Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.17
   1/*
   2 * Low level x86 E820 memory map handling functions.
 
   3 *
   4 * The firmware and bootloader passes us the "E820 table", which is the primary
   5 * physical memory layout description available about x86 systems.
 
 
   6 *
   7 * The kernel takes the E820 memory layout and optionally modifies it with
   8 * quirks and other tweaks, and feeds that into the generic Linux memory
   9 * allocation code routines via a platform independent interface (memblock, etc.).
  10 */
 
 
 
  11#include <linux/crash_dump.h>
 
  12#include <linux/bootmem.h>
 
  13#include <linux/suspend.h>
  14#include <linux/acpi.h>
  15#include <linux/firmware-map.h>
  16#include <linux/memblock.h>
  17#include <linux/sort.h>
  18
  19#include <asm/e820/api.h>
 
  20#include <asm/setup.h>
  21
  22/*
  23 * We organize the E820 table into three main data structures:
  24 *
  25 * - 'e820_table_firmware': the original firmware version passed to us by the
  26 *   bootloader - not modified by the kernel. It is composed of two parts:
  27 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  28 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  29 *
  30 *       - inform the user about the firmware's notion of memory layout
  31 *         via /sys/firmware/memmap
  32 *
  33 *       - the hibernation code uses it to generate a kernel-independent MD5
  34 *         fingerprint of the physical memory layout of a system.
  35 *
  36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  37 *   passed to us by the bootloader - the major difference between
  38 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  39 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  40 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  41 *   might also be modified by the kexec itself to fake a mptable.
  42 *   We use this to:
  43 *
  44 *       - kexec, which is a bootloader in disguise, uses the original E820
  45 *         layout to pass to the kexec-ed kernel. This way the original kernel
  46 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  47 *         can have access to full memory - etc.
  48 *
  49 * - 'e820_table': this is the main E820 table that is massaged by the
  50 *   low level x86 platform code, or modified by boot parameters, before
  51 *   passed on to higher level MM layers.
  52 *
  53 * Once the E820 map has been converted to the standard Linux memory layout
  54 * information its role stops - modifying it has no effect and does not get
  55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  56 * specific memory layout data during early bootup.
  57 */
  58static struct e820_table e820_table_init		__initdata;
  59static struct e820_table e820_table_kexec_init		__initdata;
  60static struct e820_table e820_table_firmware_init	__initdata;
  61
  62struct e820_table *e820_table __refdata			= &e820_table_init;
  63struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  64struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  65
  66/* For PCI or other memory-mapped resources */
  67unsigned long pci_mem_start = 0xaeedbabe;
  68#ifdef CONFIG_PCI
  69EXPORT_SYMBOL(pci_mem_start);
  70#endif
  71
  72/*
  73 * This function checks if any part of the range <start,end> is mapped
  74 * with type.
  75 */
  76bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 
  77{
  78	int i;
  79
  80	for (i = 0; i < e820_table->nr_entries; i++) {
  81		struct e820_entry *entry = &e820_table->entries[i];
  82
  83		if (type && entry->type != type)
  84			continue;
  85		if (entry->addr >= end || entry->addr + entry->size <= start)
  86			continue;
  87		return 1;
  88	}
  89	return 0;
  90}
  91EXPORT_SYMBOL_GPL(e820__mapped_any);
  92
  93/*
  94 * This function checks if the entire <start,end> range is mapped with 'type'.
  95 *
  96 * Note: this function only works correctly once the E820 table is sorted and
  97 * not-overlapping (at least for the range specified), which is the case normally.
  98 */
  99static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 100					     enum e820_type type)
 101{
 102	int i;
 103
 104	for (i = 0; i < e820_table->nr_entries; i++) {
 105		struct e820_entry *entry = &e820_table->entries[i];
 106
 107		if (type && entry->type != type)
 108			continue;
 109
 110		/* Is the region (part) in overlap with the current region? */
 111		if (entry->addr >= end || entry->addr + entry->size <= start)
 112			continue;
 113
 114		/*
 115		 * If the region is at the beginning of <start,end> we move
 116		 * 'start' to the end of the region since it's ok until there
 117		 */
 118		if (entry->addr <= start)
 119			start = entry->addr + entry->size;
 120
 121		/*
 122		 * If 'start' is now at or beyond 'end', we're done, full
 123		 * coverage of the desired range exists:
 124		 */
 125		if (start >= end)
 126			return entry;
 127	}
 128
 129	return NULL;
 130}
 131
 132/*
 133 * This function checks if the entire range <start,end> is mapped with type.
 134 */
 135bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 136{
 137	return __e820__mapped_all(start, end, type);
 138}
 139
 140/*
 141 * This function returns the type associated with the range <start,end>.
 142 */
 143int e820__get_entry_type(u64 start, u64 end)
 144{
 145	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 146
 147	return entry ? entry->type : -EINVAL;
 148}
 149
 150/*
 151 * Add a memory region to the kernel E820 map.
 152 */
 153static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 
 154{
 155	int x = table->nr_entries;
 156
 157	if (x >= ARRAY_SIZE(table->entries)) {
 158		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
 
 
 159		return;
 160	}
 161
 162	table->entries[x].addr = start;
 163	table->entries[x].size = size;
 164	table->entries[x].type = type;
 165	table->nr_entries++;
 166}
 167
 168void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 169{
 170	__e820__range_add(e820_table, start, size, type);
 171}
 172
 173static void __init e820_print_type(enum e820_type type)
 174{
 175	switch (type) {
 176	case E820_TYPE_RAM:		/* Fall through: */
 177	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 178	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 179	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 180	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 181	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 182	case E820_TYPE_PMEM:		/* Fall through: */
 183	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 184	default:			pr_cont("type %u", type);		break;
 
 
 
 
 
 
 
 
 
 
 185	}
 186}
 187
 188void __init e820__print_table(char *who)
 189{
 190	int i;
 191
 192	for (i = 0; i < e820_table->nr_entries; i++) {
 193		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
 194		       e820_table->entries[i].addr,
 195		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 196
 197		e820_print_type(e820_table->entries[i].type);
 198		pr_cont("\n");
 199	}
 200}
 201
 202/*
 203 * Sanitize an E820 map.
 204 *
 205 * Some E820 layouts include overlapping entries. The following
 206 * replaces the original E820 map with a new one, removing overlaps,
 207 * and resolving conflicting memory types in favor of highest
 208 * numbered type.
 209 *
 210 * The input parameter 'entries' points to an array of 'struct
 211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 212 * valid, and which has space for up to max_nr_entries entries.
 213 * On return, the resulting sanitized E820 map entries will be in
 214 * overwritten in the same location, starting at 'entries'.
 215 *
 216 * The integer pointed to by nr_entries must be valid on entry (the
 217 * current number of valid entries located at 'entries'). If the
 218 * sanitizing succeeds the *nr_entries will be updated with the new
 219 * number of valid entries (something no more than max_nr_entries).
 220 *
 221 * The return value from e820__update_table() is zero if it
 222 * successfully 'sanitized' the map entries passed in, and is -1
 223 * if it did nothing, which can happen if either of (1) it was
 224 * only passed one map entry, or (2) any of the input map entries
 225 * were invalid (start + size < start, meaning that the size was
 226 * so big the described memory range wrapped around through zero.)
 227 *
 228 *	Visually we're performing the following
 229 *	(1,2,3,4 = memory types)...
 230 *
 231 *	Sample memory map (w/overlaps):
 232 *	   ____22__________________
 233 *	   ______________________4_
 234 *	   ____1111________________
 235 *	   _44_____________________
 236 *	   11111111________________
 237 *	   ____________________33__
 238 *	   ___________44___________
 239 *	   __________33333_________
 240 *	   ______________22________
 241 *	   ___________________2222_
 242 *	   _________111111111______
 243 *	   _____________________11_
 244 *	   _________________4______
 245 *
 246 *	Sanitized equivalent (no overlap):
 247 *	   1_______________________
 248 *	   _44_____________________
 249 *	   ___1____________________
 250 *	   ____22__________________
 251 *	   ______11________________
 252 *	   _________1______________
 253 *	   __________3_____________
 254 *	   ___________44___________
 255 *	   _____________33_________
 256 *	   _______________2________
 257 *	   ________________1_______
 258 *	   _________________4______
 259 *	   ___________________2____
 260 *	   ____________________33__
 261 *	   ______________________4_
 262 */
 263struct change_member {
 264	/* Pointer to the original entry: */
 265	struct e820_entry	*entry;
 266	/* Address for this change point: */
 267	unsigned long long	addr;
 268};
 269
 270static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 271static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 272static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 273static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 274
 275static int __init cpcompare(const void *a, const void *b)
 276{
 277	struct change_member * const *app = a, * const *bpp = b;
 278	const struct change_member *ap = *app, *bp = *bpp;
 279
 280	/*
 281	 * Inputs are pointers to two elements of change_point[].  If their
 282	 * addresses are not equal, their difference dominates.  If the addresses
 283	 * are equal, then consider one that represents the end of its region
 284	 * to be greater than one that does not.
 285	 */
 286	if (ap->addr != bp->addr)
 287		return ap->addr > bp->addr ? 1 : -1;
 288
 289	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 290}
 291
 292int __init e820__update_table(struct e820_table *table)
 
 293{
 294	struct e820_entry *entries = table->entries;
 295	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 296	enum e820_type current_type, last_type;
 
 
 297	unsigned long long last_addr;
 298	u32 new_nr_entries, overlap_entries;
 299	u32 i, chg_idx, chg_nr;
 
 
 
 300
 301	/* If there's only one memory region, don't bother: */
 302	if (table->nr_entries < 2)
 303		return -1;
 304
 305	BUG_ON(table->nr_entries > max_nr_entries);
 
 306
 307	/* Bail out if we find any unreasonable addresses in the map: */
 308	for (i = 0; i < table->nr_entries; i++) {
 309		if (entries[i].addr + entries[i].size < entries[i].addr)
 310			return -1;
 311	}
 312
 313	/* Create pointers for initial change-point information (for sorting): */
 314	for (i = 0; i < 2 * table->nr_entries; i++)
 315		change_point[i] = &change_point_list[i];
 316
 317	/*
 318	 * Record all known change-points (starting and ending addresses),
 319	 * omitting empty memory regions:
 320	 */
 321	chg_idx = 0;
 322	for (i = 0; i < table->nr_entries; i++)	{
 323		if (entries[i].size != 0) {
 324			change_point[chg_idx]->addr	= entries[i].addr;
 325			change_point[chg_idx++]->entry	= &entries[i];
 326			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 327			change_point[chg_idx++]->entry	= &entries[i];
 328		}
 329	}
 330	chg_nr = chg_idx;
 331
 332	/* Sort change-point list by memory addresses (low -> high): */
 333	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 334
 335	/* Create a new memory map, removing overlaps: */
 336	overlap_entries = 0;	 /* Number of entries in the overlap table */
 337	new_nr_entries = 0;	 /* Index for creating new map entries */
 338	last_type = 0;		 /* Start with undefined memory type */
 339	last_addr = 0;		 /* Start with 0 as last starting address */
 340
 341	/* Loop through change-points, determining effect on the new map: */
 342	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 343		/* Keep track of all overlapping entries */
 344		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 345			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 346			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 
 
 
 
 
 347		} else {
 348			/* Remove entry from list (order independent, so swap with last): */
 
 
 
 349			for (i = 0; i < overlap_entries; i++) {
 350				if (overlap_list[i] == change_point[chg_idx]->entry)
 351					overlap_list[i] = overlap_list[overlap_entries-1];
 
 
 352			}
 353			overlap_entries--;
 354		}
 355		/*
 356		 * If there are overlapping entries, decide which
 357		 * "type" to use (larger value takes precedence --
 358		 * 1=usable, 2,3,4,4+=unusable)
 359		 */
 360		current_type = 0;
 361		for (i = 0; i < overlap_entries; i++) {
 362			if (overlap_list[i]->type > current_type)
 363				current_type = overlap_list[i]->type;
 364		}
 365
 366		/* Continue building up new map based on this information: */
 367		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 
 368			if (last_type != 0)	 {
 369				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 370				/* Move forward only if the new size was non-zero: */
 371				if (new_entries[new_nr_entries].size != 0)
 372					/* No more space left for new entries? */
 373					if (++new_nr_entries >= max_nr_entries)
 
 
 
 
 
 
 
 374						break;
 375			}
 376			if (current_type != 0)	{
 377				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 378				new_entries[new_nr_entries].type = current_type;
 379				last_addr = change_point[chg_idx]->addr;
 
 380			}
 381			last_type = current_type;
 382		}
 383	}
 
 
 384
 385	/* Copy the new entries into the original location: */
 386	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 387	table->nr_entries = new_nr_entries;
 388
 389	return 0;
 390}
 391
 392static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 393{
 394	struct boot_e820_entry *entry = entries;
 
 
 
 
 395
 396	while (nr_entries) {
 397		u64 start = entry->addr;
 398		u64 size = entry->size;
 399		u64 end = start + size - 1;
 400		u32 type = entry->type;
 401
 402		/* Ignore the entry on 64-bit overflow: */
 403		if (start > end && likely(size))
 404			return -1;
 405
 406		e820__range_add(start, size, type);
 407
 408		entry++;
 409		nr_entries--;
 410	}
 411	return 0;
 412}
 413
 414/*
 415 * Copy the BIOS E820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 424{
 425	/* Only one memory region (or negative)? Ignore it */
 426	if (nr_entries < 2)
 427		return -1;
 428
 429	return __append_e820_table(entries, nr_entries);
 430}
 431
 432static u64 __init
 433__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 434{
 435	u64 end;
 436	unsigned int i;
 437	u64 real_updated_size = 0;
 438
 439	BUG_ON(old_type == new_type);
 440
 441	if (size > (ULLONG_MAX - start))
 442		size = ULLONG_MAX - start;
 443
 444	end = start + size;
 445	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 
 446	e820_print_type(old_type);
 447	pr_cont(" ==> ");
 448	e820_print_type(new_type);
 449	pr_cont("\n");
 450
 451	for (i = 0; i < table->nr_entries; i++) {
 452		struct e820_entry *entry = &table->entries[i];
 453		u64 final_start, final_end;
 454		u64 entry_end;
 455
 456		if (entry->type != old_type)
 457			continue;
 458
 459		entry_end = entry->addr + entry->size;
 460
 461		/* Completely covered by new range? */
 462		if (entry->addr >= start && entry_end <= end) {
 463			entry->type = new_type;
 464			real_updated_size += entry->size;
 465			continue;
 466		}
 467
 468		/* New range is completely covered? */
 469		if (entry->addr < start && entry_end > end) {
 470			__e820__range_add(table, start, size, new_type);
 471			__e820__range_add(table, end, entry_end - end, entry->type);
 472			entry->size = start - entry->addr;
 473			real_updated_size += size;
 474			continue;
 475		}
 476
 477		/* Partially covered: */
 478		final_start = max(start, entry->addr);
 479		final_end = min(end, entry_end);
 480		if (final_start >= final_end)
 481			continue;
 482
 483		__e820__range_add(table, final_start, final_end - final_start, new_type);
 
 484
 485		real_updated_size += final_end - final_start;
 486
 487		/*
 488		 * Left range could be head or tail, so need to update
 489		 * its size first:
 490		 */
 491		entry->size -= final_end - final_start;
 492		if (entry->addr < final_start)
 493			continue;
 494
 495		entry->addr = final_end;
 496	}
 497	return real_updated_size;
 498}
 499
 500u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 501{
 502	return __e820__range_update(e820_table, start, size, old_type, new_type);
 503}
 504
 505static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 
 506{
 507	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 
 508}
 509
 510/* Remove a range of memory from the E820 table: */
 511u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 
 512{
 513	int i;
 514	u64 end;
 515	u64 real_removed_size = 0;
 516
 517	if (size > (ULLONG_MAX - start))
 518		size = ULLONG_MAX - start;
 519
 520	end = start + size;
 521	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 522	if (check_type)
 
 523		e820_print_type(old_type);
 524	pr_cont("\n");
 525
 526	for (i = 0; i < e820_table->nr_entries; i++) {
 527		struct e820_entry *entry = &e820_table->entries[i];
 528		u64 final_start, final_end;
 529		u64 entry_end;
 530
 531		if (check_type && entry->type != old_type)
 532			continue;
 533
 534		entry_end = entry->addr + entry->size;
 535
 536		/* Completely covered? */
 537		if (entry->addr >= start && entry_end <= end) {
 538			real_removed_size += entry->size;
 539			memset(entry, 0, sizeof(*entry));
 540			continue;
 541		}
 542
 543		/* Is the new range completely covered? */
 544		if (entry->addr < start && entry_end > end) {
 545			e820__range_add(end, entry_end - end, entry->type);
 546			entry->size = start - entry->addr;
 547			real_removed_size += size;
 548			continue;
 549		}
 550
 551		/* Partially covered: */
 552		final_start = max(start, entry->addr);
 553		final_end = min(end, entry_end);
 554		if (final_start >= final_end)
 555			continue;
 556
 557		real_removed_size += final_end - final_start;
 558
 559		/*
 560		 * Left range could be head or tail, so need to update
 561		 * the size first:
 562		 */
 563		entry->size -= final_end - final_start;
 564		if (entry->addr < final_start)
 565			continue;
 566
 567		entry->addr = final_end;
 568	}
 569	return real_removed_size;
 570}
 571
 572void __init e820__update_table_print(void)
 573{
 574	if (e820__update_table(e820_table))
 575		return;
 576
 577	pr_info("e820: modified physical RAM map:\n");
 578	e820__print_table("modified");
 
 
 
 
 579}
 580
 581static void __init e820__update_table_kexec(void)
 582{
 583	e820__update_table(e820_table_kexec);
 584}
 585
 
 
 
 
 
 586#define MAX_GAP_END 0x100000000ull
 587
 588/*
 589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 590 */
 591static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 
 592{
 593	unsigned long long last = MAX_GAP_END;
 594	int i = e820_table->nr_entries;
 595	int found = 0;
 596
 
 
 597	while (--i >= 0) {
 598		unsigned long long start = e820_table->entries[i].addr;
 599		unsigned long long end = start + e820_table->entries[i].size;
 
 
 
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true:
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the E820
 622 * memory space. We pass this space to the PCI subsystem, so
 623 * that it can assign MMIO resources for hotplug or
 624 * unconfigured devices in.
 625 *
 626 * Hopefully the BIOS let enough space left.
 627 */
 628__init void e820__setup_pci_gap(void)
 629{
 630	unsigned long gapstart, gapsize;
 631	int found;
 632
 
 633	gapsize = 0x400000;
 634	found  = e820_search_gap(&gapstart, &gapsize);
 635
 636	if (!found) {
 637#ifdef CONFIG_X86_64
 
 638		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639		pr_err(
 640			"e820: Cannot find an available gap in the 32-bit address range\n"
 641			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
 642#else
 643		gapstart = 0x10000000;
 644#endif
 645	}
 
 646
 647	/*
 648	 * e820__reserve_resources_late() protects stolen RAM already:
 649	 */
 650	pci_mem_start = gapstart;
 651
 652	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
 
 
 653}
 654
 655/*
 656 * Called late during init, in free_initmem().
 657 *
 658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 659 *
 660 * Copy them to a (usually much smaller) dynamically allocated area that is
 661 * sized precisely after the number of e820 entries.
 662 *
 663 * This is done after we've performed all the fixes and tweaks to the tables.
 664 * All functions which modify them are __init functions, which won't exist
 665 * after free_initmem().
 666 */
 667__init void e820__reallocate_tables(void)
 668{
 669	struct e820_table *n;
 670	int size;
 671
 672	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 673	n = kmalloc(size, GFP_KERNEL);
 674	BUG_ON(!n);
 675	memcpy(n, e820_table, size);
 676	e820_table = n;
 677
 678	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 679	n = kmalloc(size, GFP_KERNEL);
 680	BUG_ON(!n);
 681	memcpy(n, e820_table_kexec, size);
 682	e820_table_kexec = n;
 683
 684	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 685	n = kmalloc(size, GFP_KERNEL);
 686	BUG_ON(!n);
 687	memcpy(n, e820_table_firmware, size);
 688	e820_table_firmware = n;
 689}
 690
 691/*
 692 * Because of the small fixed size of struct boot_params, only the first
 693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 695 * struct setup_data, which is parsed here.
 696 */
 697void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 698{
 699	int entries;
 700	struct boot_e820_entry *extmap;
 701	struct setup_data *sdata;
 702
 703	sdata = early_memremap(phys_addr, data_len);
 704	entries = sdata->len / sizeof(*extmap);
 705	extmap = (struct boot_e820_entry *)(sdata->data);
 706
 707	__append_e820_table(extmap, entries);
 708	e820__update_table(e820_table);
 709
 710	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 711	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 712
 713	early_memunmap(sdata, data_len);
 714	pr_info("e820: extended physical RAM map:\n");
 715	e820__print_table("extended");
 716}
 717
 718/*
 
 
 719 * Find the ranges of physical addresses that do not correspond to
 720 * E820 RAM areas and register the corresponding pages as 'nosave' for
 721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 722 *
 723 * This function requires the E820 map to be sorted and without any
 724 * overlapping entries.
 725 */
 726void __init e820__register_nosave_regions(unsigned long limit_pfn)
 727{
 728	int i;
 729	unsigned long pfn = 0;
 730
 731	for (i = 0; i < e820_table->nr_entries; i++) {
 732		struct e820_entry *entry = &e820_table->entries[i];
 733
 734		if (pfn < PFN_UP(entry->addr))
 735			register_nosave_region(pfn, PFN_UP(entry->addr));
 736
 737		pfn = PFN_DOWN(entry->addr + entry->size);
 738
 739		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 740			register_nosave_region(PFN_UP(entry->addr), pfn);
 
 
 
 
 
 
 
 
 741
 742		if (pfn >= limit_pfn)
 743			break;
 744	}
 745}
 
 746
 747#ifdef CONFIG_ACPI
 748/*
 749 * Register ACPI NVS memory regions, so that we can save/restore them during
 750 * hibernation and the subsequent resume:
 751 */
 752static int __init e820__register_nvs_regions(void)
 753{
 754	int i;
 755
 756	for (i = 0; i < e820_table->nr_entries; i++) {
 757		struct e820_entry *entry = &e820_table->entries[i];
 758
 759		if (entry->type == E820_TYPE_NVS)
 760			acpi_nvs_register(entry->addr, entry->size);
 761	}
 762
 763	return 0;
 764}
 765core_initcall(e820__register_nvs_regions);
 766#endif
 767
 768/*
 769 * Allocate the requested number of bytes with the requsted alignment
 770 * and return (the physical address) to the caller. Also register this
 771 * range in the 'kexec' E820 table as a reserved range.
 772 *
 773 * This allows kexec to fake a new mptable, as if it came from the real
 774 * system.
 775 */
 776u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 777{
 778	u64 addr;
 779
 780	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 781	if (addr) {
 782		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 783		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 784		e820__update_table_kexec();
 785	}
 786
 787	return addr;
 788}
 789
 790#ifdef CONFIG_X86_32
 791# ifdef CONFIG_X86_PAE
 792#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 793# else
 794#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 795# endif
 796#else /* CONFIG_X86_32 */
 797# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 798#endif
 799
 800/*
 801 * Find the highest page frame number we have available
 802 */
 803static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 804{
 805	int i;
 806	unsigned long last_pfn = 0;
 807	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 808
 809	for (i = 0; i < e820_table->nr_entries; i++) {
 810		struct e820_entry *entry = &e820_table->entries[i];
 811		unsigned long start_pfn;
 812		unsigned long end_pfn;
 813
 814		if (entry->type != type)
 815			continue;
 816
 817		start_pfn = entry->addr >> PAGE_SHIFT;
 818		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 819
 820		if (start_pfn >= limit_pfn)
 821			continue;
 822		if (end_pfn > limit_pfn) {
 823			last_pfn = limit_pfn;
 824			break;
 825		}
 826		if (end_pfn > last_pfn)
 827			last_pfn = end_pfn;
 828	}
 829
 830	if (last_pfn > max_arch_pfn)
 831		last_pfn = max_arch_pfn;
 832
 833	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 834			 last_pfn, max_arch_pfn);
 835	return last_pfn;
 836}
 837
 838unsigned long __init e820__end_of_ram_pfn(void)
 839{
 840	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 841}
 842
 843unsigned long __init e820__end_of_low_ram_pfn(void)
 844{
 845	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 846}
 847
 848static void __init early_panic(char *msg)
 849{
 850	early_printk(msg);
 851	panic(msg);
 852}
 853
 854static int userdef __initdata;
 855
 856/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 857static int __init parse_memopt(char *p)
 858{
 859	u64 mem_size;
 860
 861	if (!p)
 862		return -EINVAL;
 863
 864	if (!strcmp(p, "nopentium")) {
 865#ifdef CONFIG_X86_32
 866		setup_clear_cpu_cap(X86_FEATURE_PSE);
 867		return 0;
 868#else
 869		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 870		return -EINVAL;
 871#endif
 872	}
 873
 874	userdef = 1;
 875	mem_size = memparse(p, &p);
 876
 877	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 878	if (mem_size == 0)
 879		return -EINVAL;
 880
 881	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 882
 883	return 0;
 884}
 885early_param("mem", parse_memopt);
 886
 887static int __init parse_memmap_one(char *p)
 888{
 889	char *oldp;
 890	u64 start_at, mem_size;
 891
 892	if (!p)
 893		return -EINVAL;
 894
 895	if (!strncmp(p, "exactmap", 8)) {
 896#ifdef CONFIG_CRASH_DUMP
 897		/*
 898		 * If we are doing a crash dump, we still need to know
 899		 * the real memory size before the original memory map is
 900		 * reset.
 901		 */
 902		saved_max_pfn = e820__end_of_ram_pfn();
 903#endif
 904		e820_table->nr_entries = 0;
 905		userdef = 1;
 906		return 0;
 907	}
 908
 909	oldp = p;
 910	mem_size = memparse(p, &p);
 911	if (p == oldp)
 912		return -EINVAL;
 913
 914	userdef = 1;
 915	if (*p == '@') {
 916		start_at = memparse(p+1, &p);
 917		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 918	} else if (*p == '#') {
 919		start_at = memparse(p+1, &p);
 920		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 921	} else if (*p == '$') {
 922		start_at = memparse(p+1, &p);
 923		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 924	} else if (*p == '!') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 927	} else if (*p == '%') {
 928		enum e820_type from = 0, to = 0;
 929
 930		start_at = memparse(p + 1, &p);
 931		if (*p == '-')
 932			from = simple_strtoull(p + 1, &p, 0);
 933		if (*p == '+')
 934			to = simple_strtoull(p + 1, &p, 0);
 935		if (*p != '\0')
 936			return -EINVAL;
 937		if (from && to)
 938			e820__range_update(start_at, mem_size, from, to);
 939		else if (to)
 940			e820__range_add(start_at, mem_size, to);
 941		else if (from)
 942			e820__range_remove(start_at, mem_size, from, 1);
 943		else
 944			e820__range_remove(start_at, mem_size, 0, 0);
 945	} else {
 946		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 947	}
 948
 949	return *p == '\0' ? 0 : -EINVAL;
 950}
 951
 952static int __init parse_memmap_opt(char *str)
 953{
 954	while (str) {
 955		char *k = strchr(str, ',');
 956
 957		if (k)
 958			*k++ = 0;
 959
 960		parse_memmap_one(str);
 961		str = k;
 962	}
 963
 964	return 0;
 965}
 966early_param("memmap", parse_memmap_opt);
 967
 968/*
 969 * Reserve all entries from the bootloader's extensible data nodes list,
 970 * because if present we are going to use it later on to fetch e820
 971 * entries from it:
 972 */
 973void __init e820__reserve_setup_data(void)
 974{
 975	struct setup_data *data;
 976	u64 pa_data;
 977
 978	pa_data = boot_params.hdr.setup_data;
 979	if (!pa_data)
 980		return;
 981
 982	while (pa_data) {
 983		data = early_memremap(pa_data, sizeof(*data));
 984		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 985		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 986		pa_data = data->next;
 987		early_memunmap(data, sizeof(*data));
 988	}
 989
 990	e820__update_table(e820_table);
 991	e820__update_table(e820_table_kexec);
 992
 993	pr_info("extended physical RAM map:\n");
 994	e820__print_table("reserve setup_data");
 995}
 996
 997/*
 998 * Called after parse_early_param(), after early parameters (such as mem=)
 999 * have been processed, in which case we already have an E820 table filled in
1000 * via the parameter callback function(s), but it's not sorted and printed yet:
1001 */
1002void __init e820__finish_early_params(void)
1003{
1004	if (userdef) {
1005		if (e820__update_table(e820_table) < 0)
1006			early_panic("Invalid user supplied memory map");
1007
1008		pr_info("e820: user-defined physical RAM map:\n");
1009		e820__print_table("user");
1010	}
1011}
1012
1013static const char *__init e820_type_to_string(struct e820_entry *entry)
1014{
1015	switch (entry->type) {
1016	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1017	case E820_TYPE_RAM:		return "System RAM";
1018	case E820_TYPE_ACPI:		return "ACPI Tables";
1019	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1020	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1021	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1022	case E820_TYPE_PMEM:		return "Persistent Memory";
1023	case E820_TYPE_RESERVED:	return "Reserved";
1024	default:			return "Unknown E820 type";
1025	}
1026}
1027
1028static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1029{
1030	switch (entry->type) {
1031	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1032	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1033	case E820_TYPE_ACPI:		/* Fall-through: */
1034	case E820_TYPE_NVS:		/* Fall-through: */
1035	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1036	case E820_TYPE_PRAM:		/* Fall-through: */
1037	case E820_TYPE_PMEM:		/* Fall-through: */
1038	case E820_TYPE_RESERVED:	/* Fall-through: */
1039	default:			return IORESOURCE_MEM;
1040	}
1041}
1042
1043static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1044{
1045	switch (entry->type) {
1046	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1047	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1048	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1049	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1050	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1051	case E820_TYPE_RAM:		/* Fall-through: */
1052	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1053	case E820_TYPE_RESERVED:	/* Fall-through: */
1054	default:			return IORES_DESC_NONE;
1055	}
1056}
1057
1058static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1059{
1060	/* this is the legacy bios/dos rom-shadow + mmio region */
1061	if (res->start < (1ULL<<20))
1062		return true;
1063
1064	/*
1065	 * Treat persistent memory like device memory, i.e. reserve it
1066	 * for exclusive use of a driver
1067	 */
1068	switch (type) {
1069	case E820_TYPE_RESERVED:
1070	case E820_TYPE_PRAM:
1071	case E820_TYPE_PMEM:
1072		return false;
1073	case E820_TYPE_RESERVED_KERN:
1074	case E820_TYPE_RAM:
1075	case E820_TYPE_ACPI:
1076	case E820_TYPE_NVS:
1077	case E820_TYPE_UNUSABLE:
1078	default:
1079		return true;
1080	}
1081}
1082
1083/*
1084 * Mark E820 reserved areas as busy for the resource manager:
1085 */
1086
1087static struct resource __initdata *e820_res;
1088
1089void __init e820__reserve_resources(void)
1090{
1091	int i;
1092	struct resource *res;
1093	u64 end;
1094
1095	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1096	e820_res = res;
1097
1098	for (i = 0; i < e820_table->nr_entries; i++) {
1099		struct e820_entry *entry = e820_table->entries + i;
1100
1101		end = entry->addr + entry->size - 1;
1102		if (end != (resource_size_t)end) {
1103			res++;
1104			continue;
1105		}
1106		res->start = entry->addr;
1107		res->end   = end;
1108		res->name  = e820_type_to_string(entry);
1109		res->flags = e820_type_to_iomem_type(entry);
1110		res->desc  = e820_type_to_iores_desc(entry);
1111
1112		/*
1113		 * Don't register the region that could be conflicted with
1114		 * PCI device BAR resources and insert them later in
1115		 * pcibios_resource_survey():
1116		 */
1117		if (do_mark_busy(entry->type, res)) {
1118			res->flags |= IORESOURCE_BUSY;
1119			insert_resource(&iomem_resource, res);
1120		}
1121		res++;
1122	}
1123
1124	/* Expose the bootloader-provided memory layout to the sysfs. */
1125	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1126		struct e820_entry *entry = e820_table_firmware->entries + i;
1127
1128		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1129	}
1130}
1131
1132/*
1133 * How much should we pad the end of RAM, depending on where it is?
1134 */
1135static unsigned long __init ram_alignment(resource_size_t pos)
1136{
1137	unsigned long mb = pos >> 20;
1138
1139	/* To 64kB in the first megabyte */
1140	if (!mb)
1141		return 64*1024;
1142
1143	/* To 1MB in the first 16MB */
1144	if (mb < 16)
1145		return 1024*1024;
1146
1147	/* To 64MB for anything above that */
1148	return 64*1024*1024;
1149}
1150
1151#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1152
1153void __init e820__reserve_resources_late(void)
1154{
1155	int i;
1156	struct resource *res;
1157
1158	res = e820_res;
1159	for (i = 0; i < e820_table->nr_entries; i++) {
1160		if (!res->parent && res->end)
1161			insert_resource_expand_to_fit(&iomem_resource, res);
1162		res++;
1163	}
1164
1165	/*
1166	 * Try to bump up RAM regions to reasonable boundaries, to
1167	 * avoid stolen RAM:
1168	 */
1169	for (i = 0; i < e820_table->nr_entries; i++) {
1170		struct e820_entry *entry = &e820_table->entries[i];
1171		u64 start, end;
1172
1173		if (entry->type != E820_TYPE_RAM)
1174			continue;
1175
1176		start = entry->addr + entry->size;
1177		end = round_up(start, ram_alignment(start)) - 1;
1178		if (end > MAX_RESOURCE_SIZE)
1179			end = MAX_RESOURCE_SIZE;
1180		if (start >= end)
1181			continue;
1182
1183		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1184		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
 
 
1185	}
1186}
1187
1188/*
1189 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1190 */
1191char *__init e820__memory_setup_default(void)
1192{
1193	char *who = "BIOS-e820";
1194
1195	/*
1196	 * Try to copy the BIOS-supplied E820-map.
1197	 *
1198	 * Otherwise fake a memory map; one section from 0k->640k,
1199	 * the next section from 1mb->appropriate_mem_k
1200	 */
1201	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
 
 
 
 
 
 
1202		u64 mem_size;
1203
1204		/* Compare results from other methods and take the one that gives more RAM: */
1205		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
 
1206			mem_size = boot_params.screen_info.ext_mem_k;
1207			who = "BIOS-88";
1208		} else {
1209			mem_size = boot_params.alt_mem_k;
1210			who = "BIOS-e801";
1211		}
1212
1213		e820_table->nr_entries = 0;
1214		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1215		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1216	}
1217
1218	/* We just appended a lot of ranges, sanitize the table: */
1219	e820__update_table(e820_table);
1220
1221	return who;
1222}
1223
1224/*
1225 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1226 * E820 map - with an optional platform quirk available for virtual platforms
1227 * to override this method of boot environment processing:
1228 */
1229void __init e820__memory_setup(void)
1230{
1231	char *who;
1232
1233	/* This is a firmware interface ABI - make sure we don't break it: */
1234	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1235
1236	who = x86_init.resources.memory_setup();
1237
1238	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1239	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1240
1241	pr_info("e820: BIOS-provided physical RAM map:\n");
1242	e820__print_table(who);
1243}
1244
1245void __init e820__memblock_setup(void)
1246{
1247	int i;
1248	u64 end;
1249
1250	/*
1251	 * The bootstrap memblock region count maximum is 128 entries
1252	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1253	 * than that - so allow memblock resizing.
1254	 *
1255	 * This is safe, because this call happens pretty late during x86 setup,
1256	 * so we know about reserved memory regions already. (This is important
1257	 * so that memblock resizing does no stomp over reserved areas.)
1258	 */
1259	memblock_allow_resize();
1260
1261	for (i = 0; i < e820_table->nr_entries; i++) {
1262		struct e820_entry *entry = &e820_table->entries[i];
1263
1264		end = entry->addr + entry->size;
1265		if (end != (resource_size_t)end)
1266			continue;
1267
1268		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1269			continue;
1270
1271		memblock_add(entry->addr, entry->size);
1272	}
1273
1274	/* Throw away partial pages: */
1275	memblock_trim_memory(PAGE_SIZE);
1276
1277	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278}
v3.5.6
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
 
 
 
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/crash_dump.h>
  15#include <linux/export.h>
  16#include <linux/bootmem.h>
  17#include <linux/pfn.h>
  18#include <linux/suspend.h>
  19#include <linux/acpi.h>
  20#include <linux/firmware-map.h>
  21#include <linux/memblock.h>
  22#include <linux/sort.h>
  23
  24#include <asm/e820.h>
  25#include <asm/proto.h>
  26#include <asm/setup.h>
  27
  28/*
  29 * The e820 map is the map that gets modified e.g. with command line parameters
  30 * and that is also registered with modifications in the kernel resource tree
  31 * with the iomem_resource as parent.
  32 *
  33 * The e820_saved is directly saved after the BIOS-provided memory map is
  34 * copied. It doesn't get modified afterwards. It's registered for the
  35 * /sys/firmware/memmap interface.
  36 *
  37 * That memory map is not modified and is used as base for kexec. The kexec'd
  38 * kernel should get the same memory map as the firmware provides. Then the
  39 * user can e.g. boot the original kernel with mem=1G while still booting the
  40 * next kernel with full memory.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41 */
  42struct e820map e820;
  43struct e820map e820_saved;
 
 
 
 
 
  44
  45/* For PCI or other memory-mapped resources */
  46unsigned long pci_mem_start = 0xaeedbabe;
  47#ifdef CONFIG_PCI
  48EXPORT_SYMBOL(pci_mem_start);
  49#endif
  50
  51/*
  52 * This function checks if any part of the range <start,end> is mapped
  53 * with type.
  54 */
  55int
  56e820_any_mapped(u64 start, u64 end, unsigned type)
  57{
  58	int i;
  59
  60	for (i = 0; i < e820.nr_map; i++) {
  61		struct e820entry *ei = &e820.map[i];
  62
  63		if (type && ei->type != type)
  64			continue;
  65		if (ei->addr >= end || ei->addr + ei->size <= start)
  66			continue;
  67		return 1;
  68	}
  69	return 0;
  70}
  71EXPORT_SYMBOL_GPL(e820_any_mapped);
  72
  73/*
  74 * This function checks if the entire range <start,end> is mapped with type.
  75 *
  76 * Note: this function only works correct if the e820 table is sorted and
  77 * not-overlapping, which is the case
  78 */
  79int __init e820_all_mapped(u64 start, u64 end, unsigned type)
 
  80{
  81	int i;
  82
  83	for (i = 0; i < e820.nr_map; i++) {
  84		struct e820entry *ei = &e820.map[i];
  85
  86		if (type && ei->type != type)
  87			continue;
  88		/* is the region (part) in overlap with the current region ?*/
  89		if (ei->addr >= end || ei->addr + ei->size <= start)
 
  90			continue;
  91
  92		/* if the region is at the beginning of <start,end> we move
  93		 * start to the end of the region since it's ok until there
 
  94		 */
  95		if (ei->addr <= start)
  96			start = ei->addr + ei->size;
 
  97		/*
  98		 * if start is now at or beyond end, we're done, full
  99		 * coverage
 100		 */
 101		if (start >= end)
 102			return 1;
 103	}
 104	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105}
 106
 107/*
 108 * Add a memory region to the kernel e820 map.
 109 */
 110static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 111					 int type)
 112{
 113	int x = e820x->nr_map;
 114
 115	if (x >= ARRAY_SIZE(e820x->map)) {
 116		printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
 117		       (unsigned long long) start,
 118		       (unsigned long long) (start + size - 1));
 119		return;
 120	}
 121
 122	e820x->map[x].addr = start;
 123	e820x->map[x].size = size;
 124	e820x->map[x].type = type;
 125	e820x->nr_map++;
 126}
 127
 128void __init e820_add_region(u64 start, u64 size, int type)
 129{
 130	__e820_add_region(&e820, start, size, type);
 131}
 132
 133static void __init e820_print_type(u32 type)
 134{
 135	switch (type) {
 136	case E820_RAM:
 137	case E820_RESERVED_KERN:
 138		printk(KERN_CONT "usable");
 139		break;
 140	case E820_RESERVED:
 141		printk(KERN_CONT "reserved");
 142		break;
 143	case E820_ACPI:
 144		printk(KERN_CONT "ACPI data");
 145		break;
 146	case E820_NVS:
 147		printk(KERN_CONT "ACPI NVS");
 148		break;
 149	case E820_UNUSABLE:
 150		printk(KERN_CONT "unusable");
 151		break;
 152	default:
 153		printk(KERN_CONT "type %u", type);
 154		break;
 155	}
 156}
 157
 158void __init e820_print_map(char *who)
 159{
 160	int i;
 161
 162	for (i = 0; i < e820.nr_map; i++) {
 163		printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
 164		       (unsigned long long) e820.map[i].addr,
 165		       (unsigned long long)
 166		       (e820.map[i].addr + e820.map[i].size - 1));
 167		e820_print_type(e820.map[i].type);
 168		printk(KERN_CONT "\n");
 169	}
 170}
 171
 172/*
 173 * Sanitize the BIOS e820 map.
 174 *
 175 * Some e820 responses include overlapping entries. The following
 176 * replaces the original e820 map with a new one, removing overlaps,
 177 * and resolving conflicting memory types in favor of highest
 178 * numbered type.
 179 *
 180 * The input parameter biosmap points to an array of 'struct
 181 * e820entry' which on entry has elements in the range [0, *pnr_map)
 182 * valid, and which has space for up to max_nr_map entries.
 183 * On return, the resulting sanitized e820 map entries will be in
 184 * overwritten in the same location, starting at biosmap.
 185 *
 186 * The integer pointed to by pnr_map must be valid on entry (the
 187 * current number of valid entries located at biosmap) and will
 188 * be updated on return, with the new number of valid entries
 189 * (something no more than max_nr_map.)
 190 *
 191 * The return value from sanitize_e820_map() is zero if it
 192 * successfully 'sanitized' the map entries passed in, and is -1
 193 * if it did nothing, which can happen if either of (1) it was
 194 * only passed one map entry, or (2) any of the input map entries
 195 * were invalid (start + size < start, meaning that the size was
 196 * so big the described memory range wrapped around through zero.)
 197 *
 198 *	Visually we're performing the following
 199 *	(1,2,3,4 = memory types)...
 200 *
 201 *	Sample memory map (w/overlaps):
 202 *	   ____22__________________
 203 *	   ______________________4_
 204 *	   ____1111________________
 205 *	   _44_____________________
 206 *	   11111111________________
 207 *	   ____________________33__
 208 *	   ___________44___________
 209 *	   __________33333_________
 210 *	   ______________22________
 211 *	   ___________________2222_
 212 *	   _________111111111______
 213 *	   _____________________11_
 214 *	   _________________4______
 215 *
 216 *	Sanitized equivalent (no overlap):
 217 *	   1_______________________
 218 *	   _44_____________________
 219 *	   ___1____________________
 220 *	   ____22__________________
 221 *	   ______11________________
 222 *	   _________1______________
 223 *	   __________3_____________
 224 *	   ___________44___________
 225 *	   _____________33_________
 226 *	   _______________2________
 227 *	   ________________1_______
 228 *	   _________________4______
 229 *	   ___________________2____
 230 *	   ____________________33__
 231 *	   ______________________4_
 232 */
 233struct change_member {
 234	struct e820entry *pbios; /* pointer to original bios entry */
 235	unsigned long long addr; /* address for this change point */
 
 
 236};
 237
 
 
 
 
 
 238static int __init cpcompare(const void *a, const void *b)
 239{
 240	struct change_member * const *app = a, * const *bpp = b;
 241	const struct change_member *ap = *app, *bp = *bpp;
 242
 243	/*
 244	 * Inputs are pointers to two elements of change_point[].  If their
 245	 * addresses are unequal, their difference dominates.  If the addresses
 246	 * are equal, then consider one that represents the end of its region
 247	 * to be greater than one that does not.
 248	 */
 249	if (ap->addr != bp->addr)
 250		return ap->addr > bp->addr ? 1 : -1;
 251
 252	return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
 253}
 254
 255int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 256			     u32 *pnr_map)
 257{
 258	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 259	static struct change_member *change_point[2*E820_X_MAX] __initdata;
 260	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 261	static struct e820entry new_bios[E820_X_MAX] __initdata;
 262	unsigned long current_type, last_type;
 263	unsigned long long last_addr;
 264	int chgidx;
 265	int overlap_entries;
 266	int new_bios_entry;
 267	int old_nr, new_nr, chg_nr;
 268	int i;
 269
 270	/* if there's only one memory region, don't bother */
 271	if (*pnr_map < 2)
 272		return -1;
 273
 274	old_nr = *pnr_map;
 275	BUG_ON(old_nr > max_nr_map);
 276
 277	/* bail out if we find any unreasonable addresses in bios map */
 278	for (i = 0; i < old_nr; i++)
 279		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 280			return -1;
 
 281
 282	/* create pointers for initial change-point information (for sorting) */
 283	for (i = 0; i < 2 * old_nr; i++)
 284		change_point[i] = &change_point_list[i];
 285
 286	/* record all known change-points (starting and ending addresses),
 287	   omitting those that are for empty memory regions */
 288	chgidx = 0;
 289	for (i = 0; i < old_nr; i++)	{
 290		if (biosmap[i].size != 0) {
 291			change_point[chgidx]->addr = biosmap[i].addr;
 292			change_point[chgidx++]->pbios = &biosmap[i];
 293			change_point[chgidx]->addr = biosmap[i].addr +
 294				biosmap[i].size;
 295			change_point[chgidx++]->pbios = &biosmap[i];
 
 296		}
 297	}
 298	chg_nr = chgidx;
 299
 300	/* sort change-point list by memory addresses (low -> high) */
 301	sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
 302
 303	/* create a new bios memory map, removing overlaps */
 304	overlap_entries = 0;	 /* number of entries in the overlap table */
 305	new_bios_entry = 0;	 /* index for creating new bios map entries */
 306	last_type = 0;		 /* start with undefined memory type */
 307	last_addr = 0;		 /* start with 0 as last starting address */
 308
 309	/* loop through change-points, determining affect on the new bios map */
 310	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 311		/* keep track of all overlapping bios entries */
 312		if (change_point[chgidx]->addr ==
 313		    change_point[chgidx]->pbios->addr) {
 314			/*
 315			 * add map entry to overlap list (> 1 entry
 316			 * implies an overlap)
 317			 */
 318			overlap_list[overlap_entries++] =
 319				change_point[chgidx]->pbios;
 320		} else {
 321			/*
 322			 * remove entry from list (order independent,
 323			 * so swap with last)
 324			 */
 325			for (i = 0; i < overlap_entries; i++) {
 326				if (overlap_list[i] ==
 327				    change_point[chgidx]->pbios)
 328					overlap_list[i] =
 329						overlap_list[overlap_entries-1];
 330			}
 331			overlap_entries--;
 332		}
 333		/*
 334		 * if there are overlapping entries, decide which
 335		 * "type" to use (larger value takes precedence --
 336		 * 1=usable, 2,3,4,4+=unusable)
 337		 */
 338		current_type = 0;
 339		for (i = 0; i < overlap_entries; i++)
 340			if (overlap_list[i]->type > current_type)
 341				current_type = overlap_list[i]->type;
 342		/*
 343		 * continue building up new bios map based on this
 344		 * information
 345		 */
 346		if (current_type != last_type)	{
 347			if (last_type != 0)	 {
 348				new_bios[new_bios_entry].size =
 349					change_point[chgidx]->addr - last_addr;
 350				/*
 351				 * move forward only if the new size
 352				 * was non-zero
 353				 */
 354				if (new_bios[new_bios_entry].size != 0)
 355					/*
 356					 * no more space left for new
 357					 * bios entries ?
 358					 */
 359					if (++new_bios_entry >= max_nr_map)
 360						break;
 361			}
 362			if (current_type != 0)	{
 363				new_bios[new_bios_entry].addr =
 364					change_point[chgidx]->addr;
 365				new_bios[new_bios_entry].type = current_type;
 366				last_addr = change_point[chgidx]->addr;
 367			}
 368			last_type = current_type;
 369		}
 370	}
 371	/* retain count for new bios entries */
 372	new_nr = new_bios_entry;
 373
 374	/* copy new bios mapping into original location */
 375	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 376	*pnr_map = new_nr;
 377
 378	return 0;
 379}
 380
 381static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 382{
 383	while (nr_map) {
 384		u64 start = biosmap->addr;
 385		u64 size = biosmap->size;
 386		u64 end = start + size;
 387		u32 type = biosmap->type;
 388
 389		/* Overflow in 64 bits? Ignore the memory map. */
 390		if (start > end)
 
 
 
 
 
 
 391			return -1;
 392
 393		e820_add_region(start, size, type);
 394
 395		biosmap++;
 396		nr_map--;
 397	}
 398	return 0;
 399}
 400
 401/*
 402 * Copy the BIOS e820 map into a safe place.
 403 *
 404 * Sanity-check it while we're at it..
 405 *
 406 * If we're lucky and live on a modern system, the setup code
 407 * will have given us a memory map that we can use to properly
 408 * set up memory.  If we aren't, we'll fake a memory map.
 409 */
 410static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 411{
 412	/* Only one memory region (or negative)? Ignore it */
 413	if (nr_map < 2)
 414		return -1;
 415
 416	return __append_e820_map(biosmap, nr_map);
 417}
 418
 419static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 420					u64 size, unsigned old_type,
 421					unsigned new_type)
 422{
 423	u64 end;
 424	unsigned int i;
 425	u64 real_updated_size = 0;
 426
 427	BUG_ON(old_type == new_type);
 428
 429	if (size > (ULLONG_MAX - start))
 430		size = ULLONG_MAX - start;
 431
 432	end = start + size;
 433	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
 434	       (unsigned long long) start, (unsigned long long) (end - 1));
 435	e820_print_type(old_type);
 436	printk(KERN_CONT " ==> ");
 437	e820_print_type(new_type);
 438	printk(KERN_CONT "\n");
 439
 440	for (i = 0; i < e820x->nr_map; i++) {
 441		struct e820entry *ei = &e820x->map[i];
 442		u64 final_start, final_end;
 443		u64 ei_end;
 444
 445		if (ei->type != old_type)
 446			continue;
 447
 448		ei_end = ei->addr + ei->size;
 449		/* totally covered by new range? */
 450		if (ei->addr >= start && ei_end <= end) {
 451			ei->type = new_type;
 452			real_updated_size += ei->size;
 
 453			continue;
 454		}
 455
 456		/* new range is totally covered? */
 457		if (ei->addr < start && ei_end > end) {
 458			__e820_add_region(e820x, start, size, new_type);
 459			__e820_add_region(e820x, end, ei_end - end, ei->type);
 460			ei->size = start - ei->addr;
 461			real_updated_size += size;
 462			continue;
 463		}
 464
 465		/* partially covered */
 466		final_start = max(start, ei->addr);
 467		final_end = min(end, ei_end);
 468		if (final_start >= final_end)
 469			continue;
 470
 471		__e820_add_region(e820x, final_start, final_end - final_start,
 472				  new_type);
 473
 474		real_updated_size += final_end - final_start;
 475
 476		/*
 477		 * left range could be head or tail, so need to update
 478		 * size at first.
 479		 */
 480		ei->size -= final_end - final_start;
 481		if (ei->addr < final_start)
 482			continue;
 483		ei->addr = final_end;
 
 484	}
 485	return real_updated_size;
 486}
 487
 488u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 489			     unsigned new_type)
 490{
 491	return __e820_update_range(&e820, start, size, old_type, new_type);
 492}
 493
 494static u64 __init e820_update_range_saved(u64 start, u64 size,
 495					  unsigned old_type, unsigned new_type)
 496{
 497	return __e820_update_range(&e820_saved, start, size, old_type,
 498				     new_type);
 499}
 500
 501/* make e820 not cover the range */
 502u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 503			     int checktype)
 504{
 505	int i;
 506	u64 end;
 507	u64 real_removed_size = 0;
 508
 509	if (size > (ULLONG_MAX - start))
 510		size = ULLONG_MAX - start;
 511
 512	end = start + size;
 513	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
 514	       (unsigned long long) start, (unsigned long long) (end - 1));
 515	if (checktype)
 516		e820_print_type(old_type);
 517	printk(KERN_CONT "\n");
 518
 519	for (i = 0; i < e820.nr_map; i++) {
 520		struct e820entry *ei = &e820.map[i];
 521		u64 final_start, final_end;
 522		u64 ei_end;
 523
 524		if (checktype && ei->type != old_type)
 525			continue;
 526
 527		ei_end = ei->addr + ei->size;
 528		/* totally covered? */
 529		if (ei->addr >= start && ei_end <= end) {
 530			real_removed_size += ei->size;
 531			memset(ei, 0, sizeof(struct e820entry));
 
 532			continue;
 533		}
 534
 535		/* new range is totally covered? */
 536		if (ei->addr < start && ei_end > end) {
 537			e820_add_region(end, ei_end - end, ei->type);
 538			ei->size = start - ei->addr;
 539			real_removed_size += size;
 540			continue;
 541		}
 542
 543		/* partially covered */
 544		final_start = max(start, ei->addr);
 545		final_end = min(end, ei_end);
 546		if (final_start >= final_end)
 547			continue;
 
 548		real_removed_size += final_end - final_start;
 549
 550		/*
 551		 * left range could be head or tail, so need to update
 552		 * size at first.
 553		 */
 554		ei->size -= final_end - final_start;
 555		if (ei->addr < final_start)
 556			continue;
 557		ei->addr = final_end;
 
 558	}
 559	return real_removed_size;
 560}
 561
 562void __init update_e820(void)
 563{
 564	u32 nr_map;
 
 565
 566	nr_map = e820.nr_map;
 567	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
 568		return;
 569	e820.nr_map = nr_map;
 570	printk(KERN_INFO "e820: modified physical RAM map:\n");
 571	e820_print_map("modified");
 572}
 573static void __init update_e820_saved(void)
 
 574{
 575	u32 nr_map;
 
 576
 577	nr_map = e820_saved.nr_map;
 578	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
 579		return;
 580	e820_saved.nr_map = nr_map;
 581}
 582#define MAX_GAP_END 0x100000000ull
 
 583/*
 584 * Search for a gap in the e820 memory space from start_addr to end_addr.
 585 */
 586__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 587		unsigned long start_addr, unsigned long long end_addr)
 588{
 589	unsigned long long last;
 590	int i = e820.nr_map;
 591	int found = 0;
 592
 593	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 594
 595	while (--i >= 0) {
 596		unsigned long long start = e820.map[i].addr;
 597		unsigned long long end = start + e820.map[i].size;
 598
 599		if (end < start_addr)
 600			continue;
 601
 602		/*
 603		 * Since "last" is at most 4GB, we know we'll
 604		 * fit in 32 bits if this condition is true
 605		 */
 606		if (last > end) {
 607			unsigned long gap = last - end;
 608
 609			if (gap >= *gapsize) {
 610				*gapsize = gap;
 611				*gapstart = end;
 612				found = 1;
 613			}
 614		}
 615		if (start < last)
 616			last = start;
 617	}
 618	return found;
 619}
 620
 621/*
 622 * Search for the biggest gap in the low 32 bits of the e820
 623 * memory space.  We pass this space to PCI to assign MMIO resources
 624 * for hotplug or unconfigured devices in.
 
 
 625 * Hopefully the BIOS let enough space left.
 626 */
 627__init void e820_setup_gap(void)
 628{
 629	unsigned long gapstart, gapsize;
 630	int found;
 631
 632	gapstart = 0x10000000;
 633	gapsize = 0x400000;
 634	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 635
 
 636#ifdef CONFIG_X86_64
 637	if (!found) {
 638		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639		printk(KERN_ERR
 640	"e820: cannot find a gap in the 32bit address range\n"
 641	"e820: PCI devices with unassigned 32bit BARs may break!\n");
 
 
 
 642	}
 643#endif
 644
 645	/*
 646	 * e820_reserve_resources_late protect stolen RAM already
 647	 */
 648	pci_mem_start = gapstart;
 649
 650	printk(KERN_INFO
 651	       "e820: [mem %#010lx-%#010lx] available for PCI devices\n",
 652	       gapstart, gapstart + gapsize - 1);
 653}
 654
 655/**
 656 * Because of the size limitation of struct boot_params, only first
 657 * 128 E820 memory entries are passed to kernel via
 658 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 659 * linked list of struct setup_data, which is parsed here.
 
 
 
 
 
 
 660 */
 661void __init parse_e820_ext(struct setup_data *sdata)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662{
 663	int entries;
 664	struct e820entry *extmap;
 
 665
 666	entries = sdata->len / sizeof(struct e820entry);
 667	extmap = (struct e820entry *)(sdata->data);
 668	__append_e820_map(extmap, entries);
 669	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 670	printk(KERN_INFO "e820: extended physical RAM map:\n");
 671	e820_print_map("extended");
 
 
 
 
 
 
 
 672}
 673
 674#if defined(CONFIG_X86_64) || \
 675	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 676/**
 677 * Find the ranges of physical addresses that do not correspond to
 678 * e820 RAM areas and mark the corresponding pages as nosave for
 679 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 680 *
 681 * This function requires the e820 map to be sorted and without any
 682 * overlapping entries and assumes the first e820 area to be RAM.
 683 */
 684void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 685{
 686	int i;
 687	unsigned long pfn;
 
 
 
 
 
 
 
 
 688
 689	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
 690	for (i = 1; i < e820.nr_map; i++) {
 691		struct e820entry *ei = &e820.map[i];
 692
 693		if (pfn < PFN_UP(ei->addr))
 694			register_nosave_region(pfn, PFN_UP(ei->addr));
 695
 696		pfn = PFN_DOWN(ei->addr + ei->size);
 697		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 698			register_nosave_region(PFN_UP(ei->addr), pfn);
 699
 700		if (pfn >= limit_pfn)
 701			break;
 702	}
 703}
 704#endif
 705
 706#ifdef CONFIG_ACPI
 707/**
 708 * Mark ACPI NVS memory region, so that we can save/restore it during
 709 * hibernation and the subsequent resume.
 710 */
 711static int __init e820_mark_nvs_memory(void)
 712{
 713	int i;
 714
 715	for (i = 0; i < e820.nr_map; i++) {
 716		struct e820entry *ei = &e820.map[i];
 717
 718		if (ei->type == E820_NVS)
 719			acpi_nvs_register(ei->addr, ei->size);
 720	}
 721
 722	return 0;
 723}
 724core_initcall(e820_mark_nvs_memory);
 725#endif
 726
 727/*
 728 * pre allocated 4k and reserved it in memblock and e820_saved
 
 
 
 
 
 729 */
 730u64 __init early_reserve_e820(u64 size, u64 align)
 731{
 732	u64 addr;
 733
 734	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 735	if (addr) {
 736		e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
 737		printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
 738		update_e820_saved();
 739	}
 740
 741	return addr;
 742}
 743
 744#ifdef CONFIG_X86_32
 745# ifdef CONFIG_X86_PAE
 746#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 747# else
 748#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 749# endif
 750#else /* CONFIG_X86_32 */
 751# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 752#endif
 753
 754/*
 755 * Find the highest page frame number we have available
 756 */
 757static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
 758{
 759	int i;
 760	unsigned long last_pfn = 0;
 761	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 762
 763	for (i = 0; i < e820.nr_map; i++) {
 764		struct e820entry *ei = &e820.map[i];
 765		unsigned long start_pfn;
 766		unsigned long end_pfn;
 767
 768		if (ei->type != type)
 769			continue;
 770
 771		start_pfn = ei->addr >> PAGE_SHIFT;
 772		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
 773
 774		if (start_pfn >= limit_pfn)
 775			continue;
 776		if (end_pfn > limit_pfn) {
 777			last_pfn = limit_pfn;
 778			break;
 779		}
 780		if (end_pfn > last_pfn)
 781			last_pfn = end_pfn;
 782	}
 783
 784	if (last_pfn > max_arch_pfn)
 785		last_pfn = max_arch_pfn;
 786
 787	printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 788			 last_pfn, max_arch_pfn);
 789	return last_pfn;
 790}
 791unsigned long __init e820_end_of_ram_pfn(void)
 
 792{
 793	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
 794}
 795
 796unsigned long __init e820_end_of_low_ram_pfn(void)
 797{
 798	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
 799}
 800
 801static void early_panic(char *msg)
 802{
 803	early_printk(msg);
 804	panic(msg);
 805}
 806
 807static int userdef __initdata;
 808
 809/* "mem=nopentium" disables the 4MB page tables. */
 810static int __init parse_memopt(char *p)
 811{
 812	u64 mem_size;
 813
 814	if (!p)
 815		return -EINVAL;
 816
 817	if (!strcmp(p, "nopentium")) {
 818#ifdef CONFIG_X86_32
 819		setup_clear_cpu_cap(X86_FEATURE_PSE);
 820		return 0;
 821#else
 822		printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
 823		return -EINVAL;
 824#endif
 825	}
 826
 827	userdef = 1;
 828	mem_size = memparse(p, &p);
 829	/* don't remove all of memory when handling "mem={invalid}" param */
 
 830	if (mem_size == 0)
 831		return -EINVAL;
 832	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 833
 834	return 0;
 835}
 836early_param("mem", parse_memopt);
 837
 838static int __init parse_memmap_opt(char *p)
 839{
 840	char *oldp;
 841	u64 start_at, mem_size;
 842
 843	if (!p)
 844		return -EINVAL;
 845
 846	if (!strncmp(p, "exactmap", 8)) {
 847#ifdef CONFIG_CRASH_DUMP
 848		/*
 849		 * If we are doing a crash dump, we still need to know
 850		 * the real mem size before original memory map is
 851		 * reset.
 852		 */
 853		saved_max_pfn = e820_end_of_ram_pfn();
 854#endif
 855		e820.nr_map = 0;
 856		userdef = 1;
 857		return 0;
 858	}
 859
 860	oldp = p;
 861	mem_size = memparse(p, &p);
 862	if (p == oldp)
 863		return -EINVAL;
 864
 865	userdef = 1;
 866	if (*p == '@') {
 867		start_at = memparse(p+1, &p);
 868		e820_add_region(start_at, mem_size, E820_RAM);
 869	} else if (*p == '#') {
 870		start_at = memparse(p+1, &p);
 871		e820_add_region(start_at, mem_size, E820_ACPI);
 872	} else if (*p == '$') {
 873		start_at = memparse(p+1, &p);
 874		e820_add_region(start_at, mem_size, E820_RESERVED);
 875	} else
 876		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878	return *p == '\0' ? 0 : -EINVAL;
 879}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880early_param("memmap", parse_memmap_opt);
 881
 882void __init finish_e820_parsing(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883{
 884	if (userdef) {
 885		u32 nr = e820.nr_map;
 
 886
 887		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
 888			early_panic("Invalid user supplied memory map");
 889		e820.nr_map = nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891		printk(KERN_INFO "e820: user-defined physical RAM map:\n");
 892		e820_print_map("user");
 
 
 
 
 
 
 
 
 
 
 893	}
 894}
 895
 896static inline const char *e820_type_to_string(int e820_type)
 897{
 898	switch (e820_type) {
 899	case E820_RESERVED_KERN:
 900	case E820_RAM:	return "System RAM";
 901	case E820_ACPI:	return "ACPI Tables";
 902	case E820_NVS:	return "ACPI Non-volatile Storage";
 903	case E820_UNUSABLE:	return "Unusable memory";
 904	default:	return "reserved";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905	}
 906}
 907
 908/*
 909 * Mark e820 reserved areas as busy for the resource manager.
 910 */
 
 911static struct resource __initdata *e820_res;
 912void __init e820_reserve_resources(void)
 
 913{
 914	int i;
 915	struct resource *res;
 916	u64 end;
 917
 918	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
 919	e820_res = res;
 920	for (i = 0; i < e820.nr_map; i++) {
 921		end = e820.map[i].addr + e820.map[i].size - 1;
 
 
 
 922		if (end != (resource_size_t)end) {
 923			res++;
 924			continue;
 925		}
 926		res->name = e820_type_to_string(e820.map[i].type);
 927		res->start = e820.map[i].addr;
 928		res->end = end;
 929
 930		res->flags = IORESOURCE_MEM;
 931
 932		/*
 933		 * don't register the region that could be conflicted with
 934		 * pci device BAR resource and insert them later in
 935		 * pcibios_resource_survey()
 936		 */
 937		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
 938			res->flags |= IORESOURCE_BUSY;
 939			insert_resource(&iomem_resource, res);
 940		}
 941		res++;
 942	}
 943
 944	for (i = 0; i < e820_saved.nr_map; i++) {
 945		struct e820entry *entry = &e820_saved.map[i];
 946		firmware_map_add_early(entry->addr,
 947			entry->addr + entry->size - 1,
 948			e820_type_to_string(entry->type));
 949	}
 950}
 951
 952/* How much should we pad RAM ending depending on where it is? */
 953static unsigned long ram_alignment(resource_size_t pos)
 
 
 954{
 955	unsigned long mb = pos >> 20;
 956
 957	/* To 64kB in the first megabyte */
 958	if (!mb)
 959		return 64*1024;
 960
 961	/* To 1MB in the first 16MB */
 962	if (mb < 16)
 963		return 1024*1024;
 964
 965	/* To 64MB for anything above that */
 966	return 64*1024*1024;
 967}
 968
 969#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
 970
 971void __init e820_reserve_resources_late(void)
 972{
 973	int i;
 974	struct resource *res;
 975
 976	res = e820_res;
 977	for (i = 0; i < e820.nr_map; i++) {
 978		if (!res->parent && res->end)
 979			insert_resource_expand_to_fit(&iomem_resource, res);
 980		res++;
 981	}
 982
 983	/*
 984	 * Try to bump up RAM regions to reasonable boundaries to
 985	 * avoid stolen RAM:
 986	 */
 987	for (i = 0; i < e820.nr_map; i++) {
 988		struct e820entry *entry = &e820.map[i];
 989		u64 start, end;
 990
 991		if (entry->type != E820_RAM)
 992			continue;
 
 993		start = entry->addr + entry->size;
 994		end = round_up(start, ram_alignment(start)) - 1;
 995		if (end > MAX_RESOURCE_SIZE)
 996			end = MAX_RESOURCE_SIZE;
 997		if (start >= end)
 998			continue;
 999		printk(KERN_DEBUG
1000		       "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
1001		       start, end);
1002		reserve_region_with_split(&iomem_resource, start, end,
1003					  "RAM buffer");
1004	}
1005}
1006
1007char *__init default_machine_specific_memory_setup(void)
 
 
 
1008{
1009	char *who = "BIOS-e820";
1010	u32 new_nr;
1011	/*
1012	 * Try to copy the BIOS-supplied E820-map.
1013	 *
1014	 * Otherwise fake a memory map; one section from 0k->640k,
1015	 * the next section from 1mb->appropriate_mem_k
1016	 */
1017	new_nr = boot_params.e820_entries;
1018	sanitize_e820_map(boot_params.e820_map,
1019			ARRAY_SIZE(boot_params.e820_map),
1020			&new_nr);
1021	boot_params.e820_entries = new_nr;
1022	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1023	  < 0) {
1024		u64 mem_size;
1025
1026		/* compare results from other methods and take the greater */
1027		if (boot_params.alt_mem_k
1028		    < boot_params.screen_info.ext_mem_k) {
1029			mem_size = boot_params.screen_info.ext_mem_k;
1030			who = "BIOS-88";
1031		} else {
1032			mem_size = boot_params.alt_mem_k;
1033			who = "BIOS-e801";
1034		}
1035
1036		e820.nr_map = 0;
1037		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1038		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1039	}
1040
1041	/* In case someone cares... */
 
 
1042	return who;
1043}
1044
1045void __init setup_memory_map(void)
 
 
 
 
 
1046{
1047	char *who;
1048
 
 
 
1049	who = x86_init.resources.memory_setup();
1050	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1051	printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
1052	e820_print_map(who);
 
 
 
1053}
1054
1055void __init memblock_x86_fill(void)
1056{
1057	int i;
1058	u64 end;
1059
1060	/*
1061	 * EFI may have more than 128 entries
1062	 * We are safe to enable resizing, beause memblock_x86_fill()
1063	 * is rather later for x86
 
 
 
 
1064	 */
1065	memblock_allow_resize();
1066
1067	for (i = 0; i < e820.nr_map; i++) {
1068		struct e820entry *ei = &e820.map[i];
1069
1070		end = ei->addr + ei->size;
1071		if (end != (resource_size_t)end)
1072			continue;
1073
1074		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
1075			continue;
1076
1077		memblock_add(ei->addr, ei->size);
1078	}
1079
 
 
 
1080	memblock_dump_all();
1081}
1082
1083void __init memblock_find_dma_reserve(void)
1084{
1085#ifdef CONFIG_X86_64
1086	u64 nr_pages = 0, nr_free_pages = 0;
1087	unsigned long start_pfn, end_pfn;
1088	phys_addr_t start, end;
1089	int i;
1090	u64 u;
1091
1092	/*
1093	 * need to find out used area below MAX_DMA_PFN
1094	 * need to use memblock to get free size in [0, MAX_DMA_PFN]
1095	 * at first, and assume boot_mem will not take below MAX_DMA_PFN
1096	 */
1097	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1098		start_pfn = min_t(unsigned long, start_pfn, MAX_DMA_PFN);
1099		end_pfn = min_t(unsigned long, end_pfn, MAX_DMA_PFN);
1100		nr_pages += end_pfn - start_pfn;
1101	}
1102
1103	for_each_free_mem_range(u, MAX_NUMNODES, &start, &end, NULL) {
1104		start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
1105		end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
1106		if (start_pfn < end_pfn)
1107			nr_free_pages += end_pfn - start_pfn;
1108	}
1109
1110	set_dma_reserve(nr_pages - nr_free_pages);
1111#endif
1112}