Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2015 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23/* ethtool support for e1000 */
24
25#include <linux/netdevice.h>
26#include <linux/interrupt.h>
27#include <linux/ethtool.h>
28#include <linux/pci.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/vmalloc.h>
32#include <linux/pm_runtime.h>
33
34#include "e1000.h"
35
36enum { NETDEV_STATS, E1000_STATS };
37
38struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int type;
41 int sizeof_stat;
42 int stat_offset;
43};
44
45#define E1000_STAT(str, m) { \
46 .stat_string = str, \
47 .type = E1000_STATS, \
48 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
49 .stat_offset = offsetof(struct e1000_adapter, m) }
50#define E1000_NETDEV_STAT(str, m) { \
51 .stat_string = str, \
52 .type = NETDEV_STATS, \
53 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
54 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
55
56static const struct e1000_stats e1000_gstrings_stats[] = {
57 E1000_STAT("rx_packets", stats.gprc),
58 E1000_STAT("tx_packets", stats.gptc),
59 E1000_STAT("rx_bytes", stats.gorc),
60 E1000_STAT("tx_bytes", stats.gotc),
61 E1000_STAT("rx_broadcast", stats.bprc),
62 E1000_STAT("tx_broadcast", stats.bptc),
63 E1000_STAT("rx_multicast", stats.mprc),
64 E1000_STAT("tx_multicast", stats.mptc),
65 E1000_NETDEV_STAT("rx_errors", rx_errors),
66 E1000_NETDEV_STAT("tx_errors", tx_errors),
67 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
68 E1000_STAT("multicast", stats.mprc),
69 E1000_STAT("collisions", stats.colc),
70 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
71 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
72 E1000_STAT("rx_crc_errors", stats.crcerrs),
73 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
74 E1000_STAT("rx_no_buffer_count", stats.rnbc),
75 E1000_STAT("rx_missed_errors", stats.mpc),
76 E1000_STAT("tx_aborted_errors", stats.ecol),
77 E1000_STAT("tx_carrier_errors", stats.tncrs),
78 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
79 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
80 E1000_STAT("tx_window_errors", stats.latecol),
81 E1000_STAT("tx_abort_late_coll", stats.latecol),
82 E1000_STAT("tx_deferred_ok", stats.dc),
83 E1000_STAT("tx_single_coll_ok", stats.scc),
84 E1000_STAT("tx_multi_coll_ok", stats.mcc),
85 E1000_STAT("tx_timeout_count", tx_timeout_count),
86 E1000_STAT("tx_restart_queue", restart_queue),
87 E1000_STAT("rx_long_length_errors", stats.roc),
88 E1000_STAT("rx_short_length_errors", stats.ruc),
89 E1000_STAT("rx_align_errors", stats.algnerrc),
90 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
91 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
92 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
93 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
94 E1000_STAT("tx_flow_control_xon", stats.xontxc),
95 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
96 E1000_STAT("rx_csum_offload_good", hw_csum_good),
97 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
98 E1000_STAT("rx_header_split", rx_hdr_split),
99 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
100 E1000_STAT("tx_smbus", stats.mgptc),
101 E1000_STAT("rx_smbus", stats.mgprc),
102 E1000_STAT("dropped_smbus", stats.mgpdc),
103 E1000_STAT("rx_dma_failed", rx_dma_failed),
104 E1000_STAT("tx_dma_failed", tx_dma_failed),
105 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
106 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
107 E1000_STAT("corr_ecc_errors", corr_errors),
108 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
109 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
110};
111
112#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
113#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 "Register test (offline)", "Eeprom test (offline)",
116 "Interrupt test (offline)", "Loopback test (offline)",
117 "Link test (on/offline)"
118};
119
120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122static int e1000_get_link_ksettings(struct net_device *netdev,
123 struct ethtool_link_ksettings *cmd)
124{
125 struct e1000_adapter *adapter = netdev_priv(netdev);
126 struct e1000_hw *hw = &adapter->hw;
127 u32 speed, supported, advertising;
128
129 if (hw->phy.media_type == e1000_media_type_copper) {
130 supported = (SUPPORTED_10baseT_Half |
131 SUPPORTED_10baseT_Full |
132 SUPPORTED_100baseT_Half |
133 SUPPORTED_100baseT_Full |
134 SUPPORTED_1000baseT_Full |
135 SUPPORTED_Autoneg |
136 SUPPORTED_TP);
137 if (hw->phy.type == e1000_phy_ife)
138 supported &= ~SUPPORTED_1000baseT_Full;
139 advertising = ADVERTISED_TP;
140
141 if (hw->mac.autoneg == 1) {
142 advertising |= ADVERTISED_Autoneg;
143 /* the e1000 autoneg seems to match ethtool nicely */
144 advertising |= hw->phy.autoneg_advertised;
145 }
146
147 cmd->base.port = PORT_TP;
148 cmd->base.phy_address = hw->phy.addr;
149 } else {
150 supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 cmd->base.port = PORT_FIBRE;
159 }
160
161 speed = SPEED_UNKNOWN;
162 cmd->base.duplex = DUPLEX_UNKNOWN;
163
164 if (netif_running(netdev)) {
165 if (netif_carrier_ok(netdev)) {
166 speed = adapter->link_speed;
167 cmd->base.duplex = adapter->link_duplex - 1;
168 }
169 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
170 u32 status = er32(STATUS);
171
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 speed = SPEED_1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 speed = SPEED_100;
177 else
178 speed = SPEED_10;
179
180 if (status & E1000_STATUS_FD)
181 cmd->base.duplex = DUPLEX_FULL;
182 else
183 cmd->base.duplex = DUPLEX_HALF;
184 }
185 }
186
187 cmd->base.speed = speed;
188 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
189 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190
191 /* MDI-X => 2; MDI =>1; Invalid =>0 */
192 if ((hw->phy.media_type == e1000_media_type_copper) &&
193 netif_carrier_ok(netdev))
194 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
195 ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 if (hw->phy.media_type != e1000_media_type_copper)
205 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
208 supported);
209 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
210 advertising);
211
212 return 0;
213}
214
215static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
216{
217 struct e1000_mac_info *mac = &adapter->hw.mac;
218
219 mac->autoneg = 0;
220
221 /* Make sure dplx is at most 1 bit and lsb of speed is not set
222 * for the switch() below to work
223 */
224 if ((spd & 1) || (dplx & ~1))
225 goto err_inval;
226
227 /* Fiber NICs only allow 1000 gbps Full duplex */
228 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
229 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
230 goto err_inval;
231 }
232
233 switch (spd + dplx) {
234 case SPEED_10 + DUPLEX_HALF:
235 mac->forced_speed_duplex = ADVERTISE_10_HALF;
236 break;
237 case SPEED_10 + DUPLEX_FULL:
238 mac->forced_speed_duplex = ADVERTISE_10_FULL;
239 break;
240 case SPEED_100 + DUPLEX_HALF:
241 mac->forced_speed_duplex = ADVERTISE_100_HALF;
242 break;
243 case SPEED_100 + DUPLEX_FULL:
244 mac->forced_speed_duplex = ADVERTISE_100_FULL;
245 break;
246 case SPEED_1000 + DUPLEX_FULL:
247 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
248 mac->autoneg = 1;
249 adapter->hw.phy.autoneg_advertised =
250 ADVERTISE_1000_FULL;
251 } else {
252 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
253 }
254 break;
255 case SPEED_1000 + DUPLEX_HALF: /* not supported */
256 default:
257 goto err_inval;
258 }
259
260 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
261 adapter->hw.phy.mdix = AUTO_ALL_MODES;
262
263 return 0;
264
265err_inval:
266 e_err("Unsupported Speed/Duplex configuration\n");
267 return -EINVAL;
268}
269
270static int e1000_set_link_ksettings(struct net_device *netdev,
271 const struct ethtool_link_ksettings *cmd)
272{
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 struct e1000_hw *hw = &adapter->hw;
275 int ret_val = 0;
276 u32 advertising;
277
278 ethtool_convert_link_mode_to_legacy_u32(&advertising,
279 cmd->link_modes.advertising);
280
281 pm_runtime_get_sync(netdev->dev.parent);
282
283 /* When SoL/IDER sessions are active, autoneg/speed/duplex
284 * cannot be changed
285 */
286 if (hw->phy.ops.check_reset_block &&
287 hw->phy.ops.check_reset_block(hw)) {
288 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
289 ret_val = -EINVAL;
290 goto out;
291 }
292
293 /* MDI setting is only allowed when autoneg enabled because
294 * some hardware doesn't allow MDI setting when speed or
295 * duplex is forced.
296 */
297 if (cmd->base.eth_tp_mdix_ctrl) {
298 if (hw->phy.media_type != e1000_media_type_copper) {
299 ret_val = -EOPNOTSUPP;
300 goto out;
301 }
302
303 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
304 (cmd->base.autoneg != AUTONEG_ENABLE)) {
305 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
306 ret_val = -EINVAL;
307 goto out;
308 }
309 }
310
311 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
312 usleep_range(1000, 2000);
313
314 if (cmd->base.autoneg == AUTONEG_ENABLE) {
315 hw->mac.autoneg = 1;
316 if (hw->phy.media_type == e1000_media_type_fiber)
317 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
318 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
319 else
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP | ADVERTISED_Autoneg;
322 advertising = hw->phy.autoneg_advertised;
323 if (adapter->fc_autoneg)
324 hw->fc.requested_mode = e1000_fc_default;
325 } else {
326 u32 speed = cmd->base.speed;
327 /* calling this overrides forced MDI setting */
328 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
329 ret_val = -EINVAL;
330 goto out;
331 }
332 }
333
334 /* MDI-X => 2; MDI => 1; Auto => 3 */
335 if (cmd->base.eth_tp_mdix_ctrl) {
336 /* fix up the value for auto (3 => 0) as zero is mapped
337 * internally to auto
338 */
339 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
340 hw->phy.mdix = AUTO_ALL_MODES;
341 else
342 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
343 }
344
345 /* reset the link */
346 if (netif_running(adapter->netdev)) {
347 e1000e_down(adapter, true);
348 e1000e_up(adapter);
349 } else {
350 e1000e_reset(adapter);
351 }
352
353out:
354 pm_runtime_put_sync(netdev->dev.parent);
355 clear_bit(__E1000_RESETTING, &adapter->state);
356 return ret_val;
357}
358
359static void e1000_get_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361{
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364
365 pause->autoneg =
366 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
367
368 if (hw->fc.current_mode == e1000_fc_rx_pause) {
369 pause->rx_pause = 1;
370 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
371 pause->tx_pause = 1;
372 } else if (hw->fc.current_mode == e1000_fc_full) {
373 pause->rx_pause = 1;
374 pause->tx_pause = 1;
375 }
376}
377
378static int e1000_set_pauseparam(struct net_device *netdev,
379 struct ethtool_pauseparam *pause)
380{
381 struct e1000_adapter *adapter = netdev_priv(netdev);
382 struct e1000_hw *hw = &adapter->hw;
383 int retval = 0;
384
385 adapter->fc_autoneg = pause->autoneg;
386
387 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
388 usleep_range(1000, 2000);
389
390 pm_runtime_get_sync(netdev->dev.parent);
391
392 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
393 hw->fc.requested_mode = e1000_fc_default;
394 if (netif_running(adapter->netdev)) {
395 e1000e_down(adapter, true);
396 e1000e_up(adapter);
397 } else {
398 e1000e_reset(adapter);
399 }
400 } else {
401 if (pause->rx_pause && pause->tx_pause)
402 hw->fc.requested_mode = e1000_fc_full;
403 else if (pause->rx_pause && !pause->tx_pause)
404 hw->fc.requested_mode = e1000_fc_rx_pause;
405 else if (!pause->rx_pause && pause->tx_pause)
406 hw->fc.requested_mode = e1000_fc_tx_pause;
407 else if (!pause->rx_pause && !pause->tx_pause)
408 hw->fc.requested_mode = e1000_fc_none;
409
410 hw->fc.current_mode = hw->fc.requested_mode;
411
412 if (hw->phy.media_type == e1000_media_type_fiber) {
413 retval = hw->mac.ops.setup_link(hw);
414 /* implicit goto out */
415 } else {
416 retval = e1000e_force_mac_fc(hw);
417 if (retval)
418 goto out;
419 e1000e_set_fc_watermarks(hw);
420 }
421 }
422
423out:
424 pm_runtime_put_sync(netdev->dev.parent);
425 clear_bit(__E1000_RESETTING, &adapter->state);
426 return retval;
427}
428
429static u32 e1000_get_msglevel(struct net_device *netdev)
430{
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 return adapter->msg_enable;
433}
434
435static void e1000_set_msglevel(struct net_device *netdev, u32 data)
436{
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 adapter->msg_enable = data;
439}
440
441static int e1000_get_regs_len(struct net_device __always_unused *netdev)
442{
443#define E1000_REGS_LEN 32 /* overestimate */
444 return E1000_REGS_LEN * sizeof(u32);
445}
446
447static void e1000_get_regs(struct net_device *netdev,
448 struct ethtool_regs *regs, void *p)
449{
450 struct e1000_adapter *adapter = netdev_priv(netdev);
451 struct e1000_hw *hw = &adapter->hw;
452 u32 *regs_buff = p;
453 u16 phy_data;
454
455 pm_runtime_get_sync(netdev->dev.parent);
456
457 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
458
459 regs->version = (1u << 24) |
460 (adapter->pdev->revision << 16) |
461 adapter->pdev->device;
462
463 regs_buff[0] = er32(CTRL);
464 regs_buff[1] = er32(STATUS);
465
466 regs_buff[2] = er32(RCTL);
467 regs_buff[3] = er32(RDLEN(0));
468 regs_buff[4] = er32(RDH(0));
469 regs_buff[5] = er32(RDT(0));
470 regs_buff[6] = er32(RDTR);
471
472 regs_buff[7] = er32(TCTL);
473 regs_buff[8] = er32(TDLEN(0));
474 regs_buff[9] = er32(TDH(0));
475 regs_buff[10] = er32(TDT(0));
476 regs_buff[11] = er32(TIDV);
477
478 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
479
480 /* ethtool doesn't use anything past this point, so all this
481 * code is likely legacy junk for apps that may or may not exist
482 */
483 if (hw->phy.type == e1000_phy_m88) {
484 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
485 regs_buff[13] = (u32)phy_data; /* cable length */
486 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
487 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
488 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
489 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
490 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
491 regs_buff[18] = regs_buff[13]; /* cable polarity */
492 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
493 regs_buff[20] = regs_buff[17]; /* polarity correction */
494 /* phy receive errors */
495 regs_buff[22] = adapter->phy_stats.receive_errors;
496 regs_buff[23] = regs_buff[13]; /* mdix mode */
497 }
498 regs_buff[21] = 0; /* was idle_errors */
499 e1e_rphy(hw, MII_STAT1000, &phy_data);
500 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
501 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
502
503 pm_runtime_put_sync(netdev->dev.parent);
504}
505
506static int e1000_get_eeprom_len(struct net_device *netdev)
507{
508 struct e1000_adapter *adapter = netdev_priv(netdev);
509 return adapter->hw.nvm.word_size * 2;
510}
511
512static int e1000_get_eeprom(struct net_device *netdev,
513 struct ethtool_eeprom *eeprom, u8 *bytes)
514{
515 struct e1000_adapter *adapter = netdev_priv(netdev);
516 struct e1000_hw *hw = &adapter->hw;
517 u16 *eeprom_buff;
518 int first_word;
519 int last_word;
520 int ret_val = 0;
521 u16 i;
522
523 if (eeprom->len == 0)
524 return -EINVAL;
525
526 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
527
528 first_word = eeprom->offset >> 1;
529 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
530
531 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
532 GFP_KERNEL);
533 if (!eeprom_buff)
534 return -ENOMEM;
535
536 pm_runtime_get_sync(netdev->dev.parent);
537
538 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
539 ret_val = e1000_read_nvm(hw, first_word,
540 last_word - first_word + 1,
541 eeprom_buff);
542 } else {
543 for (i = 0; i < last_word - first_word + 1; i++) {
544 ret_val = e1000_read_nvm(hw, first_word + i, 1,
545 &eeprom_buff[i]);
546 if (ret_val)
547 break;
548 }
549 }
550
551 pm_runtime_put_sync(netdev->dev.parent);
552
553 if (ret_val) {
554 /* a read error occurred, throw away the result */
555 memset(eeprom_buff, 0xff, sizeof(u16) *
556 (last_word - first_word + 1));
557 } else {
558 /* Device's eeprom is always little-endian, word addressable */
559 for (i = 0; i < last_word - first_word + 1; i++)
560 le16_to_cpus(&eeprom_buff[i]);
561 }
562
563 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
564 kfree(eeprom_buff);
565
566 return ret_val;
567}
568
569static int e1000_set_eeprom(struct net_device *netdev,
570 struct ethtool_eeprom *eeprom, u8 *bytes)
571{
572 struct e1000_adapter *adapter = netdev_priv(netdev);
573 struct e1000_hw *hw = &adapter->hw;
574 u16 *eeprom_buff;
575 void *ptr;
576 int max_len;
577 int first_word;
578 int last_word;
579 int ret_val = 0;
580 u16 i;
581
582 if (eeprom->len == 0)
583 return -EOPNOTSUPP;
584
585 if (eeprom->magic !=
586 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
587 return -EFAULT;
588
589 if (adapter->flags & FLAG_READ_ONLY_NVM)
590 return -EINVAL;
591
592 max_len = hw->nvm.word_size * 2;
593
594 first_word = eeprom->offset >> 1;
595 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
597 if (!eeprom_buff)
598 return -ENOMEM;
599
600 ptr = (void *)eeprom_buff;
601
602 pm_runtime_get_sync(netdev->dev.parent);
603
604 if (eeprom->offset & 1) {
605 /* need read/modify/write of first changed EEPROM word */
606 /* only the second byte of the word is being modified */
607 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
608 ptr++;
609 }
610 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
611 /* need read/modify/write of last changed EEPROM word */
612 /* only the first byte of the word is being modified */
613 ret_val = e1000_read_nvm(hw, last_word, 1,
614 &eeprom_buff[last_word - first_word]);
615
616 if (ret_val)
617 goto out;
618
619 /* Device's eeprom is always little-endian, word addressable */
620 for (i = 0; i < last_word - first_word + 1; i++)
621 le16_to_cpus(&eeprom_buff[i]);
622
623 memcpy(ptr, bytes, eeprom->len);
624
625 for (i = 0; i < last_word - first_word + 1; i++)
626 cpu_to_le16s(&eeprom_buff[i]);
627
628 ret_val = e1000_write_nvm(hw, first_word,
629 last_word - first_word + 1, eeprom_buff);
630
631 if (ret_val)
632 goto out;
633
634 /* Update the checksum over the first part of the EEPROM if needed
635 * and flush shadow RAM for applicable controllers
636 */
637 if ((first_word <= NVM_CHECKSUM_REG) ||
638 (hw->mac.type == e1000_82583) ||
639 (hw->mac.type == e1000_82574) ||
640 (hw->mac.type == e1000_82573))
641 ret_val = e1000e_update_nvm_checksum(hw);
642
643out:
644 pm_runtime_put_sync(netdev->dev.parent);
645 kfree(eeprom_buff);
646 return ret_val;
647}
648
649static void e1000_get_drvinfo(struct net_device *netdev,
650 struct ethtool_drvinfo *drvinfo)
651{
652 struct e1000_adapter *adapter = netdev_priv(netdev);
653
654 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
655 strlcpy(drvinfo->version, e1000e_driver_version,
656 sizeof(drvinfo->version));
657
658 /* EEPROM image version # is reported as firmware version # for
659 * PCI-E controllers
660 */
661 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
662 "%d.%d-%d",
663 (adapter->eeprom_vers & 0xF000) >> 12,
664 (adapter->eeprom_vers & 0x0FF0) >> 4,
665 (adapter->eeprom_vers & 0x000F));
666
667 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
668 sizeof(drvinfo->bus_info));
669}
670
671static void e1000_get_ringparam(struct net_device *netdev,
672 struct ethtool_ringparam *ring)
673{
674 struct e1000_adapter *adapter = netdev_priv(netdev);
675
676 ring->rx_max_pending = E1000_MAX_RXD;
677 ring->tx_max_pending = E1000_MAX_TXD;
678 ring->rx_pending = adapter->rx_ring_count;
679 ring->tx_pending = adapter->tx_ring_count;
680}
681
682static int e1000_set_ringparam(struct net_device *netdev,
683 struct ethtool_ringparam *ring)
684{
685 struct e1000_adapter *adapter = netdev_priv(netdev);
686 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
687 int err = 0, size = sizeof(struct e1000_ring);
688 bool set_tx = false, set_rx = false;
689 u16 new_rx_count, new_tx_count;
690
691 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
692 return -EINVAL;
693
694 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
695 E1000_MAX_RXD);
696 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
697
698 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
699 E1000_MAX_TXD);
700 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
701
702 if ((new_tx_count == adapter->tx_ring_count) &&
703 (new_rx_count == adapter->rx_ring_count))
704 /* nothing to do */
705 return 0;
706
707 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
708 usleep_range(1000, 2000);
709
710 if (!netif_running(adapter->netdev)) {
711 /* Set counts now and allocate resources during open() */
712 adapter->tx_ring->count = new_tx_count;
713 adapter->rx_ring->count = new_rx_count;
714 adapter->tx_ring_count = new_tx_count;
715 adapter->rx_ring_count = new_rx_count;
716 goto clear_reset;
717 }
718
719 set_tx = (new_tx_count != adapter->tx_ring_count);
720 set_rx = (new_rx_count != adapter->rx_ring_count);
721
722 /* Allocate temporary storage for ring updates */
723 if (set_tx) {
724 temp_tx = vmalloc(size);
725 if (!temp_tx) {
726 err = -ENOMEM;
727 goto free_temp;
728 }
729 }
730 if (set_rx) {
731 temp_rx = vmalloc(size);
732 if (!temp_rx) {
733 err = -ENOMEM;
734 goto free_temp;
735 }
736 }
737
738 pm_runtime_get_sync(netdev->dev.parent);
739
740 e1000e_down(adapter, true);
741
742 /* We can't just free everything and then setup again, because the
743 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
744 * structs. First, attempt to allocate new resources...
745 */
746 if (set_tx) {
747 memcpy(temp_tx, adapter->tx_ring, size);
748 temp_tx->count = new_tx_count;
749 err = e1000e_setup_tx_resources(temp_tx);
750 if (err)
751 goto err_setup;
752 }
753 if (set_rx) {
754 memcpy(temp_rx, adapter->rx_ring, size);
755 temp_rx->count = new_rx_count;
756 err = e1000e_setup_rx_resources(temp_rx);
757 if (err)
758 goto err_setup_rx;
759 }
760
761 /* ...then free the old resources and copy back any new ring data */
762 if (set_tx) {
763 e1000e_free_tx_resources(adapter->tx_ring);
764 memcpy(adapter->tx_ring, temp_tx, size);
765 adapter->tx_ring_count = new_tx_count;
766 }
767 if (set_rx) {
768 e1000e_free_rx_resources(adapter->rx_ring);
769 memcpy(adapter->rx_ring, temp_rx, size);
770 adapter->rx_ring_count = new_rx_count;
771 }
772
773err_setup_rx:
774 if (err && set_tx)
775 e1000e_free_tx_resources(temp_tx);
776err_setup:
777 e1000e_up(adapter);
778 pm_runtime_put_sync(netdev->dev.parent);
779free_temp:
780 vfree(temp_tx);
781 vfree(temp_rx);
782clear_reset:
783 clear_bit(__E1000_RESETTING, &adapter->state);
784 return err;
785}
786
787static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
788 int reg, int offset, u32 mask, u32 write)
789{
790 u32 pat, val;
791 static const u32 test[] = {
792 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
793 };
794 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
795 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
796 (test[pat] & write));
797 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
798 if (val != (test[pat] & write & mask)) {
799 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 reg + (offset << 2), val,
801 (test[pat] & write & mask));
802 *data = reg;
803 return true;
804 }
805 }
806 return false;
807}
808
809static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
810 int reg, u32 mask, u32 write)
811{
812 u32 val;
813
814 __ew32(&adapter->hw, reg, write & mask);
815 val = __er32(&adapter->hw, reg);
816 if ((write & mask) != (val & mask)) {
817 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
818 reg, (val & mask), (write & mask));
819 *data = reg;
820 return true;
821 }
822 return false;
823}
824
825#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
826 do { \
827 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
828 return 1; \
829 } while (0)
830#define REG_PATTERN_TEST(reg, mask, write) \
831 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
832
833#define REG_SET_AND_CHECK(reg, mask, write) \
834 do { \
835 if (reg_set_and_check(adapter, data, reg, mask, write)) \
836 return 1; \
837 } while (0)
838
839static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
840{
841 struct e1000_hw *hw = &adapter->hw;
842 struct e1000_mac_info *mac = &adapter->hw.mac;
843 u32 value;
844 u32 before;
845 u32 after;
846 u32 i;
847 u32 toggle;
848 u32 mask;
849 u32 wlock_mac = 0;
850
851 /* The status register is Read Only, so a write should fail.
852 * Some bits that get toggled are ignored. There are several bits
853 * on newer hardware that are r/w.
854 */
855 switch (mac->type) {
856 case e1000_82571:
857 case e1000_82572:
858 case e1000_80003es2lan:
859 toggle = 0x7FFFF3FF;
860 break;
861 default:
862 toggle = 0x7FFFF033;
863 break;
864 }
865
866 before = er32(STATUS);
867 value = (er32(STATUS) & toggle);
868 ew32(STATUS, toggle);
869 after = er32(STATUS) & toggle;
870 if (value != after) {
871 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
872 after, value);
873 *data = 1;
874 return 1;
875 }
876 /* restore previous status */
877 ew32(STATUS, before);
878
879 if (!(adapter->flags & FLAG_IS_ICH)) {
880 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
883 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
884 }
885
886 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
887 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
888 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
889 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
890 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
892 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
893 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
894 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
896
897 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
898
899 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
900 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
901 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
902
903 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
904 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
905 if (!(adapter->flags & FLAG_IS_ICH))
906 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
907 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
908 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
909 mask = 0x8003FFFF;
910 switch (mac->type) {
911 case e1000_ich10lan:
912 case e1000_pchlan:
913 case e1000_pch2lan:
914 case e1000_pch_lpt:
915 case e1000_pch_spt:
916 /* fall through */
917 case e1000_pch_cnp:
918 mask |= BIT(18);
919 break;
920 default:
921 break;
922 }
923
924 if (mac->type >= e1000_pch_lpt)
925 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
926 E1000_FWSM_WLOCK_MAC_SHIFT;
927
928 for (i = 0; i < mac->rar_entry_count; i++) {
929 if (mac->type >= e1000_pch_lpt) {
930 /* Cannot test write-protected SHRAL[n] registers */
931 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
932 continue;
933
934 /* SHRAH[9] different than the others */
935 if (i == 10)
936 mask |= BIT(30);
937 else
938 mask &= ~BIT(30);
939 }
940 if (mac->type == e1000_pch2lan) {
941 /* SHRAH[0,1,2] different than previous */
942 if (i == 1)
943 mask &= 0xFFF4FFFF;
944 /* SHRAH[3] different than SHRAH[0,1,2] */
945 if (i == 4)
946 mask |= BIT(30);
947 /* RAR[1-6] owned by management engine - skipping */
948 if (i > 0)
949 i += 6;
950 }
951
952 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
953 0xFFFFFFFF);
954 /* reset index to actual value */
955 if ((mac->type == e1000_pch2lan) && (i > 6))
956 i -= 6;
957 }
958
959 for (i = 0; i < mac->mta_reg_count; i++)
960 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
961
962 *data = 0;
963
964 return 0;
965}
966
967static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
968{
969 u16 temp;
970 u16 checksum = 0;
971 u16 i;
972
973 *data = 0;
974 /* Read and add up the contents of the EEPROM */
975 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
976 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
977 *data = 1;
978 return *data;
979 }
980 checksum += temp;
981 }
982
983 /* If Checksum is not Correct return error else test passed */
984 if ((checksum != (u16)NVM_SUM) && !(*data))
985 *data = 2;
986
987 return *data;
988}
989
990static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
991{
992 struct net_device *netdev = (struct net_device *)data;
993 struct e1000_adapter *adapter = netdev_priv(netdev);
994 struct e1000_hw *hw = &adapter->hw;
995
996 adapter->test_icr |= er32(ICR);
997
998 return IRQ_HANDLED;
999}
1000
1001static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1002{
1003 struct net_device *netdev = adapter->netdev;
1004 struct e1000_hw *hw = &adapter->hw;
1005 u32 mask;
1006 u32 shared_int = 1;
1007 u32 irq = adapter->pdev->irq;
1008 int i;
1009 int ret_val = 0;
1010 int int_mode = E1000E_INT_MODE_LEGACY;
1011
1012 *data = 0;
1013
1014 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1015 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1016 int_mode = adapter->int_mode;
1017 e1000e_reset_interrupt_capability(adapter);
1018 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1019 e1000e_set_interrupt_capability(adapter);
1020 }
1021 /* Hook up test interrupt handler just for this test */
1022 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1023 netdev)) {
1024 shared_int = 0;
1025 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1026 netdev)) {
1027 *data = 1;
1028 ret_val = -1;
1029 goto out;
1030 }
1031 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1032
1033 /* Disable all the interrupts */
1034 ew32(IMC, 0xFFFFFFFF);
1035 e1e_flush();
1036 usleep_range(10000, 20000);
1037
1038 /* Test each interrupt */
1039 for (i = 0; i < 10; i++) {
1040 /* Interrupt to test */
1041 mask = BIT(i);
1042
1043 if (adapter->flags & FLAG_IS_ICH) {
1044 switch (mask) {
1045 case E1000_ICR_RXSEQ:
1046 continue;
1047 case 0x00000100:
1048 if (adapter->hw.mac.type == e1000_ich8lan ||
1049 adapter->hw.mac.type == e1000_ich9lan)
1050 continue;
1051 break;
1052 default:
1053 break;
1054 }
1055 }
1056
1057 if (!shared_int) {
1058 /* Disable the interrupt to be reported in
1059 * the cause register and then force the same
1060 * interrupt and see if one gets posted. If
1061 * an interrupt was posted to the bus, the
1062 * test failed.
1063 */
1064 adapter->test_icr = 0;
1065 ew32(IMC, mask);
1066 ew32(ICS, mask);
1067 e1e_flush();
1068 usleep_range(10000, 20000);
1069
1070 if (adapter->test_icr & mask) {
1071 *data = 3;
1072 break;
1073 }
1074 }
1075
1076 /* Enable the interrupt to be reported in
1077 * the cause register and then force the same
1078 * interrupt and see if one gets posted. If
1079 * an interrupt was not posted to the bus, the
1080 * test failed.
1081 */
1082 adapter->test_icr = 0;
1083 ew32(IMS, mask);
1084 ew32(ICS, mask);
1085 e1e_flush();
1086 usleep_range(10000, 20000);
1087
1088 if (!(adapter->test_icr & mask)) {
1089 *data = 4;
1090 break;
1091 }
1092
1093 if (!shared_int) {
1094 /* Disable the other interrupts to be reported in
1095 * the cause register and then force the other
1096 * interrupts and see if any get posted. If
1097 * an interrupt was posted to the bus, the
1098 * test failed.
1099 */
1100 adapter->test_icr = 0;
1101 ew32(IMC, ~mask & 0x00007FFF);
1102 ew32(ICS, ~mask & 0x00007FFF);
1103 e1e_flush();
1104 usleep_range(10000, 20000);
1105
1106 if (adapter->test_icr) {
1107 *data = 5;
1108 break;
1109 }
1110 }
1111 }
1112
1113 /* Disable all the interrupts */
1114 ew32(IMC, 0xFFFFFFFF);
1115 e1e_flush();
1116 usleep_range(10000, 20000);
1117
1118 /* Unhook test interrupt handler */
1119 free_irq(irq, netdev);
1120
1121out:
1122 if (int_mode == E1000E_INT_MODE_MSIX) {
1123 e1000e_reset_interrupt_capability(adapter);
1124 adapter->int_mode = int_mode;
1125 e1000e_set_interrupt_capability(adapter);
1126 }
1127
1128 return ret_val;
1129}
1130
1131static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1132{
1133 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1134 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1135 struct pci_dev *pdev = adapter->pdev;
1136 struct e1000_buffer *buffer_info;
1137 int i;
1138
1139 if (tx_ring->desc && tx_ring->buffer_info) {
1140 for (i = 0; i < tx_ring->count; i++) {
1141 buffer_info = &tx_ring->buffer_info[i];
1142
1143 if (buffer_info->dma)
1144 dma_unmap_single(&pdev->dev,
1145 buffer_info->dma,
1146 buffer_info->length,
1147 DMA_TO_DEVICE);
1148 if (buffer_info->skb)
1149 dev_kfree_skb(buffer_info->skb);
1150 }
1151 }
1152
1153 if (rx_ring->desc && rx_ring->buffer_info) {
1154 for (i = 0; i < rx_ring->count; i++) {
1155 buffer_info = &rx_ring->buffer_info[i];
1156
1157 if (buffer_info->dma)
1158 dma_unmap_single(&pdev->dev,
1159 buffer_info->dma,
1160 2048, DMA_FROM_DEVICE);
1161 if (buffer_info->skb)
1162 dev_kfree_skb(buffer_info->skb);
1163 }
1164 }
1165
1166 if (tx_ring->desc) {
1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 tx_ring->dma);
1169 tx_ring->desc = NULL;
1170 }
1171 if (rx_ring->desc) {
1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 rx_ring->dma);
1174 rx_ring->desc = NULL;
1175 }
1176
1177 kfree(tx_ring->buffer_info);
1178 tx_ring->buffer_info = NULL;
1179 kfree(rx_ring->buffer_info);
1180 rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 struct pci_dev *pdev = adapter->pdev;
1188 struct e1000_hw *hw = &adapter->hw;
1189 u32 rctl;
1190 int i;
1191 int ret_val;
1192
1193 /* Setup Tx descriptor ring and Tx buffers */
1194
1195 if (!tx_ring->count)
1196 tx_ring->count = E1000_DEFAULT_TXD;
1197
1198 tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 sizeof(struct e1000_buffer), GFP_KERNEL);
1200 if (!tx_ring->buffer_info) {
1201 ret_val = 1;
1202 goto err_nomem;
1203 }
1204
1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 &tx_ring->dma, GFP_KERNEL);
1209 if (!tx_ring->desc) {
1210 ret_val = 2;
1211 goto err_nomem;
1212 }
1213 tx_ring->next_to_use = 0;
1214 tx_ring->next_to_clean = 0;
1215
1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 ew32(TDH(0), 0);
1220 ew32(TDT(0), 0);
1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225 for (i = 0; i < tx_ring->count; i++) {
1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 struct sk_buff *skb;
1228 unsigned int skb_size = 1024;
1229
1230 skb = alloc_skb(skb_size, GFP_KERNEL);
1231 if (!skb) {
1232 ret_val = 3;
1233 goto err_nomem;
1234 }
1235 skb_put(skb, skb_size);
1236 tx_ring->buffer_info[i].skb = skb;
1237 tx_ring->buffer_info[i].length = skb->len;
1238 tx_ring->buffer_info[i].dma =
1239 dma_map_single(&pdev->dev, skb->data, skb->len,
1240 DMA_TO_DEVICE);
1241 if (dma_mapping_error(&pdev->dev,
1242 tx_ring->buffer_info[i].dma)) {
1243 ret_val = 4;
1244 goto err_nomem;
1245 }
1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 tx_desc->lower.data = cpu_to_le32(skb->len);
1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 E1000_TXD_CMD_IFCS |
1250 E1000_TXD_CMD_RS);
1251 tx_desc->upper.data = 0;
1252 }
1253
1254 /* Setup Rx descriptor ring and Rx buffers */
1255
1256 if (!rx_ring->count)
1257 rx_ring->count = E1000_DEFAULT_RXD;
1258
1259 rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 sizeof(struct e1000_buffer), GFP_KERNEL);
1261 if (!rx_ring->buffer_info) {
1262 ret_val = 5;
1263 goto err_nomem;
1264 }
1265
1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 &rx_ring->dma, GFP_KERNEL);
1269 if (!rx_ring->desc) {
1270 ret_val = 6;
1271 goto err_nomem;
1272 }
1273 rx_ring->next_to_use = 0;
1274 rx_ring->next_to_clean = 0;
1275
1276 rctl = er32(RCTL);
1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 ew32(RDLEN(0), rx_ring->size);
1282 ew32(RDH(0), 0);
1283 ew32(RDT(0), 0);
1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 ew32(RCTL, rctl);
1290
1291 for (i = 0; i < rx_ring->count; i++) {
1292 union e1000_rx_desc_extended *rx_desc;
1293 struct sk_buff *skb;
1294
1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 if (!skb) {
1297 ret_val = 7;
1298 goto err_nomem;
1299 }
1300 skb_reserve(skb, NET_IP_ALIGN);
1301 rx_ring->buffer_info[i].skb = skb;
1302 rx_ring->buffer_info[i].dma =
1303 dma_map_single(&pdev->dev, skb->data, 2048,
1304 DMA_FROM_DEVICE);
1305 if (dma_mapping_error(&pdev->dev,
1306 rx_ring->buffer_info[i].dma)) {
1307 ret_val = 8;
1308 goto err_nomem;
1309 }
1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 rx_desc->read.buffer_addr =
1312 cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 memset(skb->data, 0x00, skb->len);
1314 }
1315
1316 return 0;
1317
1318err_nomem:
1319 e1000_free_desc_rings(adapter);
1320 return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 e1e_wphy(&adapter->hw, 29, 0x001F);
1327 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 e1e_wphy(&adapter->hw, 29, 0x001A);
1329 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334 struct e1000_hw *hw = &adapter->hw;
1335 u32 ctrl_reg = 0;
1336 u16 phy_reg = 0;
1337 s32 ret_val = 0;
1338
1339 hw->mac.autoneg = 0;
1340
1341 if (hw->phy.type == e1000_phy_ife) {
1342 /* force 100, set loopback */
1343 e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346 ctrl_reg = er32(CTRL);
1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 E1000_CTRL_FD); /* Force Duplex to FULL */
1352
1353 ew32(CTRL, ctrl_reg);
1354 e1e_flush();
1355 usleep_range(500, 1000);
1356
1357 return 0;
1358 }
1359
1360 /* Specific PHY configuration for loopback */
1361 switch (hw->phy.type) {
1362 case e1000_phy_m88:
1363 /* Auto-MDI/MDIX Off */
1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 /* reset to update Auto-MDI/MDIX */
1366 e1e_wphy(hw, MII_BMCR, 0x9140);
1367 /* autoneg off */
1368 e1e_wphy(hw, MII_BMCR, 0x8140);
1369 break;
1370 case e1000_phy_gg82563:
1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 break;
1373 case e1000_phy_bm:
1374 /* Set Default MAC Interface speed to 1GB */
1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 phy_reg &= ~0x0007;
1377 phy_reg |= 0x006;
1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 /* Assert SW reset for above settings to take effect */
1380 hw->phy.ops.commit(hw);
1381 usleep_range(1000, 2000);
1382 /* Force Full Duplex */
1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 /* Set Link Up (in force link) */
1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 /* Force Link */
1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 /* Set Early Link Enable */
1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 break;
1395 case e1000_phy_82577:
1396 case e1000_phy_82578:
1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 ret_val = hw->phy.ops.acquire(hw);
1399 if (ret_val) {
1400 e_err("Cannot setup 1Gbps loopback.\n");
1401 return ret_val;
1402 }
1403 e1000_configure_k1_ich8lan(hw, false);
1404 hw->phy.ops.release(hw);
1405 break;
1406 case e1000_phy_82579:
1407 /* Disable PHY energy detect power down */
1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 /* Disable full chip energy detect */
1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 /* Enable loopback on the PHY */
1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 break;
1416 default:
1417 break;
1418 }
1419
1420 /* force 1000, set loopback */
1421 e1e_wphy(hw, MII_BMCR, 0x4140);
1422 msleep(250);
1423
1424 /* Now set up the MAC to the same speed/duplex as the PHY. */
1425 ctrl_reg = er32(CTRL);
1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 E1000_CTRL_FD); /* Force Duplex to FULL */
1431
1432 if (adapter->flags & FLAG_IS_ICH)
1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1434
1435 if (hw->phy.media_type == e1000_media_type_copper &&
1436 hw->phy.type == e1000_phy_m88) {
1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1438 } else {
1439 /* Set the ILOS bit on the fiber Nic if half duplex link is
1440 * detected.
1441 */
1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 }
1445
1446 ew32(CTRL, ctrl_reg);
1447
1448 /* Disable the receiver on the PHY so when a cable is plugged in, the
1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 */
1451 if (hw->phy.type == e1000_phy_m88)
1452 e1000_phy_disable_receiver(adapter);
1453
1454 usleep_range(500, 1000);
1455
1456 return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl = er32(CTRL);
1463 int link;
1464
1465 /* special requirements for 82571/82572 fiber adapters */
1466
1467 /* jump through hoops to make sure link is up because serdes
1468 * link is hardwired up
1469 */
1470 ctrl |= E1000_CTRL_SLU;
1471 ew32(CTRL, ctrl);
1472
1473 /* disable autoneg */
1474 ctrl = er32(TXCW);
1475 ctrl &= ~BIT(31);
1476 ew32(TXCW, ctrl);
1477
1478 link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480 if (!link) {
1481 /* set invert loss of signal */
1482 ctrl = er32(CTRL);
1483 ctrl |= E1000_CTRL_ILOS;
1484 ew32(CTRL, ctrl);
1485 }
1486
1487 /* special write to serdes control register to enable SerDes analog
1488 * loopback
1489 */
1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 e1e_flush();
1492 usleep_range(10000, 20000);
1493
1494 return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500 struct e1000_hw *hw = &adapter->hw;
1501 u32 ctrlext = er32(CTRL_EXT);
1502 u32 ctrl = er32(CTRL);
1503
1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 * on mac_type 80003es2lan)
1506 */
1507 adapter->tx_fifo_head = ctrlext;
1508
1509 /* clear the serdes mode bits, putting the device into mac loopback */
1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 ew32(CTRL_EXT, ctrlext);
1512
1513 /* force speed to 1000/FD, link up */
1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 ew32(CTRL, ctrl);
1518
1519 /* set mac loopback */
1520 ctrl = er32(RCTL);
1521 ctrl |= E1000_RCTL_LBM_MAC;
1522 ew32(RCTL, ctrl);
1523
1524 /* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 ew32(KMRNCTRLSTA,
1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530 return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 rctl, fext_nvm11, tarc0;
1537
1538 if (hw->mac.type >= e1000_pch_spt) {
1539 fext_nvm11 = er32(FEXTNVM11);
1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 ew32(FEXTNVM11, fext_nvm11);
1542 tarc0 = er32(TARC(0));
1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 tarc0 &= 0xcfffffff;
1545 /* set bit 29 (value of MULR requests is now 2) */
1546 tarc0 |= 0x20000000;
1547 ew32(TARC(0), tarc0);
1548 }
1549 if (hw->phy.media_type == e1000_media_type_fiber ||
1550 hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 switch (hw->mac.type) {
1552 case e1000_80003es2lan:
1553 return e1000_set_es2lan_mac_loopback(adapter);
1554 case e1000_82571:
1555 case e1000_82572:
1556 return e1000_set_82571_fiber_loopback(adapter);
1557 default:
1558 rctl = er32(RCTL);
1559 rctl |= E1000_RCTL_LBM_TCVR;
1560 ew32(RCTL, rctl);
1561 return 0;
1562 }
1563 } else if (hw->phy.media_type == e1000_media_type_copper) {
1564 return e1000_integrated_phy_loopback(adapter);
1565 }
1566
1567 return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 rctl, fext_nvm11, tarc0;
1574 u16 phy_reg;
1575
1576 rctl = er32(RCTL);
1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 ew32(RCTL, rctl);
1579
1580 switch (hw->mac.type) {
1581 case e1000_pch_spt:
1582 case e1000_pch_cnp:
1583 fext_nvm11 = er32(FEXTNVM11);
1584 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1585 ew32(FEXTNVM11, fext_nvm11);
1586 tarc0 = er32(TARC(0));
1587 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1588 /* set bit 29 (value of MULR requests is now 0) */
1589 tarc0 &= 0xcfffffff;
1590 ew32(TARC(0), tarc0);
1591 /* fall through */
1592 case e1000_80003es2lan:
1593 if (hw->phy.media_type == e1000_media_type_fiber ||
1594 hw->phy.media_type == e1000_media_type_internal_serdes) {
1595 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1596 ew32(CTRL_EXT, adapter->tx_fifo_head);
1597 adapter->tx_fifo_head = 0;
1598 }
1599 /* fall through */
1600 case e1000_82571:
1601 case e1000_82572:
1602 if (hw->phy.media_type == e1000_media_type_fiber ||
1603 hw->phy.media_type == e1000_media_type_internal_serdes) {
1604 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1605 e1e_flush();
1606 usleep_range(10000, 20000);
1607 break;
1608 }
1609 /* Fall Through */
1610 default:
1611 hw->mac.autoneg = 1;
1612 if (hw->phy.type == e1000_phy_gg82563)
1613 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1614 e1e_rphy(hw, MII_BMCR, &phy_reg);
1615 if (phy_reg & BMCR_LOOPBACK) {
1616 phy_reg &= ~BMCR_LOOPBACK;
1617 e1e_wphy(hw, MII_BMCR, phy_reg);
1618 if (hw->phy.ops.commit)
1619 hw->phy.ops.commit(hw);
1620 }
1621 break;
1622 }
1623}
1624
1625static void e1000_create_lbtest_frame(struct sk_buff *skb,
1626 unsigned int frame_size)
1627{
1628 memset(skb->data, 0xFF, frame_size);
1629 frame_size &= ~1;
1630 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1631 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1632 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1633}
1634
1635static int e1000_check_lbtest_frame(struct sk_buff *skb,
1636 unsigned int frame_size)
1637{
1638 frame_size &= ~1;
1639 if (*(skb->data + 3) == 0xFF)
1640 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1641 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1642 return 0;
1643 return 13;
1644}
1645
1646static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1647{
1648 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1649 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1650 struct pci_dev *pdev = adapter->pdev;
1651 struct e1000_hw *hw = &adapter->hw;
1652 struct e1000_buffer *buffer_info;
1653 int i, j, k, l;
1654 int lc;
1655 int good_cnt;
1656 int ret_val = 0;
1657 unsigned long time;
1658
1659 ew32(RDT(0), rx_ring->count - 1);
1660
1661 /* Calculate the loop count based on the largest descriptor ring
1662 * The idea is to wrap the largest ring a number of times using 64
1663 * send/receive pairs during each loop
1664 */
1665
1666 if (rx_ring->count <= tx_ring->count)
1667 lc = ((tx_ring->count / 64) * 2) + 1;
1668 else
1669 lc = ((rx_ring->count / 64) * 2) + 1;
1670
1671 k = 0;
1672 l = 0;
1673 /* loop count loop */
1674 for (j = 0; j <= lc; j++) {
1675 /* send the packets */
1676 for (i = 0; i < 64; i++) {
1677 buffer_info = &tx_ring->buffer_info[k];
1678
1679 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1680 dma_sync_single_for_device(&pdev->dev,
1681 buffer_info->dma,
1682 buffer_info->length,
1683 DMA_TO_DEVICE);
1684 k++;
1685 if (k == tx_ring->count)
1686 k = 0;
1687 }
1688 ew32(TDT(0), k);
1689 e1e_flush();
1690 msleep(200);
1691 time = jiffies; /* set the start time for the receive */
1692 good_cnt = 0;
1693 /* receive the sent packets */
1694 do {
1695 buffer_info = &rx_ring->buffer_info[l];
1696
1697 dma_sync_single_for_cpu(&pdev->dev,
1698 buffer_info->dma, 2048,
1699 DMA_FROM_DEVICE);
1700
1701 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1702 1024);
1703 if (!ret_val)
1704 good_cnt++;
1705 l++;
1706 if (l == rx_ring->count)
1707 l = 0;
1708 /* time + 20 msecs (200 msecs on 2.4) is more than
1709 * enough time to complete the receives, if it's
1710 * exceeded, break and error off
1711 */
1712 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1713 if (good_cnt != 64) {
1714 ret_val = 13; /* ret_val is the same as mis-compare */
1715 break;
1716 }
1717 if (time_after(jiffies, time + 20)) {
1718 ret_val = 14; /* error code for time out error */
1719 break;
1720 }
1721 }
1722 return ret_val;
1723}
1724
1725static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1726{
1727 struct e1000_hw *hw = &adapter->hw;
1728
1729 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1730 if (hw->phy.ops.check_reset_block &&
1731 hw->phy.ops.check_reset_block(hw)) {
1732 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1733 *data = 0;
1734 goto out;
1735 }
1736
1737 *data = e1000_setup_desc_rings(adapter);
1738 if (*data)
1739 goto out;
1740
1741 *data = e1000_setup_loopback_test(adapter);
1742 if (*data)
1743 goto err_loopback;
1744
1745 *data = e1000_run_loopback_test(adapter);
1746 e1000_loopback_cleanup(adapter);
1747
1748err_loopback:
1749 e1000_free_desc_rings(adapter);
1750out:
1751 return *data;
1752}
1753
1754static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1755{
1756 struct e1000_hw *hw = &adapter->hw;
1757
1758 *data = 0;
1759 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1760 int i = 0;
1761
1762 hw->mac.serdes_has_link = false;
1763
1764 /* On some blade server designs, link establishment
1765 * could take as long as 2-3 minutes
1766 */
1767 do {
1768 hw->mac.ops.check_for_link(hw);
1769 if (hw->mac.serdes_has_link)
1770 return *data;
1771 msleep(20);
1772 } while (i++ < 3750);
1773
1774 *data = 1;
1775 } else {
1776 hw->mac.ops.check_for_link(hw);
1777 if (hw->mac.autoneg)
1778 /* On some Phy/switch combinations, link establishment
1779 * can take a few seconds more than expected.
1780 */
1781 msleep_interruptible(5000);
1782
1783 if (!(er32(STATUS) & E1000_STATUS_LU))
1784 *data = 1;
1785 }
1786 return *data;
1787}
1788
1789static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1790 int sset)
1791{
1792 switch (sset) {
1793 case ETH_SS_TEST:
1794 return E1000_TEST_LEN;
1795 case ETH_SS_STATS:
1796 return E1000_STATS_LEN;
1797 default:
1798 return -EOPNOTSUPP;
1799 }
1800}
1801
1802static void e1000_diag_test(struct net_device *netdev,
1803 struct ethtool_test *eth_test, u64 *data)
1804{
1805 struct e1000_adapter *adapter = netdev_priv(netdev);
1806 u16 autoneg_advertised;
1807 u8 forced_speed_duplex;
1808 u8 autoneg;
1809 bool if_running = netif_running(netdev);
1810
1811 pm_runtime_get_sync(netdev->dev.parent);
1812
1813 set_bit(__E1000_TESTING, &adapter->state);
1814
1815 if (!if_running) {
1816 /* Get control of and reset hardware */
1817 if (adapter->flags & FLAG_HAS_AMT)
1818 e1000e_get_hw_control(adapter);
1819
1820 e1000e_power_up_phy(adapter);
1821
1822 adapter->hw.phy.autoneg_wait_to_complete = 1;
1823 e1000e_reset(adapter);
1824 adapter->hw.phy.autoneg_wait_to_complete = 0;
1825 }
1826
1827 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1828 /* Offline tests */
1829
1830 /* save speed, duplex, autoneg settings */
1831 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1832 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1833 autoneg = adapter->hw.mac.autoneg;
1834
1835 e_info("offline testing starting\n");
1836
1837 if (if_running)
1838 /* indicate we're in test mode */
1839 e1000e_close(netdev);
1840
1841 if (e1000_reg_test(adapter, &data[0]))
1842 eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844 e1000e_reset(adapter);
1845 if (e1000_eeprom_test(adapter, &data[1]))
1846 eth_test->flags |= ETH_TEST_FL_FAILED;
1847
1848 e1000e_reset(adapter);
1849 if (e1000_intr_test(adapter, &data[2]))
1850 eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852 e1000e_reset(adapter);
1853 if (e1000_loopback_test(adapter, &data[3]))
1854 eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856 /* force this routine to wait until autoneg complete/timeout */
1857 adapter->hw.phy.autoneg_wait_to_complete = 1;
1858 e1000e_reset(adapter);
1859 adapter->hw.phy.autoneg_wait_to_complete = 0;
1860
1861 if (e1000_link_test(adapter, &data[4]))
1862 eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864 /* restore speed, duplex, autoneg settings */
1865 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1866 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1867 adapter->hw.mac.autoneg = autoneg;
1868 e1000e_reset(adapter);
1869
1870 clear_bit(__E1000_TESTING, &adapter->state);
1871 if (if_running)
1872 e1000e_open(netdev);
1873 } else {
1874 /* Online tests */
1875
1876 e_info("online testing starting\n");
1877
1878 /* register, eeprom, intr and loopback tests not run online */
1879 data[0] = 0;
1880 data[1] = 0;
1881 data[2] = 0;
1882 data[3] = 0;
1883
1884 if (e1000_link_test(adapter, &data[4]))
1885 eth_test->flags |= ETH_TEST_FL_FAILED;
1886
1887 clear_bit(__E1000_TESTING, &adapter->state);
1888 }
1889
1890 if (!if_running) {
1891 e1000e_reset(adapter);
1892
1893 if (adapter->flags & FLAG_HAS_AMT)
1894 e1000e_release_hw_control(adapter);
1895 }
1896
1897 msleep_interruptible(4 * 1000);
1898
1899 pm_runtime_put_sync(netdev->dev.parent);
1900}
1901
1902static void e1000_get_wol(struct net_device *netdev,
1903 struct ethtool_wolinfo *wol)
1904{
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906
1907 wol->supported = 0;
1908 wol->wolopts = 0;
1909
1910 if (!(adapter->flags & FLAG_HAS_WOL) ||
1911 !device_can_wakeup(&adapter->pdev->dev))
1912 return;
1913
1914 wol->supported = WAKE_UCAST | WAKE_MCAST |
1915 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1916
1917 /* apply any specific unsupported masks here */
1918 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1919 wol->supported &= ~WAKE_UCAST;
1920
1921 if (adapter->wol & E1000_WUFC_EX)
1922 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1923 }
1924
1925 if (adapter->wol & E1000_WUFC_EX)
1926 wol->wolopts |= WAKE_UCAST;
1927 if (adapter->wol & E1000_WUFC_MC)
1928 wol->wolopts |= WAKE_MCAST;
1929 if (adapter->wol & E1000_WUFC_BC)
1930 wol->wolopts |= WAKE_BCAST;
1931 if (adapter->wol & E1000_WUFC_MAG)
1932 wol->wolopts |= WAKE_MAGIC;
1933 if (adapter->wol & E1000_WUFC_LNKC)
1934 wol->wolopts |= WAKE_PHY;
1935}
1936
1937static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1938{
1939 struct e1000_adapter *adapter = netdev_priv(netdev);
1940
1941 if (!(adapter->flags & FLAG_HAS_WOL) ||
1942 !device_can_wakeup(&adapter->pdev->dev) ||
1943 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1944 WAKE_MAGIC | WAKE_PHY)))
1945 return -EOPNOTSUPP;
1946
1947 /* these settings will always override what we currently have */
1948 adapter->wol = 0;
1949
1950 if (wol->wolopts & WAKE_UCAST)
1951 adapter->wol |= E1000_WUFC_EX;
1952 if (wol->wolopts & WAKE_MCAST)
1953 adapter->wol |= E1000_WUFC_MC;
1954 if (wol->wolopts & WAKE_BCAST)
1955 adapter->wol |= E1000_WUFC_BC;
1956 if (wol->wolopts & WAKE_MAGIC)
1957 adapter->wol |= E1000_WUFC_MAG;
1958 if (wol->wolopts & WAKE_PHY)
1959 adapter->wol |= E1000_WUFC_LNKC;
1960
1961 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1962
1963 return 0;
1964}
1965
1966static int e1000_set_phys_id(struct net_device *netdev,
1967 enum ethtool_phys_id_state state)
1968{
1969 struct e1000_adapter *adapter = netdev_priv(netdev);
1970 struct e1000_hw *hw = &adapter->hw;
1971
1972 switch (state) {
1973 case ETHTOOL_ID_ACTIVE:
1974 pm_runtime_get_sync(netdev->dev.parent);
1975
1976 if (!hw->mac.ops.blink_led)
1977 return 2; /* cycle on/off twice per second */
1978
1979 hw->mac.ops.blink_led(hw);
1980 break;
1981
1982 case ETHTOOL_ID_INACTIVE:
1983 if (hw->phy.type == e1000_phy_ife)
1984 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1985 hw->mac.ops.led_off(hw);
1986 hw->mac.ops.cleanup_led(hw);
1987 pm_runtime_put_sync(netdev->dev.parent);
1988 break;
1989
1990 case ETHTOOL_ID_ON:
1991 hw->mac.ops.led_on(hw);
1992 break;
1993
1994 case ETHTOOL_ID_OFF:
1995 hw->mac.ops.led_off(hw);
1996 break;
1997 }
1998
1999 return 0;
2000}
2001
2002static int e1000_get_coalesce(struct net_device *netdev,
2003 struct ethtool_coalesce *ec)
2004{
2005 struct e1000_adapter *adapter = netdev_priv(netdev);
2006
2007 if (adapter->itr_setting <= 4)
2008 ec->rx_coalesce_usecs = adapter->itr_setting;
2009 else
2010 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2011
2012 return 0;
2013}
2014
2015static int e1000_set_coalesce(struct net_device *netdev,
2016 struct ethtool_coalesce *ec)
2017{
2018 struct e1000_adapter *adapter = netdev_priv(netdev);
2019
2020 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2021 ((ec->rx_coalesce_usecs > 4) &&
2022 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2023 (ec->rx_coalesce_usecs == 2))
2024 return -EINVAL;
2025
2026 if (ec->rx_coalesce_usecs == 4) {
2027 adapter->itr_setting = 4;
2028 adapter->itr = adapter->itr_setting;
2029 } else if (ec->rx_coalesce_usecs <= 3) {
2030 adapter->itr = 20000;
2031 adapter->itr_setting = ec->rx_coalesce_usecs;
2032 } else {
2033 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2034 adapter->itr_setting = adapter->itr & ~3;
2035 }
2036
2037 pm_runtime_get_sync(netdev->dev.parent);
2038
2039 if (adapter->itr_setting != 0)
2040 e1000e_write_itr(adapter, adapter->itr);
2041 else
2042 e1000e_write_itr(adapter, 0);
2043
2044 pm_runtime_put_sync(netdev->dev.parent);
2045
2046 return 0;
2047}
2048
2049static int e1000_nway_reset(struct net_device *netdev)
2050{
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052
2053 if (!netif_running(netdev))
2054 return -EAGAIN;
2055
2056 if (!adapter->hw.mac.autoneg)
2057 return -EINVAL;
2058
2059 pm_runtime_get_sync(netdev->dev.parent);
2060 e1000e_reinit_locked(adapter);
2061 pm_runtime_put_sync(netdev->dev.parent);
2062
2063 return 0;
2064}
2065
2066static void e1000_get_ethtool_stats(struct net_device *netdev,
2067 struct ethtool_stats __always_unused *stats,
2068 u64 *data)
2069{
2070 struct e1000_adapter *adapter = netdev_priv(netdev);
2071 struct rtnl_link_stats64 net_stats;
2072 int i;
2073 char *p = NULL;
2074
2075 pm_runtime_get_sync(netdev->dev.parent);
2076
2077 dev_get_stats(netdev, &net_stats);
2078
2079 pm_runtime_put_sync(netdev->dev.parent);
2080
2081 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2082 switch (e1000_gstrings_stats[i].type) {
2083 case NETDEV_STATS:
2084 p = (char *)&net_stats +
2085 e1000_gstrings_stats[i].stat_offset;
2086 break;
2087 case E1000_STATS:
2088 p = (char *)adapter +
2089 e1000_gstrings_stats[i].stat_offset;
2090 break;
2091 default:
2092 data[i] = 0;
2093 continue;
2094 }
2095
2096 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2097 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2098 }
2099}
2100
2101static void e1000_get_strings(struct net_device __always_unused *netdev,
2102 u32 stringset, u8 *data)
2103{
2104 u8 *p = data;
2105 int i;
2106
2107 switch (stringset) {
2108 case ETH_SS_TEST:
2109 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2110 break;
2111 case ETH_SS_STATS:
2112 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2113 memcpy(p, e1000_gstrings_stats[i].stat_string,
2114 ETH_GSTRING_LEN);
2115 p += ETH_GSTRING_LEN;
2116 }
2117 break;
2118 }
2119}
2120
2121static int e1000_get_rxnfc(struct net_device *netdev,
2122 struct ethtool_rxnfc *info,
2123 u32 __always_unused *rule_locs)
2124{
2125 info->data = 0;
2126
2127 switch (info->cmd) {
2128 case ETHTOOL_GRXFH: {
2129 struct e1000_adapter *adapter = netdev_priv(netdev);
2130 struct e1000_hw *hw = &adapter->hw;
2131 u32 mrqc;
2132
2133 pm_runtime_get_sync(netdev->dev.parent);
2134 mrqc = er32(MRQC);
2135 pm_runtime_put_sync(netdev->dev.parent);
2136
2137 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2138 return 0;
2139
2140 switch (info->flow_type) {
2141 case TCP_V4_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V4_FLOW:
2146 case SCTP_V4_FLOW:
2147 case AH_ESP_V4_FLOW:
2148 case IPV4_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 case TCP_V6_FLOW:
2153 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2154 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2155 /* fall through */
2156 case UDP_V6_FLOW:
2157 case SCTP_V6_FLOW:
2158 case AH_ESP_V6_FLOW:
2159 case IPV6_FLOW:
2160 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2161 info->data |= RXH_IP_SRC | RXH_IP_DST;
2162 break;
2163 default:
2164 break;
2165 }
2166 return 0;
2167 }
2168 default:
2169 return -EOPNOTSUPP;
2170 }
2171}
2172
2173static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2174{
2175 struct e1000_adapter *adapter = netdev_priv(netdev);
2176 struct e1000_hw *hw = &adapter->hw;
2177 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2178 u32 ret_val;
2179
2180 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2181 return -EOPNOTSUPP;
2182
2183 switch (hw->phy.type) {
2184 case e1000_phy_82579:
2185 cap_addr = I82579_EEE_CAPABILITY;
2186 lpa_addr = I82579_EEE_LP_ABILITY;
2187 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2188 break;
2189 case e1000_phy_i217:
2190 cap_addr = I217_EEE_CAPABILITY;
2191 lpa_addr = I217_EEE_LP_ABILITY;
2192 pcs_stat_addr = I217_EEE_PCS_STATUS;
2193 break;
2194 default:
2195 return -EOPNOTSUPP;
2196 }
2197
2198 pm_runtime_get_sync(netdev->dev.parent);
2199
2200 ret_val = hw->phy.ops.acquire(hw);
2201 if (ret_val) {
2202 pm_runtime_put_sync(netdev->dev.parent);
2203 return -EBUSY;
2204 }
2205
2206 /* EEE Capability */
2207 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2208 if (ret_val)
2209 goto release;
2210 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2211
2212 /* EEE Advertised */
2213 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2214
2215 /* EEE Link Partner Advertised */
2216 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2217 if (ret_val)
2218 goto release;
2219 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2220
2221 /* EEE PCS Status */
2222 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2223 if (ret_val)
2224 goto release;
2225 if (hw->phy.type == e1000_phy_82579)
2226 phy_data <<= 8;
2227
2228 /* Result of the EEE auto negotiation - there is no register that
2229 * has the status of the EEE negotiation so do a best-guess based
2230 * on whether Tx or Rx LPI indications have been received.
2231 */
2232 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2233 edata->eee_active = true;
2234
2235 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2236 edata->tx_lpi_enabled = true;
2237 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2238
2239release:
2240 hw->phy.ops.release(hw);
2241 if (ret_val)
2242 ret_val = -ENODATA;
2243
2244 pm_runtime_put_sync(netdev->dev.parent);
2245
2246 return ret_val;
2247}
2248
2249static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2250{
2251 struct e1000_adapter *adapter = netdev_priv(netdev);
2252 struct e1000_hw *hw = &adapter->hw;
2253 struct ethtool_eee eee_curr;
2254 s32 ret_val;
2255
2256 ret_val = e1000e_get_eee(netdev, &eee_curr);
2257 if (ret_val)
2258 return ret_val;
2259
2260 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2261 e_err("Setting EEE tx-lpi is not supported\n");
2262 return -EINVAL;
2263 }
2264
2265 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2266 e_err("Setting EEE Tx LPI timer is not supported\n");
2267 return -EINVAL;
2268 }
2269
2270 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2271 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2272 return -EINVAL;
2273 }
2274
2275 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2276
2277 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2278
2279 pm_runtime_get_sync(netdev->dev.parent);
2280
2281 /* reset the link */
2282 if (netif_running(netdev))
2283 e1000e_reinit_locked(adapter);
2284 else
2285 e1000e_reset(adapter);
2286
2287 pm_runtime_put_sync(netdev->dev.parent);
2288
2289 return 0;
2290}
2291
2292static int e1000e_get_ts_info(struct net_device *netdev,
2293 struct ethtool_ts_info *info)
2294{
2295 struct e1000_adapter *adapter = netdev_priv(netdev);
2296
2297 ethtool_op_get_ts_info(netdev, info);
2298
2299 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2300 return 0;
2301
2302 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2303 SOF_TIMESTAMPING_RX_HARDWARE |
2304 SOF_TIMESTAMPING_RAW_HARDWARE);
2305
2306 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2307
2308 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2309 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2310 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2311 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2312 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2313 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2315 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2316 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2317 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2318 BIT(HWTSTAMP_FILTER_ALL));
2319
2320 if (adapter->ptp_clock)
2321 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2322
2323 return 0;
2324}
2325
2326static const struct ethtool_ops e1000_ethtool_ops = {
2327 .get_drvinfo = e1000_get_drvinfo,
2328 .get_regs_len = e1000_get_regs_len,
2329 .get_regs = e1000_get_regs,
2330 .get_wol = e1000_get_wol,
2331 .set_wol = e1000_set_wol,
2332 .get_msglevel = e1000_get_msglevel,
2333 .set_msglevel = e1000_set_msglevel,
2334 .nway_reset = e1000_nway_reset,
2335 .get_link = ethtool_op_get_link,
2336 .get_eeprom_len = e1000_get_eeprom_len,
2337 .get_eeprom = e1000_get_eeprom,
2338 .set_eeprom = e1000_set_eeprom,
2339 .get_ringparam = e1000_get_ringparam,
2340 .set_ringparam = e1000_set_ringparam,
2341 .get_pauseparam = e1000_get_pauseparam,
2342 .set_pauseparam = e1000_set_pauseparam,
2343 .self_test = e1000_diag_test,
2344 .get_strings = e1000_get_strings,
2345 .set_phys_id = e1000_set_phys_id,
2346 .get_ethtool_stats = e1000_get_ethtool_stats,
2347 .get_sset_count = e1000e_get_sset_count,
2348 .get_coalesce = e1000_get_coalesce,
2349 .set_coalesce = e1000_set_coalesce,
2350 .get_rxnfc = e1000_get_rxnfc,
2351 .get_ts_info = e1000e_get_ts_info,
2352 .get_eee = e1000e_get_eee,
2353 .set_eee = e1000e_set_eee,
2354 .get_link_ksettings = e1000_get_link_ksettings,
2355 .set_link_ksettings = e1000_set_link_ksettings,
2356};
2357
2358void e1000e_set_ethtool_ops(struct net_device *netdev)
2359{
2360 netdev->ethtool_ops = &e1000_ethtool_ops;
2361}
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* ethtool support for e1000 */
23
24#include <linux/netdevice.h>
25#include <linux/interrupt.h>
26#include <linux/ethtool.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/vmalloc.h>
31#include <linux/pm_runtime.h>
32
33#include "e1000.h"
34
35enum { NETDEV_STATS, E1000_STATS };
36
37struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
42};
43
44#define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49#define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108};
109
110#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
116};
117
118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122{
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 speed = -1;
163 ecmd->duplex = -1;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 speed = SPEED_1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 speed = SPEED_100;
177 else
178 speed = SPEED_10;
179
180 if (status & E1000_STATUS_FD)
181 ecmd->duplex = DUPLEX_FULL;
182 else
183 ecmd->duplex = DUPLEX_HALF;
184 }
185 }
186
187 ethtool_cmd_speed_set(ecmd, speed);
188 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
189 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190
191 /* MDI-X => 2; MDI =>1; Invalid =>0 */
192 if ((hw->phy.media_type == e1000_media_type_copper) &&
193 netif_carrier_ok(netdev))
194 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
195 else
196 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
197
198 if (hw->phy.mdix == AUTO_ALL_MODES)
199 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
200 else
201 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
202
203 return 0;
204}
205
206static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
207{
208 struct e1000_mac_info *mac = &adapter->hw.mac;
209
210 mac->autoneg = 0;
211
212 /* Make sure dplx is at most 1 bit and lsb of speed is not set
213 * for the switch() below to work
214 */
215 if ((spd & 1) || (dplx & ~1))
216 goto err_inval;
217
218 /* Fiber NICs only allow 1000 gbps Full duplex */
219 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
220 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
221 goto err_inval;
222 }
223
224 switch (spd + dplx) {
225 case SPEED_10 + DUPLEX_HALF:
226 mac->forced_speed_duplex = ADVERTISE_10_HALF;
227 break;
228 case SPEED_10 + DUPLEX_FULL:
229 mac->forced_speed_duplex = ADVERTISE_10_FULL;
230 break;
231 case SPEED_100 + DUPLEX_HALF:
232 mac->forced_speed_duplex = ADVERTISE_100_HALF;
233 break;
234 case SPEED_100 + DUPLEX_FULL:
235 mac->forced_speed_duplex = ADVERTISE_100_FULL;
236 break;
237 case SPEED_1000 + DUPLEX_FULL:
238 mac->autoneg = 1;
239 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
240 break;
241 case SPEED_1000 + DUPLEX_HALF: /* not supported */
242 default:
243 goto err_inval;
244 }
245
246 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
247 adapter->hw.phy.mdix = AUTO_ALL_MODES;
248
249 return 0;
250
251err_inval:
252 e_err("Unsupported Speed/Duplex configuration\n");
253 return -EINVAL;
254}
255
256static int e1000_set_settings(struct net_device *netdev,
257 struct ethtool_cmd *ecmd)
258{
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
261 int ret_val = 0;
262
263 pm_runtime_get_sync(netdev->dev.parent);
264
265 /* When SoL/IDER sessions are active, autoneg/speed/duplex
266 * cannot be changed
267 */
268 if (hw->phy.ops.check_reset_block &&
269 hw->phy.ops.check_reset_block(hw)) {
270 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
271 ret_val = -EINVAL;
272 goto out;
273 }
274
275 /* MDI setting is only allowed when autoneg enabled because
276 * some hardware doesn't allow MDI setting when speed or
277 * duplex is forced.
278 */
279 if (ecmd->eth_tp_mdix_ctrl) {
280 if (hw->phy.media_type != e1000_media_type_copper) {
281 ret_val = -EOPNOTSUPP;
282 goto out;
283 }
284
285 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
286 (ecmd->autoneg != AUTONEG_ENABLE)) {
287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
288 ret_val = -EINVAL;
289 goto out;
290 }
291 }
292
293 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
294 usleep_range(1000, 2000);
295
296 if (ecmd->autoneg == AUTONEG_ENABLE) {
297 hw->mac.autoneg = 1;
298 if (hw->phy.media_type == e1000_media_type_fiber)
299 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
300 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
301 else
302 hw->phy.autoneg_advertised = ecmd->advertising |
303 ADVERTISED_TP | ADVERTISED_Autoneg;
304 ecmd->advertising = hw->phy.autoneg_advertised;
305 if (adapter->fc_autoneg)
306 hw->fc.requested_mode = e1000_fc_default;
307 } else {
308 u32 speed = ethtool_cmd_speed(ecmd);
309 /* calling this overrides forced MDI setting */
310 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
311 ret_val = -EINVAL;
312 goto out;
313 }
314 }
315
316 /* MDI-X => 2; MDI => 1; Auto => 3 */
317 if (ecmd->eth_tp_mdix_ctrl) {
318 /* fix up the value for auto (3 => 0) as zero is mapped
319 * internally to auto
320 */
321 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
322 hw->phy.mdix = AUTO_ALL_MODES;
323 else
324 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
325 }
326
327 /* reset the link */
328 if (netif_running(adapter->netdev)) {
329 e1000e_down(adapter, true);
330 e1000e_up(adapter);
331 } else {
332 e1000e_reset(adapter);
333 }
334
335out:
336 pm_runtime_put_sync(netdev->dev.parent);
337 clear_bit(__E1000_RESETTING, &adapter->state);
338 return ret_val;
339}
340
341static void e1000_get_pauseparam(struct net_device *netdev,
342 struct ethtool_pauseparam *pause)
343{
344 struct e1000_adapter *adapter = netdev_priv(netdev);
345 struct e1000_hw *hw = &adapter->hw;
346
347 pause->autoneg =
348 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349
350 if (hw->fc.current_mode == e1000_fc_rx_pause) {
351 pause->rx_pause = 1;
352 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
353 pause->tx_pause = 1;
354 } else if (hw->fc.current_mode == e1000_fc_full) {
355 pause->rx_pause = 1;
356 pause->tx_pause = 1;
357 }
358}
359
360static int e1000_set_pauseparam(struct net_device *netdev,
361 struct ethtool_pauseparam *pause)
362{
363 struct e1000_adapter *adapter = netdev_priv(netdev);
364 struct e1000_hw *hw = &adapter->hw;
365 int retval = 0;
366
367 adapter->fc_autoneg = pause->autoneg;
368
369 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370 usleep_range(1000, 2000);
371
372 pm_runtime_get_sync(netdev->dev.parent);
373
374 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
375 hw->fc.requested_mode = e1000_fc_default;
376 if (netif_running(adapter->netdev)) {
377 e1000e_down(adapter, true);
378 e1000e_up(adapter);
379 } else {
380 e1000e_reset(adapter);
381 }
382 } else {
383 if (pause->rx_pause && pause->tx_pause)
384 hw->fc.requested_mode = e1000_fc_full;
385 else if (pause->rx_pause && !pause->tx_pause)
386 hw->fc.requested_mode = e1000_fc_rx_pause;
387 else if (!pause->rx_pause && pause->tx_pause)
388 hw->fc.requested_mode = e1000_fc_tx_pause;
389 else if (!pause->rx_pause && !pause->tx_pause)
390 hw->fc.requested_mode = e1000_fc_none;
391
392 hw->fc.current_mode = hw->fc.requested_mode;
393
394 if (hw->phy.media_type == e1000_media_type_fiber) {
395 retval = hw->mac.ops.setup_link(hw);
396 /* implicit goto out */
397 } else {
398 retval = e1000e_force_mac_fc(hw);
399 if (retval)
400 goto out;
401 e1000e_set_fc_watermarks(hw);
402 }
403 }
404
405out:
406 pm_runtime_put_sync(netdev->dev.parent);
407 clear_bit(__E1000_RESETTING, &adapter->state);
408 return retval;
409}
410
411static u32 e1000_get_msglevel(struct net_device *netdev)
412{
413 struct e1000_adapter *adapter = netdev_priv(netdev);
414 return adapter->msg_enable;
415}
416
417static void e1000_set_msglevel(struct net_device *netdev, u32 data)
418{
419 struct e1000_adapter *adapter = netdev_priv(netdev);
420 adapter->msg_enable = data;
421}
422
423static int e1000_get_regs_len(struct net_device __always_unused *netdev)
424{
425#define E1000_REGS_LEN 32 /* overestimate */
426 return E1000_REGS_LEN * sizeof(u32);
427}
428
429static void e1000_get_regs(struct net_device *netdev,
430 struct ethtool_regs *regs, void *p)
431{
432 struct e1000_adapter *adapter = netdev_priv(netdev);
433 struct e1000_hw *hw = &adapter->hw;
434 u32 *regs_buff = p;
435 u16 phy_data;
436
437 pm_runtime_get_sync(netdev->dev.parent);
438
439 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
440
441 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
442 adapter->pdev->device;
443
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
446
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN(0));
449 regs_buff[4] = er32(RDH(0));
450 regs_buff[5] = er32(RDT(0));
451 regs_buff[6] = er32(RDTR);
452
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN(0));
455 regs_buff[9] = er32(TDH(0));
456 regs_buff[10] = er32(TDT(0));
457 regs_buff[11] = er32(TIDV);
458
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
460
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not exist
463 */
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
478 }
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, MII_STAT1000, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483
484 pm_runtime_put_sync(netdev->dev.parent);
485}
486
487static int e1000_get_eeprom_len(struct net_device *netdev)
488{
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 return adapter->hw.nvm.word_size * 2;
491}
492
493static int e1000_get_eeprom(struct net_device *netdev,
494 struct ethtool_eeprom *eeprom, u8 *bytes)
495{
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 struct e1000_hw *hw = &adapter->hw;
498 u16 *eeprom_buff;
499 int first_word;
500 int last_word;
501 int ret_val = 0;
502 u16 i;
503
504 if (eeprom->len == 0)
505 return -EINVAL;
506
507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
508
509 first_word = eeprom->offset >> 1;
510 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
511
512 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
513 GFP_KERNEL);
514 if (!eeprom_buff)
515 return -ENOMEM;
516
517 pm_runtime_get_sync(netdev->dev.parent);
518
519 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 ret_val = e1000_read_nvm(hw, first_word,
521 last_word - first_word + 1,
522 eeprom_buff);
523 } else {
524 for (i = 0; i < last_word - first_word + 1; i++) {
525 ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 &eeprom_buff[i]);
527 if (ret_val)
528 break;
529 }
530 }
531
532 pm_runtime_put_sync(netdev->dev.parent);
533
534 if (ret_val) {
535 /* a read error occurred, throw away the result */
536 memset(eeprom_buff, 0xff, sizeof(u16) *
537 (last_word - first_word + 1));
538 } else {
539 /* Device's eeprom is always little-endian, word addressable */
540 for (i = 0; i < last_word - first_word + 1; i++)
541 le16_to_cpus(&eeprom_buff[i]);
542 }
543
544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 kfree(eeprom_buff);
546
547 return ret_val;
548}
549
550static int e1000_set_eeprom(struct net_device *netdev,
551 struct ethtool_eeprom *eeprom, u8 *bytes)
552{
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 struct e1000_hw *hw = &adapter->hw;
555 u16 *eeprom_buff;
556 void *ptr;
557 int max_len;
558 int first_word;
559 int last_word;
560 int ret_val = 0;
561 u16 i;
562
563 if (eeprom->len == 0)
564 return -EOPNOTSUPP;
565
566 if (eeprom->magic !=
567 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 return -EFAULT;
569
570 if (adapter->flags & FLAG_READ_ONLY_NVM)
571 return -EINVAL;
572
573 max_len = hw->nvm.word_size * 2;
574
575 first_word = eeprom->offset >> 1;
576 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 if (!eeprom_buff)
579 return -ENOMEM;
580
581 ptr = (void *)eeprom_buff;
582
583 pm_runtime_get_sync(netdev->dev.parent);
584
585 if (eeprom->offset & 1) {
586 /* need read/modify/write of first changed EEPROM word */
587 /* only the second byte of the word is being modified */
588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 ptr++;
590 }
591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 /* need read/modify/write of last changed EEPROM word */
593 /* only the first byte of the word is being modified */
594 ret_val = e1000_read_nvm(hw, last_word, 1,
595 &eeprom_buff[last_word - first_word]);
596
597 if (ret_val)
598 goto out;
599
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
603
604 memcpy(ptr, bytes, eeprom->len);
605
606 for (i = 0; i < last_word - first_word + 1; i++)
607 cpu_to_le16s(&eeprom_buff[i]);
608
609 ret_val = e1000_write_nvm(hw, first_word,
610 last_word - first_word + 1, eeprom_buff);
611
612 if (ret_val)
613 goto out;
614
615 /* Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624out:
625 pm_runtime_put_sync(netdev->dev.parent);
626 kfree(eeprom_buff);
627 return ret_val;
628}
629
630static void e1000_get_drvinfo(struct net_device *netdev,
631 struct ethtool_drvinfo *drvinfo)
632{
633 struct e1000_adapter *adapter = netdev_priv(netdev);
634
635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636 strlcpy(drvinfo->version, e1000e_driver_version,
637 sizeof(drvinfo->version));
638
639 /* EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
641 */
642 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
643 "%d.%d-%d",
644 (adapter->eeprom_vers & 0xF000) >> 12,
645 (adapter->eeprom_vers & 0x0FF0) >> 4,
646 (adapter->eeprom_vers & 0x000F));
647
648 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
649 sizeof(drvinfo->bus_info));
650 drvinfo->regdump_len = e1000_get_regs_len(netdev);
651 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
652}
653
654static void e1000_get_ringparam(struct net_device *netdev,
655 struct ethtool_ringparam *ring)
656{
657 struct e1000_adapter *adapter = netdev_priv(netdev);
658
659 ring->rx_max_pending = E1000_MAX_RXD;
660 ring->tx_max_pending = E1000_MAX_TXD;
661 ring->rx_pending = adapter->rx_ring_count;
662 ring->tx_pending = adapter->tx_ring_count;
663}
664
665static int e1000_set_ringparam(struct net_device *netdev,
666 struct ethtool_ringparam *ring)
667{
668 struct e1000_adapter *adapter = netdev_priv(netdev);
669 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
670 int err = 0, size = sizeof(struct e1000_ring);
671 bool set_tx = false, set_rx = false;
672 u16 new_rx_count, new_tx_count;
673
674 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
675 return -EINVAL;
676
677 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
678 E1000_MAX_RXD);
679 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
680
681 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
682 E1000_MAX_TXD);
683 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
684
685 if ((new_tx_count == adapter->tx_ring_count) &&
686 (new_rx_count == adapter->rx_ring_count))
687 /* nothing to do */
688 return 0;
689
690 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
691 usleep_range(1000, 2000);
692
693 if (!netif_running(adapter->netdev)) {
694 /* Set counts now and allocate resources during open() */
695 adapter->tx_ring->count = new_tx_count;
696 adapter->rx_ring->count = new_rx_count;
697 adapter->tx_ring_count = new_tx_count;
698 adapter->rx_ring_count = new_rx_count;
699 goto clear_reset;
700 }
701
702 set_tx = (new_tx_count != adapter->tx_ring_count);
703 set_rx = (new_rx_count != adapter->rx_ring_count);
704
705 /* Allocate temporary storage for ring updates */
706 if (set_tx) {
707 temp_tx = vmalloc(size);
708 if (!temp_tx) {
709 err = -ENOMEM;
710 goto free_temp;
711 }
712 }
713 if (set_rx) {
714 temp_rx = vmalloc(size);
715 if (!temp_rx) {
716 err = -ENOMEM;
717 goto free_temp;
718 }
719 }
720
721 pm_runtime_get_sync(netdev->dev.parent);
722
723 e1000e_down(adapter, true);
724
725 /* We can't just free everything and then setup again, because the
726 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
727 * structs. First, attempt to allocate new resources...
728 */
729 if (set_tx) {
730 memcpy(temp_tx, adapter->tx_ring, size);
731 temp_tx->count = new_tx_count;
732 err = e1000e_setup_tx_resources(temp_tx);
733 if (err)
734 goto err_setup;
735 }
736 if (set_rx) {
737 memcpy(temp_rx, adapter->rx_ring, size);
738 temp_rx->count = new_rx_count;
739 err = e1000e_setup_rx_resources(temp_rx);
740 if (err)
741 goto err_setup_rx;
742 }
743
744 /* ...then free the old resources and copy back any new ring data */
745 if (set_tx) {
746 e1000e_free_tx_resources(adapter->tx_ring);
747 memcpy(adapter->tx_ring, temp_tx, size);
748 adapter->tx_ring_count = new_tx_count;
749 }
750 if (set_rx) {
751 e1000e_free_rx_resources(adapter->rx_ring);
752 memcpy(adapter->rx_ring, temp_rx, size);
753 adapter->rx_ring_count = new_rx_count;
754 }
755
756err_setup_rx:
757 if (err && set_tx)
758 e1000e_free_tx_resources(temp_tx);
759err_setup:
760 e1000e_up(adapter);
761 pm_runtime_put_sync(netdev->dev.parent);
762free_temp:
763 vfree(temp_tx);
764 vfree(temp_rx);
765clear_reset:
766 clear_bit(__E1000_RESETTING, &adapter->state);
767 return err;
768}
769
770static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
771 int reg, int offset, u32 mask, u32 write)
772{
773 u32 pat, val;
774 static const u32 test[] = {
775 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
776 };
777 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
778 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
779 (test[pat] & write));
780 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
781 if (val != (test[pat] & write & mask)) {
782 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
783 reg + (offset << 2), val,
784 (test[pat] & write & mask));
785 *data = reg;
786 return 1;
787 }
788 }
789 return 0;
790}
791
792static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
793 int reg, u32 mask, u32 write)
794{
795 u32 val;
796 __ew32(&adapter->hw, reg, write & mask);
797 val = __er32(&adapter->hw, reg);
798 if ((write & mask) != (val & mask)) {
799 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 reg, (val & mask), (write & mask));
801 *data = reg;
802 return 1;
803 }
804 return 0;
805}
806
807#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
808 do { \
809 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
810 return 1; \
811 } while (0)
812#define REG_PATTERN_TEST(reg, mask, write) \
813 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
814
815#define REG_SET_AND_CHECK(reg, mask, write) \
816 do { \
817 if (reg_set_and_check(adapter, data, reg, mask, write)) \
818 return 1; \
819 } while (0)
820
821static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
822{
823 struct e1000_hw *hw = &adapter->hw;
824 struct e1000_mac_info *mac = &adapter->hw.mac;
825 u32 value;
826 u32 before;
827 u32 after;
828 u32 i;
829 u32 toggle;
830 u32 mask;
831 u32 wlock_mac = 0;
832
833 /* The status register is Read Only, so a write should fail.
834 * Some bits that get toggled are ignored. There are several bits
835 * on newer hardware that are r/w.
836 */
837 switch (mac->type) {
838 case e1000_82571:
839 case e1000_82572:
840 case e1000_80003es2lan:
841 toggle = 0x7FFFF3FF;
842 break;
843 default:
844 toggle = 0x7FFFF033;
845 break;
846 }
847
848 before = er32(STATUS);
849 value = (er32(STATUS) & toggle);
850 ew32(STATUS, toggle);
851 after = er32(STATUS) & toggle;
852 if (value != after) {
853 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
854 after, value);
855 *data = 1;
856 return 1;
857 }
858 /* restore previous status */
859 ew32(STATUS, before);
860
861 if (!(adapter->flags & FLAG_IS_ICH)) {
862 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
863 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
866 }
867
868 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
870 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
871 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
873 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
874 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
875 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
876 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
878
879 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
880
881 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
882 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
883 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
884
885 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
887 if (!(adapter->flags & FLAG_IS_ICH))
888 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
889 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
890 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
891 mask = 0x8003FFFF;
892 switch (mac->type) {
893 case e1000_ich10lan:
894 case e1000_pchlan:
895 case e1000_pch2lan:
896 case e1000_pch_lpt:
897 mask |= (1 << 18);
898 break;
899 default:
900 break;
901 }
902
903 if (mac->type == e1000_pch_lpt)
904 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
905 E1000_FWSM_WLOCK_MAC_SHIFT;
906
907 for (i = 0; i < mac->rar_entry_count; i++) {
908 if (mac->type == e1000_pch_lpt) {
909 /* Cannot test write-protected SHRAL[n] registers */
910 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
911 continue;
912
913 /* SHRAH[9] different than the others */
914 if (i == 10)
915 mask |= (1 << 30);
916 else
917 mask &= ~(1 << 30);
918 }
919 if (mac->type == e1000_pch2lan) {
920 /* SHRAH[0,1,2] different than previous */
921 if (i == 1)
922 mask &= 0xFFF4FFFF;
923 /* SHRAH[3] different than SHRAH[0,1,2] */
924 if (i == 4)
925 mask |= (1 << 30);
926 /* RAR[1-6] owned by management engine - skipping */
927 if (i > 0)
928 i += 6;
929 }
930
931 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
932 0xFFFFFFFF);
933 /* reset index to actual value */
934 if ((mac->type == e1000_pch2lan) && (i > 6))
935 i -= 6;
936 }
937
938 for (i = 0; i < mac->mta_reg_count; i++)
939 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
940
941 *data = 0;
942
943 return 0;
944}
945
946static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
947{
948 u16 temp;
949 u16 checksum = 0;
950 u16 i;
951
952 *data = 0;
953 /* Read and add up the contents of the EEPROM */
954 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
955 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
956 *data = 1;
957 return *data;
958 }
959 checksum += temp;
960 }
961
962 /* If Checksum is not Correct return error else test passed */
963 if ((checksum != (u16)NVM_SUM) && !(*data))
964 *data = 2;
965
966 return *data;
967}
968
969static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
970{
971 struct net_device *netdev = (struct net_device *)data;
972 struct e1000_adapter *adapter = netdev_priv(netdev);
973 struct e1000_hw *hw = &adapter->hw;
974
975 adapter->test_icr |= er32(ICR);
976
977 return IRQ_HANDLED;
978}
979
980static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
981{
982 struct net_device *netdev = adapter->netdev;
983 struct e1000_hw *hw = &adapter->hw;
984 u32 mask;
985 u32 shared_int = 1;
986 u32 irq = adapter->pdev->irq;
987 int i;
988 int ret_val = 0;
989 int int_mode = E1000E_INT_MODE_LEGACY;
990
991 *data = 0;
992
993 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
994 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
995 int_mode = adapter->int_mode;
996 e1000e_reset_interrupt_capability(adapter);
997 adapter->int_mode = E1000E_INT_MODE_LEGACY;
998 e1000e_set_interrupt_capability(adapter);
999 }
1000 /* Hook up test interrupt handler just for this test */
1001 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1002 netdev)) {
1003 shared_int = 0;
1004 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1005 netdev)) {
1006 *data = 1;
1007 ret_val = -1;
1008 goto out;
1009 }
1010 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1011
1012 /* Disable all the interrupts */
1013 ew32(IMC, 0xFFFFFFFF);
1014 e1e_flush();
1015 usleep_range(10000, 20000);
1016
1017 /* Test each interrupt */
1018 for (i = 0; i < 10; i++) {
1019 /* Interrupt to test */
1020 mask = 1 << i;
1021
1022 if (adapter->flags & FLAG_IS_ICH) {
1023 switch (mask) {
1024 case E1000_ICR_RXSEQ:
1025 continue;
1026 case 0x00000100:
1027 if (adapter->hw.mac.type == e1000_ich8lan ||
1028 adapter->hw.mac.type == e1000_ich9lan)
1029 continue;
1030 break;
1031 default:
1032 break;
1033 }
1034 }
1035
1036 if (!shared_int) {
1037 /* Disable the interrupt to be reported in
1038 * the cause register and then force the same
1039 * interrupt and see if one gets posted. If
1040 * an interrupt was posted to the bus, the
1041 * test failed.
1042 */
1043 adapter->test_icr = 0;
1044 ew32(IMC, mask);
1045 ew32(ICS, mask);
1046 e1e_flush();
1047 usleep_range(10000, 20000);
1048
1049 if (adapter->test_icr & mask) {
1050 *data = 3;
1051 break;
1052 }
1053 }
1054
1055 /* Enable the interrupt to be reported in
1056 * the cause register and then force the same
1057 * interrupt and see if one gets posted. If
1058 * an interrupt was not posted to the bus, the
1059 * test failed.
1060 */
1061 adapter->test_icr = 0;
1062 ew32(IMS, mask);
1063 ew32(ICS, mask);
1064 e1e_flush();
1065 usleep_range(10000, 20000);
1066
1067 if (!(adapter->test_icr & mask)) {
1068 *data = 4;
1069 break;
1070 }
1071
1072 if (!shared_int) {
1073 /* Disable the other interrupts to be reported in
1074 * the cause register and then force the other
1075 * interrupts and see if any get posted. If
1076 * an interrupt was posted to the bus, the
1077 * test failed.
1078 */
1079 adapter->test_icr = 0;
1080 ew32(IMC, ~mask & 0x00007FFF);
1081 ew32(ICS, ~mask & 0x00007FFF);
1082 e1e_flush();
1083 usleep_range(10000, 20000);
1084
1085 if (adapter->test_icr) {
1086 *data = 5;
1087 break;
1088 }
1089 }
1090 }
1091
1092 /* Disable all the interrupts */
1093 ew32(IMC, 0xFFFFFFFF);
1094 e1e_flush();
1095 usleep_range(10000, 20000);
1096
1097 /* Unhook test interrupt handler */
1098 free_irq(irq, netdev);
1099
1100out:
1101 if (int_mode == E1000E_INT_MODE_MSIX) {
1102 e1000e_reset_interrupt_capability(adapter);
1103 adapter->int_mode = int_mode;
1104 e1000e_set_interrupt_capability(adapter);
1105 }
1106
1107 return ret_val;
1108}
1109
1110static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1111{
1112 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1113 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1114 struct pci_dev *pdev = adapter->pdev;
1115 struct e1000_buffer *buffer_info;
1116 int i;
1117
1118 if (tx_ring->desc && tx_ring->buffer_info) {
1119 for (i = 0; i < tx_ring->count; i++) {
1120 buffer_info = &tx_ring->buffer_info[i];
1121
1122 if (buffer_info->dma)
1123 dma_unmap_single(&pdev->dev,
1124 buffer_info->dma,
1125 buffer_info->length,
1126 DMA_TO_DEVICE);
1127 if (buffer_info->skb)
1128 dev_kfree_skb(buffer_info->skb);
1129 }
1130 }
1131
1132 if (rx_ring->desc && rx_ring->buffer_info) {
1133 for (i = 0; i < rx_ring->count; i++) {
1134 buffer_info = &rx_ring->buffer_info[i];
1135
1136 if (buffer_info->dma)
1137 dma_unmap_single(&pdev->dev,
1138 buffer_info->dma,
1139 2048, DMA_FROM_DEVICE);
1140 if (buffer_info->skb)
1141 dev_kfree_skb(buffer_info->skb);
1142 }
1143 }
1144
1145 if (tx_ring->desc) {
1146 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147 tx_ring->dma);
1148 tx_ring->desc = NULL;
1149 }
1150 if (rx_ring->desc) {
1151 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152 rx_ring->dma);
1153 rx_ring->desc = NULL;
1154 }
1155
1156 kfree(tx_ring->buffer_info);
1157 tx_ring->buffer_info = NULL;
1158 kfree(rx_ring->buffer_info);
1159 rx_ring->buffer_info = NULL;
1160}
1161
1162static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163{
1164 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166 struct pci_dev *pdev = adapter->pdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 rctl;
1169 int i;
1170 int ret_val;
1171
1172 /* Setup Tx descriptor ring and Tx buffers */
1173
1174 if (!tx_ring->count)
1175 tx_ring->count = E1000_DEFAULT_TXD;
1176
1177 tx_ring->buffer_info = kcalloc(tx_ring->count,
1178 sizeof(struct e1000_buffer), GFP_KERNEL);
1179 if (!tx_ring->buffer_info) {
1180 ret_val = 1;
1181 goto err_nomem;
1182 }
1183
1184 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185 tx_ring->size = ALIGN(tx_ring->size, 4096);
1186 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187 &tx_ring->dma, GFP_KERNEL);
1188 if (!tx_ring->desc) {
1189 ret_val = 2;
1190 goto err_nomem;
1191 }
1192 tx_ring->next_to_use = 0;
1193 tx_ring->next_to_clean = 0;
1194
1195 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198 ew32(TDH(0), 0);
1199 ew32(TDT(0), 0);
1200 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204 for (i = 0; i < tx_ring->count; i++) {
1205 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206 struct sk_buff *skb;
1207 unsigned int skb_size = 1024;
1208
1209 skb = alloc_skb(skb_size, GFP_KERNEL);
1210 if (!skb) {
1211 ret_val = 3;
1212 goto err_nomem;
1213 }
1214 skb_put(skb, skb_size);
1215 tx_ring->buffer_info[i].skb = skb;
1216 tx_ring->buffer_info[i].length = skb->len;
1217 tx_ring->buffer_info[i].dma =
1218 dma_map_single(&pdev->dev, skb->data, skb->len,
1219 DMA_TO_DEVICE);
1220 if (dma_mapping_error(&pdev->dev,
1221 tx_ring->buffer_info[i].dma)) {
1222 ret_val = 4;
1223 goto err_nomem;
1224 }
1225 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226 tx_desc->lower.data = cpu_to_le32(skb->len);
1227 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228 E1000_TXD_CMD_IFCS |
1229 E1000_TXD_CMD_RS);
1230 tx_desc->upper.data = 0;
1231 }
1232
1233 /* Setup Rx descriptor ring and Rx buffers */
1234
1235 if (!rx_ring->count)
1236 rx_ring->count = E1000_DEFAULT_RXD;
1237
1238 rx_ring->buffer_info = kcalloc(rx_ring->count,
1239 sizeof(struct e1000_buffer), GFP_KERNEL);
1240 if (!rx_ring->buffer_info) {
1241 ret_val = 5;
1242 goto err_nomem;
1243 }
1244
1245 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247 &rx_ring->dma, GFP_KERNEL);
1248 if (!rx_ring->desc) {
1249 ret_val = 6;
1250 goto err_nomem;
1251 }
1252 rx_ring->next_to_use = 0;
1253 rx_ring->next_to_clean = 0;
1254
1255 rctl = er32(RCTL);
1256 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260 ew32(RDLEN(0), rx_ring->size);
1261 ew32(RDH(0), 0);
1262 ew32(RDT(0), 0);
1263 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268 ew32(RCTL, rctl);
1269
1270 for (i = 0; i < rx_ring->count; i++) {
1271 union e1000_rx_desc_extended *rx_desc;
1272 struct sk_buff *skb;
1273
1274 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275 if (!skb) {
1276 ret_val = 7;
1277 goto err_nomem;
1278 }
1279 skb_reserve(skb, NET_IP_ALIGN);
1280 rx_ring->buffer_info[i].skb = skb;
1281 rx_ring->buffer_info[i].dma =
1282 dma_map_single(&pdev->dev, skb->data, 2048,
1283 DMA_FROM_DEVICE);
1284 if (dma_mapping_error(&pdev->dev,
1285 rx_ring->buffer_info[i].dma)) {
1286 ret_val = 8;
1287 goto err_nomem;
1288 }
1289 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290 rx_desc->read.buffer_addr =
1291 cpu_to_le64(rx_ring->buffer_info[i].dma);
1292 memset(skb->data, 0x00, skb->len);
1293 }
1294
1295 return 0;
1296
1297err_nomem:
1298 e1000_free_desc_rings(adapter);
1299 return ret_val;
1300}
1301
1302static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303{
1304 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305 e1e_wphy(&adapter->hw, 29, 0x001F);
1306 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307 e1e_wphy(&adapter->hw, 29, 0x001A);
1308 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309}
1310
1311static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312{
1313 struct e1000_hw *hw = &adapter->hw;
1314 u32 ctrl_reg = 0;
1315 u16 phy_reg = 0;
1316 s32 ret_val = 0;
1317
1318 hw->mac.autoneg = 0;
1319
1320 if (hw->phy.type == e1000_phy_ife) {
1321 /* force 100, set loopback */
1322 e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324 /* Now set up the MAC to the same speed/duplex as the PHY. */
1325 ctrl_reg = er32(CTRL);
1326 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330 E1000_CTRL_FD); /* Force Duplex to FULL */
1331
1332 ew32(CTRL, ctrl_reg);
1333 e1e_flush();
1334 usleep_range(500, 1000);
1335
1336 return 0;
1337 }
1338
1339 /* Specific PHY configuration for loopback */
1340 switch (hw->phy.type) {
1341 case e1000_phy_m88:
1342 /* Auto-MDI/MDIX Off */
1343 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344 /* reset to update Auto-MDI/MDIX */
1345 e1e_wphy(hw, MII_BMCR, 0x9140);
1346 /* autoneg off */
1347 e1e_wphy(hw, MII_BMCR, 0x8140);
1348 break;
1349 case e1000_phy_gg82563:
1350 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351 break;
1352 case e1000_phy_bm:
1353 /* Set Default MAC Interface speed to 1GB */
1354 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355 phy_reg &= ~0x0007;
1356 phy_reg |= 0x006;
1357 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358 /* Assert SW reset for above settings to take effect */
1359 hw->phy.ops.commit(hw);
1360 usleep_range(1000, 2000);
1361 /* Force Full Duplex */
1362 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364 /* Set Link Up (in force link) */
1365 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367 /* Force Link */
1368 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370 /* Set Early Link Enable */
1371 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373 break;
1374 case e1000_phy_82577:
1375 case e1000_phy_82578:
1376 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1377 ret_val = hw->phy.ops.acquire(hw);
1378 if (ret_val) {
1379 e_err("Cannot setup 1Gbps loopback.\n");
1380 return ret_val;
1381 }
1382 e1000_configure_k1_ich8lan(hw, false);
1383 hw->phy.ops.release(hw);
1384 break;
1385 case e1000_phy_82579:
1386 /* Disable PHY energy detect power down */
1387 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1389 /* Disable full chip energy detect */
1390 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392 /* Enable loopback on the PHY */
1393 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394 break;
1395 default:
1396 break;
1397 }
1398
1399 /* force 1000, set loopback */
1400 e1e_wphy(hw, MII_BMCR, 0x4140);
1401 msleep(250);
1402
1403 /* Now set up the MAC to the same speed/duplex as the PHY. */
1404 ctrl_reg = er32(CTRL);
1405 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409 E1000_CTRL_FD); /* Force Duplex to FULL */
1410
1411 if (adapter->flags & FLAG_IS_ICH)
1412 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1413
1414 if (hw->phy.media_type == e1000_media_type_copper &&
1415 hw->phy.type == e1000_phy_m88) {
1416 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1417 } else {
1418 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419 * detected.
1420 */
1421 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423 }
1424
1425 ew32(CTRL, ctrl_reg);
1426
1427 /* Disable the receiver on the PHY so when a cable is plugged in, the
1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429 */
1430 if (hw->phy.type == e1000_phy_m88)
1431 e1000_phy_disable_receiver(adapter);
1432
1433 usleep_range(500, 1000);
1434
1435 return 0;
1436}
1437
1438static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439{
1440 struct e1000_hw *hw = &adapter->hw;
1441 u32 ctrl = er32(CTRL);
1442 int link;
1443
1444 /* special requirements for 82571/82572 fiber adapters */
1445
1446 /* jump through hoops to make sure link is up because serdes
1447 * link is hardwired up
1448 */
1449 ctrl |= E1000_CTRL_SLU;
1450 ew32(CTRL, ctrl);
1451
1452 /* disable autoneg */
1453 ctrl = er32(TXCW);
1454 ctrl &= ~(1 << 31);
1455 ew32(TXCW, ctrl);
1456
1457 link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459 if (!link) {
1460 /* set invert loss of signal */
1461 ctrl = er32(CTRL);
1462 ctrl |= E1000_CTRL_ILOS;
1463 ew32(CTRL, ctrl);
1464 }
1465
1466 /* special write to serdes control register to enable SerDes analog
1467 * loopback
1468 */
1469 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470 e1e_flush();
1471 usleep_range(10000, 20000);
1472
1473 return 0;
1474}
1475
1476/* only call this for fiber/serdes connections to es2lan */
1477static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 u32 ctrlext = er32(CTRL_EXT);
1481 u32 ctrl = er32(CTRL);
1482
1483 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1484 * on mac_type 80003es2lan)
1485 */
1486 adapter->tx_fifo_head = ctrlext;
1487
1488 /* clear the serdes mode bits, putting the device into mac loopback */
1489 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490 ew32(CTRL_EXT, ctrlext);
1491
1492 /* force speed to 1000/FD, link up */
1493 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496 ew32(CTRL, ctrl);
1497
1498 /* set mac loopback */
1499 ctrl = er32(RCTL);
1500 ctrl |= E1000_RCTL_LBM_MAC;
1501 ew32(RCTL, ctrl);
1502
1503 /* set testing mode parameters (no need to reset later) */
1504#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506 ew32(KMRNCTRLSTA,
1507 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509 return 0;
1510}
1511
1512static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513{
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 rctl;
1516
1517 if (hw->phy.media_type == e1000_media_type_fiber ||
1518 hw->phy.media_type == e1000_media_type_internal_serdes) {
1519 switch (hw->mac.type) {
1520 case e1000_80003es2lan:
1521 return e1000_set_es2lan_mac_loopback(adapter);
1522 break;
1523 case e1000_82571:
1524 case e1000_82572:
1525 return e1000_set_82571_fiber_loopback(adapter);
1526 break;
1527 default:
1528 rctl = er32(RCTL);
1529 rctl |= E1000_RCTL_LBM_TCVR;
1530 ew32(RCTL, rctl);
1531 return 0;
1532 }
1533 } else if (hw->phy.media_type == e1000_media_type_copper) {
1534 return e1000_integrated_phy_loopback(adapter);
1535 }
1536
1537 return 7;
1538}
1539
1540static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1541{
1542 struct e1000_hw *hw = &adapter->hw;
1543 u32 rctl;
1544 u16 phy_reg;
1545
1546 rctl = er32(RCTL);
1547 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1548 ew32(RCTL, rctl);
1549
1550 switch (hw->mac.type) {
1551 case e1000_80003es2lan:
1552 if (hw->phy.media_type == e1000_media_type_fiber ||
1553 hw->phy.media_type == e1000_media_type_internal_serdes) {
1554 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1555 ew32(CTRL_EXT, adapter->tx_fifo_head);
1556 adapter->tx_fifo_head = 0;
1557 }
1558 /* fall through */
1559 case e1000_82571:
1560 case e1000_82572:
1561 if (hw->phy.media_type == e1000_media_type_fiber ||
1562 hw->phy.media_type == e1000_media_type_internal_serdes) {
1563 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1564 e1e_flush();
1565 usleep_range(10000, 20000);
1566 break;
1567 }
1568 /* Fall Through */
1569 default:
1570 hw->mac.autoneg = 1;
1571 if (hw->phy.type == e1000_phy_gg82563)
1572 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1573 e1e_rphy(hw, MII_BMCR, &phy_reg);
1574 if (phy_reg & BMCR_LOOPBACK) {
1575 phy_reg &= ~BMCR_LOOPBACK;
1576 e1e_wphy(hw, MII_BMCR, phy_reg);
1577 if (hw->phy.ops.commit)
1578 hw->phy.ops.commit(hw);
1579 }
1580 break;
1581 }
1582}
1583
1584static void e1000_create_lbtest_frame(struct sk_buff *skb,
1585 unsigned int frame_size)
1586{
1587 memset(skb->data, 0xFF, frame_size);
1588 frame_size &= ~1;
1589 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1590 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1591 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1592}
1593
1594static int e1000_check_lbtest_frame(struct sk_buff *skb,
1595 unsigned int frame_size)
1596{
1597 frame_size &= ~1;
1598 if (*(skb->data + 3) == 0xFF)
1599 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1600 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1601 return 0;
1602 return 13;
1603}
1604
1605static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1606{
1607 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1608 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1609 struct pci_dev *pdev = adapter->pdev;
1610 struct e1000_hw *hw = &adapter->hw;
1611 struct e1000_buffer *buffer_info;
1612 int i, j, k, l;
1613 int lc;
1614 int good_cnt;
1615 int ret_val = 0;
1616 unsigned long time;
1617
1618 ew32(RDT(0), rx_ring->count - 1);
1619
1620 /* Calculate the loop count based on the largest descriptor ring
1621 * The idea is to wrap the largest ring a number of times using 64
1622 * send/receive pairs during each loop
1623 */
1624
1625 if (rx_ring->count <= tx_ring->count)
1626 lc = ((tx_ring->count / 64) * 2) + 1;
1627 else
1628 lc = ((rx_ring->count / 64) * 2) + 1;
1629
1630 k = 0;
1631 l = 0;
1632 /* loop count loop */
1633 for (j = 0; j <= lc; j++) {
1634 /* send the packets */
1635 for (i = 0; i < 64; i++) {
1636 buffer_info = &tx_ring->buffer_info[k];
1637
1638 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1639 dma_sync_single_for_device(&pdev->dev,
1640 buffer_info->dma,
1641 buffer_info->length,
1642 DMA_TO_DEVICE);
1643 k++;
1644 if (k == tx_ring->count)
1645 k = 0;
1646 }
1647 ew32(TDT(0), k);
1648 e1e_flush();
1649 msleep(200);
1650 time = jiffies; /* set the start time for the receive */
1651 good_cnt = 0;
1652 /* receive the sent packets */
1653 do {
1654 buffer_info = &rx_ring->buffer_info[l];
1655
1656 dma_sync_single_for_cpu(&pdev->dev,
1657 buffer_info->dma, 2048,
1658 DMA_FROM_DEVICE);
1659
1660 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1661 1024);
1662 if (!ret_val)
1663 good_cnt++;
1664 l++;
1665 if (l == rx_ring->count)
1666 l = 0;
1667 /* time + 20 msecs (200 msecs on 2.4) is more than
1668 * enough time to complete the receives, if it's
1669 * exceeded, break and error off
1670 */
1671 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1672 if (good_cnt != 64) {
1673 ret_val = 13; /* ret_val is the same as mis-compare */
1674 break;
1675 }
1676 if (time_after(jiffies, time + 20)) {
1677 ret_val = 14; /* error code for time out error */
1678 break;
1679 }
1680 }
1681 return ret_val;
1682}
1683
1684static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1685{
1686 struct e1000_hw *hw = &adapter->hw;
1687
1688 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1689 if (hw->phy.ops.check_reset_block &&
1690 hw->phy.ops.check_reset_block(hw)) {
1691 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1692 *data = 0;
1693 goto out;
1694 }
1695
1696 *data = e1000_setup_desc_rings(adapter);
1697 if (*data)
1698 goto out;
1699
1700 *data = e1000_setup_loopback_test(adapter);
1701 if (*data)
1702 goto err_loopback;
1703
1704 *data = e1000_run_loopback_test(adapter);
1705 e1000_loopback_cleanup(adapter);
1706
1707err_loopback:
1708 e1000_free_desc_rings(adapter);
1709out:
1710 return *data;
1711}
1712
1713static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1714{
1715 struct e1000_hw *hw = &adapter->hw;
1716
1717 *data = 0;
1718 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1719 int i = 0;
1720 hw->mac.serdes_has_link = false;
1721
1722 /* On some blade server designs, link establishment
1723 * could take as long as 2-3 minutes
1724 */
1725 do {
1726 hw->mac.ops.check_for_link(hw);
1727 if (hw->mac.serdes_has_link)
1728 return *data;
1729 msleep(20);
1730 } while (i++ < 3750);
1731
1732 *data = 1;
1733 } else {
1734 hw->mac.ops.check_for_link(hw);
1735 if (hw->mac.autoneg)
1736 /* On some Phy/switch combinations, link establishment
1737 * can take a few seconds more than expected.
1738 */
1739 msleep_interruptible(5000);
1740
1741 if (!(er32(STATUS) & E1000_STATUS_LU))
1742 *data = 1;
1743 }
1744 return *data;
1745}
1746
1747static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1748 int sset)
1749{
1750 switch (sset) {
1751 case ETH_SS_TEST:
1752 return E1000_TEST_LEN;
1753 case ETH_SS_STATS:
1754 return E1000_STATS_LEN;
1755 default:
1756 return -EOPNOTSUPP;
1757 }
1758}
1759
1760static void e1000_diag_test(struct net_device *netdev,
1761 struct ethtool_test *eth_test, u64 *data)
1762{
1763 struct e1000_adapter *adapter = netdev_priv(netdev);
1764 u16 autoneg_advertised;
1765 u8 forced_speed_duplex;
1766 u8 autoneg;
1767 bool if_running = netif_running(netdev);
1768
1769 pm_runtime_get_sync(netdev->dev.parent);
1770
1771 set_bit(__E1000_TESTING, &adapter->state);
1772
1773 if (!if_running) {
1774 /* Get control of and reset hardware */
1775 if (adapter->flags & FLAG_HAS_AMT)
1776 e1000e_get_hw_control(adapter);
1777
1778 e1000e_power_up_phy(adapter);
1779
1780 adapter->hw.phy.autoneg_wait_to_complete = 1;
1781 e1000e_reset(adapter);
1782 adapter->hw.phy.autoneg_wait_to_complete = 0;
1783 }
1784
1785 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1786 /* Offline tests */
1787
1788 /* save speed, duplex, autoneg settings */
1789 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1790 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1791 autoneg = adapter->hw.mac.autoneg;
1792
1793 e_info("offline testing starting\n");
1794
1795 if (if_running)
1796 /* indicate we're in test mode */
1797 dev_close(netdev);
1798
1799 if (e1000_reg_test(adapter, &data[0]))
1800 eth_test->flags |= ETH_TEST_FL_FAILED;
1801
1802 e1000e_reset(adapter);
1803 if (e1000_eeprom_test(adapter, &data[1]))
1804 eth_test->flags |= ETH_TEST_FL_FAILED;
1805
1806 e1000e_reset(adapter);
1807 if (e1000_intr_test(adapter, &data[2]))
1808 eth_test->flags |= ETH_TEST_FL_FAILED;
1809
1810 e1000e_reset(adapter);
1811 if (e1000_loopback_test(adapter, &data[3]))
1812 eth_test->flags |= ETH_TEST_FL_FAILED;
1813
1814 /* force this routine to wait until autoneg complete/timeout */
1815 adapter->hw.phy.autoneg_wait_to_complete = 1;
1816 e1000e_reset(adapter);
1817 adapter->hw.phy.autoneg_wait_to_complete = 0;
1818
1819 if (e1000_link_test(adapter, &data[4]))
1820 eth_test->flags |= ETH_TEST_FL_FAILED;
1821
1822 /* restore speed, duplex, autoneg settings */
1823 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1824 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1825 adapter->hw.mac.autoneg = autoneg;
1826 e1000e_reset(adapter);
1827
1828 clear_bit(__E1000_TESTING, &adapter->state);
1829 if (if_running)
1830 dev_open(netdev);
1831 } else {
1832 /* Online tests */
1833
1834 e_info("online testing starting\n");
1835
1836 /* register, eeprom, intr and loopback tests not run online */
1837 data[0] = 0;
1838 data[1] = 0;
1839 data[2] = 0;
1840 data[3] = 0;
1841
1842 if (e1000_link_test(adapter, &data[4]))
1843 eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845 clear_bit(__E1000_TESTING, &adapter->state);
1846 }
1847
1848 if (!if_running) {
1849 e1000e_reset(adapter);
1850
1851 if (adapter->flags & FLAG_HAS_AMT)
1852 e1000e_release_hw_control(adapter);
1853 }
1854
1855 msleep_interruptible(4 * 1000);
1856
1857 pm_runtime_put_sync(netdev->dev.parent);
1858}
1859
1860static void e1000_get_wol(struct net_device *netdev,
1861 struct ethtool_wolinfo *wol)
1862{
1863 struct e1000_adapter *adapter = netdev_priv(netdev);
1864
1865 wol->supported = 0;
1866 wol->wolopts = 0;
1867
1868 if (!(adapter->flags & FLAG_HAS_WOL) ||
1869 !device_can_wakeup(&adapter->pdev->dev))
1870 return;
1871
1872 wol->supported = WAKE_UCAST | WAKE_MCAST |
1873 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1874
1875 /* apply any specific unsupported masks here */
1876 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1877 wol->supported &= ~WAKE_UCAST;
1878
1879 if (adapter->wol & E1000_WUFC_EX)
1880 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1881 }
1882
1883 if (adapter->wol & E1000_WUFC_EX)
1884 wol->wolopts |= WAKE_UCAST;
1885 if (adapter->wol & E1000_WUFC_MC)
1886 wol->wolopts |= WAKE_MCAST;
1887 if (adapter->wol & E1000_WUFC_BC)
1888 wol->wolopts |= WAKE_BCAST;
1889 if (adapter->wol & E1000_WUFC_MAG)
1890 wol->wolopts |= WAKE_MAGIC;
1891 if (adapter->wol & E1000_WUFC_LNKC)
1892 wol->wolopts |= WAKE_PHY;
1893}
1894
1895static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1896{
1897 struct e1000_adapter *adapter = netdev_priv(netdev);
1898
1899 if (!(adapter->flags & FLAG_HAS_WOL) ||
1900 !device_can_wakeup(&adapter->pdev->dev) ||
1901 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1902 WAKE_MAGIC | WAKE_PHY)))
1903 return -EOPNOTSUPP;
1904
1905 /* these settings will always override what we currently have */
1906 adapter->wol = 0;
1907
1908 if (wol->wolopts & WAKE_UCAST)
1909 adapter->wol |= E1000_WUFC_EX;
1910 if (wol->wolopts & WAKE_MCAST)
1911 adapter->wol |= E1000_WUFC_MC;
1912 if (wol->wolopts & WAKE_BCAST)
1913 adapter->wol |= E1000_WUFC_BC;
1914 if (wol->wolopts & WAKE_MAGIC)
1915 adapter->wol |= E1000_WUFC_MAG;
1916 if (wol->wolopts & WAKE_PHY)
1917 adapter->wol |= E1000_WUFC_LNKC;
1918
1919 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1920
1921 return 0;
1922}
1923
1924static int e1000_set_phys_id(struct net_device *netdev,
1925 enum ethtool_phys_id_state state)
1926{
1927 struct e1000_adapter *adapter = netdev_priv(netdev);
1928 struct e1000_hw *hw = &adapter->hw;
1929
1930 switch (state) {
1931 case ETHTOOL_ID_ACTIVE:
1932 pm_runtime_get_sync(netdev->dev.parent);
1933
1934 if (!hw->mac.ops.blink_led)
1935 return 2; /* cycle on/off twice per second */
1936
1937 hw->mac.ops.blink_led(hw);
1938 break;
1939
1940 case ETHTOOL_ID_INACTIVE:
1941 if (hw->phy.type == e1000_phy_ife)
1942 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1943 hw->mac.ops.led_off(hw);
1944 hw->mac.ops.cleanup_led(hw);
1945 pm_runtime_put_sync(netdev->dev.parent);
1946 break;
1947
1948 case ETHTOOL_ID_ON:
1949 hw->mac.ops.led_on(hw);
1950 break;
1951
1952 case ETHTOOL_ID_OFF:
1953 hw->mac.ops.led_off(hw);
1954 break;
1955 }
1956
1957 return 0;
1958}
1959
1960static int e1000_get_coalesce(struct net_device *netdev,
1961 struct ethtool_coalesce *ec)
1962{
1963 struct e1000_adapter *adapter = netdev_priv(netdev);
1964
1965 if (adapter->itr_setting <= 4)
1966 ec->rx_coalesce_usecs = adapter->itr_setting;
1967 else
1968 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1969
1970 return 0;
1971}
1972
1973static int e1000_set_coalesce(struct net_device *netdev,
1974 struct ethtool_coalesce *ec)
1975{
1976 struct e1000_adapter *adapter = netdev_priv(netdev);
1977
1978 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1979 ((ec->rx_coalesce_usecs > 4) &&
1980 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1981 (ec->rx_coalesce_usecs == 2))
1982 return -EINVAL;
1983
1984 if (ec->rx_coalesce_usecs == 4) {
1985 adapter->itr_setting = 4;
1986 adapter->itr = adapter->itr_setting;
1987 } else if (ec->rx_coalesce_usecs <= 3) {
1988 adapter->itr = 20000;
1989 adapter->itr_setting = ec->rx_coalesce_usecs;
1990 } else {
1991 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1992 adapter->itr_setting = adapter->itr & ~3;
1993 }
1994
1995 pm_runtime_get_sync(netdev->dev.parent);
1996
1997 if (adapter->itr_setting != 0)
1998 e1000e_write_itr(adapter, adapter->itr);
1999 else
2000 e1000e_write_itr(adapter, 0);
2001
2002 pm_runtime_put_sync(netdev->dev.parent);
2003
2004 return 0;
2005}
2006
2007static int e1000_nway_reset(struct net_device *netdev)
2008{
2009 struct e1000_adapter *adapter = netdev_priv(netdev);
2010
2011 if (!netif_running(netdev))
2012 return -EAGAIN;
2013
2014 if (!adapter->hw.mac.autoneg)
2015 return -EINVAL;
2016
2017 pm_runtime_get_sync(netdev->dev.parent);
2018 e1000e_reinit_locked(adapter);
2019 pm_runtime_put_sync(netdev->dev.parent);
2020
2021 return 0;
2022}
2023
2024static void e1000_get_ethtool_stats(struct net_device *netdev,
2025 struct ethtool_stats __always_unused *stats,
2026 u64 *data)
2027{
2028 struct e1000_adapter *adapter = netdev_priv(netdev);
2029 struct rtnl_link_stats64 net_stats;
2030 int i;
2031 char *p = NULL;
2032
2033 pm_runtime_get_sync(netdev->dev.parent);
2034
2035 e1000e_get_stats64(netdev, &net_stats);
2036
2037 pm_runtime_put_sync(netdev->dev.parent);
2038
2039 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2040 switch (e1000_gstrings_stats[i].type) {
2041 case NETDEV_STATS:
2042 p = (char *)&net_stats +
2043 e1000_gstrings_stats[i].stat_offset;
2044 break;
2045 case E1000_STATS:
2046 p = (char *)adapter +
2047 e1000_gstrings_stats[i].stat_offset;
2048 break;
2049 default:
2050 data[i] = 0;
2051 continue;
2052 }
2053
2054 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2055 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2056 }
2057}
2058
2059static void e1000_get_strings(struct net_device __always_unused *netdev,
2060 u32 stringset, u8 *data)
2061{
2062 u8 *p = data;
2063 int i;
2064
2065 switch (stringset) {
2066 case ETH_SS_TEST:
2067 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2068 break;
2069 case ETH_SS_STATS:
2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071 memcpy(p, e1000_gstrings_stats[i].stat_string,
2072 ETH_GSTRING_LEN);
2073 p += ETH_GSTRING_LEN;
2074 }
2075 break;
2076 }
2077}
2078
2079static int e1000_get_rxnfc(struct net_device *netdev,
2080 struct ethtool_rxnfc *info,
2081 u32 __always_unused *rule_locs)
2082{
2083 info->data = 0;
2084
2085 switch (info->cmd) {
2086 case ETHTOOL_GRXFH: {
2087 struct e1000_adapter *adapter = netdev_priv(netdev);
2088 struct e1000_hw *hw = &adapter->hw;
2089 u32 mrqc;
2090
2091 pm_runtime_get_sync(netdev->dev.parent);
2092 mrqc = er32(MRQC);
2093 pm_runtime_put_sync(netdev->dev.parent);
2094
2095 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2096 return 0;
2097
2098 switch (info->flow_type) {
2099 case TCP_V4_FLOW:
2100 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2101 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2102 /* fall through */
2103 case UDP_V4_FLOW:
2104 case SCTP_V4_FLOW:
2105 case AH_ESP_V4_FLOW:
2106 case IPV4_FLOW:
2107 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2108 info->data |= RXH_IP_SRC | RXH_IP_DST;
2109 break;
2110 case TCP_V6_FLOW:
2111 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2112 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2113 /* fall through */
2114 case UDP_V6_FLOW:
2115 case SCTP_V6_FLOW:
2116 case AH_ESP_V6_FLOW:
2117 case IPV6_FLOW:
2118 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2119 info->data |= RXH_IP_SRC | RXH_IP_DST;
2120 break;
2121 default:
2122 break;
2123 }
2124 return 0;
2125 }
2126 default:
2127 return -EOPNOTSUPP;
2128 }
2129}
2130
2131static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2132{
2133 struct e1000_adapter *adapter = netdev_priv(netdev);
2134 struct e1000_hw *hw = &adapter->hw;
2135 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2136 u32 ret_val;
2137
2138 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2139 return -EOPNOTSUPP;
2140
2141 switch (hw->phy.type) {
2142 case e1000_phy_82579:
2143 cap_addr = I82579_EEE_CAPABILITY;
2144 lpa_addr = I82579_EEE_LP_ABILITY;
2145 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2146 break;
2147 case e1000_phy_i217:
2148 cap_addr = I217_EEE_CAPABILITY;
2149 lpa_addr = I217_EEE_LP_ABILITY;
2150 pcs_stat_addr = I217_EEE_PCS_STATUS;
2151 break;
2152 default:
2153 return -EOPNOTSUPP;
2154 }
2155
2156 pm_runtime_get_sync(netdev->dev.parent);
2157
2158 ret_val = hw->phy.ops.acquire(hw);
2159 if (ret_val) {
2160 pm_runtime_put_sync(netdev->dev.parent);
2161 return -EBUSY;
2162 }
2163
2164 /* EEE Capability */
2165 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2166 if (ret_val)
2167 goto release;
2168 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2169
2170 /* EEE Advertised */
2171 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2172
2173 /* EEE Link Partner Advertised */
2174 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2175 if (ret_val)
2176 goto release;
2177 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2178
2179 /* EEE PCS Status */
2180 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2181 if (ret_val)
2182 goto release;
2183 if (hw->phy.type == e1000_phy_82579)
2184 phy_data <<= 8;
2185
2186 /* Result of the EEE auto negotiation - there is no register that
2187 * has the status of the EEE negotiation so do a best-guess based
2188 * on whether Tx or Rx LPI indications have been received.
2189 */
2190 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2191 edata->eee_active = true;
2192
2193 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2194 edata->tx_lpi_enabled = true;
2195 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2196
2197release:
2198 hw->phy.ops.release(hw);
2199 if (ret_val)
2200 ret_val = -ENODATA;
2201
2202 pm_runtime_put_sync(netdev->dev.parent);
2203
2204 return ret_val;
2205}
2206
2207static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2208{
2209 struct e1000_adapter *adapter = netdev_priv(netdev);
2210 struct e1000_hw *hw = &adapter->hw;
2211 struct ethtool_eee eee_curr;
2212 s32 ret_val;
2213
2214 ret_val = e1000e_get_eee(netdev, &eee_curr);
2215 if (ret_val)
2216 return ret_val;
2217
2218 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2219 e_err("Setting EEE tx-lpi is not supported\n");
2220 return -EINVAL;
2221 }
2222
2223 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2224 e_err("Setting EEE Tx LPI timer is not supported\n");
2225 return -EINVAL;
2226 }
2227
2228 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2229 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2230 return -EINVAL;
2231 }
2232
2233 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2234
2235 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2236
2237 pm_runtime_get_sync(netdev->dev.parent);
2238
2239 /* reset the link */
2240 if (netif_running(netdev))
2241 e1000e_reinit_locked(adapter);
2242 else
2243 e1000e_reset(adapter);
2244
2245 pm_runtime_put_sync(netdev->dev.parent);
2246
2247 return 0;
2248}
2249
2250static int e1000e_get_ts_info(struct net_device *netdev,
2251 struct ethtool_ts_info *info)
2252{
2253 struct e1000_adapter *adapter = netdev_priv(netdev);
2254
2255 ethtool_op_get_ts_info(netdev, info);
2256
2257 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2258 return 0;
2259
2260 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2261 SOF_TIMESTAMPING_RX_HARDWARE |
2262 SOF_TIMESTAMPING_RAW_HARDWARE);
2263
2264 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2265
2266 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2267 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2268 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2269 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2270 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2271 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2272 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2273 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2274 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2275 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2276 (1 << HWTSTAMP_FILTER_ALL));
2277
2278 if (adapter->ptp_clock)
2279 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2280
2281 return 0;
2282}
2283
2284static const struct ethtool_ops e1000_ethtool_ops = {
2285 .get_settings = e1000_get_settings,
2286 .set_settings = e1000_set_settings,
2287 .get_drvinfo = e1000_get_drvinfo,
2288 .get_regs_len = e1000_get_regs_len,
2289 .get_regs = e1000_get_regs,
2290 .get_wol = e1000_get_wol,
2291 .set_wol = e1000_set_wol,
2292 .get_msglevel = e1000_get_msglevel,
2293 .set_msglevel = e1000_set_msglevel,
2294 .nway_reset = e1000_nway_reset,
2295 .get_link = ethtool_op_get_link,
2296 .get_eeprom_len = e1000_get_eeprom_len,
2297 .get_eeprom = e1000_get_eeprom,
2298 .set_eeprom = e1000_set_eeprom,
2299 .get_ringparam = e1000_get_ringparam,
2300 .set_ringparam = e1000_set_ringparam,
2301 .get_pauseparam = e1000_get_pauseparam,
2302 .set_pauseparam = e1000_set_pauseparam,
2303 .self_test = e1000_diag_test,
2304 .get_strings = e1000_get_strings,
2305 .set_phys_id = e1000_set_phys_id,
2306 .get_ethtool_stats = e1000_get_ethtool_stats,
2307 .get_sset_count = e1000e_get_sset_count,
2308 .get_coalesce = e1000_get_coalesce,
2309 .set_coalesce = e1000_set_coalesce,
2310 .get_rxnfc = e1000_get_rxnfc,
2311 .get_ts_info = e1000e_get_ts_info,
2312 .get_eee = e1000e_get_eee,
2313 .set_eee = e1000e_set_eee,
2314};
2315
2316void e1000e_set_ethtool_ops(struct net_device *netdev)
2317{
2318 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2319}