Loading...
1/*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#define pr_fmt(fmt) "kexec: " fmt
10
11#include <linux/mm.h>
12#include <linux/kexec.h>
13#include <linux/string.h>
14#include <linux/gfp.h>
15#include <linux/reboot.h>
16#include <linux/numa.h>
17#include <linux/ftrace.h>
18#include <linux/io.h>
19#include <linux/suspend.h>
20#include <linux/vmalloc.h>
21
22#include <asm/init.h>
23#include <asm/pgtable.h>
24#include <asm/tlbflush.h>
25#include <asm/mmu_context.h>
26#include <asm/io_apic.h>
27#include <asm/debugreg.h>
28#include <asm/kexec-bzimage64.h>
29#include <asm/setup.h>
30#include <asm/set_memory.h>
31
32#ifdef CONFIG_KEXEC_FILE
33const struct kexec_file_ops * const kexec_file_loaders[] = {
34 &kexec_bzImage64_ops,
35 NULL
36};
37#endif
38
39static void free_transition_pgtable(struct kimage *image)
40{
41 free_page((unsigned long)image->arch.p4d);
42 image->arch.p4d = NULL;
43 free_page((unsigned long)image->arch.pud);
44 image->arch.pud = NULL;
45 free_page((unsigned long)image->arch.pmd);
46 image->arch.pmd = NULL;
47 free_page((unsigned long)image->arch.pte);
48 image->arch.pte = NULL;
49}
50
51static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
52{
53 p4d_t *p4d;
54 pud_t *pud;
55 pmd_t *pmd;
56 pte_t *pte;
57 unsigned long vaddr, paddr;
58 int result = -ENOMEM;
59
60 vaddr = (unsigned long)relocate_kernel;
61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
62 pgd += pgd_index(vaddr);
63 if (!pgd_present(*pgd)) {
64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
65 if (!p4d)
66 goto err;
67 image->arch.p4d = p4d;
68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
69 }
70 p4d = p4d_offset(pgd, vaddr);
71 if (!p4d_present(*p4d)) {
72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
73 if (!pud)
74 goto err;
75 image->arch.pud = pud;
76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
77 }
78 pud = pud_offset(p4d, vaddr);
79 if (!pud_present(*pud)) {
80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
81 if (!pmd)
82 goto err;
83 image->arch.pmd = pmd;
84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
85 }
86 pmd = pmd_offset(pud, vaddr);
87 if (!pmd_present(*pmd)) {
88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
89 if (!pte)
90 goto err;
91 image->arch.pte = pte;
92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
93 }
94 pte = pte_offset_kernel(pmd, vaddr);
95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
96 return 0;
97err:
98 return result;
99}
100
101static void *alloc_pgt_page(void *data)
102{
103 struct kimage *image = (struct kimage *)data;
104 struct page *page;
105 void *p = NULL;
106
107 page = kimage_alloc_control_pages(image, 0);
108 if (page) {
109 p = page_address(page);
110 clear_page(p);
111 }
112
113 return p;
114}
115
116static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
117{
118 struct x86_mapping_info info = {
119 .alloc_pgt_page = alloc_pgt_page,
120 .context = image,
121 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
122 .kernpg_flag = _KERNPG_TABLE_NOENC,
123 };
124 unsigned long mstart, mend;
125 pgd_t *level4p;
126 int result;
127 int i;
128
129 level4p = (pgd_t *)__va(start_pgtable);
130 clear_page(level4p);
131
132 if (direct_gbpages)
133 info.direct_gbpages = true;
134
135 for (i = 0; i < nr_pfn_mapped; i++) {
136 mstart = pfn_mapped[i].start << PAGE_SHIFT;
137 mend = pfn_mapped[i].end << PAGE_SHIFT;
138
139 result = kernel_ident_mapping_init(&info,
140 level4p, mstart, mend);
141 if (result)
142 return result;
143 }
144
145 /*
146 * segments's mem ranges could be outside 0 ~ max_pfn,
147 * for example when jump back to original kernel from kexeced kernel.
148 * or first kernel is booted with user mem map, and second kernel
149 * could be loaded out of that range.
150 */
151 for (i = 0; i < image->nr_segments; i++) {
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
154
155 result = kernel_ident_mapping_init(&info,
156 level4p, mstart, mend);
157
158 if (result)
159 return result;
160 }
161
162 return init_transition_pgtable(image, level4p);
163}
164
165static void set_idt(void *newidt, u16 limit)
166{
167 struct desc_ptr curidt;
168
169 /* x86-64 supports unaliged loads & stores */
170 curidt.size = limit;
171 curidt.address = (unsigned long)newidt;
172
173 __asm__ __volatile__ (
174 "lidtq %0\n"
175 : : "m" (curidt)
176 );
177};
178
179
180static void set_gdt(void *newgdt, u16 limit)
181{
182 struct desc_ptr curgdt;
183
184 /* x86-64 supports unaligned loads & stores */
185 curgdt.size = limit;
186 curgdt.address = (unsigned long)newgdt;
187
188 __asm__ __volatile__ (
189 "lgdtq %0\n"
190 : : "m" (curgdt)
191 );
192};
193
194static void load_segments(void)
195{
196 __asm__ __volatile__ (
197 "\tmovl %0,%%ds\n"
198 "\tmovl %0,%%es\n"
199 "\tmovl %0,%%ss\n"
200 "\tmovl %0,%%fs\n"
201 "\tmovl %0,%%gs\n"
202 : : "a" (__KERNEL_DS) : "memory"
203 );
204}
205
206#ifdef CONFIG_KEXEC_FILE
207/* Update purgatory as needed after various image segments have been prepared */
208static int arch_update_purgatory(struct kimage *image)
209{
210 int ret = 0;
211
212 if (!image->file_mode)
213 return 0;
214
215 /* Setup copying of backup region */
216 if (image->type == KEXEC_TYPE_CRASH) {
217 ret = kexec_purgatory_get_set_symbol(image,
218 "purgatory_backup_dest",
219 &image->arch.backup_load_addr,
220 sizeof(image->arch.backup_load_addr), 0);
221 if (ret)
222 return ret;
223
224 ret = kexec_purgatory_get_set_symbol(image,
225 "purgatory_backup_src",
226 &image->arch.backup_src_start,
227 sizeof(image->arch.backup_src_start), 0);
228 if (ret)
229 return ret;
230
231 ret = kexec_purgatory_get_set_symbol(image,
232 "purgatory_backup_sz",
233 &image->arch.backup_src_sz,
234 sizeof(image->arch.backup_src_sz), 0);
235 if (ret)
236 return ret;
237 }
238
239 return ret;
240}
241#else /* !CONFIG_KEXEC_FILE */
242static inline int arch_update_purgatory(struct kimage *image)
243{
244 return 0;
245}
246#endif /* CONFIG_KEXEC_FILE */
247
248int machine_kexec_prepare(struct kimage *image)
249{
250 unsigned long start_pgtable;
251 int result;
252
253 /* Calculate the offsets */
254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
255
256 /* Setup the identity mapped 64bit page table */
257 result = init_pgtable(image, start_pgtable);
258 if (result)
259 return result;
260
261 /* update purgatory as needed */
262 result = arch_update_purgatory(image);
263 if (result)
264 return result;
265
266 return 0;
267}
268
269void machine_kexec_cleanup(struct kimage *image)
270{
271 free_transition_pgtable(image);
272}
273
274/*
275 * Do not allocate memory (or fail in any way) in machine_kexec().
276 * We are past the point of no return, committed to rebooting now.
277 */
278void machine_kexec(struct kimage *image)
279{
280 unsigned long page_list[PAGES_NR];
281 void *control_page;
282 int save_ftrace_enabled;
283
284#ifdef CONFIG_KEXEC_JUMP
285 if (image->preserve_context)
286 save_processor_state();
287#endif
288
289 save_ftrace_enabled = __ftrace_enabled_save();
290
291 /* Interrupts aren't acceptable while we reboot */
292 local_irq_disable();
293 hw_breakpoint_disable();
294
295 if (image->preserve_context) {
296#ifdef CONFIG_X86_IO_APIC
297 /*
298 * We need to put APICs in legacy mode so that we can
299 * get timer interrupts in second kernel. kexec/kdump
300 * paths already have calls to restore_boot_irq_mode()
301 * in one form or other. kexec jump path also need one.
302 */
303 clear_IO_APIC();
304 restore_boot_irq_mode();
305#endif
306 }
307
308 control_page = page_address(image->control_code_page) + PAGE_SIZE;
309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
310
311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
313 page_list[PA_TABLE_PAGE] =
314 (unsigned long)__pa(page_address(image->control_code_page));
315
316 if (image->type == KEXEC_TYPE_DEFAULT)
317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
318 << PAGE_SHIFT);
319
320 /*
321 * The segment registers are funny things, they have both a
322 * visible and an invisible part. Whenever the visible part is
323 * set to a specific selector, the invisible part is loaded
324 * with from a table in memory. At no other time is the
325 * descriptor table in memory accessed.
326 *
327 * I take advantage of this here by force loading the
328 * segments, before I zap the gdt with an invalid value.
329 */
330 load_segments();
331 /*
332 * The gdt & idt are now invalid.
333 * If you want to load them you must set up your own idt & gdt.
334 */
335 set_gdt(phys_to_virt(0), 0);
336 set_idt(phys_to_virt(0), 0);
337
338 /* now call it */
339 image->start = relocate_kernel((unsigned long)image->head,
340 (unsigned long)page_list,
341 image->start,
342 image->preserve_context,
343 sme_active());
344
345#ifdef CONFIG_KEXEC_JUMP
346 if (image->preserve_context)
347 restore_processor_state();
348#endif
349
350 __ftrace_enabled_restore(save_ftrace_enabled);
351}
352
353void arch_crash_save_vmcoreinfo(void)
354{
355 VMCOREINFO_NUMBER(phys_base);
356 VMCOREINFO_SYMBOL(init_top_pgt);
357 VMCOREINFO_NUMBER(pgtable_l5_enabled);
358
359#ifdef CONFIG_NUMA
360 VMCOREINFO_SYMBOL(node_data);
361 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
362#endif
363 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
364 kaslr_offset());
365 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
366}
367
368/* arch-dependent functionality related to kexec file-based syscall */
369
370#ifdef CONFIG_KEXEC_FILE
371void *arch_kexec_kernel_image_load(struct kimage *image)
372{
373 vfree(image->arch.elf_headers);
374 image->arch.elf_headers = NULL;
375
376 if (!image->fops || !image->fops->load)
377 return ERR_PTR(-ENOEXEC);
378
379 return image->fops->load(image, image->kernel_buf,
380 image->kernel_buf_len, image->initrd_buf,
381 image->initrd_buf_len, image->cmdline_buf,
382 image->cmdline_buf_len);
383}
384
385/*
386 * Apply purgatory relocations.
387 *
388 * @pi: Purgatory to be relocated.
389 * @section: Section relocations applying to.
390 * @relsec: Section containing RELAs.
391 * @symtabsec: Corresponding symtab.
392 *
393 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394 */
395int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
396 Elf_Shdr *section, const Elf_Shdr *relsec,
397 const Elf_Shdr *symtabsec)
398{
399 unsigned int i;
400 Elf64_Rela *rel;
401 Elf64_Sym *sym;
402 void *location;
403 unsigned long address, sec_base, value;
404 const char *strtab, *name, *shstrtab;
405 const Elf_Shdr *sechdrs;
406
407 /* String & section header string table */
408 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
409 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
410 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
411
412 rel = (void *)pi->ehdr + relsec->sh_offset;
413
414 pr_debug("Applying relocate section %s to %u\n",
415 shstrtab + relsec->sh_name, relsec->sh_info);
416
417 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
418
419 /*
420 * rel[i].r_offset contains byte offset from beginning
421 * of section to the storage unit affected.
422 *
423 * This is location to update. This is temporary buffer
424 * where section is currently loaded. This will finally be
425 * loaded to a different address later, pointed to by
426 * ->sh_addr. kexec takes care of moving it
427 * (kexec_load_segment()).
428 */
429 location = pi->purgatory_buf;
430 location += section->sh_offset;
431 location += rel[i].r_offset;
432
433 /* Final address of the location */
434 address = section->sh_addr + rel[i].r_offset;
435
436 /*
437 * rel[i].r_info contains information about symbol table index
438 * w.r.t which relocation must be made and type of relocation
439 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
440 * these respectively.
441 */
442 sym = (void *)pi->ehdr + symtabsec->sh_offset;
443 sym += ELF64_R_SYM(rel[i].r_info);
444
445 if (sym->st_name)
446 name = strtab + sym->st_name;
447 else
448 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
449
450 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
451 name, sym->st_info, sym->st_shndx, sym->st_value,
452 sym->st_size);
453
454 if (sym->st_shndx == SHN_UNDEF) {
455 pr_err("Undefined symbol: %s\n", name);
456 return -ENOEXEC;
457 }
458
459 if (sym->st_shndx == SHN_COMMON) {
460 pr_err("symbol '%s' in common section\n", name);
461 return -ENOEXEC;
462 }
463
464 if (sym->st_shndx == SHN_ABS)
465 sec_base = 0;
466 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
467 pr_err("Invalid section %d for symbol %s\n",
468 sym->st_shndx, name);
469 return -ENOEXEC;
470 } else
471 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
472
473 value = sym->st_value;
474 value += sec_base;
475 value += rel[i].r_addend;
476
477 switch (ELF64_R_TYPE(rel[i].r_info)) {
478 case R_X86_64_NONE:
479 break;
480 case R_X86_64_64:
481 *(u64 *)location = value;
482 break;
483 case R_X86_64_32:
484 *(u32 *)location = value;
485 if (value != *(u32 *)location)
486 goto overflow;
487 break;
488 case R_X86_64_32S:
489 *(s32 *)location = value;
490 if ((s64)value != *(s32 *)location)
491 goto overflow;
492 break;
493 case R_X86_64_PC32:
494 case R_X86_64_PLT32:
495 value -= (u64)address;
496 *(u32 *)location = value;
497 break;
498 default:
499 pr_err("Unknown rela relocation: %llu\n",
500 ELF64_R_TYPE(rel[i].r_info));
501 return -ENOEXEC;
502 }
503 }
504 return 0;
505
506overflow:
507 pr_err("Overflow in relocation type %d value 0x%lx\n",
508 (int)ELF64_R_TYPE(rel[i].r_info), value);
509 return -ENOEXEC;
510}
511#endif /* CONFIG_KEXEC_FILE */
512
513static int
514kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515{
516 struct page *page;
517 unsigned int nr_pages;
518
519 /*
520 * For physical range: [start, end]. We must skip the unassigned
521 * crashk resource with zero-valued "end" member.
522 */
523 if (!end || start > end)
524 return 0;
525
526 page = pfn_to_page(start >> PAGE_SHIFT);
527 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528 if (protect)
529 return set_pages_ro(page, nr_pages);
530 else
531 return set_pages_rw(page, nr_pages);
532}
533
534static void kexec_mark_crashkres(bool protect)
535{
536 unsigned long control;
537
538 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539
540 /* Don't touch the control code page used in crash_kexec().*/
541 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542 /* Control code page is located in the 2nd page. */
543 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544 control += KEXEC_CONTROL_PAGE_SIZE;
545 kexec_mark_range(control, crashk_res.end, protect);
546}
547
548void arch_kexec_protect_crashkres(void)
549{
550 kexec_mark_crashkres(true);
551}
552
553void arch_kexec_unprotect_crashkres(void)
554{
555 kexec_mark_crashkres(false);
556}
557
558int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
559{
560 /*
561 * If SME is active we need to be sure that kexec pages are
562 * not encrypted because when we boot to the new kernel the
563 * pages won't be accessed encrypted (initially).
564 */
565 return set_memory_decrypted((unsigned long)vaddr, pages);
566}
567
568void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
569{
570 /*
571 * If SME is active we need to reset the pages back to being
572 * an encrypted mapping before freeing them.
573 */
574 set_memory_encrypted((unsigned long)vaddr, pages);
575}
1/*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#include <linux/mm.h>
10#include <linux/kexec.h>
11#include <linux/string.h>
12#include <linux/gfp.h>
13#include <linux/reboot.h>
14#include <linux/numa.h>
15#include <linux/ftrace.h>
16#include <linux/io.h>
17#include <linux/suspend.h>
18
19#include <asm/pgtable.h>
20#include <asm/tlbflush.h>
21#include <asm/mmu_context.h>
22#include <asm/debugreg.h>
23
24static int init_one_level2_page(struct kimage *image, pgd_t *pgd,
25 unsigned long addr)
26{
27 pud_t *pud;
28 pmd_t *pmd;
29 struct page *page;
30 int result = -ENOMEM;
31
32 addr &= PMD_MASK;
33 pgd += pgd_index(addr);
34 if (!pgd_present(*pgd)) {
35 page = kimage_alloc_control_pages(image, 0);
36 if (!page)
37 goto out;
38 pud = (pud_t *)page_address(page);
39 clear_page(pud);
40 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
41 }
42 pud = pud_offset(pgd, addr);
43 if (!pud_present(*pud)) {
44 page = kimage_alloc_control_pages(image, 0);
45 if (!page)
46 goto out;
47 pmd = (pmd_t *)page_address(page);
48 clear_page(pmd);
49 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
50 }
51 pmd = pmd_offset(pud, addr);
52 if (!pmd_present(*pmd))
53 set_pmd(pmd, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
54 result = 0;
55out:
56 return result;
57}
58
59static void init_level2_page(pmd_t *level2p, unsigned long addr)
60{
61 unsigned long end_addr;
62
63 addr &= PAGE_MASK;
64 end_addr = addr + PUD_SIZE;
65 while (addr < end_addr) {
66 set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
67 addr += PMD_SIZE;
68 }
69}
70
71static int init_level3_page(struct kimage *image, pud_t *level3p,
72 unsigned long addr, unsigned long last_addr)
73{
74 unsigned long end_addr;
75 int result;
76
77 result = 0;
78 addr &= PAGE_MASK;
79 end_addr = addr + PGDIR_SIZE;
80 while ((addr < last_addr) && (addr < end_addr)) {
81 struct page *page;
82 pmd_t *level2p;
83
84 page = kimage_alloc_control_pages(image, 0);
85 if (!page) {
86 result = -ENOMEM;
87 goto out;
88 }
89 level2p = (pmd_t *)page_address(page);
90 init_level2_page(level2p, addr);
91 set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
92 addr += PUD_SIZE;
93 }
94 /* clear the unused entries */
95 while (addr < end_addr) {
96 pud_clear(level3p++);
97 addr += PUD_SIZE;
98 }
99out:
100 return result;
101}
102
103
104static int init_level4_page(struct kimage *image, pgd_t *level4p,
105 unsigned long addr, unsigned long last_addr)
106{
107 unsigned long end_addr;
108 int result;
109
110 result = 0;
111 addr &= PAGE_MASK;
112 end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
113 while ((addr < last_addr) && (addr < end_addr)) {
114 struct page *page;
115 pud_t *level3p;
116
117 page = kimage_alloc_control_pages(image, 0);
118 if (!page) {
119 result = -ENOMEM;
120 goto out;
121 }
122 level3p = (pud_t *)page_address(page);
123 result = init_level3_page(image, level3p, addr, last_addr);
124 if (result)
125 goto out;
126 set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
127 addr += PGDIR_SIZE;
128 }
129 /* clear the unused entries */
130 while (addr < end_addr) {
131 pgd_clear(level4p++);
132 addr += PGDIR_SIZE;
133 }
134out:
135 return result;
136}
137
138static void free_transition_pgtable(struct kimage *image)
139{
140 free_page((unsigned long)image->arch.pud);
141 free_page((unsigned long)image->arch.pmd);
142 free_page((unsigned long)image->arch.pte);
143}
144
145static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
146{
147 pud_t *pud;
148 pmd_t *pmd;
149 pte_t *pte;
150 unsigned long vaddr, paddr;
151 int result = -ENOMEM;
152
153 vaddr = (unsigned long)relocate_kernel;
154 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
155 pgd += pgd_index(vaddr);
156 if (!pgd_present(*pgd)) {
157 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
158 if (!pud)
159 goto err;
160 image->arch.pud = pud;
161 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
162 }
163 pud = pud_offset(pgd, vaddr);
164 if (!pud_present(*pud)) {
165 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
166 if (!pmd)
167 goto err;
168 image->arch.pmd = pmd;
169 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
170 }
171 pmd = pmd_offset(pud, vaddr);
172 if (!pmd_present(*pmd)) {
173 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
174 if (!pte)
175 goto err;
176 image->arch.pte = pte;
177 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
178 }
179 pte = pte_offset_kernel(pmd, vaddr);
180 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
181 return 0;
182err:
183 free_transition_pgtable(image);
184 return result;
185}
186
187
188static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
189{
190 pgd_t *level4p;
191 int result;
192 level4p = (pgd_t *)__va(start_pgtable);
193 result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT);
194 if (result)
195 return result;
196 /*
197 * image->start may be outside 0 ~ max_pfn, for example when
198 * jump back to original kernel from kexeced kernel
199 */
200 result = init_one_level2_page(image, level4p, image->start);
201 if (result)
202 return result;
203 return init_transition_pgtable(image, level4p);
204}
205
206static void set_idt(void *newidt, u16 limit)
207{
208 struct desc_ptr curidt;
209
210 /* x86-64 supports unaliged loads & stores */
211 curidt.size = limit;
212 curidt.address = (unsigned long)newidt;
213
214 __asm__ __volatile__ (
215 "lidtq %0\n"
216 : : "m" (curidt)
217 );
218};
219
220
221static void set_gdt(void *newgdt, u16 limit)
222{
223 struct desc_ptr curgdt;
224
225 /* x86-64 supports unaligned loads & stores */
226 curgdt.size = limit;
227 curgdt.address = (unsigned long)newgdt;
228
229 __asm__ __volatile__ (
230 "lgdtq %0\n"
231 : : "m" (curgdt)
232 );
233};
234
235static void load_segments(void)
236{
237 __asm__ __volatile__ (
238 "\tmovl %0,%%ds\n"
239 "\tmovl %0,%%es\n"
240 "\tmovl %0,%%ss\n"
241 "\tmovl %0,%%fs\n"
242 "\tmovl %0,%%gs\n"
243 : : "a" (__KERNEL_DS) : "memory"
244 );
245}
246
247int machine_kexec_prepare(struct kimage *image)
248{
249 unsigned long start_pgtable;
250 int result;
251
252 /* Calculate the offsets */
253 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
254
255 /* Setup the identity mapped 64bit page table */
256 result = init_pgtable(image, start_pgtable);
257 if (result)
258 return result;
259
260 return 0;
261}
262
263void machine_kexec_cleanup(struct kimage *image)
264{
265 free_transition_pgtable(image);
266}
267
268/*
269 * Do not allocate memory (or fail in any way) in machine_kexec().
270 * We are past the point of no return, committed to rebooting now.
271 */
272void machine_kexec(struct kimage *image)
273{
274 unsigned long page_list[PAGES_NR];
275 void *control_page;
276 int save_ftrace_enabled;
277
278#ifdef CONFIG_KEXEC_JUMP
279 if (image->preserve_context)
280 save_processor_state();
281#endif
282
283 save_ftrace_enabled = __ftrace_enabled_save();
284
285 /* Interrupts aren't acceptable while we reboot */
286 local_irq_disable();
287 hw_breakpoint_disable();
288
289 if (image->preserve_context) {
290#ifdef CONFIG_X86_IO_APIC
291 /*
292 * We need to put APICs in legacy mode so that we can
293 * get timer interrupts in second kernel. kexec/kdump
294 * paths already have calls to disable_IO_APIC() in
295 * one form or other. kexec jump path also need
296 * one.
297 */
298 disable_IO_APIC();
299#endif
300 }
301
302 control_page = page_address(image->control_code_page) + PAGE_SIZE;
303 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
304
305 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
306 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
307 page_list[PA_TABLE_PAGE] =
308 (unsigned long)__pa(page_address(image->control_code_page));
309
310 if (image->type == KEXEC_TYPE_DEFAULT)
311 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
312 << PAGE_SHIFT);
313
314 /*
315 * The segment registers are funny things, they have both a
316 * visible and an invisible part. Whenever the visible part is
317 * set to a specific selector, the invisible part is loaded
318 * with from a table in memory. At no other time is the
319 * descriptor table in memory accessed.
320 *
321 * I take advantage of this here by force loading the
322 * segments, before I zap the gdt with an invalid value.
323 */
324 load_segments();
325 /*
326 * The gdt & idt are now invalid.
327 * If you want to load them you must set up your own idt & gdt.
328 */
329 set_gdt(phys_to_virt(0), 0);
330 set_idt(phys_to_virt(0), 0);
331
332 /* now call it */
333 image->start = relocate_kernel((unsigned long)image->head,
334 (unsigned long)page_list,
335 image->start,
336 image->preserve_context);
337
338#ifdef CONFIG_KEXEC_JUMP
339 if (image->preserve_context)
340 restore_processor_state();
341#endif
342
343 __ftrace_enabled_restore(save_ftrace_enabled);
344}
345
346void arch_crash_save_vmcoreinfo(void)
347{
348 VMCOREINFO_SYMBOL(phys_base);
349 VMCOREINFO_SYMBOL(init_level4_pgt);
350
351#ifdef CONFIG_NUMA
352 VMCOREINFO_SYMBOL(node_data);
353 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
354#endif
355}
356