Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <asm/nmi.h>
  28#include <asm/pcr.h>
 
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Two classes of sparc64 chips currently exist.  All of which have
  35 * 32-bit counters which can generate overflow interrupts on the
  36 * transition from 0xffffffff to 0.
  37 *
  38 * All chips upto and including SPARC-T3 have two performance
  39 * counters.  The two 32-bit counters are accessed in one go using a
  40 * single 64-bit register.
 
 
  41 *
  42 * On these older chips both counters are controlled using a single
  43 * control register.  The only way to stop all sampling is to clear
  44 * all of the context (user, supervisor, hypervisor) sampling enable
  45 * bits.  But these bits apply to both counters, thus the two counters
  46 * can't be enabled/disabled individually.
  47 *
  48 * Furthermore, the control register on these older chips have two
  49 * event fields, one for each of the two counters.  It's thus nearly
  50 * impossible to have one counter going while keeping the other one
  51 * stopped.  Therefore it is possible to get overflow interrupts for
  52 * counters not currently "in use" and that condition must be checked
  53 * in the overflow interrupt handler.
  54 *
  55 * So we use a hack, in that we program inactive counters with the
  56 * "sw_count0" and "sw_count1" events.  These count how many times
  57 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  58 * unusual way to encode a NOP and therefore will not trigger in
  59 * normal code.
  60 *
  61 * Starting with SPARC-T4 we have one control register per counter.
  62 * And the counters are stored in individual registers.  The registers
  63 * for the counters are 64-bit but only a 32-bit counter is
  64 * implemented.  The event selections on SPARC-T4 lack any
  65 * restrictions, therefore we can elide all of the complicated
  66 * conflict resolution code we have for SPARC-T3 and earlier chips.
  67 */
  68
  69#define MAX_HWEVENTS			4
  70#define MAX_PCRS			4
  71#define MAX_PERIOD			((1UL << 32) - 1)
  72
  73#define PIC_UPPER_INDEX			0
  74#define PIC_LOWER_INDEX			1
  75#define PIC_NO_INDEX			-1
  76
  77struct cpu_hw_events {
  78	/* Number of events currently scheduled onto this cpu.
  79	 * This tells how many entries in the arrays below
  80	 * are valid.
  81	 */
  82	int			n_events;
  83
  84	/* Number of new events added since the last hw_perf_disable().
  85	 * This works because the perf event layer always adds new
  86	 * events inside of a perf_{disable,enable}() sequence.
  87	 */
  88	int			n_added;
  89
  90	/* Array of events current scheduled on this cpu.  */
  91	struct perf_event	*event[MAX_HWEVENTS];
  92
  93	/* Array of encoded longs, specifying the %pcr register
  94	 * encoding and the mask of PIC counters this even can
  95	 * be scheduled on.  See perf_event_encode() et al.
  96	 */
  97	unsigned long		events[MAX_HWEVENTS];
  98
  99	/* The current counter index assigned to an event.  When the
 100	 * event hasn't been programmed into the cpu yet, this will
 101	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 102	 * we ought to schedule the event.
 103	 */
 104	int			current_idx[MAX_HWEVENTS];
 105
 106	/* Software copy of %pcr register(s) on this cpu.  */
 107	u64			pcr[MAX_HWEVENTS];
 108
 109	/* Enabled/disable state.  */
 110	int			enabled;
 111
 112	unsigned int		txn_flags;
 113};
 114static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 115
 116/* An event map describes the characteristics of a performance
 117 * counter event.  In particular it gives the encoding as well as
 118 * a mask telling which counters the event can be measured on.
 119 *
 120 * The mask is unused on SPARC-T4 and later.
 121 */
 122struct perf_event_map {
 123	u16	encoding;
 124	u8	pic_mask;
 125#define PIC_NONE	0x00
 126#define PIC_UPPER	0x01
 127#define PIC_LOWER	0x02
 128};
 129
 130/* Encode a perf_event_map entry into a long.  */
 131static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 132{
 133	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 134}
 135
 136static u8 perf_event_get_msk(unsigned long val)
 137{
 138	return val & 0xff;
 139}
 140
 141static u64 perf_event_get_enc(unsigned long val)
 142{
 143	return val >> 16;
 144}
 145
 146#define C(x) PERF_COUNT_HW_CACHE_##x
 147
 148#define CACHE_OP_UNSUPPORTED	0xfffe
 149#define CACHE_OP_NONSENSE	0xffff
 150
 151typedef struct perf_event_map cache_map_t
 152				[PERF_COUNT_HW_CACHE_MAX]
 153				[PERF_COUNT_HW_CACHE_OP_MAX]
 154				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 155
 156struct sparc_pmu {
 157	const struct perf_event_map	*(*event_map)(int);
 158	const cache_map_t		*cache_map;
 159	int				max_events;
 160	u32				(*read_pmc)(int);
 161	void				(*write_pmc)(int, u64);
 162	int				upper_shift;
 163	int				lower_shift;
 164	int				event_mask;
 165	int				user_bit;
 166	int				priv_bit;
 167	int				hv_bit;
 168	int				irq_bit;
 169	int				upper_nop;
 170	int				lower_nop;
 171	unsigned int			flags;
 172#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 173#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 174	int				max_hw_events;
 175	int				num_pcrs;
 176	int				num_pic_regs;
 177};
 178
 179static u32 sparc_default_read_pmc(int idx)
 180{
 181	u64 val;
 182
 183	val = pcr_ops->read_pic(0);
 184	if (idx == PIC_UPPER_INDEX)
 185		val >>= 32;
 186
 187	return val & 0xffffffff;
 188}
 189
 190static void sparc_default_write_pmc(int idx, u64 val)
 191{
 192	u64 shift, mask, pic;
 193
 194	shift = 0;
 195	if (idx == PIC_UPPER_INDEX)
 196		shift = 32;
 197
 198	mask = ((u64) 0xffffffff) << shift;
 199	val <<= shift;
 200
 201	pic = pcr_ops->read_pic(0);
 202	pic &= ~mask;
 203	pic |= val;
 204	pcr_ops->write_pic(0, pic);
 205}
 206
 207static const struct perf_event_map ultra3_perfmon_event_map[] = {
 208	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 212};
 213
 214static const struct perf_event_map *ultra3_event_map(int event_id)
 215{
 216	return &ultra3_perfmon_event_map[event_id];
 217}
 218
 219static const cache_map_t ultra3_cache_map = {
 220[C(L1D)] = {
 221	[C(OP_READ)] = {
 222		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 223		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 224	},
 225	[C(OP_WRITE)] = {
 226		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 227		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 228	},
 229	[C(OP_PREFETCH)] = {
 230		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 231		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 232	},
 233},
 234[C(L1I)] = {
 235	[C(OP_READ)] = {
 236		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 237		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 238	},
 239	[ C(OP_WRITE) ] = {
 240		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 241		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 242	},
 243	[ C(OP_PREFETCH) ] = {
 244		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 245		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 246	},
 247},
 248[C(LL)] = {
 249	[C(OP_READ)] = {
 250		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 251		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 252	},
 253	[C(OP_WRITE)] = {
 254		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 255		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 256	},
 257	[C(OP_PREFETCH)] = {
 258		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 259		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 260	},
 261},
 262[C(DTLB)] = {
 263	[C(OP_READ)] = {
 264		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 265		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 266	},
 267	[ C(OP_WRITE) ] = {
 268		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 269		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 270	},
 271	[ C(OP_PREFETCH) ] = {
 272		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 273		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 274	},
 275},
 276[C(ITLB)] = {
 277	[C(OP_READ)] = {
 278		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 279		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 280	},
 281	[ C(OP_WRITE) ] = {
 282		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 283		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 284	},
 285	[ C(OP_PREFETCH) ] = {
 286		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 287		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 288	},
 289},
 290[C(BPU)] = {
 291	[C(OP_READ)] = {
 292		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 293		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 294	},
 295	[ C(OP_WRITE) ] = {
 296		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 297		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 298	},
 299	[ C(OP_PREFETCH) ] = {
 300		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 301		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 302	},
 303},
 304[C(NODE)] = {
 305	[C(OP_READ)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 308	},
 309	[ C(OP_WRITE) ] = {
 310		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 311		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 312	},
 313	[ C(OP_PREFETCH) ] = {
 314		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 315		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 316	},
 317},
 318};
 319
 320static const struct sparc_pmu ultra3_pmu = {
 321	.event_map	= ultra3_event_map,
 322	.cache_map	= &ultra3_cache_map,
 323	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 324	.read_pmc	= sparc_default_read_pmc,
 325	.write_pmc	= sparc_default_write_pmc,
 326	.upper_shift	= 11,
 327	.lower_shift	= 4,
 328	.event_mask	= 0x3f,
 329	.user_bit	= PCR_UTRACE,
 330	.priv_bit	= PCR_STRACE,
 331	.upper_nop	= 0x1c,
 332	.lower_nop	= 0x14,
 333	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 334			   SPARC_PMU_HAS_CONFLICTS),
 335	.max_hw_events	= 2,
 336	.num_pcrs	= 1,
 337	.num_pic_regs	= 1,
 338};
 339
 340/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 341 * only instructions, so it is free running which creates all kinds of
 342 * problems.  Some hardware designs make one wonder if the creator
 343 * even looked at how this stuff gets used by software.
 344 */
 345static const struct perf_event_map niagara1_perfmon_event_map[] = {
 346	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 349	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 350};
 351
 352static const struct perf_event_map *niagara1_event_map(int event_id)
 353{
 354	return &niagara1_perfmon_event_map[event_id];
 355}
 356
 357static const cache_map_t niagara1_cache_map = {
 358[C(L1D)] = {
 359	[C(OP_READ)] = {
 360		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 361		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 362	},
 363	[C(OP_WRITE)] = {
 364		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 365		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 366	},
 367	[C(OP_PREFETCH)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371},
 372[C(L1I)] = {
 373	[C(OP_READ)] = {
 374		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 375		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 376	},
 377	[ C(OP_WRITE) ] = {
 378		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 379		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 380	},
 381	[ C(OP_PREFETCH) ] = {
 382		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 383		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385},
 386[C(LL)] = {
 387	[C(OP_READ)] = {
 388		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 389		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 390	},
 391	[C(OP_WRITE)] = {
 392		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 393		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 394	},
 395	[C(OP_PREFETCH)] = {
 396		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 397		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 398	},
 399},
 400[C(DTLB)] = {
 401	[C(OP_READ)] = {
 402		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 403		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 404	},
 405	[ C(OP_WRITE) ] = {
 406		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 407		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 408	},
 409	[ C(OP_PREFETCH) ] = {
 410		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 411		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 412	},
 413},
 414[C(ITLB)] = {
 415	[C(OP_READ)] = {
 416		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 417		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 418	},
 419	[ C(OP_WRITE) ] = {
 420		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 421		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 422	},
 423	[ C(OP_PREFETCH) ] = {
 424		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 425		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 426	},
 427},
 428[C(BPU)] = {
 429	[C(OP_READ)] = {
 430		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432	},
 433	[ C(OP_WRITE) ] = {
 434		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 435		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 436	},
 437	[ C(OP_PREFETCH) ] = {
 438		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 439		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 440	},
 441},
 442[C(NODE)] = {
 443	[C(OP_READ)] = {
 444		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 445		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 446	},
 447	[ C(OP_WRITE) ] = {
 448		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 449		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 450	},
 451	[ C(OP_PREFETCH) ] = {
 452		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 453		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 454	},
 455},
 456};
 457
 458static const struct sparc_pmu niagara1_pmu = {
 459	.event_map	= niagara1_event_map,
 460	.cache_map	= &niagara1_cache_map,
 461	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 462	.read_pmc	= sparc_default_read_pmc,
 463	.write_pmc	= sparc_default_write_pmc,
 464	.upper_shift	= 0,
 465	.lower_shift	= 4,
 466	.event_mask	= 0x7,
 467	.user_bit	= PCR_UTRACE,
 468	.priv_bit	= PCR_STRACE,
 469	.upper_nop	= 0x0,
 470	.lower_nop	= 0x0,
 471	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 472			   SPARC_PMU_HAS_CONFLICTS),
 473	.max_hw_events	= 2,
 474	.num_pcrs	= 1,
 475	.num_pic_regs	= 1,
 476};
 477
 478static const struct perf_event_map niagara2_perfmon_event_map[] = {
 479	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 485};
 486
 487static const struct perf_event_map *niagara2_event_map(int event_id)
 488{
 489	return &niagara2_perfmon_event_map[event_id];
 490}
 491
 492static const cache_map_t niagara2_cache_map = {
 493[C(L1D)] = {
 494	[C(OP_READ)] = {
 495		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 496		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 497	},
 498	[C(OP_WRITE)] = {
 499		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 500		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 501	},
 502	[C(OP_PREFETCH)] = {
 503		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 504		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 505	},
 506},
 507[C(L1I)] = {
 508	[C(OP_READ)] = {
 509		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 510		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 511	},
 512	[ C(OP_WRITE) ] = {
 513		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 514		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 515	},
 516	[ C(OP_PREFETCH) ] = {
 517		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 518		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 519	},
 520},
 521[C(LL)] = {
 522	[C(OP_READ)] = {
 523		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 524		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 525	},
 526	[C(OP_WRITE)] = {
 527		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 528		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 529	},
 530	[C(OP_PREFETCH)] = {
 531		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 532		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 533	},
 534},
 535[C(DTLB)] = {
 536	[C(OP_READ)] = {
 537		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 538		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 539	},
 540	[ C(OP_WRITE) ] = {
 541		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 542		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 543	},
 544	[ C(OP_PREFETCH) ] = {
 545		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 546		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 547	},
 548},
 549[C(ITLB)] = {
 550	[C(OP_READ)] = {
 551		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 552		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 553	},
 554	[ C(OP_WRITE) ] = {
 555		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 556		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 557	},
 558	[ C(OP_PREFETCH) ] = {
 559		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 560		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 561	},
 562},
 563[C(BPU)] = {
 564	[C(OP_READ)] = {
 565		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 566		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 567	},
 568	[ C(OP_WRITE) ] = {
 569		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 570		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 571	},
 572	[ C(OP_PREFETCH) ] = {
 573		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 574		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 575	},
 576},
 577[C(NODE)] = {
 578	[C(OP_READ)] = {
 579		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 580		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 581	},
 582	[ C(OP_WRITE) ] = {
 583		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 584		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 585	},
 586	[ C(OP_PREFETCH) ] = {
 587		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 588		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 589	},
 590},
 591};
 592
 593static const struct sparc_pmu niagara2_pmu = {
 594	.event_map	= niagara2_event_map,
 595	.cache_map	= &niagara2_cache_map,
 596	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 597	.read_pmc	= sparc_default_read_pmc,
 598	.write_pmc	= sparc_default_write_pmc,
 599	.upper_shift	= 19,
 600	.lower_shift	= 6,
 601	.event_mask	= 0xfff,
 602	.user_bit	= PCR_UTRACE,
 603	.priv_bit	= PCR_STRACE,
 604	.hv_bit		= PCR_N2_HTRACE,
 605	.irq_bit	= 0x30,
 606	.upper_nop	= 0x220,
 607	.lower_nop	= 0x220,
 608	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 609			   SPARC_PMU_HAS_CONFLICTS),
 610	.max_hw_events	= 2,
 611	.num_pcrs	= 1,
 612	.num_pic_regs	= 1,
 613};
 614
 615static const struct perf_event_map niagara4_perfmon_event_map[] = {
 616	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 617	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 618	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 619	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 620	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 621	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 622};
 623
 624static const struct perf_event_map *niagara4_event_map(int event_id)
 625{
 626	return &niagara4_perfmon_event_map[event_id];
 627}
 628
 629static const cache_map_t niagara4_cache_map = {
 630[C(L1D)] = {
 631	[C(OP_READ)] = {
 632		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 633		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 634	},
 635	[C(OP_WRITE)] = {
 636		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 637		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 638	},
 639	[C(OP_PREFETCH)] = {
 640		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 641		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 642	},
 643},
 644[C(L1I)] = {
 645	[C(OP_READ)] = {
 646		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 647		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 648	},
 649	[ C(OP_WRITE) ] = {
 650		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 651		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 652	},
 653	[ C(OP_PREFETCH) ] = {
 654		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 655		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 656	},
 657},
 658[C(LL)] = {
 659	[C(OP_READ)] = {
 660		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 661		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 662	},
 663	[C(OP_WRITE)] = {
 664		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 665		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 666	},
 667	[C(OP_PREFETCH)] = {
 668		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 669		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 670	},
 671},
 672[C(DTLB)] = {
 673	[C(OP_READ)] = {
 674		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 675		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 676	},
 677	[ C(OP_WRITE) ] = {
 678		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 679		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 680	},
 681	[ C(OP_PREFETCH) ] = {
 682		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 683		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 684	},
 685},
 686[C(ITLB)] = {
 687	[C(OP_READ)] = {
 688		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 689		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 690	},
 691	[ C(OP_WRITE) ] = {
 692		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 693		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 694	},
 695	[ C(OP_PREFETCH) ] = {
 696		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 697		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 698	},
 699},
 700[C(BPU)] = {
 701	[C(OP_READ)] = {
 702		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 703		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 704	},
 705	[ C(OP_WRITE) ] = {
 706		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 707		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 708	},
 709	[ C(OP_PREFETCH) ] = {
 710		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 711		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 712	},
 713},
 714[C(NODE)] = {
 715	[C(OP_READ)] = {
 716		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 717		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 718	},
 719	[ C(OP_WRITE) ] = {
 720		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 721		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 722	},
 723	[ C(OP_PREFETCH) ] = {
 724		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 725		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 726	},
 727},
 728};
 729
 730static u32 sparc_vt_read_pmc(int idx)
 731{
 732	u64 val = pcr_ops->read_pic(idx);
 733
 734	return val & 0xffffffff;
 735}
 736
 737static void sparc_vt_write_pmc(int idx, u64 val)
 738{
 739	u64 pcr;
 740
 741	pcr = pcr_ops->read_pcr(idx);
 742	/* ensure ov and ntc are reset */
 743	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 744
 745	pcr_ops->write_pic(idx, val & 0xffffffff);
 746
 747	pcr_ops->write_pcr(idx, pcr);
 748}
 749
 750static const struct sparc_pmu niagara4_pmu = {
 751	.event_map	= niagara4_event_map,
 752	.cache_map	= &niagara4_cache_map,
 753	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 754	.read_pmc	= sparc_vt_read_pmc,
 755	.write_pmc	= sparc_vt_write_pmc,
 756	.upper_shift	= 5,
 757	.lower_shift	= 5,
 758	.event_mask	= 0x7ff,
 759	.user_bit	= PCR_N4_UTRACE,
 760	.priv_bit	= PCR_N4_STRACE,
 761
 762	/* We explicitly don't support hypervisor tracing.  The T4
 763	 * generates the overflow event for precise events via a trap
 764	 * which will not be generated (ie. it's completely lost) if
 765	 * we happen to be in the hypervisor when the event triggers.
 766	 * Essentially, the overflow event reporting is completely
 767	 * unusable when you have hypervisor mode tracing enabled.
 768	 */
 769	.hv_bit		= 0,
 770
 771	.irq_bit	= PCR_N4_TOE,
 772	.upper_nop	= 0,
 773	.lower_nop	= 0,
 774	.flags		= 0,
 775	.max_hw_events	= 4,
 776	.num_pcrs	= 4,
 777	.num_pic_regs	= 4,
 778};
 779
 780static const struct sparc_pmu sparc_m7_pmu = {
 781	.event_map	= niagara4_event_map,
 782	.cache_map	= &niagara4_cache_map,
 783	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 784	.read_pmc	= sparc_vt_read_pmc,
 785	.write_pmc	= sparc_vt_write_pmc,
 786	.upper_shift	= 5,
 787	.lower_shift	= 5,
 788	.event_mask	= 0x7ff,
 789	.user_bit	= PCR_N4_UTRACE,
 790	.priv_bit	= PCR_N4_STRACE,
 791
 792	/* We explicitly don't support hypervisor tracing. */
 793	.hv_bit		= 0,
 794
 795	.irq_bit	= PCR_N4_TOE,
 796	.upper_nop	= 0,
 797	.lower_nop	= 0,
 798	.flags		= 0,
 799	.max_hw_events	= 4,
 800	.num_pcrs	= 4,
 801	.num_pic_regs	= 4,
 802};
 803static const struct sparc_pmu *sparc_pmu __read_mostly;
 804
 805static u64 event_encoding(u64 event_id, int idx)
 806{
 807	if (idx == PIC_UPPER_INDEX)
 808		event_id <<= sparc_pmu->upper_shift;
 809	else
 810		event_id <<= sparc_pmu->lower_shift;
 811	return event_id;
 812}
 813
 814static u64 mask_for_index(int idx)
 815{
 816	return event_encoding(sparc_pmu->event_mask, idx);
 817}
 818
 819static u64 nop_for_index(int idx)
 820{
 821	return event_encoding(idx == PIC_UPPER_INDEX ?
 822			      sparc_pmu->upper_nop :
 823			      sparc_pmu->lower_nop, idx);
 824}
 825
 826static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 827{
 828	u64 enc, val, mask = mask_for_index(idx);
 829	int pcr_index = 0;
 830
 831	if (sparc_pmu->num_pcrs > 1)
 832		pcr_index = idx;
 833
 834	enc = perf_event_get_enc(cpuc->events[idx]);
 835
 836	val = cpuc->pcr[pcr_index];
 837	val &= ~mask;
 838	val |= event_encoding(enc, idx);
 839	cpuc->pcr[pcr_index] = val;
 840
 841	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 842}
 843
 844static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 845{
 846	u64 mask = mask_for_index(idx);
 847	u64 nop = nop_for_index(idx);
 848	int pcr_index = 0;
 849	u64 val;
 850
 851	if (sparc_pmu->num_pcrs > 1)
 852		pcr_index = idx;
 853
 854	val = cpuc->pcr[pcr_index];
 855	val &= ~mask;
 856	val |= nop;
 857	cpuc->pcr[pcr_index] = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 
 
 
 
 
 
 
 
 
 
 860}
 861
 862static u64 sparc_perf_event_update(struct perf_event *event,
 863				   struct hw_perf_event *hwc, int idx)
 864{
 865	int shift = 64 - 32;
 866	u64 prev_raw_count, new_raw_count;
 867	s64 delta;
 868
 869again:
 870	prev_raw_count = local64_read(&hwc->prev_count);
 871	new_raw_count = sparc_pmu->read_pmc(idx);
 872
 873	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 874			     new_raw_count) != prev_raw_count)
 875		goto again;
 876
 877	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 878	delta >>= shift;
 879
 880	local64_add(delta, &event->count);
 881	local64_sub(delta, &hwc->period_left);
 882
 883	return new_raw_count;
 884}
 885
 886static int sparc_perf_event_set_period(struct perf_event *event,
 887				       struct hw_perf_event *hwc, int idx)
 888{
 889	s64 left = local64_read(&hwc->period_left);
 890	s64 period = hwc->sample_period;
 891	int ret = 0;
 892
 893	if (unlikely(left <= -period)) {
 894		left = period;
 895		local64_set(&hwc->period_left, left);
 896		hwc->last_period = period;
 897		ret = 1;
 898	}
 899
 900	if (unlikely(left <= 0)) {
 901		left += period;
 902		local64_set(&hwc->period_left, left);
 903		hwc->last_period = period;
 904		ret = 1;
 905	}
 906	if (left > MAX_PERIOD)
 907		left = MAX_PERIOD;
 908
 909	local64_set(&hwc->prev_count, (u64)-left);
 910
 911	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 912
 913	perf_event_update_userpage(event);
 914
 915	return ret;
 916}
 917
 918static void read_in_all_counters(struct cpu_hw_events *cpuc)
 
 
 
 
 919{
 920	int i;
 921
 
 
 
 
 922	for (i = 0; i < cpuc->n_events; i++) {
 923		struct perf_event *cp = cpuc->event[i];
 924
 925		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 926		    cpuc->current_idx[i] != cp->hw.idx) {
 927			sparc_perf_event_update(cp, &cp->hw,
 928						cpuc->current_idx[i]);
 929			cpuc->current_idx[i] = PIC_NO_INDEX;
 930		}
 931	}
 932}
 933
 934/* On this PMU all PICs are programmed using a single PCR.  Calculate
 935 * the combined control register value.
 936 *
 937 * For such chips we require that all of the events have the same
 938 * configuration, so just fetch the settings from the first entry.
 939 */
 940static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 941{
 942	int i;
 943
 944	if (!cpuc->n_added)
 945		goto out;
 946
 947	/* Assign to counters all unassigned events.  */
 948	for (i = 0; i < cpuc->n_events; i++) {
 949		struct perf_event *cp = cpuc->event[i];
 950		struct hw_perf_event *hwc = &cp->hw;
 951		int idx = hwc->idx;
 952		u64 enc;
 953
 954		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 955			continue;
 956
 957		sparc_perf_event_set_period(cp, hwc, idx);
 958		cpuc->current_idx[i] = idx;
 959
 960		enc = perf_event_get_enc(cpuc->events[i]);
 961		cpuc->pcr[0] &= ~mask_for_index(idx);
 962		if (hwc->state & PERF_HES_STOPPED)
 963			cpuc->pcr[0] |= nop_for_index(idx);
 964		else
 965			cpuc->pcr[0] |= event_encoding(enc, idx);
 966	}
 967out:
 968	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 969}
 970
 971static void sparc_pmu_start(struct perf_event *event, int flags);
 972
 973/* On this PMU each PIC has it's own PCR control register.  */
 974static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 975{
 976	int i;
 977
 978	if (!cpuc->n_added)
 979		goto out;
 980
 981	for (i = 0; i < cpuc->n_events; i++) {
 982		struct perf_event *cp = cpuc->event[i];
 983		struct hw_perf_event *hwc = &cp->hw;
 984		int idx = hwc->idx;
 985
 986		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 987			continue;
 988
 989		cpuc->current_idx[i] = idx;
 990
 991		sparc_pmu_start(cp, PERF_EF_RELOAD);
 992	}
 993out:
 994	for (i = 0; i < cpuc->n_events; i++) {
 995		struct perf_event *cp = cpuc->event[i];
 996		int idx = cp->hw.idx;
 997
 998		cpuc->pcr[idx] |= cp->hw.config_base;
 999	}
1000}
1001
1002/* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1004 */
1005static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006{
1007	if (cpuc->n_added)
1008		read_in_all_counters(cpuc);
1009
1010	if (sparc_pmu->num_pcrs == 1) {
1011		calculate_single_pcr(cpuc);
1012	} else {
1013		calculate_multiple_pcrs(cpuc);
1014	}
1015}
1016
1017static void sparc_pmu_enable(struct pmu *pmu)
1018{
1019	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020	int i;
1021
1022	if (cpuc->enabled)
1023		return;
1024
1025	cpuc->enabled = 1;
1026	barrier();
1027
1028	if (cpuc->n_events)
1029		update_pcrs_for_enable(cpuc);
 
 
 
1030
1031	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032		pcr_ops->write_pcr(i, cpuc->pcr[i]);
 
 
 
 
 
 
1033}
1034
1035static void sparc_pmu_disable(struct pmu *pmu)
1036{
1037	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038	int i;
1039
1040	if (!cpuc->enabled)
1041		return;
1042
1043	cpuc->enabled = 0;
1044	cpuc->n_added = 0;
1045
1046	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047		u64 val = cpuc->pcr[i];
 
 
1048
1049		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051		cpuc->pcr[i] = val;
1052		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053	}
1054}
1055
1056static int active_event_index(struct cpu_hw_events *cpuc,
1057			      struct perf_event *event)
1058{
1059	int i;
1060
1061	for (i = 0; i < cpuc->n_events; i++) {
1062		if (cpuc->event[i] == event)
1063			break;
1064	}
1065	BUG_ON(i == cpuc->n_events);
1066	return cpuc->current_idx[i];
1067}
1068
1069static void sparc_pmu_start(struct perf_event *event, int flags)
1070{
1071	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072	int idx = active_event_index(cpuc, event);
1073
1074	if (flags & PERF_EF_RELOAD) {
1075		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076		sparc_perf_event_set_period(event, &event->hw, idx);
1077	}
1078
1079	event->hw.state = 0;
1080
1081	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1082}
1083
1084static void sparc_pmu_stop(struct perf_event *event, int flags)
1085{
1086	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087	int idx = active_event_index(cpuc, event);
1088
1089	if (!(event->hw.state & PERF_HES_STOPPED)) {
1090		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091		event->hw.state |= PERF_HES_STOPPED;
1092	}
1093
1094	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095		sparc_perf_event_update(event, &event->hw, idx);
1096		event->hw.state |= PERF_HES_UPTODATE;
1097	}
1098}
1099
1100static void sparc_pmu_del(struct perf_event *event, int _flags)
1101{
1102	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103	unsigned long flags;
1104	int i;
1105
1106	local_irq_save(flags);
 
1107
1108	for (i = 0; i < cpuc->n_events; i++) {
1109		if (event == cpuc->event[i]) {
1110			/* Absorb the final count and turn off the
1111			 * event.
1112			 */
1113			sparc_pmu_stop(event, PERF_EF_UPDATE);
1114
1115			/* Shift remaining entries down into
1116			 * the existing slot.
1117			 */
1118			while (++i < cpuc->n_events) {
1119				cpuc->event[i - 1] = cpuc->event[i];
1120				cpuc->events[i - 1] = cpuc->events[i];
1121				cpuc->current_idx[i - 1] =
1122					cpuc->current_idx[i];
1123			}
1124
1125			perf_event_update_userpage(event);
1126
1127			cpuc->n_events--;
1128			break;
1129		}
1130	}
1131
 
1132	local_irq_restore(flags);
1133}
1134
1135static void sparc_pmu_read(struct perf_event *event)
1136{
1137	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138	int idx = active_event_index(cpuc, event);
1139	struct hw_perf_event *hwc = &event->hw;
1140
1141	sparc_perf_event_update(event, hwc, idx);
1142}
1143
1144static atomic_t active_events = ATOMIC_INIT(0);
1145static DEFINE_MUTEX(pmc_grab_mutex);
1146
1147static void perf_stop_nmi_watchdog(void *unused)
1148{
1149	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150	int i;
1151
1152	stop_nmi_watchdog(NULL);
1153	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155}
1156
1157static void perf_event_grab_pmc(void)
1158{
1159	if (atomic_inc_not_zero(&active_events))
1160		return;
1161
1162	mutex_lock(&pmc_grab_mutex);
1163	if (atomic_read(&active_events) == 0) {
1164		if (atomic_read(&nmi_active) > 0) {
1165			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166			BUG_ON(atomic_read(&nmi_active) != 0);
1167		}
1168		atomic_inc(&active_events);
1169	}
1170	mutex_unlock(&pmc_grab_mutex);
1171}
1172
1173static void perf_event_release_pmc(void)
1174{
1175	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176		if (atomic_read(&nmi_active) == 0)
1177			on_each_cpu(start_nmi_watchdog, NULL, 1);
1178		mutex_unlock(&pmc_grab_mutex);
1179	}
1180}
1181
1182static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183{
1184	unsigned int cache_type, cache_op, cache_result;
1185	const struct perf_event_map *pmap;
1186
1187	if (!sparc_pmu->cache_map)
1188		return ERR_PTR(-ENOENT);
1189
1190	cache_type = (config >>  0) & 0xff;
1191	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192		return ERR_PTR(-EINVAL);
1193
1194	cache_op = (config >>  8) & 0xff;
1195	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196		return ERR_PTR(-EINVAL);
1197
1198	cache_result = (config >> 16) & 0xff;
1199	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200		return ERR_PTR(-EINVAL);
1201
1202	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203
1204	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205		return ERR_PTR(-ENOENT);
1206
1207	if (pmap->encoding == CACHE_OP_NONSENSE)
1208		return ERR_PTR(-EINVAL);
1209
1210	return pmap;
1211}
1212
1213static void hw_perf_event_destroy(struct perf_event *event)
1214{
1215	perf_event_release_pmc();
1216}
1217
1218/* Make sure all events can be scheduled into the hardware at
1219 * the same time.  This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1221 *
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success.  These are pending indexes.  When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1227 */
1228static int sparc_check_constraints(struct perf_event **evts,
1229				   unsigned long *events, int n_ev)
1230{
1231	u8 msk0 = 0, msk1 = 0;
1232	int idx0 = 0;
1233
1234	/* This case is possible when we are invoked from
1235	 * hw_perf_group_sched_in().
1236	 */
1237	if (!n_ev)
1238		return 0;
1239
1240	if (n_ev > sparc_pmu->max_hw_events)
1241		return -1;
1242
1243	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244		int i;
1245
1246		for (i = 0; i < n_ev; i++)
1247			evts[i]->hw.idx = i;
1248		return 0;
1249	}
1250
1251	msk0 = perf_event_get_msk(events[0]);
1252	if (n_ev == 1) {
1253		if (msk0 & PIC_LOWER)
1254			idx0 = 1;
1255		goto success;
1256	}
1257	BUG_ON(n_ev != 2);
1258	msk1 = perf_event_get_msk(events[1]);
1259
1260	/* If both events can go on any counter, OK.  */
1261	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262	    msk1 == (PIC_UPPER | PIC_LOWER))
1263		goto success;
1264
1265	/* If one event is limited to a specific counter,
1266	 * and the other can go on both, OK.
1267	 */
1268	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1270		if (msk0 & PIC_LOWER)
1271			idx0 = 1;
1272		goto success;
1273	}
1274
1275	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1277		if (msk1 & PIC_UPPER)
1278			idx0 = 1;
1279		goto success;
1280	}
1281
1282	/* If the events are fixed to different counters, OK.  */
1283	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285		if (msk0 & PIC_LOWER)
1286			idx0 = 1;
1287		goto success;
1288	}
1289
1290	/* Otherwise, there is a conflict.  */
1291	return -1;
1292
1293success:
1294	evts[0]->hw.idx = idx0;
1295	if (n_ev == 2)
1296		evts[1]->hw.idx = idx0 ^ 1;
1297	return 0;
1298}
1299
1300static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301{
1302	int eu = 0, ek = 0, eh = 0;
1303	struct perf_event *event;
1304	int i, n, first;
1305
1306	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307		return 0;
1308
1309	n = n_prev + n_new;
1310	if (n <= 1)
1311		return 0;
1312
1313	first = 1;
1314	for (i = 0; i < n; i++) {
1315		event = evts[i];
1316		if (first) {
1317			eu = event->attr.exclude_user;
1318			ek = event->attr.exclude_kernel;
1319			eh = event->attr.exclude_hv;
1320			first = 0;
1321		} else if (event->attr.exclude_user != eu ||
1322			   event->attr.exclude_kernel != ek ||
1323			   event->attr.exclude_hv != eh) {
1324			return -EAGAIN;
1325		}
1326	}
1327
1328	return 0;
1329}
1330
1331static int collect_events(struct perf_event *group, int max_count,
1332			  struct perf_event *evts[], unsigned long *events,
1333			  int *current_idx)
1334{
1335	struct perf_event *event;
1336	int n = 0;
1337
1338	if (!is_software_event(group)) {
1339		if (n >= max_count)
1340			return -1;
1341		evts[n] = group;
1342		events[n] = group->hw.event_base;
1343		current_idx[n++] = PIC_NO_INDEX;
1344	}
1345	for_each_sibling_event(event, group) {
1346		if (!is_software_event(event) &&
1347		    event->state != PERF_EVENT_STATE_OFF) {
1348			if (n >= max_count)
1349				return -1;
1350			evts[n] = event;
1351			events[n] = event->hw.event_base;
1352			current_idx[n++] = PIC_NO_INDEX;
1353		}
1354	}
1355	return n;
1356}
1357
1358static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359{
1360	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361	int n0, ret = -EAGAIN;
1362	unsigned long flags;
1363
1364	local_irq_save(flags);
 
1365
1366	n0 = cpuc->n_events;
1367	if (n0 >= sparc_pmu->max_hw_events)
1368		goto out;
1369
1370	cpuc->event[n0] = event;
1371	cpuc->events[n0] = event->hw.event_base;
1372	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374	event->hw.state = PERF_HES_UPTODATE;
1375	if (!(ef_flags & PERF_EF_START))
1376		event->hw.state |= PERF_HES_STOPPED;
1377
1378	/*
1379	 * If group events scheduling transaction was started,
1380	 * skip the schedulability test here, it will be performed
1381	 * at commit time(->commit_txn) as a whole
1382	 */
1383	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384		goto nocheck;
1385
1386	if (check_excludes(cpuc->event, n0, 1))
1387		goto out;
1388	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389		goto out;
1390
1391nocheck:
1392	cpuc->n_events++;
1393	cpuc->n_added++;
1394
1395	ret = 0;
1396out:
 
1397	local_irq_restore(flags);
1398	return ret;
1399}
1400
1401static int sparc_pmu_event_init(struct perf_event *event)
1402{
1403	struct perf_event_attr *attr = &event->attr;
1404	struct perf_event *evts[MAX_HWEVENTS];
1405	struct hw_perf_event *hwc = &event->hw;
1406	unsigned long events[MAX_HWEVENTS];
1407	int current_idx_dmy[MAX_HWEVENTS];
1408	const struct perf_event_map *pmap;
1409	int n;
1410
1411	if (atomic_read(&nmi_active) < 0)
1412		return -ENODEV;
1413
1414	/* does not support taken branch sampling */
1415	if (has_branch_stack(event))
1416		return -EOPNOTSUPP;
1417
1418	switch (attr->type) {
1419	case PERF_TYPE_HARDWARE:
1420		if (attr->config >= sparc_pmu->max_events)
1421			return -EINVAL;
1422		pmap = sparc_pmu->event_map(attr->config);
1423		break;
1424
1425	case PERF_TYPE_HW_CACHE:
1426		pmap = sparc_map_cache_event(attr->config);
1427		if (IS_ERR(pmap))
1428			return PTR_ERR(pmap);
1429		break;
1430
1431	case PERF_TYPE_RAW:
1432		pmap = NULL;
1433		break;
1434
1435	default:
1436		return -ENOENT;
1437
1438	}
1439
1440	if (pmap) {
1441		hwc->event_base = perf_event_encode(pmap);
1442	} else {
1443		/*
1444		 * User gives us "(encoding << 16) | pic_mask" for
1445		 * PERF_TYPE_RAW events.
1446		 */
1447		hwc->event_base = attr->config;
1448	}
1449
1450	/* We save the enable bits in the config_base.  */
1451	hwc->config_base = sparc_pmu->irq_bit;
1452	if (!attr->exclude_user)
1453		hwc->config_base |= sparc_pmu->user_bit;
1454	if (!attr->exclude_kernel)
1455		hwc->config_base |= sparc_pmu->priv_bit;
1456	if (!attr->exclude_hv)
1457		hwc->config_base |= sparc_pmu->hv_bit;
1458
1459	n = 0;
1460	if (event->group_leader != event) {
1461		n = collect_events(event->group_leader,
1462				   sparc_pmu->max_hw_events - 1,
1463				   evts, events, current_idx_dmy);
1464		if (n < 0)
1465			return -EINVAL;
1466	}
1467	events[n] = hwc->event_base;
1468	evts[n] = event;
1469
1470	if (check_excludes(evts, n, 1))
1471		return -EINVAL;
1472
1473	if (sparc_check_constraints(evts, events, n + 1))
1474		return -EINVAL;
1475
1476	hwc->idx = PIC_NO_INDEX;
1477
1478	/* Try to do all error checking before this point, as unwinding
1479	 * state after grabbing the PMC is difficult.
1480	 */
1481	perf_event_grab_pmc();
1482	event->destroy = hw_perf_event_destroy;
1483
1484	if (!hwc->sample_period) {
1485		hwc->sample_period = MAX_PERIOD;
1486		hwc->last_period = hwc->sample_period;
1487		local64_set(&hwc->period_left, hwc->sample_period);
1488	}
1489
1490	return 0;
1491}
1492
1493/*
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1497 */
1498static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499{
1500	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501
1502	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1503
1504	cpuhw->txn_flags = txn_flags;
1505	if (txn_flags & ~PERF_PMU_TXN_ADD)
1506		return;
1507
1508	perf_pmu_disable(pmu);
 
1509}
1510
1511/*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517{
1518	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519	unsigned int txn_flags;
1520
1521	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1522
1523	txn_flags = cpuhw->txn_flags;
1524	cpuhw->txn_flags = 0;
1525	if (txn_flags & ~PERF_PMU_TXN_ADD)
1526		return;
1527
 
1528	perf_pmu_enable(pmu);
1529}
1530
1531/*
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1535 */
1536static int sparc_pmu_commit_txn(struct pmu *pmu)
1537{
1538	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539	int n;
1540
1541	if (!sparc_pmu)
1542		return -EINVAL;
1543
1544	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1545
1546	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547		cpuc->txn_flags = 0;
1548		return 0;
1549	}
1550
1551	n = cpuc->n_events;
1552	if (check_excludes(cpuc->event, 0, n))
1553		return -EINVAL;
1554	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555		return -EAGAIN;
1556
1557	cpuc->txn_flags = 0;
1558	perf_pmu_enable(pmu);
1559	return 0;
1560}
1561
1562static struct pmu pmu = {
1563	.pmu_enable	= sparc_pmu_enable,
1564	.pmu_disable	= sparc_pmu_disable,
1565	.event_init	= sparc_pmu_event_init,
1566	.add		= sparc_pmu_add,
1567	.del		= sparc_pmu_del,
1568	.start		= sparc_pmu_start,
1569	.stop		= sparc_pmu_stop,
1570	.read		= sparc_pmu_read,
1571	.start_txn	= sparc_pmu_start_txn,
1572	.cancel_txn	= sparc_pmu_cancel_txn,
1573	.commit_txn	= sparc_pmu_commit_txn,
1574};
1575
1576void perf_event_print_debug(void)
1577{
1578	unsigned long flags;
1579	int cpu, i;
 
1580
1581	if (!sparc_pmu)
1582		return;
1583
1584	local_irq_save(flags);
1585
1586	cpu = smp_processor_id();
1587
 
 
 
1588	pr_info("\n");
1589	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590		pr_info("CPU#%d: PCR%d[%016llx]\n",
1591			cpu, i, pcr_ops->read_pcr(i));
1592	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593		pr_info("CPU#%d: PIC%d[%016llx]\n",
1594			cpu, i, pcr_ops->read_pic(i));
1595
1596	local_irq_restore(flags);
1597}
1598
1599static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600					    unsigned long cmd, void *__args)
1601{
1602	struct die_args *args = __args;
1603	struct perf_sample_data data;
1604	struct cpu_hw_events *cpuc;
1605	struct pt_regs *regs;
1606	int i;
1607
1608	if (!atomic_read(&active_events))
1609		return NOTIFY_DONE;
1610
1611	switch (cmd) {
1612	case DIE_NMI:
1613		break;
1614
1615	default:
1616		return NOTIFY_DONE;
1617	}
1618
1619	regs = args->regs;
1620
1621	cpuc = this_cpu_ptr(&cpu_hw_events);
1622
1623	/* If the PMU has the TOE IRQ enable bits, we need to do a
1624	 * dummy write to the %pcr to clear the overflow bits and thus
1625	 * the interrupt.
1626	 *
1627	 * Do this before we peek at the counters to determine
1628	 * overflow so we don't lose any events.
1629	 */
1630	if (sparc_pmu->irq_bit &&
1631	    sparc_pmu->num_pcrs == 1)
1632		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633
1634	for (i = 0; i < cpuc->n_events; i++) {
1635		struct perf_event *event = cpuc->event[i];
1636		int idx = cpuc->current_idx[i];
1637		struct hw_perf_event *hwc;
1638		u64 val;
1639
1640		if (sparc_pmu->irq_bit &&
1641		    sparc_pmu->num_pcrs > 1)
1642			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643
1644		hwc = &event->hw;
1645		val = sparc_perf_event_update(event, hwc, idx);
1646		if (val & (1ULL << 31))
1647			continue;
1648
1649		perf_sample_data_init(&data, 0, hwc->last_period);
1650		if (!sparc_perf_event_set_period(event, hwc, idx))
1651			continue;
1652
1653		if (perf_event_overflow(event, &data, regs))
1654			sparc_pmu_stop(event, 0);
1655	}
1656
1657	return NOTIFY_STOP;
1658}
1659
1660static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661	.notifier_call		= perf_event_nmi_handler,
1662};
1663
1664static bool __init supported_pmu(void)
1665{
1666	if (!strcmp(sparc_pmu_type, "ultra3") ||
1667	    !strcmp(sparc_pmu_type, "ultra3+") ||
1668	    !strcmp(sparc_pmu_type, "ultra3i") ||
1669	    !strcmp(sparc_pmu_type, "ultra4+")) {
1670		sparc_pmu = &ultra3_pmu;
1671		return true;
1672	}
1673	if (!strcmp(sparc_pmu_type, "niagara")) {
1674		sparc_pmu = &niagara1_pmu;
1675		return true;
1676	}
1677	if (!strcmp(sparc_pmu_type, "niagara2") ||
1678	    !strcmp(sparc_pmu_type, "niagara3")) {
1679		sparc_pmu = &niagara2_pmu;
1680		return true;
1681	}
1682	if (!strcmp(sparc_pmu_type, "niagara4") ||
1683	    !strcmp(sparc_pmu_type, "niagara5")) {
1684		sparc_pmu = &niagara4_pmu;
1685		return true;
1686	}
1687	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688		sparc_pmu = &sparc_m7_pmu;
1689		return true;
1690	}
1691	return false;
1692}
1693
1694static int __init init_hw_perf_events(void)
1695{
1696	int err;
1697
1698	pr_info("Performance events: ");
1699
1700	err = pcr_arch_init();
1701	if (err || !supported_pmu()) {
1702		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703		return 0;
1704	}
1705
1706	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707
1708	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709	register_die_notifier(&perf_event_nmi_notifier);
1710
1711	return 0;
1712}
1713pure_initcall(init_hw_perf_events);
1714
1715void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716			   struct pt_regs *regs)
1717{
1718	unsigned long ksp, fp;
1719#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720	int graph = 0;
1721#endif
1722
1723	stack_trace_flush();
1724
1725	perf_callchain_store(entry, regs->tpc);
1726
1727	ksp = regs->u_regs[UREG_I6];
1728	fp = ksp + STACK_BIAS;
1729	do {
1730		struct sparc_stackf *sf;
1731		struct pt_regs *regs;
1732		unsigned long pc;
1733
1734		if (!kstack_valid(current_thread_info(), fp))
1735			break;
1736
1737		sf = (struct sparc_stackf *) fp;
1738		regs = (struct pt_regs *) (sf + 1);
1739
1740		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741			if (user_mode(regs))
1742				break;
1743			pc = regs->tpc;
1744			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745		} else {
1746			pc = sf->callers_pc;
1747			fp = (unsigned long)sf->fp + STACK_BIAS;
1748		}
1749		perf_callchain_store(entry, pc);
1750#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752			int index = current->curr_ret_stack;
1753			if (current->ret_stack && index >= graph) {
1754				pc = current->ret_stack[index - graph].ret;
1755				perf_callchain_store(entry, pc);
1756				graph++;
1757			}
1758		}
1759#endif
1760	} while (entry->nr < entry->max_stack);
1761}
1762
1763static inline int
1764valid_user_frame(const void __user *fp, unsigned long size)
1765{
1766	/* addresses should be at least 4-byte aligned */
1767	if (((unsigned long) fp) & 3)
1768		return 0;
1769
1770	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771}
1772
1773static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774				   struct pt_regs *regs)
1775{
1776	unsigned long ufp;
1777
1778	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
 
 
1779	do {
1780		struct sparc_stackf __user *usf;
1781		struct sparc_stackf sf;
1782		unsigned long pc;
1783
1784		usf = (struct sparc_stackf __user *)ufp;
1785		if (!valid_user_frame(usf, sizeof(sf)))
1786			break;
1787
1788		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789			break;
1790
1791		pc = sf.callers_pc;
1792		ufp = (unsigned long)sf.fp + STACK_BIAS;
1793		perf_callchain_store(entry, pc);
1794	} while (entry->nr < entry->max_stack);
1795}
1796
1797static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
 
 
1803	do {
 
1804		unsigned long pc;
1805
1806		if (thread32_stack_is_64bit(ufp)) {
1807			struct sparc_stackf __user *usf;
1808			struct sparc_stackf sf;
1809
1810			ufp += STACK_BIAS;
1811			usf = (struct sparc_stackf __user *)ufp;
1812			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813				break;
1814			pc = sf.callers_pc & 0xffffffff;
1815			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816		} else {
1817			struct sparc_stackf32 __user *usf;
1818			struct sparc_stackf32 sf;
1819			usf = (struct sparc_stackf32 __user *)ufp;
1820			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821				break;
1822			pc = sf.callers_pc;
1823			ufp = (unsigned long)sf.fp;
1824		}
1825		perf_callchain_store(entry, pc);
1826	} while (entry->nr < entry->max_stack);
1827}
1828
1829void
1830perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831{
1832	u64 saved_fault_address = current_thread_info()->fault_address;
1833	u8 saved_fault_code = get_thread_fault_code();
1834	mm_segment_t old_fs;
1835
1836	perf_callchain_store(entry, regs->tpc);
1837
1838	if (!current->mm)
1839		return;
1840
1841	old_fs = get_fs();
1842	set_fs(USER_DS);
1843
1844	flushw_user();
1845
1846	pagefault_disable();
1847
1848	if (test_thread_flag(TIF_32BIT))
1849		perf_callchain_user_32(entry, regs);
1850	else
1851		perf_callchain_user_64(entry, regs);
1852
1853	pagefault_enable();
1854
1855	set_fs(old_fs);
1856	set_thread_fault_code(saved_fault_code);
1857	current_thread_info()->fault_address = saved_fault_address;
1858}
v3.5.6
 
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/perfctr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Sparc64 chips have two performance counters, 32-bits each, with
  35 * overflow interrupts generated on transition from 0xffffffff to 0.
  36 * The counters are accessed in one go using a 64-bit register.
  37 *
  38 * Both counters are controlled using a single control register.  The
  39 * only way to stop all sampling is to clear all of the context (user,
  40 * supervisor, hypervisor) sampling enable bits.  But these bits apply
  41 * to both counters, thus the two counters can't be enabled/disabled
  42 * individually.
  43 *
  44 * The control register has two event fields, one for each of the two
  45 * counters.  It's thus nearly impossible to have one counter going
  46 * while keeping the other one stopped.  Therefore it is possible to
  47 * get overflow interrupts for counters not currently "in use" and
  48 * that condition must be checked in the overflow interrupt handler.
 
 
 
 
 
 
 
  49 *
  50 * So we use a hack, in that we program inactive counters with the
  51 * "sw_count0" and "sw_count1" events.  These count how many times
  52 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  53 * unusual way to encode a NOP and therefore will not trigger in
  54 * normal code.
 
 
 
 
 
 
 
  55 */
  56
  57#define MAX_HWEVENTS			2
 
  58#define MAX_PERIOD			((1UL << 32) - 1)
  59
  60#define PIC_UPPER_INDEX			0
  61#define PIC_LOWER_INDEX			1
  62#define PIC_NO_INDEX			-1
  63
  64struct cpu_hw_events {
  65	/* Number of events currently scheduled onto this cpu.
  66	 * This tells how many entries in the arrays below
  67	 * are valid.
  68	 */
  69	int			n_events;
  70
  71	/* Number of new events added since the last hw_perf_disable().
  72	 * This works because the perf event layer always adds new
  73	 * events inside of a perf_{disable,enable}() sequence.
  74	 */
  75	int			n_added;
  76
  77	/* Array of events current scheduled on this cpu.  */
  78	struct perf_event	*event[MAX_HWEVENTS];
  79
  80	/* Array of encoded longs, specifying the %pcr register
  81	 * encoding and the mask of PIC counters this even can
  82	 * be scheduled on.  See perf_event_encode() et al.
  83	 */
  84	unsigned long		events[MAX_HWEVENTS];
  85
  86	/* The current counter index assigned to an event.  When the
  87	 * event hasn't been programmed into the cpu yet, this will
  88	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
  89	 * we ought to schedule the event.
  90	 */
  91	int			current_idx[MAX_HWEVENTS];
  92
  93	/* Software copy of %pcr register on this cpu.  */
  94	u64			pcr;
  95
  96	/* Enabled/disable state.  */
  97	int			enabled;
  98
  99	unsigned int		group_flag;
 100};
 101DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 102
 103/* An event map describes the characteristics of a performance
 104 * counter event.  In particular it gives the encoding as well as
 105 * a mask telling which counters the event can be measured on.
 
 
 106 */
 107struct perf_event_map {
 108	u16	encoding;
 109	u8	pic_mask;
 110#define PIC_NONE	0x00
 111#define PIC_UPPER	0x01
 112#define PIC_LOWER	0x02
 113};
 114
 115/* Encode a perf_event_map entry into a long.  */
 116static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 117{
 118	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 119}
 120
 121static u8 perf_event_get_msk(unsigned long val)
 122{
 123	return val & 0xff;
 124}
 125
 126static u64 perf_event_get_enc(unsigned long val)
 127{
 128	return val >> 16;
 129}
 130
 131#define C(x) PERF_COUNT_HW_CACHE_##x
 132
 133#define CACHE_OP_UNSUPPORTED	0xfffe
 134#define CACHE_OP_NONSENSE	0xffff
 135
 136typedef struct perf_event_map cache_map_t
 137				[PERF_COUNT_HW_CACHE_MAX]
 138				[PERF_COUNT_HW_CACHE_OP_MAX]
 139				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 140
 141struct sparc_pmu {
 142	const struct perf_event_map	*(*event_map)(int);
 143	const cache_map_t		*cache_map;
 144	int				max_events;
 
 
 145	int				upper_shift;
 146	int				lower_shift;
 147	int				event_mask;
 
 
 148	int				hv_bit;
 149	int				irq_bit;
 150	int				upper_nop;
 151	int				lower_nop;
 
 
 
 
 
 
 152};
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154static const struct perf_event_map ultra3_perfmon_event_map[] = {
 155	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 156	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 157	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 158	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 159};
 160
 161static const struct perf_event_map *ultra3_event_map(int event_id)
 162{
 163	return &ultra3_perfmon_event_map[event_id];
 164}
 165
 166static const cache_map_t ultra3_cache_map = {
 167[C(L1D)] = {
 168	[C(OP_READ)] = {
 169		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 170		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 171	},
 172	[C(OP_WRITE)] = {
 173		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 174		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 175	},
 176	[C(OP_PREFETCH)] = {
 177		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 178		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 179	},
 180},
 181[C(L1I)] = {
 182	[C(OP_READ)] = {
 183		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 184		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 185	},
 186	[ C(OP_WRITE) ] = {
 187		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 188		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 189	},
 190	[ C(OP_PREFETCH) ] = {
 191		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 192		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 193	},
 194},
 195[C(LL)] = {
 196	[C(OP_READ)] = {
 197		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 198		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 199	},
 200	[C(OP_WRITE)] = {
 201		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 202		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 203	},
 204	[C(OP_PREFETCH)] = {
 205		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 206		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 207	},
 208},
 209[C(DTLB)] = {
 210	[C(OP_READ)] = {
 211		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 212		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 213	},
 214	[ C(OP_WRITE) ] = {
 215		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 216		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 217	},
 218	[ C(OP_PREFETCH) ] = {
 219		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 220		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 221	},
 222},
 223[C(ITLB)] = {
 224	[C(OP_READ)] = {
 225		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 226		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 227	},
 228	[ C(OP_WRITE) ] = {
 229		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 230		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 231	},
 232	[ C(OP_PREFETCH) ] = {
 233		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 234		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 235	},
 236},
 237[C(BPU)] = {
 238	[C(OP_READ)] = {
 239		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 240		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 241	},
 242	[ C(OP_WRITE) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246	[ C(OP_PREFETCH) ] = {
 247		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 248		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 249	},
 250},
 251[C(NODE)] = {
 252	[C(OP_READ)] = {
 253		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 254		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 255	},
 256	[ C(OP_WRITE) ] = {
 257		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 258		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 259	},
 260	[ C(OP_PREFETCH) ] = {
 261		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 262		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 263	},
 264},
 265};
 266
 267static const struct sparc_pmu ultra3_pmu = {
 268	.event_map	= ultra3_event_map,
 269	.cache_map	= &ultra3_cache_map,
 270	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 
 
 271	.upper_shift	= 11,
 272	.lower_shift	= 4,
 273	.event_mask	= 0x3f,
 
 
 274	.upper_nop	= 0x1c,
 275	.lower_nop	= 0x14,
 
 
 
 
 
 276};
 277
 278/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 279 * only instructions, so it is free running which creates all kinds of
 280 * problems.  Some hardware designs make one wonder if the creator
 281 * even looked at how this stuff gets used by software.
 282 */
 283static const struct perf_event_map niagara1_perfmon_event_map[] = {
 284	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 285	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 286	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 287	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 288};
 289
 290static const struct perf_event_map *niagara1_event_map(int event_id)
 291{
 292	return &niagara1_perfmon_event_map[event_id];
 293}
 294
 295static const cache_map_t niagara1_cache_map = {
 296[C(L1D)] = {
 297	[C(OP_READ)] = {
 298		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 299		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 300	},
 301	[C(OP_WRITE)] = {
 302		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 303		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 304	},
 305	[C(OP_PREFETCH)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 308	},
 309},
 310[C(L1I)] = {
 311	[C(OP_READ)] = {
 312		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 313		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 314	},
 315	[ C(OP_WRITE) ] = {
 316		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 317		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 318	},
 319	[ C(OP_PREFETCH) ] = {
 320		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 321		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 322	},
 323},
 324[C(LL)] = {
 325	[C(OP_READ)] = {
 326		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 327		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 328	},
 329	[C(OP_WRITE)] = {
 330		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 331		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 332	},
 333	[C(OP_PREFETCH)] = {
 334		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 335		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 336	},
 337},
 338[C(DTLB)] = {
 339	[C(OP_READ)] = {
 340		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 341		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 342	},
 343	[ C(OP_WRITE) ] = {
 344		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 345		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 346	},
 347	[ C(OP_PREFETCH) ] = {
 348		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 349		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 350	},
 351},
 352[C(ITLB)] = {
 353	[C(OP_READ)] = {
 354		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 355		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 356	},
 357	[ C(OP_WRITE) ] = {
 358		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 359		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 360	},
 361	[ C(OP_PREFETCH) ] = {
 362		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 363		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 364	},
 365},
 366[C(BPU)] = {
 367	[C(OP_READ)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371	[ C(OP_WRITE) ] = {
 372		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 373		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 374	},
 375	[ C(OP_PREFETCH) ] = {
 376		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 377		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 378	},
 379},
 380[C(NODE)] = {
 381	[C(OP_READ)] = {
 382		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 383		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385	[ C(OP_WRITE) ] = {
 386		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 387		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 388	},
 389	[ C(OP_PREFETCH) ] = {
 390		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 391		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 392	},
 393},
 394};
 395
 396static const struct sparc_pmu niagara1_pmu = {
 397	.event_map	= niagara1_event_map,
 398	.cache_map	= &niagara1_cache_map,
 399	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 
 
 400	.upper_shift	= 0,
 401	.lower_shift	= 4,
 402	.event_mask	= 0x7,
 
 
 403	.upper_nop	= 0x0,
 404	.lower_nop	= 0x0,
 
 
 
 
 
 405};
 406
 407static const struct perf_event_map niagara2_perfmon_event_map[] = {
 408	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 409	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 410	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 411	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 412	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 413	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 414};
 415
 416static const struct perf_event_map *niagara2_event_map(int event_id)
 417{
 418	return &niagara2_perfmon_event_map[event_id];
 419}
 420
 421static const cache_map_t niagara2_cache_map = {
 422[C(L1D)] = {
 423	[C(OP_READ)] = {
 424		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 425		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 426	},
 427	[C(OP_WRITE)] = {
 428		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 429		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 430	},
 431	[C(OP_PREFETCH)] = {
 432		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 433		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 434	},
 435},
 436[C(L1I)] = {
 437	[C(OP_READ)] = {
 438		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 439		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 440	},
 441	[ C(OP_WRITE) ] = {
 442		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 443		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 444	},
 445	[ C(OP_PREFETCH) ] = {
 446		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 447		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 448	},
 449},
 450[C(LL)] = {
 451	[C(OP_READ)] = {
 452		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 453		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 454	},
 455	[C(OP_WRITE)] = {
 456		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 457		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 458	},
 459	[C(OP_PREFETCH)] = {
 460		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 461		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 462	},
 463},
 464[C(DTLB)] = {
 465	[C(OP_READ)] = {
 466		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 467		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 468	},
 469	[ C(OP_WRITE) ] = {
 470		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 471		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 472	},
 473	[ C(OP_PREFETCH) ] = {
 474		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 475		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 476	},
 477},
 478[C(ITLB)] = {
 479	[C(OP_READ)] = {
 480		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 481		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 482	},
 483	[ C(OP_WRITE) ] = {
 484		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 485		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 486	},
 487	[ C(OP_PREFETCH) ] = {
 488		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 489		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 490	},
 491},
 492[C(BPU)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 495		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 496	},
 497	[ C(OP_WRITE) ] = {
 498		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 499		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 500	},
 501	[ C(OP_PREFETCH) ] = {
 502		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 503		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(NODE)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 509		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520};
 521
 522static const struct sparc_pmu niagara2_pmu = {
 523	.event_map	= niagara2_event_map,
 524	.cache_map	= &niagara2_cache_map,
 525	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 
 
 526	.upper_shift	= 19,
 527	.lower_shift	= 6,
 528	.event_mask	= 0xfff,
 529	.hv_bit		= 0x8,
 
 
 530	.irq_bit	= 0x30,
 531	.upper_nop	= 0x220,
 532	.lower_nop	= 0x220,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533};
 534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535static const struct sparc_pmu *sparc_pmu __read_mostly;
 536
 537static u64 event_encoding(u64 event_id, int idx)
 538{
 539	if (idx == PIC_UPPER_INDEX)
 540		event_id <<= sparc_pmu->upper_shift;
 541	else
 542		event_id <<= sparc_pmu->lower_shift;
 543	return event_id;
 544}
 545
 546static u64 mask_for_index(int idx)
 547{
 548	return event_encoding(sparc_pmu->event_mask, idx);
 549}
 550
 551static u64 nop_for_index(int idx)
 552{
 553	return event_encoding(idx == PIC_UPPER_INDEX ?
 554			      sparc_pmu->upper_nop :
 555			      sparc_pmu->lower_nop, idx);
 556}
 557
 558static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 559{
 560	u64 val, mask = mask_for_index(idx);
 
 561
 562	val = cpuc->pcr;
 
 
 
 
 
 563	val &= ~mask;
 564	val |= hwc->config;
 565	cpuc->pcr = val;
 566
 567	pcr_ops->write(cpuc->pcr);
 568}
 569
 570static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 571{
 572	u64 mask = mask_for_index(idx);
 573	u64 nop = nop_for_index(idx);
 
 574	u64 val;
 575
 576	val = cpuc->pcr;
 
 
 
 577	val &= ~mask;
 578	val |= nop;
 579	cpuc->pcr = val;
 580
 581	pcr_ops->write(cpuc->pcr);
 582}
 583
 584static u32 read_pmc(int idx)
 585{
 586	u64 val;
 587
 588	read_pic(val);
 589	if (idx == PIC_UPPER_INDEX)
 590		val >>= 32;
 591
 592	return val & 0xffffffff;
 593}
 594
 595static void write_pmc(int idx, u64 val)
 596{
 597	u64 shift, mask, pic;
 598
 599	shift = 0;
 600	if (idx == PIC_UPPER_INDEX)
 601		shift = 32;
 602
 603	mask = ((u64) 0xffffffff) << shift;
 604	val <<= shift;
 605
 606	read_pic(pic);
 607	pic &= ~mask;
 608	pic |= val;
 609	write_pic(pic);
 610}
 611
 612static u64 sparc_perf_event_update(struct perf_event *event,
 613				   struct hw_perf_event *hwc, int idx)
 614{
 615	int shift = 64 - 32;
 616	u64 prev_raw_count, new_raw_count;
 617	s64 delta;
 618
 619again:
 620	prev_raw_count = local64_read(&hwc->prev_count);
 621	new_raw_count = read_pmc(idx);
 622
 623	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 624			     new_raw_count) != prev_raw_count)
 625		goto again;
 626
 627	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 628	delta >>= shift;
 629
 630	local64_add(delta, &event->count);
 631	local64_sub(delta, &hwc->period_left);
 632
 633	return new_raw_count;
 634}
 635
 636static int sparc_perf_event_set_period(struct perf_event *event,
 637				       struct hw_perf_event *hwc, int idx)
 638{
 639	s64 left = local64_read(&hwc->period_left);
 640	s64 period = hwc->sample_period;
 641	int ret = 0;
 642
 643	if (unlikely(left <= -period)) {
 644		left = period;
 645		local64_set(&hwc->period_left, left);
 646		hwc->last_period = period;
 647		ret = 1;
 648	}
 649
 650	if (unlikely(left <= 0)) {
 651		left += period;
 652		local64_set(&hwc->period_left, left);
 653		hwc->last_period = period;
 654		ret = 1;
 655	}
 656	if (left > MAX_PERIOD)
 657		left = MAX_PERIOD;
 658
 659	local64_set(&hwc->prev_count, (u64)-left);
 660
 661	write_pmc(idx, (u64)(-left) & 0xffffffff);
 662
 663	perf_event_update_userpage(event);
 664
 665	return ret;
 666}
 667
 668/* If performance event entries have been added, move existing
 669 * events around (if necessary) and then assign new entries to
 670 * counters.
 671 */
 672static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 673{
 674	int i;
 675
 676	if (!cpuc->n_added)
 677		goto out;
 678
 679	/* Read in the counters which are moving.  */
 680	for (i = 0; i < cpuc->n_events; i++) {
 681		struct perf_event *cp = cpuc->event[i];
 682
 683		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 684		    cpuc->current_idx[i] != cp->hw.idx) {
 685			sparc_perf_event_update(cp, &cp->hw,
 686						cpuc->current_idx[i]);
 687			cpuc->current_idx[i] = PIC_NO_INDEX;
 688		}
 689	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	/* Assign to counters all unassigned events.  */
 692	for (i = 0; i < cpuc->n_events; i++) {
 693		struct perf_event *cp = cpuc->event[i];
 694		struct hw_perf_event *hwc = &cp->hw;
 695		int idx = hwc->idx;
 696		u64 enc;
 697
 698		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 699			continue;
 700
 701		sparc_perf_event_set_period(cp, hwc, idx);
 702		cpuc->current_idx[i] = idx;
 703
 704		enc = perf_event_get_enc(cpuc->events[i]);
 705		pcr &= ~mask_for_index(idx);
 706		if (hwc->state & PERF_HES_STOPPED)
 707			pcr |= nop_for_index(idx);
 708		else
 709			pcr |= event_encoding(enc, idx);
 710	}
 711out:
 712	return pcr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713}
 714
 715static void sparc_pmu_enable(struct pmu *pmu)
 716{
 717	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 718	u64 pcr;
 719
 720	if (cpuc->enabled)
 721		return;
 722
 723	cpuc->enabled = 1;
 724	barrier();
 725
 726	pcr = cpuc->pcr;
 727	if (!cpuc->n_events) {
 728		pcr = 0;
 729	} else {
 730		pcr = maybe_change_configuration(cpuc, pcr);
 731
 732		/* We require that all of the events have the same
 733		 * configuration, so just fetch the settings from the
 734		 * first entry.
 735		 */
 736		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 737	}
 738
 739	pcr_ops->write(cpuc->pcr);
 740}
 741
 742static void sparc_pmu_disable(struct pmu *pmu)
 743{
 744	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 745	u64 val;
 746
 747	if (!cpuc->enabled)
 748		return;
 749
 750	cpuc->enabled = 0;
 751	cpuc->n_added = 0;
 752
 753	val = cpuc->pcr;
 754	val &= ~(PCR_UTRACE | PCR_STRACE |
 755		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 756	cpuc->pcr = val;
 757
 758	pcr_ops->write(cpuc->pcr);
 
 
 
 
 759}
 760
 761static int active_event_index(struct cpu_hw_events *cpuc,
 762			      struct perf_event *event)
 763{
 764	int i;
 765
 766	for (i = 0; i < cpuc->n_events; i++) {
 767		if (cpuc->event[i] == event)
 768			break;
 769	}
 770	BUG_ON(i == cpuc->n_events);
 771	return cpuc->current_idx[i];
 772}
 773
 774static void sparc_pmu_start(struct perf_event *event, int flags)
 775{
 776	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 777	int idx = active_event_index(cpuc, event);
 778
 779	if (flags & PERF_EF_RELOAD) {
 780		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 781		sparc_perf_event_set_period(event, &event->hw, idx);
 782	}
 783
 784	event->hw.state = 0;
 785
 786	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 787}
 788
 789static void sparc_pmu_stop(struct perf_event *event, int flags)
 790{
 791	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 792	int idx = active_event_index(cpuc, event);
 793
 794	if (!(event->hw.state & PERF_HES_STOPPED)) {
 795		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 796		event->hw.state |= PERF_HES_STOPPED;
 797	}
 798
 799	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 800		sparc_perf_event_update(event, &event->hw, idx);
 801		event->hw.state |= PERF_HES_UPTODATE;
 802	}
 803}
 804
 805static void sparc_pmu_del(struct perf_event *event, int _flags)
 806{
 807	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 808	unsigned long flags;
 809	int i;
 810
 811	local_irq_save(flags);
 812	perf_pmu_disable(event->pmu);
 813
 814	for (i = 0; i < cpuc->n_events; i++) {
 815		if (event == cpuc->event[i]) {
 816			/* Absorb the final count and turn off the
 817			 * event.
 818			 */
 819			sparc_pmu_stop(event, PERF_EF_UPDATE);
 820
 821			/* Shift remaining entries down into
 822			 * the existing slot.
 823			 */
 824			while (++i < cpuc->n_events) {
 825				cpuc->event[i - 1] = cpuc->event[i];
 826				cpuc->events[i - 1] = cpuc->events[i];
 827				cpuc->current_idx[i - 1] =
 828					cpuc->current_idx[i];
 829			}
 830
 831			perf_event_update_userpage(event);
 832
 833			cpuc->n_events--;
 834			break;
 835		}
 836	}
 837
 838	perf_pmu_enable(event->pmu);
 839	local_irq_restore(flags);
 840}
 841
 842static void sparc_pmu_read(struct perf_event *event)
 843{
 844	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 845	int idx = active_event_index(cpuc, event);
 846	struct hw_perf_event *hwc = &event->hw;
 847
 848	sparc_perf_event_update(event, hwc, idx);
 849}
 850
 851static atomic_t active_events = ATOMIC_INIT(0);
 852static DEFINE_MUTEX(pmc_grab_mutex);
 853
 854static void perf_stop_nmi_watchdog(void *unused)
 855{
 856	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
 857
 858	stop_nmi_watchdog(NULL);
 859	cpuc->pcr = pcr_ops->read();
 
 860}
 861
 862void perf_event_grab_pmc(void)
 863{
 864	if (atomic_inc_not_zero(&active_events))
 865		return;
 866
 867	mutex_lock(&pmc_grab_mutex);
 868	if (atomic_read(&active_events) == 0) {
 869		if (atomic_read(&nmi_active) > 0) {
 870			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 871			BUG_ON(atomic_read(&nmi_active) != 0);
 872		}
 873		atomic_inc(&active_events);
 874	}
 875	mutex_unlock(&pmc_grab_mutex);
 876}
 877
 878void perf_event_release_pmc(void)
 879{
 880	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 881		if (atomic_read(&nmi_active) == 0)
 882			on_each_cpu(start_nmi_watchdog, NULL, 1);
 883		mutex_unlock(&pmc_grab_mutex);
 884	}
 885}
 886
 887static const struct perf_event_map *sparc_map_cache_event(u64 config)
 888{
 889	unsigned int cache_type, cache_op, cache_result;
 890	const struct perf_event_map *pmap;
 891
 892	if (!sparc_pmu->cache_map)
 893		return ERR_PTR(-ENOENT);
 894
 895	cache_type = (config >>  0) & 0xff;
 896	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 897		return ERR_PTR(-EINVAL);
 898
 899	cache_op = (config >>  8) & 0xff;
 900	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 901		return ERR_PTR(-EINVAL);
 902
 903	cache_result = (config >> 16) & 0xff;
 904	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 905		return ERR_PTR(-EINVAL);
 906
 907	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 908
 909	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 910		return ERR_PTR(-ENOENT);
 911
 912	if (pmap->encoding == CACHE_OP_NONSENSE)
 913		return ERR_PTR(-EINVAL);
 914
 915	return pmap;
 916}
 917
 918static void hw_perf_event_destroy(struct perf_event *event)
 919{
 920	perf_event_release_pmc();
 921}
 922
 923/* Make sure all events can be scheduled into the hardware at
 924 * the same time.  This is simplified by the fact that we only
 925 * need to support 2 simultaneous HW events.
 926 *
 927 * As a side effect, the evts[]->hw.idx values will be assigned
 928 * on success.  These are pending indexes.  When the events are
 929 * actually programmed into the chip, these values will propagate
 930 * to the per-cpu cpuc->current_idx[] slots, see the code in
 931 * maybe_change_configuration() for details.
 932 */
 933static int sparc_check_constraints(struct perf_event **evts,
 934				   unsigned long *events, int n_ev)
 935{
 936	u8 msk0 = 0, msk1 = 0;
 937	int idx0 = 0;
 938
 939	/* This case is possible when we are invoked from
 940	 * hw_perf_group_sched_in().
 941	 */
 942	if (!n_ev)
 943		return 0;
 944
 945	if (n_ev > MAX_HWEVENTS)
 946		return -1;
 947
 
 
 
 
 
 
 
 
 948	msk0 = perf_event_get_msk(events[0]);
 949	if (n_ev == 1) {
 950		if (msk0 & PIC_LOWER)
 951			idx0 = 1;
 952		goto success;
 953	}
 954	BUG_ON(n_ev != 2);
 955	msk1 = perf_event_get_msk(events[1]);
 956
 957	/* If both events can go on any counter, OK.  */
 958	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 959	    msk1 == (PIC_UPPER | PIC_LOWER))
 960		goto success;
 961
 962	/* If one event is limited to a specific counter,
 963	 * and the other can go on both, OK.
 964	 */
 965	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 966	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 967		if (msk0 & PIC_LOWER)
 968			idx0 = 1;
 969		goto success;
 970	}
 971
 972	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 973	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 974		if (msk1 & PIC_UPPER)
 975			idx0 = 1;
 976		goto success;
 977	}
 978
 979	/* If the events are fixed to different counters, OK.  */
 980	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 981	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 982		if (msk0 & PIC_LOWER)
 983			idx0 = 1;
 984		goto success;
 985	}
 986
 987	/* Otherwise, there is a conflict.  */
 988	return -1;
 989
 990success:
 991	evts[0]->hw.idx = idx0;
 992	if (n_ev == 2)
 993		evts[1]->hw.idx = idx0 ^ 1;
 994	return 0;
 995}
 996
 997static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 998{
 999	int eu = 0, ek = 0, eh = 0;
1000	struct perf_event *event;
1001	int i, n, first;
1002
 
 
 
1003	n = n_prev + n_new;
1004	if (n <= 1)
1005		return 0;
1006
1007	first = 1;
1008	for (i = 0; i < n; i++) {
1009		event = evts[i];
1010		if (first) {
1011			eu = event->attr.exclude_user;
1012			ek = event->attr.exclude_kernel;
1013			eh = event->attr.exclude_hv;
1014			first = 0;
1015		} else if (event->attr.exclude_user != eu ||
1016			   event->attr.exclude_kernel != ek ||
1017			   event->attr.exclude_hv != eh) {
1018			return -EAGAIN;
1019		}
1020	}
1021
1022	return 0;
1023}
1024
1025static int collect_events(struct perf_event *group, int max_count,
1026			  struct perf_event *evts[], unsigned long *events,
1027			  int *current_idx)
1028{
1029	struct perf_event *event;
1030	int n = 0;
1031
1032	if (!is_software_event(group)) {
1033		if (n >= max_count)
1034			return -1;
1035		evts[n] = group;
1036		events[n] = group->hw.event_base;
1037		current_idx[n++] = PIC_NO_INDEX;
1038	}
1039	list_for_each_entry(event, &group->sibling_list, group_entry) {
1040		if (!is_software_event(event) &&
1041		    event->state != PERF_EVENT_STATE_OFF) {
1042			if (n >= max_count)
1043				return -1;
1044			evts[n] = event;
1045			events[n] = event->hw.event_base;
1046			current_idx[n++] = PIC_NO_INDEX;
1047		}
1048	}
1049	return n;
1050}
1051
1052static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053{
1054	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055	int n0, ret = -EAGAIN;
1056	unsigned long flags;
1057
1058	local_irq_save(flags);
1059	perf_pmu_disable(event->pmu);
1060
1061	n0 = cpuc->n_events;
1062	if (n0 >= MAX_HWEVENTS)
1063		goto out;
1064
1065	cpuc->event[n0] = event;
1066	cpuc->events[n0] = event->hw.event_base;
1067	cpuc->current_idx[n0] = PIC_NO_INDEX;
1068
1069	event->hw.state = PERF_HES_UPTODATE;
1070	if (!(ef_flags & PERF_EF_START))
1071		event->hw.state |= PERF_HES_STOPPED;
1072
1073	/*
1074	 * If group events scheduling transaction was started,
1075	 * skip the schedulability test here, it will be performed
1076	 * at commit time(->commit_txn) as a whole
1077	 */
1078	if (cpuc->group_flag & PERF_EVENT_TXN)
1079		goto nocheck;
1080
1081	if (check_excludes(cpuc->event, n0, 1))
1082		goto out;
1083	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084		goto out;
1085
1086nocheck:
1087	cpuc->n_events++;
1088	cpuc->n_added++;
1089
1090	ret = 0;
1091out:
1092	perf_pmu_enable(event->pmu);
1093	local_irq_restore(flags);
1094	return ret;
1095}
1096
1097static int sparc_pmu_event_init(struct perf_event *event)
1098{
1099	struct perf_event_attr *attr = &event->attr;
1100	struct perf_event *evts[MAX_HWEVENTS];
1101	struct hw_perf_event *hwc = &event->hw;
1102	unsigned long events[MAX_HWEVENTS];
1103	int current_idx_dmy[MAX_HWEVENTS];
1104	const struct perf_event_map *pmap;
1105	int n;
1106
1107	if (atomic_read(&nmi_active) < 0)
1108		return -ENODEV;
1109
1110	/* does not support taken branch sampling */
1111	if (has_branch_stack(event))
1112		return -EOPNOTSUPP;
1113
1114	switch (attr->type) {
1115	case PERF_TYPE_HARDWARE:
1116		if (attr->config >= sparc_pmu->max_events)
1117			return -EINVAL;
1118		pmap = sparc_pmu->event_map(attr->config);
1119		break;
1120
1121	case PERF_TYPE_HW_CACHE:
1122		pmap = sparc_map_cache_event(attr->config);
1123		if (IS_ERR(pmap))
1124			return PTR_ERR(pmap);
1125		break;
1126
1127	case PERF_TYPE_RAW:
1128		pmap = NULL;
1129		break;
1130
1131	default:
1132		return -ENOENT;
1133
1134	}
1135
1136	if (pmap) {
1137		hwc->event_base = perf_event_encode(pmap);
1138	} else {
1139		/*
1140		 * User gives us "(encoding << 16) | pic_mask" for
1141		 * PERF_TYPE_RAW events.
1142		 */
1143		hwc->event_base = attr->config;
1144	}
1145
1146	/* We save the enable bits in the config_base.  */
1147	hwc->config_base = sparc_pmu->irq_bit;
1148	if (!attr->exclude_user)
1149		hwc->config_base |= PCR_UTRACE;
1150	if (!attr->exclude_kernel)
1151		hwc->config_base |= PCR_STRACE;
1152	if (!attr->exclude_hv)
1153		hwc->config_base |= sparc_pmu->hv_bit;
1154
1155	n = 0;
1156	if (event->group_leader != event) {
1157		n = collect_events(event->group_leader,
1158				   MAX_HWEVENTS - 1,
1159				   evts, events, current_idx_dmy);
1160		if (n < 0)
1161			return -EINVAL;
1162	}
1163	events[n] = hwc->event_base;
1164	evts[n] = event;
1165
1166	if (check_excludes(evts, n, 1))
1167		return -EINVAL;
1168
1169	if (sparc_check_constraints(evts, events, n + 1))
1170		return -EINVAL;
1171
1172	hwc->idx = PIC_NO_INDEX;
1173
1174	/* Try to do all error checking before this point, as unwinding
1175	 * state after grabbing the PMC is difficult.
1176	 */
1177	perf_event_grab_pmc();
1178	event->destroy = hw_perf_event_destroy;
1179
1180	if (!hwc->sample_period) {
1181		hwc->sample_period = MAX_PERIOD;
1182		hwc->last_period = hwc->sample_period;
1183		local64_set(&hwc->period_left, hwc->sample_period);
1184	}
1185
1186	return 0;
1187}
1188
1189/*
1190 * Start group events scheduling transaction
1191 * Set the flag to make pmu::enable() not perform the
1192 * schedulability test, it will be performed at commit time
1193 */
1194static void sparc_pmu_start_txn(struct pmu *pmu)
1195{
1196	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1197
1198	perf_pmu_disable(pmu);
1199	cpuhw->group_flag |= PERF_EVENT_TXN;
1200}
1201
1202/*
1203 * Stop group events scheduling transaction
1204 * Clear the flag and pmu::enable() will perform the
1205 * schedulability test.
1206 */
1207static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208{
1209	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
1210
1211	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1212	perf_pmu_enable(pmu);
1213}
1214
1215/*
1216 * Commit group events scheduling transaction
1217 * Perform the group schedulability test as a whole
1218 * Return 0 if success
1219 */
1220static int sparc_pmu_commit_txn(struct pmu *pmu)
1221{
1222	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1223	int n;
1224
1225	if (!sparc_pmu)
1226		return -EINVAL;
1227
1228	cpuc = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1229	n = cpuc->n_events;
1230	if (check_excludes(cpuc->event, 0, n))
1231		return -EINVAL;
1232	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1233		return -EAGAIN;
1234
1235	cpuc->group_flag &= ~PERF_EVENT_TXN;
1236	perf_pmu_enable(pmu);
1237	return 0;
1238}
1239
1240static struct pmu pmu = {
1241	.pmu_enable	= sparc_pmu_enable,
1242	.pmu_disable	= sparc_pmu_disable,
1243	.event_init	= sparc_pmu_event_init,
1244	.add		= sparc_pmu_add,
1245	.del		= sparc_pmu_del,
1246	.start		= sparc_pmu_start,
1247	.stop		= sparc_pmu_stop,
1248	.read		= sparc_pmu_read,
1249	.start_txn	= sparc_pmu_start_txn,
1250	.cancel_txn	= sparc_pmu_cancel_txn,
1251	.commit_txn	= sparc_pmu_commit_txn,
1252};
1253
1254void perf_event_print_debug(void)
1255{
1256	unsigned long flags;
1257	u64 pcr, pic;
1258	int cpu;
1259
1260	if (!sparc_pmu)
1261		return;
1262
1263	local_irq_save(flags);
1264
1265	cpu = smp_processor_id();
1266
1267	pcr = pcr_ops->read();
1268	read_pic(pic);
1269
1270	pr_info("\n");
1271	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1272		cpu, pcr, pic);
 
 
 
 
1273
1274	local_irq_restore(flags);
1275}
1276
1277static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278					    unsigned long cmd, void *__args)
1279{
1280	struct die_args *args = __args;
1281	struct perf_sample_data data;
1282	struct cpu_hw_events *cpuc;
1283	struct pt_regs *regs;
1284	int i;
1285
1286	if (!atomic_read(&active_events))
1287		return NOTIFY_DONE;
1288
1289	switch (cmd) {
1290	case DIE_NMI:
1291		break;
1292
1293	default:
1294		return NOTIFY_DONE;
1295	}
1296
1297	regs = args->regs;
1298
1299	cpuc = &__get_cpu_var(cpu_hw_events);
1300
1301	/* If the PMU has the TOE IRQ enable bits, we need to do a
1302	 * dummy write to the %pcr to clear the overflow bits and thus
1303	 * the interrupt.
1304	 *
1305	 * Do this before we peek at the counters to determine
1306	 * overflow so we don't lose any events.
1307	 */
1308	if (sparc_pmu->irq_bit)
1309		pcr_ops->write(cpuc->pcr);
 
1310
1311	for (i = 0; i < cpuc->n_events; i++) {
1312		struct perf_event *event = cpuc->event[i];
1313		int idx = cpuc->current_idx[i];
1314		struct hw_perf_event *hwc;
1315		u64 val;
1316
 
 
 
 
1317		hwc = &event->hw;
1318		val = sparc_perf_event_update(event, hwc, idx);
1319		if (val & (1ULL << 31))
1320			continue;
1321
1322		perf_sample_data_init(&data, 0, hwc->last_period);
1323		if (!sparc_perf_event_set_period(event, hwc, idx))
1324			continue;
1325
1326		if (perf_event_overflow(event, &data, regs))
1327			sparc_pmu_stop(event, 0);
1328	}
1329
1330	return NOTIFY_STOP;
1331}
1332
1333static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1334	.notifier_call		= perf_event_nmi_handler,
1335};
1336
1337static bool __init supported_pmu(void)
1338{
1339	if (!strcmp(sparc_pmu_type, "ultra3") ||
1340	    !strcmp(sparc_pmu_type, "ultra3+") ||
1341	    !strcmp(sparc_pmu_type, "ultra3i") ||
1342	    !strcmp(sparc_pmu_type, "ultra4+")) {
1343		sparc_pmu = &ultra3_pmu;
1344		return true;
1345	}
1346	if (!strcmp(sparc_pmu_type, "niagara")) {
1347		sparc_pmu = &niagara1_pmu;
1348		return true;
1349	}
1350	if (!strcmp(sparc_pmu_type, "niagara2") ||
1351	    !strcmp(sparc_pmu_type, "niagara3")) {
1352		sparc_pmu = &niagara2_pmu;
1353		return true;
1354	}
 
 
 
 
 
 
 
 
 
1355	return false;
1356}
1357
1358int __init init_hw_perf_events(void)
1359{
 
 
1360	pr_info("Performance events: ");
1361
1362	if (!supported_pmu()) {
 
1363		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1364		return 0;
1365	}
1366
1367	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1368
1369	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1370	register_die_notifier(&perf_event_nmi_notifier);
1371
1372	return 0;
1373}
1374early_initcall(init_hw_perf_events);
1375
1376void perf_callchain_kernel(struct perf_callchain_entry *entry,
1377			   struct pt_regs *regs)
1378{
1379	unsigned long ksp, fp;
1380#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381	int graph = 0;
1382#endif
1383
1384	stack_trace_flush();
1385
1386	perf_callchain_store(entry, regs->tpc);
1387
1388	ksp = regs->u_regs[UREG_I6];
1389	fp = ksp + STACK_BIAS;
1390	do {
1391		struct sparc_stackf *sf;
1392		struct pt_regs *regs;
1393		unsigned long pc;
1394
1395		if (!kstack_valid(current_thread_info(), fp))
1396			break;
1397
1398		sf = (struct sparc_stackf *) fp;
1399		regs = (struct pt_regs *) (sf + 1);
1400
1401		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1402			if (user_mode(regs))
1403				break;
1404			pc = regs->tpc;
1405			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1406		} else {
1407			pc = sf->callers_pc;
1408			fp = (unsigned long)sf->fp + STACK_BIAS;
1409		}
1410		perf_callchain_store(entry, pc);
1411#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1412		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1413			int index = current->curr_ret_stack;
1414			if (current->ret_stack && index >= graph) {
1415				pc = current->ret_stack[index - graph].ret;
1416				perf_callchain_store(entry, pc);
1417				graph++;
1418			}
1419		}
1420#endif
1421	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 
 
 
 
 
 
 
 
 
 
1422}
1423
1424static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1425				   struct pt_regs *regs)
1426{
1427	unsigned long ufp;
1428
1429	perf_callchain_store(entry, regs->tpc);
1430
1431	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1432	do {
1433		struct sparc_stackf *usf, sf;
 
1434		unsigned long pc;
1435
1436		usf = (struct sparc_stackf *) ufp;
 
 
 
1437		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1438			break;
1439
1440		pc = sf.callers_pc;
1441		ufp = (unsigned long)sf.fp + STACK_BIAS;
1442		perf_callchain_store(entry, pc);
1443	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1444}
1445
1446static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1447				   struct pt_regs *regs)
1448{
1449	unsigned long ufp;
1450
1451	perf_callchain_store(entry, regs->tpc);
1452
1453	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1454	do {
1455		struct sparc_stackf32 *usf, sf;
1456		unsigned long pc;
1457
1458		usf = (struct sparc_stackf32 *) ufp;
1459		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1460			break;
1461
1462		pc = sf.callers_pc;
1463		ufp = (unsigned long)sf.fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
1464		perf_callchain_store(entry, pc);
1465	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1466}
1467
1468void
1469perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1470{
 
 
 
 
 
 
 
 
 
 
 
 
1471	flushw_user();
 
 
 
1472	if (test_thread_flag(TIF_32BIT))
1473		perf_callchain_user_32(entry, regs);
1474	else
1475		perf_callchain_user_64(entry, regs);
 
 
 
 
 
 
1476}