_RUNTIME
6282static int e1000e_pm_runtime_idle(struct device *dev)
6283{
6284	struct pci_dev *pdev = to_pci_dev(dev);
6285	struct net_device *netdev = pci_get_drvdata(pdev);
6286	struct e1000_adapter *adapter = netdev_priv(netdev);
 
6287
6288	if (!e1000e_has_link(adapter))
 
 
 
6289		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
 
6290
6291	return -EBUSY;
6292}
6293
6294static int e1000e_pm_runtime_resume(struct device *dev)
6295{
6296	struct pci_dev *pdev = to_pci_dev(dev);
6297	struct net_device *netdev = pci_get_drvdata(pdev);
6298	struct e1000_adapter *adapter = netdev_priv(netdev);
6299	int rc;
6300
6301	rc = __e1000_resume(pdev);
6302	if (rc)
6303		return rc;
6304
6305	if (netdev->flags & IFF_UP)
6306		rc = e1000e_up(adapter);
6307
6308	return rc;
6309}
6310
6311static int e1000e_pm_runtime_suspend(struct device *dev)
6312{
6313	struct pci_dev *pdev = to_pci_dev(dev);
6314	struct net_device *netdev = pci_get_drvdata(pdev);
6315	struct e1000_adapter *adapter = netdev_priv(netdev);
6316
6317	if (netdev->flags & IFF_UP) {
6318		int count = E1000_CHECK_RESET_COUNT;
6319
6320		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6321			usleep_range(10000, 20000);
6322
6323		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6324
6325		/* Down the device without resetting the hardware */
6326		e1000e_down(adapter, false);
6327	}
6328
6329	if (__e1000_shutdown(pdev, true)) {
6330		e1000e_pm_runtime_resume(dev);
6331		return -EBUSY;
6332	}
6333
6334	return 0;
6335}
6336#endif /* CONFIG_PM_RUNTIME */
6337#endif /* CONFIG_PM */
6338
6339static void e1000_shutdown(struct pci_dev *pdev)
6340{
 
 
6341	e1000e_pm_freeze(&pdev->dev);
6342
6343	__e1000_shutdown(pdev, false);
6344}
6345
6346#ifdef CONFIG_NET_POLL_CONTROLLER
6347
6348static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6349{
6350	struct net_device *netdev = data;
6351	struct e1000_adapter *adapter = netdev_priv(netdev);
6352
6353	if (adapter->msix_entries) {
6354		int vector, msix_irq;
6355
6356		vector = 0;
6357		msix_irq = adapter->msix_entries[vector].vector;
6358		disable_irq(msix_irq);
6359		e1000_intr_msix_rx(msix_irq, netdev);
6360		enable_irq(msix_irq);
6361
6362		vector++;
6363		msix_irq = adapter->msix_entries[vector].vector;
6364		disable_irq(msix_irq);
6365		e1000_intr_msix_tx(msix_irq, netdev);
6366		enable_irq(msix_irq);
6367
6368		vector++;
6369		msix_irq = adapter->msix_entries[vector].vector;
6370		disable_irq(msix_irq);
6371		e1000_msix_other(msix_irq, netdev);
6372		enable_irq(msix_irq);
6373	}
6374
6375	return IRQ_HANDLED;
6376}
6377
6378/**
6379 * e1000_netpoll
6380 * @netdev: network interface device structure
6381 *
6382 * Polling 'interrupt' - used by things like netconsole to send skbs
6383 * without having to re-enable interrupts. It's not called while
6384 * the interrupt routine is executing.
6385 */
6386static void e1000_netpoll(struct net_device *netdev)
6387{
6388	struct e1000_adapter *adapter = netdev_priv(netdev);
6389
6390	switch (adapter->int_mode) {
6391	case E1000E_INT_MODE_MSIX:
6392		e1000_intr_msix(adapter->pdev->irq, netdev);
6393		break;
6394	case E1000E_INT_MODE_MSI:
6395		disable_irq(adapter->pdev->irq);
6396		e1000_intr_msi(adapter->pdev->irq, netdev);
6397		enable_irq(adapter->pdev->irq);
6398		break;
6399	default:		/* E1000E_INT_MODE_LEGACY */
6400		disable_irq(adapter->pdev->irq);
6401		e1000_intr(adapter->pdev->irq, netdev);
6402		enable_irq(adapter->pdev->irq);
6403		break;
6404	}
6405}
6406#endif
6407
6408/**
6409 * e1000_io_error_detected - called when PCI error is detected
6410 * @pdev: Pointer to PCI device
6411 * @state: The current pci connection state
6412 *
6413 * This function is called after a PCI bus error affecting
6414 * this device has been detected.
6415 */
6416static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6417						pci_channel_state_t state)
6418{
6419	struct net_device *netdev = pci_get_drvdata(pdev);
6420	struct e1000_adapter *adapter = netdev_priv(netdev);
6421
6422	netif_device_detach(netdev);
6423
6424	if (state == pci_channel_io_perm_failure)
6425		return PCI_ERS_RESULT_DISCONNECT;
6426
6427	if (netif_running(netdev))
6428		e1000e_down(adapter, true);
6429	pci_disable_device(pdev);
6430
6431	/* Request a slot slot reset. */
6432	return PCI_ERS_RESULT_NEED_RESET;
6433}
6434
6435/**
6436 * e1000_io_slot_reset - called after the pci bus has been reset.
6437 * @pdev: Pointer to PCI device
6438 *
6439 * Restart the card from scratch, as if from a cold-boot. Implementation
6440 * resembles the first-half of the e1000e_pm_resume routine.
6441 */
6442static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6443{
6444	struct net_device *netdev = pci_get_drvdata(pdev);
6445	struct e1000_adapter *adapter = netdev_priv(netdev);
6446	struct e1000_hw *hw = &adapter->hw;
6447	u16 aspm_disable_flag = 0;
6448	int err;
6449	pci_ers_result_t result;
6450
6451	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6452		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6453	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6454		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6455	if (aspm_disable_flag)
6456		e1000e_disable_aspm(pdev, aspm_disable_flag);
6457
6458	err = pci_enable_device_mem(pdev);
6459	if (err) {
6460		dev_err(&pdev->dev,
6461			"Cannot re-enable PCI device after reset.\n");
6462		result = PCI_ERS_RESULT_DISCONNECT;
6463	} else {
6464		pdev->state_saved = true;
6465		pci_restore_state(pdev);
6466		pci_set_master(pdev);
6467
6468		pci_enable_wake(pdev, PCI_D3hot, 0);
6469		pci_enable_wake(pdev, PCI_D3cold, 0);
6470
6471		e1000e_reset(adapter);
6472		ew32(WUS, ~0);
6473		result = PCI_ERS_RESULT_RECOVERED;
6474	}
6475
6476	pci_cleanup_aer_uncorrect_error_status(pdev);
6477
6478	return result;
6479}
6480
6481/**
6482 * e1000_io_resume - called when traffic can start flowing again.
6483 * @pdev: Pointer to PCI device
6484 *
6485 * This callback is called when the error recovery driver tells us that
6486 * its OK to resume normal operation. Implementation resembles the
6487 * second-half of the e1000e_pm_resume routine.
6488 */
6489static void e1000_io_resume(struct pci_dev *pdev)
6490{
6491	struct net_device *netdev = pci_get_drvdata(pdev);
6492	struct e1000_adapter *adapter = netdev_priv(netdev);
6493
6494	e1000_init_manageability_pt(adapter);
6495
6496	if (netif_running(netdev)) {
6497		if (e1000e_up(adapter)) {
6498			dev_err(&pdev->dev,
6499				"can't bring device back up after reset\n");
6500			return;
6501		}
6502	}
6503
6504	netif_device_attach(netdev);
6505
6506	/* If the controller has AMT, do not set DRV_LOAD until the interface
6507	 * is up.  For all other cases, let the f/w know that the h/w is now
6508	 * under the control of the driver.
6509	 */
6510	if (!(adapter->flags & FLAG_HAS_AMT))
6511		e1000e_get_hw_control(adapter);
6512}
6513
6514static void e1000_print_device_info(struct e1000_adapter *adapter)
6515{
6516	struct e1000_hw *hw = &adapter->hw;
6517	struct net_device *netdev = adapter->netdev;
6518	u32 ret_val;
6519	u8 pba_str[E1000_PBANUM_LENGTH];
6520
6521	/* print bus type/speed/width info */
6522	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6523	       /* bus width */
6524	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6525		"Width x1"),
6526	       /* MAC address */
6527	       netdev->dev_addr);
6528	e_info("Intel(R) PRO/%s Network Connection\n",
6529	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6530	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6531						E1000_PBANUM_LENGTH);
6532	if (ret_val)
6533		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6534	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6535	       hw->mac.type, hw->phy.type, pba_str);
6536}
6537
6538static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6539{
6540	struct e1000_hw *hw = &adapter->hw;
6541	int ret_val;
6542	u16 buf = 0;
6543
6544	if (hw->mac.type != e1000_82573)
6545		return;
6546
6547	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6548	le16_to_cpus(&buf);
6549	if (!ret_val && (!(buf & (1 << 0)))) {
6550		/* Deep Smart Power Down (DSPD) */
6551		dev_warn(&adapter->pdev->dev,
6552			 "Warning: detected DSPD enabled in EEPROM\n");
6553	}
6554}
6555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6556static int e1000_set_features(struct net_device *netdev,
6557			      netdev_features_t features)
6558{
6559	struct e1000_adapter *adapter = netdev_priv(netdev);
6560	netdev_features_t changed = features ^ netdev->features;
6561
6562	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6563		adapter->flags |= FLAG_TSO_FORCE;
6564
6565	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6566			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6567			 NETIF_F_RXALL)))
6568		return 0;
6569
6570	if (changed & NETIF_F_RXFCS) {
6571		if (features & NETIF_F_RXFCS) {
6572			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6573		} else {
6574			/* We need to take it back to defaults, which might mean
6575			 * stripping is still disabled at the adapter level.
6576			 */
6577			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6578				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6579			else
6580				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6581		}
6582	}
6583
6584	netdev->features = features;
6585
6586	if (netif_running(netdev))
6587		e1000e_reinit_locked(adapter);
6588	else
6589		e1000e_reset(adapter);
6590
6591	return 0;
6592}
6593
6594static const struct net_device_ops e1000e_netdev_ops = {
6595	.ndo_open		= e1000_open,
6596	.ndo_stop		= e1000_close,
6597	.ndo_start_xmit		= e1000_xmit_frame,
6598	.ndo_get_stats64	= e1000e_get_stats64,
6599	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6600	.ndo_set_mac_address	= e1000_set_mac,
6601	.ndo_change_mtu		= e1000_change_mtu,
6602	.ndo_do_ioctl		= e1000_ioctl,
6603	.ndo_tx_timeout		= e1000_tx_timeout,
6604	.ndo_validate_addr	= eth_validate_addr,
6605
6606	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6607	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6608#ifdef CONFIG_NET_POLL_CONTROLLER
6609	.ndo_poll_controller	= e1000_netpoll,
6610#endif
6611	.ndo_set_features = e1000_set_features,
 
 
6612};
6613
6614/**
6615 * e1000_probe - Device Initialization Routine
6616 * @pdev: PCI device information struct
6617 * @ent: entry in e1000_pci_tbl
6618 *
6619 * Returns 0 on success, negative on failure
6620 *
6621 * e1000_probe initializes an adapter identified by a pci_dev structure.
6622 * The OS initialization, configuring of the adapter private structure,
6623 * and a hardware reset occur.
6624 **/
6625static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6626{
6627	struct net_device *netdev;
6628	struct e1000_adapter *adapter;
6629	struct e1000_hw *hw;
6630	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6631	resource_size_t mmio_start, mmio_len;
6632	resource_size_t flash_start, flash_len;
6633	static int cards_found;
6634	u16 aspm_disable_flag = 0;
6635	int bars, i, err, pci_using_dac;
6636	u16 eeprom_data = 0;
6637	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
6638
6639	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6640		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6641	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6642		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6643	if (aspm_disable_flag)
6644		e1000e_disable_aspm(pdev, aspm_disable_flag);
6645
6646	err = pci_enable_device_mem(pdev);
6647	if (err)
6648		return err;
6649
6650	pci_using_dac = 0;
6651	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6652	if (!err) {
6653		pci_using_dac = 1;
6654	} else {
6655		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6656		if (err) {
6657			dev_err(&pdev->dev,
6658				"No usable DMA configuration, aborting\n");
6659			goto err_dma;
6660		}
6661	}
6662
6663	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6664	err = pci_request_selected_regions_exclusive(pdev, bars,
6665						     e1000e_driver_name);
6666	if (err)
6667		goto err_pci_reg;
6668
6669	/* AER (Advanced Error Reporting) hooks */
6670	pci_enable_pcie_error_reporting(pdev);
6671
6672	pci_set_master(pdev);
6673	/* PCI config space info */
6674	err = pci_save_state(pdev);
6675	if (err)
6676		goto err_alloc_etherdev;
6677
6678	err = -ENOMEM;
6679	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6680	if (!netdev)
6681		goto err_alloc_etherdev;
6682
6683	SET_NETDEV_DEV(netdev, &pdev->dev);
6684
6685	netdev->irq = pdev->irq;
6686
6687	pci_set_drvdata(pdev, netdev);
6688	adapter = netdev_priv(netdev);
6689	hw = &adapter->hw;
6690	adapter->netdev = netdev;
6691	adapter->pdev = pdev;
6692	adapter->ei = ei;
6693	adapter->pba = ei->pba;
6694	adapter->flags = ei->flags;
6695	adapter->flags2 = ei->flags2;
6696	adapter->hw.adapter = adapter;
6697	adapter->hw.mac.type = ei->mac;
6698	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6699	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6700
6701	mmio_start = pci_resource_start(pdev, 0);
6702	mmio_len = pci_resource_len(pdev, 0);
6703
6704	err = -EIO;
6705	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6706	if (!adapter->hw.hw_addr)
6707		goto err_ioremap;
6708
6709	if ((adapter->flags & FLAG_HAS_FLASH) &&
6710	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6711		flash_start = pci_resource_start(pdev, 1);
6712		flash_len = pci_resource_len(pdev, 1);
6713		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6714		if (!adapter->hw.flash_address)
6715			goto err_flashmap;
6716	}
6717
6718	/* Set default EEE advertisement */
6719	if (adapter->flags2 & FLAG2_HAS_EEE)
6720		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6721
6722	/* construct the net_device struct */
6723	netdev->netdev_ops = &e1000e_netdev_ops;
6724	e1000e_set_ethtool_ops(netdev);
6725	netdev->watchdog_timeo = 5 * HZ;
6726	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6727	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6728
6729	netdev->mem_start = mmio_start;
6730	netdev->mem_end = mmio_start + mmio_len;
6731
6732	adapter->bd_number = cards_found++;
6733
6734	e1000e_check_options(adapter);
6735
6736	/* setup adapter struct */
6737	err = e1000_sw_init(adapter);
6738	if (err)
6739		goto err_sw_init;
6740
6741	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6742	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6743	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6744
6745	err = ei->get_variants(adapter);
6746	if (err)
6747		goto err_hw_init;
6748
6749	if ((adapter->flags & FLAG_IS_ICH) &&
6750	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6751		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6752
6753	hw->mac.ops.get_bus_info(&adapter->hw);
6754
6755	adapter->hw.phy.autoneg_wait_to_complete = 0;
6756
6757	/* Copper options */
6758	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6759		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6760		adapter->hw.phy.disable_polarity_correction = 0;
6761		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6762	}
6763
6764	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6765		dev_info(&pdev->dev,
6766			 "PHY reset is blocked due to SOL/IDER session.\n");
6767
6768	/* Set initial default active device features */
6769	netdev->features = (NETIF_F_SG |
6770			    NETIF_F_HW_VLAN_CTAG_RX |
6771			    NETIF_F_HW_VLAN_CTAG_TX |
6772			    NETIF_F_TSO |
6773			    NETIF_F_TSO6 |
6774			    NETIF_F_RXHASH |
6775			    NETIF_F_RXCSUM |
6776			    NETIF_F_HW_CSUM);
6777
6778	/* Set user-changeable features (subset of all device features) */
6779	netdev->hw_features = netdev->features;
6780	netdev->hw_features |= NETIF_F_RXFCS;
6781	netdev->priv_flags |= IFF_SUPP_NOFCS;
6782	netdev->hw_features |= NETIF_F_RXALL;
6783
6784	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6785		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6786
6787	netdev->vlan_features |= (NETIF_F_SG |
6788				  NETIF_F_TSO |
6789				  NETIF_F_TSO6 |
6790				  NETIF_F_HW_CSUM);
6791
6792	netdev->priv_flags |= IFF_UNICAST_FLT;
6793
6794	if (pci_using_dac) {
6795		netdev->features |= NETIF_F_HIGHDMA;
6796		netdev->vlan_features |= NETIF_F_HIGHDMA;
6797	}
6798
 
 
 
 
 
6799	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6800		adapter->flags |= FLAG_MNG_PT_ENABLED;
6801
6802	/* before reading the NVM, reset the controller to
6803	 * put the device in a known good starting state
6804	 */
6805	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6806
6807	/* systems with ASPM and others may see the checksum fail on the first
6808	 * attempt. Let's give it a few tries
6809	 */
6810	for (i = 0;; i++) {
6811		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6812			break;
6813		if (i == 2) {
6814			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6815			err = -EIO;
6816			goto err_eeprom;
6817		}
6818	}
6819
6820	e1000_eeprom_checks(adapter);
6821
6822	/* copy the MAC address */
6823	if (e1000e_read_mac_addr(&adapter->hw))
6824		dev_err(&pdev->dev,
6825			"NVM Read Error while reading MAC address\n");
6826
6827	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6828
6829	if (!is_valid_ether_addr(netdev->dev_addr)) {
6830		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6831			netdev->dev_addr);
6832		err = -EIO;
6833		goto err_eeprom;
6834	}
6835
6836	init_timer(&adapter->watchdog_timer);
6837	adapter->watchdog_timer.function = e1000_watchdog;
6838	adapter->watchdog_timer.data = (unsigned long)adapter;
6839
6840	init_timer(&adapter->phy_info_timer);
6841	adapter->phy_info_timer.function = e1000_update_phy_info;
6842	adapter->phy_info_timer.data = (unsigned long)adapter;
6843
6844	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6845	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6846	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6847	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6848	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6849
6850	/* Initialize link parameters. User can change them with ethtool */
6851	adapter->hw.mac.autoneg = 1;
6852	adapter->fc_autoneg = true;
6853	adapter->hw.fc.requested_mode = e1000_fc_default;
6854	adapter->hw.fc.current_mode = e1000_fc_default;
6855	adapter->hw.phy.autoneg_advertised = 0x2f;
6856
6857	/* Initial Wake on LAN setting - If APM wake is enabled in
6858	 * the EEPROM, enable the ACPI Magic Packet filter
6859	 */
6860	if (adapter->flags & FLAG_APME_IN_WUC) {
6861		/* APME bit in EEPROM is mapped to WUC.APME */
6862		eeprom_data = er32(WUC);
6863		eeprom_apme_mask = E1000_WUC_APME;
6864		if ((hw->mac.type > e1000_ich10lan) &&
6865		    (eeprom_data & E1000_WUC_PHY_WAKE))
6866			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6867	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6868		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6869		    (adapter->hw.bus.func == 1))
6870			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6871				       1, &eeprom_data);
 
6872		else
6873			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6874				       1, &eeprom_data);
 
6875	}
6876
6877	/* fetch WoL from EEPROM */
6878	if (eeprom_data & eeprom_apme_mask)
 
 
6879		adapter->eeprom_wol |= E1000_WUFC_MAG;
6880
6881	/* now that we have the eeprom settings, apply the special cases
6882	 * where the eeprom may be wrong or the board simply won't support
6883	 * wake on lan on a particular port
6884	 */
6885	if (!(adapter->flags & FLAG_HAS_WOL))
6886		adapter->eeprom_wol = 0;
6887
6888	/* initialize the wol settings based on the eeprom settings */
6889	adapter->wol = adapter->eeprom_wol;
6890
6891	/* make sure adapter isn't asleep if manageability is enabled */
6892	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6893	    (hw->mac.ops.check_mng_mode(hw)))
6894		device_wakeup_enable(&pdev->dev);
6895
6896	/* save off EEPROM version number */
6897	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
 
 
 
6898
6899	/* reset the hardware with the new settings */
6900	e1000e_reset(adapter);
6901
6902	/* If the controller has AMT, do not set DRV_LOAD until the interface
6903	 * is up.  For all other cases, let the f/w know that the h/w is now
6904	 * under the control of the driver.
6905	 */
6906	if (!(adapter->flags & FLAG_HAS_AMT))
6907		e1000e_get_hw_control(adapter);
6908
6909	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6910	err = register_netdev(netdev);
6911	if (err)
6912		goto err_register;
6913
6914	/* carrier off reporting is important to ethtool even BEFORE open */
6915	netif_carrier_off(netdev);
6916
6917	/* init PTP hardware clock */
6918	e1000e_ptp_init(adapter);
6919
6920	e1000_print_device_info(adapter);
6921
6922	if (pci_dev_run_wake(pdev))
6923		pm_runtime_put_noidle(&pdev->dev);
6924
6925	return 0;
6926
6927err_register:
6928	if (!(adapter->flags & FLAG_HAS_AMT))
6929		e1000e_release_hw_control(adapter);
6930err_eeprom:
6931	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6932		e1000_phy_hw_reset(&adapter->hw);
6933err_hw_init:
6934	kfree(adapter->tx_ring);
6935	kfree(adapter->rx_ring);
6936err_sw_init:
6937	if (adapter->hw.flash_address)
6938		iounmap(adapter->hw.flash_address);
6939	e1000e_reset_interrupt_capability(adapter);
6940err_flashmap:
6941	iounmap(adapter->hw.hw_addr);
6942err_ioremap:
6943	free_netdev(netdev);
6944err_alloc_etherdev:
6945	pci_release_selected_regions(pdev,
6946				     pci_select_bars(pdev, IORESOURCE_MEM));
6947err_pci_reg:
6948err_dma:
6949	pci_disable_device(pdev);
6950	return err;
6951}
6952
6953/**
6954 * e1000_remove - Device Removal Routine
6955 * @pdev: PCI device information struct
6956 *
6957 * e1000_remove is called by the PCI subsystem to alert the driver
6958 * that it should release a PCI device.  The could be caused by a
6959 * Hot-Plug event, or because the driver is going to be removed from
6960 * memory.
6961 **/
6962static void e1000_remove(struct pci_dev *pdev)
6963{
6964	struct net_device *netdev = pci_get_drvdata(pdev);
6965	struct e1000_adapter *adapter = netdev_priv(netdev);
6966	bool down = test_bit(__E1000_DOWN, &adapter->state);
6967
6968	e1000e_ptp_remove(adapter);
6969
6970	/* The timers may be rescheduled, so explicitly disable them
6971	 * from being rescheduled.
6972	 */
6973	if (!down)
6974		set_bit(__E1000_DOWN, &adapter->state);
6975	del_timer_sync(&adapter->watchdog_timer);
6976	del_timer_sync(&adapter->phy_info_timer);
6977
6978	cancel_work_sync(&adapter->reset_task);
6979	cancel_work_sync(&adapter->watchdog_task);
6980	cancel_work_sync(&adapter->downshift_task);
6981	cancel_work_sync(&adapter->update_phy_task);
6982	cancel_work_sync(&adapter->print_hang_task);
6983
6984	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6985		cancel_work_sync(&adapter->tx_hwtstamp_work);
6986		if (adapter->tx_hwtstamp_skb) {
6987			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6988			adapter->tx_hwtstamp_skb = NULL;
6989		}
6990	}
6991
6992	/* Don't lie to e1000_close() down the road. */
6993	if (!down)
6994		clear_bit(__E1000_DOWN, &adapter->state);
6995	unregister_netdev(netdev);
6996
6997	if (pci_dev_run_wake(pdev))
6998		pm_runtime_get_noresume(&pdev->dev);
6999
7000	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7001	 * would have already happened in close and is redundant.
7002	 */
7003	e1000e_release_hw_control(adapter);
7004
7005	e1000e_reset_interrupt_capability(adapter);
7006	kfree(adapter->tx_ring);
7007	kfree(adapter->rx_ring);
7008
7009	iounmap(adapter->hw.hw_addr);
7010	if (adapter->hw.flash_address)
 
7011		iounmap(adapter->hw.flash_address);
7012	pci_release_selected_regions(pdev,
7013				     pci_select_bars(pdev, IORESOURCE_MEM));
7014
7015	free_netdev(netdev);
7016
7017	/* AER disable */
7018	pci_disable_pcie_error_reporting(pdev);
7019
7020	pci_disable_device(pdev);
7021}
7022
7023/* PCI Error Recovery (ERS) */
7024static const struct pci_error_handlers e1000_err_handler = {
7025	.error_detected = e1000_io_error_detected,
7026	.slot_reset = e1000_io_slot_reset,
7027	.resume = e1000_io_resume,
7028};
7029
7030static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
7031	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7032	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7033	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7034	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7035	  board_82571 },
7036	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7037	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7038	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7039	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7040	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7041
7042	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7043	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7044	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7045	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7046
7047	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7048	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7049	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7050
7051	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7052	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7053	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7054
7055	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7056	  board_80003es2lan },
7057	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7058	  board_80003es2lan },
7059	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7060	  board_80003es2lan },
7061	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7062	  board_80003es2lan },
7063
7064	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7065	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7066	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7067	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7068	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7069	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7070	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7071	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7072
7073	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7074	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7075	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7076	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7077	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7078	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7079	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7080	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7081	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7082
7083	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7084	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7085	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7086
7087	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7088	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7089	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7090
7091	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7092	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7093	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7094	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7095
7096	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7097	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7098
7099	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7107
7108	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7109};
7110MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7111
7112static const struct dev_pm_ops e1000_pm_ops = {
7113#ifdef CONFIG_PM_SLEEP
7114	.suspend	= e1000e_pm_suspend,
7115	.resume		= e1000e_pm_resume,
7116	.freeze		= e1000e_pm_freeze,
7117	.thaw		= e1000e_pm_thaw,
7118	.poweroff	= e1000e_pm_suspend,
7119	.restore	= e1000e_pm_resume,
7120#endif
7121	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7122			   e1000e_pm_runtime_idle)
7123};
7124
7125/* PCI Device API Driver */
7126static struct pci_driver e1000_driver = {
7127	.name     = e1000e_driver_name,
7128	.id_table = e1000_pci_tbl,
7129	.probe    = e1000_probe,
7130	.remove   = e1000_remove,
7131	.driver   = {
7132		.pm = &e1000_pm_ops,
7133	},
7134	.shutdown = e1000_shutdown,
7135	.err_handler = &e1000_err_handler
7136};
7137
7138/**
7139 * e1000_init_module - Driver Registration Routine
7140 *
7141 * e1000_init_module is the first routine called when the driver is
7142 * loaded. All it does is register with the PCI subsystem.
7143 **/
7144static int __init e1000_init_module(void)
7145{
7146	int ret;
7147	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7148		e1000e_driver_version);
7149	pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7150	ret = pci_register_driver(&e1000_driver);
7151
7152	return ret;
7153}
7154module_init(e1000_init_module);
7155
7156/**
7157 * e1000_exit_module - Driver Exit Cleanup Routine
7158 *
7159 * e1000_exit_module is called just before the driver is removed
7160 * from memory.
7161 **/
7162static void __exit e1000_exit_module(void)
7163{
7164	pci_unregister_driver(&e1000_driver);
7165}
7166module_exit(e1000_exit_module);
7167
7168MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7169MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7170MODULE_LICENSE("GPL");
7171MODULE_VERSION(DRV_VERSION);
7172
7173/* netdev.c */