Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
 
  27#include <asm/nmi.h>
  28#include <asm/pcr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Two classes of sparc64 chips currently exist.  All of which have
  35 * 32-bit counters which can generate overflow interrupts on the
  36 * transition from 0xffffffff to 0.
  37 *
  38 * All chips upto and including SPARC-T3 have two performance
  39 * counters.  The two 32-bit counters are accessed in one go using a
  40 * single 64-bit register.
  41 *
  42 * On these older chips both counters are controlled using a single
  43 * control register.  The only way to stop all sampling is to clear
  44 * all of the context (user, supervisor, hypervisor) sampling enable
  45 * bits.  But these bits apply to both counters, thus the two counters
  46 * can't be enabled/disabled individually.
  47 *
  48 * Furthermore, the control register on these older chips have two
  49 * event fields, one for each of the two counters.  It's thus nearly
  50 * impossible to have one counter going while keeping the other one
  51 * stopped.  Therefore it is possible to get overflow interrupts for
  52 * counters not currently "in use" and that condition must be checked
  53 * in the overflow interrupt handler.
  54 *
  55 * So we use a hack, in that we program inactive counters with the
  56 * "sw_count0" and "sw_count1" events.  These count how many times
  57 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  58 * unusual way to encode a NOP and therefore will not trigger in
  59 * normal code.
  60 *
  61 * Starting with SPARC-T4 we have one control register per counter.
  62 * And the counters are stored in individual registers.  The registers
  63 * for the counters are 64-bit but only a 32-bit counter is
  64 * implemented.  The event selections on SPARC-T4 lack any
  65 * restrictions, therefore we can elide all of the complicated
  66 * conflict resolution code we have for SPARC-T3 and earlier chips.
  67 */
  68
  69#define MAX_HWEVENTS			4
  70#define MAX_PCRS			4
  71#define MAX_PERIOD			((1UL << 32) - 1)
  72
  73#define PIC_UPPER_INDEX			0
  74#define PIC_LOWER_INDEX			1
  75#define PIC_NO_INDEX			-1
  76
  77struct cpu_hw_events {
  78	/* Number of events currently scheduled onto this cpu.
  79	 * This tells how many entries in the arrays below
  80	 * are valid.
  81	 */
  82	int			n_events;
  83
  84	/* Number of new events added since the last hw_perf_disable().
  85	 * This works because the perf event layer always adds new
  86	 * events inside of a perf_{disable,enable}() sequence.
  87	 */
  88	int			n_added;
  89
  90	/* Array of events current scheduled on this cpu.  */
  91	struct perf_event	*event[MAX_HWEVENTS];
  92
  93	/* Array of encoded longs, specifying the %pcr register
  94	 * encoding and the mask of PIC counters this even can
  95	 * be scheduled on.  See perf_event_encode() et al.
  96	 */
  97	unsigned long		events[MAX_HWEVENTS];
  98
  99	/* The current counter index assigned to an event.  When the
 100	 * event hasn't been programmed into the cpu yet, this will
 101	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 102	 * we ought to schedule the event.
 103	 */
 104	int			current_idx[MAX_HWEVENTS];
 105
 106	/* Software copy of %pcr register(s) on this cpu.  */
 107	u64			pcr[MAX_HWEVENTS];
 108
 109	/* Enabled/disable state.  */
 110	int			enabled;
 111
 112	unsigned int		txn_flags;
 113};
 114static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 115
 116/* An event map describes the characteristics of a performance
 117 * counter event.  In particular it gives the encoding as well as
 118 * a mask telling which counters the event can be measured on.
 119 *
 120 * The mask is unused on SPARC-T4 and later.
 121 */
 122struct perf_event_map {
 123	u16	encoding;
 124	u8	pic_mask;
 125#define PIC_NONE	0x00
 126#define PIC_UPPER	0x01
 127#define PIC_LOWER	0x02
 128};
 129
 130/* Encode a perf_event_map entry into a long.  */
 131static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 132{
 133	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 134}
 135
 136static u8 perf_event_get_msk(unsigned long val)
 137{
 138	return val & 0xff;
 139}
 140
 141static u64 perf_event_get_enc(unsigned long val)
 142{
 143	return val >> 16;
 144}
 145
 146#define C(x) PERF_COUNT_HW_CACHE_##x
 147
 148#define CACHE_OP_UNSUPPORTED	0xfffe
 149#define CACHE_OP_NONSENSE	0xffff
 150
 151typedef struct perf_event_map cache_map_t
 152				[PERF_COUNT_HW_CACHE_MAX]
 153				[PERF_COUNT_HW_CACHE_OP_MAX]
 154				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 155
 156struct sparc_pmu {
 157	const struct perf_event_map	*(*event_map)(int);
 158	const cache_map_t		*cache_map;
 159	int				max_events;
 160	u32				(*read_pmc)(int);
 161	void				(*write_pmc)(int, u64);
 162	int				upper_shift;
 163	int				lower_shift;
 164	int				event_mask;
 165	int				user_bit;
 166	int				priv_bit;
 167	int				hv_bit;
 168	int				irq_bit;
 169	int				upper_nop;
 170	int				lower_nop;
 171	unsigned int			flags;
 172#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 173#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 174	int				max_hw_events;
 175	int				num_pcrs;
 176	int				num_pic_regs;
 177};
 178
 179static u32 sparc_default_read_pmc(int idx)
 180{
 181	u64 val;
 182
 183	val = pcr_ops->read_pic(0);
 184	if (idx == PIC_UPPER_INDEX)
 185		val >>= 32;
 186
 187	return val & 0xffffffff;
 188}
 189
 190static void sparc_default_write_pmc(int idx, u64 val)
 191{
 192	u64 shift, mask, pic;
 193
 194	shift = 0;
 195	if (idx == PIC_UPPER_INDEX)
 196		shift = 32;
 197
 198	mask = ((u64) 0xffffffff) << shift;
 199	val <<= shift;
 200
 201	pic = pcr_ops->read_pic(0);
 202	pic &= ~mask;
 203	pic |= val;
 204	pcr_ops->write_pic(0, pic);
 205}
 206
 207static const struct perf_event_map ultra3_perfmon_event_map[] = {
 208	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 212};
 213
 214static const struct perf_event_map *ultra3_event_map(int event_id)
 215{
 216	return &ultra3_perfmon_event_map[event_id];
 217}
 218
 219static const cache_map_t ultra3_cache_map = {
 220[C(L1D)] = {
 221	[C(OP_READ)] = {
 222		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 223		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 224	},
 225	[C(OP_WRITE)] = {
 226		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 227		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 228	},
 229	[C(OP_PREFETCH)] = {
 230		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 231		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 232	},
 233},
 234[C(L1I)] = {
 235	[C(OP_READ)] = {
 236		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 237		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 238	},
 239	[ C(OP_WRITE) ] = {
 240		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 241		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 242	},
 243	[ C(OP_PREFETCH) ] = {
 244		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 245		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 246	},
 247},
 248[C(LL)] = {
 249	[C(OP_READ)] = {
 250		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 251		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 252	},
 253	[C(OP_WRITE)] = {
 254		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 255		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 256	},
 257	[C(OP_PREFETCH)] = {
 258		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 259		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 260	},
 261},
 262[C(DTLB)] = {
 263	[C(OP_READ)] = {
 264		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 265		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 266	},
 267	[ C(OP_WRITE) ] = {
 268		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 269		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 270	},
 271	[ C(OP_PREFETCH) ] = {
 272		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 273		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 274	},
 275},
 276[C(ITLB)] = {
 277	[C(OP_READ)] = {
 278		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 279		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 280	},
 281	[ C(OP_WRITE) ] = {
 282		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 283		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 284	},
 285	[ C(OP_PREFETCH) ] = {
 286		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 287		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 288	},
 289},
 290[C(BPU)] = {
 291	[C(OP_READ)] = {
 292		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 293		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 294	},
 295	[ C(OP_WRITE) ] = {
 296		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 297		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 298	},
 299	[ C(OP_PREFETCH) ] = {
 300		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 301		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 302	},
 303},
 304[C(NODE)] = {
 305	[C(OP_READ)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 308	},
 309	[ C(OP_WRITE) ] = {
 310		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 311		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 312	},
 313	[ C(OP_PREFETCH) ] = {
 314		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 315		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 316	},
 317},
 318};
 319
 320static const struct sparc_pmu ultra3_pmu = {
 321	.event_map	= ultra3_event_map,
 322	.cache_map	= &ultra3_cache_map,
 323	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 324	.read_pmc	= sparc_default_read_pmc,
 325	.write_pmc	= sparc_default_write_pmc,
 326	.upper_shift	= 11,
 327	.lower_shift	= 4,
 328	.event_mask	= 0x3f,
 329	.user_bit	= PCR_UTRACE,
 330	.priv_bit	= PCR_STRACE,
 331	.upper_nop	= 0x1c,
 332	.lower_nop	= 0x14,
 333	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 334			   SPARC_PMU_HAS_CONFLICTS),
 335	.max_hw_events	= 2,
 336	.num_pcrs	= 1,
 337	.num_pic_regs	= 1,
 338};
 339
 340/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 341 * only instructions, so it is free running which creates all kinds of
 342 * problems.  Some hardware designs make one wonder if the creator
 343 * even looked at how this stuff gets used by software.
 344 */
 345static const struct perf_event_map niagara1_perfmon_event_map[] = {
 346	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 349	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 350};
 351
 352static const struct perf_event_map *niagara1_event_map(int event_id)
 353{
 354	return &niagara1_perfmon_event_map[event_id];
 355}
 356
 357static const cache_map_t niagara1_cache_map = {
 358[C(L1D)] = {
 359	[C(OP_READ)] = {
 360		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 361		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 362	},
 363	[C(OP_WRITE)] = {
 364		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 365		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 366	},
 367	[C(OP_PREFETCH)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371},
 372[C(L1I)] = {
 373	[C(OP_READ)] = {
 374		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 375		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 376	},
 377	[ C(OP_WRITE) ] = {
 378		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 379		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 380	},
 381	[ C(OP_PREFETCH) ] = {
 382		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 383		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385},
 386[C(LL)] = {
 387	[C(OP_READ)] = {
 388		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 389		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 390	},
 391	[C(OP_WRITE)] = {
 392		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 393		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 394	},
 395	[C(OP_PREFETCH)] = {
 396		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 397		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 398	},
 399},
 400[C(DTLB)] = {
 401	[C(OP_READ)] = {
 402		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 403		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 404	},
 405	[ C(OP_WRITE) ] = {
 406		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 407		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 408	},
 409	[ C(OP_PREFETCH) ] = {
 410		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 411		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 412	},
 413},
 414[C(ITLB)] = {
 415	[C(OP_READ)] = {
 416		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 417		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 418	},
 419	[ C(OP_WRITE) ] = {
 420		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 421		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 422	},
 423	[ C(OP_PREFETCH) ] = {
 424		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 425		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 426	},
 427},
 428[C(BPU)] = {
 429	[C(OP_READ)] = {
 430		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432	},
 433	[ C(OP_WRITE) ] = {
 434		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 435		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 436	},
 437	[ C(OP_PREFETCH) ] = {
 438		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 439		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 440	},
 441},
 442[C(NODE)] = {
 443	[C(OP_READ)] = {
 444		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 445		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 446	},
 447	[ C(OP_WRITE) ] = {
 448		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 449		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 450	},
 451	[ C(OP_PREFETCH) ] = {
 452		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 453		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 454	},
 455},
 456};
 457
 458static const struct sparc_pmu niagara1_pmu = {
 459	.event_map	= niagara1_event_map,
 460	.cache_map	= &niagara1_cache_map,
 461	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 462	.read_pmc	= sparc_default_read_pmc,
 463	.write_pmc	= sparc_default_write_pmc,
 464	.upper_shift	= 0,
 465	.lower_shift	= 4,
 466	.event_mask	= 0x7,
 467	.user_bit	= PCR_UTRACE,
 468	.priv_bit	= PCR_STRACE,
 469	.upper_nop	= 0x0,
 470	.lower_nop	= 0x0,
 471	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 472			   SPARC_PMU_HAS_CONFLICTS),
 473	.max_hw_events	= 2,
 474	.num_pcrs	= 1,
 475	.num_pic_regs	= 1,
 476};
 477
 478static const struct perf_event_map niagara2_perfmon_event_map[] = {
 479	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 485};
 486
 487static const struct perf_event_map *niagara2_event_map(int event_id)
 488{
 489	return &niagara2_perfmon_event_map[event_id];
 490}
 491
 492static const cache_map_t niagara2_cache_map = {
 493[C(L1D)] = {
 494	[C(OP_READ)] = {
 495		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 496		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 497	},
 498	[C(OP_WRITE)] = {
 499		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 500		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 501	},
 502	[C(OP_PREFETCH)] = {
 503		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 504		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 505	},
 506},
 507[C(L1I)] = {
 508	[C(OP_READ)] = {
 509		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 510		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 511	},
 512	[ C(OP_WRITE) ] = {
 513		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 514		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 515	},
 516	[ C(OP_PREFETCH) ] = {
 517		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 518		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 519	},
 520},
 521[C(LL)] = {
 522	[C(OP_READ)] = {
 523		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 524		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 525	},
 526	[C(OP_WRITE)] = {
 527		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 528		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 529	},
 530	[C(OP_PREFETCH)] = {
 531		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 532		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 533	},
 534},
 535[C(DTLB)] = {
 536	[C(OP_READ)] = {
 537		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 538		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 539	},
 540	[ C(OP_WRITE) ] = {
 541		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 542		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 543	},
 544	[ C(OP_PREFETCH) ] = {
 545		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 546		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 547	},
 548},
 549[C(ITLB)] = {
 550	[C(OP_READ)] = {
 551		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 552		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 553	},
 554	[ C(OP_WRITE) ] = {
 555		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 556		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 557	},
 558	[ C(OP_PREFETCH) ] = {
 559		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 560		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 561	},
 562},
 563[C(BPU)] = {
 564	[C(OP_READ)] = {
 565		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 566		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 567	},
 568	[ C(OP_WRITE) ] = {
 569		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 570		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 571	},
 572	[ C(OP_PREFETCH) ] = {
 573		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 574		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 575	},
 576},
 577[C(NODE)] = {
 578	[C(OP_READ)] = {
 579		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 580		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 581	},
 582	[ C(OP_WRITE) ] = {
 583		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 584		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 585	},
 586	[ C(OP_PREFETCH) ] = {
 587		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 588		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 589	},
 590},
 591};
 592
 593static const struct sparc_pmu niagara2_pmu = {
 594	.event_map	= niagara2_event_map,
 595	.cache_map	= &niagara2_cache_map,
 596	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 597	.read_pmc	= sparc_default_read_pmc,
 598	.write_pmc	= sparc_default_write_pmc,
 599	.upper_shift	= 19,
 600	.lower_shift	= 6,
 601	.event_mask	= 0xfff,
 602	.user_bit	= PCR_UTRACE,
 603	.priv_bit	= PCR_STRACE,
 604	.hv_bit		= PCR_N2_HTRACE,
 605	.irq_bit	= 0x30,
 606	.upper_nop	= 0x220,
 607	.lower_nop	= 0x220,
 608	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 609			   SPARC_PMU_HAS_CONFLICTS),
 610	.max_hw_events	= 2,
 611	.num_pcrs	= 1,
 612	.num_pic_regs	= 1,
 613};
 614
 615static const struct perf_event_map niagara4_perfmon_event_map[] = {
 616	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 617	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 618	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 619	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 620	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 621	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 622};
 623
 624static const struct perf_event_map *niagara4_event_map(int event_id)
 625{
 626	return &niagara4_perfmon_event_map[event_id];
 627}
 628
 629static const cache_map_t niagara4_cache_map = {
 630[C(L1D)] = {
 631	[C(OP_READ)] = {
 632		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 633		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 634	},
 635	[C(OP_WRITE)] = {
 636		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 637		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 638	},
 639	[C(OP_PREFETCH)] = {
 640		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 641		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 642	},
 643},
 644[C(L1I)] = {
 645	[C(OP_READ)] = {
 646		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 647		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 648	},
 649	[ C(OP_WRITE) ] = {
 650		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 651		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 652	},
 653	[ C(OP_PREFETCH) ] = {
 654		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 655		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 656	},
 657},
 658[C(LL)] = {
 659	[C(OP_READ)] = {
 660		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 661		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 662	},
 663	[C(OP_WRITE)] = {
 664		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 665		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 666	},
 667	[C(OP_PREFETCH)] = {
 668		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 669		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 670	},
 671},
 672[C(DTLB)] = {
 673	[C(OP_READ)] = {
 674		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 675		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 676	},
 677	[ C(OP_WRITE) ] = {
 678		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 679		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 680	},
 681	[ C(OP_PREFETCH) ] = {
 682		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 683		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 684	},
 685},
 686[C(ITLB)] = {
 687	[C(OP_READ)] = {
 688		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 689		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 690	},
 691	[ C(OP_WRITE) ] = {
 692		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 693		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 694	},
 695	[ C(OP_PREFETCH) ] = {
 696		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 697		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 698	},
 699},
 700[C(BPU)] = {
 701	[C(OP_READ)] = {
 702		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 703		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 704	},
 705	[ C(OP_WRITE) ] = {
 706		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 707		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 708	},
 709	[ C(OP_PREFETCH) ] = {
 710		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 711		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 712	},
 713},
 714[C(NODE)] = {
 715	[C(OP_READ)] = {
 716		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 717		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 718	},
 719	[ C(OP_WRITE) ] = {
 720		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 721		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 722	},
 723	[ C(OP_PREFETCH) ] = {
 724		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 725		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 726	},
 727},
 728};
 729
 730static u32 sparc_vt_read_pmc(int idx)
 731{
 732	u64 val = pcr_ops->read_pic(idx);
 733
 734	return val & 0xffffffff;
 735}
 736
 737static void sparc_vt_write_pmc(int idx, u64 val)
 738{
 739	u64 pcr;
 740
 741	pcr = pcr_ops->read_pcr(idx);
 742	/* ensure ov and ntc are reset */
 743	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 744
 745	pcr_ops->write_pic(idx, val & 0xffffffff);
 746
 747	pcr_ops->write_pcr(idx, pcr);
 748}
 749
 750static const struct sparc_pmu niagara4_pmu = {
 751	.event_map	= niagara4_event_map,
 752	.cache_map	= &niagara4_cache_map,
 753	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 754	.read_pmc	= sparc_vt_read_pmc,
 755	.write_pmc	= sparc_vt_write_pmc,
 756	.upper_shift	= 5,
 757	.lower_shift	= 5,
 758	.event_mask	= 0x7ff,
 759	.user_bit	= PCR_N4_UTRACE,
 760	.priv_bit	= PCR_N4_STRACE,
 761
 762	/* We explicitly don't support hypervisor tracing.  The T4
 763	 * generates the overflow event for precise events via a trap
 764	 * which will not be generated (ie. it's completely lost) if
 765	 * we happen to be in the hypervisor when the event triggers.
 766	 * Essentially, the overflow event reporting is completely
 767	 * unusable when you have hypervisor mode tracing enabled.
 768	 */
 769	.hv_bit		= 0,
 770
 771	.irq_bit	= PCR_N4_TOE,
 772	.upper_nop	= 0,
 773	.lower_nop	= 0,
 774	.flags		= 0,
 775	.max_hw_events	= 4,
 776	.num_pcrs	= 4,
 777	.num_pic_regs	= 4,
 778};
 779
 780static const struct sparc_pmu sparc_m7_pmu = {
 781	.event_map	= niagara4_event_map,
 782	.cache_map	= &niagara4_cache_map,
 783	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 784	.read_pmc	= sparc_vt_read_pmc,
 785	.write_pmc	= sparc_vt_write_pmc,
 786	.upper_shift	= 5,
 787	.lower_shift	= 5,
 788	.event_mask	= 0x7ff,
 789	.user_bit	= PCR_N4_UTRACE,
 790	.priv_bit	= PCR_N4_STRACE,
 791
 792	/* We explicitly don't support hypervisor tracing. */
 793	.hv_bit		= 0,
 794
 795	.irq_bit	= PCR_N4_TOE,
 796	.upper_nop	= 0,
 797	.lower_nop	= 0,
 798	.flags		= 0,
 799	.max_hw_events	= 4,
 800	.num_pcrs	= 4,
 801	.num_pic_regs	= 4,
 802};
 803static const struct sparc_pmu *sparc_pmu __read_mostly;
 804
 805static u64 event_encoding(u64 event_id, int idx)
 806{
 807	if (idx == PIC_UPPER_INDEX)
 808		event_id <<= sparc_pmu->upper_shift;
 809	else
 810		event_id <<= sparc_pmu->lower_shift;
 811	return event_id;
 812}
 813
 814static u64 mask_for_index(int idx)
 815{
 816	return event_encoding(sparc_pmu->event_mask, idx);
 817}
 818
 819static u64 nop_for_index(int idx)
 820{
 821	return event_encoding(idx == PIC_UPPER_INDEX ?
 822			      sparc_pmu->upper_nop :
 823			      sparc_pmu->lower_nop, idx);
 824}
 825
 826static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 827{
 828	u64 enc, val, mask = mask_for_index(idx);
 829	int pcr_index = 0;
 830
 831	if (sparc_pmu->num_pcrs > 1)
 832		pcr_index = idx;
 833
 834	enc = perf_event_get_enc(cpuc->events[idx]);
 835
 836	val = cpuc->pcr[pcr_index];
 837	val &= ~mask;
 838	val |= event_encoding(enc, idx);
 839	cpuc->pcr[pcr_index] = val;
 840
 841	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 842}
 843
 844static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 845{
 846	u64 mask = mask_for_index(idx);
 847	u64 nop = nop_for_index(idx);
 848	int pcr_index = 0;
 849	u64 val;
 850
 851	if (sparc_pmu->num_pcrs > 1)
 852		pcr_index = idx;
 853
 854	val = cpuc->pcr[pcr_index];
 855	val &= ~mask;
 856	val |= nop;
 857	cpuc->pcr[pcr_index] = val;
 858
 859	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 860}
 861
 862static u64 sparc_perf_event_update(struct perf_event *event,
 863				   struct hw_perf_event *hwc, int idx)
 864{
 865	int shift = 64 - 32;
 866	u64 prev_raw_count, new_raw_count;
 867	s64 delta;
 868
 869again:
 870	prev_raw_count = local64_read(&hwc->prev_count);
 871	new_raw_count = sparc_pmu->read_pmc(idx);
 872
 873	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 874			     new_raw_count) != prev_raw_count)
 875		goto again;
 876
 877	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 878	delta >>= shift;
 879
 880	local64_add(delta, &event->count);
 881	local64_sub(delta, &hwc->period_left);
 882
 883	return new_raw_count;
 884}
 885
 886static int sparc_perf_event_set_period(struct perf_event *event,
 887				       struct hw_perf_event *hwc, int idx)
 888{
 889	s64 left = local64_read(&hwc->period_left);
 890	s64 period = hwc->sample_period;
 891	int ret = 0;
 892
 
 
 
 
 893	if (unlikely(left <= -period)) {
 894		left = period;
 895		local64_set(&hwc->period_left, left);
 896		hwc->last_period = period;
 897		ret = 1;
 898	}
 899
 900	if (unlikely(left <= 0)) {
 901		left += period;
 902		local64_set(&hwc->period_left, left);
 903		hwc->last_period = period;
 904		ret = 1;
 905	}
 906	if (left > MAX_PERIOD)
 907		left = MAX_PERIOD;
 908
 909	local64_set(&hwc->prev_count, (u64)-left);
 910
 911	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 912
 913	perf_event_update_userpage(event);
 914
 915	return ret;
 916}
 917
 918static void read_in_all_counters(struct cpu_hw_events *cpuc)
 919{
 920	int i;
 921
 922	for (i = 0; i < cpuc->n_events; i++) {
 923		struct perf_event *cp = cpuc->event[i];
 924
 925		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 926		    cpuc->current_idx[i] != cp->hw.idx) {
 927			sparc_perf_event_update(cp, &cp->hw,
 928						cpuc->current_idx[i]);
 929			cpuc->current_idx[i] = PIC_NO_INDEX;
 
 
 930		}
 931	}
 932}
 933
 934/* On this PMU all PICs are programmed using a single PCR.  Calculate
 935 * the combined control register value.
 936 *
 937 * For such chips we require that all of the events have the same
 938 * configuration, so just fetch the settings from the first entry.
 939 */
 940static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 941{
 942	int i;
 943
 944	if (!cpuc->n_added)
 945		goto out;
 946
 947	/* Assign to counters all unassigned events.  */
 948	for (i = 0; i < cpuc->n_events; i++) {
 949		struct perf_event *cp = cpuc->event[i];
 950		struct hw_perf_event *hwc = &cp->hw;
 951		int idx = hwc->idx;
 952		u64 enc;
 953
 954		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 955			continue;
 956
 957		sparc_perf_event_set_period(cp, hwc, idx);
 958		cpuc->current_idx[i] = idx;
 959
 960		enc = perf_event_get_enc(cpuc->events[i]);
 961		cpuc->pcr[0] &= ~mask_for_index(idx);
 962		if (hwc->state & PERF_HES_STOPPED)
 963			cpuc->pcr[0] |= nop_for_index(idx);
 964		else
 965			cpuc->pcr[0] |= event_encoding(enc, idx);
 
 
 966	}
 967out:
 968	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 969}
 970
 971static void sparc_pmu_start(struct perf_event *event, int flags);
 972
 973/* On this PMU each PIC has it's own PCR control register.  */
 974static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 975{
 976	int i;
 977
 978	if (!cpuc->n_added)
 979		goto out;
 980
 981	for (i = 0; i < cpuc->n_events; i++) {
 982		struct perf_event *cp = cpuc->event[i];
 983		struct hw_perf_event *hwc = &cp->hw;
 984		int idx = hwc->idx;
 985
 986		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 987			continue;
 988
 989		cpuc->current_idx[i] = idx;
 990
 
 
 
 991		sparc_pmu_start(cp, PERF_EF_RELOAD);
 992	}
 993out:
 994	for (i = 0; i < cpuc->n_events; i++) {
 995		struct perf_event *cp = cpuc->event[i];
 996		int idx = cp->hw.idx;
 997
 998		cpuc->pcr[idx] |= cp->hw.config_base;
 999	}
1000}
1001
1002/* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1004 */
1005static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006{
1007	if (cpuc->n_added)
1008		read_in_all_counters(cpuc);
1009
1010	if (sparc_pmu->num_pcrs == 1) {
1011		calculate_single_pcr(cpuc);
1012	} else {
1013		calculate_multiple_pcrs(cpuc);
1014	}
1015}
1016
1017static void sparc_pmu_enable(struct pmu *pmu)
1018{
1019	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020	int i;
1021
1022	if (cpuc->enabled)
1023		return;
1024
1025	cpuc->enabled = 1;
1026	barrier();
1027
1028	if (cpuc->n_events)
1029		update_pcrs_for_enable(cpuc);
1030
1031	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033}
1034
1035static void sparc_pmu_disable(struct pmu *pmu)
1036{
1037	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038	int i;
1039
1040	if (!cpuc->enabled)
1041		return;
1042
1043	cpuc->enabled = 0;
1044	cpuc->n_added = 0;
1045
1046	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047		u64 val = cpuc->pcr[i];
1048
1049		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051		cpuc->pcr[i] = val;
1052		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053	}
1054}
1055
1056static int active_event_index(struct cpu_hw_events *cpuc,
1057			      struct perf_event *event)
1058{
1059	int i;
1060
1061	for (i = 0; i < cpuc->n_events; i++) {
1062		if (cpuc->event[i] == event)
1063			break;
1064	}
1065	BUG_ON(i == cpuc->n_events);
1066	return cpuc->current_idx[i];
1067}
1068
1069static void sparc_pmu_start(struct perf_event *event, int flags)
1070{
1071	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072	int idx = active_event_index(cpuc, event);
1073
1074	if (flags & PERF_EF_RELOAD) {
1075		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076		sparc_perf_event_set_period(event, &event->hw, idx);
1077	}
1078
1079	event->hw.state = 0;
1080
1081	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 
 
1082}
1083
1084static void sparc_pmu_stop(struct perf_event *event, int flags)
1085{
1086	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087	int idx = active_event_index(cpuc, event);
1088
1089	if (!(event->hw.state & PERF_HES_STOPPED)) {
1090		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091		event->hw.state |= PERF_HES_STOPPED;
1092	}
1093
1094	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095		sparc_perf_event_update(event, &event->hw, idx);
1096		event->hw.state |= PERF_HES_UPTODATE;
1097	}
1098}
1099
1100static void sparc_pmu_del(struct perf_event *event, int _flags)
1101{
1102	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103	unsigned long flags;
1104	int i;
1105
1106	local_irq_save(flags);
1107
1108	for (i = 0; i < cpuc->n_events; i++) {
1109		if (event == cpuc->event[i]) {
1110			/* Absorb the final count and turn off the
1111			 * event.
1112			 */
1113			sparc_pmu_stop(event, PERF_EF_UPDATE);
1114
1115			/* Shift remaining entries down into
1116			 * the existing slot.
1117			 */
1118			while (++i < cpuc->n_events) {
1119				cpuc->event[i - 1] = cpuc->event[i];
1120				cpuc->events[i - 1] = cpuc->events[i];
1121				cpuc->current_idx[i - 1] =
1122					cpuc->current_idx[i];
1123			}
1124
1125			perf_event_update_userpage(event);
1126
1127			cpuc->n_events--;
1128			break;
1129		}
1130	}
1131
1132	local_irq_restore(flags);
1133}
1134
1135static void sparc_pmu_read(struct perf_event *event)
1136{
1137	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138	int idx = active_event_index(cpuc, event);
1139	struct hw_perf_event *hwc = &event->hw;
1140
1141	sparc_perf_event_update(event, hwc, idx);
1142}
1143
1144static atomic_t active_events = ATOMIC_INIT(0);
1145static DEFINE_MUTEX(pmc_grab_mutex);
1146
1147static void perf_stop_nmi_watchdog(void *unused)
1148{
1149	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150	int i;
1151
1152	stop_nmi_watchdog(NULL);
1153	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155}
1156
1157static void perf_event_grab_pmc(void)
1158{
1159	if (atomic_inc_not_zero(&active_events))
1160		return;
1161
1162	mutex_lock(&pmc_grab_mutex);
1163	if (atomic_read(&active_events) == 0) {
1164		if (atomic_read(&nmi_active) > 0) {
1165			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166			BUG_ON(atomic_read(&nmi_active) != 0);
1167		}
1168		atomic_inc(&active_events);
1169	}
1170	mutex_unlock(&pmc_grab_mutex);
1171}
1172
1173static void perf_event_release_pmc(void)
1174{
1175	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176		if (atomic_read(&nmi_active) == 0)
1177			on_each_cpu(start_nmi_watchdog, NULL, 1);
1178		mutex_unlock(&pmc_grab_mutex);
1179	}
1180}
1181
1182static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183{
1184	unsigned int cache_type, cache_op, cache_result;
1185	const struct perf_event_map *pmap;
1186
1187	if (!sparc_pmu->cache_map)
1188		return ERR_PTR(-ENOENT);
1189
1190	cache_type = (config >>  0) & 0xff;
1191	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192		return ERR_PTR(-EINVAL);
1193
1194	cache_op = (config >>  8) & 0xff;
1195	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196		return ERR_PTR(-EINVAL);
1197
1198	cache_result = (config >> 16) & 0xff;
1199	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200		return ERR_PTR(-EINVAL);
1201
1202	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203
1204	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205		return ERR_PTR(-ENOENT);
1206
1207	if (pmap->encoding == CACHE_OP_NONSENSE)
1208		return ERR_PTR(-EINVAL);
1209
1210	return pmap;
1211}
1212
1213static void hw_perf_event_destroy(struct perf_event *event)
1214{
1215	perf_event_release_pmc();
1216}
1217
1218/* Make sure all events can be scheduled into the hardware at
1219 * the same time.  This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1221 *
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success.  These are pending indexes.  When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1227 */
1228static int sparc_check_constraints(struct perf_event **evts,
1229				   unsigned long *events, int n_ev)
1230{
1231	u8 msk0 = 0, msk1 = 0;
1232	int idx0 = 0;
1233
1234	/* This case is possible when we are invoked from
1235	 * hw_perf_group_sched_in().
1236	 */
1237	if (!n_ev)
1238		return 0;
1239
1240	if (n_ev > sparc_pmu->max_hw_events)
1241		return -1;
1242
1243	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244		int i;
1245
1246		for (i = 0; i < n_ev; i++)
1247			evts[i]->hw.idx = i;
1248		return 0;
1249	}
1250
1251	msk0 = perf_event_get_msk(events[0]);
1252	if (n_ev == 1) {
1253		if (msk0 & PIC_LOWER)
1254			idx0 = 1;
1255		goto success;
1256	}
1257	BUG_ON(n_ev != 2);
1258	msk1 = perf_event_get_msk(events[1]);
1259
1260	/* If both events can go on any counter, OK.  */
1261	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262	    msk1 == (PIC_UPPER | PIC_LOWER))
1263		goto success;
1264
1265	/* If one event is limited to a specific counter,
1266	 * and the other can go on both, OK.
1267	 */
1268	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1270		if (msk0 & PIC_LOWER)
1271			idx0 = 1;
1272		goto success;
1273	}
1274
1275	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1277		if (msk1 & PIC_UPPER)
1278			idx0 = 1;
1279		goto success;
1280	}
1281
1282	/* If the events are fixed to different counters, OK.  */
1283	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285		if (msk0 & PIC_LOWER)
1286			idx0 = 1;
1287		goto success;
1288	}
1289
1290	/* Otherwise, there is a conflict.  */
1291	return -1;
1292
1293success:
1294	evts[0]->hw.idx = idx0;
1295	if (n_ev == 2)
1296		evts[1]->hw.idx = idx0 ^ 1;
1297	return 0;
1298}
1299
1300static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301{
1302	int eu = 0, ek = 0, eh = 0;
1303	struct perf_event *event;
1304	int i, n, first;
1305
1306	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307		return 0;
1308
1309	n = n_prev + n_new;
1310	if (n <= 1)
1311		return 0;
1312
1313	first = 1;
1314	for (i = 0; i < n; i++) {
1315		event = evts[i];
1316		if (first) {
1317			eu = event->attr.exclude_user;
1318			ek = event->attr.exclude_kernel;
1319			eh = event->attr.exclude_hv;
1320			first = 0;
1321		} else if (event->attr.exclude_user != eu ||
1322			   event->attr.exclude_kernel != ek ||
1323			   event->attr.exclude_hv != eh) {
1324			return -EAGAIN;
1325		}
1326	}
1327
1328	return 0;
1329}
1330
1331static int collect_events(struct perf_event *group, int max_count,
1332			  struct perf_event *evts[], unsigned long *events,
1333			  int *current_idx)
1334{
1335	struct perf_event *event;
1336	int n = 0;
1337
1338	if (!is_software_event(group)) {
1339		if (n >= max_count)
1340			return -1;
1341		evts[n] = group;
1342		events[n] = group->hw.event_base;
1343		current_idx[n++] = PIC_NO_INDEX;
1344	}
1345	for_each_sibling_event(event, group) {
1346		if (!is_software_event(event) &&
1347		    event->state != PERF_EVENT_STATE_OFF) {
1348			if (n >= max_count)
1349				return -1;
1350			evts[n] = event;
1351			events[n] = event->hw.event_base;
1352			current_idx[n++] = PIC_NO_INDEX;
1353		}
1354	}
1355	return n;
1356}
1357
1358static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359{
1360	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361	int n0, ret = -EAGAIN;
1362	unsigned long flags;
1363
1364	local_irq_save(flags);
1365
1366	n0 = cpuc->n_events;
1367	if (n0 >= sparc_pmu->max_hw_events)
1368		goto out;
1369
1370	cpuc->event[n0] = event;
1371	cpuc->events[n0] = event->hw.event_base;
1372	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374	event->hw.state = PERF_HES_UPTODATE;
1375	if (!(ef_flags & PERF_EF_START))
1376		event->hw.state |= PERF_HES_STOPPED;
1377
1378	/*
1379	 * If group events scheduling transaction was started,
1380	 * skip the schedulability test here, it will be performed
1381	 * at commit time(->commit_txn) as a whole
1382	 */
1383	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384		goto nocheck;
1385
1386	if (check_excludes(cpuc->event, n0, 1))
1387		goto out;
1388	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389		goto out;
1390
1391nocheck:
1392	cpuc->n_events++;
1393	cpuc->n_added++;
1394
1395	ret = 0;
1396out:
1397	local_irq_restore(flags);
1398	return ret;
1399}
1400
1401static int sparc_pmu_event_init(struct perf_event *event)
1402{
1403	struct perf_event_attr *attr = &event->attr;
1404	struct perf_event *evts[MAX_HWEVENTS];
1405	struct hw_perf_event *hwc = &event->hw;
1406	unsigned long events[MAX_HWEVENTS];
1407	int current_idx_dmy[MAX_HWEVENTS];
1408	const struct perf_event_map *pmap;
1409	int n;
1410
1411	if (atomic_read(&nmi_active) < 0)
1412		return -ENODEV;
1413
1414	/* does not support taken branch sampling */
1415	if (has_branch_stack(event))
1416		return -EOPNOTSUPP;
1417
1418	switch (attr->type) {
1419	case PERF_TYPE_HARDWARE:
1420		if (attr->config >= sparc_pmu->max_events)
1421			return -EINVAL;
1422		pmap = sparc_pmu->event_map(attr->config);
1423		break;
1424
1425	case PERF_TYPE_HW_CACHE:
1426		pmap = sparc_map_cache_event(attr->config);
1427		if (IS_ERR(pmap))
1428			return PTR_ERR(pmap);
1429		break;
1430
1431	case PERF_TYPE_RAW:
1432		pmap = NULL;
1433		break;
1434
1435	default:
1436		return -ENOENT;
1437
1438	}
1439
1440	if (pmap) {
1441		hwc->event_base = perf_event_encode(pmap);
1442	} else {
1443		/*
1444		 * User gives us "(encoding << 16) | pic_mask" for
1445		 * PERF_TYPE_RAW events.
1446		 */
1447		hwc->event_base = attr->config;
1448	}
1449
1450	/* We save the enable bits in the config_base.  */
1451	hwc->config_base = sparc_pmu->irq_bit;
1452	if (!attr->exclude_user)
1453		hwc->config_base |= sparc_pmu->user_bit;
1454	if (!attr->exclude_kernel)
1455		hwc->config_base |= sparc_pmu->priv_bit;
1456	if (!attr->exclude_hv)
1457		hwc->config_base |= sparc_pmu->hv_bit;
1458
1459	n = 0;
1460	if (event->group_leader != event) {
1461		n = collect_events(event->group_leader,
1462				   sparc_pmu->max_hw_events - 1,
1463				   evts, events, current_idx_dmy);
1464		if (n < 0)
1465			return -EINVAL;
1466	}
1467	events[n] = hwc->event_base;
1468	evts[n] = event;
1469
1470	if (check_excludes(evts, n, 1))
1471		return -EINVAL;
1472
1473	if (sparc_check_constraints(evts, events, n + 1))
1474		return -EINVAL;
1475
1476	hwc->idx = PIC_NO_INDEX;
1477
1478	/* Try to do all error checking before this point, as unwinding
1479	 * state after grabbing the PMC is difficult.
1480	 */
1481	perf_event_grab_pmc();
1482	event->destroy = hw_perf_event_destroy;
1483
1484	if (!hwc->sample_period) {
1485		hwc->sample_period = MAX_PERIOD;
1486		hwc->last_period = hwc->sample_period;
1487		local64_set(&hwc->period_left, hwc->sample_period);
1488	}
1489
1490	return 0;
1491}
1492
1493/*
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1497 */
1498static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499{
1500	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501
1502	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1503
1504	cpuhw->txn_flags = txn_flags;
1505	if (txn_flags & ~PERF_PMU_TXN_ADD)
1506		return;
1507
1508	perf_pmu_disable(pmu);
1509}
1510
1511/*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517{
1518	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519	unsigned int txn_flags;
1520
1521	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1522
1523	txn_flags = cpuhw->txn_flags;
1524	cpuhw->txn_flags = 0;
1525	if (txn_flags & ~PERF_PMU_TXN_ADD)
1526		return;
1527
1528	perf_pmu_enable(pmu);
1529}
1530
1531/*
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1535 */
1536static int sparc_pmu_commit_txn(struct pmu *pmu)
1537{
1538	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539	int n;
1540
1541	if (!sparc_pmu)
1542		return -EINVAL;
1543
1544	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1545
1546	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547		cpuc->txn_flags = 0;
1548		return 0;
1549	}
1550
1551	n = cpuc->n_events;
1552	if (check_excludes(cpuc->event, 0, n))
1553		return -EINVAL;
1554	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555		return -EAGAIN;
1556
1557	cpuc->txn_flags = 0;
1558	perf_pmu_enable(pmu);
1559	return 0;
1560}
1561
1562static struct pmu pmu = {
1563	.pmu_enable	= sparc_pmu_enable,
1564	.pmu_disable	= sparc_pmu_disable,
1565	.event_init	= sparc_pmu_event_init,
1566	.add		= sparc_pmu_add,
1567	.del		= sparc_pmu_del,
1568	.start		= sparc_pmu_start,
1569	.stop		= sparc_pmu_stop,
1570	.read		= sparc_pmu_read,
1571	.start_txn	= sparc_pmu_start_txn,
1572	.cancel_txn	= sparc_pmu_cancel_txn,
1573	.commit_txn	= sparc_pmu_commit_txn,
1574};
1575
1576void perf_event_print_debug(void)
1577{
1578	unsigned long flags;
1579	int cpu, i;
1580
1581	if (!sparc_pmu)
1582		return;
1583
1584	local_irq_save(flags);
1585
1586	cpu = smp_processor_id();
1587
1588	pr_info("\n");
1589	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590		pr_info("CPU#%d: PCR%d[%016llx]\n",
1591			cpu, i, pcr_ops->read_pcr(i));
1592	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593		pr_info("CPU#%d: PIC%d[%016llx]\n",
1594			cpu, i, pcr_ops->read_pic(i));
1595
1596	local_irq_restore(flags);
1597}
1598
1599static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600					    unsigned long cmd, void *__args)
1601{
1602	struct die_args *args = __args;
1603	struct perf_sample_data data;
1604	struct cpu_hw_events *cpuc;
1605	struct pt_regs *regs;
 
 
1606	int i;
1607
1608	if (!atomic_read(&active_events))
1609		return NOTIFY_DONE;
1610
1611	switch (cmd) {
1612	case DIE_NMI:
1613		break;
1614
1615	default:
1616		return NOTIFY_DONE;
1617	}
1618
 
 
1619	regs = args->regs;
1620
1621	cpuc = this_cpu_ptr(&cpu_hw_events);
1622
1623	/* If the PMU has the TOE IRQ enable bits, we need to do a
1624	 * dummy write to the %pcr to clear the overflow bits and thus
1625	 * the interrupt.
1626	 *
1627	 * Do this before we peek at the counters to determine
1628	 * overflow so we don't lose any events.
1629	 */
1630	if (sparc_pmu->irq_bit &&
1631	    sparc_pmu->num_pcrs == 1)
1632		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633
1634	for (i = 0; i < cpuc->n_events; i++) {
1635		struct perf_event *event = cpuc->event[i];
1636		int idx = cpuc->current_idx[i];
1637		struct hw_perf_event *hwc;
1638		u64 val;
1639
1640		if (sparc_pmu->irq_bit &&
1641		    sparc_pmu->num_pcrs > 1)
1642			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643
1644		hwc = &event->hw;
1645		val = sparc_perf_event_update(event, hwc, idx);
1646		if (val & (1ULL << 31))
1647			continue;
1648
1649		perf_sample_data_init(&data, 0, hwc->last_period);
1650		if (!sparc_perf_event_set_period(event, hwc, idx))
1651			continue;
1652
1653		if (perf_event_overflow(event, &data, regs))
1654			sparc_pmu_stop(event, 0);
1655	}
1656
 
 
 
 
1657	return NOTIFY_STOP;
1658}
1659
1660static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661	.notifier_call		= perf_event_nmi_handler,
1662};
1663
1664static bool __init supported_pmu(void)
1665{
1666	if (!strcmp(sparc_pmu_type, "ultra3") ||
1667	    !strcmp(sparc_pmu_type, "ultra3+") ||
1668	    !strcmp(sparc_pmu_type, "ultra3i") ||
1669	    !strcmp(sparc_pmu_type, "ultra4+")) {
1670		sparc_pmu = &ultra3_pmu;
1671		return true;
1672	}
1673	if (!strcmp(sparc_pmu_type, "niagara")) {
1674		sparc_pmu = &niagara1_pmu;
1675		return true;
1676	}
1677	if (!strcmp(sparc_pmu_type, "niagara2") ||
1678	    !strcmp(sparc_pmu_type, "niagara3")) {
1679		sparc_pmu = &niagara2_pmu;
1680		return true;
1681	}
1682	if (!strcmp(sparc_pmu_type, "niagara4") ||
1683	    !strcmp(sparc_pmu_type, "niagara5")) {
1684		sparc_pmu = &niagara4_pmu;
1685		return true;
1686	}
1687	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688		sparc_pmu = &sparc_m7_pmu;
1689		return true;
1690	}
1691	return false;
1692}
1693
1694static int __init init_hw_perf_events(void)
1695{
1696	int err;
1697
1698	pr_info("Performance events: ");
1699
1700	err = pcr_arch_init();
1701	if (err || !supported_pmu()) {
1702		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703		return 0;
1704	}
1705
1706	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707
1708	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709	register_die_notifier(&perf_event_nmi_notifier);
1710
1711	return 0;
1712}
1713pure_initcall(init_hw_perf_events);
1714
1715void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716			   struct pt_regs *regs)
1717{
1718	unsigned long ksp, fp;
1719#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720	int graph = 0;
1721#endif
1722
1723	stack_trace_flush();
1724
1725	perf_callchain_store(entry, regs->tpc);
1726
1727	ksp = regs->u_regs[UREG_I6];
1728	fp = ksp + STACK_BIAS;
1729	do {
1730		struct sparc_stackf *sf;
1731		struct pt_regs *regs;
1732		unsigned long pc;
1733
1734		if (!kstack_valid(current_thread_info(), fp))
1735			break;
1736
1737		sf = (struct sparc_stackf *) fp;
1738		regs = (struct pt_regs *) (sf + 1);
1739
1740		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741			if (user_mode(regs))
1742				break;
1743			pc = regs->tpc;
1744			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745		} else {
1746			pc = sf->callers_pc;
1747			fp = (unsigned long)sf->fp + STACK_BIAS;
1748		}
1749		perf_callchain_store(entry, pc);
1750#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752			int index = current->curr_ret_stack;
1753			if (current->ret_stack && index >= graph) {
1754				pc = current->ret_stack[index - graph].ret;
 
 
1755				perf_callchain_store(entry, pc);
1756				graph++;
1757			}
1758		}
1759#endif
1760	} while (entry->nr < entry->max_stack);
1761}
1762
1763static inline int
1764valid_user_frame(const void __user *fp, unsigned long size)
1765{
1766	/* addresses should be at least 4-byte aligned */
1767	if (((unsigned long) fp) & 3)
1768		return 0;
1769
1770	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771}
1772
1773static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774				   struct pt_regs *regs)
1775{
1776	unsigned long ufp;
1777
1778	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779	do {
1780		struct sparc_stackf __user *usf;
1781		struct sparc_stackf sf;
1782		unsigned long pc;
1783
1784		usf = (struct sparc_stackf __user *)ufp;
1785		if (!valid_user_frame(usf, sizeof(sf)))
1786			break;
1787
1788		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789			break;
1790
1791		pc = sf.callers_pc;
1792		ufp = (unsigned long)sf.fp + STACK_BIAS;
1793		perf_callchain_store(entry, pc);
1794	} while (entry->nr < entry->max_stack);
1795}
1796
1797static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803	do {
1804		unsigned long pc;
1805
1806		if (thread32_stack_is_64bit(ufp)) {
1807			struct sparc_stackf __user *usf;
1808			struct sparc_stackf sf;
1809
1810			ufp += STACK_BIAS;
1811			usf = (struct sparc_stackf __user *)ufp;
1812			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813				break;
1814			pc = sf.callers_pc & 0xffffffff;
1815			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816		} else {
1817			struct sparc_stackf32 __user *usf;
1818			struct sparc_stackf32 sf;
1819			usf = (struct sparc_stackf32 __user *)ufp;
1820			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821				break;
1822			pc = sf.callers_pc;
1823			ufp = (unsigned long)sf.fp;
1824		}
1825		perf_callchain_store(entry, pc);
1826	} while (entry->nr < entry->max_stack);
1827}
1828
1829void
1830perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831{
1832	u64 saved_fault_address = current_thread_info()->fault_address;
1833	u8 saved_fault_code = get_thread_fault_code();
1834	mm_segment_t old_fs;
1835
1836	perf_callchain_store(entry, regs->tpc);
1837
1838	if (!current->mm)
1839		return;
1840
1841	old_fs = get_fs();
1842	set_fs(USER_DS);
1843
1844	flushw_user();
1845
1846	pagefault_disable();
1847
1848	if (test_thread_flag(TIF_32BIT))
1849		perf_callchain_user_32(entry, regs);
1850	else
1851		perf_callchain_user_64(entry, regs);
1852
1853	pagefault_enable();
1854
1855	set_fs(old_fs);
1856	set_thread_fault_code(saved_fault_code);
1857	current_thread_info()->fault_address = saved_fault_address;
1858}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <linux/sched/clock.h>
  28#include <asm/nmi.h>
  29#include <asm/pcr.h>
  30#include <asm/cacheflush.h>
  31
  32#include "kernel.h"
  33#include "kstack.h"
  34
  35/* Two classes of sparc64 chips currently exist.  All of which have
  36 * 32-bit counters which can generate overflow interrupts on the
  37 * transition from 0xffffffff to 0.
  38 *
  39 * All chips upto and including SPARC-T3 have two performance
  40 * counters.  The two 32-bit counters are accessed in one go using a
  41 * single 64-bit register.
  42 *
  43 * On these older chips both counters are controlled using a single
  44 * control register.  The only way to stop all sampling is to clear
  45 * all of the context (user, supervisor, hypervisor) sampling enable
  46 * bits.  But these bits apply to both counters, thus the two counters
  47 * can't be enabled/disabled individually.
  48 *
  49 * Furthermore, the control register on these older chips have two
  50 * event fields, one for each of the two counters.  It's thus nearly
  51 * impossible to have one counter going while keeping the other one
  52 * stopped.  Therefore it is possible to get overflow interrupts for
  53 * counters not currently "in use" and that condition must be checked
  54 * in the overflow interrupt handler.
  55 *
  56 * So we use a hack, in that we program inactive counters with the
  57 * "sw_count0" and "sw_count1" events.  These count how many times
  58 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  59 * unusual way to encode a NOP and therefore will not trigger in
  60 * normal code.
  61 *
  62 * Starting with SPARC-T4 we have one control register per counter.
  63 * And the counters are stored in individual registers.  The registers
  64 * for the counters are 64-bit but only a 32-bit counter is
  65 * implemented.  The event selections on SPARC-T4 lack any
  66 * restrictions, therefore we can elide all of the complicated
  67 * conflict resolution code we have for SPARC-T3 and earlier chips.
  68 */
  69
  70#define MAX_HWEVENTS			4
  71#define MAX_PCRS			4
  72#define MAX_PERIOD			((1UL << 32) - 1)
  73
  74#define PIC_UPPER_INDEX			0
  75#define PIC_LOWER_INDEX			1
  76#define PIC_NO_INDEX			-1
  77
  78struct cpu_hw_events {
  79	/* Number of events currently scheduled onto this cpu.
  80	 * This tells how many entries in the arrays below
  81	 * are valid.
  82	 */
  83	int			n_events;
  84
  85	/* Number of new events added since the last hw_perf_disable().
  86	 * This works because the perf event layer always adds new
  87	 * events inside of a perf_{disable,enable}() sequence.
  88	 */
  89	int			n_added;
  90
  91	/* Array of events current scheduled on this cpu.  */
  92	struct perf_event	*event[MAX_HWEVENTS];
  93
  94	/* Array of encoded longs, specifying the %pcr register
  95	 * encoding and the mask of PIC counters this even can
  96	 * be scheduled on.  See perf_event_encode() et al.
  97	 */
  98	unsigned long		events[MAX_HWEVENTS];
  99
 100	/* The current counter index assigned to an event.  When the
 101	 * event hasn't been programmed into the cpu yet, this will
 102	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 103	 * we ought to schedule the event.
 104	 */
 105	int			current_idx[MAX_HWEVENTS];
 106
 107	/* Software copy of %pcr register(s) on this cpu.  */
 108	u64			pcr[MAX_HWEVENTS];
 109
 110	/* Enabled/disable state.  */
 111	int			enabled;
 112
 113	unsigned int		txn_flags;
 114};
 115static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 116
 117/* An event map describes the characteristics of a performance
 118 * counter event.  In particular it gives the encoding as well as
 119 * a mask telling which counters the event can be measured on.
 120 *
 121 * The mask is unused on SPARC-T4 and later.
 122 */
 123struct perf_event_map {
 124	u16	encoding;
 125	u8	pic_mask;
 126#define PIC_NONE	0x00
 127#define PIC_UPPER	0x01
 128#define PIC_LOWER	0x02
 129};
 130
 131/* Encode a perf_event_map entry into a long.  */
 132static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 133{
 134	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 135}
 136
 137static u8 perf_event_get_msk(unsigned long val)
 138{
 139	return val & 0xff;
 140}
 141
 142static u64 perf_event_get_enc(unsigned long val)
 143{
 144	return val >> 16;
 145}
 146
 147#define C(x) PERF_COUNT_HW_CACHE_##x
 148
 149#define CACHE_OP_UNSUPPORTED	0xfffe
 150#define CACHE_OP_NONSENSE	0xffff
 151
 152typedef struct perf_event_map cache_map_t
 153				[PERF_COUNT_HW_CACHE_MAX]
 154				[PERF_COUNT_HW_CACHE_OP_MAX]
 155				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 156
 157struct sparc_pmu {
 158	const struct perf_event_map	*(*event_map)(int);
 159	const cache_map_t		*cache_map;
 160	int				max_events;
 161	u32				(*read_pmc)(int);
 162	void				(*write_pmc)(int, u64);
 163	int				upper_shift;
 164	int				lower_shift;
 165	int				event_mask;
 166	int				user_bit;
 167	int				priv_bit;
 168	int				hv_bit;
 169	int				irq_bit;
 170	int				upper_nop;
 171	int				lower_nop;
 172	unsigned int			flags;
 173#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 174#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 175	int				max_hw_events;
 176	int				num_pcrs;
 177	int				num_pic_regs;
 178};
 179
 180static u32 sparc_default_read_pmc(int idx)
 181{
 182	u64 val;
 183
 184	val = pcr_ops->read_pic(0);
 185	if (idx == PIC_UPPER_INDEX)
 186		val >>= 32;
 187
 188	return val & 0xffffffff;
 189}
 190
 191static void sparc_default_write_pmc(int idx, u64 val)
 192{
 193	u64 shift, mask, pic;
 194
 195	shift = 0;
 196	if (idx == PIC_UPPER_INDEX)
 197		shift = 32;
 198
 199	mask = ((u64) 0xffffffff) << shift;
 200	val <<= shift;
 201
 202	pic = pcr_ops->read_pic(0);
 203	pic &= ~mask;
 204	pic |= val;
 205	pcr_ops->write_pic(0, pic);
 206}
 207
 208static const struct perf_event_map ultra3_perfmon_event_map[] = {
 209	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 212	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 213};
 214
 215static const struct perf_event_map *ultra3_event_map(int event_id)
 216{
 217	return &ultra3_perfmon_event_map[event_id];
 218}
 219
 220static const cache_map_t ultra3_cache_map = {
 221[C(L1D)] = {
 222	[C(OP_READ)] = {
 223		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 224		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 225	},
 226	[C(OP_WRITE)] = {
 227		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 228		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 229	},
 230	[C(OP_PREFETCH)] = {
 231		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 232		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 233	},
 234},
 235[C(L1I)] = {
 236	[C(OP_READ)] = {
 237		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 238		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 239	},
 240	[ C(OP_WRITE) ] = {
 241		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 242		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 243	},
 244	[ C(OP_PREFETCH) ] = {
 245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 247	},
 248},
 249[C(LL)] = {
 250	[C(OP_READ)] = {
 251		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 252		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 253	},
 254	[C(OP_WRITE)] = {
 255		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 256		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 257	},
 258	[C(OP_PREFETCH)] = {
 259		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 260		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 261	},
 262},
 263[C(DTLB)] = {
 264	[C(OP_READ)] = {
 265		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 266		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 267	},
 268	[ C(OP_WRITE) ] = {
 269		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 270		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 271	},
 272	[ C(OP_PREFETCH) ] = {
 273		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 274		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 275	},
 276},
 277[C(ITLB)] = {
 278	[C(OP_READ)] = {
 279		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 280		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 281	},
 282	[ C(OP_WRITE) ] = {
 283		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 284		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 285	},
 286	[ C(OP_PREFETCH) ] = {
 287		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 288		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 289	},
 290},
 291[C(BPU)] = {
 292	[C(OP_READ)] = {
 293		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 294		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 295	},
 296	[ C(OP_WRITE) ] = {
 297		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 298		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 299	},
 300	[ C(OP_PREFETCH) ] = {
 301		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 302		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 303	},
 304},
 305[C(NODE)] = {
 306	[C(OP_READ)] = {
 307		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 308		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 309	},
 310	[ C(OP_WRITE) ] = {
 311		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 312		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 313	},
 314	[ C(OP_PREFETCH) ] = {
 315		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 316		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 317	},
 318},
 319};
 320
 321static const struct sparc_pmu ultra3_pmu = {
 322	.event_map	= ultra3_event_map,
 323	.cache_map	= &ultra3_cache_map,
 324	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 325	.read_pmc	= sparc_default_read_pmc,
 326	.write_pmc	= sparc_default_write_pmc,
 327	.upper_shift	= 11,
 328	.lower_shift	= 4,
 329	.event_mask	= 0x3f,
 330	.user_bit	= PCR_UTRACE,
 331	.priv_bit	= PCR_STRACE,
 332	.upper_nop	= 0x1c,
 333	.lower_nop	= 0x14,
 334	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 335			   SPARC_PMU_HAS_CONFLICTS),
 336	.max_hw_events	= 2,
 337	.num_pcrs	= 1,
 338	.num_pic_regs	= 1,
 339};
 340
 341/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 342 * only instructions, so it is free running which creates all kinds of
 343 * problems.  Some hardware designs make one wonder if the creator
 344 * even looked at how this stuff gets used by software.
 345 */
 346static const struct perf_event_map niagara1_perfmon_event_map[] = {
 347	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 349	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 350	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 351};
 352
 353static const struct perf_event_map *niagara1_event_map(int event_id)
 354{
 355	return &niagara1_perfmon_event_map[event_id];
 356}
 357
 358static const cache_map_t niagara1_cache_map = {
 359[C(L1D)] = {
 360	[C(OP_READ)] = {
 361		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 362		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 363	},
 364	[C(OP_WRITE)] = {
 365		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 366		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 367	},
 368	[C(OP_PREFETCH)] = {
 369		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 370		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 371	},
 372},
 373[C(L1I)] = {
 374	[C(OP_READ)] = {
 375		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 376		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 377	},
 378	[ C(OP_WRITE) ] = {
 379		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 380		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 381	},
 382	[ C(OP_PREFETCH) ] = {
 383		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 384		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 385	},
 386},
 387[C(LL)] = {
 388	[C(OP_READ)] = {
 389		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 390		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 391	},
 392	[C(OP_WRITE)] = {
 393		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 394		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 395	},
 396	[C(OP_PREFETCH)] = {
 397		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 398		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 399	},
 400},
 401[C(DTLB)] = {
 402	[C(OP_READ)] = {
 403		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 404		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 405	},
 406	[ C(OP_WRITE) ] = {
 407		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 408		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 409	},
 410	[ C(OP_PREFETCH) ] = {
 411		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 412		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 413	},
 414},
 415[C(ITLB)] = {
 416	[C(OP_READ)] = {
 417		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 418		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 419	},
 420	[ C(OP_WRITE) ] = {
 421		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 422		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 423	},
 424	[ C(OP_PREFETCH) ] = {
 425		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 426		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 427	},
 428},
 429[C(BPU)] = {
 430	[C(OP_READ)] = {
 431		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 432		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 433	},
 434	[ C(OP_WRITE) ] = {
 435		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 436		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 437	},
 438	[ C(OP_PREFETCH) ] = {
 439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 441	},
 442},
 443[C(NODE)] = {
 444	[C(OP_READ)] = {
 445		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 446		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 447	},
 448	[ C(OP_WRITE) ] = {
 449		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 450		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 451	},
 452	[ C(OP_PREFETCH) ] = {
 453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 455	},
 456},
 457};
 458
 459static const struct sparc_pmu niagara1_pmu = {
 460	.event_map	= niagara1_event_map,
 461	.cache_map	= &niagara1_cache_map,
 462	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 463	.read_pmc	= sparc_default_read_pmc,
 464	.write_pmc	= sparc_default_write_pmc,
 465	.upper_shift	= 0,
 466	.lower_shift	= 4,
 467	.event_mask	= 0x7,
 468	.user_bit	= PCR_UTRACE,
 469	.priv_bit	= PCR_STRACE,
 470	.upper_nop	= 0x0,
 471	.lower_nop	= 0x0,
 472	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 473			   SPARC_PMU_HAS_CONFLICTS),
 474	.max_hw_events	= 2,
 475	.num_pcrs	= 1,
 476	.num_pic_regs	= 1,
 477};
 478
 479static const struct perf_event_map niagara2_perfmon_event_map[] = {
 480	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 485	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 486};
 487
 488static const struct perf_event_map *niagara2_event_map(int event_id)
 489{
 490	return &niagara2_perfmon_event_map[event_id];
 491}
 492
 493static const cache_map_t niagara2_cache_map = {
 494[C(L1D)] = {
 495	[C(OP_READ)] = {
 496		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 497		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 498	},
 499	[C(OP_WRITE)] = {
 500		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 501		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 502	},
 503	[C(OP_PREFETCH)] = {
 504		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 505		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 506	},
 507},
 508[C(L1I)] = {
 509	[C(OP_READ)] = {
 510		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 511		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 512	},
 513	[ C(OP_WRITE) ] = {
 514		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 515		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 516	},
 517	[ C(OP_PREFETCH) ] = {
 518		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 519		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 520	},
 521},
 522[C(LL)] = {
 523	[C(OP_READ)] = {
 524		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 525		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 526	},
 527	[C(OP_WRITE)] = {
 528		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 529		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 530	},
 531	[C(OP_PREFETCH)] = {
 532		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 533		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 534	},
 535},
 536[C(DTLB)] = {
 537	[C(OP_READ)] = {
 538		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 539		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 540	},
 541	[ C(OP_WRITE) ] = {
 542		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 543		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 544	},
 545	[ C(OP_PREFETCH) ] = {
 546		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 547		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 548	},
 549},
 550[C(ITLB)] = {
 551	[C(OP_READ)] = {
 552		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 553		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 554	},
 555	[ C(OP_WRITE) ] = {
 556		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 557		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 558	},
 559	[ C(OP_PREFETCH) ] = {
 560		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 561		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 562	},
 563},
 564[C(BPU)] = {
 565	[C(OP_READ)] = {
 566		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 567		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 568	},
 569	[ C(OP_WRITE) ] = {
 570		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 571		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 572	},
 573	[ C(OP_PREFETCH) ] = {
 574		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 575		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 576	},
 577},
 578[C(NODE)] = {
 579	[C(OP_READ)] = {
 580		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 581		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 582	},
 583	[ C(OP_WRITE) ] = {
 584		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 585		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 586	},
 587	[ C(OP_PREFETCH) ] = {
 588		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 589		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 590	},
 591},
 592};
 593
 594static const struct sparc_pmu niagara2_pmu = {
 595	.event_map	= niagara2_event_map,
 596	.cache_map	= &niagara2_cache_map,
 597	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 598	.read_pmc	= sparc_default_read_pmc,
 599	.write_pmc	= sparc_default_write_pmc,
 600	.upper_shift	= 19,
 601	.lower_shift	= 6,
 602	.event_mask	= 0xfff,
 603	.user_bit	= PCR_UTRACE,
 604	.priv_bit	= PCR_STRACE,
 605	.hv_bit		= PCR_N2_HTRACE,
 606	.irq_bit	= 0x30,
 607	.upper_nop	= 0x220,
 608	.lower_nop	= 0x220,
 609	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 610			   SPARC_PMU_HAS_CONFLICTS),
 611	.max_hw_events	= 2,
 612	.num_pcrs	= 1,
 613	.num_pic_regs	= 1,
 614};
 615
 616static const struct perf_event_map niagara4_perfmon_event_map[] = {
 617	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 618	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 619	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 620	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 621	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 622	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 623};
 624
 625static const struct perf_event_map *niagara4_event_map(int event_id)
 626{
 627	return &niagara4_perfmon_event_map[event_id];
 628}
 629
 630static const cache_map_t niagara4_cache_map = {
 631[C(L1D)] = {
 632	[C(OP_READ)] = {
 633		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 634		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 635	},
 636	[C(OP_WRITE)] = {
 637		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 638		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 639	},
 640	[C(OP_PREFETCH)] = {
 641		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 642		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 643	},
 644},
 645[C(L1I)] = {
 646	[C(OP_READ)] = {
 647		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 648		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 649	},
 650	[ C(OP_WRITE) ] = {
 651		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 652		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 653	},
 654	[ C(OP_PREFETCH) ] = {
 655		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 656		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 657	},
 658},
 659[C(LL)] = {
 660	[C(OP_READ)] = {
 661		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 662		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 663	},
 664	[C(OP_WRITE)] = {
 665		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 666		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 667	},
 668	[C(OP_PREFETCH)] = {
 669		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 670		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 671	},
 672},
 673[C(DTLB)] = {
 674	[C(OP_READ)] = {
 675		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 676		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 677	},
 678	[ C(OP_WRITE) ] = {
 679		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 680		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 681	},
 682	[ C(OP_PREFETCH) ] = {
 683		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 684		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 685	},
 686},
 687[C(ITLB)] = {
 688	[C(OP_READ)] = {
 689		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 690		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 691	},
 692	[ C(OP_WRITE) ] = {
 693		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 694		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 695	},
 696	[ C(OP_PREFETCH) ] = {
 697		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 698		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 699	},
 700},
 701[C(BPU)] = {
 702	[C(OP_READ)] = {
 703		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 704		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 705	},
 706	[ C(OP_WRITE) ] = {
 707		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 708		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 709	},
 710	[ C(OP_PREFETCH) ] = {
 711		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 712		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 713	},
 714},
 715[C(NODE)] = {
 716	[C(OP_READ)] = {
 717		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 718		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 719	},
 720	[ C(OP_WRITE) ] = {
 721		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 722		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 723	},
 724	[ C(OP_PREFETCH) ] = {
 725		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 726		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 727	},
 728},
 729};
 730
 731static u32 sparc_vt_read_pmc(int idx)
 732{
 733	u64 val = pcr_ops->read_pic(idx);
 734
 735	return val & 0xffffffff;
 736}
 737
 738static void sparc_vt_write_pmc(int idx, u64 val)
 739{
 740	u64 pcr;
 741
 742	pcr = pcr_ops->read_pcr(idx);
 743	/* ensure ov and ntc are reset */
 744	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 745
 746	pcr_ops->write_pic(idx, val & 0xffffffff);
 747
 748	pcr_ops->write_pcr(idx, pcr);
 749}
 750
 751static const struct sparc_pmu niagara4_pmu = {
 752	.event_map	= niagara4_event_map,
 753	.cache_map	= &niagara4_cache_map,
 754	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 755	.read_pmc	= sparc_vt_read_pmc,
 756	.write_pmc	= sparc_vt_write_pmc,
 757	.upper_shift	= 5,
 758	.lower_shift	= 5,
 759	.event_mask	= 0x7ff,
 760	.user_bit	= PCR_N4_UTRACE,
 761	.priv_bit	= PCR_N4_STRACE,
 762
 763	/* We explicitly don't support hypervisor tracing.  The T4
 764	 * generates the overflow event for precise events via a trap
 765	 * which will not be generated (ie. it's completely lost) if
 766	 * we happen to be in the hypervisor when the event triggers.
 767	 * Essentially, the overflow event reporting is completely
 768	 * unusable when you have hypervisor mode tracing enabled.
 769	 */
 770	.hv_bit		= 0,
 771
 772	.irq_bit	= PCR_N4_TOE,
 773	.upper_nop	= 0,
 774	.lower_nop	= 0,
 775	.flags		= 0,
 776	.max_hw_events	= 4,
 777	.num_pcrs	= 4,
 778	.num_pic_regs	= 4,
 779};
 780
 781static const struct sparc_pmu sparc_m7_pmu = {
 782	.event_map	= niagara4_event_map,
 783	.cache_map	= &niagara4_cache_map,
 784	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 785	.read_pmc	= sparc_vt_read_pmc,
 786	.write_pmc	= sparc_vt_write_pmc,
 787	.upper_shift	= 5,
 788	.lower_shift	= 5,
 789	.event_mask	= 0x7ff,
 790	.user_bit	= PCR_N4_UTRACE,
 791	.priv_bit	= PCR_N4_STRACE,
 792
 793	/* We explicitly don't support hypervisor tracing. */
 794	.hv_bit		= 0,
 795
 796	.irq_bit	= PCR_N4_TOE,
 797	.upper_nop	= 0,
 798	.lower_nop	= 0,
 799	.flags		= 0,
 800	.max_hw_events	= 4,
 801	.num_pcrs	= 4,
 802	.num_pic_regs	= 4,
 803};
 804static const struct sparc_pmu *sparc_pmu __read_mostly;
 805
 806static u64 event_encoding(u64 event_id, int idx)
 807{
 808	if (idx == PIC_UPPER_INDEX)
 809		event_id <<= sparc_pmu->upper_shift;
 810	else
 811		event_id <<= sparc_pmu->lower_shift;
 812	return event_id;
 813}
 814
 815static u64 mask_for_index(int idx)
 816{
 817	return event_encoding(sparc_pmu->event_mask, idx);
 818}
 819
 820static u64 nop_for_index(int idx)
 821{
 822	return event_encoding(idx == PIC_UPPER_INDEX ?
 823			      sparc_pmu->upper_nop :
 824			      sparc_pmu->lower_nop, idx);
 825}
 826
 827static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 828{
 829	u64 enc, val, mask = mask_for_index(idx);
 830	int pcr_index = 0;
 831
 832	if (sparc_pmu->num_pcrs > 1)
 833		pcr_index = idx;
 834
 835	enc = perf_event_get_enc(cpuc->events[idx]);
 836
 837	val = cpuc->pcr[pcr_index];
 838	val &= ~mask;
 839	val |= event_encoding(enc, idx);
 840	cpuc->pcr[pcr_index] = val;
 841
 842	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 843}
 844
 845static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 846{
 847	u64 mask = mask_for_index(idx);
 848	u64 nop = nop_for_index(idx);
 849	int pcr_index = 0;
 850	u64 val;
 851
 852	if (sparc_pmu->num_pcrs > 1)
 853		pcr_index = idx;
 854
 855	val = cpuc->pcr[pcr_index];
 856	val &= ~mask;
 857	val |= nop;
 858	cpuc->pcr[pcr_index] = val;
 859
 860	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 861}
 862
 863static u64 sparc_perf_event_update(struct perf_event *event,
 864				   struct hw_perf_event *hwc, int idx)
 865{
 866	int shift = 64 - 32;
 867	u64 prev_raw_count, new_raw_count;
 868	s64 delta;
 869
 870again:
 871	prev_raw_count = local64_read(&hwc->prev_count);
 872	new_raw_count = sparc_pmu->read_pmc(idx);
 873
 874	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 875			     new_raw_count) != prev_raw_count)
 876		goto again;
 877
 878	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 879	delta >>= shift;
 880
 881	local64_add(delta, &event->count);
 882	local64_sub(delta, &hwc->period_left);
 883
 884	return new_raw_count;
 885}
 886
 887static int sparc_perf_event_set_period(struct perf_event *event,
 888				       struct hw_perf_event *hwc, int idx)
 889{
 890	s64 left = local64_read(&hwc->period_left);
 891	s64 period = hwc->sample_period;
 892	int ret = 0;
 893
 894	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
 895	if (unlikely(period != hwc->last_period))
 896		left = period - (hwc->last_period - left);
 897
 898	if (unlikely(left <= -period)) {
 899		left = period;
 900		local64_set(&hwc->period_left, left);
 901		hwc->last_period = period;
 902		ret = 1;
 903	}
 904
 905	if (unlikely(left <= 0)) {
 906		left += period;
 907		local64_set(&hwc->period_left, left);
 908		hwc->last_period = period;
 909		ret = 1;
 910	}
 911	if (left > MAX_PERIOD)
 912		left = MAX_PERIOD;
 913
 914	local64_set(&hwc->prev_count, (u64)-left);
 915
 916	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 917
 918	perf_event_update_userpage(event);
 919
 920	return ret;
 921}
 922
 923static void read_in_all_counters(struct cpu_hw_events *cpuc)
 924{
 925	int i;
 926
 927	for (i = 0; i < cpuc->n_events; i++) {
 928		struct perf_event *cp = cpuc->event[i];
 929
 930		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 931		    cpuc->current_idx[i] != cp->hw.idx) {
 932			sparc_perf_event_update(cp, &cp->hw,
 933						cpuc->current_idx[i]);
 934			cpuc->current_idx[i] = PIC_NO_INDEX;
 935			if (cp->hw.state & PERF_HES_STOPPED)
 936				cp->hw.state |= PERF_HES_ARCH;
 937		}
 938	}
 939}
 940
 941/* On this PMU all PICs are programmed using a single PCR.  Calculate
 942 * the combined control register value.
 943 *
 944 * For such chips we require that all of the events have the same
 945 * configuration, so just fetch the settings from the first entry.
 946 */
 947static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 948{
 949	int i;
 950
 951	if (!cpuc->n_added)
 952		goto out;
 953
 954	/* Assign to counters all unassigned events.  */
 955	for (i = 0; i < cpuc->n_events; i++) {
 956		struct perf_event *cp = cpuc->event[i];
 957		struct hw_perf_event *hwc = &cp->hw;
 958		int idx = hwc->idx;
 959		u64 enc;
 960
 961		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 962			continue;
 963
 964		sparc_perf_event_set_period(cp, hwc, idx);
 965		cpuc->current_idx[i] = idx;
 966
 967		enc = perf_event_get_enc(cpuc->events[i]);
 968		cpuc->pcr[0] &= ~mask_for_index(idx);
 969		if (hwc->state & PERF_HES_ARCH) {
 970			cpuc->pcr[0] |= nop_for_index(idx);
 971		} else {
 972			cpuc->pcr[0] |= event_encoding(enc, idx);
 973			hwc->state = 0;
 974		}
 975	}
 976out:
 977	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 978}
 979
 980static void sparc_pmu_start(struct perf_event *event, int flags);
 981
 982/* On this PMU each PIC has its own PCR control register.  */
 983static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 984{
 985	int i;
 986
 987	if (!cpuc->n_added)
 988		goto out;
 989
 990	for (i = 0; i < cpuc->n_events; i++) {
 991		struct perf_event *cp = cpuc->event[i];
 992		struct hw_perf_event *hwc = &cp->hw;
 993		int idx = hwc->idx;
 994
 995		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 996			continue;
 997
 998		cpuc->current_idx[i] = idx;
 999
1000		if (cp->hw.state & PERF_HES_ARCH)
1001			continue;
1002
1003		sparc_pmu_start(cp, PERF_EF_RELOAD);
1004	}
1005out:
1006	for (i = 0; i < cpuc->n_events; i++) {
1007		struct perf_event *cp = cpuc->event[i];
1008		int idx = cp->hw.idx;
1009
1010		cpuc->pcr[idx] |= cp->hw.config_base;
1011	}
1012}
1013
1014/* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1016 */
1017static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018{
1019	if (cpuc->n_added)
1020		read_in_all_counters(cpuc);
1021
1022	if (sparc_pmu->num_pcrs == 1) {
1023		calculate_single_pcr(cpuc);
1024	} else {
1025		calculate_multiple_pcrs(cpuc);
1026	}
1027}
1028
1029static void sparc_pmu_enable(struct pmu *pmu)
1030{
1031	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032	int i;
1033
1034	if (cpuc->enabled)
1035		return;
1036
1037	cpuc->enabled = 1;
1038	barrier();
1039
1040	if (cpuc->n_events)
1041		update_pcrs_for_enable(cpuc);
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1045}
1046
1047static void sparc_pmu_disable(struct pmu *pmu)
1048{
1049	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050	int i;
1051
1052	if (!cpuc->enabled)
1053		return;
1054
1055	cpuc->enabled = 0;
1056	cpuc->n_added = 0;
1057
1058	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059		u64 val = cpuc->pcr[i];
1060
1061		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063		cpuc->pcr[i] = val;
1064		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065	}
1066}
1067
1068static int active_event_index(struct cpu_hw_events *cpuc,
1069			      struct perf_event *event)
1070{
1071	int i;
1072
1073	for (i = 0; i < cpuc->n_events; i++) {
1074		if (cpuc->event[i] == event)
1075			break;
1076	}
1077	BUG_ON(i == cpuc->n_events);
1078	return cpuc->current_idx[i];
1079}
1080
1081static void sparc_pmu_start(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (flags & PERF_EF_RELOAD) {
1087		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088		sparc_perf_event_set_period(event, &event->hw, idx);
1089	}
1090
1091	event->hw.state = 0;
1092
1093	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094
1095	perf_event_update_userpage(event);
1096}
1097
1098static void sparc_pmu_stop(struct perf_event *event, int flags)
1099{
1100	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101	int idx = active_event_index(cpuc, event);
1102
1103	if (!(event->hw.state & PERF_HES_STOPPED)) {
1104		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105		event->hw.state |= PERF_HES_STOPPED;
1106	}
1107
1108	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109		sparc_perf_event_update(event, &event->hw, idx);
1110		event->hw.state |= PERF_HES_UPTODATE;
1111	}
1112}
1113
1114static void sparc_pmu_del(struct perf_event *event, int _flags)
1115{
1116	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117	unsigned long flags;
1118	int i;
1119
1120	local_irq_save(flags);
1121
1122	for (i = 0; i < cpuc->n_events; i++) {
1123		if (event == cpuc->event[i]) {
1124			/* Absorb the final count and turn off the
1125			 * event.
1126			 */
1127			sparc_pmu_stop(event, PERF_EF_UPDATE);
1128
1129			/* Shift remaining entries down into
1130			 * the existing slot.
1131			 */
1132			while (++i < cpuc->n_events) {
1133				cpuc->event[i - 1] = cpuc->event[i];
1134				cpuc->events[i - 1] = cpuc->events[i];
1135				cpuc->current_idx[i - 1] =
1136					cpuc->current_idx[i];
1137			}
1138
1139			perf_event_update_userpage(event);
1140
1141			cpuc->n_events--;
1142			break;
1143		}
1144	}
1145
1146	local_irq_restore(flags);
1147}
1148
1149static void sparc_pmu_read(struct perf_event *event)
1150{
1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152	int idx = active_event_index(cpuc, event);
1153	struct hw_perf_event *hwc = &event->hw;
1154
1155	sparc_perf_event_update(event, hwc, idx);
1156}
1157
1158static atomic_t active_events = ATOMIC_INIT(0);
1159static DEFINE_MUTEX(pmc_grab_mutex);
1160
1161static void perf_stop_nmi_watchdog(void *unused)
1162{
1163	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164	int i;
1165
1166	stop_nmi_watchdog(NULL);
1167	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169}
1170
1171static void perf_event_grab_pmc(void)
1172{
1173	if (atomic_inc_not_zero(&active_events))
1174		return;
1175
1176	mutex_lock(&pmc_grab_mutex);
1177	if (atomic_read(&active_events) == 0) {
1178		if (atomic_read(&nmi_active) > 0) {
1179			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180			BUG_ON(atomic_read(&nmi_active) != 0);
1181		}
1182		atomic_inc(&active_events);
1183	}
1184	mutex_unlock(&pmc_grab_mutex);
1185}
1186
1187static void perf_event_release_pmc(void)
1188{
1189	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190		if (atomic_read(&nmi_active) == 0)
1191			on_each_cpu(start_nmi_watchdog, NULL, 1);
1192		mutex_unlock(&pmc_grab_mutex);
1193	}
1194}
1195
1196static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197{
1198	unsigned int cache_type, cache_op, cache_result;
1199	const struct perf_event_map *pmap;
1200
1201	if (!sparc_pmu->cache_map)
1202		return ERR_PTR(-ENOENT);
1203
1204	cache_type = (config >>  0) & 0xff;
1205	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206		return ERR_PTR(-EINVAL);
1207
1208	cache_op = (config >>  8) & 0xff;
1209	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210		return ERR_PTR(-EINVAL);
1211
1212	cache_result = (config >> 16) & 0xff;
1213	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214		return ERR_PTR(-EINVAL);
1215
1216	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217
1218	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219		return ERR_PTR(-ENOENT);
1220
1221	if (pmap->encoding == CACHE_OP_NONSENSE)
1222		return ERR_PTR(-EINVAL);
1223
1224	return pmap;
1225}
1226
1227static void hw_perf_event_destroy(struct perf_event *event)
1228{
1229	perf_event_release_pmc();
1230}
1231
1232/* Make sure all events can be scheduled into the hardware at
1233 * the same time.  This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1235 *
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success.  These are pending indexes.  When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1241 */
1242static int sparc_check_constraints(struct perf_event **evts,
1243				   unsigned long *events, int n_ev)
1244{
1245	u8 msk0 = 0, msk1 = 0;
1246	int idx0 = 0;
1247
1248	/* This case is possible when we are invoked from
1249	 * hw_perf_group_sched_in().
1250	 */
1251	if (!n_ev)
1252		return 0;
1253
1254	if (n_ev > sparc_pmu->max_hw_events)
1255		return -1;
1256
1257	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258		int i;
1259
1260		for (i = 0; i < n_ev; i++)
1261			evts[i]->hw.idx = i;
1262		return 0;
1263	}
1264
1265	msk0 = perf_event_get_msk(events[0]);
1266	if (n_ev == 1) {
1267		if (msk0 & PIC_LOWER)
1268			idx0 = 1;
1269		goto success;
1270	}
1271	BUG_ON(n_ev != 2);
1272	msk1 = perf_event_get_msk(events[1]);
1273
1274	/* If both events can go on any counter, OK.  */
1275	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276	    msk1 == (PIC_UPPER | PIC_LOWER))
1277		goto success;
1278
1279	/* If one event is limited to a specific counter,
1280	 * and the other can go on both, OK.
1281	 */
1282	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1291		if (msk1 & PIC_UPPER)
1292			idx0 = 1;
1293		goto success;
1294	}
1295
1296	/* If the events are fixed to different counters, OK.  */
1297	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299		if (msk0 & PIC_LOWER)
1300			idx0 = 1;
1301		goto success;
1302	}
1303
1304	/* Otherwise, there is a conflict.  */
1305	return -1;
1306
1307success:
1308	evts[0]->hw.idx = idx0;
1309	if (n_ev == 2)
1310		evts[1]->hw.idx = idx0 ^ 1;
1311	return 0;
1312}
1313
1314static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315{
1316	int eu = 0, ek = 0, eh = 0;
1317	struct perf_event *event;
1318	int i, n, first;
1319
1320	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321		return 0;
1322
1323	n = n_prev + n_new;
1324	if (n <= 1)
1325		return 0;
1326
1327	first = 1;
1328	for (i = 0; i < n; i++) {
1329		event = evts[i];
1330		if (first) {
1331			eu = event->attr.exclude_user;
1332			ek = event->attr.exclude_kernel;
1333			eh = event->attr.exclude_hv;
1334			first = 0;
1335		} else if (event->attr.exclude_user != eu ||
1336			   event->attr.exclude_kernel != ek ||
1337			   event->attr.exclude_hv != eh) {
1338			return -EAGAIN;
1339		}
1340	}
1341
1342	return 0;
1343}
1344
1345static int collect_events(struct perf_event *group, int max_count,
1346			  struct perf_event *evts[], unsigned long *events,
1347			  int *current_idx)
1348{
1349	struct perf_event *event;
1350	int n = 0;
1351
1352	if (!is_software_event(group)) {
1353		if (n >= max_count)
1354			return -1;
1355		evts[n] = group;
1356		events[n] = group->hw.event_base;
1357		current_idx[n++] = PIC_NO_INDEX;
1358	}
1359	for_each_sibling_event(event, group) {
1360		if (!is_software_event(event) &&
1361		    event->state != PERF_EVENT_STATE_OFF) {
1362			if (n >= max_count)
1363				return -1;
1364			evts[n] = event;
1365			events[n] = event->hw.event_base;
1366			current_idx[n++] = PIC_NO_INDEX;
1367		}
1368	}
1369	return n;
1370}
1371
1372static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373{
1374	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375	int n0, ret = -EAGAIN;
1376	unsigned long flags;
1377
1378	local_irq_save(flags);
1379
1380	n0 = cpuc->n_events;
1381	if (n0 >= sparc_pmu->max_hw_events)
1382		goto out;
1383
1384	cpuc->event[n0] = event;
1385	cpuc->events[n0] = event->hw.event_base;
1386	cpuc->current_idx[n0] = PIC_NO_INDEX;
1387
1388	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389	if (!(ef_flags & PERF_EF_START))
1390		event->hw.state |= PERF_HES_ARCH;
1391
1392	/*
1393	 * If group events scheduling transaction was started,
1394	 * skip the schedulability test here, it will be performed
1395	 * at commit time(->commit_txn) as a whole
1396	 */
1397	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398		goto nocheck;
1399
1400	if (check_excludes(cpuc->event, n0, 1))
1401		goto out;
1402	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403		goto out;
1404
1405nocheck:
1406	cpuc->n_events++;
1407	cpuc->n_added++;
1408
1409	ret = 0;
1410out:
1411	local_irq_restore(flags);
1412	return ret;
1413}
1414
1415static int sparc_pmu_event_init(struct perf_event *event)
1416{
1417	struct perf_event_attr *attr = &event->attr;
1418	struct perf_event *evts[MAX_HWEVENTS];
1419	struct hw_perf_event *hwc = &event->hw;
1420	unsigned long events[MAX_HWEVENTS];
1421	int current_idx_dmy[MAX_HWEVENTS];
1422	const struct perf_event_map *pmap;
1423	int n;
1424
1425	if (atomic_read(&nmi_active) < 0)
1426		return -ENODEV;
1427
1428	/* does not support taken branch sampling */
1429	if (has_branch_stack(event))
1430		return -EOPNOTSUPP;
1431
1432	switch (attr->type) {
1433	case PERF_TYPE_HARDWARE:
1434		if (attr->config >= sparc_pmu->max_events)
1435			return -EINVAL;
1436		pmap = sparc_pmu->event_map(attr->config);
1437		break;
1438
1439	case PERF_TYPE_HW_CACHE:
1440		pmap = sparc_map_cache_event(attr->config);
1441		if (IS_ERR(pmap))
1442			return PTR_ERR(pmap);
1443		break;
1444
1445	case PERF_TYPE_RAW:
1446		pmap = NULL;
1447		break;
1448
1449	default:
1450		return -ENOENT;
1451
1452	}
1453
1454	if (pmap) {
1455		hwc->event_base = perf_event_encode(pmap);
1456	} else {
1457		/*
1458		 * User gives us "(encoding << 16) | pic_mask" for
1459		 * PERF_TYPE_RAW events.
1460		 */
1461		hwc->event_base = attr->config;
1462	}
1463
1464	/* We save the enable bits in the config_base.  */
1465	hwc->config_base = sparc_pmu->irq_bit;
1466	if (!attr->exclude_user)
1467		hwc->config_base |= sparc_pmu->user_bit;
1468	if (!attr->exclude_kernel)
1469		hwc->config_base |= sparc_pmu->priv_bit;
1470	if (!attr->exclude_hv)
1471		hwc->config_base |= sparc_pmu->hv_bit;
1472
1473	n = 0;
1474	if (event->group_leader != event) {
1475		n = collect_events(event->group_leader,
1476				   sparc_pmu->max_hw_events - 1,
1477				   evts, events, current_idx_dmy);
1478		if (n < 0)
1479			return -EINVAL;
1480	}
1481	events[n] = hwc->event_base;
1482	evts[n] = event;
1483
1484	if (check_excludes(evts, n, 1))
1485		return -EINVAL;
1486
1487	if (sparc_check_constraints(evts, events, n + 1))
1488		return -EINVAL;
1489
1490	hwc->idx = PIC_NO_INDEX;
1491
1492	/* Try to do all error checking before this point, as unwinding
1493	 * state after grabbing the PMC is difficult.
1494	 */
1495	perf_event_grab_pmc();
1496	event->destroy = hw_perf_event_destroy;
1497
1498	if (!hwc->sample_period) {
1499		hwc->sample_period = MAX_PERIOD;
1500		hwc->last_period = hwc->sample_period;
1501		local64_set(&hwc->period_left, hwc->sample_period);
1502	}
1503
1504	return 0;
1505}
1506
1507/*
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1511 */
1512static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513{
1514	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1517
1518	cpuhw->txn_flags = txn_flags;
1519	if (txn_flags & ~PERF_PMU_TXN_ADD)
1520		return;
1521
1522	perf_pmu_disable(pmu);
1523}
1524
1525/*
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1529 */
1530static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531{
1532	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533	unsigned int txn_flags;
1534
1535	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1536
1537	txn_flags = cpuhw->txn_flags;
1538	cpuhw->txn_flags = 0;
1539	if (txn_flags & ~PERF_PMU_TXN_ADD)
1540		return;
1541
1542	perf_pmu_enable(pmu);
1543}
1544
1545/*
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1549 */
1550static int sparc_pmu_commit_txn(struct pmu *pmu)
1551{
1552	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553	int n;
1554
1555	if (!sparc_pmu)
1556		return -EINVAL;
1557
1558	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1559
1560	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561		cpuc->txn_flags = 0;
1562		return 0;
1563	}
1564
1565	n = cpuc->n_events;
1566	if (check_excludes(cpuc->event, 0, n))
1567		return -EINVAL;
1568	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569		return -EAGAIN;
1570
1571	cpuc->txn_flags = 0;
1572	perf_pmu_enable(pmu);
1573	return 0;
1574}
1575
1576static struct pmu pmu = {
1577	.pmu_enable	= sparc_pmu_enable,
1578	.pmu_disable	= sparc_pmu_disable,
1579	.event_init	= sparc_pmu_event_init,
1580	.add		= sparc_pmu_add,
1581	.del		= sparc_pmu_del,
1582	.start		= sparc_pmu_start,
1583	.stop		= sparc_pmu_stop,
1584	.read		= sparc_pmu_read,
1585	.start_txn	= sparc_pmu_start_txn,
1586	.cancel_txn	= sparc_pmu_cancel_txn,
1587	.commit_txn	= sparc_pmu_commit_txn,
1588};
1589
1590void perf_event_print_debug(void)
1591{
1592	unsigned long flags;
1593	int cpu, i;
1594
1595	if (!sparc_pmu)
1596		return;
1597
1598	local_irq_save(flags);
1599
1600	cpu = smp_processor_id();
1601
1602	pr_info("\n");
1603	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604		pr_info("CPU#%d: PCR%d[%016llx]\n",
1605			cpu, i, pcr_ops->read_pcr(i));
1606	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607		pr_info("CPU#%d: PIC%d[%016llx]\n",
1608			cpu, i, pcr_ops->read_pic(i));
1609
1610	local_irq_restore(flags);
1611}
1612
1613static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614					    unsigned long cmd, void *__args)
1615{
1616	struct die_args *args = __args;
1617	struct perf_sample_data data;
1618	struct cpu_hw_events *cpuc;
1619	struct pt_regs *regs;
1620	u64 finish_clock;
1621	u64 start_clock;
1622	int i;
1623
1624	if (!atomic_read(&active_events))
1625		return NOTIFY_DONE;
1626
1627	switch (cmd) {
1628	case DIE_NMI:
1629		break;
1630
1631	default:
1632		return NOTIFY_DONE;
1633	}
1634
1635	start_clock = sched_clock();
1636
1637	regs = args->regs;
1638
1639	cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641	/* If the PMU has the TOE IRQ enable bits, we need to do a
1642	 * dummy write to the %pcr to clear the overflow bits and thus
1643	 * the interrupt.
1644	 *
1645	 * Do this before we peek at the counters to determine
1646	 * overflow so we don't lose any events.
1647	 */
1648	if (sparc_pmu->irq_bit &&
1649	    sparc_pmu->num_pcrs == 1)
1650		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651
1652	for (i = 0; i < cpuc->n_events; i++) {
1653		struct perf_event *event = cpuc->event[i];
1654		int idx = cpuc->current_idx[i];
1655		struct hw_perf_event *hwc;
1656		u64 val;
1657
1658		if (sparc_pmu->irq_bit &&
1659		    sparc_pmu->num_pcrs > 1)
1660			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661
1662		hwc = &event->hw;
1663		val = sparc_perf_event_update(event, hwc, idx);
1664		if (val & (1ULL << 31))
1665			continue;
1666
1667		perf_sample_data_init(&data, 0, hwc->last_period);
1668		if (!sparc_perf_event_set_period(event, hwc, idx))
1669			continue;
1670
1671		if (perf_event_overflow(event, &data, regs))
1672			sparc_pmu_stop(event, 0);
1673	}
1674
1675	finish_clock = sched_clock();
1676
1677	perf_sample_event_took(finish_clock - start_clock);
1678
1679	return NOTIFY_STOP;
1680}
1681
1682static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683	.notifier_call		= perf_event_nmi_handler,
1684};
1685
1686static bool __init supported_pmu(void)
1687{
1688	if (!strcmp(sparc_pmu_type, "ultra3") ||
1689	    !strcmp(sparc_pmu_type, "ultra3+") ||
1690	    !strcmp(sparc_pmu_type, "ultra3i") ||
1691	    !strcmp(sparc_pmu_type, "ultra4+")) {
1692		sparc_pmu = &ultra3_pmu;
1693		return true;
1694	}
1695	if (!strcmp(sparc_pmu_type, "niagara")) {
1696		sparc_pmu = &niagara1_pmu;
1697		return true;
1698	}
1699	if (!strcmp(sparc_pmu_type, "niagara2") ||
1700	    !strcmp(sparc_pmu_type, "niagara3")) {
1701		sparc_pmu = &niagara2_pmu;
1702		return true;
1703	}
1704	if (!strcmp(sparc_pmu_type, "niagara4") ||
1705	    !strcmp(sparc_pmu_type, "niagara5")) {
1706		sparc_pmu = &niagara4_pmu;
1707		return true;
1708	}
1709	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710		sparc_pmu = &sparc_m7_pmu;
1711		return true;
1712	}
1713	return false;
1714}
1715
1716static int __init init_hw_perf_events(void)
1717{
1718	int err;
1719
1720	pr_info("Performance events: ");
1721
1722	err = pcr_arch_init();
1723	if (err || !supported_pmu()) {
1724		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725		return 0;
1726	}
1727
1728	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729
1730	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731	register_die_notifier(&perf_event_nmi_notifier);
1732
1733	return 0;
1734}
1735pure_initcall(init_hw_perf_events);
1736
1737void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738			   struct pt_regs *regs)
1739{
1740	unsigned long ksp, fp;
1741#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742	int graph = 0;
1743#endif
1744
1745	stack_trace_flush();
1746
1747	perf_callchain_store(entry, regs->tpc);
1748
1749	ksp = regs->u_regs[UREG_I6];
1750	fp = ksp + STACK_BIAS;
1751	do {
1752		struct sparc_stackf *sf;
1753		struct pt_regs *regs;
1754		unsigned long pc;
1755
1756		if (!kstack_valid(current_thread_info(), fp))
1757			break;
1758
1759		sf = (struct sparc_stackf *) fp;
1760		regs = (struct pt_regs *) (sf + 1);
1761
1762		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763			if (user_mode(regs))
1764				break;
1765			pc = regs->tpc;
1766			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767		} else {
1768			pc = sf->callers_pc;
1769			fp = (unsigned long)sf->fp + STACK_BIAS;
1770		}
1771		perf_callchain_store(entry, pc);
1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774			struct ftrace_ret_stack *ret_stack;
1775			ret_stack = ftrace_graph_get_ret_stack(current,
1776							       graph);
1777			if (ret_stack) {
1778				pc = ret_stack->ret;
1779				perf_callchain_store(entry, pc);
1780				graph++;
1781			}
1782		}
1783#endif
1784	} while (entry->nr < entry->max_stack);
1785}
1786
1787static inline int
1788valid_user_frame(const void __user *fp, unsigned long size)
1789{
1790	/* addresses should be at least 4-byte aligned */
1791	if (((unsigned long) fp) & 3)
1792		return 0;
1793
1794	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795}
1796
1797static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1803	do {
1804		struct sparc_stackf __user *usf;
1805		struct sparc_stackf sf;
1806		unsigned long pc;
1807
1808		usf = (struct sparc_stackf __user *)ufp;
1809		if (!valid_user_frame(usf, sizeof(sf)))
1810			break;
1811
1812		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813			break;
1814
1815		pc = sf.callers_pc;
1816		ufp = (unsigned long)sf.fp + STACK_BIAS;
1817		perf_callchain_store(entry, pc);
1818	} while (entry->nr < entry->max_stack);
1819}
1820
1821static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822				   struct pt_regs *regs)
1823{
1824	unsigned long ufp;
1825
1826	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1827	do {
1828		unsigned long pc;
1829
1830		if (thread32_stack_is_64bit(ufp)) {
1831			struct sparc_stackf __user *usf;
1832			struct sparc_stackf sf;
1833
1834			ufp += STACK_BIAS;
1835			usf = (struct sparc_stackf __user *)ufp;
1836			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837				break;
1838			pc = sf.callers_pc & 0xffffffff;
1839			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840		} else {
1841			struct sparc_stackf32 __user *usf;
1842			struct sparc_stackf32 sf;
1843			usf = (struct sparc_stackf32 __user *)ufp;
1844			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845				break;
1846			pc = sf.callers_pc;
1847			ufp = (unsigned long)sf.fp;
1848		}
1849		perf_callchain_store(entry, pc);
1850	} while (entry->nr < entry->max_stack);
1851}
1852
1853void
1854perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855{
1856	u64 saved_fault_address = current_thread_info()->fault_address;
1857	u8 saved_fault_code = get_thread_fault_code();
 
1858
1859	perf_callchain_store(entry, regs->tpc);
1860
1861	if (!current->mm)
1862		return;
1863
 
 
 
1864	flushw_user();
1865
1866	pagefault_disable();
1867
1868	if (test_thread_flag(TIF_32BIT))
1869		perf_callchain_user_32(entry, regs);
1870	else
1871		perf_callchain_user_64(entry, regs);
1872
1873	pagefault_enable();
1874
 
1875	set_thread_fault_code(saved_fault_code);
1876	current_thread_info()->fault_address = saved_fault_address;
1877}