Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/buffer_head.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/mpage.h>
  18#include <linux/swap.h>
  19#include <linux/writeback.h>
  20#include <linux/bit_spinlock.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/log2.h>
 
 
  24#include "ctree.h"
  25#include "disk-io.h"
  26#include "transaction.h"
  27#include "btrfs_inode.h"
  28#include "volumes.h"
  29#include "ordered-data.h"
  30#include "compression.h"
  31#include "extent_io.h"
  32#include "extent_map.h"
  33
  34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  35
  36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  37{
  38	switch (type) {
  39	case BTRFS_COMPRESS_ZLIB:
  40	case BTRFS_COMPRESS_LZO:
  41	case BTRFS_COMPRESS_ZSTD:
  42	case BTRFS_COMPRESS_NONE:
  43		return btrfs_compress_types[type];
  44	}
  45
  46	return NULL;
  47}
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49static int btrfs_decompress_bio(struct compressed_bio *cb);
  50
  51static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  52				      unsigned long disk_size)
  53{
  54	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  55
  56	return sizeof(struct compressed_bio) +
  57		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  58}
  59
  60static int check_compressed_csum(struct btrfs_inode *inode,
  61				 struct compressed_bio *cb,
  62				 u64 disk_start)
  63{
 
 
 
  64	int ret;
  65	struct page *page;
  66	unsigned long i;
  67	char *kaddr;
  68	u32 csum;
  69	u32 *cb_sum = &cb->sums;
  70
  71	if (inode->flags & BTRFS_INODE_NODATASUM)
  72		return 0;
  73
 
 
  74	for (i = 0; i < cb->nr_pages; i++) {
  75		page = cb->compressed_pages[i];
  76		csum = ~(u32)0;
  77
 
  78		kaddr = kmap_atomic(page);
  79		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
  80		btrfs_csum_final(csum, (u8 *)&csum);
  81		kunmap_atomic(kaddr);
 
  82
  83		if (csum != *cb_sum) {
  84			btrfs_print_data_csum_error(inode, disk_start, csum,
  85					*cb_sum, cb->mirror_num);
  86			ret = -EIO;
  87			goto fail;
  88		}
  89		cb_sum++;
  90
  91	}
  92	ret = 0;
  93fail:
  94	return ret;
  95}
  96
  97/* when we finish reading compressed pages from the disk, we
  98 * decompress them and then run the bio end_io routines on the
  99 * decompressed pages (in the inode address space).
 100 *
 101 * This allows the checksumming and other IO error handling routines
 102 * to work normally
 103 *
 104 * The compressed pages are freed here, and it must be run
 105 * in process context
 106 */
 107static void end_compressed_bio_read(struct bio *bio)
 108{
 109	struct compressed_bio *cb = bio->bi_private;
 110	struct inode *inode;
 111	struct page *page;
 112	unsigned long index;
 113	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 114	int ret = 0;
 115
 116	if (bio->bi_status)
 117		cb->errors = 1;
 118
 119	/* if there are more bios still pending for this compressed
 120	 * extent, just exit
 121	 */
 122	if (!refcount_dec_and_test(&cb->pending_bios))
 123		goto out;
 124
 125	/*
 126	 * Record the correct mirror_num in cb->orig_bio so that
 127	 * read-repair can work properly.
 128	 */
 129	ASSERT(btrfs_io_bio(cb->orig_bio));
 130	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 131	cb->mirror_num = mirror;
 132
 133	/*
 134	 * Some IO in this cb have failed, just skip checksum as there
 135	 * is no way it could be correct.
 136	 */
 137	if (cb->errors == 1)
 138		goto csum_failed;
 139
 140	inode = cb->inode;
 141	ret = check_compressed_csum(BTRFS_I(inode), cb,
 142				    (u64)bio->bi_iter.bi_sector << 9);
 143	if (ret)
 144		goto csum_failed;
 145
 146	/* ok, we're the last bio for this extent, lets start
 147	 * the decompression.
 148	 */
 149	ret = btrfs_decompress_bio(cb);
 150
 151csum_failed:
 152	if (ret)
 153		cb->errors = 1;
 154
 155	/* release the compressed pages */
 156	index = 0;
 157	for (index = 0; index < cb->nr_pages; index++) {
 158		page = cb->compressed_pages[index];
 159		page->mapping = NULL;
 160		put_page(page);
 161	}
 162
 163	/* do io completion on the original bio */
 164	if (cb->errors) {
 165		bio_io_error(cb->orig_bio);
 166	} else {
 167		int i;
 168		struct bio_vec *bvec;
 
 169
 170		/*
 171		 * we have verified the checksum already, set page
 172		 * checked so the end_io handlers know about it
 173		 */
 174		ASSERT(!bio_flagged(bio, BIO_CLONED));
 175		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 176			SetPageChecked(bvec->bv_page);
 177
 178		bio_endio(cb->orig_bio);
 179	}
 180
 181	/* finally free the cb struct */
 182	kfree(cb->compressed_pages);
 183	kfree(cb);
 184out:
 185	bio_put(bio);
 186}
 187
 188/*
 189 * Clear the writeback bits on all of the file
 190 * pages for a compressed write
 191 */
 192static noinline void end_compressed_writeback(struct inode *inode,
 193					      const struct compressed_bio *cb)
 194{
 195	unsigned long index = cb->start >> PAGE_SHIFT;
 196	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 197	struct page *pages[16];
 198	unsigned long nr_pages = end_index - index + 1;
 199	int i;
 200	int ret;
 201
 202	if (cb->errors)
 203		mapping_set_error(inode->i_mapping, -EIO);
 204
 205	while (nr_pages > 0) {
 206		ret = find_get_pages_contig(inode->i_mapping, index,
 207				     min_t(unsigned long,
 208				     nr_pages, ARRAY_SIZE(pages)), pages);
 209		if (ret == 0) {
 210			nr_pages -= 1;
 211			index += 1;
 212			continue;
 213		}
 214		for (i = 0; i < ret; i++) {
 215			if (cb->errors)
 216				SetPageError(pages[i]);
 217			end_page_writeback(pages[i]);
 218			put_page(pages[i]);
 219		}
 220		nr_pages -= ret;
 221		index += ret;
 222	}
 223	/* the inode may be gone now */
 224}
 225
 226/*
 227 * do the cleanup once all the compressed pages hit the disk.
 228 * This will clear writeback on the file pages and free the compressed
 229 * pages.
 230 *
 231 * This also calls the writeback end hooks for the file pages so that
 232 * metadata and checksums can be updated in the file.
 233 */
 234static void end_compressed_bio_write(struct bio *bio)
 235{
 236	struct extent_io_tree *tree;
 237	struct compressed_bio *cb = bio->bi_private;
 238	struct inode *inode;
 239	struct page *page;
 240	unsigned long index;
 241
 242	if (bio->bi_status)
 243		cb->errors = 1;
 244
 245	/* if there are more bios still pending for this compressed
 246	 * extent, just exit
 247	 */
 248	if (!refcount_dec_and_test(&cb->pending_bios))
 249		goto out;
 250
 251	/* ok, we're the last bio for this extent, step one is to
 252	 * call back into the FS and do all the end_io operations
 253	 */
 254	inode = cb->inode;
 255	tree = &BTRFS_I(inode)->io_tree;
 256	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 257	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 258					 cb->start,
 259					 cb->start + cb->len - 1,
 260					 NULL,
 261					 bio->bi_status ?
 262					 BLK_STS_OK : BLK_STS_NOTSUPP);
 263	cb->compressed_pages[0]->mapping = NULL;
 264
 265	end_compressed_writeback(inode, cb);
 266	/* note, our inode could be gone now */
 267
 268	/*
 269	 * release the compressed pages, these came from alloc_page and
 270	 * are not attached to the inode at all
 271	 */
 272	index = 0;
 273	for (index = 0; index < cb->nr_pages; index++) {
 274		page = cb->compressed_pages[index];
 275		page->mapping = NULL;
 276		put_page(page);
 277	}
 278
 279	/* finally free the cb struct */
 280	kfree(cb->compressed_pages);
 281	kfree(cb);
 282out:
 283	bio_put(bio);
 284}
 285
 286/*
 287 * worker function to build and submit bios for previously compressed pages.
 288 * The corresponding pages in the inode should be marked for writeback
 289 * and the compressed pages should have a reference on them for dropping
 290 * when the IO is complete.
 291 *
 292 * This also checksums the file bytes and gets things ready for
 293 * the end io hooks.
 294 */
 295blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 296				 unsigned long len, u64 disk_start,
 297				 unsigned long compressed_len,
 298				 struct page **compressed_pages,
 299				 unsigned long nr_pages,
 300				 unsigned int write_flags)
 301{
 302	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 303	struct bio *bio = NULL;
 304	struct compressed_bio *cb;
 305	unsigned long bytes_left;
 306	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 307	int pg_index = 0;
 308	struct page *page;
 309	u64 first_byte = disk_start;
 310	struct block_device *bdev;
 311	blk_status_t ret;
 312	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 313
 314	WARN_ON(start & ((u64)PAGE_SIZE - 1));
 315	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 316	if (!cb)
 317		return BLK_STS_RESOURCE;
 318	refcount_set(&cb->pending_bios, 0);
 319	cb->errors = 0;
 320	cb->inode = inode;
 321	cb->start = start;
 322	cb->len = len;
 323	cb->mirror_num = 0;
 324	cb->compressed_pages = compressed_pages;
 325	cb->compressed_len = compressed_len;
 326	cb->orig_bio = NULL;
 327	cb->nr_pages = nr_pages;
 328
 329	bdev = fs_info->fs_devices->latest_bdev;
 330
 331	bio = btrfs_bio_alloc(bdev, first_byte);
 
 332	bio->bi_opf = REQ_OP_WRITE | write_flags;
 333	bio->bi_private = cb;
 334	bio->bi_end_io = end_compressed_bio_write;
 335	refcount_set(&cb->pending_bios, 1);
 336
 337	/* create and submit bios for the compressed pages */
 338	bytes_left = compressed_len;
 339	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 340		int submit = 0;
 341
 342		page = compressed_pages[pg_index];
 343		page->mapping = inode->i_mapping;
 344		if (bio->bi_iter.bi_size)
 345			submit = io_tree->ops->merge_bio_hook(page, 0,
 346							   PAGE_SIZE,
 347							   bio, 0);
 348
 349		page->mapping = NULL;
 350		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 351		    PAGE_SIZE) {
 352			/*
 353			 * inc the count before we submit the bio so
 354			 * we know the end IO handler won't happen before
 355			 * we inc the count.  Otherwise, the cb might get
 356			 * freed before we're done setting it up
 357			 */
 358			refcount_inc(&cb->pending_bios);
 359			ret = btrfs_bio_wq_end_io(fs_info, bio,
 360						  BTRFS_WQ_ENDIO_DATA);
 361			BUG_ON(ret); /* -ENOMEM */
 362
 363			if (!skip_sum) {
 364				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 365				BUG_ON(ret); /* -ENOMEM */
 366			}
 367
 368			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 369			if (ret) {
 370				bio->bi_status = ret;
 371				bio_endio(bio);
 372			}
 373
 374			bio = btrfs_bio_alloc(bdev, first_byte);
 
 375			bio->bi_opf = REQ_OP_WRITE | write_flags;
 376			bio->bi_private = cb;
 377			bio->bi_end_io = end_compressed_bio_write;
 378			bio_add_page(bio, page, PAGE_SIZE, 0);
 379		}
 380		if (bytes_left < PAGE_SIZE) {
 381			btrfs_info(fs_info,
 382					"bytes left %lu compress len %lu nr %lu",
 383			       bytes_left, cb->compressed_len, cb->nr_pages);
 384		}
 385		bytes_left -= PAGE_SIZE;
 386		first_byte += PAGE_SIZE;
 387		cond_resched();
 388	}
 389
 390	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 391	BUG_ON(ret); /* -ENOMEM */
 392
 393	if (!skip_sum) {
 394		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 395		BUG_ON(ret); /* -ENOMEM */
 396	}
 397
 398	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 399	if (ret) {
 400		bio->bi_status = ret;
 401		bio_endio(bio);
 402	}
 403
 404	return 0;
 405}
 406
 407static u64 bio_end_offset(struct bio *bio)
 408{
 409	struct bio_vec *last = bio_last_bvec_all(bio);
 410
 411	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 412}
 413
 414static noinline int add_ra_bio_pages(struct inode *inode,
 415				     u64 compressed_end,
 416				     struct compressed_bio *cb)
 417{
 418	unsigned long end_index;
 419	unsigned long pg_index;
 420	u64 last_offset;
 421	u64 isize = i_size_read(inode);
 422	int ret;
 423	struct page *page;
 424	unsigned long nr_pages = 0;
 425	struct extent_map *em;
 426	struct address_space *mapping = inode->i_mapping;
 427	struct extent_map_tree *em_tree;
 428	struct extent_io_tree *tree;
 429	u64 end;
 430	int misses = 0;
 431
 432	last_offset = bio_end_offset(cb->orig_bio);
 433	em_tree = &BTRFS_I(inode)->extent_tree;
 434	tree = &BTRFS_I(inode)->io_tree;
 435
 436	if (isize == 0)
 437		return 0;
 438
 439	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 440
 441	while (last_offset < compressed_end) {
 442		pg_index = last_offset >> PAGE_SHIFT;
 443
 444		if (pg_index > end_index)
 445			break;
 446
 447		rcu_read_lock();
 448		page = radix_tree_lookup(&mapping->i_pages, pg_index);
 449		rcu_read_unlock();
 450		if (page && !radix_tree_exceptional_entry(page)) {
 451			misses++;
 452			if (misses > 4)
 453				break;
 454			goto next;
 455		}
 456
 457		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 458								 ~__GFP_FS));
 459		if (!page)
 460			break;
 461
 462		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 463			put_page(page);
 464			goto next;
 465		}
 466
 467		end = last_offset + PAGE_SIZE - 1;
 468		/*
 469		 * at this point, we have a locked page in the page cache
 470		 * for these bytes in the file.  But, we have to make
 471		 * sure they map to this compressed extent on disk.
 472		 */
 473		set_page_extent_mapped(page);
 474		lock_extent(tree, last_offset, end);
 475		read_lock(&em_tree->lock);
 476		em = lookup_extent_mapping(em_tree, last_offset,
 477					   PAGE_SIZE);
 478		read_unlock(&em_tree->lock);
 479
 480		if (!em || last_offset < em->start ||
 481		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 482		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 483			free_extent_map(em);
 484			unlock_extent(tree, last_offset, end);
 485			unlock_page(page);
 486			put_page(page);
 487			break;
 488		}
 489		free_extent_map(em);
 490
 491		if (page->index == end_index) {
 492			char *userpage;
 493			size_t zero_offset = isize & (PAGE_SIZE - 1);
 494
 495			if (zero_offset) {
 496				int zeros;
 497				zeros = PAGE_SIZE - zero_offset;
 498				userpage = kmap_atomic(page);
 499				memset(userpage + zero_offset, 0, zeros);
 500				flush_dcache_page(page);
 501				kunmap_atomic(userpage);
 502			}
 503		}
 504
 505		ret = bio_add_page(cb->orig_bio, page,
 506				   PAGE_SIZE, 0);
 507
 508		if (ret == PAGE_SIZE) {
 509			nr_pages++;
 510			put_page(page);
 511		} else {
 512			unlock_extent(tree, last_offset, end);
 513			unlock_page(page);
 514			put_page(page);
 515			break;
 516		}
 517next:
 518		last_offset += PAGE_SIZE;
 519	}
 520	return 0;
 521}
 522
 523/*
 524 * for a compressed read, the bio we get passed has all the inode pages
 525 * in it.  We don't actually do IO on those pages but allocate new ones
 526 * to hold the compressed pages on disk.
 527 *
 528 * bio->bi_iter.bi_sector points to the compressed extent on disk
 529 * bio->bi_io_vec points to all of the inode pages
 530 *
 531 * After the compressed pages are read, we copy the bytes into the
 532 * bio we were passed and then call the bio end_io calls
 533 */
 534blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 535				 int mirror_num, unsigned long bio_flags)
 536{
 537	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 538	struct extent_io_tree *tree;
 539	struct extent_map_tree *em_tree;
 540	struct compressed_bio *cb;
 541	unsigned long compressed_len;
 542	unsigned long nr_pages;
 543	unsigned long pg_index;
 544	struct page *page;
 545	struct block_device *bdev;
 546	struct bio *comp_bio;
 547	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 548	u64 em_len;
 549	u64 em_start;
 550	struct extent_map *em;
 551	blk_status_t ret = BLK_STS_RESOURCE;
 552	int faili = 0;
 553	u32 *sums;
 
 554
 555	tree = &BTRFS_I(inode)->io_tree;
 556	em_tree = &BTRFS_I(inode)->extent_tree;
 557
 558	/* we need the actual starting offset of this extent in the file */
 559	read_lock(&em_tree->lock);
 560	em = lookup_extent_mapping(em_tree,
 561				   page_offset(bio_first_page_all(bio)),
 562				   PAGE_SIZE);
 563	read_unlock(&em_tree->lock);
 564	if (!em)
 565		return BLK_STS_IOERR;
 566
 567	compressed_len = em->block_len;
 568	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 569	if (!cb)
 570		goto out;
 571
 572	refcount_set(&cb->pending_bios, 0);
 573	cb->errors = 0;
 574	cb->inode = inode;
 575	cb->mirror_num = mirror_num;
 576	sums = &cb->sums;
 577
 578	cb->start = em->orig_start;
 579	em_len = em->len;
 580	em_start = em->start;
 581
 582	free_extent_map(em);
 583	em = NULL;
 584
 585	cb->len = bio->bi_iter.bi_size;
 586	cb->compressed_len = compressed_len;
 587	cb->compress_type = extent_compress_type(bio_flags);
 588	cb->orig_bio = bio;
 589
 590	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 591	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 592				       GFP_NOFS);
 593	if (!cb->compressed_pages)
 594		goto fail1;
 595
 596	bdev = fs_info->fs_devices->latest_bdev;
 597
 598	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 599		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 600							      __GFP_HIGHMEM);
 601		if (!cb->compressed_pages[pg_index]) {
 602			faili = pg_index - 1;
 603			ret = BLK_STS_RESOURCE;
 604			goto fail2;
 605		}
 606	}
 607	faili = nr_pages - 1;
 608	cb->nr_pages = nr_pages;
 609
 610	add_ra_bio_pages(inode, em_start + em_len, cb);
 611
 612	/* include any pages we added in add_ra-bio_pages */
 613	cb->len = bio->bi_iter.bi_size;
 614
 615	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 616	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 
 617	comp_bio->bi_private = cb;
 618	comp_bio->bi_end_io = end_compressed_bio_read;
 619	refcount_set(&cb->pending_bios, 1);
 620
 621	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 622		int submit = 0;
 623
 624		page = cb->compressed_pages[pg_index];
 625		page->mapping = inode->i_mapping;
 626		page->index = em_start >> PAGE_SHIFT;
 627
 628		if (comp_bio->bi_iter.bi_size)
 629			submit = tree->ops->merge_bio_hook(page, 0,
 630							PAGE_SIZE,
 631							comp_bio, 0);
 632
 633		page->mapping = NULL;
 634		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 635		    PAGE_SIZE) {
 
 
 636			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 637						  BTRFS_WQ_ENDIO_DATA);
 638			BUG_ON(ret); /* -ENOMEM */
 639
 640			/*
 641			 * inc the count before we submit the bio so
 642			 * we know the end IO handler won't happen before
 643			 * we inc the count.  Otherwise, the cb might get
 644			 * freed before we're done setting it up
 645			 */
 646			refcount_inc(&cb->pending_bios);
 647
 648			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 649				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 650							    sums);
 651				BUG_ON(ret); /* -ENOMEM */
 652			}
 653			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 654					     fs_info->sectorsize);
 
 
 655
 656			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 657			if (ret) {
 658				comp_bio->bi_status = ret;
 659				bio_endio(comp_bio);
 660			}
 661
 662			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 663			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 
 664			comp_bio->bi_private = cb;
 665			comp_bio->bi_end_io = end_compressed_bio_read;
 666
 667			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 668		}
 669		cur_disk_byte += PAGE_SIZE;
 670	}
 671
 672	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 673	BUG_ON(ret); /* -ENOMEM */
 674
 675	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 676		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 677		BUG_ON(ret); /* -ENOMEM */
 678	}
 679
 680	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 681	if (ret) {
 682		comp_bio->bi_status = ret;
 683		bio_endio(comp_bio);
 684	}
 685
 686	return 0;
 687
 688fail2:
 689	while (faili >= 0) {
 690		__free_page(cb->compressed_pages[faili]);
 691		faili--;
 692	}
 693
 694	kfree(cb->compressed_pages);
 695fail1:
 696	kfree(cb);
 697out:
 698	free_extent_map(em);
 699	return ret;
 700}
 701
 702/*
 703 * Heuristic uses systematic sampling to collect data from the input data
 704 * range, the logic can be tuned by the following constants:
 705 *
 706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 707 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 708 */
 709#define SAMPLING_READ_SIZE	(16)
 710#define SAMPLING_INTERVAL	(256)
 711
 712/*
 713 * For statistical analysis of the input data we consider bytes that form a
 714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 715 * many times the object appeared in the sample.
 716 */
 717#define BUCKET_SIZE		(256)
 718
 719/*
 720 * The size of the sample is based on a statistical sampling rule of thumb.
 721 * The common way is to perform sampling tests as long as the number of
 722 * elements in each cell is at least 5.
 723 *
 724 * Instead of 5, we choose 32 to obtain more accurate results.
 725 * If the data contain the maximum number of symbols, which is 256, we obtain a
 726 * sample size bound by 8192.
 727 *
 728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 729 * from up to 512 locations.
 730 */
 731#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 732				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 733
 734struct bucket_item {
 735	u32 count;
 736};
 737
 738struct heuristic_ws {
 739	/* Partial copy of input data */
 740	u8 *sample;
 741	u32 sample_size;
 742	/* Buckets store counters for each byte value */
 743	struct bucket_item *bucket;
 744	/* Sorting buffer */
 745	struct bucket_item *bucket_b;
 746	struct list_head list;
 747};
 748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749static void free_heuristic_ws(struct list_head *ws)
 750{
 751	struct heuristic_ws *workspace;
 752
 753	workspace = list_entry(ws, struct heuristic_ws, list);
 754
 755	kvfree(workspace->sample);
 756	kfree(workspace->bucket);
 757	kfree(workspace->bucket_b);
 758	kfree(workspace);
 759}
 760
 761static struct list_head *alloc_heuristic_ws(void)
 762{
 763	struct heuristic_ws *ws;
 764
 765	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 766	if (!ws)
 767		return ERR_PTR(-ENOMEM);
 768
 769	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 770	if (!ws->sample)
 771		goto fail;
 772
 773	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 774	if (!ws->bucket)
 775		goto fail;
 776
 777	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 778	if (!ws->bucket_b)
 779		goto fail;
 780
 781	INIT_LIST_HEAD(&ws->list);
 782	return &ws->list;
 783fail:
 784	free_heuristic_ws(&ws->list);
 785	return ERR_PTR(-ENOMEM);
 786}
 787
 788struct workspaces_list {
 789	struct list_head idle_ws;
 790	spinlock_t ws_lock;
 791	/* Number of free workspaces */
 792	int free_ws;
 793	/* Total number of allocated workspaces */
 794	atomic_t total_ws;
 795	/* Waiters for a free workspace */
 796	wait_queue_head_t ws_wait;
 797};
 798
 799static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 800
 801static struct workspaces_list btrfs_heuristic_ws;
 802
 803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 
 
 804	&btrfs_zlib_compress,
 805	&btrfs_lzo_compress,
 806	&btrfs_zstd_compress,
 807};
 808
 809void __init btrfs_init_compress(void)
 
 810{
 811	struct list_head *workspace;
 812	int i;
 813
 814	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
 815	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
 816	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
 817	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
 818
 819	workspace = alloc_heuristic_ws();
 
 
 
 
 
 
 
 
 
 820	if (IS_ERR(workspace)) {
 821		pr_warn(
 822	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
 823	} else {
 824		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
 825		btrfs_heuristic_ws.free_ws = 1;
 826		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
 827	}
 
 828
 829	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 830		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 831		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 832		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 833		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 834
 835		/*
 836		 * Preallocate one workspace for each compression type so
 837		 * we can guarantee forward progress in the worst case
 838		 */
 839		workspace = btrfs_compress_op[i]->alloc_workspace();
 840		if (IS_ERR(workspace)) {
 841			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 842		} else {
 843			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 844			btrfs_comp_ws[i].free_ws = 1;
 845			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 846		}
 847	}
 848}
 849
 850/*
 851 * This finds an available workspace or allocates a new one.
 852 * If it's not possible to allocate a new one, waits until there's one.
 853 * Preallocation makes a forward progress guarantees and we do not return
 854 * errors.
 855 */
 856static struct list_head *__find_workspace(int type, bool heuristic)
 
 857{
 858	struct list_head *workspace;
 859	int cpus = num_online_cpus();
 860	int idx = type - 1;
 861	unsigned nofs_flag;
 862	struct list_head *idle_ws;
 863	spinlock_t *ws_lock;
 864	atomic_t *total_ws;
 865	wait_queue_head_t *ws_wait;
 866	int *free_ws;
 867
 868	if (heuristic) {
 869		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 870		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 871		total_ws = &btrfs_heuristic_ws.total_ws;
 872		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 873		free_ws	 = &btrfs_heuristic_ws.free_ws;
 874	} else {
 875		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 876		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 877		total_ws = &btrfs_comp_ws[idx].total_ws;
 878		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 879		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 880	}
 881
 882again:
 883	spin_lock(ws_lock);
 884	if (!list_empty(idle_ws)) {
 885		workspace = idle_ws->next;
 886		list_del(workspace);
 887		(*free_ws)--;
 888		spin_unlock(ws_lock);
 889		return workspace;
 890
 891	}
 892	if (atomic_read(total_ws) > cpus) {
 893		DEFINE_WAIT(wait);
 894
 895		spin_unlock(ws_lock);
 896		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 897		if (atomic_read(total_ws) > cpus && !*free_ws)
 898			schedule();
 899		finish_wait(ws_wait, &wait);
 900		goto again;
 901	}
 902	atomic_inc(total_ws);
 903	spin_unlock(ws_lock);
 904
 905	/*
 906	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 907	 * to turn it off here because we might get called from the restricted
 908	 * context of btrfs_compress_bio/btrfs_compress_pages
 909	 */
 910	nofs_flag = memalloc_nofs_save();
 911	if (heuristic)
 912		workspace = alloc_heuristic_ws();
 913	else
 914		workspace = btrfs_compress_op[idx]->alloc_workspace();
 915	memalloc_nofs_restore(nofs_flag);
 916
 917	if (IS_ERR(workspace)) {
 918		atomic_dec(total_ws);
 919		wake_up(ws_wait);
 920
 921		/*
 922		 * Do not return the error but go back to waiting. There's a
 923		 * workspace preallocated for each type and the compression
 924		 * time is bounded so we get to a workspace eventually. This
 925		 * makes our caller's life easier.
 926		 *
 927		 * To prevent silent and low-probability deadlocks (when the
 928		 * initial preallocation fails), check if there are any
 929		 * workspaces at all.
 930		 */
 931		if (atomic_read(total_ws) == 0) {
 932			static DEFINE_RATELIMIT_STATE(_rs,
 933					/* once per minute */ 60 * HZ,
 934					/* no burst */ 1);
 935
 936			if (__ratelimit(&_rs)) {
 937				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 938			}
 939		}
 940		goto again;
 941	}
 942	return workspace;
 943}
 944
 945static struct list_head *find_workspace(int type)
 946{
 947	return __find_workspace(type, false);
 948}
 949
 950/*
 951 * put a workspace struct back on the list or free it if we have enough
 952 * idle ones sitting around
 953 */
 954static void __free_workspace(int type, struct list_head *workspace,
 955			     bool heuristic)
 956{
 957	int idx = type - 1;
 958	struct list_head *idle_ws;
 959	spinlock_t *ws_lock;
 960	atomic_t *total_ws;
 961	wait_queue_head_t *ws_wait;
 962	int *free_ws;
 963
 964	if (heuristic) {
 965		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 966		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 967		total_ws = &btrfs_heuristic_ws.total_ws;
 968		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 969		free_ws	 = &btrfs_heuristic_ws.free_ws;
 970	} else {
 971		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 972		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 973		total_ws = &btrfs_comp_ws[idx].total_ws;
 974		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 975		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 976	}
 977
 978	spin_lock(ws_lock);
 979	if (*free_ws <= num_online_cpus()) {
 980		list_add(workspace, idle_ws);
 981		(*free_ws)++;
 982		spin_unlock(ws_lock);
 983		goto wake;
 984	}
 985	spin_unlock(ws_lock);
 986
 987	if (heuristic)
 988		free_heuristic_ws(workspace);
 989	else
 990		btrfs_compress_op[idx]->free_workspace(workspace);
 991	atomic_dec(total_ws);
 992wake:
 993	/*
 994	 * Make sure counter is updated before we wake up waiters.
 995	 */
 996	smp_mb();
 997	if (waitqueue_active(ws_wait))
 998		wake_up(ws_wait);
 999}
1000
1001static void free_workspace(int type, struct list_head *ws)
1002{
1003	return __free_workspace(type, ws, false);
1004}
1005
1006/*
1007 * cleanup function for module exit
1008 */
1009static void free_workspaces(void)
1010{
1011	struct list_head *workspace;
1012	int i;
1013
1014	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015		workspace = btrfs_heuristic_ws.idle_ws.next;
1016		list_del(workspace);
1017		free_heuristic_ws(workspace);
1018		atomic_dec(&btrfs_heuristic_ws.total_ws);
1019	}
1020
1021	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1022		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023			workspace = btrfs_comp_ws[i].idle_ws.next;
1024			list_del(workspace);
1025			btrfs_compress_op[i]->free_workspace(workspace);
1026			atomic_dec(&btrfs_comp_ws[i].total_ws);
1027		}
1028	}
1029}
1030
1031/*
1032 * Given an address space and start and length, compress the bytes into @pages
1033 * that are allocated on demand.
1034 *
1035 * @type_level is encoded algorithm and level, where level 0 means whatever
1036 * default the algorithm chooses and is opaque here;
1037 * - compression algo are 0-3
1038 * - the level are bits 4-7
1039 *
1040 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041 * and returns number of actually allocated pages
1042 *
1043 * @total_in is used to return the number of bytes actually read.  It
1044 * may be smaller than the input length if we had to exit early because we
1045 * ran out of room in the pages array or because we cross the
1046 * max_out threshold.
1047 *
1048 * @total_out is an in/out parameter, must be set to the input length and will
1049 * be also used to return the total number of compressed bytes
1050 *
1051 * @max_out tells us the max number of bytes that we're allowed to
1052 * stuff into pages
1053 */
1054int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1055			 u64 start, struct page **pages,
1056			 unsigned long *out_pages,
1057			 unsigned long *total_in,
1058			 unsigned long *total_out)
1059{
 
 
1060	struct list_head *workspace;
1061	int ret;
1062	int type = type_level & 0xF;
1063
1064	workspace = find_workspace(type);
1065
1066	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1067	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1068						      start, pages,
1069						      out_pages,
1070						      total_in, total_out);
1071	free_workspace(type, workspace);
1072	return ret;
1073}
1074
1075/*
1076 * pages_in is an array of pages with compressed data.
1077 *
1078 * disk_start is the starting logical offset of this array in the file
1079 *
1080 * orig_bio contains the pages from the file that we want to decompress into
1081 *
1082 * srclen is the number of bytes in pages_in
1083 *
1084 * The basic idea is that we have a bio that was created by readpages.
1085 * The pages in the bio are for the uncompressed data, and they may not
1086 * be contiguous.  They all correspond to the range of bytes covered by
1087 * the compressed extent.
1088 */
1089static int btrfs_decompress_bio(struct compressed_bio *cb)
1090{
1091	struct list_head *workspace;
1092	int ret;
1093	int type = cb->compress_type;
1094
1095	workspace = find_workspace(type);
1096	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1097	free_workspace(type, workspace);
1098
1099	return ret;
1100}
1101
1102/*
1103 * a less complex decompression routine.  Our compressed data fits in a
1104 * single page, and we want to read a single page out of it.
1105 * start_byte tells us the offset into the compressed data we're interested in
1106 */
1107int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108		     unsigned long start_byte, size_t srclen, size_t destlen)
1109{
1110	struct list_head *workspace;
1111	int ret;
1112
1113	workspace = find_workspace(type);
1114
1115	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116						  dest_page, start_byte,
1117						  srclen, destlen);
 
1118
1119	free_workspace(type, workspace);
1120	return ret;
1121}
1122
 
 
 
 
 
 
 
 
1123void __cold btrfs_exit_compress(void)
1124{
1125	free_workspaces();
 
 
 
1126}
1127
1128/*
1129 * Copy uncompressed data from working buffer to pages.
1130 *
1131 * buf_start is the byte offset we're of the start of our workspace buffer.
1132 *
1133 * total_out is the last byte of the buffer
1134 */
1135int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1136			      unsigned long total_out, u64 disk_start,
1137			      struct bio *bio)
1138{
1139	unsigned long buf_offset;
1140	unsigned long current_buf_start;
1141	unsigned long start_byte;
1142	unsigned long prev_start_byte;
1143	unsigned long working_bytes = total_out - buf_start;
1144	unsigned long bytes;
1145	char *kaddr;
1146	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1147
1148	/*
1149	 * start byte is the first byte of the page we're currently
1150	 * copying into relative to the start of the compressed data.
1151	 */
1152	start_byte = page_offset(bvec.bv_page) - disk_start;
1153
1154	/* we haven't yet hit data corresponding to this page */
1155	if (total_out <= start_byte)
1156		return 1;
1157
1158	/*
1159	 * the start of the data we care about is offset into
1160	 * the middle of our working buffer
1161	 */
1162	if (total_out > start_byte && buf_start < start_byte) {
1163		buf_offset = start_byte - buf_start;
1164		working_bytes -= buf_offset;
1165	} else {
1166		buf_offset = 0;
1167	}
1168	current_buf_start = buf_start;
1169
1170	/* copy bytes from the working buffer into the pages */
1171	while (working_bytes > 0) {
1172		bytes = min_t(unsigned long, bvec.bv_len,
1173				PAGE_SIZE - buf_offset);
1174		bytes = min(bytes, working_bytes);
1175
1176		kaddr = kmap_atomic(bvec.bv_page);
1177		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1178		kunmap_atomic(kaddr);
1179		flush_dcache_page(bvec.bv_page);
1180
1181		buf_offset += bytes;
1182		working_bytes -= bytes;
1183		current_buf_start += bytes;
1184
1185		/* check if we need to pick another page */
1186		bio_advance(bio, bytes);
1187		if (!bio->bi_iter.bi_size)
1188			return 0;
1189		bvec = bio_iter_iovec(bio, bio->bi_iter);
1190		prev_start_byte = start_byte;
1191		start_byte = page_offset(bvec.bv_page) - disk_start;
1192
1193		/*
1194		 * We need to make sure we're only adjusting
1195		 * our offset into compression working buffer when
1196		 * we're switching pages.  Otherwise we can incorrectly
1197		 * keep copying when we were actually done.
1198		 */
1199		if (start_byte != prev_start_byte) {
1200			/*
1201			 * make sure our new page is covered by this
1202			 * working buffer
1203			 */
1204			if (total_out <= start_byte)
1205				return 1;
1206
1207			/*
1208			 * the next page in the biovec might not be adjacent
1209			 * to the last page, but it might still be found
1210			 * inside this working buffer. bump our offset pointer
1211			 */
1212			if (total_out > start_byte &&
1213			    current_buf_start < start_byte) {
1214				buf_offset = start_byte - buf_start;
1215				working_bytes = total_out - start_byte;
1216				current_buf_start = buf_start + buf_offset;
1217			}
1218		}
1219	}
1220
1221	return 1;
1222}
1223
1224/*
1225 * Shannon Entropy calculation
1226 *
1227 * Pure byte distribution analysis fails to determine compressiability of data.
1228 * Try calculating entropy to estimate the average minimum number of bits
1229 * needed to encode the sampled data.
1230 *
1231 * For convenience, return the percentage of needed bits, instead of amount of
1232 * bits directly.
1233 *
1234 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235 *			    and can be compressible with high probability
1236 *
1237 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238 *
1239 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240 */
1241#define ENTROPY_LVL_ACEPTABLE		(65)
1242#define ENTROPY_LVL_HIGH		(80)
1243
1244/*
1245 * For increasead precision in shannon_entropy calculation,
1246 * let's do pow(n, M) to save more digits after comma:
1247 *
1248 * - maximum int bit length is 64
1249 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1250 * - 13 * 4 = 52 < 64		-> M = 4
1251 *
1252 * So use pow(n, 4).
1253 */
1254static inline u32 ilog2_w(u64 n)
1255{
1256	return ilog2(n * n * n * n);
1257}
1258
1259static u32 shannon_entropy(struct heuristic_ws *ws)
1260{
1261	const u32 entropy_max = 8 * ilog2_w(2);
1262	u32 entropy_sum = 0;
1263	u32 p, p_base, sz_base;
1264	u32 i;
1265
1266	sz_base = ilog2_w(ws->sample_size);
1267	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268		p = ws->bucket[i].count;
1269		p_base = ilog2_w(p);
1270		entropy_sum += p * (sz_base - p_base);
1271	}
1272
1273	entropy_sum /= ws->sample_size;
1274	return entropy_sum * 100 / entropy_max;
1275}
1276
1277#define RADIX_BASE		4U
1278#define COUNTERS_SIZE		(1U << RADIX_BASE)
1279
1280static u8 get4bits(u64 num, int shift) {
1281	u8 low4bits;
1282
1283	num >>= shift;
1284	/* Reverse order */
1285	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286	return low4bits;
1287}
1288
1289/*
1290 * Use 4 bits as radix base
1291 * Use 16 u32 counters for calculating new possition in buf array
1292 *
1293 * @array     - array that will be sorted
1294 * @array_buf - buffer array to store sorting results
1295 *              must be equal in size to @array
1296 * @num       - array size
1297 */
1298static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1299		       int num)
1300{
1301	u64 max_num;
1302	u64 buf_num;
1303	u32 counters[COUNTERS_SIZE];
1304	u32 new_addr;
1305	u32 addr;
1306	int bitlen;
1307	int shift;
1308	int i;
1309
1310	/*
1311	 * Try avoid useless loop iterations for small numbers stored in big
1312	 * counters.  Example: 48 33 4 ... in 64bit array
1313	 */
1314	max_num = array[0].count;
1315	for (i = 1; i < num; i++) {
1316		buf_num = array[i].count;
1317		if (buf_num > max_num)
1318			max_num = buf_num;
1319	}
1320
1321	buf_num = ilog2(max_num);
1322	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323
1324	shift = 0;
1325	while (shift < bitlen) {
1326		memset(counters, 0, sizeof(counters));
1327
1328		for (i = 0; i < num; i++) {
1329			buf_num = array[i].count;
1330			addr = get4bits(buf_num, shift);
1331			counters[addr]++;
1332		}
1333
1334		for (i = 1; i < COUNTERS_SIZE; i++)
1335			counters[i] += counters[i - 1];
1336
1337		for (i = num - 1; i >= 0; i--) {
1338			buf_num = array[i].count;
1339			addr = get4bits(buf_num, shift);
1340			counters[addr]--;
1341			new_addr = counters[addr];
1342			array_buf[new_addr] = array[i];
1343		}
1344
1345		shift += RADIX_BASE;
1346
1347		/*
1348		 * Normal radix expects to move data from a temporary array, to
1349		 * the main one.  But that requires some CPU time. Avoid that
1350		 * by doing another sort iteration to original array instead of
1351		 * memcpy()
1352		 */
1353		memset(counters, 0, sizeof(counters));
1354
1355		for (i = 0; i < num; i ++) {
1356			buf_num = array_buf[i].count;
1357			addr = get4bits(buf_num, shift);
1358			counters[addr]++;
1359		}
1360
1361		for (i = 1; i < COUNTERS_SIZE; i++)
1362			counters[i] += counters[i - 1];
1363
1364		for (i = num - 1; i >= 0; i--) {
1365			buf_num = array_buf[i].count;
1366			addr = get4bits(buf_num, shift);
1367			counters[addr]--;
1368			new_addr = counters[addr];
1369			array[new_addr] = array_buf[i];
1370		}
1371
1372		shift += RADIX_BASE;
1373	}
1374}
1375
1376/*
1377 * Size of the core byte set - how many bytes cover 90% of the sample
1378 *
1379 * There are several types of structured binary data that use nearly all byte
1380 * values. The distribution can be uniform and counts in all buckets will be
1381 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382 *
1383 * Other possibility is normal (Gaussian) distribution, where the data could
1384 * be potentially compressible, but we have to take a few more steps to decide
1385 * how much.
1386 *
1387 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1388 *                       compression algo can easy fix that
1389 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390 *                       probability is not compressible
1391 */
1392#define BYTE_CORE_SET_LOW		(64)
1393#define BYTE_CORE_SET_HIGH		(200)
1394
1395static int byte_core_set_size(struct heuristic_ws *ws)
1396{
1397	u32 i;
1398	u32 coreset_sum = 0;
1399	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400	struct bucket_item *bucket = ws->bucket;
1401
1402	/* Sort in reverse order */
1403	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1404
1405	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406		coreset_sum += bucket[i].count;
1407
1408	if (coreset_sum > core_set_threshold)
1409		return i;
1410
1411	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412		coreset_sum += bucket[i].count;
1413		if (coreset_sum > core_set_threshold)
1414			break;
1415	}
1416
1417	return i;
1418}
1419
1420/*
1421 * Count byte values in buckets.
1422 * This heuristic can detect textual data (configs, xml, json, html, etc).
1423 * Because in most text-like data byte set is restricted to limited number of
1424 * possible characters, and that restriction in most cases makes data easy to
1425 * compress.
1426 *
1427 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428 *	less - compressible
1429 *	more - need additional analysis
1430 */
1431#define BYTE_SET_THRESHOLD		(64)
1432
1433static u32 byte_set_size(const struct heuristic_ws *ws)
1434{
1435	u32 i;
1436	u32 byte_set_size = 0;
1437
1438	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439		if (ws->bucket[i].count > 0)
1440			byte_set_size++;
1441	}
1442
1443	/*
1444	 * Continue collecting count of byte values in buckets.  If the byte
1445	 * set size is bigger then the threshold, it's pointless to continue,
1446	 * the detection technique would fail for this type of data.
1447	 */
1448	for (; i < BUCKET_SIZE; i++) {
1449		if (ws->bucket[i].count > 0) {
1450			byte_set_size++;
1451			if (byte_set_size > BYTE_SET_THRESHOLD)
1452				return byte_set_size;
1453		}
1454	}
1455
1456	return byte_set_size;
1457}
1458
1459static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460{
1461	const u32 half_of_sample = ws->sample_size / 2;
1462	const u8 *data = ws->sample;
1463
1464	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465}
1466
1467static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468				     struct heuristic_ws *ws)
1469{
1470	struct page *page;
1471	u64 index, index_end;
1472	u32 i, curr_sample_pos;
1473	u8 *in_data;
1474
1475	/*
1476	 * Compression handles the input data by chunks of 128KiB
1477	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478	 *
1479	 * We do the same for the heuristic and loop over the whole range.
1480	 *
1481	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483	 */
1484	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485		end = start + BTRFS_MAX_UNCOMPRESSED;
1486
1487	index = start >> PAGE_SHIFT;
1488	index_end = end >> PAGE_SHIFT;
1489
1490	/* Don't miss unaligned end */
1491	if (!IS_ALIGNED(end, PAGE_SIZE))
1492		index_end++;
1493
1494	curr_sample_pos = 0;
1495	while (index < index_end) {
1496		page = find_get_page(inode->i_mapping, index);
1497		in_data = kmap(page);
1498		/* Handle case where the start is not aligned to PAGE_SIZE */
1499		i = start % PAGE_SIZE;
1500		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501			/* Don't sample any garbage from the last page */
1502			if (start > end - SAMPLING_READ_SIZE)
1503				break;
1504			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505					SAMPLING_READ_SIZE);
1506			i += SAMPLING_INTERVAL;
1507			start += SAMPLING_INTERVAL;
1508			curr_sample_pos += SAMPLING_READ_SIZE;
1509		}
1510		kunmap(page);
1511		put_page(page);
1512
1513		index++;
1514	}
1515
1516	ws->sample_size = curr_sample_pos;
1517}
1518
1519/*
1520 * Compression heuristic.
1521 *
1522 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523 * quickly (compared to direct compression) detect data characteristics
1524 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525 * data.
1526 *
1527 * The following types of analysis can be performed:
1528 * - detect mostly zero data
1529 * - detect data with low "byte set" size (text, etc)
1530 * - detect data with low/high "core byte" set
1531 *
1532 * Return non-zero if the compression should be done, 0 otherwise.
1533 */
1534int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535{
1536	struct list_head *ws_list = __find_workspace(0, true);
1537	struct heuristic_ws *ws;
1538	u32 i;
1539	u8 byte;
1540	int ret = 0;
1541
1542	ws = list_entry(ws_list, struct heuristic_ws, list);
1543
1544	heuristic_collect_sample(inode, start, end, ws);
1545
1546	if (sample_repeated_patterns(ws)) {
1547		ret = 1;
1548		goto out;
1549	}
1550
1551	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552
1553	for (i = 0; i < ws->sample_size; i++) {
1554		byte = ws->sample[i];
1555		ws->bucket[byte].count++;
1556	}
1557
1558	i = byte_set_size(ws);
1559	if (i < BYTE_SET_THRESHOLD) {
1560		ret = 2;
1561		goto out;
1562	}
1563
1564	i = byte_core_set_size(ws);
1565	if (i <= BYTE_CORE_SET_LOW) {
1566		ret = 3;
1567		goto out;
1568	}
1569
1570	if (i >= BYTE_CORE_SET_HIGH) {
1571		ret = 0;
1572		goto out;
1573	}
1574
1575	i = shannon_entropy(ws);
1576	if (i <= ENTROPY_LVL_ACEPTABLE) {
1577		ret = 4;
1578		goto out;
1579	}
1580
1581	/*
1582	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583	 * needed to give green light to compression.
1584	 *
1585	 * For now just assume that compression at that level is not worth the
1586	 * resources because:
1587	 *
1588	 * 1. it is possible to defrag the data later
1589	 *
1590	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591	 * values, every bucket has counter at level ~54. The heuristic would
1592	 * be confused. This can happen when data have some internal repeated
1593	 * patterns like "abbacbbc...". This can be detected by analyzing
1594	 * pairs of bytes, which is too costly.
1595	 */
1596	if (i < ENTROPY_LVL_HIGH) {
1597		ret = 5;
1598		goto out;
1599	} else {
1600		ret = 0;
1601		goto out;
1602	}
1603
1604out:
1605	__free_workspace(0, ws_list, true);
1606	return ret;
1607}
1608
1609unsigned int btrfs_compress_str2level(const char *str)
 
 
 
 
1610{
1611	if (strncmp(str, "zlib", 4) != 0)
 
 
 
1612		return 0;
1613
1614	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616		return str[5] - '0';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617
1618	return BTRFS_ZLIB_DEFAULT_LEVEL;
1619}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/highmem.h>
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
 
 
  16#include <linux/writeback.h>
 
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31
  32static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  33
  34const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  35{
  36	switch (type) {
  37	case BTRFS_COMPRESS_ZLIB:
  38	case BTRFS_COMPRESS_LZO:
  39	case BTRFS_COMPRESS_ZSTD:
  40	case BTRFS_COMPRESS_NONE:
  41		return btrfs_compress_types[type];
  42	}
  43
  44	return NULL;
  45}
  46
  47bool btrfs_compress_is_valid_type(const char *str, size_t len)
  48{
  49	int i;
  50
  51	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  52		size_t comp_len = strlen(btrfs_compress_types[i]);
  53
  54		if (len < comp_len)
  55			continue;
  56
  57		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  58			return true;
  59	}
  60	return false;
  61}
  62
  63static int btrfs_decompress_bio(struct compressed_bio *cb);
  64
  65static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  66				      unsigned long disk_size)
  67{
  68	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  69
  70	return sizeof(struct compressed_bio) +
  71		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  72}
  73
  74static int check_compressed_csum(struct btrfs_inode *inode,
  75				 struct compressed_bio *cb,
  76				 u64 disk_start)
  77{
  78	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  79	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  80	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  81	int ret;
  82	struct page *page;
  83	unsigned long i;
  84	char *kaddr;
  85	u8 csum[BTRFS_CSUM_SIZE];
  86	u8 *cb_sum = cb->sums;
  87
  88	if (inode->flags & BTRFS_INODE_NODATASUM)
  89		return 0;
  90
  91	shash->tfm = fs_info->csum_shash;
  92
  93	for (i = 0; i < cb->nr_pages; i++) {
  94		page = cb->compressed_pages[i];
 
  95
  96		crypto_shash_init(shash);
  97		kaddr = kmap_atomic(page);
  98		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
  99		kunmap_atomic(kaddr);
 100		crypto_shash_final(shash, (u8 *)&csum);
 101
 102		if (memcmp(&csum, cb_sum, csum_size)) {
 103			btrfs_print_data_csum_error(inode, disk_start,
 104					csum, cb_sum, cb->mirror_num);
 105			ret = -EIO;
 106			goto fail;
 107		}
 108		cb_sum += csum_size;
 109
 110	}
 111	ret = 0;
 112fail:
 113	return ret;
 114}
 115
 116/* when we finish reading compressed pages from the disk, we
 117 * decompress them and then run the bio end_io routines on the
 118 * decompressed pages (in the inode address space).
 119 *
 120 * This allows the checksumming and other IO error handling routines
 121 * to work normally
 122 *
 123 * The compressed pages are freed here, and it must be run
 124 * in process context
 125 */
 126static void end_compressed_bio_read(struct bio *bio)
 127{
 128	struct compressed_bio *cb = bio->bi_private;
 129	struct inode *inode;
 130	struct page *page;
 131	unsigned long index;
 132	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 133	int ret = 0;
 134
 135	if (bio->bi_status)
 136		cb->errors = 1;
 137
 138	/* if there are more bios still pending for this compressed
 139	 * extent, just exit
 140	 */
 141	if (!refcount_dec_and_test(&cb->pending_bios))
 142		goto out;
 143
 144	/*
 145	 * Record the correct mirror_num in cb->orig_bio so that
 146	 * read-repair can work properly.
 147	 */
 148	ASSERT(btrfs_io_bio(cb->orig_bio));
 149	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 150	cb->mirror_num = mirror;
 151
 152	/*
 153	 * Some IO in this cb have failed, just skip checksum as there
 154	 * is no way it could be correct.
 155	 */
 156	if (cb->errors == 1)
 157		goto csum_failed;
 158
 159	inode = cb->inode;
 160	ret = check_compressed_csum(BTRFS_I(inode), cb,
 161				    (u64)bio->bi_iter.bi_sector << 9);
 162	if (ret)
 163		goto csum_failed;
 164
 165	/* ok, we're the last bio for this extent, lets start
 166	 * the decompression.
 167	 */
 168	ret = btrfs_decompress_bio(cb);
 169
 170csum_failed:
 171	if (ret)
 172		cb->errors = 1;
 173
 174	/* release the compressed pages */
 175	index = 0;
 176	for (index = 0; index < cb->nr_pages; index++) {
 177		page = cb->compressed_pages[index];
 178		page->mapping = NULL;
 179		put_page(page);
 180	}
 181
 182	/* do io completion on the original bio */
 183	if (cb->errors) {
 184		bio_io_error(cb->orig_bio);
 185	} else {
 
 186		struct bio_vec *bvec;
 187		struct bvec_iter_all iter_all;
 188
 189		/*
 190		 * we have verified the checksum already, set page
 191		 * checked so the end_io handlers know about it
 192		 */
 193		ASSERT(!bio_flagged(bio, BIO_CLONED));
 194		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 195			SetPageChecked(bvec->bv_page);
 196
 197		bio_endio(cb->orig_bio);
 198	}
 199
 200	/* finally free the cb struct */
 201	kfree(cb->compressed_pages);
 202	kfree(cb);
 203out:
 204	bio_put(bio);
 205}
 206
 207/*
 208 * Clear the writeback bits on all of the file
 209 * pages for a compressed write
 210 */
 211static noinline void end_compressed_writeback(struct inode *inode,
 212					      const struct compressed_bio *cb)
 213{
 214	unsigned long index = cb->start >> PAGE_SHIFT;
 215	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 216	struct page *pages[16];
 217	unsigned long nr_pages = end_index - index + 1;
 218	int i;
 219	int ret;
 220
 221	if (cb->errors)
 222		mapping_set_error(inode->i_mapping, -EIO);
 223
 224	while (nr_pages > 0) {
 225		ret = find_get_pages_contig(inode->i_mapping, index,
 226				     min_t(unsigned long,
 227				     nr_pages, ARRAY_SIZE(pages)), pages);
 228		if (ret == 0) {
 229			nr_pages -= 1;
 230			index += 1;
 231			continue;
 232		}
 233		for (i = 0; i < ret; i++) {
 234			if (cb->errors)
 235				SetPageError(pages[i]);
 236			end_page_writeback(pages[i]);
 237			put_page(pages[i]);
 238		}
 239		nr_pages -= ret;
 240		index += ret;
 241	}
 242	/* the inode may be gone now */
 243}
 244
 245/*
 246 * do the cleanup once all the compressed pages hit the disk.
 247 * This will clear writeback on the file pages and free the compressed
 248 * pages.
 249 *
 250 * This also calls the writeback end hooks for the file pages so that
 251 * metadata and checksums can be updated in the file.
 252 */
 253static void end_compressed_bio_write(struct bio *bio)
 254{
 
 255	struct compressed_bio *cb = bio->bi_private;
 256	struct inode *inode;
 257	struct page *page;
 258	unsigned long index;
 259
 260	if (bio->bi_status)
 261		cb->errors = 1;
 262
 263	/* if there are more bios still pending for this compressed
 264	 * extent, just exit
 265	 */
 266	if (!refcount_dec_and_test(&cb->pending_bios))
 267		goto out;
 268
 269	/* ok, we're the last bio for this extent, step one is to
 270	 * call back into the FS and do all the end_io operations
 271	 */
 272	inode = cb->inode;
 
 273	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 274	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 275			cb->start, cb->start + cb->len - 1,
 276			bio->bi_status == BLK_STS_OK);
 
 
 
 277	cb->compressed_pages[0]->mapping = NULL;
 278
 279	end_compressed_writeback(inode, cb);
 280	/* note, our inode could be gone now */
 281
 282	/*
 283	 * release the compressed pages, these came from alloc_page and
 284	 * are not attached to the inode at all
 285	 */
 286	index = 0;
 287	for (index = 0; index < cb->nr_pages; index++) {
 288		page = cb->compressed_pages[index];
 289		page->mapping = NULL;
 290		put_page(page);
 291	}
 292
 293	/* finally free the cb struct */
 294	kfree(cb->compressed_pages);
 295	kfree(cb);
 296out:
 297	bio_put(bio);
 298}
 299
 300/*
 301 * worker function to build and submit bios for previously compressed pages.
 302 * The corresponding pages in the inode should be marked for writeback
 303 * and the compressed pages should have a reference on them for dropping
 304 * when the IO is complete.
 305 *
 306 * This also checksums the file bytes and gets things ready for
 307 * the end io hooks.
 308 */
 309blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 310				 unsigned long len, u64 disk_start,
 311				 unsigned long compressed_len,
 312				 struct page **compressed_pages,
 313				 unsigned long nr_pages,
 314				 unsigned int write_flags)
 315{
 316	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 317	struct bio *bio = NULL;
 318	struct compressed_bio *cb;
 319	unsigned long bytes_left;
 
 320	int pg_index = 0;
 321	struct page *page;
 322	u64 first_byte = disk_start;
 323	struct block_device *bdev;
 324	blk_status_t ret;
 325	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 326
 327	WARN_ON(!PAGE_ALIGNED(start));
 328	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 329	if (!cb)
 330		return BLK_STS_RESOURCE;
 331	refcount_set(&cb->pending_bios, 0);
 332	cb->errors = 0;
 333	cb->inode = inode;
 334	cb->start = start;
 335	cb->len = len;
 336	cb->mirror_num = 0;
 337	cb->compressed_pages = compressed_pages;
 338	cb->compressed_len = compressed_len;
 339	cb->orig_bio = NULL;
 340	cb->nr_pages = nr_pages;
 341
 342	bdev = fs_info->fs_devices->latest_bdev;
 343
 344	bio = btrfs_bio_alloc(first_byte);
 345	bio_set_dev(bio, bdev);
 346	bio->bi_opf = REQ_OP_WRITE | write_flags;
 347	bio->bi_private = cb;
 348	bio->bi_end_io = end_compressed_bio_write;
 349	refcount_set(&cb->pending_bios, 1);
 350
 351	/* create and submit bios for the compressed pages */
 352	bytes_left = compressed_len;
 353	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 354		int submit = 0;
 355
 356		page = compressed_pages[pg_index];
 357		page->mapping = inode->i_mapping;
 358		if (bio->bi_iter.bi_size)
 359			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 360							  0);
 
 361
 362		page->mapping = NULL;
 363		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 364		    PAGE_SIZE) {
 365			/*
 366			 * inc the count before we submit the bio so
 367			 * we know the end IO handler won't happen before
 368			 * we inc the count.  Otherwise, the cb might get
 369			 * freed before we're done setting it up
 370			 */
 371			refcount_inc(&cb->pending_bios);
 372			ret = btrfs_bio_wq_end_io(fs_info, bio,
 373						  BTRFS_WQ_ENDIO_DATA);
 374			BUG_ON(ret); /* -ENOMEM */
 375
 376			if (!skip_sum) {
 377				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 378				BUG_ON(ret); /* -ENOMEM */
 379			}
 380
 381			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 382			if (ret) {
 383				bio->bi_status = ret;
 384				bio_endio(bio);
 385			}
 386
 387			bio = btrfs_bio_alloc(first_byte);
 388			bio_set_dev(bio, bdev);
 389			bio->bi_opf = REQ_OP_WRITE | write_flags;
 390			bio->bi_private = cb;
 391			bio->bi_end_io = end_compressed_bio_write;
 392			bio_add_page(bio, page, PAGE_SIZE, 0);
 393		}
 394		if (bytes_left < PAGE_SIZE) {
 395			btrfs_info(fs_info,
 396					"bytes left %lu compress len %lu nr %lu",
 397			       bytes_left, cb->compressed_len, cb->nr_pages);
 398		}
 399		bytes_left -= PAGE_SIZE;
 400		first_byte += PAGE_SIZE;
 401		cond_resched();
 402	}
 403
 404	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 405	BUG_ON(ret); /* -ENOMEM */
 406
 407	if (!skip_sum) {
 408		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 409		BUG_ON(ret); /* -ENOMEM */
 410	}
 411
 412	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 413	if (ret) {
 414		bio->bi_status = ret;
 415		bio_endio(bio);
 416	}
 417
 418	return 0;
 419}
 420
 421static u64 bio_end_offset(struct bio *bio)
 422{
 423	struct bio_vec *last = bio_last_bvec_all(bio);
 424
 425	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 426}
 427
 428static noinline int add_ra_bio_pages(struct inode *inode,
 429				     u64 compressed_end,
 430				     struct compressed_bio *cb)
 431{
 432	unsigned long end_index;
 433	unsigned long pg_index;
 434	u64 last_offset;
 435	u64 isize = i_size_read(inode);
 436	int ret;
 437	struct page *page;
 438	unsigned long nr_pages = 0;
 439	struct extent_map *em;
 440	struct address_space *mapping = inode->i_mapping;
 441	struct extent_map_tree *em_tree;
 442	struct extent_io_tree *tree;
 443	u64 end;
 444	int misses = 0;
 445
 446	last_offset = bio_end_offset(cb->orig_bio);
 447	em_tree = &BTRFS_I(inode)->extent_tree;
 448	tree = &BTRFS_I(inode)->io_tree;
 449
 450	if (isize == 0)
 451		return 0;
 452
 453	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 454
 455	while (last_offset < compressed_end) {
 456		pg_index = last_offset >> PAGE_SHIFT;
 457
 458		if (pg_index > end_index)
 459			break;
 460
 461		page = xa_load(&mapping->i_pages, pg_index);
 462		if (page && !xa_is_value(page)) {
 
 
 463			misses++;
 464			if (misses > 4)
 465				break;
 466			goto next;
 467		}
 468
 469		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 470								 ~__GFP_FS));
 471		if (!page)
 472			break;
 473
 474		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 475			put_page(page);
 476			goto next;
 477		}
 478
 479		end = last_offset + PAGE_SIZE - 1;
 480		/*
 481		 * at this point, we have a locked page in the page cache
 482		 * for these bytes in the file.  But, we have to make
 483		 * sure they map to this compressed extent on disk.
 484		 */
 485		set_page_extent_mapped(page);
 486		lock_extent(tree, last_offset, end);
 487		read_lock(&em_tree->lock);
 488		em = lookup_extent_mapping(em_tree, last_offset,
 489					   PAGE_SIZE);
 490		read_unlock(&em_tree->lock);
 491
 492		if (!em || last_offset < em->start ||
 493		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 494		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 495			free_extent_map(em);
 496			unlock_extent(tree, last_offset, end);
 497			unlock_page(page);
 498			put_page(page);
 499			break;
 500		}
 501		free_extent_map(em);
 502
 503		if (page->index == end_index) {
 504			char *userpage;
 505			size_t zero_offset = offset_in_page(isize);
 506
 507			if (zero_offset) {
 508				int zeros;
 509				zeros = PAGE_SIZE - zero_offset;
 510				userpage = kmap_atomic(page);
 511				memset(userpage + zero_offset, 0, zeros);
 512				flush_dcache_page(page);
 513				kunmap_atomic(userpage);
 514			}
 515		}
 516
 517		ret = bio_add_page(cb->orig_bio, page,
 518				   PAGE_SIZE, 0);
 519
 520		if (ret == PAGE_SIZE) {
 521			nr_pages++;
 522			put_page(page);
 523		} else {
 524			unlock_extent(tree, last_offset, end);
 525			unlock_page(page);
 526			put_page(page);
 527			break;
 528		}
 529next:
 530		last_offset += PAGE_SIZE;
 531	}
 532	return 0;
 533}
 534
 535/*
 536 * for a compressed read, the bio we get passed has all the inode pages
 537 * in it.  We don't actually do IO on those pages but allocate new ones
 538 * to hold the compressed pages on disk.
 539 *
 540 * bio->bi_iter.bi_sector points to the compressed extent on disk
 541 * bio->bi_io_vec points to all of the inode pages
 542 *
 543 * After the compressed pages are read, we copy the bytes into the
 544 * bio we were passed and then call the bio end_io calls
 545 */
 546blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 547				 int mirror_num, unsigned long bio_flags)
 548{
 549	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 550	struct extent_map_tree *em_tree;
 551	struct compressed_bio *cb;
 552	unsigned long compressed_len;
 553	unsigned long nr_pages;
 554	unsigned long pg_index;
 555	struct page *page;
 556	struct block_device *bdev;
 557	struct bio *comp_bio;
 558	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 559	u64 em_len;
 560	u64 em_start;
 561	struct extent_map *em;
 562	blk_status_t ret = BLK_STS_RESOURCE;
 563	int faili = 0;
 564	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 565	u8 *sums;
 566
 
 567	em_tree = &BTRFS_I(inode)->extent_tree;
 568
 569	/* we need the actual starting offset of this extent in the file */
 570	read_lock(&em_tree->lock);
 571	em = lookup_extent_mapping(em_tree,
 572				   page_offset(bio_first_page_all(bio)),
 573				   PAGE_SIZE);
 574	read_unlock(&em_tree->lock);
 575	if (!em)
 576		return BLK_STS_IOERR;
 577
 578	compressed_len = em->block_len;
 579	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 580	if (!cb)
 581		goto out;
 582
 583	refcount_set(&cb->pending_bios, 0);
 584	cb->errors = 0;
 585	cb->inode = inode;
 586	cb->mirror_num = mirror_num;
 587	sums = cb->sums;
 588
 589	cb->start = em->orig_start;
 590	em_len = em->len;
 591	em_start = em->start;
 592
 593	free_extent_map(em);
 594	em = NULL;
 595
 596	cb->len = bio->bi_iter.bi_size;
 597	cb->compressed_len = compressed_len;
 598	cb->compress_type = extent_compress_type(bio_flags);
 599	cb->orig_bio = bio;
 600
 601	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 602	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 603				       GFP_NOFS);
 604	if (!cb->compressed_pages)
 605		goto fail1;
 606
 607	bdev = fs_info->fs_devices->latest_bdev;
 608
 609	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 610		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 611							      __GFP_HIGHMEM);
 612		if (!cb->compressed_pages[pg_index]) {
 613			faili = pg_index - 1;
 614			ret = BLK_STS_RESOURCE;
 615			goto fail2;
 616		}
 617	}
 618	faili = nr_pages - 1;
 619	cb->nr_pages = nr_pages;
 620
 621	add_ra_bio_pages(inode, em_start + em_len, cb);
 622
 623	/* include any pages we added in add_ra-bio_pages */
 624	cb->len = bio->bi_iter.bi_size;
 625
 626	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 627	bio_set_dev(comp_bio, bdev);
 628	comp_bio->bi_opf = REQ_OP_READ;
 629	comp_bio->bi_private = cb;
 630	comp_bio->bi_end_io = end_compressed_bio_read;
 631	refcount_set(&cb->pending_bios, 1);
 632
 633	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 634		int submit = 0;
 635
 636		page = cb->compressed_pages[pg_index];
 637		page->mapping = inode->i_mapping;
 638		page->index = em_start >> PAGE_SHIFT;
 639
 640		if (comp_bio->bi_iter.bi_size)
 641			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 642							  comp_bio, 0);
 
 643
 644		page->mapping = NULL;
 645		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 646		    PAGE_SIZE) {
 647			unsigned int nr_sectors;
 648
 649			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 650						  BTRFS_WQ_ENDIO_DATA);
 651			BUG_ON(ret); /* -ENOMEM */
 652
 653			/*
 654			 * inc the count before we submit the bio so
 655			 * we know the end IO handler won't happen before
 656			 * we inc the count.  Otherwise, the cb might get
 657			 * freed before we're done setting it up
 658			 */
 659			refcount_inc(&cb->pending_bios);
 660
 661			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 662				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 663							    sums);
 664				BUG_ON(ret); /* -ENOMEM */
 665			}
 666
 667			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 668						  fs_info->sectorsize);
 669			sums += csum_size * nr_sectors;
 670
 671			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 672			if (ret) {
 673				comp_bio->bi_status = ret;
 674				bio_endio(comp_bio);
 675			}
 676
 677			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 678			bio_set_dev(comp_bio, bdev);
 679			comp_bio->bi_opf = REQ_OP_READ;
 680			comp_bio->bi_private = cb;
 681			comp_bio->bi_end_io = end_compressed_bio_read;
 682
 683			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 684		}
 685		cur_disk_byte += PAGE_SIZE;
 686	}
 687
 688	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 689	BUG_ON(ret); /* -ENOMEM */
 690
 691	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 692		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 693		BUG_ON(ret); /* -ENOMEM */
 694	}
 695
 696	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 697	if (ret) {
 698		comp_bio->bi_status = ret;
 699		bio_endio(comp_bio);
 700	}
 701
 702	return 0;
 703
 704fail2:
 705	while (faili >= 0) {
 706		__free_page(cb->compressed_pages[faili]);
 707		faili--;
 708	}
 709
 710	kfree(cb->compressed_pages);
 711fail1:
 712	kfree(cb);
 713out:
 714	free_extent_map(em);
 715	return ret;
 716}
 717
 718/*
 719 * Heuristic uses systematic sampling to collect data from the input data
 720 * range, the logic can be tuned by the following constants:
 721 *
 722 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 723 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 724 */
 725#define SAMPLING_READ_SIZE	(16)
 726#define SAMPLING_INTERVAL	(256)
 727
 728/*
 729 * For statistical analysis of the input data we consider bytes that form a
 730 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 731 * many times the object appeared in the sample.
 732 */
 733#define BUCKET_SIZE		(256)
 734
 735/*
 736 * The size of the sample is based on a statistical sampling rule of thumb.
 737 * The common way is to perform sampling tests as long as the number of
 738 * elements in each cell is at least 5.
 739 *
 740 * Instead of 5, we choose 32 to obtain more accurate results.
 741 * If the data contain the maximum number of symbols, which is 256, we obtain a
 742 * sample size bound by 8192.
 743 *
 744 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 745 * from up to 512 locations.
 746 */
 747#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 748				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 749
 750struct bucket_item {
 751	u32 count;
 752};
 753
 754struct heuristic_ws {
 755	/* Partial copy of input data */
 756	u8 *sample;
 757	u32 sample_size;
 758	/* Buckets store counters for each byte value */
 759	struct bucket_item *bucket;
 760	/* Sorting buffer */
 761	struct bucket_item *bucket_b;
 762	struct list_head list;
 763};
 764
 765static struct workspace_manager heuristic_wsm;
 766
 767static void heuristic_init_workspace_manager(void)
 768{
 769	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
 770}
 771
 772static void heuristic_cleanup_workspace_manager(void)
 773{
 774	btrfs_cleanup_workspace_manager(&heuristic_wsm);
 775}
 776
 777static struct list_head *heuristic_get_workspace(unsigned int level)
 778{
 779	return btrfs_get_workspace(&heuristic_wsm, level);
 780}
 781
 782static void heuristic_put_workspace(struct list_head *ws)
 783{
 784	btrfs_put_workspace(&heuristic_wsm, ws);
 785}
 786
 787static void free_heuristic_ws(struct list_head *ws)
 788{
 789	struct heuristic_ws *workspace;
 790
 791	workspace = list_entry(ws, struct heuristic_ws, list);
 792
 793	kvfree(workspace->sample);
 794	kfree(workspace->bucket);
 795	kfree(workspace->bucket_b);
 796	kfree(workspace);
 797}
 798
 799static struct list_head *alloc_heuristic_ws(unsigned int level)
 800{
 801	struct heuristic_ws *ws;
 802
 803	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 804	if (!ws)
 805		return ERR_PTR(-ENOMEM);
 806
 807	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 808	if (!ws->sample)
 809		goto fail;
 810
 811	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 812	if (!ws->bucket)
 813		goto fail;
 814
 815	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 816	if (!ws->bucket_b)
 817		goto fail;
 818
 819	INIT_LIST_HEAD(&ws->list);
 820	return &ws->list;
 821fail:
 822	free_heuristic_ws(&ws->list);
 823	return ERR_PTR(-ENOMEM);
 824}
 825
 826const struct btrfs_compress_op btrfs_heuristic_compress = {
 827	.init_workspace_manager = heuristic_init_workspace_manager,
 828	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
 829	.get_workspace = heuristic_get_workspace,
 830	.put_workspace = heuristic_put_workspace,
 831	.alloc_workspace = alloc_heuristic_ws,
 832	.free_workspace = free_heuristic_ws,
 
 
 833};
 834
 
 
 
 
 835static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 836	/* The heuristic is represented as compression type 0 */
 837	&btrfs_heuristic_compress,
 838	&btrfs_zlib_compress,
 839	&btrfs_lzo_compress,
 840	&btrfs_zstd_compress,
 841};
 842
 843void btrfs_init_workspace_manager(struct workspace_manager *wsm,
 844				  const struct btrfs_compress_op *ops)
 845{
 846	struct list_head *workspace;
 
 847
 848	wsm->ops = ops;
 
 
 
 849
 850	INIT_LIST_HEAD(&wsm->idle_ws);
 851	spin_lock_init(&wsm->ws_lock);
 852	atomic_set(&wsm->total_ws, 0);
 853	init_waitqueue_head(&wsm->ws_wait);
 854
 855	/*
 856	 * Preallocate one workspace for each compression type so we can
 857	 * guarantee forward progress in the worst case
 858	 */
 859	workspace = wsm->ops->alloc_workspace(0);
 860	if (IS_ERR(workspace)) {
 861		pr_warn(
 862	"BTRFS: cannot preallocate compression workspace, will try later\n");
 863	} else {
 864		atomic_set(&wsm->total_ws, 1);
 865		wsm->free_ws = 1;
 866		list_add(workspace, &wsm->idle_ws);
 867	}
 868}
 869
 870void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
 871{
 872	struct list_head *ws;
 
 
 873
 874	while (!list_empty(&wsman->idle_ws)) {
 875		ws = wsman->idle_ws.next;
 876		list_del(ws);
 877		wsman->ops->free_workspace(ws);
 878		atomic_dec(&wsman->total_ws);
 
 
 
 
 
 
 
 879	}
 880}
 881
 882/*
 883 * This finds an available workspace or allocates a new one.
 884 * If it's not possible to allocate a new one, waits until there's one.
 885 * Preallocation makes a forward progress guarantees and we do not return
 886 * errors.
 887 */
 888struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
 889				      unsigned int level)
 890{
 891	struct list_head *workspace;
 892	int cpus = num_online_cpus();
 
 893	unsigned nofs_flag;
 894	struct list_head *idle_ws;
 895	spinlock_t *ws_lock;
 896	atomic_t *total_ws;
 897	wait_queue_head_t *ws_wait;
 898	int *free_ws;
 899
 900	idle_ws	 = &wsm->idle_ws;
 901	ws_lock	 = &wsm->ws_lock;
 902	total_ws = &wsm->total_ws;
 903	ws_wait	 = &wsm->ws_wait;
 904	free_ws	 = &wsm->free_ws;
 
 
 
 
 
 
 
 
 905
 906again:
 907	spin_lock(ws_lock);
 908	if (!list_empty(idle_ws)) {
 909		workspace = idle_ws->next;
 910		list_del(workspace);
 911		(*free_ws)--;
 912		spin_unlock(ws_lock);
 913		return workspace;
 914
 915	}
 916	if (atomic_read(total_ws) > cpus) {
 917		DEFINE_WAIT(wait);
 918
 919		spin_unlock(ws_lock);
 920		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 921		if (atomic_read(total_ws) > cpus && !*free_ws)
 922			schedule();
 923		finish_wait(ws_wait, &wait);
 924		goto again;
 925	}
 926	atomic_inc(total_ws);
 927	spin_unlock(ws_lock);
 928
 929	/*
 930	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 931	 * to turn it off here because we might get called from the restricted
 932	 * context of btrfs_compress_bio/btrfs_compress_pages
 933	 */
 934	nofs_flag = memalloc_nofs_save();
 935	workspace = wsm->ops->alloc_workspace(level);
 
 
 
 936	memalloc_nofs_restore(nofs_flag);
 937
 938	if (IS_ERR(workspace)) {
 939		atomic_dec(total_ws);
 940		wake_up(ws_wait);
 941
 942		/*
 943		 * Do not return the error but go back to waiting. There's a
 944		 * workspace preallocated for each type and the compression
 945		 * time is bounded so we get to a workspace eventually. This
 946		 * makes our caller's life easier.
 947		 *
 948		 * To prevent silent and low-probability deadlocks (when the
 949		 * initial preallocation fails), check if there are any
 950		 * workspaces at all.
 951		 */
 952		if (atomic_read(total_ws) == 0) {
 953			static DEFINE_RATELIMIT_STATE(_rs,
 954					/* once per minute */ 60 * HZ,
 955					/* no burst */ 1);
 956
 957			if (__ratelimit(&_rs)) {
 958				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 959			}
 960		}
 961		goto again;
 962	}
 963	return workspace;
 964}
 965
 966static struct list_head *get_workspace(int type, int level)
 967{
 968	return btrfs_compress_op[type]->get_workspace(level);
 969}
 970
 971/*
 972 * put a workspace struct back on the list or free it if we have enough
 973 * idle ones sitting around
 974 */
 975void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
 
 976{
 
 977	struct list_head *idle_ws;
 978	spinlock_t *ws_lock;
 979	atomic_t *total_ws;
 980	wait_queue_head_t *ws_wait;
 981	int *free_ws;
 982
 983	idle_ws	 = &wsm->idle_ws;
 984	ws_lock	 = &wsm->ws_lock;
 985	total_ws = &wsm->total_ws;
 986	ws_wait	 = &wsm->ws_wait;
 987	free_ws	 = &wsm->free_ws;
 
 
 
 
 
 
 
 
 988
 989	spin_lock(ws_lock);
 990	if (*free_ws <= num_online_cpus()) {
 991		list_add(ws, idle_ws);
 992		(*free_ws)++;
 993		spin_unlock(ws_lock);
 994		goto wake;
 995	}
 996	spin_unlock(ws_lock);
 997
 998	wsm->ops->free_workspace(ws);
 
 
 
 999	atomic_dec(total_ws);
1000wake:
1001	cond_wake_up(ws_wait);
 
 
 
 
 
1002}
1003
1004static void put_workspace(int type, struct list_head *ws)
 
 
 
 
 
 
 
 
1005{
1006	return btrfs_compress_op[type]->put_workspace(ws);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008
1009/*
1010 * Given an address space and start and length, compress the bytes into @pages
1011 * that are allocated on demand.
1012 *
1013 * @type_level is encoded algorithm and level, where level 0 means whatever
1014 * default the algorithm chooses and is opaque here;
1015 * - compression algo are 0-3
1016 * - the level are bits 4-7
1017 *
1018 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1019 * and returns number of actually allocated pages
1020 *
1021 * @total_in is used to return the number of bytes actually read.  It
1022 * may be smaller than the input length if we had to exit early because we
1023 * ran out of room in the pages array or because we cross the
1024 * max_out threshold.
1025 *
1026 * @total_out is an in/out parameter, must be set to the input length and will
1027 * be also used to return the total number of compressed bytes
1028 *
1029 * @max_out tells us the max number of bytes that we're allowed to
1030 * stuff into pages
1031 */
1032int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1033			 u64 start, struct page **pages,
1034			 unsigned long *out_pages,
1035			 unsigned long *total_in,
1036			 unsigned long *total_out)
1037{
1038	int type = btrfs_compress_type(type_level);
1039	int level = btrfs_compress_level(type_level);
1040	struct list_head *workspace;
1041	int ret;
 
1042
1043	level = btrfs_compress_set_level(type, level);
1044	workspace = get_workspace(type, level);
1045	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
 
1046						      start, pages,
1047						      out_pages,
1048						      total_in, total_out);
1049	put_workspace(type, workspace);
1050	return ret;
1051}
1052
1053/*
1054 * pages_in is an array of pages with compressed data.
1055 *
1056 * disk_start is the starting logical offset of this array in the file
1057 *
1058 * orig_bio contains the pages from the file that we want to decompress into
1059 *
1060 * srclen is the number of bytes in pages_in
1061 *
1062 * The basic idea is that we have a bio that was created by readpages.
1063 * The pages in the bio are for the uncompressed data, and they may not
1064 * be contiguous.  They all correspond to the range of bytes covered by
1065 * the compressed extent.
1066 */
1067static int btrfs_decompress_bio(struct compressed_bio *cb)
1068{
1069	struct list_head *workspace;
1070	int ret;
1071	int type = cb->compress_type;
1072
1073	workspace = get_workspace(type, 0);
1074	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1075	put_workspace(type, workspace);
1076
1077	return ret;
1078}
1079
1080/*
1081 * a less complex decompression routine.  Our compressed data fits in a
1082 * single page, and we want to read a single page out of it.
1083 * start_byte tells us the offset into the compressed data we're interested in
1084 */
1085int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1086		     unsigned long start_byte, size_t srclen, size_t destlen)
1087{
1088	struct list_head *workspace;
1089	int ret;
1090
1091	workspace = get_workspace(type, 0);
1092	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
 
1093						  dest_page, start_byte,
1094						  srclen, destlen);
1095	put_workspace(type, workspace);
1096
 
1097	return ret;
1098}
1099
1100void __init btrfs_init_compress(void)
1101{
1102	int i;
1103
1104	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1105		btrfs_compress_op[i]->init_workspace_manager();
1106}
1107
1108void __cold btrfs_exit_compress(void)
1109{
1110	int i;
1111
1112	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1113		btrfs_compress_op[i]->cleanup_workspace_manager();
1114}
1115
1116/*
1117 * Copy uncompressed data from working buffer to pages.
1118 *
1119 * buf_start is the byte offset we're of the start of our workspace buffer.
1120 *
1121 * total_out is the last byte of the buffer
1122 */
1123int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1124			      unsigned long total_out, u64 disk_start,
1125			      struct bio *bio)
1126{
1127	unsigned long buf_offset;
1128	unsigned long current_buf_start;
1129	unsigned long start_byte;
1130	unsigned long prev_start_byte;
1131	unsigned long working_bytes = total_out - buf_start;
1132	unsigned long bytes;
1133	char *kaddr;
1134	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1135
1136	/*
1137	 * start byte is the first byte of the page we're currently
1138	 * copying into relative to the start of the compressed data.
1139	 */
1140	start_byte = page_offset(bvec.bv_page) - disk_start;
1141
1142	/* we haven't yet hit data corresponding to this page */
1143	if (total_out <= start_byte)
1144		return 1;
1145
1146	/*
1147	 * the start of the data we care about is offset into
1148	 * the middle of our working buffer
1149	 */
1150	if (total_out > start_byte && buf_start < start_byte) {
1151		buf_offset = start_byte - buf_start;
1152		working_bytes -= buf_offset;
1153	} else {
1154		buf_offset = 0;
1155	}
1156	current_buf_start = buf_start;
1157
1158	/* copy bytes from the working buffer into the pages */
1159	while (working_bytes > 0) {
1160		bytes = min_t(unsigned long, bvec.bv_len,
1161				PAGE_SIZE - buf_offset);
1162		bytes = min(bytes, working_bytes);
1163
1164		kaddr = kmap_atomic(bvec.bv_page);
1165		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1166		kunmap_atomic(kaddr);
1167		flush_dcache_page(bvec.bv_page);
1168
1169		buf_offset += bytes;
1170		working_bytes -= bytes;
1171		current_buf_start += bytes;
1172
1173		/* check if we need to pick another page */
1174		bio_advance(bio, bytes);
1175		if (!bio->bi_iter.bi_size)
1176			return 0;
1177		bvec = bio_iter_iovec(bio, bio->bi_iter);
1178		prev_start_byte = start_byte;
1179		start_byte = page_offset(bvec.bv_page) - disk_start;
1180
1181		/*
1182		 * We need to make sure we're only adjusting
1183		 * our offset into compression working buffer when
1184		 * we're switching pages.  Otherwise we can incorrectly
1185		 * keep copying when we were actually done.
1186		 */
1187		if (start_byte != prev_start_byte) {
1188			/*
1189			 * make sure our new page is covered by this
1190			 * working buffer
1191			 */
1192			if (total_out <= start_byte)
1193				return 1;
1194
1195			/*
1196			 * the next page in the biovec might not be adjacent
1197			 * to the last page, but it might still be found
1198			 * inside this working buffer. bump our offset pointer
1199			 */
1200			if (total_out > start_byte &&
1201			    current_buf_start < start_byte) {
1202				buf_offset = start_byte - buf_start;
1203				working_bytes = total_out - start_byte;
1204				current_buf_start = buf_start + buf_offset;
1205			}
1206		}
1207	}
1208
1209	return 1;
1210}
1211
1212/*
1213 * Shannon Entropy calculation
1214 *
1215 * Pure byte distribution analysis fails to determine compressibility of data.
1216 * Try calculating entropy to estimate the average minimum number of bits
1217 * needed to encode the sampled data.
1218 *
1219 * For convenience, return the percentage of needed bits, instead of amount of
1220 * bits directly.
1221 *
1222 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1223 *			    and can be compressible with high probability
1224 *
1225 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1226 *
1227 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1228 */
1229#define ENTROPY_LVL_ACEPTABLE		(65)
1230#define ENTROPY_LVL_HIGH		(80)
1231
1232/*
1233 * For increasead precision in shannon_entropy calculation,
1234 * let's do pow(n, M) to save more digits after comma:
1235 *
1236 * - maximum int bit length is 64
1237 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1238 * - 13 * 4 = 52 < 64		-> M = 4
1239 *
1240 * So use pow(n, 4).
1241 */
1242static inline u32 ilog2_w(u64 n)
1243{
1244	return ilog2(n * n * n * n);
1245}
1246
1247static u32 shannon_entropy(struct heuristic_ws *ws)
1248{
1249	const u32 entropy_max = 8 * ilog2_w(2);
1250	u32 entropy_sum = 0;
1251	u32 p, p_base, sz_base;
1252	u32 i;
1253
1254	sz_base = ilog2_w(ws->sample_size);
1255	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1256		p = ws->bucket[i].count;
1257		p_base = ilog2_w(p);
1258		entropy_sum += p * (sz_base - p_base);
1259	}
1260
1261	entropy_sum /= ws->sample_size;
1262	return entropy_sum * 100 / entropy_max;
1263}
1264
1265#define RADIX_BASE		4U
1266#define COUNTERS_SIZE		(1U << RADIX_BASE)
1267
1268static u8 get4bits(u64 num, int shift) {
1269	u8 low4bits;
1270
1271	num >>= shift;
1272	/* Reverse order */
1273	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1274	return low4bits;
1275}
1276
1277/*
1278 * Use 4 bits as radix base
1279 * Use 16 u32 counters for calculating new position in buf array
1280 *
1281 * @array     - array that will be sorted
1282 * @array_buf - buffer array to store sorting results
1283 *              must be equal in size to @array
1284 * @num       - array size
1285 */
1286static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1287		       int num)
1288{
1289	u64 max_num;
1290	u64 buf_num;
1291	u32 counters[COUNTERS_SIZE];
1292	u32 new_addr;
1293	u32 addr;
1294	int bitlen;
1295	int shift;
1296	int i;
1297
1298	/*
1299	 * Try avoid useless loop iterations for small numbers stored in big
1300	 * counters.  Example: 48 33 4 ... in 64bit array
1301	 */
1302	max_num = array[0].count;
1303	for (i = 1; i < num; i++) {
1304		buf_num = array[i].count;
1305		if (buf_num > max_num)
1306			max_num = buf_num;
1307	}
1308
1309	buf_num = ilog2(max_num);
1310	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1311
1312	shift = 0;
1313	while (shift < bitlen) {
1314		memset(counters, 0, sizeof(counters));
1315
1316		for (i = 0; i < num; i++) {
1317			buf_num = array[i].count;
1318			addr = get4bits(buf_num, shift);
1319			counters[addr]++;
1320		}
1321
1322		for (i = 1; i < COUNTERS_SIZE; i++)
1323			counters[i] += counters[i - 1];
1324
1325		for (i = num - 1; i >= 0; i--) {
1326			buf_num = array[i].count;
1327			addr = get4bits(buf_num, shift);
1328			counters[addr]--;
1329			new_addr = counters[addr];
1330			array_buf[new_addr] = array[i];
1331		}
1332
1333		shift += RADIX_BASE;
1334
1335		/*
1336		 * Normal radix expects to move data from a temporary array, to
1337		 * the main one.  But that requires some CPU time. Avoid that
1338		 * by doing another sort iteration to original array instead of
1339		 * memcpy()
1340		 */
1341		memset(counters, 0, sizeof(counters));
1342
1343		for (i = 0; i < num; i ++) {
1344			buf_num = array_buf[i].count;
1345			addr = get4bits(buf_num, shift);
1346			counters[addr]++;
1347		}
1348
1349		for (i = 1; i < COUNTERS_SIZE; i++)
1350			counters[i] += counters[i - 1];
1351
1352		for (i = num - 1; i >= 0; i--) {
1353			buf_num = array_buf[i].count;
1354			addr = get4bits(buf_num, shift);
1355			counters[addr]--;
1356			new_addr = counters[addr];
1357			array[new_addr] = array_buf[i];
1358		}
1359
1360		shift += RADIX_BASE;
1361	}
1362}
1363
1364/*
1365 * Size of the core byte set - how many bytes cover 90% of the sample
1366 *
1367 * There are several types of structured binary data that use nearly all byte
1368 * values. The distribution can be uniform and counts in all buckets will be
1369 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1370 *
1371 * Other possibility is normal (Gaussian) distribution, where the data could
1372 * be potentially compressible, but we have to take a few more steps to decide
1373 * how much.
1374 *
1375 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1376 *                       compression algo can easy fix that
1377 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1378 *                       probability is not compressible
1379 */
1380#define BYTE_CORE_SET_LOW		(64)
1381#define BYTE_CORE_SET_HIGH		(200)
1382
1383static int byte_core_set_size(struct heuristic_ws *ws)
1384{
1385	u32 i;
1386	u32 coreset_sum = 0;
1387	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1388	struct bucket_item *bucket = ws->bucket;
1389
1390	/* Sort in reverse order */
1391	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1392
1393	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1394		coreset_sum += bucket[i].count;
1395
1396	if (coreset_sum > core_set_threshold)
1397		return i;
1398
1399	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1400		coreset_sum += bucket[i].count;
1401		if (coreset_sum > core_set_threshold)
1402			break;
1403	}
1404
1405	return i;
1406}
1407
1408/*
1409 * Count byte values in buckets.
1410 * This heuristic can detect textual data (configs, xml, json, html, etc).
1411 * Because in most text-like data byte set is restricted to limited number of
1412 * possible characters, and that restriction in most cases makes data easy to
1413 * compress.
1414 *
1415 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1416 *	less - compressible
1417 *	more - need additional analysis
1418 */
1419#define BYTE_SET_THRESHOLD		(64)
1420
1421static u32 byte_set_size(const struct heuristic_ws *ws)
1422{
1423	u32 i;
1424	u32 byte_set_size = 0;
1425
1426	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1427		if (ws->bucket[i].count > 0)
1428			byte_set_size++;
1429	}
1430
1431	/*
1432	 * Continue collecting count of byte values in buckets.  If the byte
1433	 * set size is bigger then the threshold, it's pointless to continue,
1434	 * the detection technique would fail for this type of data.
1435	 */
1436	for (; i < BUCKET_SIZE; i++) {
1437		if (ws->bucket[i].count > 0) {
1438			byte_set_size++;
1439			if (byte_set_size > BYTE_SET_THRESHOLD)
1440				return byte_set_size;
1441		}
1442	}
1443
1444	return byte_set_size;
1445}
1446
1447static bool sample_repeated_patterns(struct heuristic_ws *ws)
1448{
1449	const u32 half_of_sample = ws->sample_size / 2;
1450	const u8 *data = ws->sample;
1451
1452	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1453}
1454
1455static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1456				     struct heuristic_ws *ws)
1457{
1458	struct page *page;
1459	u64 index, index_end;
1460	u32 i, curr_sample_pos;
1461	u8 *in_data;
1462
1463	/*
1464	 * Compression handles the input data by chunks of 128KiB
1465	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1466	 *
1467	 * We do the same for the heuristic and loop over the whole range.
1468	 *
1469	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1470	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1471	 */
1472	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1473		end = start + BTRFS_MAX_UNCOMPRESSED;
1474
1475	index = start >> PAGE_SHIFT;
1476	index_end = end >> PAGE_SHIFT;
1477
1478	/* Don't miss unaligned end */
1479	if (!IS_ALIGNED(end, PAGE_SIZE))
1480		index_end++;
1481
1482	curr_sample_pos = 0;
1483	while (index < index_end) {
1484		page = find_get_page(inode->i_mapping, index);
1485		in_data = kmap(page);
1486		/* Handle case where the start is not aligned to PAGE_SIZE */
1487		i = start % PAGE_SIZE;
1488		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1489			/* Don't sample any garbage from the last page */
1490			if (start > end - SAMPLING_READ_SIZE)
1491				break;
1492			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1493					SAMPLING_READ_SIZE);
1494			i += SAMPLING_INTERVAL;
1495			start += SAMPLING_INTERVAL;
1496			curr_sample_pos += SAMPLING_READ_SIZE;
1497		}
1498		kunmap(page);
1499		put_page(page);
1500
1501		index++;
1502	}
1503
1504	ws->sample_size = curr_sample_pos;
1505}
1506
1507/*
1508 * Compression heuristic.
1509 *
1510 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1511 * quickly (compared to direct compression) detect data characteristics
1512 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1513 * data.
1514 *
1515 * The following types of analysis can be performed:
1516 * - detect mostly zero data
1517 * - detect data with low "byte set" size (text, etc)
1518 * - detect data with low/high "core byte" set
1519 *
1520 * Return non-zero if the compression should be done, 0 otherwise.
1521 */
1522int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1523{
1524	struct list_head *ws_list = get_workspace(0, 0);
1525	struct heuristic_ws *ws;
1526	u32 i;
1527	u8 byte;
1528	int ret = 0;
1529
1530	ws = list_entry(ws_list, struct heuristic_ws, list);
1531
1532	heuristic_collect_sample(inode, start, end, ws);
1533
1534	if (sample_repeated_patterns(ws)) {
1535		ret = 1;
1536		goto out;
1537	}
1538
1539	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1540
1541	for (i = 0; i < ws->sample_size; i++) {
1542		byte = ws->sample[i];
1543		ws->bucket[byte].count++;
1544	}
1545
1546	i = byte_set_size(ws);
1547	if (i < BYTE_SET_THRESHOLD) {
1548		ret = 2;
1549		goto out;
1550	}
1551
1552	i = byte_core_set_size(ws);
1553	if (i <= BYTE_CORE_SET_LOW) {
1554		ret = 3;
1555		goto out;
1556	}
1557
1558	if (i >= BYTE_CORE_SET_HIGH) {
1559		ret = 0;
1560		goto out;
1561	}
1562
1563	i = shannon_entropy(ws);
1564	if (i <= ENTROPY_LVL_ACEPTABLE) {
1565		ret = 4;
1566		goto out;
1567	}
1568
1569	/*
1570	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1571	 * needed to give green light to compression.
1572	 *
1573	 * For now just assume that compression at that level is not worth the
1574	 * resources because:
1575	 *
1576	 * 1. it is possible to defrag the data later
1577	 *
1578	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1579	 * values, every bucket has counter at level ~54. The heuristic would
1580	 * be confused. This can happen when data have some internal repeated
1581	 * patterns like "abbacbbc...". This can be detected by analyzing
1582	 * pairs of bytes, which is too costly.
1583	 */
1584	if (i < ENTROPY_LVL_HIGH) {
1585		ret = 5;
1586		goto out;
1587	} else {
1588		ret = 0;
1589		goto out;
1590	}
1591
1592out:
1593	put_workspace(0, ws_list);
1594	return ret;
1595}
1596
1597/*
1598 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1599 * level, unrecognized string will set the default level
1600 */
1601unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1602{
1603	unsigned int level = 0;
1604	int ret;
1605
1606	if (!type)
1607		return 0;
1608
1609	if (str[0] == ':') {
1610		ret = kstrtouint(str + 1, 10, &level);
1611		if (ret)
1612			level = 0;
1613	}
1614
1615	level = btrfs_compress_set_level(type, level);
1616
1617	return level;
1618}
1619
1620/*
1621 * Adjust @level according to the limits of the compression algorithm or
1622 * fallback to default
1623 */
1624unsigned int btrfs_compress_set_level(int type, unsigned level)
1625{
1626	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1627
1628	if (level == 0)
1629		level = ops->default_level;
1630	else
1631		level = min(level, ops->max_level);
1632
1633	return level;
1634}