Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2015 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23#include "e1000.h"
24
25static s32 e1000_wait_autoneg(struct e1000_hw *hw);
26static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
27 u16 *data, bool read, bool page_set);
28static u32 e1000_get_phy_addr_for_hv_page(u32 page);
29static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
30 u16 *data, bool read);
31
32/* Cable length tables */
33static const u16 e1000_m88_cable_length_table[] = {
34 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
35};
36
37#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
38 ARRAY_SIZE(e1000_m88_cable_length_table)
39
40static const u16 e1000_igp_2_cable_length_table[] = {
41 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
42 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
43 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
44 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
45 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
46 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
47 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
48 124
49};
50
51#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 ARRAY_SIZE(e1000_igp_2_cable_length_table)
53
54/**
55 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
56 * @hw: pointer to the HW structure
57 *
58 * Read the PHY management control register and check whether a PHY reset
59 * is blocked. If a reset is not blocked return 0, otherwise
60 * return E1000_BLK_PHY_RESET (12).
61 **/
62s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
63{
64 u32 manc;
65
66 manc = er32(MANC);
67
68 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
69}
70
71/**
72 * e1000e_get_phy_id - Retrieve the PHY ID and revision
73 * @hw: pointer to the HW structure
74 *
75 * Reads the PHY registers and stores the PHY ID and possibly the PHY
76 * revision in the hardware structure.
77 **/
78s32 e1000e_get_phy_id(struct e1000_hw *hw)
79{
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val = 0;
82 u16 phy_id;
83 u16 retry_count = 0;
84
85 if (!phy->ops.read_reg)
86 return 0;
87
88 while (retry_count < 2) {
89 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
90 if (ret_val)
91 return ret_val;
92
93 phy->id = (u32)(phy_id << 16);
94 usleep_range(20, 40);
95 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
96 if (ret_val)
97 return ret_val;
98
99 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
100 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
101
102 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
103 return 0;
104
105 retry_count++;
106 }
107
108 return 0;
109}
110
111/**
112 * e1000e_phy_reset_dsp - Reset PHY DSP
113 * @hw: pointer to the HW structure
114 *
115 * Reset the digital signal processor.
116 **/
117s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
118{
119 s32 ret_val;
120
121 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 if (ret_val)
123 return ret_val;
124
125 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
126}
127
128/**
129 * e1000e_read_phy_reg_mdic - Read MDI control register
130 * @hw: pointer to the HW structure
131 * @offset: register offset to be read
132 * @data: pointer to the read data
133 *
134 * Reads the MDI control register in the PHY at offset and stores the
135 * information read to data.
136 **/
137s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
138{
139 struct e1000_phy_info *phy = &hw->phy;
140 u32 i, mdic = 0;
141
142 if (offset > MAX_PHY_REG_ADDRESS) {
143 e_dbg("PHY Address %d is out of range\n", offset);
144 return -E1000_ERR_PARAM;
145 }
146
147 /* Set up Op-code, Phy Address, and register offset in the MDI
148 * Control register. The MAC will take care of interfacing with the
149 * PHY to retrieve the desired data.
150 */
151 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
152 (phy->addr << E1000_MDIC_PHY_SHIFT) |
153 (E1000_MDIC_OP_READ));
154
155 ew32(MDIC, mdic);
156
157 /* Poll the ready bit to see if the MDI read completed
158 * Increasing the time out as testing showed failures with
159 * the lower time out
160 */
161 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
162 udelay(50);
163 mdic = er32(MDIC);
164 if (mdic & E1000_MDIC_READY)
165 break;
166 }
167 if (!(mdic & E1000_MDIC_READY)) {
168 e_dbg("MDI Read did not complete\n");
169 return -E1000_ERR_PHY;
170 }
171 if (mdic & E1000_MDIC_ERROR) {
172 e_dbg("MDI Error\n");
173 return -E1000_ERR_PHY;
174 }
175 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
176 e_dbg("MDI Read offset error - requested %d, returned %d\n",
177 offset,
178 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
179 return -E1000_ERR_PHY;
180 }
181 *data = (u16)mdic;
182
183 /* Allow some time after each MDIC transaction to avoid
184 * reading duplicate data in the next MDIC transaction.
185 */
186 if (hw->mac.type == e1000_pch2lan)
187 udelay(100);
188
189 return 0;
190}
191
192/**
193 * e1000e_write_phy_reg_mdic - Write MDI control register
194 * @hw: pointer to the HW structure
195 * @offset: register offset to write to
196 * @data: data to write to register at offset
197 *
198 * Writes data to MDI control register in the PHY at offset.
199 **/
200s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
201{
202 struct e1000_phy_info *phy = &hw->phy;
203 u32 i, mdic = 0;
204
205 if (offset > MAX_PHY_REG_ADDRESS) {
206 e_dbg("PHY Address %d is out of range\n", offset);
207 return -E1000_ERR_PARAM;
208 }
209
210 /* Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
213 */
214 mdic = (((u32)data) |
215 (offset << E1000_MDIC_REG_SHIFT) |
216 (phy->addr << E1000_MDIC_PHY_SHIFT) |
217 (E1000_MDIC_OP_WRITE));
218
219 ew32(MDIC, mdic);
220
221 /* Poll the ready bit to see if the MDI read completed
222 * Increasing the time out as testing showed failures with
223 * the lower time out
224 */
225 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
226 udelay(50);
227 mdic = er32(MDIC);
228 if (mdic & E1000_MDIC_READY)
229 break;
230 }
231 if (!(mdic & E1000_MDIC_READY)) {
232 e_dbg("MDI Write did not complete\n");
233 return -E1000_ERR_PHY;
234 }
235 if (mdic & E1000_MDIC_ERROR) {
236 e_dbg("MDI Error\n");
237 return -E1000_ERR_PHY;
238 }
239 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
240 e_dbg("MDI Write offset error - requested %d, returned %d\n",
241 offset,
242 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
243 return -E1000_ERR_PHY;
244 }
245
246 /* Allow some time after each MDIC transaction to avoid
247 * reading duplicate data in the next MDIC transaction.
248 */
249 if (hw->mac.type == e1000_pch2lan)
250 udelay(100);
251
252 return 0;
253}
254
255/**
256 * e1000e_read_phy_reg_m88 - Read m88 PHY register
257 * @hw: pointer to the HW structure
258 * @offset: register offset to be read
259 * @data: pointer to the read data
260 *
261 * Acquires semaphore, if necessary, then reads the PHY register at offset
262 * and storing the retrieved information in data. Release any acquired
263 * semaphores before exiting.
264 **/
265s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
266{
267 s32 ret_val;
268
269 ret_val = hw->phy.ops.acquire(hw);
270 if (ret_val)
271 return ret_val;
272
273 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
274 data);
275
276 hw->phy.ops.release(hw);
277
278 return ret_val;
279}
280
281/**
282 * e1000e_write_phy_reg_m88 - Write m88 PHY register
283 * @hw: pointer to the HW structure
284 * @offset: register offset to write to
285 * @data: data to write at register offset
286 *
287 * Acquires semaphore, if necessary, then writes the data to PHY register
288 * at the offset. Release any acquired semaphores before exiting.
289 **/
290s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
291{
292 s32 ret_val;
293
294 ret_val = hw->phy.ops.acquire(hw);
295 if (ret_val)
296 return ret_val;
297
298 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
299 data);
300
301 hw->phy.ops.release(hw);
302
303 return ret_val;
304}
305
306/**
307 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
308 * @hw: pointer to the HW structure
309 * @page: page to set (shifted left when necessary)
310 *
311 * Sets PHY page required for PHY register access. Assumes semaphore is
312 * already acquired. Note, this function sets phy.addr to 1 so the caller
313 * must set it appropriately (if necessary) after this function returns.
314 **/
315s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
316{
317 e_dbg("Setting page 0x%x\n", page);
318
319 hw->phy.addr = 1;
320
321 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
322}
323
324/**
325 * __e1000e_read_phy_reg_igp - Read igp PHY register
326 * @hw: pointer to the HW structure
327 * @offset: register offset to be read
328 * @data: pointer to the read data
329 * @locked: semaphore has already been acquired or not
330 *
331 * Acquires semaphore, if necessary, then reads the PHY register at offset
332 * and stores the retrieved information in data. Release any acquired
333 * semaphores before exiting.
334 **/
335static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
336 bool locked)
337{
338 s32 ret_val = 0;
339
340 if (!locked) {
341 if (!hw->phy.ops.acquire)
342 return 0;
343
344 ret_val = hw->phy.ops.acquire(hw);
345 if (ret_val)
346 return ret_val;
347 }
348
349 if (offset > MAX_PHY_MULTI_PAGE_REG)
350 ret_val = e1000e_write_phy_reg_mdic(hw,
351 IGP01E1000_PHY_PAGE_SELECT,
352 (u16)offset);
353 if (!ret_val)
354 ret_val = e1000e_read_phy_reg_mdic(hw,
355 MAX_PHY_REG_ADDRESS & offset,
356 data);
357 if (!locked)
358 hw->phy.ops.release(hw);
359
360 return ret_val;
361}
362
363/**
364 * e1000e_read_phy_reg_igp - Read igp PHY register
365 * @hw: pointer to the HW structure
366 * @offset: register offset to be read
367 * @data: pointer to the read data
368 *
369 * Acquires semaphore then reads the PHY register at offset and stores the
370 * retrieved information in data.
371 * Release the acquired semaphore before exiting.
372 **/
373s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
374{
375 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
376}
377
378/**
379 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
380 * @hw: pointer to the HW structure
381 * @offset: register offset to be read
382 * @data: pointer to the read data
383 *
384 * Reads the PHY register at offset and stores the retrieved information
385 * in data. Assumes semaphore already acquired.
386 **/
387s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
388{
389 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
390}
391
392/**
393 * e1000e_write_phy_reg_igp - Write igp PHY register
394 * @hw: pointer to the HW structure
395 * @offset: register offset to write to
396 * @data: data to write at register offset
397 * @locked: semaphore has already been acquired or not
398 *
399 * Acquires semaphore, if necessary, then writes the data to PHY register
400 * at the offset. Release any acquired semaphores before exiting.
401 **/
402static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
403 bool locked)
404{
405 s32 ret_val = 0;
406
407 if (!locked) {
408 if (!hw->phy.ops.acquire)
409 return 0;
410
411 ret_val = hw->phy.ops.acquire(hw);
412 if (ret_val)
413 return ret_val;
414 }
415
416 if (offset > MAX_PHY_MULTI_PAGE_REG)
417 ret_val = e1000e_write_phy_reg_mdic(hw,
418 IGP01E1000_PHY_PAGE_SELECT,
419 (u16)offset);
420 if (!ret_val)
421 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
422 offset, data);
423 if (!locked)
424 hw->phy.ops.release(hw);
425
426 return ret_val;
427}
428
429/**
430 * e1000e_write_phy_reg_igp - Write igp PHY register
431 * @hw: pointer to the HW structure
432 * @offset: register offset to write to
433 * @data: data to write at register offset
434 *
435 * Acquires semaphore then writes the data to PHY register
436 * at the offset. Release any acquired semaphores before exiting.
437 **/
438s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
439{
440 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
441}
442
443/**
444 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
445 * @hw: pointer to the HW structure
446 * @offset: register offset to write to
447 * @data: data to write at register offset
448 *
449 * Writes the data to PHY register at the offset.
450 * Assumes semaphore already acquired.
451 **/
452s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
453{
454 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
455}
456
457/**
458 * __e1000_read_kmrn_reg - Read kumeran register
459 * @hw: pointer to the HW structure
460 * @offset: register offset to be read
461 * @data: pointer to the read data
462 * @locked: semaphore has already been acquired or not
463 *
464 * Acquires semaphore, if necessary. Then reads the PHY register at offset
465 * using the kumeran interface. The information retrieved is stored in data.
466 * Release any acquired semaphores before exiting.
467 **/
468static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
469 bool locked)
470{
471 u32 kmrnctrlsta;
472
473 if (!locked) {
474 s32 ret_val = 0;
475
476 if (!hw->phy.ops.acquire)
477 return 0;
478
479 ret_val = hw->phy.ops.acquire(hw);
480 if (ret_val)
481 return ret_val;
482 }
483
484 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
485 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
486 ew32(KMRNCTRLSTA, kmrnctrlsta);
487 e1e_flush();
488
489 udelay(2);
490
491 kmrnctrlsta = er32(KMRNCTRLSTA);
492 *data = (u16)kmrnctrlsta;
493
494 if (!locked)
495 hw->phy.ops.release(hw);
496
497 return 0;
498}
499
500/**
501 * e1000e_read_kmrn_reg - Read kumeran register
502 * @hw: pointer to the HW structure
503 * @offset: register offset to be read
504 * @data: pointer to the read data
505 *
506 * Acquires semaphore then reads the PHY register at offset using the
507 * kumeran interface. The information retrieved is stored in data.
508 * Release the acquired semaphore before exiting.
509 **/
510s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
511{
512 return __e1000_read_kmrn_reg(hw, offset, data, false);
513}
514
515/**
516 * e1000e_read_kmrn_reg_locked - Read kumeran register
517 * @hw: pointer to the HW structure
518 * @offset: register offset to be read
519 * @data: pointer to the read data
520 *
521 * Reads the PHY register at offset using the kumeran interface. The
522 * information retrieved is stored in data.
523 * Assumes semaphore already acquired.
524 **/
525s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
526{
527 return __e1000_read_kmrn_reg(hw, offset, data, true);
528}
529
530/**
531 * __e1000_write_kmrn_reg - Write kumeran register
532 * @hw: pointer to the HW structure
533 * @offset: register offset to write to
534 * @data: data to write at register offset
535 * @locked: semaphore has already been acquired or not
536 *
537 * Acquires semaphore, if necessary. Then write the data to PHY register
538 * at the offset using the kumeran interface. Release any acquired semaphores
539 * before exiting.
540 **/
541static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
542 bool locked)
543{
544 u32 kmrnctrlsta;
545
546 if (!locked) {
547 s32 ret_val = 0;
548
549 if (!hw->phy.ops.acquire)
550 return 0;
551
552 ret_val = hw->phy.ops.acquire(hw);
553 if (ret_val)
554 return ret_val;
555 }
556
557 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
558 E1000_KMRNCTRLSTA_OFFSET) | data;
559 ew32(KMRNCTRLSTA, kmrnctrlsta);
560 e1e_flush();
561
562 udelay(2);
563
564 if (!locked)
565 hw->phy.ops.release(hw);
566
567 return 0;
568}
569
570/**
571 * e1000e_write_kmrn_reg - Write kumeran register
572 * @hw: pointer to the HW structure
573 * @offset: register offset to write to
574 * @data: data to write at register offset
575 *
576 * Acquires semaphore then writes the data to the PHY register at the offset
577 * using the kumeran interface. Release the acquired semaphore before exiting.
578 **/
579s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
580{
581 return __e1000_write_kmrn_reg(hw, offset, data, false);
582}
583
584/**
585 * e1000e_write_kmrn_reg_locked - Write kumeran register
586 * @hw: pointer to the HW structure
587 * @offset: register offset to write to
588 * @data: data to write at register offset
589 *
590 * Write the data to PHY register at the offset using the kumeran interface.
591 * Assumes semaphore already acquired.
592 **/
593s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
594{
595 return __e1000_write_kmrn_reg(hw, offset, data, true);
596}
597
598/**
599 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
600 * @hw: pointer to the HW structure
601 *
602 * Sets up Master/slave mode
603 **/
604static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
605{
606 s32 ret_val;
607 u16 phy_data;
608
609 /* Resolve Master/Slave mode */
610 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
611 if (ret_val)
612 return ret_val;
613
614 /* load defaults for future use */
615 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
616 ((phy_data & CTL1000_AS_MASTER) ?
617 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
618
619 switch (hw->phy.ms_type) {
620 case e1000_ms_force_master:
621 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
622 break;
623 case e1000_ms_force_slave:
624 phy_data |= CTL1000_ENABLE_MASTER;
625 phy_data &= ~(CTL1000_AS_MASTER);
626 break;
627 case e1000_ms_auto:
628 phy_data &= ~CTL1000_ENABLE_MASTER;
629 /* fall-through */
630 default:
631 break;
632 }
633
634 return e1e_wphy(hw, MII_CTRL1000, phy_data);
635}
636
637/**
638 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
639 * @hw: pointer to the HW structure
640 *
641 * Sets up Carrier-sense on Transmit and downshift values.
642 **/
643s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
644{
645 s32 ret_val;
646 u16 phy_data;
647
648 /* Enable CRS on Tx. This must be set for half-duplex operation. */
649 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
650 if (ret_val)
651 return ret_val;
652
653 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
654
655 /* Enable downshift */
656 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
657
658 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
659 if (ret_val)
660 return ret_val;
661
662 /* Set MDI/MDIX mode */
663 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
664 if (ret_val)
665 return ret_val;
666 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
667 /* Options:
668 * 0 - Auto (default)
669 * 1 - MDI mode
670 * 2 - MDI-X mode
671 */
672 switch (hw->phy.mdix) {
673 case 1:
674 break;
675 case 2:
676 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
677 break;
678 case 0:
679 default:
680 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
681 break;
682 }
683 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
684 if (ret_val)
685 return ret_val;
686
687 return e1000_set_master_slave_mode(hw);
688}
689
690/**
691 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
692 * @hw: pointer to the HW structure
693 *
694 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
695 * and downshift values are set also.
696 **/
697s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
698{
699 struct e1000_phy_info *phy = &hw->phy;
700 s32 ret_val;
701 u16 phy_data;
702
703 /* Enable CRS on Tx. This must be set for half-duplex operation. */
704 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
705 if (ret_val)
706 return ret_val;
707
708 /* For BM PHY this bit is downshift enable */
709 if (phy->type != e1000_phy_bm)
710 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
711
712 /* Options:
713 * MDI/MDI-X = 0 (default)
714 * 0 - Auto for all speeds
715 * 1 - MDI mode
716 * 2 - MDI-X mode
717 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
718 */
719 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
720
721 switch (phy->mdix) {
722 case 1:
723 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
724 break;
725 case 2:
726 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
727 break;
728 case 3:
729 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
730 break;
731 case 0:
732 default:
733 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
734 break;
735 }
736
737 /* Options:
738 * disable_polarity_correction = 0 (default)
739 * Automatic Correction for Reversed Cable Polarity
740 * 0 - Disabled
741 * 1 - Enabled
742 */
743 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
744 if (phy->disable_polarity_correction)
745 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
746
747 /* Enable downshift on BM (disabled by default) */
748 if (phy->type == e1000_phy_bm) {
749 /* For 82574/82583, first disable then enable downshift */
750 if (phy->id == BME1000_E_PHY_ID_R2) {
751 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
752 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
753 phy_data);
754 if (ret_val)
755 return ret_val;
756 /* Commit the changes. */
757 ret_val = phy->ops.commit(hw);
758 if (ret_val) {
759 e_dbg("Error committing the PHY changes\n");
760 return ret_val;
761 }
762 }
763
764 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
765 }
766
767 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
768 if (ret_val)
769 return ret_val;
770
771 if ((phy->type == e1000_phy_m88) &&
772 (phy->revision < E1000_REVISION_4) &&
773 (phy->id != BME1000_E_PHY_ID_R2)) {
774 /* Force TX_CLK in the Extended PHY Specific Control Register
775 * to 25MHz clock.
776 */
777 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
778 if (ret_val)
779 return ret_val;
780
781 phy_data |= M88E1000_EPSCR_TX_CLK_25;
782
783 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
784 /* 82573L PHY - set the downshift counter to 5x. */
785 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
786 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
787 } else {
788 /* Configure Master and Slave downshift values */
789 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
790 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
791 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
792 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
793 }
794 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
795 if (ret_val)
796 return ret_val;
797 }
798
799 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
800 /* Set PHY page 0, register 29 to 0x0003 */
801 ret_val = e1e_wphy(hw, 29, 0x0003);
802 if (ret_val)
803 return ret_val;
804
805 /* Set PHY page 0, register 30 to 0x0000 */
806 ret_val = e1e_wphy(hw, 30, 0x0000);
807 if (ret_val)
808 return ret_val;
809 }
810
811 /* Commit the changes. */
812 if (phy->ops.commit) {
813 ret_val = phy->ops.commit(hw);
814 if (ret_val) {
815 e_dbg("Error committing the PHY changes\n");
816 return ret_val;
817 }
818 }
819
820 if (phy->type == e1000_phy_82578) {
821 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
822 if (ret_val)
823 return ret_val;
824
825 /* 82578 PHY - set the downshift count to 1x. */
826 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
827 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
828 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
829 if (ret_val)
830 return ret_val;
831 }
832
833 return 0;
834}
835
836/**
837 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
838 * @hw: pointer to the HW structure
839 *
840 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
841 * igp PHY's.
842 **/
843s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
844{
845 struct e1000_phy_info *phy = &hw->phy;
846 s32 ret_val;
847 u16 data;
848
849 ret_val = e1000_phy_hw_reset(hw);
850 if (ret_val) {
851 e_dbg("Error resetting the PHY.\n");
852 return ret_val;
853 }
854
855 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
856 * timeout issues when LFS is enabled.
857 */
858 msleep(100);
859
860 /* disable lplu d0 during driver init */
861 if (hw->phy.ops.set_d0_lplu_state) {
862 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
863 if (ret_val) {
864 e_dbg("Error Disabling LPLU D0\n");
865 return ret_val;
866 }
867 }
868 /* Configure mdi-mdix settings */
869 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
870 if (ret_val)
871 return ret_val;
872
873 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
874
875 switch (phy->mdix) {
876 case 1:
877 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
878 break;
879 case 2:
880 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
881 break;
882 case 0:
883 default:
884 data |= IGP01E1000_PSCR_AUTO_MDIX;
885 break;
886 }
887 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
888 if (ret_val)
889 return ret_val;
890
891 /* set auto-master slave resolution settings */
892 if (hw->mac.autoneg) {
893 /* when autonegotiation advertisement is only 1000Mbps then we
894 * should disable SmartSpeed and enable Auto MasterSlave
895 * resolution as hardware default.
896 */
897 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
898 /* Disable SmartSpeed */
899 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
900 &data);
901 if (ret_val)
902 return ret_val;
903
904 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
905 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906 data);
907 if (ret_val)
908 return ret_val;
909
910 /* Set auto Master/Slave resolution process */
911 ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
912 if (ret_val)
913 return ret_val;
914
915 data &= ~CTL1000_ENABLE_MASTER;
916 ret_val = e1e_wphy(hw, MII_CTRL1000, data);
917 if (ret_val)
918 return ret_val;
919 }
920
921 ret_val = e1000_set_master_slave_mode(hw);
922 }
923
924 return ret_val;
925}
926
927/**
928 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
929 * @hw: pointer to the HW structure
930 *
931 * Reads the MII auto-neg advertisement register and/or the 1000T control
932 * register and if the PHY is already setup for auto-negotiation, then
933 * return successful. Otherwise, setup advertisement and flow control to
934 * the appropriate values for the wanted auto-negotiation.
935 **/
936static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
937{
938 struct e1000_phy_info *phy = &hw->phy;
939 s32 ret_val;
940 u16 mii_autoneg_adv_reg;
941 u16 mii_1000t_ctrl_reg = 0;
942
943 phy->autoneg_advertised &= phy->autoneg_mask;
944
945 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
946 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
947 if (ret_val)
948 return ret_val;
949
950 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
951 /* Read the MII 1000Base-T Control Register (Address 9). */
952 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
953 if (ret_val)
954 return ret_val;
955 }
956
957 /* Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
961 * individually.
962 */
963
964 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
965 * Advertisement Register (Address 4) and the 1000 mb speed bits in
966 * the 1000Base-T Control Register (Address 9).
967 */
968 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
969 ADVERTISE_100HALF |
970 ADVERTISE_10FULL | ADVERTISE_10HALF);
971 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
972
973 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
974
975 /* Do we want to advertise 10 Mb Half Duplex? */
976 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
977 e_dbg("Advertise 10mb Half duplex\n");
978 mii_autoneg_adv_reg |= ADVERTISE_10HALF;
979 }
980
981 /* Do we want to advertise 10 Mb Full Duplex? */
982 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
983 e_dbg("Advertise 10mb Full duplex\n");
984 mii_autoneg_adv_reg |= ADVERTISE_10FULL;
985 }
986
987 /* Do we want to advertise 100 Mb Half Duplex? */
988 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
989 e_dbg("Advertise 100mb Half duplex\n");
990 mii_autoneg_adv_reg |= ADVERTISE_100HALF;
991 }
992
993 /* Do we want to advertise 100 Mb Full Duplex? */
994 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
995 e_dbg("Advertise 100mb Full duplex\n");
996 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
997 }
998
999 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1000 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1001 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1002
1003 /* Do we want to advertise 1000 Mb Full Duplex? */
1004 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1005 e_dbg("Advertise 1000mb Full duplex\n");
1006 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1007 }
1008
1009 /* Check for a software override of the flow control settings, and
1010 * setup the PHY advertisement registers accordingly. If
1011 * auto-negotiation is enabled, then software will have to set the
1012 * "PAUSE" bits to the correct value in the Auto-Negotiation
1013 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1014 * negotiation.
1015 *
1016 * The possible values of the "fc" parameter are:
1017 * 0: Flow control is completely disabled
1018 * 1: Rx flow control is enabled (we can receive pause frames
1019 * but not send pause frames).
1020 * 2: Tx flow control is enabled (we can send pause frames
1021 * but we do not support receiving pause frames).
1022 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1023 * other: No software override. The flow control configuration
1024 * in the EEPROM is used.
1025 */
1026 switch (hw->fc.current_mode) {
1027 case e1000_fc_none:
1028 /* Flow control (Rx & Tx) is completely disabled by a
1029 * software over-ride.
1030 */
1031 mii_autoneg_adv_reg &=
1032 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1033 break;
1034 case e1000_fc_rx_pause:
1035 /* Rx Flow control is enabled, and Tx Flow control is
1036 * disabled, by a software over-ride.
1037 *
1038 * Since there really isn't a way to advertise that we are
1039 * capable of Rx Pause ONLY, we will advertise that we
1040 * support both symmetric and asymmetric Rx PAUSE. Later
1041 * (in e1000e_config_fc_after_link_up) we will disable the
1042 * hw's ability to send PAUSE frames.
1043 */
1044 mii_autoneg_adv_reg |=
1045 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1046 break;
1047 case e1000_fc_tx_pause:
1048 /* Tx Flow control is enabled, and Rx Flow control is
1049 * disabled, by a software over-ride.
1050 */
1051 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1052 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1053 break;
1054 case e1000_fc_full:
1055 /* Flow control (both Rx and Tx) is enabled by a software
1056 * over-ride.
1057 */
1058 mii_autoneg_adv_reg |=
1059 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1060 break;
1061 default:
1062 e_dbg("Flow control param set incorrectly\n");
1063 return -E1000_ERR_CONFIG;
1064 }
1065
1066 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1067 if (ret_val)
1068 return ret_val;
1069
1070 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1071
1072 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1073 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1074
1075 return ret_val;
1076}
1077
1078/**
1079 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1080 * @hw: pointer to the HW structure
1081 *
1082 * Performs initial bounds checking on autoneg advertisement parameter, then
1083 * configure to advertise the full capability. Setup the PHY to autoneg
1084 * and restart the negotiation process between the link partner. If
1085 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1086 **/
1087static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1088{
1089 struct e1000_phy_info *phy = &hw->phy;
1090 s32 ret_val;
1091 u16 phy_ctrl;
1092
1093 /* Perform some bounds checking on the autoneg advertisement
1094 * parameter.
1095 */
1096 phy->autoneg_advertised &= phy->autoneg_mask;
1097
1098 /* If autoneg_advertised is zero, we assume it was not defaulted
1099 * by the calling code so we set to advertise full capability.
1100 */
1101 if (!phy->autoneg_advertised)
1102 phy->autoneg_advertised = phy->autoneg_mask;
1103
1104 e_dbg("Reconfiguring auto-neg advertisement params\n");
1105 ret_val = e1000_phy_setup_autoneg(hw);
1106 if (ret_val) {
1107 e_dbg("Error Setting up Auto-Negotiation\n");
1108 return ret_val;
1109 }
1110 e_dbg("Restarting Auto-Neg\n");
1111
1112 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1113 * the Auto Neg Restart bit in the PHY control register.
1114 */
1115 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1116 if (ret_val)
1117 return ret_val;
1118
1119 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1120 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1121 if (ret_val)
1122 return ret_val;
1123
1124 /* Does the user want to wait for Auto-Neg to complete here, or
1125 * check at a later time (for example, callback routine).
1126 */
1127 if (phy->autoneg_wait_to_complete) {
1128 ret_val = e1000_wait_autoneg(hw);
1129 if (ret_val) {
1130 e_dbg("Error while waiting for autoneg to complete\n");
1131 return ret_val;
1132 }
1133 }
1134
1135 hw->mac.get_link_status = true;
1136
1137 return ret_val;
1138}
1139
1140/**
1141 * e1000e_setup_copper_link - Configure copper link settings
1142 * @hw: pointer to the HW structure
1143 *
1144 * Calls the appropriate function to configure the link for auto-neg or forced
1145 * speed and duplex. Then we check for link, once link is established calls
1146 * to configure collision distance and flow control are called. If link is
1147 * not established, we return -E1000_ERR_PHY (-2).
1148 **/
1149s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1150{
1151 s32 ret_val;
1152 bool link;
1153
1154 if (hw->mac.autoneg) {
1155 /* Setup autoneg and flow control advertisement and perform
1156 * autonegotiation.
1157 */
1158 ret_val = e1000_copper_link_autoneg(hw);
1159 if (ret_val)
1160 return ret_val;
1161 } else {
1162 /* PHY will be set to 10H, 10F, 100H or 100F
1163 * depending on user settings.
1164 */
1165 e_dbg("Forcing Speed and Duplex\n");
1166 ret_val = hw->phy.ops.force_speed_duplex(hw);
1167 if (ret_val) {
1168 e_dbg("Error Forcing Speed and Duplex\n");
1169 return ret_val;
1170 }
1171 }
1172
1173 /* Check link status. Wait up to 100 microseconds for link to become
1174 * valid.
1175 */
1176 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1177 &link);
1178 if (ret_val)
1179 return ret_val;
1180
1181 if (link) {
1182 e_dbg("Valid link established!!!\n");
1183 hw->mac.ops.config_collision_dist(hw);
1184 ret_val = e1000e_config_fc_after_link_up(hw);
1185 } else {
1186 e_dbg("Unable to establish link!!!\n");
1187 }
1188
1189 return ret_val;
1190}
1191
1192/**
1193 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1194 * @hw: pointer to the HW structure
1195 *
1196 * Calls the PHY setup function to force speed and duplex. Clears the
1197 * auto-crossover to force MDI manually. Waits for link and returns
1198 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 **/
1200s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201{
1202 struct e1000_phy_info *phy = &hw->phy;
1203 s32 ret_val;
1204 u16 phy_data;
1205 bool link;
1206
1207 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1208 if (ret_val)
1209 return ret_val;
1210
1211 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212
1213 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1214 if (ret_val)
1215 return ret_val;
1216
1217 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1218 * forced whenever speed and duplex are forced.
1219 */
1220 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221 if (ret_val)
1222 return ret_val;
1223
1224 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1226
1227 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228 if (ret_val)
1229 return ret_val;
1230
1231 e_dbg("IGP PSCR: %X\n", phy_data);
1232
1233 udelay(1);
1234
1235 if (phy->autoneg_wait_to_complete) {
1236 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1237
1238 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1239 100000, &link);
1240 if (ret_val)
1241 return ret_val;
1242
1243 if (!link)
1244 e_dbg("Link taking longer than expected.\n");
1245
1246 /* Try once more */
1247 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1248 100000, &link);
1249 }
1250
1251 return ret_val;
1252}
1253
1254/**
1255 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1256 * @hw: pointer to the HW structure
1257 *
1258 * Calls the PHY setup function to force speed and duplex. Clears the
1259 * auto-crossover to force MDI manually. Resets the PHY to commit the
1260 * changes. If time expires while waiting for link up, we reset the DSP.
1261 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1262 * successful completion, else return corresponding error code.
1263 **/
1264s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1265{
1266 struct e1000_phy_info *phy = &hw->phy;
1267 s32 ret_val;
1268 u16 phy_data;
1269 bool link;
1270
1271 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1272 * forced whenever speed and duplex are forced.
1273 */
1274 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275 if (ret_val)
1276 return ret_val;
1277
1278 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1279 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280 if (ret_val)
1281 return ret_val;
1282
1283 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1284
1285 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1286 if (ret_val)
1287 return ret_val;
1288
1289 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1290
1291 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1292 if (ret_val)
1293 return ret_val;
1294
1295 /* Reset the phy to commit changes. */
1296 if (hw->phy.ops.commit) {
1297 ret_val = hw->phy.ops.commit(hw);
1298 if (ret_val)
1299 return ret_val;
1300 }
1301
1302 if (phy->autoneg_wait_to_complete) {
1303 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1304
1305 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1306 100000, &link);
1307 if (ret_val)
1308 return ret_val;
1309
1310 if (!link) {
1311 if (hw->phy.type != e1000_phy_m88) {
1312 e_dbg("Link taking longer than expected.\n");
1313 } else {
1314 /* We didn't get link.
1315 * Reset the DSP and cross our fingers.
1316 */
1317 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1318 0x001d);
1319 if (ret_val)
1320 return ret_val;
1321 ret_val = e1000e_phy_reset_dsp(hw);
1322 if (ret_val)
1323 return ret_val;
1324 }
1325 }
1326
1327 /* Try once more */
1328 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1329 100000, &link);
1330 if (ret_val)
1331 return ret_val;
1332 }
1333
1334 if (hw->phy.type != e1000_phy_m88)
1335 return 0;
1336
1337 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1338 if (ret_val)
1339 return ret_val;
1340
1341 /* Resetting the phy means we need to re-force TX_CLK in the
1342 * Extended PHY Specific Control Register to 25MHz clock from
1343 * the reset value of 2.5MHz.
1344 */
1345 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1346 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1347 if (ret_val)
1348 return ret_val;
1349
1350 /* In addition, we must re-enable CRS on Tx for both half and full
1351 * duplex.
1352 */
1353 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354 if (ret_val)
1355 return ret_val;
1356
1357 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359
1360 return ret_val;
1361}
1362
1363/**
1364 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365 * @hw: pointer to the HW structure
1366 *
1367 * Forces the speed and duplex settings of the PHY.
1368 * This is a function pointer entry point only called by
1369 * PHY setup routines.
1370 **/
1371s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372{
1373 struct e1000_phy_info *phy = &hw->phy;
1374 s32 ret_val;
1375 u16 data;
1376 bool link;
1377
1378 ret_val = e1e_rphy(hw, MII_BMCR, &data);
1379 if (ret_val)
1380 return ret_val;
1381
1382 e1000e_phy_force_speed_duplex_setup(hw, &data);
1383
1384 ret_val = e1e_wphy(hw, MII_BMCR, data);
1385 if (ret_val)
1386 return ret_val;
1387
1388 /* Disable MDI-X support for 10/100 */
1389 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390 if (ret_val)
1391 return ret_val;
1392
1393 data &= ~IFE_PMC_AUTO_MDIX;
1394 data &= ~IFE_PMC_FORCE_MDIX;
1395
1396 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397 if (ret_val)
1398 return ret_val;
1399
1400 e_dbg("IFE PMC: %X\n", data);
1401
1402 udelay(1);
1403
1404 if (phy->autoneg_wait_to_complete) {
1405 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406
1407 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408 100000, &link);
1409 if (ret_val)
1410 return ret_val;
1411
1412 if (!link)
1413 e_dbg("Link taking longer than expected.\n");
1414
1415 /* Try once more */
1416 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417 100000, &link);
1418 if (ret_val)
1419 return ret_val;
1420 }
1421
1422 return 0;
1423}
1424
1425/**
1426 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 * @hw: pointer to the HW structure
1428 * @phy_ctrl: pointer to current value of MII_BMCR
1429 *
1430 * Forces speed and duplex on the PHY by doing the following: disable flow
1431 * control, force speed/duplex on the MAC, disable auto speed detection,
1432 * disable auto-negotiation, configure duplex, configure speed, configure
1433 * the collision distance, write configuration to CTRL register. The
1434 * caller must write to the MII_BMCR register for these settings to
1435 * take affect.
1436 **/
1437void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438{
1439 struct e1000_mac_info *mac = &hw->mac;
1440 u32 ctrl;
1441
1442 /* Turn off flow control when forcing speed/duplex */
1443 hw->fc.current_mode = e1000_fc_none;
1444
1445 /* Force speed/duplex on the mac */
1446 ctrl = er32(CTRL);
1447 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448 ctrl &= ~E1000_CTRL_SPD_SEL;
1449
1450 /* Disable Auto Speed Detection */
1451 ctrl &= ~E1000_CTRL_ASDE;
1452
1453 /* Disable autoneg on the phy */
1454 *phy_ctrl &= ~BMCR_ANENABLE;
1455
1456 /* Forcing Full or Half Duplex? */
1457 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458 ctrl &= ~E1000_CTRL_FD;
1459 *phy_ctrl &= ~BMCR_FULLDPLX;
1460 e_dbg("Half Duplex\n");
1461 } else {
1462 ctrl |= E1000_CTRL_FD;
1463 *phy_ctrl |= BMCR_FULLDPLX;
1464 e_dbg("Full Duplex\n");
1465 }
1466
1467 /* Forcing 10mb or 100mb? */
1468 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469 ctrl |= E1000_CTRL_SPD_100;
1470 *phy_ctrl |= BMCR_SPEED100;
1471 *phy_ctrl &= ~BMCR_SPEED1000;
1472 e_dbg("Forcing 100mb\n");
1473 } else {
1474 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1476 e_dbg("Forcing 10mb\n");
1477 }
1478
1479 hw->mac.ops.config_collision_dist(hw);
1480
1481 ew32(CTRL, ctrl);
1482}
1483
1484/**
1485 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1486 * @hw: pointer to the HW structure
1487 * @active: boolean used to enable/disable lplu
1488 *
1489 * Success returns 0, Failure returns 1
1490 *
1491 * The low power link up (lplu) state is set to the power management level D3
1492 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1493 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1494 * is used during Dx states where the power conservation is most important.
1495 * During driver activity, SmartSpeed should be enabled so performance is
1496 * maintained.
1497 **/
1498s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1499{
1500 struct e1000_phy_info *phy = &hw->phy;
1501 s32 ret_val;
1502 u16 data;
1503
1504 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1505 if (ret_val)
1506 return ret_val;
1507
1508 if (!active) {
1509 data &= ~IGP02E1000_PM_D3_LPLU;
1510 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1511 if (ret_val)
1512 return ret_val;
1513 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1514 * during Dx states where the power conservation is most
1515 * important. During driver activity we should enable
1516 * SmartSpeed, so performance is maintained.
1517 */
1518 if (phy->smart_speed == e1000_smart_speed_on) {
1519 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1520 &data);
1521 if (ret_val)
1522 return ret_val;
1523
1524 data |= IGP01E1000_PSCFR_SMART_SPEED;
1525 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526 data);
1527 if (ret_val)
1528 return ret_val;
1529 } else if (phy->smart_speed == e1000_smart_speed_off) {
1530 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531 &data);
1532 if (ret_val)
1533 return ret_val;
1534
1535 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537 data);
1538 if (ret_val)
1539 return ret_val;
1540 }
1541 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1542 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1543 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1544 data |= IGP02E1000_PM_D3_LPLU;
1545 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1546 if (ret_val)
1547 return ret_val;
1548
1549 /* When LPLU is enabled, we should disable SmartSpeed */
1550 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1551 if (ret_val)
1552 return ret_val;
1553
1554 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1555 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1556 }
1557
1558 return ret_val;
1559}
1560
1561/**
1562 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1563 * @hw: pointer to the HW structure
1564 *
1565 * Success returns 0, Failure returns 1
1566 *
1567 * A downshift is detected by querying the PHY link health.
1568 **/
1569s32 e1000e_check_downshift(struct e1000_hw *hw)
1570{
1571 struct e1000_phy_info *phy = &hw->phy;
1572 s32 ret_val;
1573 u16 phy_data, offset, mask;
1574
1575 switch (phy->type) {
1576 case e1000_phy_m88:
1577 case e1000_phy_gg82563:
1578 case e1000_phy_bm:
1579 case e1000_phy_82578:
1580 offset = M88E1000_PHY_SPEC_STATUS;
1581 mask = M88E1000_PSSR_DOWNSHIFT;
1582 break;
1583 case e1000_phy_igp_2:
1584 case e1000_phy_igp_3:
1585 offset = IGP01E1000_PHY_LINK_HEALTH;
1586 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1587 break;
1588 default:
1589 /* speed downshift not supported */
1590 phy->speed_downgraded = false;
1591 return 0;
1592 }
1593
1594 ret_val = e1e_rphy(hw, offset, &phy_data);
1595
1596 if (!ret_val)
1597 phy->speed_downgraded = !!(phy_data & mask);
1598
1599 return ret_val;
1600}
1601
1602/**
1603 * e1000_check_polarity_m88 - Checks the polarity.
1604 * @hw: pointer to the HW structure
1605 *
1606 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1607 *
1608 * Polarity is determined based on the PHY specific status register.
1609 **/
1610s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1611{
1612 struct e1000_phy_info *phy = &hw->phy;
1613 s32 ret_val;
1614 u16 data;
1615
1616 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1617
1618 if (!ret_val)
1619 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1620 ? e1000_rev_polarity_reversed
1621 : e1000_rev_polarity_normal);
1622
1623 return ret_val;
1624}
1625
1626/**
1627 * e1000_check_polarity_igp - Checks the polarity.
1628 * @hw: pointer to the HW structure
1629 *
1630 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1631 *
1632 * Polarity is determined based on the PHY port status register, and the
1633 * current speed (since there is no polarity at 100Mbps).
1634 **/
1635s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1636{
1637 struct e1000_phy_info *phy = &hw->phy;
1638 s32 ret_val;
1639 u16 data, offset, mask;
1640
1641 /* Polarity is determined based on the speed of
1642 * our connection.
1643 */
1644 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1645 if (ret_val)
1646 return ret_val;
1647
1648 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1649 IGP01E1000_PSSR_SPEED_1000MBPS) {
1650 offset = IGP01E1000_PHY_PCS_INIT_REG;
1651 mask = IGP01E1000_PHY_POLARITY_MASK;
1652 } else {
1653 /* This really only applies to 10Mbps since
1654 * there is no polarity for 100Mbps (always 0).
1655 */
1656 offset = IGP01E1000_PHY_PORT_STATUS;
1657 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1658 }
1659
1660 ret_val = e1e_rphy(hw, offset, &data);
1661
1662 if (!ret_val)
1663 phy->cable_polarity = ((data & mask)
1664 ? e1000_rev_polarity_reversed
1665 : e1000_rev_polarity_normal);
1666
1667 return ret_val;
1668}
1669
1670/**
1671 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1672 * @hw: pointer to the HW structure
1673 *
1674 * Polarity is determined on the polarity reversal feature being enabled.
1675 **/
1676s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1677{
1678 struct e1000_phy_info *phy = &hw->phy;
1679 s32 ret_val;
1680 u16 phy_data, offset, mask;
1681
1682 /* Polarity is determined based on the reversal feature being enabled.
1683 */
1684 if (phy->polarity_correction) {
1685 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1686 mask = IFE_PESC_POLARITY_REVERSED;
1687 } else {
1688 offset = IFE_PHY_SPECIAL_CONTROL;
1689 mask = IFE_PSC_FORCE_POLARITY;
1690 }
1691
1692 ret_val = e1e_rphy(hw, offset, &phy_data);
1693
1694 if (!ret_val)
1695 phy->cable_polarity = ((phy_data & mask)
1696 ? e1000_rev_polarity_reversed
1697 : e1000_rev_polarity_normal);
1698
1699 return ret_val;
1700}
1701
1702/**
1703 * e1000_wait_autoneg - Wait for auto-neg completion
1704 * @hw: pointer to the HW structure
1705 *
1706 * Waits for auto-negotiation to complete or for the auto-negotiation time
1707 * limit to expire, which ever happens first.
1708 **/
1709static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1710{
1711 s32 ret_val = 0;
1712 u16 i, phy_status;
1713
1714 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1715 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1716 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1717 if (ret_val)
1718 break;
1719 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1720 if (ret_val)
1721 break;
1722 if (phy_status & BMSR_ANEGCOMPLETE)
1723 break;
1724 msleep(100);
1725 }
1726
1727 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1728 * has completed.
1729 */
1730 return ret_val;
1731}
1732
1733/**
1734 * e1000e_phy_has_link_generic - Polls PHY for link
1735 * @hw: pointer to the HW structure
1736 * @iterations: number of times to poll for link
1737 * @usec_interval: delay between polling attempts
1738 * @success: pointer to whether polling was successful or not
1739 *
1740 * Polls the PHY status register for link, 'iterations' number of times.
1741 **/
1742s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1743 u32 usec_interval, bool *success)
1744{
1745 s32 ret_val = 0;
1746 u16 i, phy_status;
1747
1748 *success = false;
1749 for (i = 0; i < iterations; i++) {
1750 /* Some PHYs require the MII_BMSR register to be read
1751 * twice due to the link bit being sticky. No harm doing
1752 * it across the board.
1753 */
1754 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1755 if (ret_val) {
1756 /* If the first read fails, another entity may have
1757 * ownership of the resources, wait and try again to
1758 * see if they have relinquished the resources yet.
1759 */
1760 if (usec_interval >= 1000)
1761 msleep(usec_interval / 1000);
1762 else
1763 udelay(usec_interval);
1764 }
1765 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1766 if (ret_val)
1767 break;
1768 if (phy_status & BMSR_LSTATUS) {
1769 *success = true;
1770 break;
1771 }
1772 if (usec_interval >= 1000)
1773 msleep(usec_interval / 1000);
1774 else
1775 udelay(usec_interval);
1776 }
1777
1778 return ret_val;
1779}
1780
1781/**
1782 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1783 * @hw: pointer to the HW structure
1784 *
1785 * Reads the PHY specific status register to retrieve the cable length
1786 * information. The cable length is determined by averaging the minimum and
1787 * maximum values to get the "average" cable length. The m88 PHY has four
1788 * possible cable length values, which are:
1789 * Register Value Cable Length
1790 * 0 < 50 meters
1791 * 1 50 - 80 meters
1792 * 2 80 - 110 meters
1793 * 3 110 - 140 meters
1794 * 4 > 140 meters
1795 **/
1796s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1797{
1798 struct e1000_phy_info *phy = &hw->phy;
1799 s32 ret_val;
1800 u16 phy_data, index;
1801
1802 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1803 if (ret_val)
1804 return ret_val;
1805
1806 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1807 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1808
1809 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1810 return -E1000_ERR_PHY;
1811
1812 phy->min_cable_length = e1000_m88_cable_length_table[index];
1813 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1814
1815 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816
1817 return 0;
1818}
1819
1820/**
1821 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1822 * @hw: pointer to the HW structure
1823 *
1824 * The automatic gain control (agc) normalizes the amplitude of the
1825 * received signal, adjusting for the attenuation produced by the
1826 * cable. By reading the AGC registers, which represent the
1827 * combination of coarse and fine gain value, the value can be put
1828 * into a lookup table to obtain the approximate cable length
1829 * for each channel.
1830 **/
1831s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1832{
1833 struct e1000_phy_info *phy = &hw->phy;
1834 s32 ret_val;
1835 u16 phy_data, i, agc_value = 0;
1836 u16 cur_agc_index, max_agc_index = 0;
1837 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1838 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1839 IGP02E1000_PHY_AGC_A,
1840 IGP02E1000_PHY_AGC_B,
1841 IGP02E1000_PHY_AGC_C,
1842 IGP02E1000_PHY_AGC_D
1843 };
1844
1845 /* Read the AGC registers for all channels */
1846 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1847 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1848 if (ret_val)
1849 return ret_val;
1850
1851 /* Getting bits 15:9, which represent the combination of
1852 * coarse and fine gain values. The result is a number
1853 * that can be put into the lookup table to obtain the
1854 * approximate cable length.
1855 */
1856 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1857 IGP02E1000_AGC_LENGTH_MASK);
1858
1859 /* Array index bound check. */
1860 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1861 (cur_agc_index == 0))
1862 return -E1000_ERR_PHY;
1863
1864 /* Remove min & max AGC values from calculation. */
1865 if (e1000_igp_2_cable_length_table[min_agc_index] >
1866 e1000_igp_2_cable_length_table[cur_agc_index])
1867 min_agc_index = cur_agc_index;
1868 if (e1000_igp_2_cable_length_table[max_agc_index] <
1869 e1000_igp_2_cable_length_table[cur_agc_index])
1870 max_agc_index = cur_agc_index;
1871
1872 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1873 }
1874
1875 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1876 e1000_igp_2_cable_length_table[max_agc_index]);
1877 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1878
1879 /* Calculate cable length with the error range of +/- 10 meters. */
1880 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1881 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1882 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1883
1884 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1885
1886 return 0;
1887}
1888
1889/**
1890 * e1000e_get_phy_info_m88 - Retrieve PHY information
1891 * @hw: pointer to the HW structure
1892 *
1893 * Valid for only copper links. Read the PHY status register (sticky read)
1894 * to verify that link is up. Read the PHY special control register to
1895 * determine the polarity and 10base-T extended distance. Read the PHY
1896 * special status register to determine MDI/MDIx and current speed. If
1897 * speed is 1000, then determine cable length, local and remote receiver.
1898 **/
1899s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1900{
1901 struct e1000_phy_info *phy = &hw->phy;
1902 s32 ret_val;
1903 u16 phy_data;
1904 bool link;
1905
1906 if (phy->media_type != e1000_media_type_copper) {
1907 e_dbg("Phy info is only valid for copper media\n");
1908 return -E1000_ERR_CONFIG;
1909 }
1910
1911 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1912 if (ret_val)
1913 return ret_val;
1914
1915 if (!link) {
1916 e_dbg("Phy info is only valid if link is up\n");
1917 return -E1000_ERR_CONFIG;
1918 }
1919
1920 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1921 if (ret_val)
1922 return ret_val;
1923
1924 phy->polarity_correction = !!(phy_data &
1925 M88E1000_PSCR_POLARITY_REVERSAL);
1926
1927 ret_val = e1000_check_polarity_m88(hw);
1928 if (ret_val)
1929 return ret_val;
1930
1931 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1932 if (ret_val)
1933 return ret_val;
1934
1935 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1936
1937 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1938 ret_val = hw->phy.ops.get_cable_length(hw);
1939 if (ret_val)
1940 return ret_val;
1941
1942 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1943 if (ret_val)
1944 return ret_val;
1945
1946 phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1947 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1948
1949 phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1950 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1951 } else {
1952 /* Set values to "undefined" */
1953 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1954 phy->local_rx = e1000_1000t_rx_status_undefined;
1955 phy->remote_rx = e1000_1000t_rx_status_undefined;
1956 }
1957
1958 return ret_val;
1959}
1960
1961/**
1962 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1963 * @hw: pointer to the HW structure
1964 *
1965 * Read PHY status to determine if link is up. If link is up, then
1966 * set/determine 10base-T extended distance and polarity correction. Read
1967 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1968 * determine on the cable length, local and remote receiver.
1969 **/
1970s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1971{
1972 struct e1000_phy_info *phy = &hw->phy;
1973 s32 ret_val;
1974 u16 data;
1975 bool link;
1976
1977 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978 if (ret_val)
1979 return ret_val;
1980
1981 if (!link) {
1982 e_dbg("Phy info is only valid if link is up\n");
1983 return -E1000_ERR_CONFIG;
1984 }
1985
1986 phy->polarity_correction = true;
1987
1988 ret_val = e1000_check_polarity_igp(hw);
1989 if (ret_val)
1990 return ret_val;
1991
1992 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1993 if (ret_val)
1994 return ret_val;
1995
1996 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1997
1998 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1999 IGP01E1000_PSSR_SPEED_1000MBPS) {
2000 ret_val = phy->ops.get_cable_length(hw);
2001 if (ret_val)
2002 return ret_val;
2003
2004 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2005 if (ret_val)
2006 return ret_val;
2007
2008 phy->local_rx = (data & LPA_1000LOCALRXOK)
2009 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2010
2011 phy->remote_rx = (data & LPA_1000REMRXOK)
2012 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2013 } else {
2014 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2015 phy->local_rx = e1000_1000t_rx_status_undefined;
2016 phy->remote_rx = e1000_1000t_rx_status_undefined;
2017 }
2018
2019 return ret_val;
2020}
2021
2022/**
2023 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2024 * @hw: pointer to the HW structure
2025 *
2026 * Populates "phy" structure with various feature states.
2027 **/
2028s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2029{
2030 struct e1000_phy_info *phy = &hw->phy;
2031 s32 ret_val;
2032 u16 data;
2033 bool link;
2034
2035 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2036 if (ret_val)
2037 return ret_val;
2038
2039 if (!link) {
2040 e_dbg("Phy info is only valid if link is up\n");
2041 return -E1000_ERR_CONFIG;
2042 }
2043
2044 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2045 if (ret_val)
2046 return ret_val;
2047 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2048
2049 if (phy->polarity_correction) {
2050 ret_val = e1000_check_polarity_ife(hw);
2051 if (ret_val)
2052 return ret_val;
2053 } else {
2054 /* Polarity is forced */
2055 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2056 ? e1000_rev_polarity_reversed
2057 : e1000_rev_polarity_normal);
2058 }
2059
2060 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2061 if (ret_val)
2062 return ret_val;
2063
2064 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2065
2066 /* The following parameters are undefined for 10/100 operation. */
2067 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2068 phy->local_rx = e1000_1000t_rx_status_undefined;
2069 phy->remote_rx = e1000_1000t_rx_status_undefined;
2070
2071 return 0;
2072}
2073
2074/**
2075 * e1000e_phy_sw_reset - PHY software reset
2076 * @hw: pointer to the HW structure
2077 *
2078 * Does a software reset of the PHY by reading the PHY control register and
2079 * setting/write the control register reset bit to the PHY.
2080 **/
2081s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2082{
2083 s32 ret_val;
2084 u16 phy_ctrl;
2085
2086 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2087 if (ret_val)
2088 return ret_val;
2089
2090 phy_ctrl |= BMCR_RESET;
2091 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2092 if (ret_val)
2093 return ret_val;
2094
2095 udelay(1);
2096
2097 return ret_val;
2098}
2099
2100/**
2101 * e1000e_phy_hw_reset_generic - PHY hardware reset
2102 * @hw: pointer to the HW structure
2103 *
2104 * Verify the reset block is not blocking us from resetting. Acquire
2105 * semaphore (if necessary) and read/set/write the device control reset
2106 * bit in the PHY. Wait the appropriate delay time for the device to
2107 * reset and release the semaphore (if necessary).
2108 **/
2109s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2110{
2111 struct e1000_phy_info *phy = &hw->phy;
2112 s32 ret_val;
2113 u32 ctrl;
2114
2115 if (phy->ops.check_reset_block) {
2116 ret_val = phy->ops.check_reset_block(hw);
2117 if (ret_val)
2118 return 0;
2119 }
2120
2121 ret_val = phy->ops.acquire(hw);
2122 if (ret_val)
2123 return ret_val;
2124
2125 ctrl = er32(CTRL);
2126 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2127 e1e_flush();
2128
2129 udelay(phy->reset_delay_us);
2130
2131 ew32(CTRL, ctrl);
2132 e1e_flush();
2133
2134 usleep_range(150, 300);
2135
2136 phy->ops.release(hw);
2137
2138 return phy->ops.get_cfg_done(hw);
2139}
2140
2141/**
2142 * e1000e_get_cfg_done_generic - Generic configuration done
2143 * @hw: pointer to the HW structure
2144 *
2145 * Generic function to wait 10 milli-seconds for configuration to complete
2146 * and return success.
2147 **/
2148s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2149{
2150 mdelay(10);
2151
2152 return 0;
2153}
2154
2155/**
2156 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2157 * @hw: pointer to the HW structure
2158 *
2159 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2160 **/
2161s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2162{
2163 e_dbg("Running IGP 3 PHY init script\n");
2164
2165 /* PHY init IGP 3 */
2166 /* Enable rise/fall, 10-mode work in class-A */
2167 e1e_wphy(hw, 0x2F5B, 0x9018);
2168 /* Remove all caps from Replica path filter */
2169 e1e_wphy(hw, 0x2F52, 0x0000);
2170 /* Bias trimming for ADC, AFE and Driver (Default) */
2171 e1e_wphy(hw, 0x2FB1, 0x8B24);
2172 /* Increase Hybrid poly bias */
2173 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2174 /* Add 4% to Tx amplitude in Gig mode */
2175 e1e_wphy(hw, 0x2010, 0x10B0);
2176 /* Disable trimming (TTT) */
2177 e1e_wphy(hw, 0x2011, 0x0000);
2178 /* Poly DC correction to 94.6% + 2% for all channels */
2179 e1e_wphy(hw, 0x20DD, 0x249A);
2180 /* ABS DC correction to 95.9% */
2181 e1e_wphy(hw, 0x20DE, 0x00D3);
2182 /* BG temp curve trim */
2183 e1e_wphy(hw, 0x28B4, 0x04CE);
2184 /* Increasing ADC OPAMP stage 1 currents to max */
2185 e1e_wphy(hw, 0x2F70, 0x29E4);
2186 /* Force 1000 ( required for enabling PHY regs configuration) */
2187 e1e_wphy(hw, 0x0000, 0x0140);
2188 /* Set upd_freq to 6 */
2189 e1e_wphy(hw, 0x1F30, 0x1606);
2190 /* Disable NPDFE */
2191 e1e_wphy(hw, 0x1F31, 0xB814);
2192 /* Disable adaptive fixed FFE (Default) */
2193 e1e_wphy(hw, 0x1F35, 0x002A);
2194 /* Enable FFE hysteresis */
2195 e1e_wphy(hw, 0x1F3E, 0x0067);
2196 /* Fixed FFE for short cable lengths */
2197 e1e_wphy(hw, 0x1F54, 0x0065);
2198 /* Fixed FFE for medium cable lengths */
2199 e1e_wphy(hw, 0x1F55, 0x002A);
2200 /* Fixed FFE for long cable lengths */
2201 e1e_wphy(hw, 0x1F56, 0x002A);
2202 /* Enable Adaptive Clip Threshold */
2203 e1e_wphy(hw, 0x1F72, 0x3FB0);
2204 /* AHT reset limit to 1 */
2205 e1e_wphy(hw, 0x1F76, 0xC0FF);
2206 /* Set AHT master delay to 127 msec */
2207 e1e_wphy(hw, 0x1F77, 0x1DEC);
2208 /* Set scan bits for AHT */
2209 e1e_wphy(hw, 0x1F78, 0xF9EF);
2210 /* Set AHT Preset bits */
2211 e1e_wphy(hw, 0x1F79, 0x0210);
2212 /* Change integ_factor of channel A to 3 */
2213 e1e_wphy(hw, 0x1895, 0x0003);
2214 /* Change prop_factor of channels BCD to 8 */
2215 e1e_wphy(hw, 0x1796, 0x0008);
2216 /* Change cg_icount + enable integbp for channels BCD */
2217 e1e_wphy(hw, 0x1798, 0xD008);
2218 /* Change cg_icount + enable integbp + change prop_factor_master
2219 * to 8 for channel A
2220 */
2221 e1e_wphy(hw, 0x1898, 0xD918);
2222 /* Disable AHT in Slave mode on channel A */
2223 e1e_wphy(hw, 0x187A, 0x0800);
2224 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2225 * Enable SPD+B2B
2226 */
2227 e1e_wphy(hw, 0x0019, 0x008D);
2228 /* Enable restart AN on an1000_dis change */
2229 e1e_wphy(hw, 0x001B, 0x2080);
2230 /* Enable wh_fifo read clock in 10/100 modes */
2231 e1e_wphy(hw, 0x0014, 0x0045);
2232 /* Restart AN, Speed selection is 1000 */
2233 e1e_wphy(hw, 0x0000, 0x1340);
2234
2235 return 0;
2236}
2237
2238/**
2239 * e1000e_get_phy_type_from_id - Get PHY type from id
2240 * @phy_id: phy_id read from the phy
2241 *
2242 * Returns the phy type from the id.
2243 **/
2244enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2245{
2246 enum e1000_phy_type phy_type = e1000_phy_unknown;
2247
2248 switch (phy_id) {
2249 case M88E1000_I_PHY_ID:
2250 case M88E1000_E_PHY_ID:
2251 case M88E1111_I_PHY_ID:
2252 case M88E1011_I_PHY_ID:
2253 phy_type = e1000_phy_m88;
2254 break;
2255 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2256 phy_type = e1000_phy_igp_2;
2257 break;
2258 case GG82563_E_PHY_ID:
2259 phy_type = e1000_phy_gg82563;
2260 break;
2261 case IGP03E1000_E_PHY_ID:
2262 phy_type = e1000_phy_igp_3;
2263 break;
2264 case IFE_E_PHY_ID:
2265 case IFE_PLUS_E_PHY_ID:
2266 case IFE_C_E_PHY_ID:
2267 phy_type = e1000_phy_ife;
2268 break;
2269 case BME1000_E_PHY_ID:
2270 case BME1000_E_PHY_ID_R2:
2271 phy_type = e1000_phy_bm;
2272 break;
2273 case I82578_E_PHY_ID:
2274 phy_type = e1000_phy_82578;
2275 break;
2276 case I82577_E_PHY_ID:
2277 phy_type = e1000_phy_82577;
2278 break;
2279 case I82579_E_PHY_ID:
2280 phy_type = e1000_phy_82579;
2281 break;
2282 case I217_E_PHY_ID:
2283 phy_type = e1000_phy_i217;
2284 break;
2285 default:
2286 phy_type = e1000_phy_unknown;
2287 break;
2288 }
2289 return phy_type;
2290}
2291
2292/**
2293 * e1000e_determine_phy_address - Determines PHY address.
2294 * @hw: pointer to the HW structure
2295 *
2296 * This uses a trial and error method to loop through possible PHY
2297 * addresses. It tests each by reading the PHY ID registers and
2298 * checking for a match.
2299 **/
2300s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2301{
2302 u32 phy_addr = 0;
2303 u32 i;
2304 enum e1000_phy_type phy_type = e1000_phy_unknown;
2305
2306 hw->phy.id = phy_type;
2307
2308 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2309 hw->phy.addr = phy_addr;
2310 i = 0;
2311
2312 do {
2313 e1000e_get_phy_id(hw);
2314 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2315
2316 /* If phy_type is valid, break - we found our
2317 * PHY address
2318 */
2319 if (phy_type != e1000_phy_unknown)
2320 return 0;
2321
2322 usleep_range(1000, 2000);
2323 i++;
2324 } while (i < 10);
2325 }
2326
2327 return -E1000_ERR_PHY_TYPE;
2328}
2329
2330/**
2331 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2332 * @page: page to access
2333 *
2334 * Returns the phy address for the page requested.
2335 **/
2336static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2337{
2338 u32 phy_addr = 2;
2339
2340 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2341 phy_addr = 1;
2342
2343 return phy_addr;
2344}
2345
2346/**
2347 * e1000e_write_phy_reg_bm - Write BM PHY register
2348 * @hw: pointer to the HW structure
2349 * @offset: register offset to write to
2350 * @data: data to write at register offset
2351 *
2352 * Acquires semaphore, if necessary, then writes the data to PHY register
2353 * at the offset. Release any acquired semaphores before exiting.
2354 **/
2355s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2356{
2357 s32 ret_val;
2358 u32 page = offset >> IGP_PAGE_SHIFT;
2359
2360 ret_val = hw->phy.ops.acquire(hw);
2361 if (ret_val)
2362 return ret_val;
2363
2364 /* Page 800 works differently than the rest so it has its own func */
2365 if (page == BM_WUC_PAGE) {
2366 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2367 false, false);
2368 goto release;
2369 }
2370
2371 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2372
2373 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2374 u32 page_shift, page_select;
2375
2376 /* Page select is register 31 for phy address 1 and 22 for
2377 * phy address 2 and 3. Page select is shifted only for
2378 * phy address 1.
2379 */
2380 if (hw->phy.addr == 1) {
2381 page_shift = IGP_PAGE_SHIFT;
2382 page_select = IGP01E1000_PHY_PAGE_SELECT;
2383 } else {
2384 page_shift = 0;
2385 page_select = BM_PHY_PAGE_SELECT;
2386 }
2387
2388 /* Page is shifted left, PHY expects (page x 32) */
2389 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2390 (page << page_shift));
2391 if (ret_val)
2392 goto release;
2393 }
2394
2395 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396 data);
2397
2398release:
2399 hw->phy.ops.release(hw);
2400 return ret_val;
2401}
2402
2403/**
2404 * e1000e_read_phy_reg_bm - Read BM PHY register
2405 * @hw: pointer to the HW structure
2406 * @offset: register offset to be read
2407 * @data: pointer to the read data
2408 *
2409 * Acquires semaphore, if necessary, then reads the PHY register at offset
2410 * and storing the retrieved information in data. Release any acquired
2411 * semaphores before exiting.
2412 **/
2413s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2414{
2415 s32 ret_val;
2416 u32 page = offset >> IGP_PAGE_SHIFT;
2417
2418 ret_val = hw->phy.ops.acquire(hw);
2419 if (ret_val)
2420 return ret_val;
2421
2422 /* Page 800 works differently than the rest so it has its own func */
2423 if (page == BM_WUC_PAGE) {
2424 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2425 true, false);
2426 goto release;
2427 }
2428
2429 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2430
2431 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2432 u32 page_shift, page_select;
2433
2434 /* Page select is register 31 for phy address 1 and 22 for
2435 * phy address 2 and 3. Page select is shifted only for
2436 * phy address 1.
2437 */
2438 if (hw->phy.addr == 1) {
2439 page_shift = IGP_PAGE_SHIFT;
2440 page_select = IGP01E1000_PHY_PAGE_SELECT;
2441 } else {
2442 page_shift = 0;
2443 page_select = BM_PHY_PAGE_SELECT;
2444 }
2445
2446 /* Page is shifted left, PHY expects (page x 32) */
2447 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2448 (page << page_shift));
2449 if (ret_val)
2450 goto release;
2451 }
2452
2453 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2454 data);
2455release:
2456 hw->phy.ops.release(hw);
2457 return ret_val;
2458}
2459
2460/**
2461 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2462 * @hw: pointer to the HW structure
2463 * @offset: register offset to be read
2464 * @data: pointer to the read data
2465 *
2466 * Acquires semaphore, if necessary, then reads the PHY register at offset
2467 * and storing the retrieved information in data. Release any acquired
2468 * semaphores before exiting.
2469 **/
2470s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2471{
2472 s32 ret_val;
2473 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2474
2475 ret_val = hw->phy.ops.acquire(hw);
2476 if (ret_val)
2477 return ret_val;
2478
2479 /* Page 800 works differently than the rest so it has its own func */
2480 if (page == BM_WUC_PAGE) {
2481 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2482 true, false);
2483 goto release;
2484 }
2485
2486 hw->phy.addr = 1;
2487
2488 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2489 /* Page is shifted left, PHY expects (page x 32) */
2490 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2491 page);
2492
2493 if (ret_val)
2494 goto release;
2495 }
2496
2497 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2498 data);
2499release:
2500 hw->phy.ops.release(hw);
2501 return ret_val;
2502}
2503
2504/**
2505 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2506 * @hw: pointer to the HW structure
2507 * @offset: register offset to write to
2508 * @data: data to write at register offset
2509 *
2510 * Acquires semaphore, if necessary, then writes the data to PHY register
2511 * at the offset. Release any acquired semaphores before exiting.
2512 **/
2513s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2514{
2515 s32 ret_val;
2516 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2517
2518 ret_val = hw->phy.ops.acquire(hw);
2519 if (ret_val)
2520 return ret_val;
2521
2522 /* Page 800 works differently than the rest so it has its own func */
2523 if (page == BM_WUC_PAGE) {
2524 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2525 false, false);
2526 goto release;
2527 }
2528
2529 hw->phy.addr = 1;
2530
2531 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2532 /* Page is shifted left, PHY expects (page x 32) */
2533 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2534 page);
2535
2536 if (ret_val)
2537 goto release;
2538 }
2539
2540 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2541 data);
2542
2543release:
2544 hw->phy.ops.release(hw);
2545 return ret_val;
2546}
2547
2548/**
2549 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2550 * @hw: pointer to the HW structure
2551 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2552 *
2553 * Assumes semaphore already acquired and phy_reg points to a valid memory
2554 * address to store contents of the BM_WUC_ENABLE_REG register.
2555 **/
2556s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2557{
2558 s32 ret_val;
2559 u16 temp;
2560
2561 /* All page select, port ctrl and wakeup registers use phy address 1 */
2562 hw->phy.addr = 1;
2563
2564 /* Select Port Control Registers page */
2565 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2566 if (ret_val) {
2567 e_dbg("Could not set Port Control page\n");
2568 return ret_val;
2569 }
2570
2571 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2572 if (ret_val) {
2573 e_dbg("Could not read PHY register %d.%d\n",
2574 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575 return ret_val;
2576 }
2577
2578 /* Enable both PHY wakeup mode and Wakeup register page writes.
2579 * Prevent a power state change by disabling ME and Host PHY wakeup.
2580 */
2581 temp = *phy_reg;
2582 temp |= BM_WUC_ENABLE_BIT;
2583 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2584
2585 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2586 if (ret_val) {
2587 e_dbg("Could not write PHY register %d.%d\n",
2588 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2589 return ret_val;
2590 }
2591
2592 /* Select Host Wakeup Registers page - caller now able to write
2593 * registers on the Wakeup registers page
2594 */
2595 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2596}
2597
2598/**
2599 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2600 * @hw: pointer to the HW structure
2601 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2602 *
2603 * Restore BM_WUC_ENABLE_REG to its original value.
2604 *
2605 * Assumes semaphore already acquired and *phy_reg is the contents of the
2606 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2607 * caller.
2608 **/
2609s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2610{
2611 s32 ret_val;
2612
2613 /* Select Port Control Registers page */
2614 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2615 if (ret_val) {
2616 e_dbg("Could not set Port Control page\n");
2617 return ret_val;
2618 }
2619
2620 /* Restore 769.17 to its original value */
2621 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2622 if (ret_val)
2623 e_dbg("Could not restore PHY register %d.%d\n",
2624 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2625
2626 return ret_val;
2627}
2628
2629/**
2630 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2631 * @hw: pointer to the HW structure
2632 * @offset: register offset to be read or written
2633 * @data: pointer to the data to read or write
2634 * @read: determines if operation is read or write
2635 * @page_set: BM_WUC_PAGE already set and access enabled
2636 *
2637 * Read the PHY register at offset and store the retrieved information in
2638 * data, or write data to PHY register at offset. Note the procedure to
2639 * access the PHY wakeup registers is different than reading the other PHY
2640 * registers. It works as such:
2641 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2642 * 2) Set page to 800 for host (801 if we were manageability)
2643 * 3) Write the address using the address opcode (0x11)
2644 * 4) Read or write the data using the data opcode (0x12)
2645 * 5) Restore 769.17.2 to its original value
2646 *
2647 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2648 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2649 *
2650 * Assumes semaphore is already acquired. When page_set==true, assumes
2651 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2652 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2653 **/
2654static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2655 u16 *data, bool read, bool page_set)
2656{
2657 s32 ret_val;
2658 u16 reg = BM_PHY_REG_NUM(offset);
2659 u16 page = BM_PHY_REG_PAGE(offset);
2660 u16 phy_reg = 0;
2661
2662 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2663 if ((hw->mac.type == e1000_pchlan) &&
2664 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2665 e_dbg("Attempting to access page %d while gig enabled.\n",
2666 page);
2667
2668 if (!page_set) {
2669 /* Enable access to PHY wakeup registers */
2670 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2671 if (ret_val) {
2672 e_dbg("Could not enable PHY wakeup reg access\n");
2673 return ret_val;
2674 }
2675 }
2676
2677 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2678
2679 /* Write the Wakeup register page offset value using opcode 0x11 */
2680 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2681 if (ret_val) {
2682 e_dbg("Could not write address opcode to page %d\n", page);
2683 return ret_val;
2684 }
2685
2686 if (read) {
2687 /* Read the Wakeup register page value using opcode 0x12 */
2688 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2689 data);
2690 } else {
2691 /* Write the Wakeup register page value using opcode 0x12 */
2692 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2693 *data);
2694 }
2695
2696 if (ret_val) {
2697 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2698 return ret_val;
2699 }
2700
2701 if (!page_set)
2702 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2703
2704 return ret_val;
2705}
2706
2707/**
2708 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_up_phy_copper(struct e1000_hw *hw)
2716{
2717 u16 mii_reg = 0;
2718
2719 /* The PHY will retain its settings across a power down/up cycle */
2720 e1e_rphy(hw, MII_BMCR, &mii_reg);
2721 mii_reg &= ~BMCR_PDOWN;
2722 e1e_wphy(hw, MII_BMCR, mii_reg);
2723}
2724
2725/**
2726 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2727 * @hw: pointer to the HW structure
2728 *
2729 * In the case of a PHY power down to save power, or to turn off link during a
2730 * driver unload, or wake on lan is not enabled, restore the link to previous
2731 * settings.
2732 **/
2733void e1000_power_down_phy_copper(struct e1000_hw *hw)
2734{
2735 u16 mii_reg = 0;
2736
2737 /* The PHY will retain its settings across a power down/up cycle */
2738 e1e_rphy(hw, MII_BMCR, &mii_reg);
2739 mii_reg |= BMCR_PDOWN;
2740 e1e_wphy(hw, MII_BMCR, mii_reg);
2741 usleep_range(1000, 2000);
2742}
2743
2744/**
2745 * __e1000_read_phy_reg_hv - Read HV PHY register
2746 * @hw: pointer to the HW structure
2747 * @offset: register offset to be read
2748 * @data: pointer to the read data
2749 * @locked: semaphore has already been acquired or not
2750 *
2751 * Acquires semaphore, if necessary, then reads the PHY register at offset
2752 * and stores the retrieved information in data. Release any acquired
2753 * semaphore before exiting.
2754 **/
2755static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2756 bool locked, bool page_set)
2757{
2758 s32 ret_val;
2759 u16 page = BM_PHY_REG_PAGE(offset);
2760 u16 reg = BM_PHY_REG_NUM(offset);
2761 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2762
2763 if (!locked) {
2764 ret_val = hw->phy.ops.acquire(hw);
2765 if (ret_val)
2766 return ret_val;
2767 }
2768
2769 /* Page 800 works differently than the rest so it has its own func */
2770 if (page == BM_WUC_PAGE) {
2771 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2772 true, page_set);
2773 goto out;
2774 }
2775
2776 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2777 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2778 data, true);
2779 goto out;
2780 }
2781
2782 if (!page_set) {
2783 if (page == HV_INTC_FC_PAGE_START)
2784 page = 0;
2785
2786 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2787 /* Page is shifted left, PHY expects (page x 32) */
2788 ret_val = e1000_set_page_igp(hw,
2789 (page << IGP_PAGE_SHIFT));
2790
2791 hw->phy.addr = phy_addr;
2792
2793 if (ret_val)
2794 goto out;
2795 }
2796 }
2797
2798 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2799 page << IGP_PAGE_SHIFT, reg);
2800
2801 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2802out:
2803 if (!locked)
2804 hw->phy.ops.release(hw);
2805
2806 return ret_val;
2807}
2808
2809/**
2810 * e1000_read_phy_reg_hv - Read HV PHY register
2811 * @hw: pointer to the HW structure
2812 * @offset: register offset to be read
2813 * @data: pointer to the read data
2814 *
2815 * Acquires semaphore then reads the PHY register at offset and stores
2816 * the retrieved information in data. Release the acquired semaphore
2817 * before exiting.
2818 **/
2819s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2820{
2821 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2822}
2823
2824/**
2825 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2826 * @hw: pointer to the HW structure
2827 * @offset: register offset to be read
2828 * @data: pointer to the read data
2829 *
2830 * Reads the PHY register at offset and stores the retrieved information
2831 * in data. Assumes semaphore already acquired.
2832 **/
2833s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2834{
2835 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2836}
2837
2838/**
2839 * e1000_read_phy_reg_page_hv - Read HV PHY register
2840 * @hw: pointer to the HW structure
2841 * @offset: register offset to write to
2842 * @data: data to write at register offset
2843 *
2844 * Reads the PHY register at offset and stores the retrieved information
2845 * in data. Assumes semaphore already acquired and page already set.
2846 **/
2847s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2848{
2849 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2850}
2851
2852/**
2853 * __e1000_write_phy_reg_hv - Write HV PHY register
2854 * @hw: pointer to the HW structure
2855 * @offset: register offset to write to
2856 * @data: data to write at register offset
2857 * @locked: semaphore has already been acquired or not
2858 *
2859 * Acquires semaphore, if necessary, then writes the data to PHY register
2860 * at the offset. Release any acquired semaphores before exiting.
2861 **/
2862static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2863 bool locked, bool page_set)
2864{
2865 s32 ret_val;
2866 u16 page = BM_PHY_REG_PAGE(offset);
2867 u16 reg = BM_PHY_REG_NUM(offset);
2868 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2869
2870 if (!locked) {
2871 ret_val = hw->phy.ops.acquire(hw);
2872 if (ret_val)
2873 return ret_val;
2874 }
2875
2876 /* Page 800 works differently than the rest so it has its own func */
2877 if (page == BM_WUC_PAGE) {
2878 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2879 false, page_set);
2880 goto out;
2881 }
2882
2883 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2884 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2885 &data, false);
2886 goto out;
2887 }
2888
2889 if (!page_set) {
2890 if (page == HV_INTC_FC_PAGE_START)
2891 page = 0;
2892
2893 /* Workaround MDIO accesses being disabled after entering IEEE
2894 * Power Down (when bit 11 of the PHY Control register is set)
2895 */
2896 if ((hw->phy.type == e1000_phy_82578) &&
2897 (hw->phy.revision >= 1) &&
2898 (hw->phy.addr == 2) &&
2899 !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2900 u16 data2 = 0x7EFF;
2901
2902 ret_val = e1000_access_phy_debug_regs_hv(hw,
2903 BIT(6) | 0x3,
2904 &data2, false);
2905 if (ret_val)
2906 goto out;
2907 }
2908
2909 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910 /* Page is shifted left, PHY expects (page x 32) */
2911 ret_val = e1000_set_page_igp(hw,
2912 (page << IGP_PAGE_SHIFT));
2913
2914 hw->phy.addr = phy_addr;
2915
2916 if (ret_val)
2917 goto out;
2918 }
2919 }
2920
2921 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922 page << IGP_PAGE_SHIFT, reg);
2923
2924 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925 data);
2926
2927out:
2928 if (!locked)
2929 hw->phy.ops.release(hw);
2930
2931 return ret_val;
2932}
2933
2934/**
2935 * e1000_write_phy_reg_hv - Write HV PHY register
2936 * @hw: pointer to the HW structure
2937 * @offset: register offset to write to
2938 * @data: data to write at register offset
2939 *
2940 * Acquires semaphore then writes the data to PHY register at the offset.
2941 * Release the acquired semaphores before exiting.
2942 **/
2943s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944{
2945 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946}
2947
2948/**
2949 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 * @hw: pointer to the HW structure
2951 * @offset: register offset to write to
2952 * @data: data to write at register offset
2953 *
2954 * Writes the data to PHY register at the offset. Assumes semaphore
2955 * already acquired.
2956 **/
2957s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958{
2959 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960}
2961
2962/**
2963 * e1000_write_phy_reg_page_hv - Write HV PHY register
2964 * @hw: pointer to the HW structure
2965 * @offset: register offset to write to
2966 * @data: data to write at register offset
2967 *
2968 * Writes the data to PHY register at the offset. Assumes semaphore
2969 * already acquired and page already set.
2970 **/
2971s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972{
2973 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974}
2975
2976/**
2977 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 * @page: page to be accessed
2979 **/
2980static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981{
2982 u32 phy_addr = 2;
2983
2984 if (page >= HV_INTC_FC_PAGE_START)
2985 phy_addr = 1;
2986
2987 return phy_addr;
2988}
2989
2990/**
2991 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 * @hw: pointer to the HW structure
2993 * @offset: register offset to be read or written
2994 * @data: pointer to the data to be read or written
2995 * @read: determines if operation is read or write
2996 *
2997 * Reads the PHY register at offset and stores the retreived information
2998 * in data. Assumes semaphore already acquired. Note that the procedure
2999 * to access these regs uses the address port and data port to read/write.
3000 * These accesses done with PHY address 2 and without using pages.
3001 **/
3002static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003 u16 *data, bool read)
3004{
3005 s32 ret_val;
3006 u32 addr_reg;
3007 u32 data_reg;
3008
3009 /* This takes care of the difference with desktop vs mobile phy */
3010 addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011 I82578_ADDR_REG : I82577_ADDR_REG);
3012 data_reg = addr_reg + 1;
3013
3014 /* All operations in this function are phy address 2 */
3015 hw->phy.addr = 2;
3016
3017 /* masking with 0x3F to remove the page from offset */
3018 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019 if (ret_val) {
3020 e_dbg("Could not write the Address Offset port register\n");
3021 return ret_val;
3022 }
3023
3024 /* Read or write the data value next */
3025 if (read)
3026 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027 else
3028 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029
3030 if (ret_val)
3031 e_dbg("Could not access the Data port register\n");
3032
3033 return ret_val;
3034}
3035
3036/**
3037 * e1000_link_stall_workaround_hv - Si workaround
3038 * @hw: pointer to the HW structure
3039 *
3040 * This function works around a Si bug where the link partner can get
3041 * a link up indication before the PHY does. If small packets are sent
3042 * by the link partner they can be placed in the packet buffer without
3043 * being properly accounted for by the PHY and will stall preventing
3044 * further packets from being received. The workaround is to clear the
3045 * packet buffer after the PHY detects link up.
3046 **/
3047s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048{
3049 s32 ret_val = 0;
3050 u16 data;
3051
3052 if (hw->phy.type != e1000_phy_82578)
3053 return 0;
3054
3055 /* Do not apply workaround if in PHY loopback bit 14 set */
3056 e1e_rphy(hw, MII_BMCR, &data);
3057 if (data & BMCR_LOOPBACK)
3058 return 0;
3059
3060 /* check if link is up and at 1Gbps */
3061 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062 if (ret_val)
3063 return ret_val;
3064
3065 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066 BM_CS_STATUS_SPEED_MASK);
3067
3068 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069 BM_CS_STATUS_SPEED_1000))
3070 return 0;
3071
3072 msleep(200);
3073
3074 /* flush the packets in the fifo buffer */
3075 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076 (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077 HV_MUX_DATA_CTRL_FORCE_SPEED));
3078 if (ret_val)
3079 return ret_val;
3080
3081 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082}
3083
3084/**
3085 * e1000_check_polarity_82577 - Checks the polarity.
3086 * @hw: pointer to the HW structure
3087 *
3088 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089 *
3090 * Polarity is determined based on the PHY specific status register.
3091 **/
3092s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093{
3094 struct e1000_phy_info *phy = &hw->phy;
3095 s32 ret_val;
3096 u16 data;
3097
3098 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099
3100 if (!ret_val)
3101 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102 ? e1000_rev_polarity_reversed
3103 : e1000_rev_polarity_normal);
3104
3105 return ret_val;
3106}
3107
3108/**
3109 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 * @hw: pointer to the HW structure
3111 *
3112 * Calls the PHY setup function to force speed and duplex.
3113 **/
3114s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115{
3116 struct e1000_phy_info *phy = &hw->phy;
3117 s32 ret_val;
3118 u16 phy_data;
3119 bool link;
3120
3121 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122 if (ret_val)
3123 return ret_val;
3124
3125 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126
3127 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128 if (ret_val)
3129 return ret_val;
3130
3131 udelay(1);
3132
3133 if (phy->autoneg_wait_to_complete) {
3134 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135
3136 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137 100000, &link);
3138 if (ret_val)
3139 return ret_val;
3140
3141 if (!link)
3142 e_dbg("Link taking longer than expected.\n");
3143
3144 /* Try once more */
3145 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146 100000, &link);
3147 }
3148
3149 return ret_val;
3150}
3151
3152/**
3153 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 * @hw: pointer to the HW structure
3155 *
3156 * Read PHY status to determine if link is up. If link is up, then
3157 * set/determine 10base-T extended distance and polarity correction. Read
3158 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3159 * determine on the cable length, local and remote receiver.
3160 **/
3161s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162{
3163 struct e1000_phy_info *phy = &hw->phy;
3164 s32 ret_val;
3165 u16 data;
3166 bool link;
3167
3168 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169 if (ret_val)
3170 return ret_val;
3171
3172 if (!link) {
3173 e_dbg("Phy info is only valid if link is up\n");
3174 return -E1000_ERR_CONFIG;
3175 }
3176
3177 phy->polarity_correction = true;
3178
3179 ret_val = e1000_check_polarity_82577(hw);
3180 if (ret_val)
3181 return ret_val;
3182
3183 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184 if (ret_val)
3185 return ret_val;
3186
3187 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188
3189 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191 ret_val = hw->phy.ops.get_cable_length(hw);
3192 if (ret_val)
3193 return ret_val;
3194
3195 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196 if (ret_val)
3197 return ret_val;
3198
3199 phy->local_rx = (data & LPA_1000LOCALRXOK)
3200 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201
3202 phy->remote_rx = (data & LPA_1000REMRXOK)
3203 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204 } else {
3205 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206 phy->local_rx = e1000_1000t_rx_status_undefined;
3207 phy->remote_rx = e1000_1000t_rx_status_undefined;
3208 }
3209
3210 return 0;
3211}
3212
3213/**
3214 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 * @hw: pointer to the HW structure
3216 *
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3219 **/
3220s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221{
3222 struct e1000_phy_info *phy = &hw->phy;
3223 s32 ret_val;
3224 u16 phy_data, length;
3225
3226 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227 if (ret_val)
3228 return ret_val;
3229
3230 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232
3233 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234 return -E1000_ERR_PHY;
3235
3236 phy->cable_length = length;
3237
3238 return 0;
3239}
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include "e1000.h"
23
24static s32 e1000_wait_autoneg(struct e1000_hw *hw);
25static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
26 u16 *data, bool read, bool page_set);
27static u32 e1000_get_phy_addr_for_hv_page(u32 page);
28static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
29 u16 *data, bool read);
30
31/* Cable length tables */
32static const u16 e1000_m88_cable_length_table[] = {
33 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
34};
35
36#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
37 ARRAY_SIZE(e1000_m88_cable_length_table)
38
39static const u16 e1000_igp_2_cable_length_table[] = {
40 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
41 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
42 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
43 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
44 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
45 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
46 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
47 124
48};
49
50#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
51 ARRAY_SIZE(e1000_igp_2_cable_length_table)
52
53/**
54 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
55 * @hw: pointer to the HW structure
56 *
57 * Read the PHY management control register and check whether a PHY reset
58 * is blocked. If a reset is not blocked return 0, otherwise
59 * return E1000_BLK_PHY_RESET (12).
60 **/
61s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
62{
63 u32 manc;
64
65 manc = er32(MANC);
66
67 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
68}
69
70/**
71 * e1000e_get_phy_id - Retrieve the PHY ID and revision
72 * @hw: pointer to the HW structure
73 *
74 * Reads the PHY registers and stores the PHY ID and possibly the PHY
75 * revision in the hardware structure.
76 **/
77s32 e1000e_get_phy_id(struct e1000_hw *hw)
78{
79 struct e1000_phy_info *phy = &hw->phy;
80 s32 ret_val = 0;
81 u16 phy_id;
82 u16 retry_count = 0;
83
84 if (!phy->ops.read_reg)
85 return 0;
86
87 while (retry_count < 2) {
88 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
89 if (ret_val)
90 return ret_val;
91
92 phy->id = (u32)(phy_id << 16);
93 usleep_range(20, 40);
94 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
95 if (ret_val)
96 return ret_val;
97
98 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
99 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
100
101 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
102 return 0;
103
104 retry_count++;
105 }
106
107 return 0;
108}
109
110/**
111 * e1000e_phy_reset_dsp - Reset PHY DSP
112 * @hw: pointer to the HW structure
113 *
114 * Reset the digital signal processor.
115 **/
116s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
117{
118 s32 ret_val;
119
120 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 if (ret_val)
122 return ret_val;
123
124 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
125}
126
127/**
128 * e1000e_read_phy_reg_mdic - Read MDI control register
129 * @hw: pointer to the HW structure
130 * @offset: register offset to be read
131 * @data: pointer to the read data
132 *
133 * Reads the MDI control register in the PHY at offset and stores the
134 * information read to data.
135 **/
136s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
137{
138 struct e1000_phy_info *phy = &hw->phy;
139 u32 i, mdic = 0;
140
141 if (offset > MAX_PHY_REG_ADDRESS) {
142 e_dbg("PHY Address %d is out of range\n", offset);
143 return -E1000_ERR_PARAM;
144 }
145
146 /* Set up Op-code, Phy Address, and register offset in the MDI
147 * Control register. The MAC will take care of interfacing with the
148 * PHY to retrieve the desired data.
149 */
150 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
151 (phy->addr << E1000_MDIC_PHY_SHIFT) |
152 (E1000_MDIC_OP_READ));
153
154 ew32(MDIC, mdic);
155
156 /* Poll the ready bit to see if the MDI read completed
157 * Increasing the time out as testing showed failures with
158 * the lower time out
159 */
160 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
161 udelay(50);
162 mdic = er32(MDIC);
163 if (mdic & E1000_MDIC_READY)
164 break;
165 }
166 if (!(mdic & E1000_MDIC_READY)) {
167 e_dbg("MDI Read did not complete\n");
168 return -E1000_ERR_PHY;
169 }
170 if (mdic & E1000_MDIC_ERROR) {
171 e_dbg("MDI Error\n");
172 return -E1000_ERR_PHY;
173 }
174 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
175 e_dbg("MDI Read offset error - requested %d, returned %d\n",
176 offset,
177 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
178 return -E1000_ERR_PHY;
179 }
180 *data = (u16)mdic;
181
182 /* Allow some time after each MDIC transaction to avoid
183 * reading duplicate data in the next MDIC transaction.
184 */
185 if (hw->mac.type == e1000_pch2lan)
186 udelay(100);
187
188 return 0;
189}
190
191/**
192 * e1000e_write_phy_reg_mdic - Write MDI control register
193 * @hw: pointer to the HW structure
194 * @offset: register offset to write to
195 * @data: data to write to register at offset
196 *
197 * Writes data to MDI control register in the PHY at offset.
198 **/
199s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
200{
201 struct e1000_phy_info *phy = &hw->phy;
202 u32 i, mdic = 0;
203
204 if (offset > MAX_PHY_REG_ADDRESS) {
205 e_dbg("PHY Address %d is out of range\n", offset);
206 return -E1000_ERR_PARAM;
207 }
208
209 /* Set up Op-code, Phy Address, and register offset in the MDI
210 * Control register. The MAC will take care of interfacing with the
211 * PHY to retrieve the desired data.
212 */
213 mdic = (((u32)data) |
214 (offset << E1000_MDIC_REG_SHIFT) |
215 (phy->addr << E1000_MDIC_PHY_SHIFT) |
216 (E1000_MDIC_OP_WRITE));
217
218 ew32(MDIC, mdic);
219
220 /* Poll the ready bit to see if the MDI read completed
221 * Increasing the time out as testing showed failures with
222 * the lower time out
223 */
224 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
225 udelay(50);
226 mdic = er32(MDIC);
227 if (mdic & E1000_MDIC_READY)
228 break;
229 }
230 if (!(mdic & E1000_MDIC_READY)) {
231 e_dbg("MDI Write did not complete\n");
232 return -E1000_ERR_PHY;
233 }
234 if (mdic & E1000_MDIC_ERROR) {
235 e_dbg("MDI Error\n");
236 return -E1000_ERR_PHY;
237 }
238 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
239 e_dbg("MDI Write offset error - requested %d, returned %d\n",
240 offset,
241 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
242 return -E1000_ERR_PHY;
243 }
244
245 /* Allow some time after each MDIC transaction to avoid
246 * reading duplicate data in the next MDIC transaction.
247 */
248 if (hw->mac.type == e1000_pch2lan)
249 udelay(100);
250
251 return 0;
252}
253
254/**
255 * e1000e_read_phy_reg_m88 - Read m88 PHY register
256 * @hw: pointer to the HW structure
257 * @offset: register offset to be read
258 * @data: pointer to the read data
259 *
260 * Acquires semaphore, if necessary, then reads the PHY register at offset
261 * and storing the retrieved information in data. Release any acquired
262 * semaphores before exiting.
263 **/
264s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
265{
266 s32 ret_val;
267
268 ret_val = hw->phy.ops.acquire(hw);
269 if (ret_val)
270 return ret_val;
271
272 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
273 data);
274
275 hw->phy.ops.release(hw);
276
277 return ret_val;
278}
279
280/**
281 * e1000e_write_phy_reg_m88 - Write m88 PHY register
282 * @hw: pointer to the HW structure
283 * @offset: register offset to write to
284 * @data: data to write at register offset
285 *
286 * Acquires semaphore, if necessary, then writes the data to PHY register
287 * at the offset. Release any acquired semaphores before exiting.
288 **/
289s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
290{
291 s32 ret_val;
292
293 ret_val = hw->phy.ops.acquire(hw);
294 if (ret_val)
295 return ret_val;
296
297 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
298 data);
299
300 hw->phy.ops.release(hw);
301
302 return ret_val;
303}
304
305/**
306 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
307 * @hw: pointer to the HW structure
308 * @page: page to set (shifted left when necessary)
309 *
310 * Sets PHY page required for PHY register access. Assumes semaphore is
311 * already acquired. Note, this function sets phy.addr to 1 so the caller
312 * must set it appropriately (if necessary) after this function returns.
313 **/
314s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
315{
316 e_dbg("Setting page 0x%x\n", page);
317
318 hw->phy.addr = 1;
319
320 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
321}
322
323/**
324 * __e1000e_read_phy_reg_igp - Read igp PHY register
325 * @hw: pointer to the HW structure
326 * @offset: register offset to be read
327 * @data: pointer to the read data
328 * @locked: semaphore has already been acquired or not
329 *
330 * Acquires semaphore, if necessary, then reads the PHY register at offset
331 * and stores the retrieved information in data. Release any acquired
332 * semaphores before exiting.
333 **/
334static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
335 bool locked)
336{
337 s32 ret_val = 0;
338
339 if (!locked) {
340 if (!hw->phy.ops.acquire)
341 return 0;
342
343 ret_val = hw->phy.ops.acquire(hw);
344 if (ret_val)
345 return ret_val;
346 }
347
348 if (offset > MAX_PHY_MULTI_PAGE_REG)
349 ret_val = e1000e_write_phy_reg_mdic(hw,
350 IGP01E1000_PHY_PAGE_SELECT,
351 (u16)offset);
352 if (!ret_val)
353 ret_val = e1000e_read_phy_reg_mdic(hw,
354 MAX_PHY_REG_ADDRESS & offset,
355 data);
356 if (!locked)
357 hw->phy.ops.release(hw);
358
359 return ret_val;
360}
361
362/**
363 * e1000e_read_phy_reg_igp - Read igp PHY register
364 * @hw: pointer to the HW structure
365 * @offset: register offset to be read
366 * @data: pointer to the read data
367 *
368 * Acquires semaphore then reads the PHY register at offset and stores the
369 * retrieved information in data.
370 * Release the acquired semaphore before exiting.
371 **/
372s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
373{
374 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
375}
376
377/**
378 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
379 * @hw: pointer to the HW structure
380 * @offset: register offset to be read
381 * @data: pointer to the read data
382 *
383 * Reads the PHY register at offset and stores the retrieved information
384 * in data. Assumes semaphore already acquired.
385 **/
386s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
387{
388 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
389}
390
391/**
392 * e1000e_write_phy_reg_igp - Write igp PHY register
393 * @hw: pointer to the HW structure
394 * @offset: register offset to write to
395 * @data: data to write at register offset
396 * @locked: semaphore has already been acquired or not
397 *
398 * Acquires semaphore, if necessary, then writes the data to PHY register
399 * at the offset. Release any acquired semaphores before exiting.
400 **/
401static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
402 bool locked)
403{
404 s32 ret_val = 0;
405
406 if (!locked) {
407 if (!hw->phy.ops.acquire)
408 return 0;
409
410 ret_val = hw->phy.ops.acquire(hw);
411 if (ret_val)
412 return ret_val;
413 }
414
415 if (offset > MAX_PHY_MULTI_PAGE_REG)
416 ret_val = e1000e_write_phy_reg_mdic(hw,
417 IGP01E1000_PHY_PAGE_SELECT,
418 (u16)offset);
419 if (!ret_val)
420 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
421 offset, data);
422 if (!locked)
423 hw->phy.ops.release(hw);
424
425 return ret_val;
426}
427
428/**
429 * e1000e_write_phy_reg_igp - Write igp PHY register
430 * @hw: pointer to the HW structure
431 * @offset: register offset to write to
432 * @data: data to write at register offset
433 *
434 * Acquires semaphore then writes the data to PHY register
435 * at the offset. Release any acquired semaphores before exiting.
436 **/
437s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
438{
439 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
440}
441
442/**
443 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
444 * @hw: pointer to the HW structure
445 * @offset: register offset to write to
446 * @data: data to write at register offset
447 *
448 * Writes the data to PHY register at the offset.
449 * Assumes semaphore already acquired.
450 **/
451s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
452{
453 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
454}
455
456/**
457 * __e1000_read_kmrn_reg - Read kumeran register
458 * @hw: pointer to the HW structure
459 * @offset: register offset to be read
460 * @data: pointer to the read data
461 * @locked: semaphore has already been acquired or not
462 *
463 * Acquires semaphore, if necessary. Then reads the PHY register at offset
464 * using the kumeran interface. The information retrieved is stored in data.
465 * Release any acquired semaphores before exiting.
466 **/
467static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
468 bool locked)
469{
470 u32 kmrnctrlsta;
471
472 if (!locked) {
473 s32 ret_val = 0;
474
475 if (!hw->phy.ops.acquire)
476 return 0;
477
478 ret_val = hw->phy.ops.acquire(hw);
479 if (ret_val)
480 return ret_val;
481 }
482
483 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
484 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
485 ew32(KMRNCTRLSTA, kmrnctrlsta);
486 e1e_flush();
487
488 udelay(2);
489
490 kmrnctrlsta = er32(KMRNCTRLSTA);
491 *data = (u16)kmrnctrlsta;
492
493 if (!locked)
494 hw->phy.ops.release(hw);
495
496 return 0;
497}
498
499/**
500 * e1000e_read_kmrn_reg - Read kumeran register
501 * @hw: pointer to the HW structure
502 * @offset: register offset to be read
503 * @data: pointer to the read data
504 *
505 * Acquires semaphore then reads the PHY register at offset using the
506 * kumeran interface. The information retrieved is stored in data.
507 * Release the acquired semaphore before exiting.
508 **/
509s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
510{
511 return __e1000_read_kmrn_reg(hw, offset, data, false);
512}
513
514/**
515 * e1000e_read_kmrn_reg_locked - Read kumeran register
516 * @hw: pointer to the HW structure
517 * @offset: register offset to be read
518 * @data: pointer to the read data
519 *
520 * Reads the PHY register at offset using the kumeran interface. The
521 * information retrieved is stored in data.
522 * Assumes semaphore already acquired.
523 **/
524s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
525{
526 return __e1000_read_kmrn_reg(hw, offset, data, true);
527}
528
529/**
530 * __e1000_write_kmrn_reg - Write kumeran register
531 * @hw: pointer to the HW structure
532 * @offset: register offset to write to
533 * @data: data to write at register offset
534 * @locked: semaphore has already been acquired or not
535 *
536 * Acquires semaphore, if necessary. Then write the data to PHY register
537 * at the offset using the kumeran interface. Release any acquired semaphores
538 * before exiting.
539 **/
540static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
541 bool locked)
542{
543 u32 kmrnctrlsta;
544
545 if (!locked) {
546 s32 ret_val = 0;
547
548 if (!hw->phy.ops.acquire)
549 return 0;
550
551 ret_val = hw->phy.ops.acquire(hw);
552 if (ret_val)
553 return ret_val;
554 }
555
556 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
557 E1000_KMRNCTRLSTA_OFFSET) | data;
558 ew32(KMRNCTRLSTA, kmrnctrlsta);
559 e1e_flush();
560
561 udelay(2);
562
563 if (!locked)
564 hw->phy.ops.release(hw);
565
566 return 0;
567}
568
569/**
570 * e1000e_write_kmrn_reg - Write kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to write to
573 * @data: data to write at register offset
574 *
575 * Acquires semaphore then writes the data to the PHY register at the offset
576 * using the kumeran interface. Release the acquired semaphore before exiting.
577 **/
578s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
579{
580 return __e1000_write_kmrn_reg(hw, offset, data, false);
581}
582
583/**
584 * e1000e_write_kmrn_reg_locked - Write kumeran register
585 * @hw: pointer to the HW structure
586 * @offset: register offset to write to
587 * @data: data to write at register offset
588 *
589 * Write the data to PHY register at the offset using the kumeran interface.
590 * Assumes semaphore already acquired.
591 **/
592s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
593{
594 return __e1000_write_kmrn_reg(hw, offset, data, true);
595}
596
597/**
598 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
599 * @hw: pointer to the HW structure
600 *
601 * Sets up Master/slave mode
602 **/
603static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
604{
605 s32 ret_val;
606 u16 phy_data;
607
608 /* Resolve Master/Slave mode */
609 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
610 if (ret_val)
611 return ret_val;
612
613 /* load defaults for future use */
614 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
615 ((phy_data & CTL1000_AS_MASTER) ?
616 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
617
618 switch (hw->phy.ms_type) {
619 case e1000_ms_force_master:
620 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
621 break;
622 case e1000_ms_force_slave:
623 phy_data |= CTL1000_ENABLE_MASTER;
624 phy_data &= ~(CTL1000_AS_MASTER);
625 break;
626 case e1000_ms_auto:
627 phy_data &= ~CTL1000_ENABLE_MASTER;
628 /* fall-through */
629 default:
630 break;
631 }
632
633 return e1e_wphy(hw, MII_CTRL1000, phy_data);
634}
635
636/**
637 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
638 * @hw: pointer to the HW structure
639 *
640 * Sets up Carrier-sense on Transmit and downshift values.
641 **/
642s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
643{
644 s32 ret_val;
645 u16 phy_data;
646
647 /* Enable CRS on Tx. This must be set for half-duplex operation. */
648 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
649 if (ret_val)
650 return ret_val;
651
652 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
653
654 /* Enable downshift */
655 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
656
657 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
658 if (ret_val)
659 return ret_val;
660
661 /* Set MDI/MDIX mode */
662 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
663 if (ret_val)
664 return ret_val;
665 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
666 /* Options:
667 * 0 - Auto (default)
668 * 1 - MDI mode
669 * 2 - MDI-X mode
670 */
671 switch (hw->phy.mdix) {
672 case 1:
673 break;
674 case 2:
675 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
676 break;
677 case 0:
678 default:
679 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
680 break;
681 }
682 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
683 if (ret_val)
684 return ret_val;
685
686 return e1000_set_master_slave_mode(hw);
687}
688
689/**
690 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
691 * @hw: pointer to the HW structure
692 *
693 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
694 * and downshift values are set also.
695 **/
696s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
697{
698 struct e1000_phy_info *phy = &hw->phy;
699 s32 ret_val;
700 u16 phy_data;
701
702 /* Enable CRS on Tx. This must be set for half-duplex operation. */
703 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
704 if (ret_val)
705 return ret_val;
706
707 /* For BM PHY this bit is downshift enable */
708 if (phy->type != e1000_phy_bm)
709 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
710
711 /* Options:
712 * MDI/MDI-X = 0 (default)
713 * 0 - Auto for all speeds
714 * 1 - MDI mode
715 * 2 - MDI-X mode
716 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
717 */
718 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
719
720 switch (phy->mdix) {
721 case 1:
722 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
723 break;
724 case 2:
725 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
726 break;
727 case 3:
728 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
729 break;
730 case 0:
731 default:
732 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
733 break;
734 }
735
736 /* Options:
737 * disable_polarity_correction = 0 (default)
738 * Automatic Correction for Reversed Cable Polarity
739 * 0 - Disabled
740 * 1 - Enabled
741 */
742 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
743 if (phy->disable_polarity_correction)
744 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
745
746 /* Enable downshift on BM (disabled by default) */
747 if (phy->type == e1000_phy_bm) {
748 /* For 82574/82583, first disable then enable downshift */
749 if (phy->id == BME1000_E_PHY_ID_R2) {
750 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
751 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
752 phy_data);
753 if (ret_val)
754 return ret_val;
755 /* Commit the changes. */
756 ret_val = phy->ops.commit(hw);
757 if (ret_val) {
758 e_dbg("Error committing the PHY changes\n");
759 return ret_val;
760 }
761 }
762
763 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
764 }
765
766 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
767 if (ret_val)
768 return ret_val;
769
770 if ((phy->type == e1000_phy_m88) &&
771 (phy->revision < E1000_REVISION_4) &&
772 (phy->id != BME1000_E_PHY_ID_R2)) {
773 /* Force TX_CLK in the Extended PHY Specific Control Register
774 * to 25MHz clock.
775 */
776 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
777 if (ret_val)
778 return ret_val;
779
780 phy_data |= M88E1000_EPSCR_TX_CLK_25;
781
782 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
783 /* 82573L PHY - set the downshift counter to 5x. */
784 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
785 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
786 } else {
787 /* Configure Master and Slave downshift values */
788 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
789 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
790 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
791 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
792 }
793 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
794 if (ret_val)
795 return ret_val;
796 }
797
798 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
799 /* Set PHY page 0, register 29 to 0x0003 */
800 ret_val = e1e_wphy(hw, 29, 0x0003);
801 if (ret_val)
802 return ret_val;
803
804 /* Set PHY page 0, register 30 to 0x0000 */
805 ret_val = e1e_wphy(hw, 30, 0x0000);
806 if (ret_val)
807 return ret_val;
808 }
809
810 /* Commit the changes. */
811 if (phy->ops.commit) {
812 ret_val = phy->ops.commit(hw);
813 if (ret_val) {
814 e_dbg("Error committing the PHY changes\n");
815 return ret_val;
816 }
817 }
818
819 if (phy->type == e1000_phy_82578) {
820 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
821 if (ret_val)
822 return ret_val;
823
824 /* 82578 PHY - set the downshift count to 1x. */
825 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
826 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
827 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
828 if (ret_val)
829 return ret_val;
830 }
831
832 return 0;
833}
834
835/**
836 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
837 * @hw: pointer to the HW structure
838 *
839 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
840 * igp PHY's.
841 **/
842s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
843{
844 struct e1000_phy_info *phy = &hw->phy;
845 s32 ret_val;
846 u16 data;
847
848 ret_val = e1000_phy_hw_reset(hw);
849 if (ret_val) {
850 e_dbg("Error resetting the PHY.\n");
851 return ret_val;
852 }
853
854 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
855 * timeout issues when LFS is enabled.
856 */
857 msleep(100);
858
859 /* disable lplu d0 during driver init */
860 if (hw->phy.ops.set_d0_lplu_state) {
861 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
862 if (ret_val) {
863 e_dbg("Error Disabling LPLU D0\n");
864 return ret_val;
865 }
866 }
867 /* Configure mdi-mdix settings */
868 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
869 if (ret_val)
870 return ret_val;
871
872 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
873
874 switch (phy->mdix) {
875 case 1:
876 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
877 break;
878 case 2:
879 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
880 break;
881 case 0:
882 default:
883 data |= IGP01E1000_PSCR_AUTO_MDIX;
884 break;
885 }
886 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
887 if (ret_val)
888 return ret_val;
889
890 /* set auto-master slave resolution settings */
891 if (hw->mac.autoneg) {
892 /* when autonegotiation advertisement is only 1000Mbps then we
893 * should disable SmartSpeed and enable Auto MasterSlave
894 * resolution as hardware default.
895 */
896 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
897 /* Disable SmartSpeed */
898 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
899 &data);
900 if (ret_val)
901 return ret_val;
902
903 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
904 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
905 data);
906 if (ret_val)
907 return ret_val;
908
909 /* Set auto Master/Slave resolution process */
910 ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
911 if (ret_val)
912 return ret_val;
913
914 data &= ~CTL1000_ENABLE_MASTER;
915 ret_val = e1e_wphy(hw, MII_CTRL1000, data);
916 if (ret_val)
917 return ret_val;
918 }
919
920 ret_val = e1000_set_master_slave_mode(hw);
921 }
922
923 return ret_val;
924}
925
926/**
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
929 *
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
934 **/
935static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
936{
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 mii_autoneg_adv_reg;
940 u16 mii_1000t_ctrl_reg = 0;
941
942 phy->autoneg_advertised &= phy->autoneg_mask;
943
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
946 if (ret_val)
947 return ret_val;
948
949 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
952 if (ret_val)
953 return ret_val;
954 }
955
956 /* Need to parse both autoneg_advertised and fc and set up
957 * the appropriate PHY registers. First we will parse for
958 * autoneg_advertised software override. Since we can advertise
959 * a plethora of combinations, we need to check each bit
960 * individually.
961 */
962
963 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
964 * Advertisement Register (Address 4) and the 1000 mb speed bits in
965 * the 1000Base-T Control Register (Address 9).
966 */
967 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
968 ADVERTISE_100HALF |
969 ADVERTISE_10FULL | ADVERTISE_10HALF);
970 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
971
972 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
973
974 /* Do we want to advertise 10 Mb Half Duplex? */
975 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
976 e_dbg("Advertise 10mb Half duplex\n");
977 mii_autoneg_adv_reg |= ADVERTISE_10HALF;
978 }
979
980 /* Do we want to advertise 10 Mb Full Duplex? */
981 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
982 e_dbg("Advertise 10mb Full duplex\n");
983 mii_autoneg_adv_reg |= ADVERTISE_10FULL;
984 }
985
986 /* Do we want to advertise 100 Mb Half Duplex? */
987 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
988 e_dbg("Advertise 100mb Half duplex\n");
989 mii_autoneg_adv_reg |= ADVERTISE_100HALF;
990 }
991
992 /* Do we want to advertise 100 Mb Full Duplex? */
993 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
994 e_dbg("Advertise 100mb Full duplex\n");
995 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
996 }
997
998 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
999 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1000 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1001
1002 /* Do we want to advertise 1000 Mb Full Duplex? */
1003 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1004 e_dbg("Advertise 1000mb Full duplex\n");
1005 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1006 }
1007
1008 /* Check for a software override of the flow control settings, and
1009 * setup the PHY advertisement registers accordingly. If
1010 * auto-negotiation is enabled, then software will have to set the
1011 * "PAUSE" bits to the correct value in the Auto-Negotiation
1012 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1013 * negotiation.
1014 *
1015 * The possible values of the "fc" parameter are:
1016 * 0: Flow control is completely disabled
1017 * 1: Rx flow control is enabled (we can receive pause frames
1018 * but not send pause frames).
1019 * 2: Tx flow control is enabled (we can send pause frames
1020 * but we do not support receiving pause frames).
1021 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1022 * other: No software override. The flow control configuration
1023 * in the EEPROM is used.
1024 */
1025 switch (hw->fc.current_mode) {
1026 case e1000_fc_none:
1027 /* Flow control (Rx & Tx) is completely disabled by a
1028 * software over-ride.
1029 */
1030 mii_autoneg_adv_reg &=
1031 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1032 break;
1033 case e1000_fc_rx_pause:
1034 /* Rx Flow control is enabled, and Tx Flow control is
1035 * disabled, by a software over-ride.
1036 *
1037 * Since there really isn't a way to advertise that we are
1038 * capable of Rx Pause ONLY, we will advertise that we
1039 * support both symmetric and asymmetric Rx PAUSE. Later
1040 * (in e1000e_config_fc_after_link_up) we will disable the
1041 * hw's ability to send PAUSE frames.
1042 */
1043 mii_autoneg_adv_reg |=
1044 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1045 break;
1046 case e1000_fc_tx_pause:
1047 /* Tx Flow control is enabled, and Rx Flow control is
1048 * disabled, by a software over-ride.
1049 */
1050 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1051 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1052 break;
1053 case e1000_fc_full:
1054 /* Flow control (both Rx and Tx) is enabled by a software
1055 * over-ride.
1056 */
1057 mii_autoneg_adv_reg |=
1058 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1059 break;
1060 default:
1061 e_dbg("Flow control param set incorrectly\n");
1062 return -E1000_ERR_CONFIG;
1063 }
1064
1065 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1066 if (ret_val)
1067 return ret_val;
1068
1069 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1070
1071 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1072 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1073
1074 return ret_val;
1075}
1076
1077/**
1078 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079 * @hw: pointer to the HW structure
1080 *
1081 * Performs initial bounds checking on autoneg advertisement parameter, then
1082 * configure to advertise the full capability. Setup the PHY to autoneg
1083 * and restart the negotiation process between the link partner. If
1084 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1085 **/
1086static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1087{
1088 struct e1000_phy_info *phy = &hw->phy;
1089 s32 ret_val;
1090 u16 phy_ctrl;
1091
1092 /* Perform some bounds checking on the autoneg advertisement
1093 * parameter.
1094 */
1095 phy->autoneg_advertised &= phy->autoneg_mask;
1096
1097 /* If autoneg_advertised is zero, we assume it was not defaulted
1098 * by the calling code so we set to advertise full capability.
1099 */
1100 if (!phy->autoneg_advertised)
1101 phy->autoneg_advertised = phy->autoneg_mask;
1102
1103 e_dbg("Reconfiguring auto-neg advertisement params\n");
1104 ret_val = e1000_phy_setup_autoneg(hw);
1105 if (ret_val) {
1106 e_dbg("Error Setting up Auto-Negotiation\n");
1107 return ret_val;
1108 }
1109 e_dbg("Restarting Auto-Neg\n");
1110
1111 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112 * the Auto Neg Restart bit in the PHY control register.
1113 */
1114 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1115 if (ret_val)
1116 return ret_val;
1117
1118 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1119 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1120 if (ret_val)
1121 return ret_val;
1122
1123 /* Does the user want to wait for Auto-Neg to complete here, or
1124 * check at a later time (for example, callback routine).
1125 */
1126 if (phy->autoneg_wait_to_complete) {
1127 ret_val = e1000_wait_autoneg(hw);
1128 if (ret_val) {
1129 e_dbg("Error while waiting for autoneg to complete\n");
1130 return ret_val;
1131 }
1132 }
1133
1134 hw->mac.get_link_status = true;
1135
1136 return ret_val;
1137}
1138
1139/**
1140 * e1000e_setup_copper_link - Configure copper link settings
1141 * @hw: pointer to the HW structure
1142 *
1143 * Calls the appropriate function to configure the link for auto-neg or forced
1144 * speed and duplex. Then we check for link, once link is established calls
1145 * to configure collision distance and flow control are called. If link is
1146 * not established, we return -E1000_ERR_PHY (-2).
1147 **/
1148s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1149{
1150 s32 ret_val;
1151 bool link;
1152
1153 if (hw->mac.autoneg) {
1154 /* Setup autoneg and flow control advertisement and perform
1155 * autonegotiation.
1156 */
1157 ret_val = e1000_copper_link_autoneg(hw);
1158 if (ret_val)
1159 return ret_val;
1160 } else {
1161 /* PHY will be set to 10H, 10F, 100H or 100F
1162 * depending on user settings.
1163 */
1164 e_dbg("Forcing Speed and Duplex\n");
1165 ret_val = hw->phy.ops.force_speed_duplex(hw);
1166 if (ret_val) {
1167 e_dbg("Error Forcing Speed and Duplex\n");
1168 return ret_val;
1169 }
1170 }
1171
1172 /* Check link status. Wait up to 100 microseconds for link to become
1173 * valid.
1174 */
1175 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1176 &link);
1177 if (ret_val)
1178 return ret_val;
1179
1180 if (link) {
1181 e_dbg("Valid link established!!!\n");
1182 hw->mac.ops.config_collision_dist(hw);
1183 ret_val = e1000e_config_fc_after_link_up(hw);
1184 } else {
1185 e_dbg("Unable to establish link!!!\n");
1186 }
1187
1188 return ret_val;
1189}
1190
1191/**
1192 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 * @hw: pointer to the HW structure
1194 *
1195 * Calls the PHY setup function to force speed and duplex. Clears the
1196 * auto-crossover to force MDI manually. Waits for link and returns
1197 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1198 **/
1199s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1200{
1201 struct e1000_phy_info *phy = &hw->phy;
1202 s32 ret_val;
1203 u16 phy_data;
1204 bool link;
1205
1206 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1207 if (ret_val)
1208 return ret_val;
1209
1210 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1211
1212 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1213 if (ret_val)
1214 return ret_val;
1215
1216 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1217 * forced whenever speed and duplex are forced.
1218 */
1219 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1220 if (ret_val)
1221 return ret_val;
1222
1223 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1224 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1225
1226 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1227 if (ret_val)
1228 return ret_val;
1229
1230 e_dbg("IGP PSCR: %X\n", phy_data);
1231
1232 udelay(1);
1233
1234 if (phy->autoneg_wait_to_complete) {
1235 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1236
1237 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1238 100000, &link);
1239 if (ret_val)
1240 return ret_val;
1241
1242 if (!link)
1243 e_dbg("Link taking longer than expected.\n");
1244
1245 /* Try once more */
1246 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1247 100000, &link);
1248 }
1249
1250 return ret_val;
1251}
1252
1253/**
1254 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255 * @hw: pointer to the HW structure
1256 *
1257 * Calls the PHY setup function to force speed and duplex. Clears the
1258 * auto-crossover to force MDI manually. Resets the PHY to commit the
1259 * changes. If time expires while waiting for link up, we reset the DSP.
1260 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1261 * successful completion, else return corresponding error code.
1262 **/
1263s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1264{
1265 struct e1000_phy_info *phy = &hw->phy;
1266 s32 ret_val;
1267 u16 phy_data;
1268 bool link;
1269
1270 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1271 * forced whenever speed and duplex are forced.
1272 */
1273 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274 if (ret_val)
1275 return ret_val;
1276
1277 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 if (ret_val)
1280 return ret_val;
1281
1282 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283
1284 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1285 if (ret_val)
1286 return ret_val;
1287
1288 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289
1290 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1291 if (ret_val)
1292 return ret_val;
1293
1294 /* Reset the phy to commit changes. */
1295 if (hw->phy.ops.commit) {
1296 ret_val = hw->phy.ops.commit(hw);
1297 if (ret_val)
1298 return ret_val;
1299 }
1300
1301 if (phy->autoneg_wait_to_complete) {
1302 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1303
1304 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1305 100000, &link);
1306 if (ret_val)
1307 return ret_val;
1308
1309 if (!link) {
1310 if (hw->phy.type != e1000_phy_m88) {
1311 e_dbg("Link taking longer than expected.\n");
1312 } else {
1313 /* We didn't get link.
1314 * Reset the DSP and cross our fingers.
1315 */
1316 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1317 0x001d);
1318 if (ret_val)
1319 return ret_val;
1320 ret_val = e1000e_phy_reset_dsp(hw);
1321 if (ret_val)
1322 return ret_val;
1323 }
1324 }
1325
1326 /* Try once more */
1327 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328 100000, &link);
1329 if (ret_val)
1330 return ret_val;
1331 }
1332
1333 if (hw->phy.type != e1000_phy_m88)
1334 return 0;
1335
1336 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1337 if (ret_val)
1338 return ret_val;
1339
1340 /* Resetting the phy means we need to re-force TX_CLK in the
1341 * Extended PHY Specific Control Register to 25MHz clock from
1342 * the reset value of 2.5MHz.
1343 */
1344 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346 if (ret_val)
1347 return ret_val;
1348
1349 /* In addition, we must re-enable CRS on Tx for both half and full
1350 * duplex.
1351 */
1352 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1353 if (ret_val)
1354 return ret_val;
1355
1356 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1357 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1358
1359 return ret_val;
1360}
1361
1362/**
1363 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364 * @hw: pointer to the HW structure
1365 *
1366 * Forces the speed and duplex settings of the PHY.
1367 * This is a function pointer entry point only called by
1368 * PHY setup routines.
1369 **/
1370s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1371{
1372 struct e1000_phy_info *phy = &hw->phy;
1373 s32 ret_val;
1374 u16 data;
1375 bool link;
1376
1377 ret_val = e1e_rphy(hw, MII_BMCR, &data);
1378 if (ret_val)
1379 return ret_val;
1380
1381 e1000e_phy_force_speed_duplex_setup(hw, &data);
1382
1383 ret_val = e1e_wphy(hw, MII_BMCR, data);
1384 if (ret_val)
1385 return ret_val;
1386
1387 /* Disable MDI-X support for 10/100 */
1388 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1389 if (ret_val)
1390 return ret_val;
1391
1392 data &= ~IFE_PMC_AUTO_MDIX;
1393 data &= ~IFE_PMC_FORCE_MDIX;
1394
1395 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1396 if (ret_val)
1397 return ret_val;
1398
1399 e_dbg("IFE PMC: %X\n", data);
1400
1401 udelay(1);
1402
1403 if (phy->autoneg_wait_to_complete) {
1404 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1405
1406 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1407 100000, &link);
1408 if (ret_val)
1409 return ret_val;
1410
1411 if (!link)
1412 e_dbg("Link taking longer than expected.\n");
1413
1414 /* Try once more */
1415 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1416 100000, &link);
1417 if (ret_val)
1418 return ret_val;
1419 }
1420
1421 return 0;
1422}
1423
1424/**
1425 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426 * @hw: pointer to the HW structure
1427 * @phy_ctrl: pointer to current value of MII_BMCR
1428 *
1429 * Forces speed and duplex on the PHY by doing the following: disable flow
1430 * control, force speed/duplex on the MAC, disable auto speed detection,
1431 * disable auto-negotiation, configure duplex, configure speed, configure
1432 * the collision distance, write configuration to CTRL register. The
1433 * caller must write to the MII_BMCR register for these settings to
1434 * take affect.
1435 **/
1436void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1437{
1438 struct e1000_mac_info *mac = &hw->mac;
1439 u32 ctrl;
1440
1441 /* Turn off flow control when forcing speed/duplex */
1442 hw->fc.current_mode = e1000_fc_none;
1443
1444 /* Force speed/duplex on the mac */
1445 ctrl = er32(CTRL);
1446 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447 ctrl &= ~E1000_CTRL_SPD_SEL;
1448
1449 /* Disable Auto Speed Detection */
1450 ctrl &= ~E1000_CTRL_ASDE;
1451
1452 /* Disable autoneg on the phy */
1453 *phy_ctrl &= ~BMCR_ANENABLE;
1454
1455 /* Forcing Full or Half Duplex? */
1456 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1457 ctrl &= ~E1000_CTRL_FD;
1458 *phy_ctrl &= ~BMCR_FULLDPLX;
1459 e_dbg("Half Duplex\n");
1460 } else {
1461 ctrl |= E1000_CTRL_FD;
1462 *phy_ctrl |= BMCR_FULLDPLX;
1463 e_dbg("Full Duplex\n");
1464 }
1465
1466 /* Forcing 10mb or 100mb? */
1467 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1468 ctrl |= E1000_CTRL_SPD_100;
1469 *phy_ctrl |= BMCR_SPEED100;
1470 *phy_ctrl &= ~BMCR_SPEED1000;
1471 e_dbg("Forcing 100mb\n");
1472 } else {
1473 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1474 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1475 e_dbg("Forcing 10mb\n");
1476 }
1477
1478 hw->mac.ops.config_collision_dist(hw);
1479
1480 ew32(CTRL, ctrl);
1481}
1482
1483/**
1484 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485 * @hw: pointer to the HW structure
1486 * @active: boolean used to enable/disable lplu
1487 *
1488 * Success returns 0, Failure returns 1
1489 *
1490 * The low power link up (lplu) state is set to the power management level D3
1491 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1492 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1493 * is used during Dx states where the power conservation is most important.
1494 * During driver activity, SmartSpeed should be enabled so performance is
1495 * maintained.
1496 **/
1497s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1498{
1499 struct e1000_phy_info *phy = &hw->phy;
1500 s32 ret_val;
1501 u16 data;
1502
1503 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1504 if (ret_val)
1505 return ret_val;
1506
1507 if (!active) {
1508 data &= ~IGP02E1000_PM_D3_LPLU;
1509 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1510 if (ret_val)
1511 return ret_val;
1512 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1513 * during Dx states where the power conservation is most
1514 * important. During driver activity we should enable
1515 * SmartSpeed, so performance is maintained.
1516 */
1517 if (phy->smart_speed == e1000_smart_speed_on) {
1518 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519 &data);
1520 if (ret_val)
1521 return ret_val;
1522
1523 data |= IGP01E1000_PSCFR_SMART_SPEED;
1524 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1525 data);
1526 if (ret_val)
1527 return ret_val;
1528 } else if (phy->smart_speed == e1000_smart_speed_off) {
1529 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 &data);
1531 if (ret_val)
1532 return ret_val;
1533
1534 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1535 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536 data);
1537 if (ret_val)
1538 return ret_val;
1539 }
1540 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543 data |= IGP02E1000_PM_D3_LPLU;
1544 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1545 if (ret_val)
1546 return ret_val;
1547
1548 /* When LPLU is enabled, we should disable SmartSpeed */
1549 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1550 if (ret_val)
1551 return ret_val;
1552
1553 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1555 }
1556
1557 return ret_val;
1558}
1559
1560/**
1561 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1562 * @hw: pointer to the HW structure
1563 *
1564 * Success returns 0, Failure returns 1
1565 *
1566 * A downshift is detected by querying the PHY link health.
1567 **/
1568s32 e1000e_check_downshift(struct e1000_hw *hw)
1569{
1570 struct e1000_phy_info *phy = &hw->phy;
1571 s32 ret_val;
1572 u16 phy_data, offset, mask;
1573
1574 switch (phy->type) {
1575 case e1000_phy_m88:
1576 case e1000_phy_gg82563:
1577 case e1000_phy_bm:
1578 case e1000_phy_82578:
1579 offset = M88E1000_PHY_SPEC_STATUS;
1580 mask = M88E1000_PSSR_DOWNSHIFT;
1581 break;
1582 case e1000_phy_igp_2:
1583 case e1000_phy_igp_3:
1584 offset = IGP01E1000_PHY_LINK_HEALTH;
1585 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1586 break;
1587 default:
1588 /* speed downshift not supported */
1589 phy->speed_downgraded = false;
1590 return 0;
1591 }
1592
1593 ret_val = e1e_rphy(hw, offset, &phy_data);
1594
1595 if (!ret_val)
1596 phy->speed_downgraded = !!(phy_data & mask);
1597
1598 return ret_val;
1599}
1600
1601/**
1602 * e1000_check_polarity_m88 - Checks the polarity.
1603 * @hw: pointer to the HW structure
1604 *
1605 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1606 *
1607 * Polarity is determined based on the PHY specific status register.
1608 **/
1609s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1610{
1611 struct e1000_phy_info *phy = &hw->phy;
1612 s32 ret_val;
1613 u16 data;
1614
1615 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1616
1617 if (!ret_val)
1618 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1619 ? e1000_rev_polarity_reversed
1620 : e1000_rev_polarity_normal);
1621
1622 return ret_val;
1623}
1624
1625/**
1626 * e1000_check_polarity_igp - Checks the polarity.
1627 * @hw: pointer to the HW structure
1628 *
1629 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1630 *
1631 * Polarity is determined based on the PHY port status register, and the
1632 * current speed (since there is no polarity at 100Mbps).
1633 **/
1634s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1635{
1636 struct e1000_phy_info *phy = &hw->phy;
1637 s32 ret_val;
1638 u16 data, offset, mask;
1639
1640 /* Polarity is determined based on the speed of
1641 * our connection.
1642 */
1643 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1644 if (ret_val)
1645 return ret_val;
1646
1647 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1648 IGP01E1000_PSSR_SPEED_1000MBPS) {
1649 offset = IGP01E1000_PHY_PCS_INIT_REG;
1650 mask = IGP01E1000_PHY_POLARITY_MASK;
1651 } else {
1652 /* This really only applies to 10Mbps since
1653 * there is no polarity for 100Mbps (always 0).
1654 */
1655 offset = IGP01E1000_PHY_PORT_STATUS;
1656 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1657 }
1658
1659 ret_val = e1e_rphy(hw, offset, &data);
1660
1661 if (!ret_val)
1662 phy->cable_polarity = ((data & mask)
1663 ? e1000_rev_polarity_reversed
1664 : e1000_rev_polarity_normal);
1665
1666 return ret_val;
1667}
1668
1669/**
1670 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671 * @hw: pointer to the HW structure
1672 *
1673 * Polarity is determined on the polarity reversal feature being enabled.
1674 **/
1675s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1676{
1677 struct e1000_phy_info *phy = &hw->phy;
1678 s32 ret_val;
1679 u16 phy_data, offset, mask;
1680
1681 /* Polarity is determined based on the reversal feature being enabled.
1682 */
1683 if (phy->polarity_correction) {
1684 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1685 mask = IFE_PESC_POLARITY_REVERSED;
1686 } else {
1687 offset = IFE_PHY_SPECIAL_CONTROL;
1688 mask = IFE_PSC_FORCE_POLARITY;
1689 }
1690
1691 ret_val = e1e_rphy(hw, offset, &phy_data);
1692
1693 if (!ret_val)
1694 phy->cable_polarity = ((phy_data & mask)
1695 ? e1000_rev_polarity_reversed
1696 : e1000_rev_polarity_normal);
1697
1698 return ret_val;
1699}
1700
1701/**
1702 * e1000_wait_autoneg - Wait for auto-neg completion
1703 * @hw: pointer to the HW structure
1704 *
1705 * Waits for auto-negotiation to complete or for the auto-negotiation time
1706 * limit to expire, which ever happens first.
1707 **/
1708static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1709{
1710 s32 ret_val = 0;
1711 u16 i, phy_status;
1712
1713 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1715 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1716 if (ret_val)
1717 break;
1718 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1719 if (ret_val)
1720 break;
1721 if (phy_status & BMSR_ANEGCOMPLETE)
1722 break;
1723 msleep(100);
1724 }
1725
1726 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727 * has completed.
1728 */
1729 return ret_val;
1730}
1731
1732/**
1733 * e1000e_phy_has_link_generic - Polls PHY for link
1734 * @hw: pointer to the HW structure
1735 * @iterations: number of times to poll for link
1736 * @usec_interval: delay between polling attempts
1737 * @success: pointer to whether polling was successful or not
1738 *
1739 * Polls the PHY status register for link, 'iterations' number of times.
1740 **/
1741s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1742 u32 usec_interval, bool *success)
1743{
1744 s32 ret_val = 0;
1745 u16 i, phy_status;
1746
1747 for (i = 0; i < iterations; i++) {
1748 /* Some PHYs require the MII_BMSR register to be read
1749 * twice due to the link bit being sticky. No harm doing
1750 * it across the board.
1751 */
1752 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1753 if (ret_val) {
1754 /* If the first read fails, another entity may have
1755 * ownership of the resources, wait and try again to
1756 * see if they have relinquished the resources yet.
1757 */
1758 if (usec_interval >= 1000)
1759 msleep(usec_interval / 1000);
1760 else
1761 udelay(usec_interval);
1762 }
1763 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1764 if (ret_val)
1765 break;
1766 if (phy_status & BMSR_LSTATUS)
1767 break;
1768 if (usec_interval >= 1000)
1769 msleep(usec_interval / 1000);
1770 else
1771 udelay(usec_interval);
1772 }
1773
1774 *success = (i < iterations);
1775
1776 return ret_val;
1777}
1778
1779/**
1780 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1781 * @hw: pointer to the HW structure
1782 *
1783 * Reads the PHY specific status register to retrieve the cable length
1784 * information. The cable length is determined by averaging the minimum and
1785 * maximum values to get the "average" cable length. The m88 PHY has four
1786 * possible cable length values, which are:
1787 * Register Value Cable Length
1788 * 0 < 50 meters
1789 * 1 50 - 80 meters
1790 * 2 80 - 110 meters
1791 * 3 110 - 140 meters
1792 * 4 > 140 meters
1793 **/
1794s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1795{
1796 struct e1000_phy_info *phy = &hw->phy;
1797 s32 ret_val;
1798 u16 phy_data, index;
1799
1800 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1801 if (ret_val)
1802 return ret_val;
1803
1804 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1805 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1806
1807 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1808 return -E1000_ERR_PHY;
1809
1810 phy->min_cable_length = e1000_m88_cable_length_table[index];
1811 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1812
1813 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1814
1815 return 0;
1816}
1817
1818/**
1819 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820 * @hw: pointer to the HW structure
1821 *
1822 * The automatic gain control (agc) normalizes the amplitude of the
1823 * received signal, adjusting for the attenuation produced by the
1824 * cable. By reading the AGC registers, which represent the
1825 * combination of coarse and fine gain value, the value can be put
1826 * into a lookup table to obtain the approximate cable length
1827 * for each channel.
1828 **/
1829s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1830{
1831 struct e1000_phy_info *phy = &hw->phy;
1832 s32 ret_val;
1833 u16 phy_data, i, agc_value = 0;
1834 u16 cur_agc_index, max_agc_index = 0;
1835 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837 IGP02E1000_PHY_AGC_A,
1838 IGP02E1000_PHY_AGC_B,
1839 IGP02E1000_PHY_AGC_C,
1840 IGP02E1000_PHY_AGC_D
1841 };
1842
1843 /* Read the AGC registers for all channels */
1844 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1846 if (ret_val)
1847 return ret_val;
1848
1849 /* Getting bits 15:9, which represent the combination of
1850 * coarse and fine gain values. The result is a number
1851 * that can be put into the lookup table to obtain the
1852 * approximate cable length.
1853 */
1854 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1855 IGP02E1000_AGC_LENGTH_MASK);
1856
1857 /* Array index bound check. */
1858 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1859 (cur_agc_index == 0))
1860 return -E1000_ERR_PHY;
1861
1862 /* Remove min & max AGC values from calculation. */
1863 if (e1000_igp_2_cable_length_table[min_agc_index] >
1864 e1000_igp_2_cable_length_table[cur_agc_index])
1865 min_agc_index = cur_agc_index;
1866 if (e1000_igp_2_cable_length_table[max_agc_index] <
1867 e1000_igp_2_cable_length_table[cur_agc_index])
1868 max_agc_index = cur_agc_index;
1869
1870 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1871 }
1872
1873 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1874 e1000_igp_2_cable_length_table[max_agc_index]);
1875 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1876
1877 /* Calculate cable length with the error range of +/- 10 meters. */
1878 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1879 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1880 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1881
1882 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1883
1884 return 0;
1885}
1886
1887/**
1888 * e1000e_get_phy_info_m88 - Retrieve PHY information
1889 * @hw: pointer to the HW structure
1890 *
1891 * Valid for only copper links. Read the PHY status register (sticky read)
1892 * to verify that link is up. Read the PHY special control register to
1893 * determine the polarity and 10base-T extended distance. Read the PHY
1894 * special status register to determine MDI/MDIx and current speed. If
1895 * speed is 1000, then determine cable length, local and remote receiver.
1896 **/
1897s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1898{
1899 struct e1000_phy_info *phy = &hw->phy;
1900 s32 ret_val;
1901 u16 phy_data;
1902 bool link;
1903
1904 if (phy->media_type != e1000_media_type_copper) {
1905 e_dbg("Phy info is only valid for copper media\n");
1906 return -E1000_ERR_CONFIG;
1907 }
1908
1909 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1910 if (ret_val)
1911 return ret_val;
1912
1913 if (!link) {
1914 e_dbg("Phy info is only valid if link is up\n");
1915 return -E1000_ERR_CONFIG;
1916 }
1917
1918 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1919 if (ret_val)
1920 return ret_val;
1921
1922 phy->polarity_correction = !!(phy_data &
1923 M88E1000_PSCR_POLARITY_REVERSAL);
1924
1925 ret_val = e1000_check_polarity_m88(hw);
1926 if (ret_val)
1927 return ret_val;
1928
1929 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1930 if (ret_val)
1931 return ret_val;
1932
1933 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1934
1935 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1936 ret_val = hw->phy.ops.get_cable_length(hw);
1937 if (ret_val)
1938 return ret_val;
1939
1940 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1941 if (ret_val)
1942 return ret_val;
1943
1944 phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1945 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1946
1947 phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1948 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949 } else {
1950 /* Set values to "undefined" */
1951 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1952 phy->local_rx = e1000_1000t_rx_status_undefined;
1953 phy->remote_rx = e1000_1000t_rx_status_undefined;
1954 }
1955
1956 return ret_val;
1957}
1958
1959/**
1960 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1961 * @hw: pointer to the HW structure
1962 *
1963 * Read PHY status to determine if link is up. If link is up, then
1964 * set/determine 10base-T extended distance and polarity correction. Read
1965 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1966 * determine on the cable length, local and remote receiver.
1967 **/
1968s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1969{
1970 struct e1000_phy_info *phy = &hw->phy;
1971 s32 ret_val;
1972 u16 data;
1973 bool link;
1974
1975 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1976 if (ret_val)
1977 return ret_val;
1978
1979 if (!link) {
1980 e_dbg("Phy info is only valid if link is up\n");
1981 return -E1000_ERR_CONFIG;
1982 }
1983
1984 phy->polarity_correction = true;
1985
1986 ret_val = e1000_check_polarity_igp(hw);
1987 if (ret_val)
1988 return ret_val;
1989
1990 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1991 if (ret_val)
1992 return ret_val;
1993
1994 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1995
1996 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1997 IGP01E1000_PSSR_SPEED_1000MBPS) {
1998 ret_val = phy->ops.get_cable_length(hw);
1999 if (ret_val)
2000 return ret_val;
2001
2002 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2003 if (ret_val)
2004 return ret_val;
2005
2006 phy->local_rx = (data & LPA_1000LOCALRXOK)
2007 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2008
2009 phy->remote_rx = (data & LPA_1000REMRXOK)
2010 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011 } else {
2012 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2013 phy->local_rx = e1000_1000t_rx_status_undefined;
2014 phy->remote_rx = e1000_1000t_rx_status_undefined;
2015 }
2016
2017 return ret_val;
2018}
2019
2020/**
2021 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2022 * @hw: pointer to the HW structure
2023 *
2024 * Populates "phy" structure with various feature states.
2025 **/
2026s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2027{
2028 struct e1000_phy_info *phy = &hw->phy;
2029 s32 ret_val;
2030 u16 data;
2031 bool link;
2032
2033 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2034 if (ret_val)
2035 return ret_val;
2036
2037 if (!link) {
2038 e_dbg("Phy info is only valid if link is up\n");
2039 return -E1000_ERR_CONFIG;
2040 }
2041
2042 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2043 if (ret_val)
2044 return ret_val;
2045 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2046
2047 if (phy->polarity_correction) {
2048 ret_val = e1000_check_polarity_ife(hw);
2049 if (ret_val)
2050 return ret_val;
2051 } else {
2052 /* Polarity is forced */
2053 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2054 ? e1000_rev_polarity_reversed
2055 : e1000_rev_polarity_normal);
2056 }
2057
2058 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2059 if (ret_val)
2060 return ret_val;
2061
2062 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2063
2064 /* The following parameters are undefined for 10/100 operation. */
2065 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2066 phy->local_rx = e1000_1000t_rx_status_undefined;
2067 phy->remote_rx = e1000_1000t_rx_status_undefined;
2068
2069 return 0;
2070}
2071
2072/**
2073 * e1000e_phy_sw_reset - PHY software reset
2074 * @hw: pointer to the HW structure
2075 *
2076 * Does a software reset of the PHY by reading the PHY control register and
2077 * setting/write the control register reset bit to the PHY.
2078 **/
2079s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2080{
2081 s32 ret_val;
2082 u16 phy_ctrl;
2083
2084 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2085 if (ret_val)
2086 return ret_val;
2087
2088 phy_ctrl |= BMCR_RESET;
2089 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2090 if (ret_val)
2091 return ret_val;
2092
2093 udelay(1);
2094
2095 return ret_val;
2096}
2097
2098/**
2099 * e1000e_phy_hw_reset_generic - PHY hardware reset
2100 * @hw: pointer to the HW structure
2101 *
2102 * Verify the reset block is not blocking us from resetting. Acquire
2103 * semaphore (if necessary) and read/set/write the device control reset
2104 * bit in the PHY. Wait the appropriate delay time for the device to
2105 * reset and release the semaphore (if necessary).
2106 **/
2107s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2108{
2109 struct e1000_phy_info *phy = &hw->phy;
2110 s32 ret_val;
2111 u32 ctrl;
2112
2113 if (phy->ops.check_reset_block) {
2114 ret_val = phy->ops.check_reset_block(hw);
2115 if (ret_val)
2116 return 0;
2117 }
2118
2119 ret_val = phy->ops.acquire(hw);
2120 if (ret_val)
2121 return ret_val;
2122
2123 ctrl = er32(CTRL);
2124 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2125 e1e_flush();
2126
2127 udelay(phy->reset_delay_us);
2128
2129 ew32(CTRL, ctrl);
2130 e1e_flush();
2131
2132 usleep_range(150, 300);
2133
2134 phy->ops.release(hw);
2135
2136 return phy->ops.get_cfg_done(hw);
2137}
2138
2139/**
2140 * e1000e_get_cfg_done_generic - Generic configuration done
2141 * @hw: pointer to the HW structure
2142 *
2143 * Generic function to wait 10 milli-seconds for configuration to complete
2144 * and return success.
2145 **/
2146s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2147{
2148 mdelay(10);
2149
2150 return 0;
2151}
2152
2153/**
2154 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2155 * @hw: pointer to the HW structure
2156 *
2157 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2158 **/
2159s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2160{
2161 e_dbg("Running IGP 3 PHY init script\n");
2162
2163 /* PHY init IGP 3 */
2164 /* Enable rise/fall, 10-mode work in class-A */
2165 e1e_wphy(hw, 0x2F5B, 0x9018);
2166 /* Remove all caps from Replica path filter */
2167 e1e_wphy(hw, 0x2F52, 0x0000);
2168 /* Bias trimming for ADC, AFE and Driver (Default) */
2169 e1e_wphy(hw, 0x2FB1, 0x8B24);
2170 /* Increase Hybrid poly bias */
2171 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2172 /* Add 4% to Tx amplitude in Gig mode */
2173 e1e_wphy(hw, 0x2010, 0x10B0);
2174 /* Disable trimming (TTT) */
2175 e1e_wphy(hw, 0x2011, 0x0000);
2176 /* Poly DC correction to 94.6% + 2% for all channels */
2177 e1e_wphy(hw, 0x20DD, 0x249A);
2178 /* ABS DC correction to 95.9% */
2179 e1e_wphy(hw, 0x20DE, 0x00D3);
2180 /* BG temp curve trim */
2181 e1e_wphy(hw, 0x28B4, 0x04CE);
2182 /* Increasing ADC OPAMP stage 1 currents to max */
2183 e1e_wphy(hw, 0x2F70, 0x29E4);
2184 /* Force 1000 ( required for enabling PHY regs configuration) */
2185 e1e_wphy(hw, 0x0000, 0x0140);
2186 /* Set upd_freq to 6 */
2187 e1e_wphy(hw, 0x1F30, 0x1606);
2188 /* Disable NPDFE */
2189 e1e_wphy(hw, 0x1F31, 0xB814);
2190 /* Disable adaptive fixed FFE (Default) */
2191 e1e_wphy(hw, 0x1F35, 0x002A);
2192 /* Enable FFE hysteresis */
2193 e1e_wphy(hw, 0x1F3E, 0x0067);
2194 /* Fixed FFE for short cable lengths */
2195 e1e_wphy(hw, 0x1F54, 0x0065);
2196 /* Fixed FFE for medium cable lengths */
2197 e1e_wphy(hw, 0x1F55, 0x002A);
2198 /* Fixed FFE for long cable lengths */
2199 e1e_wphy(hw, 0x1F56, 0x002A);
2200 /* Enable Adaptive Clip Threshold */
2201 e1e_wphy(hw, 0x1F72, 0x3FB0);
2202 /* AHT reset limit to 1 */
2203 e1e_wphy(hw, 0x1F76, 0xC0FF);
2204 /* Set AHT master delay to 127 msec */
2205 e1e_wphy(hw, 0x1F77, 0x1DEC);
2206 /* Set scan bits for AHT */
2207 e1e_wphy(hw, 0x1F78, 0xF9EF);
2208 /* Set AHT Preset bits */
2209 e1e_wphy(hw, 0x1F79, 0x0210);
2210 /* Change integ_factor of channel A to 3 */
2211 e1e_wphy(hw, 0x1895, 0x0003);
2212 /* Change prop_factor of channels BCD to 8 */
2213 e1e_wphy(hw, 0x1796, 0x0008);
2214 /* Change cg_icount + enable integbp for channels BCD */
2215 e1e_wphy(hw, 0x1798, 0xD008);
2216 /* Change cg_icount + enable integbp + change prop_factor_master
2217 * to 8 for channel A
2218 */
2219 e1e_wphy(hw, 0x1898, 0xD918);
2220 /* Disable AHT in Slave mode on channel A */
2221 e1e_wphy(hw, 0x187A, 0x0800);
2222 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2223 * Enable SPD+B2B
2224 */
2225 e1e_wphy(hw, 0x0019, 0x008D);
2226 /* Enable restart AN on an1000_dis change */
2227 e1e_wphy(hw, 0x001B, 0x2080);
2228 /* Enable wh_fifo read clock in 10/100 modes */
2229 e1e_wphy(hw, 0x0014, 0x0045);
2230 /* Restart AN, Speed selection is 1000 */
2231 e1e_wphy(hw, 0x0000, 0x1340);
2232
2233 return 0;
2234}
2235
2236/**
2237 * e1000e_get_phy_type_from_id - Get PHY type from id
2238 * @phy_id: phy_id read from the phy
2239 *
2240 * Returns the phy type from the id.
2241 **/
2242enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2243{
2244 enum e1000_phy_type phy_type = e1000_phy_unknown;
2245
2246 switch (phy_id) {
2247 case M88E1000_I_PHY_ID:
2248 case M88E1000_E_PHY_ID:
2249 case M88E1111_I_PHY_ID:
2250 case M88E1011_I_PHY_ID:
2251 phy_type = e1000_phy_m88;
2252 break;
2253 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2254 phy_type = e1000_phy_igp_2;
2255 break;
2256 case GG82563_E_PHY_ID:
2257 phy_type = e1000_phy_gg82563;
2258 break;
2259 case IGP03E1000_E_PHY_ID:
2260 phy_type = e1000_phy_igp_3;
2261 break;
2262 case IFE_E_PHY_ID:
2263 case IFE_PLUS_E_PHY_ID:
2264 case IFE_C_E_PHY_ID:
2265 phy_type = e1000_phy_ife;
2266 break;
2267 case BME1000_E_PHY_ID:
2268 case BME1000_E_PHY_ID_R2:
2269 phy_type = e1000_phy_bm;
2270 break;
2271 case I82578_E_PHY_ID:
2272 phy_type = e1000_phy_82578;
2273 break;
2274 case I82577_E_PHY_ID:
2275 phy_type = e1000_phy_82577;
2276 break;
2277 case I82579_E_PHY_ID:
2278 phy_type = e1000_phy_82579;
2279 break;
2280 case I217_E_PHY_ID:
2281 phy_type = e1000_phy_i217;
2282 break;
2283 default:
2284 phy_type = e1000_phy_unknown;
2285 break;
2286 }
2287 return phy_type;
2288}
2289
2290/**
2291 * e1000e_determine_phy_address - Determines PHY address.
2292 * @hw: pointer to the HW structure
2293 *
2294 * This uses a trial and error method to loop through possible PHY
2295 * addresses. It tests each by reading the PHY ID registers and
2296 * checking for a match.
2297 **/
2298s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2299{
2300 u32 phy_addr = 0;
2301 u32 i;
2302 enum e1000_phy_type phy_type = e1000_phy_unknown;
2303
2304 hw->phy.id = phy_type;
2305
2306 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2307 hw->phy.addr = phy_addr;
2308 i = 0;
2309
2310 do {
2311 e1000e_get_phy_id(hw);
2312 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2313
2314 /* If phy_type is valid, break - we found our
2315 * PHY address
2316 */
2317 if (phy_type != e1000_phy_unknown)
2318 return 0;
2319
2320 usleep_range(1000, 2000);
2321 i++;
2322 } while (i < 10);
2323 }
2324
2325 return -E1000_ERR_PHY_TYPE;
2326}
2327
2328/**
2329 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2330 * @page: page to access
2331 *
2332 * Returns the phy address for the page requested.
2333 **/
2334static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2335{
2336 u32 phy_addr = 2;
2337
2338 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2339 phy_addr = 1;
2340
2341 return phy_addr;
2342}
2343
2344/**
2345 * e1000e_write_phy_reg_bm - Write BM PHY register
2346 * @hw: pointer to the HW structure
2347 * @offset: register offset to write to
2348 * @data: data to write at register offset
2349 *
2350 * Acquires semaphore, if necessary, then writes the data to PHY register
2351 * at the offset. Release any acquired semaphores before exiting.
2352 **/
2353s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2354{
2355 s32 ret_val;
2356 u32 page = offset >> IGP_PAGE_SHIFT;
2357
2358 ret_val = hw->phy.ops.acquire(hw);
2359 if (ret_val)
2360 return ret_val;
2361
2362 /* Page 800 works differently than the rest so it has its own func */
2363 if (page == BM_WUC_PAGE) {
2364 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2365 false, false);
2366 goto release;
2367 }
2368
2369 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2370
2371 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2372 u32 page_shift, page_select;
2373
2374 /* Page select is register 31 for phy address 1 and 22 for
2375 * phy address 2 and 3. Page select is shifted only for
2376 * phy address 1.
2377 */
2378 if (hw->phy.addr == 1) {
2379 page_shift = IGP_PAGE_SHIFT;
2380 page_select = IGP01E1000_PHY_PAGE_SELECT;
2381 } else {
2382 page_shift = 0;
2383 page_select = BM_PHY_PAGE_SELECT;
2384 }
2385
2386 /* Page is shifted left, PHY expects (page x 32) */
2387 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2388 (page << page_shift));
2389 if (ret_val)
2390 goto release;
2391 }
2392
2393 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2394 data);
2395
2396release:
2397 hw->phy.ops.release(hw);
2398 return ret_val;
2399}
2400
2401/**
2402 * e1000e_read_phy_reg_bm - Read BM PHY register
2403 * @hw: pointer to the HW structure
2404 * @offset: register offset to be read
2405 * @data: pointer to the read data
2406 *
2407 * Acquires semaphore, if necessary, then reads the PHY register at offset
2408 * and storing the retrieved information in data. Release any acquired
2409 * semaphores before exiting.
2410 **/
2411s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2412{
2413 s32 ret_val;
2414 u32 page = offset >> IGP_PAGE_SHIFT;
2415
2416 ret_val = hw->phy.ops.acquire(hw);
2417 if (ret_val)
2418 return ret_val;
2419
2420 /* Page 800 works differently than the rest so it has its own func */
2421 if (page == BM_WUC_PAGE) {
2422 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2423 true, false);
2424 goto release;
2425 }
2426
2427 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2428
2429 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430 u32 page_shift, page_select;
2431
2432 /* Page select is register 31 for phy address 1 and 22 for
2433 * phy address 2 and 3. Page select is shifted only for
2434 * phy address 1.
2435 */
2436 if (hw->phy.addr == 1) {
2437 page_shift = IGP_PAGE_SHIFT;
2438 page_select = IGP01E1000_PHY_PAGE_SELECT;
2439 } else {
2440 page_shift = 0;
2441 page_select = BM_PHY_PAGE_SELECT;
2442 }
2443
2444 /* Page is shifted left, PHY expects (page x 32) */
2445 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2446 (page << page_shift));
2447 if (ret_val)
2448 goto release;
2449 }
2450
2451 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2452 data);
2453release:
2454 hw->phy.ops.release(hw);
2455 return ret_val;
2456}
2457
2458/**
2459 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2460 * @hw: pointer to the HW structure
2461 * @offset: register offset to be read
2462 * @data: pointer to the read data
2463 *
2464 * Acquires semaphore, if necessary, then reads the PHY register at offset
2465 * and storing the retrieved information in data. Release any acquired
2466 * semaphores before exiting.
2467 **/
2468s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2469{
2470 s32 ret_val;
2471 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2472
2473 ret_val = hw->phy.ops.acquire(hw);
2474 if (ret_val)
2475 return ret_val;
2476
2477 /* Page 800 works differently than the rest so it has its own func */
2478 if (page == BM_WUC_PAGE) {
2479 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480 true, false);
2481 goto release;
2482 }
2483
2484 hw->phy.addr = 1;
2485
2486 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487 /* Page is shifted left, PHY expects (page x 32) */
2488 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2489 page);
2490
2491 if (ret_val)
2492 goto release;
2493 }
2494
2495 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2496 data);
2497release:
2498 hw->phy.ops.release(hw);
2499 return ret_val;
2500}
2501
2502/**
2503 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2504 * @hw: pointer to the HW structure
2505 * @offset: register offset to write to
2506 * @data: data to write at register offset
2507 *
2508 * Acquires semaphore, if necessary, then writes the data to PHY register
2509 * at the offset. Release any acquired semaphores before exiting.
2510 **/
2511s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2512{
2513 s32 ret_val;
2514 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515
2516 ret_val = hw->phy.ops.acquire(hw);
2517 if (ret_val)
2518 return ret_val;
2519
2520 /* Page 800 works differently than the rest so it has its own func */
2521 if (page == BM_WUC_PAGE) {
2522 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2523 false, false);
2524 goto release;
2525 }
2526
2527 hw->phy.addr = 1;
2528
2529 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530 /* Page is shifted left, PHY expects (page x 32) */
2531 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2532 page);
2533
2534 if (ret_val)
2535 goto release;
2536 }
2537
2538 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2539 data);
2540
2541release:
2542 hw->phy.ops.release(hw);
2543 return ret_val;
2544}
2545
2546/**
2547 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2548 * @hw: pointer to the HW structure
2549 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2550 *
2551 * Assumes semaphore already acquired and phy_reg points to a valid memory
2552 * address to store contents of the BM_WUC_ENABLE_REG register.
2553 **/
2554s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2555{
2556 s32 ret_val;
2557 u16 temp;
2558
2559 /* All page select, port ctrl and wakeup registers use phy address 1 */
2560 hw->phy.addr = 1;
2561
2562 /* Select Port Control Registers page */
2563 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2564 if (ret_val) {
2565 e_dbg("Could not set Port Control page\n");
2566 return ret_val;
2567 }
2568
2569 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2570 if (ret_val) {
2571 e_dbg("Could not read PHY register %d.%d\n",
2572 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2573 return ret_val;
2574 }
2575
2576 /* Enable both PHY wakeup mode and Wakeup register page writes.
2577 * Prevent a power state change by disabling ME and Host PHY wakeup.
2578 */
2579 temp = *phy_reg;
2580 temp |= BM_WUC_ENABLE_BIT;
2581 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2582
2583 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2584 if (ret_val) {
2585 e_dbg("Could not write PHY register %d.%d\n",
2586 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2587 return ret_val;
2588 }
2589
2590 /* Select Host Wakeup Registers page - caller now able to write
2591 * registers on the Wakeup registers page
2592 */
2593 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2594}
2595
2596/**
2597 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2598 * @hw: pointer to the HW structure
2599 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2600 *
2601 * Restore BM_WUC_ENABLE_REG to its original value.
2602 *
2603 * Assumes semaphore already acquired and *phy_reg is the contents of the
2604 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2605 * caller.
2606 **/
2607s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2608{
2609 s32 ret_val;
2610
2611 /* Select Port Control Registers page */
2612 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2613 if (ret_val) {
2614 e_dbg("Could not set Port Control page\n");
2615 return ret_val;
2616 }
2617
2618 /* Restore 769.17 to its original value */
2619 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2620 if (ret_val)
2621 e_dbg("Could not restore PHY register %d.%d\n",
2622 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2623
2624 return ret_val;
2625}
2626
2627/**
2628 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2629 * @hw: pointer to the HW structure
2630 * @offset: register offset to be read or written
2631 * @data: pointer to the data to read or write
2632 * @read: determines if operation is read or write
2633 * @page_set: BM_WUC_PAGE already set and access enabled
2634 *
2635 * Read the PHY register at offset and store the retrieved information in
2636 * data, or write data to PHY register at offset. Note the procedure to
2637 * access the PHY wakeup registers is different than reading the other PHY
2638 * registers. It works as such:
2639 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2640 * 2) Set page to 800 for host (801 if we were manageability)
2641 * 3) Write the address using the address opcode (0x11)
2642 * 4) Read or write the data using the data opcode (0x12)
2643 * 5) Restore 769.17.2 to its original value
2644 *
2645 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2646 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2647 *
2648 * Assumes semaphore is already acquired. When page_set==true, assumes
2649 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2650 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2651 **/
2652static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2653 u16 *data, bool read, bool page_set)
2654{
2655 s32 ret_val;
2656 u16 reg = BM_PHY_REG_NUM(offset);
2657 u16 page = BM_PHY_REG_PAGE(offset);
2658 u16 phy_reg = 0;
2659
2660 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2661 if ((hw->mac.type == e1000_pchlan) &&
2662 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2663 e_dbg("Attempting to access page %d while gig enabled.\n",
2664 page);
2665
2666 if (!page_set) {
2667 /* Enable access to PHY wakeup registers */
2668 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2669 if (ret_val) {
2670 e_dbg("Could not enable PHY wakeup reg access\n");
2671 return ret_val;
2672 }
2673 }
2674
2675 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2676
2677 /* Write the Wakeup register page offset value using opcode 0x11 */
2678 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2679 if (ret_val) {
2680 e_dbg("Could not write address opcode to page %d\n", page);
2681 return ret_val;
2682 }
2683
2684 if (read) {
2685 /* Read the Wakeup register page value using opcode 0x12 */
2686 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2687 data);
2688 } else {
2689 /* Write the Wakeup register page value using opcode 0x12 */
2690 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2691 *data);
2692 }
2693
2694 if (ret_val) {
2695 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2696 return ret_val;
2697 }
2698
2699 if (!page_set)
2700 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701
2702 return ret_val;
2703}
2704
2705/**
2706 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2707 * @hw: pointer to the HW structure
2708 *
2709 * In the case of a PHY power down to save power, or to turn off link during a
2710 * driver unload, or wake on lan is not enabled, restore the link to previous
2711 * settings.
2712 **/
2713void e1000_power_up_phy_copper(struct e1000_hw *hw)
2714{
2715 u16 mii_reg = 0;
2716
2717 /* The PHY will retain its settings across a power down/up cycle */
2718 e1e_rphy(hw, MII_BMCR, &mii_reg);
2719 mii_reg &= ~BMCR_PDOWN;
2720 e1e_wphy(hw, MII_BMCR, mii_reg);
2721}
2722
2723/**
2724 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2725 * @hw: pointer to the HW structure
2726 *
2727 * In the case of a PHY power down to save power, or to turn off link during a
2728 * driver unload, or wake on lan is not enabled, restore the link to previous
2729 * settings.
2730 **/
2731void e1000_power_down_phy_copper(struct e1000_hw *hw)
2732{
2733 u16 mii_reg = 0;
2734
2735 /* The PHY will retain its settings across a power down/up cycle */
2736 e1e_rphy(hw, MII_BMCR, &mii_reg);
2737 mii_reg |= BMCR_PDOWN;
2738 e1e_wphy(hw, MII_BMCR, mii_reg);
2739 usleep_range(1000, 2000);
2740}
2741
2742/**
2743 * __e1000_read_phy_reg_hv - Read HV PHY register
2744 * @hw: pointer to the HW structure
2745 * @offset: register offset to be read
2746 * @data: pointer to the read data
2747 * @locked: semaphore has already been acquired or not
2748 *
2749 * Acquires semaphore, if necessary, then reads the PHY register at offset
2750 * and stores the retrieved information in data. Release any acquired
2751 * semaphore before exiting.
2752 **/
2753static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2754 bool locked, bool page_set)
2755{
2756 s32 ret_val;
2757 u16 page = BM_PHY_REG_PAGE(offset);
2758 u16 reg = BM_PHY_REG_NUM(offset);
2759 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2760
2761 if (!locked) {
2762 ret_val = hw->phy.ops.acquire(hw);
2763 if (ret_val)
2764 return ret_val;
2765 }
2766
2767 /* Page 800 works differently than the rest so it has its own func */
2768 if (page == BM_WUC_PAGE) {
2769 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2770 true, page_set);
2771 goto out;
2772 }
2773
2774 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2775 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2776 data, true);
2777 goto out;
2778 }
2779
2780 if (!page_set) {
2781 if (page == HV_INTC_FC_PAGE_START)
2782 page = 0;
2783
2784 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2785 /* Page is shifted left, PHY expects (page x 32) */
2786 ret_val = e1000_set_page_igp(hw,
2787 (page << IGP_PAGE_SHIFT));
2788
2789 hw->phy.addr = phy_addr;
2790
2791 if (ret_val)
2792 goto out;
2793 }
2794 }
2795
2796 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2797 page << IGP_PAGE_SHIFT, reg);
2798
2799 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2800out:
2801 if (!locked)
2802 hw->phy.ops.release(hw);
2803
2804 return ret_val;
2805}
2806
2807/**
2808 * e1000_read_phy_reg_hv - Read HV PHY register
2809 * @hw: pointer to the HW structure
2810 * @offset: register offset to be read
2811 * @data: pointer to the read data
2812 *
2813 * Acquires semaphore then reads the PHY register at offset and stores
2814 * the retrieved information in data. Release the acquired semaphore
2815 * before exiting.
2816 **/
2817s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2818{
2819 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2820}
2821
2822/**
2823 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2824 * @hw: pointer to the HW structure
2825 * @offset: register offset to be read
2826 * @data: pointer to the read data
2827 *
2828 * Reads the PHY register at offset and stores the retrieved information
2829 * in data. Assumes semaphore already acquired.
2830 **/
2831s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2832{
2833 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2834}
2835
2836/**
2837 * e1000_read_phy_reg_page_hv - Read HV PHY register
2838 * @hw: pointer to the HW structure
2839 * @offset: register offset to write to
2840 * @data: data to write at register offset
2841 *
2842 * Reads the PHY register at offset and stores the retrieved information
2843 * in data. Assumes semaphore already acquired and page already set.
2844 **/
2845s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2846{
2847 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2848}
2849
2850/**
2851 * __e1000_write_phy_reg_hv - Write HV PHY register
2852 * @hw: pointer to the HW structure
2853 * @offset: register offset to write to
2854 * @data: data to write at register offset
2855 * @locked: semaphore has already been acquired or not
2856 *
2857 * Acquires semaphore, if necessary, then writes the data to PHY register
2858 * at the offset. Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861 bool locked, bool page_set)
2862{
2863 s32 ret_val;
2864 u16 page = BM_PHY_REG_PAGE(offset);
2865 u16 reg = BM_PHY_REG_NUM(offset);
2866 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868 if (!locked) {
2869 ret_val = hw->phy.ops.acquire(hw);
2870 if (ret_val)
2871 return ret_val;
2872 }
2873
2874 /* Page 800 works differently than the rest so it has its own func */
2875 if (page == BM_WUC_PAGE) {
2876 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877 false, page_set);
2878 goto out;
2879 }
2880
2881 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883 &data, false);
2884 goto out;
2885 }
2886
2887 if (!page_set) {
2888 if (page == HV_INTC_FC_PAGE_START)
2889 page = 0;
2890
2891 /* Workaround MDIO accesses being disabled after entering IEEE
2892 * Power Down (when bit 11 of the PHY Control register is set)
2893 */
2894 if ((hw->phy.type == e1000_phy_82578) &&
2895 (hw->phy.revision >= 1) &&
2896 (hw->phy.addr == 2) &&
2897 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2898 u16 data2 = 0x7EFF;
2899 ret_val = e1000_access_phy_debug_regs_hv(hw,
2900 (1 << 6) | 0x3,
2901 &data2, false);
2902 if (ret_val)
2903 goto out;
2904 }
2905
2906 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907 /* Page is shifted left, PHY expects (page x 32) */
2908 ret_val = e1000_set_page_igp(hw,
2909 (page << IGP_PAGE_SHIFT));
2910
2911 hw->phy.addr = phy_addr;
2912
2913 if (ret_val)
2914 goto out;
2915 }
2916 }
2917
2918 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919 page << IGP_PAGE_SHIFT, reg);
2920
2921 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922 data);
2923
2924out:
2925 if (!locked)
2926 hw->phy.ops.release(hw);
2927
2928 return ret_val;
2929}
2930
2931/**
2932 * e1000_write_phy_reg_hv - Write HV PHY register
2933 * @hw: pointer to the HW structure
2934 * @offset: register offset to write to
2935 * @data: data to write at register offset
2936 *
2937 * Acquires semaphore then writes the data to PHY register at the offset.
2938 * Release the acquired semaphores before exiting.
2939 **/
2940s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2941{
2942 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2947 * @hw: pointer to the HW structure
2948 * @offset: register offset to write to
2949 * @data: data to write at register offset
2950 *
2951 * Writes the data to PHY register at the offset. Assumes semaphore
2952 * already acquired.
2953 **/
2954s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2955{
2956 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 * e1000_write_phy_reg_page_hv - Write HV PHY register
2961 * @hw: pointer to the HW structure
2962 * @offset: register offset to write to
2963 * @data: data to write at register offset
2964 *
2965 * Writes the data to PHY register at the offset. Assumes semaphore
2966 * already acquired and page already set.
2967 **/
2968s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2969{
2970 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2975 * @page: page to be accessed
2976 **/
2977static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2978{
2979 u32 phy_addr = 2;
2980
2981 if (page >= HV_INTC_FC_PAGE_START)
2982 phy_addr = 1;
2983
2984 return phy_addr;
2985}
2986
2987/**
2988 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2989 * @hw: pointer to the HW structure
2990 * @offset: register offset to be read or written
2991 * @data: pointer to the data to be read or written
2992 * @read: determines if operation is read or write
2993 *
2994 * Reads the PHY register at offset and stores the retreived information
2995 * in data. Assumes semaphore already acquired. Note that the procedure
2996 * to access these regs uses the address port and data port to read/write.
2997 * These accesses done with PHY address 2 and without using pages.
2998 **/
2999static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3000 u16 *data, bool read)
3001{
3002 s32 ret_val;
3003 u32 addr_reg;
3004 u32 data_reg;
3005
3006 /* This takes care of the difference with desktop vs mobile phy */
3007 addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3008 I82578_ADDR_REG : I82577_ADDR_REG);
3009 data_reg = addr_reg + 1;
3010
3011 /* All operations in this function are phy address 2 */
3012 hw->phy.addr = 2;
3013
3014 /* masking with 0x3F to remove the page from offset */
3015 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3016 if (ret_val) {
3017 e_dbg("Could not write the Address Offset port register\n");
3018 return ret_val;
3019 }
3020
3021 /* Read or write the data value next */
3022 if (read)
3023 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3024 else
3025 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3026
3027 if (ret_val)
3028 e_dbg("Could not access the Data port register\n");
3029
3030 return ret_val;
3031}
3032
3033/**
3034 * e1000_link_stall_workaround_hv - Si workaround
3035 * @hw: pointer to the HW structure
3036 *
3037 * This function works around a Si bug where the link partner can get
3038 * a link up indication before the PHY does. If small packets are sent
3039 * by the link partner they can be placed in the packet buffer without
3040 * being properly accounted for by the PHY and will stall preventing
3041 * further packets from being received. The workaround is to clear the
3042 * packet buffer after the PHY detects link up.
3043 **/
3044s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3045{
3046 s32 ret_val = 0;
3047 u16 data;
3048
3049 if (hw->phy.type != e1000_phy_82578)
3050 return 0;
3051
3052 /* Do not apply workaround if in PHY loopback bit 14 set */
3053 e1e_rphy(hw, MII_BMCR, &data);
3054 if (data & BMCR_LOOPBACK)
3055 return 0;
3056
3057 /* check if link is up and at 1Gbps */
3058 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3059 if (ret_val)
3060 return ret_val;
3061
3062 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3063 BM_CS_STATUS_SPEED_MASK);
3064
3065 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066 BM_CS_STATUS_SPEED_1000))
3067 return 0;
3068
3069 msleep(200);
3070
3071 /* flush the packets in the fifo buffer */
3072 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3073 (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3074 HV_MUX_DATA_CTRL_FORCE_SPEED));
3075 if (ret_val)
3076 return ret_val;
3077
3078 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3079}
3080
3081/**
3082 * e1000_check_polarity_82577 - Checks the polarity.
3083 * @hw: pointer to the HW structure
3084 *
3085 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3086 *
3087 * Polarity is determined based on the PHY specific status register.
3088 **/
3089s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3090{
3091 struct e1000_phy_info *phy = &hw->phy;
3092 s32 ret_val;
3093 u16 data;
3094
3095 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3096
3097 if (!ret_val)
3098 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3099 ? e1000_rev_polarity_reversed
3100 : e1000_rev_polarity_normal);
3101
3102 return ret_val;
3103}
3104
3105/**
3106 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3107 * @hw: pointer to the HW structure
3108 *
3109 * Calls the PHY setup function to force speed and duplex.
3110 **/
3111s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3112{
3113 struct e1000_phy_info *phy = &hw->phy;
3114 s32 ret_val;
3115 u16 phy_data;
3116 bool link;
3117
3118 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3119 if (ret_val)
3120 return ret_val;
3121
3122 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3123
3124 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3125 if (ret_val)
3126 return ret_val;
3127
3128 udelay(1);
3129
3130 if (phy->autoneg_wait_to_complete) {
3131 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3132
3133 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3134 100000, &link);
3135 if (ret_val)
3136 return ret_val;
3137
3138 if (!link)
3139 e_dbg("Link taking longer than expected.\n");
3140
3141 /* Try once more */
3142 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3143 100000, &link);
3144 }
3145
3146 return ret_val;
3147}
3148
3149/**
3150 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3151 * @hw: pointer to the HW structure
3152 *
3153 * Read PHY status to determine if link is up. If link is up, then
3154 * set/determine 10base-T extended distance and polarity correction. Read
3155 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3156 * determine on the cable length, local and remote receiver.
3157 **/
3158s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3159{
3160 struct e1000_phy_info *phy = &hw->phy;
3161 s32 ret_val;
3162 u16 data;
3163 bool link;
3164
3165 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3166 if (ret_val)
3167 return ret_val;
3168
3169 if (!link) {
3170 e_dbg("Phy info is only valid if link is up\n");
3171 return -E1000_ERR_CONFIG;
3172 }
3173
3174 phy->polarity_correction = true;
3175
3176 ret_val = e1000_check_polarity_82577(hw);
3177 if (ret_val)
3178 return ret_val;
3179
3180 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3181 if (ret_val)
3182 return ret_val;
3183
3184 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3185
3186 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3187 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3188 ret_val = hw->phy.ops.get_cable_length(hw);
3189 if (ret_val)
3190 return ret_val;
3191
3192 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3193 if (ret_val)
3194 return ret_val;
3195
3196 phy->local_rx = (data & LPA_1000LOCALRXOK)
3197 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3198
3199 phy->remote_rx = (data & LPA_1000REMRXOK)
3200 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201 } else {
3202 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3203 phy->local_rx = e1000_1000t_rx_status_undefined;
3204 phy->remote_rx = e1000_1000t_rx_status_undefined;
3205 }
3206
3207 return 0;
3208}
3209
3210/**
3211 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3212 * @hw: pointer to the HW structure
3213 *
3214 * Reads the diagnostic status register and verifies result is valid before
3215 * placing it in the phy_cable_length field.
3216 **/
3217s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3218{
3219 struct e1000_phy_info *phy = &hw->phy;
3220 s32 ret_val;
3221 u16 phy_data, length;
3222
3223 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3224 if (ret_val)
3225 return ret_val;
3226
3227 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3228 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3229
3230 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3231 return -E1000_ERR_PHY;
3232
3233 phy->cable_length = length;
3234
3235 return 0;
3236}