Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/buffer_head.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/mpage.h>
  18#include <linux/swap.h>
  19#include <linux/writeback.h>
  20#include <linux/bit_spinlock.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/log2.h>
  24#include "ctree.h"
  25#include "disk-io.h"
  26#include "transaction.h"
  27#include "btrfs_inode.h"
  28#include "volumes.h"
  29#include "ordered-data.h"
  30#include "compression.h"
  31#include "extent_io.h"
  32#include "extent_map.h"
  33
  34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 
 
  35
  36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  37{
  38	switch (type) {
  39	case BTRFS_COMPRESS_ZLIB:
  40	case BTRFS_COMPRESS_LZO:
  41	case BTRFS_COMPRESS_ZSTD:
  42	case BTRFS_COMPRESS_NONE:
  43		return btrfs_compress_types[type];
  44	}
  45
  46	return NULL;
  47}
 
 
 
 
 
 
 
 
 
  48
  49static int btrfs_decompress_bio(struct compressed_bio *cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 
 
 
 
  52				      unsigned long disk_size)
  53{
  54	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  55
  56	return sizeof(struct compressed_bio) +
  57		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 
 
 
 
 
 
 
 
 
 
  58}
  59
  60static int check_compressed_csum(struct btrfs_inode *inode,
  61				 struct compressed_bio *cb,
  62				 u64 disk_start)
  63{
  64	int ret;
  65	struct page *page;
  66	unsigned long i;
  67	char *kaddr;
  68	u32 csum;
  69	u32 *cb_sum = &cb->sums;
  70
  71	if (inode->flags & BTRFS_INODE_NODATASUM)
  72		return 0;
  73
  74	for (i = 0; i < cb->nr_pages; i++) {
  75		page = cb->compressed_pages[i];
  76		csum = ~(u32)0;
  77
  78		kaddr = kmap_atomic(page);
  79		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
  80		btrfs_csum_final(csum, (u8 *)&csum);
  81		kunmap_atomic(kaddr);
  82
  83		if (csum != *cb_sum) {
  84			btrfs_print_data_csum_error(inode, disk_start, csum,
  85					*cb_sum, cb->mirror_num);
 
 
  86			ret = -EIO;
  87			goto fail;
  88		}
  89		cb_sum++;
  90
  91	}
  92	ret = 0;
  93fail:
  94	return ret;
  95}
  96
  97/* when we finish reading compressed pages from the disk, we
  98 * decompress them and then run the bio end_io routines on the
  99 * decompressed pages (in the inode address space).
 100 *
 101 * This allows the checksumming and other IO error handling routines
 102 * to work normally
 103 *
 104 * The compressed pages are freed here, and it must be run
 105 * in process context
 106 */
 107static void end_compressed_bio_read(struct bio *bio)
 108{
 109	struct compressed_bio *cb = bio->bi_private;
 110	struct inode *inode;
 111	struct page *page;
 112	unsigned long index;
 113	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 114	int ret = 0;
 115
 116	if (bio->bi_status)
 117		cb->errors = 1;
 118
 119	/* if there are more bios still pending for this compressed
 120	 * extent, just exit
 121	 */
 122	if (!refcount_dec_and_test(&cb->pending_bios))
 123		goto out;
 124
 125	/*
 126	 * Record the correct mirror_num in cb->orig_bio so that
 127	 * read-repair can work properly.
 128	 */
 129	ASSERT(btrfs_io_bio(cb->orig_bio));
 130	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 131	cb->mirror_num = mirror;
 132
 133	/*
 134	 * Some IO in this cb have failed, just skip checksum as there
 135	 * is no way it could be correct.
 136	 */
 137	if (cb->errors == 1)
 138		goto csum_failed;
 139
 140	inode = cb->inode;
 141	ret = check_compressed_csum(BTRFS_I(inode), cb,
 142				    (u64)bio->bi_iter.bi_sector << 9);
 143	if (ret)
 144		goto csum_failed;
 145
 146	/* ok, we're the last bio for this extent, lets start
 147	 * the decompression.
 148	 */
 149	ret = btrfs_decompress_bio(cb);
 150
 
 
 
 
 151csum_failed:
 152	if (ret)
 153		cb->errors = 1;
 154
 155	/* release the compressed pages */
 156	index = 0;
 157	for (index = 0; index < cb->nr_pages; index++) {
 158		page = cb->compressed_pages[index];
 159		page->mapping = NULL;
 160		put_page(page);
 161	}
 162
 163	/* do io completion on the original bio */
 164	if (cb->errors) {
 165		bio_io_error(cb->orig_bio);
 166	} else {
 167		int i;
 168		struct bio_vec *bvec;
 169
 170		/*
 171		 * we have verified the checksum already, set page
 172		 * checked so the end_io handlers know about it
 173		 */
 174		ASSERT(!bio_flagged(bio, BIO_CLONED));
 175		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 176			SetPageChecked(bvec->bv_page);
 177
 178		bio_endio(cb->orig_bio);
 179	}
 180
 181	/* finally free the cb struct */
 182	kfree(cb->compressed_pages);
 183	kfree(cb);
 184out:
 185	bio_put(bio);
 186}
 187
 188/*
 189 * Clear the writeback bits on all of the file
 190 * pages for a compressed write
 191 */
 192static noinline void end_compressed_writeback(struct inode *inode,
 193					      const struct compressed_bio *cb)
 194{
 195	unsigned long index = cb->start >> PAGE_SHIFT;
 196	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 197	struct page *pages[16];
 198	unsigned long nr_pages = end_index - index + 1;
 199	int i;
 200	int ret;
 201
 202	if (cb->errors)
 203		mapping_set_error(inode->i_mapping, -EIO);
 204
 205	while (nr_pages > 0) {
 206		ret = find_get_pages_contig(inode->i_mapping, index,
 207				     min_t(unsigned long,
 208				     nr_pages, ARRAY_SIZE(pages)), pages);
 209		if (ret == 0) {
 210			nr_pages -= 1;
 211			index += 1;
 212			continue;
 213		}
 214		for (i = 0; i < ret; i++) {
 215			if (cb->errors)
 216				SetPageError(pages[i]);
 217			end_page_writeback(pages[i]);
 218			put_page(pages[i]);
 219		}
 220		nr_pages -= ret;
 221		index += ret;
 222	}
 223	/* the inode may be gone now */
 224}
 225
 226/*
 227 * do the cleanup once all the compressed pages hit the disk.
 228 * This will clear writeback on the file pages and free the compressed
 229 * pages.
 230 *
 231 * This also calls the writeback end hooks for the file pages so that
 232 * metadata and checksums can be updated in the file.
 233 */
 234static void end_compressed_bio_write(struct bio *bio)
 235{
 236	struct extent_io_tree *tree;
 237	struct compressed_bio *cb = bio->bi_private;
 238	struct inode *inode;
 239	struct page *page;
 240	unsigned long index;
 241
 242	if (bio->bi_status)
 243		cb->errors = 1;
 244
 245	/* if there are more bios still pending for this compressed
 246	 * extent, just exit
 247	 */
 248	if (!refcount_dec_and_test(&cb->pending_bios))
 249		goto out;
 250
 251	/* ok, we're the last bio for this extent, step one is to
 252	 * call back into the FS and do all the end_io operations
 253	 */
 254	inode = cb->inode;
 255	tree = &BTRFS_I(inode)->io_tree;
 256	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 257	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 258					 cb->start,
 259					 cb->start + cb->len - 1,
 260					 NULL,
 261					 bio->bi_status ?
 262					 BLK_STS_OK : BLK_STS_NOTSUPP);
 263	cb->compressed_pages[0]->mapping = NULL;
 264
 265	end_compressed_writeback(inode, cb);
 266	/* note, our inode could be gone now */
 267
 268	/*
 269	 * release the compressed pages, these came from alloc_page and
 270	 * are not attached to the inode at all
 271	 */
 272	index = 0;
 273	for (index = 0; index < cb->nr_pages; index++) {
 274		page = cb->compressed_pages[index];
 275		page->mapping = NULL;
 276		put_page(page);
 277	}
 278
 279	/* finally free the cb struct */
 280	kfree(cb->compressed_pages);
 281	kfree(cb);
 282out:
 283	bio_put(bio);
 284}
 285
 286/*
 287 * worker function to build and submit bios for previously compressed pages.
 288 * The corresponding pages in the inode should be marked for writeback
 289 * and the compressed pages should have a reference on them for dropping
 290 * when the IO is complete.
 291 *
 292 * This also checksums the file bytes and gets things ready for
 293 * the end io hooks.
 294 */
 295blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 296				 unsigned long len, u64 disk_start,
 297				 unsigned long compressed_len,
 298				 struct page **compressed_pages,
 299				 unsigned long nr_pages,
 300				 unsigned int write_flags)
 301{
 302	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 303	struct bio *bio = NULL;
 
 304	struct compressed_bio *cb;
 305	unsigned long bytes_left;
 306	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 307	int pg_index = 0;
 308	struct page *page;
 309	u64 first_byte = disk_start;
 310	struct block_device *bdev;
 311	blk_status_t ret;
 312	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 313
 314	WARN_ON(start & ((u64)PAGE_SIZE - 1));
 315	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 316	if (!cb)
 317		return BLK_STS_RESOURCE;
 318	refcount_set(&cb->pending_bios, 0);
 319	cb->errors = 0;
 320	cb->inode = inode;
 321	cb->start = start;
 322	cb->len = len;
 323	cb->mirror_num = 0;
 324	cb->compressed_pages = compressed_pages;
 325	cb->compressed_len = compressed_len;
 326	cb->orig_bio = NULL;
 327	cb->nr_pages = nr_pages;
 328
 329	bdev = fs_info->fs_devices->latest_bdev;
 330
 331	bio = btrfs_bio_alloc(bdev, first_byte);
 332	bio->bi_opf = REQ_OP_WRITE | write_flags;
 
 
 
 333	bio->bi_private = cb;
 334	bio->bi_end_io = end_compressed_bio_write;
 335	refcount_set(&cb->pending_bios, 1);
 336
 337	/* create and submit bios for the compressed pages */
 338	bytes_left = compressed_len;
 339	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 340		int submit = 0;
 341
 342		page = compressed_pages[pg_index];
 343		page->mapping = inode->i_mapping;
 344		if (bio->bi_iter.bi_size)
 345			submit = io_tree->ops->merge_bio_hook(page, 0,
 346							   PAGE_SIZE,
 347							   bio, 0);
 
 
 348
 349		page->mapping = NULL;
 350		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 351		    PAGE_SIZE) {
 
 
 352			/*
 353			 * inc the count before we submit the bio so
 354			 * we know the end IO handler won't happen before
 355			 * we inc the count.  Otherwise, the cb might get
 356			 * freed before we're done setting it up
 357			 */
 358			refcount_inc(&cb->pending_bios);
 359			ret = btrfs_bio_wq_end_io(fs_info, bio,
 360						  BTRFS_WQ_ENDIO_DATA);
 361			BUG_ON(ret); /* -ENOMEM */
 362
 363			if (!skip_sum) {
 364				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 
 365				BUG_ON(ret); /* -ENOMEM */
 366			}
 367
 368			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 369			if (ret) {
 370				bio->bi_status = ret;
 371				bio_endio(bio);
 372			}
 373
 374			bio = btrfs_bio_alloc(bdev, first_byte);
 375			bio->bi_opf = REQ_OP_WRITE | write_flags;
 376			bio->bi_private = cb;
 377			bio->bi_end_io = end_compressed_bio_write;
 378			bio_add_page(bio, page, PAGE_SIZE, 0);
 379		}
 380		if (bytes_left < PAGE_SIZE) {
 381			btrfs_info(fs_info,
 382					"bytes left %lu compress len %lu nr %lu",
 383			       bytes_left, cb->compressed_len, cb->nr_pages);
 384		}
 385		bytes_left -= PAGE_SIZE;
 386		first_byte += PAGE_SIZE;
 387		cond_resched();
 388	}
 
 389
 390	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 391	BUG_ON(ret); /* -ENOMEM */
 392
 393	if (!skip_sum) {
 394		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 395		BUG_ON(ret); /* -ENOMEM */
 396	}
 397
 398	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 399	if (ret) {
 400		bio->bi_status = ret;
 401		bio_endio(bio);
 402	}
 403
 
 404	return 0;
 405}
 406
 407static u64 bio_end_offset(struct bio *bio)
 408{
 409	struct bio_vec *last = bio_last_bvec_all(bio);
 410
 411	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 412}
 413
 414static noinline int add_ra_bio_pages(struct inode *inode,
 415				     u64 compressed_end,
 416				     struct compressed_bio *cb)
 417{
 418	unsigned long end_index;
 419	unsigned long pg_index;
 420	u64 last_offset;
 421	u64 isize = i_size_read(inode);
 422	int ret;
 423	struct page *page;
 424	unsigned long nr_pages = 0;
 425	struct extent_map *em;
 426	struct address_space *mapping = inode->i_mapping;
 427	struct extent_map_tree *em_tree;
 428	struct extent_io_tree *tree;
 429	u64 end;
 430	int misses = 0;
 431
 432	last_offset = bio_end_offset(cb->orig_bio);
 
 433	em_tree = &BTRFS_I(inode)->extent_tree;
 434	tree = &BTRFS_I(inode)->io_tree;
 435
 436	if (isize == 0)
 437		return 0;
 438
 439	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 440
 441	while (last_offset < compressed_end) {
 442		pg_index = last_offset >> PAGE_SHIFT;
 443
 444		if (pg_index > end_index)
 445			break;
 446
 447		rcu_read_lock();
 448		page = radix_tree_lookup(&mapping->i_pages, pg_index);
 449		rcu_read_unlock();
 450		if (page && !radix_tree_exceptional_entry(page)) {
 451			misses++;
 452			if (misses > 4)
 453				break;
 454			goto next;
 455		}
 456
 457		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 458								 ~__GFP_FS));
 459		if (!page)
 460			break;
 461
 462		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 463			put_page(page);
 
 464			goto next;
 465		}
 466
 467		end = last_offset + PAGE_SIZE - 1;
 468		/*
 469		 * at this point, we have a locked page in the page cache
 470		 * for these bytes in the file.  But, we have to make
 471		 * sure they map to this compressed extent on disk.
 472		 */
 473		set_page_extent_mapped(page);
 474		lock_extent(tree, last_offset, end);
 475		read_lock(&em_tree->lock);
 476		em = lookup_extent_mapping(em_tree, last_offset,
 477					   PAGE_SIZE);
 478		read_unlock(&em_tree->lock);
 479
 480		if (!em || last_offset < em->start ||
 481		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 482		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 483			free_extent_map(em);
 484			unlock_extent(tree, last_offset, end);
 485			unlock_page(page);
 486			put_page(page);
 487			break;
 488		}
 489		free_extent_map(em);
 490
 491		if (page->index == end_index) {
 492			char *userpage;
 493			size_t zero_offset = isize & (PAGE_SIZE - 1);
 494
 495			if (zero_offset) {
 496				int zeros;
 497				zeros = PAGE_SIZE - zero_offset;
 498				userpage = kmap_atomic(page);
 499				memset(userpage + zero_offset, 0, zeros);
 500				flush_dcache_page(page);
 501				kunmap_atomic(userpage);
 502			}
 503		}
 504
 505		ret = bio_add_page(cb->orig_bio, page,
 506				   PAGE_SIZE, 0);
 507
 508		if (ret == PAGE_SIZE) {
 509			nr_pages++;
 510			put_page(page);
 511		} else {
 512			unlock_extent(tree, last_offset, end);
 513			unlock_page(page);
 514			put_page(page);
 515			break;
 516		}
 517next:
 518		last_offset += PAGE_SIZE;
 519	}
 520	return 0;
 521}
 522
 523/*
 524 * for a compressed read, the bio we get passed has all the inode pages
 525 * in it.  We don't actually do IO on those pages but allocate new ones
 526 * to hold the compressed pages on disk.
 527 *
 528 * bio->bi_iter.bi_sector points to the compressed extent on disk
 529 * bio->bi_io_vec points to all of the inode pages
 
 530 *
 531 * After the compressed pages are read, we copy the bytes into the
 532 * bio we were passed and then call the bio end_io calls
 533 */
 534blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 535				 int mirror_num, unsigned long bio_flags)
 536{
 537	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 538	struct extent_io_tree *tree;
 539	struct extent_map_tree *em_tree;
 540	struct compressed_bio *cb;
 
 
 541	unsigned long compressed_len;
 542	unsigned long nr_pages;
 543	unsigned long pg_index;
 544	struct page *page;
 545	struct block_device *bdev;
 546	struct bio *comp_bio;
 547	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 548	u64 em_len;
 549	u64 em_start;
 550	struct extent_map *em;
 551	blk_status_t ret = BLK_STS_RESOURCE;
 552	int faili = 0;
 553	u32 *sums;
 554
 555	tree = &BTRFS_I(inode)->io_tree;
 556	em_tree = &BTRFS_I(inode)->extent_tree;
 557
 558	/* we need the actual starting offset of this extent in the file */
 559	read_lock(&em_tree->lock);
 560	em = lookup_extent_mapping(em_tree,
 561				   page_offset(bio_first_page_all(bio)),
 562				   PAGE_SIZE);
 563	read_unlock(&em_tree->lock);
 564	if (!em)
 565		return BLK_STS_IOERR;
 566
 567	compressed_len = em->block_len;
 568	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 569	if (!cb)
 570		goto out;
 571
 572	refcount_set(&cb->pending_bios, 0);
 573	cb->errors = 0;
 574	cb->inode = inode;
 575	cb->mirror_num = mirror_num;
 576	sums = &cb->sums;
 577
 578	cb->start = em->orig_start;
 579	em_len = em->len;
 580	em_start = em->start;
 581
 582	free_extent_map(em);
 583	em = NULL;
 584
 585	cb->len = bio->bi_iter.bi_size;
 586	cb->compressed_len = compressed_len;
 587	cb->compress_type = extent_compress_type(bio_flags);
 588	cb->orig_bio = bio;
 589
 590	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 591	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 
 592				       GFP_NOFS);
 593	if (!cb->compressed_pages)
 594		goto fail1;
 595
 596	bdev = fs_info->fs_devices->latest_bdev;
 597
 598	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 599		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 600							      __GFP_HIGHMEM);
 601		if (!cb->compressed_pages[pg_index]) {
 602			faili = pg_index - 1;
 603			ret = BLK_STS_RESOURCE;
 604			goto fail2;
 605		}
 606	}
 607	faili = nr_pages - 1;
 608	cb->nr_pages = nr_pages;
 609
 610	add_ra_bio_pages(inode, em_start + em_len, cb);
 
 
 
 
 611
 612	/* include any pages we added in add_ra-bio_pages */
 613	cb->len = bio->bi_iter.bi_size;
 
 614
 615	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 616	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 
 617	comp_bio->bi_private = cb;
 618	comp_bio->bi_end_io = end_compressed_bio_read;
 619	refcount_set(&cb->pending_bios, 1);
 620
 621	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 622		int submit = 0;
 623
 624		page = cb->compressed_pages[pg_index];
 625		page->mapping = inode->i_mapping;
 626		page->index = em_start >> PAGE_SHIFT;
 627
 628		if (comp_bio->bi_iter.bi_size)
 629			submit = tree->ops->merge_bio_hook(page, 0,
 630							PAGE_SIZE,
 631							comp_bio, 0);
 
 
 632
 633		page->mapping = NULL;
 634		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 635		    PAGE_SIZE) {
 636			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 637						  BTRFS_WQ_ENDIO_DATA);
 
 638			BUG_ON(ret); /* -ENOMEM */
 639
 640			/*
 641			 * inc the count before we submit the bio so
 642			 * we know the end IO handler won't happen before
 643			 * we inc the count.  Otherwise, the cb might get
 644			 * freed before we're done setting it up
 645			 */
 646			refcount_inc(&cb->pending_bios);
 647
 648			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 649				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 650							    sums);
 651				BUG_ON(ret); /* -ENOMEM */
 652			}
 653			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 654					     fs_info->sectorsize);
 655
 656			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 657			if (ret) {
 658				comp_bio->bi_status = ret;
 659				bio_endio(comp_bio);
 660			}
 661
 662			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 663			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 
 
 
 
 
 
 
 
 664			comp_bio->bi_private = cb;
 665			comp_bio->bi_end_io = end_compressed_bio_read;
 666
 667			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 668		}
 669		cur_disk_byte += PAGE_SIZE;
 670	}
 
 671
 672	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 673	BUG_ON(ret); /* -ENOMEM */
 674
 675	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 676		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 677		BUG_ON(ret); /* -ENOMEM */
 678	}
 679
 680	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 681	if (ret) {
 682		comp_bio->bi_status = ret;
 683		bio_endio(comp_bio);
 684	}
 685
 
 686	return 0;
 687
 688fail2:
 689	while (faili >= 0) {
 690		__free_page(cb->compressed_pages[faili]);
 691		faili--;
 692	}
 693
 694	kfree(cb->compressed_pages);
 695fail1:
 696	kfree(cb);
 697out:
 698	free_extent_map(em);
 699	return ret;
 700}
 701
 702/*
 703 * Heuristic uses systematic sampling to collect data from the input data
 704 * range, the logic can be tuned by the following constants:
 705 *
 706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 707 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 708 */
 709#define SAMPLING_READ_SIZE	(16)
 710#define SAMPLING_INTERVAL	(256)
 711
 712/*
 713 * For statistical analysis of the input data we consider bytes that form a
 714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 715 * many times the object appeared in the sample.
 716 */
 717#define BUCKET_SIZE		(256)
 718
 719/*
 720 * The size of the sample is based on a statistical sampling rule of thumb.
 721 * The common way is to perform sampling tests as long as the number of
 722 * elements in each cell is at least 5.
 723 *
 724 * Instead of 5, we choose 32 to obtain more accurate results.
 725 * If the data contain the maximum number of symbols, which is 256, we obtain a
 726 * sample size bound by 8192.
 727 *
 728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 729 * from up to 512 locations.
 730 */
 731#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 732				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 733
 734struct bucket_item {
 735	u32 count;
 736};
 737
 738struct heuristic_ws {
 739	/* Partial copy of input data */
 740	u8 *sample;
 741	u32 sample_size;
 742	/* Buckets store counters for each byte value */
 743	struct bucket_item *bucket;
 744	/* Sorting buffer */
 745	struct bucket_item *bucket_b;
 746	struct list_head list;
 747};
 748
 749static void free_heuristic_ws(struct list_head *ws)
 750{
 751	struct heuristic_ws *workspace;
 752
 753	workspace = list_entry(ws, struct heuristic_ws, list);
 754
 755	kvfree(workspace->sample);
 756	kfree(workspace->bucket);
 757	kfree(workspace->bucket_b);
 758	kfree(workspace);
 759}
 760
 761static struct list_head *alloc_heuristic_ws(void)
 762{
 763	struct heuristic_ws *ws;
 764
 765	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 766	if (!ws)
 767		return ERR_PTR(-ENOMEM);
 768
 769	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 770	if (!ws->sample)
 771		goto fail;
 772
 773	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 774	if (!ws->bucket)
 775		goto fail;
 776
 777	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 778	if (!ws->bucket_b)
 779		goto fail;
 780
 781	INIT_LIST_HEAD(&ws->list);
 782	return &ws->list;
 783fail:
 784	free_heuristic_ws(&ws->list);
 785	return ERR_PTR(-ENOMEM);
 786}
 787
 788struct workspaces_list {
 789	struct list_head idle_ws;
 790	spinlock_t ws_lock;
 791	/* Number of free workspaces */
 792	int free_ws;
 793	/* Total number of allocated workspaces */
 794	atomic_t total_ws;
 795	/* Waiters for a free workspace */
 796	wait_queue_head_t ws_wait;
 797};
 798
 799static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 800
 801static struct workspaces_list btrfs_heuristic_ws;
 802
 803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 804	&btrfs_zlib_compress,
 805	&btrfs_lzo_compress,
 806	&btrfs_zstd_compress,
 807};
 808
 809void __init btrfs_init_compress(void)
 810{
 811	struct list_head *workspace;
 812	int i;
 813
 814	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
 815	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
 816	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
 817	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
 818
 819	workspace = alloc_heuristic_ws();
 820	if (IS_ERR(workspace)) {
 821		pr_warn(
 822	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
 823	} else {
 824		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
 825		btrfs_heuristic_ws.free_ws = 1;
 826		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
 827	}
 828
 829	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 830		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 831		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 832		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 833		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 834
 835		/*
 836		 * Preallocate one workspace for each compression type so
 837		 * we can guarantee forward progress in the worst case
 838		 */
 839		workspace = btrfs_compress_op[i]->alloc_workspace();
 840		if (IS_ERR(workspace)) {
 841			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 842		} else {
 843			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 844			btrfs_comp_ws[i].free_ws = 1;
 845			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 846		}
 847	}
 848}
 849
 850/*
 851 * This finds an available workspace or allocates a new one.
 852 * If it's not possible to allocate a new one, waits until there's one.
 853 * Preallocation makes a forward progress guarantees and we do not return
 854 * errors.
 855 */
 856static struct list_head *__find_workspace(int type, bool heuristic)
 857{
 858	struct list_head *workspace;
 859	int cpus = num_online_cpus();
 860	int idx = type - 1;
 861	unsigned nofs_flag;
 862	struct list_head *idle_ws;
 863	spinlock_t *ws_lock;
 864	atomic_t *total_ws;
 865	wait_queue_head_t *ws_wait;
 866	int *free_ws;
 867
 868	if (heuristic) {
 869		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 870		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 871		total_ws = &btrfs_heuristic_ws.total_ws;
 872		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 873		free_ws	 = &btrfs_heuristic_ws.free_ws;
 874	} else {
 875		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 876		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 877		total_ws = &btrfs_comp_ws[idx].total_ws;
 878		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 879		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 880	}
 881
 
 
 
 
 
 882again:
 883	spin_lock(ws_lock);
 884	if (!list_empty(idle_ws)) {
 885		workspace = idle_ws->next;
 886		list_del(workspace);
 887		(*free_ws)--;
 888		spin_unlock(ws_lock);
 889		return workspace;
 890
 891	}
 892	if (atomic_read(total_ws) > cpus) {
 893		DEFINE_WAIT(wait);
 894
 895		spin_unlock(ws_lock);
 896		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 897		if (atomic_read(total_ws) > cpus && !*free_ws)
 898			schedule();
 899		finish_wait(ws_wait, &wait);
 900		goto again;
 901	}
 902	atomic_inc(total_ws);
 903	spin_unlock(ws_lock);
 904
 905	/*
 906	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 907	 * to turn it off here because we might get called from the restricted
 908	 * context of btrfs_compress_bio/btrfs_compress_pages
 909	 */
 910	nofs_flag = memalloc_nofs_save();
 911	if (heuristic)
 912		workspace = alloc_heuristic_ws();
 913	else
 914		workspace = btrfs_compress_op[idx]->alloc_workspace();
 915	memalloc_nofs_restore(nofs_flag);
 916
 
 917	if (IS_ERR(workspace)) {
 918		atomic_dec(total_ws);
 919		wake_up(ws_wait);
 920
 921		/*
 922		 * Do not return the error but go back to waiting. There's a
 923		 * workspace preallocated for each type and the compression
 924		 * time is bounded so we get to a workspace eventually. This
 925		 * makes our caller's life easier.
 926		 *
 927		 * To prevent silent and low-probability deadlocks (when the
 928		 * initial preallocation fails), check if there are any
 929		 * workspaces at all.
 930		 */
 931		if (atomic_read(total_ws) == 0) {
 932			static DEFINE_RATELIMIT_STATE(_rs,
 933					/* once per minute */ 60 * HZ,
 934					/* no burst */ 1);
 935
 936			if (__ratelimit(&_rs)) {
 937				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 938			}
 939		}
 940		goto again;
 941	}
 942	return workspace;
 943}
 944
 945static struct list_head *find_workspace(int type)
 946{
 947	return __find_workspace(type, false);
 948}
 949
 950/*
 951 * put a workspace struct back on the list or free it if we have enough
 952 * idle ones sitting around
 953 */
 954static void __free_workspace(int type, struct list_head *workspace,
 955			     bool heuristic)
 956{
 957	int idx = type - 1;
 958	struct list_head *idle_ws;
 959	spinlock_t *ws_lock;
 960	atomic_t *total_ws;
 961	wait_queue_head_t *ws_wait;
 962	int *free_ws;
 963
 964	if (heuristic) {
 965		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 966		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 967		total_ws = &btrfs_heuristic_ws.total_ws;
 968		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 969		free_ws	 = &btrfs_heuristic_ws.free_ws;
 970	} else {
 971		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 972		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 973		total_ws = &btrfs_comp_ws[idx].total_ws;
 974		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 975		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 976	}
 977
 978	spin_lock(ws_lock);
 979	if (*free_ws <= num_online_cpus()) {
 980		list_add(workspace, idle_ws);
 981		(*free_ws)++;
 982		spin_unlock(ws_lock);
 983		goto wake;
 984	}
 985	spin_unlock(ws_lock);
 986
 987	if (heuristic)
 988		free_heuristic_ws(workspace);
 989	else
 990		btrfs_compress_op[idx]->free_workspace(workspace);
 991	atomic_dec(total_ws);
 992wake:
 993	/*
 994	 * Make sure counter is updated before we wake up waiters.
 995	 */
 996	smp_mb();
 997	if (waitqueue_active(ws_wait))
 998		wake_up(ws_wait);
 999}
1000
1001static void free_workspace(int type, struct list_head *ws)
1002{
1003	return __free_workspace(type, ws, false);
1004}
1005
1006/*
1007 * cleanup function for module exit
1008 */
1009static void free_workspaces(void)
1010{
1011	struct list_head *workspace;
1012	int i;
1013
1014	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015		workspace = btrfs_heuristic_ws.idle_ws.next;
1016		list_del(workspace);
1017		free_heuristic_ws(workspace);
1018		atomic_dec(&btrfs_heuristic_ws.total_ws);
1019	}
1020
1021	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1022		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023			workspace = btrfs_comp_ws[i].idle_ws.next;
1024			list_del(workspace);
1025			btrfs_compress_op[i]->free_workspace(workspace);
1026			atomic_dec(&btrfs_comp_ws[i].total_ws);
1027		}
1028	}
1029}
1030
1031/*
1032 * Given an address space and start and length, compress the bytes into @pages
1033 * that are allocated on demand.
1034 *
1035 * @type_level is encoded algorithm and level, where level 0 means whatever
1036 * default the algorithm chooses and is opaque here;
1037 * - compression algo are 0-3
1038 * - the level are bits 4-7
1039 *
1040 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041 * and returns number of actually allocated pages
1042 *
1043 * @total_in is used to return the number of bytes actually read.  It
1044 * may be smaller than the input length if we had to exit early because we
1045 * ran out of room in the pages array or because we cross the
1046 * max_out threshold.
1047 *
1048 * @total_out is an in/out parameter, must be set to the input length and will
1049 * be also used to return the total number of compressed bytes
1050 *
1051 * @max_out tells us the max number of bytes that we're allowed to
1052 * stuff into pages
1053 */
1054int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1055			 u64 start, struct page **pages,
 
 
1056			 unsigned long *out_pages,
1057			 unsigned long *total_in,
1058			 unsigned long *total_out)
 
1059{
1060	struct list_head *workspace;
1061	int ret;
1062	int type = type_level & 0xF;
1063
1064	workspace = find_workspace(type);
 
 
1065
1066	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1067	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1068						      start, pages,
1069						      out_pages,
1070						      total_in, total_out);
 
1071	free_workspace(type, workspace);
1072	return ret;
1073}
1074
1075/*
1076 * pages_in is an array of pages with compressed data.
1077 *
1078 * disk_start is the starting logical offset of this array in the file
1079 *
1080 * orig_bio contains the pages from the file that we want to decompress into
 
 
1081 *
1082 * srclen is the number of bytes in pages_in
1083 *
1084 * The basic idea is that we have a bio that was created by readpages.
1085 * The pages in the bio are for the uncompressed data, and they may not
1086 * be contiguous.  They all correspond to the range of bytes covered by
1087 * the compressed extent.
1088 */
1089static int btrfs_decompress_bio(struct compressed_bio *cb)
 
 
1090{
1091	struct list_head *workspace;
1092	int ret;
1093	int type = cb->compress_type;
1094
1095	workspace = find_workspace(type);
1096	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1097	free_workspace(type, workspace);
1098
 
 
 
 
1099	return ret;
1100}
1101
1102/*
1103 * a less complex decompression routine.  Our compressed data fits in a
1104 * single page, and we want to read a single page out of it.
1105 * start_byte tells us the offset into the compressed data we're interested in
1106 */
1107int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108		     unsigned long start_byte, size_t srclen, size_t destlen)
1109{
1110	struct list_head *workspace;
1111	int ret;
1112
1113	workspace = find_workspace(type);
 
 
1114
1115	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116						  dest_page, start_byte,
1117						  srclen, destlen);
1118
1119	free_workspace(type, workspace);
1120	return ret;
1121}
1122
1123void __cold btrfs_exit_compress(void)
1124{
1125	free_workspaces();
1126}
1127
1128/*
1129 * Copy uncompressed data from working buffer to pages.
1130 *
1131 * buf_start is the byte offset we're of the start of our workspace buffer.
1132 *
1133 * total_out is the last byte of the buffer
1134 */
1135int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1136			      unsigned long total_out, u64 disk_start,
1137			      struct bio *bio)
 
 
1138{
1139	unsigned long buf_offset;
1140	unsigned long current_buf_start;
1141	unsigned long start_byte;
1142	unsigned long prev_start_byte;
1143	unsigned long working_bytes = total_out - buf_start;
1144	unsigned long bytes;
1145	char *kaddr;
1146	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1147
1148	/*
1149	 * start byte is the first byte of the page we're currently
1150	 * copying into relative to the start of the compressed data.
1151	 */
1152	start_byte = page_offset(bvec.bv_page) - disk_start;
1153
1154	/* we haven't yet hit data corresponding to this page */
1155	if (total_out <= start_byte)
1156		return 1;
1157
1158	/*
1159	 * the start of the data we care about is offset into
1160	 * the middle of our working buffer
1161	 */
1162	if (total_out > start_byte && buf_start < start_byte) {
1163		buf_offset = start_byte - buf_start;
1164		working_bytes -= buf_offset;
1165	} else {
1166		buf_offset = 0;
1167	}
1168	current_buf_start = buf_start;
1169
1170	/* copy bytes from the working buffer into the pages */
1171	while (working_bytes > 0) {
1172		bytes = min_t(unsigned long, bvec.bv_len,
1173				PAGE_SIZE - buf_offset);
1174		bytes = min(bytes, working_bytes);
1175
1176		kaddr = kmap_atomic(bvec.bv_page);
1177		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
 
1178		kunmap_atomic(kaddr);
1179		flush_dcache_page(bvec.bv_page);
1180
 
1181		buf_offset += bytes;
1182		working_bytes -= bytes;
1183		current_buf_start += bytes;
1184
1185		/* check if we need to pick another page */
1186		bio_advance(bio, bytes);
1187		if (!bio->bi_iter.bi_size)
1188			return 0;
1189		bvec = bio_iter_iovec(bio, bio->bi_iter);
1190		prev_start_byte = start_byte;
1191		start_byte = page_offset(bvec.bv_page) - disk_start;
 
 
1192
1193		/*
1194		 * We need to make sure we're only adjusting
1195		 * our offset into compression working buffer when
1196		 * we're switching pages.  Otherwise we can incorrectly
1197		 * keep copying when we were actually done.
1198		 */
1199		if (start_byte != prev_start_byte) {
1200			/*
1201			 * make sure our new page is covered by this
1202			 * working buffer
1203			 */
1204			if (total_out <= start_byte)
1205				return 1;
1206
1207			/*
1208			 * the next page in the biovec might not be adjacent
1209			 * to the last page, but it might still be found
1210			 * inside this working buffer. bump our offset pointer
1211			 */
1212			if (total_out > start_byte &&
1213			    current_buf_start < start_byte) {
1214				buf_offset = start_byte - buf_start;
1215				working_bytes = total_out - start_byte;
1216				current_buf_start = buf_start + buf_offset;
1217			}
1218		}
1219	}
1220
1221	return 1;
1222}
1223
1224/*
1225 * Shannon Entropy calculation
1226 *
1227 * Pure byte distribution analysis fails to determine compressiability of data.
1228 * Try calculating entropy to estimate the average minimum number of bits
1229 * needed to encode the sampled data.
1230 *
1231 * For convenience, return the percentage of needed bits, instead of amount of
1232 * bits directly.
1233 *
1234 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235 *			    and can be compressible with high probability
1236 *
1237 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238 *
1239 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240 */
1241#define ENTROPY_LVL_ACEPTABLE		(65)
1242#define ENTROPY_LVL_HIGH		(80)
1243
1244/*
1245 * For increasead precision in shannon_entropy calculation,
1246 * let's do pow(n, M) to save more digits after comma:
1247 *
1248 * - maximum int bit length is 64
1249 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1250 * - 13 * 4 = 52 < 64		-> M = 4
1251 *
1252 * So use pow(n, 4).
1253 */
1254static inline u32 ilog2_w(u64 n)
1255{
1256	return ilog2(n * n * n * n);
1257}
1258
1259static u32 shannon_entropy(struct heuristic_ws *ws)
1260{
1261	const u32 entropy_max = 8 * ilog2_w(2);
1262	u32 entropy_sum = 0;
1263	u32 p, p_base, sz_base;
1264	u32 i;
1265
1266	sz_base = ilog2_w(ws->sample_size);
1267	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268		p = ws->bucket[i].count;
1269		p_base = ilog2_w(p);
1270		entropy_sum += p * (sz_base - p_base);
1271	}
1272
1273	entropy_sum /= ws->sample_size;
1274	return entropy_sum * 100 / entropy_max;
1275}
1276
1277#define RADIX_BASE		4U
1278#define COUNTERS_SIZE		(1U << RADIX_BASE)
1279
1280static u8 get4bits(u64 num, int shift) {
1281	u8 low4bits;
1282
1283	num >>= shift;
1284	/* Reverse order */
1285	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286	return low4bits;
1287}
1288
1289/*
1290 * Use 4 bits as radix base
1291 * Use 16 u32 counters for calculating new possition in buf array
1292 *
1293 * @array     - array that will be sorted
1294 * @array_buf - buffer array to store sorting results
1295 *              must be equal in size to @array
1296 * @num       - array size
1297 */
1298static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1299		       int num)
1300{
1301	u64 max_num;
1302	u64 buf_num;
1303	u32 counters[COUNTERS_SIZE];
1304	u32 new_addr;
1305	u32 addr;
1306	int bitlen;
1307	int shift;
1308	int i;
1309
1310	/*
1311	 * Try avoid useless loop iterations for small numbers stored in big
1312	 * counters.  Example: 48 33 4 ... in 64bit array
1313	 */
1314	max_num = array[0].count;
1315	for (i = 1; i < num; i++) {
1316		buf_num = array[i].count;
1317		if (buf_num > max_num)
1318			max_num = buf_num;
1319	}
1320
1321	buf_num = ilog2(max_num);
1322	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323
1324	shift = 0;
1325	while (shift < bitlen) {
1326		memset(counters, 0, sizeof(counters));
1327
1328		for (i = 0; i < num; i++) {
1329			buf_num = array[i].count;
1330			addr = get4bits(buf_num, shift);
1331			counters[addr]++;
1332		}
1333
1334		for (i = 1; i < COUNTERS_SIZE; i++)
1335			counters[i] += counters[i - 1];
1336
1337		for (i = num - 1; i >= 0; i--) {
1338			buf_num = array[i].count;
1339			addr = get4bits(buf_num, shift);
1340			counters[addr]--;
1341			new_addr = counters[addr];
1342			array_buf[new_addr] = array[i];
1343		}
1344
1345		shift += RADIX_BASE;
1346
1347		/*
1348		 * Normal radix expects to move data from a temporary array, to
1349		 * the main one.  But that requires some CPU time. Avoid that
1350		 * by doing another sort iteration to original array instead of
1351		 * memcpy()
1352		 */
1353		memset(counters, 0, sizeof(counters));
1354
1355		for (i = 0; i < num; i ++) {
1356			buf_num = array_buf[i].count;
1357			addr = get4bits(buf_num, shift);
1358			counters[addr]++;
1359		}
1360
1361		for (i = 1; i < COUNTERS_SIZE; i++)
1362			counters[i] += counters[i - 1];
1363
1364		for (i = num - 1; i >= 0; i--) {
1365			buf_num = array_buf[i].count;
1366			addr = get4bits(buf_num, shift);
1367			counters[addr]--;
1368			new_addr = counters[addr];
1369			array[new_addr] = array_buf[i];
1370		}
1371
1372		shift += RADIX_BASE;
1373	}
1374}
1375
1376/*
1377 * Size of the core byte set - how many bytes cover 90% of the sample
1378 *
1379 * There are several types of structured binary data that use nearly all byte
1380 * values. The distribution can be uniform and counts in all buckets will be
1381 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382 *
1383 * Other possibility is normal (Gaussian) distribution, where the data could
1384 * be potentially compressible, but we have to take a few more steps to decide
1385 * how much.
1386 *
1387 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1388 *                       compression algo can easy fix that
1389 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390 *                       probability is not compressible
1391 */
1392#define BYTE_CORE_SET_LOW		(64)
1393#define BYTE_CORE_SET_HIGH		(200)
1394
1395static int byte_core_set_size(struct heuristic_ws *ws)
1396{
1397	u32 i;
1398	u32 coreset_sum = 0;
1399	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400	struct bucket_item *bucket = ws->bucket;
1401
1402	/* Sort in reverse order */
1403	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1404
1405	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406		coreset_sum += bucket[i].count;
1407
1408	if (coreset_sum > core_set_threshold)
1409		return i;
1410
1411	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412		coreset_sum += bucket[i].count;
1413		if (coreset_sum > core_set_threshold)
1414			break;
1415	}
1416
1417	return i;
1418}
1419
1420/*
1421 * Count byte values in buckets.
1422 * This heuristic can detect textual data (configs, xml, json, html, etc).
1423 * Because in most text-like data byte set is restricted to limited number of
1424 * possible characters, and that restriction in most cases makes data easy to
1425 * compress.
1426 *
1427 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428 *	less - compressible
1429 *	more - need additional analysis
1430 */
1431#define BYTE_SET_THRESHOLD		(64)
1432
1433static u32 byte_set_size(const struct heuristic_ws *ws)
1434{
1435	u32 i;
1436	u32 byte_set_size = 0;
1437
1438	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439		if (ws->bucket[i].count > 0)
1440			byte_set_size++;
1441	}
1442
1443	/*
1444	 * Continue collecting count of byte values in buckets.  If the byte
1445	 * set size is bigger then the threshold, it's pointless to continue,
1446	 * the detection technique would fail for this type of data.
1447	 */
1448	for (; i < BUCKET_SIZE; i++) {
1449		if (ws->bucket[i].count > 0) {
1450			byte_set_size++;
1451			if (byte_set_size > BYTE_SET_THRESHOLD)
1452				return byte_set_size;
1453		}
1454	}
1455
1456	return byte_set_size;
1457}
1458
1459static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460{
1461	const u32 half_of_sample = ws->sample_size / 2;
1462	const u8 *data = ws->sample;
1463
1464	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465}
1466
1467static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468				     struct heuristic_ws *ws)
1469{
1470	struct page *page;
1471	u64 index, index_end;
1472	u32 i, curr_sample_pos;
1473	u8 *in_data;
1474
1475	/*
1476	 * Compression handles the input data by chunks of 128KiB
1477	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478	 *
1479	 * We do the same for the heuristic and loop over the whole range.
1480	 *
1481	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483	 */
1484	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485		end = start + BTRFS_MAX_UNCOMPRESSED;
1486
1487	index = start >> PAGE_SHIFT;
1488	index_end = end >> PAGE_SHIFT;
1489
1490	/* Don't miss unaligned end */
1491	if (!IS_ALIGNED(end, PAGE_SIZE))
1492		index_end++;
1493
1494	curr_sample_pos = 0;
1495	while (index < index_end) {
1496		page = find_get_page(inode->i_mapping, index);
1497		in_data = kmap(page);
1498		/* Handle case where the start is not aligned to PAGE_SIZE */
1499		i = start % PAGE_SIZE;
1500		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501			/* Don't sample any garbage from the last page */
1502			if (start > end - SAMPLING_READ_SIZE)
1503				break;
1504			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505					SAMPLING_READ_SIZE);
1506			i += SAMPLING_INTERVAL;
1507			start += SAMPLING_INTERVAL;
1508			curr_sample_pos += SAMPLING_READ_SIZE;
1509		}
1510		kunmap(page);
1511		put_page(page);
1512
1513		index++;
1514	}
1515
1516	ws->sample_size = curr_sample_pos;
1517}
1518
1519/*
1520 * Compression heuristic.
1521 *
1522 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523 * quickly (compared to direct compression) detect data characteristics
1524 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525 * data.
1526 *
1527 * The following types of analysis can be performed:
1528 * - detect mostly zero data
1529 * - detect data with low "byte set" size (text, etc)
1530 * - detect data with low/high "core byte" set
1531 *
1532 * Return non-zero if the compression should be done, 0 otherwise.
1533 */
1534int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535{
1536	struct list_head *ws_list = __find_workspace(0, true);
1537	struct heuristic_ws *ws;
1538	u32 i;
1539	u8 byte;
1540	int ret = 0;
1541
1542	ws = list_entry(ws_list, struct heuristic_ws, list);
1543
1544	heuristic_collect_sample(inode, start, end, ws);
1545
1546	if (sample_repeated_patterns(ws)) {
1547		ret = 1;
1548		goto out;
1549	}
1550
1551	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552
1553	for (i = 0; i < ws->sample_size; i++) {
1554		byte = ws->sample[i];
1555		ws->bucket[byte].count++;
1556	}
1557
1558	i = byte_set_size(ws);
1559	if (i < BYTE_SET_THRESHOLD) {
1560		ret = 2;
1561		goto out;
1562	}
1563
1564	i = byte_core_set_size(ws);
1565	if (i <= BYTE_CORE_SET_LOW) {
1566		ret = 3;
1567		goto out;
1568	}
1569
1570	if (i >= BYTE_CORE_SET_HIGH) {
1571		ret = 0;
1572		goto out;
1573	}
1574
1575	i = shannon_entropy(ws);
1576	if (i <= ENTROPY_LVL_ACEPTABLE) {
1577		ret = 4;
1578		goto out;
1579	}
1580
1581	/*
1582	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583	 * needed to give green light to compression.
1584	 *
1585	 * For now just assume that compression at that level is not worth the
1586	 * resources because:
1587	 *
1588	 * 1. it is possible to defrag the data later
1589	 *
1590	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591	 * values, every bucket has counter at level ~54. The heuristic would
1592	 * be confused. This can happen when data have some internal repeated
1593	 * patterns like "abbacbbc...". This can be detected by analyzing
1594	 * pairs of bytes, which is too costly.
1595	 */
1596	if (i < ENTROPY_LVL_HIGH) {
1597		ret = 5;
1598		goto out;
1599	} else {
1600		ret = 0;
1601		goto out;
1602	}
1603
1604out:
1605	__free_workspace(0, ws_list, true);
1606	return ret;
1607}
1608
1609unsigned int btrfs_compress_str2level(const char *str)
1610{
1611	if (strncmp(str, "zlib", 4) != 0)
1612		return 0;
1613
1614	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616		return str[5] - '0';
1617
1618	return BTRFS_ZLIB_DEFAULT_LEVEL;
1619}
v3.15
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
 
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46	/* number of bios pending for this compressed extent */
  47	atomic_t pending_bios;
  48
  49	/* the pages with the compressed data on them */
  50	struct page **compressed_pages;
 
 
 
 
 
 
 
  51
  52	/* inode that owns this data */
  53	struct inode *inode;
  54
  55	/* starting offset in the inode for our pages */
  56	u64 start;
  57
  58	/* number of bytes in the inode we're working on */
  59	unsigned long len;
  60
  61	/* number of bytes on disk */
  62	unsigned long compressed_len;
  63
  64	/* the compression algorithm for this bio */
  65	int compress_type;
  66
  67	/* number of compressed pages in the array */
  68	unsigned long nr_pages;
  69
  70	/* IO errors */
  71	int errors;
  72	int mirror_num;
  73
  74	/* for reads, this is the bio we are copying the data into */
  75	struct bio *orig_bio;
  76
  77	/*
  78	 * the start of a variable length array of checksums only
  79	 * used by reads
  80	 */
  81	u32 sums;
  82};
  83
  84static int btrfs_decompress_biovec(int type, struct page **pages_in,
  85				   u64 disk_start, struct bio_vec *bvec,
  86				   int vcnt, size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_root *root,
  89				      unsigned long disk_size)
  90{
  91	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  92
  93	return sizeof(struct compressed_bio) +
  94		((disk_size + root->sectorsize - 1) / root->sectorsize) *
  95		csum_size;
  96}
  97
  98static struct bio *compressed_bio_alloc(struct block_device *bdev,
  99					u64 first_byte, gfp_t gfp_flags)
 100{
 101	int nr_vecs;
 102
 103	nr_vecs = bio_get_nr_vecs(bdev);
 104	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 105}
 106
 107static int check_compressed_csum(struct inode *inode,
 108				 struct compressed_bio *cb,
 109				 u64 disk_start)
 110{
 111	int ret;
 112	struct page *page;
 113	unsigned long i;
 114	char *kaddr;
 115	u32 csum;
 116	u32 *cb_sum = &cb->sums;
 117
 118	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 119		return 0;
 120
 121	for (i = 0; i < cb->nr_pages; i++) {
 122		page = cb->compressed_pages[i];
 123		csum = ~(u32)0;
 124
 125		kaddr = kmap_atomic(page);
 126		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 127		btrfs_csum_final(csum, (char *)&csum);
 128		kunmap_atomic(kaddr);
 129
 130		if (csum != *cb_sum) {
 131			btrfs_info(BTRFS_I(inode)->root->fs_info,
 132			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 133			   btrfs_ino(inode), disk_start, csum, *cb_sum,
 134			   cb->mirror_num);
 135			ret = -EIO;
 136			goto fail;
 137		}
 138		cb_sum++;
 139
 140	}
 141	ret = 0;
 142fail:
 143	return ret;
 144}
 145
 146/* when we finish reading compressed pages from the disk, we
 147 * decompress them and then run the bio end_io routines on the
 148 * decompressed pages (in the inode address space).
 149 *
 150 * This allows the checksumming and other IO error handling routines
 151 * to work normally
 152 *
 153 * The compressed pages are freed here, and it must be run
 154 * in process context
 155 */
 156static void end_compressed_bio_read(struct bio *bio, int err)
 157{
 158	struct compressed_bio *cb = bio->bi_private;
 159	struct inode *inode;
 160	struct page *page;
 161	unsigned long index;
 162	int ret;
 
 163
 164	if (err)
 165		cb->errors = 1;
 166
 167	/* if there are more bios still pending for this compressed
 168	 * extent, just exit
 169	 */
 170	if (!atomic_dec_and_test(&cb->pending_bios))
 171		goto out;
 172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173	inode = cb->inode;
 174	ret = check_compressed_csum(inode, cb,
 175				    (u64)bio->bi_iter.bi_sector << 9);
 176	if (ret)
 177		goto csum_failed;
 178
 179	/* ok, we're the last bio for this extent, lets start
 180	 * the decompression.
 181	 */
 182	ret = btrfs_decompress_biovec(cb->compress_type,
 183				      cb->compressed_pages,
 184				      cb->start,
 185				      cb->orig_bio->bi_io_vec,
 186				      cb->orig_bio->bi_vcnt,
 187				      cb->compressed_len);
 188csum_failed:
 189	if (ret)
 190		cb->errors = 1;
 191
 192	/* release the compressed pages */
 193	index = 0;
 194	for (index = 0; index < cb->nr_pages; index++) {
 195		page = cb->compressed_pages[index];
 196		page->mapping = NULL;
 197		page_cache_release(page);
 198	}
 199
 200	/* do io completion on the original bio */
 201	if (cb->errors) {
 202		bio_io_error(cb->orig_bio);
 203	} else {
 204		int i;
 205		struct bio_vec *bvec;
 206
 207		/*
 208		 * we have verified the checksum already, set page
 209		 * checked so the end_io handlers know about it
 210		 */
 
 211		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 212			SetPageChecked(bvec->bv_page);
 213
 214		bio_endio(cb->orig_bio, 0);
 215	}
 216
 217	/* finally free the cb struct */
 218	kfree(cb->compressed_pages);
 219	kfree(cb);
 220out:
 221	bio_put(bio);
 222}
 223
 224/*
 225 * Clear the writeback bits on all of the file
 226 * pages for a compressed write
 227 */
 228static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 229					      unsigned long ram_size)
 230{
 231	unsigned long index = start >> PAGE_CACHE_SHIFT;
 232	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 233	struct page *pages[16];
 234	unsigned long nr_pages = end_index - index + 1;
 235	int i;
 236	int ret;
 237
 
 
 
 238	while (nr_pages > 0) {
 239		ret = find_get_pages_contig(inode->i_mapping, index,
 240				     min_t(unsigned long,
 241				     nr_pages, ARRAY_SIZE(pages)), pages);
 242		if (ret == 0) {
 243			nr_pages -= 1;
 244			index += 1;
 245			continue;
 246		}
 247		for (i = 0; i < ret; i++) {
 
 
 248			end_page_writeback(pages[i]);
 249			page_cache_release(pages[i]);
 250		}
 251		nr_pages -= ret;
 252		index += ret;
 253	}
 254	/* the inode may be gone now */
 255}
 256
 257/*
 258 * do the cleanup once all the compressed pages hit the disk.
 259 * This will clear writeback on the file pages and free the compressed
 260 * pages.
 261 *
 262 * This also calls the writeback end hooks for the file pages so that
 263 * metadata and checksums can be updated in the file.
 264 */
 265static void end_compressed_bio_write(struct bio *bio, int err)
 266{
 267	struct extent_io_tree *tree;
 268	struct compressed_bio *cb = bio->bi_private;
 269	struct inode *inode;
 270	struct page *page;
 271	unsigned long index;
 272
 273	if (err)
 274		cb->errors = 1;
 275
 276	/* if there are more bios still pending for this compressed
 277	 * extent, just exit
 278	 */
 279	if (!atomic_dec_and_test(&cb->pending_bios))
 280		goto out;
 281
 282	/* ok, we're the last bio for this extent, step one is to
 283	 * call back into the FS and do all the end_io operations
 284	 */
 285	inode = cb->inode;
 286	tree = &BTRFS_I(inode)->io_tree;
 287	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 288	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 289					 cb->start,
 290					 cb->start + cb->len - 1,
 291					 NULL, 1);
 
 
 292	cb->compressed_pages[0]->mapping = NULL;
 293
 294	end_compressed_writeback(inode, cb->start, cb->len);
 295	/* note, our inode could be gone now */
 296
 297	/*
 298	 * release the compressed pages, these came from alloc_page and
 299	 * are not attached to the inode at all
 300	 */
 301	index = 0;
 302	for (index = 0; index < cb->nr_pages; index++) {
 303		page = cb->compressed_pages[index];
 304		page->mapping = NULL;
 305		page_cache_release(page);
 306	}
 307
 308	/* finally free the cb struct */
 309	kfree(cb->compressed_pages);
 310	kfree(cb);
 311out:
 312	bio_put(bio);
 313}
 314
 315/*
 316 * worker function to build and submit bios for previously compressed pages.
 317 * The corresponding pages in the inode should be marked for writeback
 318 * and the compressed pages should have a reference on them for dropping
 319 * when the IO is complete.
 320 *
 321 * This also checksums the file bytes and gets things ready for
 322 * the end io hooks.
 323 */
 324int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 325				 unsigned long len, u64 disk_start,
 326				 unsigned long compressed_len,
 327				 struct page **compressed_pages,
 328				 unsigned long nr_pages)
 
 329{
 
 330	struct bio *bio = NULL;
 331	struct btrfs_root *root = BTRFS_I(inode)->root;
 332	struct compressed_bio *cb;
 333	unsigned long bytes_left;
 334	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 335	int pg_index = 0;
 336	struct page *page;
 337	u64 first_byte = disk_start;
 338	struct block_device *bdev;
 339	int ret;
 340	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 341
 342	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 343	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 344	if (!cb)
 345		return -ENOMEM;
 346	atomic_set(&cb->pending_bios, 0);
 347	cb->errors = 0;
 348	cb->inode = inode;
 349	cb->start = start;
 350	cb->len = len;
 351	cb->mirror_num = 0;
 352	cb->compressed_pages = compressed_pages;
 353	cb->compressed_len = compressed_len;
 354	cb->orig_bio = NULL;
 355	cb->nr_pages = nr_pages;
 356
 357	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 358
 359	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 360	if (!bio) {
 361		kfree(cb);
 362		return -ENOMEM;
 363	}
 364	bio->bi_private = cb;
 365	bio->bi_end_io = end_compressed_bio_write;
 366	atomic_inc(&cb->pending_bios);
 367
 368	/* create and submit bios for the compressed pages */
 369	bytes_left = compressed_len;
 370	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 
 
 371		page = compressed_pages[pg_index];
 372		page->mapping = inode->i_mapping;
 373		if (bio->bi_iter.bi_size)
 374			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 375							   PAGE_CACHE_SIZE,
 376							   bio, 0);
 377		else
 378			ret = 0;
 379
 380		page->mapping = NULL;
 381		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 382		    PAGE_CACHE_SIZE) {
 383			bio_get(bio);
 384
 385			/*
 386			 * inc the count before we submit the bio so
 387			 * we know the end IO handler won't happen before
 388			 * we inc the count.  Otherwise, the cb might get
 389			 * freed before we're done setting it up
 390			 */
 391			atomic_inc(&cb->pending_bios);
 392			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 
 393			BUG_ON(ret); /* -ENOMEM */
 394
 395			if (!skip_sum) {
 396				ret = btrfs_csum_one_bio(root, inode, bio,
 397							 start, 1);
 398				BUG_ON(ret); /* -ENOMEM */
 399			}
 400
 401			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 402			BUG_ON(ret); /* -ENOMEM */
 403
 404			bio_put(bio);
 
 405
 406			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 407			BUG_ON(!bio);
 408			bio->bi_private = cb;
 409			bio->bi_end_io = end_compressed_bio_write;
 410			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 411		}
 412		if (bytes_left < PAGE_CACHE_SIZE) {
 413			btrfs_info(BTRFS_I(inode)->root->fs_info,
 414					"bytes left %lu compress len %lu nr %lu",
 415			       bytes_left, cb->compressed_len, cb->nr_pages);
 416		}
 417		bytes_left -= PAGE_CACHE_SIZE;
 418		first_byte += PAGE_CACHE_SIZE;
 419		cond_resched();
 420	}
 421	bio_get(bio);
 422
 423	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 424	BUG_ON(ret); /* -ENOMEM */
 425
 426	if (!skip_sum) {
 427		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 428		BUG_ON(ret); /* -ENOMEM */
 429	}
 430
 431	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 432	BUG_ON(ret); /* -ENOMEM */
 
 
 
 433
 434	bio_put(bio);
 435	return 0;
 436}
 437
 
 
 
 
 
 
 
 438static noinline int add_ra_bio_pages(struct inode *inode,
 439				     u64 compressed_end,
 440				     struct compressed_bio *cb)
 441{
 442	unsigned long end_index;
 443	unsigned long pg_index;
 444	u64 last_offset;
 445	u64 isize = i_size_read(inode);
 446	int ret;
 447	struct page *page;
 448	unsigned long nr_pages = 0;
 449	struct extent_map *em;
 450	struct address_space *mapping = inode->i_mapping;
 451	struct extent_map_tree *em_tree;
 452	struct extent_io_tree *tree;
 453	u64 end;
 454	int misses = 0;
 455
 456	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 457	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 458	em_tree = &BTRFS_I(inode)->extent_tree;
 459	tree = &BTRFS_I(inode)->io_tree;
 460
 461	if (isize == 0)
 462		return 0;
 463
 464	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 465
 466	while (last_offset < compressed_end) {
 467		pg_index = last_offset >> PAGE_CACHE_SHIFT;
 468
 469		if (pg_index > end_index)
 470			break;
 471
 472		rcu_read_lock();
 473		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 474		rcu_read_unlock();
 475		if (page && !radix_tree_exceptional_entry(page)) {
 476			misses++;
 477			if (misses > 4)
 478				break;
 479			goto next;
 480		}
 481
 482		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 483								~__GFP_FS);
 484		if (!page)
 485			break;
 486
 487		if (add_to_page_cache_lru(page, mapping, pg_index,
 488								GFP_NOFS)) {
 489			page_cache_release(page);
 490			goto next;
 491		}
 492
 493		end = last_offset + PAGE_CACHE_SIZE - 1;
 494		/*
 495		 * at this point, we have a locked page in the page cache
 496		 * for these bytes in the file.  But, we have to make
 497		 * sure they map to this compressed extent on disk.
 498		 */
 499		set_page_extent_mapped(page);
 500		lock_extent(tree, last_offset, end);
 501		read_lock(&em_tree->lock);
 502		em = lookup_extent_mapping(em_tree, last_offset,
 503					   PAGE_CACHE_SIZE);
 504		read_unlock(&em_tree->lock);
 505
 506		if (!em || last_offset < em->start ||
 507		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 508		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 509			free_extent_map(em);
 510			unlock_extent(tree, last_offset, end);
 511			unlock_page(page);
 512			page_cache_release(page);
 513			break;
 514		}
 515		free_extent_map(em);
 516
 517		if (page->index == end_index) {
 518			char *userpage;
 519			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 520
 521			if (zero_offset) {
 522				int zeros;
 523				zeros = PAGE_CACHE_SIZE - zero_offset;
 524				userpage = kmap_atomic(page);
 525				memset(userpage + zero_offset, 0, zeros);
 526				flush_dcache_page(page);
 527				kunmap_atomic(userpage);
 528			}
 529		}
 530
 531		ret = bio_add_page(cb->orig_bio, page,
 532				   PAGE_CACHE_SIZE, 0);
 533
 534		if (ret == PAGE_CACHE_SIZE) {
 535			nr_pages++;
 536			page_cache_release(page);
 537		} else {
 538			unlock_extent(tree, last_offset, end);
 539			unlock_page(page);
 540			page_cache_release(page);
 541			break;
 542		}
 543next:
 544		last_offset += PAGE_CACHE_SIZE;
 545	}
 546	return 0;
 547}
 548
 549/*
 550 * for a compressed read, the bio we get passed has all the inode pages
 551 * in it.  We don't actually do IO on those pages but allocate new ones
 552 * to hold the compressed pages on disk.
 553 *
 554 * bio->bi_iter.bi_sector points to the compressed extent on disk
 555 * bio->bi_io_vec points to all of the inode pages
 556 * bio->bi_vcnt is a count of pages
 557 *
 558 * After the compressed pages are read, we copy the bytes into the
 559 * bio we were passed and then call the bio end_io calls
 560 */
 561int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 562				 int mirror_num, unsigned long bio_flags)
 563{
 
 564	struct extent_io_tree *tree;
 565	struct extent_map_tree *em_tree;
 566	struct compressed_bio *cb;
 567	struct btrfs_root *root = BTRFS_I(inode)->root;
 568	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 569	unsigned long compressed_len;
 570	unsigned long nr_pages;
 571	unsigned long pg_index;
 572	struct page *page;
 573	struct block_device *bdev;
 574	struct bio *comp_bio;
 575	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 576	u64 em_len;
 577	u64 em_start;
 578	struct extent_map *em;
 579	int ret = -ENOMEM;
 580	int faili = 0;
 581	u32 *sums;
 582
 583	tree = &BTRFS_I(inode)->io_tree;
 584	em_tree = &BTRFS_I(inode)->extent_tree;
 585
 586	/* we need the actual starting offset of this extent in the file */
 587	read_lock(&em_tree->lock);
 588	em = lookup_extent_mapping(em_tree,
 589				   page_offset(bio->bi_io_vec->bv_page),
 590				   PAGE_CACHE_SIZE);
 591	read_unlock(&em_tree->lock);
 592	if (!em)
 593		return -EIO;
 594
 595	compressed_len = em->block_len;
 596	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 597	if (!cb)
 598		goto out;
 599
 600	atomic_set(&cb->pending_bios, 0);
 601	cb->errors = 0;
 602	cb->inode = inode;
 603	cb->mirror_num = mirror_num;
 604	sums = &cb->sums;
 605
 606	cb->start = em->orig_start;
 607	em_len = em->len;
 608	em_start = em->start;
 609
 610	free_extent_map(em);
 611	em = NULL;
 612
 613	cb->len = uncompressed_len;
 614	cb->compressed_len = compressed_len;
 615	cb->compress_type = extent_compress_type(bio_flags);
 616	cb->orig_bio = bio;
 617
 618	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 619				 PAGE_CACHE_SIZE;
 620	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 621				       GFP_NOFS);
 622	if (!cb->compressed_pages)
 623		goto fail1;
 624
 625	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 626
 627	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 628		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 629							      __GFP_HIGHMEM);
 630		if (!cb->compressed_pages[pg_index]) {
 631			faili = pg_index - 1;
 632			ret = -ENOMEM;
 633			goto fail2;
 634		}
 635	}
 636	faili = nr_pages - 1;
 637	cb->nr_pages = nr_pages;
 638
 639	/* In the parent-locked case, we only locked the range we are
 640	 * interested in.  In all other cases, we can opportunistically
 641	 * cache decompressed data that goes beyond the requested range. */
 642	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
 643		add_ra_bio_pages(inode, em_start + em_len, cb);
 644
 645	/* include any pages we added in add_ra-bio_pages */
 646	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 647	cb->len = uncompressed_len;
 648
 649	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 650	if (!comp_bio)
 651		goto fail2;
 652	comp_bio->bi_private = cb;
 653	comp_bio->bi_end_io = end_compressed_bio_read;
 654	atomic_inc(&cb->pending_bios);
 655
 656	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 
 
 657		page = cb->compressed_pages[pg_index];
 658		page->mapping = inode->i_mapping;
 659		page->index = em_start >> PAGE_CACHE_SHIFT;
 660
 661		if (comp_bio->bi_iter.bi_size)
 662			ret = tree->ops->merge_bio_hook(READ, page, 0,
 663							PAGE_CACHE_SIZE,
 664							comp_bio, 0);
 665		else
 666			ret = 0;
 667
 668		page->mapping = NULL;
 669		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 670		    PAGE_CACHE_SIZE) {
 671			bio_get(comp_bio);
 672
 673			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 674			BUG_ON(ret); /* -ENOMEM */
 675
 676			/*
 677			 * inc the count before we submit the bio so
 678			 * we know the end IO handler won't happen before
 679			 * we inc the count.  Otherwise, the cb might get
 680			 * freed before we're done setting it up
 681			 */
 682			atomic_inc(&cb->pending_bios);
 683
 684			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 685				ret = btrfs_lookup_bio_sums(root, inode,
 686							comp_bio, sums);
 687				BUG_ON(ret); /* -ENOMEM */
 688			}
 689			sums += (comp_bio->bi_iter.bi_size +
 690				 root->sectorsize - 1) / root->sectorsize;
 
 
 
 
 
 
 691
 692			ret = btrfs_map_bio(root, READ, comp_bio,
 693					    mirror_num, 0);
 694			if (ret)
 695				bio_endio(comp_bio, ret);
 696
 697			bio_put(comp_bio);
 698
 699			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 700							GFP_NOFS);
 701			BUG_ON(!comp_bio);
 702			comp_bio->bi_private = cb;
 703			comp_bio->bi_end_io = end_compressed_bio_read;
 704
 705			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 706		}
 707		cur_disk_byte += PAGE_CACHE_SIZE;
 708	}
 709	bio_get(comp_bio);
 710
 711	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 712	BUG_ON(ret); /* -ENOMEM */
 713
 714	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 715		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 716		BUG_ON(ret); /* -ENOMEM */
 717	}
 718
 719	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 720	if (ret)
 721		bio_endio(comp_bio, ret);
 
 
 722
 723	bio_put(comp_bio);
 724	return 0;
 725
 726fail2:
 727	while (faili >= 0) {
 728		__free_page(cb->compressed_pages[faili]);
 729		faili--;
 730	}
 731
 732	kfree(cb->compressed_pages);
 733fail1:
 734	kfree(cb);
 735out:
 736	free_extent_map(em);
 737	return ret;
 738}
 739
 740static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 741static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 742static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 743static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 744static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746static struct btrfs_compress_op *btrfs_compress_op[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	&btrfs_zlib_compress,
 748	&btrfs_lzo_compress,
 
 749};
 750
 751void __init btrfs_init_compress(void)
 752{
 
 753	int i;
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 756		INIT_LIST_HEAD(&comp_idle_workspace[i]);
 757		spin_lock_init(&comp_workspace_lock[i]);
 758		atomic_set(&comp_alloc_workspace[i], 0);
 759		init_waitqueue_head(&comp_workspace_wait[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 760	}
 761}
 762
 763/*
 764 * this finds an available workspace or allocates a new one
 765 * ERR_PTR is returned if things go bad.
 
 
 766 */
 767static struct list_head *find_workspace(int type)
 768{
 769	struct list_head *workspace;
 770	int cpus = num_online_cpus();
 771	int idx = type - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772
 773	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 774	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 775	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 776	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 777	int *num_workspace			= &comp_num_workspace[idx];
 778again:
 779	spin_lock(workspace_lock);
 780	if (!list_empty(idle_workspace)) {
 781		workspace = idle_workspace->next;
 782		list_del(workspace);
 783		(*num_workspace)--;
 784		spin_unlock(workspace_lock);
 785		return workspace;
 786
 787	}
 788	if (atomic_read(alloc_workspace) > cpus) {
 789		DEFINE_WAIT(wait);
 790
 791		spin_unlock(workspace_lock);
 792		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 793		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 794			schedule();
 795		finish_wait(workspace_wait, &wait);
 796		goto again;
 797	}
 798	atomic_inc(alloc_workspace);
 799	spin_unlock(workspace_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	workspace = btrfs_compress_op[idx]->alloc_workspace();
 802	if (IS_ERR(workspace)) {
 803		atomic_dec(alloc_workspace);
 804		wake_up(workspace_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	return workspace;
 807}
 808
 
 
 
 
 
 809/*
 810 * put a workspace struct back on the list or free it if we have enough
 811 * idle ones sitting around
 812 */
 813static void free_workspace(int type, struct list_head *workspace)
 
 814{
 815	int idx = type - 1;
 816	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 817	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 818	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 819	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 820	int *num_workspace			= &comp_num_workspace[idx];
 821
 822	spin_lock(workspace_lock);
 823	if (*num_workspace < num_online_cpus()) {
 824		list_add_tail(workspace, idle_workspace);
 825		(*num_workspace)++;
 826		spin_unlock(workspace_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827		goto wake;
 828	}
 829	spin_unlock(workspace_lock);
 830
 831	btrfs_compress_op[idx]->free_workspace(workspace);
 832	atomic_dec(alloc_workspace);
 
 
 
 833wake:
 
 
 
 834	smp_mb();
 835	if (waitqueue_active(workspace_wait))
 836		wake_up(workspace_wait);
 
 
 
 
 
 837}
 838
 839/*
 840 * cleanup function for module exit
 841 */
 842static void free_workspaces(void)
 843{
 844	struct list_head *workspace;
 845	int i;
 846
 
 
 
 
 
 
 
 847	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 848		while (!list_empty(&comp_idle_workspace[i])) {
 849			workspace = comp_idle_workspace[i].next;
 850			list_del(workspace);
 851			btrfs_compress_op[i]->free_workspace(workspace);
 852			atomic_dec(&comp_alloc_workspace[i]);
 853		}
 854	}
 855}
 856
 857/*
 858 * given an address space and start/len, compress the bytes.
 
 859 *
 860 * pages are allocated to hold the compressed result and stored
 861 * in 'pages'
 
 
 862 *
 863 * out_pages is used to return the number of pages allocated.  There
 864 * may be pages allocated even if we return an error
 865 *
 866 * total_in is used to return the number of bytes actually read.  It
 867 * may be smaller then len if we had to exit early because we
 868 * ran out of room in the pages array or because we cross the
 869 * max_out threshold.
 870 *
 871 * total_out is used to return the total number of compressed bytes
 
 872 *
 873 * max_out tells us the max number of bytes that we're allowed to
 874 * stuff into pages
 875 */
 876int btrfs_compress_pages(int type, struct address_space *mapping,
 877			 u64 start, unsigned long len,
 878			 struct page **pages,
 879			 unsigned long nr_dest_pages,
 880			 unsigned long *out_pages,
 881			 unsigned long *total_in,
 882			 unsigned long *total_out,
 883			 unsigned long max_out)
 884{
 885	struct list_head *workspace;
 886	int ret;
 
 887
 888	workspace = find_workspace(type);
 889	if (IS_ERR(workspace))
 890		return -1;
 891
 
 892	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 893						      start, len, pages,
 894						      nr_dest_pages, out_pages,
 895						      total_in, total_out,
 896						      max_out);
 897	free_workspace(type, workspace);
 898	return ret;
 899}
 900
 901/*
 902 * pages_in is an array of pages with compressed data.
 903 *
 904 * disk_start is the starting logical offset of this array in the file
 905 *
 906 * bvec is a bio_vec of pages from the file that we want to decompress into
 907 *
 908 * vcnt is the count of pages in the biovec
 909 *
 910 * srclen is the number of bytes in pages_in
 911 *
 912 * The basic idea is that we have a bio that was created by readpages.
 913 * The pages in the bio are for the uncompressed data, and they may not
 914 * be contiguous.  They all correspond to the range of bytes covered by
 915 * the compressed extent.
 916 */
 917static int btrfs_decompress_biovec(int type, struct page **pages_in,
 918				   u64 disk_start, struct bio_vec *bvec,
 919				   int vcnt, size_t srclen)
 920{
 921	struct list_head *workspace;
 922	int ret;
 
 923
 924	workspace = find_workspace(type);
 925	if (IS_ERR(workspace))
 926		return -ENOMEM;
 927
 928	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 929							 disk_start,
 930							 bvec, vcnt, srclen);
 931	free_workspace(type, workspace);
 932	return ret;
 933}
 934
 935/*
 936 * a less complex decompression routine.  Our compressed data fits in a
 937 * single page, and we want to read a single page out of it.
 938 * start_byte tells us the offset into the compressed data we're interested in
 939 */
 940int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 941		     unsigned long start_byte, size_t srclen, size_t destlen)
 942{
 943	struct list_head *workspace;
 944	int ret;
 945
 946	workspace = find_workspace(type);
 947	if (IS_ERR(workspace))
 948		return -ENOMEM;
 949
 950	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 951						  dest_page, start_byte,
 952						  srclen, destlen);
 953
 954	free_workspace(type, workspace);
 955	return ret;
 956}
 957
 958void btrfs_exit_compress(void)
 959{
 960	free_workspaces();
 961}
 962
 963/*
 964 * Copy uncompressed data from working buffer to pages.
 965 *
 966 * buf_start is the byte offset we're of the start of our workspace buffer.
 967 *
 968 * total_out is the last byte of the buffer
 969 */
 970int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 971			      unsigned long total_out, u64 disk_start,
 972			      struct bio_vec *bvec, int vcnt,
 973			      unsigned long *pg_index,
 974			      unsigned long *pg_offset)
 975{
 976	unsigned long buf_offset;
 977	unsigned long current_buf_start;
 978	unsigned long start_byte;
 
 979	unsigned long working_bytes = total_out - buf_start;
 980	unsigned long bytes;
 981	char *kaddr;
 982	struct page *page_out = bvec[*pg_index].bv_page;
 983
 984	/*
 985	 * start byte is the first byte of the page we're currently
 986	 * copying into relative to the start of the compressed data.
 987	 */
 988	start_byte = page_offset(page_out) - disk_start;
 989
 990	/* we haven't yet hit data corresponding to this page */
 991	if (total_out <= start_byte)
 992		return 1;
 993
 994	/*
 995	 * the start of the data we care about is offset into
 996	 * the middle of our working buffer
 997	 */
 998	if (total_out > start_byte && buf_start < start_byte) {
 999		buf_offset = start_byte - buf_start;
1000		working_bytes -= buf_offset;
1001	} else {
1002		buf_offset = 0;
1003	}
1004	current_buf_start = buf_start;
1005
1006	/* copy bytes from the working buffer into the pages */
1007	while (working_bytes > 0) {
1008		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1009			    PAGE_CACHE_SIZE - buf_offset);
1010		bytes = min(bytes, working_bytes);
1011		kaddr = kmap_atomic(page_out);
1012		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1013		if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1014			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1015		kunmap_atomic(kaddr);
1016		flush_dcache_page(page_out);
1017
1018		*pg_offset += bytes;
1019		buf_offset += bytes;
1020		working_bytes -= bytes;
1021		current_buf_start += bytes;
1022
1023		/* check if we need to pick another page */
1024		if (*pg_offset == PAGE_CACHE_SIZE) {
1025			(*pg_index)++;
1026			if (*pg_index >= vcnt)
1027				return 0;
1028
1029			page_out = bvec[*pg_index].bv_page;
1030			*pg_offset = 0;
1031			start_byte = page_offset(page_out) - disk_start;
1032
 
 
 
 
 
 
 
1033			/*
1034			 * make sure our new page is covered by this
1035			 * working buffer
1036			 */
1037			if (total_out <= start_byte)
1038				return 1;
1039
1040			/*
1041			 * the next page in the biovec might not be adjacent
1042			 * to the last page, but it might still be found
1043			 * inside this working buffer. bump our offset pointer
1044			 */
1045			if (total_out > start_byte &&
1046			    current_buf_start < start_byte) {
1047				buf_offset = start_byte - buf_start;
1048				working_bytes = total_out - start_byte;
1049				current_buf_start = buf_start + buf_offset;
1050			}
1051		}
1052	}
1053
1054	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055}