Loading...
1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi.
17 */
18/*
19 * linux/fs/ext2/super.c
20 *
21 * Copyright (C) 1992, 1993, 1994, 1995
22 * Remy Card (card@masi.ibp.fr)
23 * Laboratoire MASI - Institut Blaise Pascal
24 * Universite Pierre et Marie Curie (Paris VI)
25 *
26 * from
27 *
28 * linux/fs/minix/inode.c
29 *
30 * Copyright (C) 1991, 1992 Linus Torvalds
31 *
32 * Big-endian to little-endian byte-swapping/bitmaps by
33 * David S. Miller (davem@caip.rutgers.edu), 1995
34 */
35
36#include <linux/module.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/blkdev.h>
41#include <linux/parser.h>
42#include <linux/crc32.h>
43#include <linux/vfs.h>
44#include <linux/writeback.h>
45#include <linux/seq_file.h>
46#include <linux/mount.h>
47#include "nilfs.h"
48#include "export.h"
49#include "mdt.h"
50#include "alloc.h"
51#include "btree.h"
52#include "btnode.h"
53#include "page.h"
54#include "cpfile.h"
55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56#include "ifile.h"
57#include "dat.h"
58#include "segment.h"
59#include "segbuf.h"
60
61MODULE_AUTHOR("NTT Corp.");
62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 "(NILFS)");
64MODULE_LICENSE("GPL");
65
66static struct kmem_cache *nilfs_inode_cachep;
67struct kmem_cache *nilfs_transaction_cachep;
68struct kmem_cache *nilfs_segbuf_cachep;
69struct kmem_cache *nilfs_btree_path_cache;
70
71static int nilfs_setup_super(struct super_block *sb, int is_mount);
72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
75 ...)
76{
77 struct va_format vaf;
78 va_list args;
79
80 va_start(args, fmt);
81 vaf.fmt = fmt;
82 vaf.va = &args;
83 if (sb)
84 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
85 else
86 printk("%sNILFS: %pV\n", level, &vaf);
87 va_end(args);
88}
89
90static void nilfs_set_error(struct super_block *sb)
91{
92 struct the_nilfs *nilfs = sb->s_fs_info;
93 struct nilfs_super_block **sbp;
94
95 down_write(&nilfs->ns_sem);
96 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
97 nilfs->ns_mount_state |= NILFS_ERROR_FS;
98 sbp = nilfs_prepare_super(sb, 0);
99 if (likely(sbp)) {
100 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101 if (sbp[1])
102 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
103 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
104 }
105 }
106 up_write(&nilfs->ns_sem);
107}
108
109/**
110 * __nilfs_error() - report failure condition on a filesystem
111 *
112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113 * reporting an error message. This function should be called when
114 * NILFS detects incoherences or defects of meta data on disk.
115 *
116 * This implements the body of nilfs_error() macro. Normally,
117 * nilfs_error() should be used. As for sustainable errors such as a
118 * single-shot I/O error, nilfs_msg() should be used instead.
119 *
120 * Callers should not add a trailing newline since this will do it.
121 */
122void __nilfs_error(struct super_block *sb, const char *function,
123 const char *fmt, ...)
124{
125 struct the_nilfs *nilfs = sb->s_fs_info;
126 struct va_format vaf;
127 va_list args;
128
129 va_start(args, fmt);
130
131 vaf.fmt = fmt;
132 vaf.va = &args;
133
134 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
135 sb->s_id, function, &vaf);
136
137 va_end(args);
138
139 if (!sb_rdonly(sb)) {
140 nilfs_set_error(sb);
141
142 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
143 printk(KERN_CRIT "Remounting filesystem read-only\n");
144 sb->s_flags |= SB_RDONLY;
145 }
146 }
147
148 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
149 panic("NILFS (device %s): panic forced after error\n",
150 sb->s_id);
151}
152
153struct inode *nilfs_alloc_inode(struct super_block *sb)
154{
155 struct nilfs_inode_info *ii;
156
157 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
158 if (!ii)
159 return NULL;
160 ii->i_bh = NULL;
161 ii->i_state = 0;
162 ii->i_cno = 0;
163 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
164 return &ii->vfs_inode;
165}
166
167static void nilfs_i_callback(struct rcu_head *head)
168{
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170
171 if (nilfs_is_metadata_file_inode(inode))
172 nilfs_mdt_destroy(inode);
173
174 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
175}
176
177void nilfs_destroy_inode(struct inode *inode)
178{
179 call_rcu(&inode->i_rcu, nilfs_i_callback);
180}
181
182static int nilfs_sync_super(struct super_block *sb, int flag)
183{
184 struct the_nilfs *nilfs = sb->s_fs_info;
185 int err;
186
187 retry:
188 set_buffer_dirty(nilfs->ns_sbh[0]);
189 if (nilfs_test_opt(nilfs, BARRIER)) {
190 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
191 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
192 } else {
193 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
194 }
195
196 if (unlikely(err)) {
197 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
198 err);
199 if (err == -EIO && nilfs->ns_sbh[1]) {
200 /*
201 * sbp[0] points to newer log than sbp[1],
202 * so copy sbp[0] to sbp[1] to take over sbp[0].
203 */
204 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
205 nilfs->ns_sbsize);
206 nilfs_fall_back_super_block(nilfs);
207 goto retry;
208 }
209 } else {
210 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
211
212 nilfs->ns_sbwcount++;
213
214 /*
215 * The latest segment becomes trailable from the position
216 * written in superblock.
217 */
218 clear_nilfs_discontinued(nilfs);
219
220 /* update GC protection for recent segments */
221 if (nilfs->ns_sbh[1]) {
222 if (flag == NILFS_SB_COMMIT_ALL) {
223 set_buffer_dirty(nilfs->ns_sbh[1]);
224 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
225 goto out;
226 }
227 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229 sbp = nilfs->ns_sbp[1];
230 }
231
232 spin_lock(&nilfs->ns_last_segment_lock);
233 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234 spin_unlock(&nilfs->ns_last_segment_lock);
235 }
236 out:
237 return err;
238}
239
240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241 struct the_nilfs *nilfs)
242{
243 sector_t nfreeblocks;
244
245 /* nilfs->ns_sem must be locked by the caller. */
246 nilfs_count_free_blocks(nilfs, &nfreeblocks);
247 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248
249 spin_lock(&nilfs->ns_last_segment_lock);
250 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253 spin_unlock(&nilfs->ns_last_segment_lock);
254}
255
256struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
257 int flip)
258{
259 struct the_nilfs *nilfs = sb->s_fs_info;
260 struct nilfs_super_block **sbp = nilfs->ns_sbp;
261
262 /* nilfs->ns_sem must be locked by the caller. */
263 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 if (sbp[1] &&
265 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
267 } else {
268 nilfs_msg(sb, KERN_CRIT, "superblock broke");
269 return NULL;
270 }
271 } else if (sbp[1] &&
272 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
274 }
275
276 if (flip && sbp[1])
277 nilfs_swap_super_block(nilfs);
278
279 return sbp;
280}
281
282int nilfs_commit_super(struct super_block *sb, int flag)
283{
284 struct the_nilfs *nilfs = sb->s_fs_info;
285 struct nilfs_super_block **sbp = nilfs->ns_sbp;
286 time64_t t;
287
288 /* nilfs->ns_sem must be locked by the caller. */
289 t = ktime_get_real_seconds();
290 nilfs->ns_sbwtime = t;
291 sbp[0]->s_wtime = cpu_to_le64(t);
292 sbp[0]->s_sum = 0;
293 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
294 (unsigned char *)sbp[0],
295 nilfs->ns_sbsize));
296 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
297 sbp[1]->s_wtime = sbp[0]->s_wtime;
298 sbp[1]->s_sum = 0;
299 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
300 (unsigned char *)sbp[1],
301 nilfs->ns_sbsize));
302 }
303 clear_nilfs_sb_dirty(nilfs);
304 nilfs->ns_flushed_device = 1;
305 /* make sure store to ns_flushed_device cannot be reordered */
306 smp_wmb();
307 return nilfs_sync_super(sb, flag);
308}
309
310/**
311 * nilfs_cleanup_super() - write filesystem state for cleanup
312 * @sb: super block instance to be unmounted or degraded to read-only
313 *
314 * This function restores state flags in the on-disk super block.
315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
316 * filesystem was not clean previously.
317 */
318int nilfs_cleanup_super(struct super_block *sb)
319{
320 struct the_nilfs *nilfs = sb->s_fs_info;
321 struct nilfs_super_block **sbp;
322 int flag = NILFS_SB_COMMIT;
323 int ret = -EIO;
324
325 sbp = nilfs_prepare_super(sb, 0);
326 if (sbp) {
327 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
328 nilfs_set_log_cursor(sbp[0], nilfs);
329 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
330 /*
331 * make the "clean" flag also to the opposite
332 * super block if both super blocks point to
333 * the same checkpoint.
334 */
335 sbp[1]->s_state = sbp[0]->s_state;
336 flag = NILFS_SB_COMMIT_ALL;
337 }
338 ret = nilfs_commit_super(sb, flag);
339 }
340 return ret;
341}
342
343/**
344 * nilfs_move_2nd_super - relocate secondary super block
345 * @sb: super block instance
346 * @sb2off: new offset of the secondary super block (in bytes)
347 */
348static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
349{
350 struct the_nilfs *nilfs = sb->s_fs_info;
351 struct buffer_head *nsbh;
352 struct nilfs_super_block *nsbp;
353 sector_t blocknr, newblocknr;
354 unsigned long offset;
355 int sb2i; /* array index of the secondary superblock */
356 int ret = 0;
357
358 /* nilfs->ns_sem must be locked by the caller. */
359 if (nilfs->ns_sbh[1] &&
360 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
361 sb2i = 1;
362 blocknr = nilfs->ns_sbh[1]->b_blocknr;
363 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
364 sb2i = 0;
365 blocknr = nilfs->ns_sbh[0]->b_blocknr;
366 } else {
367 sb2i = -1;
368 blocknr = 0;
369 }
370 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
371 goto out; /* super block location is unchanged */
372
373 /* Get new super block buffer */
374 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
375 offset = sb2off & (nilfs->ns_blocksize - 1);
376 nsbh = sb_getblk(sb, newblocknr);
377 if (!nsbh) {
378 nilfs_msg(sb, KERN_WARNING,
379 "unable to move secondary superblock to block %llu",
380 (unsigned long long)newblocknr);
381 ret = -EIO;
382 goto out;
383 }
384 nsbp = (void *)nsbh->b_data + offset;
385 memset(nsbp, 0, nilfs->ns_blocksize);
386
387 if (sb2i >= 0) {
388 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
389 brelse(nilfs->ns_sbh[sb2i]);
390 nilfs->ns_sbh[sb2i] = nsbh;
391 nilfs->ns_sbp[sb2i] = nsbp;
392 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
393 /* secondary super block will be restored to index 1 */
394 nilfs->ns_sbh[1] = nsbh;
395 nilfs->ns_sbp[1] = nsbp;
396 } else {
397 brelse(nsbh);
398 }
399out:
400 return ret;
401}
402
403/**
404 * nilfs_resize_fs - resize the filesystem
405 * @sb: super block instance
406 * @newsize: new size of the filesystem (in bytes)
407 */
408int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
409{
410 struct the_nilfs *nilfs = sb->s_fs_info;
411 struct nilfs_super_block **sbp;
412 __u64 devsize, newnsegs;
413 loff_t sb2off;
414 int ret;
415
416 ret = -ERANGE;
417 devsize = i_size_read(sb->s_bdev->bd_inode);
418 if (newsize > devsize)
419 goto out;
420
421 /*
422 * Write lock is required to protect some functions depending
423 * on the number of segments, the number of reserved segments,
424 * and so forth.
425 */
426 down_write(&nilfs->ns_segctor_sem);
427
428 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
429 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
430 do_div(newnsegs, nilfs->ns_blocks_per_segment);
431
432 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
433 up_write(&nilfs->ns_segctor_sem);
434 if (ret < 0)
435 goto out;
436
437 ret = nilfs_construct_segment(sb);
438 if (ret < 0)
439 goto out;
440
441 down_write(&nilfs->ns_sem);
442 nilfs_move_2nd_super(sb, sb2off);
443 ret = -EIO;
444 sbp = nilfs_prepare_super(sb, 0);
445 if (likely(sbp)) {
446 nilfs_set_log_cursor(sbp[0], nilfs);
447 /*
448 * Drop NILFS_RESIZE_FS flag for compatibility with
449 * mount-time resize which may be implemented in a
450 * future release.
451 */
452 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
453 ~NILFS_RESIZE_FS);
454 sbp[0]->s_dev_size = cpu_to_le64(newsize);
455 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
456 if (sbp[1])
457 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
458 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
459 }
460 up_write(&nilfs->ns_sem);
461
462 /*
463 * Reset the range of allocatable segments last. This order
464 * is important in the case of expansion because the secondary
465 * superblock must be protected from log write until migration
466 * completes.
467 */
468 if (!ret)
469 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
470out:
471 return ret;
472}
473
474static void nilfs_put_super(struct super_block *sb)
475{
476 struct the_nilfs *nilfs = sb->s_fs_info;
477
478 nilfs_detach_log_writer(sb);
479
480 if (!sb_rdonly(sb)) {
481 down_write(&nilfs->ns_sem);
482 nilfs_cleanup_super(sb);
483 up_write(&nilfs->ns_sem);
484 }
485
486 iput(nilfs->ns_sufile);
487 iput(nilfs->ns_cpfile);
488 iput(nilfs->ns_dat);
489
490 destroy_nilfs(nilfs);
491 sb->s_fs_info = NULL;
492}
493
494static int nilfs_sync_fs(struct super_block *sb, int wait)
495{
496 struct the_nilfs *nilfs = sb->s_fs_info;
497 struct nilfs_super_block **sbp;
498 int err = 0;
499
500 /* This function is called when super block should be written back */
501 if (wait)
502 err = nilfs_construct_segment(sb);
503
504 down_write(&nilfs->ns_sem);
505 if (nilfs_sb_dirty(nilfs)) {
506 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
507 if (likely(sbp)) {
508 nilfs_set_log_cursor(sbp[0], nilfs);
509 nilfs_commit_super(sb, NILFS_SB_COMMIT);
510 }
511 }
512 up_write(&nilfs->ns_sem);
513
514 if (!err)
515 err = nilfs_flush_device(nilfs);
516
517 return err;
518}
519
520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 struct nilfs_root **rootp)
522{
523 struct the_nilfs *nilfs = sb->s_fs_info;
524 struct nilfs_root *root;
525 struct nilfs_checkpoint *raw_cp;
526 struct buffer_head *bh_cp;
527 int err = -ENOMEM;
528
529 root = nilfs_find_or_create_root(
530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 if (!root)
532 return err;
533
534 if (root->ifile)
535 goto reuse; /* already attached checkpoint */
536
537 down_read(&nilfs->ns_segctor_sem);
538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 &bh_cp);
540 up_read(&nilfs->ns_segctor_sem);
541 if (unlikely(err)) {
542 if (err == -ENOENT || err == -EINVAL) {
543 nilfs_msg(sb, KERN_ERR,
544 "Invalid checkpoint (checkpoint number=%llu)",
545 (unsigned long long)cno);
546 err = -EINVAL;
547 }
548 goto failed;
549 }
550
551 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
552 &raw_cp->cp_ifile_inode, &root->ifile);
553 if (err)
554 goto failed_bh;
555
556 atomic64_set(&root->inodes_count,
557 le64_to_cpu(raw_cp->cp_inodes_count));
558 atomic64_set(&root->blocks_count,
559 le64_to_cpu(raw_cp->cp_blocks_count));
560
561 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
562
563 reuse:
564 *rootp = root;
565 return 0;
566
567 failed_bh:
568 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569 failed:
570 nilfs_put_root(root);
571
572 return err;
573}
574
575static int nilfs_freeze(struct super_block *sb)
576{
577 struct the_nilfs *nilfs = sb->s_fs_info;
578 int err;
579
580 if (sb_rdonly(sb))
581 return 0;
582
583 /* Mark super block clean */
584 down_write(&nilfs->ns_sem);
585 err = nilfs_cleanup_super(sb);
586 up_write(&nilfs->ns_sem);
587 return err;
588}
589
590static int nilfs_unfreeze(struct super_block *sb)
591{
592 struct the_nilfs *nilfs = sb->s_fs_info;
593
594 if (sb_rdonly(sb))
595 return 0;
596
597 down_write(&nilfs->ns_sem);
598 nilfs_setup_super(sb, false);
599 up_write(&nilfs->ns_sem);
600 return 0;
601}
602
603static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604{
605 struct super_block *sb = dentry->d_sb;
606 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607 struct the_nilfs *nilfs = root->nilfs;
608 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609 unsigned long long blocks;
610 unsigned long overhead;
611 unsigned long nrsvblocks;
612 sector_t nfreeblocks;
613 u64 nmaxinodes, nfreeinodes;
614 int err;
615
616 /*
617 * Compute all of the segment blocks
618 *
619 * The blocks before first segment and after last segment
620 * are excluded.
621 */
622 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623 - nilfs->ns_first_data_block;
624 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625
626 /*
627 * Compute the overhead
628 *
629 * When distributing meta data blocks outside segment structure,
630 * We must count them as the overhead.
631 */
632 overhead = 0;
633
634 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635 if (unlikely(err))
636 return err;
637
638 err = nilfs_ifile_count_free_inodes(root->ifile,
639 &nmaxinodes, &nfreeinodes);
640 if (unlikely(err)) {
641 nilfs_msg(sb, KERN_WARNING,
642 "failed to count free inodes: err=%d", err);
643 if (err == -ERANGE) {
644 /*
645 * If nilfs_palloc_count_max_entries() returns
646 * -ERANGE error code then we simply treat
647 * curent inodes count as maximum possible and
648 * zero as free inodes value.
649 */
650 nmaxinodes = atomic64_read(&root->inodes_count);
651 nfreeinodes = 0;
652 err = 0;
653 } else
654 return err;
655 }
656
657 buf->f_type = NILFS_SUPER_MAGIC;
658 buf->f_bsize = sb->s_blocksize;
659 buf->f_blocks = blocks - overhead;
660 buf->f_bfree = nfreeblocks;
661 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
662 (buf->f_bfree - nrsvblocks) : 0;
663 buf->f_files = nmaxinodes;
664 buf->f_ffree = nfreeinodes;
665 buf->f_namelen = NILFS_NAME_LEN;
666 buf->f_fsid.val[0] = (u32)id;
667 buf->f_fsid.val[1] = (u32)(id >> 32);
668
669 return 0;
670}
671
672static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
673{
674 struct super_block *sb = dentry->d_sb;
675 struct the_nilfs *nilfs = sb->s_fs_info;
676 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
677
678 if (!nilfs_test_opt(nilfs, BARRIER))
679 seq_puts(seq, ",nobarrier");
680 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
681 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
682 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
683 seq_puts(seq, ",errors=panic");
684 if (nilfs_test_opt(nilfs, ERRORS_CONT))
685 seq_puts(seq, ",errors=continue");
686 if (nilfs_test_opt(nilfs, STRICT_ORDER))
687 seq_puts(seq, ",order=strict");
688 if (nilfs_test_opt(nilfs, NORECOVERY))
689 seq_puts(seq, ",norecovery");
690 if (nilfs_test_opt(nilfs, DISCARD))
691 seq_puts(seq, ",discard");
692
693 return 0;
694}
695
696static const struct super_operations nilfs_sops = {
697 .alloc_inode = nilfs_alloc_inode,
698 .destroy_inode = nilfs_destroy_inode,
699 .dirty_inode = nilfs_dirty_inode,
700 .evict_inode = nilfs_evict_inode,
701 .put_super = nilfs_put_super,
702 .sync_fs = nilfs_sync_fs,
703 .freeze_fs = nilfs_freeze,
704 .unfreeze_fs = nilfs_unfreeze,
705 .statfs = nilfs_statfs,
706 .remount_fs = nilfs_remount,
707 .show_options = nilfs_show_options
708};
709
710enum {
711 Opt_err_cont, Opt_err_panic, Opt_err_ro,
712 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
713 Opt_discard, Opt_nodiscard, Opt_err,
714};
715
716static match_table_t tokens = {
717 {Opt_err_cont, "errors=continue"},
718 {Opt_err_panic, "errors=panic"},
719 {Opt_err_ro, "errors=remount-ro"},
720 {Opt_barrier, "barrier"},
721 {Opt_nobarrier, "nobarrier"},
722 {Opt_snapshot, "cp=%u"},
723 {Opt_order, "order=%s"},
724 {Opt_norecovery, "norecovery"},
725 {Opt_discard, "discard"},
726 {Opt_nodiscard, "nodiscard"},
727 {Opt_err, NULL}
728};
729
730static int parse_options(char *options, struct super_block *sb, int is_remount)
731{
732 struct the_nilfs *nilfs = sb->s_fs_info;
733 char *p;
734 substring_t args[MAX_OPT_ARGS];
735
736 if (!options)
737 return 1;
738
739 while ((p = strsep(&options, ",")) != NULL) {
740 int token;
741
742 if (!*p)
743 continue;
744
745 token = match_token(p, tokens, args);
746 switch (token) {
747 case Opt_barrier:
748 nilfs_set_opt(nilfs, BARRIER);
749 break;
750 case Opt_nobarrier:
751 nilfs_clear_opt(nilfs, BARRIER);
752 break;
753 case Opt_order:
754 if (strcmp(args[0].from, "relaxed") == 0)
755 /* Ordered data semantics */
756 nilfs_clear_opt(nilfs, STRICT_ORDER);
757 else if (strcmp(args[0].from, "strict") == 0)
758 /* Strict in-order semantics */
759 nilfs_set_opt(nilfs, STRICT_ORDER);
760 else
761 return 0;
762 break;
763 case Opt_err_panic:
764 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
765 break;
766 case Opt_err_ro:
767 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
768 break;
769 case Opt_err_cont:
770 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
771 break;
772 case Opt_snapshot:
773 if (is_remount) {
774 nilfs_msg(sb, KERN_ERR,
775 "\"%s\" option is invalid for remount",
776 p);
777 return 0;
778 }
779 break;
780 case Opt_norecovery:
781 nilfs_set_opt(nilfs, NORECOVERY);
782 break;
783 case Opt_discard:
784 nilfs_set_opt(nilfs, DISCARD);
785 break;
786 case Opt_nodiscard:
787 nilfs_clear_opt(nilfs, DISCARD);
788 break;
789 default:
790 nilfs_msg(sb, KERN_ERR,
791 "unrecognized mount option \"%s\"", p);
792 return 0;
793 }
794 }
795 return 1;
796}
797
798static inline void
799nilfs_set_default_options(struct super_block *sb,
800 struct nilfs_super_block *sbp)
801{
802 struct the_nilfs *nilfs = sb->s_fs_info;
803
804 nilfs->ns_mount_opt =
805 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
806}
807
808static int nilfs_setup_super(struct super_block *sb, int is_mount)
809{
810 struct the_nilfs *nilfs = sb->s_fs_info;
811 struct nilfs_super_block **sbp;
812 int max_mnt_count;
813 int mnt_count;
814
815 /* nilfs->ns_sem must be locked by the caller. */
816 sbp = nilfs_prepare_super(sb, 0);
817 if (!sbp)
818 return -EIO;
819
820 if (!is_mount)
821 goto skip_mount_setup;
822
823 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
824 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
825
826 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
827 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
828#if 0
829 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
830 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
831#endif
832 }
833 if (!max_mnt_count)
834 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
835
836 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
837 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
838
839skip_mount_setup:
840 sbp[0]->s_state =
841 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
842 /* synchronize sbp[1] with sbp[0] */
843 if (sbp[1])
844 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
845 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
846}
847
848struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
849 u64 pos, int blocksize,
850 struct buffer_head **pbh)
851{
852 unsigned long long sb_index = pos;
853 unsigned long offset;
854
855 offset = do_div(sb_index, blocksize);
856 *pbh = sb_bread(sb, sb_index);
857 if (!*pbh)
858 return NULL;
859 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
860}
861
862int nilfs_store_magic_and_option(struct super_block *sb,
863 struct nilfs_super_block *sbp,
864 char *data)
865{
866 struct the_nilfs *nilfs = sb->s_fs_info;
867
868 sb->s_magic = le16_to_cpu(sbp->s_magic);
869
870 /* FS independent flags */
871#ifdef NILFS_ATIME_DISABLE
872 sb->s_flags |= SB_NOATIME;
873#endif
874
875 nilfs_set_default_options(sb, sbp);
876
877 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
878 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
879 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
880 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
881
882 return !parse_options(data, sb, 0) ? -EINVAL : 0;
883}
884
885int nilfs_check_feature_compatibility(struct super_block *sb,
886 struct nilfs_super_block *sbp)
887{
888 __u64 features;
889
890 features = le64_to_cpu(sbp->s_feature_incompat) &
891 ~NILFS_FEATURE_INCOMPAT_SUPP;
892 if (features) {
893 nilfs_msg(sb, KERN_ERR,
894 "couldn't mount because of unsupported optional features (%llx)",
895 (unsigned long long)features);
896 return -EINVAL;
897 }
898 features = le64_to_cpu(sbp->s_feature_compat_ro) &
899 ~NILFS_FEATURE_COMPAT_RO_SUPP;
900 if (!sb_rdonly(sb) && features) {
901 nilfs_msg(sb, KERN_ERR,
902 "couldn't mount RDWR because of unsupported optional features (%llx)",
903 (unsigned long long)features);
904 return -EINVAL;
905 }
906 return 0;
907}
908
909static int nilfs_get_root_dentry(struct super_block *sb,
910 struct nilfs_root *root,
911 struct dentry **root_dentry)
912{
913 struct inode *inode;
914 struct dentry *dentry;
915 int ret = 0;
916
917 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
918 if (IS_ERR(inode)) {
919 ret = PTR_ERR(inode);
920 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
921 goto out;
922 }
923 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
924 iput(inode);
925 nilfs_msg(sb, KERN_ERR, "corrupt root inode");
926 ret = -EINVAL;
927 goto out;
928 }
929
930 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
931 dentry = d_find_alias(inode);
932 if (!dentry) {
933 dentry = d_make_root(inode);
934 if (!dentry) {
935 ret = -ENOMEM;
936 goto failed_dentry;
937 }
938 } else {
939 iput(inode);
940 }
941 } else {
942 dentry = d_obtain_root(inode);
943 if (IS_ERR(dentry)) {
944 ret = PTR_ERR(dentry);
945 goto failed_dentry;
946 }
947 }
948 *root_dentry = dentry;
949 out:
950 return ret;
951
952 failed_dentry:
953 nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
954 goto out;
955}
956
957static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
958 struct dentry **root_dentry)
959{
960 struct the_nilfs *nilfs = s->s_fs_info;
961 struct nilfs_root *root;
962 int ret;
963
964 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
965
966 down_read(&nilfs->ns_segctor_sem);
967 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
968 up_read(&nilfs->ns_segctor_sem);
969 if (ret < 0) {
970 ret = (ret == -ENOENT) ? -EINVAL : ret;
971 goto out;
972 } else if (!ret) {
973 nilfs_msg(s, KERN_ERR,
974 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
975 (unsigned long long)cno);
976 ret = -EINVAL;
977 goto out;
978 }
979
980 ret = nilfs_attach_checkpoint(s, cno, false, &root);
981 if (ret) {
982 nilfs_msg(s, KERN_ERR,
983 "error %d while loading snapshot (checkpoint number=%llu)",
984 ret, (unsigned long long)cno);
985 goto out;
986 }
987 ret = nilfs_get_root_dentry(s, root, root_dentry);
988 nilfs_put_root(root);
989 out:
990 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
991 return ret;
992}
993
994/**
995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
996 * @root_dentry: root dentry of the tree to be shrunk
997 *
998 * This function returns true if the tree was in-use.
999 */
1000static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001{
1002 shrink_dcache_parent(root_dentry);
1003 return d_count(root_dentry) > 1;
1004}
1005
1006int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007{
1008 struct the_nilfs *nilfs = sb->s_fs_info;
1009 struct nilfs_root *root;
1010 struct inode *inode;
1011 struct dentry *dentry;
1012 int ret;
1013
1014 if (cno > nilfs->ns_cno)
1015 return false;
1016
1017 if (cno >= nilfs_last_cno(nilfs))
1018 return true; /* protect recent checkpoints */
1019
1020 ret = false;
1021 root = nilfs_lookup_root(nilfs, cno);
1022 if (root) {
1023 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024 if (inode) {
1025 dentry = d_find_alias(inode);
1026 if (dentry) {
1027 ret = nilfs_tree_is_busy(dentry);
1028 dput(dentry);
1029 }
1030 iput(inode);
1031 }
1032 nilfs_put_root(root);
1033 }
1034 return ret;
1035}
1036
1037/**
1038 * nilfs_fill_super() - initialize a super block instance
1039 * @sb: super_block
1040 * @data: mount options
1041 * @silent: silent mode flag
1042 *
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1045 */
1046static int
1047nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048{
1049 struct the_nilfs *nilfs;
1050 struct nilfs_root *fsroot;
1051 __u64 cno;
1052 int err;
1053
1054 nilfs = alloc_nilfs(sb);
1055 if (!nilfs)
1056 return -ENOMEM;
1057
1058 sb->s_fs_info = nilfs;
1059
1060 err = init_nilfs(nilfs, sb, (char *)data);
1061 if (err)
1062 goto failed_nilfs;
1063
1064 sb->s_op = &nilfs_sops;
1065 sb->s_export_op = &nilfs_export_ops;
1066 sb->s_root = NULL;
1067 sb->s_time_gran = 1;
1068 sb->s_max_links = NILFS_LINK_MAX;
1069
1070 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072 err = load_nilfs(nilfs, sb);
1073 if (err)
1074 goto failed_nilfs;
1075
1076 cno = nilfs_last_cno(nilfs);
1077 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078 if (err) {
1079 nilfs_msg(sb, KERN_ERR,
1080 "error %d while loading last checkpoint (checkpoint number=%llu)",
1081 err, (unsigned long long)cno);
1082 goto failed_unload;
1083 }
1084
1085 if (!sb_rdonly(sb)) {
1086 err = nilfs_attach_log_writer(sb, fsroot);
1087 if (err)
1088 goto failed_checkpoint;
1089 }
1090
1091 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092 if (err)
1093 goto failed_segctor;
1094
1095 nilfs_put_root(fsroot);
1096
1097 if (!sb_rdonly(sb)) {
1098 down_write(&nilfs->ns_sem);
1099 nilfs_setup_super(sb, true);
1100 up_write(&nilfs->ns_sem);
1101 }
1102
1103 return 0;
1104
1105 failed_segctor:
1106 nilfs_detach_log_writer(sb);
1107
1108 failed_checkpoint:
1109 nilfs_put_root(fsroot);
1110
1111 failed_unload:
1112 iput(nilfs->ns_sufile);
1113 iput(nilfs->ns_cpfile);
1114 iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117 destroy_nilfs(nilfs);
1118 return err;
1119}
1120
1121static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122{
1123 struct the_nilfs *nilfs = sb->s_fs_info;
1124 unsigned long old_sb_flags;
1125 unsigned long old_mount_opt;
1126 int err;
1127
1128 sync_filesystem(sb);
1129 old_sb_flags = sb->s_flags;
1130 old_mount_opt = nilfs->ns_mount_opt;
1131
1132 if (!parse_options(data, sb, 1)) {
1133 err = -EINVAL;
1134 goto restore_opts;
1135 }
1136 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138 err = -EINVAL;
1139
1140 if (!nilfs_valid_fs(nilfs)) {
1141 nilfs_msg(sb, KERN_WARNING,
1142 "couldn't remount because the filesystem is in an incomplete recovery state");
1143 goto restore_opts;
1144 }
1145
1146 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147 goto out;
1148 if (*flags & SB_RDONLY) {
1149 /* Shutting down log writer */
1150 nilfs_detach_log_writer(sb);
1151 sb->s_flags |= SB_RDONLY;
1152
1153 /*
1154 * Remounting a valid RW partition RDONLY, so set
1155 * the RDONLY flag and then mark the partition as valid again.
1156 */
1157 down_write(&nilfs->ns_sem);
1158 nilfs_cleanup_super(sb);
1159 up_write(&nilfs->ns_sem);
1160 } else {
1161 __u64 features;
1162 struct nilfs_root *root;
1163
1164 /*
1165 * Mounting a RDONLY partition read-write, so reread and
1166 * store the current valid flag. (It may have been changed
1167 * by fsck since we originally mounted the partition.)
1168 */
1169 down_read(&nilfs->ns_sem);
1170 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1172 up_read(&nilfs->ns_sem);
1173 if (features) {
1174 nilfs_msg(sb, KERN_WARNING,
1175 "couldn't remount RDWR because of unsupported optional features (%llx)",
1176 (unsigned long long)features);
1177 err = -EROFS;
1178 goto restore_opts;
1179 }
1180
1181 sb->s_flags &= ~SB_RDONLY;
1182
1183 root = NILFS_I(d_inode(sb->s_root))->i_root;
1184 err = nilfs_attach_log_writer(sb, root);
1185 if (err)
1186 goto restore_opts;
1187
1188 down_write(&nilfs->ns_sem);
1189 nilfs_setup_super(sb, true);
1190 up_write(&nilfs->ns_sem);
1191 }
1192 out:
1193 return 0;
1194
1195 restore_opts:
1196 sb->s_flags = old_sb_flags;
1197 nilfs->ns_mount_opt = old_mount_opt;
1198 return err;
1199}
1200
1201struct nilfs_super_data {
1202 struct block_device *bdev;
1203 __u64 cno;
1204 int flags;
1205};
1206
1207static int nilfs_parse_snapshot_option(const char *option,
1208 const substring_t *arg,
1209 struct nilfs_super_data *sd)
1210{
1211 unsigned long long val;
1212 const char *msg = NULL;
1213 int err;
1214
1215 if (!(sd->flags & SB_RDONLY)) {
1216 msg = "read-only option is not specified";
1217 goto parse_error;
1218 }
1219
1220 err = kstrtoull(arg->from, 0, &val);
1221 if (err) {
1222 if (err == -ERANGE)
1223 msg = "too large checkpoint number";
1224 else
1225 msg = "malformed argument";
1226 goto parse_error;
1227 } else if (val == 0) {
1228 msg = "invalid checkpoint number 0";
1229 goto parse_error;
1230 }
1231 sd->cno = val;
1232 return 0;
1233
1234parse_error:
1235 nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236 return 1;
1237}
1238
1239/**
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1243 */
1244static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245{
1246 char *p, *options = data;
1247 substring_t args[MAX_OPT_ARGS];
1248 int token;
1249 int ret = 0;
1250
1251 do {
1252 p = strsep(&options, ",");
1253 if (p != NULL && *p) {
1254 token = match_token(p, tokens, args);
1255 if (token == Opt_snapshot)
1256 ret = nilfs_parse_snapshot_option(p, &args[0],
1257 sd);
1258 }
1259 if (!options)
1260 break;
1261 BUG_ON(options == data);
1262 *(options - 1) = ',';
1263 } while (!ret);
1264 return ret;
1265}
1266
1267static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268{
1269 s->s_bdev = data;
1270 s->s_dev = s->s_bdev->bd_dev;
1271 return 0;
1272}
1273
1274static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275{
1276 return (void *)s->s_bdev == data;
1277}
1278
1279static struct dentry *
1280nilfs_mount(struct file_system_type *fs_type, int flags,
1281 const char *dev_name, void *data)
1282{
1283 struct nilfs_super_data sd;
1284 struct super_block *s;
1285 fmode_t mode = FMODE_READ | FMODE_EXCL;
1286 struct dentry *root_dentry;
1287 int err, s_new = false;
1288
1289 if (!(flags & SB_RDONLY))
1290 mode |= FMODE_WRITE;
1291
1292 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293 if (IS_ERR(sd.bdev))
1294 return ERR_CAST(sd.bdev);
1295
1296 sd.cno = 0;
1297 sd.flags = flags;
1298 if (nilfs_identify((char *)data, &sd)) {
1299 err = -EINVAL;
1300 goto failed;
1301 }
1302
1303 /*
1304 * once the super is inserted into the list by sget, s_umount
1305 * will protect the lockfs code from trying to start a snapshot
1306 * while we are mounting
1307 */
1308 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309 if (sd.bdev->bd_fsfreeze_count > 0) {
1310 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311 err = -EBUSY;
1312 goto failed;
1313 }
1314 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315 sd.bdev);
1316 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317 if (IS_ERR(s)) {
1318 err = PTR_ERR(s);
1319 goto failed;
1320 }
1321
1322 if (!s->s_root) {
1323 s_new = true;
1324
1325 /* New superblock instance created */
1326 s->s_mode = mode;
1327 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328 sb_set_blocksize(s, block_size(sd.bdev));
1329
1330 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331 if (err)
1332 goto failed_super;
1333
1334 s->s_flags |= SB_ACTIVE;
1335 } else if (!sd.cno) {
1336 if (nilfs_tree_is_busy(s->s_root)) {
1337 if ((flags ^ s->s_flags) & SB_RDONLY) {
1338 nilfs_msg(s, KERN_ERR,
1339 "the device already has a %s mount.",
1340 sb_rdonly(s) ? "read-only" : "read/write");
1341 err = -EBUSY;
1342 goto failed_super;
1343 }
1344 } else {
1345 /*
1346 * Try remount to setup mount states if the current
1347 * tree is not mounted and only snapshots use this sb.
1348 */
1349 err = nilfs_remount(s, &flags, data);
1350 if (err)
1351 goto failed_super;
1352 }
1353 }
1354
1355 if (sd.cno) {
1356 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357 if (err)
1358 goto failed_super;
1359 } else {
1360 root_dentry = dget(s->s_root);
1361 }
1362
1363 if (!s_new)
1364 blkdev_put(sd.bdev, mode);
1365
1366 return root_dentry;
1367
1368 failed_super:
1369 deactivate_locked_super(s);
1370
1371 failed:
1372 if (!s_new)
1373 blkdev_put(sd.bdev, mode);
1374 return ERR_PTR(err);
1375}
1376
1377struct file_system_type nilfs_fs_type = {
1378 .owner = THIS_MODULE,
1379 .name = "nilfs2",
1380 .mount = nilfs_mount,
1381 .kill_sb = kill_block_super,
1382 .fs_flags = FS_REQUIRES_DEV,
1383};
1384MODULE_ALIAS_FS("nilfs2");
1385
1386static void nilfs_inode_init_once(void *obj)
1387{
1388 struct nilfs_inode_info *ii = obj;
1389
1390 INIT_LIST_HEAD(&ii->i_dirty);
1391#ifdef CONFIG_NILFS_XATTR
1392 init_rwsem(&ii->xattr_sem);
1393#endif
1394 address_space_init_once(&ii->i_btnode_cache);
1395 ii->i_bmap = &ii->i_bmap_data;
1396 inode_init_once(&ii->vfs_inode);
1397}
1398
1399static void nilfs_segbuf_init_once(void *obj)
1400{
1401 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402}
1403
1404static void nilfs_destroy_cachep(void)
1405{
1406 /*
1407 * Make sure all delayed rcu free inodes are flushed before we
1408 * destroy cache.
1409 */
1410 rcu_barrier();
1411
1412 kmem_cache_destroy(nilfs_inode_cachep);
1413 kmem_cache_destroy(nilfs_transaction_cachep);
1414 kmem_cache_destroy(nilfs_segbuf_cachep);
1415 kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421 sizeof(struct nilfs_inode_info), 0,
1422 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423 nilfs_inode_init_once);
1424 if (!nilfs_inode_cachep)
1425 goto fail;
1426
1427 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428 sizeof(struct nilfs_transaction_info), 0,
1429 SLAB_RECLAIM_ACCOUNT, NULL);
1430 if (!nilfs_transaction_cachep)
1431 goto fail;
1432
1433 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434 sizeof(struct nilfs_segment_buffer), 0,
1435 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436 if (!nilfs_segbuf_cachep)
1437 goto fail;
1438
1439 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441 0, 0, NULL);
1442 if (!nilfs_btree_path_cache)
1443 goto fail;
1444
1445 return 0;
1446
1447fail:
1448 nilfs_destroy_cachep();
1449 return -ENOMEM;
1450}
1451
1452static int __init init_nilfs_fs(void)
1453{
1454 int err;
1455
1456 err = nilfs_init_cachep();
1457 if (err)
1458 goto fail;
1459
1460 err = nilfs_sysfs_init();
1461 if (err)
1462 goto free_cachep;
1463
1464 err = register_filesystem(&nilfs_fs_type);
1465 if (err)
1466 goto deinit_sysfs_entry;
1467
1468 printk(KERN_INFO "NILFS version 2 loaded\n");
1469 return 0;
1470
1471deinit_sysfs_entry:
1472 nilfs_sysfs_exit();
1473free_cachep:
1474 nilfs_destroy_cachep();
1475fail:
1476 return err;
1477}
1478
1479static void __exit exit_nilfs_fs(void)
1480{
1481 nilfs_destroy_cachep();
1482 nilfs_sysfs_exit();
1483 unregister_filesystem(&nilfs_fs_type);
1484}
1485
1486module_init(init_nilfs_fs)
1487module_exit(exit_nilfs_fs)
1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22/*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40#include <linux/module.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/init.h>
44#include <linux/blkdev.h>
45#include <linux/parser.h>
46#include <linux/crc32.h>
47#include <linux/vfs.h>
48#include <linux/writeback.h>
49#include <linux/seq_file.h>
50#include <linux/mount.h>
51#include "nilfs.h"
52#include "export.h"
53#include "mdt.h"
54#include "alloc.h"
55#include "btree.h"
56#include "btnode.h"
57#include "page.h"
58#include "cpfile.h"
59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60#include "ifile.h"
61#include "dat.h"
62#include "segment.h"
63#include "segbuf.h"
64
65MODULE_AUTHOR("NTT Corp.");
66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68MODULE_LICENSE("GPL");
69
70static struct kmem_cache *nilfs_inode_cachep;
71struct kmem_cache *nilfs_transaction_cachep;
72struct kmem_cache *nilfs_segbuf_cachep;
73struct kmem_cache *nilfs_btree_path_cache;
74
75static int nilfs_setup_super(struct super_block *sb, int is_mount);
76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77
78static void nilfs_set_error(struct super_block *sb)
79{
80 struct the_nilfs *nilfs = sb->s_fs_info;
81 struct nilfs_super_block **sbp;
82
83 down_write(&nilfs->ns_sem);
84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 sbp = nilfs_prepare_super(sb, 0);
87 if (likely(sbp)) {
88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 if (sbp[1])
90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 }
93 }
94 up_write(&nilfs->ns_sem);
95}
96
97/**
98 * nilfs_error() - report failure condition on a filesystem
99 *
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message. It should be called when NILFS detects
102 * incoherences or defects of meta data on disk. As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
105 *
106 * The segment constructor must not call this function because it can
107 * kill itself.
108 */
109void nilfs_error(struct super_block *sb, const char *function,
110 const char *fmt, ...)
111{
112 struct the_nilfs *nilfs = sb->s_fs_info;
113 struct va_format vaf;
114 va_list args;
115
116 va_start(args, fmt);
117
118 vaf.fmt = fmt;
119 vaf.va = &args;
120
121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 sb->s_id, function, &vaf);
123
124 va_end(args);
125
126 if (!(sb->s_flags & MS_RDONLY)) {
127 nilfs_set_error(sb);
128
129 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 printk(KERN_CRIT "Remounting filesystem read-only\n");
131 sb->s_flags |= MS_RDONLY;
132 }
133 }
134
135 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 panic("NILFS (device %s): panic forced after error\n",
137 sb->s_id);
138}
139
140void nilfs_warning(struct super_block *sb, const char *function,
141 const char *fmt, ...)
142{
143 struct va_format vaf;
144 va_list args;
145
146 va_start(args, fmt);
147
148 vaf.fmt = fmt;
149 vaf.va = &args;
150
151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 sb->s_id, function, &vaf);
153
154 va_end(args);
155}
156
157
158struct inode *nilfs_alloc_inode(struct super_block *sb)
159{
160 struct nilfs_inode_info *ii;
161
162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 if (!ii)
164 return NULL;
165 ii->i_bh = NULL;
166 ii->i_state = 0;
167 ii->i_cno = 0;
168 ii->vfs_inode.i_version = 1;
169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
170 return &ii->vfs_inode;
171}
172
173static void nilfs_i_callback(struct rcu_head *head)
174{
175 struct inode *inode = container_of(head, struct inode, i_rcu);
176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177
178 if (mdi) {
179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 kfree(mdi);
181 }
182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183}
184
185void nilfs_destroy_inode(struct inode *inode)
186{
187 call_rcu(&inode->i_rcu, nilfs_i_callback);
188}
189
190static int nilfs_sync_super(struct super_block *sb, int flag)
191{
192 struct the_nilfs *nilfs = sb->s_fs_info;
193 int err;
194
195 retry:
196 set_buffer_dirty(nilfs->ns_sbh[0]);
197 if (nilfs_test_opt(nilfs, BARRIER)) {
198 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 WRITE_SYNC | WRITE_FLUSH_FUA);
200 } else {
201 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 }
203
204 if (unlikely(err)) {
205 printk(KERN_ERR
206 "NILFS: unable to write superblock (err=%d)\n", err);
207 if (err == -EIO && nilfs->ns_sbh[1]) {
208 /*
209 * sbp[0] points to newer log than sbp[1],
210 * so copy sbp[0] to sbp[1] to take over sbp[0].
211 */
212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 nilfs->ns_sbsize);
214 nilfs_fall_back_super_block(nilfs);
215 goto retry;
216 }
217 } else {
218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219
220 nilfs->ns_sbwcount++;
221
222 /*
223 * The latest segment becomes trailable from the position
224 * written in superblock.
225 */
226 clear_nilfs_discontinued(nilfs);
227
228 /* update GC protection for recent segments */
229 if (nilfs->ns_sbh[1]) {
230 if (flag == NILFS_SB_COMMIT_ALL) {
231 set_buffer_dirty(nilfs->ns_sbh[1]);
232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 goto out;
234 }
235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 sbp = nilfs->ns_sbp[1];
238 }
239
240 spin_lock(&nilfs->ns_last_segment_lock);
241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 spin_unlock(&nilfs->ns_last_segment_lock);
243 }
244 out:
245 return err;
246}
247
248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 struct the_nilfs *nilfs)
250{
251 sector_t nfreeblocks;
252
253 /* nilfs->ns_sem must be locked by the caller. */
254 nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256
257 spin_lock(&nilfs->ns_last_segment_lock);
258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 spin_unlock(&nilfs->ns_last_segment_lock);
262}
263
264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 int flip)
266{
267 struct the_nilfs *nilfs = sb->s_fs_info;
268 struct nilfs_super_block **sbp = nilfs->ns_sbp;
269
270 /* nilfs->ns_sem must be locked by the caller. */
271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 if (sbp[1] &&
273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 } else {
276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 sb->s_id);
278 return NULL;
279 }
280 } else if (sbp[1] &&
281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 }
284
285 if (flip && sbp[1])
286 nilfs_swap_super_block(nilfs);
287
288 return sbp;
289}
290
291int nilfs_commit_super(struct super_block *sb, int flag)
292{
293 struct the_nilfs *nilfs = sb->s_fs_info;
294 struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 time_t t;
296
297 /* nilfs->ns_sem must be locked by the caller. */
298 t = get_seconds();
299 nilfs->ns_sbwtime = t;
300 sbp[0]->s_wtime = cpu_to_le64(t);
301 sbp[0]->s_sum = 0;
302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 (unsigned char *)sbp[0],
304 nilfs->ns_sbsize));
305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 sbp[1]->s_wtime = sbp[0]->s_wtime;
307 sbp[1]->s_sum = 0;
308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 (unsigned char *)sbp[1],
310 nilfs->ns_sbsize));
311 }
312 clear_nilfs_sb_dirty(nilfs);
313 return nilfs_sync_super(sb, flag);
314}
315
316/**
317 * nilfs_cleanup_super() - write filesystem state for cleanup
318 * @sb: super block instance to be unmounted or degraded to read-only
319 *
320 * This function restores state flags in the on-disk super block.
321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
322 * filesystem was not clean previously.
323 */
324int nilfs_cleanup_super(struct super_block *sb)
325{
326 struct the_nilfs *nilfs = sb->s_fs_info;
327 struct nilfs_super_block **sbp;
328 int flag = NILFS_SB_COMMIT;
329 int ret = -EIO;
330
331 sbp = nilfs_prepare_super(sb, 0);
332 if (sbp) {
333 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
334 nilfs_set_log_cursor(sbp[0], nilfs);
335 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
336 /*
337 * make the "clean" flag also to the opposite
338 * super block if both super blocks point to
339 * the same checkpoint.
340 */
341 sbp[1]->s_state = sbp[0]->s_state;
342 flag = NILFS_SB_COMMIT_ALL;
343 }
344 ret = nilfs_commit_super(sb, flag);
345 }
346 return ret;
347}
348
349/**
350 * nilfs_move_2nd_super - relocate secondary super block
351 * @sb: super block instance
352 * @sb2off: new offset of the secondary super block (in bytes)
353 */
354static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
355{
356 struct the_nilfs *nilfs = sb->s_fs_info;
357 struct buffer_head *nsbh;
358 struct nilfs_super_block *nsbp;
359 sector_t blocknr, newblocknr;
360 unsigned long offset;
361 int sb2i = -1; /* array index of the secondary superblock */
362 int ret = 0;
363
364 /* nilfs->ns_sem must be locked by the caller. */
365 if (nilfs->ns_sbh[1] &&
366 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
367 sb2i = 1;
368 blocknr = nilfs->ns_sbh[1]->b_blocknr;
369 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
370 sb2i = 0;
371 blocknr = nilfs->ns_sbh[0]->b_blocknr;
372 }
373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374 goto out; /* super block location is unchanged */
375
376 /* Get new super block buffer */
377 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378 offset = sb2off & (nilfs->ns_blocksize - 1);
379 nsbh = sb_getblk(sb, newblocknr);
380 if (!nsbh) {
381 printk(KERN_WARNING
382 "NILFS warning: unable to move secondary superblock "
383 "to block %llu\n", (unsigned long long)newblocknr);
384 ret = -EIO;
385 goto out;
386 }
387 nsbp = (void *)nsbh->b_data + offset;
388 memset(nsbp, 0, nilfs->ns_blocksize);
389
390 if (sb2i >= 0) {
391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392 brelse(nilfs->ns_sbh[sb2i]);
393 nilfs->ns_sbh[sb2i] = nsbh;
394 nilfs->ns_sbp[sb2i] = nsbp;
395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396 /* secondary super block will be restored to index 1 */
397 nilfs->ns_sbh[1] = nsbh;
398 nilfs->ns_sbp[1] = nsbp;
399 } else {
400 brelse(nsbh);
401 }
402out:
403 return ret;
404}
405
406/**
407 * nilfs_resize_fs - resize the filesystem
408 * @sb: super block instance
409 * @newsize: new size of the filesystem (in bytes)
410 */
411int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
412{
413 struct the_nilfs *nilfs = sb->s_fs_info;
414 struct nilfs_super_block **sbp;
415 __u64 devsize, newnsegs;
416 loff_t sb2off;
417 int ret;
418
419 ret = -ERANGE;
420 devsize = i_size_read(sb->s_bdev->bd_inode);
421 if (newsize > devsize)
422 goto out;
423
424 /*
425 * Write lock is required to protect some functions depending
426 * on the number of segments, the number of reserved segments,
427 * and so forth.
428 */
429 down_write(&nilfs->ns_segctor_sem);
430
431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433 do_div(newnsegs, nilfs->ns_blocks_per_segment);
434
435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436 up_write(&nilfs->ns_segctor_sem);
437 if (ret < 0)
438 goto out;
439
440 ret = nilfs_construct_segment(sb);
441 if (ret < 0)
442 goto out;
443
444 down_write(&nilfs->ns_sem);
445 nilfs_move_2nd_super(sb, sb2off);
446 ret = -EIO;
447 sbp = nilfs_prepare_super(sb, 0);
448 if (likely(sbp)) {
449 nilfs_set_log_cursor(sbp[0], nilfs);
450 /*
451 * Drop NILFS_RESIZE_FS flag for compatibility with
452 * mount-time resize which may be implemented in a
453 * future release.
454 */
455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456 ~NILFS_RESIZE_FS);
457 sbp[0]->s_dev_size = cpu_to_le64(newsize);
458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459 if (sbp[1])
460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
462 }
463 up_write(&nilfs->ns_sem);
464
465 /*
466 * Reset the range of allocatable segments last. This order
467 * is important in the case of expansion because the secondary
468 * superblock must be protected from log write until migration
469 * completes.
470 */
471 if (!ret)
472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473out:
474 return ret;
475}
476
477static void nilfs_put_super(struct super_block *sb)
478{
479 struct the_nilfs *nilfs = sb->s_fs_info;
480
481 nilfs_detach_log_writer(sb);
482
483 if (!(sb->s_flags & MS_RDONLY)) {
484 down_write(&nilfs->ns_sem);
485 nilfs_cleanup_super(sb);
486 up_write(&nilfs->ns_sem);
487 }
488
489 iput(nilfs->ns_sufile);
490 iput(nilfs->ns_cpfile);
491 iput(nilfs->ns_dat);
492
493 destroy_nilfs(nilfs);
494 sb->s_fs_info = NULL;
495}
496
497static int nilfs_sync_fs(struct super_block *sb, int wait)
498{
499 struct the_nilfs *nilfs = sb->s_fs_info;
500 struct nilfs_super_block **sbp;
501 int err = 0;
502
503 /* This function is called when super block should be written back */
504 if (wait)
505 err = nilfs_construct_segment(sb);
506
507 down_write(&nilfs->ns_sem);
508 if (nilfs_sb_dirty(nilfs)) {
509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510 if (likely(sbp)) {
511 nilfs_set_log_cursor(sbp[0], nilfs);
512 nilfs_commit_super(sb, NILFS_SB_COMMIT);
513 }
514 }
515 up_write(&nilfs->ns_sem);
516
517 return err;
518}
519
520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 struct nilfs_root **rootp)
522{
523 struct the_nilfs *nilfs = sb->s_fs_info;
524 struct nilfs_root *root;
525 struct nilfs_checkpoint *raw_cp;
526 struct buffer_head *bh_cp;
527 int err = -ENOMEM;
528
529 root = nilfs_find_or_create_root(
530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 if (!root)
532 return err;
533
534 if (root->ifile)
535 goto reuse; /* already attached checkpoint */
536
537 down_read(&nilfs->ns_segctor_sem);
538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 &bh_cp);
540 up_read(&nilfs->ns_segctor_sem);
541 if (unlikely(err)) {
542 if (err == -ENOENT || err == -EINVAL) {
543 printk(KERN_ERR
544 "NILFS: Invalid checkpoint "
545 "(checkpoint number=%llu)\n",
546 (unsigned long long)cno);
547 err = -EINVAL;
548 }
549 goto failed;
550 }
551
552 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
553 &raw_cp->cp_ifile_inode, &root->ifile);
554 if (err)
555 goto failed_bh;
556
557 atomic64_set(&root->inodes_count,
558 le64_to_cpu(raw_cp->cp_inodes_count));
559 atomic64_set(&root->blocks_count,
560 le64_to_cpu(raw_cp->cp_blocks_count));
561
562 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
563
564 reuse:
565 *rootp = root;
566 return 0;
567
568 failed_bh:
569 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
570 failed:
571 nilfs_put_root(root);
572
573 return err;
574}
575
576static int nilfs_freeze(struct super_block *sb)
577{
578 struct the_nilfs *nilfs = sb->s_fs_info;
579 int err;
580
581 if (sb->s_flags & MS_RDONLY)
582 return 0;
583
584 /* Mark super block clean */
585 down_write(&nilfs->ns_sem);
586 err = nilfs_cleanup_super(sb);
587 up_write(&nilfs->ns_sem);
588 return err;
589}
590
591static int nilfs_unfreeze(struct super_block *sb)
592{
593 struct the_nilfs *nilfs = sb->s_fs_info;
594
595 if (sb->s_flags & MS_RDONLY)
596 return 0;
597
598 down_write(&nilfs->ns_sem);
599 nilfs_setup_super(sb, false);
600 up_write(&nilfs->ns_sem);
601 return 0;
602}
603
604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605{
606 struct super_block *sb = dentry->d_sb;
607 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
608 struct the_nilfs *nilfs = root->nilfs;
609 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610 unsigned long long blocks;
611 unsigned long overhead;
612 unsigned long nrsvblocks;
613 sector_t nfreeblocks;
614 u64 nmaxinodes, nfreeinodes;
615 int err;
616
617 /*
618 * Compute all of the segment blocks
619 *
620 * The blocks before first segment and after last segment
621 * are excluded.
622 */
623 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
624 - nilfs->ns_first_data_block;
625 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
626
627 /*
628 * Compute the overhead
629 *
630 * When distributing meta data blocks outside segment structure,
631 * We must count them as the overhead.
632 */
633 overhead = 0;
634
635 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
636 if (unlikely(err))
637 return err;
638
639 err = nilfs_ifile_count_free_inodes(root->ifile,
640 &nmaxinodes, &nfreeinodes);
641 if (unlikely(err)) {
642 printk(KERN_WARNING
643 "NILFS warning: fail to count free inodes: err %d.\n",
644 err);
645 if (err == -ERANGE) {
646 /*
647 * If nilfs_palloc_count_max_entries() returns
648 * -ERANGE error code then we simply treat
649 * curent inodes count as maximum possible and
650 * zero as free inodes value.
651 */
652 nmaxinodes = atomic64_read(&root->inodes_count);
653 nfreeinodes = 0;
654 err = 0;
655 } else
656 return err;
657 }
658
659 buf->f_type = NILFS_SUPER_MAGIC;
660 buf->f_bsize = sb->s_blocksize;
661 buf->f_blocks = blocks - overhead;
662 buf->f_bfree = nfreeblocks;
663 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
664 (buf->f_bfree - nrsvblocks) : 0;
665 buf->f_files = nmaxinodes;
666 buf->f_ffree = nfreeinodes;
667 buf->f_namelen = NILFS_NAME_LEN;
668 buf->f_fsid.val[0] = (u32)id;
669 buf->f_fsid.val[1] = (u32)(id >> 32);
670
671 return 0;
672}
673
674static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
675{
676 struct super_block *sb = dentry->d_sb;
677 struct the_nilfs *nilfs = sb->s_fs_info;
678 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
679
680 if (!nilfs_test_opt(nilfs, BARRIER))
681 seq_puts(seq, ",nobarrier");
682 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
683 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
684 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
685 seq_puts(seq, ",errors=panic");
686 if (nilfs_test_opt(nilfs, ERRORS_CONT))
687 seq_puts(seq, ",errors=continue");
688 if (nilfs_test_opt(nilfs, STRICT_ORDER))
689 seq_puts(seq, ",order=strict");
690 if (nilfs_test_opt(nilfs, NORECOVERY))
691 seq_puts(seq, ",norecovery");
692 if (nilfs_test_opt(nilfs, DISCARD))
693 seq_puts(seq, ",discard");
694
695 return 0;
696}
697
698static const struct super_operations nilfs_sops = {
699 .alloc_inode = nilfs_alloc_inode,
700 .destroy_inode = nilfs_destroy_inode,
701 .dirty_inode = nilfs_dirty_inode,
702 .evict_inode = nilfs_evict_inode,
703 .put_super = nilfs_put_super,
704 .sync_fs = nilfs_sync_fs,
705 .freeze_fs = nilfs_freeze,
706 .unfreeze_fs = nilfs_unfreeze,
707 .statfs = nilfs_statfs,
708 .remount_fs = nilfs_remount,
709 .show_options = nilfs_show_options
710};
711
712enum {
713 Opt_err_cont, Opt_err_panic, Opt_err_ro,
714 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
715 Opt_discard, Opt_nodiscard, Opt_err,
716};
717
718static match_table_t tokens = {
719 {Opt_err_cont, "errors=continue"},
720 {Opt_err_panic, "errors=panic"},
721 {Opt_err_ro, "errors=remount-ro"},
722 {Opt_barrier, "barrier"},
723 {Opt_nobarrier, "nobarrier"},
724 {Opt_snapshot, "cp=%u"},
725 {Opt_order, "order=%s"},
726 {Opt_norecovery, "norecovery"},
727 {Opt_discard, "discard"},
728 {Opt_nodiscard, "nodiscard"},
729 {Opt_err, NULL}
730};
731
732static int parse_options(char *options, struct super_block *sb, int is_remount)
733{
734 struct the_nilfs *nilfs = sb->s_fs_info;
735 char *p;
736 substring_t args[MAX_OPT_ARGS];
737
738 if (!options)
739 return 1;
740
741 while ((p = strsep(&options, ",")) != NULL) {
742 int token;
743 if (!*p)
744 continue;
745
746 token = match_token(p, tokens, args);
747 switch (token) {
748 case Opt_barrier:
749 nilfs_set_opt(nilfs, BARRIER);
750 break;
751 case Opt_nobarrier:
752 nilfs_clear_opt(nilfs, BARRIER);
753 break;
754 case Opt_order:
755 if (strcmp(args[0].from, "relaxed") == 0)
756 /* Ordered data semantics */
757 nilfs_clear_opt(nilfs, STRICT_ORDER);
758 else if (strcmp(args[0].from, "strict") == 0)
759 /* Strict in-order semantics */
760 nilfs_set_opt(nilfs, STRICT_ORDER);
761 else
762 return 0;
763 break;
764 case Opt_err_panic:
765 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
766 break;
767 case Opt_err_ro:
768 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
769 break;
770 case Opt_err_cont:
771 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
772 break;
773 case Opt_snapshot:
774 if (is_remount) {
775 printk(KERN_ERR
776 "NILFS: \"%s\" option is invalid "
777 "for remount.\n", p);
778 return 0;
779 }
780 break;
781 case Opt_norecovery:
782 nilfs_set_opt(nilfs, NORECOVERY);
783 break;
784 case Opt_discard:
785 nilfs_set_opt(nilfs, DISCARD);
786 break;
787 case Opt_nodiscard:
788 nilfs_clear_opt(nilfs, DISCARD);
789 break;
790 default:
791 printk(KERN_ERR
792 "NILFS: Unrecognized mount option \"%s\"\n", p);
793 return 0;
794 }
795 }
796 return 1;
797}
798
799static inline void
800nilfs_set_default_options(struct super_block *sb,
801 struct nilfs_super_block *sbp)
802{
803 struct the_nilfs *nilfs = sb->s_fs_info;
804
805 nilfs->ns_mount_opt =
806 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
807}
808
809static int nilfs_setup_super(struct super_block *sb, int is_mount)
810{
811 struct the_nilfs *nilfs = sb->s_fs_info;
812 struct nilfs_super_block **sbp;
813 int max_mnt_count;
814 int mnt_count;
815
816 /* nilfs->ns_sem must be locked by the caller. */
817 sbp = nilfs_prepare_super(sb, 0);
818 if (!sbp)
819 return -EIO;
820
821 if (!is_mount)
822 goto skip_mount_setup;
823
824 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
825 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
826
827 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
828 printk(KERN_WARNING
829 "NILFS warning: mounting fs with errors\n");
830#if 0
831 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
832 printk(KERN_WARNING
833 "NILFS warning: maximal mount count reached\n");
834#endif
835 }
836 if (!max_mnt_count)
837 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
838
839 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
840 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
841
842skip_mount_setup:
843 sbp[0]->s_state =
844 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
845 /* synchronize sbp[1] with sbp[0] */
846 if (sbp[1])
847 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
848 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
849}
850
851struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
852 u64 pos, int blocksize,
853 struct buffer_head **pbh)
854{
855 unsigned long long sb_index = pos;
856 unsigned long offset;
857
858 offset = do_div(sb_index, blocksize);
859 *pbh = sb_bread(sb, sb_index);
860 if (!*pbh)
861 return NULL;
862 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
863}
864
865int nilfs_store_magic_and_option(struct super_block *sb,
866 struct nilfs_super_block *sbp,
867 char *data)
868{
869 struct the_nilfs *nilfs = sb->s_fs_info;
870
871 sb->s_magic = le16_to_cpu(sbp->s_magic);
872
873 /* FS independent flags */
874#ifdef NILFS_ATIME_DISABLE
875 sb->s_flags |= MS_NOATIME;
876#endif
877
878 nilfs_set_default_options(sb, sbp);
879
880 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
881 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
882 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
883 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
884
885 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
886}
887
888int nilfs_check_feature_compatibility(struct super_block *sb,
889 struct nilfs_super_block *sbp)
890{
891 __u64 features;
892
893 features = le64_to_cpu(sbp->s_feature_incompat) &
894 ~NILFS_FEATURE_INCOMPAT_SUPP;
895 if (features) {
896 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
897 "optional features (%llx)\n",
898 (unsigned long long)features);
899 return -EINVAL;
900 }
901 features = le64_to_cpu(sbp->s_feature_compat_ro) &
902 ~NILFS_FEATURE_COMPAT_RO_SUPP;
903 if (!(sb->s_flags & MS_RDONLY) && features) {
904 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
905 "unsupported optional features (%llx)\n",
906 (unsigned long long)features);
907 return -EINVAL;
908 }
909 return 0;
910}
911
912static int nilfs_get_root_dentry(struct super_block *sb,
913 struct nilfs_root *root,
914 struct dentry **root_dentry)
915{
916 struct inode *inode;
917 struct dentry *dentry;
918 int ret = 0;
919
920 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
921 if (IS_ERR(inode)) {
922 printk(KERN_ERR "NILFS: get root inode failed\n");
923 ret = PTR_ERR(inode);
924 goto out;
925 }
926 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
927 iput(inode);
928 printk(KERN_ERR "NILFS: corrupt root inode.\n");
929 ret = -EINVAL;
930 goto out;
931 }
932
933 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
934 dentry = d_find_alias(inode);
935 if (!dentry) {
936 dentry = d_make_root(inode);
937 if (!dentry) {
938 ret = -ENOMEM;
939 goto failed_dentry;
940 }
941 } else {
942 iput(inode);
943 }
944 } else {
945 dentry = d_obtain_alias(inode);
946 if (IS_ERR(dentry)) {
947 ret = PTR_ERR(dentry);
948 goto failed_dentry;
949 }
950 }
951 *root_dentry = dentry;
952 out:
953 return ret;
954
955 failed_dentry:
956 printk(KERN_ERR "NILFS: get root dentry failed\n");
957 goto out;
958}
959
960static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
961 struct dentry **root_dentry)
962{
963 struct the_nilfs *nilfs = s->s_fs_info;
964 struct nilfs_root *root;
965 int ret;
966
967 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
968
969 down_read(&nilfs->ns_segctor_sem);
970 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
971 up_read(&nilfs->ns_segctor_sem);
972 if (ret < 0) {
973 ret = (ret == -ENOENT) ? -EINVAL : ret;
974 goto out;
975 } else if (!ret) {
976 printk(KERN_ERR "NILFS: The specified checkpoint is "
977 "not a snapshot (checkpoint number=%llu).\n",
978 (unsigned long long)cno);
979 ret = -EINVAL;
980 goto out;
981 }
982
983 ret = nilfs_attach_checkpoint(s, cno, false, &root);
984 if (ret) {
985 printk(KERN_ERR "NILFS: error loading snapshot "
986 "(checkpoint number=%llu).\n",
987 (unsigned long long)cno);
988 goto out;
989 }
990 ret = nilfs_get_root_dentry(s, root, root_dentry);
991 nilfs_put_root(root);
992 out:
993 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
994 return ret;
995}
996
997/**
998 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
999 * @root_dentry: root dentry of the tree to be shrunk
1000 *
1001 * This function returns true if the tree was in-use.
1002 */
1003static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1004{
1005 shrink_dcache_parent(root_dentry);
1006 return d_count(root_dentry) > 1;
1007}
1008
1009int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1010{
1011 struct the_nilfs *nilfs = sb->s_fs_info;
1012 struct nilfs_root *root;
1013 struct inode *inode;
1014 struct dentry *dentry;
1015 int ret;
1016
1017 if (cno < 0 || cno > nilfs->ns_cno)
1018 return false;
1019
1020 if (cno >= nilfs_last_cno(nilfs))
1021 return true; /* protect recent checkpoints */
1022
1023 ret = false;
1024 root = nilfs_lookup_root(nilfs, cno);
1025 if (root) {
1026 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1027 if (inode) {
1028 dentry = d_find_alias(inode);
1029 if (dentry) {
1030 ret = nilfs_tree_is_busy(dentry);
1031 dput(dentry);
1032 }
1033 iput(inode);
1034 }
1035 nilfs_put_root(root);
1036 }
1037 return ret;
1038}
1039
1040/**
1041 * nilfs_fill_super() - initialize a super block instance
1042 * @sb: super_block
1043 * @data: mount options
1044 * @silent: silent mode flag
1045 *
1046 * This function is called exclusively by nilfs->ns_mount_mutex.
1047 * So, the recovery process is protected from other simultaneous mounts.
1048 */
1049static int
1050nilfs_fill_super(struct super_block *sb, void *data, int silent)
1051{
1052 struct the_nilfs *nilfs;
1053 struct nilfs_root *fsroot;
1054 struct backing_dev_info *bdi;
1055 __u64 cno;
1056 int err;
1057
1058 nilfs = alloc_nilfs(sb->s_bdev);
1059 if (!nilfs)
1060 return -ENOMEM;
1061
1062 sb->s_fs_info = nilfs;
1063
1064 err = init_nilfs(nilfs, sb, (char *)data);
1065 if (err)
1066 goto failed_nilfs;
1067
1068 sb->s_op = &nilfs_sops;
1069 sb->s_export_op = &nilfs_export_ops;
1070 sb->s_root = NULL;
1071 sb->s_time_gran = 1;
1072 sb->s_max_links = NILFS_LINK_MAX;
1073
1074 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1075 sb->s_bdi = bdi ? : &default_backing_dev_info;
1076
1077 err = load_nilfs(nilfs, sb);
1078 if (err)
1079 goto failed_nilfs;
1080
1081 cno = nilfs_last_cno(nilfs);
1082 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1083 if (err) {
1084 printk(KERN_ERR "NILFS: error loading last checkpoint "
1085 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1086 goto failed_unload;
1087 }
1088
1089 if (!(sb->s_flags & MS_RDONLY)) {
1090 err = nilfs_attach_log_writer(sb, fsroot);
1091 if (err)
1092 goto failed_checkpoint;
1093 }
1094
1095 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1096 if (err)
1097 goto failed_segctor;
1098
1099 nilfs_put_root(fsroot);
1100
1101 if (!(sb->s_flags & MS_RDONLY)) {
1102 down_write(&nilfs->ns_sem);
1103 nilfs_setup_super(sb, true);
1104 up_write(&nilfs->ns_sem);
1105 }
1106
1107 return 0;
1108
1109 failed_segctor:
1110 nilfs_detach_log_writer(sb);
1111
1112 failed_checkpoint:
1113 nilfs_put_root(fsroot);
1114
1115 failed_unload:
1116 iput(nilfs->ns_sufile);
1117 iput(nilfs->ns_cpfile);
1118 iput(nilfs->ns_dat);
1119
1120 failed_nilfs:
1121 destroy_nilfs(nilfs);
1122 return err;
1123}
1124
1125static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1126{
1127 struct the_nilfs *nilfs = sb->s_fs_info;
1128 unsigned long old_sb_flags;
1129 unsigned long old_mount_opt;
1130 int err;
1131
1132 sync_filesystem(sb);
1133 old_sb_flags = sb->s_flags;
1134 old_mount_opt = nilfs->ns_mount_opt;
1135
1136 if (!parse_options(data, sb, 1)) {
1137 err = -EINVAL;
1138 goto restore_opts;
1139 }
1140 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1141
1142 err = -EINVAL;
1143
1144 if (!nilfs_valid_fs(nilfs)) {
1145 printk(KERN_WARNING "NILFS (device %s): couldn't "
1146 "remount because the filesystem is in an "
1147 "incomplete recovery state.\n", sb->s_id);
1148 goto restore_opts;
1149 }
1150
1151 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1152 goto out;
1153 if (*flags & MS_RDONLY) {
1154 /* Shutting down log writer */
1155 nilfs_detach_log_writer(sb);
1156 sb->s_flags |= MS_RDONLY;
1157
1158 /*
1159 * Remounting a valid RW partition RDONLY, so set
1160 * the RDONLY flag and then mark the partition as valid again.
1161 */
1162 down_write(&nilfs->ns_sem);
1163 nilfs_cleanup_super(sb);
1164 up_write(&nilfs->ns_sem);
1165 } else {
1166 __u64 features;
1167 struct nilfs_root *root;
1168
1169 /*
1170 * Mounting a RDONLY partition read-write, so reread and
1171 * store the current valid flag. (It may have been changed
1172 * by fsck since we originally mounted the partition.)
1173 */
1174 down_read(&nilfs->ns_sem);
1175 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1176 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1177 up_read(&nilfs->ns_sem);
1178 if (features) {
1179 printk(KERN_WARNING "NILFS (device %s): couldn't "
1180 "remount RDWR because of unsupported optional "
1181 "features (%llx)\n",
1182 sb->s_id, (unsigned long long)features);
1183 err = -EROFS;
1184 goto restore_opts;
1185 }
1186
1187 sb->s_flags &= ~MS_RDONLY;
1188
1189 root = NILFS_I(sb->s_root->d_inode)->i_root;
1190 err = nilfs_attach_log_writer(sb, root);
1191 if (err)
1192 goto restore_opts;
1193
1194 down_write(&nilfs->ns_sem);
1195 nilfs_setup_super(sb, true);
1196 up_write(&nilfs->ns_sem);
1197 }
1198 out:
1199 return 0;
1200
1201 restore_opts:
1202 sb->s_flags = old_sb_flags;
1203 nilfs->ns_mount_opt = old_mount_opt;
1204 return err;
1205}
1206
1207struct nilfs_super_data {
1208 struct block_device *bdev;
1209 __u64 cno;
1210 int flags;
1211};
1212
1213/**
1214 * nilfs_identify - pre-read mount options needed to identify mount instance
1215 * @data: mount options
1216 * @sd: nilfs_super_data
1217 */
1218static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1219{
1220 char *p, *options = data;
1221 substring_t args[MAX_OPT_ARGS];
1222 int token;
1223 int ret = 0;
1224
1225 do {
1226 p = strsep(&options, ",");
1227 if (p != NULL && *p) {
1228 token = match_token(p, tokens, args);
1229 if (token == Opt_snapshot) {
1230 if (!(sd->flags & MS_RDONLY)) {
1231 ret++;
1232 } else {
1233 sd->cno = simple_strtoull(args[0].from,
1234 NULL, 0);
1235 /*
1236 * No need to see the end pointer;
1237 * match_token() has done syntax
1238 * checking.
1239 */
1240 if (sd->cno == 0)
1241 ret++;
1242 }
1243 }
1244 if (ret)
1245 printk(KERN_ERR
1246 "NILFS: invalid mount option: %s\n", p);
1247 }
1248 if (!options)
1249 break;
1250 BUG_ON(options == data);
1251 *(options - 1) = ',';
1252 } while (!ret);
1253 return ret;
1254}
1255
1256static int nilfs_set_bdev_super(struct super_block *s, void *data)
1257{
1258 s->s_bdev = data;
1259 s->s_dev = s->s_bdev->bd_dev;
1260 return 0;
1261}
1262
1263static int nilfs_test_bdev_super(struct super_block *s, void *data)
1264{
1265 return (void *)s->s_bdev == data;
1266}
1267
1268static struct dentry *
1269nilfs_mount(struct file_system_type *fs_type, int flags,
1270 const char *dev_name, void *data)
1271{
1272 struct nilfs_super_data sd;
1273 struct super_block *s;
1274 fmode_t mode = FMODE_READ | FMODE_EXCL;
1275 struct dentry *root_dentry;
1276 int err, s_new = false;
1277
1278 if (!(flags & MS_RDONLY))
1279 mode |= FMODE_WRITE;
1280
1281 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1282 if (IS_ERR(sd.bdev))
1283 return ERR_CAST(sd.bdev);
1284
1285 sd.cno = 0;
1286 sd.flags = flags;
1287 if (nilfs_identify((char *)data, &sd)) {
1288 err = -EINVAL;
1289 goto failed;
1290 }
1291
1292 /*
1293 * once the super is inserted into the list by sget, s_umount
1294 * will protect the lockfs code from trying to start a snapshot
1295 * while we are mounting
1296 */
1297 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1298 if (sd.bdev->bd_fsfreeze_count > 0) {
1299 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1300 err = -EBUSY;
1301 goto failed;
1302 }
1303 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1304 sd.bdev);
1305 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1306 if (IS_ERR(s)) {
1307 err = PTR_ERR(s);
1308 goto failed;
1309 }
1310
1311 if (!s->s_root) {
1312 char b[BDEVNAME_SIZE];
1313
1314 s_new = true;
1315
1316 /* New superblock instance created */
1317 s->s_mode = mode;
1318 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1319 sb_set_blocksize(s, block_size(sd.bdev));
1320
1321 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1322 if (err)
1323 goto failed_super;
1324
1325 s->s_flags |= MS_ACTIVE;
1326 } else if (!sd.cno) {
1327 if (nilfs_tree_is_busy(s->s_root)) {
1328 if ((flags ^ s->s_flags) & MS_RDONLY) {
1329 printk(KERN_ERR "NILFS: the device already "
1330 "has a %s mount.\n",
1331 (s->s_flags & MS_RDONLY) ?
1332 "read-only" : "read/write");
1333 err = -EBUSY;
1334 goto failed_super;
1335 }
1336 } else {
1337 /*
1338 * Try remount to setup mount states if the current
1339 * tree is not mounted and only snapshots use this sb.
1340 */
1341 err = nilfs_remount(s, &flags, data);
1342 if (err)
1343 goto failed_super;
1344 }
1345 }
1346
1347 if (sd.cno) {
1348 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349 if (err)
1350 goto failed_super;
1351 } else {
1352 root_dentry = dget(s->s_root);
1353 }
1354
1355 if (!s_new)
1356 blkdev_put(sd.bdev, mode);
1357
1358 return root_dentry;
1359
1360 failed_super:
1361 deactivate_locked_super(s);
1362
1363 failed:
1364 if (!s_new)
1365 blkdev_put(sd.bdev, mode);
1366 return ERR_PTR(err);
1367}
1368
1369struct file_system_type nilfs_fs_type = {
1370 .owner = THIS_MODULE,
1371 .name = "nilfs2",
1372 .mount = nilfs_mount,
1373 .kill_sb = kill_block_super,
1374 .fs_flags = FS_REQUIRES_DEV,
1375};
1376MODULE_ALIAS_FS("nilfs2");
1377
1378static void nilfs_inode_init_once(void *obj)
1379{
1380 struct nilfs_inode_info *ii = obj;
1381
1382 INIT_LIST_HEAD(&ii->i_dirty);
1383#ifdef CONFIG_NILFS_XATTR
1384 init_rwsem(&ii->xattr_sem);
1385#endif
1386 address_space_init_once(&ii->i_btnode_cache);
1387 ii->i_bmap = &ii->i_bmap_data;
1388 inode_init_once(&ii->vfs_inode);
1389}
1390
1391static void nilfs_segbuf_init_once(void *obj)
1392{
1393 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1394}
1395
1396static void nilfs_destroy_cachep(void)
1397{
1398 /*
1399 * Make sure all delayed rcu free inodes are flushed before we
1400 * destroy cache.
1401 */
1402 rcu_barrier();
1403
1404 if (nilfs_inode_cachep)
1405 kmem_cache_destroy(nilfs_inode_cachep);
1406 if (nilfs_transaction_cachep)
1407 kmem_cache_destroy(nilfs_transaction_cachep);
1408 if (nilfs_segbuf_cachep)
1409 kmem_cache_destroy(nilfs_segbuf_cachep);
1410 if (nilfs_btree_path_cache)
1411 kmem_cache_destroy(nilfs_btree_path_cache);
1412}
1413
1414static int __init nilfs_init_cachep(void)
1415{
1416 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1417 sizeof(struct nilfs_inode_info), 0,
1418 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1419 if (!nilfs_inode_cachep)
1420 goto fail;
1421
1422 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1423 sizeof(struct nilfs_transaction_info), 0,
1424 SLAB_RECLAIM_ACCOUNT, NULL);
1425 if (!nilfs_transaction_cachep)
1426 goto fail;
1427
1428 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1429 sizeof(struct nilfs_segment_buffer), 0,
1430 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1431 if (!nilfs_segbuf_cachep)
1432 goto fail;
1433
1434 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1435 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1436 0, 0, NULL);
1437 if (!nilfs_btree_path_cache)
1438 goto fail;
1439
1440 return 0;
1441
1442fail:
1443 nilfs_destroy_cachep();
1444 return -ENOMEM;
1445}
1446
1447static int __init init_nilfs_fs(void)
1448{
1449 int err;
1450
1451 err = nilfs_init_cachep();
1452 if (err)
1453 goto fail;
1454
1455 err = register_filesystem(&nilfs_fs_type);
1456 if (err)
1457 goto free_cachep;
1458
1459 printk(KERN_INFO "NILFS version 2 loaded\n");
1460 return 0;
1461
1462free_cachep:
1463 nilfs_destroy_cachep();
1464fail:
1465 return err;
1466}
1467
1468static void __exit exit_nilfs_fs(void)
1469{
1470 nilfs_destroy_cachep();
1471 unregister_filesystem(&nilfs_fs_type);
1472}
1473
1474module_init(init_nilfs_fs)
1475module_exit(exit_nilfs_fs)