Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES	32
  25#define BHRB_TARGET		0x0000000000000002
  26#define BHRB_PREDICTION		0x0000000000000001
  27#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30	int n_events;
  31	int n_percpu;
  32	int disabled;
  33	int n_added;
  34	int n_limited;
  35	u8  pmcs_enabled;
  36	struct perf_event *event[MAX_HWEVENTS];
  37	u64 events[MAX_HWEVENTS];
  38	unsigned int flags[MAX_HWEVENTS];
  39	/*
  40	 * The order of the MMCR array is:
  41	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42	 *  - 32-bit, MMCR0, MMCR1, MMCR2
  43	 */
  44	unsigned long mmcr[4];
  45	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51	unsigned int txn_flags;
  52	int n_txn_start;
  53
  54	/* BHRB bits */
  55	u64				bhrb_filter;	/* BHRB HW branch filter */
  56	unsigned int			bhrb_users;
  57	void				*bhrb_context;
  58	struct	perf_branch_stack	bhrb_stack;
  59	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
  60	u64				ic_init;
  61};
 
  62
  63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  64
  65static struct power_pmu *ppmu;
  66
  67/*
  68 * Normally, to ignore kernel events we set the FCS (freeze counters
  69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  70 * hypervisor bit set in the MSR, or if we are running on a processor
  71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  72 * then we need to use the FCHV bit to ignore kernel events.
  73 */
  74static unsigned int freeze_events_kernel = MMCR0_FCS;
  75
  76/*
  77 * 32-bit doesn't have MMCRA but does have an MMCR2,
  78 * and a few other names are different.
  79 */
  80#ifdef CONFIG_PPC32
  81
  82#define MMCR0_FCHV		0
  83#define MMCR0_PMCjCE		MMCR0_PMCnCE
  84#define MMCR0_FC56		0
  85#define MMCR0_PMAO		0
  86#define MMCR0_EBE		0
  87#define MMCR0_BHRBA		0
  88#define MMCR0_PMCC		0
  89#define MMCR0_PMCC_U6		0
  90
  91#define SPRN_MMCRA		SPRN_MMCR2
  92#define MMCRA_SAMPLE_ENABLE	0
  93
  94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  95{
  96	return 0;
  97}
  98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 100{
 101	return 0;
 102}
 103static inline void perf_read_regs(struct pt_regs *regs)
 104{
 105	regs->result = 0;
 106}
 107static inline int perf_intr_is_nmi(struct pt_regs *regs)
 108{
 109	return 0;
 110}
 111
 112static inline int siar_valid(struct pt_regs *regs)
 113{
 114	return 1;
 115}
 116
 117static bool is_ebb_event(struct perf_event *event) { return false; }
 118static int ebb_event_check(struct perf_event *event) { return 0; }
 119static void ebb_event_add(struct perf_event *event) { }
 120static void ebb_switch_out(unsigned long mmcr0) { }
 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 122{
 123	return cpuhw->mmcr[0];
 124}
 125
 126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 130static void pmao_restore_workaround(bool ebb) { }
 131static bool use_ic(u64 event)
 132{
 133	return false;
 134}
 135#endif /* CONFIG_PPC32 */
 136
 137static bool regs_use_siar(struct pt_regs *regs)
 138{
 139	/*
 140	 * When we take a performance monitor exception the regs are setup
 141	 * using perf_read_regs() which overloads some fields, in particular
 142	 * regs->result to tell us whether to use SIAR.
 143	 *
 144	 * However if the regs are from another exception, eg. a syscall, then
 145	 * they have not been setup using perf_read_regs() and so regs->result
 146	 * is something random.
 147	 */
 148	return ((TRAP(regs) == 0xf00) && regs->result);
 149}
 150
 151/*
 152 * Things that are specific to 64-bit implementations.
 153 */
 154#ifdef CONFIG_PPC64
 155
 156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 157{
 158	unsigned long mmcra = regs->dsisr;
 159
 160	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 161		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 162		if (slot > 1)
 163			return 4 * (slot - 1);
 164	}
 165
 166	return 0;
 167}
 168
 169/*
 170 * The user wants a data address recorded.
 171 * If we're not doing instruction sampling, give them the SDAR
 172 * (sampled data address).  If we are doing instruction sampling, then
 173 * only give them the SDAR if it corresponds to the instruction
 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 176 */
 177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 178{
 179	unsigned long mmcra = regs->dsisr;
 180	bool sdar_valid;
 181
 182	if (ppmu->flags & PPMU_HAS_SIER)
 183		sdar_valid = regs->dar & SIER_SDAR_VALID;
 184	else {
 185		unsigned long sdsync;
 186
 187		if (ppmu->flags & PPMU_SIAR_VALID)
 188			sdsync = POWER7P_MMCRA_SDAR_VALID;
 189		else if (ppmu->flags & PPMU_ALT_SIPR)
 190			sdsync = POWER6_MMCRA_SDSYNC;
 191		else if (ppmu->flags & PPMU_NO_SIAR)
 192			sdsync = MMCRA_SAMPLE_ENABLE;
 193		else
 194			sdsync = MMCRA_SDSYNC;
 195
 196		sdar_valid = mmcra & sdsync;
 197	}
 198
 199	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 200		*addrp = mfspr(SPRN_SDAR);
 201
 202	if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 203		is_kernel_addr(mfspr(SPRN_SDAR)))
 204		*addrp = 0;
 205}
 206
 207static bool regs_sihv(struct pt_regs *regs)
 208{
 209	unsigned long sihv = MMCRA_SIHV;
 210
 211	if (ppmu->flags & PPMU_HAS_SIER)
 212		return !!(regs->dar & SIER_SIHV);
 213
 214	if (ppmu->flags & PPMU_ALT_SIPR)
 215		sihv = POWER6_MMCRA_SIHV;
 216
 217	return !!(regs->dsisr & sihv);
 218}
 219
 220static bool regs_sipr(struct pt_regs *regs)
 221{
 222	unsigned long sipr = MMCRA_SIPR;
 223
 224	if (ppmu->flags & PPMU_HAS_SIER)
 225		return !!(regs->dar & SIER_SIPR);
 226
 227	if (ppmu->flags & PPMU_ALT_SIPR)
 228		sipr = POWER6_MMCRA_SIPR;
 229
 230	return !!(regs->dsisr & sipr);
 231}
 232
 233static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 234{
 235	if (regs->msr & MSR_PR)
 236		return PERF_RECORD_MISC_USER;
 237	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 238		return PERF_RECORD_MISC_HYPERVISOR;
 239	return PERF_RECORD_MISC_KERNEL;
 240}
 241
 242static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 243{
 244	bool use_siar = regs_use_siar(regs);
 
 
 245
 246	if (!use_siar)
 
 
 
 
 
 
 
 
 
 247		return perf_flags_from_msr(regs);
 248
 249	/*
 250	 * If we don't have flags in MMCRA, rather than using
 251	 * the MSR, we intuit the flags from the address in
 252	 * SIAR which should give slightly more reliable
 253	 * results
 254	 */
 255	if (ppmu->flags & PPMU_NO_SIPR) {
 256		unsigned long siar = mfspr(SPRN_SIAR);
 257		if (is_kernel_addr(siar))
 258			return PERF_RECORD_MISC_KERNEL;
 259		return PERF_RECORD_MISC_USER;
 260	}
 261
 
 
 
 
 
 262	/* PR has priority over HV, so order below is important */
 263	if (regs_sipr(regs))
 264		return PERF_RECORD_MISC_USER;
 265
 266	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 267		return PERF_RECORD_MISC_HYPERVISOR;
 268
 269	return PERF_RECORD_MISC_KERNEL;
 270}
 271
 272/*
 273 * Overload regs->dsisr to store MMCRA so we only need to read it once
 274 * on each interrupt.
 275 * Overload regs->dar to store SIER if we have it.
 276 * Overload regs->result to specify whether we should use the MSR (result
 277 * is zero) or the SIAR (result is non zero).
 278 */
 279static inline void perf_read_regs(struct pt_regs *regs)
 280{
 281	unsigned long mmcra = mfspr(SPRN_MMCRA);
 282	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 283	int use_siar;
 284
 285	regs->dsisr = mmcra;
 286
 287	if (ppmu->flags & PPMU_HAS_SIER)
 288		regs->dar = mfspr(SPRN_SIER);
 289
 290	/*
 291	 * If this isn't a PMU exception (eg a software event) the SIAR is
 292	 * not valid. Use pt_regs.
 293	 *
 294	 * If it is a marked event use the SIAR.
 295	 *
 296	 * If the PMU doesn't update the SIAR for non marked events use
 297	 * pt_regs.
 298	 *
 299	 * If the PMU has HV/PR flags then check to see if they
 300	 * place the exception in userspace. If so, use pt_regs. In
 301	 * continuous sampling mode the SIAR and the PMU exception are
 302	 * not synchronised, so they may be many instructions apart.
 303	 * This can result in confusing backtraces. We still want
 304	 * hypervisor samples as well as samples in the kernel with
 305	 * interrupts off hence the userspace check.
 306	 */
 307	if (TRAP(regs) != 0xf00)
 308		use_siar = 0;
 309	else if ((ppmu->flags & PPMU_NO_SIAR))
 310		use_siar = 0;
 311	else if (marked)
 312		use_siar = 1;
 313	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 314		use_siar = 0;
 315	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 316		use_siar = 0;
 317	else
 318		use_siar = 1;
 319
 320	regs->result = use_siar;
 321}
 322
 323/*
 324 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 325 * it as an NMI.
 326 */
 327static inline int perf_intr_is_nmi(struct pt_regs *regs)
 328{
 329	return (regs->softe & IRQS_DISABLED);
 330}
 331
 332/*
 333 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 334 * must be sampled only if the SIAR-valid bit is set.
 335 *
 336 * For unmarked instructions and for processors that don't have the SIAR-Valid
 337 * bit, assume that SIAR is valid.
 338 */
 339static inline int siar_valid(struct pt_regs *regs)
 340{
 341	unsigned long mmcra = regs->dsisr;
 342	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 343
 344	if (marked) {
 345		if (ppmu->flags & PPMU_HAS_SIER)
 346			return regs->dar & SIER_SIAR_VALID;
 347
 348		if (ppmu->flags & PPMU_SIAR_VALID)
 349			return mmcra & POWER7P_MMCRA_SIAR_VALID;
 350	}
 351
 352	return 1;
 353}
 354
 355
 356/* Reset all possible BHRB entries */
 357static void power_pmu_bhrb_reset(void)
 358{
 359	asm volatile(PPC_CLRBHRB);
 360}
 361
 362static void power_pmu_bhrb_enable(struct perf_event *event)
 363{
 364	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 365
 366	if (!ppmu->bhrb_nr)
 367		return;
 368
 369	/* Clear BHRB if we changed task context to avoid data leaks */
 370	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 371		power_pmu_bhrb_reset();
 372		cpuhw->bhrb_context = event->ctx;
 373	}
 374	cpuhw->bhrb_users++;
 375	perf_sched_cb_inc(event->ctx->pmu);
 376}
 377
 378static void power_pmu_bhrb_disable(struct perf_event *event)
 379{
 380	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 381
 382	if (!ppmu->bhrb_nr)
 383		return;
 384
 385	WARN_ON_ONCE(!cpuhw->bhrb_users);
 386	cpuhw->bhrb_users--;
 387	perf_sched_cb_dec(event->ctx->pmu);
 388
 389	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 390		/* BHRB cannot be turned off when other
 391		 * events are active on the PMU.
 392		 */
 393
 394		/* avoid stale pointer */
 395		cpuhw->bhrb_context = NULL;
 396	}
 397}
 398
 399/* Called from ctxsw to prevent one process's branch entries to
 400 * mingle with the other process's entries during context switch.
 401 */
 402static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 403{
 404	if (!ppmu->bhrb_nr)
 405		return;
 406
 407	if (sched_in)
 408		power_pmu_bhrb_reset();
 409}
 410/* Calculate the to address for a branch */
 411static __u64 power_pmu_bhrb_to(u64 addr)
 412{
 413	unsigned int instr;
 414	int ret;
 415	__u64 target;
 416
 417	if (is_kernel_addr(addr)) {
 418		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
 419			return 0;
 420
 421		return branch_target(&instr);
 422	}
 423
 424	/* Userspace: need copy instruction here then translate it */
 425	pagefault_disable();
 426	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 427	if (ret) {
 428		pagefault_enable();
 429		return 0;
 430	}
 431	pagefault_enable();
 432
 433	target = branch_target(&instr);
 434	if ((!target) || (instr & BRANCH_ABSOLUTE))
 435		return target;
 436
 437	/* Translate relative branch target from kernel to user address */
 438	return target - (unsigned long)&instr + addr;
 439}
 440
 441/* Processing BHRB entries */
 442static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 443{
 444	u64 val;
 445	u64 addr;
 446	int r_index, u_index, pred;
 447
 448	r_index = 0;
 449	u_index = 0;
 450	while (r_index < ppmu->bhrb_nr) {
 451		/* Assembly read function */
 452		val = read_bhrb(r_index++);
 453		if (!val)
 454			/* Terminal marker: End of valid BHRB entries */
 455			break;
 456		else {
 457			addr = val & BHRB_EA;
 458			pred = val & BHRB_PREDICTION;
 459
 460			if (!addr)
 461				/* invalid entry */
 462				continue;
 463
 464			/*
 465			 * BHRB rolling buffer could very much contain the kernel
 466			 * addresses at this point. Check the privileges before
 467			 * exporting it to userspace (avoid exposure of regions
 468			 * where we could have speculative execution)
 469			 */
 470			if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 471				is_kernel_addr(addr))
 472				continue;
 473
 474			/* Branches are read most recent first (ie. mfbhrb 0 is
 475			 * the most recent branch).
 476			 * There are two types of valid entries:
 477			 * 1) a target entry which is the to address of a
 478			 *    computed goto like a blr,bctr,btar.  The next
 479			 *    entry read from the bhrb will be branch
 480			 *    corresponding to this target (ie. the actual
 481			 *    blr/bctr/btar instruction).
 482			 * 2) a from address which is an actual branch.  If a
 483			 *    target entry proceeds this, then this is the
 484			 *    matching branch for that target.  If this is not
 485			 *    following a target entry, then this is a branch
 486			 *    where the target is given as an immediate field
 487			 *    in the instruction (ie. an i or b form branch).
 488			 *    In this case we need to read the instruction from
 489			 *    memory to determine the target/to address.
 490			 */
 491
 492			if (val & BHRB_TARGET) {
 493				/* Target branches use two entries
 494				 * (ie. computed gotos/XL form)
 495				 */
 496				cpuhw->bhrb_entries[u_index].to = addr;
 497				cpuhw->bhrb_entries[u_index].mispred = pred;
 498				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 499
 500				/* Get from address in next entry */
 501				val = read_bhrb(r_index++);
 502				addr = val & BHRB_EA;
 503				if (val & BHRB_TARGET) {
 504					/* Shouldn't have two targets in a
 505					   row.. Reset index and try again */
 506					r_index--;
 507					addr = 0;
 508				}
 509				cpuhw->bhrb_entries[u_index].from = addr;
 510			} else {
 511				/* Branches to immediate field 
 512				   (ie I or B form) */
 513				cpuhw->bhrb_entries[u_index].from = addr;
 514				cpuhw->bhrb_entries[u_index].to =
 515					power_pmu_bhrb_to(addr);
 516				cpuhw->bhrb_entries[u_index].mispred = pred;
 517				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 518			}
 519			u_index++;
 520
 521		}
 522	}
 523	cpuhw->bhrb_stack.nr = u_index;
 524	return;
 525}
 526
 527static bool is_ebb_event(struct perf_event *event)
 528{
 529	/*
 530	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
 531	 * check that the PMU supports EBB, meaning those that don't can still
 532	 * use bit 63 of the event code for something else if they wish.
 533	 */
 534	return (ppmu->flags & PPMU_ARCH_207S) &&
 535	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 536}
 537
 538static int ebb_event_check(struct perf_event *event)
 539{
 540	struct perf_event *leader = event->group_leader;
 541
 542	/* Event and group leader must agree on EBB */
 543	if (is_ebb_event(leader) != is_ebb_event(event))
 544		return -EINVAL;
 545
 546	if (is_ebb_event(event)) {
 547		if (!(event->attach_state & PERF_ATTACH_TASK))
 548			return -EINVAL;
 549
 550		if (!leader->attr.pinned || !leader->attr.exclusive)
 551			return -EINVAL;
 552
 553		if (event->attr.freq ||
 554		    event->attr.inherit ||
 555		    event->attr.sample_type ||
 556		    event->attr.sample_period ||
 557		    event->attr.enable_on_exec)
 558			return -EINVAL;
 559	}
 560
 561	return 0;
 562}
 563
 564static void ebb_event_add(struct perf_event *event)
 565{
 566	if (!is_ebb_event(event) || current->thread.used_ebb)
 567		return;
 568
 569	/*
 570	 * IFF this is the first time we've added an EBB event, set
 571	 * PMXE in the user MMCR0 so we can detect when it's cleared by
 572	 * userspace. We need this so that we can context switch while
 573	 * userspace is in the EBB handler (where PMXE is 0).
 574	 */
 575	current->thread.used_ebb = 1;
 576	current->thread.mmcr0 |= MMCR0_PMXE;
 577}
 578
 579static void ebb_switch_out(unsigned long mmcr0)
 580{
 581	if (!(mmcr0 & MMCR0_EBE))
 582		return;
 583
 584	current->thread.siar  = mfspr(SPRN_SIAR);
 585	current->thread.sier  = mfspr(SPRN_SIER);
 586	current->thread.sdar  = mfspr(SPRN_SDAR);
 587	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 588	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 589}
 590
 591static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 592{
 593	unsigned long mmcr0 = cpuhw->mmcr[0];
 594
 595	if (!ebb)
 596		goto out;
 597
 598	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 599	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 600
 601	/*
 602	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 603	 * with pmao_restore_workaround() because we may add PMAO but we never
 604	 * clear it here.
 605	 */
 606	mmcr0 |= current->thread.mmcr0;
 607
 608	/*
 609	 * Be careful not to set PMXE if userspace had it cleared. This is also
 610	 * compatible with pmao_restore_workaround() because it has already
 611	 * cleared PMXE and we leave PMAO alone.
 612	 */
 613	if (!(current->thread.mmcr0 & MMCR0_PMXE))
 614		mmcr0 &= ~MMCR0_PMXE;
 615
 616	mtspr(SPRN_SIAR, current->thread.siar);
 617	mtspr(SPRN_SIER, current->thread.sier);
 618	mtspr(SPRN_SDAR, current->thread.sdar);
 619
 620	/*
 621	 * Merge the kernel & user values of MMCR2. The semantics we implement
 622	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 623	 * but not clear bits. If a task wants to be able to clear bits, ie.
 624	 * unfreeze counters, it should not set exclude_xxx in its events and
 625	 * instead manage the MMCR2 entirely by itself.
 626	 */
 627	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 628out:
 629	return mmcr0;
 630}
 631
 632static void pmao_restore_workaround(bool ebb)
 633{
 634	unsigned pmcs[6];
 635
 636	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 637		return;
 638
 639	/*
 640	 * On POWER8E there is a hardware defect which affects the PMU context
 641	 * switch logic, ie. power_pmu_disable/enable().
 642	 *
 643	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 644	 * by the hardware. Sometime later the actual PMU exception is
 645	 * delivered.
 646	 *
 647	 * If we context switch, or simply disable/enable, the PMU prior to the
 648	 * exception arriving, the exception will be lost when we clear PMAO.
 649	 *
 650	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 651	 * set, and this _should_ generate an exception. However because of the
 652	 * defect no exception is generated when we write PMAO, and we get
 653	 * stuck with no counters counting but no exception delivered.
 654	 *
 655	 * The workaround is to detect this case and tweak the hardware to
 656	 * create another pending PMU exception.
 657	 *
 658	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
 659	 * enabling the PMU. That causes a new exception to be generated in the
 660	 * chip, but we don't take it yet because we have interrupts hard
 661	 * disabled. We then write back the PMU state as we want it to be seen
 662	 * by the exception handler. When we reenable interrupts the exception
 663	 * handler will be called and see the correct state.
 664	 *
 665	 * The logic is the same for EBB, except that the exception is gated by
 666	 * us having interrupts hard disabled as well as the fact that we are
 667	 * not in userspace. The exception is finally delivered when we return
 668	 * to userspace.
 669	 */
 670
 671	/* Only if PMAO is set and PMAO_SYNC is clear */
 672	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 673		return;
 674
 675	/* If we're doing EBB, only if BESCR[GE] is set */
 676	if (ebb && !(current->thread.bescr & BESCR_GE))
 677		return;
 678
 679	/*
 680	 * We are already soft-disabled in power_pmu_enable(). We need to hard
 681	 * disable to actually prevent the PMU exception from firing.
 682	 */
 683	hard_irq_disable();
 684
 685	/*
 686	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 687	 * Using read/write_pmc() in a for loop adds 12 function calls and
 688	 * almost doubles our code size.
 689	 */
 690	pmcs[0] = mfspr(SPRN_PMC1);
 691	pmcs[1] = mfspr(SPRN_PMC2);
 692	pmcs[2] = mfspr(SPRN_PMC3);
 693	pmcs[3] = mfspr(SPRN_PMC4);
 694	pmcs[4] = mfspr(SPRN_PMC5);
 695	pmcs[5] = mfspr(SPRN_PMC6);
 696
 697	/* Ensure all freeze bits are unset */
 698	mtspr(SPRN_MMCR2, 0);
 699
 700	/* Set up PMC6 to overflow in one cycle */
 701	mtspr(SPRN_PMC6, 0x7FFFFFFE);
 702
 703	/* Enable exceptions and unfreeze PMC6 */
 704	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 705
 706	/* Now we need to refreeze and restore the PMCs */
 707	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 708
 709	mtspr(SPRN_PMC1, pmcs[0]);
 710	mtspr(SPRN_PMC2, pmcs[1]);
 711	mtspr(SPRN_PMC3, pmcs[2]);
 712	mtspr(SPRN_PMC4, pmcs[3]);
 713	mtspr(SPRN_PMC5, pmcs[4]);
 714	mtspr(SPRN_PMC6, pmcs[5]);
 715}
 716
 717static bool use_ic(u64 event)
 718{
 719	if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
 720			(event == 0x200f2 || event == 0x300f2))
 721		return true;
 722
 723	return false;
 724}
 725#endif /* CONFIG_PPC64 */
 726
 727static void perf_event_interrupt(struct pt_regs *regs);
 728
 729/*
 730 * Read one performance monitor counter (PMC).
 731 */
 732static unsigned long read_pmc(int idx)
 733{
 734	unsigned long val;
 735
 736	switch (idx) {
 737	case 1:
 738		val = mfspr(SPRN_PMC1);
 739		break;
 740	case 2:
 741		val = mfspr(SPRN_PMC2);
 742		break;
 743	case 3:
 744		val = mfspr(SPRN_PMC3);
 745		break;
 746	case 4:
 747		val = mfspr(SPRN_PMC4);
 748		break;
 749	case 5:
 750		val = mfspr(SPRN_PMC5);
 751		break;
 752	case 6:
 753		val = mfspr(SPRN_PMC6);
 754		break;
 755#ifdef CONFIG_PPC64
 756	case 7:
 757		val = mfspr(SPRN_PMC7);
 758		break;
 759	case 8:
 760		val = mfspr(SPRN_PMC8);
 761		break;
 762#endif /* CONFIG_PPC64 */
 763	default:
 764		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 765		val = 0;
 766	}
 767	return val;
 768}
 769
 770/*
 771 * Write one PMC.
 772 */
 773static void write_pmc(int idx, unsigned long val)
 774{
 775	switch (idx) {
 776	case 1:
 777		mtspr(SPRN_PMC1, val);
 778		break;
 779	case 2:
 780		mtspr(SPRN_PMC2, val);
 781		break;
 782	case 3:
 783		mtspr(SPRN_PMC3, val);
 784		break;
 785	case 4:
 786		mtspr(SPRN_PMC4, val);
 787		break;
 788	case 5:
 789		mtspr(SPRN_PMC5, val);
 790		break;
 791	case 6:
 792		mtspr(SPRN_PMC6, val);
 793		break;
 794#ifdef CONFIG_PPC64
 795	case 7:
 796		mtspr(SPRN_PMC7, val);
 797		break;
 798	case 8:
 799		mtspr(SPRN_PMC8, val);
 800		break;
 801#endif /* CONFIG_PPC64 */
 802	default:
 803		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 804	}
 805}
 806
 807/* Called from sysrq_handle_showregs() */
 808void perf_event_print_debug(void)
 809{
 810	unsigned long sdar, sier, flags;
 811	u32 pmcs[MAX_HWEVENTS];
 812	int i;
 813
 814	if (!ppmu) {
 815		pr_info("Performance monitor hardware not registered.\n");
 816		return;
 817	}
 818
 819	if (!ppmu->n_counter)
 820		return;
 821
 822	local_irq_save(flags);
 823
 824	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 825		 smp_processor_id(), ppmu->name, ppmu->n_counter);
 826
 827	for (i = 0; i < ppmu->n_counter; i++)
 828		pmcs[i] = read_pmc(i + 1);
 829
 830	for (; i < MAX_HWEVENTS; i++)
 831		pmcs[i] = 0xdeadbeef;
 832
 833	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 834		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 835
 836	if (ppmu->n_counter > 4)
 837		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 838			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 839
 840	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 841		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 842
 843	sdar = sier = 0;
 844#ifdef CONFIG_PPC64
 845	sdar = mfspr(SPRN_SDAR);
 846
 847	if (ppmu->flags & PPMU_HAS_SIER)
 848		sier = mfspr(SPRN_SIER);
 849
 850	if (ppmu->flags & PPMU_ARCH_207S) {
 851		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 852			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 853		pr_info("EBBRR: %016lx BESCR: %016lx\n",
 854			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 855	}
 856#endif
 857	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 858		mfspr(SPRN_SIAR), sdar, sier);
 859
 860	local_irq_restore(flags);
 861}
 862
 863/*
 864 * Check if a set of events can all go on the PMU at once.
 865 * If they can't, this will look at alternative codes for the events
 866 * and see if any combination of alternative codes is feasible.
 867 * The feasible set is returned in event_id[].
 868 */
 869static int power_check_constraints(struct cpu_hw_events *cpuhw,
 870				   u64 event_id[], unsigned int cflags[],
 871				   int n_ev)
 872{
 873	unsigned long mask, value, nv;
 874	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 875	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 876	int i, j;
 877	unsigned long addf = ppmu->add_fields;
 878	unsigned long tadd = ppmu->test_adder;
 879
 880	if (n_ev > ppmu->n_counter)
 881		return -1;
 882
 883	/* First see if the events will go on as-is */
 884	for (i = 0; i < n_ev; ++i) {
 885		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 886		    && !ppmu->limited_pmc_event(event_id[i])) {
 887			ppmu->get_alternatives(event_id[i], cflags[i],
 888					       cpuhw->alternatives[i]);
 889			event_id[i] = cpuhw->alternatives[i][0];
 890		}
 891		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 892					 &cpuhw->avalues[i][0]))
 893			return -1;
 894	}
 895	value = mask = 0;
 896	for (i = 0; i < n_ev; ++i) {
 897		nv = (value | cpuhw->avalues[i][0]) +
 898			(value & cpuhw->avalues[i][0] & addf);
 899		if ((((nv + tadd) ^ value) & mask) != 0 ||
 900		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 901		     cpuhw->amasks[i][0]) != 0)
 902			break;
 903		value = nv;
 904		mask |= cpuhw->amasks[i][0];
 905	}
 906	if (i == n_ev)
 907		return 0;	/* all OK */
 908
 909	/* doesn't work, gather alternatives... */
 910	if (!ppmu->get_alternatives)
 911		return -1;
 912	for (i = 0; i < n_ev; ++i) {
 913		choice[i] = 0;
 914		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 915						  cpuhw->alternatives[i]);
 916		for (j = 1; j < n_alt[i]; ++j)
 917			ppmu->get_constraint(cpuhw->alternatives[i][j],
 918					     &cpuhw->amasks[i][j],
 919					     &cpuhw->avalues[i][j]);
 920	}
 921
 922	/* enumerate all possibilities and see if any will work */
 923	i = 0;
 924	j = -1;
 925	value = mask = nv = 0;
 926	while (i < n_ev) {
 927		if (j >= 0) {
 928			/* we're backtracking, restore context */
 929			value = svalues[i];
 930			mask = smasks[i];
 931			j = choice[i];
 932		}
 933		/*
 934		 * See if any alternative k for event_id i,
 935		 * where k > j, will satisfy the constraints.
 936		 */
 937		while (++j < n_alt[i]) {
 938			nv = (value | cpuhw->avalues[i][j]) +
 939				(value & cpuhw->avalues[i][j] & addf);
 940			if ((((nv + tadd) ^ value) & mask) == 0 &&
 941			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 942			     & cpuhw->amasks[i][j]) == 0)
 943				break;
 944		}
 945		if (j >= n_alt[i]) {
 946			/*
 947			 * No feasible alternative, backtrack
 948			 * to event_id i-1 and continue enumerating its
 949			 * alternatives from where we got up to.
 950			 */
 951			if (--i < 0)
 952				return -1;
 953		} else {
 954			/*
 955			 * Found a feasible alternative for event_id i,
 956			 * remember where we got up to with this event_id,
 957			 * go on to the next event_id, and start with
 958			 * the first alternative for it.
 959			 */
 960			choice[i] = j;
 961			svalues[i] = value;
 962			smasks[i] = mask;
 963			value = nv;
 964			mask |= cpuhw->amasks[i][j];
 965			++i;
 966			j = -1;
 967		}
 968	}
 969
 970	/* OK, we have a feasible combination, tell the caller the solution */
 971	for (i = 0; i < n_ev; ++i)
 972		event_id[i] = cpuhw->alternatives[i][choice[i]];
 973	return 0;
 974}
 975
 976/*
 977 * Check if newly-added events have consistent settings for
 978 * exclude_{user,kernel,hv} with each other and any previously
 979 * added events.
 980 */
 981static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 982			  int n_prev, int n_new)
 983{
 984	int eu = 0, ek = 0, eh = 0;
 985	int i, n, first;
 986	struct perf_event *event;
 987
 988	/*
 989	 * If the PMU we're on supports per event exclude settings then we
 990	 * don't need to do any of this logic. NB. This assumes no PMU has both
 991	 * per event exclude and limited PMCs.
 992	 */
 993	if (ppmu->flags & PPMU_ARCH_207S)
 994		return 0;
 995
 996	n = n_prev + n_new;
 997	if (n <= 1)
 998		return 0;
 999
1000	first = 1;
1001	for (i = 0; i < n; ++i) {
1002		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004			continue;
1005		}
1006		event = ctrs[i];
1007		if (first) {
1008			eu = event->attr.exclude_user;
1009			ek = event->attr.exclude_kernel;
1010			eh = event->attr.exclude_hv;
1011			first = 0;
1012		} else if (event->attr.exclude_user != eu ||
1013			   event->attr.exclude_kernel != ek ||
1014			   event->attr.exclude_hv != eh) {
1015			return -EAGAIN;
1016		}
1017	}
1018
1019	if (eu || ek || eh)
1020		for (i = 0; i < n; ++i)
1021			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023
1024	return 0;
1025}
1026
1027static u64 check_and_compute_delta(u64 prev, u64 val)
1028{
1029	u64 delta = (val - prev) & 0xfffffffful;
1030
1031	/*
1032	 * POWER7 can roll back counter values, if the new value is smaller
1033	 * than the previous value it will cause the delta and the counter to
1034	 * have bogus values unless we rolled a counter over.  If a coutner is
1035	 * rolled back, it will be smaller, but within 256, which is the maximum
1036	 * number of events to rollback at once.  If we detect a rollback
1037	 * return 0.  This can lead to a small lack of precision in the
1038	 * counters.
1039	 */
1040	if (prev > val && (prev - val) < 256)
1041		delta = 0;
1042
1043	return delta;
1044}
1045
1046static void power_pmu_read(struct perf_event *event)
1047{
1048	s64 val, delta, prev;
1049	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1050
1051	if (event->hw.state & PERF_HES_STOPPED)
1052		return;
1053
1054	if (!event->hw.idx)
1055		return;
1056
1057	if (is_ebb_event(event)) {
1058		val = read_pmc(event->hw.idx);
1059		if (use_ic(event->attr.config)) {
1060			val = mfspr(SPRN_IC);
1061			if (val > cpuhw->ic_init)
1062				val = val - cpuhw->ic_init;
1063			else
1064				val = val + (0 - cpuhw->ic_init);
1065		}
1066		local64_set(&event->hw.prev_count, val);
1067		return;
1068	}
1069
1070	/*
1071	 * Performance monitor interrupts come even when interrupts
1072	 * are soft-disabled, as long as interrupts are hard-enabled.
1073	 * Therefore we treat them like NMIs.
1074	 */
1075	do {
1076		prev = local64_read(&event->hw.prev_count);
1077		barrier();
1078		val = read_pmc(event->hw.idx);
1079		if (use_ic(event->attr.config)) {
1080			val = mfspr(SPRN_IC);
1081			if (val > cpuhw->ic_init)
1082				val = val - cpuhw->ic_init;
1083			else
1084				val = val + (0 - cpuhw->ic_init);
1085		}
1086		delta = check_and_compute_delta(prev, val);
1087		if (!delta)
1088			return;
1089	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1090
1091	local64_add(delta, &event->count);
1092
1093	/*
1094	 * A number of places program the PMC with (0x80000000 - period_left).
1095	 * We never want period_left to be less than 1 because we will program
1096	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1097	 * roll around to 0 before taking an exception. We have seen this
1098	 * on POWER8.
1099	 *
1100	 * To fix this, clamp the minimum value of period_left to 1.
1101	 */
1102	do {
1103		prev = local64_read(&event->hw.period_left);
1104		val = prev - delta;
1105		if (val < 1)
1106			val = 1;
1107	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1108}
1109
1110/*
1111 * On some machines, PMC5 and PMC6 can't be written, don't respect
1112 * the freeze conditions, and don't generate interrupts.  This tells
1113 * us if `event' is using such a PMC.
1114 */
1115static int is_limited_pmc(int pmcnum)
1116{
1117	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1118		&& (pmcnum == 5 || pmcnum == 6);
1119}
1120
1121static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1122				    unsigned long pmc5, unsigned long pmc6)
1123{
1124	struct perf_event *event;
1125	u64 val, prev, delta;
1126	int i;
1127
1128	for (i = 0; i < cpuhw->n_limited; ++i) {
1129		event = cpuhw->limited_counter[i];
1130		if (!event->hw.idx)
1131			continue;
1132		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1133		prev = local64_read(&event->hw.prev_count);
1134		event->hw.idx = 0;
1135		delta = check_and_compute_delta(prev, val);
1136		if (delta)
1137			local64_add(delta, &event->count);
1138	}
1139}
1140
1141static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1142				  unsigned long pmc5, unsigned long pmc6)
1143{
1144	struct perf_event *event;
1145	u64 val, prev;
1146	int i;
1147
1148	for (i = 0; i < cpuhw->n_limited; ++i) {
1149		event = cpuhw->limited_counter[i];
1150		event->hw.idx = cpuhw->limited_hwidx[i];
1151		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1152		prev = local64_read(&event->hw.prev_count);
1153		if (check_and_compute_delta(prev, val))
1154			local64_set(&event->hw.prev_count, val);
1155		perf_event_update_userpage(event);
1156	}
1157}
1158
1159/*
1160 * Since limited events don't respect the freeze conditions, we
1161 * have to read them immediately after freezing or unfreezing the
1162 * other events.  We try to keep the values from the limited
1163 * events as consistent as possible by keeping the delay (in
1164 * cycles and instructions) between freezing/unfreezing and reading
1165 * the limited events as small and consistent as possible.
1166 * Therefore, if any limited events are in use, we read them
1167 * both, and always in the same order, to minimize variability,
1168 * and do it inside the same asm that writes MMCR0.
1169 */
1170static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1171{
1172	unsigned long pmc5, pmc6;
1173
1174	if (!cpuhw->n_limited) {
1175		mtspr(SPRN_MMCR0, mmcr0);
1176		return;
1177	}
1178
1179	/*
1180	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1181	 * To ensure we don't get a performance monitor interrupt
1182	 * between writing MMCR0 and freezing/thawing the limited
1183	 * events, we first write MMCR0 with the event overflow
1184	 * interrupt enable bits turned off.
1185	 */
1186	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1187		     : "=&r" (pmc5), "=&r" (pmc6)
1188		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1189		       "i" (SPRN_MMCR0),
1190		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1191
1192	if (mmcr0 & MMCR0_FC)
1193		freeze_limited_counters(cpuhw, pmc5, pmc6);
1194	else
1195		thaw_limited_counters(cpuhw, pmc5, pmc6);
1196
1197	/*
1198	 * Write the full MMCR0 including the event overflow interrupt
1199	 * enable bits, if necessary.
1200	 */
1201	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1202		mtspr(SPRN_MMCR0, mmcr0);
1203}
1204
1205/*
1206 * Disable all events to prevent PMU interrupts and to allow
1207 * events to be added or removed.
1208 */
1209static void power_pmu_disable(struct pmu *pmu)
1210{
1211	struct cpu_hw_events *cpuhw;
1212	unsigned long flags, mmcr0, val;
1213
1214	if (!ppmu)
1215		return;
1216	local_irq_save(flags);
1217	cpuhw = this_cpu_ptr(&cpu_hw_events);
1218
1219	if (!cpuhw->disabled) {
 
 
 
1220		/*
1221		 * Check if we ever enabled the PMU on this cpu.
1222		 */
1223		if (!cpuhw->pmcs_enabled) {
1224			ppc_enable_pmcs();
1225			cpuhw->pmcs_enabled = 1;
1226		}
1227
1228		/*
1229		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1230		 */
1231		val  = mmcr0 = mfspr(SPRN_MMCR0);
1232		val |= MMCR0_FC;
1233		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1234			 MMCR0_FC56);
1235
1236		/*
1237		 * The barrier is to make sure the mtspr has been
1238		 * executed and the PMU has frozen the events etc.
1239		 * before we return.
1240		 */
1241		write_mmcr0(cpuhw, val);
1242		mb();
1243		isync();
1244
1245		/*
1246		 * Disable instruction sampling if it was enabled
1247		 */
1248		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1249			mtspr(SPRN_MMCRA,
1250			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1251			mb();
1252			isync();
1253		}
1254
1255		cpuhw->disabled = 1;
1256		cpuhw->n_added = 0;
1257
1258		ebb_switch_out(mmcr0);
1259
1260#ifdef CONFIG_PPC64
1261		/*
1262		 * These are readable by userspace, may contain kernel
1263		 * addresses and are not switched by context switch, so clear
1264		 * them now to avoid leaking anything to userspace in general
1265		 * including to another process.
1266		 */
1267		if (ppmu->flags & PPMU_ARCH_207S) {
1268			mtspr(SPRN_SDAR, 0);
1269			mtspr(SPRN_SIAR, 0);
1270		}
1271#endif
1272	}
1273
1274	local_irq_restore(flags);
1275}
1276
1277/*
1278 * Re-enable all events if disable == 0.
1279 * If we were previously disabled and events were added, then
1280 * put the new config on the PMU.
1281 */
1282static void power_pmu_enable(struct pmu *pmu)
1283{
1284	struct perf_event *event;
1285	struct cpu_hw_events *cpuhw;
1286	unsigned long flags;
1287	long i;
1288	unsigned long val, mmcr0;
1289	s64 left;
1290	unsigned int hwc_index[MAX_HWEVENTS];
1291	int n_lim;
1292	int idx;
1293	bool ebb;
1294
1295	if (!ppmu)
1296		return;
1297	local_irq_save(flags);
1298
1299	cpuhw = this_cpu_ptr(&cpu_hw_events);
1300	if (!cpuhw->disabled)
1301		goto out;
1302
1303	if (cpuhw->n_events == 0) {
1304		ppc_set_pmu_inuse(0);
1305		goto out;
1306	}
1307
1308	cpuhw->disabled = 0;
1309
1310	/*
1311	 * EBB requires an exclusive group and all events must have the EBB
1312	 * flag set, or not set, so we can just check a single event. Also we
1313	 * know we have at least one event.
1314	 */
1315	ebb = is_ebb_event(cpuhw->event[0]);
1316
1317	/*
1318	 * If we didn't change anything, or only removed events,
1319	 * no need to recalculate MMCR* settings and reset the PMCs.
1320	 * Just reenable the PMU with the current MMCR* settings
1321	 * (possibly updated for removal of events).
1322	 */
1323	if (!cpuhw->n_added) {
1324		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 
 
1326		goto out_enable;
1327	}
1328
1329	/*
1330	 * Clear all MMCR settings and recompute them for the new set of events.
1331	 */
1332	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1333
1334	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1335			       cpuhw->mmcr, cpuhw->event)) {
1336		/* shouldn't ever get here */
1337		printk(KERN_ERR "oops compute_mmcr failed\n");
1338		goto out;
1339	}
1340
1341	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1342		/*
1343		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1344		 * bits for the first event. We have already checked that all
1345		 * events have the same value for these bits as the first event.
1346		 */
1347		event = cpuhw->event[0];
1348		if (event->attr.exclude_user)
1349			cpuhw->mmcr[0] |= MMCR0_FCP;
1350		if (event->attr.exclude_kernel)
1351			cpuhw->mmcr[0] |= freeze_events_kernel;
1352		if (event->attr.exclude_hv)
1353			cpuhw->mmcr[0] |= MMCR0_FCHV;
1354	}
1355
1356	/*
1357	 * Write the new configuration to MMCR* with the freeze
1358	 * bit set and set the hardware events to their initial values.
1359	 * Then unfreeze the events.
1360	 */
1361	ppc_set_pmu_inuse(1);
1362	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1363	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1364	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1365				| MMCR0_FC);
1366	if (ppmu->flags & PPMU_ARCH_207S)
1367		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1368
1369	/*
1370	 * Read off any pre-existing events that need to move
1371	 * to another PMC.
1372	 */
1373	for (i = 0; i < cpuhw->n_events; ++i) {
1374		event = cpuhw->event[i];
1375		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1376			power_pmu_read(event);
1377			write_pmc(event->hw.idx, 0);
1378			event->hw.idx = 0;
1379		}
1380	}
1381
1382	/*
1383	 * Initialize the PMCs for all the new and moved events.
1384	 */
1385	cpuhw->n_limited = n_lim = 0;
1386	for (i = 0; i < cpuhw->n_events; ++i) {
1387		event = cpuhw->event[i];
1388		if (event->hw.idx)
1389			continue;
1390		idx = hwc_index[i] + 1;
1391		if (is_limited_pmc(idx)) {
1392			cpuhw->limited_counter[n_lim] = event;
1393			cpuhw->limited_hwidx[n_lim] = idx;
1394			++n_lim;
1395			continue;
1396		}
1397
1398		if (ebb)
1399			val = local64_read(&event->hw.prev_count);
1400		else {
1401			val = 0;
1402			if (event->hw.sample_period) {
1403				left = local64_read(&event->hw.period_left);
1404				if (left < 0x80000000L)
1405					val = 0x80000000L - left;
1406			}
1407			local64_set(&event->hw.prev_count, val);
1408		}
1409
1410		event->hw.idx = idx;
1411		if (event->hw.state & PERF_HES_STOPPED)
1412			val = 0;
1413		write_pmc(idx, val);
1414
1415		perf_event_update_userpage(event);
1416	}
1417	cpuhw->n_limited = n_lim;
1418	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1419
1420 out_enable:
1421	pmao_restore_workaround(ebb);
1422
1423	mmcr0 = ebb_switch_in(ebb, cpuhw);
1424
1425	mb();
1426	if (cpuhw->bhrb_users)
1427		ppmu->config_bhrb(cpuhw->bhrb_filter);
1428
1429	write_mmcr0(cpuhw, mmcr0);
1430
1431	/*
1432	 * Enable instruction sampling if necessary
1433	 */
1434	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1435		mb();
1436		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437	}
1438
1439 out:
1440
1441	local_irq_restore(flags);
1442}
1443
1444static int collect_events(struct perf_event *group, int max_count,
1445			  struct perf_event *ctrs[], u64 *events,
1446			  unsigned int *flags)
1447{
1448	int n = 0;
1449	struct perf_event *event;
1450
1451	if (group->pmu->task_ctx_nr == perf_hw_context) {
1452		if (n >= max_count)
1453			return -1;
1454		ctrs[n] = group;
1455		flags[n] = group->hw.event_base;
1456		events[n++] = group->hw.config;
1457	}
1458	for_each_sibling_event(event, group) {
1459		if (event->pmu->task_ctx_nr == perf_hw_context &&
1460		    event->state != PERF_EVENT_STATE_OFF) {
1461			if (n >= max_count)
1462				return -1;
1463			ctrs[n] = event;
1464			flags[n] = event->hw.event_base;
1465			events[n++] = event->hw.config;
1466		}
1467	}
1468	return n;
1469}
1470
1471/*
1472 * Add a event to the PMU.
1473 * If all events are not already frozen, then we disable and
1474 * re-enable the PMU in order to get hw_perf_enable to do the
1475 * actual work of reconfiguring the PMU.
1476 */
1477static int power_pmu_add(struct perf_event *event, int ef_flags)
1478{
1479	struct cpu_hw_events *cpuhw;
1480	unsigned long flags;
1481	int n0;
1482	int ret = -EAGAIN;
1483
1484	local_irq_save(flags);
1485	perf_pmu_disable(event->pmu);
1486
1487	/*
1488	 * Add the event to the list (if there is room)
1489	 * and check whether the total set is still feasible.
1490	 */
1491	cpuhw = this_cpu_ptr(&cpu_hw_events);
1492	n0 = cpuhw->n_events;
1493	if (n0 >= ppmu->n_counter)
1494		goto out;
1495	cpuhw->event[n0] = event;
1496	cpuhw->events[n0] = event->hw.config;
1497	cpuhw->flags[n0] = event->hw.event_base;
1498
1499	/*
1500	 * This event may have been disabled/stopped in record_and_restart()
1501	 * because we exceeded the ->event_limit. If re-starting the event,
1502	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1503	 * notification is re-enabled.
1504	 */
1505	if (!(ef_flags & PERF_EF_START))
1506		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1507	else
1508		event->hw.state = 0;
1509
1510	/*
1511	 * If group events scheduling transaction was started,
1512	 * skip the schedulability test here, it will be performed
1513	 * at commit time(->commit_txn) as a whole
1514	 */
1515	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1516		goto nocheck;
1517
1518	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1519		goto out;
1520	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1521		goto out;
1522	event->hw.config = cpuhw->events[n0];
1523
1524nocheck:
1525	ebb_event_add(event);
1526
1527	++cpuhw->n_events;
1528	++cpuhw->n_added;
1529
1530	ret = 0;
1531 out:
1532	if (has_branch_stack(event)) {
1533		power_pmu_bhrb_enable(event);
1534		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1535					event->attr.branch_sample_type);
1536	}
1537
1538	/*
1539	 * Workaround for POWER9 DD1 to use the Instruction Counter
1540	 * register value for instruction counting
1541	 */
1542	if (use_ic(event->attr.config))
1543		cpuhw->ic_init = mfspr(SPRN_IC);
1544
1545	perf_pmu_enable(event->pmu);
1546	local_irq_restore(flags);
1547	return ret;
1548}
1549
1550/*
1551 * Remove a event from the PMU.
1552 */
1553static void power_pmu_del(struct perf_event *event, int ef_flags)
1554{
1555	struct cpu_hw_events *cpuhw;
1556	long i;
1557	unsigned long flags;
1558
1559	local_irq_save(flags);
1560	perf_pmu_disable(event->pmu);
1561
1562	power_pmu_read(event);
1563
1564	cpuhw = this_cpu_ptr(&cpu_hw_events);
1565	for (i = 0; i < cpuhw->n_events; ++i) {
1566		if (event == cpuhw->event[i]) {
1567			while (++i < cpuhw->n_events) {
1568				cpuhw->event[i-1] = cpuhw->event[i];
1569				cpuhw->events[i-1] = cpuhw->events[i];
1570				cpuhw->flags[i-1] = cpuhw->flags[i];
1571			}
1572			--cpuhw->n_events;
1573			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1574			if (event->hw.idx) {
1575				write_pmc(event->hw.idx, 0);
1576				event->hw.idx = 0;
1577			}
1578			perf_event_update_userpage(event);
1579			break;
1580		}
1581	}
1582	for (i = 0; i < cpuhw->n_limited; ++i)
1583		if (event == cpuhw->limited_counter[i])
1584			break;
1585	if (i < cpuhw->n_limited) {
1586		while (++i < cpuhw->n_limited) {
1587			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1588			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1589		}
1590		--cpuhw->n_limited;
1591	}
1592	if (cpuhw->n_events == 0) {
1593		/* disable exceptions if no events are running */
1594		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1595	}
1596
1597	if (has_branch_stack(event))
1598		power_pmu_bhrb_disable(event);
1599
1600	perf_pmu_enable(event->pmu);
1601	local_irq_restore(flags);
1602}
1603
1604/*
1605 * POWER-PMU does not support disabling individual counters, hence
1606 * program their cycle counter to their max value and ignore the interrupts.
1607 */
1608
1609static void power_pmu_start(struct perf_event *event, int ef_flags)
1610{
1611	unsigned long flags;
1612	s64 left;
1613	unsigned long val;
1614
1615	if (!event->hw.idx || !event->hw.sample_period)
1616		return;
1617
1618	if (!(event->hw.state & PERF_HES_STOPPED))
1619		return;
1620
1621	if (ef_flags & PERF_EF_RELOAD)
1622		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1623
1624	local_irq_save(flags);
1625	perf_pmu_disable(event->pmu);
1626
1627	event->hw.state = 0;
1628	left = local64_read(&event->hw.period_left);
1629
1630	val = 0;
1631	if (left < 0x80000000L)
1632		val = 0x80000000L - left;
1633
1634	write_pmc(event->hw.idx, val);
1635
1636	perf_event_update_userpage(event);
1637	perf_pmu_enable(event->pmu);
1638	local_irq_restore(flags);
1639}
1640
1641static void power_pmu_stop(struct perf_event *event, int ef_flags)
1642{
1643	unsigned long flags;
1644
1645	if (!event->hw.idx || !event->hw.sample_period)
1646		return;
1647
1648	if (event->hw.state & PERF_HES_STOPPED)
1649		return;
1650
1651	local_irq_save(flags);
1652	perf_pmu_disable(event->pmu);
1653
1654	power_pmu_read(event);
1655	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656	write_pmc(event->hw.idx, 0);
1657
1658	perf_event_update_userpage(event);
1659	perf_pmu_enable(event->pmu);
1660	local_irq_restore(flags);
1661}
1662
1663/*
1664 * Start group events scheduling transaction
1665 * Set the flag to make pmu::enable() not perform the
1666 * schedulability test, it will be performed at commit time
1667 *
1668 * We only support PERF_PMU_TXN_ADD transactions. Save the
1669 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1670 * transactions.
1671 */
1672static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1673{
1674	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1675
1676	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1677
1678	cpuhw->txn_flags = txn_flags;
1679	if (txn_flags & ~PERF_PMU_TXN_ADD)
1680		return;
1681
1682	perf_pmu_disable(pmu);
 
1683	cpuhw->n_txn_start = cpuhw->n_events;
1684}
1685
1686/*
1687 * Stop group events scheduling transaction
1688 * Clear the flag and pmu::enable() will perform the
1689 * schedulability test.
1690 */
1691static void power_pmu_cancel_txn(struct pmu *pmu)
1692{
1693	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1694	unsigned int txn_flags;
1695
1696	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1697
1698	txn_flags = cpuhw->txn_flags;
1699	cpuhw->txn_flags = 0;
1700	if (txn_flags & ~PERF_PMU_TXN_ADD)
1701		return;
1702
 
1703	perf_pmu_enable(pmu);
1704}
1705
1706/*
1707 * Commit group events scheduling transaction
1708 * Perform the group schedulability test as a whole
1709 * Return 0 if success
1710 */
1711static int power_pmu_commit_txn(struct pmu *pmu)
1712{
1713	struct cpu_hw_events *cpuhw;
1714	long i, n;
1715
1716	if (!ppmu)
1717		return -EAGAIN;
1718
1719	cpuhw = this_cpu_ptr(&cpu_hw_events);
1720	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1721
1722	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1723		cpuhw->txn_flags = 0;
1724		return 0;
1725	}
1726
1727	n = cpuhw->n_events;
1728	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1729		return -EAGAIN;
1730	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1731	if (i < 0)
1732		return -EAGAIN;
1733
1734	for (i = cpuhw->n_txn_start; i < n; ++i)
1735		cpuhw->event[i]->hw.config = cpuhw->events[i];
1736
1737	cpuhw->txn_flags = 0;
1738	perf_pmu_enable(pmu);
1739	return 0;
1740}
1741
1742/*
1743 * Return 1 if we might be able to put event on a limited PMC,
1744 * or 0 if not.
1745 * A event can only go on a limited PMC if it counts something
1746 * that a limited PMC can count, doesn't require interrupts, and
1747 * doesn't exclude any processor mode.
1748 */
1749static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1750				 unsigned int flags)
1751{
1752	int n;
1753	u64 alt[MAX_EVENT_ALTERNATIVES];
1754
1755	if (event->attr.exclude_user
1756	    || event->attr.exclude_kernel
1757	    || event->attr.exclude_hv
1758	    || event->attr.sample_period)
1759		return 0;
1760
1761	if (ppmu->limited_pmc_event(ev))
1762		return 1;
1763
1764	/*
1765	 * The requested event_id isn't on a limited PMC already;
1766	 * see if any alternative code goes on a limited PMC.
1767	 */
1768	if (!ppmu->get_alternatives)
1769		return 0;
1770
1771	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1772	n = ppmu->get_alternatives(ev, flags, alt);
1773
1774	return n > 0;
1775}
1776
1777/*
1778 * Find an alternative event_id that goes on a normal PMC, if possible,
1779 * and return the event_id code, or 0 if there is no such alternative.
1780 * (Note: event_id code 0 is "don't count" on all machines.)
1781 */
1782static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1783{
1784	u64 alt[MAX_EVENT_ALTERNATIVES];
1785	int n;
1786
1787	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1788	n = ppmu->get_alternatives(ev, flags, alt);
1789	if (!n)
1790		return 0;
1791	return alt[0];
1792}
1793
1794/* Number of perf_events counting hardware events */
1795static atomic_t num_events;
1796/* Used to avoid races in calling reserve/release_pmc_hardware */
1797static DEFINE_MUTEX(pmc_reserve_mutex);
1798
1799/*
1800 * Release the PMU if this is the last perf_event.
1801 */
1802static void hw_perf_event_destroy(struct perf_event *event)
1803{
1804	if (!atomic_add_unless(&num_events, -1, 1)) {
1805		mutex_lock(&pmc_reserve_mutex);
1806		if (atomic_dec_return(&num_events) == 0)
1807			release_pmc_hardware();
1808		mutex_unlock(&pmc_reserve_mutex);
1809	}
1810}
1811
1812/*
1813 * Translate a generic cache event_id config to a raw event_id code.
1814 */
1815static int hw_perf_cache_event(u64 config, u64 *eventp)
1816{
1817	unsigned long type, op, result;
1818	int ev;
1819
1820	if (!ppmu->cache_events)
1821		return -EINVAL;
1822
1823	/* unpack config */
1824	type = config & 0xff;
1825	op = (config >> 8) & 0xff;
1826	result = (config >> 16) & 0xff;
1827
1828	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1829	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1830	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1831		return -EINVAL;
1832
1833	ev = (*ppmu->cache_events)[type][op][result];
1834	if (ev == 0)
1835		return -EOPNOTSUPP;
1836	if (ev == -1)
1837		return -EINVAL;
1838	*eventp = ev;
1839	return 0;
1840}
1841
1842static bool is_event_blacklisted(u64 ev)
1843{
1844	int i;
1845
1846	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1847		if (ppmu->blacklist_ev[i] == ev)
1848			return true;
1849	}
1850
1851	return false;
1852}
1853
1854static int power_pmu_event_init(struct perf_event *event)
1855{
1856	u64 ev;
1857	unsigned long flags;
1858	struct perf_event *ctrs[MAX_HWEVENTS];
1859	u64 events[MAX_HWEVENTS];
1860	unsigned int cflags[MAX_HWEVENTS];
1861	int n;
1862	int err;
1863	struct cpu_hw_events *cpuhw;
1864
1865	if (!ppmu)
1866		return -ENOENT;
1867
1868	if (has_branch_stack(event)) {
1869	        /* PMU has BHRB enabled */
1870		if (!(ppmu->flags & PPMU_ARCH_207S))
1871			return -EOPNOTSUPP;
1872	}
1873
1874	switch (event->attr.type) {
1875	case PERF_TYPE_HARDWARE:
1876		ev = event->attr.config;
1877		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1878			return -EOPNOTSUPP;
1879
1880		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1881			return -EINVAL;
1882		ev = ppmu->generic_events[ev];
1883		break;
1884	case PERF_TYPE_HW_CACHE:
1885		err = hw_perf_cache_event(event->attr.config, &ev);
1886		if (err)
1887			return err;
1888
1889		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1890			return -EINVAL;
1891		break;
1892	case PERF_TYPE_RAW:
1893		ev = event->attr.config;
1894
1895		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1896			return -EINVAL;
1897		break;
1898	default:
1899		return -ENOENT;
1900	}
1901
1902	event->hw.config_base = ev;
1903	event->hw.idx = 0;
1904
1905	/*
1906	 * If we are not running on a hypervisor, force the
1907	 * exclude_hv bit to 0 so that we don't care what
1908	 * the user set it to.
1909	 */
1910	if (!firmware_has_feature(FW_FEATURE_LPAR))
1911		event->attr.exclude_hv = 0;
1912
1913	/*
1914	 * If this is a per-task event, then we can use
1915	 * PM_RUN_* events interchangeably with their non RUN_*
1916	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1917	 * XXX we should check if the task is an idle task.
1918	 */
1919	flags = 0;
1920	if (event->attach_state & PERF_ATTACH_TASK)
1921		flags |= PPMU_ONLY_COUNT_RUN;
1922
1923	/*
1924	 * If this machine has limited events, check whether this
1925	 * event_id could go on a limited event.
1926	 */
1927	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1928		if (can_go_on_limited_pmc(event, ev, flags)) {
1929			flags |= PPMU_LIMITED_PMC_OK;
1930		} else if (ppmu->limited_pmc_event(ev)) {
1931			/*
1932			 * The requested event_id is on a limited PMC,
1933			 * but we can't use a limited PMC; see if any
1934			 * alternative goes on a normal PMC.
1935			 */
1936			ev = normal_pmc_alternative(ev, flags);
1937			if (!ev)
1938				return -EINVAL;
1939		}
1940	}
1941
1942	/* Extra checks for EBB */
1943	err = ebb_event_check(event);
1944	if (err)
1945		return err;
1946
1947	/*
1948	 * If this is in a group, check if it can go on with all the
1949	 * other hardware events in the group.  We assume the event
1950	 * hasn't been linked into its leader's sibling list at this point.
1951	 */
1952	n = 0;
1953	if (event->group_leader != event) {
1954		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1955				   ctrs, events, cflags);
1956		if (n < 0)
1957			return -EINVAL;
1958	}
1959	events[n] = ev;
1960	ctrs[n] = event;
1961	cflags[n] = flags;
1962	if (check_excludes(ctrs, cflags, n, 1))
1963		return -EINVAL;
1964
1965	cpuhw = &get_cpu_var(cpu_hw_events);
1966	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1967
1968	if (has_branch_stack(event)) {
1969		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1970					event->attr.branch_sample_type);
1971
1972		if (cpuhw->bhrb_filter == -1) {
1973			put_cpu_var(cpu_hw_events);
1974			return -EOPNOTSUPP;
1975		}
1976	}
1977
1978	put_cpu_var(cpu_hw_events);
1979	if (err)
1980		return -EINVAL;
1981
1982	event->hw.config = events[n];
1983	event->hw.event_base = cflags[n];
1984	event->hw.last_period = event->hw.sample_period;
1985	local64_set(&event->hw.period_left, event->hw.last_period);
1986
1987	/*
1988	 * For EBB events we just context switch the PMC value, we don't do any
1989	 * of the sample_period logic. We use hw.prev_count for this.
1990	 */
1991	if (is_ebb_event(event))
1992		local64_set(&event->hw.prev_count, 0);
1993
1994	/*
1995	 * See if we need to reserve the PMU.
1996	 * If no events are currently in use, then we have to take a
1997	 * mutex to ensure that we don't race with another task doing
1998	 * reserve_pmc_hardware or release_pmc_hardware.
1999	 */
2000	err = 0;
2001	if (!atomic_inc_not_zero(&num_events)) {
2002		mutex_lock(&pmc_reserve_mutex);
2003		if (atomic_read(&num_events) == 0 &&
2004		    reserve_pmc_hardware(perf_event_interrupt))
2005			err = -EBUSY;
2006		else
2007			atomic_inc(&num_events);
2008		mutex_unlock(&pmc_reserve_mutex);
2009	}
2010	event->destroy = hw_perf_event_destroy;
2011
2012	return err;
2013}
2014
2015static int power_pmu_event_idx(struct perf_event *event)
2016{
2017	return event->hw.idx;
2018}
2019
2020ssize_t power_events_sysfs_show(struct device *dev,
2021				struct device_attribute *attr, char *page)
2022{
2023	struct perf_pmu_events_attr *pmu_attr;
2024
2025	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2026
2027	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2028}
2029
2030static struct pmu power_pmu = {
2031	.pmu_enable	= power_pmu_enable,
2032	.pmu_disable	= power_pmu_disable,
2033	.event_init	= power_pmu_event_init,
2034	.add		= power_pmu_add,
2035	.del		= power_pmu_del,
2036	.start		= power_pmu_start,
2037	.stop		= power_pmu_stop,
2038	.read		= power_pmu_read,
2039	.start_txn	= power_pmu_start_txn,
2040	.cancel_txn	= power_pmu_cancel_txn,
2041	.commit_txn	= power_pmu_commit_txn,
2042	.event_idx	= power_pmu_event_idx,
2043	.sched_task	= power_pmu_sched_task,
2044};
2045
2046/*
2047 * A counter has overflowed; update its count and record
2048 * things if requested.  Note that interrupts are hard-disabled
2049 * here so there is no possibility of being interrupted.
2050 */
2051static void record_and_restart(struct perf_event *event, unsigned long val,
2052			       struct pt_regs *regs)
2053{
2054	u64 period = event->hw.sample_period;
2055	s64 prev, delta, left;
2056	int record = 0;
2057
2058	if (event->hw.state & PERF_HES_STOPPED) {
2059		write_pmc(event->hw.idx, 0);
2060		return;
2061	}
2062
2063	/* we don't have to worry about interrupts here */
2064	prev = local64_read(&event->hw.prev_count);
2065	delta = check_and_compute_delta(prev, val);
2066	local64_add(delta, &event->count);
2067
2068	/*
2069	 * See if the total period for this event has expired,
2070	 * and update for the next period.
2071	 */
2072	val = 0;
2073	left = local64_read(&event->hw.period_left) - delta;
2074	if (delta == 0)
2075		left++;
2076	if (period) {
2077		if (left <= 0) {
2078			left += period;
2079			if (left <= 0)
2080				left = period;
2081			record = siar_valid(regs);
2082			event->hw.last_period = event->hw.sample_period;
2083		}
2084		if (left < 0x80000000LL)
2085			val = 0x80000000LL - left;
2086	}
2087
2088	write_pmc(event->hw.idx, val);
2089	local64_set(&event->hw.prev_count, val);
2090	local64_set(&event->hw.period_left, left);
2091	perf_event_update_userpage(event);
2092
2093	/*
2094	 * Finally record data if requested.
2095	 */
2096	if (record) {
2097		struct perf_sample_data data;
2098
2099		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2100
2101		if (event->attr.sample_type &
2102		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2103			perf_get_data_addr(regs, &data.addr);
2104
2105		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2106			struct cpu_hw_events *cpuhw;
2107			cpuhw = this_cpu_ptr(&cpu_hw_events);
2108			power_pmu_bhrb_read(cpuhw);
2109			data.br_stack = &cpuhw->bhrb_stack;
2110		}
2111
2112		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2113						ppmu->get_mem_data_src)
2114			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2115
2116		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2117						ppmu->get_mem_weight)
2118			ppmu->get_mem_weight(&data.weight);
2119
2120		if (perf_event_overflow(event, &data, regs))
2121			power_pmu_stop(event, 0);
2122	}
2123}
2124
2125/*
2126 * Called from generic code to get the misc flags (i.e. processor mode)
2127 * for an event_id.
2128 */
2129unsigned long perf_misc_flags(struct pt_regs *regs)
2130{
2131	u32 flags = perf_get_misc_flags(regs);
2132
2133	if (flags)
2134		return flags;
2135	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2136		PERF_RECORD_MISC_KERNEL;
2137}
2138
2139/*
2140 * Called from generic code to get the instruction pointer
2141 * for an event_id.
2142 */
2143unsigned long perf_instruction_pointer(struct pt_regs *regs)
2144{
2145	bool use_siar = regs_use_siar(regs);
2146
2147	if (use_siar && siar_valid(regs))
2148		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2149	else if (use_siar)
2150		return 0;		// no valid instruction pointer
2151	else
2152		return regs->nip;
 
 
 
 
 
 
 
2153}
2154
2155static bool pmc_overflow_power7(unsigned long val)
2156{
 
 
 
2157	/*
2158	 * Events on POWER7 can roll back if a speculative event doesn't
2159	 * eventually complete. Unfortunately in some rare cases they will
2160	 * raise a performance monitor exception. We need to catch this to
2161	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2162	 * cycles from overflow.
2163	 *
2164	 * We only do this if the first pass fails to find any overflowing
2165	 * PMCs because a user might set a period of less than 256 and we
2166	 * don't want to mistakenly reset them.
2167	 */
2168	if ((0x80000000 - val) <= 256)
2169		return true;
2170
2171	return false;
2172}
2173
2174static bool pmc_overflow(unsigned long val)
2175{
2176	if ((int)val < 0)
2177		return true;
2178
2179	return false;
2180}
2181
2182/*
2183 * Performance monitor interrupt stuff
2184 */
2185static void perf_event_interrupt(struct pt_regs *regs)
2186{
2187	int i, j;
2188	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2189	struct perf_event *event;
2190	unsigned long val[8];
2191	int found, active;
2192	int nmi;
2193
2194	if (cpuhw->n_limited)
2195		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2196					mfspr(SPRN_PMC6));
2197
2198	perf_read_regs(regs);
2199
2200	nmi = perf_intr_is_nmi(regs);
2201	if (nmi)
2202		nmi_enter();
2203	else
2204		irq_enter();
2205
2206	/* Read all the PMCs since we'll need them a bunch of times */
2207	for (i = 0; i < ppmu->n_counter; ++i)
2208		val[i] = read_pmc(i + 1);
2209
2210	/* Try to find what caused the IRQ */
2211	found = 0;
2212	for (i = 0; i < ppmu->n_counter; ++i) {
2213		if (!pmc_overflow(val[i]))
2214			continue;
2215		if (is_limited_pmc(i + 1))
2216			continue; /* these won't generate IRQs */
2217		/*
2218		 * We've found one that's overflowed.  For active
2219		 * counters we need to log this.  For inactive
2220		 * counters, we need to reset it anyway
2221		 */
2222		found = 1;
2223		active = 0;
2224		for (j = 0; j < cpuhw->n_events; ++j) {
2225			event = cpuhw->event[j];
2226			if (event->hw.idx == (i + 1)) {
2227				active = 1;
2228				record_and_restart(event, val[i], regs);
2229				break;
2230			}
2231		}
2232		if (!active)
2233			/* reset non active counters that have overflowed */
2234			write_pmc(i + 1, 0);
2235	}
2236	if (!found && pvr_version_is(PVR_POWER7)) {
2237		/* check active counters for special buggy p7 overflow */
2238		for (i = 0; i < cpuhw->n_events; ++i) {
2239			event = cpuhw->event[i];
2240			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
 
 
2241				continue;
2242			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2243				/* event has overflowed in a buggy way*/
2244				found = 1;
2245				record_and_restart(event,
2246						   val[event->hw.idx - 1],
2247						   regs);
2248			}
2249		}
2250	}
2251	if (!found && !nmi && printk_ratelimit())
2252		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2253
2254	/*
2255	 * Reset MMCR0 to its normal value.  This will set PMXE and
2256	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2257	 * and thus allow interrupts to occur again.
2258	 * XXX might want to use MSR.PM to keep the events frozen until
2259	 * we get back out of this interrupt.
2260	 */
2261	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2262
2263	if (nmi)
2264		nmi_exit();
2265	else
2266		irq_exit();
2267}
2268
2269static int power_pmu_prepare_cpu(unsigned int cpu)
2270{
2271	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2272
2273	if (ppmu) {
2274		memset(cpuhw, 0, sizeof(*cpuhw));
2275		cpuhw->mmcr[0] = MMCR0_FC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276	}
2277	return 0;
 
2278}
2279
2280int register_power_pmu(struct power_pmu *pmu)
2281{
2282	if (ppmu)
2283		return -EBUSY;		/* something's already registered */
2284
2285	ppmu = pmu;
2286	pr_info("%s performance monitor hardware support registered\n",
2287		pmu->name);
2288
2289	power_pmu.attr_groups = ppmu->attr_groups;
2290
2291#ifdef MSR_HV
2292	/*
2293	 * Use FCHV to ignore kernel events if MSR.HV is set.
2294	 */
2295	if (mfmsr() & MSR_HV)
2296		freeze_events_kernel = MMCR0_FCHV;
2297#endif /* CONFIG_PPC64 */
2298
2299	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2300	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2301			  power_pmu_prepare_cpu, NULL);
2302	return 0;
2303}
v3.5.6
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
 
  16#include <asm/reg.h>
  17#include <asm/pmc.h>
  18#include <asm/machdep.h>
  19#include <asm/firmware.h>
  20#include <asm/ptrace.h>
 
 
 
 
 
 
  21
  22struct cpu_hw_events {
  23	int n_events;
  24	int n_percpu;
  25	int disabled;
  26	int n_added;
  27	int n_limited;
  28	u8  pmcs_enabled;
  29	struct perf_event *event[MAX_HWEVENTS];
  30	u64 events[MAX_HWEVENTS];
  31	unsigned int flags[MAX_HWEVENTS];
  32	unsigned long mmcr[3];
 
 
 
 
 
  33	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  34	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  35	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  36	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  37	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  38
  39	unsigned int group_flag;
  40	int n_txn_start;
 
 
 
 
 
 
 
 
  41};
  42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  43
  44struct power_pmu *ppmu;
 
 
  45
  46/*
  47 * Normally, to ignore kernel events we set the FCS (freeze counters
  48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  49 * hypervisor bit set in the MSR, or if we are running on a processor
  50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  51 * then we need to use the FCHV bit to ignore kernel events.
  52 */
  53static unsigned int freeze_events_kernel = MMCR0_FCS;
  54
  55/*
  56 * 32-bit doesn't have MMCRA but does have an MMCR2,
  57 * and a few other names are different.
  58 */
  59#ifdef CONFIG_PPC32
  60
  61#define MMCR0_FCHV		0
  62#define MMCR0_PMCjCE		MMCR0_PMCnCE
 
 
 
 
 
 
  63
  64#define SPRN_MMCRA		SPRN_MMCR2
  65#define MMCRA_SAMPLE_ENABLE	0
  66
  67static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  68{
  69	return 0;
  70}
  71static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  72static inline u32 perf_get_misc_flags(struct pt_regs *regs)
  73{
  74	return 0;
  75}
  76static inline void perf_read_regs(struct pt_regs *regs) { }
 
 
 
  77static inline int perf_intr_is_nmi(struct pt_regs *regs)
  78{
  79	return 0;
  80}
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82#endif /* CONFIG_PPC32 */
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84/*
  85 * Things that are specific to 64-bit implementations.
  86 */
  87#ifdef CONFIG_PPC64
  88
  89static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  90{
  91	unsigned long mmcra = regs->dsisr;
  92
  93	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
  94		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
  95		if (slot > 1)
  96			return 4 * (slot - 1);
  97	}
 
  98	return 0;
  99}
 100
 101/*
 102 * The user wants a data address recorded.
 103 * If we're not doing instruction sampling, give them the SDAR
 104 * (sampled data address).  If we are doing instruction sampling, then
 105 * only give them the SDAR if it corresponds to the instruction
 106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
 107 * bit in MMCRA.
 108 */
 109static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 110{
 111	unsigned long mmcra = regs->dsisr;
 112	unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
 113		POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
 
 
 
 116		*addrp = mfspr(SPRN_SDAR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117}
 118
 119static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 120{
 121	if (regs->msr & MSR_PR)
 122		return PERF_RECORD_MISC_USER;
 123	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 124		return PERF_RECORD_MISC_HYPERVISOR;
 125	return PERF_RECORD_MISC_KERNEL;
 126}
 127
 128static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 129{
 130	unsigned long mmcra = regs->dsisr;
 131	unsigned long sihv = MMCRA_SIHV;
 132	unsigned long sipr = MMCRA_SIPR;
 133
 134	/* Not a PMU interrupt: Make up flags from regs->msr */
 135	if (TRAP(regs) != 0xf00)
 136		return perf_flags_from_msr(regs);
 137
 138	/*
 139	 * If we don't support continuous sampling and this
 140	 * is not a marked event, same deal
 141	 */
 142	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
 143	    !(mmcra & MMCRA_SAMPLE_ENABLE))
 144		return perf_flags_from_msr(regs);
 145
 146	/*
 147	 * If we don't have flags in MMCRA, rather than using
 148	 * the MSR, we intuit the flags from the address in
 149	 * SIAR which should give slightly more reliable
 150	 * results
 151	 */
 152	if (ppmu->flags & PPMU_NO_SIPR) {
 153		unsigned long siar = mfspr(SPRN_SIAR);
 154		if (siar >= PAGE_OFFSET)
 155			return PERF_RECORD_MISC_KERNEL;
 156		return PERF_RECORD_MISC_USER;
 157	}
 158
 159	if (ppmu->flags & PPMU_ALT_SIPR) {
 160		sihv = POWER6_MMCRA_SIHV;
 161		sipr = POWER6_MMCRA_SIPR;
 162	}
 163
 164	/* PR has priority over HV, so order below is important */
 165	if (mmcra & sipr)
 166		return PERF_RECORD_MISC_USER;
 167	if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
 
 168		return PERF_RECORD_MISC_HYPERVISOR;
 
 169	return PERF_RECORD_MISC_KERNEL;
 170}
 171
 172/*
 173 * Overload regs->dsisr to store MMCRA so we only need to read it once
 174 * on each interrupt.
 
 
 
 175 */
 176static inline void perf_read_regs(struct pt_regs *regs)
 177{
 178	regs->dsisr = mfspr(SPRN_MMCRA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179}
 180
 181/*
 182 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 183 * it as an NMI.
 184 */
 185static inline int perf_intr_is_nmi(struct pt_regs *regs)
 186{
 187	return !regs->softe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189
 190#endif /* CONFIG_PPC64 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192static void perf_event_interrupt(struct pt_regs *regs);
 
 
 
 
 
 
 193
 194void perf_event_print_debug(void)
 195{
 
 
 
 
 
 196}
 
 
 
 197
 198/*
 199 * Read one performance monitor counter (PMC).
 200 */
 201static unsigned long read_pmc(int idx)
 202{
 203	unsigned long val;
 204
 205	switch (idx) {
 206	case 1:
 207		val = mfspr(SPRN_PMC1);
 208		break;
 209	case 2:
 210		val = mfspr(SPRN_PMC2);
 211		break;
 212	case 3:
 213		val = mfspr(SPRN_PMC3);
 214		break;
 215	case 4:
 216		val = mfspr(SPRN_PMC4);
 217		break;
 218	case 5:
 219		val = mfspr(SPRN_PMC5);
 220		break;
 221	case 6:
 222		val = mfspr(SPRN_PMC6);
 223		break;
 224#ifdef CONFIG_PPC64
 225	case 7:
 226		val = mfspr(SPRN_PMC7);
 227		break;
 228	case 8:
 229		val = mfspr(SPRN_PMC8);
 230		break;
 231#endif /* CONFIG_PPC64 */
 232	default:
 233		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 234		val = 0;
 235	}
 236	return val;
 237}
 238
 239/*
 240 * Write one PMC.
 241 */
 242static void write_pmc(int idx, unsigned long val)
 243{
 244	switch (idx) {
 245	case 1:
 246		mtspr(SPRN_PMC1, val);
 247		break;
 248	case 2:
 249		mtspr(SPRN_PMC2, val);
 250		break;
 251	case 3:
 252		mtspr(SPRN_PMC3, val);
 253		break;
 254	case 4:
 255		mtspr(SPRN_PMC4, val);
 256		break;
 257	case 5:
 258		mtspr(SPRN_PMC5, val);
 259		break;
 260	case 6:
 261		mtspr(SPRN_PMC6, val);
 262		break;
 263#ifdef CONFIG_PPC64
 264	case 7:
 265		mtspr(SPRN_PMC7, val);
 266		break;
 267	case 8:
 268		mtspr(SPRN_PMC8, val);
 269		break;
 270#endif /* CONFIG_PPC64 */
 271	default:
 272		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 273	}
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/*
 277 * Check if a set of events can all go on the PMU at once.
 278 * If they can't, this will look at alternative codes for the events
 279 * and see if any combination of alternative codes is feasible.
 280 * The feasible set is returned in event_id[].
 281 */
 282static int power_check_constraints(struct cpu_hw_events *cpuhw,
 283				   u64 event_id[], unsigned int cflags[],
 284				   int n_ev)
 285{
 286	unsigned long mask, value, nv;
 287	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 288	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 289	int i, j;
 290	unsigned long addf = ppmu->add_fields;
 291	unsigned long tadd = ppmu->test_adder;
 292
 293	if (n_ev > ppmu->n_counter)
 294		return -1;
 295
 296	/* First see if the events will go on as-is */
 297	for (i = 0; i < n_ev; ++i) {
 298		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 299		    && !ppmu->limited_pmc_event(event_id[i])) {
 300			ppmu->get_alternatives(event_id[i], cflags[i],
 301					       cpuhw->alternatives[i]);
 302			event_id[i] = cpuhw->alternatives[i][0];
 303		}
 304		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 305					 &cpuhw->avalues[i][0]))
 306			return -1;
 307	}
 308	value = mask = 0;
 309	for (i = 0; i < n_ev; ++i) {
 310		nv = (value | cpuhw->avalues[i][0]) +
 311			(value & cpuhw->avalues[i][0] & addf);
 312		if ((((nv + tadd) ^ value) & mask) != 0 ||
 313		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 314		     cpuhw->amasks[i][0]) != 0)
 315			break;
 316		value = nv;
 317		mask |= cpuhw->amasks[i][0];
 318	}
 319	if (i == n_ev)
 320		return 0;	/* all OK */
 321
 322	/* doesn't work, gather alternatives... */
 323	if (!ppmu->get_alternatives)
 324		return -1;
 325	for (i = 0; i < n_ev; ++i) {
 326		choice[i] = 0;
 327		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 328						  cpuhw->alternatives[i]);
 329		for (j = 1; j < n_alt[i]; ++j)
 330			ppmu->get_constraint(cpuhw->alternatives[i][j],
 331					     &cpuhw->amasks[i][j],
 332					     &cpuhw->avalues[i][j]);
 333	}
 334
 335	/* enumerate all possibilities and see if any will work */
 336	i = 0;
 337	j = -1;
 338	value = mask = nv = 0;
 339	while (i < n_ev) {
 340		if (j >= 0) {
 341			/* we're backtracking, restore context */
 342			value = svalues[i];
 343			mask = smasks[i];
 344			j = choice[i];
 345		}
 346		/*
 347		 * See if any alternative k for event_id i,
 348		 * where k > j, will satisfy the constraints.
 349		 */
 350		while (++j < n_alt[i]) {
 351			nv = (value | cpuhw->avalues[i][j]) +
 352				(value & cpuhw->avalues[i][j] & addf);
 353			if ((((nv + tadd) ^ value) & mask) == 0 &&
 354			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 355			     & cpuhw->amasks[i][j]) == 0)
 356				break;
 357		}
 358		if (j >= n_alt[i]) {
 359			/*
 360			 * No feasible alternative, backtrack
 361			 * to event_id i-1 and continue enumerating its
 362			 * alternatives from where we got up to.
 363			 */
 364			if (--i < 0)
 365				return -1;
 366		} else {
 367			/*
 368			 * Found a feasible alternative for event_id i,
 369			 * remember where we got up to with this event_id,
 370			 * go on to the next event_id, and start with
 371			 * the first alternative for it.
 372			 */
 373			choice[i] = j;
 374			svalues[i] = value;
 375			smasks[i] = mask;
 376			value = nv;
 377			mask |= cpuhw->amasks[i][j];
 378			++i;
 379			j = -1;
 380		}
 381	}
 382
 383	/* OK, we have a feasible combination, tell the caller the solution */
 384	for (i = 0; i < n_ev; ++i)
 385		event_id[i] = cpuhw->alternatives[i][choice[i]];
 386	return 0;
 387}
 388
 389/*
 390 * Check if newly-added events have consistent settings for
 391 * exclude_{user,kernel,hv} with each other and any previously
 392 * added events.
 393 */
 394static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 395			  int n_prev, int n_new)
 396{
 397	int eu = 0, ek = 0, eh = 0;
 398	int i, n, first;
 399	struct perf_event *event;
 400
 
 
 
 
 
 
 
 
 401	n = n_prev + n_new;
 402	if (n <= 1)
 403		return 0;
 404
 405	first = 1;
 406	for (i = 0; i < n; ++i) {
 407		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 408			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 409			continue;
 410		}
 411		event = ctrs[i];
 412		if (first) {
 413			eu = event->attr.exclude_user;
 414			ek = event->attr.exclude_kernel;
 415			eh = event->attr.exclude_hv;
 416			first = 0;
 417		} else if (event->attr.exclude_user != eu ||
 418			   event->attr.exclude_kernel != ek ||
 419			   event->attr.exclude_hv != eh) {
 420			return -EAGAIN;
 421		}
 422	}
 423
 424	if (eu || ek || eh)
 425		for (i = 0; i < n; ++i)
 426			if (cflags[i] & PPMU_LIMITED_PMC_OK)
 427				cflags[i] |= PPMU_LIMITED_PMC_REQD;
 428
 429	return 0;
 430}
 431
 432static u64 check_and_compute_delta(u64 prev, u64 val)
 433{
 434	u64 delta = (val - prev) & 0xfffffffful;
 435
 436	/*
 437	 * POWER7 can roll back counter values, if the new value is smaller
 438	 * than the previous value it will cause the delta and the counter to
 439	 * have bogus values unless we rolled a counter over.  If a coutner is
 440	 * rolled back, it will be smaller, but within 256, which is the maximum
 441	 * number of events to rollback at once.  If we dectect a rollback
 442	 * return 0.  This can lead to a small lack of precision in the
 443	 * counters.
 444	 */
 445	if (prev > val && (prev - val) < 256)
 446		delta = 0;
 447
 448	return delta;
 449}
 450
 451static void power_pmu_read(struct perf_event *event)
 452{
 453	s64 val, delta, prev;
 
 454
 455	if (event->hw.state & PERF_HES_STOPPED)
 456		return;
 457
 458	if (!event->hw.idx)
 459		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460	/*
 461	 * Performance monitor interrupts come even when interrupts
 462	 * are soft-disabled, as long as interrupts are hard-enabled.
 463	 * Therefore we treat them like NMIs.
 464	 */
 465	do {
 466		prev = local64_read(&event->hw.prev_count);
 467		barrier();
 468		val = read_pmc(event->hw.idx);
 
 
 
 
 
 
 
 469		delta = check_and_compute_delta(prev, val);
 470		if (!delta)
 471			return;
 472	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
 473
 474	local64_add(delta, &event->count);
 475	local64_sub(delta, &event->hw.period_left);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476}
 477
 478/*
 479 * On some machines, PMC5 and PMC6 can't be written, don't respect
 480 * the freeze conditions, and don't generate interrupts.  This tells
 481 * us if `event' is using such a PMC.
 482 */
 483static int is_limited_pmc(int pmcnum)
 484{
 485	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
 486		&& (pmcnum == 5 || pmcnum == 6);
 487}
 488
 489static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
 490				    unsigned long pmc5, unsigned long pmc6)
 491{
 492	struct perf_event *event;
 493	u64 val, prev, delta;
 494	int i;
 495
 496	for (i = 0; i < cpuhw->n_limited; ++i) {
 497		event = cpuhw->limited_counter[i];
 498		if (!event->hw.idx)
 499			continue;
 500		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 501		prev = local64_read(&event->hw.prev_count);
 502		event->hw.idx = 0;
 503		delta = check_and_compute_delta(prev, val);
 504		if (delta)
 505			local64_add(delta, &event->count);
 506	}
 507}
 508
 509static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
 510				  unsigned long pmc5, unsigned long pmc6)
 511{
 512	struct perf_event *event;
 513	u64 val, prev;
 514	int i;
 515
 516	for (i = 0; i < cpuhw->n_limited; ++i) {
 517		event = cpuhw->limited_counter[i];
 518		event->hw.idx = cpuhw->limited_hwidx[i];
 519		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 520		prev = local64_read(&event->hw.prev_count);
 521		if (check_and_compute_delta(prev, val))
 522			local64_set(&event->hw.prev_count, val);
 523		perf_event_update_userpage(event);
 524	}
 525}
 526
 527/*
 528 * Since limited events don't respect the freeze conditions, we
 529 * have to read them immediately after freezing or unfreezing the
 530 * other events.  We try to keep the values from the limited
 531 * events as consistent as possible by keeping the delay (in
 532 * cycles and instructions) between freezing/unfreezing and reading
 533 * the limited events as small and consistent as possible.
 534 * Therefore, if any limited events are in use, we read them
 535 * both, and always in the same order, to minimize variability,
 536 * and do it inside the same asm that writes MMCR0.
 537 */
 538static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
 539{
 540	unsigned long pmc5, pmc6;
 541
 542	if (!cpuhw->n_limited) {
 543		mtspr(SPRN_MMCR0, mmcr0);
 544		return;
 545	}
 546
 547	/*
 548	 * Write MMCR0, then read PMC5 and PMC6 immediately.
 549	 * To ensure we don't get a performance monitor interrupt
 550	 * between writing MMCR0 and freezing/thawing the limited
 551	 * events, we first write MMCR0 with the event overflow
 552	 * interrupt enable bits turned off.
 553	 */
 554	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
 555		     : "=&r" (pmc5), "=&r" (pmc6)
 556		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
 557		       "i" (SPRN_MMCR0),
 558		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
 559
 560	if (mmcr0 & MMCR0_FC)
 561		freeze_limited_counters(cpuhw, pmc5, pmc6);
 562	else
 563		thaw_limited_counters(cpuhw, pmc5, pmc6);
 564
 565	/*
 566	 * Write the full MMCR0 including the event overflow interrupt
 567	 * enable bits, if necessary.
 568	 */
 569	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
 570		mtspr(SPRN_MMCR0, mmcr0);
 571}
 572
 573/*
 574 * Disable all events to prevent PMU interrupts and to allow
 575 * events to be added or removed.
 576 */
 577static void power_pmu_disable(struct pmu *pmu)
 578{
 579	struct cpu_hw_events *cpuhw;
 580	unsigned long flags;
 581
 582	if (!ppmu)
 583		return;
 584	local_irq_save(flags);
 585	cpuhw = &__get_cpu_var(cpu_hw_events);
 586
 587	if (!cpuhw->disabled) {
 588		cpuhw->disabled = 1;
 589		cpuhw->n_added = 0;
 590
 591		/*
 592		 * Check if we ever enabled the PMU on this cpu.
 593		 */
 594		if (!cpuhw->pmcs_enabled) {
 595			ppc_enable_pmcs();
 596			cpuhw->pmcs_enabled = 1;
 597		}
 598
 599		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600		 * Disable instruction sampling if it was enabled
 601		 */
 602		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 603			mtspr(SPRN_MMCRA,
 604			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 605			mb();
 
 606		}
 607
 
 
 
 
 
 
 608		/*
 609		 * Set the 'freeze counters' bit.
 610		 * The barrier is to make sure the mtspr has been
 611		 * executed and the PMU has frozen the events
 612		 * before we return.
 613		 */
 614		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
 615		mb();
 
 
 
 616	}
 
 617	local_irq_restore(flags);
 618}
 619
 620/*
 621 * Re-enable all events if disable == 0.
 622 * If we were previously disabled and events were added, then
 623 * put the new config on the PMU.
 624 */
 625static void power_pmu_enable(struct pmu *pmu)
 626{
 627	struct perf_event *event;
 628	struct cpu_hw_events *cpuhw;
 629	unsigned long flags;
 630	long i;
 631	unsigned long val;
 632	s64 left;
 633	unsigned int hwc_index[MAX_HWEVENTS];
 634	int n_lim;
 635	int idx;
 
 636
 637	if (!ppmu)
 638		return;
 639	local_irq_save(flags);
 640	cpuhw = &__get_cpu_var(cpu_hw_events);
 641	if (!cpuhw->disabled) {
 642		local_irq_restore(flags);
 643		return;
 
 
 
 
 644	}
 
 645	cpuhw->disabled = 0;
 646
 647	/*
 
 
 
 
 
 
 
 648	 * If we didn't change anything, or only removed events,
 649	 * no need to recalculate MMCR* settings and reset the PMCs.
 650	 * Just reenable the PMU with the current MMCR* settings
 651	 * (possibly updated for removal of events).
 652	 */
 653	if (!cpuhw->n_added) {
 654		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 655		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 656		if (cpuhw->n_events == 0)
 657			ppc_set_pmu_inuse(0);
 658		goto out_enable;
 659	}
 660
 661	/*
 662	 * Compute MMCR* values for the new set of events
 663	 */
 
 
 664	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
 665			       cpuhw->mmcr)) {
 666		/* shouldn't ever get here */
 667		printk(KERN_ERR "oops compute_mmcr failed\n");
 668		goto out;
 669	}
 670
 671	/*
 672	 * Add in MMCR0 freeze bits corresponding to the
 673	 * attr.exclude_* bits for the first event.
 674	 * We have already checked that all events have the
 675	 * same values for these bits as the first event.
 676	 */
 677	event = cpuhw->event[0];
 678	if (event->attr.exclude_user)
 679		cpuhw->mmcr[0] |= MMCR0_FCP;
 680	if (event->attr.exclude_kernel)
 681		cpuhw->mmcr[0] |= freeze_events_kernel;
 682	if (event->attr.exclude_hv)
 683		cpuhw->mmcr[0] |= MMCR0_FCHV;
 
 684
 685	/*
 686	 * Write the new configuration to MMCR* with the freeze
 687	 * bit set and set the hardware events to their initial values.
 688	 * Then unfreeze the events.
 689	 */
 690	ppc_set_pmu_inuse(1);
 691	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 692	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 693	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
 694				| MMCR0_FC);
 
 
 695
 696	/*
 697	 * Read off any pre-existing events that need to move
 698	 * to another PMC.
 699	 */
 700	for (i = 0; i < cpuhw->n_events; ++i) {
 701		event = cpuhw->event[i];
 702		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
 703			power_pmu_read(event);
 704			write_pmc(event->hw.idx, 0);
 705			event->hw.idx = 0;
 706		}
 707	}
 708
 709	/*
 710	 * Initialize the PMCs for all the new and moved events.
 711	 */
 712	cpuhw->n_limited = n_lim = 0;
 713	for (i = 0; i < cpuhw->n_events; ++i) {
 714		event = cpuhw->event[i];
 715		if (event->hw.idx)
 716			continue;
 717		idx = hwc_index[i] + 1;
 718		if (is_limited_pmc(idx)) {
 719			cpuhw->limited_counter[n_lim] = event;
 720			cpuhw->limited_hwidx[n_lim] = idx;
 721			++n_lim;
 722			continue;
 723		}
 724		val = 0;
 725		if (event->hw.sample_period) {
 726			left = local64_read(&event->hw.period_left);
 727			if (left < 0x80000000L)
 728				val = 0x80000000L - left;
 
 
 
 
 
 
 729		}
 730		local64_set(&event->hw.prev_count, val);
 731		event->hw.idx = idx;
 732		if (event->hw.state & PERF_HES_STOPPED)
 733			val = 0;
 734		write_pmc(idx, val);
 
 735		perf_event_update_userpage(event);
 736	}
 737	cpuhw->n_limited = n_lim;
 738	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
 739
 740 out_enable:
 
 
 
 
 741	mb();
 742	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
 
 
 
 743
 744	/*
 745	 * Enable instruction sampling if necessary
 746	 */
 747	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
 748		mb();
 749		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
 750	}
 751
 752 out:
 
 753	local_irq_restore(flags);
 754}
 755
 756static int collect_events(struct perf_event *group, int max_count,
 757			  struct perf_event *ctrs[], u64 *events,
 758			  unsigned int *flags)
 759{
 760	int n = 0;
 761	struct perf_event *event;
 762
 763	if (!is_software_event(group)) {
 764		if (n >= max_count)
 765			return -1;
 766		ctrs[n] = group;
 767		flags[n] = group->hw.event_base;
 768		events[n++] = group->hw.config;
 769	}
 770	list_for_each_entry(event, &group->sibling_list, group_entry) {
 771		if (!is_software_event(event) &&
 772		    event->state != PERF_EVENT_STATE_OFF) {
 773			if (n >= max_count)
 774				return -1;
 775			ctrs[n] = event;
 776			flags[n] = event->hw.event_base;
 777			events[n++] = event->hw.config;
 778		}
 779	}
 780	return n;
 781}
 782
 783/*
 784 * Add a event to the PMU.
 785 * If all events are not already frozen, then we disable and
 786 * re-enable the PMU in order to get hw_perf_enable to do the
 787 * actual work of reconfiguring the PMU.
 788 */
 789static int power_pmu_add(struct perf_event *event, int ef_flags)
 790{
 791	struct cpu_hw_events *cpuhw;
 792	unsigned long flags;
 793	int n0;
 794	int ret = -EAGAIN;
 795
 796	local_irq_save(flags);
 797	perf_pmu_disable(event->pmu);
 798
 799	/*
 800	 * Add the event to the list (if there is room)
 801	 * and check whether the total set is still feasible.
 802	 */
 803	cpuhw = &__get_cpu_var(cpu_hw_events);
 804	n0 = cpuhw->n_events;
 805	if (n0 >= ppmu->n_counter)
 806		goto out;
 807	cpuhw->event[n0] = event;
 808	cpuhw->events[n0] = event->hw.config;
 809	cpuhw->flags[n0] = event->hw.event_base;
 810
 
 
 
 
 
 
 811	if (!(ef_flags & PERF_EF_START))
 812		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 
 
 813
 814	/*
 815	 * If group events scheduling transaction was started,
 816	 * skip the schedulability test here, it will be performed
 817	 * at commit time(->commit_txn) as a whole
 818	 */
 819	if (cpuhw->group_flag & PERF_EVENT_TXN)
 820		goto nocheck;
 821
 822	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
 823		goto out;
 824	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
 825		goto out;
 826	event->hw.config = cpuhw->events[n0];
 827
 828nocheck:
 
 
 829	++cpuhw->n_events;
 830	++cpuhw->n_added;
 831
 832	ret = 0;
 833 out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	perf_pmu_enable(event->pmu);
 835	local_irq_restore(flags);
 836	return ret;
 837}
 838
 839/*
 840 * Remove a event from the PMU.
 841 */
 842static void power_pmu_del(struct perf_event *event, int ef_flags)
 843{
 844	struct cpu_hw_events *cpuhw;
 845	long i;
 846	unsigned long flags;
 847
 848	local_irq_save(flags);
 849	perf_pmu_disable(event->pmu);
 850
 851	power_pmu_read(event);
 852
 853	cpuhw = &__get_cpu_var(cpu_hw_events);
 854	for (i = 0; i < cpuhw->n_events; ++i) {
 855		if (event == cpuhw->event[i]) {
 856			while (++i < cpuhw->n_events) {
 857				cpuhw->event[i-1] = cpuhw->event[i];
 858				cpuhw->events[i-1] = cpuhw->events[i];
 859				cpuhw->flags[i-1] = cpuhw->flags[i];
 860			}
 861			--cpuhw->n_events;
 862			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
 863			if (event->hw.idx) {
 864				write_pmc(event->hw.idx, 0);
 865				event->hw.idx = 0;
 866			}
 867			perf_event_update_userpage(event);
 868			break;
 869		}
 870	}
 871	for (i = 0; i < cpuhw->n_limited; ++i)
 872		if (event == cpuhw->limited_counter[i])
 873			break;
 874	if (i < cpuhw->n_limited) {
 875		while (++i < cpuhw->n_limited) {
 876			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
 877			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
 878		}
 879		--cpuhw->n_limited;
 880	}
 881	if (cpuhw->n_events == 0) {
 882		/* disable exceptions if no events are running */
 883		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
 884	}
 885
 
 
 
 886	perf_pmu_enable(event->pmu);
 887	local_irq_restore(flags);
 888}
 889
 890/*
 891 * POWER-PMU does not support disabling individual counters, hence
 892 * program their cycle counter to their max value and ignore the interrupts.
 893 */
 894
 895static void power_pmu_start(struct perf_event *event, int ef_flags)
 896{
 897	unsigned long flags;
 898	s64 left;
 899	unsigned long val;
 900
 901	if (!event->hw.idx || !event->hw.sample_period)
 902		return;
 903
 904	if (!(event->hw.state & PERF_HES_STOPPED))
 905		return;
 906
 907	if (ef_flags & PERF_EF_RELOAD)
 908		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 909
 910	local_irq_save(flags);
 911	perf_pmu_disable(event->pmu);
 912
 913	event->hw.state = 0;
 914	left = local64_read(&event->hw.period_left);
 915
 916	val = 0;
 917	if (left < 0x80000000L)
 918		val = 0x80000000L - left;
 919
 920	write_pmc(event->hw.idx, val);
 921
 922	perf_event_update_userpage(event);
 923	perf_pmu_enable(event->pmu);
 924	local_irq_restore(flags);
 925}
 926
 927static void power_pmu_stop(struct perf_event *event, int ef_flags)
 928{
 929	unsigned long flags;
 930
 931	if (!event->hw.idx || !event->hw.sample_period)
 932		return;
 933
 934	if (event->hw.state & PERF_HES_STOPPED)
 935		return;
 936
 937	local_irq_save(flags);
 938	perf_pmu_disable(event->pmu);
 939
 940	power_pmu_read(event);
 941	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 942	write_pmc(event->hw.idx, 0);
 943
 944	perf_event_update_userpage(event);
 945	perf_pmu_enable(event->pmu);
 946	local_irq_restore(flags);
 947}
 948
 949/*
 950 * Start group events scheduling transaction
 951 * Set the flag to make pmu::enable() not perform the
 952 * schedulability test, it will be performed at commit time
 
 
 
 
 953 */
 954void power_pmu_start_txn(struct pmu *pmu)
 955{
 956	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 957
 958	perf_pmu_disable(pmu);
 959	cpuhw->group_flag |= PERF_EVENT_TXN;
 960	cpuhw->n_txn_start = cpuhw->n_events;
 961}
 962
 963/*
 964 * Stop group events scheduling transaction
 965 * Clear the flag and pmu::enable() will perform the
 966 * schedulability test.
 967 */
 968void power_pmu_cancel_txn(struct pmu *pmu)
 969{
 970	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
 971
 972	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 973	perf_pmu_enable(pmu);
 974}
 975
 976/*
 977 * Commit group events scheduling transaction
 978 * Perform the group schedulability test as a whole
 979 * Return 0 if success
 980 */
 981int power_pmu_commit_txn(struct pmu *pmu)
 982{
 983	struct cpu_hw_events *cpuhw;
 984	long i, n;
 985
 986	if (!ppmu)
 987		return -EAGAIN;
 988	cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
 989	n = cpuhw->n_events;
 990	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
 991		return -EAGAIN;
 992	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
 993	if (i < 0)
 994		return -EAGAIN;
 995
 996	for (i = cpuhw->n_txn_start; i < n; ++i)
 997		cpuhw->event[i]->hw.config = cpuhw->events[i];
 998
 999	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1000	perf_pmu_enable(pmu);
1001	return 0;
1002}
1003
1004/*
1005 * Return 1 if we might be able to put event on a limited PMC,
1006 * or 0 if not.
1007 * A event can only go on a limited PMC if it counts something
1008 * that a limited PMC can count, doesn't require interrupts, and
1009 * doesn't exclude any processor mode.
1010 */
1011static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1012				 unsigned int flags)
1013{
1014	int n;
1015	u64 alt[MAX_EVENT_ALTERNATIVES];
1016
1017	if (event->attr.exclude_user
1018	    || event->attr.exclude_kernel
1019	    || event->attr.exclude_hv
1020	    || event->attr.sample_period)
1021		return 0;
1022
1023	if (ppmu->limited_pmc_event(ev))
1024		return 1;
1025
1026	/*
1027	 * The requested event_id isn't on a limited PMC already;
1028	 * see if any alternative code goes on a limited PMC.
1029	 */
1030	if (!ppmu->get_alternatives)
1031		return 0;
1032
1033	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1034	n = ppmu->get_alternatives(ev, flags, alt);
1035
1036	return n > 0;
1037}
1038
1039/*
1040 * Find an alternative event_id that goes on a normal PMC, if possible,
1041 * and return the event_id code, or 0 if there is no such alternative.
1042 * (Note: event_id code 0 is "don't count" on all machines.)
1043 */
1044static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1045{
1046	u64 alt[MAX_EVENT_ALTERNATIVES];
1047	int n;
1048
1049	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1050	n = ppmu->get_alternatives(ev, flags, alt);
1051	if (!n)
1052		return 0;
1053	return alt[0];
1054}
1055
1056/* Number of perf_events counting hardware events */
1057static atomic_t num_events;
1058/* Used to avoid races in calling reserve/release_pmc_hardware */
1059static DEFINE_MUTEX(pmc_reserve_mutex);
1060
1061/*
1062 * Release the PMU if this is the last perf_event.
1063 */
1064static void hw_perf_event_destroy(struct perf_event *event)
1065{
1066	if (!atomic_add_unless(&num_events, -1, 1)) {
1067		mutex_lock(&pmc_reserve_mutex);
1068		if (atomic_dec_return(&num_events) == 0)
1069			release_pmc_hardware();
1070		mutex_unlock(&pmc_reserve_mutex);
1071	}
1072}
1073
1074/*
1075 * Translate a generic cache event_id config to a raw event_id code.
1076 */
1077static int hw_perf_cache_event(u64 config, u64 *eventp)
1078{
1079	unsigned long type, op, result;
1080	int ev;
1081
1082	if (!ppmu->cache_events)
1083		return -EINVAL;
1084
1085	/* unpack config */
1086	type = config & 0xff;
1087	op = (config >> 8) & 0xff;
1088	result = (config >> 16) & 0xff;
1089
1090	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1091	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1092	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1093		return -EINVAL;
1094
1095	ev = (*ppmu->cache_events)[type][op][result];
1096	if (ev == 0)
1097		return -EOPNOTSUPP;
1098	if (ev == -1)
1099		return -EINVAL;
1100	*eventp = ev;
1101	return 0;
1102}
1103
 
 
 
 
 
 
 
 
 
 
 
 
1104static int power_pmu_event_init(struct perf_event *event)
1105{
1106	u64 ev;
1107	unsigned long flags;
1108	struct perf_event *ctrs[MAX_HWEVENTS];
1109	u64 events[MAX_HWEVENTS];
1110	unsigned int cflags[MAX_HWEVENTS];
1111	int n;
1112	int err;
1113	struct cpu_hw_events *cpuhw;
1114
1115	if (!ppmu)
1116		return -ENOENT;
1117
1118	/* does not support taken branch sampling */
1119	if (has_branch_stack(event))
1120		return -EOPNOTSUPP;
 
 
1121
1122	switch (event->attr.type) {
1123	case PERF_TYPE_HARDWARE:
1124		ev = event->attr.config;
1125		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1126			return -EOPNOTSUPP;
 
 
 
1127		ev = ppmu->generic_events[ev];
1128		break;
1129	case PERF_TYPE_HW_CACHE:
1130		err = hw_perf_cache_event(event->attr.config, &ev);
1131		if (err)
1132			return err;
 
 
 
1133		break;
1134	case PERF_TYPE_RAW:
1135		ev = event->attr.config;
 
 
 
1136		break;
1137	default:
1138		return -ENOENT;
1139	}
1140
1141	event->hw.config_base = ev;
1142	event->hw.idx = 0;
1143
1144	/*
1145	 * If we are not running on a hypervisor, force the
1146	 * exclude_hv bit to 0 so that we don't care what
1147	 * the user set it to.
1148	 */
1149	if (!firmware_has_feature(FW_FEATURE_LPAR))
1150		event->attr.exclude_hv = 0;
1151
1152	/*
1153	 * If this is a per-task event, then we can use
1154	 * PM_RUN_* events interchangeably with their non RUN_*
1155	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1156	 * XXX we should check if the task is an idle task.
1157	 */
1158	flags = 0;
1159	if (event->attach_state & PERF_ATTACH_TASK)
1160		flags |= PPMU_ONLY_COUNT_RUN;
1161
1162	/*
1163	 * If this machine has limited events, check whether this
1164	 * event_id could go on a limited event.
1165	 */
1166	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1167		if (can_go_on_limited_pmc(event, ev, flags)) {
1168			flags |= PPMU_LIMITED_PMC_OK;
1169		} else if (ppmu->limited_pmc_event(ev)) {
1170			/*
1171			 * The requested event_id is on a limited PMC,
1172			 * but we can't use a limited PMC; see if any
1173			 * alternative goes on a normal PMC.
1174			 */
1175			ev = normal_pmc_alternative(ev, flags);
1176			if (!ev)
1177				return -EINVAL;
1178		}
1179	}
1180
 
 
 
 
 
1181	/*
1182	 * If this is in a group, check if it can go on with all the
1183	 * other hardware events in the group.  We assume the event
1184	 * hasn't been linked into its leader's sibling list at this point.
1185	 */
1186	n = 0;
1187	if (event->group_leader != event) {
1188		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1189				   ctrs, events, cflags);
1190		if (n < 0)
1191			return -EINVAL;
1192	}
1193	events[n] = ev;
1194	ctrs[n] = event;
1195	cflags[n] = flags;
1196	if (check_excludes(ctrs, cflags, n, 1))
1197		return -EINVAL;
1198
1199	cpuhw = &get_cpu_var(cpu_hw_events);
1200	err = power_check_constraints(cpuhw, events, cflags, n + 1);
 
 
 
 
 
 
 
 
 
 
 
1201	put_cpu_var(cpu_hw_events);
1202	if (err)
1203		return -EINVAL;
1204
1205	event->hw.config = events[n];
1206	event->hw.event_base = cflags[n];
1207	event->hw.last_period = event->hw.sample_period;
1208	local64_set(&event->hw.period_left, event->hw.last_period);
1209
1210	/*
 
 
 
 
 
 
 
1211	 * See if we need to reserve the PMU.
1212	 * If no events are currently in use, then we have to take a
1213	 * mutex to ensure that we don't race with another task doing
1214	 * reserve_pmc_hardware or release_pmc_hardware.
1215	 */
1216	err = 0;
1217	if (!atomic_inc_not_zero(&num_events)) {
1218		mutex_lock(&pmc_reserve_mutex);
1219		if (atomic_read(&num_events) == 0 &&
1220		    reserve_pmc_hardware(perf_event_interrupt))
1221			err = -EBUSY;
1222		else
1223			atomic_inc(&num_events);
1224		mutex_unlock(&pmc_reserve_mutex);
1225	}
1226	event->destroy = hw_perf_event_destroy;
1227
1228	return err;
1229}
1230
1231static int power_pmu_event_idx(struct perf_event *event)
1232{
1233	return event->hw.idx;
1234}
1235
1236struct pmu power_pmu = {
 
 
 
 
 
 
 
 
 
 
1237	.pmu_enable	= power_pmu_enable,
1238	.pmu_disable	= power_pmu_disable,
1239	.event_init	= power_pmu_event_init,
1240	.add		= power_pmu_add,
1241	.del		= power_pmu_del,
1242	.start		= power_pmu_start,
1243	.stop		= power_pmu_stop,
1244	.read		= power_pmu_read,
1245	.start_txn	= power_pmu_start_txn,
1246	.cancel_txn	= power_pmu_cancel_txn,
1247	.commit_txn	= power_pmu_commit_txn,
1248	.event_idx	= power_pmu_event_idx,
 
1249};
1250
1251/*
1252 * A counter has overflowed; update its count and record
1253 * things if requested.  Note that interrupts are hard-disabled
1254 * here so there is no possibility of being interrupted.
1255 */
1256static void record_and_restart(struct perf_event *event, unsigned long val,
1257			       struct pt_regs *regs)
1258{
1259	u64 period = event->hw.sample_period;
1260	s64 prev, delta, left;
1261	int record = 0;
1262
1263	if (event->hw.state & PERF_HES_STOPPED) {
1264		write_pmc(event->hw.idx, 0);
1265		return;
1266	}
1267
1268	/* we don't have to worry about interrupts here */
1269	prev = local64_read(&event->hw.prev_count);
1270	delta = check_and_compute_delta(prev, val);
1271	local64_add(delta, &event->count);
1272
1273	/*
1274	 * See if the total period for this event has expired,
1275	 * and update for the next period.
1276	 */
1277	val = 0;
1278	left = local64_read(&event->hw.period_left) - delta;
 
 
1279	if (period) {
1280		if (left <= 0) {
1281			left += period;
1282			if (left <= 0)
1283				left = period;
1284			record = 1;
1285			event->hw.last_period = event->hw.sample_period;
1286		}
1287		if (left < 0x80000000LL)
1288			val = 0x80000000LL - left;
1289	}
1290
1291	write_pmc(event->hw.idx, val);
1292	local64_set(&event->hw.prev_count, val);
1293	local64_set(&event->hw.period_left, left);
1294	perf_event_update_userpage(event);
1295
1296	/*
1297	 * Finally record data if requested.
1298	 */
1299	if (record) {
1300		struct perf_sample_data data;
1301
1302		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1303
1304		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
 
1305			perf_get_data_addr(regs, &data.addr);
1306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307		if (perf_event_overflow(event, &data, regs))
1308			power_pmu_stop(event, 0);
1309	}
1310}
1311
1312/*
1313 * Called from generic code to get the misc flags (i.e. processor mode)
1314 * for an event_id.
1315 */
1316unsigned long perf_misc_flags(struct pt_regs *regs)
1317{
1318	u32 flags = perf_get_misc_flags(regs);
1319
1320	if (flags)
1321		return flags;
1322	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1323		PERF_RECORD_MISC_KERNEL;
1324}
1325
1326/*
1327 * Called from generic code to get the instruction pointer
1328 * for an event_id.
1329 */
1330unsigned long perf_instruction_pointer(struct pt_regs *regs)
1331{
1332	unsigned long mmcra = regs->dsisr;
1333
1334	/* Not a PMU interrupt */
1335	if (TRAP(regs) != 0xf00)
 
 
 
1336		return regs->nip;
1337
1338	/* Processor doesn't support sampling non marked events */
1339	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
1340	    !(mmcra & MMCRA_SAMPLE_ENABLE))
1341		return regs->nip;
1342
1343	return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1344}
1345
1346static bool pmc_overflow(unsigned long val)
1347{
1348	if ((int)val < 0)
1349		return true;
1350
1351	/*
1352	 * Events on POWER7 can roll back if a speculative event doesn't
1353	 * eventually complete. Unfortunately in some rare cases they will
1354	 * raise a performance monitor exception. We need to catch this to
1355	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1356	 * cycles from overflow.
1357	 *
1358	 * We only do this if the first pass fails to find any overflowing
1359	 * PMCs because a user might set a period of less than 256 and we
1360	 * don't want to mistakenly reset them.
1361	 */
1362	if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
 
 
 
 
 
 
 
 
1363		return true;
1364
1365	return false;
1366}
1367
1368/*
1369 * Performance monitor interrupt stuff
1370 */
1371static void perf_event_interrupt(struct pt_regs *regs)
1372{
1373	int i;
1374	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1375	struct perf_event *event;
1376	unsigned long val;
1377	int found = 0;
1378	int nmi;
1379
1380	if (cpuhw->n_limited)
1381		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1382					mfspr(SPRN_PMC6));
1383
1384	perf_read_regs(regs);
1385
1386	nmi = perf_intr_is_nmi(regs);
1387	if (nmi)
1388		nmi_enter();
1389	else
1390		irq_enter();
1391
1392	for (i = 0; i < cpuhw->n_events; ++i) {
1393		event = cpuhw->event[i];
1394		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
 
 
 
 
 
1395			continue;
1396		val = read_pmc(event->hw.idx);
1397		if ((int)val < 0) {
1398			/* event has overflowed */
1399			found = 1;
1400			record_and_restart(event, val, regs);
 
 
 
 
 
 
 
 
 
 
 
1401		}
1402	}
1403
1404	/*
1405	 * In case we didn't find and reset the event that caused
1406	 * the interrupt, scan all events and reset any that are
1407	 * negative, to avoid getting continual interrupts.
1408	 * Any that we processed in the previous loop will not be negative.
1409	 */
1410	if (!found) {
1411		for (i = 0; i < ppmu->n_counter; ++i) {
1412			if (is_limited_pmc(i + 1))
1413				continue;
1414			val = read_pmc(i + 1);
1415			if (pmc_overflow(val))
1416				write_pmc(i + 1, 0);
 
 
 
 
1417		}
1418	}
 
 
1419
1420	/*
1421	 * Reset MMCR0 to its normal value.  This will set PMXE and
1422	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1423	 * and thus allow interrupts to occur again.
1424	 * XXX might want to use MSR.PM to keep the events frozen until
1425	 * we get back out of this interrupt.
1426	 */
1427	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1428
1429	if (nmi)
1430		nmi_exit();
1431	else
1432		irq_exit();
1433}
1434
1435static void power_pmu_setup(int cpu)
1436{
1437	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1438
1439	if (!ppmu)
1440		return;
1441	memset(cpuhw, 0, sizeof(*cpuhw));
1442	cpuhw->mmcr[0] = MMCR0_FC;
1443}
1444
1445static int __cpuinit
1446power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1447{
1448	unsigned int cpu = (long)hcpu;
1449
1450	switch (action & ~CPU_TASKS_FROZEN) {
1451	case CPU_UP_PREPARE:
1452		power_pmu_setup(cpu);
1453		break;
1454
1455	default:
1456		break;
1457	}
1458
1459	return NOTIFY_OK;
1460}
1461
1462int __cpuinit register_power_pmu(struct power_pmu *pmu)
1463{
1464	if (ppmu)
1465		return -EBUSY;		/* something's already registered */
1466
1467	ppmu = pmu;
1468	pr_info("%s performance monitor hardware support registered\n",
1469		pmu->name);
1470
 
 
1471#ifdef MSR_HV
1472	/*
1473	 * Use FCHV to ignore kernel events if MSR.HV is set.
1474	 */
1475	if (mfmsr() & MSR_HV)
1476		freeze_events_kernel = MMCR0_FCHV;
1477#endif /* CONFIG_PPC64 */
1478
1479	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1480	perf_cpu_notifier(power_pmu_notifier);
1481
1482	return 0;
1483}