Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 
 
 
 
 
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114
115void ist_exit(struct pt_regs *regs)
116{
117	preempt_enable_no_resched();
118
119	if (!user_mode(regs))
120		rcu_nmi_exit();
121}
122
123/**
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs:	regs passed to the IST exception handler
126 *
127 * IST exception handlers normally cannot schedule.  As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
135 */
136void ist_begin_non_atomic(struct pt_regs *regs)
137{
138	BUG_ON(!user_mode(regs));
139
140	/*
141	 * Sanity check: we need to be on the normal thread stack.  This
142	 * will catch asm bugs and any attempt to use ist_preempt_enable
143	 * from double_fault.
144	 */
145	BUG_ON(!on_thread_stack());
146
147	preempt_enable_no_resched();
148}
149
150/**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
154 */
155void ist_end_non_atomic(void)
156{
157	preempt_disable();
 
158}
159
160int is_valid_bugaddr(unsigned long addr)
161{
162	unsigned short ud;
163
164	if (addr < TASK_SIZE_MAX)
165		return 0;
166
167	if (probe_kernel_address((unsigned short *)addr, ud))
168		return 0;
169
170	return ud == INSN_UD0 || ud == INSN_UD2;
171}
172
173int fixup_bug(struct pt_regs *regs, int trapnr)
 
 
174{
175	if (trapnr != X86_TRAP_UD)
176		return 0;
177
178	switch (report_bug(regs->ip, regs)) {
179	case BUG_TRAP_TYPE_NONE:
180	case BUG_TRAP_TYPE_BUG:
181		break;
182
183	case BUG_TRAP_TYPE_WARN:
184		regs->ip += LEN_UD2;
185		return 1;
186	}
187
188	return 0;
189}
190
191static nokprobe_inline int
192do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193		  struct pt_regs *regs,	long error_code)
194{
195	if (v8086_mode(regs)) {
196		/*
197		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198		 * On nmi (interrupt 2), do_trap should not be called.
199		 */
200		if (trapnr < X86_TRAP_UD) {
201			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202						error_code, trapnr))
203				return 0;
204		}
205		return -1;
206	}
207
208	if (!user_mode(regs)) {
209		if (fixup_exception(regs, trapnr))
210			return 0;
211
212		tsk->thread.error_code = error_code;
213		tsk->thread.trap_nr = trapnr;
214		die(str, regs, error_code);
215	}
 
216
217	return -1;
218}
219
220static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221				siginfo_t *info)
222{
223	unsigned long siaddr;
224	int sicode;
225
226	switch (trapnr) {
227	default:
228		return SEND_SIG_PRIV;
229
230	case X86_TRAP_DE:
231		sicode = FPE_INTDIV;
232		siaddr = uprobe_get_trap_addr(regs);
233		break;
234	case X86_TRAP_UD:
235		sicode = ILL_ILLOPN;
236		siaddr = uprobe_get_trap_addr(regs);
237		break;
238	case X86_TRAP_AC:
239		sicode = BUS_ADRALN;
240		siaddr = 0;
241		break;
242	}
243
244	info->si_signo = signr;
245	info->si_errno = 0;
246	info->si_code = sicode;
247	info->si_addr = (void __user *)siaddr;
248	return info;
249}
250
251static void
252do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253	long error_code, siginfo_t *info)
254{
255	struct task_struct *tsk = current;
256
257
258	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259		return;
 
260	/*
261	 * We want error_code and trap_nr set for userspace faults and
262	 * kernelspace faults which result in die(), but not
263	 * kernelspace faults which are fixed up.  die() gives the
264	 * process no chance to handle the signal and notice the
265	 * kernel fault information, so that won't result in polluting
266	 * the information about previously queued, but not yet
267	 * delivered, faults.  See also do_general_protection below.
268	 */
269	tsk->thread.error_code = error_code;
270	tsk->thread.trap_nr = trapnr;
271
 
272	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273	    printk_ratelimit()) {
274		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275			tsk->comm, tsk->pid, str,
276			regs->ip, regs->sp, error_code);
277		print_vma_addr(KERN_CONT " in ", regs->ip);
278		pr_cont("\n");
 
279	}
 
280
281	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
282}
283NOKPROBE_SYMBOL(do_trap);
284
285static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286			  unsigned long trapnr, int signr)
287{
288	siginfo_t info;
289
290	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
291
292	/*
293	 * WARN*()s end up here; fix them up before we call the
294	 * notifier chain.
295	 */
296	if (!user_mode(regs) && fixup_bug(regs, trapnr))
297		return;
298
299	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300			NOTIFY_STOP) {
301		cond_local_irq_enable(regs);
302		do_trap(trapnr, signr, str, regs, error_code,
303			fill_trap_info(regs, signr, trapnr, &info));
304	}
 
 
 
 
 
 
 
 
 
305}
306
307#define DO_ERROR(trapnr, signr, str, name)				\
308dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
309{									\
310	do_error_trap(regs, error_code, str, trapnr, signr);		\
 
 
 
 
311}
312
313DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
314DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
315DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
316DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
317DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
318DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
319DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
320DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
321
322#ifdef CONFIG_VMAP_STACK
323__visible void __noreturn handle_stack_overflow(const char *message,
324						struct pt_regs *regs,
325						unsigned long fault_address)
326{
327	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
328		 (void *)fault_address, current->stack,
329		 (char *)current->stack + THREAD_SIZE - 1);
330	die(message, regs, 0);
331
332	/* Be absolutely certain we don't return. */
333	panic(message);
334}
 
 
 
 
 
335#endif
 
 
336
337#ifdef CONFIG_X86_64
338/* Runs on IST stack */
 
 
 
 
 
 
 
 
 
 
339dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
340{
341	static const char str[] = "double fault";
342	struct task_struct *tsk = current;
343#ifdef CONFIG_VMAP_STACK
344	unsigned long cr2;
345#endif
346
347#ifdef CONFIG_X86_ESPFIX64
348	extern unsigned char native_irq_return_iret[];
349
350	/*
351	 * If IRET takes a non-IST fault on the espfix64 stack, then we
352	 * end up promoting it to a doublefault.  In that case, take
353	 * advantage of the fact that we're not using the normal (TSS.sp0)
354	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
355	 * and then modify our own IRET frame so that, when we return,
356	 * we land directly at the #GP(0) vector with the stack already
357	 * set up according to its expectations.
358	 *
359	 * The net result is that our #GP handler will think that we
360	 * entered from usermode with the bad user context.
361	 *
362	 * No need for ist_enter here because we don't use RCU.
363	 */
364	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365		regs->cs == __KERNEL_CS &&
366		regs->ip == (unsigned long)native_irq_return_iret)
367	{
368		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
369
370		/*
371		 * regs->sp points to the failing IRET frame on the
372		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
373		 * in gpregs->ss through gpregs->ip.
374		 *
375		 */
376		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
377		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
378
379		/*
380		 * Adjust our frame so that we return straight to the #GP
381		 * vector with the expected RSP value.  This is safe because
382		 * we won't enable interupts or schedule before we invoke
383		 * general_protection, so nothing will clobber the stack
384		 * frame we just set up.
385		 */
386		regs->ip = (unsigned long)general_protection;
387		regs->sp = (unsigned long)&gpregs->orig_ax;
388
389		return;
390	}
391#endif
392
393	ist_enter(regs);
394	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
395
396	tsk->thread.error_code = error_code;
397	tsk->thread.trap_nr = X86_TRAP_DF;
398
399#ifdef CONFIG_VMAP_STACK
400	/*
401	 * If we overflow the stack into a guard page, the CPU will fail
402	 * to deliver #PF and will send #DF instead.  Similarly, if we
403	 * take any non-IST exception while too close to the bottom of
404	 * the stack, the processor will get a page fault while
405	 * delivering the exception and will generate a double fault.
406	 *
407	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
408	 * Page-Fault Exception (#PF):
409	 *
410	 *   Processors update CR2 whenever a page fault is detected. If a
411	 *   second page fault occurs while an earlier page fault is being
412	 *   delivered, the faulting linear address of the second fault will
413	 *   overwrite the contents of CR2 (replacing the previous
414	 *   address). These updates to CR2 occur even if the page fault
415	 *   results in a double fault or occurs during the delivery of a
416	 *   double fault.
417	 *
418	 * The logic below has a small possibility of incorrectly diagnosing
419	 * some errors as stack overflows.  For example, if the IDT or GDT
420	 * gets corrupted such that #GP delivery fails due to a bad descriptor
421	 * causing #GP and we hit this condition while CR2 coincidentally
422	 * points to the stack guard page, we'll think we overflowed the
423	 * stack.  Given that we're going to panic one way or another
424	 * if this happens, this isn't necessarily worth fixing.
425	 *
426	 * If necessary, we could improve the test by only diagnosing
427	 * a stack overflow if the saved RSP points within 47 bytes of
428	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
429	 * take an exception, the stack is already aligned and there
430	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
431	 * possible error code, so a stack overflow would *not* double
432	 * fault.  With any less space left, exception delivery could
433	 * fail, and, as a practical matter, we've overflowed the
434	 * stack even if the actual trigger for the double fault was
435	 * something else.
436	 */
437	cr2 = read_cr2();
438	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
439		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
440#endif
441
442#ifdef CONFIG_DOUBLEFAULT
443	df_debug(regs, error_code);
444#endif
445	/*
446	 * This is always a kernel trap and never fixable (and thus must
447	 * never return).
448	 */
449	for (;;)
450		die(str, regs, error_code);
451}
452#endif
453
454dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
455{
456	const struct mpx_bndcsr *bndcsr;
457	siginfo_t *info;
458
459	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
460	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
461			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
462		return;
463	cond_local_irq_enable(regs);
464
465	if (!user_mode(regs))
466		die("bounds", regs, error_code);
467
468	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
469		/* The exception is not from Intel MPX */
470		goto exit_trap;
471	}
472
473	/*
474	 * We need to look at BNDSTATUS to resolve this exception.
475	 * A NULL here might mean that it is in its 'init state',
476	 * which is all zeros which indicates MPX was not
477	 * responsible for the exception.
478	 */
479	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
480	if (!bndcsr)
481		goto exit_trap;
482
483	trace_bounds_exception_mpx(bndcsr);
484	/*
485	 * The error code field of the BNDSTATUS register communicates status
486	 * information of a bound range exception #BR or operation involving
487	 * bound directory.
488	 */
489	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
490	case 2:	/* Bound directory has invalid entry. */
491		if (mpx_handle_bd_fault())
492			goto exit_trap;
493		break; /* Success, it was handled */
494	case 1: /* Bound violation. */
495		info = mpx_generate_siginfo(regs);
496		if (IS_ERR(info)) {
497			/*
498			 * We failed to decode the MPX instruction.  Act as if
499			 * the exception was not caused by MPX.
500			 */
501			goto exit_trap;
502		}
503		/*
504		 * Success, we decoded the instruction and retrieved
505		 * an 'info' containing the address being accessed
506		 * which caused the exception.  This information
507		 * allows and application to possibly handle the
508		 * #BR exception itself.
509		 */
510		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
511		kfree(info);
512		break;
513	case 0: /* No exception caused by Intel MPX operations. */
514		goto exit_trap;
515	default:
516		die("bounds", regs, error_code);
517	}
518
519	return;
520
521exit_trap:
522	/*
523	 * This path out is for all the cases where we could not
524	 * handle the exception in some way (like allocating a
525	 * table or telling userspace about it.  We will also end
526	 * up here if the kernel has MPX turned off at compile
527	 * time..
528	 */
529	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
530}
531
532dotraplinkage void
533do_general_protection(struct pt_regs *regs, long error_code)
534{
535	struct task_struct *tsk;
536
537	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
538	cond_local_irq_enable(regs);
539
540	if (static_cpu_has(X86_FEATURE_UMIP)) {
541		if (user_mode(regs) && fixup_umip_exception(regs))
542			return;
543	}
544
545	if (v8086_mode(regs)) {
546		local_irq_enable();
547		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
548		return;
549	}
550
551	tsk = current;
552	if (!user_mode(regs)) {
553		if (fixup_exception(regs, X86_TRAP_GP))
554			return;
555
556		tsk->thread.error_code = error_code;
557		tsk->thread.trap_nr = X86_TRAP_GP;
558		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
559			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
560			die("general protection fault", regs, error_code);
561		return;
562	}
563
564	tsk->thread.error_code = error_code;
565	tsk->thread.trap_nr = X86_TRAP_GP;
566
567	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
568			printk_ratelimit()) {
569		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 
570			tsk->comm, task_pid_nr(tsk),
571			regs->ip, regs->sp, error_code);
572		print_vma_addr(KERN_CONT " in ", regs->ip);
573		pr_cont("\n");
574	}
575
576	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577}
578NOKPROBE_SYMBOL(do_general_protection);
579
580dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 
581{
582#ifdef CONFIG_DYNAMIC_FTRACE
583	/*
584	 * ftrace must be first, everything else may cause a recursive crash.
585	 * See note by declaration of modifying_ftrace_code in ftrace.c
586	 */
587	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
588	    ftrace_int3_handler(regs))
589		return;
590#endif
591	if (poke_int3_handler(regs))
592		return;
593
594	/*
595	 * Use ist_enter despite the fact that we don't use an IST stack.
596	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
597	 * mode or even during context tracking state changes.
598	 *
599	 * This means that we can't schedule.  That's okay.
600	 */
601	ist_enter(regs);
602	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
603#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
605				SIGTRAP) == NOTIFY_STOP)
606		goto exit;
607#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608
609#ifdef CONFIG_KPROBES
610	if (kprobe_int3_handler(regs))
611		goto exit;
612#endif
613
614	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
615			SIGTRAP) == NOTIFY_STOP)
616		goto exit;
617
618	cond_local_irq_enable(regs);
 
 
 
 
 
619	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
620	cond_local_irq_disable(regs);
621
622exit:
623	ist_exit(regs);
624}
625NOKPROBE_SYMBOL(do_int3);
626
627#ifdef CONFIG_X86_64
628/*
629 * Help handler running on a per-cpu (IST or entry trampoline) stack
630 * to switch to the normal thread stack if the interrupted code was in
631 * user mode. The actual stack switch is done in entry_64.S
632 */
633asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
634{
635	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
636	if (regs != eregs)
 
 
 
 
 
 
 
 
 
 
 
 
637		*regs = *eregs;
638	return regs;
639}
640NOKPROBE_SYMBOL(sync_regs);
641
642struct bad_iret_stack {
643	void *error_entry_ret;
644	struct pt_regs regs;
645};
646
647asmlinkage __visible notrace
648struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
649{
650	/*
651	 * This is called from entry_64.S early in handling a fault
652	 * caused by a bad iret to user mode.  To handle the fault
653	 * correctly, we want to move our stack frame to where it would
654	 * be had we entered directly on the entry stack (rather than
655	 * just below the IRET frame) and we want to pretend that the
656	 * exception came from the IRET target.
657	 */
658	struct bad_iret_stack *new_stack =
659		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
660
661	/* Copy the IRET target to the new stack. */
662	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
663
664	/* Copy the remainder of the stack from the current stack. */
665	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
666
667	BUG_ON(!user_mode(&new_stack->regs));
668	return new_stack;
669}
670NOKPROBE_SYMBOL(fixup_bad_iret);
671#endif
672
673static bool is_sysenter_singlestep(struct pt_regs *regs)
674{
675	/*
676	 * We don't try for precision here.  If we're anywhere in the region of
677	 * code that can be single-stepped in the SYSENTER entry path, then
678	 * assume that this is a useless single-step trap due to SYSENTER
679	 * being invoked with TF set.  (We don't know in advance exactly
680	 * which instructions will be hit because BTF could plausibly
681	 * be set.)
682	 */
683#ifdef CONFIG_X86_32
684	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
685		(unsigned long)__end_SYSENTER_singlestep_region -
686		(unsigned long)__begin_SYSENTER_singlestep_region;
687#elif defined(CONFIG_IA32_EMULATION)
688	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
689		(unsigned long)__end_entry_SYSENTER_compat -
690		(unsigned long)entry_SYSENTER_compat;
691#else
692	return false;
693#endif
694}
695
696/*
697 * Our handling of the processor debug registers is non-trivial.
698 * We do not clear them on entry and exit from the kernel. Therefore
699 * it is possible to get a watchpoint trap here from inside the kernel.
700 * However, the code in ./ptrace.c has ensured that the user can
701 * only set watchpoints on userspace addresses. Therefore the in-kernel
702 * watchpoint trap can only occur in code which is reading/writing
703 * from user space. Such code must not hold kernel locks (since it
704 * can equally take a page fault), therefore it is safe to call
705 * force_sig_info even though that claims and releases locks.
706 *
707 * Code in ./signal.c ensures that the debug control register
708 * is restored before we deliver any signal, and therefore that
709 * user code runs with the correct debug control register even though
710 * we clear it here.
711 *
712 * Being careful here means that we don't have to be as careful in a
713 * lot of more complicated places (task switching can be a bit lazy
714 * about restoring all the debug state, and ptrace doesn't have to
715 * find every occurrence of the TF bit that could be saved away even
716 * by user code)
717 *
718 * May run on IST stack.
719 */
720dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
721{
722	struct task_struct *tsk = current;
723	int user_icebp = 0;
724	unsigned long dr6;
725	int si_code;
726
727	ist_enter(regs);
728
729	get_debugreg(dr6, 6);
730	/*
731	 * The Intel SDM says:
732	 *
733	 *   Certain debug exceptions may clear bits 0-3. The remaining
734	 *   contents of the DR6 register are never cleared by the
735	 *   processor. To avoid confusion in identifying debug
736	 *   exceptions, debug handlers should clear the register before
737	 *   returning to the interrupted task.
738	 *
739	 * Keep it simple: clear DR6 immediately.
740	 */
741	set_debugreg(0, 6);
742
743	/* Filter out all the reserved bits which are preset to 1 */
744	dr6 &= ~DR6_RESERVED;
745
746	/*
747	 * The SDM says "The processor clears the BTF flag when it
748	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
749	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
750	 */
751	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
752
753	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
754		     is_sysenter_singlestep(regs))) {
755		dr6 &= ~DR_STEP;
756		if (!dr6)
757			goto exit;
758		/*
759		 * else we might have gotten a single-step trap and hit a
760		 * watchpoint at the same time, in which case we should fall
761		 * through and handle the watchpoint.
762		 */
763	}
764
765	/*
766	 * If dr6 has no reason to give us about the origin of this trap,
767	 * then it's very likely the result of an icebp/int01 trap.
768	 * User wants a sigtrap for that.
769	 */
770	if (!dr6 && user_mode(regs))
771		user_icebp = 1;
772
 
 
 
 
 
 
 
 
 
 
 
 
773	/* Store the virtualized DR6 value */
774	tsk->thread.debugreg6 = dr6;
775
776#ifdef CONFIG_KPROBES
777	if (kprobe_debug_handler(regs))
778		goto exit;
779#endif
780
781	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
782							SIGTRAP) == NOTIFY_STOP)
783		goto exit;
784
785	/*
786	 * Let others (NMI) know that the debug stack is in use
787	 * as we may switch to the interrupt stack.
788	 */
789	debug_stack_usage_inc();
790
791	/* It's safe to allow irq's after DR6 has been saved */
792	cond_local_irq_enable(regs);
793
794	if (v8086_mode(regs)) {
795		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
796					X86_TRAP_DB);
797		cond_local_irq_disable(regs);
798		debug_stack_usage_dec();
799		goto exit;
800	}
801
802	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
803		/*
804		 * Historical junk that used to handle SYSENTER single-stepping.
805		 * This should be unreachable now.  If we survive for a while
806		 * without anyone hitting this warning, we'll turn this into
807		 * an oops.
808		 */
 
809		tsk->thread.debugreg6 &= ~DR_STEP;
810		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
811		regs->flags &= ~X86_EFLAGS_TF;
812	}
813	si_code = get_si_code(tsk->thread.debugreg6);
814	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
815		send_sigtrap(tsk, regs, error_code, si_code);
816	cond_local_irq_disable(regs);
817	debug_stack_usage_dec();
818
819exit:
820	ist_exit(regs);
821}
822NOKPROBE_SYMBOL(do_debug);
823
824/*
825 * Note that we play around with the 'TS' bit in an attempt to get
826 * the correct behaviour even in the presence of the asynchronous
827 * IRQ13 behaviour
828 */
829static void math_error(struct pt_regs *regs, int error_code, int trapnr)
830{
831	struct task_struct *task = current;
832	struct fpu *fpu = &task->thread.fpu;
833	siginfo_t info;
 
834	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
835						"simd exception";
836
837	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
838		return;
839	cond_local_irq_enable(regs);
840
841	if (!user_mode(regs)) {
842		if (!fixup_exception(regs, trapnr)) {
 
843			task->thread.error_code = error_code;
844			task->thread.trap_nr = trapnr;
845			die(str, regs, error_code);
846		}
847		return;
848	}
849
850	/*
851	 * Save the info for the exception handler and clear the error.
852	 */
853	fpu__save(fpu);
854
855	task->thread.trap_nr	= trapnr;
856	task->thread.error_code = error_code;
857	info.si_signo		= SIGFPE;
858	info.si_errno		= 0;
859	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860
861	info.si_code = fpu__exception_code(fpu, trapnr);
 
 
 
 
 
 
 
 
 
 
862
863	/* Retry when we get spurious exceptions: */
864	if (!info.si_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
865		return;
866
867	force_sig_info(SIGFPE, &info, task);
868}
869
870dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871{
872	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
873	math_error(regs, error_code, X86_TRAP_MF);
874}
875
876dotraplinkage void
877do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878{
879	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
880	math_error(regs, error_code, X86_TRAP_XF);
881}
882
883dotraplinkage void
884do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885{
886	cond_local_irq_enable(regs);
 
 
 
 
887}
888
889dotraplinkage void
890do_device_not_available(struct pt_regs *regs, long error_code)
891{
892	unsigned long cr0;
893
894	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896#ifdef CONFIG_MATH_EMULATION
897	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
898		struct math_emu_info info = { };
899
900		cond_local_irq_enable(regs);
901
902		info.regs = regs;
903		math_emulate(&info);
904		return;
905	}
906#endif
907
908	/* This should not happen. */
909	cr0 = read_cr0();
910	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
911		/* Try to fix it up and carry on. */
912		write_cr0(cr0 & ~X86_CR0_TS);
913	} else {
914		/*
915		 * Something terrible happened, and we're better off trying
916		 * to kill the task than getting stuck in a never-ending
917		 * loop of #NM faults.
918		 */
919		die("unexpected #NM exception", regs, error_code);
920	}
921}
922NOKPROBE_SYMBOL(do_device_not_available);
923
924#ifdef CONFIG_X86_32
925dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
926{
927	siginfo_t info;
928
929	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
930	local_irq_enable();
931
932	info.si_signo = SIGILL;
933	info.si_errno = 0;
934	info.si_code = ILL_BADSTK;
935	info.si_addr = NULL;
936	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
937			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
938		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
939			&info);
940	}
941}
942#endif
943
 
 
 
 
 
 
 
 
 
 
944void __init trap_init(void)
945{
946	/* Init cpu_entry_area before IST entries are set up */
947	setup_cpu_entry_areas();
948
949	idt_setup_traps();
 
950
951	/*
952	 * Set the IDT descriptor to a fixed read-only location, so that the
953	 * "sidt" instruction will not leak the location of the kernel, and
954	 * to defend the IDT against arbitrary memory write vulnerabilities.
955	 * It will be reloaded in cpu_init() */
956	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
957		    PAGE_KERNEL_RO);
958	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959
960	/*
961	 * Should be a barrier for any external CPU state:
962	 */
963	cpu_init();
964
965	idt_setup_ist_traps();
966
967	x86_init.irqs.trap_init();
968
969	idt_setup_debugidt_traps();
 
 
 
 
970}
v3.5.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 
 
 
 
 12#include <linux/interrupt.h>
 13#include <linux/kallsyms.h>
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/kgdb.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/ptrace.h>
 
 22#include <linux/string.h>
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 
 27#include <linux/timer.h>
 28#include <linux/init.h>
 29#include <linux/bug.h>
 30#include <linux/nmi.h>
 31#include <linux/mm.h>
 32#include <linux/smp.h>
 33#include <linux/io.h>
 34
 35#ifdef CONFIG_EISA
 36#include <linux/ioport.h>
 37#include <linux/eisa.h>
 38#endif
 39
 40#if defined(CONFIG_EDAC)
 41#include <linux/edac.h>
 42#endif
 43
 44#include <asm/kmemcheck.h>
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 
 49#include <asm/ftrace.h>
 50#include <asm/traps.h>
 51#include <asm/desc.h>
 52#include <asm/i387.h>
 53#include <asm/fpu-internal.h>
 54#include <asm/mce.h>
 55
 56#include <asm/mach_traps.h>
 
 
 
 
 
 
 57
 58#ifdef CONFIG_X86_64
 59#include <asm/x86_init.h>
 60#include <asm/pgalloc.h>
 61#include <asm/proto.h>
 62#else
 63#include <asm/processor-flags.h>
 64#include <asm/setup.h>
 
 
 65
 66asmlinkage int system_call(void);
 67
 68/* Do we ignore FPU interrupts ? */
 69char ignore_fpu_irq;
 
 
 
 
 
 
 
 
 
 70
 71/*
 72 * The IDT has to be page-aligned to simplify the Pentium
 73 * F0 0F bug workaround.
 
 
 74 */
 75gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 76#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78DECLARE_BITMAP(used_vectors, NR_VECTORS);
 79EXPORT_SYMBOL_GPL(used_vectors);
 
 80
 81static inline void conditional_sti(struct pt_regs *regs)
 82{
 83	if (regs->flags & X86_EFLAGS_IF)
 84		local_irq_enable();
 
 
 85}
 86
 87static inline void preempt_conditional_sti(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 88{
 89	inc_preempt_count();
 90	if (regs->flags & X86_EFLAGS_IF)
 91		local_irq_enable();
 
 
 
 
 
 
 
 92}
 93
 94static inline void conditional_cli(struct pt_regs *regs)
 
 
 
 
 
 95{
 96	if (regs->flags & X86_EFLAGS_IF)
 97		local_irq_disable();
 98}
 99
100static inline void preempt_conditional_cli(struct pt_regs *regs)
101{
102	if (regs->flags & X86_EFLAGS_IF)
103		local_irq_disable();
104	dec_preempt_count();
 
 
 
 
 
 
105}
106
107static void __kprobes
108do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
109	long error_code, siginfo_t *info)
110{
111	struct task_struct *tsk = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
113#ifdef CONFIG_X86_32
114	if (regs->flags & X86_VM_MASK) {
 
 
 
115		/*
116		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
117		 * On nmi (interrupt 2), do_trap should not be called.
118		 */
119		if (trapnr < X86_TRAP_UD)
120			goto vm86_trap;
121		goto trap_signal;
 
 
 
 
 
 
 
 
 
 
 
 
122	}
123#endif
124
125	if (!user_mode(regs))
126		goto kernel_trap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
128#ifdef CONFIG_X86_32
129trap_signal:
130#endif
131	/*
132	 * We want error_code and trap_nr set for userspace faults and
133	 * kernelspace faults which result in die(), but not
134	 * kernelspace faults which are fixed up.  die() gives the
135	 * process no chance to handle the signal and notice the
136	 * kernel fault information, so that won't result in polluting
137	 * the information about previously queued, but not yet
138	 * delivered, faults.  See also do_general_protection below.
139	 */
140	tsk->thread.error_code = error_code;
141	tsk->thread.trap_nr = trapnr;
142
143#ifdef CONFIG_X86_64
144	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
145	    printk_ratelimit()) {
146		printk(KERN_INFO
147		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
148		       tsk->comm, tsk->pid, str,
149		       regs->ip, regs->sp, error_code);
150		print_vma_addr(" in ", regs->ip);
151		printk("\n");
152	}
153#endif
154
155	if (info)
156		force_sig_info(signr, info, tsk);
157	else
158		force_sig(signr, tsk);
159	return;
 
 
 
 
 
 
 
 
 
 
 
 
160
161kernel_trap:
162	if (!fixup_exception(regs)) {
163		tsk->thread.error_code = error_code;
164		tsk->thread.trap_nr = trapnr;
165		die(str, regs, error_code);
166	}
167	return;
168
169#ifdef CONFIG_X86_32
170vm86_trap:
171	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
172						error_code, trapnr))
173		goto trap_signal;
174	return;
175#endif
176}
177
178#define DO_ERROR(trapnr, signr, str, name)				\
179dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
180{									\
181	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
182							== NOTIFY_STOP)	\
183		return;							\
184	conditional_sti(regs);						\
185	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
186}
187
188#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
189dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
190{									\
191	siginfo_t info;							\
192	info.si_signo = signr;						\
193	info.si_errno = 0;						\
194	info.si_code = sicode;						\
195	info.si_addr = (void __user *)siaddr;				\
196	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
197							== NOTIFY_STOP)	\
198		return;							\
199	conditional_sti(regs);						\
200	do_trap(trapnr, signr, str, regs, error_code, &info);		\
201}
202
203DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV,
204		regs->ip)
205DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
206DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
207DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN,
208		regs->ip)
209DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",
210		coprocessor_segment_overrun)
211DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
212DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
213#ifdef CONFIG_X86_32
214DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
215#endif
216DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
217		BUS_ADRALN, 0)
218
219#ifdef CONFIG_X86_64
220/* Runs on IST stack */
221dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
222{
223	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
224			X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
225		return;
226	preempt_conditional_sti(regs);
227	do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
228	preempt_conditional_cli(regs);
229}
230
231dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
232{
233	static const char str[] = "double fault";
234	struct task_struct *tsk = current;
 
 
 
 
 
 
235
236	/* Return not checked because double check cannot be ignored */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
238
239	tsk->thread.error_code = error_code;
240	tsk->thread.trap_nr = X86_TRAP_DF;
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242	/*
243	 * This is always a kernel trap and never fixable (and thus must
244	 * never return).
245	 */
246	for (;;)
247		die(str, regs, error_code);
248}
249#endif
250
251dotraplinkage void __kprobes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252do_general_protection(struct pt_regs *regs, long error_code)
253{
254	struct task_struct *tsk;
255
256	conditional_sti(regs);
 
257
258#ifdef CONFIG_X86_32
259	if (regs->flags & X86_VM_MASK)
260		goto gp_in_vm86;
261#endif
 
 
 
 
 
 
262
263	tsk = current;
264	if (!user_mode(regs))
265		goto gp_in_kernel;
 
 
 
 
 
 
 
 
 
266
267	tsk->thread.error_code = error_code;
268	tsk->thread.trap_nr = X86_TRAP_GP;
269
270	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
271			printk_ratelimit()) {
272		printk(KERN_INFO
273			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
274			tsk->comm, task_pid_nr(tsk),
275			regs->ip, regs->sp, error_code);
276		print_vma_addr(" in ", regs->ip);
277		printk("\n");
278	}
279
280	force_sig(SIGSEGV, tsk);
281	return;
282
283#ifdef CONFIG_X86_32
284gp_in_vm86:
285	local_irq_enable();
286	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
287	return;
288#endif
289
290gp_in_kernel:
291	if (fixup_exception(regs))
292		return;
293
294	tsk->thread.error_code = error_code;
295	tsk->thread.trap_nr = X86_TRAP_GP;
296	if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
297			X86_TRAP_GP, SIGSEGV) == NOTIFY_STOP)
298		return;
299	die("general protection fault", regs, error_code);
300}
 
301
302/* May run on IST stack. */
303dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
304{
305#ifdef CONFIG_DYNAMIC_FTRACE
306	/*
307	 * ftrace must be first, everything else may cause a recursive crash.
308	 * See note by declaration of modifying_ftrace_code in ftrace.c
309	 */
310	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
311	    ftrace_int3_handler(regs))
312		return;
313#endif
 
 
 
 
 
 
 
 
 
 
 
 
314#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
315	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
316				SIGTRAP) == NOTIFY_STOP)
317		return;
318#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
319
 
 
 
 
 
320	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
321			SIGTRAP) == NOTIFY_STOP)
322		return;
323
324	/*
325	 * Let others (NMI) know that the debug stack is in use
326	 * as we may switch to the interrupt stack.
327	 */
328	debug_stack_usage_inc();
329	preempt_conditional_sti(regs);
330	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
331	preempt_conditional_cli(regs);
332	debug_stack_usage_dec();
 
 
333}
 
334
335#ifdef CONFIG_X86_64
336/*
337 * Help handler running on IST stack to switch back to user stack
338 * for scheduling or signal handling. The actual stack switch is done in
339 * entry.S
340 */
341asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
342{
343	struct pt_regs *regs = eregs;
344	/* Did already sync */
345	if (eregs == (struct pt_regs *)eregs->sp)
346		;
347	/* Exception from user space */
348	else if (user_mode(eregs))
349		regs = task_pt_regs(current);
350	/*
351	 * Exception from kernel and interrupts are enabled. Move to
352	 * kernel process stack.
353	 */
354	else if (eregs->flags & X86_EFLAGS_IF)
355		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
356	if (eregs != regs)
357		*regs = *eregs;
358	return regs;
359}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360#endif
361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362/*
363 * Our handling of the processor debug registers is non-trivial.
364 * We do not clear them on entry and exit from the kernel. Therefore
365 * it is possible to get a watchpoint trap here from inside the kernel.
366 * However, the code in ./ptrace.c has ensured that the user can
367 * only set watchpoints on userspace addresses. Therefore the in-kernel
368 * watchpoint trap can only occur in code which is reading/writing
369 * from user space. Such code must not hold kernel locks (since it
370 * can equally take a page fault), therefore it is safe to call
371 * force_sig_info even though that claims and releases locks.
372 *
373 * Code in ./signal.c ensures that the debug control register
374 * is restored before we deliver any signal, and therefore that
375 * user code runs with the correct debug control register even though
376 * we clear it here.
377 *
378 * Being careful here means that we don't have to be as careful in a
379 * lot of more complicated places (task switching can be a bit lazy
380 * about restoring all the debug state, and ptrace doesn't have to
381 * find every occurrence of the TF bit that could be saved away even
382 * by user code)
383 *
384 * May run on IST stack.
385 */
386dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
387{
388	struct task_struct *tsk = current;
389	int user_icebp = 0;
390	unsigned long dr6;
391	int si_code;
392
 
 
393	get_debugreg(dr6, 6);
 
 
 
 
 
 
 
 
 
 
 
 
394
395	/* Filter out all the reserved bits which are preset to 1 */
396	dr6 &= ~DR6_RESERVED;
397
398	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399	 * If dr6 has no reason to give us about the origin of this trap,
400	 * then it's very likely the result of an icebp/int01 trap.
401	 * User wants a sigtrap for that.
402	 */
403	if (!dr6 && user_mode(regs))
404		user_icebp = 1;
405
406	/* Catch kmemcheck conditions first of all! */
407	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
408		return;
409
410	/* DR6 may or may not be cleared by the CPU */
411	set_debugreg(0, 6);
412
413	/*
414	 * The processor cleared BTF, so don't mark that we need it set.
415	 */
416	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
417
418	/* Store the virtualized DR6 value */
419	tsk->thread.debugreg6 = dr6;
420
421	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
 
 
 
 
 
422							SIGTRAP) == NOTIFY_STOP)
423		return;
424
425	/*
426	 * Let others (NMI) know that the debug stack is in use
427	 * as we may switch to the interrupt stack.
428	 */
429	debug_stack_usage_inc();
430
431	/* It's safe to allow irq's after DR6 has been saved */
432	preempt_conditional_sti(regs);
433
434	if (regs->flags & X86_VM_MASK) {
435		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
436					X86_TRAP_DB);
437		preempt_conditional_cli(regs);
438		debug_stack_usage_dec();
439		return;
440	}
441
442	/*
443	 * Single-stepping through system calls: ignore any exceptions in
444	 * kernel space, but re-enable TF when returning to user mode.
445	 *
446	 * We already checked v86 mode above, so we can check for kernel mode
447	 * by just checking the CPL of CS.
448	 */
449	if ((dr6 & DR_STEP) && !user_mode(regs)) {
450		tsk->thread.debugreg6 &= ~DR_STEP;
451		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
452		regs->flags &= ~X86_EFLAGS_TF;
453	}
454	si_code = get_si_code(tsk->thread.debugreg6);
455	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
456		send_sigtrap(tsk, regs, error_code, si_code);
457	preempt_conditional_cli(regs);
458	debug_stack_usage_dec();
459
460	return;
 
461}
 
462
463/*
464 * Note that we play around with the 'TS' bit in an attempt to get
465 * the correct behaviour even in the presence of the asynchronous
466 * IRQ13 behaviour
467 */
468void math_error(struct pt_regs *regs, int error_code, int trapnr)
469{
470	struct task_struct *task = current;
 
471	siginfo_t info;
472	unsigned short err;
473	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
474						"simd exception";
475
476	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
477		return;
478	conditional_sti(regs);
479
480	if (!user_mode_vm(regs))
481	{
482		if (!fixup_exception(regs)) {
483			task->thread.error_code = error_code;
484			task->thread.trap_nr = trapnr;
485			die(str, regs, error_code);
486		}
487		return;
488	}
489
490	/*
491	 * Save the info for the exception handler and clear the error.
492	 */
493	save_init_fpu(task);
494	task->thread.trap_nr = trapnr;
 
495	task->thread.error_code = error_code;
496	info.si_signo = SIGFPE;
497	info.si_errno = 0;
498	info.si_addr = (void __user *)regs->ip;
499	if (trapnr == X86_TRAP_MF) {
500		unsigned short cwd, swd;
501		/*
502		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
503		 * status.  0x3f is the exception bits in these regs, 0x200 is the
504		 * C1 reg you need in case of a stack fault, 0x040 is the stack
505		 * fault bit.  We should only be taking one exception at a time,
506		 * so if this combination doesn't produce any single exception,
507		 * then we have a bad program that isn't synchronizing its FPU usage
508		 * and it will suffer the consequences since we won't be able to
509		 * fully reproduce the context of the exception
510		 */
511		cwd = get_fpu_cwd(task);
512		swd = get_fpu_swd(task);
513
514		err = swd & ~cwd;
515	} else {
516		/*
517		 * The SIMD FPU exceptions are handled a little differently, as there
518		 * is only a single status/control register.  Thus, to determine which
519		 * unmasked exception was caught we must mask the exception mask bits
520		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
521		 */
522		unsigned short mxcsr = get_fpu_mxcsr(task);
523		err = ~(mxcsr >> 7) & mxcsr;
524	}
525
526	if (err & 0x001) {	/* Invalid op */
527		/*
528		 * swd & 0x240 == 0x040: Stack Underflow
529		 * swd & 0x240 == 0x240: Stack Overflow
530		 * User must clear the SF bit (0x40) if set
531		 */
532		info.si_code = FPE_FLTINV;
533	} else if (err & 0x004) { /* Divide by Zero */
534		info.si_code = FPE_FLTDIV;
535	} else if (err & 0x008) { /* Overflow */
536		info.si_code = FPE_FLTOVF;
537	} else if (err & 0x012) { /* Denormal, Underflow */
538		info.si_code = FPE_FLTUND;
539	} else if (err & 0x020) { /* Precision */
540		info.si_code = FPE_FLTRES;
541	} else {
542		/*
543		 * If we're using IRQ 13, or supposedly even some trap
544		 * X86_TRAP_MF implementations, it's possible
545		 * we get a spurious trap, which is not an error.
546		 */
547		return;
548	}
549	force_sig_info(SIGFPE, &info, task);
550}
551
552dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
553{
554#ifdef CONFIG_X86_32
555	ignore_fpu_irq = 1;
556#endif
557
558	math_error(regs, error_code, X86_TRAP_MF);
559}
560
561dotraplinkage void
562do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
563{
 
564	math_error(regs, error_code, X86_TRAP_XF);
565}
566
567dotraplinkage void
568do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
569{
570	conditional_sti(regs);
571#if 0
572	/* No need to warn about this any longer. */
573	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
574#endif
575}
576
577asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
 
578{
579}
580
581asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
582{
583}
584
585/*
586 * 'math_state_restore()' saves the current math information in the
587 * old math state array, and gets the new ones from the current task
588 *
589 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
590 * Don't touch unless you *really* know how it works.
591 *
592 * Must be called with kernel preemption disabled (eg with local
593 * local interrupts as in the case of do_device_not_available).
594 */
595void math_state_restore(void)
596{
597	struct task_struct *tsk = current;
598
599	if (!tsk_used_math(tsk)) {
600		local_irq_enable();
601		/*
602		 * does a slab alloc which can sleep
603		 */
604		if (init_fpu(tsk)) {
605			/*
606			 * ran out of memory!
607			 */
608			do_group_exit(SIGKILL);
609			return;
610		}
611		local_irq_disable();
612	}
613
614	__thread_fpu_begin(tsk);
615	/*
616	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
617	 */
618	if (unlikely(restore_fpu_checking(tsk))) {
619		__thread_fpu_end(tsk);
620		force_sig(SIGSEGV, tsk);
621		return;
622	}
623
624	tsk->fpu_counter++;
625}
626EXPORT_SYMBOL_GPL(math_state_restore);
627
628dotraplinkage void __kprobes
629do_device_not_available(struct pt_regs *regs, long error_code)
630{
631#ifdef CONFIG_MATH_EMULATION
632	if (read_cr0() & X86_CR0_EM) {
633		struct math_emu_info info = { };
634
635		conditional_sti(regs);
636
637		info.regs = regs;
638		math_emulate(&info);
639		return;
640	}
641#endif
642	math_state_restore(); /* interrupts still off */
643#ifdef CONFIG_X86_32
644	conditional_sti(regs);
645#endif
 
 
 
 
 
 
 
 
 
 
646}
 
647
648#ifdef CONFIG_X86_32
649dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
650{
651	siginfo_t info;
 
 
652	local_irq_enable();
653
654	info.si_signo = SIGILL;
655	info.si_errno = 0;
656	info.si_code = ILL_BADSTK;
657	info.si_addr = NULL;
658	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
659			X86_TRAP_IRET, SIGILL) == NOTIFY_STOP)
660		return;
661	do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
662		&info);
663}
664#endif
665
666/* Set of traps needed for early debugging. */
667void __init early_trap_init(void)
668{
669	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
670	/* int3 can be called from all */
671	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
672	set_intr_gate(X86_TRAP_PF, &page_fault);
673	load_idt(&idt_descr);
674}
675
676void __init trap_init(void)
677{
678	int i;
 
679
680#ifdef CONFIG_EISA
681	void __iomem *p = early_ioremap(0x0FFFD9, 4);
682
683	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
684		EISA_bus = 1;
685	early_iounmap(p, 4);
686#endif
687
688	set_intr_gate(X86_TRAP_DE, &divide_error);
689	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
690	/* int4 can be called from all */
691	set_system_intr_gate(X86_TRAP_OF, &overflow);
692	set_intr_gate(X86_TRAP_BR, &bounds);
693	set_intr_gate(X86_TRAP_UD, &invalid_op);
694	set_intr_gate(X86_TRAP_NM, &device_not_available);
695#ifdef CONFIG_X86_32
696	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
697#else
698	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
699#endif
700	set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
701	set_intr_gate(X86_TRAP_TS, &invalid_TSS);
702	set_intr_gate(X86_TRAP_NP, &segment_not_present);
703	set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
704	set_intr_gate(X86_TRAP_GP, &general_protection);
705	set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
706	set_intr_gate(X86_TRAP_MF, &coprocessor_error);
707	set_intr_gate(X86_TRAP_AC, &alignment_check);
708#ifdef CONFIG_X86_MCE
709	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
710#endif
711	set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
712
713	/* Reserve all the builtin and the syscall vector: */
714	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
715		set_bit(i, used_vectors);
716
717#ifdef CONFIG_IA32_EMULATION
718	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
719	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
720#endif
721
722#ifdef CONFIG_X86_32
723	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
724	set_bit(SYSCALL_VECTOR, used_vectors);
725#endif
726
727	/*
728	 * Should be a barrier for any external CPU state:
729	 */
730	cpu_init();
731
 
 
732	x86_init.irqs.trap_init();
733
734#ifdef CONFIG_X86_64
735	memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
736	set_nmi_gate(X86_TRAP_DB, &debug);
737	set_nmi_gate(X86_TRAP_BP, &int3);
738#endif
739}