Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
 
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
 
 
 
 
  24#define BHRB_MAX_ENTRIES	32
  25#define BHRB_TARGET		0x0000000000000002
  26#define BHRB_PREDICTION		0x0000000000000001
  27#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30	int n_events;
  31	int n_percpu;
  32	int disabled;
  33	int n_added;
  34	int n_limited;
  35	u8  pmcs_enabled;
  36	struct perf_event *event[MAX_HWEVENTS];
  37	u64 events[MAX_HWEVENTS];
  38	unsigned int flags[MAX_HWEVENTS];
  39	/*
  40	 * The order of the MMCR array is:
  41	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42	 *  - 32-bit, MMCR0, MMCR1, MMCR2
  43	 */
  44	unsigned long mmcr[4];
  45	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51	unsigned int txn_flags;
  52	int n_txn_start;
  53
  54	/* BHRB bits */
  55	u64				bhrb_filter;	/* BHRB HW branch filter */
  56	unsigned int			bhrb_users;
  57	void				*bhrb_context;
  58	struct	perf_branch_stack	bhrb_stack;
  59	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
  60	u64				ic_init;
  61};
  62
  63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  64
  65static struct power_pmu *ppmu;
  66
  67/*
  68 * Normally, to ignore kernel events we set the FCS (freeze counters
  69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  70 * hypervisor bit set in the MSR, or if we are running on a processor
  71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  72 * then we need to use the FCHV bit to ignore kernel events.
  73 */
  74static unsigned int freeze_events_kernel = MMCR0_FCS;
  75
  76/*
  77 * 32-bit doesn't have MMCRA but does have an MMCR2,
  78 * and a few other names are different.
 
 
 
 
 
  79 */
  80#ifdef CONFIG_PPC32
  81
  82#define MMCR0_FCHV		0
  83#define MMCR0_PMCjCE		MMCR0_PMCnCE
  84#define MMCR0_FC56		0
  85#define MMCR0_PMAO		0
  86#define MMCR0_EBE		0
  87#define MMCR0_BHRBA		0
  88#define MMCR0_PMCC		0
  89#define MMCR0_PMCC_U6		0
  90
  91#define SPRN_MMCRA		SPRN_MMCR2
 
 
 
  92#define MMCRA_SAMPLE_ENABLE	0
 
  93
  94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  95{
  96	return 0;
  97}
  98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 100{
 101	return 0;
 102}
 103static inline void perf_read_regs(struct pt_regs *regs)
 104{
 105	regs->result = 0;
 106}
 107static inline int perf_intr_is_nmi(struct pt_regs *regs)
 108{
 109	return 0;
 110}
 111
 112static inline int siar_valid(struct pt_regs *regs)
 113{
 114	return 1;
 115}
 116
 117static bool is_ebb_event(struct perf_event *event) { return false; }
 118static int ebb_event_check(struct perf_event *event) { return 0; }
 119static void ebb_event_add(struct perf_event *event) { }
 120static void ebb_switch_out(unsigned long mmcr0) { }
 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 122{
 123	return cpuhw->mmcr[0];
 124}
 125
 126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 130static void pmao_restore_workaround(bool ebb) { }
 131static bool use_ic(u64 event)
 
 
 132{
 
 
 
 133	return false;
 134}
 135#endif /* CONFIG_PPC32 */
 136
 137static bool regs_use_siar(struct pt_regs *regs)
 138{
 139	/*
 140	 * When we take a performance monitor exception the regs are setup
 141	 * using perf_read_regs() which overloads some fields, in particular
 142	 * regs->result to tell us whether to use SIAR.
 143	 *
 144	 * However if the regs are from another exception, eg. a syscall, then
 145	 * they have not been setup using perf_read_regs() and so regs->result
 146	 * is something random.
 147	 */
 148	return ((TRAP(regs) == 0xf00) && regs->result);
 149}
 150
 151/*
 152 * Things that are specific to 64-bit implementations.
 153 */
 154#ifdef CONFIG_PPC64
 155
 156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 157{
 158	unsigned long mmcra = regs->dsisr;
 159
 160	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 161		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 162		if (slot > 1)
 163			return 4 * (slot - 1);
 164	}
 165
 166	return 0;
 167}
 168
 169/*
 170 * The user wants a data address recorded.
 171 * If we're not doing instruction sampling, give them the SDAR
 172 * (sampled data address).  If we are doing instruction sampling, then
 173 * only give them the SDAR if it corresponds to the instruction
 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 176 */
 177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 178{
 179	unsigned long mmcra = regs->dsisr;
 180	bool sdar_valid;
 181
 182	if (ppmu->flags & PPMU_HAS_SIER)
 183		sdar_valid = regs->dar & SIER_SDAR_VALID;
 184	else {
 185		unsigned long sdsync;
 186
 187		if (ppmu->flags & PPMU_SIAR_VALID)
 188			sdsync = POWER7P_MMCRA_SDAR_VALID;
 189		else if (ppmu->flags & PPMU_ALT_SIPR)
 190			sdsync = POWER6_MMCRA_SDSYNC;
 191		else if (ppmu->flags & PPMU_NO_SIAR)
 192			sdsync = MMCRA_SAMPLE_ENABLE;
 193		else
 194			sdsync = MMCRA_SDSYNC;
 195
 196		sdar_valid = mmcra & sdsync;
 197	}
 198
 199	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 200		*addrp = mfspr(SPRN_SDAR);
 201
 202	if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 203		is_kernel_addr(mfspr(SPRN_SDAR)))
 204		*addrp = 0;
 205}
 206
 207static bool regs_sihv(struct pt_regs *regs)
 208{
 209	unsigned long sihv = MMCRA_SIHV;
 210
 211	if (ppmu->flags & PPMU_HAS_SIER)
 212		return !!(regs->dar & SIER_SIHV);
 213
 214	if (ppmu->flags & PPMU_ALT_SIPR)
 215		sihv = POWER6_MMCRA_SIHV;
 216
 217	return !!(regs->dsisr & sihv);
 218}
 219
 220static bool regs_sipr(struct pt_regs *regs)
 221{
 222	unsigned long sipr = MMCRA_SIPR;
 223
 224	if (ppmu->flags & PPMU_HAS_SIER)
 225		return !!(regs->dar & SIER_SIPR);
 226
 227	if (ppmu->flags & PPMU_ALT_SIPR)
 228		sipr = POWER6_MMCRA_SIPR;
 229
 230	return !!(regs->dsisr & sipr);
 231}
 232
 233static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 234{
 235	if (regs->msr & MSR_PR)
 236		return PERF_RECORD_MISC_USER;
 237	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 238		return PERF_RECORD_MISC_HYPERVISOR;
 239	return PERF_RECORD_MISC_KERNEL;
 240}
 241
 242static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 243{
 244	bool use_siar = regs_use_siar(regs);
 245
 246	if (!use_siar)
 247		return perf_flags_from_msr(regs);
 248
 249	/*
 250	 * If we don't have flags in MMCRA, rather than using
 251	 * the MSR, we intuit the flags from the address in
 252	 * SIAR which should give slightly more reliable
 253	 * results
 254	 */
 255	if (ppmu->flags & PPMU_NO_SIPR) {
 256		unsigned long siar = mfspr(SPRN_SIAR);
 257		if (is_kernel_addr(siar))
 258			return PERF_RECORD_MISC_KERNEL;
 259		return PERF_RECORD_MISC_USER;
 260	}
 261
 262	/* PR has priority over HV, so order below is important */
 263	if (regs_sipr(regs))
 264		return PERF_RECORD_MISC_USER;
 265
 266	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 267		return PERF_RECORD_MISC_HYPERVISOR;
 268
 269	return PERF_RECORD_MISC_KERNEL;
 270}
 271
 272/*
 273 * Overload regs->dsisr to store MMCRA so we only need to read it once
 274 * on each interrupt.
 275 * Overload regs->dar to store SIER if we have it.
 276 * Overload regs->result to specify whether we should use the MSR (result
 277 * is zero) or the SIAR (result is non zero).
 278 */
 279static inline void perf_read_regs(struct pt_regs *regs)
 280{
 281	unsigned long mmcra = mfspr(SPRN_MMCRA);
 282	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 283	int use_siar;
 284
 285	regs->dsisr = mmcra;
 286
 287	if (ppmu->flags & PPMU_HAS_SIER)
 288		regs->dar = mfspr(SPRN_SIER);
 289
 290	/*
 291	 * If this isn't a PMU exception (eg a software event) the SIAR is
 292	 * not valid. Use pt_regs.
 293	 *
 294	 * If it is a marked event use the SIAR.
 295	 *
 296	 * If the PMU doesn't update the SIAR for non marked events use
 297	 * pt_regs.
 298	 *
 299	 * If the PMU has HV/PR flags then check to see if they
 300	 * place the exception in userspace. If so, use pt_regs. In
 301	 * continuous sampling mode the SIAR and the PMU exception are
 302	 * not synchronised, so they may be many instructions apart.
 303	 * This can result in confusing backtraces. We still want
 304	 * hypervisor samples as well as samples in the kernel with
 305	 * interrupts off hence the userspace check.
 306	 */
 307	if (TRAP(regs) != 0xf00)
 308		use_siar = 0;
 309	else if ((ppmu->flags & PPMU_NO_SIAR))
 310		use_siar = 0;
 311	else if (marked)
 312		use_siar = 1;
 313	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 314		use_siar = 0;
 315	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 316		use_siar = 0;
 317	else
 318		use_siar = 1;
 319
 320	regs->result = use_siar;
 321}
 322
 323/*
 324 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 325 * it as an NMI.
 326 */
 327static inline int perf_intr_is_nmi(struct pt_regs *regs)
 328{
 329	return (regs->softe & IRQS_DISABLED);
 330}
 331
 332/*
 333 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 334 * must be sampled only if the SIAR-valid bit is set.
 335 *
 336 * For unmarked instructions and for processors that don't have the SIAR-Valid
 337 * bit, assume that SIAR is valid.
 338 */
 339static inline int siar_valid(struct pt_regs *regs)
 340{
 341	unsigned long mmcra = regs->dsisr;
 342	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 343
 344	if (marked) {
 345		if (ppmu->flags & PPMU_HAS_SIER)
 346			return regs->dar & SIER_SIAR_VALID;
 347
 348		if (ppmu->flags & PPMU_SIAR_VALID)
 349			return mmcra & POWER7P_MMCRA_SIAR_VALID;
 350	}
 351
 352	return 1;
 353}
 354
 355
 356/* Reset all possible BHRB entries */
 357static void power_pmu_bhrb_reset(void)
 358{
 359	asm volatile(PPC_CLRBHRB);
 360}
 361
 362static void power_pmu_bhrb_enable(struct perf_event *event)
 363{
 364	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 365
 366	if (!ppmu->bhrb_nr)
 367		return;
 368
 369	/* Clear BHRB if we changed task context to avoid data leaks */
 370	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 371		power_pmu_bhrb_reset();
 372		cpuhw->bhrb_context = event->ctx;
 373	}
 374	cpuhw->bhrb_users++;
 375	perf_sched_cb_inc(event->ctx->pmu);
 376}
 377
 378static void power_pmu_bhrb_disable(struct perf_event *event)
 379{
 380	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 381
 382	if (!ppmu->bhrb_nr)
 383		return;
 384
 385	WARN_ON_ONCE(!cpuhw->bhrb_users);
 386	cpuhw->bhrb_users--;
 387	perf_sched_cb_dec(event->ctx->pmu);
 388
 389	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 390		/* BHRB cannot be turned off when other
 391		 * events are active on the PMU.
 392		 */
 393
 394		/* avoid stale pointer */
 395		cpuhw->bhrb_context = NULL;
 396	}
 397}
 398
 399/* Called from ctxsw to prevent one process's branch entries to
 400 * mingle with the other process's entries during context switch.
 401 */
 402static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 403{
 404	if (!ppmu->bhrb_nr)
 405		return;
 406
 407	if (sched_in)
 408		power_pmu_bhrb_reset();
 409}
 410/* Calculate the to address for a branch */
 411static __u64 power_pmu_bhrb_to(u64 addr)
 412{
 413	unsigned int instr;
 414	int ret;
 415	__u64 target;
 416
 417	if (is_kernel_addr(addr)) {
 418		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
 
 419			return 0;
 420
 421		return branch_target(&instr);
 422	}
 423
 424	/* Userspace: need copy instruction here then translate it */
 425	pagefault_disable();
 426	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 427	if (ret) {
 428		pagefault_enable();
 429		return 0;
 430	}
 431	pagefault_enable();
 432
 433	target = branch_target(&instr);
 434	if ((!target) || (instr & BRANCH_ABSOLUTE))
 435		return target;
 436
 437	/* Translate relative branch target from kernel to user address */
 438	return target - (unsigned long)&instr + addr;
 439}
 440
 441/* Processing BHRB entries */
 442static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 443{
 444	u64 val;
 445	u64 addr;
 446	int r_index, u_index, pred;
 447
 448	r_index = 0;
 449	u_index = 0;
 450	while (r_index < ppmu->bhrb_nr) {
 451		/* Assembly read function */
 452		val = read_bhrb(r_index++);
 453		if (!val)
 454			/* Terminal marker: End of valid BHRB entries */
 455			break;
 456		else {
 457			addr = val & BHRB_EA;
 458			pred = val & BHRB_PREDICTION;
 459
 460			if (!addr)
 461				/* invalid entry */
 462				continue;
 463
 464			/*
 465			 * BHRB rolling buffer could very much contain the kernel
 466			 * addresses at this point. Check the privileges before
 467			 * exporting it to userspace (avoid exposure of regions
 468			 * where we could have speculative execution)
 
 
 469			 */
 470			if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 471				is_kernel_addr(addr))
 472				continue;
 473
 474			/* Branches are read most recent first (ie. mfbhrb 0 is
 475			 * the most recent branch).
 476			 * There are two types of valid entries:
 477			 * 1) a target entry which is the to address of a
 478			 *    computed goto like a blr,bctr,btar.  The next
 479			 *    entry read from the bhrb will be branch
 480			 *    corresponding to this target (ie. the actual
 481			 *    blr/bctr/btar instruction).
 482			 * 2) a from address which is an actual branch.  If a
 483			 *    target entry proceeds this, then this is the
 484			 *    matching branch for that target.  If this is not
 485			 *    following a target entry, then this is a branch
 486			 *    where the target is given as an immediate field
 487			 *    in the instruction (ie. an i or b form branch).
 488			 *    In this case we need to read the instruction from
 489			 *    memory to determine the target/to address.
 490			 */
 491
 492			if (val & BHRB_TARGET) {
 493				/* Target branches use two entries
 494				 * (ie. computed gotos/XL form)
 495				 */
 496				cpuhw->bhrb_entries[u_index].to = addr;
 497				cpuhw->bhrb_entries[u_index].mispred = pred;
 498				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 499
 500				/* Get from address in next entry */
 501				val = read_bhrb(r_index++);
 502				addr = val & BHRB_EA;
 503				if (val & BHRB_TARGET) {
 504					/* Shouldn't have two targets in a
 505					   row.. Reset index and try again */
 506					r_index--;
 507					addr = 0;
 508				}
 509				cpuhw->bhrb_entries[u_index].from = addr;
 510			} else {
 511				/* Branches to immediate field 
 512				   (ie I or B form) */
 513				cpuhw->bhrb_entries[u_index].from = addr;
 514				cpuhw->bhrb_entries[u_index].to =
 515					power_pmu_bhrb_to(addr);
 516				cpuhw->bhrb_entries[u_index].mispred = pred;
 517				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 518			}
 519			u_index++;
 520
 521		}
 522	}
 523	cpuhw->bhrb_stack.nr = u_index;
 
 524	return;
 525}
 526
 527static bool is_ebb_event(struct perf_event *event)
 528{
 529	/*
 530	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
 531	 * check that the PMU supports EBB, meaning those that don't can still
 532	 * use bit 63 of the event code for something else if they wish.
 533	 */
 534	return (ppmu->flags & PPMU_ARCH_207S) &&
 535	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 536}
 537
 538static int ebb_event_check(struct perf_event *event)
 539{
 540	struct perf_event *leader = event->group_leader;
 541
 542	/* Event and group leader must agree on EBB */
 543	if (is_ebb_event(leader) != is_ebb_event(event))
 544		return -EINVAL;
 545
 546	if (is_ebb_event(event)) {
 547		if (!(event->attach_state & PERF_ATTACH_TASK))
 548			return -EINVAL;
 549
 550		if (!leader->attr.pinned || !leader->attr.exclusive)
 551			return -EINVAL;
 552
 553		if (event->attr.freq ||
 554		    event->attr.inherit ||
 555		    event->attr.sample_type ||
 556		    event->attr.sample_period ||
 557		    event->attr.enable_on_exec)
 558			return -EINVAL;
 559	}
 560
 561	return 0;
 562}
 563
 564static void ebb_event_add(struct perf_event *event)
 565{
 566	if (!is_ebb_event(event) || current->thread.used_ebb)
 567		return;
 568
 569	/*
 570	 * IFF this is the first time we've added an EBB event, set
 571	 * PMXE in the user MMCR0 so we can detect when it's cleared by
 572	 * userspace. We need this so that we can context switch while
 573	 * userspace is in the EBB handler (where PMXE is 0).
 574	 */
 575	current->thread.used_ebb = 1;
 576	current->thread.mmcr0 |= MMCR0_PMXE;
 577}
 578
 579static void ebb_switch_out(unsigned long mmcr0)
 580{
 581	if (!(mmcr0 & MMCR0_EBE))
 582		return;
 583
 584	current->thread.siar  = mfspr(SPRN_SIAR);
 585	current->thread.sier  = mfspr(SPRN_SIER);
 586	current->thread.sdar  = mfspr(SPRN_SDAR);
 587	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 588	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 
 
 
 
 
 589}
 590
 591static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 592{
 593	unsigned long mmcr0 = cpuhw->mmcr[0];
 594
 595	if (!ebb)
 596		goto out;
 597
 598	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 599	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 600
 601	/*
 602	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 603	 * with pmao_restore_workaround() because we may add PMAO but we never
 604	 * clear it here.
 605	 */
 606	mmcr0 |= current->thread.mmcr0;
 607
 608	/*
 609	 * Be careful not to set PMXE if userspace had it cleared. This is also
 610	 * compatible with pmao_restore_workaround() because it has already
 611	 * cleared PMXE and we leave PMAO alone.
 612	 */
 613	if (!(current->thread.mmcr0 & MMCR0_PMXE))
 614		mmcr0 &= ~MMCR0_PMXE;
 615
 616	mtspr(SPRN_SIAR, current->thread.siar);
 617	mtspr(SPRN_SIER, current->thread.sier);
 618	mtspr(SPRN_SDAR, current->thread.sdar);
 619
 620	/*
 621	 * Merge the kernel & user values of MMCR2. The semantics we implement
 622	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 623	 * but not clear bits. If a task wants to be able to clear bits, ie.
 624	 * unfreeze counters, it should not set exclude_xxx in its events and
 625	 * instead manage the MMCR2 entirely by itself.
 626	 */
 627	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 
 
 
 
 
 
 628out:
 629	return mmcr0;
 630}
 631
 632static void pmao_restore_workaround(bool ebb)
 633{
 634	unsigned pmcs[6];
 635
 636	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 637		return;
 638
 639	/*
 640	 * On POWER8E there is a hardware defect which affects the PMU context
 641	 * switch logic, ie. power_pmu_disable/enable().
 642	 *
 643	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 644	 * by the hardware. Sometime later the actual PMU exception is
 645	 * delivered.
 646	 *
 647	 * If we context switch, or simply disable/enable, the PMU prior to the
 648	 * exception arriving, the exception will be lost when we clear PMAO.
 649	 *
 650	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 651	 * set, and this _should_ generate an exception. However because of the
 652	 * defect no exception is generated when we write PMAO, and we get
 653	 * stuck with no counters counting but no exception delivered.
 654	 *
 655	 * The workaround is to detect this case and tweak the hardware to
 656	 * create another pending PMU exception.
 657	 *
 658	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
 659	 * enabling the PMU. That causes a new exception to be generated in the
 660	 * chip, but we don't take it yet because we have interrupts hard
 661	 * disabled. We then write back the PMU state as we want it to be seen
 662	 * by the exception handler. When we reenable interrupts the exception
 663	 * handler will be called and see the correct state.
 664	 *
 665	 * The logic is the same for EBB, except that the exception is gated by
 666	 * us having interrupts hard disabled as well as the fact that we are
 667	 * not in userspace. The exception is finally delivered when we return
 668	 * to userspace.
 669	 */
 670
 671	/* Only if PMAO is set and PMAO_SYNC is clear */
 672	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 673		return;
 674
 675	/* If we're doing EBB, only if BESCR[GE] is set */
 676	if (ebb && !(current->thread.bescr & BESCR_GE))
 677		return;
 678
 679	/*
 680	 * We are already soft-disabled in power_pmu_enable(). We need to hard
 681	 * disable to actually prevent the PMU exception from firing.
 682	 */
 683	hard_irq_disable();
 684
 685	/*
 686	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 687	 * Using read/write_pmc() in a for loop adds 12 function calls and
 688	 * almost doubles our code size.
 689	 */
 690	pmcs[0] = mfspr(SPRN_PMC1);
 691	pmcs[1] = mfspr(SPRN_PMC2);
 692	pmcs[2] = mfspr(SPRN_PMC3);
 693	pmcs[3] = mfspr(SPRN_PMC4);
 694	pmcs[4] = mfspr(SPRN_PMC5);
 695	pmcs[5] = mfspr(SPRN_PMC6);
 696
 697	/* Ensure all freeze bits are unset */
 698	mtspr(SPRN_MMCR2, 0);
 699
 700	/* Set up PMC6 to overflow in one cycle */
 701	mtspr(SPRN_PMC6, 0x7FFFFFFE);
 702
 703	/* Enable exceptions and unfreeze PMC6 */
 704	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 705
 706	/* Now we need to refreeze and restore the PMCs */
 707	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 708
 709	mtspr(SPRN_PMC1, pmcs[0]);
 710	mtspr(SPRN_PMC2, pmcs[1]);
 711	mtspr(SPRN_PMC3, pmcs[2]);
 712	mtspr(SPRN_PMC4, pmcs[3]);
 713	mtspr(SPRN_PMC5, pmcs[4]);
 714	mtspr(SPRN_PMC6, pmcs[5]);
 715}
 716
 717static bool use_ic(u64 event)
 718{
 719	if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
 720			(event == 0x200f2 || event == 0x300f2))
 721		return true;
 722
 723	return false;
 724}
 725#endif /* CONFIG_PPC64 */
 726
 727static void perf_event_interrupt(struct pt_regs *regs);
 728
 729/*
 730 * Read one performance monitor counter (PMC).
 731 */
 732static unsigned long read_pmc(int idx)
 733{
 734	unsigned long val;
 735
 736	switch (idx) {
 737	case 1:
 738		val = mfspr(SPRN_PMC1);
 739		break;
 740	case 2:
 741		val = mfspr(SPRN_PMC2);
 742		break;
 743	case 3:
 744		val = mfspr(SPRN_PMC3);
 745		break;
 746	case 4:
 747		val = mfspr(SPRN_PMC4);
 748		break;
 749	case 5:
 750		val = mfspr(SPRN_PMC5);
 751		break;
 752	case 6:
 753		val = mfspr(SPRN_PMC6);
 754		break;
 755#ifdef CONFIG_PPC64
 756	case 7:
 757		val = mfspr(SPRN_PMC7);
 758		break;
 759	case 8:
 760		val = mfspr(SPRN_PMC8);
 761		break;
 762#endif /* CONFIG_PPC64 */
 763	default:
 764		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 765		val = 0;
 766	}
 767	return val;
 768}
 769
 770/*
 771 * Write one PMC.
 772 */
 773static void write_pmc(int idx, unsigned long val)
 774{
 775	switch (idx) {
 776	case 1:
 777		mtspr(SPRN_PMC1, val);
 778		break;
 779	case 2:
 780		mtspr(SPRN_PMC2, val);
 781		break;
 782	case 3:
 783		mtspr(SPRN_PMC3, val);
 784		break;
 785	case 4:
 786		mtspr(SPRN_PMC4, val);
 787		break;
 788	case 5:
 789		mtspr(SPRN_PMC5, val);
 790		break;
 791	case 6:
 792		mtspr(SPRN_PMC6, val);
 793		break;
 794#ifdef CONFIG_PPC64
 795	case 7:
 796		mtspr(SPRN_PMC7, val);
 797		break;
 798	case 8:
 799		mtspr(SPRN_PMC8, val);
 800		break;
 801#endif /* CONFIG_PPC64 */
 802	default:
 803		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 804	}
 805}
 806
 807/* Called from sysrq_handle_showregs() */
 808void perf_event_print_debug(void)
 809{
 810	unsigned long sdar, sier, flags;
 811	u32 pmcs[MAX_HWEVENTS];
 812	int i;
 813
 814	if (!ppmu) {
 815		pr_info("Performance monitor hardware not registered.\n");
 816		return;
 817	}
 818
 819	if (!ppmu->n_counter)
 820		return;
 821
 822	local_irq_save(flags);
 823
 824	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 825		 smp_processor_id(), ppmu->name, ppmu->n_counter);
 826
 827	for (i = 0; i < ppmu->n_counter; i++)
 828		pmcs[i] = read_pmc(i + 1);
 829
 830	for (; i < MAX_HWEVENTS; i++)
 831		pmcs[i] = 0xdeadbeef;
 832
 833	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 834		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 835
 836	if (ppmu->n_counter > 4)
 837		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 838			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 839
 840	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 841		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 842
 843	sdar = sier = 0;
 844#ifdef CONFIG_PPC64
 845	sdar = mfspr(SPRN_SDAR);
 846
 847	if (ppmu->flags & PPMU_HAS_SIER)
 848		sier = mfspr(SPRN_SIER);
 849
 850	if (ppmu->flags & PPMU_ARCH_207S) {
 851		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 852			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 853		pr_info("EBBRR: %016lx BESCR: %016lx\n",
 854			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 855	}
 
 
 
 
 
 856#endif
 857	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 858		mfspr(SPRN_SIAR), sdar, sier);
 859
 860	local_irq_restore(flags);
 861}
 862
 863/*
 864 * Check if a set of events can all go on the PMU at once.
 865 * If they can't, this will look at alternative codes for the events
 866 * and see if any combination of alternative codes is feasible.
 867 * The feasible set is returned in event_id[].
 868 */
 869static int power_check_constraints(struct cpu_hw_events *cpuhw,
 870				   u64 event_id[], unsigned int cflags[],
 871				   int n_ev)
 872{
 873	unsigned long mask, value, nv;
 874	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 875	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 876	int i, j;
 877	unsigned long addf = ppmu->add_fields;
 878	unsigned long tadd = ppmu->test_adder;
 
 
 879
 880	if (n_ev > ppmu->n_counter)
 881		return -1;
 882
 883	/* First see if the events will go on as-is */
 884	for (i = 0; i < n_ev; ++i) {
 885		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 886		    && !ppmu->limited_pmc_event(event_id[i])) {
 887			ppmu->get_alternatives(event_id[i], cflags[i],
 888					       cpuhw->alternatives[i]);
 889			event_id[i] = cpuhw->alternatives[i][0];
 890		}
 891		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 892					 &cpuhw->avalues[i][0]))
 893			return -1;
 894	}
 895	value = mask = 0;
 896	for (i = 0; i < n_ev; ++i) {
 897		nv = (value | cpuhw->avalues[i][0]) +
 898			(value & cpuhw->avalues[i][0] & addf);
 899		if ((((nv + tadd) ^ value) & mask) != 0 ||
 900		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 901		     cpuhw->amasks[i][0]) != 0)
 
 
 
 902			break;
 
 903		value = nv;
 904		mask |= cpuhw->amasks[i][0];
 905	}
 906	if (i == n_ev)
 907		return 0;	/* all OK */
 
 
 
 
 908
 909	/* doesn't work, gather alternatives... */
 910	if (!ppmu->get_alternatives)
 911		return -1;
 912	for (i = 0; i < n_ev; ++i) {
 913		choice[i] = 0;
 914		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 915						  cpuhw->alternatives[i]);
 916		for (j = 1; j < n_alt[i]; ++j)
 917			ppmu->get_constraint(cpuhw->alternatives[i][j],
 918					     &cpuhw->amasks[i][j],
 919					     &cpuhw->avalues[i][j]);
 920	}
 921
 922	/* enumerate all possibilities and see if any will work */
 923	i = 0;
 924	j = -1;
 925	value = mask = nv = 0;
 926	while (i < n_ev) {
 927		if (j >= 0) {
 928			/* we're backtracking, restore context */
 929			value = svalues[i];
 930			mask = smasks[i];
 931			j = choice[i];
 932		}
 933		/*
 934		 * See if any alternative k for event_id i,
 935		 * where k > j, will satisfy the constraints.
 936		 */
 937		while (++j < n_alt[i]) {
 938			nv = (value | cpuhw->avalues[i][j]) +
 939				(value & cpuhw->avalues[i][j] & addf);
 940			if ((((nv + tadd) ^ value) & mask) == 0 &&
 941			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 942			     & cpuhw->amasks[i][j]) == 0)
 943				break;
 944		}
 945		if (j >= n_alt[i]) {
 946			/*
 947			 * No feasible alternative, backtrack
 948			 * to event_id i-1 and continue enumerating its
 949			 * alternatives from where we got up to.
 950			 */
 951			if (--i < 0)
 952				return -1;
 953		} else {
 954			/*
 955			 * Found a feasible alternative for event_id i,
 956			 * remember where we got up to with this event_id,
 957			 * go on to the next event_id, and start with
 958			 * the first alternative for it.
 959			 */
 960			choice[i] = j;
 961			svalues[i] = value;
 962			smasks[i] = mask;
 963			value = nv;
 964			mask |= cpuhw->amasks[i][j];
 965			++i;
 966			j = -1;
 967		}
 968	}
 969
 970	/* OK, we have a feasible combination, tell the caller the solution */
 971	for (i = 0; i < n_ev; ++i)
 972		event_id[i] = cpuhw->alternatives[i][choice[i]];
 973	return 0;
 974}
 975
 976/*
 977 * Check if newly-added events have consistent settings for
 978 * exclude_{user,kernel,hv} with each other and any previously
 979 * added events.
 980 */
 981static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 982			  int n_prev, int n_new)
 983{
 984	int eu = 0, ek = 0, eh = 0;
 985	int i, n, first;
 986	struct perf_event *event;
 987
 988	/*
 989	 * If the PMU we're on supports per event exclude settings then we
 990	 * don't need to do any of this logic. NB. This assumes no PMU has both
 991	 * per event exclude and limited PMCs.
 992	 */
 993	if (ppmu->flags & PPMU_ARCH_207S)
 994		return 0;
 995
 996	n = n_prev + n_new;
 997	if (n <= 1)
 998		return 0;
 999
1000	first = 1;
1001	for (i = 0; i < n; ++i) {
1002		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004			continue;
1005		}
1006		event = ctrs[i];
1007		if (first) {
1008			eu = event->attr.exclude_user;
1009			ek = event->attr.exclude_kernel;
1010			eh = event->attr.exclude_hv;
1011			first = 0;
1012		} else if (event->attr.exclude_user != eu ||
1013			   event->attr.exclude_kernel != ek ||
1014			   event->attr.exclude_hv != eh) {
1015			return -EAGAIN;
1016		}
1017	}
1018
1019	if (eu || ek || eh)
1020		for (i = 0; i < n; ++i)
1021			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023
1024	return 0;
1025}
1026
1027static u64 check_and_compute_delta(u64 prev, u64 val)
1028{
1029	u64 delta = (val - prev) & 0xfffffffful;
1030
1031	/*
1032	 * POWER7 can roll back counter values, if the new value is smaller
1033	 * than the previous value it will cause the delta and the counter to
1034	 * have bogus values unless we rolled a counter over.  If a coutner is
1035	 * rolled back, it will be smaller, but within 256, which is the maximum
1036	 * number of events to rollback at once.  If we detect a rollback
1037	 * return 0.  This can lead to a small lack of precision in the
1038	 * counters.
1039	 */
1040	if (prev > val && (prev - val) < 256)
1041		delta = 0;
1042
1043	return delta;
1044}
1045
1046static void power_pmu_read(struct perf_event *event)
1047{
1048	s64 val, delta, prev;
1049	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1050
1051	if (event->hw.state & PERF_HES_STOPPED)
1052		return;
1053
1054	if (!event->hw.idx)
1055		return;
1056
1057	if (is_ebb_event(event)) {
1058		val = read_pmc(event->hw.idx);
1059		if (use_ic(event->attr.config)) {
1060			val = mfspr(SPRN_IC);
1061			if (val > cpuhw->ic_init)
1062				val = val - cpuhw->ic_init;
1063			else
1064				val = val + (0 - cpuhw->ic_init);
1065		}
1066		local64_set(&event->hw.prev_count, val);
1067		return;
1068	}
1069
1070	/*
1071	 * Performance monitor interrupts come even when interrupts
1072	 * are soft-disabled, as long as interrupts are hard-enabled.
1073	 * Therefore we treat them like NMIs.
1074	 */
1075	do {
1076		prev = local64_read(&event->hw.prev_count);
1077		barrier();
1078		val = read_pmc(event->hw.idx);
1079		if (use_ic(event->attr.config)) {
1080			val = mfspr(SPRN_IC);
1081			if (val > cpuhw->ic_init)
1082				val = val - cpuhw->ic_init;
1083			else
1084				val = val + (0 - cpuhw->ic_init);
1085		}
1086		delta = check_and_compute_delta(prev, val);
1087		if (!delta)
1088			return;
1089	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1090
1091	local64_add(delta, &event->count);
1092
1093	/*
1094	 * A number of places program the PMC with (0x80000000 - period_left).
1095	 * We never want period_left to be less than 1 because we will program
1096	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1097	 * roll around to 0 before taking an exception. We have seen this
1098	 * on POWER8.
1099	 *
1100	 * To fix this, clamp the minimum value of period_left to 1.
1101	 */
1102	do {
1103		prev = local64_read(&event->hw.period_left);
1104		val = prev - delta;
1105		if (val < 1)
1106			val = 1;
1107	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1108}
1109
1110/*
1111 * On some machines, PMC5 and PMC6 can't be written, don't respect
1112 * the freeze conditions, and don't generate interrupts.  This tells
1113 * us if `event' is using such a PMC.
1114 */
1115static int is_limited_pmc(int pmcnum)
1116{
1117	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1118		&& (pmcnum == 5 || pmcnum == 6);
1119}
1120
1121static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1122				    unsigned long pmc5, unsigned long pmc6)
1123{
1124	struct perf_event *event;
1125	u64 val, prev, delta;
1126	int i;
1127
1128	for (i = 0; i < cpuhw->n_limited; ++i) {
1129		event = cpuhw->limited_counter[i];
1130		if (!event->hw.idx)
1131			continue;
1132		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1133		prev = local64_read(&event->hw.prev_count);
1134		event->hw.idx = 0;
1135		delta = check_and_compute_delta(prev, val);
1136		if (delta)
1137			local64_add(delta, &event->count);
1138	}
1139}
1140
1141static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1142				  unsigned long pmc5, unsigned long pmc6)
1143{
1144	struct perf_event *event;
1145	u64 val, prev;
1146	int i;
1147
1148	for (i = 0; i < cpuhw->n_limited; ++i) {
1149		event = cpuhw->limited_counter[i];
1150		event->hw.idx = cpuhw->limited_hwidx[i];
1151		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1152		prev = local64_read(&event->hw.prev_count);
1153		if (check_and_compute_delta(prev, val))
1154			local64_set(&event->hw.prev_count, val);
1155		perf_event_update_userpage(event);
1156	}
1157}
1158
1159/*
1160 * Since limited events don't respect the freeze conditions, we
1161 * have to read them immediately after freezing or unfreezing the
1162 * other events.  We try to keep the values from the limited
1163 * events as consistent as possible by keeping the delay (in
1164 * cycles and instructions) between freezing/unfreezing and reading
1165 * the limited events as small and consistent as possible.
1166 * Therefore, if any limited events are in use, we read them
1167 * both, and always in the same order, to minimize variability,
1168 * and do it inside the same asm that writes MMCR0.
1169 */
1170static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1171{
1172	unsigned long pmc5, pmc6;
1173
1174	if (!cpuhw->n_limited) {
1175		mtspr(SPRN_MMCR0, mmcr0);
1176		return;
1177	}
1178
1179	/*
1180	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1181	 * To ensure we don't get a performance monitor interrupt
1182	 * between writing MMCR0 and freezing/thawing the limited
1183	 * events, we first write MMCR0 with the event overflow
1184	 * interrupt enable bits turned off.
1185	 */
1186	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1187		     : "=&r" (pmc5), "=&r" (pmc6)
1188		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1189		       "i" (SPRN_MMCR0),
1190		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1191
1192	if (mmcr0 & MMCR0_FC)
1193		freeze_limited_counters(cpuhw, pmc5, pmc6);
1194	else
1195		thaw_limited_counters(cpuhw, pmc5, pmc6);
1196
1197	/*
1198	 * Write the full MMCR0 including the event overflow interrupt
1199	 * enable bits, if necessary.
1200	 */
1201	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1202		mtspr(SPRN_MMCR0, mmcr0);
1203}
1204
1205/*
1206 * Disable all events to prevent PMU interrupts and to allow
1207 * events to be added or removed.
1208 */
1209static void power_pmu_disable(struct pmu *pmu)
1210{
1211	struct cpu_hw_events *cpuhw;
1212	unsigned long flags, mmcr0, val;
1213
1214	if (!ppmu)
1215		return;
1216	local_irq_save(flags);
1217	cpuhw = this_cpu_ptr(&cpu_hw_events);
1218
1219	if (!cpuhw->disabled) {
1220		/*
1221		 * Check if we ever enabled the PMU on this cpu.
1222		 */
1223		if (!cpuhw->pmcs_enabled) {
1224			ppc_enable_pmcs();
1225			cpuhw->pmcs_enabled = 1;
1226		}
1227
1228		/*
1229		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1230		 */
1231		val  = mmcr0 = mfspr(SPRN_MMCR0);
1232		val |= MMCR0_FC;
1233		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1234			 MMCR0_FC56);
1235
1236		/*
1237		 * The barrier is to make sure the mtspr has been
1238		 * executed and the PMU has frozen the events etc.
1239		 * before we return.
1240		 */
1241		write_mmcr0(cpuhw, val);
1242		mb();
1243		isync();
1244
 
 
1245		/*
1246		 * Disable instruction sampling if it was enabled
1247		 */
1248		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1249			mtspr(SPRN_MMCRA,
1250			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
 
 
 
 
 
 
 
 
 
 
1251			mb();
1252			isync();
1253		}
1254
1255		cpuhw->disabled = 1;
1256		cpuhw->n_added = 0;
1257
1258		ebb_switch_out(mmcr0);
1259
1260#ifdef CONFIG_PPC64
1261		/*
1262		 * These are readable by userspace, may contain kernel
1263		 * addresses and are not switched by context switch, so clear
1264		 * them now to avoid leaking anything to userspace in general
1265		 * including to another process.
1266		 */
1267		if (ppmu->flags & PPMU_ARCH_207S) {
1268			mtspr(SPRN_SDAR, 0);
1269			mtspr(SPRN_SIAR, 0);
1270		}
1271#endif
1272	}
1273
1274	local_irq_restore(flags);
1275}
1276
1277/*
1278 * Re-enable all events if disable == 0.
1279 * If we were previously disabled and events were added, then
1280 * put the new config on the PMU.
1281 */
1282static void power_pmu_enable(struct pmu *pmu)
1283{
1284	struct perf_event *event;
1285	struct cpu_hw_events *cpuhw;
1286	unsigned long flags;
1287	long i;
1288	unsigned long val, mmcr0;
1289	s64 left;
1290	unsigned int hwc_index[MAX_HWEVENTS];
1291	int n_lim;
1292	int idx;
1293	bool ebb;
1294
1295	if (!ppmu)
1296		return;
1297	local_irq_save(flags);
1298
1299	cpuhw = this_cpu_ptr(&cpu_hw_events);
1300	if (!cpuhw->disabled)
1301		goto out;
1302
1303	if (cpuhw->n_events == 0) {
1304		ppc_set_pmu_inuse(0);
1305		goto out;
1306	}
1307
1308	cpuhw->disabled = 0;
1309
1310	/*
1311	 * EBB requires an exclusive group and all events must have the EBB
1312	 * flag set, or not set, so we can just check a single event. Also we
1313	 * know we have at least one event.
1314	 */
1315	ebb = is_ebb_event(cpuhw->event[0]);
1316
1317	/*
1318	 * If we didn't change anything, or only removed events,
1319	 * no need to recalculate MMCR* settings and reset the PMCs.
1320	 * Just reenable the PMU with the current MMCR* settings
1321	 * (possibly updated for removal of events).
1322	 */
1323	if (!cpuhw->n_added) {
1324		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
 
 
1326		goto out_enable;
1327	}
1328
1329	/*
1330	 * Clear all MMCR settings and recompute them for the new set of events.
1331	 */
1332	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1333
1334	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1335			       cpuhw->mmcr, cpuhw->event)) {
1336		/* shouldn't ever get here */
1337		printk(KERN_ERR "oops compute_mmcr failed\n");
1338		goto out;
1339	}
1340
1341	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1342		/*
1343		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1344		 * bits for the first event. We have already checked that all
1345		 * events have the same value for these bits as the first event.
1346		 */
1347		event = cpuhw->event[0];
1348		if (event->attr.exclude_user)
1349			cpuhw->mmcr[0] |= MMCR0_FCP;
1350		if (event->attr.exclude_kernel)
1351			cpuhw->mmcr[0] |= freeze_events_kernel;
1352		if (event->attr.exclude_hv)
1353			cpuhw->mmcr[0] |= MMCR0_FCHV;
1354	}
1355
1356	/*
1357	 * Write the new configuration to MMCR* with the freeze
1358	 * bit set and set the hardware events to their initial values.
1359	 * Then unfreeze the events.
1360	 */
1361	ppc_set_pmu_inuse(1);
1362	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1363	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1364	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1365				| MMCR0_FC);
1366	if (ppmu->flags & PPMU_ARCH_207S)
1367		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
 
 
 
1368
1369	/*
1370	 * Read off any pre-existing events that need to move
1371	 * to another PMC.
1372	 */
1373	for (i = 0; i < cpuhw->n_events; ++i) {
1374		event = cpuhw->event[i];
1375		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1376			power_pmu_read(event);
1377			write_pmc(event->hw.idx, 0);
1378			event->hw.idx = 0;
1379		}
1380	}
1381
1382	/*
1383	 * Initialize the PMCs for all the new and moved events.
1384	 */
1385	cpuhw->n_limited = n_lim = 0;
1386	for (i = 0; i < cpuhw->n_events; ++i) {
1387		event = cpuhw->event[i];
1388		if (event->hw.idx)
1389			continue;
1390		idx = hwc_index[i] + 1;
1391		if (is_limited_pmc(idx)) {
1392			cpuhw->limited_counter[n_lim] = event;
1393			cpuhw->limited_hwidx[n_lim] = idx;
1394			++n_lim;
1395			continue;
1396		}
1397
1398		if (ebb)
1399			val = local64_read(&event->hw.prev_count);
1400		else {
1401			val = 0;
1402			if (event->hw.sample_period) {
1403				left = local64_read(&event->hw.period_left);
1404				if (left < 0x80000000L)
1405					val = 0x80000000L - left;
1406			}
1407			local64_set(&event->hw.prev_count, val);
1408		}
1409
1410		event->hw.idx = idx;
1411		if (event->hw.state & PERF_HES_STOPPED)
1412			val = 0;
1413		write_pmc(idx, val);
1414
1415		perf_event_update_userpage(event);
1416	}
1417	cpuhw->n_limited = n_lim;
1418	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1419
1420 out_enable:
1421	pmao_restore_workaround(ebb);
1422
1423	mmcr0 = ebb_switch_in(ebb, cpuhw);
1424
1425	mb();
1426	if (cpuhw->bhrb_users)
1427		ppmu->config_bhrb(cpuhw->bhrb_filter);
1428
1429	write_mmcr0(cpuhw, mmcr0);
1430
1431	/*
1432	 * Enable instruction sampling if necessary
1433	 */
1434	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1435		mb();
1436		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437	}
1438
1439 out:
1440
1441	local_irq_restore(flags);
1442}
1443
1444static int collect_events(struct perf_event *group, int max_count,
1445			  struct perf_event *ctrs[], u64 *events,
1446			  unsigned int *flags)
1447{
1448	int n = 0;
1449	struct perf_event *event;
1450
1451	if (group->pmu->task_ctx_nr == perf_hw_context) {
1452		if (n >= max_count)
1453			return -1;
1454		ctrs[n] = group;
1455		flags[n] = group->hw.event_base;
1456		events[n++] = group->hw.config;
1457	}
1458	for_each_sibling_event(event, group) {
1459		if (event->pmu->task_ctx_nr == perf_hw_context &&
1460		    event->state != PERF_EVENT_STATE_OFF) {
1461			if (n >= max_count)
1462				return -1;
1463			ctrs[n] = event;
1464			flags[n] = event->hw.event_base;
1465			events[n++] = event->hw.config;
1466		}
1467	}
1468	return n;
1469}
1470
1471/*
1472 * Add a event to the PMU.
1473 * If all events are not already frozen, then we disable and
1474 * re-enable the PMU in order to get hw_perf_enable to do the
1475 * actual work of reconfiguring the PMU.
1476 */
1477static int power_pmu_add(struct perf_event *event, int ef_flags)
1478{
1479	struct cpu_hw_events *cpuhw;
1480	unsigned long flags;
1481	int n0;
1482	int ret = -EAGAIN;
1483
1484	local_irq_save(flags);
1485	perf_pmu_disable(event->pmu);
1486
1487	/*
1488	 * Add the event to the list (if there is room)
1489	 * and check whether the total set is still feasible.
1490	 */
1491	cpuhw = this_cpu_ptr(&cpu_hw_events);
1492	n0 = cpuhw->n_events;
1493	if (n0 >= ppmu->n_counter)
1494		goto out;
1495	cpuhw->event[n0] = event;
1496	cpuhw->events[n0] = event->hw.config;
1497	cpuhw->flags[n0] = event->hw.event_base;
1498
1499	/*
1500	 * This event may have been disabled/stopped in record_and_restart()
1501	 * because we exceeded the ->event_limit. If re-starting the event,
1502	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1503	 * notification is re-enabled.
1504	 */
1505	if (!(ef_flags & PERF_EF_START))
1506		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1507	else
1508		event->hw.state = 0;
1509
1510	/*
1511	 * If group events scheduling transaction was started,
1512	 * skip the schedulability test here, it will be performed
1513	 * at commit time(->commit_txn) as a whole
1514	 */
1515	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1516		goto nocheck;
1517
1518	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1519		goto out;
1520	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1521		goto out;
1522	event->hw.config = cpuhw->events[n0];
1523
1524nocheck:
1525	ebb_event_add(event);
1526
1527	++cpuhw->n_events;
1528	++cpuhw->n_added;
1529
1530	ret = 0;
1531 out:
1532	if (has_branch_stack(event)) {
1533		power_pmu_bhrb_enable(event);
1534		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1535					event->attr.branch_sample_type);
1536	}
1537
1538	/*
1539	 * Workaround for POWER9 DD1 to use the Instruction Counter
1540	 * register value for instruction counting
1541	 */
1542	if (use_ic(event->attr.config))
1543		cpuhw->ic_init = mfspr(SPRN_IC);
 
 
 
1544
1545	perf_pmu_enable(event->pmu);
1546	local_irq_restore(flags);
1547	return ret;
1548}
1549
1550/*
1551 * Remove a event from the PMU.
1552 */
1553static void power_pmu_del(struct perf_event *event, int ef_flags)
1554{
1555	struct cpu_hw_events *cpuhw;
1556	long i;
1557	unsigned long flags;
1558
1559	local_irq_save(flags);
1560	perf_pmu_disable(event->pmu);
1561
1562	power_pmu_read(event);
1563
1564	cpuhw = this_cpu_ptr(&cpu_hw_events);
1565	for (i = 0; i < cpuhw->n_events; ++i) {
1566		if (event == cpuhw->event[i]) {
1567			while (++i < cpuhw->n_events) {
1568				cpuhw->event[i-1] = cpuhw->event[i];
1569				cpuhw->events[i-1] = cpuhw->events[i];
1570				cpuhw->flags[i-1] = cpuhw->flags[i];
1571			}
1572			--cpuhw->n_events;
1573			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1574			if (event->hw.idx) {
1575				write_pmc(event->hw.idx, 0);
1576				event->hw.idx = 0;
1577			}
1578			perf_event_update_userpage(event);
1579			break;
1580		}
1581	}
1582	for (i = 0; i < cpuhw->n_limited; ++i)
1583		if (event == cpuhw->limited_counter[i])
1584			break;
1585	if (i < cpuhw->n_limited) {
1586		while (++i < cpuhw->n_limited) {
1587			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1588			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1589		}
1590		--cpuhw->n_limited;
1591	}
1592	if (cpuhw->n_events == 0) {
1593		/* disable exceptions if no events are running */
1594		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1595	}
1596
1597	if (has_branch_stack(event))
1598		power_pmu_bhrb_disable(event);
1599
1600	perf_pmu_enable(event->pmu);
1601	local_irq_restore(flags);
1602}
1603
1604/*
1605 * POWER-PMU does not support disabling individual counters, hence
1606 * program their cycle counter to their max value and ignore the interrupts.
1607 */
1608
1609static void power_pmu_start(struct perf_event *event, int ef_flags)
1610{
1611	unsigned long flags;
1612	s64 left;
1613	unsigned long val;
1614
1615	if (!event->hw.idx || !event->hw.sample_period)
1616		return;
1617
1618	if (!(event->hw.state & PERF_HES_STOPPED))
1619		return;
1620
1621	if (ef_flags & PERF_EF_RELOAD)
1622		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1623
1624	local_irq_save(flags);
1625	perf_pmu_disable(event->pmu);
1626
1627	event->hw.state = 0;
1628	left = local64_read(&event->hw.period_left);
1629
1630	val = 0;
1631	if (left < 0x80000000L)
1632		val = 0x80000000L - left;
1633
1634	write_pmc(event->hw.idx, val);
1635
1636	perf_event_update_userpage(event);
1637	perf_pmu_enable(event->pmu);
1638	local_irq_restore(flags);
1639}
1640
1641static void power_pmu_stop(struct perf_event *event, int ef_flags)
1642{
1643	unsigned long flags;
1644
1645	if (!event->hw.idx || !event->hw.sample_period)
1646		return;
1647
1648	if (event->hw.state & PERF_HES_STOPPED)
1649		return;
1650
1651	local_irq_save(flags);
1652	perf_pmu_disable(event->pmu);
1653
1654	power_pmu_read(event);
1655	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656	write_pmc(event->hw.idx, 0);
1657
1658	perf_event_update_userpage(event);
1659	perf_pmu_enable(event->pmu);
1660	local_irq_restore(flags);
1661}
1662
1663/*
1664 * Start group events scheduling transaction
1665 * Set the flag to make pmu::enable() not perform the
1666 * schedulability test, it will be performed at commit time
1667 *
1668 * We only support PERF_PMU_TXN_ADD transactions. Save the
1669 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1670 * transactions.
1671 */
1672static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1673{
1674	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1675
1676	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1677
1678	cpuhw->txn_flags = txn_flags;
1679	if (txn_flags & ~PERF_PMU_TXN_ADD)
1680		return;
1681
1682	perf_pmu_disable(pmu);
1683	cpuhw->n_txn_start = cpuhw->n_events;
1684}
1685
1686/*
1687 * Stop group events scheduling transaction
1688 * Clear the flag and pmu::enable() will perform the
1689 * schedulability test.
1690 */
1691static void power_pmu_cancel_txn(struct pmu *pmu)
1692{
1693	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1694	unsigned int txn_flags;
1695
1696	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1697
1698	txn_flags = cpuhw->txn_flags;
1699	cpuhw->txn_flags = 0;
1700	if (txn_flags & ~PERF_PMU_TXN_ADD)
1701		return;
1702
1703	perf_pmu_enable(pmu);
1704}
1705
1706/*
1707 * Commit group events scheduling transaction
1708 * Perform the group schedulability test as a whole
1709 * Return 0 if success
1710 */
1711static int power_pmu_commit_txn(struct pmu *pmu)
1712{
1713	struct cpu_hw_events *cpuhw;
1714	long i, n;
1715
1716	if (!ppmu)
1717		return -EAGAIN;
1718
1719	cpuhw = this_cpu_ptr(&cpu_hw_events);
1720	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1721
1722	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1723		cpuhw->txn_flags = 0;
1724		return 0;
1725	}
1726
1727	n = cpuhw->n_events;
1728	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1729		return -EAGAIN;
1730	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1731	if (i < 0)
1732		return -EAGAIN;
1733
1734	for (i = cpuhw->n_txn_start; i < n; ++i)
1735		cpuhw->event[i]->hw.config = cpuhw->events[i];
1736
1737	cpuhw->txn_flags = 0;
1738	perf_pmu_enable(pmu);
1739	return 0;
1740}
1741
1742/*
1743 * Return 1 if we might be able to put event on a limited PMC,
1744 * or 0 if not.
1745 * A event can only go on a limited PMC if it counts something
1746 * that a limited PMC can count, doesn't require interrupts, and
1747 * doesn't exclude any processor mode.
1748 */
1749static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1750				 unsigned int flags)
1751{
1752	int n;
1753	u64 alt[MAX_EVENT_ALTERNATIVES];
1754
1755	if (event->attr.exclude_user
1756	    || event->attr.exclude_kernel
1757	    || event->attr.exclude_hv
1758	    || event->attr.sample_period)
1759		return 0;
1760
1761	if (ppmu->limited_pmc_event(ev))
1762		return 1;
1763
1764	/*
1765	 * The requested event_id isn't on a limited PMC already;
1766	 * see if any alternative code goes on a limited PMC.
1767	 */
1768	if (!ppmu->get_alternatives)
1769		return 0;
1770
1771	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1772	n = ppmu->get_alternatives(ev, flags, alt);
1773
1774	return n > 0;
1775}
1776
1777/*
1778 * Find an alternative event_id that goes on a normal PMC, if possible,
1779 * and return the event_id code, or 0 if there is no such alternative.
1780 * (Note: event_id code 0 is "don't count" on all machines.)
1781 */
1782static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1783{
1784	u64 alt[MAX_EVENT_ALTERNATIVES];
1785	int n;
1786
1787	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1788	n = ppmu->get_alternatives(ev, flags, alt);
1789	if (!n)
1790		return 0;
1791	return alt[0];
1792}
1793
1794/* Number of perf_events counting hardware events */
1795static atomic_t num_events;
1796/* Used to avoid races in calling reserve/release_pmc_hardware */
1797static DEFINE_MUTEX(pmc_reserve_mutex);
1798
1799/*
1800 * Release the PMU if this is the last perf_event.
1801 */
1802static void hw_perf_event_destroy(struct perf_event *event)
1803{
1804	if (!atomic_add_unless(&num_events, -1, 1)) {
1805		mutex_lock(&pmc_reserve_mutex);
1806		if (atomic_dec_return(&num_events) == 0)
1807			release_pmc_hardware();
1808		mutex_unlock(&pmc_reserve_mutex);
1809	}
1810}
1811
1812/*
1813 * Translate a generic cache event_id config to a raw event_id code.
1814 */
1815static int hw_perf_cache_event(u64 config, u64 *eventp)
1816{
1817	unsigned long type, op, result;
1818	int ev;
1819
1820	if (!ppmu->cache_events)
1821		return -EINVAL;
1822
1823	/* unpack config */
1824	type = config & 0xff;
1825	op = (config >> 8) & 0xff;
1826	result = (config >> 16) & 0xff;
1827
1828	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1829	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1830	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1831		return -EINVAL;
1832
1833	ev = (*ppmu->cache_events)[type][op][result];
1834	if (ev == 0)
1835		return -EOPNOTSUPP;
1836	if (ev == -1)
1837		return -EINVAL;
1838	*eventp = ev;
1839	return 0;
1840}
1841
1842static bool is_event_blacklisted(u64 ev)
1843{
1844	int i;
1845
1846	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1847		if (ppmu->blacklist_ev[i] == ev)
1848			return true;
1849	}
1850
1851	return false;
1852}
1853
1854static int power_pmu_event_init(struct perf_event *event)
1855{
1856	u64 ev;
1857	unsigned long flags;
1858	struct perf_event *ctrs[MAX_HWEVENTS];
1859	u64 events[MAX_HWEVENTS];
1860	unsigned int cflags[MAX_HWEVENTS];
1861	int n;
1862	int err;
1863	struct cpu_hw_events *cpuhw;
1864
1865	if (!ppmu)
1866		return -ENOENT;
1867
1868	if (has_branch_stack(event)) {
1869	        /* PMU has BHRB enabled */
1870		if (!(ppmu->flags & PPMU_ARCH_207S))
1871			return -EOPNOTSUPP;
1872	}
1873
1874	switch (event->attr.type) {
1875	case PERF_TYPE_HARDWARE:
1876		ev = event->attr.config;
1877		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1878			return -EOPNOTSUPP;
1879
1880		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1881			return -EINVAL;
1882		ev = ppmu->generic_events[ev];
1883		break;
1884	case PERF_TYPE_HW_CACHE:
1885		err = hw_perf_cache_event(event->attr.config, &ev);
1886		if (err)
1887			return err;
1888
1889		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1890			return -EINVAL;
1891		break;
1892	case PERF_TYPE_RAW:
1893		ev = event->attr.config;
1894
1895		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1896			return -EINVAL;
1897		break;
1898	default:
1899		return -ENOENT;
1900	}
1901
1902	event->hw.config_base = ev;
1903	event->hw.idx = 0;
1904
1905	/*
1906	 * If we are not running on a hypervisor, force the
1907	 * exclude_hv bit to 0 so that we don't care what
1908	 * the user set it to.
1909	 */
1910	if (!firmware_has_feature(FW_FEATURE_LPAR))
1911		event->attr.exclude_hv = 0;
1912
1913	/*
1914	 * If this is a per-task event, then we can use
1915	 * PM_RUN_* events interchangeably with their non RUN_*
1916	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1917	 * XXX we should check if the task is an idle task.
1918	 */
1919	flags = 0;
1920	if (event->attach_state & PERF_ATTACH_TASK)
1921		flags |= PPMU_ONLY_COUNT_RUN;
1922
1923	/*
1924	 * If this machine has limited events, check whether this
1925	 * event_id could go on a limited event.
1926	 */
1927	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1928		if (can_go_on_limited_pmc(event, ev, flags)) {
1929			flags |= PPMU_LIMITED_PMC_OK;
1930		} else if (ppmu->limited_pmc_event(ev)) {
1931			/*
1932			 * The requested event_id is on a limited PMC,
1933			 * but we can't use a limited PMC; see if any
1934			 * alternative goes on a normal PMC.
1935			 */
1936			ev = normal_pmc_alternative(ev, flags);
1937			if (!ev)
1938				return -EINVAL;
1939		}
1940	}
1941
1942	/* Extra checks for EBB */
1943	err = ebb_event_check(event);
1944	if (err)
1945		return err;
1946
1947	/*
1948	 * If this is in a group, check if it can go on with all the
1949	 * other hardware events in the group.  We assume the event
1950	 * hasn't been linked into its leader's sibling list at this point.
1951	 */
1952	n = 0;
1953	if (event->group_leader != event) {
1954		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1955				   ctrs, events, cflags);
1956		if (n < 0)
1957			return -EINVAL;
1958	}
1959	events[n] = ev;
1960	ctrs[n] = event;
1961	cflags[n] = flags;
1962	if (check_excludes(ctrs, cflags, n, 1))
1963		return -EINVAL;
1964
1965	cpuhw = &get_cpu_var(cpu_hw_events);
1966	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1967
1968	if (has_branch_stack(event)) {
1969		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
 
 
 
1970					event->attr.branch_sample_type);
1971
1972		if (cpuhw->bhrb_filter == -1) {
1973			put_cpu_var(cpu_hw_events);
1974			return -EOPNOTSUPP;
1975		}
 
1976	}
1977
1978	put_cpu_var(cpu_hw_events);
1979	if (err)
1980		return -EINVAL;
1981
1982	event->hw.config = events[n];
1983	event->hw.event_base = cflags[n];
1984	event->hw.last_period = event->hw.sample_period;
1985	local64_set(&event->hw.period_left, event->hw.last_period);
1986
1987	/*
1988	 * For EBB events we just context switch the PMC value, we don't do any
1989	 * of the sample_period logic. We use hw.prev_count for this.
1990	 */
1991	if (is_ebb_event(event))
1992		local64_set(&event->hw.prev_count, 0);
1993
1994	/*
1995	 * See if we need to reserve the PMU.
1996	 * If no events are currently in use, then we have to take a
1997	 * mutex to ensure that we don't race with another task doing
1998	 * reserve_pmc_hardware or release_pmc_hardware.
1999	 */
2000	err = 0;
2001	if (!atomic_inc_not_zero(&num_events)) {
2002		mutex_lock(&pmc_reserve_mutex);
2003		if (atomic_read(&num_events) == 0 &&
2004		    reserve_pmc_hardware(perf_event_interrupt))
2005			err = -EBUSY;
2006		else
2007			atomic_inc(&num_events);
2008		mutex_unlock(&pmc_reserve_mutex);
2009	}
2010	event->destroy = hw_perf_event_destroy;
2011
2012	return err;
2013}
2014
2015static int power_pmu_event_idx(struct perf_event *event)
2016{
2017	return event->hw.idx;
2018}
2019
2020ssize_t power_events_sysfs_show(struct device *dev,
2021				struct device_attribute *attr, char *page)
2022{
2023	struct perf_pmu_events_attr *pmu_attr;
2024
2025	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2026
2027	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2028}
2029
2030static struct pmu power_pmu = {
2031	.pmu_enable	= power_pmu_enable,
2032	.pmu_disable	= power_pmu_disable,
2033	.event_init	= power_pmu_event_init,
2034	.add		= power_pmu_add,
2035	.del		= power_pmu_del,
2036	.start		= power_pmu_start,
2037	.stop		= power_pmu_stop,
2038	.read		= power_pmu_read,
2039	.start_txn	= power_pmu_start_txn,
2040	.cancel_txn	= power_pmu_cancel_txn,
2041	.commit_txn	= power_pmu_commit_txn,
2042	.event_idx	= power_pmu_event_idx,
2043	.sched_task	= power_pmu_sched_task,
2044};
2045
2046/*
2047 * A counter has overflowed; update its count and record
2048 * things if requested.  Note that interrupts are hard-disabled
2049 * here so there is no possibility of being interrupted.
2050 */
2051static void record_and_restart(struct perf_event *event, unsigned long val,
2052			       struct pt_regs *regs)
2053{
2054	u64 period = event->hw.sample_period;
2055	s64 prev, delta, left;
2056	int record = 0;
2057
2058	if (event->hw.state & PERF_HES_STOPPED) {
2059		write_pmc(event->hw.idx, 0);
2060		return;
2061	}
2062
2063	/* we don't have to worry about interrupts here */
2064	prev = local64_read(&event->hw.prev_count);
2065	delta = check_and_compute_delta(prev, val);
2066	local64_add(delta, &event->count);
2067
2068	/*
2069	 * See if the total period for this event has expired,
2070	 * and update for the next period.
2071	 */
2072	val = 0;
2073	left = local64_read(&event->hw.period_left) - delta;
2074	if (delta == 0)
2075		left++;
2076	if (period) {
2077		if (left <= 0) {
2078			left += period;
2079			if (left <= 0)
2080				left = period;
2081			record = siar_valid(regs);
2082			event->hw.last_period = event->hw.sample_period;
2083		}
2084		if (left < 0x80000000LL)
2085			val = 0x80000000LL - left;
2086	}
2087
2088	write_pmc(event->hw.idx, val);
2089	local64_set(&event->hw.prev_count, val);
2090	local64_set(&event->hw.period_left, left);
2091	perf_event_update_userpage(event);
2092
2093	/*
2094	 * Finally record data if requested.
2095	 */
2096	if (record) {
2097		struct perf_sample_data data;
2098
2099		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2100
2101		if (event->attr.sample_type &
2102		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2103			perf_get_data_addr(regs, &data.addr);
2104
2105		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2106			struct cpu_hw_events *cpuhw;
2107			cpuhw = this_cpu_ptr(&cpu_hw_events);
2108			power_pmu_bhrb_read(cpuhw);
2109			data.br_stack = &cpuhw->bhrb_stack;
2110		}
2111
2112		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2113						ppmu->get_mem_data_src)
2114			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2115
2116		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2117						ppmu->get_mem_weight)
2118			ppmu->get_mem_weight(&data.weight);
2119
2120		if (perf_event_overflow(event, &data, regs))
2121			power_pmu_stop(event, 0);
 
 
 
 
2122	}
2123}
2124
2125/*
2126 * Called from generic code to get the misc flags (i.e. processor mode)
2127 * for an event_id.
2128 */
2129unsigned long perf_misc_flags(struct pt_regs *regs)
2130{
2131	u32 flags = perf_get_misc_flags(regs);
2132
2133	if (flags)
2134		return flags;
2135	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2136		PERF_RECORD_MISC_KERNEL;
2137}
2138
2139/*
2140 * Called from generic code to get the instruction pointer
2141 * for an event_id.
2142 */
2143unsigned long perf_instruction_pointer(struct pt_regs *regs)
2144{
2145	bool use_siar = regs_use_siar(regs);
2146
2147	if (use_siar && siar_valid(regs))
2148		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2149	else if (use_siar)
2150		return 0;		// no valid instruction pointer
2151	else
2152		return regs->nip;
2153}
2154
2155static bool pmc_overflow_power7(unsigned long val)
2156{
2157	/*
2158	 * Events on POWER7 can roll back if a speculative event doesn't
2159	 * eventually complete. Unfortunately in some rare cases they will
2160	 * raise a performance monitor exception. We need to catch this to
2161	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2162	 * cycles from overflow.
2163	 *
2164	 * We only do this if the first pass fails to find any overflowing
2165	 * PMCs because a user might set a period of less than 256 and we
2166	 * don't want to mistakenly reset them.
2167	 */
2168	if ((0x80000000 - val) <= 256)
2169		return true;
2170
2171	return false;
2172}
2173
2174static bool pmc_overflow(unsigned long val)
2175{
2176	if ((int)val < 0)
2177		return true;
2178
2179	return false;
2180}
2181
2182/*
2183 * Performance monitor interrupt stuff
2184 */
2185static void perf_event_interrupt(struct pt_regs *regs)
2186{
2187	int i, j;
2188	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2189	struct perf_event *event;
2190	unsigned long val[8];
2191	int found, active;
2192	int nmi;
2193
2194	if (cpuhw->n_limited)
2195		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2196					mfspr(SPRN_PMC6));
2197
2198	perf_read_regs(regs);
2199
 
 
 
 
 
 
2200	nmi = perf_intr_is_nmi(regs);
2201	if (nmi)
2202		nmi_enter();
2203	else
2204		irq_enter();
2205
2206	/* Read all the PMCs since we'll need them a bunch of times */
2207	for (i = 0; i < ppmu->n_counter; ++i)
2208		val[i] = read_pmc(i + 1);
2209
2210	/* Try to find what caused the IRQ */
2211	found = 0;
2212	for (i = 0; i < ppmu->n_counter; ++i) {
2213		if (!pmc_overflow(val[i]))
2214			continue;
2215		if (is_limited_pmc(i + 1))
2216			continue; /* these won't generate IRQs */
2217		/*
2218		 * We've found one that's overflowed.  For active
2219		 * counters we need to log this.  For inactive
2220		 * counters, we need to reset it anyway
2221		 */
2222		found = 1;
2223		active = 0;
2224		for (j = 0; j < cpuhw->n_events; ++j) {
2225			event = cpuhw->event[j];
2226			if (event->hw.idx == (i + 1)) {
2227				active = 1;
2228				record_and_restart(event, val[i], regs);
2229				break;
2230			}
2231		}
2232		if (!active)
2233			/* reset non active counters that have overflowed */
2234			write_pmc(i + 1, 0);
2235	}
2236	if (!found && pvr_version_is(PVR_POWER7)) {
2237		/* check active counters for special buggy p7 overflow */
2238		for (i = 0; i < cpuhw->n_events; ++i) {
2239			event = cpuhw->event[i];
2240			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2241				continue;
2242			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2243				/* event has overflowed in a buggy way*/
2244				found = 1;
2245				record_and_restart(event,
2246						   val[event->hw.idx - 1],
2247						   regs);
2248			}
2249		}
2250	}
2251	if (!found && !nmi && printk_ratelimit())
2252		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2253
2254	/*
2255	 * Reset MMCR0 to its normal value.  This will set PMXE and
2256	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2257	 * and thus allow interrupts to occur again.
2258	 * XXX might want to use MSR.PM to keep the events frozen until
2259	 * we get back out of this interrupt.
2260	 */
2261	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2262
2263	if (nmi)
2264		nmi_exit();
2265	else
2266		irq_exit();
2267}
2268
 
 
 
 
 
 
 
 
2269static int power_pmu_prepare_cpu(unsigned int cpu)
2270{
2271	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2272
2273	if (ppmu) {
2274		memset(cpuhw, 0, sizeof(*cpuhw));
2275		cpuhw->mmcr[0] = MMCR0_FC;
2276	}
2277	return 0;
2278}
2279
2280int register_power_pmu(struct power_pmu *pmu)
2281{
2282	if (ppmu)
2283		return -EBUSY;		/* something's already registered */
2284
2285	ppmu = pmu;
2286	pr_info("%s performance monitor hardware support registered\n",
2287		pmu->name);
2288
2289	power_pmu.attr_groups = ppmu->attr_groups;
 
2290
2291#ifdef MSR_HV
2292	/*
2293	 * Use FCHV to ignore kernel events if MSR.HV is set.
2294	 */
2295	if (mfmsr() & MSR_HV)
2296		freeze_events_kernel = MMCR0_FCHV;
2297#endif /* CONFIG_PPC64 */
2298
2299	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2300	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2301			  power_pmu_prepare_cpu, NULL);
2302	return 0;
2303}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Performance event support - powerpc architecture code
   4 *
   5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 
 
 
 
 
   6 */
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/sched/clock.h>
  10#include <linux/perf_event.h>
  11#include <linux/percpu.h>
  12#include <linux/hardirq.h>
  13#include <linux/uaccess.h>
  14#include <asm/reg.h>
  15#include <asm/pmc.h>
  16#include <asm/machdep.h>
  17#include <asm/firmware.h>
  18#include <asm/ptrace.h>
  19#include <asm/code-patching.h>
  20
  21#ifdef CONFIG_PPC64
  22#include "internal.h"
  23#endif
  24
  25#define BHRB_MAX_ENTRIES	32
  26#define BHRB_TARGET		0x0000000000000002
  27#define BHRB_PREDICTION		0x0000000000000001
  28#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
  29
  30struct cpu_hw_events {
  31	int n_events;
  32	int n_percpu;
  33	int disabled;
  34	int n_added;
  35	int n_limited;
  36	u8  pmcs_enabled;
  37	struct perf_event *event[MAX_HWEVENTS];
  38	u64 events[MAX_HWEVENTS];
  39	unsigned int flags[MAX_HWEVENTS];
  40	struct mmcr_regs mmcr;
 
 
 
 
 
  41	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  42	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  43	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  44	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  45	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  46
  47	unsigned int txn_flags;
  48	int n_txn_start;
  49
  50	/* BHRB bits */
  51	u64				bhrb_filter;	/* BHRB HW branch filter */
  52	unsigned int			bhrb_users;
  53	void				*bhrb_context;
  54	struct	perf_branch_stack	bhrb_stack;
  55	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
  56	u64				ic_init;
  57};
  58
  59static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  60
  61static struct power_pmu *ppmu;
  62
  63/*
  64 * Normally, to ignore kernel events we set the FCS (freeze counters
  65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  66 * hypervisor bit set in the MSR, or if we are running on a processor
  67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  68 * then we need to use the FCHV bit to ignore kernel events.
  69 */
  70static unsigned int freeze_events_kernel = MMCR0_FCS;
  71
  72/*
  73 * 32-bit doesn't have MMCRA but does have an MMCR2,
  74 * and a few other names are different.
  75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
  76 * Define them as zero knowing that any code path accessing
  77 * these registers (via mtspr/mfspr) are done under ppmu flag
  78 * check for PPMU_ARCH_31 and we will not enter that code path
  79 * for 32-bit.
  80 */
  81#ifdef CONFIG_PPC32
  82
  83#define MMCR0_FCHV		0
  84#define MMCR0_PMCjCE		MMCR0_PMCnCE
  85#define MMCR0_FC56		0
  86#define MMCR0_PMAO		0
  87#define MMCR0_EBE		0
  88#define MMCR0_BHRBA		0
  89#define MMCR0_PMCC		0
  90#define MMCR0_PMCC_U6		0
  91
  92#define SPRN_MMCRA		SPRN_MMCR2
  93#define SPRN_MMCR3		0
  94#define SPRN_SIER2		0
  95#define SPRN_SIER3		0
  96#define MMCRA_SAMPLE_ENABLE	0
  97#define MMCRA_BHRB_DISABLE     0
  98
  99static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 100{
 101	return 0;
 102}
 103static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
 104static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 105{
 106	return 0;
 107}
 108static inline void perf_read_regs(struct pt_regs *regs)
 109{
 110	regs->result = 0;
 111}
 112static inline int perf_intr_is_nmi(struct pt_regs *regs)
 113{
 114	return 0;
 115}
 116
 117static inline int siar_valid(struct pt_regs *regs)
 118{
 119	return 1;
 120}
 121
 122static bool is_ebb_event(struct perf_event *event) { return false; }
 123static int ebb_event_check(struct perf_event *event) { return 0; }
 124static void ebb_event_add(struct perf_event *event) { }
 125static void ebb_switch_out(unsigned long mmcr0) { }
 126static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 127{
 128	return cpuhw->mmcr.mmcr0;
 129}
 130
 131static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 132static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 133static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 134static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
 135static void pmao_restore_workaround(bool ebb) { }
 136#endif /* CONFIG_PPC32 */
 137
 138bool is_sier_available(void)
 139{
 140	if (ppmu->flags & PPMU_HAS_SIER)
 141		return true;
 142
 143	return false;
 144}
 
 145
 146static bool regs_use_siar(struct pt_regs *regs)
 147{
 148	/*
 149	 * When we take a performance monitor exception the regs are setup
 150	 * using perf_read_regs() which overloads some fields, in particular
 151	 * regs->result to tell us whether to use SIAR.
 152	 *
 153	 * However if the regs are from another exception, eg. a syscall, then
 154	 * they have not been setup using perf_read_regs() and so regs->result
 155	 * is something random.
 156	 */
 157	return ((TRAP(regs) == 0xf00) && regs->result);
 158}
 159
 160/*
 161 * Things that are specific to 64-bit implementations.
 162 */
 163#ifdef CONFIG_PPC64
 164
 165static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 166{
 167	unsigned long mmcra = regs->dsisr;
 168
 169	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 170		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 171		if (slot > 1)
 172			return 4 * (slot - 1);
 173	}
 174
 175	return 0;
 176}
 177
 178/*
 179 * The user wants a data address recorded.
 180 * If we're not doing instruction sampling, give them the SDAR
 181 * (sampled data address).  If we are doing instruction sampling, then
 182 * only give them the SDAR if it corresponds to the instruction
 183 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 184 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 185 */
 186static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
 187{
 188	unsigned long mmcra = regs->dsisr;
 189	bool sdar_valid;
 190
 191	if (ppmu->flags & PPMU_HAS_SIER)
 192		sdar_valid = regs->dar & SIER_SDAR_VALID;
 193	else {
 194		unsigned long sdsync;
 195
 196		if (ppmu->flags & PPMU_SIAR_VALID)
 197			sdsync = POWER7P_MMCRA_SDAR_VALID;
 198		else if (ppmu->flags & PPMU_ALT_SIPR)
 199			sdsync = POWER6_MMCRA_SDSYNC;
 200		else if (ppmu->flags & PPMU_NO_SIAR)
 201			sdsync = MMCRA_SAMPLE_ENABLE;
 202		else
 203			sdsync = MMCRA_SDSYNC;
 204
 205		sdar_valid = mmcra & sdsync;
 206	}
 207
 208	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 209		*addrp = mfspr(SPRN_SDAR);
 210
 211	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
 
 212		*addrp = 0;
 213}
 214
 215static bool regs_sihv(struct pt_regs *regs)
 216{
 217	unsigned long sihv = MMCRA_SIHV;
 218
 219	if (ppmu->flags & PPMU_HAS_SIER)
 220		return !!(regs->dar & SIER_SIHV);
 221
 222	if (ppmu->flags & PPMU_ALT_SIPR)
 223		sihv = POWER6_MMCRA_SIHV;
 224
 225	return !!(regs->dsisr & sihv);
 226}
 227
 228static bool regs_sipr(struct pt_regs *regs)
 229{
 230	unsigned long sipr = MMCRA_SIPR;
 231
 232	if (ppmu->flags & PPMU_HAS_SIER)
 233		return !!(regs->dar & SIER_SIPR);
 234
 235	if (ppmu->flags & PPMU_ALT_SIPR)
 236		sipr = POWER6_MMCRA_SIPR;
 237
 238	return !!(regs->dsisr & sipr);
 239}
 240
 241static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 242{
 243	if (regs->msr & MSR_PR)
 244		return PERF_RECORD_MISC_USER;
 245	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 246		return PERF_RECORD_MISC_HYPERVISOR;
 247	return PERF_RECORD_MISC_KERNEL;
 248}
 249
 250static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 251{
 252	bool use_siar = regs_use_siar(regs);
 253
 254	if (!use_siar)
 255		return perf_flags_from_msr(regs);
 256
 257	/*
 258	 * If we don't have flags in MMCRA, rather than using
 259	 * the MSR, we intuit the flags from the address in
 260	 * SIAR which should give slightly more reliable
 261	 * results
 262	 */
 263	if (ppmu->flags & PPMU_NO_SIPR) {
 264		unsigned long siar = mfspr(SPRN_SIAR);
 265		if (is_kernel_addr(siar))
 266			return PERF_RECORD_MISC_KERNEL;
 267		return PERF_RECORD_MISC_USER;
 268	}
 269
 270	/* PR has priority over HV, so order below is important */
 271	if (regs_sipr(regs))
 272		return PERF_RECORD_MISC_USER;
 273
 274	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 275		return PERF_RECORD_MISC_HYPERVISOR;
 276
 277	return PERF_RECORD_MISC_KERNEL;
 278}
 279
 280/*
 281 * Overload regs->dsisr to store MMCRA so we only need to read it once
 282 * on each interrupt.
 283 * Overload regs->dar to store SIER if we have it.
 284 * Overload regs->result to specify whether we should use the MSR (result
 285 * is zero) or the SIAR (result is non zero).
 286 */
 287static inline void perf_read_regs(struct pt_regs *regs)
 288{
 289	unsigned long mmcra = mfspr(SPRN_MMCRA);
 290	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 291	int use_siar;
 292
 293	regs->dsisr = mmcra;
 294
 295	if (ppmu->flags & PPMU_HAS_SIER)
 296		regs->dar = mfspr(SPRN_SIER);
 297
 298	/*
 299	 * If this isn't a PMU exception (eg a software event) the SIAR is
 300	 * not valid. Use pt_regs.
 301	 *
 302	 * If it is a marked event use the SIAR.
 303	 *
 304	 * If the PMU doesn't update the SIAR for non marked events use
 305	 * pt_regs.
 306	 *
 307	 * If the PMU has HV/PR flags then check to see if they
 308	 * place the exception in userspace. If so, use pt_regs. In
 309	 * continuous sampling mode the SIAR and the PMU exception are
 310	 * not synchronised, so they may be many instructions apart.
 311	 * This can result in confusing backtraces. We still want
 312	 * hypervisor samples as well as samples in the kernel with
 313	 * interrupts off hence the userspace check.
 314	 */
 315	if (TRAP(regs) != 0xf00)
 316		use_siar = 0;
 317	else if ((ppmu->flags & PPMU_NO_SIAR))
 318		use_siar = 0;
 319	else if (marked)
 320		use_siar = 1;
 321	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 322		use_siar = 0;
 323	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 324		use_siar = 0;
 325	else
 326		use_siar = 1;
 327
 328	regs->result = use_siar;
 329}
 330
 331/*
 332 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 333 * it as an NMI.
 334 */
 335static inline int perf_intr_is_nmi(struct pt_regs *regs)
 336{
 337	return (regs->softe & IRQS_DISABLED);
 338}
 339
 340/*
 341 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 342 * must be sampled only if the SIAR-valid bit is set.
 343 *
 344 * For unmarked instructions and for processors that don't have the SIAR-Valid
 345 * bit, assume that SIAR is valid.
 346 */
 347static inline int siar_valid(struct pt_regs *regs)
 348{
 349	unsigned long mmcra = regs->dsisr;
 350	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 351
 352	if (marked) {
 353		if (ppmu->flags & PPMU_HAS_SIER)
 354			return regs->dar & SIER_SIAR_VALID;
 355
 356		if (ppmu->flags & PPMU_SIAR_VALID)
 357			return mmcra & POWER7P_MMCRA_SIAR_VALID;
 358	}
 359
 360	return 1;
 361}
 362
 363
 364/* Reset all possible BHRB entries */
 365static void power_pmu_bhrb_reset(void)
 366{
 367	asm volatile(PPC_CLRBHRB);
 368}
 369
 370static void power_pmu_bhrb_enable(struct perf_event *event)
 371{
 372	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 373
 374	if (!ppmu->bhrb_nr)
 375		return;
 376
 377	/* Clear BHRB if we changed task context to avoid data leaks */
 378	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 379		power_pmu_bhrb_reset();
 380		cpuhw->bhrb_context = event->ctx;
 381	}
 382	cpuhw->bhrb_users++;
 383	perf_sched_cb_inc(event->ctx->pmu);
 384}
 385
 386static void power_pmu_bhrb_disable(struct perf_event *event)
 387{
 388	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 389
 390	if (!ppmu->bhrb_nr)
 391		return;
 392
 393	WARN_ON_ONCE(!cpuhw->bhrb_users);
 394	cpuhw->bhrb_users--;
 395	perf_sched_cb_dec(event->ctx->pmu);
 396
 397	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 398		/* BHRB cannot be turned off when other
 399		 * events are active on the PMU.
 400		 */
 401
 402		/* avoid stale pointer */
 403		cpuhw->bhrb_context = NULL;
 404	}
 405}
 406
 407/* Called from ctxsw to prevent one process's branch entries to
 408 * mingle with the other process's entries during context switch.
 409 */
 410static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 411{
 412	if (!ppmu->bhrb_nr)
 413		return;
 414
 415	if (sched_in)
 416		power_pmu_bhrb_reset();
 417}
 418/* Calculate the to address for a branch */
 419static __u64 power_pmu_bhrb_to(u64 addr)
 420{
 421	unsigned int instr;
 
 422	__u64 target;
 423
 424	if (is_kernel_addr(addr)) {
 425		if (copy_from_kernel_nofault(&instr, (void *)addr,
 426				sizeof(instr)))
 427			return 0;
 428
 429		return branch_target((struct ppc_inst *)&instr);
 430	}
 431
 432	/* Userspace: need copy instruction here then translate it */
 433	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
 434			sizeof(instr)))
 
 
 435		return 0;
 
 
 436
 437	target = branch_target((struct ppc_inst *)&instr);
 438	if ((!target) || (instr & BRANCH_ABSOLUTE))
 439		return target;
 440
 441	/* Translate relative branch target from kernel to user address */
 442	return target - (unsigned long)&instr + addr;
 443}
 444
 445/* Processing BHRB entries */
 446static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
 447{
 448	u64 val;
 449	u64 addr;
 450	int r_index, u_index, pred;
 451
 452	r_index = 0;
 453	u_index = 0;
 454	while (r_index < ppmu->bhrb_nr) {
 455		/* Assembly read function */
 456		val = read_bhrb(r_index++);
 457		if (!val)
 458			/* Terminal marker: End of valid BHRB entries */
 459			break;
 460		else {
 461			addr = val & BHRB_EA;
 462			pred = val & BHRB_PREDICTION;
 463
 464			if (!addr)
 465				/* invalid entry */
 466				continue;
 467
 468			/*
 469			 * BHRB rolling buffer could very much contain the kernel
 470			 * addresses at this point. Check the privileges before
 471			 * exporting it to userspace (avoid exposure of regions
 472			 * where we could have speculative execution)
 473			 * Incase of ISA v3.1, BHRB will capture only user-space
 474			 * addresses, hence include a check before filtering code
 475			 */
 476			if (!(ppmu->flags & PPMU_ARCH_31) &&
 477				is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
 478				continue;
 479
 480			/* Branches are read most recent first (ie. mfbhrb 0 is
 481			 * the most recent branch).
 482			 * There are two types of valid entries:
 483			 * 1) a target entry which is the to address of a
 484			 *    computed goto like a blr,bctr,btar.  The next
 485			 *    entry read from the bhrb will be branch
 486			 *    corresponding to this target (ie. the actual
 487			 *    blr/bctr/btar instruction).
 488			 * 2) a from address which is an actual branch.  If a
 489			 *    target entry proceeds this, then this is the
 490			 *    matching branch for that target.  If this is not
 491			 *    following a target entry, then this is a branch
 492			 *    where the target is given as an immediate field
 493			 *    in the instruction (ie. an i or b form branch).
 494			 *    In this case we need to read the instruction from
 495			 *    memory to determine the target/to address.
 496			 */
 497
 498			if (val & BHRB_TARGET) {
 499				/* Target branches use two entries
 500				 * (ie. computed gotos/XL form)
 501				 */
 502				cpuhw->bhrb_entries[u_index].to = addr;
 503				cpuhw->bhrb_entries[u_index].mispred = pred;
 504				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 505
 506				/* Get from address in next entry */
 507				val = read_bhrb(r_index++);
 508				addr = val & BHRB_EA;
 509				if (val & BHRB_TARGET) {
 510					/* Shouldn't have two targets in a
 511					   row.. Reset index and try again */
 512					r_index--;
 513					addr = 0;
 514				}
 515				cpuhw->bhrb_entries[u_index].from = addr;
 516			} else {
 517				/* Branches to immediate field 
 518				   (ie I or B form) */
 519				cpuhw->bhrb_entries[u_index].from = addr;
 520				cpuhw->bhrb_entries[u_index].to =
 521					power_pmu_bhrb_to(addr);
 522				cpuhw->bhrb_entries[u_index].mispred = pred;
 523				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 524			}
 525			u_index++;
 526
 527		}
 528	}
 529	cpuhw->bhrb_stack.nr = u_index;
 530	cpuhw->bhrb_stack.hw_idx = -1ULL;
 531	return;
 532}
 533
 534static bool is_ebb_event(struct perf_event *event)
 535{
 536	/*
 537	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
 538	 * check that the PMU supports EBB, meaning those that don't can still
 539	 * use bit 63 of the event code for something else if they wish.
 540	 */
 541	return (ppmu->flags & PPMU_ARCH_207S) &&
 542	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 543}
 544
 545static int ebb_event_check(struct perf_event *event)
 546{
 547	struct perf_event *leader = event->group_leader;
 548
 549	/* Event and group leader must agree on EBB */
 550	if (is_ebb_event(leader) != is_ebb_event(event))
 551		return -EINVAL;
 552
 553	if (is_ebb_event(event)) {
 554		if (!(event->attach_state & PERF_ATTACH_TASK))
 555			return -EINVAL;
 556
 557		if (!leader->attr.pinned || !leader->attr.exclusive)
 558			return -EINVAL;
 559
 560		if (event->attr.freq ||
 561		    event->attr.inherit ||
 562		    event->attr.sample_type ||
 563		    event->attr.sample_period ||
 564		    event->attr.enable_on_exec)
 565			return -EINVAL;
 566	}
 567
 568	return 0;
 569}
 570
 571static void ebb_event_add(struct perf_event *event)
 572{
 573	if (!is_ebb_event(event) || current->thread.used_ebb)
 574		return;
 575
 576	/*
 577	 * IFF this is the first time we've added an EBB event, set
 578	 * PMXE in the user MMCR0 so we can detect when it's cleared by
 579	 * userspace. We need this so that we can context switch while
 580	 * userspace is in the EBB handler (where PMXE is 0).
 581	 */
 582	current->thread.used_ebb = 1;
 583	current->thread.mmcr0 |= MMCR0_PMXE;
 584}
 585
 586static void ebb_switch_out(unsigned long mmcr0)
 587{
 588	if (!(mmcr0 & MMCR0_EBE))
 589		return;
 590
 591	current->thread.siar  = mfspr(SPRN_SIAR);
 592	current->thread.sier  = mfspr(SPRN_SIER);
 593	current->thread.sdar  = mfspr(SPRN_SDAR);
 594	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 595	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 596	if (ppmu->flags & PPMU_ARCH_31) {
 597		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
 598		current->thread.sier2 = mfspr(SPRN_SIER2);
 599		current->thread.sier3 = mfspr(SPRN_SIER3);
 600	}
 601}
 602
 603static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 604{
 605	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
 606
 607	if (!ebb)
 608		goto out;
 609
 610	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 611	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 612
 613	/*
 614	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 615	 * with pmao_restore_workaround() because we may add PMAO but we never
 616	 * clear it here.
 617	 */
 618	mmcr0 |= current->thread.mmcr0;
 619
 620	/*
 621	 * Be careful not to set PMXE if userspace had it cleared. This is also
 622	 * compatible with pmao_restore_workaround() because it has already
 623	 * cleared PMXE and we leave PMAO alone.
 624	 */
 625	if (!(current->thread.mmcr0 & MMCR0_PMXE))
 626		mmcr0 &= ~MMCR0_PMXE;
 627
 628	mtspr(SPRN_SIAR, current->thread.siar);
 629	mtspr(SPRN_SIER, current->thread.sier);
 630	mtspr(SPRN_SDAR, current->thread.sdar);
 631
 632	/*
 633	 * Merge the kernel & user values of MMCR2. The semantics we implement
 634	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 635	 * but not clear bits. If a task wants to be able to clear bits, ie.
 636	 * unfreeze counters, it should not set exclude_xxx in its events and
 637	 * instead manage the MMCR2 entirely by itself.
 638	 */
 639	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
 640
 641	if (ppmu->flags & PPMU_ARCH_31) {
 642		mtspr(SPRN_MMCR3, current->thread.mmcr3);
 643		mtspr(SPRN_SIER2, current->thread.sier2);
 644		mtspr(SPRN_SIER3, current->thread.sier3);
 645	}
 646out:
 647	return mmcr0;
 648}
 649
 650static void pmao_restore_workaround(bool ebb)
 651{
 652	unsigned pmcs[6];
 653
 654	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 655		return;
 656
 657	/*
 658	 * On POWER8E there is a hardware defect which affects the PMU context
 659	 * switch logic, ie. power_pmu_disable/enable().
 660	 *
 661	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 662	 * by the hardware. Sometime later the actual PMU exception is
 663	 * delivered.
 664	 *
 665	 * If we context switch, or simply disable/enable, the PMU prior to the
 666	 * exception arriving, the exception will be lost when we clear PMAO.
 667	 *
 668	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 669	 * set, and this _should_ generate an exception. However because of the
 670	 * defect no exception is generated when we write PMAO, and we get
 671	 * stuck with no counters counting but no exception delivered.
 672	 *
 673	 * The workaround is to detect this case and tweak the hardware to
 674	 * create another pending PMU exception.
 675	 *
 676	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
 677	 * enabling the PMU. That causes a new exception to be generated in the
 678	 * chip, but we don't take it yet because we have interrupts hard
 679	 * disabled. We then write back the PMU state as we want it to be seen
 680	 * by the exception handler. When we reenable interrupts the exception
 681	 * handler will be called and see the correct state.
 682	 *
 683	 * The logic is the same for EBB, except that the exception is gated by
 684	 * us having interrupts hard disabled as well as the fact that we are
 685	 * not in userspace. The exception is finally delivered when we return
 686	 * to userspace.
 687	 */
 688
 689	/* Only if PMAO is set and PMAO_SYNC is clear */
 690	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 691		return;
 692
 693	/* If we're doing EBB, only if BESCR[GE] is set */
 694	if (ebb && !(current->thread.bescr & BESCR_GE))
 695		return;
 696
 697	/*
 698	 * We are already soft-disabled in power_pmu_enable(). We need to hard
 699	 * disable to actually prevent the PMU exception from firing.
 700	 */
 701	hard_irq_disable();
 702
 703	/*
 704	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 705	 * Using read/write_pmc() in a for loop adds 12 function calls and
 706	 * almost doubles our code size.
 707	 */
 708	pmcs[0] = mfspr(SPRN_PMC1);
 709	pmcs[1] = mfspr(SPRN_PMC2);
 710	pmcs[2] = mfspr(SPRN_PMC3);
 711	pmcs[3] = mfspr(SPRN_PMC4);
 712	pmcs[4] = mfspr(SPRN_PMC5);
 713	pmcs[5] = mfspr(SPRN_PMC6);
 714
 715	/* Ensure all freeze bits are unset */
 716	mtspr(SPRN_MMCR2, 0);
 717
 718	/* Set up PMC6 to overflow in one cycle */
 719	mtspr(SPRN_PMC6, 0x7FFFFFFE);
 720
 721	/* Enable exceptions and unfreeze PMC6 */
 722	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 723
 724	/* Now we need to refreeze and restore the PMCs */
 725	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 726
 727	mtspr(SPRN_PMC1, pmcs[0]);
 728	mtspr(SPRN_PMC2, pmcs[1]);
 729	mtspr(SPRN_PMC3, pmcs[2]);
 730	mtspr(SPRN_PMC4, pmcs[3]);
 731	mtspr(SPRN_PMC5, pmcs[4]);
 732	mtspr(SPRN_PMC6, pmcs[5]);
 733}
 734
 
 
 
 
 
 
 
 
 735#endif /* CONFIG_PPC64 */
 736
 737static void perf_event_interrupt(struct pt_regs *regs);
 738
 739/*
 740 * Read one performance monitor counter (PMC).
 741 */
 742static unsigned long read_pmc(int idx)
 743{
 744	unsigned long val;
 745
 746	switch (idx) {
 747	case 1:
 748		val = mfspr(SPRN_PMC1);
 749		break;
 750	case 2:
 751		val = mfspr(SPRN_PMC2);
 752		break;
 753	case 3:
 754		val = mfspr(SPRN_PMC3);
 755		break;
 756	case 4:
 757		val = mfspr(SPRN_PMC4);
 758		break;
 759	case 5:
 760		val = mfspr(SPRN_PMC5);
 761		break;
 762	case 6:
 763		val = mfspr(SPRN_PMC6);
 764		break;
 765#ifdef CONFIG_PPC64
 766	case 7:
 767		val = mfspr(SPRN_PMC7);
 768		break;
 769	case 8:
 770		val = mfspr(SPRN_PMC8);
 771		break;
 772#endif /* CONFIG_PPC64 */
 773	default:
 774		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 775		val = 0;
 776	}
 777	return val;
 778}
 779
 780/*
 781 * Write one PMC.
 782 */
 783static void write_pmc(int idx, unsigned long val)
 784{
 785	switch (idx) {
 786	case 1:
 787		mtspr(SPRN_PMC1, val);
 788		break;
 789	case 2:
 790		mtspr(SPRN_PMC2, val);
 791		break;
 792	case 3:
 793		mtspr(SPRN_PMC3, val);
 794		break;
 795	case 4:
 796		mtspr(SPRN_PMC4, val);
 797		break;
 798	case 5:
 799		mtspr(SPRN_PMC5, val);
 800		break;
 801	case 6:
 802		mtspr(SPRN_PMC6, val);
 803		break;
 804#ifdef CONFIG_PPC64
 805	case 7:
 806		mtspr(SPRN_PMC7, val);
 807		break;
 808	case 8:
 809		mtspr(SPRN_PMC8, val);
 810		break;
 811#endif /* CONFIG_PPC64 */
 812	default:
 813		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 814	}
 815}
 816
 817/* Called from sysrq_handle_showregs() */
 818void perf_event_print_debug(void)
 819{
 820	unsigned long sdar, sier, flags;
 821	u32 pmcs[MAX_HWEVENTS];
 822	int i;
 823
 824	if (!ppmu) {
 825		pr_info("Performance monitor hardware not registered.\n");
 826		return;
 827	}
 828
 829	if (!ppmu->n_counter)
 830		return;
 831
 832	local_irq_save(flags);
 833
 834	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 835		 smp_processor_id(), ppmu->name, ppmu->n_counter);
 836
 837	for (i = 0; i < ppmu->n_counter; i++)
 838		pmcs[i] = read_pmc(i + 1);
 839
 840	for (; i < MAX_HWEVENTS; i++)
 841		pmcs[i] = 0xdeadbeef;
 842
 843	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 844		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 845
 846	if (ppmu->n_counter > 4)
 847		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 848			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 849
 850	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 851		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 852
 853	sdar = sier = 0;
 854#ifdef CONFIG_PPC64
 855	sdar = mfspr(SPRN_SDAR);
 856
 857	if (ppmu->flags & PPMU_HAS_SIER)
 858		sier = mfspr(SPRN_SIER);
 859
 860	if (ppmu->flags & PPMU_ARCH_207S) {
 861		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 862			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 863		pr_info("EBBRR: %016lx BESCR: %016lx\n",
 864			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 865	}
 866
 867	if (ppmu->flags & PPMU_ARCH_31) {
 868		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
 869			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
 870	}
 871#endif
 872	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 873		mfspr(SPRN_SIAR), sdar, sier);
 874
 875	local_irq_restore(flags);
 876}
 877
 878/*
 879 * Check if a set of events can all go on the PMU at once.
 880 * If they can't, this will look at alternative codes for the events
 881 * and see if any combination of alternative codes is feasible.
 882 * The feasible set is returned in event_id[].
 883 */
 884static int power_check_constraints(struct cpu_hw_events *cpuhw,
 885				   u64 event_id[], unsigned int cflags[],
 886				   int n_ev)
 887{
 888	unsigned long mask, value, nv;
 889	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 890	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 891	int i, j;
 892	unsigned long addf = ppmu->add_fields;
 893	unsigned long tadd = ppmu->test_adder;
 894	unsigned long grp_mask = ppmu->group_constraint_mask;
 895	unsigned long grp_val = ppmu->group_constraint_val;
 896
 897	if (n_ev > ppmu->n_counter)
 898		return -1;
 899
 900	/* First see if the events will go on as-is */
 901	for (i = 0; i < n_ev; ++i) {
 902		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 903		    && !ppmu->limited_pmc_event(event_id[i])) {
 904			ppmu->get_alternatives(event_id[i], cflags[i],
 905					       cpuhw->alternatives[i]);
 906			event_id[i] = cpuhw->alternatives[i][0];
 907		}
 908		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 909					 &cpuhw->avalues[i][0]))
 910			return -1;
 911	}
 912	value = mask = 0;
 913	for (i = 0; i < n_ev; ++i) {
 914		nv = (value | cpuhw->avalues[i][0]) +
 915			(value & cpuhw->avalues[i][0] & addf);
 916
 917		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
 918			break;
 919
 920		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
 921			& (~grp_mask)) != 0)
 922			break;
 923
 924		value = nv;
 925		mask |= cpuhw->amasks[i][0];
 926	}
 927	if (i == n_ev) {
 928		if ((value & mask & grp_mask) != (mask & grp_val))
 929			return -1;
 930		else
 931			return 0;	/* all OK */
 932	}
 933
 934	/* doesn't work, gather alternatives... */
 935	if (!ppmu->get_alternatives)
 936		return -1;
 937	for (i = 0; i < n_ev; ++i) {
 938		choice[i] = 0;
 939		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 940						  cpuhw->alternatives[i]);
 941		for (j = 1; j < n_alt[i]; ++j)
 942			ppmu->get_constraint(cpuhw->alternatives[i][j],
 943					     &cpuhw->amasks[i][j],
 944					     &cpuhw->avalues[i][j]);
 945	}
 946
 947	/* enumerate all possibilities and see if any will work */
 948	i = 0;
 949	j = -1;
 950	value = mask = nv = 0;
 951	while (i < n_ev) {
 952		if (j >= 0) {
 953			/* we're backtracking, restore context */
 954			value = svalues[i];
 955			mask = smasks[i];
 956			j = choice[i];
 957		}
 958		/*
 959		 * See if any alternative k for event_id i,
 960		 * where k > j, will satisfy the constraints.
 961		 */
 962		while (++j < n_alt[i]) {
 963			nv = (value | cpuhw->avalues[i][j]) +
 964				(value & cpuhw->avalues[i][j] & addf);
 965			if ((((nv + tadd) ^ value) & mask) == 0 &&
 966			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 967			     & cpuhw->amasks[i][j]) == 0)
 968				break;
 969		}
 970		if (j >= n_alt[i]) {
 971			/*
 972			 * No feasible alternative, backtrack
 973			 * to event_id i-1 and continue enumerating its
 974			 * alternatives from where we got up to.
 975			 */
 976			if (--i < 0)
 977				return -1;
 978		} else {
 979			/*
 980			 * Found a feasible alternative for event_id i,
 981			 * remember where we got up to with this event_id,
 982			 * go on to the next event_id, and start with
 983			 * the first alternative for it.
 984			 */
 985			choice[i] = j;
 986			svalues[i] = value;
 987			smasks[i] = mask;
 988			value = nv;
 989			mask |= cpuhw->amasks[i][j];
 990			++i;
 991			j = -1;
 992		}
 993	}
 994
 995	/* OK, we have a feasible combination, tell the caller the solution */
 996	for (i = 0; i < n_ev; ++i)
 997		event_id[i] = cpuhw->alternatives[i][choice[i]];
 998	return 0;
 999}
1000
1001/*
1002 * Check if newly-added events have consistent settings for
1003 * exclude_{user,kernel,hv} with each other and any previously
1004 * added events.
1005 */
1006static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1007			  int n_prev, int n_new)
1008{
1009	int eu = 0, ek = 0, eh = 0;
1010	int i, n, first;
1011	struct perf_event *event;
1012
1013	/*
1014	 * If the PMU we're on supports per event exclude settings then we
1015	 * don't need to do any of this logic. NB. This assumes no PMU has both
1016	 * per event exclude and limited PMCs.
1017	 */
1018	if (ppmu->flags & PPMU_ARCH_207S)
1019		return 0;
1020
1021	n = n_prev + n_new;
1022	if (n <= 1)
1023		return 0;
1024
1025	first = 1;
1026	for (i = 0; i < n; ++i) {
1027		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1028			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1029			continue;
1030		}
1031		event = ctrs[i];
1032		if (first) {
1033			eu = event->attr.exclude_user;
1034			ek = event->attr.exclude_kernel;
1035			eh = event->attr.exclude_hv;
1036			first = 0;
1037		} else if (event->attr.exclude_user != eu ||
1038			   event->attr.exclude_kernel != ek ||
1039			   event->attr.exclude_hv != eh) {
1040			return -EAGAIN;
1041		}
1042	}
1043
1044	if (eu || ek || eh)
1045		for (i = 0; i < n; ++i)
1046			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1047				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1048
1049	return 0;
1050}
1051
1052static u64 check_and_compute_delta(u64 prev, u64 val)
1053{
1054	u64 delta = (val - prev) & 0xfffffffful;
1055
1056	/*
1057	 * POWER7 can roll back counter values, if the new value is smaller
1058	 * than the previous value it will cause the delta and the counter to
1059	 * have bogus values unless we rolled a counter over.  If a coutner is
1060	 * rolled back, it will be smaller, but within 256, which is the maximum
1061	 * number of events to rollback at once.  If we detect a rollback
1062	 * return 0.  This can lead to a small lack of precision in the
1063	 * counters.
1064	 */
1065	if (prev > val && (prev - val) < 256)
1066		delta = 0;
1067
1068	return delta;
1069}
1070
1071static void power_pmu_read(struct perf_event *event)
1072{
1073	s64 val, delta, prev;
 
1074
1075	if (event->hw.state & PERF_HES_STOPPED)
1076		return;
1077
1078	if (!event->hw.idx)
1079		return;
1080
1081	if (is_ebb_event(event)) {
1082		val = read_pmc(event->hw.idx);
 
 
 
 
 
 
 
1083		local64_set(&event->hw.prev_count, val);
1084		return;
1085	}
1086
1087	/*
1088	 * Performance monitor interrupts come even when interrupts
1089	 * are soft-disabled, as long as interrupts are hard-enabled.
1090	 * Therefore we treat them like NMIs.
1091	 */
1092	do {
1093		prev = local64_read(&event->hw.prev_count);
1094		barrier();
1095		val = read_pmc(event->hw.idx);
 
 
 
 
 
 
 
1096		delta = check_and_compute_delta(prev, val);
1097		if (!delta)
1098			return;
1099	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1100
1101	local64_add(delta, &event->count);
1102
1103	/*
1104	 * A number of places program the PMC with (0x80000000 - period_left).
1105	 * We never want period_left to be less than 1 because we will program
1106	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1107	 * roll around to 0 before taking an exception. We have seen this
1108	 * on POWER8.
1109	 *
1110	 * To fix this, clamp the minimum value of period_left to 1.
1111	 */
1112	do {
1113		prev = local64_read(&event->hw.period_left);
1114		val = prev - delta;
1115		if (val < 1)
1116			val = 1;
1117	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1118}
1119
1120/*
1121 * On some machines, PMC5 and PMC6 can't be written, don't respect
1122 * the freeze conditions, and don't generate interrupts.  This tells
1123 * us if `event' is using such a PMC.
1124 */
1125static int is_limited_pmc(int pmcnum)
1126{
1127	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1128		&& (pmcnum == 5 || pmcnum == 6);
1129}
1130
1131static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1132				    unsigned long pmc5, unsigned long pmc6)
1133{
1134	struct perf_event *event;
1135	u64 val, prev, delta;
1136	int i;
1137
1138	for (i = 0; i < cpuhw->n_limited; ++i) {
1139		event = cpuhw->limited_counter[i];
1140		if (!event->hw.idx)
1141			continue;
1142		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1143		prev = local64_read(&event->hw.prev_count);
1144		event->hw.idx = 0;
1145		delta = check_and_compute_delta(prev, val);
1146		if (delta)
1147			local64_add(delta, &event->count);
1148	}
1149}
1150
1151static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1152				  unsigned long pmc5, unsigned long pmc6)
1153{
1154	struct perf_event *event;
1155	u64 val, prev;
1156	int i;
1157
1158	for (i = 0; i < cpuhw->n_limited; ++i) {
1159		event = cpuhw->limited_counter[i];
1160		event->hw.idx = cpuhw->limited_hwidx[i];
1161		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1162		prev = local64_read(&event->hw.prev_count);
1163		if (check_and_compute_delta(prev, val))
1164			local64_set(&event->hw.prev_count, val);
1165		perf_event_update_userpage(event);
1166	}
1167}
1168
1169/*
1170 * Since limited events don't respect the freeze conditions, we
1171 * have to read them immediately after freezing or unfreezing the
1172 * other events.  We try to keep the values from the limited
1173 * events as consistent as possible by keeping the delay (in
1174 * cycles and instructions) between freezing/unfreezing and reading
1175 * the limited events as small and consistent as possible.
1176 * Therefore, if any limited events are in use, we read them
1177 * both, and always in the same order, to minimize variability,
1178 * and do it inside the same asm that writes MMCR0.
1179 */
1180static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1181{
1182	unsigned long pmc5, pmc6;
1183
1184	if (!cpuhw->n_limited) {
1185		mtspr(SPRN_MMCR0, mmcr0);
1186		return;
1187	}
1188
1189	/*
1190	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1191	 * To ensure we don't get a performance monitor interrupt
1192	 * between writing MMCR0 and freezing/thawing the limited
1193	 * events, we first write MMCR0 with the event overflow
1194	 * interrupt enable bits turned off.
1195	 */
1196	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1197		     : "=&r" (pmc5), "=&r" (pmc6)
1198		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1199		       "i" (SPRN_MMCR0),
1200		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1201
1202	if (mmcr0 & MMCR0_FC)
1203		freeze_limited_counters(cpuhw, pmc5, pmc6);
1204	else
1205		thaw_limited_counters(cpuhw, pmc5, pmc6);
1206
1207	/*
1208	 * Write the full MMCR0 including the event overflow interrupt
1209	 * enable bits, if necessary.
1210	 */
1211	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1212		mtspr(SPRN_MMCR0, mmcr0);
1213}
1214
1215/*
1216 * Disable all events to prevent PMU interrupts and to allow
1217 * events to be added or removed.
1218 */
1219static void power_pmu_disable(struct pmu *pmu)
1220{
1221	struct cpu_hw_events *cpuhw;
1222	unsigned long flags, mmcr0, val, mmcra;
1223
1224	if (!ppmu)
1225		return;
1226	local_irq_save(flags);
1227	cpuhw = this_cpu_ptr(&cpu_hw_events);
1228
1229	if (!cpuhw->disabled) {
1230		/*
1231		 * Check if we ever enabled the PMU on this cpu.
1232		 */
1233		if (!cpuhw->pmcs_enabled) {
1234			ppc_enable_pmcs();
1235			cpuhw->pmcs_enabled = 1;
1236		}
1237
1238		/*
1239		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1240		 */
1241		val  = mmcr0 = mfspr(SPRN_MMCR0);
1242		val |= MMCR0_FC;
1243		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1244			 MMCR0_FC56);
1245
1246		/*
1247		 * The barrier is to make sure the mtspr has been
1248		 * executed and the PMU has frozen the events etc.
1249		 * before we return.
1250		 */
1251		write_mmcr0(cpuhw, val);
1252		mb();
1253		isync();
1254
1255		val = mmcra = cpuhw->mmcr.mmcra;
1256
1257		/*
1258		 * Disable instruction sampling if it was enabled
1259		 */
1260		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1261			val &= ~MMCRA_SAMPLE_ENABLE;
1262
1263		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1264		if (ppmu->flags & PPMU_ARCH_31)
1265			val |= MMCRA_BHRB_DISABLE;
1266
1267		/*
1268		 * Write SPRN_MMCRA if mmcra has either disabled
1269		 * instruction sampling or BHRB.
1270		 */
1271		if (val != mmcra) {
1272			mtspr(SPRN_MMCRA, mmcra);
1273			mb();
1274			isync();
1275		}
1276
1277		cpuhw->disabled = 1;
1278		cpuhw->n_added = 0;
1279
1280		ebb_switch_out(mmcr0);
1281
1282#ifdef CONFIG_PPC64
1283		/*
1284		 * These are readable by userspace, may contain kernel
1285		 * addresses and are not switched by context switch, so clear
1286		 * them now to avoid leaking anything to userspace in general
1287		 * including to another process.
1288		 */
1289		if (ppmu->flags & PPMU_ARCH_207S) {
1290			mtspr(SPRN_SDAR, 0);
1291			mtspr(SPRN_SIAR, 0);
1292		}
1293#endif
1294	}
1295
1296	local_irq_restore(flags);
1297}
1298
1299/*
1300 * Re-enable all events if disable == 0.
1301 * If we were previously disabled and events were added, then
1302 * put the new config on the PMU.
1303 */
1304static void power_pmu_enable(struct pmu *pmu)
1305{
1306	struct perf_event *event;
1307	struct cpu_hw_events *cpuhw;
1308	unsigned long flags;
1309	long i;
1310	unsigned long val, mmcr0;
1311	s64 left;
1312	unsigned int hwc_index[MAX_HWEVENTS];
1313	int n_lim;
1314	int idx;
1315	bool ebb;
1316
1317	if (!ppmu)
1318		return;
1319	local_irq_save(flags);
1320
1321	cpuhw = this_cpu_ptr(&cpu_hw_events);
1322	if (!cpuhw->disabled)
1323		goto out;
1324
1325	if (cpuhw->n_events == 0) {
1326		ppc_set_pmu_inuse(0);
1327		goto out;
1328	}
1329
1330	cpuhw->disabled = 0;
1331
1332	/*
1333	 * EBB requires an exclusive group and all events must have the EBB
1334	 * flag set, or not set, so we can just check a single event. Also we
1335	 * know we have at least one event.
1336	 */
1337	ebb = is_ebb_event(cpuhw->event[0]);
1338
1339	/*
1340	 * If we didn't change anything, or only removed events,
1341	 * no need to recalculate MMCR* settings and reset the PMCs.
1342	 * Just reenable the PMU with the current MMCR* settings
1343	 * (possibly updated for removal of events).
1344	 */
1345	if (!cpuhw->n_added) {
1346		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1347		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1348		if (ppmu->flags & PPMU_ARCH_31)
1349			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1350		goto out_enable;
1351	}
1352
1353	/*
1354	 * Clear all MMCR settings and recompute them for the new set of events.
1355	 */
1356	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1357
1358	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1359			       &cpuhw->mmcr, cpuhw->event)) {
1360		/* shouldn't ever get here */
1361		printk(KERN_ERR "oops compute_mmcr failed\n");
1362		goto out;
1363	}
1364
1365	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1366		/*
1367		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1368		 * bits for the first event. We have already checked that all
1369		 * events have the same value for these bits as the first event.
1370		 */
1371		event = cpuhw->event[0];
1372		if (event->attr.exclude_user)
1373			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1374		if (event->attr.exclude_kernel)
1375			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1376		if (event->attr.exclude_hv)
1377			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1378	}
1379
1380	/*
1381	 * Write the new configuration to MMCR* with the freeze
1382	 * bit set and set the hardware events to their initial values.
1383	 * Then unfreeze the events.
1384	 */
1385	ppc_set_pmu_inuse(1);
1386	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1387	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1388	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1389				| MMCR0_FC);
1390	if (ppmu->flags & PPMU_ARCH_207S)
1391		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1392
1393	if (ppmu->flags & PPMU_ARCH_31)
1394		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1395
1396	/*
1397	 * Read off any pre-existing events that need to move
1398	 * to another PMC.
1399	 */
1400	for (i = 0; i < cpuhw->n_events; ++i) {
1401		event = cpuhw->event[i];
1402		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1403			power_pmu_read(event);
1404			write_pmc(event->hw.idx, 0);
1405			event->hw.idx = 0;
1406		}
1407	}
1408
1409	/*
1410	 * Initialize the PMCs for all the new and moved events.
1411	 */
1412	cpuhw->n_limited = n_lim = 0;
1413	for (i = 0; i < cpuhw->n_events; ++i) {
1414		event = cpuhw->event[i];
1415		if (event->hw.idx)
1416			continue;
1417		idx = hwc_index[i] + 1;
1418		if (is_limited_pmc(idx)) {
1419			cpuhw->limited_counter[n_lim] = event;
1420			cpuhw->limited_hwidx[n_lim] = idx;
1421			++n_lim;
1422			continue;
1423		}
1424
1425		if (ebb)
1426			val = local64_read(&event->hw.prev_count);
1427		else {
1428			val = 0;
1429			if (event->hw.sample_period) {
1430				left = local64_read(&event->hw.period_left);
1431				if (left < 0x80000000L)
1432					val = 0x80000000L - left;
1433			}
1434			local64_set(&event->hw.prev_count, val);
1435		}
1436
1437		event->hw.idx = idx;
1438		if (event->hw.state & PERF_HES_STOPPED)
1439			val = 0;
1440		write_pmc(idx, val);
1441
1442		perf_event_update_userpage(event);
1443	}
1444	cpuhw->n_limited = n_lim;
1445	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1446
1447 out_enable:
1448	pmao_restore_workaround(ebb);
1449
1450	mmcr0 = ebb_switch_in(ebb, cpuhw);
1451
1452	mb();
1453	if (cpuhw->bhrb_users)
1454		ppmu->config_bhrb(cpuhw->bhrb_filter);
1455
1456	write_mmcr0(cpuhw, mmcr0);
1457
1458	/*
1459	 * Enable instruction sampling if necessary
1460	 */
1461	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1462		mb();
1463		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1464	}
1465
1466 out:
1467
1468	local_irq_restore(flags);
1469}
1470
1471static int collect_events(struct perf_event *group, int max_count,
1472			  struct perf_event *ctrs[], u64 *events,
1473			  unsigned int *flags)
1474{
1475	int n = 0;
1476	struct perf_event *event;
1477
1478	if (group->pmu->task_ctx_nr == perf_hw_context) {
1479		if (n >= max_count)
1480			return -1;
1481		ctrs[n] = group;
1482		flags[n] = group->hw.event_base;
1483		events[n++] = group->hw.config;
1484	}
1485	for_each_sibling_event(event, group) {
1486		if (event->pmu->task_ctx_nr == perf_hw_context &&
1487		    event->state != PERF_EVENT_STATE_OFF) {
1488			if (n >= max_count)
1489				return -1;
1490			ctrs[n] = event;
1491			flags[n] = event->hw.event_base;
1492			events[n++] = event->hw.config;
1493		}
1494	}
1495	return n;
1496}
1497
1498/*
1499 * Add an event to the PMU.
1500 * If all events are not already frozen, then we disable and
1501 * re-enable the PMU in order to get hw_perf_enable to do the
1502 * actual work of reconfiguring the PMU.
1503 */
1504static int power_pmu_add(struct perf_event *event, int ef_flags)
1505{
1506	struct cpu_hw_events *cpuhw;
1507	unsigned long flags;
1508	int n0;
1509	int ret = -EAGAIN;
1510
1511	local_irq_save(flags);
1512	perf_pmu_disable(event->pmu);
1513
1514	/*
1515	 * Add the event to the list (if there is room)
1516	 * and check whether the total set is still feasible.
1517	 */
1518	cpuhw = this_cpu_ptr(&cpu_hw_events);
1519	n0 = cpuhw->n_events;
1520	if (n0 >= ppmu->n_counter)
1521		goto out;
1522	cpuhw->event[n0] = event;
1523	cpuhw->events[n0] = event->hw.config;
1524	cpuhw->flags[n0] = event->hw.event_base;
1525
1526	/*
1527	 * This event may have been disabled/stopped in record_and_restart()
1528	 * because we exceeded the ->event_limit. If re-starting the event,
1529	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1530	 * notification is re-enabled.
1531	 */
1532	if (!(ef_flags & PERF_EF_START))
1533		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1534	else
1535		event->hw.state = 0;
1536
1537	/*
1538	 * If group events scheduling transaction was started,
1539	 * skip the schedulability test here, it will be performed
1540	 * at commit time(->commit_txn) as a whole
1541	 */
1542	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1543		goto nocheck;
1544
1545	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1546		goto out;
1547	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1548		goto out;
1549	event->hw.config = cpuhw->events[n0];
1550
1551nocheck:
1552	ebb_event_add(event);
1553
1554	++cpuhw->n_events;
1555	++cpuhw->n_added;
1556
1557	ret = 0;
1558 out:
1559	if (has_branch_stack(event)) {
1560		u64 bhrb_filter = -1;
 
 
 
1561
1562		if (ppmu->bhrb_filter_map)
1563			bhrb_filter = ppmu->bhrb_filter_map(
1564				event->attr.branch_sample_type);
1565
1566		if (bhrb_filter != -1) {
1567			cpuhw->bhrb_filter = bhrb_filter;
1568			power_pmu_bhrb_enable(event);
1569		}
1570	}
1571
1572	perf_pmu_enable(event->pmu);
1573	local_irq_restore(flags);
1574	return ret;
1575}
1576
1577/*
1578 * Remove an event from the PMU.
1579 */
1580static void power_pmu_del(struct perf_event *event, int ef_flags)
1581{
1582	struct cpu_hw_events *cpuhw;
1583	long i;
1584	unsigned long flags;
1585
1586	local_irq_save(flags);
1587	perf_pmu_disable(event->pmu);
1588
1589	power_pmu_read(event);
1590
1591	cpuhw = this_cpu_ptr(&cpu_hw_events);
1592	for (i = 0; i < cpuhw->n_events; ++i) {
1593		if (event == cpuhw->event[i]) {
1594			while (++i < cpuhw->n_events) {
1595				cpuhw->event[i-1] = cpuhw->event[i];
1596				cpuhw->events[i-1] = cpuhw->events[i];
1597				cpuhw->flags[i-1] = cpuhw->flags[i];
1598			}
1599			--cpuhw->n_events;
1600			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1601			if (event->hw.idx) {
1602				write_pmc(event->hw.idx, 0);
1603				event->hw.idx = 0;
1604			}
1605			perf_event_update_userpage(event);
1606			break;
1607		}
1608	}
1609	for (i = 0; i < cpuhw->n_limited; ++i)
1610		if (event == cpuhw->limited_counter[i])
1611			break;
1612	if (i < cpuhw->n_limited) {
1613		while (++i < cpuhw->n_limited) {
1614			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1615			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1616		}
1617		--cpuhw->n_limited;
1618	}
1619	if (cpuhw->n_events == 0) {
1620		/* disable exceptions if no events are running */
1621		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1622	}
1623
1624	if (has_branch_stack(event))
1625		power_pmu_bhrb_disable(event);
1626
1627	perf_pmu_enable(event->pmu);
1628	local_irq_restore(flags);
1629}
1630
1631/*
1632 * POWER-PMU does not support disabling individual counters, hence
1633 * program their cycle counter to their max value and ignore the interrupts.
1634 */
1635
1636static void power_pmu_start(struct perf_event *event, int ef_flags)
1637{
1638	unsigned long flags;
1639	s64 left;
1640	unsigned long val;
1641
1642	if (!event->hw.idx || !event->hw.sample_period)
1643		return;
1644
1645	if (!(event->hw.state & PERF_HES_STOPPED))
1646		return;
1647
1648	if (ef_flags & PERF_EF_RELOAD)
1649		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1650
1651	local_irq_save(flags);
1652	perf_pmu_disable(event->pmu);
1653
1654	event->hw.state = 0;
1655	left = local64_read(&event->hw.period_left);
1656
1657	val = 0;
1658	if (left < 0x80000000L)
1659		val = 0x80000000L - left;
1660
1661	write_pmc(event->hw.idx, val);
1662
1663	perf_event_update_userpage(event);
1664	perf_pmu_enable(event->pmu);
1665	local_irq_restore(flags);
1666}
1667
1668static void power_pmu_stop(struct perf_event *event, int ef_flags)
1669{
1670	unsigned long flags;
1671
1672	if (!event->hw.idx || !event->hw.sample_period)
1673		return;
1674
1675	if (event->hw.state & PERF_HES_STOPPED)
1676		return;
1677
1678	local_irq_save(flags);
1679	perf_pmu_disable(event->pmu);
1680
1681	power_pmu_read(event);
1682	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1683	write_pmc(event->hw.idx, 0);
1684
1685	perf_event_update_userpage(event);
1686	perf_pmu_enable(event->pmu);
1687	local_irq_restore(flags);
1688}
1689
1690/*
1691 * Start group events scheduling transaction
1692 * Set the flag to make pmu::enable() not perform the
1693 * schedulability test, it will be performed at commit time
1694 *
1695 * We only support PERF_PMU_TXN_ADD transactions. Save the
1696 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1697 * transactions.
1698 */
1699static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1700{
1701	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1702
1703	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1704
1705	cpuhw->txn_flags = txn_flags;
1706	if (txn_flags & ~PERF_PMU_TXN_ADD)
1707		return;
1708
1709	perf_pmu_disable(pmu);
1710	cpuhw->n_txn_start = cpuhw->n_events;
1711}
1712
1713/*
1714 * Stop group events scheduling transaction
1715 * Clear the flag and pmu::enable() will perform the
1716 * schedulability test.
1717 */
1718static void power_pmu_cancel_txn(struct pmu *pmu)
1719{
1720	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1721	unsigned int txn_flags;
1722
1723	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1724
1725	txn_flags = cpuhw->txn_flags;
1726	cpuhw->txn_flags = 0;
1727	if (txn_flags & ~PERF_PMU_TXN_ADD)
1728		return;
1729
1730	perf_pmu_enable(pmu);
1731}
1732
1733/*
1734 * Commit group events scheduling transaction
1735 * Perform the group schedulability test as a whole
1736 * Return 0 if success
1737 */
1738static int power_pmu_commit_txn(struct pmu *pmu)
1739{
1740	struct cpu_hw_events *cpuhw;
1741	long i, n;
1742
1743	if (!ppmu)
1744		return -EAGAIN;
1745
1746	cpuhw = this_cpu_ptr(&cpu_hw_events);
1747	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1748
1749	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1750		cpuhw->txn_flags = 0;
1751		return 0;
1752	}
1753
1754	n = cpuhw->n_events;
1755	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1756		return -EAGAIN;
1757	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1758	if (i < 0)
1759		return -EAGAIN;
1760
1761	for (i = cpuhw->n_txn_start; i < n; ++i)
1762		cpuhw->event[i]->hw.config = cpuhw->events[i];
1763
1764	cpuhw->txn_flags = 0;
1765	perf_pmu_enable(pmu);
1766	return 0;
1767}
1768
1769/*
1770 * Return 1 if we might be able to put event on a limited PMC,
1771 * or 0 if not.
1772 * An event can only go on a limited PMC if it counts something
1773 * that a limited PMC can count, doesn't require interrupts, and
1774 * doesn't exclude any processor mode.
1775 */
1776static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1777				 unsigned int flags)
1778{
1779	int n;
1780	u64 alt[MAX_EVENT_ALTERNATIVES];
1781
1782	if (event->attr.exclude_user
1783	    || event->attr.exclude_kernel
1784	    || event->attr.exclude_hv
1785	    || event->attr.sample_period)
1786		return 0;
1787
1788	if (ppmu->limited_pmc_event(ev))
1789		return 1;
1790
1791	/*
1792	 * The requested event_id isn't on a limited PMC already;
1793	 * see if any alternative code goes on a limited PMC.
1794	 */
1795	if (!ppmu->get_alternatives)
1796		return 0;
1797
1798	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1799	n = ppmu->get_alternatives(ev, flags, alt);
1800
1801	return n > 0;
1802}
1803
1804/*
1805 * Find an alternative event_id that goes on a normal PMC, if possible,
1806 * and return the event_id code, or 0 if there is no such alternative.
1807 * (Note: event_id code 0 is "don't count" on all machines.)
1808 */
1809static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1810{
1811	u64 alt[MAX_EVENT_ALTERNATIVES];
1812	int n;
1813
1814	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1815	n = ppmu->get_alternatives(ev, flags, alt);
1816	if (!n)
1817		return 0;
1818	return alt[0];
1819}
1820
1821/* Number of perf_events counting hardware events */
1822static atomic_t num_events;
1823/* Used to avoid races in calling reserve/release_pmc_hardware */
1824static DEFINE_MUTEX(pmc_reserve_mutex);
1825
1826/*
1827 * Release the PMU if this is the last perf_event.
1828 */
1829static void hw_perf_event_destroy(struct perf_event *event)
1830{
1831	if (!atomic_add_unless(&num_events, -1, 1)) {
1832		mutex_lock(&pmc_reserve_mutex);
1833		if (atomic_dec_return(&num_events) == 0)
1834			release_pmc_hardware();
1835		mutex_unlock(&pmc_reserve_mutex);
1836	}
1837}
1838
1839/*
1840 * Translate a generic cache event_id config to a raw event_id code.
1841 */
1842static int hw_perf_cache_event(u64 config, u64 *eventp)
1843{
1844	unsigned long type, op, result;
1845	u64 ev;
1846
1847	if (!ppmu->cache_events)
1848		return -EINVAL;
1849
1850	/* unpack config */
1851	type = config & 0xff;
1852	op = (config >> 8) & 0xff;
1853	result = (config >> 16) & 0xff;
1854
1855	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1856	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1857	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1858		return -EINVAL;
1859
1860	ev = (*ppmu->cache_events)[type][op][result];
1861	if (ev == 0)
1862		return -EOPNOTSUPP;
1863	if (ev == -1)
1864		return -EINVAL;
1865	*eventp = ev;
1866	return 0;
1867}
1868
1869static bool is_event_blacklisted(u64 ev)
1870{
1871	int i;
1872
1873	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1874		if (ppmu->blacklist_ev[i] == ev)
1875			return true;
1876	}
1877
1878	return false;
1879}
1880
1881static int power_pmu_event_init(struct perf_event *event)
1882{
1883	u64 ev;
1884	unsigned long flags;
1885	struct perf_event *ctrs[MAX_HWEVENTS];
1886	u64 events[MAX_HWEVENTS];
1887	unsigned int cflags[MAX_HWEVENTS];
1888	int n;
1889	int err;
1890	struct cpu_hw_events *cpuhw;
1891
1892	if (!ppmu)
1893		return -ENOENT;
1894
1895	if (has_branch_stack(event)) {
1896	        /* PMU has BHRB enabled */
1897		if (!(ppmu->flags & PPMU_ARCH_207S))
1898			return -EOPNOTSUPP;
1899	}
1900
1901	switch (event->attr.type) {
1902	case PERF_TYPE_HARDWARE:
1903		ev = event->attr.config;
1904		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1905			return -EOPNOTSUPP;
1906
1907		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1908			return -EINVAL;
1909		ev = ppmu->generic_events[ev];
1910		break;
1911	case PERF_TYPE_HW_CACHE:
1912		err = hw_perf_cache_event(event->attr.config, &ev);
1913		if (err)
1914			return err;
1915
1916		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1917			return -EINVAL;
1918		break;
1919	case PERF_TYPE_RAW:
1920		ev = event->attr.config;
1921
1922		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1923			return -EINVAL;
1924		break;
1925	default:
1926		return -ENOENT;
1927	}
1928
1929	event->hw.config_base = ev;
1930	event->hw.idx = 0;
1931
1932	/*
1933	 * If we are not running on a hypervisor, force the
1934	 * exclude_hv bit to 0 so that we don't care what
1935	 * the user set it to.
1936	 */
1937	if (!firmware_has_feature(FW_FEATURE_LPAR))
1938		event->attr.exclude_hv = 0;
1939
1940	/*
1941	 * If this is a per-task event, then we can use
1942	 * PM_RUN_* events interchangeably with their non RUN_*
1943	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1944	 * XXX we should check if the task is an idle task.
1945	 */
1946	flags = 0;
1947	if (event->attach_state & PERF_ATTACH_TASK)
1948		flags |= PPMU_ONLY_COUNT_RUN;
1949
1950	/*
1951	 * If this machine has limited events, check whether this
1952	 * event_id could go on a limited event.
1953	 */
1954	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1955		if (can_go_on_limited_pmc(event, ev, flags)) {
1956			flags |= PPMU_LIMITED_PMC_OK;
1957		} else if (ppmu->limited_pmc_event(ev)) {
1958			/*
1959			 * The requested event_id is on a limited PMC,
1960			 * but we can't use a limited PMC; see if any
1961			 * alternative goes on a normal PMC.
1962			 */
1963			ev = normal_pmc_alternative(ev, flags);
1964			if (!ev)
1965				return -EINVAL;
1966		}
1967	}
1968
1969	/* Extra checks for EBB */
1970	err = ebb_event_check(event);
1971	if (err)
1972		return err;
1973
1974	/*
1975	 * If this is in a group, check if it can go on with all the
1976	 * other hardware events in the group.  We assume the event
1977	 * hasn't been linked into its leader's sibling list at this point.
1978	 */
1979	n = 0;
1980	if (event->group_leader != event) {
1981		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1982				   ctrs, events, cflags);
1983		if (n < 0)
1984			return -EINVAL;
1985	}
1986	events[n] = ev;
1987	ctrs[n] = event;
1988	cflags[n] = flags;
1989	if (check_excludes(ctrs, cflags, n, 1))
1990		return -EINVAL;
1991
1992	cpuhw = &get_cpu_var(cpu_hw_events);
1993	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1994
1995	if (has_branch_stack(event)) {
1996		u64 bhrb_filter = -1;
1997
1998		if (ppmu->bhrb_filter_map)
1999			bhrb_filter = ppmu->bhrb_filter_map(
2000					event->attr.branch_sample_type);
2001
2002		if (bhrb_filter == -1) {
2003			put_cpu_var(cpu_hw_events);
2004			return -EOPNOTSUPP;
2005		}
2006		cpuhw->bhrb_filter = bhrb_filter;
2007	}
2008
2009	put_cpu_var(cpu_hw_events);
2010	if (err)
2011		return -EINVAL;
2012
2013	event->hw.config = events[n];
2014	event->hw.event_base = cflags[n];
2015	event->hw.last_period = event->hw.sample_period;
2016	local64_set(&event->hw.period_left, event->hw.last_period);
2017
2018	/*
2019	 * For EBB events we just context switch the PMC value, we don't do any
2020	 * of the sample_period logic. We use hw.prev_count for this.
2021	 */
2022	if (is_ebb_event(event))
2023		local64_set(&event->hw.prev_count, 0);
2024
2025	/*
2026	 * See if we need to reserve the PMU.
2027	 * If no events are currently in use, then we have to take a
2028	 * mutex to ensure that we don't race with another task doing
2029	 * reserve_pmc_hardware or release_pmc_hardware.
2030	 */
2031	err = 0;
2032	if (!atomic_inc_not_zero(&num_events)) {
2033		mutex_lock(&pmc_reserve_mutex);
2034		if (atomic_read(&num_events) == 0 &&
2035		    reserve_pmc_hardware(perf_event_interrupt))
2036			err = -EBUSY;
2037		else
2038			atomic_inc(&num_events);
2039		mutex_unlock(&pmc_reserve_mutex);
2040	}
2041	event->destroy = hw_perf_event_destroy;
2042
2043	return err;
2044}
2045
2046static int power_pmu_event_idx(struct perf_event *event)
2047{
2048	return event->hw.idx;
2049}
2050
2051ssize_t power_events_sysfs_show(struct device *dev,
2052				struct device_attribute *attr, char *page)
2053{
2054	struct perf_pmu_events_attr *pmu_attr;
2055
2056	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2057
2058	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2059}
2060
2061static struct pmu power_pmu = {
2062	.pmu_enable	= power_pmu_enable,
2063	.pmu_disable	= power_pmu_disable,
2064	.event_init	= power_pmu_event_init,
2065	.add		= power_pmu_add,
2066	.del		= power_pmu_del,
2067	.start		= power_pmu_start,
2068	.stop		= power_pmu_stop,
2069	.read		= power_pmu_read,
2070	.start_txn	= power_pmu_start_txn,
2071	.cancel_txn	= power_pmu_cancel_txn,
2072	.commit_txn	= power_pmu_commit_txn,
2073	.event_idx	= power_pmu_event_idx,
2074	.sched_task	= power_pmu_sched_task,
2075};
2076
2077/*
2078 * A counter has overflowed; update its count and record
2079 * things if requested.  Note that interrupts are hard-disabled
2080 * here so there is no possibility of being interrupted.
2081 */
2082static void record_and_restart(struct perf_event *event, unsigned long val,
2083			       struct pt_regs *regs)
2084{
2085	u64 period = event->hw.sample_period;
2086	s64 prev, delta, left;
2087	int record = 0;
2088
2089	if (event->hw.state & PERF_HES_STOPPED) {
2090		write_pmc(event->hw.idx, 0);
2091		return;
2092	}
2093
2094	/* we don't have to worry about interrupts here */
2095	prev = local64_read(&event->hw.prev_count);
2096	delta = check_and_compute_delta(prev, val);
2097	local64_add(delta, &event->count);
2098
2099	/*
2100	 * See if the total period for this event has expired,
2101	 * and update for the next period.
2102	 */
2103	val = 0;
2104	left = local64_read(&event->hw.period_left) - delta;
2105	if (delta == 0)
2106		left++;
2107	if (period) {
2108		if (left <= 0) {
2109			left += period;
2110			if (left <= 0)
2111				left = period;
2112			record = siar_valid(regs);
2113			event->hw.last_period = event->hw.sample_period;
2114		}
2115		if (left < 0x80000000LL)
2116			val = 0x80000000LL - left;
2117	}
2118
2119	write_pmc(event->hw.idx, val);
2120	local64_set(&event->hw.prev_count, val);
2121	local64_set(&event->hw.period_left, left);
2122	perf_event_update_userpage(event);
2123
2124	/*
2125	 * Finally record data if requested.
2126	 */
2127	if (record) {
2128		struct perf_sample_data data;
2129
2130		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2131
2132		if (event->attr.sample_type &
2133		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2134			perf_get_data_addr(event, regs, &data.addr);
2135
2136		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2137			struct cpu_hw_events *cpuhw;
2138			cpuhw = this_cpu_ptr(&cpu_hw_events);
2139			power_pmu_bhrb_read(event, cpuhw);
2140			data.br_stack = &cpuhw->bhrb_stack;
2141		}
2142
2143		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2144						ppmu->get_mem_data_src)
2145			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2146
2147		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2148						ppmu->get_mem_weight)
2149			ppmu->get_mem_weight(&data.weight);
2150
2151		if (perf_event_overflow(event, &data, regs))
2152			power_pmu_stop(event, 0);
2153	} else if (period) {
2154		/* Account for interrupt in case of invalid SIAR */
2155		if (perf_event_account_interrupt(event))
2156			power_pmu_stop(event, 0);
2157	}
2158}
2159
2160/*
2161 * Called from generic code to get the misc flags (i.e. processor mode)
2162 * for an event_id.
2163 */
2164unsigned long perf_misc_flags(struct pt_regs *regs)
2165{
2166	u32 flags = perf_get_misc_flags(regs);
2167
2168	if (flags)
2169		return flags;
2170	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2171		PERF_RECORD_MISC_KERNEL;
2172}
2173
2174/*
2175 * Called from generic code to get the instruction pointer
2176 * for an event_id.
2177 */
2178unsigned long perf_instruction_pointer(struct pt_regs *regs)
2179{
2180	bool use_siar = regs_use_siar(regs);
2181
2182	if (use_siar && siar_valid(regs))
2183		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2184	else if (use_siar)
2185		return 0;		// no valid instruction pointer
2186	else
2187		return regs->nip;
2188}
2189
2190static bool pmc_overflow_power7(unsigned long val)
2191{
2192	/*
2193	 * Events on POWER7 can roll back if a speculative event doesn't
2194	 * eventually complete. Unfortunately in some rare cases they will
2195	 * raise a performance monitor exception. We need to catch this to
2196	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2197	 * cycles from overflow.
2198	 *
2199	 * We only do this if the first pass fails to find any overflowing
2200	 * PMCs because a user might set a period of less than 256 and we
2201	 * don't want to mistakenly reset them.
2202	 */
2203	if ((0x80000000 - val) <= 256)
2204		return true;
2205
2206	return false;
2207}
2208
2209static bool pmc_overflow(unsigned long val)
2210{
2211	if ((int)val < 0)
2212		return true;
2213
2214	return false;
2215}
2216
2217/*
2218 * Performance monitor interrupt stuff
2219 */
2220static void __perf_event_interrupt(struct pt_regs *regs)
2221{
2222	int i, j;
2223	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2224	struct perf_event *event;
2225	unsigned long val[8];
2226	int found, active;
2227	int nmi;
2228
2229	if (cpuhw->n_limited)
2230		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2231					mfspr(SPRN_PMC6));
2232
2233	perf_read_regs(regs);
2234
2235	/*
2236	 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2237	 * we consider them as NMIs. This is required to prevent hash faults on
2238	 * user addresses when reading callchains. See the NMI test in
2239	 * do_hash_page.
2240	 */
2241	nmi = perf_intr_is_nmi(regs);
2242	if (nmi)
2243		nmi_enter();
2244	else
2245		irq_enter();
2246
2247	/* Read all the PMCs since we'll need them a bunch of times */
2248	for (i = 0; i < ppmu->n_counter; ++i)
2249		val[i] = read_pmc(i + 1);
2250
2251	/* Try to find what caused the IRQ */
2252	found = 0;
2253	for (i = 0; i < ppmu->n_counter; ++i) {
2254		if (!pmc_overflow(val[i]))
2255			continue;
2256		if (is_limited_pmc(i + 1))
2257			continue; /* these won't generate IRQs */
2258		/*
2259		 * We've found one that's overflowed.  For active
2260		 * counters we need to log this.  For inactive
2261		 * counters, we need to reset it anyway
2262		 */
2263		found = 1;
2264		active = 0;
2265		for (j = 0; j < cpuhw->n_events; ++j) {
2266			event = cpuhw->event[j];
2267			if (event->hw.idx == (i + 1)) {
2268				active = 1;
2269				record_and_restart(event, val[i], regs);
2270				break;
2271			}
2272		}
2273		if (!active)
2274			/* reset non active counters that have overflowed */
2275			write_pmc(i + 1, 0);
2276	}
2277	if (!found && pvr_version_is(PVR_POWER7)) {
2278		/* check active counters for special buggy p7 overflow */
2279		for (i = 0; i < cpuhw->n_events; ++i) {
2280			event = cpuhw->event[i];
2281			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2282				continue;
2283			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2284				/* event has overflowed in a buggy way*/
2285				found = 1;
2286				record_and_restart(event,
2287						   val[event->hw.idx - 1],
2288						   regs);
2289			}
2290		}
2291	}
2292	if (!found && !nmi && printk_ratelimit())
2293		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2294
2295	/*
2296	 * Reset MMCR0 to its normal value.  This will set PMXE and
2297	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2298	 * and thus allow interrupts to occur again.
2299	 * XXX might want to use MSR.PM to keep the events frozen until
2300	 * we get back out of this interrupt.
2301	 */
2302	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2303
2304	if (nmi)
2305		nmi_exit();
2306	else
2307		irq_exit();
2308}
2309
2310static void perf_event_interrupt(struct pt_regs *regs)
2311{
2312	u64 start_clock = sched_clock();
2313
2314	__perf_event_interrupt(regs);
2315	perf_sample_event_took(sched_clock() - start_clock);
2316}
2317
2318static int power_pmu_prepare_cpu(unsigned int cpu)
2319{
2320	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2321
2322	if (ppmu) {
2323		memset(cpuhw, 0, sizeof(*cpuhw));
2324		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2325	}
2326	return 0;
2327}
2328
2329int register_power_pmu(struct power_pmu *pmu)
2330{
2331	if (ppmu)
2332		return -EBUSY;		/* something's already registered */
2333
2334	ppmu = pmu;
2335	pr_info("%s performance monitor hardware support registered\n",
2336		pmu->name);
2337
2338	power_pmu.attr_groups = ppmu->attr_groups;
2339	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2340
2341#ifdef MSR_HV
2342	/*
2343	 * Use FCHV to ignore kernel events if MSR.HV is set.
2344	 */
2345	if (mfmsr() & MSR_HV)
2346		freeze_events_kernel = MMCR0_FCHV;
2347#endif /* CONFIG_PPC64 */
2348
2349	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2350	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2351			  power_pmu_prepare_cpu, NULL);
2352	return 0;
2353}
2354
2355#ifdef CONFIG_PPC64
2356static int __init init_ppc64_pmu(void)
2357{
2358	/* run through all the pmu drivers one at a time */
2359	if (!init_power5_pmu())
2360		return 0;
2361	else if (!init_power5p_pmu())
2362		return 0;
2363	else if (!init_power6_pmu())
2364		return 0;
2365	else if (!init_power7_pmu())
2366		return 0;
2367	else if (!init_power8_pmu())
2368		return 0;
2369	else if (!init_power9_pmu())
2370		return 0;
2371	else if (!init_power10_pmu())
2372		return 0;
2373	else if (!init_ppc970_pmu())
2374		return 0;
2375	else
2376		return init_generic_compat_pmu();
2377}
2378early_initcall(init_ppc64_pmu);
2379#endif