Loading...
1/*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_event.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <linux/uaccess.h>
17#include <asm/reg.h>
18#include <asm/pmc.h>
19#include <asm/machdep.h>
20#include <asm/firmware.h>
21#include <asm/ptrace.h>
22#include <asm/code-patching.h>
23
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
27#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
28
29struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
39 /*
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
43 */
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50
51 unsigned int txn_flags;
52 int n_txn_start;
53
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 u64 ic_init;
61};
62
63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64
65static struct power_pmu *ppmu;
66
67/*
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
73 */
74static unsigned int freeze_events_kernel = MMCR0_FCS;
75
76/*
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
79 */
80#ifdef CONFIG_PPC32
81
82#define MMCR0_FCHV 0
83#define MMCR0_PMCjCE MMCR0_PMCnCE
84#define MMCR0_FC56 0
85#define MMCR0_PMAO 0
86#define MMCR0_EBE 0
87#define MMCR0_BHRBA 0
88#define MMCR0_PMCC 0
89#define MMCR0_PMCC_U6 0
90
91#define SPRN_MMCRA SPRN_MMCR2
92#define MMCRA_SAMPLE_ENABLE 0
93
94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95{
96 return 0;
97}
98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100{
101 return 0;
102}
103static inline void perf_read_regs(struct pt_regs *regs)
104{
105 regs->result = 0;
106}
107static inline int perf_intr_is_nmi(struct pt_regs *regs)
108{
109 return 0;
110}
111
112static inline int siar_valid(struct pt_regs *regs)
113{
114 return 1;
115}
116
117static bool is_ebb_event(struct perf_event *event) { return false; }
118static int ebb_event_check(struct perf_event *event) { return 0; }
119static void ebb_event_add(struct perf_event *event) { }
120static void ebb_switch_out(unsigned long mmcr0) { }
121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122{
123 return cpuhw->mmcr[0];
124}
125
126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130static void pmao_restore_workaround(bool ebb) { }
131static bool use_ic(u64 event)
132{
133 return false;
134}
135#endif /* CONFIG_PPC32 */
136
137static bool regs_use_siar(struct pt_regs *regs)
138{
139 /*
140 * When we take a performance monitor exception the regs are setup
141 * using perf_read_regs() which overloads some fields, in particular
142 * regs->result to tell us whether to use SIAR.
143 *
144 * However if the regs are from another exception, eg. a syscall, then
145 * they have not been setup using perf_read_regs() and so regs->result
146 * is something random.
147 */
148 return ((TRAP(regs) == 0xf00) && regs->result);
149}
150
151/*
152 * Things that are specific to 64-bit implementations.
153 */
154#ifdef CONFIG_PPC64
155
156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
157{
158 unsigned long mmcra = regs->dsisr;
159
160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 if (slot > 1)
163 return 4 * (slot - 1);
164 }
165
166 return 0;
167}
168
169/*
170 * The user wants a data address recorded.
171 * If we're not doing instruction sampling, give them the SDAR
172 * (sampled data address). If we are doing instruction sampling, then
173 * only give them the SDAR if it corresponds to the instruction
174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
176 */
177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
178{
179 unsigned long mmcra = regs->dsisr;
180 bool sdar_valid;
181
182 if (ppmu->flags & PPMU_HAS_SIER)
183 sdar_valid = regs->dar & SIER_SDAR_VALID;
184 else {
185 unsigned long sdsync;
186
187 if (ppmu->flags & PPMU_SIAR_VALID)
188 sdsync = POWER7P_MMCRA_SDAR_VALID;
189 else if (ppmu->flags & PPMU_ALT_SIPR)
190 sdsync = POWER6_MMCRA_SDSYNC;
191 else if (ppmu->flags & PPMU_NO_SIAR)
192 sdsync = MMCRA_SAMPLE_ENABLE;
193 else
194 sdsync = MMCRA_SDSYNC;
195
196 sdar_valid = mmcra & sdsync;
197 }
198
199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 *addrp = mfspr(SPRN_SDAR);
201
202 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
203 is_kernel_addr(mfspr(SPRN_SDAR)))
204 *addrp = 0;
205}
206
207static bool regs_sihv(struct pt_regs *regs)
208{
209 unsigned long sihv = MMCRA_SIHV;
210
211 if (ppmu->flags & PPMU_HAS_SIER)
212 return !!(regs->dar & SIER_SIHV);
213
214 if (ppmu->flags & PPMU_ALT_SIPR)
215 sihv = POWER6_MMCRA_SIHV;
216
217 return !!(regs->dsisr & sihv);
218}
219
220static bool regs_sipr(struct pt_regs *regs)
221{
222 unsigned long sipr = MMCRA_SIPR;
223
224 if (ppmu->flags & PPMU_HAS_SIER)
225 return !!(regs->dar & SIER_SIPR);
226
227 if (ppmu->flags & PPMU_ALT_SIPR)
228 sipr = POWER6_MMCRA_SIPR;
229
230 return !!(regs->dsisr & sipr);
231}
232
233static inline u32 perf_flags_from_msr(struct pt_regs *regs)
234{
235 if (regs->msr & MSR_PR)
236 return PERF_RECORD_MISC_USER;
237 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
238 return PERF_RECORD_MISC_HYPERVISOR;
239 return PERF_RECORD_MISC_KERNEL;
240}
241
242static inline u32 perf_get_misc_flags(struct pt_regs *regs)
243{
244 bool use_siar = regs_use_siar(regs);
245
246 if (!use_siar)
247 return perf_flags_from_msr(regs);
248
249 /*
250 * If we don't have flags in MMCRA, rather than using
251 * the MSR, we intuit the flags from the address in
252 * SIAR which should give slightly more reliable
253 * results
254 */
255 if (ppmu->flags & PPMU_NO_SIPR) {
256 unsigned long siar = mfspr(SPRN_SIAR);
257 if (is_kernel_addr(siar))
258 return PERF_RECORD_MISC_KERNEL;
259 return PERF_RECORD_MISC_USER;
260 }
261
262 /* PR has priority over HV, so order below is important */
263 if (regs_sipr(regs))
264 return PERF_RECORD_MISC_USER;
265
266 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
267 return PERF_RECORD_MISC_HYPERVISOR;
268
269 return PERF_RECORD_MISC_KERNEL;
270}
271
272/*
273 * Overload regs->dsisr to store MMCRA so we only need to read it once
274 * on each interrupt.
275 * Overload regs->dar to store SIER if we have it.
276 * Overload regs->result to specify whether we should use the MSR (result
277 * is zero) or the SIAR (result is non zero).
278 */
279static inline void perf_read_regs(struct pt_regs *regs)
280{
281 unsigned long mmcra = mfspr(SPRN_MMCRA);
282 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
283 int use_siar;
284
285 regs->dsisr = mmcra;
286
287 if (ppmu->flags & PPMU_HAS_SIER)
288 regs->dar = mfspr(SPRN_SIER);
289
290 /*
291 * If this isn't a PMU exception (eg a software event) the SIAR is
292 * not valid. Use pt_regs.
293 *
294 * If it is a marked event use the SIAR.
295 *
296 * If the PMU doesn't update the SIAR for non marked events use
297 * pt_regs.
298 *
299 * If the PMU has HV/PR flags then check to see if they
300 * place the exception in userspace. If so, use pt_regs. In
301 * continuous sampling mode the SIAR and the PMU exception are
302 * not synchronised, so they may be many instructions apart.
303 * This can result in confusing backtraces. We still want
304 * hypervisor samples as well as samples in the kernel with
305 * interrupts off hence the userspace check.
306 */
307 if (TRAP(regs) != 0xf00)
308 use_siar = 0;
309 else if ((ppmu->flags & PPMU_NO_SIAR))
310 use_siar = 0;
311 else if (marked)
312 use_siar = 1;
313 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
314 use_siar = 0;
315 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
316 use_siar = 0;
317 else
318 use_siar = 1;
319
320 regs->result = use_siar;
321}
322
323/*
324 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
325 * it as an NMI.
326 */
327static inline int perf_intr_is_nmi(struct pt_regs *regs)
328{
329 return (regs->softe & IRQS_DISABLED);
330}
331
332/*
333 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
334 * must be sampled only if the SIAR-valid bit is set.
335 *
336 * For unmarked instructions and for processors that don't have the SIAR-Valid
337 * bit, assume that SIAR is valid.
338 */
339static inline int siar_valid(struct pt_regs *regs)
340{
341 unsigned long mmcra = regs->dsisr;
342 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
343
344 if (marked) {
345 if (ppmu->flags & PPMU_HAS_SIER)
346 return regs->dar & SIER_SIAR_VALID;
347
348 if (ppmu->flags & PPMU_SIAR_VALID)
349 return mmcra & POWER7P_MMCRA_SIAR_VALID;
350 }
351
352 return 1;
353}
354
355
356/* Reset all possible BHRB entries */
357static void power_pmu_bhrb_reset(void)
358{
359 asm volatile(PPC_CLRBHRB);
360}
361
362static void power_pmu_bhrb_enable(struct perf_event *event)
363{
364 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
365
366 if (!ppmu->bhrb_nr)
367 return;
368
369 /* Clear BHRB if we changed task context to avoid data leaks */
370 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
371 power_pmu_bhrb_reset();
372 cpuhw->bhrb_context = event->ctx;
373 }
374 cpuhw->bhrb_users++;
375 perf_sched_cb_inc(event->ctx->pmu);
376}
377
378static void power_pmu_bhrb_disable(struct perf_event *event)
379{
380 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
381
382 if (!ppmu->bhrb_nr)
383 return;
384
385 WARN_ON_ONCE(!cpuhw->bhrb_users);
386 cpuhw->bhrb_users--;
387 perf_sched_cb_dec(event->ctx->pmu);
388
389 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
390 /* BHRB cannot be turned off when other
391 * events are active on the PMU.
392 */
393
394 /* avoid stale pointer */
395 cpuhw->bhrb_context = NULL;
396 }
397}
398
399/* Called from ctxsw to prevent one process's branch entries to
400 * mingle with the other process's entries during context switch.
401 */
402static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
403{
404 if (!ppmu->bhrb_nr)
405 return;
406
407 if (sched_in)
408 power_pmu_bhrb_reset();
409}
410/* Calculate the to address for a branch */
411static __u64 power_pmu_bhrb_to(u64 addr)
412{
413 unsigned int instr;
414 int ret;
415 __u64 target;
416
417 if (is_kernel_addr(addr)) {
418 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
419 return 0;
420
421 return branch_target(&instr);
422 }
423
424 /* Userspace: need copy instruction here then translate it */
425 pagefault_disable();
426 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
427 if (ret) {
428 pagefault_enable();
429 return 0;
430 }
431 pagefault_enable();
432
433 target = branch_target(&instr);
434 if ((!target) || (instr & BRANCH_ABSOLUTE))
435 return target;
436
437 /* Translate relative branch target from kernel to user address */
438 return target - (unsigned long)&instr + addr;
439}
440
441/* Processing BHRB entries */
442static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
443{
444 u64 val;
445 u64 addr;
446 int r_index, u_index, pred;
447
448 r_index = 0;
449 u_index = 0;
450 while (r_index < ppmu->bhrb_nr) {
451 /* Assembly read function */
452 val = read_bhrb(r_index++);
453 if (!val)
454 /* Terminal marker: End of valid BHRB entries */
455 break;
456 else {
457 addr = val & BHRB_EA;
458 pred = val & BHRB_PREDICTION;
459
460 if (!addr)
461 /* invalid entry */
462 continue;
463
464 /*
465 * BHRB rolling buffer could very much contain the kernel
466 * addresses at this point. Check the privileges before
467 * exporting it to userspace (avoid exposure of regions
468 * where we could have speculative execution)
469 */
470 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
471 is_kernel_addr(addr))
472 continue;
473
474 /* Branches are read most recent first (ie. mfbhrb 0 is
475 * the most recent branch).
476 * There are two types of valid entries:
477 * 1) a target entry which is the to address of a
478 * computed goto like a blr,bctr,btar. The next
479 * entry read from the bhrb will be branch
480 * corresponding to this target (ie. the actual
481 * blr/bctr/btar instruction).
482 * 2) a from address which is an actual branch. If a
483 * target entry proceeds this, then this is the
484 * matching branch for that target. If this is not
485 * following a target entry, then this is a branch
486 * where the target is given as an immediate field
487 * in the instruction (ie. an i or b form branch).
488 * In this case we need to read the instruction from
489 * memory to determine the target/to address.
490 */
491
492 if (val & BHRB_TARGET) {
493 /* Target branches use two entries
494 * (ie. computed gotos/XL form)
495 */
496 cpuhw->bhrb_entries[u_index].to = addr;
497 cpuhw->bhrb_entries[u_index].mispred = pred;
498 cpuhw->bhrb_entries[u_index].predicted = ~pred;
499
500 /* Get from address in next entry */
501 val = read_bhrb(r_index++);
502 addr = val & BHRB_EA;
503 if (val & BHRB_TARGET) {
504 /* Shouldn't have two targets in a
505 row.. Reset index and try again */
506 r_index--;
507 addr = 0;
508 }
509 cpuhw->bhrb_entries[u_index].from = addr;
510 } else {
511 /* Branches to immediate field
512 (ie I or B form) */
513 cpuhw->bhrb_entries[u_index].from = addr;
514 cpuhw->bhrb_entries[u_index].to =
515 power_pmu_bhrb_to(addr);
516 cpuhw->bhrb_entries[u_index].mispred = pred;
517 cpuhw->bhrb_entries[u_index].predicted = ~pred;
518 }
519 u_index++;
520
521 }
522 }
523 cpuhw->bhrb_stack.nr = u_index;
524 return;
525}
526
527static bool is_ebb_event(struct perf_event *event)
528{
529 /*
530 * This could be a per-PMU callback, but we'd rather avoid the cost. We
531 * check that the PMU supports EBB, meaning those that don't can still
532 * use bit 63 of the event code for something else if they wish.
533 */
534 return (ppmu->flags & PPMU_ARCH_207S) &&
535 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
536}
537
538static int ebb_event_check(struct perf_event *event)
539{
540 struct perf_event *leader = event->group_leader;
541
542 /* Event and group leader must agree on EBB */
543 if (is_ebb_event(leader) != is_ebb_event(event))
544 return -EINVAL;
545
546 if (is_ebb_event(event)) {
547 if (!(event->attach_state & PERF_ATTACH_TASK))
548 return -EINVAL;
549
550 if (!leader->attr.pinned || !leader->attr.exclusive)
551 return -EINVAL;
552
553 if (event->attr.freq ||
554 event->attr.inherit ||
555 event->attr.sample_type ||
556 event->attr.sample_period ||
557 event->attr.enable_on_exec)
558 return -EINVAL;
559 }
560
561 return 0;
562}
563
564static void ebb_event_add(struct perf_event *event)
565{
566 if (!is_ebb_event(event) || current->thread.used_ebb)
567 return;
568
569 /*
570 * IFF this is the first time we've added an EBB event, set
571 * PMXE in the user MMCR0 so we can detect when it's cleared by
572 * userspace. We need this so that we can context switch while
573 * userspace is in the EBB handler (where PMXE is 0).
574 */
575 current->thread.used_ebb = 1;
576 current->thread.mmcr0 |= MMCR0_PMXE;
577}
578
579static void ebb_switch_out(unsigned long mmcr0)
580{
581 if (!(mmcr0 & MMCR0_EBE))
582 return;
583
584 current->thread.siar = mfspr(SPRN_SIAR);
585 current->thread.sier = mfspr(SPRN_SIER);
586 current->thread.sdar = mfspr(SPRN_SDAR);
587 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
588 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
589}
590
591static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
592{
593 unsigned long mmcr0 = cpuhw->mmcr[0];
594
595 if (!ebb)
596 goto out;
597
598 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
599 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
600
601 /*
602 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
603 * with pmao_restore_workaround() because we may add PMAO but we never
604 * clear it here.
605 */
606 mmcr0 |= current->thread.mmcr0;
607
608 /*
609 * Be careful not to set PMXE if userspace had it cleared. This is also
610 * compatible with pmao_restore_workaround() because it has already
611 * cleared PMXE and we leave PMAO alone.
612 */
613 if (!(current->thread.mmcr0 & MMCR0_PMXE))
614 mmcr0 &= ~MMCR0_PMXE;
615
616 mtspr(SPRN_SIAR, current->thread.siar);
617 mtspr(SPRN_SIER, current->thread.sier);
618 mtspr(SPRN_SDAR, current->thread.sdar);
619
620 /*
621 * Merge the kernel & user values of MMCR2. The semantics we implement
622 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
623 * but not clear bits. If a task wants to be able to clear bits, ie.
624 * unfreeze counters, it should not set exclude_xxx in its events and
625 * instead manage the MMCR2 entirely by itself.
626 */
627 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
628out:
629 return mmcr0;
630}
631
632static void pmao_restore_workaround(bool ebb)
633{
634 unsigned pmcs[6];
635
636 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
637 return;
638
639 /*
640 * On POWER8E there is a hardware defect which affects the PMU context
641 * switch logic, ie. power_pmu_disable/enable().
642 *
643 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
644 * by the hardware. Sometime later the actual PMU exception is
645 * delivered.
646 *
647 * If we context switch, or simply disable/enable, the PMU prior to the
648 * exception arriving, the exception will be lost when we clear PMAO.
649 *
650 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
651 * set, and this _should_ generate an exception. However because of the
652 * defect no exception is generated when we write PMAO, and we get
653 * stuck with no counters counting but no exception delivered.
654 *
655 * The workaround is to detect this case and tweak the hardware to
656 * create another pending PMU exception.
657 *
658 * We do that by setting up PMC6 (cycles) for an imminent overflow and
659 * enabling the PMU. That causes a new exception to be generated in the
660 * chip, but we don't take it yet because we have interrupts hard
661 * disabled. We then write back the PMU state as we want it to be seen
662 * by the exception handler. When we reenable interrupts the exception
663 * handler will be called and see the correct state.
664 *
665 * The logic is the same for EBB, except that the exception is gated by
666 * us having interrupts hard disabled as well as the fact that we are
667 * not in userspace. The exception is finally delivered when we return
668 * to userspace.
669 */
670
671 /* Only if PMAO is set and PMAO_SYNC is clear */
672 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
673 return;
674
675 /* If we're doing EBB, only if BESCR[GE] is set */
676 if (ebb && !(current->thread.bescr & BESCR_GE))
677 return;
678
679 /*
680 * We are already soft-disabled in power_pmu_enable(). We need to hard
681 * disable to actually prevent the PMU exception from firing.
682 */
683 hard_irq_disable();
684
685 /*
686 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
687 * Using read/write_pmc() in a for loop adds 12 function calls and
688 * almost doubles our code size.
689 */
690 pmcs[0] = mfspr(SPRN_PMC1);
691 pmcs[1] = mfspr(SPRN_PMC2);
692 pmcs[2] = mfspr(SPRN_PMC3);
693 pmcs[3] = mfspr(SPRN_PMC4);
694 pmcs[4] = mfspr(SPRN_PMC5);
695 pmcs[5] = mfspr(SPRN_PMC6);
696
697 /* Ensure all freeze bits are unset */
698 mtspr(SPRN_MMCR2, 0);
699
700 /* Set up PMC6 to overflow in one cycle */
701 mtspr(SPRN_PMC6, 0x7FFFFFFE);
702
703 /* Enable exceptions and unfreeze PMC6 */
704 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
705
706 /* Now we need to refreeze and restore the PMCs */
707 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
708
709 mtspr(SPRN_PMC1, pmcs[0]);
710 mtspr(SPRN_PMC2, pmcs[1]);
711 mtspr(SPRN_PMC3, pmcs[2]);
712 mtspr(SPRN_PMC4, pmcs[3]);
713 mtspr(SPRN_PMC5, pmcs[4]);
714 mtspr(SPRN_PMC6, pmcs[5]);
715}
716
717static bool use_ic(u64 event)
718{
719 if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
720 (event == 0x200f2 || event == 0x300f2))
721 return true;
722
723 return false;
724}
725#endif /* CONFIG_PPC64 */
726
727static void perf_event_interrupt(struct pt_regs *regs);
728
729/*
730 * Read one performance monitor counter (PMC).
731 */
732static unsigned long read_pmc(int idx)
733{
734 unsigned long val;
735
736 switch (idx) {
737 case 1:
738 val = mfspr(SPRN_PMC1);
739 break;
740 case 2:
741 val = mfspr(SPRN_PMC2);
742 break;
743 case 3:
744 val = mfspr(SPRN_PMC3);
745 break;
746 case 4:
747 val = mfspr(SPRN_PMC4);
748 break;
749 case 5:
750 val = mfspr(SPRN_PMC5);
751 break;
752 case 6:
753 val = mfspr(SPRN_PMC6);
754 break;
755#ifdef CONFIG_PPC64
756 case 7:
757 val = mfspr(SPRN_PMC7);
758 break;
759 case 8:
760 val = mfspr(SPRN_PMC8);
761 break;
762#endif /* CONFIG_PPC64 */
763 default:
764 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
765 val = 0;
766 }
767 return val;
768}
769
770/*
771 * Write one PMC.
772 */
773static void write_pmc(int idx, unsigned long val)
774{
775 switch (idx) {
776 case 1:
777 mtspr(SPRN_PMC1, val);
778 break;
779 case 2:
780 mtspr(SPRN_PMC2, val);
781 break;
782 case 3:
783 mtspr(SPRN_PMC3, val);
784 break;
785 case 4:
786 mtspr(SPRN_PMC4, val);
787 break;
788 case 5:
789 mtspr(SPRN_PMC5, val);
790 break;
791 case 6:
792 mtspr(SPRN_PMC6, val);
793 break;
794#ifdef CONFIG_PPC64
795 case 7:
796 mtspr(SPRN_PMC7, val);
797 break;
798 case 8:
799 mtspr(SPRN_PMC8, val);
800 break;
801#endif /* CONFIG_PPC64 */
802 default:
803 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
804 }
805}
806
807/* Called from sysrq_handle_showregs() */
808void perf_event_print_debug(void)
809{
810 unsigned long sdar, sier, flags;
811 u32 pmcs[MAX_HWEVENTS];
812 int i;
813
814 if (!ppmu) {
815 pr_info("Performance monitor hardware not registered.\n");
816 return;
817 }
818
819 if (!ppmu->n_counter)
820 return;
821
822 local_irq_save(flags);
823
824 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
825 smp_processor_id(), ppmu->name, ppmu->n_counter);
826
827 for (i = 0; i < ppmu->n_counter; i++)
828 pmcs[i] = read_pmc(i + 1);
829
830 for (; i < MAX_HWEVENTS; i++)
831 pmcs[i] = 0xdeadbeef;
832
833 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
834 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
835
836 if (ppmu->n_counter > 4)
837 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
838 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
839
840 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
841 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
842
843 sdar = sier = 0;
844#ifdef CONFIG_PPC64
845 sdar = mfspr(SPRN_SDAR);
846
847 if (ppmu->flags & PPMU_HAS_SIER)
848 sier = mfspr(SPRN_SIER);
849
850 if (ppmu->flags & PPMU_ARCH_207S) {
851 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
852 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
853 pr_info("EBBRR: %016lx BESCR: %016lx\n",
854 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
855 }
856#endif
857 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
858 mfspr(SPRN_SIAR), sdar, sier);
859
860 local_irq_restore(flags);
861}
862
863/*
864 * Check if a set of events can all go on the PMU at once.
865 * If they can't, this will look at alternative codes for the events
866 * and see if any combination of alternative codes is feasible.
867 * The feasible set is returned in event_id[].
868 */
869static int power_check_constraints(struct cpu_hw_events *cpuhw,
870 u64 event_id[], unsigned int cflags[],
871 int n_ev)
872{
873 unsigned long mask, value, nv;
874 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
875 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
876 int i, j;
877 unsigned long addf = ppmu->add_fields;
878 unsigned long tadd = ppmu->test_adder;
879
880 if (n_ev > ppmu->n_counter)
881 return -1;
882
883 /* First see if the events will go on as-is */
884 for (i = 0; i < n_ev; ++i) {
885 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
886 && !ppmu->limited_pmc_event(event_id[i])) {
887 ppmu->get_alternatives(event_id[i], cflags[i],
888 cpuhw->alternatives[i]);
889 event_id[i] = cpuhw->alternatives[i][0];
890 }
891 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
892 &cpuhw->avalues[i][0]))
893 return -1;
894 }
895 value = mask = 0;
896 for (i = 0; i < n_ev; ++i) {
897 nv = (value | cpuhw->avalues[i][0]) +
898 (value & cpuhw->avalues[i][0] & addf);
899 if ((((nv + tadd) ^ value) & mask) != 0 ||
900 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
901 cpuhw->amasks[i][0]) != 0)
902 break;
903 value = nv;
904 mask |= cpuhw->amasks[i][0];
905 }
906 if (i == n_ev)
907 return 0; /* all OK */
908
909 /* doesn't work, gather alternatives... */
910 if (!ppmu->get_alternatives)
911 return -1;
912 for (i = 0; i < n_ev; ++i) {
913 choice[i] = 0;
914 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
915 cpuhw->alternatives[i]);
916 for (j = 1; j < n_alt[i]; ++j)
917 ppmu->get_constraint(cpuhw->alternatives[i][j],
918 &cpuhw->amasks[i][j],
919 &cpuhw->avalues[i][j]);
920 }
921
922 /* enumerate all possibilities and see if any will work */
923 i = 0;
924 j = -1;
925 value = mask = nv = 0;
926 while (i < n_ev) {
927 if (j >= 0) {
928 /* we're backtracking, restore context */
929 value = svalues[i];
930 mask = smasks[i];
931 j = choice[i];
932 }
933 /*
934 * See if any alternative k for event_id i,
935 * where k > j, will satisfy the constraints.
936 */
937 while (++j < n_alt[i]) {
938 nv = (value | cpuhw->avalues[i][j]) +
939 (value & cpuhw->avalues[i][j] & addf);
940 if ((((nv + tadd) ^ value) & mask) == 0 &&
941 (((nv + tadd) ^ cpuhw->avalues[i][j])
942 & cpuhw->amasks[i][j]) == 0)
943 break;
944 }
945 if (j >= n_alt[i]) {
946 /*
947 * No feasible alternative, backtrack
948 * to event_id i-1 and continue enumerating its
949 * alternatives from where we got up to.
950 */
951 if (--i < 0)
952 return -1;
953 } else {
954 /*
955 * Found a feasible alternative for event_id i,
956 * remember where we got up to with this event_id,
957 * go on to the next event_id, and start with
958 * the first alternative for it.
959 */
960 choice[i] = j;
961 svalues[i] = value;
962 smasks[i] = mask;
963 value = nv;
964 mask |= cpuhw->amasks[i][j];
965 ++i;
966 j = -1;
967 }
968 }
969
970 /* OK, we have a feasible combination, tell the caller the solution */
971 for (i = 0; i < n_ev; ++i)
972 event_id[i] = cpuhw->alternatives[i][choice[i]];
973 return 0;
974}
975
976/*
977 * Check if newly-added events have consistent settings for
978 * exclude_{user,kernel,hv} with each other and any previously
979 * added events.
980 */
981static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
982 int n_prev, int n_new)
983{
984 int eu = 0, ek = 0, eh = 0;
985 int i, n, first;
986 struct perf_event *event;
987
988 /*
989 * If the PMU we're on supports per event exclude settings then we
990 * don't need to do any of this logic. NB. This assumes no PMU has both
991 * per event exclude and limited PMCs.
992 */
993 if (ppmu->flags & PPMU_ARCH_207S)
994 return 0;
995
996 n = n_prev + n_new;
997 if (n <= 1)
998 return 0;
999
1000 first = 1;
1001 for (i = 0; i < n; ++i) {
1002 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1003 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1004 continue;
1005 }
1006 event = ctrs[i];
1007 if (first) {
1008 eu = event->attr.exclude_user;
1009 ek = event->attr.exclude_kernel;
1010 eh = event->attr.exclude_hv;
1011 first = 0;
1012 } else if (event->attr.exclude_user != eu ||
1013 event->attr.exclude_kernel != ek ||
1014 event->attr.exclude_hv != eh) {
1015 return -EAGAIN;
1016 }
1017 }
1018
1019 if (eu || ek || eh)
1020 for (i = 0; i < n; ++i)
1021 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1022 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1023
1024 return 0;
1025}
1026
1027static u64 check_and_compute_delta(u64 prev, u64 val)
1028{
1029 u64 delta = (val - prev) & 0xfffffffful;
1030
1031 /*
1032 * POWER7 can roll back counter values, if the new value is smaller
1033 * than the previous value it will cause the delta and the counter to
1034 * have bogus values unless we rolled a counter over. If a coutner is
1035 * rolled back, it will be smaller, but within 256, which is the maximum
1036 * number of events to rollback at once. If we detect a rollback
1037 * return 0. This can lead to a small lack of precision in the
1038 * counters.
1039 */
1040 if (prev > val && (prev - val) < 256)
1041 delta = 0;
1042
1043 return delta;
1044}
1045
1046static void power_pmu_read(struct perf_event *event)
1047{
1048 s64 val, delta, prev;
1049 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1050
1051 if (event->hw.state & PERF_HES_STOPPED)
1052 return;
1053
1054 if (!event->hw.idx)
1055 return;
1056
1057 if (is_ebb_event(event)) {
1058 val = read_pmc(event->hw.idx);
1059 if (use_ic(event->attr.config)) {
1060 val = mfspr(SPRN_IC);
1061 if (val > cpuhw->ic_init)
1062 val = val - cpuhw->ic_init;
1063 else
1064 val = val + (0 - cpuhw->ic_init);
1065 }
1066 local64_set(&event->hw.prev_count, val);
1067 return;
1068 }
1069
1070 /*
1071 * Performance monitor interrupts come even when interrupts
1072 * are soft-disabled, as long as interrupts are hard-enabled.
1073 * Therefore we treat them like NMIs.
1074 */
1075 do {
1076 prev = local64_read(&event->hw.prev_count);
1077 barrier();
1078 val = read_pmc(event->hw.idx);
1079 if (use_ic(event->attr.config)) {
1080 val = mfspr(SPRN_IC);
1081 if (val > cpuhw->ic_init)
1082 val = val - cpuhw->ic_init;
1083 else
1084 val = val + (0 - cpuhw->ic_init);
1085 }
1086 delta = check_and_compute_delta(prev, val);
1087 if (!delta)
1088 return;
1089 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1090
1091 local64_add(delta, &event->count);
1092
1093 /*
1094 * A number of places program the PMC with (0x80000000 - period_left).
1095 * We never want period_left to be less than 1 because we will program
1096 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1097 * roll around to 0 before taking an exception. We have seen this
1098 * on POWER8.
1099 *
1100 * To fix this, clamp the minimum value of period_left to 1.
1101 */
1102 do {
1103 prev = local64_read(&event->hw.period_left);
1104 val = prev - delta;
1105 if (val < 1)
1106 val = 1;
1107 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1108}
1109
1110/*
1111 * On some machines, PMC5 and PMC6 can't be written, don't respect
1112 * the freeze conditions, and don't generate interrupts. This tells
1113 * us if `event' is using such a PMC.
1114 */
1115static int is_limited_pmc(int pmcnum)
1116{
1117 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1118 && (pmcnum == 5 || pmcnum == 6);
1119}
1120
1121static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1122 unsigned long pmc5, unsigned long pmc6)
1123{
1124 struct perf_event *event;
1125 u64 val, prev, delta;
1126 int i;
1127
1128 for (i = 0; i < cpuhw->n_limited; ++i) {
1129 event = cpuhw->limited_counter[i];
1130 if (!event->hw.idx)
1131 continue;
1132 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1133 prev = local64_read(&event->hw.prev_count);
1134 event->hw.idx = 0;
1135 delta = check_and_compute_delta(prev, val);
1136 if (delta)
1137 local64_add(delta, &event->count);
1138 }
1139}
1140
1141static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1142 unsigned long pmc5, unsigned long pmc6)
1143{
1144 struct perf_event *event;
1145 u64 val, prev;
1146 int i;
1147
1148 for (i = 0; i < cpuhw->n_limited; ++i) {
1149 event = cpuhw->limited_counter[i];
1150 event->hw.idx = cpuhw->limited_hwidx[i];
1151 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1152 prev = local64_read(&event->hw.prev_count);
1153 if (check_and_compute_delta(prev, val))
1154 local64_set(&event->hw.prev_count, val);
1155 perf_event_update_userpage(event);
1156 }
1157}
1158
1159/*
1160 * Since limited events don't respect the freeze conditions, we
1161 * have to read them immediately after freezing or unfreezing the
1162 * other events. We try to keep the values from the limited
1163 * events as consistent as possible by keeping the delay (in
1164 * cycles and instructions) between freezing/unfreezing and reading
1165 * the limited events as small and consistent as possible.
1166 * Therefore, if any limited events are in use, we read them
1167 * both, and always in the same order, to minimize variability,
1168 * and do it inside the same asm that writes MMCR0.
1169 */
1170static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1171{
1172 unsigned long pmc5, pmc6;
1173
1174 if (!cpuhw->n_limited) {
1175 mtspr(SPRN_MMCR0, mmcr0);
1176 return;
1177 }
1178
1179 /*
1180 * Write MMCR0, then read PMC5 and PMC6 immediately.
1181 * To ensure we don't get a performance monitor interrupt
1182 * between writing MMCR0 and freezing/thawing the limited
1183 * events, we first write MMCR0 with the event overflow
1184 * interrupt enable bits turned off.
1185 */
1186 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1187 : "=&r" (pmc5), "=&r" (pmc6)
1188 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1189 "i" (SPRN_MMCR0),
1190 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1191
1192 if (mmcr0 & MMCR0_FC)
1193 freeze_limited_counters(cpuhw, pmc5, pmc6);
1194 else
1195 thaw_limited_counters(cpuhw, pmc5, pmc6);
1196
1197 /*
1198 * Write the full MMCR0 including the event overflow interrupt
1199 * enable bits, if necessary.
1200 */
1201 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1202 mtspr(SPRN_MMCR0, mmcr0);
1203}
1204
1205/*
1206 * Disable all events to prevent PMU interrupts and to allow
1207 * events to be added or removed.
1208 */
1209static void power_pmu_disable(struct pmu *pmu)
1210{
1211 struct cpu_hw_events *cpuhw;
1212 unsigned long flags, mmcr0, val;
1213
1214 if (!ppmu)
1215 return;
1216 local_irq_save(flags);
1217 cpuhw = this_cpu_ptr(&cpu_hw_events);
1218
1219 if (!cpuhw->disabled) {
1220 /*
1221 * Check if we ever enabled the PMU on this cpu.
1222 */
1223 if (!cpuhw->pmcs_enabled) {
1224 ppc_enable_pmcs();
1225 cpuhw->pmcs_enabled = 1;
1226 }
1227
1228 /*
1229 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1230 */
1231 val = mmcr0 = mfspr(SPRN_MMCR0);
1232 val |= MMCR0_FC;
1233 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1234 MMCR0_FC56);
1235
1236 /*
1237 * The barrier is to make sure the mtspr has been
1238 * executed and the PMU has frozen the events etc.
1239 * before we return.
1240 */
1241 write_mmcr0(cpuhw, val);
1242 mb();
1243 isync();
1244
1245 /*
1246 * Disable instruction sampling if it was enabled
1247 */
1248 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1249 mtspr(SPRN_MMCRA,
1250 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1251 mb();
1252 isync();
1253 }
1254
1255 cpuhw->disabled = 1;
1256 cpuhw->n_added = 0;
1257
1258 ebb_switch_out(mmcr0);
1259
1260#ifdef CONFIG_PPC64
1261 /*
1262 * These are readable by userspace, may contain kernel
1263 * addresses and are not switched by context switch, so clear
1264 * them now to avoid leaking anything to userspace in general
1265 * including to another process.
1266 */
1267 if (ppmu->flags & PPMU_ARCH_207S) {
1268 mtspr(SPRN_SDAR, 0);
1269 mtspr(SPRN_SIAR, 0);
1270 }
1271#endif
1272 }
1273
1274 local_irq_restore(flags);
1275}
1276
1277/*
1278 * Re-enable all events if disable == 0.
1279 * If we were previously disabled and events were added, then
1280 * put the new config on the PMU.
1281 */
1282static void power_pmu_enable(struct pmu *pmu)
1283{
1284 struct perf_event *event;
1285 struct cpu_hw_events *cpuhw;
1286 unsigned long flags;
1287 long i;
1288 unsigned long val, mmcr0;
1289 s64 left;
1290 unsigned int hwc_index[MAX_HWEVENTS];
1291 int n_lim;
1292 int idx;
1293 bool ebb;
1294
1295 if (!ppmu)
1296 return;
1297 local_irq_save(flags);
1298
1299 cpuhw = this_cpu_ptr(&cpu_hw_events);
1300 if (!cpuhw->disabled)
1301 goto out;
1302
1303 if (cpuhw->n_events == 0) {
1304 ppc_set_pmu_inuse(0);
1305 goto out;
1306 }
1307
1308 cpuhw->disabled = 0;
1309
1310 /*
1311 * EBB requires an exclusive group and all events must have the EBB
1312 * flag set, or not set, so we can just check a single event. Also we
1313 * know we have at least one event.
1314 */
1315 ebb = is_ebb_event(cpuhw->event[0]);
1316
1317 /*
1318 * If we didn't change anything, or only removed events,
1319 * no need to recalculate MMCR* settings and reset the PMCs.
1320 * Just reenable the PMU with the current MMCR* settings
1321 * (possibly updated for removal of events).
1322 */
1323 if (!cpuhw->n_added) {
1324 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1326 goto out_enable;
1327 }
1328
1329 /*
1330 * Clear all MMCR settings and recompute them for the new set of events.
1331 */
1332 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1333
1334 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1335 cpuhw->mmcr, cpuhw->event)) {
1336 /* shouldn't ever get here */
1337 printk(KERN_ERR "oops compute_mmcr failed\n");
1338 goto out;
1339 }
1340
1341 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1342 /*
1343 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1344 * bits for the first event. We have already checked that all
1345 * events have the same value for these bits as the first event.
1346 */
1347 event = cpuhw->event[0];
1348 if (event->attr.exclude_user)
1349 cpuhw->mmcr[0] |= MMCR0_FCP;
1350 if (event->attr.exclude_kernel)
1351 cpuhw->mmcr[0] |= freeze_events_kernel;
1352 if (event->attr.exclude_hv)
1353 cpuhw->mmcr[0] |= MMCR0_FCHV;
1354 }
1355
1356 /*
1357 * Write the new configuration to MMCR* with the freeze
1358 * bit set and set the hardware events to their initial values.
1359 * Then unfreeze the events.
1360 */
1361 ppc_set_pmu_inuse(1);
1362 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1363 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1364 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1365 | MMCR0_FC);
1366 if (ppmu->flags & PPMU_ARCH_207S)
1367 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1368
1369 /*
1370 * Read off any pre-existing events that need to move
1371 * to another PMC.
1372 */
1373 for (i = 0; i < cpuhw->n_events; ++i) {
1374 event = cpuhw->event[i];
1375 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1376 power_pmu_read(event);
1377 write_pmc(event->hw.idx, 0);
1378 event->hw.idx = 0;
1379 }
1380 }
1381
1382 /*
1383 * Initialize the PMCs for all the new and moved events.
1384 */
1385 cpuhw->n_limited = n_lim = 0;
1386 for (i = 0; i < cpuhw->n_events; ++i) {
1387 event = cpuhw->event[i];
1388 if (event->hw.idx)
1389 continue;
1390 idx = hwc_index[i] + 1;
1391 if (is_limited_pmc(idx)) {
1392 cpuhw->limited_counter[n_lim] = event;
1393 cpuhw->limited_hwidx[n_lim] = idx;
1394 ++n_lim;
1395 continue;
1396 }
1397
1398 if (ebb)
1399 val = local64_read(&event->hw.prev_count);
1400 else {
1401 val = 0;
1402 if (event->hw.sample_period) {
1403 left = local64_read(&event->hw.period_left);
1404 if (left < 0x80000000L)
1405 val = 0x80000000L - left;
1406 }
1407 local64_set(&event->hw.prev_count, val);
1408 }
1409
1410 event->hw.idx = idx;
1411 if (event->hw.state & PERF_HES_STOPPED)
1412 val = 0;
1413 write_pmc(idx, val);
1414
1415 perf_event_update_userpage(event);
1416 }
1417 cpuhw->n_limited = n_lim;
1418 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1419
1420 out_enable:
1421 pmao_restore_workaround(ebb);
1422
1423 mmcr0 = ebb_switch_in(ebb, cpuhw);
1424
1425 mb();
1426 if (cpuhw->bhrb_users)
1427 ppmu->config_bhrb(cpuhw->bhrb_filter);
1428
1429 write_mmcr0(cpuhw, mmcr0);
1430
1431 /*
1432 * Enable instruction sampling if necessary
1433 */
1434 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1435 mb();
1436 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1437 }
1438
1439 out:
1440
1441 local_irq_restore(flags);
1442}
1443
1444static int collect_events(struct perf_event *group, int max_count,
1445 struct perf_event *ctrs[], u64 *events,
1446 unsigned int *flags)
1447{
1448 int n = 0;
1449 struct perf_event *event;
1450
1451 if (group->pmu->task_ctx_nr == perf_hw_context) {
1452 if (n >= max_count)
1453 return -1;
1454 ctrs[n] = group;
1455 flags[n] = group->hw.event_base;
1456 events[n++] = group->hw.config;
1457 }
1458 for_each_sibling_event(event, group) {
1459 if (event->pmu->task_ctx_nr == perf_hw_context &&
1460 event->state != PERF_EVENT_STATE_OFF) {
1461 if (n >= max_count)
1462 return -1;
1463 ctrs[n] = event;
1464 flags[n] = event->hw.event_base;
1465 events[n++] = event->hw.config;
1466 }
1467 }
1468 return n;
1469}
1470
1471/*
1472 * Add a event to the PMU.
1473 * If all events are not already frozen, then we disable and
1474 * re-enable the PMU in order to get hw_perf_enable to do the
1475 * actual work of reconfiguring the PMU.
1476 */
1477static int power_pmu_add(struct perf_event *event, int ef_flags)
1478{
1479 struct cpu_hw_events *cpuhw;
1480 unsigned long flags;
1481 int n0;
1482 int ret = -EAGAIN;
1483
1484 local_irq_save(flags);
1485 perf_pmu_disable(event->pmu);
1486
1487 /*
1488 * Add the event to the list (if there is room)
1489 * and check whether the total set is still feasible.
1490 */
1491 cpuhw = this_cpu_ptr(&cpu_hw_events);
1492 n0 = cpuhw->n_events;
1493 if (n0 >= ppmu->n_counter)
1494 goto out;
1495 cpuhw->event[n0] = event;
1496 cpuhw->events[n0] = event->hw.config;
1497 cpuhw->flags[n0] = event->hw.event_base;
1498
1499 /*
1500 * This event may have been disabled/stopped in record_and_restart()
1501 * because we exceeded the ->event_limit. If re-starting the event,
1502 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1503 * notification is re-enabled.
1504 */
1505 if (!(ef_flags & PERF_EF_START))
1506 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1507 else
1508 event->hw.state = 0;
1509
1510 /*
1511 * If group events scheduling transaction was started,
1512 * skip the schedulability test here, it will be performed
1513 * at commit time(->commit_txn) as a whole
1514 */
1515 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1516 goto nocheck;
1517
1518 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1519 goto out;
1520 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1521 goto out;
1522 event->hw.config = cpuhw->events[n0];
1523
1524nocheck:
1525 ebb_event_add(event);
1526
1527 ++cpuhw->n_events;
1528 ++cpuhw->n_added;
1529
1530 ret = 0;
1531 out:
1532 if (has_branch_stack(event)) {
1533 power_pmu_bhrb_enable(event);
1534 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1535 event->attr.branch_sample_type);
1536 }
1537
1538 /*
1539 * Workaround for POWER9 DD1 to use the Instruction Counter
1540 * register value for instruction counting
1541 */
1542 if (use_ic(event->attr.config))
1543 cpuhw->ic_init = mfspr(SPRN_IC);
1544
1545 perf_pmu_enable(event->pmu);
1546 local_irq_restore(flags);
1547 return ret;
1548}
1549
1550/*
1551 * Remove a event from the PMU.
1552 */
1553static void power_pmu_del(struct perf_event *event, int ef_flags)
1554{
1555 struct cpu_hw_events *cpuhw;
1556 long i;
1557 unsigned long flags;
1558
1559 local_irq_save(flags);
1560 perf_pmu_disable(event->pmu);
1561
1562 power_pmu_read(event);
1563
1564 cpuhw = this_cpu_ptr(&cpu_hw_events);
1565 for (i = 0; i < cpuhw->n_events; ++i) {
1566 if (event == cpuhw->event[i]) {
1567 while (++i < cpuhw->n_events) {
1568 cpuhw->event[i-1] = cpuhw->event[i];
1569 cpuhw->events[i-1] = cpuhw->events[i];
1570 cpuhw->flags[i-1] = cpuhw->flags[i];
1571 }
1572 --cpuhw->n_events;
1573 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1574 if (event->hw.idx) {
1575 write_pmc(event->hw.idx, 0);
1576 event->hw.idx = 0;
1577 }
1578 perf_event_update_userpage(event);
1579 break;
1580 }
1581 }
1582 for (i = 0; i < cpuhw->n_limited; ++i)
1583 if (event == cpuhw->limited_counter[i])
1584 break;
1585 if (i < cpuhw->n_limited) {
1586 while (++i < cpuhw->n_limited) {
1587 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1588 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1589 }
1590 --cpuhw->n_limited;
1591 }
1592 if (cpuhw->n_events == 0) {
1593 /* disable exceptions if no events are running */
1594 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1595 }
1596
1597 if (has_branch_stack(event))
1598 power_pmu_bhrb_disable(event);
1599
1600 perf_pmu_enable(event->pmu);
1601 local_irq_restore(flags);
1602}
1603
1604/*
1605 * POWER-PMU does not support disabling individual counters, hence
1606 * program their cycle counter to their max value and ignore the interrupts.
1607 */
1608
1609static void power_pmu_start(struct perf_event *event, int ef_flags)
1610{
1611 unsigned long flags;
1612 s64 left;
1613 unsigned long val;
1614
1615 if (!event->hw.idx || !event->hw.sample_period)
1616 return;
1617
1618 if (!(event->hw.state & PERF_HES_STOPPED))
1619 return;
1620
1621 if (ef_flags & PERF_EF_RELOAD)
1622 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1623
1624 local_irq_save(flags);
1625 perf_pmu_disable(event->pmu);
1626
1627 event->hw.state = 0;
1628 left = local64_read(&event->hw.period_left);
1629
1630 val = 0;
1631 if (left < 0x80000000L)
1632 val = 0x80000000L - left;
1633
1634 write_pmc(event->hw.idx, val);
1635
1636 perf_event_update_userpage(event);
1637 perf_pmu_enable(event->pmu);
1638 local_irq_restore(flags);
1639}
1640
1641static void power_pmu_stop(struct perf_event *event, int ef_flags)
1642{
1643 unsigned long flags;
1644
1645 if (!event->hw.idx || !event->hw.sample_period)
1646 return;
1647
1648 if (event->hw.state & PERF_HES_STOPPED)
1649 return;
1650
1651 local_irq_save(flags);
1652 perf_pmu_disable(event->pmu);
1653
1654 power_pmu_read(event);
1655 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656 write_pmc(event->hw.idx, 0);
1657
1658 perf_event_update_userpage(event);
1659 perf_pmu_enable(event->pmu);
1660 local_irq_restore(flags);
1661}
1662
1663/*
1664 * Start group events scheduling transaction
1665 * Set the flag to make pmu::enable() not perform the
1666 * schedulability test, it will be performed at commit time
1667 *
1668 * We only support PERF_PMU_TXN_ADD transactions. Save the
1669 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1670 * transactions.
1671 */
1672static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1673{
1674 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1675
1676 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1677
1678 cpuhw->txn_flags = txn_flags;
1679 if (txn_flags & ~PERF_PMU_TXN_ADD)
1680 return;
1681
1682 perf_pmu_disable(pmu);
1683 cpuhw->n_txn_start = cpuhw->n_events;
1684}
1685
1686/*
1687 * Stop group events scheduling transaction
1688 * Clear the flag and pmu::enable() will perform the
1689 * schedulability test.
1690 */
1691static void power_pmu_cancel_txn(struct pmu *pmu)
1692{
1693 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1694 unsigned int txn_flags;
1695
1696 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1697
1698 txn_flags = cpuhw->txn_flags;
1699 cpuhw->txn_flags = 0;
1700 if (txn_flags & ~PERF_PMU_TXN_ADD)
1701 return;
1702
1703 perf_pmu_enable(pmu);
1704}
1705
1706/*
1707 * Commit group events scheduling transaction
1708 * Perform the group schedulability test as a whole
1709 * Return 0 if success
1710 */
1711static int power_pmu_commit_txn(struct pmu *pmu)
1712{
1713 struct cpu_hw_events *cpuhw;
1714 long i, n;
1715
1716 if (!ppmu)
1717 return -EAGAIN;
1718
1719 cpuhw = this_cpu_ptr(&cpu_hw_events);
1720 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1721
1722 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1723 cpuhw->txn_flags = 0;
1724 return 0;
1725 }
1726
1727 n = cpuhw->n_events;
1728 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1729 return -EAGAIN;
1730 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1731 if (i < 0)
1732 return -EAGAIN;
1733
1734 for (i = cpuhw->n_txn_start; i < n; ++i)
1735 cpuhw->event[i]->hw.config = cpuhw->events[i];
1736
1737 cpuhw->txn_flags = 0;
1738 perf_pmu_enable(pmu);
1739 return 0;
1740}
1741
1742/*
1743 * Return 1 if we might be able to put event on a limited PMC,
1744 * or 0 if not.
1745 * A event can only go on a limited PMC if it counts something
1746 * that a limited PMC can count, doesn't require interrupts, and
1747 * doesn't exclude any processor mode.
1748 */
1749static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1750 unsigned int flags)
1751{
1752 int n;
1753 u64 alt[MAX_EVENT_ALTERNATIVES];
1754
1755 if (event->attr.exclude_user
1756 || event->attr.exclude_kernel
1757 || event->attr.exclude_hv
1758 || event->attr.sample_period)
1759 return 0;
1760
1761 if (ppmu->limited_pmc_event(ev))
1762 return 1;
1763
1764 /*
1765 * The requested event_id isn't on a limited PMC already;
1766 * see if any alternative code goes on a limited PMC.
1767 */
1768 if (!ppmu->get_alternatives)
1769 return 0;
1770
1771 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1772 n = ppmu->get_alternatives(ev, flags, alt);
1773
1774 return n > 0;
1775}
1776
1777/*
1778 * Find an alternative event_id that goes on a normal PMC, if possible,
1779 * and return the event_id code, or 0 if there is no such alternative.
1780 * (Note: event_id code 0 is "don't count" on all machines.)
1781 */
1782static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1783{
1784 u64 alt[MAX_EVENT_ALTERNATIVES];
1785 int n;
1786
1787 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1788 n = ppmu->get_alternatives(ev, flags, alt);
1789 if (!n)
1790 return 0;
1791 return alt[0];
1792}
1793
1794/* Number of perf_events counting hardware events */
1795static atomic_t num_events;
1796/* Used to avoid races in calling reserve/release_pmc_hardware */
1797static DEFINE_MUTEX(pmc_reserve_mutex);
1798
1799/*
1800 * Release the PMU if this is the last perf_event.
1801 */
1802static void hw_perf_event_destroy(struct perf_event *event)
1803{
1804 if (!atomic_add_unless(&num_events, -1, 1)) {
1805 mutex_lock(&pmc_reserve_mutex);
1806 if (atomic_dec_return(&num_events) == 0)
1807 release_pmc_hardware();
1808 mutex_unlock(&pmc_reserve_mutex);
1809 }
1810}
1811
1812/*
1813 * Translate a generic cache event_id config to a raw event_id code.
1814 */
1815static int hw_perf_cache_event(u64 config, u64 *eventp)
1816{
1817 unsigned long type, op, result;
1818 int ev;
1819
1820 if (!ppmu->cache_events)
1821 return -EINVAL;
1822
1823 /* unpack config */
1824 type = config & 0xff;
1825 op = (config >> 8) & 0xff;
1826 result = (config >> 16) & 0xff;
1827
1828 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1829 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1830 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1831 return -EINVAL;
1832
1833 ev = (*ppmu->cache_events)[type][op][result];
1834 if (ev == 0)
1835 return -EOPNOTSUPP;
1836 if (ev == -1)
1837 return -EINVAL;
1838 *eventp = ev;
1839 return 0;
1840}
1841
1842static bool is_event_blacklisted(u64 ev)
1843{
1844 int i;
1845
1846 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1847 if (ppmu->blacklist_ev[i] == ev)
1848 return true;
1849 }
1850
1851 return false;
1852}
1853
1854static int power_pmu_event_init(struct perf_event *event)
1855{
1856 u64 ev;
1857 unsigned long flags;
1858 struct perf_event *ctrs[MAX_HWEVENTS];
1859 u64 events[MAX_HWEVENTS];
1860 unsigned int cflags[MAX_HWEVENTS];
1861 int n;
1862 int err;
1863 struct cpu_hw_events *cpuhw;
1864
1865 if (!ppmu)
1866 return -ENOENT;
1867
1868 if (has_branch_stack(event)) {
1869 /* PMU has BHRB enabled */
1870 if (!(ppmu->flags & PPMU_ARCH_207S))
1871 return -EOPNOTSUPP;
1872 }
1873
1874 switch (event->attr.type) {
1875 case PERF_TYPE_HARDWARE:
1876 ev = event->attr.config;
1877 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1878 return -EOPNOTSUPP;
1879
1880 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1881 return -EINVAL;
1882 ev = ppmu->generic_events[ev];
1883 break;
1884 case PERF_TYPE_HW_CACHE:
1885 err = hw_perf_cache_event(event->attr.config, &ev);
1886 if (err)
1887 return err;
1888
1889 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1890 return -EINVAL;
1891 break;
1892 case PERF_TYPE_RAW:
1893 ev = event->attr.config;
1894
1895 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1896 return -EINVAL;
1897 break;
1898 default:
1899 return -ENOENT;
1900 }
1901
1902 event->hw.config_base = ev;
1903 event->hw.idx = 0;
1904
1905 /*
1906 * If we are not running on a hypervisor, force the
1907 * exclude_hv bit to 0 so that we don't care what
1908 * the user set it to.
1909 */
1910 if (!firmware_has_feature(FW_FEATURE_LPAR))
1911 event->attr.exclude_hv = 0;
1912
1913 /*
1914 * If this is a per-task event, then we can use
1915 * PM_RUN_* events interchangeably with their non RUN_*
1916 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1917 * XXX we should check if the task is an idle task.
1918 */
1919 flags = 0;
1920 if (event->attach_state & PERF_ATTACH_TASK)
1921 flags |= PPMU_ONLY_COUNT_RUN;
1922
1923 /*
1924 * If this machine has limited events, check whether this
1925 * event_id could go on a limited event.
1926 */
1927 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1928 if (can_go_on_limited_pmc(event, ev, flags)) {
1929 flags |= PPMU_LIMITED_PMC_OK;
1930 } else if (ppmu->limited_pmc_event(ev)) {
1931 /*
1932 * The requested event_id is on a limited PMC,
1933 * but we can't use a limited PMC; see if any
1934 * alternative goes on a normal PMC.
1935 */
1936 ev = normal_pmc_alternative(ev, flags);
1937 if (!ev)
1938 return -EINVAL;
1939 }
1940 }
1941
1942 /* Extra checks for EBB */
1943 err = ebb_event_check(event);
1944 if (err)
1945 return err;
1946
1947 /*
1948 * If this is in a group, check if it can go on with all the
1949 * other hardware events in the group. We assume the event
1950 * hasn't been linked into its leader's sibling list at this point.
1951 */
1952 n = 0;
1953 if (event->group_leader != event) {
1954 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1955 ctrs, events, cflags);
1956 if (n < 0)
1957 return -EINVAL;
1958 }
1959 events[n] = ev;
1960 ctrs[n] = event;
1961 cflags[n] = flags;
1962 if (check_excludes(ctrs, cflags, n, 1))
1963 return -EINVAL;
1964
1965 cpuhw = &get_cpu_var(cpu_hw_events);
1966 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1967
1968 if (has_branch_stack(event)) {
1969 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1970 event->attr.branch_sample_type);
1971
1972 if (cpuhw->bhrb_filter == -1) {
1973 put_cpu_var(cpu_hw_events);
1974 return -EOPNOTSUPP;
1975 }
1976 }
1977
1978 put_cpu_var(cpu_hw_events);
1979 if (err)
1980 return -EINVAL;
1981
1982 event->hw.config = events[n];
1983 event->hw.event_base = cflags[n];
1984 event->hw.last_period = event->hw.sample_period;
1985 local64_set(&event->hw.period_left, event->hw.last_period);
1986
1987 /*
1988 * For EBB events we just context switch the PMC value, we don't do any
1989 * of the sample_period logic. We use hw.prev_count for this.
1990 */
1991 if (is_ebb_event(event))
1992 local64_set(&event->hw.prev_count, 0);
1993
1994 /*
1995 * See if we need to reserve the PMU.
1996 * If no events are currently in use, then we have to take a
1997 * mutex to ensure that we don't race with another task doing
1998 * reserve_pmc_hardware or release_pmc_hardware.
1999 */
2000 err = 0;
2001 if (!atomic_inc_not_zero(&num_events)) {
2002 mutex_lock(&pmc_reserve_mutex);
2003 if (atomic_read(&num_events) == 0 &&
2004 reserve_pmc_hardware(perf_event_interrupt))
2005 err = -EBUSY;
2006 else
2007 atomic_inc(&num_events);
2008 mutex_unlock(&pmc_reserve_mutex);
2009 }
2010 event->destroy = hw_perf_event_destroy;
2011
2012 return err;
2013}
2014
2015static int power_pmu_event_idx(struct perf_event *event)
2016{
2017 return event->hw.idx;
2018}
2019
2020ssize_t power_events_sysfs_show(struct device *dev,
2021 struct device_attribute *attr, char *page)
2022{
2023 struct perf_pmu_events_attr *pmu_attr;
2024
2025 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2026
2027 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2028}
2029
2030static struct pmu power_pmu = {
2031 .pmu_enable = power_pmu_enable,
2032 .pmu_disable = power_pmu_disable,
2033 .event_init = power_pmu_event_init,
2034 .add = power_pmu_add,
2035 .del = power_pmu_del,
2036 .start = power_pmu_start,
2037 .stop = power_pmu_stop,
2038 .read = power_pmu_read,
2039 .start_txn = power_pmu_start_txn,
2040 .cancel_txn = power_pmu_cancel_txn,
2041 .commit_txn = power_pmu_commit_txn,
2042 .event_idx = power_pmu_event_idx,
2043 .sched_task = power_pmu_sched_task,
2044};
2045
2046/*
2047 * A counter has overflowed; update its count and record
2048 * things if requested. Note that interrupts are hard-disabled
2049 * here so there is no possibility of being interrupted.
2050 */
2051static void record_and_restart(struct perf_event *event, unsigned long val,
2052 struct pt_regs *regs)
2053{
2054 u64 period = event->hw.sample_period;
2055 s64 prev, delta, left;
2056 int record = 0;
2057
2058 if (event->hw.state & PERF_HES_STOPPED) {
2059 write_pmc(event->hw.idx, 0);
2060 return;
2061 }
2062
2063 /* we don't have to worry about interrupts here */
2064 prev = local64_read(&event->hw.prev_count);
2065 delta = check_and_compute_delta(prev, val);
2066 local64_add(delta, &event->count);
2067
2068 /*
2069 * See if the total period for this event has expired,
2070 * and update for the next period.
2071 */
2072 val = 0;
2073 left = local64_read(&event->hw.period_left) - delta;
2074 if (delta == 0)
2075 left++;
2076 if (period) {
2077 if (left <= 0) {
2078 left += period;
2079 if (left <= 0)
2080 left = period;
2081 record = siar_valid(regs);
2082 event->hw.last_period = event->hw.sample_period;
2083 }
2084 if (left < 0x80000000LL)
2085 val = 0x80000000LL - left;
2086 }
2087
2088 write_pmc(event->hw.idx, val);
2089 local64_set(&event->hw.prev_count, val);
2090 local64_set(&event->hw.period_left, left);
2091 perf_event_update_userpage(event);
2092
2093 /*
2094 * Finally record data if requested.
2095 */
2096 if (record) {
2097 struct perf_sample_data data;
2098
2099 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2100
2101 if (event->attr.sample_type &
2102 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2103 perf_get_data_addr(regs, &data.addr);
2104
2105 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2106 struct cpu_hw_events *cpuhw;
2107 cpuhw = this_cpu_ptr(&cpu_hw_events);
2108 power_pmu_bhrb_read(cpuhw);
2109 data.br_stack = &cpuhw->bhrb_stack;
2110 }
2111
2112 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2113 ppmu->get_mem_data_src)
2114 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2115
2116 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2117 ppmu->get_mem_weight)
2118 ppmu->get_mem_weight(&data.weight);
2119
2120 if (perf_event_overflow(event, &data, regs))
2121 power_pmu_stop(event, 0);
2122 }
2123}
2124
2125/*
2126 * Called from generic code to get the misc flags (i.e. processor mode)
2127 * for an event_id.
2128 */
2129unsigned long perf_misc_flags(struct pt_regs *regs)
2130{
2131 u32 flags = perf_get_misc_flags(regs);
2132
2133 if (flags)
2134 return flags;
2135 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2136 PERF_RECORD_MISC_KERNEL;
2137}
2138
2139/*
2140 * Called from generic code to get the instruction pointer
2141 * for an event_id.
2142 */
2143unsigned long perf_instruction_pointer(struct pt_regs *regs)
2144{
2145 bool use_siar = regs_use_siar(regs);
2146
2147 if (use_siar && siar_valid(regs))
2148 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2149 else if (use_siar)
2150 return 0; // no valid instruction pointer
2151 else
2152 return regs->nip;
2153}
2154
2155static bool pmc_overflow_power7(unsigned long val)
2156{
2157 /*
2158 * Events on POWER7 can roll back if a speculative event doesn't
2159 * eventually complete. Unfortunately in some rare cases they will
2160 * raise a performance monitor exception. We need to catch this to
2161 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2162 * cycles from overflow.
2163 *
2164 * We only do this if the first pass fails to find any overflowing
2165 * PMCs because a user might set a period of less than 256 and we
2166 * don't want to mistakenly reset them.
2167 */
2168 if ((0x80000000 - val) <= 256)
2169 return true;
2170
2171 return false;
2172}
2173
2174static bool pmc_overflow(unsigned long val)
2175{
2176 if ((int)val < 0)
2177 return true;
2178
2179 return false;
2180}
2181
2182/*
2183 * Performance monitor interrupt stuff
2184 */
2185static void perf_event_interrupt(struct pt_regs *regs)
2186{
2187 int i, j;
2188 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2189 struct perf_event *event;
2190 unsigned long val[8];
2191 int found, active;
2192 int nmi;
2193
2194 if (cpuhw->n_limited)
2195 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2196 mfspr(SPRN_PMC6));
2197
2198 perf_read_regs(regs);
2199
2200 nmi = perf_intr_is_nmi(regs);
2201 if (nmi)
2202 nmi_enter();
2203 else
2204 irq_enter();
2205
2206 /* Read all the PMCs since we'll need them a bunch of times */
2207 for (i = 0; i < ppmu->n_counter; ++i)
2208 val[i] = read_pmc(i + 1);
2209
2210 /* Try to find what caused the IRQ */
2211 found = 0;
2212 for (i = 0; i < ppmu->n_counter; ++i) {
2213 if (!pmc_overflow(val[i]))
2214 continue;
2215 if (is_limited_pmc(i + 1))
2216 continue; /* these won't generate IRQs */
2217 /*
2218 * We've found one that's overflowed. For active
2219 * counters we need to log this. For inactive
2220 * counters, we need to reset it anyway
2221 */
2222 found = 1;
2223 active = 0;
2224 for (j = 0; j < cpuhw->n_events; ++j) {
2225 event = cpuhw->event[j];
2226 if (event->hw.idx == (i + 1)) {
2227 active = 1;
2228 record_and_restart(event, val[i], regs);
2229 break;
2230 }
2231 }
2232 if (!active)
2233 /* reset non active counters that have overflowed */
2234 write_pmc(i + 1, 0);
2235 }
2236 if (!found && pvr_version_is(PVR_POWER7)) {
2237 /* check active counters for special buggy p7 overflow */
2238 for (i = 0; i < cpuhw->n_events; ++i) {
2239 event = cpuhw->event[i];
2240 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2241 continue;
2242 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2243 /* event has overflowed in a buggy way*/
2244 found = 1;
2245 record_and_restart(event,
2246 val[event->hw.idx - 1],
2247 regs);
2248 }
2249 }
2250 }
2251 if (!found && !nmi && printk_ratelimit())
2252 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2253
2254 /*
2255 * Reset MMCR0 to its normal value. This will set PMXE and
2256 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2257 * and thus allow interrupts to occur again.
2258 * XXX might want to use MSR.PM to keep the events frozen until
2259 * we get back out of this interrupt.
2260 */
2261 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2262
2263 if (nmi)
2264 nmi_exit();
2265 else
2266 irq_exit();
2267}
2268
2269static int power_pmu_prepare_cpu(unsigned int cpu)
2270{
2271 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2272
2273 if (ppmu) {
2274 memset(cpuhw, 0, sizeof(*cpuhw));
2275 cpuhw->mmcr[0] = MMCR0_FC;
2276 }
2277 return 0;
2278}
2279
2280int register_power_pmu(struct power_pmu *pmu)
2281{
2282 if (ppmu)
2283 return -EBUSY; /* something's already registered */
2284
2285 ppmu = pmu;
2286 pr_info("%s performance monitor hardware support registered\n",
2287 pmu->name);
2288
2289 power_pmu.attr_groups = ppmu->attr_groups;
2290
2291#ifdef MSR_HV
2292 /*
2293 * Use FCHV to ignore kernel events if MSR.HV is set.
2294 */
2295 if (mfmsr() & MSR_HV)
2296 freeze_events_kernel = MMCR0_FCHV;
2297#endif /* CONFIG_PPC64 */
2298
2299 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2300 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2301 power_pmu_prepare_cpu, NULL);
2302 return 0;
2303}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/sched/clock.h>
10#include <linux/perf_event.h>
11#include <linux/percpu.h>
12#include <linux/hardirq.h>
13#include <linux/uaccess.h>
14#include <asm/reg.h>
15#include <asm/pmc.h>
16#include <asm/machdep.h>
17#include <asm/firmware.h>
18#include <asm/ptrace.h>
19#include <asm/code-patching.h>
20
21#ifdef CONFIG_PPC64
22#include "internal.h"
23#endif
24
25#define BHRB_MAX_ENTRIES 32
26#define BHRB_TARGET 0x0000000000000002
27#define BHRB_PREDICTION 0x0000000000000001
28#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29
30struct cpu_hw_events {
31 int n_events;
32 int n_percpu;
33 int disabled;
34 int n_added;
35 int n_limited;
36 u8 pmcs_enabled;
37 struct perf_event *event[MAX_HWEVENTS];
38 u64 events[MAX_HWEVENTS];
39 unsigned int flags[MAX_HWEVENTS];
40 struct mmcr_regs mmcr;
41 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
42 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
43 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46
47 unsigned int txn_flags;
48 int n_txn_start;
49
50 /* BHRB bits */
51 u64 bhrb_filter; /* BHRB HW branch filter */
52 unsigned int bhrb_users;
53 void *bhrb_context;
54 struct perf_branch_stack bhrb_stack;
55 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
56 u64 ic_init;
57};
58
59static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60
61static struct power_pmu *ppmu;
62
63/*
64 * Normally, to ignore kernel events we set the FCS (freeze counters
65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
66 * hypervisor bit set in the MSR, or if we are running on a processor
67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
68 * then we need to use the FCHV bit to ignore kernel events.
69 */
70static unsigned int freeze_events_kernel = MMCR0_FCS;
71
72/*
73 * 32-bit doesn't have MMCRA but does have an MMCR2,
74 * and a few other names are different.
75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
76 * Define them as zero knowing that any code path accessing
77 * these registers (via mtspr/mfspr) are done under ppmu flag
78 * check for PPMU_ARCH_31 and we will not enter that code path
79 * for 32-bit.
80 */
81#ifdef CONFIG_PPC32
82
83#define MMCR0_FCHV 0
84#define MMCR0_PMCjCE MMCR0_PMCnCE
85#define MMCR0_FC56 0
86#define MMCR0_PMAO 0
87#define MMCR0_EBE 0
88#define MMCR0_BHRBA 0
89#define MMCR0_PMCC 0
90#define MMCR0_PMCC_U6 0
91
92#define SPRN_MMCRA SPRN_MMCR2
93#define SPRN_MMCR3 0
94#define SPRN_SIER2 0
95#define SPRN_SIER3 0
96#define MMCRA_SAMPLE_ENABLE 0
97#define MMCRA_BHRB_DISABLE 0
98
99static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
100{
101 return 0;
102}
103static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
104static inline u32 perf_get_misc_flags(struct pt_regs *regs)
105{
106 return 0;
107}
108static inline void perf_read_regs(struct pt_regs *regs)
109{
110 regs->result = 0;
111}
112static inline int perf_intr_is_nmi(struct pt_regs *regs)
113{
114 return 0;
115}
116
117static inline int siar_valid(struct pt_regs *regs)
118{
119 return 1;
120}
121
122static bool is_ebb_event(struct perf_event *event) { return false; }
123static int ebb_event_check(struct perf_event *event) { return 0; }
124static void ebb_event_add(struct perf_event *event) { }
125static void ebb_switch_out(unsigned long mmcr0) { }
126static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
127{
128 return cpuhw->mmcr.mmcr0;
129}
130
131static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
132static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
133static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
134static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
135static void pmao_restore_workaround(bool ebb) { }
136#endif /* CONFIG_PPC32 */
137
138bool is_sier_available(void)
139{
140 if (ppmu->flags & PPMU_HAS_SIER)
141 return true;
142
143 return false;
144}
145
146static bool regs_use_siar(struct pt_regs *regs)
147{
148 /*
149 * When we take a performance monitor exception the regs are setup
150 * using perf_read_regs() which overloads some fields, in particular
151 * regs->result to tell us whether to use SIAR.
152 *
153 * However if the regs are from another exception, eg. a syscall, then
154 * they have not been setup using perf_read_regs() and so regs->result
155 * is something random.
156 */
157 return ((TRAP(regs) == 0xf00) && regs->result);
158}
159
160/*
161 * Things that are specific to 64-bit implementations.
162 */
163#ifdef CONFIG_PPC64
164
165static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
166{
167 unsigned long mmcra = regs->dsisr;
168
169 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
170 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
171 if (slot > 1)
172 return 4 * (slot - 1);
173 }
174
175 return 0;
176}
177
178/*
179 * The user wants a data address recorded.
180 * If we're not doing instruction sampling, give them the SDAR
181 * (sampled data address). If we are doing instruction sampling, then
182 * only give them the SDAR if it corresponds to the instruction
183 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
184 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
185 */
186static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
187{
188 unsigned long mmcra = regs->dsisr;
189 bool sdar_valid;
190
191 if (ppmu->flags & PPMU_HAS_SIER)
192 sdar_valid = regs->dar & SIER_SDAR_VALID;
193 else {
194 unsigned long sdsync;
195
196 if (ppmu->flags & PPMU_SIAR_VALID)
197 sdsync = POWER7P_MMCRA_SDAR_VALID;
198 else if (ppmu->flags & PPMU_ALT_SIPR)
199 sdsync = POWER6_MMCRA_SDSYNC;
200 else if (ppmu->flags & PPMU_NO_SIAR)
201 sdsync = MMCRA_SAMPLE_ENABLE;
202 else
203 sdsync = MMCRA_SDSYNC;
204
205 sdar_valid = mmcra & sdsync;
206 }
207
208 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
209 *addrp = mfspr(SPRN_SDAR);
210
211 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
212 *addrp = 0;
213}
214
215static bool regs_sihv(struct pt_regs *regs)
216{
217 unsigned long sihv = MMCRA_SIHV;
218
219 if (ppmu->flags & PPMU_HAS_SIER)
220 return !!(regs->dar & SIER_SIHV);
221
222 if (ppmu->flags & PPMU_ALT_SIPR)
223 sihv = POWER6_MMCRA_SIHV;
224
225 return !!(regs->dsisr & sihv);
226}
227
228static bool regs_sipr(struct pt_regs *regs)
229{
230 unsigned long sipr = MMCRA_SIPR;
231
232 if (ppmu->flags & PPMU_HAS_SIER)
233 return !!(regs->dar & SIER_SIPR);
234
235 if (ppmu->flags & PPMU_ALT_SIPR)
236 sipr = POWER6_MMCRA_SIPR;
237
238 return !!(regs->dsisr & sipr);
239}
240
241static inline u32 perf_flags_from_msr(struct pt_regs *regs)
242{
243 if (regs->msr & MSR_PR)
244 return PERF_RECORD_MISC_USER;
245 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
246 return PERF_RECORD_MISC_HYPERVISOR;
247 return PERF_RECORD_MISC_KERNEL;
248}
249
250static inline u32 perf_get_misc_flags(struct pt_regs *regs)
251{
252 bool use_siar = regs_use_siar(regs);
253
254 if (!use_siar)
255 return perf_flags_from_msr(regs);
256
257 /*
258 * If we don't have flags in MMCRA, rather than using
259 * the MSR, we intuit the flags from the address in
260 * SIAR which should give slightly more reliable
261 * results
262 */
263 if (ppmu->flags & PPMU_NO_SIPR) {
264 unsigned long siar = mfspr(SPRN_SIAR);
265 if (is_kernel_addr(siar))
266 return PERF_RECORD_MISC_KERNEL;
267 return PERF_RECORD_MISC_USER;
268 }
269
270 /* PR has priority over HV, so order below is important */
271 if (regs_sipr(regs))
272 return PERF_RECORD_MISC_USER;
273
274 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
275 return PERF_RECORD_MISC_HYPERVISOR;
276
277 return PERF_RECORD_MISC_KERNEL;
278}
279
280/*
281 * Overload regs->dsisr to store MMCRA so we only need to read it once
282 * on each interrupt.
283 * Overload regs->dar to store SIER if we have it.
284 * Overload regs->result to specify whether we should use the MSR (result
285 * is zero) or the SIAR (result is non zero).
286 */
287static inline void perf_read_regs(struct pt_regs *regs)
288{
289 unsigned long mmcra = mfspr(SPRN_MMCRA);
290 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
291 int use_siar;
292
293 regs->dsisr = mmcra;
294
295 if (ppmu->flags & PPMU_HAS_SIER)
296 regs->dar = mfspr(SPRN_SIER);
297
298 /*
299 * If this isn't a PMU exception (eg a software event) the SIAR is
300 * not valid. Use pt_regs.
301 *
302 * If it is a marked event use the SIAR.
303 *
304 * If the PMU doesn't update the SIAR for non marked events use
305 * pt_regs.
306 *
307 * If the PMU has HV/PR flags then check to see if they
308 * place the exception in userspace. If so, use pt_regs. In
309 * continuous sampling mode the SIAR and the PMU exception are
310 * not synchronised, so they may be many instructions apart.
311 * This can result in confusing backtraces. We still want
312 * hypervisor samples as well as samples in the kernel with
313 * interrupts off hence the userspace check.
314 */
315 if (TRAP(regs) != 0xf00)
316 use_siar = 0;
317 else if ((ppmu->flags & PPMU_NO_SIAR))
318 use_siar = 0;
319 else if (marked)
320 use_siar = 1;
321 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
322 use_siar = 0;
323 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
324 use_siar = 0;
325 else
326 use_siar = 1;
327
328 regs->result = use_siar;
329}
330
331/*
332 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
333 * it as an NMI.
334 */
335static inline int perf_intr_is_nmi(struct pt_regs *regs)
336{
337 return (regs->softe & IRQS_DISABLED);
338}
339
340/*
341 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
342 * must be sampled only if the SIAR-valid bit is set.
343 *
344 * For unmarked instructions and for processors that don't have the SIAR-Valid
345 * bit, assume that SIAR is valid.
346 */
347static inline int siar_valid(struct pt_regs *regs)
348{
349 unsigned long mmcra = regs->dsisr;
350 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
351
352 if (marked) {
353 if (ppmu->flags & PPMU_HAS_SIER)
354 return regs->dar & SIER_SIAR_VALID;
355
356 if (ppmu->flags & PPMU_SIAR_VALID)
357 return mmcra & POWER7P_MMCRA_SIAR_VALID;
358 }
359
360 return 1;
361}
362
363
364/* Reset all possible BHRB entries */
365static void power_pmu_bhrb_reset(void)
366{
367 asm volatile(PPC_CLRBHRB);
368}
369
370static void power_pmu_bhrb_enable(struct perf_event *event)
371{
372 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
373
374 if (!ppmu->bhrb_nr)
375 return;
376
377 /* Clear BHRB if we changed task context to avoid data leaks */
378 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
379 power_pmu_bhrb_reset();
380 cpuhw->bhrb_context = event->ctx;
381 }
382 cpuhw->bhrb_users++;
383 perf_sched_cb_inc(event->ctx->pmu);
384}
385
386static void power_pmu_bhrb_disable(struct perf_event *event)
387{
388 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
389
390 if (!ppmu->bhrb_nr)
391 return;
392
393 WARN_ON_ONCE(!cpuhw->bhrb_users);
394 cpuhw->bhrb_users--;
395 perf_sched_cb_dec(event->ctx->pmu);
396
397 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
398 /* BHRB cannot be turned off when other
399 * events are active on the PMU.
400 */
401
402 /* avoid stale pointer */
403 cpuhw->bhrb_context = NULL;
404 }
405}
406
407/* Called from ctxsw to prevent one process's branch entries to
408 * mingle with the other process's entries during context switch.
409 */
410static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
411{
412 if (!ppmu->bhrb_nr)
413 return;
414
415 if (sched_in)
416 power_pmu_bhrb_reset();
417}
418/* Calculate the to address for a branch */
419static __u64 power_pmu_bhrb_to(u64 addr)
420{
421 unsigned int instr;
422 __u64 target;
423
424 if (is_kernel_addr(addr)) {
425 if (copy_from_kernel_nofault(&instr, (void *)addr,
426 sizeof(instr)))
427 return 0;
428
429 return branch_target((struct ppc_inst *)&instr);
430 }
431
432 /* Userspace: need copy instruction here then translate it */
433 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
434 sizeof(instr)))
435 return 0;
436
437 target = branch_target((struct ppc_inst *)&instr);
438 if ((!target) || (instr & BRANCH_ABSOLUTE))
439 return target;
440
441 /* Translate relative branch target from kernel to user address */
442 return target - (unsigned long)&instr + addr;
443}
444
445/* Processing BHRB entries */
446static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
447{
448 u64 val;
449 u64 addr;
450 int r_index, u_index, pred;
451
452 r_index = 0;
453 u_index = 0;
454 while (r_index < ppmu->bhrb_nr) {
455 /* Assembly read function */
456 val = read_bhrb(r_index++);
457 if (!val)
458 /* Terminal marker: End of valid BHRB entries */
459 break;
460 else {
461 addr = val & BHRB_EA;
462 pred = val & BHRB_PREDICTION;
463
464 if (!addr)
465 /* invalid entry */
466 continue;
467
468 /*
469 * BHRB rolling buffer could very much contain the kernel
470 * addresses at this point. Check the privileges before
471 * exporting it to userspace (avoid exposure of regions
472 * where we could have speculative execution)
473 * Incase of ISA v3.1, BHRB will capture only user-space
474 * addresses, hence include a check before filtering code
475 */
476 if (!(ppmu->flags & PPMU_ARCH_31) &&
477 is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
478 continue;
479
480 /* Branches are read most recent first (ie. mfbhrb 0 is
481 * the most recent branch).
482 * There are two types of valid entries:
483 * 1) a target entry which is the to address of a
484 * computed goto like a blr,bctr,btar. The next
485 * entry read from the bhrb will be branch
486 * corresponding to this target (ie. the actual
487 * blr/bctr/btar instruction).
488 * 2) a from address which is an actual branch. If a
489 * target entry proceeds this, then this is the
490 * matching branch for that target. If this is not
491 * following a target entry, then this is a branch
492 * where the target is given as an immediate field
493 * in the instruction (ie. an i or b form branch).
494 * In this case we need to read the instruction from
495 * memory to determine the target/to address.
496 */
497
498 if (val & BHRB_TARGET) {
499 /* Target branches use two entries
500 * (ie. computed gotos/XL form)
501 */
502 cpuhw->bhrb_entries[u_index].to = addr;
503 cpuhw->bhrb_entries[u_index].mispred = pred;
504 cpuhw->bhrb_entries[u_index].predicted = ~pred;
505
506 /* Get from address in next entry */
507 val = read_bhrb(r_index++);
508 addr = val & BHRB_EA;
509 if (val & BHRB_TARGET) {
510 /* Shouldn't have two targets in a
511 row.. Reset index and try again */
512 r_index--;
513 addr = 0;
514 }
515 cpuhw->bhrb_entries[u_index].from = addr;
516 } else {
517 /* Branches to immediate field
518 (ie I or B form) */
519 cpuhw->bhrb_entries[u_index].from = addr;
520 cpuhw->bhrb_entries[u_index].to =
521 power_pmu_bhrb_to(addr);
522 cpuhw->bhrb_entries[u_index].mispred = pred;
523 cpuhw->bhrb_entries[u_index].predicted = ~pred;
524 }
525 u_index++;
526
527 }
528 }
529 cpuhw->bhrb_stack.nr = u_index;
530 cpuhw->bhrb_stack.hw_idx = -1ULL;
531 return;
532}
533
534static bool is_ebb_event(struct perf_event *event)
535{
536 /*
537 * This could be a per-PMU callback, but we'd rather avoid the cost. We
538 * check that the PMU supports EBB, meaning those that don't can still
539 * use bit 63 of the event code for something else if they wish.
540 */
541 return (ppmu->flags & PPMU_ARCH_207S) &&
542 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
543}
544
545static int ebb_event_check(struct perf_event *event)
546{
547 struct perf_event *leader = event->group_leader;
548
549 /* Event and group leader must agree on EBB */
550 if (is_ebb_event(leader) != is_ebb_event(event))
551 return -EINVAL;
552
553 if (is_ebb_event(event)) {
554 if (!(event->attach_state & PERF_ATTACH_TASK))
555 return -EINVAL;
556
557 if (!leader->attr.pinned || !leader->attr.exclusive)
558 return -EINVAL;
559
560 if (event->attr.freq ||
561 event->attr.inherit ||
562 event->attr.sample_type ||
563 event->attr.sample_period ||
564 event->attr.enable_on_exec)
565 return -EINVAL;
566 }
567
568 return 0;
569}
570
571static void ebb_event_add(struct perf_event *event)
572{
573 if (!is_ebb_event(event) || current->thread.used_ebb)
574 return;
575
576 /*
577 * IFF this is the first time we've added an EBB event, set
578 * PMXE in the user MMCR0 so we can detect when it's cleared by
579 * userspace. We need this so that we can context switch while
580 * userspace is in the EBB handler (where PMXE is 0).
581 */
582 current->thread.used_ebb = 1;
583 current->thread.mmcr0 |= MMCR0_PMXE;
584}
585
586static void ebb_switch_out(unsigned long mmcr0)
587{
588 if (!(mmcr0 & MMCR0_EBE))
589 return;
590
591 current->thread.siar = mfspr(SPRN_SIAR);
592 current->thread.sier = mfspr(SPRN_SIER);
593 current->thread.sdar = mfspr(SPRN_SDAR);
594 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
595 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
596 if (ppmu->flags & PPMU_ARCH_31) {
597 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
598 current->thread.sier2 = mfspr(SPRN_SIER2);
599 current->thread.sier3 = mfspr(SPRN_SIER3);
600 }
601}
602
603static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
604{
605 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
606
607 if (!ebb)
608 goto out;
609
610 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
611 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
612
613 /*
614 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
615 * with pmao_restore_workaround() because we may add PMAO but we never
616 * clear it here.
617 */
618 mmcr0 |= current->thread.mmcr0;
619
620 /*
621 * Be careful not to set PMXE if userspace had it cleared. This is also
622 * compatible with pmao_restore_workaround() because it has already
623 * cleared PMXE and we leave PMAO alone.
624 */
625 if (!(current->thread.mmcr0 & MMCR0_PMXE))
626 mmcr0 &= ~MMCR0_PMXE;
627
628 mtspr(SPRN_SIAR, current->thread.siar);
629 mtspr(SPRN_SIER, current->thread.sier);
630 mtspr(SPRN_SDAR, current->thread.sdar);
631
632 /*
633 * Merge the kernel & user values of MMCR2. The semantics we implement
634 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
635 * but not clear bits. If a task wants to be able to clear bits, ie.
636 * unfreeze counters, it should not set exclude_xxx in its events and
637 * instead manage the MMCR2 entirely by itself.
638 */
639 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
640
641 if (ppmu->flags & PPMU_ARCH_31) {
642 mtspr(SPRN_MMCR3, current->thread.mmcr3);
643 mtspr(SPRN_SIER2, current->thread.sier2);
644 mtspr(SPRN_SIER3, current->thread.sier3);
645 }
646out:
647 return mmcr0;
648}
649
650static void pmao_restore_workaround(bool ebb)
651{
652 unsigned pmcs[6];
653
654 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
655 return;
656
657 /*
658 * On POWER8E there is a hardware defect which affects the PMU context
659 * switch logic, ie. power_pmu_disable/enable().
660 *
661 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
662 * by the hardware. Sometime later the actual PMU exception is
663 * delivered.
664 *
665 * If we context switch, or simply disable/enable, the PMU prior to the
666 * exception arriving, the exception will be lost when we clear PMAO.
667 *
668 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
669 * set, and this _should_ generate an exception. However because of the
670 * defect no exception is generated when we write PMAO, and we get
671 * stuck with no counters counting but no exception delivered.
672 *
673 * The workaround is to detect this case and tweak the hardware to
674 * create another pending PMU exception.
675 *
676 * We do that by setting up PMC6 (cycles) for an imminent overflow and
677 * enabling the PMU. That causes a new exception to be generated in the
678 * chip, but we don't take it yet because we have interrupts hard
679 * disabled. We then write back the PMU state as we want it to be seen
680 * by the exception handler. When we reenable interrupts the exception
681 * handler will be called and see the correct state.
682 *
683 * The logic is the same for EBB, except that the exception is gated by
684 * us having interrupts hard disabled as well as the fact that we are
685 * not in userspace. The exception is finally delivered when we return
686 * to userspace.
687 */
688
689 /* Only if PMAO is set and PMAO_SYNC is clear */
690 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
691 return;
692
693 /* If we're doing EBB, only if BESCR[GE] is set */
694 if (ebb && !(current->thread.bescr & BESCR_GE))
695 return;
696
697 /*
698 * We are already soft-disabled in power_pmu_enable(). We need to hard
699 * disable to actually prevent the PMU exception from firing.
700 */
701 hard_irq_disable();
702
703 /*
704 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
705 * Using read/write_pmc() in a for loop adds 12 function calls and
706 * almost doubles our code size.
707 */
708 pmcs[0] = mfspr(SPRN_PMC1);
709 pmcs[1] = mfspr(SPRN_PMC2);
710 pmcs[2] = mfspr(SPRN_PMC3);
711 pmcs[3] = mfspr(SPRN_PMC4);
712 pmcs[4] = mfspr(SPRN_PMC5);
713 pmcs[5] = mfspr(SPRN_PMC6);
714
715 /* Ensure all freeze bits are unset */
716 mtspr(SPRN_MMCR2, 0);
717
718 /* Set up PMC6 to overflow in one cycle */
719 mtspr(SPRN_PMC6, 0x7FFFFFFE);
720
721 /* Enable exceptions and unfreeze PMC6 */
722 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
723
724 /* Now we need to refreeze and restore the PMCs */
725 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
726
727 mtspr(SPRN_PMC1, pmcs[0]);
728 mtspr(SPRN_PMC2, pmcs[1]);
729 mtspr(SPRN_PMC3, pmcs[2]);
730 mtspr(SPRN_PMC4, pmcs[3]);
731 mtspr(SPRN_PMC5, pmcs[4]);
732 mtspr(SPRN_PMC6, pmcs[5]);
733}
734
735#endif /* CONFIG_PPC64 */
736
737static void perf_event_interrupt(struct pt_regs *regs);
738
739/*
740 * Read one performance monitor counter (PMC).
741 */
742static unsigned long read_pmc(int idx)
743{
744 unsigned long val;
745
746 switch (idx) {
747 case 1:
748 val = mfspr(SPRN_PMC1);
749 break;
750 case 2:
751 val = mfspr(SPRN_PMC2);
752 break;
753 case 3:
754 val = mfspr(SPRN_PMC3);
755 break;
756 case 4:
757 val = mfspr(SPRN_PMC4);
758 break;
759 case 5:
760 val = mfspr(SPRN_PMC5);
761 break;
762 case 6:
763 val = mfspr(SPRN_PMC6);
764 break;
765#ifdef CONFIG_PPC64
766 case 7:
767 val = mfspr(SPRN_PMC7);
768 break;
769 case 8:
770 val = mfspr(SPRN_PMC8);
771 break;
772#endif /* CONFIG_PPC64 */
773 default:
774 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
775 val = 0;
776 }
777 return val;
778}
779
780/*
781 * Write one PMC.
782 */
783static void write_pmc(int idx, unsigned long val)
784{
785 switch (idx) {
786 case 1:
787 mtspr(SPRN_PMC1, val);
788 break;
789 case 2:
790 mtspr(SPRN_PMC2, val);
791 break;
792 case 3:
793 mtspr(SPRN_PMC3, val);
794 break;
795 case 4:
796 mtspr(SPRN_PMC4, val);
797 break;
798 case 5:
799 mtspr(SPRN_PMC5, val);
800 break;
801 case 6:
802 mtspr(SPRN_PMC6, val);
803 break;
804#ifdef CONFIG_PPC64
805 case 7:
806 mtspr(SPRN_PMC7, val);
807 break;
808 case 8:
809 mtspr(SPRN_PMC8, val);
810 break;
811#endif /* CONFIG_PPC64 */
812 default:
813 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
814 }
815}
816
817/* Called from sysrq_handle_showregs() */
818void perf_event_print_debug(void)
819{
820 unsigned long sdar, sier, flags;
821 u32 pmcs[MAX_HWEVENTS];
822 int i;
823
824 if (!ppmu) {
825 pr_info("Performance monitor hardware not registered.\n");
826 return;
827 }
828
829 if (!ppmu->n_counter)
830 return;
831
832 local_irq_save(flags);
833
834 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
835 smp_processor_id(), ppmu->name, ppmu->n_counter);
836
837 for (i = 0; i < ppmu->n_counter; i++)
838 pmcs[i] = read_pmc(i + 1);
839
840 for (; i < MAX_HWEVENTS; i++)
841 pmcs[i] = 0xdeadbeef;
842
843 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
844 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
845
846 if (ppmu->n_counter > 4)
847 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
848 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
849
850 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
851 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
852
853 sdar = sier = 0;
854#ifdef CONFIG_PPC64
855 sdar = mfspr(SPRN_SDAR);
856
857 if (ppmu->flags & PPMU_HAS_SIER)
858 sier = mfspr(SPRN_SIER);
859
860 if (ppmu->flags & PPMU_ARCH_207S) {
861 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
862 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
863 pr_info("EBBRR: %016lx BESCR: %016lx\n",
864 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
865 }
866
867 if (ppmu->flags & PPMU_ARCH_31) {
868 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
869 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
870 }
871#endif
872 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
873 mfspr(SPRN_SIAR), sdar, sier);
874
875 local_irq_restore(flags);
876}
877
878/*
879 * Check if a set of events can all go on the PMU at once.
880 * If they can't, this will look at alternative codes for the events
881 * and see if any combination of alternative codes is feasible.
882 * The feasible set is returned in event_id[].
883 */
884static int power_check_constraints(struct cpu_hw_events *cpuhw,
885 u64 event_id[], unsigned int cflags[],
886 int n_ev)
887{
888 unsigned long mask, value, nv;
889 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
890 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
891 int i, j;
892 unsigned long addf = ppmu->add_fields;
893 unsigned long tadd = ppmu->test_adder;
894 unsigned long grp_mask = ppmu->group_constraint_mask;
895 unsigned long grp_val = ppmu->group_constraint_val;
896
897 if (n_ev > ppmu->n_counter)
898 return -1;
899
900 /* First see if the events will go on as-is */
901 for (i = 0; i < n_ev; ++i) {
902 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
903 && !ppmu->limited_pmc_event(event_id[i])) {
904 ppmu->get_alternatives(event_id[i], cflags[i],
905 cpuhw->alternatives[i]);
906 event_id[i] = cpuhw->alternatives[i][0];
907 }
908 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
909 &cpuhw->avalues[i][0]))
910 return -1;
911 }
912 value = mask = 0;
913 for (i = 0; i < n_ev; ++i) {
914 nv = (value | cpuhw->avalues[i][0]) +
915 (value & cpuhw->avalues[i][0] & addf);
916
917 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
918 break;
919
920 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
921 & (~grp_mask)) != 0)
922 break;
923
924 value = nv;
925 mask |= cpuhw->amasks[i][0];
926 }
927 if (i == n_ev) {
928 if ((value & mask & grp_mask) != (mask & grp_val))
929 return -1;
930 else
931 return 0; /* all OK */
932 }
933
934 /* doesn't work, gather alternatives... */
935 if (!ppmu->get_alternatives)
936 return -1;
937 for (i = 0; i < n_ev; ++i) {
938 choice[i] = 0;
939 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
940 cpuhw->alternatives[i]);
941 for (j = 1; j < n_alt[i]; ++j)
942 ppmu->get_constraint(cpuhw->alternatives[i][j],
943 &cpuhw->amasks[i][j],
944 &cpuhw->avalues[i][j]);
945 }
946
947 /* enumerate all possibilities and see if any will work */
948 i = 0;
949 j = -1;
950 value = mask = nv = 0;
951 while (i < n_ev) {
952 if (j >= 0) {
953 /* we're backtracking, restore context */
954 value = svalues[i];
955 mask = smasks[i];
956 j = choice[i];
957 }
958 /*
959 * See if any alternative k for event_id i,
960 * where k > j, will satisfy the constraints.
961 */
962 while (++j < n_alt[i]) {
963 nv = (value | cpuhw->avalues[i][j]) +
964 (value & cpuhw->avalues[i][j] & addf);
965 if ((((nv + tadd) ^ value) & mask) == 0 &&
966 (((nv + tadd) ^ cpuhw->avalues[i][j])
967 & cpuhw->amasks[i][j]) == 0)
968 break;
969 }
970 if (j >= n_alt[i]) {
971 /*
972 * No feasible alternative, backtrack
973 * to event_id i-1 and continue enumerating its
974 * alternatives from where we got up to.
975 */
976 if (--i < 0)
977 return -1;
978 } else {
979 /*
980 * Found a feasible alternative for event_id i,
981 * remember where we got up to with this event_id,
982 * go on to the next event_id, and start with
983 * the first alternative for it.
984 */
985 choice[i] = j;
986 svalues[i] = value;
987 smasks[i] = mask;
988 value = nv;
989 mask |= cpuhw->amasks[i][j];
990 ++i;
991 j = -1;
992 }
993 }
994
995 /* OK, we have a feasible combination, tell the caller the solution */
996 for (i = 0; i < n_ev; ++i)
997 event_id[i] = cpuhw->alternatives[i][choice[i]];
998 return 0;
999}
1000
1001/*
1002 * Check if newly-added events have consistent settings for
1003 * exclude_{user,kernel,hv} with each other and any previously
1004 * added events.
1005 */
1006static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1007 int n_prev, int n_new)
1008{
1009 int eu = 0, ek = 0, eh = 0;
1010 int i, n, first;
1011 struct perf_event *event;
1012
1013 /*
1014 * If the PMU we're on supports per event exclude settings then we
1015 * don't need to do any of this logic. NB. This assumes no PMU has both
1016 * per event exclude and limited PMCs.
1017 */
1018 if (ppmu->flags & PPMU_ARCH_207S)
1019 return 0;
1020
1021 n = n_prev + n_new;
1022 if (n <= 1)
1023 return 0;
1024
1025 first = 1;
1026 for (i = 0; i < n; ++i) {
1027 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1028 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1029 continue;
1030 }
1031 event = ctrs[i];
1032 if (first) {
1033 eu = event->attr.exclude_user;
1034 ek = event->attr.exclude_kernel;
1035 eh = event->attr.exclude_hv;
1036 first = 0;
1037 } else if (event->attr.exclude_user != eu ||
1038 event->attr.exclude_kernel != ek ||
1039 event->attr.exclude_hv != eh) {
1040 return -EAGAIN;
1041 }
1042 }
1043
1044 if (eu || ek || eh)
1045 for (i = 0; i < n; ++i)
1046 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1047 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1048
1049 return 0;
1050}
1051
1052static u64 check_and_compute_delta(u64 prev, u64 val)
1053{
1054 u64 delta = (val - prev) & 0xfffffffful;
1055
1056 /*
1057 * POWER7 can roll back counter values, if the new value is smaller
1058 * than the previous value it will cause the delta and the counter to
1059 * have bogus values unless we rolled a counter over. If a coutner is
1060 * rolled back, it will be smaller, but within 256, which is the maximum
1061 * number of events to rollback at once. If we detect a rollback
1062 * return 0. This can lead to a small lack of precision in the
1063 * counters.
1064 */
1065 if (prev > val && (prev - val) < 256)
1066 delta = 0;
1067
1068 return delta;
1069}
1070
1071static void power_pmu_read(struct perf_event *event)
1072{
1073 s64 val, delta, prev;
1074
1075 if (event->hw.state & PERF_HES_STOPPED)
1076 return;
1077
1078 if (!event->hw.idx)
1079 return;
1080
1081 if (is_ebb_event(event)) {
1082 val = read_pmc(event->hw.idx);
1083 local64_set(&event->hw.prev_count, val);
1084 return;
1085 }
1086
1087 /*
1088 * Performance monitor interrupts come even when interrupts
1089 * are soft-disabled, as long as interrupts are hard-enabled.
1090 * Therefore we treat them like NMIs.
1091 */
1092 do {
1093 prev = local64_read(&event->hw.prev_count);
1094 barrier();
1095 val = read_pmc(event->hw.idx);
1096 delta = check_and_compute_delta(prev, val);
1097 if (!delta)
1098 return;
1099 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1100
1101 local64_add(delta, &event->count);
1102
1103 /*
1104 * A number of places program the PMC with (0x80000000 - period_left).
1105 * We never want period_left to be less than 1 because we will program
1106 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1107 * roll around to 0 before taking an exception. We have seen this
1108 * on POWER8.
1109 *
1110 * To fix this, clamp the minimum value of period_left to 1.
1111 */
1112 do {
1113 prev = local64_read(&event->hw.period_left);
1114 val = prev - delta;
1115 if (val < 1)
1116 val = 1;
1117 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1118}
1119
1120/*
1121 * On some machines, PMC5 and PMC6 can't be written, don't respect
1122 * the freeze conditions, and don't generate interrupts. This tells
1123 * us if `event' is using such a PMC.
1124 */
1125static int is_limited_pmc(int pmcnum)
1126{
1127 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1128 && (pmcnum == 5 || pmcnum == 6);
1129}
1130
1131static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1132 unsigned long pmc5, unsigned long pmc6)
1133{
1134 struct perf_event *event;
1135 u64 val, prev, delta;
1136 int i;
1137
1138 for (i = 0; i < cpuhw->n_limited; ++i) {
1139 event = cpuhw->limited_counter[i];
1140 if (!event->hw.idx)
1141 continue;
1142 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1143 prev = local64_read(&event->hw.prev_count);
1144 event->hw.idx = 0;
1145 delta = check_and_compute_delta(prev, val);
1146 if (delta)
1147 local64_add(delta, &event->count);
1148 }
1149}
1150
1151static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1152 unsigned long pmc5, unsigned long pmc6)
1153{
1154 struct perf_event *event;
1155 u64 val, prev;
1156 int i;
1157
1158 for (i = 0; i < cpuhw->n_limited; ++i) {
1159 event = cpuhw->limited_counter[i];
1160 event->hw.idx = cpuhw->limited_hwidx[i];
1161 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1162 prev = local64_read(&event->hw.prev_count);
1163 if (check_and_compute_delta(prev, val))
1164 local64_set(&event->hw.prev_count, val);
1165 perf_event_update_userpage(event);
1166 }
1167}
1168
1169/*
1170 * Since limited events don't respect the freeze conditions, we
1171 * have to read them immediately after freezing or unfreezing the
1172 * other events. We try to keep the values from the limited
1173 * events as consistent as possible by keeping the delay (in
1174 * cycles and instructions) between freezing/unfreezing and reading
1175 * the limited events as small and consistent as possible.
1176 * Therefore, if any limited events are in use, we read them
1177 * both, and always in the same order, to minimize variability,
1178 * and do it inside the same asm that writes MMCR0.
1179 */
1180static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1181{
1182 unsigned long pmc5, pmc6;
1183
1184 if (!cpuhw->n_limited) {
1185 mtspr(SPRN_MMCR0, mmcr0);
1186 return;
1187 }
1188
1189 /*
1190 * Write MMCR0, then read PMC5 and PMC6 immediately.
1191 * To ensure we don't get a performance monitor interrupt
1192 * between writing MMCR0 and freezing/thawing the limited
1193 * events, we first write MMCR0 with the event overflow
1194 * interrupt enable bits turned off.
1195 */
1196 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1197 : "=&r" (pmc5), "=&r" (pmc6)
1198 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1199 "i" (SPRN_MMCR0),
1200 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1201
1202 if (mmcr0 & MMCR0_FC)
1203 freeze_limited_counters(cpuhw, pmc5, pmc6);
1204 else
1205 thaw_limited_counters(cpuhw, pmc5, pmc6);
1206
1207 /*
1208 * Write the full MMCR0 including the event overflow interrupt
1209 * enable bits, if necessary.
1210 */
1211 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1212 mtspr(SPRN_MMCR0, mmcr0);
1213}
1214
1215/*
1216 * Disable all events to prevent PMU interrupts and to allow
1217 * events to be added or removed.
1218 */
1219static void power_pmu_disable(struct pmu *pmu)
1220{
1221 struct cpu_hw_events *cpuhw;
1222 unsigned long flags, mmcr0, val, mmcra;
1223
1224 if (!ppmu)
1225 return;
1226 local_irq_save(flags);
1227 cpuhw = this_cpu_ptr(&cpu_hw_events);
1228
1229 if (!cpuhw->disabled) {
1230 /*
1231 * Check if we ever enabled the PMU on this cpu.
1232 */
1233 if (!cpuhw->pmcs_enabled) {
1234 ppc_enable_pmcs();
1235 cpuhw->pmcs_enabled = 1;
1236 }
1237
1238 /*
1239 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1240 */
1241 val = mmcr0 = mfspr(SPRN_MMCR0);
1242 val |= MMCR0_FC;
1243 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1244 MMCR0_FC56);
1245
1246 /*
1247 * The barrier is to make sure the mtspr has been
1248 * executed and the PMU has frozen the events etc.
1249 * before we return.
1250 */
1251 write_mmcr0(cpuhw, val);
1252 mb();
1253 isync();
1254
1255 val = mmcra = cpuhw->mmcr.mmcra;
1256
1257 /*
1258 * Disable instruction sampling if it was enabled
1259 */
1260 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1261 val &= ~MMCRA_SAMPLE_ENABLE;
1262
1263 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1264 if (ppmu->flags & PPMU_ARCH_31)
1265 val |= MMCRA_BHRB_DISABLE;
1266
1267 /*
1268 * Write SPRN_MMCRA if mmcra has either disabled
1269 * instruction sampling or BHRB.
1270 */
1271 if (val != mmcra) {
1272 mtspr(SPRN_MMCRA, mmcra);
1273 mb();
1274 isync();
1275 }
1276
1277 cpuhw->disabled = 1;
1278 cpuhw->n_added = 0;
1279
1280 ebb_switch_out(mmcr0);
1281
1282#ifdef CONFIG_PPC64
1283 /*
1284 * These are readable by userspace, may contain kernel
1285 * addresses and are not switched by context switch, so clear
1286 * them now to avoid leaking anything to userspace in general
1287 * including to another process.
1288 */
1289 if (ppmu->flags & PPMU_ARCH_207S) {
1290 mtspr(SPRN_SDAR, 0);
1291 mtspr(SPRN_SIAR, 0);
1292 }
1293#endif
1294 }
1295
1296 local_irq_restore(flags);
1297}
1298
1299/*
1300 * Re-enable all events if disable == 0.
1301 * If we were previously disabled and events were added, then
1302 * put the new config on the PMU.
1303 */
1304static void power_pmu_enable(struct pmu *pmu)
1305{
1306 struct perf_event *event;
1307 struct cpu_hw_events *cpuhw;
1308 unsigned long flags;
1309 long i;
1310 unsigned long val, mmcr0;
1311 s64 left;
1312 unsigned int hwc_index[MAX_HWEVENTS];
1313 int n_lim;
1314 int idx;
1315 bool ebb;
1316
1317 if (!ppmu)
1318 return;
1319 local_irq_save(flags);
1320
1321 cpuhw = this_cpu_ptr(&cpu_hw_events);
1322 if (!cpuhw->disabled)
1323 goto out;
1324
1325 if (cpuhw->n_events == 0) {
1326 ppc_set_pmu_inuse(0);
1327 goto out;
1328 }
1329
1330 cpuhw->disabled = 0;
1331
1332 /*
1333 * EBB requires an exclusive group and all events must have the EBB
1334 * flag set, or not set, so we can just check a single event. Also we
1335 * know we have at least one event.
1336 */
1337 ebb = is_ebb_event(cpuhw->event[0]);
1338
1339 /*
1340 * If we didn't change anything, or only removed events,
1341 * no need to recalculate MMCR* settings and reset the PMCs.
1342 * Just reenable the PMU with the current MMCR* settings
1343 * (possibly updated for removal of events).
1344 */
1345 if (!cpuhw->n_added) {
1346 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1347 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1348 if (ppmu->flags & PPMU_ARCH_31)
1349 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1350 goto out_enable;
1351 }
1352
1353 /*
1354 * Clear all MMCR settings and recompute them for the new set of events.
1355 */
1356 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1357
1358 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1359 &cpuhw->mmcr, cpuhw->event)) {
1360 /* shouldn't ever get here */
1361 printk(KERN_ERR "oops compute_mmcr failed\n");
1362 goto out;
1363 }
1364
1365 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1366 /*
1367 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1368 * bits for the first event. We have already checked that all
1369 * events have the same value for these bits as the first event.
1370 */
1371 event = cpuhw->event[0];
1372 if (event->attr.exclude_user)
1373 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1374 if (event->attr.exclude_kernel)
1375 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1376 if (event->attr.exclude_hv)
1377 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1378 }
1379
1380 /*
1381 * Write the new configuration to MMCR* with the freeze
1382 * bit set and set the hardware events to their initial values.
1383 * Then unfreeze the events.
1384 */
1385 ppc_set_pmu_inuse(1);
1386 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1387 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1388 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1389 | MMCR0_FC);
1390 if (ppmu->flags & PPMU_ARCH_207S)
1391 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1392
1393 if (ppmu->flags & PPMU_ARCH_31)
1394 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1395
1396 /*
1397 * Read off any pre-existing events that need to move
1398 * to another PMC.
1399 */
1400 for (i = 0; i < cpuhw->n_events; ++i) {
1401 event = cpuhw->event[i];
1402 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1403 power_pmu_read(event);
1404 write_pmc(event->hw.idx, 0);
1405 event->hw.idx = 0;
1406 }
1407 }
1408
1409 /*
1410 * Initialize the PMCs for all the new and moved events.
1411 */
1412 cpuhw->n_limited = n_lim = 0;
1413 for (i = 0; i < cpuhw->n_events; ++i) {
1414 event = cpuhw->event[i];
1415 if (event->hw.idx)
1416 continue;
1417 idx = hwc_index[i] + 1;
1418 if (is_limited_pmc(idx)) {
1419 cpuhw->limited_counter[n_lim] = event;
1420 cpuhw->limited_hwidx[n_lim] = idx;
1421 ++n_lim;
1422 continue;
1423 }
1424
1425 if (ebb)
1426 val = local64_read(&event->hw.prev_count);
1427 else {
1428 val = 0;
1429 if (event->hw.sample_period) {
1430 left = local64_read(&event->hw.period_left);
1431 if (left < 0x80000000L)
1432 val = 0x80000000L - left;
1433 }
1434 local64_set(&event->hw.prev_count, val);
1435 }
1436
1437 event->hw.idx = idx;
1438 if (event->hw.state & PERF_HES_STOPPED)
1439 val = 0;
1440 write_pmc(idx, val);
1441
1442 perf_event_update_userpage(event);
1443 }
1444 cpuhw->n_limited = n_lim;
1445 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1446
1447 out_enable:
1448 pmao_restore_workaround(ebb);
1449
1450 mmcr0 = ebb_switch_in(ebb, cpuhw);
1451
1452 mb();
1453 if (cpuhw->bhrb_users)
1454 ppmu->config_bhrb(cpuhw->bhrb_filter);
1455
1456 write_mmcr0(cpuhw, mmcr0);
1457
1458 /*
1459 * Enable instruction sampling if necessary
1460 */
1461 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1462 mb();
1463 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1464 }
1465
1466 out:
1467
1468 local_irq_restore(flags);
1469}
1470
1471static int collect_events(struct perf_event *group, int max_count,
1472 struct perf_event *ctrs[], u64 *events,
1473 unsigned int *flags)
1474{
1475 int n = 0;
1476 struct perf_event *event;
1477
1478 if (group->pmu->task_ctx_nr == perf_hw_context) {
1479 if (n >= max_count)
1480 return -1;
1481 ctrs[n] = group;
1482 flags[n] = group->hw.event_base;
1483 events[n++] = group->hw.config;
1484 }
1485 for_each_sibling_event(event, group) {
1486 if (event->pmu->task_ctx_nr == perf_hw_context &&
1487 event->state != PERF_EVENT_STATE_OFF) {
1488 if (n >= max_count)
1489 return -1;
1490 ctrs[n] = event;
1491 flags[n] = event->hw.event_base;
1492 events[n++] = event->hw.config;
1493 }
1494 }
1495 return n;
1496}
1497
1498/*
1499 * Add an event to the PMU.
1500 * If all events are not already frozen, then we disable and
1501 * re-enable the PMU in order to get hw_perf_enable to do the
1502 * actual work of reconfiguring the PMU.
1503 */
1504static int power_pmu_add(struct perf_event *event, int ef_flags)
1505{
1506 struct cpu_hw_events *cpuhw;
1507 unsigned long flags;
1508 int n0;
1509 int ret = -EAGAIN;
1510
1511 local_irq_save(flags);
1512 perf_pmu_disable(event->pmu);
1513
1514 /*
1515 * Add the event to the list (if there is room)
1516 * and check whether the total set is still feasible.
1517 */
1518 cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 n0 = cpuhw->n_events;
1520 if (n0 >= ppmu->n_counter)
1521 goto out;
1522 cpuhw->event[n0] = event;
1523 cpuhw->events[n0] = event->hw.config;
1524 cpuhw->flags[n0] = event->hw.event_base;
1525
1526 /*
1527 * This event may have been disabled/stopped in record_and_restart()
1528 * because we exceeded the ->event_limit. If re-starting the event,
1529 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1530 * notification is re-enabled.
1531 */
1532 if (!(ef_flags & PERF_EF_START))
1533 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1534 else
1535 event->hw.state = 0;
1536
1537 /*
1538 * If group events scheduling transaction was started,
1539 * skip the schedulability test here, it will be performed
1540 * at commit time(->commit_txn) as a whole
1541 */
1542 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1543 goto nocheck;
1544
1545 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1546 goto out;
1547 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1548 goto out;
1549 event->hw.config = cpuhw->events[n0];
1550
1551nocheck:
1552 ebb_event_add(event);
1553
1554 ++cpuhw->n_events;
1555 ++cpuhw->n_added;
1556
1557 ret = 0;
1558 out:
1559 if (has_branch_stack(event)) {
1560 u64 bhrb_filter = -1;
1561
1562 if (ppmu->bhrb_filter_map)
1563 bhrb_filter = ppmu->bhrb_filter_map(
1564 event->attr.branch_sample_type);
1565
1566 if (bhrb_filter != -1) {
1567 cpuhw->bhrb_filter = bhrb_filter;
1568 power_pmu_bhrb_enable(event);
1569 }
1570 }
1571
1572 perf_pmu_enable(event->pmu);
1573 local_irq_restore(flags);
1574 return ret;
1575}
1576
1577/*
1578 * Remove an event from the PMU.
1579 */
1580static void power_pmu_del(struct perf_event *event, int ef_flags)
1581{
1582 struct cpu_hw_events *cpuhw;
1583 long i;
1584 unsigned long flags;
1585
1586 local_irq_save(flags);
1587 perf_pmu_disable(event->pmu);
1588
1589 power_pmu_read(event);
1590
1591 cpuhw = this_cpu_ptr(&cpu_hw_events);
1592 for (i = 0; i < cpuhw->n_events; ++i) {
1593 if (event == cpuhw->event[i]) {
1594 while (++i < cpuhw->n_events) {
1595 cpuhw->event[i-1] = cpuhw->event[i];
1596 cpuhw->events[i-1] = cpuhw->events[i];
1597 cpuhw->flags[i-1] = cpuhw->flags[i];
1598 }
1599 --cpuhw->n_events;
1600 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1601 if (event->hw.idx) {
1602 write_pmc(event->hw.idx, 0);
1603 event->hw.idx = 0;
1604 }
1605 perf_event_update_userpage(event);
1606 break;
1607 }
1608 }
1609 for (i = 0; i < cpuhw->n_limited; ++i)
1610 if (event == cpuhw->limited_counter[i])
1611 break;
1612 if (i < cpuhw->n_limited) {
1613 while (++i < cpuhw->n_limited) {
1614 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1615 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1616 }
1617 --cpuhw->n_limited;
1618 }
1619 if (cpuhw->n_events == 0) {
1620 /* disable exceptions if no events are running */
1621 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1622 }
1623
1624 if (has_branch_stack(event))
1625 power_pmu_bhrb_disable(event);
1626
1627 perf_pmu_enable(event->pmu);
1628 local_irq_restore(flags);
1629}
1630
1631/*
1632 * POWER-PMU does not support disabling individual counters, hence
1633 * program their cycle counter to their max value and ignore the interrupts.
1634 */
1635
1636static void power_pmu_start(struct perf_event *event, int ef_flags)
1637{
1638 unsigned long flags;
1639 s64 left;
1640 unsigned long val;
1641
1642 if (!event->hw.idx || !event->hw.sample_period)
1643 return;
1644
1645 if (!(event->hw.state & PERF_HES_STOPPED))
1646 return;
1647
1648 if (ef_flags & PERF_EF_RELOAD)
1649 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1650
1651 local_irq_save(flags);
1652 perf_pmu_disable(event->pmu);
1653
1654 event->hw.state = 0;
1655 left = local64_read(&event->hw.period_left);
1656
1657 val = 0;
1658 if (left < 0x80000000L)
1659 val = 0x80000000L - left;
1660
1661 write_pmc(event->hw.idx, val);
1662
1663 perf_event_update_userpage(event);
1664 perf_pmu_enable(event->pmu);
1665 local_irq_restore(flags);
1666}
1667
1668static void power_pmu_stop(struct perf_event *event, int ef_flags)
1669{
1670 unsigned long flags;
1671
1672 if (!event->hw.idx || !event->hw.sample_period)
1673 return;
1674
1675 if (event->hw.state & PERF_HES_STOPPED)
1676 return;
1677
1678 local_irq_save(flags);
1679 perf_pmu_disable(event->pmu);
1680
1681 power_pmu_read(event);
1682 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1683 write_pmc(event->hw.idx, 0);
1684
1685 perf_event_update_userpage(event);
1686 perf_pmu_enable(event->pmu);
1687 local_irq_restore(flags);
1688}
1689
1690/*
1691 * Start group events scheduling transaction
1692 * Set the flag to make pmu::enable() not perform the
1693 * schedulability test, it will be performed at commit time
1694 *
1695 * We only support PERF_PMU_TXN_ADD transactions. Save the
1696 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1697 * transactions.
1698 */
1699static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1700{
1701 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1702
1703 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1704
1705 cpuhw->txn_flags = txn_flags;
1706 if (txn_flags & ~PERF_PMU_TXN_ADD)
1707 return;
1708
1709 perf_pmu_disable(pmu);
1710 cpuhw->n_txn_start = cpuhw->n_events;
1711}
1712
1713/*
1714 * Stop group events scheduling transaction
1715 * Clear the flag and pmu::enable() will perform the
1716 * schedulability test.
1717 */
1718static void power_pmu_cancel_txn(struct pmu *pmu)
1719{
1720 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1721 unsigned int txn_flags;
1722
1723 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1724
1725 txn_flags = cpuhw->txn_flags;
1726 cpuhw->txn_flags = 0;
1727 if (txn_flags & ~PERF_PMU_TXN_ADD)
1728 return;
1729
1730 perf_pmu_enable(pmu);
1731}
1732
1733/*
1734 * Commit group events scheduling transaction
1735 * Perform the group schedulability test as a whole
1736 * Return 0 if success
1737 */
1738static int power_pmu_commit_txn(struct pmu *pmu)
1739{
1740 struct cpu_hw_events *cpuhw;
1741 long i, n;
1742
1743 if (!ppmu)
1744 return -EAGAIN;
1745
1746 cpuhw = this_cpu_ptr(&cpu_hw_events);
1747 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1748
1749 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1750 cpuhw->txn_flags = 0;
1751 return 0;
1752 }
1753
1754 n = cpuhw->n_events;
1755 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1756 return -EAGAIN;
1757 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1758 if (i < 0)
1759 return -EAGAIN;
1760
1761 for (i = cpuhw->n_txn_start; i < n; ++i)
1762 cpuhw->event[i]->hw.config = cpuhw->events[i];
1763
1764 cpuhw->txn_flags = 0;
1765 perf_pmu_enable(pmu);
1766 return 0;
1767}
1768
1769/*
1770 * Return 1 if we might be able to put event on a limited PMC,
1771 * or 0 if not.
1772 * An event can only go on a limited PMC if it counts something
1773 * that a limited PMC can count, doesn't require interrupts, and
1774 * doesn't exclude any processor mode.
1775 */
1776static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1777 unsigned int flags)
1778{
1779 int n;
1780 u64 alt[MAX_EVENT_ALTERNATIVES];
1781
1782 if (event->attr.exclude_user
1783 || event->attr.exclude_kernel
1784 || event->attr.exclude_hv
1785 || event->attr.sample_period)
1786 return 0;
1787
1788 if (ppmu->limited_pmc_event(ev))
1789 return 1;
1790
1791 /*
1792 * The requested event_id isn't on a limited PMC already;
1793 * see if any alternative code goes on a limited PMC.
1794 */
1795 if (!ppmu->get_alternatives)
1796 return 0;
1797
1798 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1799 n = ppmu->get_alternatives(ev, flags, alt);
1800
1801 return n > 0;
1802}
1803
1804/*
1805 * Find an alternative event_id that goes on a normal PMC, if possible,
1806 * and return the event_id code, or 0 if there is no such alternative.
1807 * (Note: event_id code 0 is "don't count" on all machines.)
1808 */
1809static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1810{
1811 u64 alt[MAX_EVENT_ALTERNATIVES];
1812 int n;
1813
1814 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1815 n = ppmu->get_alternatives(ev, flags, alt);
1816 if (!n)
1817 return 0;
1818 return alt[0];
1819}
1820
1821/* Number of perf_events counting hardware events */
1822static atomic_t num_events;
1823/* Used to avoid races in calling reserve/release_pmc_hardware */
1824static DEFINE_MUTEX(pmc_reserve_mutex);
1825
1826/*
1827 * Release the PMU if this is the last perf_event.
1828 */
1829static void hw_perf_event_destroy(struct perf_event *event)
1830{
1831 if (!atomic_add_unless(&num_events, -1, 1)) {
1832 mutex_lock(&pmc_reserve_mutex);
1833 if (atomic_dec_return(&num_events) == 0)
1834 release_pmc_hardware();
1835 mutex_unlock(&pmc_reserve_mutex);
1836 }
1837}
1838
1839/*
1840 * Translate a generic cache event_id config to a raw event_id code.
1841 */
1842static int hw_perf_cache_event(u64 config, u64 *eventp)
1843{
1844 unsigned long type, op, result;
1845 u64 ev;
1846
1847 if (!ppmu->cache_events)
1848 return -EINVAL;
1849
1850 /* unpack config */
1851 type = config & 0xff;
1852 op = (config >> 8) & 0xff;
1853 result = (config >> 16) & 0xff;
1854
1855 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1856 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1857 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1858 return -EINVAL;
1859
1860 ev = (*ppmu->cache_events)[type][op][result];
1861 if (ev == 0)
1862 return -EOPNOTSUPP;
1863 if (ev == -1)
1864 return -EINVAL;
1865 *eventp = ev;
1866 return 0;
1867}
1868
1869static bool is_event_blacklisted(u64 ev)
1870{
1871 int i;
1872
1873 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1874 if (ppmu->blacklist_ev[i] == ev)
1875 return true;
1876 }
1877
1878 return false;
1879}
1880
1881static int power_pmu_event_init(struct perf_event *event)
1882{
1883 u64 ev;
1884 unsigned long flags;
1885 struct perf_event *ctrs[MAX_HWEVENTS];
1886 u64 events[MAX_HWEVENTS];
1887 unsigned int cflags[MAX_HWEVENTS];
1888 int n;
1889 int err;
1890 struct cpu_hw_events *cpuhw;
1891
1892 if (!ppmu)
1893 return -ENOENT;
1894
1895 if (has_branch_stack(event)) {
1896 /* PMU has BHRB enabled */
1897 if (!(ppmu->flags & PPMU_ARCH_207S))
1898 return -EOPNOTSUPP;
1899 }
1900
1901 switch (event->attr.type) {
1902 case PERF_TYPE_HARDWARE:
1903 ev = event->attr.config;
1904 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1905 return -EOPNOTSUPP;
1906
1907 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1908 return -EINVAL;
1909 ev = ppmu->generic_events[ev];
1910 break;
1911 case PERF_TYPE_HW_CACHE:
1912 err = hw_perf_cache_event(event->attr.config, &ev);
1913 if (err)
1914 return err;
1915
1916 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1917 return -EINVAL;
1918 break;
1919 case PERF_TYPE_RAW:
1920 ev = event->attr.config;
1921
1922 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1923 return -EINVAL;
1924 break;
1925 default:
1926 return -ENOENT;
1927 }
1928
1929 event->hw.config_base = ev;
1930 event->hw.idx = 0;
1931
1932 /*
1933 * If we are not running on a hypervisor, force the
1934 * exclude_hv bit to 0 so that we don't care what
1935 * the user set it to.
1936 */
1937 if (!firmware_has_feature(FW_FEATURE_LPAR))
1938 event->attr.exclude_hv = 0;
1939
1940 /*
1941 * If this is a per-task event, then we can use
1942 * PM_RUN_* events interchangeably with their non RUN_*
1943 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1944 * XXX we should check if the task is an idle task.
1945 */
1946 flags = 0;
1947 if (event->attach_state & PERF_ATTACH_TASK)
1948 flags |= PPMU_ONLY_COUNT_RUN;
1949
1950 /*
1951 * If this machine has limited events, check whether this
1952 * event_id could go on a limited event.
1953 */
1954 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1955 if (can_go_on_limited_pmc(event, ev, flags)) {
1956 flags |= PPMU_LIMITED_PMC_OK;
1957 } else if (ppmu->limited_pmc_event(ev)) {
1958 /*
1959 * The requested event_id is on a limited PMC,
1960 * but we can't use a limited PMC; see if any
1961 * alternative goes on a normal PMC.
1962 */
1963 ev = normal_pmc_alternative(ev, flags);
1964 if (!ev)
1965 return -EINVAL;
1966 }
1967 }
1968
1969 /* Extra checks for EBB */
1970 err = ebb_event_check(event);
1971 if (err)
1972 return err;
1973
1974 /*
1975 * If this is in a group, check if it can go on with all the
1976 * other hardware events in the group. We assume the event
1977 * hasn't been linked into its leader's sibling list at this point.
1978 */
1979 n = 0;
1980 if (event->group_leader != event) {
1981 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1982 ctrs, events, cflags);
1983 if (n < 0)
1984 return -EINVAL;
1985 }
1986 events[n] = ev;
1987 ctrs[n] = event;
1988 cflags[n] = flags;
1989 if (check_excludes(ctrs, cflags, n, 1))
1990 return -EINVAL;
1991
1992 cpuhw = &get_cpu_var(cpu_hw_events);
1993 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1994
1995 if (has_branch_stack(event)) {
1996 u64 bhrb_filter = -1;
1997
1998 if (ppmu->bhrb_filter_map)
1999 bhrb_filter = ppmu->bhrb_filter_map(
2000 event->attr.branch_sample_type);
2001
2002 if (bhrb_filter == -1) {
2003 put_cpu_var(cpu_hw_events);
2004 return -EOPNOTSUPP;
2005 }
2006 cpuhw->bhrb_filter = bhrb_filter;
2007 }
2008
2009 put_cpu_var(cpu_hw_events);
2010 if (err)
2011 return -EINVAL;
2012
2013 event->hw.config = events[n];
2014 event->hw.event_base = cflags[n];
2015 event->hw.last_period = event->hw.sample_period;
2016 local64_set(&event->hw.period_left, event->hw.last_period);
2017
2018 /*
2019 * For EBB events we just context switch the PMC value, we don't do any
2020 * of the sample_period logic. We use hw.prev_count for this.
2021 */
2022 if (is_ebb_event(event))
2023 local64_set(&event->hw.prev_count, 0);
2024
2025 /*
2026 * See if we need to reserve the PMU.
2027 * If no events are currently in use, then we have to take a
2028 * mutex to ensure that we don't race with another task doing
2029 * reserve_pmc_hardware or release_pmc_hardware.
2030 */
2031 err = 0;
2032 if (!atomic_inc_not_zero(&num_events)) {
2033 mutex_lock(&pmc_reserve_mutex);
2034 if (atomic_read(&num_events) == 0 &&
2035 reserve_pmc_hardware(perf_event_interrupt))
2036 err = -EBUSY;
2037 else
2038 atomic_inc(&num_events);
2039 mutex_unlock(&pmc_reserve_mutex);
2040 }
2041 event->destroy = hw_perf_event_destroy;
2042
2043 return err;
2044}
2045
2046static int power_pmu_event_idx(struct perf_event *event)
2047{
2048 return event->hw.idx;
2049}
2050
2051ssize_t power_events_sysfs_show(struct device *dev,
2052 struct device_attribute *attr, char *page)
2053{
2054 struct perf_pmu_events_attr *pmu_attr;
2055
2056 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2057
2058 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2059}
2060
2061static struct pmu power_pmu = {
2062 .pmu_enable = power_pmu_enable,
2063 .pmu_disable = power_pmu_disable,
2064 .event_init = power_pmu_event_init,
2065 .add = power_pmu_add,
2066 .del = power_pmu_del,
2067 .start = power_pmu_start,
2068 .stop = power_pmu_stop,
2069 .read = power_pmu_read,
2070 .start_txn = power_pmu_start_txn,
2071 .cancel_txn = power_pmu_cancel_txn,
2072 .commit_txn = power_pmu_commit_txn,
2073 .event_idx = power_pmu_event_idx,
2074 .sched_task = power_pmu_sched_task,
2075};
2076
2077/*
2078 * A counter has overflowed; update its count and record
2079 * things if requested. Note that interrupts are hard-disabled
2080 * here so there is no possibility of being interrupted.
2081 */
2082static void record_and_restart(struct perf_event *event, unsigned long val,
2083 struct pt_regs *regs)
2084{
2085 u64 period = event->hw.sample_period;
2086 s64 prev, delta, left;
2087 int record = 0;
2088
2089 if (event->hw.state & PERF_HES_STOPPED) {
2090 write_pmc(event->hw.idx, 0);
2091 return;
2092 }
2093
2094 /* we don't have to worry about interrupts here */
2095 prev = local64_read(&event->hw.prev_count);
2096 delta = check_and_compute_delta(prev, val);
2097 local64_add(delta, &event->count);
2098
2099 /*
2100 * See if the total period for this event has expired,
2101 * and update for the next period.
2102 */
2103 val = 0;
2104 left = local64_read(&event->hw.period_left) - delta;
2105 if (delta == 0)
2106 left++;
2107 if (period) {
2108 if (left <= 0) {
2109 left += period;
2110 if (left <= 0)
2111 left = period;
2112 record = siar_valid(regs);
2113 event->hw.last_period = event->hw.sample_period;
2114 }
2115 if (left < 0x80000000LL)
2116 val = 0x80000000LL - left;
2117 }
2118
2119 write_pmc(event->hw.idx, val);
2120 local64_set(&event->hw.prev_count, val);
2121 local64_set(&event->hw.period_left, left);
2122 perf_event_update_userpage(event);
2123
2124 /*
2125 * Finally record data if requested.
2126 */
2127 if (record) {
2128 struct perf_sample_data data;
2129
2130 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2131
2132 if (event->attr.sample_type &
2133 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2134 perf_get_data_addr(event, regs, &data.addr);
2135
2136 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2137 struct cpu_hw_events *cpuhw;
2138 cpuhw = this_cpu_ptr(&cpu_hw_events);
2139 power_pmu_bhrb_read(event, cpuhw);
2140 data.br_stack = &cpuhw->bhrb_stack;
2141 }
2142
2143 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2144 ppmu->get_mem_data_src)
2145 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2146
2147 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2148 ppmu->get_mem_weight)
2149 ppmu->get_mem_weight(&data.weight);
2150
2151 if (perf_event_overflow(event, &data, regs))
2152 power_pmu_stop(event, 0);
2153 } else if (period) {
2154 /* Account for interrupt in case of invalid SIAR */
2155 if (perf_event_account_interrupt(event))
2156 power_pmu_stop(event, 0);
2157 }
2158}
2159
2160/*
2161 * Called from generic code to get the misc flags (i.e. processor mode)
2162 * for an event_id.
2163 */
2164unsigned long perf_misc_flags(struct pt_regs *regs)
2165{
2166 u32 flags = perf_get_misc_flags(regs);
2167
2168 if (flags)
2169 return flags;
2170 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2171 PERF_RECORD_MISC_KERNEL;
2172}
2173
2174/*
2175 * Called from generic code to get the instruction pointer
2176 * for an event_id.
2177 */
2178unsigned long perf_instruction_pointer(struct pt_regs *regs)
2179{
2180 bool use_siar = regs_use_siar(regs);
2181
2182 if (use_siar && siar_valid(regs))
2183 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2184 else if (use_siar)
2185 return 0; // no valid instruction pointer
2186 else
2187 return regs->nip;
2188}
2189
2190static bool pmc_overflow_power7(unsigned long val)
2191{
2192 /*
2193 * Events on POWER7 can roll back if a speculative event doesn't
2194 * eventually complete. Unfortunately in some rare cases they will
2195 * raise a performance monitor exception. We need to catch this to
2196 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2197 * cycles from overflow.
2198 *
2199 * We only do this if the first pass fails to find any overflowing
2200 * PMCs because a user might set a period of less than 256 and we
2201 * don't want to mistakenly reset them.
2202 */
2203 if ((0x80000000 - val) <= 256)
2204 return true;
2205
2206 return false;
2207}
2208
2209static bool pmc_overflow(unsigned long val)
2210{
2211 if ((int)val < 0)
2212 return true;
2213
2214 return false;
2215}
2216
2217/*
2218 * Performance monitor interrupt stuff
2219 */
2220static void __perf_event_interrupt(struct pt_regs *regs)
2221{
2222 int i, j;
2223 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2224 struct perf_event *event;
2225 unsigned long val[8];
2226 int found, active;
2227 int nmi;
2228
2229 if (cpuhw->n_limited)
2230 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2231 mfspr(SPRN_PMC6));
2232
2233 perf_read_regs(regs);
2234
2235 /*
2236 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2237 * we consider them as NMIs. This is required to prevent hash faults on
2238 * user addresses when reading callchains. See the NMI test in
2239 * do_hash_page.
2240 */
2241 nmi = perf_intr_is_nmi(regs);
2242 if (nmi)
2243 nmi_enter();
2244 else
2245 irq_enter();
2246
2247 /* Read all the PMCs since we'll need them a bunch of times */
2248 for (i = 0; i < ppmu->n_counter; ++i)
2249 val[i] = read_pmc(i + 1);
2250
2251 /* Try to find what caused the IRQ */
2252 found = 0;
2253 for (i = 0; i < ppmu->n_counter; ++i) {
2254 if (!pmc_overflow(val[i]))
2255 continue;
2256 if (is_limited_pmc(i + 1))
2257 continue; /* these won't generate IRQs */
2258 /*
2259 * We've found one that's overflowed. For active
2260 * counters we need to log this. For inactive
2261 * counters, we need to reset it anyway
2262 */
2263 found = 1;
2264 active = 0;
2265 for (j = 0; j < cpuhw->n_events; ++j) {
2266 event = cpuhw->event[j];
2267 if (event->hw.idx == (i + 1)) {
2268 active = 1;
2269 record_and_restart(event, val[i], regs);
2270 break;
2271 }
2272 }
2273 if (!active)
2274 /* reset non active counters that have overflowed */
2275 write_pmc(i + 1, 0);
2276 }
2277 if (!found && pvr_version_is(PVR_POWER7)) {
2278 /* check active counters for special buggy p7 overflow */
2279 for (i = 0; i < cpuhw->n_events; ++i) {
2280 event = cpuhw->event[i];
2281 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2282 continue;
2283 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2284 /* event has overflowed in a buggy way*/
2285 found = 1;
2286 record_and_restart(event,
2287 val[event->hw.idx - 1],
2288 regs);
2289 }
2290 }
2291 }
2292 if (!found && !nmi && printk_ratelimit())
2293 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2294
2295 /*
2296 * Reset MMCR0 to its normal value. This will set PMXE and
2297 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2298 * and thus allow interrupts to occur again.
2299 * XXX might want to use MSR.PM to keep the events frozen until
2300 * we get back out of this interrupt.
2301 */
2302 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2303
2304 if (nmi)
2305 nmi_exit();
2306 else
2307 irq_exit();
2308}
2309
2310static void perf_event_interrupt(struct pt_regs *regs)
2311{
2312 u64 start_clock = sched_clock();
2313
2314 __perf_event_interrupt(regs);
2315 perf_sample_event_took(sched_clock() - start_clock);
2316}
2317
2318static int power_pmu_prepare_cpu(unsigned int cpu)
2319{
2320 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2321
2322 if (ppmu) {
2323 memset(cpuhw, 0, sizeof(*cpuhw));
2324 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2325 }
2326 return 0;
2327}
2328
2329int register_power_pmu(struct power_pmu *pmu)
2330{
2331 if (ppmu)
2332 return -EBUSY; /* something's already registered */
2333
2334 ppmu = pmu;
2335 pr_info("%s performance monitor hardware support registered\n",
2336 pmu->name);
2337
2338 power_pmu.attr_groups = ppmu->attr_groups;
2339 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2340
2341#ifdef MSR_HV
2342 /*
2343 * Use FCHV to ignore kernel events if MSR.HV is set.
2344 */
2345 if (mfmsr() & MSR_HV)
2346 freeze_events_kernel = MMCR0_FCHV;
2347#endif /* CONFIG_PPC64 */
2348
2349 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2350 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2351 power_pmu_prepare_cpu, NULL);
2352 return 0;
2353}
2354
2355#ifdef CONFIG_PPC64
2356static int __init init_ppc64_pmu(void)
2357{
2358 /* run through all the pmu drivers one at a time */
2359 if (!init_power5_pmu())
2360 return 0;
2361 else if (!init_power5p_pmu())
2362 return 0;
2363 else if (!init_power6_pmu())
2364 return 0;
2365 else if (!init_power7_pmu())
2366 return 0;
2367 else if (!init_power8_pmu())
2368 return 0;
2369 else if (!init_power9_pmu())
2370 return 0;
2371 else if (!init_power10_pmu())
2372 return 0;
2373 else if (!init_ppc970_pmu())
2374 return 0;
2375 else
2376 return init_generic_compat_pmu();
2377}
2378early_initcall(init_ppc64_pmu);
2379#endif