Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2015 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23/* ethtool support for e1000 */
24
25#include <linux/netdevice.h>
26#include <linux/interrupt.h>
27#include <linux/ethtool.h>
28#include <linux/pci.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/vmalloc.h>
32#include <linux/pm_runtime.h>
33
34#include "e1000.h"
35
36enum { NETDEV_STATS, E1000_STATS };
37
38struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int type;
41 int sizeof_stat;
42 int stat_offset;
43};
44
45#define E1000_STAT(str, m) { \
46 .stat_string = str, \
47 .type = E1000_STATS, \
48 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
49 .stat_offset = offsetof(struct e1000_adapter, m) }
50#define E1000_NETDEV_STAT(str, m) { \
51 .stat_string = str, \
52 .type = NETDEV_STATS, \
53 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
54 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
55
56static const struct e1000_stats e1000_gstrings_stats[] = {
57 E1000_STAT("rx_packets", stats.gprc),
58 E1000_STAT("tx_packets", stats.gptc),
59 E1000_STAT("rx_bytes", stats.gorc),
60 E1000_STAT("tx_bytes", stats.gotc),
61 E1000_STAT("rx_broadcast", stats.bprc),
62 E1000_STAT("tx_broadcast", stats.bptc),
63 E1000_STAT("rx_multicast", stats.mprc),
64 E1000_STAT("tx_multicast", stats.mptc),
65 E1000_NETDEV_STAT("rx_errors", rx_errors),
66 E1000_NETDEV_STAT("tx_errors", tx_errors),
67 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
68 E1000_STAT("multicast", stats.mprc),
69 E1000_STAT("collisions", stats.colc),
70 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
71 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
72 E1000_STAT("rx_crc_errors", stats.crcerrs),
73 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
74 E1000_STAT("rx_no_buffer_count", stats.rnbc),
75 E1000_STAT("rx_missed_errors", stats.mpc),
76 E1000_STAT("tx_aborted_errors", stats.ecol),
77 E1000_STAT("tx_carrier_errors", stats.tncrs),
78 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
79 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
80 E1000_STAT("tx_window_errors", stats.latecol),
81 E1000_STAT("tx_abort_late_coll", stats.latecol),
82 E1000_STAT("tx_deferred_ok", stats.dc),
83 E1000_STAT("tx_single_coll_ok", stats.scc),
84 E1000_STAT("tx_multi_coll_ok", stats.mcc),
85 E1000_STAT("tx_timeout_count", tx_timeout_count),
86 E1000_STAT("tx_restart_queue", restart_queue),
87 E1000_STAT("rx_long_length_errors", stats.roc),
88 E1000_STAT("rx_short_length_errors", stats.ruc),
89 E1000_STAT("rx_align_errors", stats.algnerrc),
90 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
91 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
92 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
93 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
94 E1000_STAT("tx_flow_control_xon", stats.xontxc),
95 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
96 E1000_STAT("rx_csum_offload_good", hw_csum_good),
97 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
98 E1000_STAT("rx_header_split", rx_hdr_split),
99 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
100 E1000_STAT("tx_smbus", stats.mgptc),
101 E1000_STAT("rx_smbus", stats.mgprc),
102 E1000_STAT("dropped_smbus", stats.mgpdc),
103 E1000_STAT("rx_dma_failed", rx_dma_failed),
104 E1000_STAT("tx_dma_failed", tx_dma_failed),
105 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
106 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
107 E1000_STAT("corr_ecc_errors", corr_errors),
108 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
109 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
110};
111
112#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
113#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 "Register test (offline)", "Eeprom test (offline)",
116 "Interrupt test (offline)", "Loopback test (offline)",
117 "Link test (on/offline)"
118};
119
120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122static int e1000_get_link_ksettings(struct net_device *netdev,
123 struct ethtool_link_ksettings *cmd)
124{
125 struct e1000_adapter *adapter = netdev_priv(netdev);
126 struct e1000_hw *hw = &adapter->hw;
127 u32 speed, supported, advertising;
128
129 if (hw->phy.media_type == e1000_media_type_copper) {
130 supported = (SUPPORTED_10baseT_Half |
131 SUPPORTED_10baseT_Full |
132 SUPPORTED_100baseT_Half |
133 SUPPORTED_100baseT_Full |
134 SUPPORTED_1000baseT_Full |
135 SUPPORTED_Autoneg |
136 SUPPORTED_TP);
137 if (hw->phy.type == e1000_phy_ife)
138 supported &= ~SUPPORTED_1000baseT_Full;
139 advertising = ADVERTISED_TP;
140
141 if (hw->mac.autoneg == 1) {
142 advertising |= ADVERTISED_Autoneg;
143 /* the e1000 autoneg seems to match ethtool nicely */
144 advertising |= hw->phy.autoneg_advertised;
145 }
146
147 cmd->base.port = PORT_TP;
148 cmd->base.phy_address = hw->phy.addr;
149 } else {
150 supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 cmd->base.port = PORT_FIBRE;
159 }
160
161 speed = SPEED_UNKNOWN;
162 cmd->base.duplex = DUPLEX_UNKNOWN;
163
164 if (netif_running(netdev)) {
165 if (netif_carrier_ok(netdev)) {
166 speed = adapter->link_speed;
167 cmd->base.duplex = adapter->link_duplex - 1;
168 }
169 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
170 u32 status = er32(STATUS);
171
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 speed = SPEED_1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 speed = SPEED_100;
177 else
178 speed = SPEED_10;
179
180 if (status & E1000_STATUS_FD)
181 cmd->base.duplex = DUPLEX_FULL;
182 else
183 cmd->base.duplex = DUPLEX_HALF;
184 }
185 }
186
187 cmd->base.speed = speed;
188 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
189 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190
191 /* MDI-X => 2; MDI =>1; Invalid =>0 */
192 if ((hw->phy.media_type == e1000_media_type_copper) &&
193 netif_carrier_ok(netdev))
194 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
195 ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 if (hw->phy.media_type != e1000_media_type_copper)
205 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
208 supported);
209 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
210 advertising);
211
212 return 0;
213}
214
215static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
216{
217 struct e1000_mac_info *mac = &adapter->hw.mac;
218
219 mac->autoneg = 0;
220
221 /* Make sure dplx is at most 1 bit and lsb of speed is not set
222 * for the switch() below to work
223 */
224 if ((spd & 1) || (dplx & ~1))
225 goto err_inval;
226
227 /* Fiber NICs only allow 1000 gbps Full duplex */
228 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
229 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
230 goto err_inval;
231 }
232
233 switch (spd + dplx) {
234 case SPEED_10 + DUPLEX_HALF:
235 mac->forced_speed_duplex = ADVERTISE_10_HALF;
236 break;
237 case SPEED_10 + DUPLEX_FULL:
238 mac->forced_speed_duplex = ADVERTISE_10_FULL;
239 break;
240 case SPEED_100 + DUPLEX_HALF:
241 mac->forced_speed_duplex = ADVERTISE_100_HALF;
242 break;
243 case SPEED_100 + DUPLEX_FULL:
244 mac->forced_speed_duplex = ADVERTISE_100_FULL;
245 break;
246 case SPEED_1000 + DUPLEX_FULL:
247 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
248 mac->autoneg = 1;
249 adapter->hw.phy.autoneg_advertised =
250 ADVERTISE_1000_FULL;
251 } else {
252 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
253 }
254 break;
255 case SPEED_1000 + DUPLEX_HALF: /* not supported */
256 default:
257 goto err_inval;
258 }
259
260 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
261 adapter->hw.phy.mdix = AUTO_ALL_MODES;
262
263 return 0;
264
265err_inval:
266 e_err("Unsupported Speed/Duplex configuration\n");
267 return -EINVAL;
268}
269
270static int e1000_set_link_ksettings(struct net_device *netdev,
271 const struct ethtool_link_ksettings *cmd)
272{
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 struct e1000_hw *hw = &adapter->hw;
275 int ret_val = 0;
276 u32 advertising;
277
278 ethtool_convert_link_mode_to_legacy_u32(&advertising,
279 cmd->link_modes.advertising);
280
281 pm_runtime_get_sync(netdev->dev.parent);
282
283 /* When SoL/IDER sessions are active, autoneg/speed/duplex
284 * cannot be changed
285 */
286 if (hw->phy.ops.check_reset_block &&
287 hw->phy.ops.check_reset_block(hw)) {
288 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
289 ret_val = -EINVAL;
290 goto out;
291 }
292
293 /* MDI setting is only allowed when autoneg enabled because
294 * some hardware doesn't allow MDI setting when speed or
295 * duplex is forced.
296 */
297 if (cmd->base.eth_tp_mdix_ctrl) {
298 if (hw->phy.media_type != e1000_media_type_copper) {
299 ret_val = -EOPNOTSUPP;
300 goto out;
301 }
302
303 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
304 (cmd->base.autoneg != AUTONEG_ENABLE)) {
305 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
306 ret_val = -EINVAL;
307 goto out;
308 }
309 }
310
311 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
312 usleep_range(1000, 2000);
313
314 if (cmd->base.autoneg == AUTONEG_ENABLE) {
315 hw->mac.autoneg = 1;
316 if (hw->phy.media_type == e1000_media_type_fiber)
317 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
318 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
319 else
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP | ADVERTISED_Autoneg;
322 advertising = hw->phy.autoneg_advertised;
323 if (adapter->fc_autoneg)
324 hw->fc.requested_mode = e1000_fc_default;
325 } else {
326 u32 speed = cmd->base.speed;
327 /* calling this overrides forced MDI setting */
328 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
329 ret_val = -EINVAL;
330 goto out;
331 }
332 }
333
334 /* MDI-X => 2; MDI => 1; Auto => 3 */
335 if (cmd->base.eth_tp_mdix_ctrl) {
336 /* fix up the value for auto (3 => 0) as zero is mapped
337 * internally to auto
338 */
339 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
340 hw->phy.mdix = AUTO_ALL_MODES;
341 else
342 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
343 }
344
345 /* reset the link */
346 if (netif_running(adapter->netdev)) {
347 e1000e_down(adapter, true);
348 e1000e_up(adapter);
349 } else {
350 e1000e_reset(adapter);
351 }
352
353out:
354 pm_runtime_put_sync(netdev->dev.parent);
355 clear_bit(__E1000_RESETTING, &adapter->state);
356 return ret_val;
357}
358
359static void e1000_get_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361{
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364
365 pause->autoneg =
366 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
367
368 if (hw->fc.current_mode == e1000_fc_rx_pause) {
369 pause->rx_pause = 1;
370 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
371 pause->tx_pause = 1;
372 } else if (hw->fc.current_mode == e1000_fc_full) {
373 pause->rx_pause = 1;
374 pause->tx_pause = 1;
375 }
376}
377
378static int e1000_set_pauseparam(struct net_device *netdev,
379 struct ethtool_pauseparam *pause)
380{
381 struct e1000_adapter *adapter = netdev_priv(netdev);
382 struct e1000_hw *hw = &adapter->hw;
383 int retval = 0;
384
385 adapter->fc_autoneg = pause->autoneg;
386
387 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
388 usleep_range(1000, 2000);
389
390 pm_runtime_get_sync(netdev->dev.parent);
391
392 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
393 hw->fc.requested_mode = e1000_fc_default;
394 if (netif_running(adapter->netdev)) {
395 e1000e_down(adapter, true);
396 e1000e_up(adapter);
397 } else {
398 e1000e_reset(adapter);
399 }
400 } else {
401 if (pause->rx_pause && pause->tx_pause)
402 hw->fc.requested_mode = e1000_fc_full;
403 else if (pause->rx_pause && !pause->tx_pause)
404 hw->fc.requested_mode = e1000_fc_rx_pause;
405 else if (!pause->rx_pause && pause->tx_pause)
406 hw->fc.requested_mode = e1000_fc_tx_pause;
407 else if (!pause->rx_pause && !pause->tx_pause)
408 hw->fc.requested_mode = e1000_fc_none;
409
410 hw->fc.current_mode = hw->fc.requested_mode;
411
412 if (hw->phy.media_type == e1000_media_type_fiber) {
413 retval = hw->mac.ops.setup_link(hw);
414 /* implicit goto out */
415 } else {
416 retval = e1000e_force_mac_fc(hw);
417 if (retval)
418 goto out;
419 e1000e_set_fc_watermarks(hw);
420 }
421 }
422
423out:
424 pm_runtime_put_sync(netdev->dev.parent);
425 clear_bit(__E1000_RESETTING, &adapter->state);
426 return retval;
427}
428
429static u32 e1000_get_msglevel(struct net_device *netdev)
430{
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 return adapter->msg_enable;
433}
434
435static void e1000_set_msglevel(struct net_device *netdev, u32 data)
436{
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 adapter->msg_enable = data;
439}
440
441static int e1000_get_regs_len(struct net_device __always_unused *netdev)
442{
443#define E1000_REGS_LEN 32 /* overestimate */
444 return E1000_REGS_LEN * sizeof(u32);
445}
446
447static void e1000_get_regs(struct net_device *netdev,
448 struct ethtool_regs *regs, void *p)
449{
450 struct e1000_adapter *adapter = netdev_priv(netdev);
451 struct e1000_hw *hw = &adapter->hw;
452 u32 *regs_buff = p;
453 u16 phy_data;
454
455 pm_runtime_get_sync(netdev->dev.parent);
456
457 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
458
459 regs->version = (1u << 24) |
460 (adapter->pdev->revision << 16) |
461 adapter->pdev->device;
462
463 regs_buff[0] = er32(CTRL);
464 regs_buff[1] = er32(STATUS);
465
466 regs_buff[2] = er32(RCTL);
467 regs_buff[3] = er32(RDLEN(0));
468 regs_buff[4] = er32(RDH(0));
469 regs_buff[5] = er32(RDT(0));
470 regs_buff[6] = er32(RDTR);
471
472 regs_buff[7] = er32(TCTL);
473 regs_buff[8] = er32(TDLEN(0));
474 regs_buff[9] = er32(TDH(0));
475 regs_buff[10] = er32(TDT(0));
476 regs_buff[11] = er32(TIDV);
477
478 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
479
480 /* ethtool doesn't use anything past this point, so all this
481 * code is likely legacy junk for apps that may or may not exist
482 */
483 if (hw->phy.type == e1000_phy_m88) {
484 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
485 regs_buff[13] = (u32)phy_data; /* cable length */
486 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
487 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
488 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
489 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
490 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
491 regs_buff[18] = regs_buff[13]; /* cable polarity */
492 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
493 regs_buff[20] = regs_buff[17]; /* polarity correction */
494 /* phy receive errors */
495 regs_buff[22] = adapter->phy_stats.receive_errors;
496 regs_buff[23] = regs_buff[13]; /* mdix mode */
497 }
498 regs_buff[21] = 0; /* was idle_errors */
499 e1e_rphy(hw, MII_STAT1000, &phy_data);
500 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
501 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
502
503 pm_runtime_put_sync(netdev->dev.parent);
504}
505
506static int e1000_get_eeprom_len(struct net_device *netdev)
507{
508 struct e1000_adapter *adapter = netdev_priv(netdev);
509 return adapter->hw.nvm.word_size * 2;
510}
511
512static int e1000_get_eeprom(struct net_device *netdev,
513 struct ethtool_eeprom *eeprom, u8 *bytes)
514{
515 struct e1000_adapter *adapter = netdev_priv(netdev);
516 struct e1000_hw *hw = &adapter->hw;
517 u16 *eeprom_buff;
518 int first_word;
519 int last_word;
520 int ret_val = 0;
521 u16 i;
522
523 if (eeprom->len == 0)
524 return -EINVAL;
525
526 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
527
528 first_word = eeprom->offset >> 1;
529 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
530
531 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
532 GFP_KERNEL);
533 if (!eeprom_buff)
534 return -ENOMEM;
535
536 pm_runtime_get_sync(netdev->dev.parent);
537
538 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
539 ret_val = e1000_read_nvm(hw, first_word,
540 last_word - first_word + 1,
541 eeprom_buff);
542 } else {
543 for (i = 0; i < last_word - first_word + 1; i++) {
544 ret_val = e1000_read_nvm(hw, first_word + i, 1,
545 &eeprom_buff[i]);
546 if (ret_val)
547 break;
548 }
549 }
550
551 pm_runtime_put_sync(netdev->dev.parent);
552
553 if (ret_val) {
554 /* a read error occurred, throw away the result */
555 memset(eeprom_buff, 0xff, sizeof(u16) *
556 (last_word - first_word + 1));
557 } else {
558 /* Device's eeprom is always little-endian, word addressable */
559 for (i = 0; i < last_word - first_word + 1; i++)
560 le16_to_cpus(&eeprom_buff[i]);
561 }
562
563 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
564 kfree(eeprom_buff);
565
566 return ret_val;
567}
568
569static int e1000_set_eeprom(struct net_device *netdev,
570 struct ethtool_eeprom *eeprom, u8 *bytes)
571{
572 struct e1000_adapter *adapter = netdev_priv(netdev);
573 struct e1000_hw *hw = &adapter->hw;
574 u16 *eeprom_buff;
575 void *ptr;
576 int max_len;
577 int first_word;
578 int last_word;
579 int ret_val = 0;
580 u16 i;
581
582 if (eeprom->len == 0)
583 return -EOPNOTSUPP;
584
585 if (eeprom->magic !=
586 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
587 return -EFAULT;
588
589 if (adapter->flags & FLAG_READ_ONLY_NVM)
590 return -EINVAL;
591
592 max_len = hw->nvm.word_size * 2;
593
594 first_word = eeprom->offset >> 1;
595 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
597 if (!eeprom_buff)
598 return -ENOMEM;
599
600 ptr = (void *)eeprom_buff;
601
602 pm_runtime_get_sync(netdev->dev.parent);
603
604 if (eeprom->offset & 1) {
605 /* need read/modify/write of first changed EEPROM word */
606 /* only the second byte of the word is being modified */
607 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
608 ptr++;
609 }
610 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
611 /* need read/modify/write of last changed EEPROM word */
612 /* only the first byte of the word is being modified */
613 ret_val = e1000_read_nvm(hw, last_word, 1,
614 &eeprom_buff[last_word - first_word]);
615
616 if (ret_val)
617 goto out;
618
619 /* Device's eeprom is always little-endian, word addressable */
620 for (i = 0; i < last_word - first_word + 1; i++)
621 le16_to_cpus(&eeprom_buff[i]);
622
623 memcpy(ptr, bytes, eeprom->len);
624
625 for (i = 0; i < last_word - first_word + 1; i++)
626 cpu_to_le16s(&eeprom_buff[i]);
627
628 ret_val = e1000_write_nvm(hw, first_word,
629 last_word - first_word + 1, eeprom_buff);
630
631 if (ret_val)
632 goto out;
633
634 /* Update the checksum over the first part of the EEPROM if needed
635 * and flush shadow RAM for applicable controllers
636 */
637 if ((first_word <= NVM_CHECKSUM_REG) ||
638 (hw->mac.type == e1000_82583) ||
639 (hw->mac.type == e1000_82574) ||
640 (hw->mac.type == e1000_82573))
641 ret_val = e1000e_update_nvm_checksum(hw);
642
643out:
644 pm_runtime_put_sync(netdev->dev.parent);
645 kfree(eeprom_buff);
646 return ret_val;
647}
648
649static void e1000_get_drvinfo(struct net_device *netdev,
650 struct ethtool_drvinfo *drvinfo)
651{
652 struct e1000_adapter *adapter = netdev_priv(netdev);
653
654 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
655 strlcpy(drvinfo->version, e1000e_driver_version,
656 sizeof(drvinfo->version));
657
658 /* EEPROM image version # is reported as firmware version # for
659 * PCI-E controllers
660 */
661 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
662 "%d.%d-%d",
663 (adapter->eeprom_vers & 0xF000) >> 12,
664 (adapter->eeprom_vers & 0x0FF0) >> 4,
665 (adapter->eeprom_vers & 0x000F));
666
667 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
668 sizeof(drvinfo->bus_info));
669}
670
671static void e1000_get_ringparam(struct net_device *netdev,
672 struct ethtool_ringparam *ring)
673{
674 struct e1000_adapter *adapter = netdev_priv(netdev);
675
676 ring->rx_max_pending = E1000_MAX_RXD;
677 ring->tx_max_pending = E1000_MAX_TXD;
678 ring->rx_pending = adapter->rx_ring_count;
679 ring->tx_pending = adapter->tx_ring_count;
680}
681
682static int e1000_set_ringparam(struct net_device *netdev,
683 struct ethtool_ringparam *ring)
684{
685 struct e1000_adapter *adapter = netdev_priv(netdev);
686 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
687 int err = 0, size = sizeof(struct e1000_ring);
688 bool set_tx = false, set_rx = false;
689 u16 new_rx_count, new_tx_count;
690
691 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
692 return -EINVAL;
693
694 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
695 E1000_MAX_RXD);
696 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
697
698 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
699 E1000_MAX_TXD);
700 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
701
702 if ((new_tx_count == adapter->tx_ring_count) &&
703 (new_rx_count == adapter->rx_ring_count))
704 /* nothing to do */
705 return 0;
706
707 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
708 usleep_range(1000, 2000);
709
710 if (!netif_running(adapter->netdev)) {
711 /* Set counts now and allocate resources during open() */
712 adapter->tx_ring->count = new_tx_count;
713 adapter->rx_ring->count = new_rx_count;
714 adapter->tx_ring_count = new_tx_count;
715 adapter->rx_ring_count = new_rx_count;
716 goto clear_reset;
717 }
718
719 set_tx = (new_tx_count != adapter->tx_ring_count);
720 set_rx = (new_rx_count != adapter->rx_ring_count);
721
722 /* Allocate temporary storage for ring updates */
723 if (set_tx) {
724 temp_tx = vmalloc(size);
725 if (!temp_tx) {
726 err = -ENOMEM;
727 goto free_temp;
728 }
729 }
730 if (set_rx) {
731 temp_rx = vmalloc(size);
732 if (!temp_rx) {
733 err = -ENOMEM;
734 goto free_temp;
735 }
736 }
737
738 pm_runtime_get_sync(netdev->dev.parent);
739
740 e1000e_down(adapter, true);
741
742 /* We can't just free everything and then setup again, because the
743 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
744 * structs. First, attempt to allocate new resources...
745 */
746 if (set_tx) {
747 memcpy(temp_tx, adapter->tx_ring, size);
748 temp_tx->count = new_tx_count;
749 err = e1000e_setup_tx_resources(temp_tx);
750 if (err)
751 goto err_setup;
752 }
753 if (set_rx) {
754 memcpy(temp_rx, adapter->rx_ring, size);
755 temp_rx->count = new_rx_count;
756 err = e1000e_setup_rx_resources(temp_rx);
757 if (err)
758 goto err_setup_rx;
759 }
760
761 /* ...then free the old resources and copy back any new ring data */
762 if (set_tx) {
763 e1000e_free_tx_resources(adapter->tx_ring);
764 memcpy(adapter->tx_ring, temp_tx, size);
765 adapter->tx_ring_count = new_tx_count;
766 }
767 if (set_rx) {
768 e1000e_free_rx_resources(adapter->rx_ring);
769 memcpy(adapter->rx_ring, temp_rx, size);
770 adapter->rx_ring_count = new_rx_count;
771 }
772
773err_setup_rx:
774 if (err && set_tx)
775 e1000e_free_tx_resources(temp_tx);
776err_setup:
777 e1000e_up(adapter);
778 pm_runtime_put_sync(netdev->dev.parent);
779free_temp:
780 vfree(temp_tx);
781 vfree(temp_rx);
782clear_reset:
783 clear_bit(__E1000_RESETTING, &adapter->state);
784 return err;
785}
786
787static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
788 int reg, int offset, u32 mask, u32 write)
789{
790 u32 pat, val;
791 static const u32 test[] = {
792 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
793 };
794 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
795 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
796 (test[pat] & write));
797 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
798 if (val != (test[pat] & write & mask)) {
799 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 reg + (offset << 2), val,
801 (test[pat] & write & mask));
802 *data = reg;
803 return true;
804 }
805 }
806 return false;
807}
808
809static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
810 int reg, u32 mask, u32 write)
811{
812 u32 val;
813
814 __ew32(&adapter->hw, reg, write & mask);
815 val = __er32(&adapter->hw, reg);
816 if ((write & mask) != (val & mask)) {
817 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
818 reg, (val & mask), (write & mask));
819 *data = reg;
820 return true;
821 }
822 return false;
823}
824
825#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
826 do { \
827 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
828 return 1; \
829 } while (0)
830#define REG_PATTERN_TEST(reg, mask, write) \
831 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
832
833#define REG_SET_AND_CHECK(reg, mask, write) \
834 do { \
835 if (reg_set_and_check(adapter, data, reg, mask, write)) \
836 return 1; \
837 } while (0)
838
839static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
840{
841 struct e1000_hw *hw = &adapter->hw;
842 struct e1000_mac_info *mac = &adapter->hw.mac;
843 u32 value;
844 u32 before;
845 u32 after;
846 u32 i;
847 u32 toggle;
848 u32 mask;
849 u32 wlock_mac = 0;
850
851 /* The status register is Read Only, so a write should fail.
852 * Some bits that get toggled are ignored. There are several bits
853 * on newer hardware that are r/w.
854 */
855 switch (mac->type) {
856 case e1000_82571:
857 case e1000_82572:
858 case e1000_80003es2lan:
859 toggle = 0x7FFFF3FF;
860 break;
861 default:
862 toggle = 0x7FFFF033;
863 break;
864 }
865
866 before = er32(STATUS);
867 value = (er32(STATUS) & toggle);
868 ew32(STATUS, toggle);
869 after = er32(STATUS) & toggle;
870 if (value != after) {
871 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
872 after, value);
873 *data = 1;
874 return 1;
875 }
876 /* restore previous status */
877 ew32(STATUS, before);
878
879 if (!(adapter->flags & FLAG_IS_ICH)) {
880 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
883 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
884 }
885
886 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
887 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
888 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
889 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
890 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
892 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
893 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
894 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
896
897 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
898
899 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
900 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
901 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
902
903 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
904 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
905 if (!(adapter->flags & FLAG_IS_ICH))
906 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
907 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
908 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
909 mask = 0x8003FFFF;
910 switch (mac->type) {
911 case e1000_ich10lan:
912 case e1000_pchlan:
913 case e1000_pch2lan:
914 case e1000_pch_lpt:
915 case e1000_pch_spt:
916 /* fall through */
917 case e1000_pch_cnp:
918 mask |= BIT(18);
919 break;
920 default:
921 break;
922 }
923
924 if (mac->type >= e1000_pch_lpt)
925 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
926 E1000_FWSM_WLOCK_MAC_SHIFT;
927
928 for (i = 0; i < mac->rar_entry_count; i++) {
929 if (mac->type >= e1000_pch_lpt) {
930 /* Cannot test write-protected SHRAL[n] registers */
931 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
932 continue;
933
934 /* SHRAH[9] different than the others */
935 if (i == 10)
936 mask |= BIT(30);
937 else
938 mask &= ~BIT(30);
939 }
940 if (mac->type == e1000_pch2lan) {
941 /* SHRAH[0,1,2] different than previous */
942 if (i == 1)
943 mask &= 0xFFF4FFFF;
944 /* SHRAH[3] different than SHRAH[0,1,2] */
945 if (i == 4)
946 mask |= BIT(30);
947 /* RAR[1-6] owned by management engine - skipping */
948 if (i > 0)
949 i += 6;
950 }
951
952 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
953 0xFFFFFFFF);
954 /* reset index to actual value */
955 if ((mac->type == e1000_pch2lan) && (i > 6))
956 i -= 6;
957 }
958
959 for (i = 0; i < mac->mta_reg_count; i++)
960 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
961
962 *data = 0;
963
964 return 0;
965}
966
967static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
968{
969 u16 temp;
970 u16 checksum = 0;
971 u16 i;
972
973 *data = 0;
974 /* Read and add up the contents of the EEPROM */
975 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
976 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
977 *data = 1;
978 return *data;
979 }
980 checksum += temp;
981 }
982
983 /* If Checksum is not Correct return error else test passed */
984 if ((checksum != (u16)NVM_SUM) && !(*data))
985 *data = 2;
986
987 return *data;
988}
989
990static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
991{
992 struct net_device *netdev = (struct net_device *)data;
993 struct e1000_adapter *adapter = netdev_priv(netdev);
994 struct e1000_hw *hw = &adapter->hw;
995
996 adapter->test_icr |= er32(ICR);
997
998 return IRQ_HANDLED;
999}
1000
1001static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1002{
1003 struct net_device *netdev = adapter->netdev;
1004 struct e1000_hw *hw = &adapter->hw;
1005 u32 mask;
1006 u32 shared_int = 1;
1007 u32 irq = adapter->pdev->irq;
1008 int i;
1009 int ret_val = 0;
1010 int int_mode = E1000E_INT_MODE_LEGACY;
1011
1012 *data = 0;
1013
1014 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1015 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1016 int_mode = adapter->int_mode;
1017 e1000e_reset_interrupt_capability(adapter);
1018 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1019 e1000e_set_interrupt_capability(adapter);
1020 }
1021 /* Hook up test interrupt handler just for this test */
1022 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1023 netdev)) {
1024 shared_int = 0;
1025 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1026 netdev)) {
1027 *data = 1;
1028 ret_val = -1;
1029 goto out;
1030 }
1031 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1032
1033 /* Disable all the interrupts */
1034 ew32(IMC, 0xFFFFFFFF);
1035 e1e_flush();
1036 usleep_range(10000, 20000);
1037
1038 /* Test each interrupt */
1039 for (i = 0; i < 10; i++) {
1040 /* Interrupt to test */
1041 mask = BIT(i);
1042
1043 if (adapter->flags & FLAG_IS_ICH) {
1044 switch (mask) {
1045 case E1000_ICR_RXSEQ:
1046 continue;
1047 case 0x00000100:
1048 if (adapter->hw.mac.type == e1000_ich8lan ||
1049 adapter->hw.mac.type == e1000_ich9lan)
1050 continue;
1051 break;
1052 default:
1053 break;
1054 }
1055 }
1056
1057 if (!shared_int) {
1058 /* Disable the interrupt to be reported in
1059 * the cause register and then force the same
1060 * interrupt and see if one gets posted. If
1061 * an interrupt was posted to the bus, the
1062 * test failed.
1063 */
1064 adapter->test_icr = 0;
1065 ew32(IMC, mask);
1066 ew32(ICS, mask);
1067 e1e_flush();
1068 usleep_range(10000, 20000);
1069
1070 if (adapter->test_icr & mask) {
1071 *data = 3;
1072 break;
1073 }
1074 }
1075
1076 /* Enable the interrupt to be reported in
1077 * the cause register and then force the same
1078 * interrupt and see if one gets posted. If
1079 * an interrupt was not posted to the bus, the
1080 * test failed.
1081 */
1082 adapter->test_icr = 0;
1083 ew32(IMS, mask);
1084 ew32(ICS, mask);
1085 e1e_flush();
1086 usleep_range(10000, 20000);
1087
1088 if (!(adapter->test_icr & mask)) {
1089 *data = 4;
1090 break;
1091 }
1092
1093 if (!shared_int) {
1094 /* Disable the other interrupts to be reported in
1095 * the cause register and then force the other
1096 * interrupts and see if any get posted. If
1097 * an interrupt was posted to the bus, the
1098 * test failed.
1099 */
1100 adapter->test_icr = 0;
1101 ew32(IMC, ~mask & 0x00007FFF);
1102 ew32(ICS, ~mask & 0x00007FFF);
1103 e1e_flush();
1104 usleep_range(10000, 20000);
1105
1106 if (adapter->test_icr) {
1107 *data = 5;
1108 break;
1109 }
1110 }
1111 }
1112
1113 /* Disable all the interrupts */
1114 ew32(IMC, 0xFFFFFFFF);
1115 e1e_flush();
1116 usleep_range(10000, 20000);
1117
1118 /* Unhook test interrupt handler */
1119 free_irq(irq, netdev);
1120
1121out:
1122 if (int_mode == E1000E_INT_MODE_MSIX) {
1123 e1000e_reset_interrupt_capability(adapter);
1124 adapter->int_mode = int_mode;
1125 e1000e_set_interrupt_capability(adapter);
1126 }
1127
1128 return ret_val;
1129}
1130
1131static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1132{
1133 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1134 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1135 struct pci_dev *pdev = adapter->pdev;
1136 struct e1000_buffer *buffer_info;
1137 int i;
1138
1139 if (tx_ring->desc && tx_ring->buffer_info) {
1140 for (i = 0; i < tx_ring->count; i++) {
1141 buffer_info = &tx_ring->buffer_info[i];
1142
1143 if (buffer_info->dma)
1144 dma_unmap_single(&pdev->dev,
1145 buffer_info->dma,
1146 buffer_info->length,
1147 DMA_TO_DEVICE);
1148 if (buffer_info->skb)
1149 dev_kfree_skb(buffer_info->skb);
1150 }
1151 }
1152
1153 if (rx_ring->desc && rx_ring->buffer_info) {
1154 for (i = 0; i < rx_ring->count; i++) {
1155 buffer_info = &rx_ring->buffer_info[i];
1156
1157 if (buffer_info->dma)
1158 dma_unmap_single(&pdev->dev,
1159 buffer_info->dma,
1160 2048, DMA_FROM_DEVICE);
1161 if (buffer_info->skb)
1162 dev_kfree_skb(buffer_info->skb);
1163 }
1164 }
1165
1166 if (tx_ring->desc) {
1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 tx_ring->dma);
1169 tx_ring->desc = NULL;
1170 }
1171 if (rx_ring->desc) {
1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 rx_ring->dma);
1174 rx_ring->desc = NULL;
1175 }
1176
1177 kfree(tx_ring->buffer_info);
1178 tx_ring->buffer_info = NULL;
1179 kfree(rx_ring->buffer_info);
1180 rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 struct pci_dev *pdev = adapter->pdev;
1188 struct e1000_hw *hw = &adapter->hw;
1189 u32 rctl;
1190 int i;
1191 int ret_val;
1192
1193 /* Setup Tx descriptor ring and Tx buffers */
1194
1195 if (!tx_ring->count)
1196 tx_ring->count = E1000_DEFAULT_TXD;
1197
1198 tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 sizeof(struct e1000_buffer), GFP_KERNEL);
1200 if (!tx_ring->buffer_info) {
1201 ret_val = 1;
1202 goto err_nomem;
1203 }
1204
1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 &tx_ring->dma, GFP_KERNEL);
1209 if (!tx_ring->desc) {
1210 ret_val = 2;
1211 goto err_nomem;
1212 }
1213 tx_ring->next_to_use = 0;
1214 tx_ring->next_to_clean = 0;
1215
1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 ew32(TDH(0), 0);
1220 ew32(TDT(0), 0);
1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225 for (i = 0; i < tx_ring->count; i++) {
1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 struct sk_buff *skb;
1228 unsigned int skb_size = 1024;
1229
1230 skb = alloc_skb(skb_size, GFP_KERNEL);
1231 if (!skb) {
1232 ret_val = 3;
1233 goto err_nomem;
1234 }
1235 skb_put(skb, skb_size);
1236 tx_ring->buffer_info[i].skb = skb;
1237 tx_ring->buffer_info[i].length = skb->len;
1238 tx_ring->buffer_info[i].dma =
1239 dma_map_single(&pdev->dev, skb->data, skb->len,
1240 DMA_TO_DEVICE);
1241 if (dma_mapping_error(&pdev->dev,
1242 tx_ring->buffer_info[i].dma)) {
1243 ret_val = 4;
1244 goto err_nomem;
1245 }
1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 tx_desc->lower.data = cpu_to_le32(skb->len);
1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 E1000_TXD_CMD_IFCS |
1250 E1000_TXD_CMD_RS);
1251 tx_desc->upper.data = 0;
1252 }
1253
1254 /* Setup Rx descriptor ring and Rx buffers */
1255
1256 if (!rx_ring->count)
1257 rx_ring->count = E1000_DEFAULT_RXD;
1258
1259 rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 sizeof(struct e1000_buffer), GFP_KERNEL);
1261 if (!rx_ring->buffer_info) {
1262 ret_val = 5;
1263 goto err_nomem;
1264 }
1265
1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 &rx_ring->dma, GFP_KERNEL);
1269 if (!rx_ring->desc) {
1270 ret_val = 6;
1271 goto err_nomem;
1272 }
1273 rx_ring->next_to_use = 0;
1274 rx_ring->next_to_clean = 0;
1275
1276 rctl = er32(RCTL);
1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 ew32(RDLEN(0), rx_ring->size);
1282 ew32(RDH(0), 0);
1283 ew32(RDT(0), 0);
1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 ew32(RCTL, rctl);
1290
1291 for (i = 0; i < rx_ring->count; i++) {
1292 union e1000_rx_desc_extended *rx_desc;
1293 struct sk_buff *skb;
1294
1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 if (!skb) {
1297 ret_val = 7;
1298 goto err_nomem;
1299 }
1300 skb_reserve(skb, NET_IP_ALIGN);
1301 rx_ring->buffer_info[i].skb = skb;
1302 rx_ring->buffer_info[i].dma =
1303 dma_map_single(&pdev->dev, skb->data, 2048,
1304 DMA_FROM_DEVICE);
1305 if (dma_mapping_error(&pdev->dev,
1306 rx_ring->buffer_info[i].dma)) {
1307 ret_val = 8;
1308 goto err_nomem;
1309 }
1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 rx_desc->read.buffer_addr =
1312 cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 memset(skb->data, 0x00, skb->len);
1314 }
1315
1316 return 0;
1317
1318err_nomem:
1319 e1000_free_desc_rings(adapter);
1320 return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 e1e_wphy(&adapter->hw, 29, 0x001F);
1327 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 e1e_wphy(&adapter->hw, 29, 0x001A);
1329 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334 struct e1000_hw *hw = &adapter->hw;
1335 u32 ctrl_reg = 0;
1336 u16 phy_reg = 0;
1337 s32 ret_val = 0;
1338
1339 hw->mac.autoneg = 0;
1340
1341 if (hw->phy.type == e1000_phy_ife) {
1342 /* force 100, set loopback */
1343 e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346 ctrl_reg = er32(CTRL);
1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 E1000_CTRL_FD); /* Force Duplex to FULL */
1352
1353 ew32(CTRL, ctrl_reg);
1354 e1e_flush();
1355 usleep_range(500, 1000);
1356
1357 return 0;
1358 }
1359
1360 /* Specific PHY configuration for loopback */
1361 switch (hw->phy.type) {
1362 case e1000_phy_m88:
1363 /* Auto-MDI/MDIX Off */
1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 /* reset to update Auto-MDI/MDIX */
1366 e1e_wphy(hw, MII_BMCR, 0x9140);
1367 /* autoneg off */
1368 e1e_wphy(hw, MII_BMCR, 0x8140);
1369 break;
1370 case e1000_phy_gg82563:
1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 break;
1373 case e1000_phy_bm:
1374 /* Set Default MAC Interface speed to 1GB */
1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 phy_reg &= ~0x0007;
1377 phy_reg |= 0x006;
1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 /* Assert SW reset for above settings to take effect */
1380 hw->phy.ops.commit(hw);
1381 usleep_range(1000, 2000);
1382 /* Force Full Duplex */
1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 /* Set Link Up (in force link) */
1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 /* Force Link */
1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 /* Set Early Link Enable */
1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 break;
1395 case e1000_phy_82577:
1396 case e1000_phy_82578:
1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 ret_val = hw->phy.ops.acquire(hw);
1399 if (ret_val) {
1400 e_err("Cannot setup 1Gbps loopback.\n");
1401 return ret_val;
1402 }
1403 e1000_configure_k1_ich8lan(hw, false);
1404 hw->phy.ops.release(hw);
1405 break;
1406 case e1000_phy_82579:
1407 /* Disable PHY energy detect power down */
1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 /* Disable full chip energy detect */
1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 /* Enable loopback on the PHY */
1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 break;
1416 default:
1417 break;
1418 }
1419
1420 /* force 1000, set loopback */
1421 e1e_wphy(hw, MII_BMCR, 0x4140);
1422 msleep(250);
1423
1424 /* Now set up the MAC to the same speed/duplex as the PHY. */
1425 ctrl_reg = er32(CTRL);
1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 E1000_CTRL_FD); /* Force Duplex to FULL */
1431
1432 if (adapter->flags & FLAG_IS_ICH)
1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1434
1435 if (hw->phy.media_type == e1000_media_type_copper &&
1436 hw->phy.type == e1000_phy_m88) {
1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1438 } else {
1439 /* Set the ILOS bit on the fiber Nic if half duplex link is
1440 * detected.
1441 */
1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 }
1445
1446 ew32(CTRL, ctrl_reg);
1447
1448 /* Disable the receiver on the PHY so when a cable is plugged in, the
1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 */
1451 if (hw->phy.type == e1000_phy_m88)
1452 e1000_phy_disable_receiver(adapter);
1453
1454 usleep_range(500, 1000);
1455
1456 return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl = er32(CTRL);
1463 int link;
1464
1465 /* special requirements for 82571/82572 fiber adapters */
1466
1467 /* jump through hoops to make sure link is up because serdes
1468 * link is hardwired up
1469 */
1470 ctrl |= E1000_CTRL_SLU;
1471 ew32(CTRL, ctrl);
1472
1473 /* disable autoneg */
1474 ctrl = er32(TXCW);
1475 ctrl &= ~BIT(31);
1476 ew32(TXCW, ctrl);
1477
1478 link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480 if (!link) {
1481 /* set invert loss of signal */
1482 ctrl = er32(CTRL);
1483 ctrl |= E1000_CTRL_ILOS;
1484 ew32(CTRL, ctrl);
1485 }
1486
1487 /* special write to serdes control register to enable SerDes analog
1488 * loopback
1489 */
1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 e1e_flush();
1492 usleep_range(10000, 20000);
1493
1494 return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500 struct e1000_hw *hw = &adapter->hw;
1501 u32 ctrlext = er32(CTRL_EXT);
1502 u32 ctrl = er32(CTRL);
1503
1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 * on mac_type 80003es2lan)
1506 */
1507 adapter->tx_fifo_head = ctrlext;
1508
1509 /* clear the serdes mode bits, putting the device into mac loopback */
1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 ew32(CTRL_EXT, ctrlext);
1512
1513 /* force speed to 1000/FD, link up */
1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 ew32(CTRL, ctrl);
1518
1519 /* set mac loopback */
1520 ctrl = er32(RCTL);
1521 ctrl |= E1000_RCTL_LBM_MAC;
1522 ew32(RCTL, ctrl);
1523
1524 /* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 ew32(KMRNCTRLSTA,
1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530 return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 rctl, fext_nvm11, tarc0;
1537
1538 if (hw->mac.type >= e1000_pch_spt) {
1539 fext_nvm11 = er32(FEXTNVM11);
1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 ew32(FEXTNVM11, fext_nvm11);
1542 tarc0 = er32(TARC(0));
1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 tarc0 &= 0xcfffffff;
1545 /* set bit 29 (value of MULR requests is now 2) */
1546 tarc0 |= 0x20000000;
1547 ew32(TARC(0), tarc0);
1548 }
1549 if (hw->phy.media_type == e1000_media_type_fiber ||
1550 hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 switch (hw->mac.type) {
1552 case e1000_80003es2lan:
1553 return e1000_set_es2lan_mac_loopback(adapter);
1554 case e1000_82571:
1555 case e1000_82572:
1556 return e1000_set_82571_fiber_loopback(adapter);
1557 default:
1558 rctl = er32(RCTL);
1559 rctl |= E1000_RCTL_LBM_TCVR;
1560 ew32(RCTL, rctl);
1561 return 0;
1562 }
1563 } else if (hw->phy.media_type == e1000_media_type_copper) {
1564 return e1000_integrated_phy_loopback(adapter);
1565 }
1566
1567 return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 rctl, fext_nvm11, tarc0;
1574 u16 phy_reg;
1575
1576 rctl = er32(RCTL);
1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 ew32(RCTL, rctl);
1579
1580 switch (hw->mac.type) {
1581 case e1000_pch_spt:
1582 case e1000_pch_cnp:
1583 fext_nvm11 = er32(FEXTNVM11);
1584 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1585 ew32(FEXTNVM11, fext_nvm11);
1586 tarc0 = er32(TARC(0));
1587 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1588 /* set bit 29 (value of MULR requests is now 0) */
1589 tarc0 &= 0xcfffffff;
1590 ew32(TARC(0), tarc0);
1591 /* fall through */
1592 case e1000_80003es2lan:
1593 if (hw->phy.media_type == e1000_media_type_fiber ||
1594 hw->phy.media_type == e1000_media_type_internal_serdes) {
1595 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1596 ew32(CTRL_EXT, adapter->tx_fifo_head);
1597 adapter->tx_fifo_head = 0;
1598 }
1599 /* fall through */
1600 case e1000_82571:
1601 case e1000_82572:
1602 if (hw->phy.media_type == e1000_media_type_fiber ||
1603 hw->phy.media_type == e1000_media_type_internal_serdes) {
1604 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1605 e1e_flush();
1606 usleep_range(10000, 20000);
1607 break;
1608 }
1609 /* Fall Through */
1610 default:
1611 hw->mac.autoneg = 1;
1612 if (hw->phy.type == e1000_phy_gg82563)
1613 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1614 e1e_rphy(hw, MII_BMCR, &phy_reg);
1615 if (phy_reg & BMCR_LOOPBACK) {
1616 phy_reg &= ~BMCR_LOOPBACK;
1617 e1e_wphy(hw, MII_BMCR, phy_reg);
1618 if (hw->phy.ops.commit)
1619 hw->phy.ops.commit(hw);
1620 }
1621 break;
1622 }
1623}
1624
1625static void e1000_create_lbtest_frame(struct sk_buff *skb,
1626 unsigned int frame_size)
1627{
1628 memset(skb->data, 0xFF, frame_size);
1629 frame_size &= ~1;
1630 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1631 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1632 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1633}
1634
1635static int e1000_check_lbtest_frame(struct sk_buff *skb,
1636 unsigned int frame_size)
1637{
1638 frame_size &= ~1;
1639 if (*(skb->data + 3) == 0xFF)
1640 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1641 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1642 return 0;
1643 return 13;
1644}
1645
1646static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1647{
1648 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1649 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1650 struct pci_dev *pdev = adapter->pdev;
1651 struct e1000_hw *hw = &adapter->hw;
1652 struct e1000_buffer *buffer_info;
1653 int i, j, k, l;
1654 int lc;
1655 int good_cnt;
1656 int ret_val = 0;
1657 unsigned long time;
1658
1659 ew32(RDT(0), rx_ring->count - 1);
1660
1661 /* Calculate the loop count based on the largest descriptor ring
1662 * The idea is to wrap the largest ring a number of times using 64
1663 * send/receive pairs during each loop
1664 */
1665
1666 if (rx_ring->count <= tx_ring->count)
1667 lc = ((tx_ring->count / 64) * 2) + 1;
1668 else
1669 lc = ((rx_ring->count / 64) * 2) + 1;
1670
1671 k = 0;
1672 l = 0;
1673 /* loop count loop */
1674 for (j = 0; j <= lc; j++) {
1675 /* send the packets */
1676 for (i = 0; i < 64; i++) {
1677 buffer_info = &tx_ring->buffer_info[k];
1678
1679 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1680 dma_sync_single_for_device(&pdev->dev,
1681 buffer_info->dma,
1682 buffer_info->length,
1683 DMA_TO_DEVICE);
1684 k++;
1685 if (k == tx_ring->count)
1686 k = 0;
1687 }
1688 ew32(TDT(0), k);
1689 e1e_flush();
1690 msleep(200);
1691 time = jiffies; /* set the start time for the receive */
1692 good_cnt = 0;
1693 /* receive the sent packets */
1694 do {
1695 buffer_info = &rx_ring->buffer_info[l];
1696
1697 dma_sync_single_for_cpu(&pdev->dev,
1698 buffer_info->dma, 2048,
1699 DMA_FROM_DEVICE);
1700
1701 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1702 1024);
1703 if (!ret_val)
1704 good_cnt++;
1705 l++;
1706 if (l == rx_ring->count)
1707 l = 0;
1708 /* time + 20 msecs (200 msecs on 2.4) is more than
1709 * enough time to complete the receives, if it's
1710 * exceeded, break and error off
1711 */
1712 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1713 if (good_cnt != 64) {
1714 ret_val = 13; /* ret_val is the same as mis-compare */
1715 break;
1716 }
1717 if (time_after(jiffies, time + 20)) {
1718 ret_val = 14; /* error code for time out error */
1719 break;
1720 }
1721 }
1722 return ret_val;
1723}
1724
1725static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1726{
1727 struct e1000_hw *hw = &adapter->hw;
1728
1729 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1730 if (hw->phy.ops.check_reset_block &&
1731 hw->phy.ops.check_reset_block(hw)) {
1732 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1733 *data = 0;
1734 goto out;
1735 }
1736
1737 *data = e1000_setup_desc_rings(adapter);
1738 if (*data)
1739 goto out;
1740
1741 *data = e1000_setup_loopback_test(adapter);
1742 if (*data)
1743 goto err_loopback;
1744
1745 *data = e1000_run_loopback_test(adapter);
1746 e1000_loopback_cleanup(adapter);
1747
1748err_loopback:
1749 e1000_free_desc_rings(adapter);
1750out:
1751 return *data;
1752}
1753
1754static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1755{
1756 struct e1000_hw *hw = &adapter->hw;
1757
1758 *data = 0;
1759 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1760 int i = 0;
1761
1762 hw->mac.serdes_has_link = false;
1763
1764 /* On some blade server designs, link establishment
1765 * could take as long as 2-3 minutes
1766 */
1767 do {
1768 hw->mac.ops.check_for_link(hw);
1769 if (hw->mac.serdes_has_link)
1770 return *data;
1771 msleep(20);
1772 } while (i++ < 3750);
1773
1774 *data = 1;
1775 } else {
1776 hw->mac.ops.check_for_link(hw);
1777 if (hw->mac.autoneg)
1778 /* On some Phy/switch combinations, link establishment
1779 * can take a few seconds more than expected.
1780 */
1781 msleep_interruptible(5000);
1782
1783 if (!(er32(STATUS) & E1000_STATUS_LU))
1784 *data = 1;
1785 }
1786 return *data;
1787}
1788
1789static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1790 int sset)
1791{
1792 switch (sset) {
1793 case ETH_SS_TEST:
1794 return E1000_TEST_LEN;
1795 case ETH_SS_STATS:
1796 return E1000_STATS_LEN;
1797 default:
1798 return -EOPNOTSUPP;
1799 }
1800}
1801
1802static void e1000_diag_test(struct net_device *netdev,
1803 struct ethtool_test *eth_test, u64 *data)
1804{
1805 struct e1000_adapter *adapter = netdev_priv(netdev);
1806 u16 autoneg_advertised;
1807 u8 forced_speed_duplex;
1808 u8 autoneg;
1809 bool if_running = netif_running(netdev);
1810
1811 pm_runtime_get_sync(netdev->dev.parent);
1812
1813 set_bit(__E1000_TESTING, &adapter->state);
1814
1815 if (!if_running) {
1816 /* Get control of and reset hardware */
1817 if (adapter->flags & FLAG_HAS_AMT)
1818 e1000e_get_hw_control(adapter);
1819
1820 e1000e_power_up_phy(adapter);
1821
1822 adapter->hw.phy.autoneg_wait_to_complete = 1;
1823 e1000e_reset(adapter);
1824 adapter->hw.phy.autoneg_wait_to_complete = 0;
1825 }
1826
1827 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1828 /* Offline tests */
1829
1830 /* save speed, duplex, autoneg settings */
1831 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1832 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1833 autoneg = adapter->hw.mac.autoneg;
1834
1835 e_info("offline testing starting\n");
1836
1837 if (if_running)
1838 /* indicate we're in test mode */
1839 e1000e_close(netdev);
1840
1841 if (e1000_reg_test(adapter, &data[0]))
1842 eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844 e1000e_reset(adapter);
1845 if (e1000_eeprom_test(adapter, &data[1]))
1846 eth_test->flags |= ETH_TEST_FL_FAILED;
1847
1848 e1000e_reset(adapter);
1849 if (e1000_intr_test(adapter, &data[2]))
1850 eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852 e1000e_reset(adapter);
1853 if (e1000_loopback_test(adapter, &data[3]))
1854 eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856 /* force this routine to wait until autoneg complete/timeout */
1857 adapter->hw.phy.autoneg_wait_to_complete = 1;
1858 e1000e_reset(adapter);
1859 adapter->hw.phy.autoneg_wait_to_complete = 0;
1860
1861 if (e1000_link_test(adapter, &data[4]))
1862 eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864 /* restore speed, duplex, autoneg settings */
1865 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1866 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1867 adapter->hw.mac.autoneg = autoneg;
1868 e1000e_reset(adapter);
1869
1870 clear_bit(__E1000_TESTING, &adapter->state);
1871 if (if_running)
1872 e1000e_open(netdev);
1873 } else {
1874 /* Online tests */
1875
1876 e_info("online testing starting\n");
1877
1878 /* register, eeprom, intr and loopback tests not run online */
1879 data[0] = 0;
1880 data[1] = 0;
1881 data[2] = 0;
1882 data[3] = 0;
1883
1884 if (e1000_link_test(adapter, &data[4]))
1885 eth_test->flags |= ETH_TEST_FL_FAILED;
1886
1887 clear_bit(__E1000_TESTING, &adapter->state);
1888 }
1889
1890 if (!if_running) {
1891 e1000e_reset(adapter);
1892
1893 if (adapter->flags & FLAG_HAS_AMT)
1894 e1000e_release_hw_control(adapter);
1895 }
1896
1897 msleep_interruptible(4 * 1000);
1898
1899 pm_runtime_put_sync(netdev->dev.parent);
1900}
1901
1902static void e1000_get_wol(struct net_device *netdev,
1903 struct ethtool_wolinfo *wol)
1904{
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906
1907 wol->supported = 0;
1908 wol->wolopts = 0;
1909
1910 if (!(adapter->flags & FLAG_HAS_WOL) ||
1911 !device_can_wakeup(&adapter->pdev->dev))
1912 return;
1913
1914 wol->supported = WAKE_UCAST | WAKE_MCAST |
1915 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1916
1917 /* apply any specific unsupported masks here */
1918 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1919 wol->supported &= ~WAKE_UCAST;
1920
1921 if (adapter->wol & E1000_WUFC_EX)
1922 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1923 }
1924
1925 if (adapter->wol & E1000_WUFC_EX)
1926 wol->wolopts |= WAKE_UCAST;
1927 if (adapter->wol & E1000_WUFC_MC)
1928 wol->wolopts |= WAKE_MCAST;
1929 if (adapter->wol & E1000_WUFC_BC)
1930 wol->wolopts |= WAKE_BCAST;
1931 if (adapter->wol & E1000_WUFC_MAG)
1932 wol->wolopts |= WAKE_MAGIC;
1933 if (adapter->wol & E1000_WUFC_LNKC)
1934 wol->wolopts |= WAKE_PHY;
1935}
1936
1937static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1938{
1939 struct e1000_adapter *adapter = netdev_priv(netdev);
1940
1941 if (!(adapter->flags & FLAG_HAS_WOL) ||
1942 !device_can_wakeup(&adapter->pdev->dev) ||
1943 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1944 WAKE_MAGIC | WAKE_PHY)))
1945 return -EOPNOTSUPP;
1946
1947 /* these settings will always override what we currently have */
1948 adapter->wol = 0;
1949
1950 if (wol->wolopts & WAKE_UCAST)
1951 adapter->wol |= E1000_WUFC_EX;
1952 if (wol->wolopts & WAKE_MCAST)
1953 adapter->wol |= E1000_WUFC_MC;
1954 if (wol->wolopts & WAKE_BCAST)
1955 adapter->wol |= E1000_WUFC_BC;
1956 if (wol->wolopts & WAKE_MAGIC)
1957 adapter->wol |= E1000_WUFC_MAG;
1958 if (wol->wolopts & WAKE_PHY)
1959 adapter->wol |= E1000_WUFC_LNKC;
1960
1961 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1962
1963 return 0;
1964}
1965
1966static int e1000_set_phys_id(struct net_device *netdev,
1967 enum ethtool_phys_id_state state)
1968{
1969 struct e1000_adapter *adapter = netdev_priv(netdev);
1970 struct e1000_hw *hw = &adapter->hw;
1971
1972 switch (state) {
1973 case ETHTOOL_ID_ACTIVE:
1974 pm_runtime_get_sync(netdev->dev.parent);
1975
1976 if (!hw->mac.ops.blink_led)
1977 return 2; /* cycle on/off twice per second */
1978
1979 hw->mac.ops.blink_led(hw);
1980 break;
1981
1982 case ETHTOOL_ID_INACTIVE:
1983 if (hw->phy.type == e1000_phy_ife)
1984 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1985 hw->mac.ops.led_off(hw);
1986 hw->mac.ops.cleanup_led(hw);
1987 pm_runtime_put_sync(netdev->dev.parent);
1988 break;
1989
1990 case ETHTOOL_ID_ON:
1991 hw->mac.ops.led_on(hw);
1992 break;
1993
1994 case ETHTOOL_ID_OFF:
1995 hw->mac.ops.led_off(hw);
1996 break;
1997 }
1998
1999 return 0;
2000}
2001
2002static int e1000_get_coalesce(struct net_device *netdev,
2003 struct ethtool_coalesce *ec)
2004{
2005 struct e1000_adapter *adapter = netdev_priv(netdev);
2006
2007 if (adapter->itr_setting <= 4)
2008 ec->rx_coalesce_usecs = adapter->itr_setting;
2009 else
2010 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2011
2012 return 0;
2013}
2014
2015static int e1000_set_coalesce(struct net_device *netdev,
2016 struct ethtool_coalesce *ec)
2017{
2018 struct e1000_adapter *adapter = netdev_priv(netdev);
2019
2020 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2021 ((ec->rx_coalesce_usecs > 4) &&
2022 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2023 (ec->rx_coalesce_usecs == 2))
2024 return -EINVAL;
2025
2026 if (ec->rx_coalesce_usecs == 4) {
2027 adapter->itr_setting = 4;
2028 adapter->itr = adapter->itr_setting;
2029 } else if (ec->rx_coalesce_usecs <= 3) {
2030 adapter->itr = 20000;
2031 adapter->itr_setting = ec->rx_coalesce_usecs;
2032 } else {
2033 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2034 adapter->itr_setting = adapter->itr & ~3;
2035 }
2036
2037 pm_runtime_get_sync(netdev->dev.parent);
2038
2039 if (adapter->itr_setting != 0)
2040 e1000e_write_itr(adapter, adapter->itr);
2041 else
2042 e1000e_write_itr(adapter, 0);
2043
2044 pm_runtime_put_sync(netdev->dev.parent);
2045
2046 return 0;
2047}
2048
2049static int e1000_nway_reset(struct net_device *netdev)
2050{
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052
2053 if (!netif_running(netdev))
2054 return -EAGAIN;
2055
2056 if (!adapter->hw.mac.autoneg)
2057 return -EINVAL;
2058
2059 pm_runtime_get_sync(netdev->dev.parent);
2060 e1000e_reinit_locked(adapter);
2061 pm_runtime_put_sync(netdev->dev.parent);
2062
2063 return 0;
2064}
2065
2066static void e1000_get_ethtool_stats(struct net_device *netdev,
2067 struct ethtool_stats __always_unused *stats,
2068 u64 *data)
2069{
2070 struct e1000_adapter *adapter = netdev_priv(netdev);
2071 struct rtnl_link_stats64 net_stats;
2072 int i;
2073 char *p = NULL;
2074
2075 pm_runtime_get_sync(netdev->dev.parent);
2076
2077 dev_get_stats(netdev, &net_stats);
2078
2079 pm_runtime_put_sync(netdev->dev.parent);
2080
2081 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2082 switch (e1000_gstrings_stats[i].type) {
2083 case NETDEV_STATS:
2084 p = (char *)&net_stats +
2085 e1000_gstrings_stats[i].stat_offset;
2086 break;
2087 case E1000_STATS:
2088 p = (char *)adapter +
2089 e1000_gstrings_stats[i].stat_offset;
2090 break;
2091 default:
2092 data[i] = 0;
2093 continue;
2094 }
2095
2096 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2097 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2098 }
2099}
2100
2101static void e1000_get_strings(struct net_device __always_unused *netdev,
2102 u32 stringset, u8 *data)
2103{
2104 u8 *p = data;
2105 int i;
2106
2107 switch (stringset) {
2108 case ETH_SS_TEST:
2109 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2110 break;
2111 case ETH_SS_STATS:
2112 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2113 memcpy(p, e1000_gstrings_stats[i].stat_string,
2114 ETH_GSTRING_LEN);
2115 p += ETH_GSTRING_LEN;
2116 }
2117 break;
2118 }
2119}
2120
2121static int e1000_get_rxnfc(struct net_device *netdev,
2122 struct ethtool_rxnfc *info,
2123 u32 __always_unused *rule_locs)
2124{
2125 info->data = 0;
2126
2127 switch (info->cmd) {
2128 case ETHTOOL_GRXFH: {
2129 struct e1000_adapter *adapter = netdev_priv(netdev);
2130 struct e1000_hw *hw = &adapter->hw;
2131 u32 mrqc;
2132
2133 pm_runtime_get_sync(netdev->dev.parent);
2134 mrqc = er32(MRQC);
2135 pm_runtime_put_sync(netdev->dev.parent);
2136
2137 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2138 return 0;
2139
2140 switch (info->flow_type) {
2141 case TCP_V4_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V4_FLOW:
2146 case SCTP_V4_FLOW:
2147 case AH_ESP_V4_FLOW:
2148 case IPV4_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 case TCP_V6_FLOW:
2153 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2154 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2155 /* fall through */
2156 case UDP_V6_FLOW:
2157 case SCTP_V6_FLOW:
2158 case AH_ESP_V6_FLOW:
2159 case IPV6_FLOW:
2160 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2161 info->data |= RXH_IP_SRC | RXH_IP_DST;
2162 break;
2163 default:
2164 break;
2165 }
2166 return 0;
2167 }
2168 default:
2169 return -EOPNOTSUPP;
2170 }
2171}
2172
2173static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2174{
2175 struct e1000_adapter *adapter = netdev_priv(netdev);
2176 struct e1000_hw *hw = &adapter->hw;
2177 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2178 u32 ret_val;
2179
2180 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2181 return -EOPNOTSUPP;
2182
2183 switch (hw->phy.type) {
2184 case e1000_phy_82579:
2185 cap_addr = I82579_EEE_CAPABILITY;
2186 lpa_addr = I82579_EEE_LP_ABILITY;
2187 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2188 break;
2189 case e1000_phy_i217:
2190 cap_addr = I217_EEE_CAPABILITY;
2191 lpa_addr = I217_EEE_LP_ABILITY;
2192 pcs_stat_addr = I217_EEE_PCS_STATUS;
2193 break;
2194 default:
2195 return -EOPNOTSUPP;
2196 }
2197
2198 pm_runtime_get_sync(netdev->dev.parent);
2199
2200 ret_val = hw->phy.ops.acquire(hw);
2201 if (ret_val) {
2202 pm_runtime_put_sync(netdev->dev.parent);
2203 return -EBUSY;
2204 }
2205
2206 /* EEE Capability */
2207 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2208 if (ret_val)
2209 goto release;
2210 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2211
2212 /* EEE Advertised */
2213 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2214
2215 /* EEE Link Partner Advertised */
2216 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2217 if (ret_val)
2218 goto release;
2219 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2220
2221 /* EEE PCS Status */
2222 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2223 if (ret_val)
2224 goto release;
2225 if (hw->phy.type == e1000_phy_82579)
2226 phy_data <<= 8;
2227
2228 /* Result of the EEE auto negotiation - there is no register that
2229 * has the status of the EEE negotiation so do a best-guess based
2230 * on whether Tx or Rx LPI indications have been received.
2231 */
2232 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2233 edata->eee_active = true;
2234
2235 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2236 edata->tx_lpi_enabled = true;
2237 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2238
2239release:
2240 hw->phy.ops.release(hw);
2241 if (ret_val)
2242 ret_val = -ENODATA;
2243
2244 pm_runtime_put_sync(netdev->dev.parent);
2245
2246 return ret_val;
2247}
2248
2249static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2250{
2251 struct e1000_adapter *adapter = netdev_priv(netdev);
2252 struct e1000_hw *hw = &adapter->hw;
2253 struct ethtool_eee eee_curr;
2254 s32 ret_val;
2255
2256 ret_val = e1000e_get_eee(netdev, &eee_curr);
2257 if (ret_val)
2258 return ret_val;
2259
2260 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2261 e_err("Setting EEE tx-lpi is not supported\n");
2262 return -EINVAL;
2263 }
2264
2265 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2266 e_err("Setting EEE Tx LPI timer is not supported\n");
2267 return -EINVAL;
2268 }
2269
2270 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2271 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2272 return -EINVAL;
2273 }
2274
2275 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2276
2277 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2278
2279 pm_runtime_get_sync(netdev->dev.parent);
2280
2281 /* reset the link */
2282 if (netif_running(netdev))
2283 e1000e_reinit_locked(adapter);
2284 else
2285 e1000e_reset(adapter);
2286
2287 pm_runtime_put_sync(netdev->dev.parent);
2288
2289 return 0;
2290}
2291
2292static int e1000e_get_ts_info(struct net_device *netdev,
2293 struct ethtool_ts_info *info)
2294{
2295 struct e1000_adapter *adapter = netdev_priv(netdev);
2296
2297 ethtool_op_get_ts_info(netdev, info);
2298
2299 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2300 return 0;
2301
2302 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2303 SOF_TIMESTAMPING_RX_HARDWARE |
2304 SOF_TIMESTAMPING_RAW_HARDWARE);
2305
2306 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2307
2308 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2309 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2310 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2311 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2312 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2313 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2315 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2316 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2317 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2318 BIT(HWTSTAMP_FILTER_ALL));
2319
2320 if (adapter->ptp_clock)
2321 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2322
2323 return 0;
2324}
2325
2326static const struct ethtool_ops e1000_ethtool_ops = {
2327 .get_drvinfo = e1000_get_drvinfo,
2328 .get_regs_len = e1000_get_regs_len,
2329 .get_regs = e1000_get_regs,
2330 .get_wol = e1000_get_wol,
2331 .set_wol = e1000_set_wol,
2332 .get_msglevel = e1000_get_msglevel,
2333 .set_msglevel = e1000_set_msglevel,
2334 .nway_reset = e1000_nway_reset,
2335 .get_link = ethtool_op_get_link,
2336 .get_eeprom_len = e1000_get_eeprom_len,
2337 .get_eeprom = e1000_get_eeprom,
2338 .set_eeprom = e1000_set_eeprom,
2339 .get_ringparam = e1000_get_ringparam,
2340 .set_ringparam = e1000_set_ringparam,
2341 .get_pauseparam = e1000_get_pauseparam,
2342 .set_pauseparam = e1000_set_pauseparam,
2343 .self_test = e1000_diag_test,
2344 .get_strings = e1000_get_strings,
2345 .set_phys_id = e1000_set_phys_id,
2346 .get_ethtool_stats = e1000_get_ethtool_stats,
2347 .get_sset_count = e1000e_get_sset_count,
2348 .get_coalesce = e1000_get_coalesce,
2349 .set_coalesce = e1000_set_coalesce,
2350 .get_rxnfc = e1000_get_rxnfc,
2351 .get_ts_info = e1000e_get_ts_info,
2352 .get_eee = e1000e_get_eee,
2353 .set_eee = e1000e_set_eee,
2354 .get_link_ksettings = e1000_get_link_ksettings,
2355 .set_link_ksettings = e1000_set_link_ksettings,
2356};
2357
2358void e1000e_set_ethtool_ops(struct net_device *netdev)
2359{
2360 netdev->ethtool_ops = &e1000_ethtool_ops;
2361}
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include <linux/netdevice.h>
32#include <linux/interrupt.h>
33#include <linux/ethtool.h>
34#include <linux/pci.h>
35#include <linux/slab.h>
36#include <linux/delay.h>
37#include <linux/vmalloc.h>
38
39#include "e1000.h"
40
41enum {NETDEV_STATS, E1000_STATS};
42
43struct e1000_stats {
44 char stat_string[ETH_GSTRING_LEN];
45 int type;
46 int sizeof_stat;
47 int stat_offset;
48};
49
50#define E1000_STAT(str, m) { \
51 .stat_string = str, \
52 .type = E1000_STATS, \
53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 .stat_offset = offsetof(struct e1000_adapter, m) }
55#define E1000_NETDEV_STAT(str, m) { \
56 .stat_string = str, \
57 .type = NETDEV_STATS, \
58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61static const struct e1000_stats e1000_gstrings_stats[] = {
62 E1000_STAT("rx_packets", stats.gprc),
63 E1000_STAT("tx_packets", stats.gptc),
64 E1000_STAT("rx_bytes", stats.gorc),
65 E1000_STAT("tx_bytes", stats.gotc),
66 E1000_STAT("rx_broadcast", stats.bprc),
67 E1000_STAT("tx_broadcast", stats.bptc),
68 E1000_STAT("rx_multicast", stats.mprc),
69 E1000_STAT("tx_multicast", stats.mptc),
70 E1000_NETDEV_STAT("rx_errors", rx_errors),
71 E1000_NETDEV_STAT("tx_errors", tx_errors),
72 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 E1000_STAT("multicast", stats.mprc),
74 E1000_STAT("collisions", stats.colc),
75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 E1000_STAT("rx_crc_errors", stats.crcerrs),
78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 E1000_STAT("rx_missed_errors", stats.mpc),
81 E1000_STAT("tx_aborted_errors", stats.ecol),
82 E1000_STAT("tx_carrier_errors", stats.tncrs),
83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 E1000_STAT("tx_window_errors", stats.latecol),
86 E1000_STAT("tx_abort_late_coll", stats.latecol),
87 E1000_STAT("tx_deferred_ok", stats.dc),
88 E1000_STAT("tx_single_coll_ok", stats.scc),
89 E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 E1000_STAT("tx_timeout_count", tx_timeout_count),
91 E1000_STAT("tx_restart_queue", restart_queue),
92 E1000_STAT("rx_long_length_errors", stats.roc),
93 E1000_STAT("rx_short_length_errors", stats.ruc),
94 E1000_STAT("rx_align_errors", stats.algnerrc),
95 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 E1000_STAT("rx_long_byte_count", stats.gorc),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 E1000_STAT("rx_header_split", rx_hdr_split),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 E1000_STAT("tx_smbus", stats.mgptc),
107 E1000_STAT("rx_smbus", stats.mgprc),
108 E1000_STAT("dropped_smbus", stats.mgpdc),
109 E1000_STAT("rx_dma_failed", rx_dma_failed),
110 E1000_STAT("tx_dma_failed", tx_dma_failed),
111};
112
113#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
114#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116 "Register test (offline)", "Eeprom test (offline)",
117 "Interrupt test (offline)", "Loopback test (offline)",
118 "Link test (on/offline)"
119};
120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122static int e1000_get_settings(struct net_device *netdev,
123 struct ethtool_cmd *ecmd)
124{
125 struct e1000_adapter *adapter = netdev_priv(netdev);
126 struct e1000_hw *hw = &adapter->hw;
127 u32 speed;
128
129 if (hw->phy.media_type == e1000_media_type_copper) {
130
131 ecmd->supported = (SUPPORTED_10baseT_Half |
132 SUPPORTED_10baseT_Full |
133 SUPPORTED_100baseT_Half |
134 SUPPORTED_100baseT_Full |
135 SUPPORTED_1000baseT_Full |
136 SUPPORTED_Autoneg |
137 SUPPORTED_TP);
138 if (hw->phy.type == e1000_phy_ife)
139 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140 ecmd->advertising = ADVERTISED_TP;
141
142 if (hw->mac.autoneg == 1) {
143 ecmd->advertising |= ADVERTISED_Autoneg;
144 /* the e1000 autoneg seems to match ethtool nicely */
145 ecmd->advertising |= hw->phy.autoneg_advertised;
146 }
147
148 ecmd->port = PORT_TP;
149 ecmd->phy_address = hw->phy.addr;
150 ecmd->transceiver = XCVR_INTERNAL;
151
152 } else {
153 ecmd->supported = (SUPPORTED_1000baseT_Full |
154 SUPPORTED_FIBRE |
155 SUPPORTED_Autoneg);
156
157 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 ADVERTISED_FIBRE |
159 ADVERTISED_Autoneg);
160
161 ecmd->port = PORT_FIBRE;
162 ecmd->transceiver = XCVR_EXTERNAL;
163 }
164
165 speed = -1;
166 ecmd->duplex = -1;
167
168 if (netif_running(netdev)) {
169 if (netif_carrier_ok(netdev)) {
170 speed = adapter->link_speed;
171 ecmd->duplex = adapter->link_duplex - 1;
172 }
173 } else {
174 u32 status = er32(STATUS);
175 if (status & E1000_STATUS_LU) {
176 if (status & E1000_STATUS_SPEED_1000)
177 speed = SPEED_1000;
178 else if (status & E1000_STATUS_SPEED_100)
179 speed = SPEED_100;
180 else
181 speed = SPEED_10;
182
183 if (status & E1000_STATUS_FD)
184 ecmd->duplex = DUPLEX_FULL;
185 else
186 ecmd->duplex = DUPLEX_HALF;
187 }
188 }
189
190 ethtool_cmd_speed_set(ecmd, speed);
191 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194 /* MDI-X => 2; MDI =>1; Invalid =>0 */
195 if ((hw->phy.media_type == e1000_media_type_copper) &&
196 netif_carrier_ok(netdev))
197 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198 ETH_TP_MDI;
199 else
200 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202 return 0;
203}
204
205static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206{
207 struct e1000_mac_info *mac = &adapter->hw.mac;
208
209 mac->autoneg = 0;
210
211 /* Make sure dplx is at most 1 bit and lsb of speed is not set
212 * for the switch() below to work */
213 if ((spd & 1) || (dplx & ~1))
214 goto err_inval;
215
216 /* Fiber NICs only allow 1000 gbps Full duplex */
217 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218 spd != SPEED_1000 &&
219 dplx != DUPLEX_FULL) {
220 goto err_inval;
221 }
222
223 switch (spd + dplx) {
224 case SPEED_10 + DUPLEX_HALF:
225 mac->forced_speed_duplex = ADVERTISE_10_HALF;
226 break;
227 case SPEED_10 + DUPLEX_FULL:
228 mac->forced_speed_duplex = ADVERTISE_10_FULL;
229 break;
230 case SPEED_100 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_100_HALF;
232 break;
233 case SPEED_100 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_100_FULL;
235 break;
236 case SPEED_1000 + DUPLEX_FULL:
237 mac->autoneg = 1;
238 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239 break;
240 case SPEED_1000 + DUPLEX_HALF: /* not supported */
241 default:
242 goto err_inval;
243 }
244 return 0;
245
246err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
249}
250
251static int e1000_set_settings(struct net_device *netdev,
252 struct ethtool_cmd *ecmd)
253{
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256
257 /*
258 * When SoL/IDER sessions are active, autoneg/speed/duplex
259 * cannot be changed
260 */
261 if (hw->phy.ops.check_reset_block &&
262 hw->phy.ops.check_reset_block(hw)) {
263 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
264 return -EINVAL;
265 }
266
267 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
268 usleep_range(1000, 2000);
269
270 if (ecmd->autoneg == AUTONEG_ENABLE) {
271 hw->mac.autoneg = 1;
272 if (hw->phy.media_type == e1000_media_type_fiber)
273 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
274 ADVERTISED_FIBRE |
275 ADVERTISED_Autoneg;
276 else
277 hw->phy.autoneg_advertised = ecmd->advertising |
278 ADVERTISED_TP |
279 ADVERTISED_Autoneg;
280 ecmd->advertising = hw->phy.autoneg_advertised;
281 if (adapter->fc_autoneg)
282 hw->fc.requested_mode = e1000_fc_default;
283 } else {
284 u32 speed = ethtool_cmd_speed(ecmd);
285 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
286 clear_bit(__E1000_RESETTING, &adapter->state);
287 return -EINVAL;
288 }
289 }
290
291 /* reset the link */
292
293 if (netif_running(adapter->netdev)) {
294 e1000e_down(adapter);
295 e1000e_up(adapter);
296 } else {
297 e1000e_reset(adapter);
298 }
299
300 clear_bit(__E1000_RESETTING, &adapter->state);
301 return 0;
302}
303
304static void e1000_get_pauseparam(struct net_device *netdev,
305 struct ethtool_pauseparam *pause)
306{
307 struct e1000_adapter *adapter = netdev_priv(netdev);
308 struct e1000_hw *hw = &adapter->hw;
309
310 pause->autoneg =
311 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
312
313 if (hw->fc.current_mode == e1000_fc_rx_pause) {
314 pause->rx_pause = 1;
315 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
316 pause->tx_pause = 1;
317 } else if (hw->fc.current_mode == e1000_fc_full) {
318 pause->rx_pause = 1;
319 pause->tx_pause = 1;
320 }
321}
322
323static int e1000_set_pauseparam(struct net_device *netdev,
324 struct ethtool_pauseparam *pause)
325{
326 struct e1000_adapter *adapter = netdev_priv(netdev);
327 struct e1000_hw *hw = &adapter->hw;
328 int retval = 0;
329
330 adapter->fc_autoneg = pause->autoneg;
331
332 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
333 usleep_range(1000, 2000);
334
335 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
336 hw->fc.requested_mode = e1000_fc_default;
337 if (netif_running(adapter->netdev)) {
338 e1000e_down(adapter);
339 e1000e_up(adapter);
340 } else {
341 e1000e_reset(adapter);
342 }
343 } else {
344 if (pause->rx_pause && pause->tx_pause)
345 hw->fc.requested_mode = e1000_fc_full;
346 else if (pause->rx_pause && !pause->tx_pause)
347 hw->fc.requested_mode = e1000_fc_rx_pause;
348 else if (!pause->rx_pause && pause->tx_pause)
349 hw->fc.requested_mode = e1000_fc_tx_pause;
350 else if (!pause->rx_pause && !pause->tx_pause)
351 hw->fc.requested_mode = e1000_fc_none;
352
353 hw->fc.current_mode = hw->fc.requested_mode;
354
355 if (hw->phy.media_type == e1000_media_type_fiber) {
356 retval = hw->mac.ops.setup_link(hw);
357 /* implicit goto out */
358 } else {
359 retval = e1000e_force_mac_fc(hw);
360 if (retval)
361 goto out;
362 e1000e_set_fc_watermarks(hw);
363 }
364 }
365
366out:
367 clear_bit(__E1000_RESETTING, &adapter->state);
368 return retval;
369}
370
371static u32 e1000_get_msglevel(struct net_device *netdev)
372{
373 struct e1000_adapter *adapter = netdev_priv(netdev);
374 return adapter->msg_enable;
375}
376
377static void e1000_set_msglevel(struct net_device *netdev, u32 data)
378{
379 struct e1000_adapter *adapter = netdev_priv(netdev);
380 adapter->msg_enable = data;
381}
382
383static int e1000_get_regs_len(struct net_device *netdev)
384{
385#define E1000_REGS_LEN 32 /* overestimate */
386 return E1000_REGS_LEN * sizeof(u32);
387}
388
389static void e1000_get_regs(struct net_device *netdev,
390 struct ethtool_regs *regs, void *p)
391{
392 struct e1000_adapter *adapter = netdev_priv(netdev);
393 struct e1000_hw *hw = &adapter->hw;
394 u32 *regs_buff = p;
395 u16 phy_data;
396
397 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
398
399 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
400 adapter->pdev->device;
401
402 regs_buff[0] = er32(CTRL);
403 regs_buff[1] = er32(STATUS);
404
405 regs_buff[2] = er32(RCTL);
406 regs_buff[3] = er32(RDLEN(0));
407 regs_buff[4] = er32(RDH(0));
408 regs_buff[5] = er32(RDT(0));
409 regs_buff[6] = er32(RDTR);
410
411 regs_buff[7] = er32(TCTL);
412 regs_buff[8] = er32(TDLEN(0));
413 regs_buff[9] = er32(TDH(0));
414 regs_buff[10] = er32(TDT(0));
415 regs_buff[11] = er32(TIDV);
416
417 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
418
419 /* ethtool doesn't use anything past this point, so all this
420 * code is likely legacy junk for apps that may or may not
421 * exist */
422 if (hw->phy.type == e1000_phy_m88) {
423 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
424 regs_buff[13] = (u32)phy_data; /* cable length */
425 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
426 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
429 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
430 regs_buff[18] = regs_buff[13]; /* cable polarity */
431 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
432 regs_buff[20] = regs_buff[17]; /* polarity correction */
433 /* phy receive errors */
434 regs_buff[22] = adapter->phy_stats.receive_errors;
435 regs_buff[23] = regs_buff[13]; /* mdix mode */
436 }
437 regs_buff[21] = 0; /* was idle_errors */
438 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
439 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
440 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
441}
442
443static int e1000_get_eeprom_len(struct net_device *netdev)
444{
445 struct e1000_adapter *adapter = netdev_priv(netdev);
446 return adapter->hw.nvm.word_size * 2;
447}
448
449static int e1000_get_eeprom(struct net_device *netdev,
450 struct ethtool_eeprom *eeprom, u8 *bytes)
451{
452 struct e1000_adapter *adapter = netdev_priv(netdev);
453 struct e1000_hw *hw = &adapter->hw;
454 u16 *eeprom_buff;
455 int first_word;
456 int last_word;
457 int ret_val = 0;
458 u16 i;
459
460 if (eeprom->len == 0)
461 return -EINVAL;
462
463 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
464
465 first_word = eeprom->offset >> 1;
466 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
467
468 eeprom_buff = kmalloc(sizeof(u16) *
469 (last_word - first_word + 1), GFP_KERNEL);
470 if (!eeprom_buff)
471 return -ENOMEM;
472
473 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
474 ret_val = e1000_read_nvm(hw, first_word,
475 last_word - first_word + 1,
476 eeprom_buff);
477 } else {
478 for (i = 0; i < last_word - first_word + 1; i++) {
479 ret_val = e1000_read_nvm(hw, first_word + i, 1,
480 &eeprom_buff[i]);
481 if (ret_val)
482 break;
483 }
484 }
485
486 if (ret_val) {
487 /* a read error occurred, throw away the result */
488 memset(eeprom_buff, 0xff, sizeof(u16) *
489 (last_word - first_word + 1));
490 } else {
491 /* Device's eeprom is always little-endian, word addressable */
492 for (i = 0; i < last_word - first_word + 1; i++)
493 le16_to_cpus(&eeprom_buff[i]);
494 }
495
496 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497 kfree(eeprom_buff);
498
499 return ret_val;
500}
501
502static int e1000_set_eeprom(struct net_device *netdev,
503 struct ethtool_eeprom *eeprom, u8 *bytes)
504{
505 struct e1000_adapter *adapter = netdev_priv(netdev);
506 struct e1000_hw *hw = &adapter->hw;
507 u16 *eeprom_buff;
508 void *ptr;
509 int max_len;
510 int first_word;
511 int last_word;
512 int ret_val = 0;
513 u16 i;
514
515 if (eeprom->len == 0)
516 return -EOPNOTSUPP;
517
518 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
519 return -EFAULT;
520
521 if (adapter->flags & FLAG_READ_ONLY_NVM)
522 return -EINVAL;
523
524 max_len = hw->nvm.word_size * 2;
525
526 first_word = eeprom->offset >> 1;
527 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
529 if (!eeprom_buff)
530 return -ENOMEM;
531
532 ptr = (void *)eeprom_buff;
533
534 if (eeprom->offset & 1) {
535 /* need read/modify/write of first changed EEPROM word */
536 /* only the second byte of the word is being modified */
537 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
538 ptr++;
539 }
540 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
541 /* need read/modify/write of last changed EEPROM word */
542 /* only the first byte of the word is being modified */
543 ret_val = e1000_read_nvm(hw, last_word, 1,
544 &eeprom_buff[last_word - first_word]);
545
546 if (ret_val)
547 goto out;
548
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
552
553 memcpy(ptr, bytes, eeprom->len);
554
555 for (i = 0; i < last_word - first_word + 1; i++)
556 cpu_to_le16s(&eeprom_buff[i]);
557
558 ret_val = e1000_write_nvm(hw, first_word,
559 last_word - first_word + 1, eeprom_buff);
560
561 if (ret_val)
562 goto out;
563
564 /*
565 * Update the checksum over the first part of the EEPROM if needed
566 * and flush shadow RAM for applicable controllers
567 */
568 if ((first_word <= NVM_CHECKSUM_REG) ||
569 (hw->mac.type == e1000_82583) ||
570 (hw->mac.type == e1000_82574) ||
571 (hw->mac.type == e1000_82573))
572 ret_val = e1000e_update_nvm_checksum(hw);
573
574out:
575 kfree(eeprom_buff);
576 return ret_val;
577}
578
579static void e1000_get_drvinfo(struct net_device *netdev,
580 struct ethtool_drvinfo *drvinfo)
581{
582 struct e1000_adapter *adapter = netdev_priv(netdev);
583
584 strlcpy(drvinfo->driver, e1000e_driver_name,
585 sizeof(drvinfo->driver));
586 strlcpy(drvinfo->version, e1000e_driver_version,
587 sizeof(drvinfo->version));
588
589 /*
590 * EEPROM image version # is reported as firmware version # for
591 * PCI-E controllers
592 */
593 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
594 "%d.%d-%d",
595 (adapter->eeprom_vers & 0xF000) >> 12,
596 (adapter->eeprom_vers & 0x0FF0) >> 4,
597 (adapter->eeprom_vers & 0x000F));
598
599 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
600 sizeof(drvinfo->bus_info));
601 drvinfo->regdump_len = e1000_get_regs_len(netdev);
602 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603}
604
605static void e1000_get_ringparam(struct net_device *netdev,
606 struct ethtool_ringparam *ring)
607{
608 struct e1000_adapter *adapter = netdev_priv(netdev);
609
610 ring->rx_max_pending = E1000_MAX_RXD;
611 ring->tx_max_pending = E1000_MAX_TXD;
612 ring->rx_pending = adapter->rx_ring_count;
613 ring->tx_pending = adapter->tx_ring_count;
614}
615
616static int e1000_set_ringparam(struct net_device *netdev,
617 struct ethtool_ringparam *ring)
618{
619 struct e1000_adapter *adapter = netdev_priv(netdev);
620 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
621 int err = 0, size = sizeof(struct e1000_ring);
622 bool set_tx = false, set_rx = false;
623 u16 new_rx_count, new_tx_count;
624
625 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626 return -EINVAL;
627
628 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
629 E1000_MAX_RXD);
630 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
631
632 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
633 E1000_MAX_TXD);
634 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
635
636 if ((new_tx_count == adapter->tx_ring_count) &&
637 (new_rx_count == adapter->rx_ring_count))
638 /* nothing to do */
639 return 0;
640
641 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
642 usleep_range(1000, 2000);
643
644 if (!netif_running(adapter->netdev)) {
645 /* Set counts now and allocate resources during open() */
646 adapter->tx_ring->count = new_tx_count;
647 adapter->rx_ring->count = new_rx_count;
648 adapter->tx_ring_count = new_tx_count;
649 adapter->rx_ring_count = new_rx_count;
650 goto clear_reset;
651 }
652
653 set_tx = (new_tx_count != adapter->tx_ring_count);
654 set_rx = (new_rx_count != adapter->rx_ring_count);
655
656 /* Allocate temporary storage for ring updates */
657 if (set_tx) {
658 temp_tx = vmalloc(size);
659 if (!temp_tx) {
660 err = -ENOMEM;
661 goto free_temp;
662 }
663 }
664 if (set_rx) {
665 temp_rx = vmalloc(size);
666 if (!temp_rx) {
667 err = -ENOMEM;
668 goto free_temp;
669 }
670 }
671
672 e1000e_down(adapter);
673
674 /*
675 * We can't just free everything and then setup again, because the
676 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677 * structs. First, attempt to allocate new resources...
678 */
679 if (set_tx) {
680 memcpy(temp_tx, adapter->tx_ring, size);
681 temp_tx->count = new_tx_count;
682 err = e1000e_setup_tx_resources(temp_tx);
683 if (err)
684 goto err_setup;
685 }
686 if (set_rx) {
687 memcpy(temp_rx, adapter->rx_ring, size);
688 temp_rx->count = new_rx_count;
689 err = e1000e_setup_rx_resources(temp_rx);
690 if (err)
691 goto err_setup_rx;
692 }
693
694 /* ...then free the old resources and copy back any new ring data */
695 if (set_tx) {
696 e1000e_free_tx_resources(adapter->tx_ring);
697 memcpy(adapter->tx_ring, temp_tx, size);
698 adapter->tx_ring_count = new_tx_count;
699 }
700 if (set_rx) {
701 e1000e_free_rx_resources(adapter->rx_ring);
702 memcpy(adapter->rx_ring, temp_rx, size);
703 adapter->rx_ring_count = new_rx_count;
704 }
705
706err_setup_rx:
707 if (err && set_tx)
708 e1000e_free_tx_resources(temp_tx);
709err_setup:
710 e1000e_up(adapter);
711free_temp:
712 vfree(temp_tx);
713 vfree(temp_rx);
714clear_reset:
715 clear_bit(__E1000_RESETTING, &adapter->state);
716 return err;
717}
718
719static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720 int reg, int offset, u32 mask, u32 write)
721{
722 u32 pat, val;
723 static const u32 test[] = {
724 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727 (test[pat] & write));
728 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729 if (val != (test[pat] & write & mask)) {
730 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
731 reg + offset, val, (test[pat] & write & mask));
732 *data = reg;
733 return 1;
734 }
735 }
736 return 0;
737}
738
739static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
740 int reg, u32 mask, u32 write)
741{
742 u32 val;
743 __ew32(&adapter->hw, reg, write & mask);
744 val = __er32(&adapter->hw, reg);
745 if ((write & mask) != (val & mask)) {
746 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
747 reg, (val & mask), (write & mask));
748 *data = reg;
749 return 1;
750 }
751 return 0;
752}
753#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
754 do { \
755 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
756 return 1; \
757 } while (0)
758#define REG_PATTERN_TEST(reg, mask, write) \
759 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
760
761#define REG_SET_AND_CHECK(reg, mask, write) \
762 do { \
763 if (reg_set_and_check(adapter, data, reg, mask, write)) \
764 return 1; \
765 } while (0)
766
767static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
768{
769 struct e1000_hw *hw = &adapter->hw;
770 struct e1000_mac_info *mac = &adapter->hw.mac;
771 u32 value;
772 u32 before;
773 u32 after;
774 u32 i;
775 u32 toggle;
776 u32 mask;
777 u32 wlock_mac = 0;
778
779 /*
780 * The status register is Read Only, so a write should fail.
781 * Some bits that get toggled are ignored.
782 */
783 switch (mac->type) {
784 /* there are several bits on newer hardware that are r/w */
785 case e1000_82571:
786 case e1000_82572:
787 case e1000_80003es2lan:
788 toggle = 0x7FFFF3FF;
789 break;
790 default:
791 toggle = 0x7FFFF033;
792 break;
793 }
794
795 before = er32(STATUS);
796 value = (er32(STATUS) & toggle);
797 ew32(STATUS, toggle);
798 after = er32(STATUS) & toggle;
799 if (value != after) {
800 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
801 after, value);
802 *data = 1;
803 return 1;
804 }
805 /* restore previous status */
806 ew32(STATUS, before);
807
808 if (!(adapter->flags & FLAG_IS_ICH)) {
809 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813 }
814
815 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
818 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
821 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
825
826 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
827
828 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
829 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831
832 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
834 if (!(adapter->flags & FLAG_IS_ICH))
835 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
837 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838 mask = 0x8003FFFF;
839 switch (mac->type) {
840 case e1000_ich10lan:
841 case e1000_pchlan:
842 case e1000_pch2lan:
843 case e1000_pch_lpt:
844 mask |= (1 << 18);
845 break;
846 default:
847 break;
848 }
849
850 if (mac->type == e1000_pch_lpt)
851 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
852 E1000_FWSM_WLOCK_MAC_SHIFT;
853
854 for (i = 0; i < mac->rar_entry_count; i++) {
855 /* Cannot test write-protected SHRAL[n] registers */
856 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
857 continue;
858
859 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
860 mask, 0xFFFFFFFF);
861 }
862
863 for (i = 0; i < mac->mta_reg_count; i++)
864 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
865
866 *data = 0;
867
868 return 0;
869}
870
871static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
872{
873 u16 temp;
874 u16 checksum = 0;
875 u16 i;
876
877 *data = 0;
878 /* Read and add up the contents of the EEPROM */
879 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
880 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
881 *data = 1;
882 return *data;
883 }
884 checksum += temp;
885 }
886
887 /* If Checksum is not Correct return error else test passed */
888 if ((checksum != (u16) NVM_SUM) && !(*data))
889 *data = 2;
890
891 return *data;
892}
893
894static irqreturn_t e1000_test_intr(int irq, void *data)
895{
896 struct net_device *netdev = (struct net_device *) data;
897 struct e1000_adapter *adapter = netdev_priv(netdev);
898 struct e1000_hw *hw = &adapter->hw;
899
900 adapter->test_icr |= er32(ICR);
901
902 return IRQ_HANDLED;
903}
904
905static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
906{
907 struct net_device *netdev = adapter->netdev;
908 struct e1000_hw *hw = &adapter->hw;
909 u32 mask;
910 u32 shared_int = 1;
911 u32 irq = adapter->pdev->irq;
912 int i;
913 int ret_val = 0;
914 int int_mode = E1000E_INT_MODE_LEGACY;
915
916 *data = 0;
917
918 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
919 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
920 int_mode = adapter->int_mode;
921 e1000e_reset_interrupt_capability(adapter);
922 adapter->int_mode = E1000E_INT_MODE_LEGACY;
923 e1000e_set_interrupt_capability(adapter);
924 }
925 /* Hook up test interrupt handler just for this test */
926 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
927 netdev)) {
928 shared_int = 0;
929 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
930 netdev->name, netdev)) {
931 *data = 1;
932 ret_val = -1;
933 goto out;
934 }
935 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
936
937 /* Disable all the interrupts */
938 ew32(IMC, 0xFFFFFFFF);
939 e1e_flush();
940 usleep_range(10000, 20000);
941
942 /* Test each interrupt */
943 for (i = 0; i < 10; i++) {
944 /* Interrupt to test */
945 mask = 1 << i;
946
947 if (adapter->flags & FLAG_IS_ICH) {
948 switch (mask) {
949 case E1000_ICR_RXSEQ:
950 continue;
951 case 0x00000100:
952 if (adapter->hw.mac.type == e1000_ich8lan ||
953 adapter->hw.mac.type == e1000_ich9lan)
954 continue;
955 break;
956 default:
957 break;
958 }
959 }
960
961 if (!shared_int) {
962 /*
963 * Disable the interrupt to be reported in
964 * the cause register and then force the same
965 * interrupt and see if one gets posted. If
966 * an interrupt was posted to the bus, the
967 * test failed.
968 */
969 adapter->test_icr = 0;
970 ew32(IMC, mask);
971 ew32(ICS, mask);
972 e1e_flush();
973 usleep_range(10000, 20000);
974
975 if (adapter->test_icr & mask) {
976 *data = 3;
977 break;
978 }
979 }
980
981 /*
982 * Enable the interrupt to be reported in
983 * the cause register and then force the same
984 * interrupt and see if one gets posted. If
985 * an interrupt was not posted to the bus, the
986 * test failed.
987 */
988 adapter->test_icr = 0;
989 ew32(IMS, mask);
990 ew32(ICS, mask);
991 e1e_flush();
992 usleep_range(10000, 20000);
993
994 if (!(adapter->test_icr & mask)) {
995 *data = 4;
996 break;
997 }
998
999 if (!shared_int) {
1000 /*
1001 * Disable the other interrupts to be reported in
1002 * the cause register and then force the other
1003 * interrupts and see if any get posted. If
1004 * an interrupt was posted to the bus, the
1005 * test failed.
1006 */
1007 adapter->test_icr = 0;
1008 ew32(IMC, ~mask & 0x00007FFF);
1009 ew32(ICS, ~mask & 0x00007FFF);
1010 e1e_flush();
1011 usleep_range(10000, 20000);
1012
1013 if (adapter->test_icr) {
1014 *data = 5;
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Disable all the interrupts */
1021 ew32(IMC, 0xFFFFFFFF);
1022 e1e_flush();
1023 usleep_range(10000, 20000);
1024
1025 /* Unhook test interrupt handler */
1026 free_irq(irq, netdev);
1027
1028out:
1029 if (int_mode == E1000E_INT_MODE_MSIX) {
1030 e1000e_reset_interrupt_capability(adapter);
1031 adapter->int_mode = int_mode;
1032 e1000e_set_interrupt_capability(adapter);
1033 }
1034
1035 return ret_val;
1036}
1037
1038static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1039{
1040 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1041 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1042 struct pci_dev *pdev = adapter->pdev;
1043 int i;
1044
1045 if (tx_ring->desc && tx_ring->buffer_info) {
1046 for (i = 0; i < tx_ring->count; i++) {
1047 if (tx_ring->buffer_info[i].dma)
1048 dma_unmap_single(&pdev->dev,
1049 tx_ring->buffer_info[i].dma,
1050 tx_ring->buffer_info[i].length,
1051 DMA_TO_DEVICE);
1052 if (tx_ring->buffer_info[i].skb)
1053 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1054 }
1055 }
1056
1057 if (rx_ring->desc && rx_ring->buffer_info) {
1058 for (i = 0; i < rx_ring->count; i++) {
1059 if (rx_ring->buffer_info[i].dma)
1060 dma_unmap_single(&pdev->dev,
1061 rx_ring->buffer_info[i].dma,
1062 2048, DMA_FROM_DEVICE);
1063 if (rx_ring->buffer_info[i].skb)
1064 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1065 }
1066 }
1067
1068 if (tx_ring->desc) {
1069 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1070 tx_ring->dma);
1071 tx_ring->desc = NULL;
1072 }
1073 if (rx_ring->desc) {
1074 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1075 rx_ring->dma);
1076 rx_ring->desc = NULL;
1077 }
1078
1079 kfree(tx_ring->buffer_info);
1080 tx_ring->buffer_info = NULL;
1081 kfree(rx_ring->buffer_info);
1082 rx_ring->buffer_info = NULL;
1083}
1084
1085static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1086{
1087 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1088 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1089 struct pci_dev *pdev = adapter->pdev;
1090 struct e1000_hw *hw = &adapter->hw;
1091 u32 rctl;
1092 int i;
1093 int ret_val;
1094
1095 /* Setup Tx descriptor ring and Tx buffers */
1096
1097 if (!tx_ring->count)
1098 tx_ring->count = E1000_DEFAULT_TXD;
1099
1100 tx_ring->buffer_info = kcalloc(tx_ring->count,
1101 sizeof(struct e1000_buffer),
1102 GFP_KERNEL);
1103 if (!tx_ring->buffer_info) {
1104 ret_val = 1;
1105 goto err_nomem;
1106 }
1107
1108 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1109 tx_ring->size = ALIGN(tx_ring->size, 4096);
1110 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1111 &tx_ring->dma, GFP_KERNEL);
1112 if (!tx_ring->desc) {
1113 ret_val = 2;
1114 goto err_nomem;
1115 }
1116 tx_ring->next_to_use = 0;
1117 tx_ring->next_to_clean = 0;
1118
1119 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1120 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1121 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1122 ew32(TDH(0), 0);
1123 ew32(TDT(0), 0);
1124 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1125 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1126 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1127
1128 for (i = 0; i < tx_ring->count; i++) {
1129 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1130 struct sk_buff *skb;
1131 unsigned int skb_size = 1024;
1132
1133 skb = alloc_skb(skb_size, GFP_KERNEL);
1134 if (!skb) {
1135 ret_val = 3;
1136 goto err_nomem;
1137 }
1138 skb_put(skb, skb_size);
1139 tx_ring->buffer_info[i].skb = skb;
1140 tx_ring->buffer_info[i].length = skb->len;
1141 tx_ring->buffer_info[i].dma =
1142 dma_map_single(&pdev->dev, skb->data, skb->len,
1143 DMA_TO_DEVICE);
1144 if (dma_mapping_error(&pdev->dev,
1145 tx_ring->buffer_info[i].dma)) {
1146 ret_val = 4;
1147 goto err_nomem;
1148 }
1149 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1150 tx_desc->lower.data = cpu_to_le32(skb->len);
1151 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1152 E1000_TXD_CMD_IFCS |
1153 E1000_TXD_CMD_RS);
1154 tx_desc->upper.data = 0;
1155 }
1156
1157 /* Setup Rx descriptor ring and Rx buffers */
1158
1159 if (!rx_ring->count)
1160 rx_ring->count = E1000_DEFAULT_RXD;
1161
1162 rx_ring->buffer_info = kcalloc(rx_ring->count,
1163 sizeof(struct e1000_buffer),
1164 GFP_KERNEL);
1165 if (!rx_ring->buffer_info) {
1166 ret_val = 5;
1167 goto err_nomem;
1168 }
1169
1170 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1171 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1172 &rx_ring->dma, GFP_KERNEL);
1173 if (!rx_ring->desc) {
1174 ret_val = 6;
1175 goto err_nomem;
1176 }
1177 rx_ring->next_to_use = 0;
1178 rx_ring->next_to_clean = 0;
1179
1180 rctl = er32(RCTL);
1181 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1182 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1183 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1184 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1185 ew32(RDLEN(0), rx_ring->size);
1186 ew32(RDH(0), 0);
1187 ew32(RDT(0), 0);
1188 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1189 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1190 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1191 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1192 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1193 ew32(RCTL, rctl);
1194
1195 for (i = 0; i < rx_ring->count; i++) {
1196 union e1000_rx_desc_extended *rx_desc;
1197 struct sk_buff *skb;
1198
1199 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1200 if (!skb) {
1201 ret_val = 7;
1202 goto err_nomem;
1203 }
1204 skb_reserve(skb, NET_IP_ALIGN);
1205 rx_ring->buffer_info[i].skb = skb;
1206 rx_ring->buffer_info[i].dma =
1207 dma_map_single(&pdev->dev, skb->data, 2048,
1208 DMA_FROM_DEVICE);
1209 if (dma_mapping_error(&pdev->dev,
1210 rx_ring->buffer_info[i].dma)) {
1211 ret_val = 8;
1212 goto err_nomem;
1213 }
1214 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1215 rx_desc->read.buffer_addr =
1216 cpu_to_le64(rx_ring->buffer_info[i].dma);
1217 memset(skb->data, 0x00, skb->len);
1218 }
1219
1220 return 0;
1221
1222err_nomem:
1223 e1000_free_desc_rings(adapter);
1224 return ret_val;
1225}
1226
1227static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1228{
1229 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1230 e1e_wphy(&adapter->hw, 29, 0x001F);
1231 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1232 e1e_wphy(&adapter->hw, 29, 0x001A);
1233 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1234}
1235
1236static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1237{
1238 struct e1000_hw *hw = &adapter->hw;
1239 u32 ctrl_reg = 0;
1240 u16 phy_reg = 0;
1241 s32 ret_val = 0;
1242
1243 hw->mac.autoneg = 0;
1244
1245 if (hw->phy.type == e1000_phy_ife) {
1246 /* force 100, set loopback */
1247 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1248
1249 /* Now set up the MAC to the same speed/duplex as the PHY. */
1250 ctrl_reg = er32(CTRL);
1251 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1255 E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257 ew32(CTRL, ctrl_reg);
1258 e1e_flush();
1259 udelay(500);
1260
1261 return 0;
1262 }
1263
1264 /* Specific PHY configuration for loopback */
1265 switch (hw->phy.type) {
1266 case e1000_phy_m88:
1267 /* Auto-MDI/MDIX Off */
1268 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1269 /* reset to update Auto-MDI/MDIX */
1270 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1271 /* autoneg off */
1272 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1273 break;
1274 case e1000_phy_gg82563:
1275 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1276 break;
1277 case e1000_phy_bm:
1278 /* Set Default MAC Interface speed to 1GB */
1279 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1280 phy_reg &= ~0x0007;
1281 phy_reg |= 0x006;
1282 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1283 /* Assert SW reset for above settings to take effect */
1284 e1000e_commit_phy(hw);
1285 mdelay(1);
1286 /* Force Full Duplex */
1287 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1288 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1289 /* Set Link Up (in force link) */
1290 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1291 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1292 /* Force Link */
1293 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1294 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1295 /* Set Early Link Enable */
1296 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1297 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1298 break;
1299 case e1000_phy_82577:
1300 case e1000_phy_82578:
1301 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1302 ret_val = hw->phy.ops.acquire(hw);
1303 if (ret_val) {
1304 e_err("Cannot setup 1Gbps loopback.\n");
1305 return ret_val;
1306 }
1307 e1000_configure_k1_ich8lan(hw, false);
1308 hw->phy.ops.release(hw);
1309 break;
1310 case e1000_phy_82579:
1311 /* Disable PHY energy detect power down */
1312 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1313 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1314 /* Disable full chip energy detect */
1315 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1316 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1317 /* Enable loopback on the PHY */
1318#define I82577_PHY_LBK_CTRL 19
1319 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1320 break;
1321 default:
1322 break;
1323 }
1324
1325 /* force 1000, set loopback */
1326 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1327 mdelay(250);
1328
1329 /* Now set up the MAC to the same speed/duplex as the PHY. */
1330 ctrl_reg = er32(CTRL);
1331 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1332 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1333 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1334 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1335 E1000_CTRL_FD); /* Force Duplex to FULL */
1336
1337 if (adapter->flags & FLAG_IS_ICH)
1338 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1339
1340 if (hw->phy.media_type == e1000_media_type_copper &&
1341 hw->phy.type == e1000_phy_m88) {
1342 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1343 } else {
1344 /*
1345 * Set the ILOS bit on the fiber Nic if half duplex link is
1346 * detected.
1347 */
1348 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1349 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1350 }
1351
1352 ew32(CTRL, ctrl_reg);
1353
1354 /*
1355 * Disable the receiver on the PHY so when a cable is plugged in, the
1356 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1357 */
1358 if (hw->phy.type == e1000_phy_m88)
1359 e1000_phy_disable_receiver(adapter);
1360
1361 udelay(500);
1362
1363 return 0;
1364}
1365
1366static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 u32 ctrl = er32(CTRL);
1370 int link = 0;
1371
1372 /* special requirements for 82571/82572 fiber adapters */
1373
1374 /*
1375 * jump through hoops to make sure link is up because serdes
1376 * link is hardwired up
1377 */
1378 ctrl |= E1000_CTRL_SLU;
1379 ew32(CTRL, ctrl);
1380
1381 /* disable autoneg */
1382 ctrl = er32(TXCW);
1383 ctrl &= ~(1 << 31);
1384 ew32(TXCW, ctrl);
1385
1386 link = (er32(STATUS) & E1000_STATUS_LU);
1387
1388 if (!link) {
1389 /* set invert loss of signal */
1390 ctrl = er32(CTRL);
1391 ctrl |= E1000_CTRL_ILOS;
1392 ew32(CTRL, ctrl);
1393 }
1394
1395 /*
1396 * special write to serdes control register to enable SerDes analog
1397 * loopback
1398 */
1399#define E1000_SERDES_LB_ON 0x410
1400 ew32(SCTL, E1000_SERDES_LB_ON);
1401 e1e_flush();
1402 usleep_range(10000, 20000);
1403
1404 return 0;
1405}
1406
1407/* only call this for fiber/serdes connections to es2lan */
1408static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1409{
1410 struct e1000_hw *hw = &adapter->hw;
1411 u32 ctrlext = er32(CTRL_EXT);
1412 u32 ctrl = er32(CTRL);
1413
1414 /*
1415 * save CTRL_EXT to restore later, reuse an empty variable (unused
1416 * on mac_type 80003es2lan)
1417 */
1418 adapter->tx_fifo_head = ctrlext;
1419
1420 /* clear the serdes mode bits, putting the device into mac loopback */
1421 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1422 ew32(CTRL_EXT, ctrlext);
1423
1424 /* force speed to 1000/FD, link up */
1425 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1426 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1427 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1428 ew32(CTRL, ctrl);
1429
1430 /* set mac loopback */
1431 ctrl = er32(RCTL);
1432 ctrl |= E1000_RCTL_LBM_MAC;
1433 ew32(RCTL, ctrl);
1434
1435 /* set testing mode parameters (no need to reset later) */
1436#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1437#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1438 ew32(KMRNCTRLSTA,
1439 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1440
1441 return 0;
1442}
1443
1444static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1445{
1446 struct e1000_hw *hw = &adapter->hw;
1447 u32 rctl;
1448
1449 if (hw->phy.media_type == e1000_media_type_fiber ||
1450 hw->phy.media_type == e1000_media_type_internal_serdes) {
1451 switch (hw->mac.type) {
1452 case e1000_80003es2lan:
1453 return e1000_set_es2lan_mac_loopback(adapter);
1454 break;
1455 case e1000_82571:
1456 case e1000_82572:
1457 return e1000_set_82571_fiber_loopback(adapter);
1458 break;
1459 default:
1460 rctl = er32(RCTL);
1461 rctl |= E1000_RCTL_LBM_TCVR;
1462 ew32(RCTL, rctl);
1463 return 0;
1464 }
1465 } else if (hw->phy.media_type == e1000_media_type_copper) {
1466 return e1000_integrated_phy_loopback(adapter);
1467 }
1468
1469 return 7;
1470}
1471
1472static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1473{
1474 struct e1000_hw *hw = &adapter->hw;
1475 u32 rctl;
1476 u16 phy_reg;
1477
1478 rctl = er32(RCTL);
1479 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1480 ew32(RCTL, rctl);
1481
1482 switch (hw->mac.type) {
1483 case e1000_80003es2lan:
1484 if (hw->phy.media_type == e1000_media_type_fiber ||
1485 hw->phy.media_type == e1000_media_type_internal_serdes) {
1486 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1487 ew32(CTRL_EXT, adapter->tx_fifo_head);
1488 adapter->tx_fifo_head = 0;
1489 }
1490 /* fall through */
1491 case e1000_82571:
1492 case e1000_82572:
1493 if (hw->phy.media_type == e1000_media_type_fiber ||
1494 hw->phy.media_type == e1000_media_type_internal_serdes) {
1495#define E1000_SERDES_LB_OFF 0x400
1496 ew32(SCTL, E1000_SERDES_LB_OFF);
1497 e1e_flush();
1498 usleep_range(10000, 20000);
1499 break;
1500 }
1501 /* Fall Through */
1502 default:
1503 hw->mac.autoneg = 1;
1504 if (hw->phy.type == e1000_phy_gg82563)
1505 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1506 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1507 if (phy_reg & MII_CR_LOOPBACK) {
1508 phy_reg &= ~MII_CR_LOOPBACK;
1509 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1510 e1000e_commit_phy(hw);
1511 }
1512 break;
1513 }
1514}
1515
1516static void e1000_create_lbtest_frame(struct sk_buff *skb,
1517 unsigned int frame_size)
1518{
1519 memset(skb->data, 0xFF, frame_size);
1520 frame_size &= ~1;
1521 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1522 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1523 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1524}
1525
1526static int e1000_check_lbtest_frame(struct sk_buff *skb,
1527 unsigned int frame_size)
1528{
1529 frame_size &= ~1;
1530 if (*(skb->data + 3) == 0xFF)
1531 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1532 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1533 return 0;
1534 return 13;
1535}
1536
1537static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1538{
1539 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1540 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1541 struct pci_dev *pdev = adapter->pdev;
1542 struct e1000_hw *hw = &adapter->hw;
1543 int i, j, k, l;
1544 int lc;
1545 int good_cnt;
1546 int ret_val = 0;
1547 unsigned long time;
1548
1549 ew32(RDT(0), rx_ring->count - 1);
1550
1551 /*
1552 * Calculate the loop count based on the largest descriptor ring
1553 * The idea is to wrap the largest ring a number of times using 64
1554 * send/receive pairs during each loop
1555 */
1556
1557 if (rx_ring->count <= tx_ring->count)
1558 lc = ((tx_ring->count / 64) * 2) + 1;
1559 else
1560 lc = ((rx_ring->count / 64) * 2) + 1;
1561
1562 k = 0;
1563 l = 0;
1564 for (j = 0; j <= lc; j++) { /* loop count loop */
1565 for (i = 0; i < 64; i++) { /* send the packets */
1566 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1567 1024);
1568 dma_sync_single_for_device(&pdev->dev,
1569 tx_ring->buffer_info[k].dma,
1570 tx_ring->buffer_info[k].length,
1571 DMA_TO_DEVICE);
1572 k++;
1573 if (k == tx_ring->count)
1574 k = 0;
1575 }
1576 ew32(TDT(0), k);
1577 e1e_flush();
1578 msleep(200);
1579 time = jiffies; /* set the start time for the receive */
1580 good_cnt = 0;
1581 do { /* receive the sent packets */
1582 dma_sync_single_for_cpu(&pdev->dev,
1583 rx_ring->buffer_info[l].dma, 2048,
1584 DMA_FROM_DEVICE);
1585
1586 ret_val = e1000_check_lbtest_frame(
1587 rx_ring->buffer_info[l].skb, 1024);
1588 if (!ret_val)
1589 good_cnt++;
1590 l++;
1591 if (l == rx_ring->count)
1592 l = 0;
1593 /*
1594 * time + 20 msecs (200 msecs on 2.4) is more than
1595 * enough time to complete the receives, if it's
1596 * exceeded, break and error off
1597 */
1598 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1599 if (good_cnt != 64) {
1600 ret_val = 13; /* ret_val is the same as mis-compare */
1601 break;
1602 }
1603 if (jiffies >= (time + 20)) {
1604 ret_val = 14; /* error code for time out error */
1605 break;
1606 }
1607 } /* end loop count loop */
1608 return ret_val;
1609}
1610
1611static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1612{
1613 struct e1000_hw *hw = &adapter->hw;
1614
1615 /*
1616 * PHY loopback cannot be performed if SoL/IDER
1617 * sessions are active
1618 */
1619 if (hw->phy.ops.check_reset_block &&
1620 hw->phy.ops.check_reset_block(hw)) {
1621 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1622 *data = 0;
1623 goto out;
1624 }
1625
1626 *data = e1000_setup_desc_rings(adapter);
1627 if (*data)
1628 goto out;
1629
1630 *data = e1000_setup_loopback_test(adapter);
1631 if (*data)
1632 goto err_loopback;
1633
1634 *data = e1000_run_loopback_test(adapter);
1635 e1000_loopback_cleanup(adapter);
1636
1637err_loopback:
1638 e1000_free_desc_rings(adapter);
1639out:
1640 return *data;
1641}
1642
1643static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1644{
1645 struct e1000_hw *hw = &adapter->hw;
1646
1647 *data = 0;
1648 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1649 int i = 0;
1650 hw->mac.serdes_has_link = false;
1651
1652 /*
1653 * On some blade server designs, link establishment
1654 * could take as long as 2-3 minutes
1655 */
1656 do {
1657 hw->mac.ops.check_for_link(hw);
1658 if (hw->mac.serdes_has_link)
1659 return *data;
1660 msleep(20);
1661 } while (i++ < 3750);
1662
1663 *data = 1;
1664 } else {
1665 hw->mac.ops.check_for_link(hw);
1666 if (hw->mac.autoneg)
1667 /*
1668 * On some Phy/switch combinations, link establishment
1669 * can take a few seconds more than expected.
1670 */
1671 msleep(5000);
1672
1673 if (!(er32(STATUS) & E1000_STATUS_LU))
1674 *data = 1;
1675 }
1676 return *data;
1677}
1678
1679static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1680{
1681 switch (sset) {
1682 case ETH_SS_TEST:
1683 return E1000_TEST_LEN;
1684 case ETH_SS_STATS:
1685 return E1000_STATS_LEN;
1686 default:
1687 return -EOPNOTSUPP;
1688 }
1689}
1690
1691static void e1000_diag_test(struct net_device *netdev,
1692 struct ethtool_test *eth_test, u64 *data)
1693{
1694 struct e1000_adapter *adapter = netdev_priv(netdev);
1695 u16 autoneg_advertised;
1696 u8 forced_speed_duplex;
1697 u8 autoneg;
1698 bool if_running = netif_running(netdev);
1699
1700 set_bit(__E1000_TESTING, &adapter->state);
1701
1702 if (!if_running) {
1703 /* Get control of and reset hardware */
1704 if (adapter->flags & FLAG_HAS_AMT)
1705 e1000e_get_hw_control(adapter);
1706
1707 e1000e_power_up_phy(adapter);
1708
1709 adapter->hw.phy.autoneg_wait_to_complete = 1;
1710 e1000e_reset(adapter);
1711 adapter->hw.phy.autoneg_wait_to_complete = 0;
1712 }
1713
1714 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1715 /* Offline tests */
1716
1717 /* save speed, duplex, autoneg settings */
1718 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1719 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1720 autoneg = adapter->hw.mac.autoneg;
1721
1722 e_info("offline testing starting\n");
1723
1724 if (if_running)
1725 /* indicate we're in test mode */
1726 dev_close(netdev);
1727
1728 if (e1000_reg_test(adapter, &data[0]))
1729 eth_test->flags |= ETH_TEST_FL_FAILED;
1730
1731 e1000e_reset(adapter);
1732 if (e1000_eeprom_test(adapter, &data[1]))
1733 eth_test->flags |= ETH_TEST_FL_FAILED;
1734
1735 e1000e_reset(adapter);
1736 if (e1000_intr_test(adapter, &data[2]))
1737 eth_test->flags |= ETH_TEST_FL_FAILED;
1738
1739 e1000e_reset(adapter);
1740 if (e1000_loopback_test(adapter, &data[3]))
1741 eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743 /* force this routine to wait until autoneg complete/timeout */
1744 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745 e1000e_reset(adapter);
1746 adapter->hw.phy.autoneg_wait_to_complete = 0;
1747
1748 if (e1000_link_test(adapter, &data[4]))
1749 eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751 /* restore speed, duplex, autoneg settings */
1752 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1753 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1754 adapter->hw.mac.autoneg = autoneg;
1755 e1000e_reset(adapter);
1756
1757 clear_bit(__E1000_TESTING, &adapter->state);
1758 if (if_running)
1759 dev_open(netdev);
1760 } else {
1761 /* Online tests */
1762
1763 e_info("online testing starting\n");
1764
1765 /* register, eeprom, intr and loopback tests not run online */
1766 data[0] = 0;
1767 data[1] = 0;
1768 data[2] = 0;
1769 data[3] = 0;
1770
1771 if (e1000_link_test(adapter, &data[4]))
1772 eth_test->flags |= ETH_TEST_FL_FAILED;
1773
1774 clear_bit(__E1000_TESTING, &adapter->state);
1775 }
1776
1777 if (!if_running) {
1778 e1000e_reset(adapter);
1779
1780 if (adapter->flags & FLAG_HAS_AMT)
1781 e1000e_release_hw_control(adapter);
1782 }
1783
1784 msleep_interruptible(4 * 1000);
1785}
1786
1787static void e1000_get_wol(struct net_device *netdev,
1788 struct ethtool_wolinfo *wol)
1789{
1790 struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792 wol->supported = 0;
1793 wol->wolopts = 0;
1794
1795 if (!(adapter->flags & FLAG_HAS_WOL) ||
1796 !device_can_wakeup(&adapter->pdev->dev))
1797 return;
1798
1799 wol->supported = WAKE_UCAST | WAKE_MCAST |
1800 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1801
1802 /* apply any specific unsupported masks here */
1803 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1804 wol->supported &= ~WAKE_UCAST;
1805
1806 if (adapter->wol & E1000_WUFC_EX)
1807 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1808 }
1809
1810 if (adapter->wol & E1000_WUFC_EX)
1811 wol->wolopts |= WAKE_UCAST;
1812 if (adapter->wol & E1000_WUFC_MC)
1813 wol->wolopts |= WAKE_MCAST;
1814 if (adapter->wol & E1000_WUFC_BC)
1815 wol->wolopts |= WAKE_BCAST;
1816 if (adapter->wol & E1000_WUFC_MAG)
1817 wol->wolopts |= WAKE_MAGIC;
1818 if (adapter->wol & E1000_WUFC_LNKC)
1819 wol->wolopts |= WAKE_PHY;
1820}
1821
1822static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1823{
1824 struct e1000_adapter *adapter = netdev_priv(netdev);
1825
1826 if (!(adapter->flags & FLAG_HAS_WOL) ||
1827 !device_can_wakeup(&adapter->pdev->dev) ||
1828 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1829 WAKE_MAGIC | WAKE_PHY)))
1830 return -EOPNOTSUPP;
1831
1832 /* these settings will always override what we currently have */
1833 adapter->wol = 0;
1834
1835 if (wol->wolopts & WAKE_UCAST)
1836 adapter->wol |= E1000_WUFC_EX;
1837 if (wol->wolopts & WAKE_MCAST)
1838 adapter->wol |= E1000_WUFC_MC;
1839 if (wol->wolopts & WAKE_BCAST)
1840 adapter->wol |= E1000_WUFC_BC;
1841 if (wol->wolopts & WAKE_MAGIC)
1842 adapter->wol |= E1000_WUFC_MAG;
1843 if (wol->wolopts & WAKE_PHY)
1844 adapter->wol |= E1000_WUFC_LNKC;
1845
1846 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1847
1848 return 0;
1849}
1850
1851static int e1000_set_phys_id(struct net_device *netdev,
1852 enum ethtool_phys_id_state state)
1853{
1854 struct e1000_adapter *adapter = netdev_priv(netdev);
1855 struct e1000_hw *hw = &adapter->hw;
1856
1857 switch (state) {
1858 case ETHTOOL_ID_ACTIVE:
1859 if (!hw->mac.ops.blink_led)
1860 return 2; /* cycle on/off twice per second */
1861
1862 hw->mac.ops.blink_led(hw);
1863 break;
1864
1865 case ETHTOOL_ID_INACTIVE:
1866 if (hw->phy.type == e1000_phy_ife)
1867 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1868 hw->mac.ops.led_off(hw);
1869 hw->mac.ops.cleanup_led(hw);
1870 break;
1871
1872 case ETHTOOL_ID_ON:
1873 hw->mac.ops.led_on(hw);
1874 break;
1875
1876 case ETHTOOL_ID_OFF:
1877 hw->mac.ops.led_off(hw);
1878 break;
1879 }
1880 return 0;
1881}
1882
1883static int e1000_get_coalesce(struct net_device *netdev,
1884 struct ethtool_coalesce *ec)
1885{
1886 struct e1000_adapter *adapter = netdev_priv(netdev);
1887
1888 if (adapter->itr_setting <= 4)
1889 ec->rx_coalesce_usecs = adapter->itr_setting;
1890 else
1891 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1892
1893 return 0;
1894}
1895
1896static int e1000_set_coalesce(struct net_device *netdev,
1897 struct ethtool_coalesce *ec)
1898{
1899 struct e1000_adapter *adapter = netdev_priv(netdev);
1900 struct e1000_hw *hw = &adapter->hw;
1901
1902 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1903 ((ec->rx_coalesce_usecs > 4) &&
1904 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1905 (ec->rx_coalesce_usecs == 2))
1906 return -EINVAL;
1907
1908 if (ec->rx_coalesce_usecs == 4) {
1909 adapter->itr = adapter->itr_setting = 4;
1910 } else if (ec->rx_coalesce_usecs <= 3) {
1911 adapter->itr = 20000;
1912 adapter->itr_setting = ec->rx_coalesce_usecs;
1913 } else {
1914 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1915 adapter->itr_setting = adapter->itr & ~3;
1916 }
1917
1918 if (adapter->itr_setting != 0)
1919 ew32(ITR, 1000000000 / (adapter->itr * 256));
1920 else
1921 ew32(ITR, 0);
1922
1923 return 0;
1924}
1925
1926static int e1000_nway_reset(struct net_device *netdev)
1927{
1928 struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930 if (!netif_running(netdev))
1931 return -EAGAIN;
1932
1933 if (!adapter->hw.mac.autoneg)
1934 return -EINVAL;
1935
1936 e1000e_reinit_locked(adapter);
1937
1938 return 0;
1939}
1940
1941static void e1000_get_ethtool_stats(struct net_device *netdev,
1942 struct ethtool_stats *stats,
1943 u64 *data)
1944{
1945 struct e1000_adapter *adapter = netdev_priv(netdev);
1946 struct rtnl_link_stats64 net_stats;
1947 int i;
1948 char *p = NULL;
1949
1950 e1000e_get_stats64(netdev, &net_stats);
1951 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1952 switch (e1000_gstrings_stats[i].type) {
1953 case NETDEV_STATS:
1954 p = (char *) &net_stats +
1955 e1000_gstrings_stats[i].stat_offset;
1956 break;
1957 case E1000_STATS:
1958 p = (char *) adapter +
1959 e1000_gstrings_stats[i].stat_offset;
1960 break;
1961 default:
1962 data[i] = 0;
1963 continue;
1964 }
1965
1966 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1967 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1968 }
1969}
1970
1971static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1972 u8 *data)
1973{
1974 u8 *p = data;
1975 int i;
1976
1977 switch (stringset) {
1978 case ETH_SS_TEST:
1979 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1980 break;
1981 case ETH_SS_STATS:
1982 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1983 memcpy(p, e1000_gstrings_stats[i].stat_string,
1984 ETH_GSTRING_LEN);
1985 p += ETH_GSTRING_LEN;
1986 }
1987 break;
1988 }
1989}
1990
1991static int e1000_get_rxnfc(struct net_device *netdev,
1992 struct ethtool_rxnfc *info, u32 *rule_locs)
1993{
1994 info->data = 0;
1995
1996 switch (info->cmd) {
1997 case ETHTOOL_GRXFH: {
1998 struct e1000_adapter *adapter = netdev_priv(netdev);
1999 struct e1000_hw *hw = &adapter->hw;
2000 u32 mrqc = er32(MRQC);
2001
2002 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2003 return 0;
2004
2005 switch (info->flow_type) {
2006 case TCP_V4_FLOW:
2007 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2008 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2009 /* fall through */
2010 case UDP_V4_FLOW:
2011 case SCTP_V4_FLOW:
2012 case AH_ESP_V4_FLOW:
2013 case IPV4_FLOW:
2014 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2015 info->data |= RXH_IP_SRC | RXH_IP_DST;
2016 break;
2017 case TCP_V6_FLOW:
2018 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2019 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2020 /* fall through */
2021 case UDP_V6_FLOW:
2022 case SCTP_V6_FLOW:
2023 case AH_ESP_V6_FLOW:
2024 case IPV6_FLOW:
2025 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2026 info->data |= RXH_IP_SRC | RXH_IP_DST;
2027 break;
2028 default:
2029 break;
2030 }
2031 return 0;
2032 }
2033 default:
2034 return -EOPNOTSUPP;
2035 }
2036}
2037
2038static const struct ethtool_ops e1000_ethtool_ops = {
2039 .get_settings = e1000_get_settings,
2040 .set_settings = e1000_set_settings,
2041 .get_drvinfo = e1000_get_drvinfo,
2042 .get_regs_len = e1000_get_regs_len,
2043 .get_regs = e1000_get_regs,
2044 .get_wol = e1000_get_wol,
2045 .set_wol = e1000_set_wol,
2046 .get_msglevel = e1000_get_msglevel,
2047 .set_msglevel = e1000_set_msglevel,
2048 .nway_reset = e1000_nway_reset,
2049 .get_link = ethtool_op_get_link,
2050 .get_eeprom_len = e1000_get_eeprom_len,
2051 .get_eeprom = e1000_get_eeprom,
2052 .set_eeprom = e1000_set_eeprom,
2053 .get_ringparam = e1000_get_ringparam,
2054 .set_ringparam = e1000_set_ringparam,
2055 .get_pauseparam = e1000_get_pauseparam,
2056 .set_pauseparam = e1000_set_pauseparam,
2057 .self_test = e1000_diag_test,
2058 .get_strings = e1000_get_strings,
2059 .set_phys_id = e1000_set_phys_id,
2060 .get_ethtool_stats = e1000_get_ethtool_stats,
2061 .get_sset_count = e1000e_get_sset_count,
2062 .get_coalesce = e1000_get_coalesce,
2063 .set_coalesce = e1000_set_coalesce,
2064 .get_rxnfc = e1000_get_rxnfc,
2065};
2066
2067void e1000e_set_ethtool_ops(struct net_device *netdev)
2068{
2069 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2070}