Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "disk-io.h"
  12#include "ordered-data.h"
  13#include "transaction.h"
  14#include "backref.h"
  15#include "extent_io.h"
  16#include "dev-replace.h"
  17#include "check-integrity.h"
  18#include "rcu-string.h"
  19#include "raid56.h"
  20
  21/*
  22 * This is only the first step towards a full-features scrub. It reads all
  23 * extent and super block and verifies the checksums. In case a bad checksum
  24 * is found or the extent cannot be read, good data will be written back if
  25 * any can be found.
  26 *
  27 * Future enhancements:
  28 *  - In case an unrepairable extent is encountered, track which files are
  29 *    affected and report them
  30 *  - track and record media errors, throw out bad devices
  31 *  - add a mode to also read unallocated space
  32 */
  33
  34struct scrub_block;
  35struct scrub_ctx;
  36
  37/*
  38 * the following three values only influence the performance.
  39 * The last one configures the number of parallel and outstanding I/O
  40 * operations. The first two values configure an upper limit for the number
  41 * of (dynamically allocated) pages that are added to a bio.
  42 */
  43#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  44#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  45#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  46
  47/*
  48 * the following value times PAGE_SIZE needs to be large enough to match the
  49 * largest node/leaf/sector size that shall be supported.
  50 * Values larger than BTRFS_STRIPE_LEN are not supported.
  51 */
  52#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  53
  54struct scrub_recover {
  55	refcount_t		refs;
  56	struct btrfs_bio	*bbio;
  57	u64			map_length;
  58};
  59
  60struct scrub_page {
  61	struct scrub_block	*sblock;
  62	struct page		*page;
  63	struct btrfs_device	*dev;
  64	struct list_head	list;
  65	u64			flags;  /* extent flags */
  66	u64			generation;
  67	u64			logical;
  68	u64			physical;
  69	u64			physical_for_dev_replace;
  70	atomic_t		refs;
  71	struct {
  72		unsigned int	mirror_num:8;
  73		unsigned int	have_csum:1;
  74		unsigned int	io_error:1;
  75	};
  76	u8			csum[BTRFS_CSUM_SIZE];
  77
  78	struct scrub_recover	*recover;
  79};
  80
  81struct scrub_bio {
  82	int			index;
  83	struct scrub_ctx	*sctx;
  84	struct btrfs_device	*dev;
  85	struct bio		*bio;
  86	blk_status_t		status;
  87	u64			logical;
  88	u64			physical;
  89#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  90	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  91#else
  92	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  93#endif
  94	int			page_count;
  95	int			next_free;
  96	struct btrfs_work	work;
  97};
  98
  99struct scrub_block {
 100	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 101	int			page_count;
 102	atomic_t		outstanding_pages;
 103	refcount_t		refs; /* free mem on transition to zero */
 104	struct scrub_ctx	*sctx;
 105	struct scrub_parity	*sparity;
 106	struct {
 107		unsigned int	header_error:1;
 108		unsigned int	checksum_error:1;
 109		unsigned int	no_io_error_seen:1;
 110		unsigned int	generation_error:1; /* also sets header_error */
 111
 112		/* The following is for the data used to check parity */
 113		/* It is for the data with checksum */
 114		unsigned int	data_corrected:1;
 115	};
 116	struct btrfs_work	work;
 117};
 118
 119/* Used for the chunks with parity stripe such RAID5/6 */
 120struct scrub_parity {
 121	struct scrub_ctx	*sctx;
 122
 123	struct btrfs_device	*scrub_dev;
 124
 125	u64			logic_start;
 126
 127	u64			logic_end;
 128
 129	int			nsectors;
 130
 131	u64			stripe_len;
 132
 133	refcount_t		refs;
 134
 135	struct list_head	spages;
 136
 137	/* Work of parity check and repair */
 138	struct btrfs_work	work;
 139
 140	/* Mark the parity blocks which have data */
 141	unsigned long		*dbitmap;
 142
 143	/*
 144	 * Mark the parity blocks which have data, but errors happen when
 145	 * read data or check data
 146	 */
 147	unsigned long		*ebitmap;
 148
 149	unsigned long		bitmap[0];
 150};
 151
 152struct scrub_ctx {
 153	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 154	struct btrfs_fs_info	*fs_info;
 155	int			first_free;
 156	int			curr;
 157	atomic_t		bios_in_flight;
 158	atomic_t		workers_pending;
 159	spinlock_t		list_lock;
 160	wait_queue_head_t	list_wait;
 161	u16			csum_size;
 162	struct list_head	csum_list;
 163	atomic_t		cancel_req;
 164	int			readonly;
 165	int			pages_per_rd_bio;
 
 
 
 166
 167	int			is_dev_replace;
 168
 169	struct scrub_bio        *wr_curr_bio;
 170	struct mutex            wr_lock;
 171	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 172	struct btrfs_device     *wr_tgtdev;
 173	bool                    flush_all_writes;
 174
 175	/*
 176	 * statistics
 177	 */
 178	struct btrfs_scrub_progress stat;
 179	spinlock_t		stat_lock;
 180
 181	/*
 182	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 183	 * decrement bios_in_flight and workers_pending and then do a wakeup
 184	 * on the list_wait wait queue. We must ensure the main scrub task
 185	 * doesn't free the scrub context before or while the workers are
 186	 * doing the wakeup() call.
 187	 */
 188	refcount_t              refs;
 189};
 190
 191struct scrub_fixup_nodatasum {
 192	struct scrub_ctx	*sctx;
 193	struct btrfs_device	*dev;
 194	u64			logical;
 195	struct btrfs_root	*root;
 196	struct btrfs_work	work;
 197	int			mirror_num;
 198};
 199
 200struct scrub_nocow_inode {
 201	u64			inum;
 202	u64			offset;
 203	u64			root;
 204	struct list_head	list;
 205};
 206
 207struct scrub_copy_nocow_ctx {
 208	struct scrub_ctx	*sctx;
 209	u64			logical;
 210	u64			len;
 211	int			mirror_num;
 212	u64			physical_for_dev_replace;
 213	struct list_head	inodes;
 214	struct btrfs_work	work;
 215};
 216
 217struct scrub_warning {
 218	struct btrfs_path	*path;
 219	u64			extent_item_size;
 
 
 220	const char		*errstr;
 221	u64			physical;
 222	u64			logical;
 223	struct btrfs_device	*dev;
 
 
 224};
 225
 226struct full_stripe_lock {
 227	struct rb_node node;
 228	u64 logical;
 229	u64 refs;
 230	struct mutex mutex;
 231};
 232
 233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 238static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 
 
 
 239				     struct scrub_block *sblocks_for_recheck);
 240static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 241				struct scrub_block *sblock,
 242				int retry_failed_mirror);
 243static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 244static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 245					     struct scrub_block *sblock_good);
 
 246static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 247					    struct scrub_block *sblock_good,
 248					    int page_num, int force_write);
 249static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 250static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 251					   int page_num);
 252static int scrub_checksum_data(struct scrub_block *sblock);
 253static int scrub_checksum_tree_block(struct scrub_block *sblock);
 254static int scrub_checksum_super(struct scrub_block *sblock);
 255static void scrub_block_get(struct scrub_block *sblock);
 256static void scrub_block_put(struct scrub_block *sblock);
 257static void scrub_page_get(struct scrub_page *spage);
 258static void scrub_page_put(struct scrub_page *spage);
 259static void scrub_parity_get(struct scrub_parity *sparity);
 260static void scrub_parity_put(struct scrub_parity *sparity);
 261static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 262				    struct scrub_page *spage);
 263static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 264		       u64 physical, struct btrfs_device *dev, u64 flags,
 265		       u64 gen, int mirror_num, u8 *csum, int force,
 266		       u64 physical_for_dev_replace);
 267static void scrub_bio_end_io(struct bio *bio);
 268static void scrub_bio_end_io_worker(struct btrfs_work *work);
 269static void scrub_block_complete(struct scrub_block *sblock);
 270static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 271			       u64 extent_logical, u64 extent_len,
 272			       u64 *extent_physical,
 273			       struct btrfs_device **extent_dev,
 274			       int *extent_mirror_num);
 
 
 
 
 
 
 275static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 276				    struct scrub_page *spage);
 277static void scrub_wr_submit(struct scrub_ctx *sctx);
 278static void scrub_wr_bio_end_io(struct bio *bio);
 279static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 280static int write_page_nocow(struct scrub_ctx *sctx,
 281			    u64 physical_for_dev_replace, struct page *page);
 282static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 283				      struct scrub_copy_nocow_ctx *ctx);
 284static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 285			    int mirror_num, u64 physical_for_dev_replace);
 286static void copy_nocow_pages_worker(struct btrfs_work *work);
 287static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 288static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 292{
 293	return page->recover &&
 294	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 295}
 296
 297static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 298{
 299	refcount_inc(&sctx->refs);
 300	atomic_inc(&sctx->bios_in_flight);
 301}
 302
 303static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 304{
 305	atomic_dec(&sctx->bios_in_flight);
 306	wake_up(&sctx->list_wait);
 307	scrub_put_ctx(sctx);
 308}
 309
 310static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 311{
 312	while (atomic_read(&fs_info->scrub_pause_req)) {
 313		mutex_unlock(&fs_info->scrub_lock);
 314		wait_event(fs_info->scrub_pause_wait,
 315		   atomic_read(&fs_info->scrub_pause_req) == 0);
 316		mutex_lock(&fs_info->scrub_lock);
 317	}
 318}
 319
 320static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 321{
 322	atomic_inc(&fs_info->scrubs_paused);
 323	wake_up(&fs_info->scrub_pause_wait);
 324}
 325
 326static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 327{
 328	mutex_lock(&fs_info->scrub_lock);
 329	__scrub_blocked_if_needed(fs_info);
 330	atomic_dec(&fs_info->scrubs_paused);
 331	mutex_unlock(&fs_info->scrub_lock);
 332
 333	wake_up(&fs_info->scrub_pause_wait);
 334}
 335
 336static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 337{
 338	scrub_pause_on(fs_info);
 339	scrub_pause_off(fs_info);
 340}
 341
 342/*
 343 * Insert new full stripe lock into full stripe locks tree
 344 *
 345 * Return pointer to existing or newly inserted full_stripe_lock structure if
 346 * everything works well.
 347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 348 *
 349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 350 * function
 351 */
 352static struct full_stripe_lock *insert_full_stripe_lock(
 353		struct btrfs_full_stripe_locks_tree *locks_root,
 354		u64 fstripe_logical)
 355{
 356	struct rb_node **p;
 357	struct rb_node *parent = NULL;
 358	struct full_stripe_lock *entry;
 359	struct full_stripe_lock *ret;
 360
 361	lockdep_assert_held(&locks_root->lock);
 362
 363	p = &locks_root->root.rb_node;
 364	while (*p) {
 365		parent = *p;
 366		entry = rb_entry(parent, struct full_stripe_lock, node);
 367		if (fstripe_logical < entry->logical) {
 368			p = &(*p)->rb_left;
 369		} else if (fstripe_logical > entry->logical) {
 370			p = &(*p)->rb_right;
 371		} else {
 372			entry->refs++;
 373			return entry;
 374		}
 375	}
 376
 377	/* Insert new lock */
 378	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 379	if (!ret)
 380		return ERR_PTR(-ENOMEM);
 381	ret->logical = fstripe_logical;
 382	ret->refs = 1;
 383	mutex_init(&ret->mutex);
 384
 385	rb_link_node(&ret->node, parent, p);
 386	rb_insert_color(&ret->node, &locks_root->root);
 387	return ret;
 388}
 389
 390/*
 391 * Search for a full stripe lock of a block group
 392 *
 393 * Return pointer to existing full stripe lock if found
 394 * Return NULL if not found
 395 */
 396static struct full_stripe_lock *search_full_stripe_lock(
 397		struct btrfs_full_stripe_locks_tree *locks_root,
 398		u64 fstripe_logical)
 399{
 400	struct rb_node *node;
 401	struct full_stripe_lock *entry;
 402
 403	lockdep_assert_held(&locks_root->lock);
 404
 405	node = locks_root->root.rb_node;
 406	while (node) {
 407		entry = rb_entry(node, struct full_stripe_lock, node);
 408		if (fstripe_logical < entry->logical)
 409			node = node->rb_left;
 410		else if (fstripe_logical > entry->logical)
 411			node = node->rb_right;
 412		else
 413			return entry;
 414	}
 415	return NULL;
 416}
 417
 418/*
 419 * Helper to get full stripe logical from a normal bytenr.
 420 *
 421 * Caller must ensure @cache is a RAID56 block group.
 422 */
 423static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 424				   u64 bytenr)
 425{
 426	u64 ret;
 427
 428	/*
 429	 * Due to chunk item size limit, full stripe length should not be
 430	 * larger than U32_MAX. Just a sanity check here.
 431	 */
 432	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 433
 434	/*
 435	 * round_down() can only handle power of 2, while RAID56 full
 436	 * stripe length can be 64KiB * n, so we need to manually round down.
 437	 */
 438	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 439		cache->full_stripe_len + cache->key.objectid;
 440	return ret;
 441}
 442
 443/*
 444 * Lock a full stripe to avoid concurrency of recovery and read
 445 *
 446 * It's only used for profiles with parities (RAID5/6), for other profiles it
 447 * does nothing.
 448 *
 449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 450 * So caller must call unlock_full_stripe() at the same context.
 451 *
 452 * Return <0 if encounters error.
 453 */
 454static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 455			    bool *locked_ret)
 456{
 457	struct btrfs_block_group_cache *bg_cache;
 458	struct btrfs_full_stripe_locks_tree *locks_root;
 459	struct full_stripe_lock *existing;
 460	u64 fstripe_start;
 461	int ret = 0;
 462
 463	*locked_ret = false;
 464	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 465	if (!bg_cache) {
 466		ASSERT(0);
 467		return -ENOENT;
 468	}
 469
 470	/* Profiles not based on parity don't need full stripe lock */
 471	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 472		goto out;
 473	locks_root = &bg_cache->full_stripe_locks_root;
 474
 475	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 476
 477	/* Now insert the full stripe lock */
 478	mutex_lock(&locks_root->lock);
 479	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 480	mutex_unlock(&locks_root->lock);
 481	if (IS_ERR(existing)) {
 482		ret = PTR_ERR(existing);
 483		goto out;
 484	}
 485	mutex_lock(&existing->mutex);
 486	*locked_ret = true;
 487out:
 488	btrfs_put_block_group(bg_cache);
 489	return ret;
 490}
 491
 492/*
 493 * Unlock a full stripe.
 494 *
 495 * NOTE: Caller must ensure it's the same context calling corresponding
 496 * lock_full_stripe().
 497 *
 498 * Return 0 if we unlock full stripe without problem.
 499 * Return <0 for error
 500 */
 501static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 502			      bool locked)
 503{
 504	struct btrfs_block_group_cache *bg_cache;
 505	struct btrfs_full_stripe_locks_tree *locks_root;
 506	struct full_stripe_lock *fstripe_lock;
 507	u64 fstripe_start;
 508	bool freeit = false;
 509	int ret = 0;
 510
 511	/* If we didn't acquire full stripe lock, no need to continue */
 512	if (!locked)
 513		return 0;
 514
 515	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 516	if (!bg_cache) {
 517		ASSERT(0);
 518		return -ENOENT;
 519	}
 520	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 521		goto out;
 522
 523	locks_root = &bg_cache->full_stripe_locks_root;
 524	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 525
 526	mutex_lock(&locks_root->lock);
 527	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 528	/* Unpaired unlock_full_stripe() detected */
 529	if (!fstripe_lock) {
 530		WARN_ON(1);
 531		ret = -ENOENT;
 532		mutex_unlock(&locks_root->lock);
 533		goto out;
 534	}
 535
 536	if (fstripe_lock->refs == 0) {
 537		WARN_ON(1);
 538		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 539			fstripe_lock->logical);
 540	} else {
 541		fstripe_lock->refs--;
 542	}
 543
 544	if (fstripe_lock->refs == 0) {
 545		rb_erase(&fstripe_lock->node, &locks_root->root);
 546		freeit = true;
 547	}
 548	mutex_unlock(&locks_root->lock);
 549
 550	mutex_unlock(&fstripe_lock->mutex);
 551	if (freeit)
 552		kfree(fstripe_lock);
 553out:
 554	btrfs_put_block_group(bg_cache);
 555	return ret;
 556}
 557
 558/*
 559 * used for workers that require transaction commits (i.e., for the
 560 * NOCOW case)
 561 */
 562static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 563{
 564	struct btrfs_fs_info *fs_info = sctx->fs_info;
 565
 566	refcount_inc(&sctx->refs);
 567	/*
 568	 * increment scrubs_running to prevent cancel requests from
 569	 * completing as long as a worker is running. we must also
 570	 * increment scrubs_paused to prevent deadlocking on pause
 571	 * requests used for transactions commits (as the worker uses a
 572	 * transaction context). it is safe to regard the worker
 573	 * as paused for all matters practical. effectively, we only
 574	 * avoid cancellation requests from completing.
 575	 */
 576	mutex_lock(&fs_info->scrub_lock);
 577	atomic_inc(&fs_info->scrubs_running);
 578	atomic_inc(&fs_info->scrubs_paused);
 579	mutex_unlock(&fs_info->scrub_lock);
 580
 581	/*
 582	 * check if @scrubs_running=@scrubs_paused condition
 583	 * inside wait_event() is not an atomic operation.
 584	 * which means we may inc/dec @scrub_running/paused
 585	 * at any time. Let's wake up @scrub_pause_wait as
 586	 * much as we can to let commit transaction blocked less.
 587	 */
 588	wake_up(&fs_info->scrub_pause_wait);
 589
 590	atomic_inc(&sctx->workers_pending);
 591}
 592
 593/* used for workers that require transaction commits */
 594static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 595{
 596	struct btrfs_fs_info *fs_info = sctx->fs_info;
 597
 598	/*
 599	 * see scrub_pending_trans_workers_inc() why we're pretending
 600	 * to be paused in the scrub counters
 601	 */
 602	mutex_lock(&fs_info->scrub_lock);
 603	atomic_dec(&fs_info->scrubs_running);
 604	atomic_dec(&fs_info->scrubs_paused);
 605	mutex_unlock(&fs_info->scrub_lock);
 606	atomic_dec(&sctx->workers_pending);
 607	wake_up(&fs_info->scrub_pause_wait);
 608	wake_up(&sctx->list_wait);
 609	scrub_put_ctx(sctx);
 610}
 611
 612static void scrub_free_csums(struct scrub_ctx *sctx)
 613{
 614	while (!list_empty(&sctx->csum_list)) {
 615		struct btrfs_ordered_sum *sum;
 616		sum = list_first_entry(&sctx->csum_list,
 617				       struct btrfs_ordered_sum, list);
 618		list_del(&sum->list);
 619		kfree(sum);
 620	}
 621}
 622
 623static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 624{
 625	int i;
 626
 627	if (!sctx)
 628		return;
 629
 
 
 630	/* this can happen when scrub is cancelled */
 631	if (sctx->curr != -1) {
 632		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 633
 634		for (i = 0; i < sbio->page_count; i++) {
 635			WARN_ON(!sbio->pagev[i]->page);
 636			scrub_block_put(sbio->pagev[i]->sblock);
 637		}
 638		bio_put(sbio->bio);
 639	}
 640
 641	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 642		struct scrub_bio *sbio = sctx->bios[i];
 643
 644		if (!sbio)
 645			break;
 646		kfree(sbio);
 647	}
 648
 649	kfree(sctx->wr_curr_bio);
 650	scrub_free_csums(sctx);
 651	kfree(sctx);
 652}
 653
 654static void scrub_put_ctx(struct scrub_ctx *sctx)
 655{
 656	if (refcount_dec_and_test(&sctx->refs))
 657		scrub_free_ctx(sctx);
 658}
 659
 660static noinline_for_stack
 661struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 662{
 663	struct scrub_ctx *sctx;
 664	int		i;
 665	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 
 666
 667	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 668	if (!sctx)
 669		goto nomem;
 670	refcount_set(&sctx->refs, 1);
 671	sctx->is_dev_replace = is_dev_replace;
 672	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 673	sctx->curr = -1;
 674	sctx->fs_info = dev->fs_info;
 675	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 676		struct scrub_bio *sbio;
 677
 678		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 679		if (!sbio)
 680			goto nomem;
 681		sctx->bios[i] = sbio;
 682
 683		sbio->index = i;
 684		sbio->sctx = sctx;
 685		sbio->page_count = 0;
 686		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 687				scrub_bio_end_io_worker, NULL, NULL);
 688
 689		if (i != SCRUB_BIOS_PER_SCTX - 1)
 690			sctx->bios[i]->next_free = i + 1;
 691		else
 692			sctx->bios[i]->next_free = -1;
 693	}
 694	sctx->first_free = 0;
 
 
 
 695	atomic_set(&sctx->bios_in_flight, 0);
 696	atomic_set(&sctx->workers_pending, 0);
 697	atomic_set(&sctx->cancel_req, 0);
 698	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 699	INIT_LIST_HEAD(&sctx->csum_list);
 700
 701	spin_lock_init(&sctx->list_lock);
 702	spin_lock_init(&sctx->stat_lock);
 703	init_waitqueue_head(&sctx->list_wait);
 704
 705	WARN_ON(sctx->wr_curr_bio != NULL);
 706	mutex_init(&sctx->wr_lock);
 707	sctx->wr_curr_bio = NULL;
 708	if (is_dev_replace) {
 709		WARN_ON(!fs_info->dev_replace.tgtdev);
 710		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 711		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 712		sctx->flush_all_writes = false;
 713	}
 714
 715	return sctx;
 716
 717nomem:
 718	scrub_free_ctx(sctx);
 719	return ERR_PTR(-ENOMEM);
 720}
 721
 722static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 723				     void *warn_ctx)
 724{
 725	u64 isize;
 726	u32 nlink;
 727	int ret;
 728	int i;
 729	unsigned nofs_flag;
 730	struct extent_buffer *eb;
 731	struct btrfs_inode_item *inode_item;
 732	struct scrub_warning *swarn = warn_ctx;
 733	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 734	struct inode_fs_paths *ipath = NULL;
 735	struct btrfs_root *local_root;
 736	struct btrfs_key root_key;
 737	struct btrfs_key key;
 738
 739	root_key.objectid = root;
 740	root_key.type = BTRFS_ROOT_ITEM_KEY;
 741	root_key.offset = (u64)-1;
 742	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 743	if (IS_ERR(local_root)) {
 744		ret = PTR_ERR(local_root);
 745		goto err;
 746	}
 747
 748	/*
 749	 * this makes the path point to (inum INODE_ITEM ioff)
 750	 */
 751	key.objectid = inum;
 752	key.type = BTRFS_INODE_ITEM_KEY;
 753	key.offset = 0;
 754
 755	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 756	if (ret) {
 757		btrfs_release_path(swarn->path);
 758		goto err;
 759	}
 760
 761	eb = swarn->path->nodes[0];
 762	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 763					struct btrfs_inode_item);
 764	isize = btrfs_inode_size(eb, inode_item);
 765	nlink = btrfs_inode_nlink(eb, inode_item);
 766	btrfs_release_path(swarn->path);
 767
 768	/*
 769	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 770	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 771	 * not seem to be strictly necessary.
 772	 */
 773	nofs_flag = memalloc_nofs_save();
 774	ipath = init_ipath(4096, local_root, swarn->path);
 775	memalloc_nofs_restore(nofs_flag);
 776	if (IS_ERR(ipath)) {
 777		ret = PTR_ERR(ipath);
 778		ipath = NULL;
 779		goto err;
 780	}
 781	ret = paths_from_inode(inum, ipath);
 782
 783	if (ret < 0)
 784		goto err;
 785
 786	/*
 787	 * we deliberately ignore the bit ipath might have been too small to
 788	 * hold all of the paths here
 789	 */
 790	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 791		btrfs_warn_in_rcu(fs_info,
 792"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 793				  swarn->errstr, swarn->logical,
 794				  rcu_str_deref(swarn->dev->name),
 795				  swarn->physical,
 796				  root, inum, offset,
 797				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 798				  (char *)(unsigned long)ipath->fspath->val[i]);
 799
 800	free_ipath(ipath);
 801	return 0;
 802
 803err:
 804	btrfs_warn_in_rcu(fs_info,
 805			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 806			  swarn->errstr, swarn->logical,
 807			  rcu_str_deref(swarn->dev->name),
 808			  swarn->physical,
 809			  root, inum, offset, ret);
 810
 811	free_ipath(ipath);
 812	return 0;
 813}
 814
 815static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 816{
 817	struct btrfs_device *dev;
 818	struct btrfs_fs_info *fs_info;
 819	struct btrfs_path *path;
 820	struct btrfs_key found_key;
 821	struct extent_buffer *eb;
 822	struct btrfs_extent_item *ei;
 823	struct scrub_warning swarn;
 824	unsigned long ptr = 0;
 825	u64 extent_item_pos;
 826	u64 flags = 0;
 827	u64 ref_root;
 828	u32 item_size;
 829	u8 ref_level = 0;
 
 830	int ret;
 831
 832	WARN_ON(sblock->page_count < 1);
 833	dev = sblock->pagev[0]->dev;
 834	fs_info = sblock->sctx->fs_info;
 835
 836	path = btrfs_alloc_path();
 837	if (!path)
 838		return;
 839
 840	swarn.physical = sblock->pagev[0]->physical;
 
 
 841	swarn.logical = sblock->pagev[0]->logical;
 842	swarn.errstr = errstr;
 843	swarn.dev = NULL;
 
 
 
 
 
 844
 845	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 846				  &flags);
 847	if (ret < 0)
 848		goto out;
 849
 850	extent_item_pos = swarn.logical - found_key.objectid;
 851	swarn.extent_item_size = found_key.offset;
 852
 853	eb = path->nodes[0];
 854	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 855	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 856
 857	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 858		do {
 859			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 860						      item_size, &ref_root,
 861						      &ref_level);
 862			btrfs_warn_in_rcu(fs_info,
 863"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 864				errstr, swarn.logical,
 865				rcu_str_deref(dev->name),
 866				swarn.physical,
 867				ref_level ? "node" : "leaf",
 868				ret < 0 ? -1 : ref_level,
 869				ret < 0 ? -1 : ref_root);
 870		} while (ret != 1);
 871		btrfs_release_path(path);
 872	} else {
 873		btrfs_release_path(path);
 874		swarn.path = path;
 875		swarn.dev = dev;
 876		iterate_extent_inodes(fs_info, found_key.objectid,
 877					extent_item_pos, 1,
 878					scrub_print_warning_inode, &swarn, false);
 879	}
 880
 881out:
 882	btrfs_free_path(path);
 
 
 883}
 884
 885static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 886{
 887	struct page *page = NULL;
 888	unsigned long index;
 889	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 890	int ret;
 891	int corrected = 0;
 892	struct btrfs_key key;
 893	struct inode *inode = NULL;
 894	struct btrfs_fs_info *fs_info;
 895	u64 end = offset + PAGE_SIZE - 1;
 896	struct btrfs_root *local_root;
 897	int srcu_index;
 898
 899	key.objectid = root;
 900	key.type = BTRFS_ROOT_ITEM_KEY;
 901	key.offset = (u64)-1;
 902
 903	fs_info = fixup->root->fs_info;
 904	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 905
 906	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 907	if (IS_ERR(local_root)) {
 908		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 909		return PTR_ERR(local_root);
 910	}
 911
 912	key.type = BTRFS_INODE_ITEM_KEY;
 913	key.objectid = inum;
 914	key.offset = 0;
 915	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 916	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 917	if (IS_ERR(inode))
 918		return PTR_ERR(inode);
 919
 920	index = offset >> PAGE_SHIFT;
 921
 922	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 923	if (!page) {
 924		ret = -ENOMEM;
 925		goto out;
 926	}
 927
 928	if (PageUptodate(page)) {
 929		if (PageDirty(page)) {
 930			/*
 931			 * we need to write the data to the defect sector. the
 932			 * data that was in that sector is not in memory,
 933			 * because the page was modified. we must not write the
 934			 * modified page to that sector.
 935			 *
 936			 * TODO: what could be done here: wait for the delalloc
 937			 *       runner to write out that page (might involve
 938			 *       COW) and see whether the sector is still
 939			 *       referenced afterwards.
 940			 *
 941			 * For the meantime, we'll treat this error
 942			 * incorrectable, although there is a chance that a
 943			 * later scrub will find the bad sector again and that
 944			 * there's no dirty page in memory, then.
 945			 */
 946			ret = -EIO;
 947			goto out;
 948		}
 949		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
 
 950					fixup->logical, page,
 951					offset - page_offset(page),
 952					fixup->mirror_num);
 953		unlock_page(page);
 954		corrected = !ret;
 955	} else {
 956		/*
 957		 * we need to get good data first. the general readpage path
 958		 * will call repair_io_failure for us, we just have to make
 959		 * sure we read the bad mirror.
 960		 */
 961		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 962					EXTENT_DAMAGED);
 963		if (ret) {
 964			/* set_extent_bits should give proper error */
 965			WARN_ON(ret > 0);
 966			if (ret > 0)
 967				ret = -EFAULT;
 968			goto out;
 969		}
 970
 971		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 972						btrfs_get_extent,
 973						fixup->mirror_num);
 974		wait_on_page_locked(page);
 975
 976		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 977						end, EXTENT_DAMAGED, 0, NULL);
 978		if (!corrected)
 979			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 980						EXTENT_DAMAGED);
 981	}
 982
 983out:
 984	if (page)
 985		put_page(page);
 986
 987	iput(inode);
 988
 989	if (ret < 0)
 990		return ret;
 991
 992	if (ret == 0 && corrected) {
 993		/*
 994		 * we only need to call readpage for one of the inodes belonging
 995		 * to this extent. so make iterate_extent_inodes stop
 996		 */
 997		return 1;
 998	}
 999
1000	return -EIO;
1001}
1002
1003static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004{
1005	struct btrfs_fs_info *fs_info;
1006	int ret;
1007	struct scrub_fixup_nodatasum *fixup;
1008	struct scrub_ctx *sctx;
1009	struct btrfs_trans_handle *trans = NULL;
1010	struct btrfs_path *path;
1011	int uncorrectable = 0;
1012
1013	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014	sctx = fixup->sctx;
1015	fs_info = fixup->root->fs_info;
1016
1017	path = btrfs_alloc_path();
1018	if (!path) {
1019		spin_lock(&sctx->stat_lock);
1020		++sctx->stat.malloc_errors;
1021		spin_unlock(&sctx->stat_lock);
1022		uncorrectable = 1;
1023		goto out;
1024	}
1025
1026	trans = btrfs_join_transaction(fixup->root);
1027	if (IS_ERR(trans)) {
1028		uncorrectable = 1;
1029		goto out;
1030	}
1031
1032	/*
1033	 * the idea is to trigger a regular read through the standard path. we
1034	 * read a page from the (failed) logical address by specifying the
1035	 * corresponding copynum of the failed sector. thus, that readpage is
1036	 * expected to fail.
1037	 * that is the point where on-the-fly error correction will kick in
1038	 * (once it's finished) and rewrite the failed sector if a good copy
1039	 * can be found.
1040	 */
1041	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042					  scrub_fixup_readpage, fixup, false);
 
1043	if (ret < 0) {
1044		uncorrectable = 1;
1045		goto out;
1046	}
1047	WARN_ON(ret != 1);
1048
1049	spin_lock(&sctx->stat_lock);
1050	++sctx->stat.corrected_errors;
1051	spin_unlock(&sctx->stat_lock);
1052
1053out:
1054	if (trans && !IS_ERR(trans))
1055		btrfs_end_transaction(trans);
1056	if (uncorrectable) {
1057		spin_lock(&sctx->stat_lock);
1058		++sctx->stat.uncorrectable_errors;
1059		spin_unlock(&sctx->stat_lock);
1060		btrfs_dev_replace_stats_inc(
1061			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062		btrfs_err_rl_in_rcu(fs_info,
1063		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
 
1064			fixup->logical, rcu_str_deref(fixup->dev->name));
1065	}
1066
1067	btrfs_free_path(path);
1068	kfree(fixup);
1069
1070	scrub_pending_trans_workers_dec(sctx);
1071}
1072
1073static inline void scrub_get_recover(struct scrub_recover *recover)
1074{
1075	refcount_inc(&recover->refs);
1076}
1077
1078static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079				     struct scrub_recover *recover)
1080{
1081	if (refcount_dec_and_test(&recover->refs)) {
1082		btrfs_bio_counter_dec(fs_info);
1083		btrfs_put_bbio(recover->bbio);
1084		kfree(recover);
1085	}
1086}
1087
1088/*
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1092 * may be bad.
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1095 */
1096static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097{
1098	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099	struct btrfs_device *dev;
1100	struct btrfs_fs_info *fs_info;
 
1101	u64 logical;
 
1102	unsigned int failed_mirror_index;
1103	unsigned int is_metadata;
1104	unsigned int have_csum;
 
1105	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106	struct scrub_block *sblock_bad;
1107	int ret;
1108	int mirror_index;
1109	int page_num;
1110	int success;
1111	bool full_stripe_locked;
1112	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113				      DEFAULT_RATELIMIT_BURST);
1114
1115	BUG_ON(sblock_to_check->page_count < 1);
1116	fs_info = sctx->fs_info;
1117	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118		/*
1119		 * if we find an error in a super block, we just report it.
1120		 * They will get written with the next transaction commit
1121		 * anyway
1122		 */
1123		spin_lock(&sctx->stat_lock);
1124		++sctx->stat.super_errors;
1125		spin_unlock(&sctx->stat_lock);
1126		return 0;
1127	}
 
1128	logical = sblock_to_check->pagev[0]->logical;
 
1129	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132			BTRFS_EXTENT_FLAG_DATA);
1133	have_csum = sblock_to_check->pagev[0]->have_csum;
 
1134	dev = sblock_to_check->pagev[0]->dev;
1135
1136	/*
1137	 * For RAID5/6, race can happen for a different device scrub thread.
1138	 * For data corruption, Parity and Data threads will both try
1139	 * to recovery the data.
1140	 * Race can lead to doubly added csum error, or even unrecoverable
1141	 * error.
1142	 */
1143	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144	if (ret < 0) {
1145		spin_lock(&sctx->stat_lock);
1146		if (ret == -ENOMEM)
1147			sctx->stat.malloc_errors++;
1148		sctx->stat.read_errors++;
1149		sctx->stat.uncorrectable_errors++;
1150		spin_unlock(&sctx->stat_lock);
1151		return ret;
1152	}
1153
1154	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155		sblocks_for_recheck = NULL;
1156		goto nodatasum_case;
1157	}
1158
1159	/*
1160	 * read all mirrors one after the other. This includes to
1161	 * re-read the extent or metadata block that failed (that was
1162	 * the cause that this fixup code is called) another time,
1163	 * page by page this time in order to know which pages
1164	 * caused I/O errors and which ones are good (for all mirrors).
1165	 * It is the goal to handle the situation when more than one
1166	 * mirror contains I/O errors, but the errors do not
1167	 * overlap, i.e. the data can be repaired by selecting the
1168	 * pages from those mirrors without I/O error on the
1169	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170	 * would be that mirror #1 has an I/O error on the first page,
1171	 * the second page is good, and mirror #2 has an I/O error on
1172	 * the second page, but the first page is good.
1173	 * Then the first page of the first mirror can be repaired by
1174	 * taking the first page of the second mirror, and the
1175	 * second page of the second mirror can be repaired by
1176	 * copying the contents of the 2nd page of the 1st mirror.
1177	 * One more note: if the pages of one mirror contain I/O
1178	 * errors, the checksum cannot be verified. In order to get
1179	 * the best data for repairing, the first attempt is to find
1180	 * a mirror without I/O errors and with a validated checksum.
1181	 * Only if this is not possible, the pages are picked from
1182	 * mirrors with I/O errors without considering the checksum.
1183	 * If the latter is the case, at the end, the checksum of the
1184	 * repaired area is verified in order to correctly maintain
1185	 * the statistics.
1186	 */
1187
1188	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 
1190	if (!sblocks_for_recheck) {
1191		spin_lock(&sctx->stat_lock);
1192		sctx->stat.malloc_errors++;
1193		sctx->stat.read_errors++;
1194		sctx->stat.uncorrectable_errors++;
1195		spin_unlock(&sctx->stat_lock);
1196		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197		goto out;
1198	}
1199
1200	/* setup the context, map the logical blocks and alloc the pages */
1201	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
1202	if (ret) {
1203		spin_lock(&sctx->stat_lock);
1204		sctx->stat.read_errors++;
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208		goto out;
1209	}
1210	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212
1213	/* build and submit the bios for the failed mirror, check checksums */
1214	scrub_recheck_block(fs_info, sblock_bad, 1);
 
1215
1216	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217	    sblock_bad->no_io_error_seen) {
1218		/*
1219		 * the error disappeared after reading page by page, or
1220		 * the area was part of a huge bio and other parts of the
1221		 * bio caused I/O errors, or the block layer merged several
1222		 * read requests into one and the error is caused by a
1223		 * different bio (usually one of the two latter cases is
1224		 * the cause)
1225		 */
1226		spin_lock(&sctx->stat_lock);
1227		sctx->stat.unverified_errors++;
1228		sblock_to_check->data_corrected = 1;
1229		spin_unlock(&sctx->stat_lock);
1230
1231		if (sctx->is_dev_replace)
1232			scrub_write_block_to_dev_replace(sblock_bad);
1233		goto out;
1234	}
1235
1236	if (!sblock_bad->no_io_error_seen) {
1237		spin_lock(&sctx->stat_lock);
1238		sctx->stat.read_errors++;
1239		spin_unlock(&sctx->stat_lock);
1240		if (__ratelimit(&_rs))
1241			scrub_print_warning("i/o error", sblock_to_check);
1242		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243	} else if (sblock_bad->checksum_error) {
1244		spin_lock(&sctx->stat_lock);
1245		sctx->stat.csum_errors++;
1246		spin_unlock(&sctx->stat_lock);
1247		if (__ratelimit(&_rs))
1248			scrub_print_warning("checksum error", sblock_to_check);
1249		btrfs_dev_stat_inc_and_print(dev,
1250					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251	} else if (sblock_bad->header_error) {
1252		spin_lock(&sctx->stat_lock);
1253		sctx->stat.verify_errors++;
1254		spin_unlock(&sctx->stat_lock);
1255		if (__ratelimit(&_rs))
1256			scrub_print_warning("checksum/header error",
1257					    sblock_to_check);
1258		if (sblock_bad->generation_error)
1259			btrfs_dev_stat_inc_and_print(dev,
1260				BTRFS_DEV_STAT_GENERATION_ERRS);
1261		else
1262			btrfs_dev_stat_inc_and_print(dev,
1263				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264	}
1265
1266	if (sctx->readonly) {
1267		ASSERT(!sctx->is_dev_replace);
1268		goto out;
1269	}
1270
1271	if (!is_metadata && !have_csum) {
1272		struct scrub_fixup_nodatasum *fixup_nodatasum;
1273
1274		WARN_ON(sctx->is_dev_replace);
1275
1276nodatasum_case:
 
1277
1278		/*
1279		 * !is_metadata and !have_csum, this means that the data
1280		 * might not be COWed, that it might be modified
1281		 * concurrently. The general strategy to work on the
1282		 * commit root does not help in the case when COW is not
1283		 * used.
1284		 */
1285		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286		if (!fixup_nodatasum)
1287			goto did_not_correct_error;
1288		fixup_nodatasum->sctx = sctx;
1289		fixup_nodatasum->dev = dev;
1290		fixup_nodatasum->logical = logical;
1291		fixup_nodatasum->root = fs_info->extent_root;
1292		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293		scrub_pending_trans_workers_inc(sctx);
1294		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295				scrub_fixup_nodatasum, NULL, NULL);
1296		btrfs_queue_work(fs_info->scrub_workers,
1297				 &fixup_nodatasum->work);
1298		goto out;
1299	}
1300
1301	/*
1302	 * now build and submit the bios for the other mirrors, check
1303	 * checksums.
1304	 * First try to pick the mirror which is completely without I/O
1305	 * errors and also does not have a checksum error.
1306	 * If one is found, and if a checksum is present, the full block
1307	 * that is known to contain an error is rewritten. Afterwards
1308	 * the block is known to be corrected.
1309	 * If a mirror is found which is completely correct, and no
1310	 * checksum is present, only those pages are rewritten that had
1311	 * an I/O error in the block to be repaired, since it cannot be
1312	 * determined, which copy of the other pages is better (and it
1313	 * could happen otherwise that a correct page would be
1314	 * overwritten by a bad one).
1315	 */
1316	for (mirror_index = 0; ;mirror_index++) {
 
 
 
1317		struct scrub_block *sblock_other;
1318
1319		if (mirror_index == failed_mirror_index)
1320			continue;
1321
1322		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324			if (mirror_index >= BTRFS_MAX_MIRRORS)
1325				break;
1326			if (!sblocks_for_recheck[mirror_index].page_count)
1327				break;
1328
1329			sblock_other = sblocks_for_recheck + mirror_index;
1330		} else {
1331			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332			int max_allowed = r->bbio->num_stripes -
1333						r->bbio->num_tgtdevs;
1334
1335			if (mirror_index >= max_allowed)
1336				break;
1337			if (!sblocks_for_recheck[1].page_count)
1338				break;
1339
1340			ASSERT(failed_mirror_index == 0);
1341			sblock_other = sblocks_for_recheck + 1;
1342			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1343		}
1344
1345		/* build and submit the bios, check checksums */
1346		scrub_recheck_block(fs_info, sblock_other, 0);
 
 
1347
1348		if (!sblock_other->header_error &&
1349		    !sblock_other->checksum_error &&
1350		    sblock_other->no_io_error_seen) {
1351			if (sctx->is_dev_replace) {
1352				scrub_write_block_to_dev_replace(sblock_other);
1353				goto corrected_error;
1354			} else {
 
 
1355				ret = scrub_repair_block_from_good_copy(
1356						sblock_bad, sblock_other);
1357				if (!ret)
1358					goto corrected_error;
1359			}
 
 
1360		}
1361	}
1362
1363	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364		goto did_not_correct_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366	/*
 
1367	 * In case of I/O errors in the area that is supposed to be
1368	 * repaired, continue by picking good copies of those pages.
1369	 * Select the good pages from mirrors to rewrite bad pages from
1370	 * the area to fix. Afterwards verify the checksum of the block
1371	 * that is supposed to be repaired. This verification step is
1372	 * only done for the purpose of statistic counting and for the
1373	 * final scrub report, whether errors remain.
1374	 * A perfect algorithm could make use of the checksum and try
1375	 * all possible combinations of pages from the different mirrors
1376	 * until the checksum verification succeeds. For example, when
1377	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378	 * of mirror #2 is readable but the final checksum test fails,
1379	 * then the 2nd page of mirror #3 could be tried, whether now
1380	 * the final checksum succeeds. But this would be a rare
1381	 * exception and is therefore not implemented. At least it is
1382	 * avoided that the good copy is overwritten.
1383	 * A more useful improvement would be to pick the sectors
1384	 * without I/O error based on sector sizes (512 bytes on legacy
1385	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386	 * mirror could be repaired by taking 512 byte of a different
1387	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388	 * area are unreadable.
1389	 */
 
 
 
 
 
1390	success = 1;
1391	for (page_num = 0; page_num < sblock_bad->page_count;
1392	     page_num++) {
1393		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394		struct scrub_block *sblock_other = NULL;
1395
1396		/* skip no-io-error page in scrub */
1397		if (!page_bad->io_error && !sctx->is_dev_replace)
1398			continue;
1399
1400		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1401			/*
1402			 * In case of dev replace, if raid56 rebuild process
1403			 * didn't work out correct data, then copy the content
1404			 * in sblock_bad to make sure target device is identical
1405			 * to source device, instead of writing garbage data in
1406			 * sblock_for_recheck array to target device.
1407			 */
1408			sblock_other = NULL;
1409		} else if (page_bad->io_error) {
1410			/* try to find no-io-error page in mirrors */
1411			for (mirror_index = 0;
1412			     mirror_index < BTRFS_MAX_MIRRORS &&
1413			     sblocks_for_recheck[mirror_index].page_count > 0;
1414			     mirror_index++) {
1415				if (!sblocks_for_recheck[mirror_index].
1416				    pagev[page_num]->io_error) {
1417					sblock_other = sblocks_for_recheck +
1418						       mirror_index;
1419					break;
1420				}
1421			}
1422			if (!sblock_other)
1423				success = 0;
1424		}
1425
1426		if (sctx->is_dev_replace) {
1427			/*
1428			 * did not find a mirror to fetch the page
1429			 * from. scrub_write_page_to_dev_replace()
1430			 * handles this case (page->io_error), by
1431			 * filling the block with zeros before
1432			 * submitting the write request
1433			 */
1434			if (!sblock_other)
1435				sblock_other = sblock_bad;
1436
1437			if (scrub_write_page_to_dev_replace(sblock_other,
1438							    page_num) != 0) {
1439				btrfs_dev_replace_stats_inc(
1440					&fs_info->dev_replace.num_write_errors);
1441				success = 0;
1442			}
1443		} else if (sblock_other) {
1444			ret = scrub_repair_page_from_good_copy(sblock_bad,
1445							       sblock_other,
1446							       page_num, 0);
1447			if (0 == ret)
1448				page_bad->io_error = 0;
1449			else
1450				success = 0;
1451		}
1452	}
1453
1454	if (success && !sctx->is_dev_replace) {
1455		if (is_metadata || have_csum) {
1456			/*
1457			 * need to verify the checksum now that all
1458			 * sectors on disk are repaired (the write
1459			 * request for data to be repaired is on its way).
1460			 * Just be lazy and use scrub_recheck_block()
1461			 * which re-reads the data before the checksum
1462			 * is verified, but most likely the data comes out
1463			 * of the page cache.
1464			 */
1465			scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
1466			if (!sblock_bad->header_error &&
1467			    !sblock_bad->checksum_error &&
1468			    sblock_bad->no_io_error_seen)
1469				goto corrected_error;
1470			else
1471				goto did_not_correct_error;
1472		} else {
1473corrected_error:
1474			spin_lock(&sctx->stat_lock);
1475			sctx->stat.corrected_errors++;
1476			sblock_to_check->data_corrected = 1;
1477			spin_unlock(&sctx->stat_lock);
1478			btrfs_err_rl_in_rcu(fs_info,
1479				"fixed up error at logical %llu on dev %s",
1480				logical, rcu_str_deref(dev->name));
1481		}
1482	} else {
1483did_not_correct_error:
1484		spin_lock(&sctx->stat_lock);
1485		sctx->stat.uncorrectable_errors++;
1486		spin_unlock(&sctx->stat_lock);
1487		btrfs_err_rl_in_rcu(fs_info,
1488			"unable to fixup (regular) error at logical %llu on dev %s",
1489			logical, rcu_str_deref(dev->name));
1490	}
1491
1492out:
1493	if (sblocks_for_recheck) {
1494		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1495		     mirror_index++) {
1496			struct scrub_block *sblock = sblocks_for_recheck +
1497						     mirror_index;
1498			struct scrub_recover *recover;
1499			int page_index;
1500
1501			for (page_index = 0; page_index < sblock->page_count;
1502			     page_index++) {
1503				sblock->pagev[page_index]->sblock = NULL;
1504				recover = sblock->pagev[page_index]->recover;
1505				if (recover) {
1506					scrub_put_recover(fs_info, recover);
1507					sblock->pagev[page_index]->recover =
1508									NULL;
1509				}
1510				scrub_page_put(sblock->pagev[page_index]);
1511			}
1512		}
1513		kfree(sblocks_for_recheck);
1514	}
1515
1516	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1517	if (ret < 0)
1518		return ret;
1519	return 0;
1520}
1521
1522static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523{
1524	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1525		return 2;
1526	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1527		return 3;
1528	else
1529		return (int)bbio->num_stripes;
1530}
1531
1532static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1533						 u64 *raid_map,
1534						 u64 mapped_length,
1535						 int nstripes, int mirror,
1536						 int *stripe_index,
1537						 u64 *stripe_offset)
1538{
1539	int i;
1540
1541	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542		/* RAID5/6 */
1543		for (i = 0; i < nstripes; i++) {
1544			if (raid_map[i] == RAID6_Q_STRIPE ||
1545			    raid_map[i] == RAID5_P_STRIPE)
1546				continue;
1547
1548			if (logical >= raid_map[i] &&
1549			    logical < raid_map[i] + mapped_length)
1550				break;
1551		}
1552
1553		*stripe_index = i;
1554		*stripe_offset = logical - raid_map[i];
1555	} else {
1556		/* The other RAID type */
1557		*stripe_index = mirror;
1558		*stripe_offset = 0;
1559	}
1560}
1561
1562static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563				     struct scrub_block *sblocks_for_recheck)
1564{
1565	struct scrub_ctx *sctx = original_sblock->sctx;
1566	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567	u64 length = original_sblock->page_count * PAGE_SIZE;
1568	u64 logical = original_sblock->pagev[0]->logical;
1569	u64 generation = original_sblock->pagev[0]->generation;
1570	u64 flags = original_sblock->pagev[0]->flags;
1571	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572	struct scrub_recover *recover;
1573	struct btrfs_bio *bbio;
1574	u64 sublen;
1575	u64 mapped_length;
1576	u64 stripe_offset;
1577	int stripe_index;
1578	int page_index = 0;
1579	int mirror_index;
1580	int nmirrors;
1581	int ret;
1582
1583	/*
1584	 * note: the two members refs and outstanding_pages
1585	 * are not used (and not set) in the blocks that are used for
1586	 * the recheck procedure
1587	 */
1588
 
1589	while (length > 0) {
1590		sublen = min_t(u64, length, PAGE_SIZE);
1591		mapped_length = sublen;
1592		bbio = NULL;
1593
1594		/*
1595		 * with a length of PAGE_SIZE, each returned stripe
1596		 * represents one mirror
1597		 */
1598		btrfs_bio_counter_inc_blocked(fs_info);
1599		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600				logical, &mapped_length, &bbio);
1601		if (ret || !bbio || mapped_length < sublen) {
1602			btrfs_put_bbio(bbio);
1603			btrfs_bio_counter_dec(fs_info);
1604			return -EIO;
1605		}
1606
1607		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1608		if (!recover) {
1609			btrfs_put_bbio(bbio);
1610			btrfs_bio_counter_dec(fs_info);
1611			return -ENOMEM;
1612		}
1613
1614		refcount_set(&recover->refs, 1);
1615		recover->bbio = bbio;
1616		recover->map_length = mapped_length;
1617
1618		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619
1620		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1621
1622		for (mirror_index = 0; mirror_index < nmirrors;
1623		     mirror_index++) {
1624			struct scrub_block *sblock;
1625			struct scrub_page *page;
1626
 
 
 
1627			sblock = sblocks_for_recheck + mirror_index;
1628			sblock->sctx = sctx;
1629
1630			page = kzalloc(sizeof(*page), GFP_NOFS);
1631			if (!page) {
1632leave_nomem:
1633				spin_lock(&sctx->stat_lock);
1634				sctx->stat.malloc_errors++;
1635				spin_unlock(&sctx->stat_lock);
1636				scrub_put_recover(fs_info, recover);
1637				return -ENOMEM;
1638			}
1639			scrub_page_get(page);
1640			sblock->pagev[page_index] = page;
1641			page->sblock = sblock;
1642			page->flags = flags;
1643			page->generation = generation;
1644			page->logical = logical;
1645			page->have_csum = have_csum;
1646			if (have_csum)
1647				memcpy(page->csum,
1648				       original_sblock->pagev[0]->csum,
1649				       sctx->csum_size);
1650
1651			scrub_stripe_index_and_offset(logical,
1652						      bbio->map_type,
1653						      bbio->raid_map,
1654						      mapped_length,
1655						      bbio->num_stripes -
1656						      bbio->num_tgtdevs,
1657						      mirror_index,
1658						      &stripe_index,
1659						      &stripe_offset);
1660			page->physical = bbio->stripes[stripe_index].physical +
1661					 stripe_offset;
1662			page->dev = bbio->stripes[stripe_index].dev;
1663
1664			BUG_ON(page_index >= original_sblock->page_count);
1665			page->physical_for_dev_replace =
1666				original_sblock->pagev[page_index]->
1667				physical_for_dev_replace;
1668			/* for missing devices, dev->bdev is NULL */
 
1669			page->mirror_num = mirror_index + 1;
1670			sblock->page_count++;
1671			page->page = alloc_page(GFP_NOFS);
1672			if (!page->page)
1673				goto leave_nomem;
1674
1675			scrub_get_recover(recover);
1676			page->recover = recover;
1677		}
1678		scrub_put_recover(fs_info, recover);
1679		length -= sublen;
1680		logical += sublen;
1681		page_index++;
1682	}
1683
1684	return 0;
1685}
1686
1687static void scrub_bio_wait_endio(struct bio *bio)
1688{
1689	complete(bio->bi_private);
1690}
1691
1692static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1693					struct bio *bio,
1694					struct scrub_page *page)
1695{
1696	DECLARE_COMPLETION_ONSTACK(done);
1697	int ret;
1698	int mirror_num;
1699
1700	bio->bi_iter.bi_sector = page->logical >> 9;
1701	bio->bi_private = &done;
1702	bio->bi_end_io = scrub_bio_wait_endio;
1703
1704	mirror_num = page->sblock->pagev[0]->mirror_num;
1705	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706				    page->recover->map_length,
1707				    mirror_num, 0);
1708	if (ret)
1709		return ret;
1710
1711	wait_for_completion_io(&done);
1712	return blk_status_to_errno(bio->bi_status);
1713}
1714
1715static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716					  struct scrub_block *sblock)
1717{
1718	struct scrub_page *first_page = sblock->pagev[0];
1719	struct bio *bio;
1720	int page_num;
1721
1722	/* All pages in sblock belong to the same stripe on the same device. */
1723	ASSERT(first_page->dev);
1724	if (!first_page->dev->bdev)
1725		goto out;
1726
1727	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728	bio_set_dev(bio, first_page->dev->bdev);
1729
1730	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731		struct scrub_page *page = sblock->pagev[page_num];
1732
1733		WARN_ON(!page->page);
1734		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1735	}
1736
1737	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1738		bio_put(bio);
1739		goto out;
1740	}
1741
1742	bio_put(bio);
1743
1744	scrub_recheck_block_checksum(sblock);
1745
1746	return;
1747out:
1748	for (page_num = 0; page_num < sblock->page_count; page_num++)
1749		sblock->pagev[page_num]->io_error = 1;
1750
1751	sblock->no_io_error_seen = 0;
1752}
1753
1754/*
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1760 */
1761static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762				struct scrub_block *sblock,
1763				int retry_failed_mirror)
 
1764{
1765	int page_num;
1766
1767	sblock->no_io_error_seen = 1;
1768
1769	/* short cut for raid56 */
1770	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771		return scrub_recheck_block_on_raid56(fs_info, sblock);
1772
1773	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1774		struct bio *bio;
1775		struct scrub_page *page = sblock->pagev[page_num];
1776
1777		if (page->dev->bdev == NULL) {
1778			page->io_error = 1;
1779			sblock->no_io_error_seen = 0;
1780			continue;
1781		}
1782
1783		WARN_ON(!page->page);
1784		bio = btrfs_io_bio_alloc(1);
1785		bio_set_dev(bio, page->dev->bdev);
1786
1787		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788		bio->bi_iter.bi_sector = page->physical >> 9;
1789		bio->bi_opf = REQ_OP_READ;
1790
1791		if (btrfsic_submit_bio_wait(bio)) {
1792			page->io_error = 1;
1793			sblock->no_io_error_seen = 0;
 
1794		}
 
 
 
 
 
 
1795
1796		bio_put(bio);
1797	}
1798
1799	if (sblock->no_io_error_seen)
1800		scrub_recheck_block_checksum(sblock);
 
 
 
 
1801}
1802
1803static inline int scrub_check_fsid(u8 fsid[],
1804				   struct scrub_page *spage)
 
 
 
1805{
1806	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1807	int ret;
 
 
1808
1809	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1810	return !ret;
1811}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812
1813static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1814{
1815	sblock->header_error = 0;
1816	sblock->checksum_error = 0;
1817	sblock->generation_error = 0;
1818
1819	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820		scrub_checksum_data(sblock);
1821	else
1822		scrub_checksum_tree_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826					     struct scrub_block *sblock_good)
 
1827{
1828	int page_num;
1829	int ret = 0;
1830
1831	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1832		int ret_sub;
1833
1834		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1835							   sblock_good,
1836							   page_num, 1);
 
1837		if (ret_sub)
1838			ret = ret_sub;
1839	}
1840
1841	return ret;
1842}
1843
1844static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845					    struct scrub_block *sblock_good,
1846					    int page_num, int force_write)
1847{
1848	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851
1852	BUG_ON(page_bad->page == NULL);
1853	BUG_ON(page_good->page == NULL);
1854	if (force_write || sblock_bad->header_error ||
1855	    sblock_bad->checksum_error || page_bad->io_error) {
1856		struct bio *bio;
1857		int ret;
1858
1859		if (!page_bad->dev->bdev) {
1860			btrfs_warn_rl(fs_info,
1861				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 
1862			return -EIO;
1863		}
1864
1865		bio = btrfs_io_bio_alloc(1);
1866		bio_set_dev(bio, page_bad->dev->bdev);
 
 
1867		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869
1870		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871		if (PAGE_SIZE != ret) {
1872			bio_put(bio);
1873			return -EIO;
1874		}
1875
1876		if (btrfsic_submit_bio_wait(bio)) {
1877			btrfs_dev_stat_inc_and_print(page_bad->dev,
1878				BTRFS_DEV_STAT_WRITE_ERRS);
1879			btrfs_dev_replace_stats_inc(
1880				&fs_info->dev_replace.num_write_errors);
 
1881			bio_put(bio);
1882			return -EIO;
1883		}
1884		bio_put(bio);
1885	}
1886
1887	return 0;
1888}
1889
1890static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1891{
1892	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893	int page_num;
1894
1895	/*
1896	 * This block is used for the check of the parity on the source device,
1897	 * so the data needn't be written into the destination device.
1898	 */
1899	if (sblock->sparity)
1900		return;
1901
1902	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1903		int ret;
1904
1905		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1906		if (ret)
1907			btrfs_dev_replace_stats_inc(
1908				&fs_info->dev_replace.num_write_errors);
 
1909	}
1910}
1911
1912static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1913					   int page_num)
1914{
1915	struct scrub_page *spage = sblock->pagev[page_num];
1916
1917	BUG_ON(spage->page == NULL);
1918	if (spage->io_error) {
1919		void *mapped_buffer = kmap_atomic(spage->page);
1920
1921		clear_page(mapped_buffer);
1922		flush_dcache_page(spage->page);
1923		kunmap_atomic(mapped_buffer);
1924	}
1925	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1926}
1927
1928static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929				    struct scrub_page *spage)
1930{
 
1931	struct scrub_bio *sbio;
1932	int ret;
1933
1934	mutex_lock(&sctx->wr_lock);
1935again:
1936	if (!sctx->wr_curr_bio) {
1937		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938					      GFP_KERNEL);
1939		if (!sctx->wr_curr_bio) {
1940			mutex_unlock(&sctx->wr_lock);
1941			return -ENOMEM;
1942		}
1943		sctx->wr_curr_bio->sctx = sctx;
1944		sctx->wr_curr_bio->page_count = 0;
1945	}
1946	sbio = sctx->wr_curr_bio;
1947	if (sbio->page_count == 0) {
1948		struct bio *bio;
1949
1950		sbio->physical = spage->physical_for_dev_replace;
1951		sbio->logical = spage->logical;
1952		sbio->dev = sctx->wr_tgtdev;
1953		bio = sbio->bio;
1954		if (!bio) {
1955			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
 
 
 
 
1956			sbio->bio = bio;
1957		}
1958
1959		bio->bi_private = sbio;
1960		bio->bi_end_io = scrub_wr_bio_end_io;
1961		bio_set_dev(bio, sbio->dev->bdev);
1962		bio->bi_iter.bi_sector = sbio->physical >> 9;
1963		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964		sbio->status = 0;
1965	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966		   spage->physical_for_dev_replace ||
1967		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1968		   spage->logical) {
1969		scrub_wr_submit(sctx);
1970		goto again;
1971	}
1972
1973	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974	if (ret != PAGE_SIZE) {
1975		if (sbio->page_count < 1) {
1976			bio_put(sbio->bio);
1977			sbio->bio = NULL;
1978			mutex_unlock(&sctx->wr_lock);
1979			return -EIO;
1980		}
1981		scrub_wr_submit(sctx);
1982		goto again;
1983	}
1984
1985	sbio->pagev[sbio->page_count] = spage;
1986	scrub_page_get(spage);
1987	sbio->page_count++;
1988	if (sbio->page_count == sctx->pages_per_wr_bio)
1989		scrub_wr_submit(sctx);
1990	mutex_unlock(&sctx->wr_lock);
1991
1992	return 0;
1993}
1994
1995static void scrub_wr_submit(struct scrub_ctx *sctx)
1996{
 
1997	struct scrub_bio *sbio;
1998
1999	if (!sctx->wr_curr_bio)
2000		return;
2001
2002	sbio = sctx->wr_curr_bio;
2003	sctx->wr_curr_bio = NULL;
2004	WARN_ON(!sbio->bio->bi_disk);
2005	scrub_pending_bio_inc(sctx);
2006	/* process all writes in a single worker thread. Then the block layer
2007	 * orders the requests before sending them to the driver which
2008	 * doubled the write performance on spinning disks when measured
2009	 * with Linux 3.5 */
2010	btrfsic_submit_bio(sbio->bio);
2011}
2012
2013static void scrub_wr_bio_end_io(struct bio *bio)
2014{
2015	struct scrub_bio *sbio = bio->bi_private;
2016	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017
2018	sbio->status = bio->bi_status;
2019	sbio->bio = bio;
2020
2021	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024}
2025
2026static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2027{
2028	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029	struct scrub_ctx *sctx = sbio->sctx;
2030	int i;
2031
2032	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033	if (sbio->status) {
2034		struct btrfs_dev_replace *dev_replace =
2035			&sbio->sctx->fs_info->dev_replace;
2036
2037		for (i = 0; i < sbio->page_count; i++) {
2038			struct scrub_page *spage = sbio->pagev[i];
2039
2040			spage->io_error = 1;
2041			btrfs_dev_replace_stats_inc(&dev_replace->
2042						    num_write_errors);
2043		}
2044	}
2045
2046	for (i = 0; i < sbio->page_count; i++)
2047		scrub_page_put(sbio->pagev[i]);
2048
2049	bio_put(sbio->bio);
2050	kfree(sbio);
2051	scrub_pending_bio_dec(sctx);
2052}
2053
2054static int scrub_checksum(struct scrub_block *sblock)
2055{
2056	u64 flags;
2057	int ret;
2058
2059	/*
2060	 * No need to initialize these stats currently,
2061	 * because this function only use return value
2062	 * instead of these stats value.
2063	 *
2064	 * Todo:
2065	 * always use stats
2066	 */
2067	sblock->header_error = 0;
2068	sblock->generation_error = 0;
2069	sblock->checksum_error = 0;
2070
2071	WARN_ON(sblock->page_count < 1);
2072	flags = sblock->pagev[0]->flags;
2073	ret = 0;
2074	if (flags & BTRFS_EXTENT_FLAG_DATA)
2075		ret = scrub_checksum_data(sblock);
2076	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077		ret = scrub_checksum_tree_block(sblock);
2078	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079		(void)scrub_checksum_super(sblock);
2080	else
2081		WARN_ON(1);
2082	if (ret)
2083		scrub_handle_errored_block(sblock);
2084
2085	return ret;
2086}
2087
2088static int scrub_checksum_data(struct scrub_block *sblock)
2089{
2090	struct scrub_ctx *sctx = sblock->sctx;
2091	u8 csum[BTRFS_CSUM_SIZE];
2092	u8 *on_disk_csum;
2093	struct page *page;
2094	void *buffer;
2095	u32 crc = ~(u32)0;
 
2096	u64 len;
2097	int index;
2098
2099	BUG_ON(sblock->page_count < 1);
2100	if (!sblock->pagev[0]->have_csum)
2101		return 0;
2102
2103	on_disk_csum = sblock->pagev[0]->csum;
2104	page = sblock->pagev[0]->page;
2105	buffer = kmap_atomic(page);
2106
2107	len = sctx->fs_info->sectorsize;
2108	index = 0;
2109	for (;;) {
2110		u64 l = min_t(u64, len, PAGE_SIZE);
2111
2112		crc = btrfs_csum_data(buffer, crc, l);
2113		kunmap_atomic(buffer);
2114		len -= l;
2115		if (len == 0)
2116			break;
2117		index++;
2118		BUG_ON(index >= sblock->page_count);
2119		BUG_ON(!sblock->pagev[index]->page);
2120		page = sblock->pagev[index]->page;
2121		buffer = kmap_atomic(page);
2122	}
2123
2124	btrfs_csum_final(crc, csum);
2125	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126		sblock->checksum_error = 1;
2127
2128	return sblock->checksum_error;
2129}
2130
2131static int scrub_checksum_tree_block(struct scrub_block *sblock)
2132{
2133	struct scrub_ctx *sctx = sblock->sctx;
2134	struct btrfs_header *h;
2135	struct btrfs_fs_info *fs_info = sctx->fs_info;
 
2136	u8 calculated_csum[BTRFS_CSUM_SIZE];
2137	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2138	struct page *page;
2139	void *mapped_buffer;
2140	u64 mapped_size;
2141	void *p;
2142	u32 crc = ~(u32)0;
 
 
2143	u64 len;
2144	int index;
2145
2146	BUG_ON(sblock->page_count < 1);
2147	page = sblock->pagev[0]->page;
2148	mapped_buffer = kmap_atomic(page);
2149	h = (struct btrfs_header *)mapped_buffer;
2150	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2151
2152	/*
2153	 * we don't use the getter functions here, as we
2154	 * a) don't have an extent buffer and
2155	 * b) the page is already kmapped
2156	 */
 
2157	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158		sblock->header_error = 1;
2159
2160	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161		sblock->header_error = 1;
2162		sblock->generation_error = 1;
2163	}
2164
2165	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166		sblock->header_error = 1;
2167
2168	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2169		   BTRFS_UUID_SIZE))
2170		sblock->header_error = 1;
2171
2172	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
 
2173	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2175	index = 0;
2176	for (;;) {
2177		u64 l = min_t(u64, len, mapped_size);
2178
2179		crc = btrfs_csum_data(p, crc, l);
2180		kunmap_atomic(mapped_buffer);
2181		len -= l;
2182		if (len == 0)
2183			break;
2184		index++;
2185		BUG_ON(index >= sblock->page_count);
2186		BUG_ON(!sblock->pagev[index]->page);
2187		page = sblock->pagev[index]->page;
2188		mapped_buffer = kmap_atomic(page);
2189		mapped_size = PAGE_SIZE;
2190		p = mapped_buffer;
2191	}
2192
2193	btrfs_csum_final(crc, calculated_csum);
2194	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195		sblock->checksum_error = 1;
2196
2197	return sblock->header_error || sblock->checksum_error;
2198}
2199
2200static int scrub_checksum_super(struct scrub_block *sblock)
2201{
2202	struct btrfs_super_block *s;
2203	struct scrub_ctx *sctx = sblock->sctx;
 
 
2204	u8 calculated_csum[BTRFS_CSUM_SIZE];
2205	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2206	struct page *page;
2207	void *mapped_buffer;
2208	u64 mapped_size;
2209	void *p;
2210	u32 crc = ~(u32)0;
2211	int fail_gen = 0;
2212	int fail_cor = 0;
2213	u64 len;
2214	int index;
2215
2216	BUG_ON(sblock->page_count < 1);
2217	page = sblock->pagev[0]->page;
2218	mapped_buffer = kmap_atomic(page);
2219	s = (struct btrfs_super_block *)mapped_buffer;
2220	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2221
2222	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223		++fail_cor;
2224
2225	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226		++fail_gen;
2227
2228	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229		++fail_cor;
2230
2231	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2234	index = 0;
2235	for (;;) {
2236		u64 l = min_t(u64, len, mapped_size);
2237
2238		crc = btrfs_csum_data(p, crc, l);
2239		kunmap_atomic(mapped_buffer);
2240		len -= l;
2241		if (len == 0)
2242			break;
2243		index++;
2244		BUG_ON(index >= sblock->page_count);
2245		BUG_ON(!sblock->pagev[index]->page);
2246		page = sblock->pagev[index]->page;
2247		mapped_buffer = kmap_atomic(page);
2248		mapped_size = PAGE_SIZE;
2249		p = mapped_buffer;
2250	}
2251
2252	btrfs_csum_final(crc, calculated_csum);
2253	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254		++fail_cor;
2255
2256	if (fail_cor + fail_gen) {
2257		/*
2258		 * if we find an error in a super block, we just report it.
2259		 * They will get written with the next transaction commit
2260		 * anyway
2261		 */
2262		spin_lock(&sctx->stat_lock);
2263		++sctx->stat.super_errors;
2264		spin_unlock(&sctx->stat_lock);
2265		if (fail_cor)
2266			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2268		else
2269			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270				BTRFS_DEV_STAT_GENERATION_ERRS);
2271	}
2272
2273	return fail_cor + fail_gen;
2274}
2275
2276static void scrub_block_get(struct scrub_block *sblock)
2277{
2278	refcount_inc(&sblock->refs);
2279}
2280
2281static void scrub_block_put(struct scrub_block *sblock)
2282{
2283	if (refcount_dec_and_test(&sblock->refs)) {
2284		int i;
2285
2286		if (sblock->sparity)
2287			scrub_parity_put(sblock->sparity);
2288
2289		for (i = 0; i < sblock->page_count; i++)
2290			scrub_page_put(sblock->pagev[i]);
2291		kfree(sblock);
2292	}
2293}
2294
2295static void scrub_page_get(struct scrub_page *spage)
2296{
2297	atomic_inc(&spage->refs);
2298}
2299
2300static void scrub_page_put(struct scrub_page *spage)
2301{
2302	if (atomic_dec_and_test(&spage->refs)) {
2303		if (spage->page)
2304			__free_page(spage->page);
2305		kfree(spage);
2306	}
2307}
2308
2309static void scrub_submit(struct scrub_ctx *sctx)
2310{
2311	struct scrub_bio *sbio;
2312
2313	if (sctx->curr == -1)
2314		return;
2315
2316	sbio = sctx->bios[sctx->curr];
2317	sctx->curr = -1;
2318	scrub_pending_bio_inc(sctx);
2319	btrfsic_submit_bio(sbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320}
2321
2322static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323				    struct scrub_page *spage)
2324{
2325	struct scrub_block *sblock = spage->sblock;
2326	struct scrub_bio *sbio;
2327	int ret;
2328
2329again:
2330	/*
2331	 * grab a fresh bio or wait for one to become available
2332	 */
2333	while (sctx->curr == -1) {
2334		spin_lock(&sctx->list_lock);
2335		sctx->curr = sctx->first_free;
2336		if (sctx->curr != -1) {
2337			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338			sctx->bios[sctx->curr]->next_free = -1;
2339			sctx->bios[sctx->curr]->page_count = 0;
2340			spin_unlock(&sctx->list_lock);
2341		} else {
2342			spin_unlock(&sctx->list_lock);
2343			wait_event(sctx->list_wait, sctx->first_free != -1);
2344		}
2345	}
2346	sbio = sctx->bios[sctx->curr];
2347	if (sbio->page_count == 0) {
2348		struct bio *bio;
2349
2350		sbio->physical = spage->physical;
2351		sbio->logical = spage->logical;
2352		sbio->dev = spage->dev;
2353		bio = sbio->bio;
2354		if (!bio) {
2355			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
 
 
2356			sbio->bio = bio;
2357		}
2358
2359		bio->bi_private = sbio;
2360		bio->bi_end_io = scrub_bio_end_io;
2361		bio_set_dev(bio, sbio->dev->bdev);
2362		bio->bi_iter.bi_sector = sbio->physical >> 9;
2363		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364		sbio->status = 0;
2365	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2366		   spage->physical ||
2367		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368		   spage->logical ||
2369		   sbio->dev != spage->dev) {
2370		scrub_submit(sctx);
2371		goto again;
2372	}
2373
2374	sbio->pagev[sbio->page_count] = spage;
2375	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376	if (ret != PAGE_SIZE) {
2377		if (sbio->page_count < 1) {
2378			bio_put(sbio->bio);
2379			sbio->bio = NULL;
2380			return -EIO;
2381		}
2382		scrub_submit(sctx);
2383		goto again;
2384	}
2385
2386	scrub_block_get(sblock); /* one for the page added to the bio */
2387	atomic_inc(&sblock->outstanding_pages);
2388	sbio->page_count++;
2389	if (sbio->page_count == sctx->pages_per_rd_bio)
2390		scrub_submit(sctx);
2391
2392	return 0;
2393}
2394
2395static void scrub_missing_raid56_end_io(struct bio *bio)
2396{
2397	struct scrub_block *sblock = bio->bi_private;
2398	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399
2400	if (bio->bi_status)
2401		sblock->no_io_error_seen = 0;
2402
2403	bio_put(bio);
2404
2405	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2406}
2407
2408static void scrub_missing_raid56_worker(struct btrfs_work *work)
2409{
2410	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411	struct scrub_ctx *sctx = sblock->sctx;
2412	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413	u64 logical;
2414	struct btrfs_device *dev;
2415
2416	logical = sblock->pagev[0]->logical;
2417	dev = sblock->pagev[0]->dev;
2418
2419	if (sblock->no_io_error_seen)
2420		scrub_recheck_block_checksum(sblock);
2421
2422	if (!sblock->no_io_error_seen) {
2423		spin_lock(&sctx->stat_lock);
2424		sctx->stat.read_errors++;
2425		spin_unlock(&sctx->stat_lock);
2426		btrfs_err_rl_in_rcu(fs_info,
2427			"IO error rebuilding logical %llu for dev %s",
2428			logical, rcu_str_deref(dev->name));
2429	} else if (sblock->header_error || sblock->checksum_error) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.uncorrectable_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		btrfs_err_rl_in_rcu(fs_info,
2434			"failed to rebuild valid logical %llu for dev %s",
2435			logical, rcu_str_deref(dev->name));
2436	} else {
2437		scrub_write_block_to_dev_replace(sblock);
2438	}
2439
2440	scrub_block_put(sblock);
2441
2442	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443		mutex_lock(&sctx->wr_lock);
2444		scrub_wr_submit(sctx);
2445		mutex_unlock(&sctx->wr_lock);
2446	}
2447
2448	scrub_pending_bio_dec(sctx);
2449}
2450
2451static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2452{
2453	struct scrub_ctx *sctx = sblock->sctx;
2454	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455	u64 length = sblock->page_count * PAGE_SIZE;
2456	u64 logical = sblock->pagev[0]->logical;
2457	struct btrfs_bio *bbio = NULL;
2458	struct bio *bio;
2459	struct btrfs_raid_bio *rbio;
2460	int ret;
2461	int i;
2462
2463	btrfs_bio_counter_inc_blocked(fs_info);
2464	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465			&length, &bbio);
2466	if (ret || !bbio || !bbio->raid_map)
2467		goto bbio_out;
2468
2469	if (WARN_ON(!sctx->is_dev_replace ||
2470		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2471		/*
2472		 * We shouldn't be scrubbing a missing device. Even for dev
2473		 * replace, we should only get here for RAID 5/6. We either
2474		 * managed to mount something with no mirrors remaining or
2475		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2476		 */
2477		goto bbio_out;
2478	}
2479
2480	bio = btrfs_io_bio_alloc(0);
2481	bio->bi_iter.bi_sector = logical >> 9;
2482	bio->bi_private = sblock;
2483	bio->bi_end_io = scrub_missing_raid56_end_io;
2484
2485	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486	if (!rbio)
2487		goto rbio_out;
2488
2489	for (i = 0; i < sblock->page_count; i++) {
2490		struct scrub_page *spage = sblock->pagev[i];
2491
2492		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2493	}
2494
2495	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496			scrub_missing_raid56_worker, NULL, NULL);
2497	scrub_block_get(sblock);
2498	scrub_pending_bio_inc(sctx);
2499	raid56_submit_missing_rbio(rbio);
2500	return;
2501
2502rbio_out:
2503	bio_put(bio);
2504bbio_out:
2505	btrfs_bio_counter_dec(fs_info);
2506	btrfs_put_bbio(bbio);
2507	spin_lock(&sctx->stat_lock);
2508	sctx->stat.malloc_errors++;
2509	spin_unlock(&sctx->stat_lock);
2510}
2511
2512static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513		       u64 physical, struct btrfs_device *dev, u64 flags,
2514		       u64 gen, int mirror_num, u8 *csum, int force,
2515		       u64 physical_for_dev_replace)
2516{
2517	struct scrub_block *sblock;
2518	int index;
2519
2520	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521	if (!sblock) {
2522		spin_lock(&sctx->stat_lock);
2523		sctx->stat.malloc_errors++;
2524		spin_unlock(&sctx->stat_lock);
2525		return -ENOMEM;
2526	}
2527
2528	/* one ref inside this function, plus one for each page added to
2529	 * a bio later on */
2530	refcount_set(&sblock->refs, 1);
2531	sblock->sctx = sctx;
2532	sblock->no_io_error_seen = 1;
2533
2534	for (index = 0; len > 0; index++) {
2535		struct scrub_page *spage;
2536		u64 l = min_t(u64, len, PAGE_SIZE);
2537
2538		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539		if (!spage) {
2540leave_nomem:
2541			spin_lock(&sctx->stat_lock);
2542			sctx->stat.malloc_errors++;
2543			spin_unlock(&sctx->stat_lock);
2544			scrub_block_put(sblock);
2545			return -ENOMEM;
2546		}
2547		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548		scrub_page_get(spage);
2549		sblock->pagev[index] = spage;
2550		spage->sblock = sblock;
2551		spage->dev = dev;
2552		spage->flags = flags;
2553		spage->generation = gen;
2554		spage->logical = logical;
2555		spage->physical = physical;
2556		spage->physical_for_dev_replace = physical_for_dev_replace;
2557		spage->mirror_num = mirror_num;
2558		if (csum) {
2559			spage->have_csum = 1;
2560			memcpy(spage->csum, csum, sctx->csum_size);
2561		} else {
2562			spage->have_csum = 0;
2563		}
2564		sblock->page_count++;
2565		spage->page = alloc_page(GFP_KERNEL);
2566		if (!spage->page)
2567			goto leave_nomem;
2568		len -= l;
2569		logical += l;
2570		physical += l;
2571		physical_for_dev_replace += l;
2572	}
2573
2574	WARN_ON(sblock->page_count == 0);
2575	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576		/*
2577		 * This case should only be hit for RAID 5/6 device replace. See
2578		 * the comment in scrub_missing_raid56_pages() for details.
2579		 */
2580		scrub_missing_raid56_pages(sblock);
2581	} else {
2582		for (index = 0; index < sblock->page_count; index++) {
2583			struct scrub_page *spage = sblock->pagev[index];
2584			int ret;
2585
2586			ret = scrub_add_page_to_rd_bio(sctx, spage);
2587			if (ret) {
2588				scrub_block_put(sblock);
2589				return ret;
2590			}
2591		}
2592
2593		if (force)
2594			scrub_submit(sctx);
 
 
 
2595	}
2596
 
 
 
2597	/* last one frees, either here or in bio completion for last page */
2598	scrub_block_put(sblock);
2599	return 0;
2600}
2601
2602static void scrub_bio_end_io(struct bio *bio)
2603{
2604	struct scrub_bio *sbio = bio->bi_private;
2605	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606
2607	sbio->status = bio->bi_status;
2608	sbio->bio = bio;
2609
2610	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611}
2612
2613static void scrub_bio_end_io_worker(struct btrfs_work *work)
2614{
2615	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616	struct scrub_ctx *sctx = sbio->sctx;
2617	int i;
2618
2619	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620	if (sbio->status) {
2621		for (i = 0; i < sbio->page_count; i++) {
2622			struct scrub_page *spage = sbio->pagev[i];
2623
2624			spage->io_error = 1;
2625			spage->sblock->no_io_error_seen = 0;
2626		}
2627	}
2628
2629	/* now complete the scrub_block items that have all pages completed */
2630	for (i = 0; i < sbio->page_count; i++) {
2631		struct scrub_page *spage = sbio->pagev[i];
2632		struct scrub_block *sblock = spage->sblock;
2633
2634		if (atomic_dec_and_test(&sblock->outstanding_pages))
2635			scrub_block_complete(sblock);
2636		scrub_block_put(sblock);
2637	}
2638
2639	bio_put(sbio->bio);
2640	sbio->bio = NULL;
2641	spin_lock(&sctx->list_lock);
2642	sbio->next_free = sctx->first_free;
2643	sctx->first_free = sbio->index;
2644	spin_unlock(&sctx->list_lock);
2645
2646	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647		mutex_lock(&sctx->wr_lock);
 
2648		scrub_wr_submit(sctx);
2649		mutex_unlock(&sctx->wr_lock);
2650	}
2651
2652	scrub_pending_bio_dec(sctx);
2653}
2654
2655static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656				       unsigned long *bitmap,
2657				       u64 start, u64 len)
2658{
2659	u64 offset;
2660	u64 nsectors64;
2661	u32 nsectors;
2662	int sectorsize = sparity->sctx->fs_info->sectorsize;
2663
2664	if (len >= sparity->stripe_len) {
2665		bitmap_set(bitmap, 0, sparity->nsectors);
2666		return;
2667	}
2668
2669	start -= sparity->logic_start;
2670	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671	offset = div_u64(offset, sectorsize);
2672	nsectors64 = div_u64(len, sectorsize);
2673
2674	ASSERT(nsectors64 < UINT_MAX);
2675	nsectors = (u32)nsectors64;
2676
2677	if (offset + nsectors <= sparity->nsectors) {
2678		bitmap_set(bitmap, offset, nsectors);
2679		return;
2680	}
2681
2682	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2684}
2685
2686static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2687						   u64 start, u64 len)
2688{
2689	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2690}
2691
2692static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2693						  u64 start, u64 len)
2694{
2695	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2696}
2697
2698static void scrub_block_complete(struct scrub_block *sblock)
2699{
2700	int corrupted = 0;
2701
2702	if (!sblock->no_io_error_seen) {
2703		corrupted = 1;
2704		scrub_handle_errored_block(sblock);
2705	} else {
2706		/*
2707		 * if has checksum error, write via repair mechanism in
2708		 * dev replace case, otherwise write here in dev replace
2709		 * case.
2710		 */
2711		corrupted = scrub_checksum(sblock);
2712		if (!corrupted && sblock->sctx->is_dev_replace)
2713			scrub_write_block_to_dev_replace(sblock);
2714	}
2715
2716	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717		u64 start = sblock->pagev[0]->logical;
2718		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2719			  PAGE_SIZE;
2720
2721		scrub_parity_mark_sectors_error(sblock->sparity,
2722						start, end - start);
2723	}
2724}
2725
2726static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
2727{
2728	struct btrfs_ordered_sum *sum = NULL;
2729	unsigned long index;
2730	unsigned long num_sectors;
2731
2732	while (!list_empty(&sctx->csum_list)) {
2733		sum = list_first_entry(&sctx->csum_list,
2734				       struct btrfs_ordered_sum, list);
2735		if (sum->bytenr > logical)
2736			return 0;
2737		if (sum->bytenr + sum->len > logical)
2738			break;
2739
2740		++sctx->stat.csum_discards;
2741		list_del(&sum->list);
2742		kfree(sum);
2743		sum = NULL;
2744	}
2745	if (!sum)
2746		return 0;
2747
2748	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749	ASSERT(index < UINT_MAX);
2750
2751	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752	memcpy(csum, sum->sums + index, sctx->csum_size);
2753	if (index == num_sectors - 1) {
2754		list_del(&sum->list);
2755		kfree(sum);
2756	}
2757	return 1;
2758}
2759
2760/* scrub extent tries to collect up to 64 kB for each bio */
2761static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762			u64 logical, u64 len,
2763			u64 physical, struct btrfs_device *dev, u64 flags,
2764			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2765{
2766	int ret;
2767	u8 csum[BTRFS_CSUM_SIZE];
2768	u32 blocksize;
2769
2770	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772			blocksize = map->stripe_len;
2773		else
2774			blocksize = sctx->fs_info->sectorsize;
2775		spin_lock(&sctx->stat_lock);
2776		sctx->stat.data_extents_scrubbed++;
2777		sctx->stat.data_bytes_scrubbed += len;
2778		spin_unlock(&sctx->stat_lock);
2779	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781			blocksize = map->stripe_len;
2782		else
2783			blocksize = sctx->fs_info->nodesize;
2784		spin_lock(&sctx->stat_lock);
2785		sctx->stat.tree_extents_scrubbed++;
2786		sctx->stat.tree_bytes_scrubbed += len;
2787		spin_unlock(&sctx->stat_lock);
2788	} else {
2789		blocksize = sctx->fs_info->sectorsize;
2790		WARN_ON(1);
2791	}
2792
2793	while (len) {
2794		u64 l = min_t(u64, len, blocksize);
2795		int have_csum = 0;
2796
2797		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798			/* push csums to sbio */
2799			have_csum = scrub_find_csum(sctx, logical, csum);
2800			if (have_csum == 0)
2801				++sctx->stat.no_csum;
2802			if (sctx->is_dev_replace && !have_csum) {
2803				ret = copy_nocow_pages(sctx, logical, l,
2804						       mirror_num,
2805						      physical_for_dev_replace);
2806				goto behind_scrub_pages;
2807			}
2808		}
2809		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810				  mirror_num, have_csum ? csum : NULL, 0,
2811				  physical_for_dev_replace);
2812behind_scrub_pages:
2813		if (ret)
2814			return ret;
2815		len -= l;
2816		logical += l;
2817		physical += l;
2818		physical_for_dev_replace += l;
2819	}
2820	return 0;
2821}
2822
2823static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824				  u64 logical, u64 len,
2825				  u64 physical, struct btrfs_device *dev,
2826				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2827{
2828	struct scrub_ctx *sctx = sparity->sctx;
2829	struct scrub_block *sblock;
2830	int index;
2831
2832	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833	if (!sblock) {
2834		spin_lock(&sctx->stat_lock);
2835		sctx->stat.malloc_errors++;
2836		spin_unlock(&sctx->stat_lock);
2837		return -ENOMEM;
2838	}
2839
2840	/* one ref inside this function, plus one for each page added to
2841	 * a bio later on */
2842	refcount_set(&sblock->refs, 1);
2843	sblock->sctx = sctx;
2844	sblock->no_io_error_seen = 1;
2845	sblock->sparity = sparity;
2846	scrub_parity_get(sparity);
2847
2848	for (index = 0; len > 0; index++) {
2849		struct scrub_page *spage;
2850		u64 l = min_t(u64, len, PAGE_SIZE);
2851
2852		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853		if (!spage) {
2854leave_nomem:
2855			spin_lock(&sctx->stat_lock);
2856			sctx->stat.malloc_errors++;
2857			spin_unlock(&sctx->stat_lock);
2858			scrub_block_put(sblock);
2859			return -ENOMEM;
2860		}
2861		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862		/* For scrub block */
2863		scrub_page_get(spage);
2864		sblock->pagev[index] = spage;
2865		/* For scrub parity */
2866		scrub_page_get(spage);
2867		list_add_tail(&spage->list, &sparity->spages);
2868		spage->sblock = sblock;
2869		spage->dev = dev;
2870		spage->flags = flags;
2871		spage->generation = gen;
2872		spage->logical = logical;
2873		spage->physical = physical;
2874		spage->mirror_num = mirror_num;
2875		if (csum) {
2876			spage->have_csum = 1;
2877			memcpy(spage->csum, csum, sctx->csum_size);
2878		} else {
2879			spage->have_csum = 0;
2880		}
2881		sblock->page_count++;
2882		spage->page = alloc_page(GFP_KERNEL);
2883		if (!spage->page)
2884			goto leave_nomem;
2885		len -= l;
2886		logical += l;
2887		physical += l;
2888	}
2889
2890	WARN_ON(sblock->page_count == 0);
2891	for (index = 0; index < sblock->page_count; index++) {
2892		struct scrub_page *spage = sblock->pagev[index];
2893		int ret;
2894
2895		ret = scrub_add_page_to_rd_bio(sctx, spage);
2896		if (ret) {
2897			scrub_block_put(sblock);
2898			return ret;
2899		}
2900	}
2901
2902	/* last one frees, either here or in bio completion for last page */
2903	scrub_block_put(sblock);
2904	return 0;
2905}
2906
2907static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908				   u64 logical, u64 len,
2909				   u64 physical, struct btrfs_device *dev,
2910				   u64 flags, u64 gen, int mirror_num)
2911{
2912	struct scrub_ctx *sctx = sparity->sctx;
2913	int ret;
2914	u8 csum[BTRFS_CSUM_SIZE];
2915	u32 blocksize;
2916
2917	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918		scrub_parity_mark_sectors_error(sparity, logical, len);
2919		return 0;
2920	}
2921
2922	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923		blocksize = sparity->stripe_len;
2924	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925		blocksize = sparity->stripe_len;
2926	} else {
2927		blocksize = sctx->fs_info->sectorsize;
2928		WARN_ON(1);
2929	}
2930
2931	while (len) {
2932		u64 l = min_t(u64, len, blocksize);
2933		int have_csum = 0;
2934
2935		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936			/* push csums to sbio */
2937			have_csum = scrub_find_csum(sctx, logical, csum);
2938			if (have_csum == 0)
2939				goto skip;
2940		}
2941		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942					     flags, gen, mirror_num,
2943					     have_csum ? csum : NULL);
2944		if (ret)
2945			return ret;
2946skip:
2947		len -= l;
2948		logical += l;
2949		physical += l;
2950	}
2951	return 0;
2952}
2953
2954/*
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2958 *
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2960 */
2961static int get_raid56_logic_offset(u64 physical, int num,
2962				   struct map_lookup *map, u64 *offset,
2963				   u64 *stripe_start)
2964{
2965	int i;
2966	int j = 0;
2967	u64 stripe_nr;
2968	u64 last_offset;
2969	u32 stripe_index;
2970	u32 rot;
2971
2972	last_offset = (physical - map->stripes[num].physical) *
2973		      nr_data_stripes(map);
2974	if (stripe_start)
2975		*stripe_start = last_offset;
2976
2977	*offset = last_offset;
2978	for (i = 0; i < nr_data_stripes(map); i++) {
2979		*offset = last_offset + i * map->stripe_len;
2980
2981		stripe_nr = div64_u64(*offset, map->stripe_len);
2982		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 
2983
2984		/* Work out the disk rotation on this stripe-set */
2985		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986		/* calculate which stripe this data locates */
2987		rot += i;
2988		stripe_index = rot % map->num_stripes;
2989		if (stripe_index == num)
2990			return 0;
2991		if (stripe_index < num)
2992			j++;
2993	}
2994	*offset = last_offset + j * map->stripe_len;
2995	return 1;
2996}
2997
2998static void scrub_free_parity(struct scrub_parity *sparity)
2999{
3000	struct scrub_ctx *sctx = sparity->sctx;
3001	struct scrub_page *curr, *next;
3002	int nbits;
3003
3004	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3005	if (nbits) {
3006		spin_lock(&sctx->stat_lock);
3007		sctx->stat.read_errors += nbits;
3008		sctx->stat.uncorrectable_errors += nbits;
3009		spin_unlock(&sctx->stat_lock);
3010	}
3011
3012	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013		list_del_init(&curr->list);
3014		scrub_page_put(curr);
3015	}
3016
3017	kfree(sparity);
3018}
3019
3020static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3021{
3022	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3023						    work);
3024	struct scrub_ctx *sctx = sparity->sctx;
3025
3026	scrub_free_parity(sparity);
3027	scrub_pending_bio_dec(sctx);
3028}
3029
3030static void scrub_parity_bio_endio(struct bio *bio)
3031{
3032	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034
3035	if (bio->bi_status)
3036		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3037			  sparity->nsectors);
3038
3039	bio_put(bio);
3040
3041	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042			scrub_parity_bio_endio_worker, NULL, NULL);
3043	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044}
3045
3046static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3047{
3048	struct scrub_ctx *sctx = sparity->sctx;
3049	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050	struct bio *bio;
3051	struct btrfs_raid_bio *rbio;
3052	struct btrfs_bio *bbio = NULL;
3053	u64 length;
3054	int ret;
3055
3056	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3057			   sparity->nsectors))
3058		goto out;
3059
3060	length = sparity->logic_end - sparity->logic_start;
3061
3062	btrfs_bio_counter_inc_blocked(fs_info);
3063	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064			       &length, &bbio);
3065	if (ret || !bbio || !bbio->raid_map)
3066		goto bbio_out;
3067
3068	bio = btrfs_io_bio_alloc(0);
3069	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070	bio->bi_private = sparity;
3071	bio->bi_end_io = scrub_parity_bio_endio;
3072
3073	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074					      length, sparity->scrub_dev,
3075					      sparity->dbitmap,
3076					      sparity->nsectors);
3077	if (!rbio)
3078		goto rbio_out;
3079
3080	scrub_pending_bio_inc(sctx);
3081	raid56_parity_submit_scrub_rbio(rbio);
3082	return;
3083
3084rbio_out:
3085	bio_put(bio);
3086bbio_out:
3087	btrfs_bio_counter_dec(fs_info);
3088	btrfs_put_bbio(bbio);
3089	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3090		  sparity->nsectors);
3091	spin_lock(&sctx->stat_lock);
3092	sctx->stat.malloc_errors++;
3093	spin_unlock(&sctx->stat_lock);
3094out:
3095	scrub_free_parity(sparity);
3096}
3097
3098static inline int scrub_calc_parity_bitmap_len(int nsectors)
3099{
3100	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101}
3102
3103static void scrub_parity_get(struct scrub_parity *sparity)
3104{
3105	refcount_inc(&sparity->refs);
3106}
3107
3108static void scrub_parity_put(struct scrub_parity *sparity)
3109{
3110	if (!refcount_dec_and_test(&sparity->refs))
3111		return;
3112
3113	scrub_parity_check_and_repair(sparity);
3114}
3115
3116static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117						  struct map_lookup *map,
3118						  struct btrfs_device *sdev,
3119						  struct btrfs_path *path,
3120						  u64 logic_start,
3121						  u64 logic_end)
3122{
3123	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124	struct btrfs_root *root = fs_info->extent_root;
3125	struct btrfs_root *csum_root = fs_info->csum_root;
3126	struct btrfs_extent_item *extent;
3127	struct btrfs_bio *bbio = NULL;
3128	u64 flags;
3129	int ret;
3130	int slot;
3131	struct extent_buffer *l;
3132	struct btrfs_key key;
3133	u64 generation;
3134	u64 extent_logical;
3135	u64 extent_physical;
3136	u64 extent_len;
3137	u64 mapped_length;
3138	struct btrfs_device *extent_dev;
3139	struct scrub_parity *sparity;
3140	int nsectors;
3141	int bitmap_len;
3142	int extent_mirror_num;
3143	int stop_loop = 0;
3144
3145	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3148			  GFP_NOFS);
3149	if (!sparity) {
3150		spin_lock(&sctx->stat_lock);
3151		sctx->stat.malloc_errors++;
3152		spin_unlock(&sctx->stat_lock);
3153		return -ENOMEM;
3154	}
3155
3156	sparity->stripe_len = map->stripe_len;
3157	sparity->nsectors = nsectors;
3158	sparity->sctx = sctx;
3159	sparity->scrub_dev = sdev;
3160	sparity->logic_start = logic_start;
3161	sparity->logic_end = logic_end;
3162	refcount_set(&sparity->refs, 1);
3163	INIT_LIST_HEAD(&sparity->spages);
3164	sparity->dbitmap = sparity->bitmap;
3165	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3166
3167	ret = 0;
3168	while (logic_start < logic_end) {
3169		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170			key.type = BTRFS_METADATA_ITEM_KEY;
3171		else
3172			key.type = BTRFS_EXTENT_ITEM_KEY;
3173		key.objectid = logic_start;
3174		key.offset = (u64)-1;
3175
3176		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3177		if (ret < 0)
3178			goto out;
3179
3180		if (ret > 0) {
3181			ret = btrfs_previous_extent_item(root, path, 0);
3182			if (ret < 0)
3183				goto out;
3184			if (ret > 0) {
3185				btrfs_release_path(path);
3186				ret = btrfs_search_slot(NULL, root, &key,
3187							path, 0, 0);
3188				if (ret < 0)
3189					goto out;
3190			}
3191		}
3192
3193		stop_loop = 0;
3194		while (1) {
3195			u64 bytes;
3196
3197			l = path->nodes[0];
3198			slot = path->slots[0];
3199			if (slot >= btrfs_header_nritems(l)) {
3200				ret = btrfs_next_leaf(root, path);
3201				if (ret == 0)
3202					continue;
3203				if (ret < 0)
3204					goto out;
3205
3206				stop_loop = 1;
3207				break;
3208			}
3209			btrfs_item_key_to_cpu(l, &key, slot);
3210
3211			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212			    key.type != BTRFS_METADATA_ITEM_KEY)
3213				goto next;
3214
3215			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216				bytes = fs_info->nodesize;
3217			else
3218				bytes = key.offset;
3219
3220			if (key.objectid + bytes <= logic_start)
3221				goto next;
3222
3223			if (key.objectid >= logic_end) {
3224				stop_loop = 1;
3225				break;
3226			}
3227
3228			while (key.objectid >= logic_start + map->stripe_len)
3229				logic_start += map->stripe_len;
3230
3231			extent = btrfs_item_ptr(l, slot,
3232						struct btrfs_extent_item);
3233			flags = btrfs_extent_flags(l, extent);
3234			generation = btrfs_extent_generation(l, extent);
3235
3236			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237			    (key.objectid < logic_start ||
3238			     key.objectid + bytes >
3239			     logic_start + map->stripe_len)) {
3240				btrfs_err(fs_info,
3241					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242					  key.objectid, logic_start);
3243				spin_lock(&sctx->stat_lock);
3244				sctx->stat.uncorrectable_errors++;
3245				spin_unlock(&sctx->stat_lock);
3246				goto next;
3247			}
3248again:
3249			extent_logical = key.objectid;
3250			extent_len = bytes;
3251
3252			if (extent_logical < logic_start) {
3253				extent_len -= logic_start - extent_logical;
3254				extent_logical = logic_start;
3255			}
3256
3257			if (extent_logical + extent_len >
3258			    logic_start + map->stripe_len)
3259				extent_len = logic_start + map->stripe_len -
3260					     extent_logical;
3261
3262			scrub_parity_mark_sectors_data(sparity, extent_logical,
3263						       extent_len);
3264
3265			mapped_length = extent_len;
3266			bbio = NULL;
3267			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268					extent_logical, &mapped_length, &bbio,
3269					0);
3270			if (!ret) {
3271				if (!bbio || mapped_length < extent_len)
3272					ret = -EIO;
3273			}
3274			if (ret) {
3275				btrfs_put_bbio(bbio);
3276				goto out;
3277			}
3278			extent_physical = bbio->stripes[0].physical;
3279			extent_mirror_num = bbio->mirror_num;
3280			extent_dev = bbio->stripes[0].dev;
3281			btrfs_put_bbio(bbio);
3282
3283			ret = btrfs_lookup_csums_range(csum_root,
3284						extent_logical,
3285						extent_logical + extent_len - 1,
3286						&sctx->csum_list, 1);
3287			if (ret)
3288				goto out;
3289
3290			ret = scrub_extent_for_parity(sparity, extent_logical,
3291						      extent_len,
3292						      extent_physical,
3293						      extent_dev, flags,
3294						      generation,
3295						      extent_mirror_num);
3296
3297			scrub_free_csums(sctx);
3298
3299			if (ret)
3300				goto out;
3301
3302			if (extent_logical + extent_len <
3303			    key.objectid + bytes) {
3304				logic_start += map->stripe_len;
3305
3306				if (logic_start >= logic_end) {
3307					stop_loop = 1;
3308					break;
3309				}
3310
3311				if (logic_start < key.objectid + bytes) {
3312					cond_resched();
3313					goto again;
3314				}
3315			}
3316next:
3317			path->slots[0]++;
3318		}
3319
3320		btrfs_release_path(path);
3321
3322		if (stop_loop)
3323			break;
3324
3325		logic_start += map->stripe_len;
3326	}
3327out:
3328	if (ret < 0)
3329		scrub_parity_mark_sectors_error(sparity, logic_start,
3330						logic_end - logic_start);
3331	scrub_parity_put(sparity);
3332	scrub_submit(sctx);
3333	mutex_lock(&sctx->wr_lock);
3334	scrub_wr_submit(sctx);
3335	mutex_unlock(&sctx->wr_lock);
3336
3337	btrfs_release_path(path);
3338	return ret < 0 ? ret : 0;
3339}
3340
3341static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342					   struct map_lookup *map,
3343					   struct btrfs_device *scrub_dev,
3344					   int num, u64 base, u64 length,
3345					   int is_dev_replace)
3346{
3347	struct btrfs_path *path, *ppath;
3348	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349	struct btrfs_root *root = fs_info->extent_root;
3350	struct btrfs_root *csum_root = fs_info->csum_root;
3351	struct btrfs_extent_item *extent;
3352	struct blk_plug plug;
3353	u64 flags;
3354	int ret;
3355	int slot;
3356	u64 nstripes;
3357	struct extent_buffer *l;
 
3358	u64 physical;
3359	u64 logical;
3360	u64 logic_end;
3361	u64 physical_end;
3362	u64 generation;
3363	int mirror_num;
3364	struct reada_control *reada1;
3365	struct reada_control *reada2;
3366	struct btrfs_key key;
3367	struct btrfs_key key_end;
3368	u64 increment = map->stripe_len;
3369	u64 offset;
3370	u64 extent_logical;
3371	u64 extent_physical;
3372	u64 extent_len;
3373	u64 stripe_logical;
3374	u64 stripe_end;
3375	struct btrfs_device *extent_dev;
3376	int extent_mirror_num;
3377	int stop_loop = 0;
3378
 
3379	physical = map->stripes[num].physical;
3380	offset = 0;
3381	nstripes = div64_u64(length, map->stripe_len);
3382	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383		offset = map->stripe_len * num;
3384		increment = map->stripe_len * map->num_stripes;
3385		mirror_num = 1;
3386	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387		int factor = map->num_stripes / map->sub_stripes;
3388		offset = map->stripe_len * (num / map->sub_stripes);
3389		increment = map->stripe_len * factor;
3390		mirror_num = num % map->sub_stripes + 1;
3391	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392		increment = map->stripe_len;
3393		mirror_num = num % map->num_stripes + 1;
3394	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395		increment = map->stripe_len;
3396		mirror_num = num % map->num_stripes + 1;
3397	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398		get_raid56_logic_offset(physical, num, map, &offset, NULL);
 
3399		increment = map->stripe_len * nr_data_stripes(map);
3400		mirror_num = 1;
3401	} else {
3402		increment = map->stripe_len;
3403		mirror_num = 1;
3404	}
3405
3406	path = btrfs_alloc_path();
3407	if (!path)
3408		return -ENOMEM;
3409
3410	ppath = btrfs_alloc_path();
3411	if (!ppath) {
3412		btrfs_free_path(path);
3413		return -ENOMEM;
3414	}
3415
3416	/*
3417	 * work on commit root. The related disk blocks are static as
3418	 * long as COW is applied. This means, it is save to rewrite
3419	 * them to repair disk errors without any race conditions
3420	 */
3421	path->search_commit_root = 1;
3422	path->skip_locking = 1;
3423
3424	ppath->search_commit_root = 1;
3425	ppath->skip_locking = 1;
3426	/*
3427	 * trigger the readahead for extent tree csum tree and wait for
3428	 * completion. During readahead, the scrub is officially paused
3429	 * to not hold off transaction commits
3430	 */
3431	logical = base + offset;
3432	physical_end = physical + nstripes * map->stripe_len;
3433	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3434		get_raid56_logic_offset(physical_end, num,
3435					map, &logic_end, NULL);
3436		logic_end += base;
3437	} else {
3438		logic_end = logical + increment * nstripes;
3439	}
3440	wait_event(sctx->list_wait,
3441		   atomic_read(&sctx->bios_in_flight) == 0);
3442	scrub_blocked_if_needed(fs_info);
3443
3444	/* FIXME it might be better to start readahead at commit root */
3445	key.objectid = logical;
3446	key.type = BTRFS_EXTENT_ITEM_KEY;
3447	key.offset = (u64)0;
3448	key_end.objectid = logic_end;
3449	key_end.type = BTRFS_METADATA_ITEM_KEY;
3450	key_end.offset = (u64)-1;
3451	reada1 = btrfs_reada_add(root, &key, &key_end);
3452
3453	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454	key.type = BTRFS_EXTENT_CSUM_KEY;
3455	key.offset = logical;
3456	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458	key_end.offset = logic_end;
3459	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3460
3461	if (!IS_ERR(reada1))
3462		btrfs_reada_wait(reada1);
3463	if (!IS_ERR(reada2))
3464		btrfs_reada_wait(reada2);
3465
3466
3467	/*
3468	 * collect all data csums for the stripe to avoid seeking during
3469	 * the scrub. This might currently (crc32) end up to be about 1MB
3470	 */
3471	blk_start_plug(&plug);
3472
3473	/*
3474	 * now find all extents for each stripe and scrub them
3475	 */
3476	ret = 0;
3477	while (physical < physical_end) {
 
 
 
 
 
 
 
 
 
3478		/*
3479		 * canceled?
3480		 */
3481		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482		    atomic_read(&sctx->cancel_req)) {
3483			ret = -ECANCELED;
3484			goto out;
3485		}
3486		/*
3487		 * check to see if we have to pause
3488		 */
3489		if (atomic_read(&fs_info->scrub_pause_req)) {
3490			/* push queued extents */
3491			sctx->flush_all_writes = true;
3492			scrub_submit(sctx);
3493			mutex_lock(&sctx->wr_lock);
3494			scrub_wr_submit(sctx);
3495			mutex_unlock(&sctx->wr_lock);
3496			wait_event(sctx->list_wait,
3497				   atomic_read(&sctx->bios_in_flight) == 0);
3498			sctx->flush_all_writes = false;
3499			scrub_blocked_if_needed(fs_info);
3500		}
3501
3502		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503			ret = get_raid56_logic_offset(physical, num, map,
3504						      &logical,
3505						      &stripe_logical);
3506			logical += base;
3507			if (ret) {
3508				/* it is parity strip */
3509				stripe_logical += base;
3510				stripe_end = stripe_logical + increment;
3511				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512							  ppath, stripe_logical,
3513							  stripe_end);
3514				if (ret)
3515					goto out;
3516				goto skip;
3517			}
3518		}
3519
3520		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521			key.type = BTRFS_METADATA_ITEM_KEY;
3522		else
3523			key.type = BTRFS_EXTENT_ITEM_KEY;
3524		key.objectid = logical;
3525		key.offset = (u64)-1;
3526
3527		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528		if (ret < 0)
3529			goto out;
3530
3531		if (ret > 0) {
3532			ret = btrfs_previous_extent_item(root, path, 0);
3533			if (ret < 0)
3534				goto out;
3535			if (ret > 0) {
3536				/* there's no smaller item, so stick with the
3537				 * larger one */
3538				btrfs_release_path(path);
3539				ret = btrfs_search_slot(NULL, root, &key,
3540							path, 0, 0);
3541				if (ret < 0)
3542					goto out;
3543			}
3544		}
3545
3546		stop_loop = 0;
3547		while (1) {
3548			u64 bytes;
3549
3550			l = path->nodes[0];
3551			slot = path->slots[0];
3552			if (slot >= btrfs_header_nritems(l)) {
3553				ret = btrfs_next_leaf(root, path);
3554				if (ret == 0)
3555					continue;
3556				if (ret < 0)
3557					goto out;
3558
3559				stop_loop = 1;
3560				break;
3561			}
3562			btrfs_item_key_to_cpu(l, &key, slot);
3563
3564			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565			    key.type != BTRFS_METADATA_ITEM_KEY)
3566				goto next;
3567
3568			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569				bytes = fs_info->nodesize;
3570			else
3571				bytes = key.offset;
3572
3573			if (key.objectid + bytes <= logical)
3574				goto next;
3575
 
 
 
 
3576			if (key.objectid >= logical + map->stripe_len) {
3577				/* out of this device extent */
3578				if (key.objectid >= logic_end)
3579					stop_loop = 1;
3580				break;
3581			}
3582
3583			extent = btrfs_item_ptr(l, slot,
3584						struct btrfs_extent_item);
3585			flags = btrfs_extent_flags(l, extent);
3586			generation = btrfs_extent_generation(l, extent);
3587
3588			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589			    (key.objectid < logical ||
3590			     key.objectid + bytes >
3591			     logical + map->stripe_len)) {
3592				btrfs_err(fs_info,
3593					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 
3594				       key.objectid, logical);
3595				spin_lock(&sctx->stat_lock);
3596				sctx->stat.uncorrectable_errors++;
3597				spin_unlock(&sctx->stat_lock);
3598				goto next;
3599			}
3600
3601again:
3602			extent_logical = key.objectid;
3603			extent_len = bytes;
3604
3605			/*
3606			 * trim extent to this stripe
3607			 */
3608			if (extent_logical < logical) {
3609				extent_len -= logical - extent_logical;
3610				extent_logical = logical;
3611			}
3612			if (extent_logical + extent_len >
3613			    logical + map->stripe_len) {
3614				extent_len = logical + map->stripe_len -
3615					     extent_logical;
3616			}
3617
3618			extent_physical = extent_logical - logical + physical;
3619			extent_dev = scrub_dev;
3620			extent_mirror_num = mirror_num;
3621			if (is_dev_replace)
3622				scrub_remap_extent(fs_info, extent_logical,
3623						   extent_len, &extent_physical,
3624						   &extent_dev,
3625						   &extent_mirror_num);
3626
3627			ret = btrfs_lookup_csums_range(csum_root,
3628						       extent_logical,
3629						       extent_logical +
3630						       extent_len - 1,
3631						       &sctx->csum_list, 1);
3632			if (ret)
3633				goto out;
3634
3635			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636					   extent_physical, extent_dev, flags,
3637					   generation, extent_mirror_num,
3638					   extent_logical - logical + physical);
3639
3640			scrub_free_csums(sctx);
3641
3642			if (ret)
3643				goto out;
3644
 
3645			if (extent_logical + extent_len <
3646			    key.objectid + bytes) {
3647				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
3648					/*
3649					 * loop until we find next data stripe
3650					 * or we have finished all stripes.
3651					 */
3652loop:
3653					physical += map->stripe_len;
3654					ret = get_raid56_logic_offset(physical,
3655							num, map, &logical,
3656							&stripe_logical);
3657					logical += base;
3658
3659					if (ret && physical < physical_end) {
3660						stripe_logical += base;
3661						stripe_end = stripe_logical +
3662								increment;
3663						ret = scrub_raid56_parity(sctx,
3664							map, scrub_dev, ppath,
3665							stripe_logical,
3666							stripe_end);
3667						if (ret)
3668							goto out;
3669						goto loop;
3670					}
3671				} else {
3672					physical += map->stripe_len;
3673					logical += increment;
3674				}
3675				if (logical < key.objectid + bytes) {
3676					cond_resched();
3677					goto again;
3678				}
3679
3680				if (physical >= physical_end) {
3681					stop_loop = 1;
3682					break;
3683				}
3684			}
3685next:
3686			path->slots[0]++;
3687		}
3688		btrfs_release_path(path);
3689skip:
3690		logical += increment;
3691		physical += map->stripe_len;
3692		spin_lock(&sctx->stat_lock);
3693		if (stop_loop)
3694			sctx->stat.last_physical = map->stripes[num].physical +
3695						   length;
3696		else
3697			sctx->stat.last_physical = physical;
3698		spin_unlock(&sctx->stat_lock);
3699		if (stop_loop)
3700			break;
3701	}
3702out:
3703	/* push queued extents */
3704	scrub_submit(sctx);
3705	mutex_lock(&sctx->wr_lock);
3706	scrub_wr_submit(sctx);
3707	mutex_unlock(&sctx->wr_lock);
3708
3709	blk_finish_plug(&plug);
3710	btrfs_free_path(path);
3711	btrfs_free_path(ppath);
3712	return ret < 0 ? ret : 0;
3713}
3714
3715static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716					  struct btrfs_device *scrub_dev,
 
3717					  u64 chunk_offset, u64 length,
3718					  u64 dev_offset,
3719					  struct btrfs_block_group_cache *cache,
3720					  int is_dev_replace)
3721{
3722	struct btrfs_fs_info *fs_info = sctx->fs_info;
3723	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724	struct map_lookup *map;
3725	struct extent_map *em;
3726	int i;
3727	int ret = 0;
3728
3729	read_lock(&map_tree->map_tree.lock);
3730	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731	read_unlock(&map_tree->map_tree.lock);
3732
3733	if (!em) {
3734		/*
3735		 * Might have been an unused block group deleted by the cleaner
3736		 * kthread or relocation.
3737		 */
3738		spin_lock(&cache->lock);
3739		if (!cache->removed)
3740			ret = -EINVAL;
3741		spin_unlock(&cache->lock);
3742
3743		return ret;
3744	}
3745
3746	map = em->map_lookup;
3747	if (em->start != chunk_offset)
3748		goto out;
3749
3750	if (em->len < length)
3751		goto out;
3752
3753	for (i = 0; i < map->num_stripes; ++i) {
3754		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755		    map->stripes[i].physical == dev_offset) {
3756			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757					   chunk_offset, length,
3758					   is_dev_replace);
3759			if (ret)
3760				goto out;
3761		}
3762	}
3763out:
3764	free_extent_map(em);
3765
3766	return ret;
3767}
3768
3769static noinline_for_stack
3770int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3772			   int is_dev_replace)
3773{
3774	struct btrfs_dev_extent *dev_extent = NULL;
3775	struct btrfs_path *path;
3776	struct btrfs_fs_info *fs_info = sctx->fs_info;
3777	struct btrfs_root *root = fs_info->dev_root;
3778	u64 length;
 
 
3779	u64 chunk_offset;
3780	int ret = 0;
3781	int ro_set;
3782	int slot;
3783	struct extent_buffer *l;
3784	struct btrfs_key key;
3785	struct btrfs_key found_key;
3786	struct btrfs_block_group_cache *cache;
3787	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3788
3789	path = btrfs_alloc_path();
3790	if (!path)
3791		return -ENOMEM;
3792
3793	path->reada = READA_FORWARD;
3794	path->search_commit_root = 1;
3795	path->skip_locking = 1;
3796
3797	key.objectid = scrub_dev->devid;
3798	key.offset = 0ull;
3799	key.type = BTRFS_DEV_EXTENT_KEY;
3800
3801	while (1) {
3802		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3803		if (ret < 0)
3804			break;
3805		if (ret > 0) {
3806			if (path->slots[0] >=
3807			    btrfs_header_nritems(path->nodes[0])) {
3808				ret = btrfs_next_leaf(root, path);
3809				if (ret < 0)
3810					break;
3811				if (ret > 0) {
3812					ret = 0;
3813					break;
3814				}
3815			} else {
3816				ret = 0;
3817			}
3818		}
3819
3820		l = path->nodes[0];
3821		slot = path->slots[0];
3822
3823		btrfs_item_key_to_cpu(l, &found_key, slot);
3824
3825		if (found_key.objectid != scrub_dev->devid)
3826			break;
3827
3828		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3829			break;
3830
3831		if (found_key.offset >= end)
3832			break;
3833
3834		if (found_key.offset < key.offset)
3835			break;
3836
3837		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838		length = btrfs_dev_extent_length(l, dev_extent);
3839
3840		if (found_key.offset + length <= start)
3841			goto skip;
 
 
 
3842
 
 
3843		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3844
3845		/*
3846		 * get a reference on the corresponding block group to prevent
3847		 * the chunk from going away while we scrub it
3848		 */
3849		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850
3851		/* some chunks are removed but not committed to disk yet,
3852		 * continue scrubbing */
3853		if (!cache)
3854			goto skip;
3855
3856		/*
3857		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858		 * to avoid deadlock caused by:
3859		 * btrfs_inc_block_group_ro()
3860		 * -> btrfs_wait_for_commit()
3861		 * -> btrfs_commit_transaction()
3862		 * -> btrfs_scrub_pause()
3863		 */
3864		scrub_pause_on(fs_info);
3865		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866		if (!ret && is_dev_replace) {
3867			/*
3868			 * If we are doing a device replace wait for any tasks
3869			 * that started dellaloc right before we set the block
3870			 * group to RO mode, as they might have just allocated
3871			 * an extent from it or decided they could do a nocow
3872			 * write. And if any such tasks did that, wait for their
3873			 * ordered extents to complete and then commit the
3874			 * current transaction, so that we can later see the new
3875			 * extent items in the extent tree - the ordered extents
3876			 * create delayed data references (for cow writes) when
3877			 * they complete, which will be run and insert the
3878			 * corresponding extent items into the extent tree when
3879			 * we commit the transaction they used when running
3880			 * inode.c:btrfs_finish_ordered_io(). We later use
3881			 * the commit root of the extent tree to find extents
3882			 * to copy from the srcdev into the tgtdev, and we don't
3883			 * want to miss any new extents.
3884			 */
3885			btrfs_wait_block_group_reservations(cache);
3886			btrfs_wait_nocow_writers(cache);
3887			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888						       cache->key.objectid,
3889						       cache->key.offset);
3890			if (ret > 0) {
3891				struct btrfs_trans_handle *trans;
3892
3893				trans = btrfs_join_transaction(root);
3894				if (IS_ERR(trans))
3895					ret = PTR_ERR(trans);
3896				else
3897					ret = btrfs_commit_transaction(trans);
3898				if (ret) {
3899					scrub_pause_off(fs_info);
3900					btrfs_put_block_group(cache);
3901					break;
3902				}
3903			}
3904		}
3905		scrub_pause_off(fs_info);
3906
3907		if (ret == 0) {
3908			ro_set = 1;
3909		} else if (ret == -ENOSPC) {
3910			/*
3911			 * btrfs_inc_block_group_ro return -ENOSPC when it
3912			 * failed in creating new chunk for metadata.
3913			 * It is not a problem for scrub/replace, because
3914			 * metadata are always cowed, and our scrub paused
3915			 * commit_transactions.
3916			 */
3917			ro_set = 0;
3918		} else {
3919			btrfs_warn(fs_info,
3920				   "failed setting block group ro: %d", ret);
3921			btrfs_put_block_group(cache);
3922			break;
3923		}
3924
3925		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926		dev_replace->cursor_right = found_key.offset + length;
3927		dev_replace->cursor_left = found_key.offset;
3928		dev_replace->item_needs_writeback = 1;
3929		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931				  found_key.offset, cache, is_dev_replace);
3932
3933		/*
3934		 * flush, submit all pending read and write bios, afterwards
3935		 * wait for them.
3936		 * Note that in the dev replace case, a read request causes
3937		 * write requests that are submitted in the read completion
3938		 * worker. Therefore in the current situation, it is required
3939		 * that all write requests are flushed, so that all read and
3940		 * write requests are really completed when bios_in_flight
3941		 * changes to 0.
3942		 */
3943		sctx->flush_all_writes = true;
3944		scrub_submit(sctx);
3945		mutex_lock(&sctx->wr_lock);
3946		scrub_wr_submit(sctx);
3947		mutex_unlock(&sctx->wr_lock);
3948
3949		wait_event(sctx->list_wait,
3950			   atomic_read(&sctx->bios_in_flight) == 0);
3951
3952		scrub_pause_on(fs_info);
3953
3954		/*
3955		 * must be called before we decrease @scrub_paused.
3956		 * make sure we don't block transaction commit while
3957		 * we are waiting pending workers finished.
3958		 */
3959		wait_event(sctx->list_wait,
3960			   atomic_read(&sctx->workers_pending) == 0);
3961		sctx->flush_all_writes = false;
3962
3963		scrub_pause_off(fs_info);
3964
3965		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966		dev_replace->cursor_left = dev_replace->cursor_right;
3967		dev_replace->item_needs_writeback = 1;
3968		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969
3970		if (ro_set)
3971			btrfs_dec_block_group_ro(cache);
3972
3973		/*
3974		 * We might have prevented the cleaner kthread from deleting
3975		 * this block group if it was already unused because we raced
3976		 * and set it to RO mode first. So add it back to the unused
3977		 * list, otherwise it might not ever be deleted unless a manual
3978		 * balance is triggered or it becomes used and unused again.
3979		 */
3980		spin_lock(&cache->lock);
3981		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982		    btrfs_block_group_used(&cache->item) == 0) {
3983			spin_unlock(&cache->lock);
3984			spin_lock(&fs_info->unused_bgs_lock);
3985			if (list_empty(&cache->bg_list)) {
3986				btrfs_get_block_group(cache);
3987				list_add_tail(&cache->bg_list,
3988					      &fs_info->unused_bgs);
3989			}
3990			spin_unlock(&fs_info->unused_bgs_lock);
3991		} else {
3992			spin_unlock(&cache->lock);
3993		}
3994
3995		btrfs_put_block_group(cache);
3996		if (ret)
3997			break;
3998		if (is_dev_replace &&
3999		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4000			ret = -EIO;
4001			break;
4002		}
4003		if (sctx->stat.malloc_errors > 0) {
4004			ret = -ENOMEM;
4005			break;
4006		}
4007skip:
 
 
 
4008		key.offset = found_key.offset + length;
4009		btrfs_release_path(path);
4010	}
4011
4012	btrfs_free_path(path);
4013
4014	return ret;
 
 
 
 
4015}
4016
4017static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4018					   struct btrfs_device *scrub_dev)
4019{
4020	int	i;
4021	u64	bytenr;
4022	u64	gen;
4023	int	ret;
4024	struct btrfs_fs_info *fs_info = sctx->fs_info;
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4027		return -EIO;
4028
4029	/* Seed devices of a new filesystem has their own generation. */
4030	if (scrub_dev->fs_devices != fs_info->fs_devices)
4031		gen = scrub_dev->generation;
4032	else
4033		gen = fs_info->last_trans_committed;
4034
4035	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4036		bytenr = btrfs_sb_offset(i);
4037		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4038		    scrub_dev->commit_total_bytes)
4039			break;
4040
4041		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4042				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4043				  NULL, 1, bytenr);
4044		if (ret)
4045			return ret;
4046	}
4047	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4048
4049	return 0;
4050}
4051
4052/*
4053 * get a reference count on fs_info->scrub_workers. start worker if necessary
4054 */
4055static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4056						int is_dev_replace)
4057{
4058	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 
4059	int max_active = fs_info->thread_pool_size;
4060
4061	if (fs_info->scrub_workers_refcnt == 0) {
4062		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4063				flags, is_dev_replace ? 1 : max_active, 4);
4064		if (!fs_info->scrub_workers)
4065			goto fail_scrub_workers;
4066
 
 
 
 
 
 
 
4067		fs_info->scrub_wr_completion_workers =
4068			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4069					      max_active, 2);
4070		if (!fs_info->scrub_wr_completion_workers)
4071			goto fail_scrub_wr_completion_workers;
4072
 
4073		fs_info->scrub_nocow_workers =
4074			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4075		if (!fs_info->scrub_nocow_workers)
4076			goto fail_scrub_nocow_workers;
4077		fs_info->scrub_parity_workers =
4078			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4079					      max_active, 2);
4080		if (!fs_info->scrub_parity_workers)
4081			goto fail_scrub_parity_workers;
4082	}
4083	++fs_info->scrub_workers_refcnt;
4084	return 0;
4085
4086fail_scrub_parity_workers:
4087	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4088fail_scrub_nocow_workers:
4089	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4090fail_scrub_wr_completion_workers:
4091	btrfs_destroy_workqueue(fs_info->scrub_workers);
4092fail_scrub_workers:
4093	return -ENOMEM;
4094}
4095
4096static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4097{
4098	if (--fs_info->scrub_workers_refcnt == 0) {
4099		btrfs_destroy_workqueue(fs_info->scrub_workers);
4100		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4101		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4102		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4103	}
4104	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4105}
4106
4107int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4108		    u64 end, struct btrfs_scrub_progress *progress,
4109		    int readonly, int is_dev_replace)
4110{
4111	struct scrub_ctx *sctx;
4112	int ret;
4113	struct btrfs_device *dev;
4114	struct rcu_string *name;
4115
4116	if (btrfs_fs_closing(fs_info))
4117		return -EINVAL;
4118
4119	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
 
 
 
 
 
 
 
 
 
 
 
4120		/*
4121		 * in this case scrub is unable to calculate the checksum
4122		 * the way scrub is implemented. Do not handle this
4123		 * situation at all because it won't ever happen.
4124		 */
4125		btrfs_err(fs_info,
4126			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4127		       fs_info->nodesize,
4128		       BTRFS_STRIPE_LEN);
4129		return -EINVAL;
4130	}
4131
4132	if (fs_info->sectorsize != PAGE_SIZE) {
4133		/* not supported for data w/o checksums */
4134		btrfs_err_rl(fs_info,
4135			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4136		       fs_info->sectorsize, PAGE_SIZE);
 
4137		return -EINVAL;
4138	}
4139
4140	if (fs_info->nodesize >
4141	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4142	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
 
4143		/*
4144		 * would exhaust the array bounds of pagev member in
4145		 * struct scrub_block
4146		 */
4147		btrfs_err(fs_info,
4148			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4149		       fs_info->nodesize,
4150		       SCRUB_MAX_PAGES_PER_BLOCK,
4151		       fs_info->sectorsize,
4152		       SCRUB_MAX_PAGES_PER_BLOCK);
4153		return -EINVAL;
4154	}
4155
4156
4157	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4158	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4159	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4160		     !is_dev_replace)) {
4161		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162		return -ENODEV;
4163	}
4164
4165	if (!is_dev_replace && !readonly &&
4166	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4167		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168		rcu_read_lock();
4169		name = rcu_dereference(dev->name);
4170		btrfs_err(fs_info, "scrub: device %s is not writable",
4171			  name->str);
4172		rcu_read_unlock();
4173		return -EROFS;
4174	}
4175
4176	mutex_lock(&fs_info->scrub_lock);
4177	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4178	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4179		mutex_unlock(&fs_info->scrub_lock);
4180		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181		return -EIO;
4182	}
4183
4184	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4185	if (dev->scrub_ctx ||
4186	    (!is_dev_replace &&
4187	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4188		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4189		mutex_unlock(&fs_info->scrub_lock);
4190		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191		return -EINPROGRESS;
4192	}
4193	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4194
4195	ret = scrub_workers_get(fs_info, is_dev_replace);
4196	if (ret) {
4197		mutex_unlock(&fs_info->scrub_lock);
4198		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4199		return ret;
4200	}
4201
4202	sctx = scrub_setup_ctx(dev, is_dev_replace);
4203	if (IS_ERR(sctx)) {
4204		mutex_unlock(&fs_info->scrub_lock);
4205		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206		scrub_workers_put(fs_info);
4207		return PTR_ERR(sctx);
4208	}
4209	sctx->readonly = readonly;
4210	dev->scrub_ctx = sctx;
4211	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4212
4213	/*
4214	 * checking @scrub_pause_req here, we can avoid
4215	 * race between committing transaction and scrubbing.
4216	 */
4217	__scrub_blocked_if_needed(fs_info);
4218	atomic_inc(&fs_info->scrubs_running);
4219	mutex_unlock(&fs_info->scrub_lock);
4220
4221	if (!is_dev_replace) {
4222		/*
4223		 * by holding device list mutex, we can
4224		 * kick off writing super in log tree sync.
4225		 */
4226		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4227		ret = scrub_supers(sctx, dev);
4228		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4229	}
4230
4231	if (!ret)
4232		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4233					     is_dev_replace);
4234
4235	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4236	atomic_dec(&fs_info->scrubs_running);
4237	wake_up(&fs_info->scrub_pause_wait);
4238
4239	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4240
4241	if (progress)
4242		memcpy(progress, &sctx->stat, sizeof(*progress));
4243
4244	mutex_lock(&fs_info->scrub_lock);
4245	dev->scrub_ctx = NULL;
4246	scrub_workers_put(fs_info);
4247	mutex_unlock(&fs_info->scrub_lock);
4248
4249	scrub_put_ctx(sctx);
4250
4251	return ret;
4252}
4253
4254void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4255{
 
 
4256	mutex_lock(&fs_info->scrub_lock);
4257	atomic_inc(&fs_info->scrub_pause_req);
4258	while (atomic_read(&fs_info->scrubs_paused) !=
4259	       atomic_read(&fs_info->scrubs_running)) {
4260		mutex_unlock(&fs_info->scrub_lock);
4261		wait_event(fs_info->scrub_pause_wait,
4262			   atomic_read(&fs_info->scrubs_paused) ==
4263			   atomic_read(&fs_info->scrubs_running));
4264		mutex_lock(&fs_info->scrub_lock);
4265	}
4266	mutex_unlock(&fs_info->scrub_lock);
4267}
4268
4269void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4270{
 
 
4271	atomic_dec(&fs_info->scrub_pause_req);
4272	wake_up(&fs_info->scrub_pause_wait);
4273}
4274
4275int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4276{
4277	mutex_lock(&fs_info->scrub_lock);
4278	if (!atomic_read(&fs_info->scrubs_running)) {
4279		mutex_unlock(&fs_info->scrub_lock);
4280		return -ENOTCONN;
4281	}
4282
4283	atomic_inc(&fs_info->scrub_cancel_req);
4284	while (atomic_read(&fs_info->scrubs_running)) {
4285		mutex_unlock(&fs_info->scrub_lock);
4286		wait_event(fs_info->scrub_pause_wait,
4287			   atomic_read(&fs_info->scrubs_running) == 0);
4288		mutex_lock(&fs_info->scrub_lock);
4289	}
4290	atomic_dec(&fs_info->scrub_cancel_req);
4291	mutex_unlock(&fs_info->scrub_lock);
4292
4293	return 0;
4294}
4295
4296int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4297			   struct btrfs_device *dev)
4298{
4299	struct scrub_ctx *sctx;
4300
4301	mutex_lock(&fs_info->scrub_lock);
4302	sctx = dev->scrub_ctx;
4303	if (!sctx) {
4304		mutex_unlock(&fs_info->scrub_lock);
4305		return -ENOTCONN;
4306	}
4307	atomic_inc(&sctx->cancel_req);
4308	while (dev->scrub_ctx) {
4309		mutex_unlock(&fs_info->scrub_lock);
4310		wait_event(fs_info->scrub_pause_wait,
4311			   dev->scrub_ctx == NULL);
4312		mutex_lock(&fs_info->scrub_lock);
4313	}
4314	mutex_unlock(&fs_info->scrub_lock);
4315
4316	return 0;
4317}
4318
4319int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4320			 struct btrfs_scrub_progress *progress)
4321{
4322	struct btrfs_device *dev;
4323	struct scrub_ctx *sctx = NULL;
4324
4325	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4326	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4327	if (dev)
4328		sctx = dev->scrub_ctx;
4329	if (sctx)
4330		memcpy(progress, &sctx->stat, sizeof(*progress));
4331	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332
4333	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4334}
4335
4336static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4337			       u64 extent_logical, u64 extent_len,
4338			       u64 *extent_physical,
4339			       struct btrfs_device **extent_dev,
4340			       int *extent_mirror_num)
4341{
4342	u64 mapped_length;
4343	struct btrfs_bio *bbio = NULL;
4344	int ret;
4345
4346	mapped_length = extent_len;
4347	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4348			      &mapped_length, &bbio, 0);
4349	if (ret || !bbio || mapped_length < extent_len ||
4350	    !bbio->stripes[0].dev->bdev) {
4351		btrfs_put_bbio(bbio);
4352		return;
4353	}
4354
4355	*extent_physical = bbio->stripes[0].physical;
4356	*extent_mirror_num = bbio->mirror_num;
4357	*extent_dev = bbio->stripes[0].dev;
4358	btrfs_put_bbio(bbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4359}
4360
4361static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4362			    int mirror_num, u64 physical_for_dev_replace)
4363{
4364	struct scrub_copy_nocow_ctx *nocow_ctx;
4365	struct btrfs_fs_info *fs_info = sctx->fs_info;
4366
4367	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4368	if (!nocow_ctx) {
4369		spin_lock(&sctx->stat_lock);
4370		sctx->stat.malloc_errors++;
4371		spin_unlock(&sctx->stat_lock);
4372		return -ENOMEM;
4373	}
4374
4375	scrub_pending_trans_workers_inc(sctx);
4376
4377	nocow_ctx->sctx = sctx;
4378	nocow_ctx->logical = logical;
4379	nocow_ctx->len = len;
4380	nocow_ctx->mirror_num = mirror_num;
4381	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4382	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4383			copy_nocow_pages_worker, NULL, NULL);
4384	INIT_LIST_HEAD(&nocow_ctx->inodes);
4385	btrfs_queue_work(fs_info->scrub_nocow_workers,
4386			 &nocow_ctx->work);
4387
4388	return 0;
4389}
4390
4391static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4392{
4393	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4394	struct scrub_nocow_inode *nocow_inode;
4395
4396	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4397	if (!nocow_inode)
4398		return -ENOMEM;
4399	nocow_inode->inum = inum;
4400	nocow_inode->offset = offset;
4401	nocow_inode->root = root;
4402	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4403	return 0;
4404}
4405
4406#define COPY_COMPLETE 1
4407
4408static void copy_nocow_pages_worker(struct btrfs_work *work)
4409{
4410	struct scrub_copy_nocow_ctx *nocow_ctx =
4411		container_of(work, struct scrub_copy_nocow_ctx, work);
4412	struct scrub_ctx *sctx = nocow_ctx->sctx;
4413	struct btrfs_fs_info *fs_info = sctx->fs_info;
4414	struct btrfs_root *root = fs_info->extent_root;
4415	u64 logical = nocow_ctx->logical;
4416	u64 len = nocow_ctx->len;
4417	int mirror_num = nocow_ctx->mirror_num;
4418	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4419	int ret;
4420	struct btrfs_trans_handle *trans = NULL;
 
4421	struct btrfs_path *path;
 
4422	int not_written = 0;
4423
 
 
 
4424	path = btrfs_alloc_path();
4425	if (!path) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		not_written = 1;
4430		goto out;
4431	}
4432
4433	trans = btrfs_join_transaction(root);
4434	if (IS_ERR(trans)) {
4435		not_written = 1;
4436		goto out;
4437	}
4438
4439	ret = iterate_inodes_from_logical(logical, fs_info, path,
4440			record_inode_for_nocow, nocow_ctx, false);
4441	if (ret != 0 && ret != -ENOENT) {
4442		btrfs_warn(fs_info,
4443			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4444			   logical, physical_for_dev_replace, len, mirror_num,
4445			   ret);
4446		not_written = 1;
4447		goto out;
4448	}
4449
4450	btrfs_end_transaction(trans);
4451	trans = NULL;
4452	while (!list_empty(&nocow_ctx->inodes)) {
4453		struct scrub_nocow_inode *entry;
4454		entry = list_first_entry(&nocow_ctx->inodes,
4455					 struct scrub_nocow_inode,
4456					 list);
4457		list_del_init(&entry->list);
4458		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4459						 entry->root, nocow_ctx);
4460		kfree(entry);
4461		if (ret == COPY_COMPLETE) {
4462			ret = 0;
4463			break;
4464		} else if (ret) {
4465			break;
4466		}
4467	}
4468out:
4469	while (!list_empty(&nocow_ctx->inodes)) {
4470		struct scrub_nocow_inode *entry;
4471		entry = list_first_entry(&nocow_ctx->inodes,
4472					 struct scrub_nocow_inode,
4473					 list);
4474		list_del_init(&entry->list);
4475		kfree(entry);
4476	}
4477	if (trans && !IS_ERR(trans))
4478		btrfs_end_transaction(trans);
4479	if (not_written)
4480		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4481					    num_uncorrectable_read_errors);
4482
4483	btrfs_free_path(path);
4484	kfree(nocow_ctx);
4485
4486	scrub_pending_trans_workers_dec(sctx);
4487}
4488
4489static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4490				 u64 logical)
4491{
4492	struct extent_state *cached_state = NULL;
4493	struct btrfs_ordered_extent *ordered;
4494	struct extent_io_tree *io_tree;
4495	struct extent_map *em;
4496	u64 lockstart = start, lockend = start + len - 1;
4497	int ret = 0;
4498
4499	io_tree = &inode->io_tree;
4500
4501	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4502	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4503	if (ordered) {
4504		btrfs_put_ordered_extent(ordered);
4505		ret = 1;
4506		goto out_unlock;
4507	}
4508
4509	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4510	if (IS_ERR(em)) {
4511		ret = PTR_ERR(em);
4512		goto out_unlock;
4513	}
4514
4515	/*
4516	 * This extent does not actually cover the logical extent anymore,
4517	 * move on to the next inode.
4518	 */
4519	if (em->block_start > logical ||
4520	    em->block_start + em->block_len < logical + len ||
4521	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4522		free_extent_map(em);
4523		ret = 1;
4524		goto out_unlock;
4525	}
4526	free_extent_map(em);
4527
4528out_unlock:
4529	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4530	return ret;
4531}
4532
4533static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4534				      struct scrub_copy_nocow_ctx *nocow_ctx)
4535{
4536	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4537	struct btrfs_key key;
4538	struct inode *inode;
4539	struct page *page;
4540	struct btrfs_root *local_root;
 
 
 
4541	struct extent_io_tree *io_tree;
4542	u64 physical_for_dev_replace;
4543	u64 nocow_ctx_logical;
4544	u64 len = nocow_ctx->len;
 
4545	unsigned long index;
4546	int srcu_index;
4547	int ret = 0;
4548	int err = 0;
4549
4550	key.objectid = root;
4551	key.type = BTRFS_ROOT_ITEM_KEY;
4552	key.offset = (u64)-1;
4553
4554	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4555
4556	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4557	if (IS_ERR(local_root)) {
4558		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4559		return PTR_ERR(local_root);
4560	}
4561
4562	key.type = BTRFS_INODE_ITEM_KEY;
4563	key.objectid = inum;
4564	key.offset = 0;
4565	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4566	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4567	if (IS_ERR(inode))
4568		return PTR_ERR(inode);
4569
4570	/* Avoid truncate/dio/punch hole.. */
4571	inode_lock(inode);
4572	inode_dio_wait(inode);
4573
4574	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4575	io_tree = &BTRFS_I(inode)->io_tree;
4576	nocow_ctx_logical = nocow_ctx->logical;
4577
4578	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4579			nocow_ctx_logical);
4580	if (ret) {
4581		ret = ret > 0 ? 0 : ret;
4582		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4583	}
 
4584
4585	while (len >= PAGE_SIZE) {
4586		index = offset >> PAGE_SHIFT;
4587again:
4588		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4589		if (!page) {
4590			btrfs_err(fs_info, "find_or_create_page() failed");
4591			ret = -ENOMEM;
4592			goto out;
4593		}
4594
4595		if (PageUptodate(page)) {
4596			if (PageDirty(page))
4597				goto next_page;
4598		} else {
4599			ClearPageError(page);
4600			err = extent_read_full_page(io_tree, page,
4601							   btrfs_get_extent,
4602							   nocow_ctx->mirror_num);
4603			if (err) {
4604				ret = err;
4605				goto next_page;
4606			}
4607
4608			lock_page(page);
4609			/*
4610			 * If the page has been remove from the page cache,
4611			 * the data on it is meaningless, because it may be
4612			 * old one, the new data may be written into the new
4613			 * page in the page cache.
4614			 */
4615			if (page->mapping != inode->i_mapping) {
4616				unlock_page(page);
4617				put_page(page);
4618				goto again;
4619			}
4620			if (!PageUptodate(page)) {
4621				ret = -EIO;
4622				goto next_page;
4623			}
4624		}
4625
4626		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4627					    nocow_ctx_logical);
4628		if (ret) {
4629			ret = ret > 0 ? 0 : ret;
4630			goto next_page;
4631		}
4632
4633		err = write_page_nocow(nocow_ctx->sctx,
4634				       physical_for_dev_replace, page);
4635		if (err)
4636			ret = err;
4637next_page:
4638		unlock_page(page);
4639		put_page(page);
4640
4641		if (ret)
4642			break;
4643
4644		offset += PAGE_SIZE;
4645		physical_for_dev_replace += PAGE_SIZE;
4646		nocow_ctx_logical += PAGE_SIZE;
4647		len -= PAGE_SIZE;
4648	}
4649	ret = COPY_COMPLETE;
 
 
 
4650out:
4651	inode_unlock(inode);
4652	iput(inode);
4653	return ret;
4654}
4655
4656static int write_page_nocow(struct scrub_ctx *sctx,
4657			    u64 physical_for_dev_replace, struct page *page)
4658{
4659	struct bio *bio;
4660	struct btrfs_device *dev;
 
4661
4662	dev = sctx->wr_tgtdev;
4663	if (!dev)
4664		return -EIO;
4665	if (!dev->bdev) {
4666		btrfs_warn_rl(dev->fs_info,
4667			"scrub write_page_nocow(bdev == NULL) is unexpected");
4668		return -EIO;
4669	}
4670	bio = btrfs_io_bio_alloc(1);
 
 
 
 
 
 
4671	bio->bi_iter.bi_size = 0;
4672	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4673	bio_set_dev(bio, dev->bdev);
4674	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4675	/* bio_add_page won't fail on a freshly allocated bio */
4676	bio_add_page(bio, page, PAGE_SIZE, 0);
4677
4678	if (btrfsic_submit_bio_wait(bio)) {
4679		bio_put(bio);
4680		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4681		return -EIO;
4682	}
 
 
 
4683
4684	bio_put(bio);
4685	return 0;
4686}
v3.15
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
 
 
 
 
 
 
  66struct scrub_page {
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
 
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
 
 
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 107	struct scrub_ctx	*sctx;
 
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
 113	};
 
 114};
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 
 
 
 
 
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 
 
 
 
 
 
 
 
 
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 
 
 
 
 
 
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 
 
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 
 261
 
 
 
 
 
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 
 265	atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 
 272}
 273
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 
 288
 
 
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 327
 328	atomic_inc(&sctx->workers_pending);
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 385		kfree(sbio);
 386	}
 387
 
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 
 
 
 
 
 
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 
 
 
 458	}
 
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 491	if (ret) {
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 
 
 
 
 
 
 503	ipath = init_ipath(4096, local_root, swarn->path);
 
 504	if (IS_ERR(ipath)) {
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 
 526
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 563	path = btrfs_alloc_path();
 
 
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 603		btrfs_release_path(path);
 604	} else {
 605		btrfs_release_path(path);
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 732	}
 733
 734	return -EIO;
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 738{
 
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 803
 804	scrub_pending_trans_workers_dec(sctx);
 805}
 806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 863	}
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 
 
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 984
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
 
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
 
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 
1144
1145		if (!page_bad->io_error)
 
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
 
 
 
 
 
1163				}
1164			}
 
 
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
 
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
 
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
 
 
 
 
 
 
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
 
 
 
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1239	int mirror_index;
 
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
 
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
 
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
 
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
 
 
 
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
 
 
 
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
 
 
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
 
 
 
 
 
 
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
 
 
 
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
 
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
 
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
 
1491	int page_num;
1492
 
 
 
 
 
 
 
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
 
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
 
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
1639		}
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652	u64 flags;
1653	int ret;
1654
 
 
 
 
 
 
 
 
 
 
 
 
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
1713	return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
 
 
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
 
 
 
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
 
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
 
 
2135	if (!sblock->no_io_error_seen) {
 
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
 
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
 
 
 
 
 
 
 
 
 
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
 
 
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
 
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
 
 
 
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
 
 
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
 
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
 
 
 
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
2292	int ret;
2293	int slot;
2294	u64 nstripes;
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
 
 
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
 
 
 
 
 
 
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
2356
 
 
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
2403	blk_start_plug(&plug);
2404
2405	/*
2406	 * now find all extents for each stripe and scrub them
2407	 */
2408	ret = 0;
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
2427		/*
2428		 * check to see if we have to pause
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
2441		}
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
 
 
 
 
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 
 
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
 
 
 
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
 
 
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
 
 
 
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
 
 
 
 
 
 
 
 
 
 
 
 
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
2613	blk_finish_plug(&plug);
2614	btrfs_free_path(path);
 
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
 
 
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
2634
2635	if (!em)
2636		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
 
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694	while (1) {
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
 
 
 
2703					break;
 
 
 
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744			break;
2745		}
 
 
2746		dev_replace->cursor_right = found_key.offset + length;
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
 
 
 
 
 
 
 
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
2829
2830	gen = root->fs_info->last_trans_committed;
 
 
 
 
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
 
2835			break;
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845	return 0;
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856	int max_active = fs_info->thread_pool_size;
2857
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
 
 
 
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
2887	return ret;
 
 
 
 
 
 
 
 
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
 
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
2904	struct scrub_ctx *sctx;
2905	int ret;
2906	struct btrfs_device *dev;
 
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
2910
2911	/*
2912	 * check some assumptions
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
 
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
 
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
2966	}
2967
 
 
 
 
 
 
 
 
 
 
 
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982		return -EINPROGRESS;
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
2991	}
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
3011
3012	if (!is_dev_replace) {
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
3037	scrub_workers_put(fs_info);
3038	mutex_unlock(&fs_info->scrub_lock);
3039
3040	scrub_free_ctx(sctx);
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
3094	struct scrub_ctx *sctx;
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
 
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
 
 
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
 
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
 
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
3383	}
3384	free_extent_map(em);
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
 
 
 
 
 
 
 
 
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
 
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
 
 
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}