Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Performance event support for sparc64.
3 *
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 *
6 * This code is based almost entirely upon the x86 perf event
7 * code, which is:
8 *
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14 */
15
16#include <linux/perf_event.h>
17#include <linux/kprobes.h>
18#include <linux/ftrace.h>
19#include <linux/kernel.h>
20#include <linux/kdebug.h>
21#include <linux/mutex.h>
22
23#include <asm/stacktrace.h>
24#include <asm/cpudata.h>
25#include <linux/uaccess.h>
26#include <linux/atomic.h>
27#include <asm/nmi.h>
28#include <asm/pcr.h>
29#include <asm/cacheflush.h>
30
31#include "kernel.h"
32#include "kstack.h"
33
34/* Two classes of sparc64 chips currently exist. All of which have
35 * 32-bit counters which can generate overflow interrupts on the
36 * transition from 0xffffffff to 0.
37 *
38 * All chips upto and including SPARC-T3 have two performance
39 * counters. The two 32-bit counters are accessed in one go using a
40 * single 64-bit register.
41 *
42 * On these older chips both counters are controlled using a single
43 * control register. The only way to stop all sampling is to clear
44 * all of the context (user, supervisor, hypervisor) sampling enable
45 * bits. But these bits apply to both counters, thus the two counters
46 * can't be enabled/disabled individually.
47 *
48 * Furthermore, the control register on these older chips have two
49 * event fields, one for each of the two counters. It's thus nearly
50 * impossible to have one counter going while keeping the other one
51 * stopped. Therefore it is possible to get overflow interrupts for
52 * counters not currently "in use" and that condition must be checked
53 * in the overflow interrupt handler.
54 *
55 * So we use a hack, in that we program inactive counters with the
56 * "sw_count0" and "sw_count1" events. These count how many times
57 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
58 * unusual way to encode a NOP and therefore will not trigger in
59 * normal code.
60 *
61 * Starting with SPARC-T4 we have one control register per counter.
62 * And the counters are stored in individual registers. The registers
63 * for the counters are 64-bit but only a 32-bit counter is
64 * implemented. The event selections on SPARC-T4 lack any
65 * restrictions, therefore we can elide all of the complicated
66 * conflict resolution code we have for SPARC-T3 and earlier chips.
67 */
68
69#define MAX_HWEVENTS 4
70#define MAX_PCRS 4
71#define MAX_PERIOD ((1UL << 32) - 1)
72
73#define PIC_UPPER_INDEX 0
74#define PIC_LOWER_INDEX 1
75#define PIC_NO_INDEX -1
76
77struct cpu_hw_events {
78 /* Number of events currently scheduled onto this cpu.
79 * This tells how many entries in the arrays below
80 * are valid.
81 */
82 int n_events;
83
84 /* Number of new events added since the last hw_perf_disable().
85 * This works because the perf event layer always adds new
86 * events inside of a perf_{disable,enable}() sequence.
87 */
88 int n_added;
89
90 /* Array of events current scheduled on this cpu. */
91 struct perf_event *event[MAX_HWEVENTS];
92
93 /* Array of encoded longs, specifying the %pcr register
94 * encoding and the mask of PIC counters this even can
95 * be scheduled on. See perf_event_encode() et al.
96 */
97 unsigned long events[MAX_HWEVENTS];
98
99 /* The current counter index assigned to an event. When the
100 * event hasn't been programmed into the cpu yet, this will
101 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
102 * we ought to schedule the event.
103 */
104 int current_idx[MAX_HWEVENTS];
105
106 /* Software copy of %pcr register(s) on this cpu. */
107 u64 pcr[MAX_HWEVENTS];
108
109 /* Enabled/disable state. */
110 int enabled;
111
112 unsigned int txn_flags;
113};
114static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
115
116/* An event map describes the characteristics of a performance
117 * counter event. In particular it gives the encoding as well as
118 * a mask telling which counters the event can be measured on.
119 *
120 * The mask is unused on SPARC-T4 and later.
121 */
122struct perf_event_map {
123 u16 encoding;
124 u8 pic_mask;
125#define PIC_NONE 0x00
126#define PIC_UPPER 0x01
127#define PIC_LOWER 0x02
128};
129
130/* Encode a perf_event_map entry into a long. */
131static unsigned long perf_event_encode(const struct perf_event_map *pmap)
132{
133 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
134}
135
136static u8 perf_event_get_msk(unsigned long val)
137{
138 return val & 0xff;
139}
140
141static u64 perf_event_get_enc(unsigned long val)
142{
143 return val >> 16;
144}
145
146#define C(x) PERF_COUNT_HW_CACHE_##x
147
148#define CACHE_OP_UNSUPPORTED 0xfffe
149#define CACHE_OP_NONSENSE 0xffff
150
151typedef struct perf_event_map cache_map_t
152 [PERF_COUNT_HW_CACHE_MAX]
153 [PERF_COUNT_HW_CACHE_OP_MAX]
154 [PERF_COUNT_HW_CACHE_RESULT_MAX];
155
156struct sparc_pmu {
157 const struct perf_event_map *(*event_map)(int);
158 const cache_map_t *cache_map;
159 int max_events;
160 u32 (*read_pmc)(int);
161 void (*write_pmc)(int, u64);
162 int upper_shift;
163 int lower_shift;
164 int event_mask;
165 int user_bit;
166 int priv_bit;
167 int hv_bit;
168 int irq_bit;
169 int upper_nop;
170 int lower_nop;
171 unsigned int flags;
172#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
173#define SPARC_PMU_HAS_CONFLICTS 0x00000002
174 int max_hw_events;
175 int num_pcrs;
176 int num_pic_regs;
177};
178
179static u32 sparc_default_read_pmc(int idx)
180{
181 u64 val;
182
183 val = pcr_ops->read_pic(0);
184 if (idx == PIC_UPPER_INDEX)
185 val >>= 32;
186
187 return val & 0xffffffff;
188}
189
190static void sparc_default_write_pmc(int idx, u64 val)
191{
192 u64 shift, mask, pic;
193
194 shift = 0;
195 if (idx == PIC_UPPER_INDEX)
196 shift = 32;
197
198 mask = ((u64) 0xffffffff) << shift;
199 val <<= shift;
200
201 pic = pcr_ops->read_pic(0);
202 pic &= ~mask;
203 pic |= val;
204 pcr_ops->write_pic(0, pic);
205}
206
207static const struct perf_event_map ultra3_perfmon_event_map[] = {
208 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
211 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
212};
213
214static const struct perf_event_map *ultra3_event_map(int event_id)
215{
216 return &ultra3_perfmon_event_map[event_id];
217}
218
219static const cache_map_t ultra3_cache_map = {
220[C(L1D)] = {
221 [C(OP_READ)] = {
222 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
223 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
224 },
225 [C(OP_WRITE)] = {
226 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
227 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
228 },
229 [C(OP_PREFETCH)] = {
230 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
231 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
232 },
233},
234[C(L1I)] = {
235 [C(OP_READ)] = {
236 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
237 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
238 },
239 [ C(OP_WRITE) ] = {
240 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
241 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
242 },
243 [ C(OP_PREFETCH) ] = {
244 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
246 },
247},
248[C(LL)] = {
249 [C(OP_READ)] = {
250 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
251 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
252 },
253 [C(OP_WRITE)] = {
254 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
255 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
256 },
257 [C(OP_PREFETCH)] = {
258 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
259 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
260 },
261},
262[C(DTLB)] = {
263 [C(OP_READ)] = {
264 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
265 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
266 },
267 [ C(OP_WRITE) ] = {
268 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
269 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
270 },
271 [ C(OP_PREFETCH) ] = {
272 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
273 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
274 },
275},
276[C(ITLB)] = {
277 [C(OP_READ)] = {
278 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
280 },
281 [ C(OP_WRITE) ] = {
282 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
283 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
284 },
285 [ C(OP_PREFETCH) ] = {
286 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
288 },
289},
290[C(BPU)] = {
291 [C(OP_READ)] = {
292 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
293 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
294 },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
297 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
298 },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
302 },
303},
304[C(NODE)] = {
305 [C(OP_READ)] = {
306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
308 },
309 [ C(OP_WRITE) ] = {
310 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
311 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
312 },
313 [ C(OP_PREFETCH) ] = {
314 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
316 },
317},
318};
319
320static const struct sparc_pmu ultra3_pmu = {
321 .event_map = ultra3_event_map,
322 .cache_map = &ultra3_cache_map,
323 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
324 .read_pmc = sparc_default_read_pmc,
325 .write_pmc = sparc_default_write_pmc,
326 .upper_shift = 11,
327 .lower_shift = 4,
328 .event_mask = 0x3f,
329 .user_bit = PCR_UTRACE,
330 .priv_bit = PCR_STRACE,
331 .upper_nop = 0x1c,
332 .lower_nop = 0x14,
333 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
334 SPARC_PMU_HAS_CONFLICTS),
335 .max_hw_events = 2,
336 .num_pcrs = 1,
337 .num_pic_regs = 1,
338};
339
340/* Niagara1 is very limited. The upper PIC is hard-locked to count
341 * only instructions, so it is free running which creates all kinds of
342 * problems. Some hardware designs make one wonder if the creator
343 * even looked at how this stuff gets used by software.
344 */
345static const struct perf_event_map niagara1_perfmon_event_map[] = {
346 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
348 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
349 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
350};
351
352static const struct perf_event_map *niagara1_event_map(int event_id)
353{
354 return &niagara1_perfmon_event_map[event_id];
355}
356
357static const cache_map_t niagara1_cache_map = {
358[C(L1D)] = {
359 [C(OP_READ)] = {
360 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
361 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
362 },
363 [C(OP_WRITE)] = {
364 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
365 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
366 },
367 [C(OP_PREFETCH)] = {
368 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
369 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
370 },
371},
372[C(L1I)] = {
373 [C(OP_READ)] = {
374 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
375 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
376 },
377 [ C(OP_WRITE) ] = {
378 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
379 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
380 },
381 [ C(OP_PREFETCH) ] = {
382 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
383 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
384 },
385},
386[C(LL)] = {
387 [C(OP_READ)] = {
388 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
389 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
390 },
391 [C(OP_WRITE)] = {
392 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
393 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
394 },
395 [C(OP_PREFETCH)] = {
396 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
397 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
398 },
399},
400[C(DTLB)] = {
401 [C(OP_READ)] = {
402 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
404 },
405 [ C(OP_WRITE) ] = {
406 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
407 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
408 },
409 [ C(OP_PREFETCH) ] = {
410 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
411 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
412 },
413},
414[C(ITLB)] = {
415 [C(OP_READ)] = {
416 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
417 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
418 },
419 [ C(OP_WRITE) ] = {
420 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
421 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
422 },
423 [ C(OP_PREFETCH) ] = {
424 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
425 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
426 },
427},
428[C(BPU)] = {
429 [C(OP_READ)] = {
430 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 },
433 [ C(OP_WRITE) ] = {
434 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
435 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
436 },
437 [ C(OP_PREFETCH) ] = {
438 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
439 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
440 },
441},
442[C(NODE)] = {
443 [C(OP_READ)] = {
444 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
445 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
446 },
447 [ C(OP_WRITE) ] = {
448 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
449 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
450 },
451 [ C(OP_PREFETCH) ] = {
452 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
453 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
454 },
455},
456};
457
458static const struct sparc_pmu niagara1_pmu = {
459 .event_map = niagara1_event_map,
460 .cache_map = &niagara1_cache_map,
461 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
462 .read_pmc = sparc_default_read_pmc,
463 .write_pmc = sparc_default_write_pmc,
464 .upper_shift = 0,
465 .lower_shift = 4,
466 .event_mask = 0x7,
467 .user_bit = PCR_UTRACE,
468 .priv_bit = PCR_STRACE,
469 .upper_nop = 0x0,
470 .lower_nop = 0x0,
471 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
472 SPARC_PMU_HAS_CONFLICTS),
473 .max_hw_events = 2,
474 .num_pcrs = 1,
475 .num_pic_regs = 1,
476};
477
478static const struct perf_event_map niagara2_perfmon_event_map[] = {
479 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
484 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
485};
486
487static const struct perf_event_map *niagara2_event_map(int event_id)
488{
489 return &niagara2_perfmon_event_map[event_id];
490}
491
492static const cache_map_t niagara2_cache_map = {
493[C(L1D)] = {
494 [C(OP_READ)] = {
495 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
496 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
497 },
498 [C(OP_WRITE)] = {
499 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
500 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
501 },
502 [C(OP_PREFETCH)] = {
503 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
504 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
505 },
506},
507[C(L1I)] = {
508 [C(OP_READ)] = {
509 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
510 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
511 },
512 [ C(OP_WRITE) ] = {
513 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
514 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
515 },
516 [ C(OP_PREFETCH) ] = {
517 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
518 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
519 },
520},
521[C(LL)] = {
522 [C(OP_READ)] = {
523 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
524 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
525 },
526 [C(OP_WRITE)] = {
527 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
528 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
529 },
530 [C(OP_PREFETCH)] = {
531 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
532 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
533 },
534},
535[C(DTLB)] = {
536 [C(OP_READ)] = {
537 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
538 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
539 },
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
542 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
543 },
544 [ C(OP_PREFETCH) ] = {
545 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
546 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
547 },
548},
549[C(ITLB)] = {
550 [C(OP_READ)] = {
551 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
552 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
553 },
554 [ C(OP_WRITE) ] = {
555 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
556 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
557 },
558 [ C(OP_PREFETCH) ] = {
559 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
560 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
561 },
562},
563[C(BPU)] = {
564 [C(OP_READ)] = {
565 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
566 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
567 },
568 [ C(OP_WRITE) ] = {
569 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
570 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
571 },
572 [ C(OP_PREFETCH) ] = {
573 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
574 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
575 },
576},
577[C(NODE)] = {
578 [C(OP_READ)] = {
579 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
580 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
581 },
582 [ C(OP_WRITE) ] = {
583 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
584 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
585 },
586 [ C(OP_PREFETCH) ] = {
587 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
588 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
589 },
590},
591};
592
593static const struct sparc_pmu niagara2_pmu = {
594 .event_map = niagara2_event_map,
595 .cache_map = &niagara2_cache_map,
596 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
597 .read_pmc = sparc_default_read_pmc,
598 .write_pmc = sparc_default_write_pmc,
599 .upper_shift = 19,
600 .lower_shift = 6,
601 .event_mask = 0xfff,
602 .user_bit = PCR_UTRACE,
603 .priv_bit = PCR_STRACE,
604 .hv_bit = PCR_N2_HTRACE,
605 .irq_bit = 0x30,
606 .upper_nop = 0x220,
607 .lower_nop = 0x220,
608 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
609 SPARC_PMU_HAS_CONFLICTS),
610 .max_hw_events = 2,
611 .num_pcrs = 1,
612 .num_pic_regs = 1,
613};
614
615static const struct perf_event_map niagara4_perfmon_event_map[] = {
616 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
617 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
618 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
619 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
620 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
621 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
622};
623
624static const struct perf_event_map *niagara4_event_map(int event_id)
625{
626 return &niagara4_perfmon_event_map[event_id];
627}
628
629static const cache_map_t niagara4_cache_map = {
630[C(L1D)] = {
631 [C(OP_READ)] = {
632 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
633 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
634 },
635 [C(OP_WRITE)] = {
636 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
637 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
638 },
639 [C(OP_PREFETCH)] = {
640 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
641 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
642 },
643},
644[C(L1I)] = {
645 [C(OP_READ)] = {
646 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
647 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
648 },
649 [ C(OP_WRITE) ] = {
650 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
651 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
652 },
653 [ C(OP_PREFETCH) ] = {
654 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
655 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
656 },
657},
658[C(LL)] = {
659 [C(OP_READ)] = {
660 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
661 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
662 },
663 [C(OP_WRITE)] = {
664 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
665 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
666 },
667 [C(OP_PREFETCH)] = {
668 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
669 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
670 },
671},
672[C(DTLB)] = {
673 [C(OP_READ)] = {
674 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
675 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
676 },
677 [ C(OP_WRITE) ] = {
678 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
679 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
680 },
681 [ C(OP_PREFETCH) ] = {
682 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
683 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
684 },
685},
686[C(ITLB)] = {
687 [C(OP_READ)] = {
688 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
689 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
690 },
691 [ C(OP_WRITE) ] = {
692 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
693 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
694 },
695 [ C(OP_PREFETCH) ] = {
696 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
697 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
698 },
699},
700[C(BPU)] = {
701 [C(OP_READ)] = {
702 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
703 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
704 },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
707 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
708 },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
711 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
712 },
713},
714[C(NODE)] = {
715 [C(OP_READ)] = {
716 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
717 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
718 },
719 [ C(OP_WRITE) ] = {
720 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
721 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
722 },
723 [ C(OP_PREFETCH) ] = {
724 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
725 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
726 },
727},
728};
729
730static u32 sparc_vt_read_pmc(int idx)
731{
732 u64 val = pcr_ops->read_pic(idx);
733
734 return val & 0xffffffff;
735}
736
737static void sparc_vt_write_pmc(int idx, u64 val)
738{
739 u64 pcr;
740
741 pcr = pcr_ops->read_pcr(idx);
742 /* ensure ov and ntc are reset */
743 pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
744
745 pcr_ops->write_pic(idx, val & 0xffffffff);
746
747 pcr_ops->write_pcr(idx, pcr);
748}
749
750static const struct sparc_pmu niagara4_pmu = {
751 .event_map = niagara4_event_map,
752 .cache_map = &niagara4_cache_map,
753 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
754 .read_pmc = sparc_vt_read_pmc,
755 .write_pmc = sparc_vt_write_pmc,
756 .upper_shift = 5,
757 .lower_shift = 5,
758 .event_mask = 0x7ff,
759 .user_bit = PCR_N4_UTRACE,
760 .priv_bit = PCR_N4_STRACE,
761
762 /* We explicitly don't support hypervisor tracing. The T4
763 * generates the overflow event for precise events via a trap
764 * which will not be generated (ie. it's completely lost) if
765 * we happen to be in the hypervisor when the event triggers.
766 * Essentially, the overflow event reporting is completely
767 * unusable when you have hypervisor mode tracing enabled.
768 */
769 .hv_bit = 0,
770
771 .irq_bit = PCR_N4_TOE,
772 .upper_nop = 0,
773 .lower_nop = 0,
774 .flags = 0,
775 .max_hw_events = 4,
776 .num_pcrs = 4,
777 .num_pic_regs = 4,
778};
779
780static const struct sparc_pmu sparc_m7_pmu = {
781 .event_map = niagara4_event_map,
782 .cache_map = &niagara4_cache_map,
783 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
784 .read_pmc = sparc_vt_read_pmc,
785 .write_pmc = sparc_vt_write_pmc,
786 .upper_shift = 5,
787 .lower_shift = 5,
788 .event_mask = 0x7ff,
789 .user_bit = PCR_N4_UTRACE,
790 .priv_bit = PCR_N4_STRACE,
791
792 /* We explicitly don't support hypervisor tracing. */
793 .hv_bit = 0,
794
795 .irq_bit = PCR_N4_TOE,
796 .upper_nop = 0,
797 .lower_nop = 0,
798 .flags = 0,
799 .max_hw_events = 4,
800 .num_pcrs = 4,
801 .num_pic_regs = 4,
802};
803static const struct sparc_pmu *sparc_pmu __read_mostly;
804
805static u64 event_encoding(u64 event_id, int idx)
806{
807 if (idx == PIC_UPPER_INDEX)
808 event_id <<= sparc_pmu->upper_shift;
809 else
810 event_id <<= sparc_pmu->lower_shift;
811 return event_id;
812}
813
814static u64 mask_for_index(int idx)
815{
816 return event_encoding(sparc_pmu->event_mask, idx);
817}
818
819static u64 nop_for_index(int idx)
820{
821 return event_encoding(idx == PIC_UPPER_INDEX ?
822 sparc_pmu->upper_nop :
823 sparc_pmu->lower_nop, idx);
824}
825
826static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
827{
828 u64 enc, val, mask = mask_for_index(idx);
829 int pcr_index = 0;
830
831 if (sparc_pmu->num_pcrs > 1)
832 pcr_index = idx;
833
834 enc = perf_event_get_enc(cpuc->events[idx]);
835
836 val = cpuc->pcr[pcr_index];
837 val &= ~mask;
838 val |= event_encoding(enc, idx);
839 cpuc->pcr[pcr_index] = val;
840
841 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
842}
843
844static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
845{
846 u64 mask = mask_for_index(idx);
847 u64 nop = nop_for_index(idx);
848 int pcr_index = 0;
849 u64 val;
850
851 if (sparc_pmu->num_pcrs > 1)
852 pcr_index = idx;
853
854 val = cpuc->pcr[pcr_index];
855 val &= ~mask;
856 val |= nop;
857 cpuc->pcr[pcr_index] = val;
858
859 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
860}
861
862static u64 sparc_perf_event_update(struct perf_event *event,
863 struct hw_perf_event *hwc, int idx)
864{
865 int shift = 64 - 32;
866 u64 prev_raw_count, new_raw_count;
867 s64 delta;
868
869again:
870 prev_raw_count = local64_read(&hwc->prev_count);
871 new_raw_count = sparc_pmu->read_pmc(idx);
872
873 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
874 new_raw_count) != prev_raw_count)
875 goto again;
876
877 delta = (new_raw_count << shift) - (prev_raw_count << shift);
878 delta >>= shift;
879
880 local64_add(delta, &event->count);
881 local64_sub(delta, &hwc->period_left);
882
883 return new_raw_count;
884}
885
886static int sparc_perf_event_set_period(struct perf_event *event,
887 struct hw_perf_event *hwc, int idx)
888{
889 s64 left = local64_read(&hwc->period_left);
890 s64 period = hwc->sample_period;
891 int ret = 0;
892
893 if (unlikely(left <= -period)) {
894 left = period;
895 local64_set(&hwc->period_left, left);
896 hwc->last_period = period;
897 ret = 1;
898 }
899
900 if (unlikely(left <= 0)) {
901 left += period;
902 local64_set(&hwc->period_left, left);
903 hwc->last_period = period;
904 ret = 1;
905 }
906 if (left > MAX_PERIOD)
907 left = MAX_PERIOD;
908
909 local64_set(&hwc->prev_count, (u64)-left);
910
911 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
912
913 perf_event_update_userpage(event);
914
915 return ret;
916}
917
918static void read_in_all_counters(struct cpu_hw_events *cpuc)
919{
920 int i;
921
922 for (i = 0; i < cpuc->n_events; i++) {
923 struct perf_event *cp = cpuc->event[i];
924
925 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
926 cpuc->current_idx[i] != cp->hw.idx) {
927 sparc_perf_event_update(cp, &cp->hw,
928 cpuc->current_idx[i]);
929 cpuc->current_idx[i] = PIC_NO_INDEX;
930 }
931 }
932}
933
934/* On this PMU all PICs are programmed using a single PCR. Calculate
935 * the combined control register value.
936 *
937 * For such chips we require that all of the events have the same
938 * configuration, so just fetch the settings from the first entry.
939 */
940static void calculate_single_pcr(struct cpu_hw_events *cpuc)
941{
942 int i;
943
944 if (!cpuc->n_added)
945 goto out;
946
947 /* Assign to counters all unassigned events. */
948 for (i = 0; i < cpuc->n_events; i++) {
949 struct perf_event *cp = cpuc->event[i];
950 struct hw_perf_event *hwc = &cp->hw;
951 int idx = hwc->idx;
952 u64 enc;
953
954 if (cpuc->current_idx[i] != PIC_NO_INDEX)
955 continue;
956
957 sparc_perf_event_set_period(cp, hwc, idx);
958 cpuc->current_idx[i] = idx;
959
960 enc = perf_event_get_enc(cpuc->events[i]);
961 cpuc->pcr[0] &= ~mask_for_index(idx);
962 if (hwc->state & PERF_HES_STOPPED)
963 cpuc->pcr[0] |= nop_for_index(idx);
964 else
965 cpuc->pcr[0] |= event_encoding(enc, idx);
966 }
967out:
968 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
969}
970
971static void sparc_pmu_start(struct perf_event *event, int flags);
972
973/* On this PMU each PIC has it's own PCR control register. */
974static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
975{
976 int i;
977
978 if (!cpuc->n_added)
979 goto out;
980
981 for (i = 0; i < cpuc->n_events; i++) {
982 struct perf_event *cp = cpuc->event[i];
983 struct hw_perf_event *hwc = &cp->hw;
984 int idx = hwc->idx;
985
986 if (cpuc->current_idx[i] != PIC_NO_INDEX)
987 continue;
988
989 cpuc->current_idx[i] = idx;
990
991 sparc_pmu_start(cp, PERF_EF_RELOAD);
992 }
993out:
994 for (i = 0; i < cpuc->n_events; i++) {
995 struct perf_event *cp = cpuc->event[i];
996 int idx = cp->hw.idx;
997
998 cpuc->pcr[idx] |= cp->hw.config_base;
999 }
1000}
1001
1002/* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1004 */
1005static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006{
1007 if (cpuc->n_added)
1008 read_in_all_counters(cpuc);
1009
1010 if (sparc_pmu->num_pcrs == 1) {
1011 calculate_single_pcr(cpuc);
1012 } else {
1013 calculate_multiple_pcrs(cpuc);
1014 }
1015}
1016
1017static void sparc_pmu_enable(struct pmu *pmu)
1018{
1019 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020 int i;
1021
1022 if (cpuc->enabled)
1023 return;
1024
1025 cpuc->enabled = 1;
1026 barrier();
1027
1028 if (cpuc->n_events)
1029 update_pcrs_for_enable(cpuc);
1030
1031 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033}
1034
1035static void sparc_pmu_disable(struct pmu *pmu)
1036{
1037 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038 int i;
1039
1040 if (!cpuc->enabled)
1041 return;
1042
1043 cpuc->enabled = 0;
1044 cpuc->n_added = 0;
1045
1046 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047 u64 val = cpuc->pcr[i];
1048
1049 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051 cpuc->pcr[i] = val;
1052 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053 }
1054}
1055
1056static int active_event_index(struct cpu_hw_events *cpuc,
1057 struct perf_event *event)
1058{
1059 int i;
1060
1061 for (i = 0; i < cpuc->n_events; i++) {
1062 if (cpuc->event[i] == event)
1063 break;
1064 }
1065 BUG_ON(i == cpuc->n_events);
1066 return cpuc->current_idx[i];
1067}
1068
1069static void sparc_pmu_start(struct perf_event *event, int flags)
1070{
1071 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072 int idx = active_event_index(cpuc, event);
1073
1074 if (flags & PERF_EF_RELOAD) {
1075 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076 sparc_perf_event_set_period(event, &event->hw, idx);
1077 }
1078
1079 event->hw.state = 0;
1080
1081 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1082}
1083
1084static void sparc_pmu_stop(struct perf_event *event, int flags)
1085{
1086 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087 int idx = active_event_index(cpuc, event);
1088
1089 if (!(event->hw.state & PERF_HES_STOPPED)) {
1090 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091 event->hw.state |= PERF_HES_STOPPED;
1092 }
1093
1094 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095 sparc_perf_event_update(event, &event->hw, idx);
1096 event->hw.state |= PERF_HES_UPTODATE;
1097 }
1098}
1099
1100static void sparc_pmu_del(struct perf_event *event, int _flags)
1101{
1102 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103 unsigned long flags;
1104 int i;
1105
1106 local_irq_save(flags);
1107
1108 for (i = 0; i < cpuc->n_events; i++) {
1109 if (event == cpuc->event[i]) {
1110 /* Absorb the final count and turn off the
1111 * event.
1112 */
1113 sparc_pmu_stop(event, PERF_EF_UPDATE);
1114
1115 /* Shift remaining entries down into
1116 * the existing slot.
1117 */
1118 while (++i < cpuc->n_events) {
1119 cpuc->event[i - 1] = cpuc->event[i];
1120 cpuc->events[i - 1] = cpuc->events[i];
1121 cpuc->current_idx[i - 1] =
1122 cpuc->current_idx[i];
1123 }
1124
1125 perf_event_update_userpage(event);
1126
1127 cpuc->n_events--;
1128 break;
1129 }
1130 }
1131
1132 local_irq_restore(flags);
1133}
1134
1135static void sparc_pmu_read(struct perf_event *event)
1136{
1137 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138 int idx = active_event_index(cpuc, event);
1139 struct hw_perf_event *hwc = &event->hw;
1140
1141 sparc_perf_event_update(event, hwc, idx);
1142}
1143
1144static atomic_t active_events = ATOMIC_INIT(0);
1145static DEFINE_MUTEX(pmc_grab_mutex);
1146
1147static void perf_stop_nmi_watchdog(void *unused)
1148{
1149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150 int i;
1151
1152 stop_nmi_watchdog(NULL);
1153 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155}
1156
1157static void perf_event_grab_pmc(void)
1158{
1159 if (atomic_inc_not_zero(&active_events))
1160 return;
1161
1162 mutex_lock(&pmc_grab_mutex);
1163 if (atomic_read(&active_events) == 0) {
1164 if (atomic_read(&nmi_active) > 0) {
1165 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166 BUG_ON(atomic_read(&nmi_active) != 0);
1167 }
1168 atomic_inc(&active_events);
1169 }
1170 mutex_unlock(&pmc_grab_mutex);
1171}
1172
1173static void perf_event_release_pmc(void)
1174{
1175 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176 if (atomic_read(&nmi_active) == 0)
1177 on_each_cpu(start_nmi_watchdog, NULL, 1);
1178 mutex_unlock(&pmc_grab_mutex);
1179 }
1180}
1181
1182static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183{
1184 unsigned int cache_type, cache_op, cache_result;
1185 const struct perf_event_map *pmap;
1186
1187 if (!sparc_pmu->cache_map)
1188 return ERR_PTR(-ENOENT);
1189
1190 cache_type = (config >> 0) & 0xff;
1191 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192 return ERR_PTR(-EINVAL);
1193
1194 cache_op = (config >> 8) & 0xff;
1195 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196 return ERR_PTR(-EINVAL);
1197
1198 cache_result = (config >> 16) & 0xff;
1199 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200 return ERR_PTR(-EINVAL);
1201
1202 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203
1204 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205 return ERR_PTR(-ENOENT);
1206
1207 if (pmap->encoding == CACHE_OP_NONSENSE)
1208 return ERR_PTR(-EINVAL);
1209
1210 return pmap;
1211}
1212
1213static void hw_perf_event_destroy(struct perf_event *event)
1214{
1215 perf_event_release_pmc();
1216}
1217
1218/* Make sure all events can be scheduled into the hardware at
1219 * the same time. This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1221 *
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success. These are pending indexes. When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1227 */
1228static int sparc_check_constraints(struct perf_event **evts,
1229 unsigned long *events, int n_ev)
1230{
1231 u8 msk0 = 0, msk1 = 0;
1232 int idx0 = 0;
1233
1234 /* This case is possible when we are invoked from
1235 * hw_perf_group_sched_in().
1236 */
1237 if (!n_ev)
1238 return 0;
1239
1240 if (n_ev > sparc_pmu->max_hw_events)
1241 return -1;
1242
1243 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244 int i;
1245
1246 for (i = 0; i < n_ev; i++)
1247 evts[i]->hw.idx = i;
1248 return 0;
1249 }
1250
1251 msk0 = perf_event_get_msk(events[0]);
1252 if (n_ev == 1) {
1253 if (msk0 & PIC_LOWER)
1254 idx0 = 1;
1255 goto success;
1256 }
1257 BUG_ON(n_ev != 2);
1258 msk1 = perf_event_get_msk(events[1]);
1259
1260 /* If both events can go on any counter, OK. */
1261 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262 msk1 == (PIC_UPPER | PIC_LOWER))
1263 goto success;
1264
1265 /* If one event is limited to a specific counter,
1266 * and the other can go on both, OK.
1267 */
1268 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269 msk1 == (PIC_UPPER | PIC_LOWER)) {
1270 if (msk0 & PIC_LOWER)
1271 idx0 = 1;
1272 goto success;
1273 }
1274
1275 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276 msk0 == (PIC_UPPER | PIC_LOWER)) {
1277 if (msk1 & PIC_UPPER)
1278 idx0 = 1;
1279 goto success;
1280 }
1281
1282 /* If the events are fixed to different counters, OK. */
1283 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285 if (msk0 & PIC_LOWER)
1286 idx0 = 1;
1287 goto success;
1288 }
1289
1290 /* Otherwise, there is a conflict. */
1291 return -1;
1292
1293success:
1294 evts[0]->hw.idx = idx0;
1295 if (n_ev == 2)
1296 evts[1]->hw.idx = idx0 ^ 1;
1297 return 0;
1298}
1299
1300static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301{
1302 int eu = 0, ek = 0, eh = 0;
1303 struct perf_event *event;
1304 int i, n, first;
1305
1306 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307 return 0;
1308
1309 n = n_prev + n_new;
1310 if (n <= 1)
1311 return 0;
1312
1313 first = 1;
1314 for (i = 0; i < n; i++) {
1315 event = evts[i];
1316 if (first) {
1317 eu = event->attr.exclude_user;
1318 ek = event->attr.exclude_kernel;
1319 eh = event->attr.exclude_hv;
1320 first = 0;
1321 } else if (event->attr.exclude_user != eu ||
1322 event->attr.exclude_kernel != ek ||
1323 event->attr.exclude_hv != eh) {
1324 return -EAGAIN;
1325 }
1326 }
1327
1328 return 0;
1329}
1330
1331static int collect_events(struct perf_event *group, int max_count,
1332 struct perf_event *evts[], unsigned long *events,
1333 int *current_idx)
1334{
1335 struct perf_event *event;
1336 int n = 0;
1337
1338 if (!is_software_event(group)) {
1339 if (n >= max_count)
1340 return -1;
1341 evts[n] = group;
1342 events[n] = group->hw.event_base;
1343 current_idx[n++] = PIC_NO_INDEX;
1344 }
1345 for_each_sibling_event(event, group) {
1346 if (!is_software_event(event) &&
1347 event->state != PERF_EVENT_STATE_OFF) {
1348 if (n >= max_count)
1349 return -1;
1350 evts[n] = event;
1351 events[n] = event->hw.event_base;
1352 current_idx[n++] = PIC_NO_INDEX;
1353 }
1354 }
1355 return n;
1356}
1357
1358static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359{
1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 int n0, ret = -EAGAIN;
1362 unsigned long flags;
1363
1364 local_irq_save(flags);
1365
1366 n0 = cpuc->n_events;
1367 if (n0 >= sparc_pmu->max_hw_events)
1368 goto out;
1369
1370 cpuc->event[n0] = event;
1371 cpuc->events[n0] = event->hw.event_base;
1372 cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374 event->hw.state = PERF_HES_UPTODATE;
1375 if (!(ef_flags & PERF_EF_START))
1376 event->hw.state |= PERF_HES_STOPPED;
1377
1378 /*
1379 * If group events scheduling transaction was started,
1380 * skip the schedulability test here, it will be performed
1381 * at commit time(->commit_txn) as a whole
1382 */
1383 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384 goto nocheck;
1385
1386 if (check_excludes(cpuc->event, n0, 1))
1387 goto out;
1388 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 goto out;
1390
1391nocheck:
1392 cpuc->n_events++;
1393 cpuc->n_added++;
1394
1395 ret = 0;
1396out:
1397 local_irq_restore(flags);
1398 return ret;
1399}
1400
1401static int sparc_pmu_event_init(struct perf_event *event)
1402{
1403 struct perf_event_attr *attr = &event->attr;
1404 struct perf_event *evts[MAX_HWEVENTS];
1405 struct hw_perf_event *hwc = &event->hw;
1406 unsigned long events[MAX_HWEVENTS];
1407 int current_idx_dmy[MAX_HWEVENTS];
1408 const struct perf_event_map *pmap;
1409 int n;
1410
1411 if (atomic_read(&nmi_active) < 0)
1412 return -ENODEV;
1413
1414 /* does not support taken branch sampling */
1415 if (has_branch_stack(event))
1416 return -EOPNOTSUPP;
1417
1418 switch (attr->type) {
1419 case PERF_TYPE_HARDWARE:
1420 if (attr->config >= sparc_pmu->max_events)
1421 return -EINVAL;
1422 pmap = sparc_pmu->event_map(attr->config);
1423 break;
1424
1425 case PERF_TYPE_HW_CACHE:
1426 pmap = sparc_map_cache_event(attr->config);
1427 if (IS_ERR(pmap))
1428 return PTR_ERR(pmap);
1429 break;
1430
1431 case PERF_TYPE_RAW:
1432 pmap = NULL;
1433 break;
1434
1435 default:
1436 return -ENOENT;
1437
1438 }
1439
1440 if (pmap) {
1441 hwc->event_base = perf_event_encode(pmap);
1442 } else {
1443 /*
1444 * User gives us "(encoding << 16) | pic_mask" for
1445 * PERF_TYPE_RAW events.
1446 */
1447 hwc->event_base = attr->config;
1448 }
1449
1450 /* We save the enable bits in the config_base. */
1451 hwc->config_base = sparc_pmu->irq_bit;
1452 if (!attr->exclude_user)
1453 hwc->config_base |= sparc_pmu->user_bit;
1454 if (!attr->exclude_kernel)
1455 hwc->config_base |= sparc_pmu->priv_bit;
1456 if (!attr->exclude_hv)
1457 hwc->config_base |= sparc_pmu->hv_bit;
1458
1459 n = 0;
1460 if (event->group_leader != event) {
1461 n = collect_events(event->group_leader,
1462 sparc_pmu->max_hw_events - 1,
1463 evts, events, current_idx_dmy);
1464 if (n < 0)
1465 return -EINVAL;
1466 }
1467 events[n] = hwc->event_base;
1468 evts[n] = event;
1469
1470 if (check_excludes(evts, n, 1))
1471 return -EINVAL;
1472
1473 if (sparc_check_constraints(evts, events, n + 1))
1474 return -EINVAL;
1475
1476 hwc->idx = PIC_NO_INDEX;
1477
1478 /* Try to do all error checking before this point, as unwinding
1479 * state after grabbing the PMC is difficult.
1480 */
1481 perf_event_grab_pmc();
1482 event->destroy = hw_perf_event_destroy;
1483
1484 if (!hwc->sample_period) {
1485 hwc->sample_period = MAX_PERIOD;
1486 hwc->last_period = hwc->sample_period;
1487 local64_set(&hwc->period_left, hwc->sample_period);
1488 }
1489
1490 return 0;
1491}
1492
1493/*
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1497 */
1498static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499{
1500 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501
1502 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1503
1504 cpuhw->txn_flags = txn_flags;
1505 if (txn_flags & ~PERF_PMU_TXN_ADD)
1506 return;
1507
1508 perf_pmu_disable(pmu);
1509}
1510
1511/*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517{
1518 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 unsigned int txn_flags;
1520
1521 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1522
1523 txn_flags = cpuhw->txn_flags;
1524 cpuhw->txn_flags = 0;
1525 if (txn_flags & ~PERF_PMU_TXN_ADD)
1526 return;
1527
1528 perf_pmu_enable(pmu);
1529}
1530
1531/*
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1535 */
1536static int sparc_pmu_commit_txn(struct pmu *pmu)
1537{
1538 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539 int n;
1540
1541 if (!sparc_pmu)
1542 return -EINVAL;
1543
1544 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1545
1546 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547 cpuc->txn_flags = 0;
1548 return 0;
1549 }
1550
1551 n = cpuc->n_events;
1552 if (check_excludes(cpuc->event, 0, n))
1553 return -EINVAL;
1554 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555 return -EAGAIN;
1556
1557 cpuc->txn_flags = 0;
1558 perf_pmu_enable(pmu);
1559 return 0;
1560}
1561
1562static struct pmu pmu = {
1563 .pmu_enable = sparc_pmu_enable,
1564 .pmu_disable = sparc_pmu_disable,
1565 .event_init = sparc_pmu_event_init,
1566 .add = sparc_pmu_add,
1567 .del = sparc_pmu_del,
1568 .start = sparc_pmu_start,
1569 .stop = sparc_pmu_stop,
1570 .read = sparc_pmu_read,
1571 .start_txn = sparc_pmu_start_txn,
1572 .cancel_txn = sparc_pmu_cancel_txn,
1573 .commit_txn = sparc_pmu_commit_txn,
1574};
1575
1576void perf_event_print_debug(void)
1577{
1578 unsigned long flags;
1579 int cpu, i;
1580
1581 if (!sparc_pmu)
1582 return;
1583
1584 local_irq_save(flags);
1585
1586 cpu = smp_processor_id();
1587
1588 pr_info("\n");
1589 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590 pr_info("CPU#%d: PCR%d[%016llx]\n",
1591 cpu, i, pcr_ops->read_pcr(i));
1592 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593 pr_info("CPU#%d: PIC%d[%016llx]\n",
1594 cpu, i, pcr_ops->read_pic(i));
1595
1596 local_irq_restore(flags);
1597}
1598
1599static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600 unsigned long cmd, void *__args)
1601{
1602 struct die_args *args = __args;
1603 struct perf_sample_data data;
1604 struct cpu_hw_events *cpuc;
1605 struct pt_regs *regs;
1606 int i;
1607
1608 if (!atomic_read(&active_events))
1609 return NOTIFY_DONE;
1610
1611 switch (cmd) {
1612 case DIE_NMI:
1613 break;
1614
1615 default:
1616 return NOTIFY_DONE;
1617 }
1618
1619 regs = args->regs;
1620
1621 cpuc = this_cpu_ptr(&cpu_hw_events);
1622
1623 /* If the PMU has the TOE IRQ enable bits, we need to do a
1624 * dummy write to the %pcr to clear the overflow bits and thus
1625 * the interrupt.
1626 *
1627 * Do this before we peek at the counters to determine
1628 * overflow so we don't lose any events.
1629 */
1630 if (sparc_pmu->irq_bit &&
1631 sparc_pmu->num_pcrs == 1)
1632 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633
1634 for (i = 0; i < cpuc->n_events; i++) {
1635 struct perf_event *event = cpuc->event[i];
1636 int idx = cpuc->current_idx[i];
1637 struct hw_perf_event *hwc;
1638 u64 val;
1639
1640 if (sparc_pmu->irq_bit &&
1641 sparc_pmu->num_pcrs > 1)
1642 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643
1644 hwc = &event->hw;
1645 val = sparc_perf_event_update(event, hwc, idx);
1646 if (val & (1ULL << 31))
1647 continue;
1648
1649 perf_sample_data_init(&data, 0, hwc->last_period);
1650 if (!sparc_perf_event_set_period(event, hwc, idx))
1651 continue;
1652
1653 if (perf_event_overflow(event, &data, regs))
1654 sparc_pmu_stop(event, 0);
1655 }
1656
1657 return NOTIFY_STOP;
1658}
1659
1660static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661 .notifier_call = perf_event_nmi_handler,
1662};
1663
1664static bool __init supported_pmu(void)
1665{
1666 if (!strcmp(sparc_pmu_type, "ultra3") ||
1667 !strcmp(sparc_pmu_type, "ultra3+") ||
1668 !strcmp(sparc_pmu_type, "ultra3i") ||
1669 !strcmp(sparc_pmu_type, "ultra4+")) {
1670 sparc_pmu = &ultra3_pmu;
1671 return true;
1672 }
1673 if (!strcmp(sparc_pmu_type, "niagara")) {
1674 sparc_pmu = &niagara1_pmu;
1675 return true;
1676 }
1677 if (!strcmp(sparc_pmu_type, "niagara2") ||
1678 !strcmp(sparc_pmu_type, "niagara3")) {
1679 sparc_pmu = &niagara2_pmu;
1680 return true;
1681 }
1682 if (!strcmp(sparc_pmu_type, "niagara4") ||
1683 !strcmp(sparc_pmu_type, "niagara5")) {
1684 sparc_pmu = &niagara4_pmu;
1685 return true;
1686 }
1687 if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688 sparc_pmu = &sparc_m7_pmu;
1689 return true;
1690 }
1691 return false;
1692}
1693
1694static int __init init_hw_perf_events(void)
1695{
1696 int err;
1697
1698 pr_info("Performance events: ");
1699
1700 err = pcr_arch_init();
1701 if (err || !supported_pmu()) {
1702 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703 return 0;
1704 }
1705
1706 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707
1708 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709 register_die_notifier(&perf_event_nmi_notifier);
1710
1711 return 0;
1712}
1713pure_initcall(init_hw_perf_events);
1714
1715void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716 struct pt_regs *regs)
1717{
1718 unsigned long ksp, fp;
1719#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720 int graph = 0;
1721#endif
1722
1723 stack_trace_flush();
1724
1725 perf_callchain_store(entry, regs->tpc);
1726
1727 ksp = regs->u_regs[UREG_I6];
1728 fp = ksp + STACK_BIAS;
1729 do {
1730 struct sparc_stackf *sf;
1731 struct pt_regs *regs;
1732 unsigned long pc;
1733
1734 if (!kstack_valid(current_thread_info(), fp))
1735 break;
1736
1737 sf = (struct sparc_stackf *) fp;
1738 regs = (struct pt_regs *) (sf + 1);
1739
1740 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741 if (user_mode(regs))
1742 break;
1743 pc = regs->tpc;
1744 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745 } else {
1746 pc = sf->callers_pc;
1747 fp = (unsigned long)sf->fp + STACK_BIAS;
1748 }
1749 perf_callchain_store(entry, pc);
1750#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752 int index = current->curr_ret_stack;
1753 if (current->ret_stack && index >= graph) {
1754 pc = current->ret_stack[index - graph].ret;
1755 perf_callchain_store(entry, pc);
1756 graph++;
1757 }
1758 }
1759#endif
1760 } while (entry->nr < entry->max_stack);
1761}
1762
1763static inline int
1764valid_user_frame(const void __user *fp, unsigned long size)
1765{
1766 /* addresses should be at least 4-byte aligned */
1767 if (((unsigned long) fp) & 3)
1768 return 0;
1769
1770 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771}
1772
1773static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774 struct pt_regs *regs)
1775{
1776 unsigned long ufp;
1777
1778 ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779 do {
1780 struct sparc_stackf __user *usf;
1781 struct sparc_stackf sf;
1782 unsigned long pc;
1783
1784 usf = (struct sparc_stackf __user *)ufp;
1785 if (!valid_user_frame(usf, sizeof(sf)))
1786 break;
1787
1788 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789 break;
1790
1791 pc = sf.callers_pc;
1792 ufp = (unsigned long)sf.fp + STACK_BIAS;
1793 perf_callchain_store(entry, pc);
1794 } while (entry->nr < entry->max_stack);
1795}
1796
1797static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798 struct pt_regs *regs)
1799{
1800 unsigned long ufp;
1801
1802 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803 do {
1804 unsigned long pc;
1805
1806 if (thread32_stack_is_64bit(ufp)) {
1807 struct sparc_stackf __user *usf;
1808 struct sparc_stackf sf;
1809
1810 ufp += STACK_BIAS;
1811 usf = (struct sparc_stackf __user *)ufp;
1812 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813 break;
1814 pc = sf.callers_pc & 0xffffffff;
1815 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816 } else {
1817 struct sparc_stackf32 __user *usf;
1818 struct sparc_stackf32 sf;
1819 usf = (struct sparc_stackf32 __user *)ufp;
1820 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821 break;
1822 pc = sf.callers_pc;
1823 ufp = (unsigned long)sf.fp;
1824 }
1825 perf_callchain_store(entry, pc);
1826 } while (entry->nr < entry->max_stack);
1827}
1828
1829void
1830perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831{
1832 u64 saved_fault_address = current_thread_info()->fault_address;
1833 u8 saved_fault_code = get_thread_fault_code();
1834 mm_segment_t old_fs;
1835
1836 perf_callchain_store(entry, regs->tpc);
1837
1838 if (!current->mm)
1839 return;
1840
1841 old_fs = get_fs();
1842 set_fs(USER_DS);
1843
1844 flushw_user();
1845
1846 pagefault_disable();
1847
1848 if (test_thread_flag(TIF_32BIT))
1849 perf_callchain_user_32(entry, regs);
1850 else
1851 perf_callchain_user_64(entry, regs);
1852
1853 pagefault_enable();
1854
1855 set_fs(old_fs);
1856 set_thread_fault_code(saved_fault_code);
1857 current_thread_info()->fault_address = saved_fault_address;
1858}
1/* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15#include <linux/perf_event.h>
16#include <linux/kprobes.h>
17#include <linux/ftrace.h>
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
22#include <asm/stacktrace.h>
23#include <asm/cpudata.h>
24#include <asm/uaccess.h>
25#include <linux/atomic.h>
26#include <asm/nmi.h>
27#include <asm/pcr.h>
28#include <asm/cacheflush.h>
29
30#include "kernel.h"
31#include "kstack.h"
32
33/* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
36 *
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
40 *
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
46 *
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
53 *
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
59 *
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
66 */
67
68#define MAX_HWEVENTS 4
69#define MAX_PCRS 4
70#define MAX_PERIOD ((1UL << 32) - 1)
71
72#define PIC_UPPER_INDEX 0
73#define PIC_LOWER_INDEX 1
74#define PIC_NO_INDEX -1
75
76struct cpu_hw_events {
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
79 * are valid.
80 */
81 int n_events;
82
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
86 */
87 int n_added;
88
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
91
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
95 */
96 unsigned long events[MAX_HWEVENTS];
97
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
102 */
103 int current_idx[MAX_HWEVENTS];
104
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
107
108 /* Enabled/disable state. */
109 int enabled;
110
111 unsigned int group_flag;
112};
113DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114
115/* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
118 *
119 * The mask is unused on SPARC-T4 and later.
120 */
121struct perf_event_map {
122 u16 encoding;
123 u8 pic_mask;
124#define PIC_NONE 0x00
125#define PIC_UPPER 0x01
126#define PIC_LOWER 0x02
127};
128
129/* Encode a perf_event_map entry into a long. */
130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131{
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133}
134
135static u8 perf_event_get_msk(unsigned long val)
136{
137 return val & 0xff;
138}
139
140static u64 perf_event_get_enc(unsigned long val)
141{
142 return val >> 16;
143}
144
145#define C(x) PERF_COUNT_HW_CACHE_##x
146
147#define CACHE_OP_UNSUPPORTED 0xfffe
148#define CACHE_OP_NONSENSE 0xffff
149
150typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
154
155struct sparc_pmu {
156 const struct perf_event_map *(*event_map)(int);
157 const cache_map_t *cache_map;
158 int max_events;
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
161 int upper_shift;
162 int lower_shift;
163 int event_mask;
164 int user_bit;
165 int priv_bit;
166 int hv_bit;
167 int irq_bit;
168 int upper_nop;
169 int lower_nop;
170 unsigned int flags;
171#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172#define SPARC_PMU_HAS_CONFLICTS 0x00000002
173 int max_hw_events;
174 int num_pcrs;
175 int num_pic_regs;
176};
177
178static u32 sparc_default_read_pmc(int idx)
179{
180 u64 val;
181
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
184 val >>= 32;
185
186 return val & 0xffffffff;
187}
188
189static void sparc_default_write_pmc(int idx, u64 val)
190{
191 u64 shift, mask, pic;
192
193 shift = 0;
194 if (idx == PIC_UPPER_INDEX)
195 shift = 32;
196
197 mask = ((u64) 0xffffffff) << shift;
198 val <<= shift;
199
200 pic = pcr_ops->read_pic(0);
201 pic &= ~mask;
202 pic |= val;
203 pcr_ops->write_pic(0, pic);
204}
205
206static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211};
212
213static const struct perf_event_map *ultra3_event_map(int event_id)
214{
215 return &ultra3_perfmon_event_map[event_id];
216}
217
218static const cache_map_t ultra3_cache_map = {
219[C(L1D)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223 },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227 },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231 },
232},
233[C(L1I)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237 },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
241 },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
245 },
246},
247[C(LL)] = {
248 [C(OP_READ)] = {
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251 },
252 [C(OP_WRITE)] = {
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255 },
256 [C(OP_PREFETCH)] = {
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259 },
260},
261[C(DTLB)] = {
262 [C(OP_READ)] = {
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265 },
266 [ C(OP_WRITE) ] = {
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
269 },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
273 },
274},
275[C(ITLB)] = {
276 [C(OP_READ)] = {
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279 },
280 [ C(OP_WRITE) ] = {
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
283 },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
287 },
288},
289[C(BPU)] = {
290 [C(OP_READ)] = {
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
301 },
302},
303[C(NODE)] = {
304 [C(OP_READ)] = {
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
315 },
316},
317};
318
319static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
325 .upper_shift = 11,
326 .lower_shift = 4,
327 .event_mask = 0x3f,
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
330 .upper_nop = 0x1c,
331 .lower_nop = 0x14,
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
334 .max_hw_events = 2,
335 .num_pcrs = 1,
336 .num_pic_regs = 1,
337};
338
339/* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
343 */
344static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349};
350
351static const struct perf_event_map *niagara1_event_map(int event_id)
352{
353 return &niagara1_perfmon_event_map[event_id];
354}
355
356static const cache_map_t niagara1_cache_map = {
357[C(L1D)] = {
358 [C(OP_READ)] = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361 },
362 [C(OP_WRITE)] = {
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365 },
366 [C(OP_PREFETCH)] = {
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369 },
370},
371[C(L1I)] = {
372 [C(OP_READ)] = {
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
383 },
384},
385[C(LL)] = {
386 [C(OP_READ)] = {
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389 },
390 [C(OP_WRITE)] = {
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393 },
394 [C(OP_PREFETCH)] = {
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397 },
398},
399[C(DTLB)] = {
400 [C(OP_READ)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403 },
404 [ C(OP_WRITE) ] = {
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
407 },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411 },
412},
413[C(ITLB)] = {
414 [C(OP_READ)] = {
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417 },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
421 },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425 },
426},
427[C(BPU)] = {
428 [C(OP_READ)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439 },
440},
441[C(NODE)] = {
442 [C(OP_READ)] = {
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453 },
454},
455};
456
457static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
463 .upper_shift = 0,
464 .lower_shift = 4,
465 .event_mask = 0x7,
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
468 .upper_nop = 0x0,
469 .lower_nop = 0x0,
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
472 .max_hw_events = 2,
473 .num_pcrs = 1,
474 .num_pic_regs = 1,
475};
476
477static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484};
485
486static const struct perf_event_map *niagara2_event_map(int event_id)
487{
488 return &niagara2_perfmon_event_map[event_id];
489}
490
491static const cache_map_t niagara2_cache_map = {
492[C(L1D)] = {
493 [C(OP_READ)] = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496 },
497 [C(OP_WRITE)] = {
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500 },
501 [C(OP_PREFETCH)] = {
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504 },
505},
506[C(L1I)] = {
507 [C(OP_READ)] = {
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510 },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
514 },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
518 },
519},
520[C(LL)] = {
521 [C(OP_READ)] = {
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524 },
525 [C(OP_WRITE)] = {
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528 },
529 [C(OP_PREFETCH)] = {
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532 },
533},
534[C(DTLB)] = {
535 [C(OP_READ)] = {
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538 },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
542 },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
546 },
547},
548[C(ITLB)] = {
549 [C(OP_READ)] = {
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552 },
553 [ C(OP_WRITE) ] = {
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
556 },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
560 },
561},
562[C(BPU)] = {
563 [C(OP_READ)] = {
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566 },
567 [ C(OP_WRITE) ] = {
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
570 },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
574 },
575},
576[C(NODE)] = {
577 [C(OP_READ)] = {
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
580 },
581 [ C(OP_WRITE) ] = {
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
584 },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
588 },
589},
590};
591
592static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
594 .cache_map = &niagara2_cache_map,
595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
598 .upper_shift = 19,
599 .lower_shift = 6,
600 .event_mask = 0xfff,
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
604 .irq_bit = 0x30,
605 .upper_nop = 0x220,
606 .lower_nop = 0x220,
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
609 .max_hw_events = 2,
610 .num_pcrs = 1,
611 .num_pic_regs = 1,
612};
613
614static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621};
622
623static const struct perf_event_map *niagara4_event_map(int event_id)
624{
625 return &niagara4_perfmon_event_map[event_id];
626}
627
628static const cache_map_t niagara4_cache_map = {
629[C(L1D)] = {
630 [C(OP_READ)] = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633 },
634 [C(OP_WRITE)] = {
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637 },
638 [C(OP_PREFETCH)] = {
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641 },
642},
643[C(L1I)] = {
644 [C(OP_READ)] = {
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
651 },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
655 },
656},
657[C(LL)] = {
658 [C(OP_READ)] = {
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661 },
662 [C(OP_WRITE)] = {
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665 },
666 [C(OP_PREFETCH)] = {
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669 },
670},
671[C(DTLB)] = {
672 [C(OP_READ)] = {
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675 },
676 [ C(OP_WRITE) ] = {
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
679 },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
683 },
684},
685[C(ITLB)] = {
686 [C(OP_READ)] = {
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689 },
690 [ C(OP_WRITE) ] = {
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
693 },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
697 },
698},
699[C(BPU)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703 },
704 [ C(OP_WRITE) ] = {
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
707 },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
711 },
712},
713[C(NODE)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
717 },
718 [ C(OP_WRITE) ] = {
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
721 },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
725 },
726},
727};
728
729static u32 sparc_vt_read_pmc(int idx)
730{
731 u64 val = pcr_ops->read_pic(idx);
732
733 return val & 0xffffffff;
734}
735
736static void sparc_vt_write_pmc(int idx, u64 val)
737{
738 u64 pcr;
739
740 /* There seems to be an internal latch on the overflow event
741 * on SPARC-T4 that prevents it from triggering unless you
742 * update the PIC exactly as we do here. The requirement
743 * seems to be that you have to turn off event counting in the
744 * PCR around the PIC update.
745 *
746 * For example, after the following sequence:
747 *
748 * 1) set PIC to -1
749 * 2) enable event counting and overflow reporting in PCR
750 * 3) overflow triggers, softint 15 handler invoked
751 * 4) clear OV bit in PCR
752 * 5) write PIC to -1
753 *
754 * a subsequent overflow event will not trigger. This
755 * sequence works on SPARC-T3 and previous chips.
756 */
757 pcr = pcr_ops->read_pcr(idx);
758 pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
759
760 pcr_ops->write_pic(idx, val & 0xffffffff);
761
762 pcr_ops->write_pcr(idx, pcr);
763}
764
765static const struct sparc_pmu niagara4_pmu = {
766 .event_map = niagara4_event_map,
767 .cache_map = &niagara4_cache_map,
768 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769 .read_pmc = sparc_vt_read_pmc,
770 .write_pmc = sparc_vt_write_pmc,
771 .upper_shift = 5,
772 .lower_shift = 5,
773 .event_mask = 0x7ff,
774 .user_bit = PCR_N4_UTRACE,
775 .priv_bit = PCR_N4_STRACE,
776
777 /* We explicitly don't support hypervisor tracing. The T4
778 * generates the overflow event for precise events via a trap
779 * which will not be generated (ie. it's completely lost) if
780 * we happen to be in the hypervisor when the event triggers.
781 * Essentially, the overflow event reporting is completely
782 * unusable when you have hypervisor mode tracing enabled.
783 */
784 .hv_bit = 0,
785
786 .irq_bit = PCR_N4_TOE,
787 .upper_nop = 0,
788 .lower_nop = 0,
789 .flags = 0,
790 .max_hw_events = 4,
791 .num_pcrs = 4,
792 .num_pic_regs = 4,
793};
794
795static const struct sparc_pmu *sparc_pmu __read_mostly;
796
797static u64 event_encoding(u64 event_id, int idx)
798{
799 if (idx == PIC_UPPER_INDEX)
800 event_id <<= sparc_pmu->upper_shift;
801 else
802 event_id <<= sparc_pmu->lower_shift;
803 return event_id;
804}
805
806static u64 mask_for_index(int idx)
807{
808 return event_encoding(sparc_pmu->event_mask, idx);
809}
810
811static u64 nop_for_index(int idx)
812{
813 return event_encoding(idx == PIC_UPPER_INDEX ?
814 sparc_pmu->upper_nop :
815 sparc_pmu->lower_nop, idx);
816}
817
818static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
819{
820 u64 enc, val, mask = mask_for_index(idx);
821 int pcr_index = 0;
822
823 if (sparc_pmu->num_pcrs > 1)
824 pcr_index = idx;
825
826 enc = perf_event_get_enc(cpuc->events[idx]);
827
828 val = cpuc->pcr[pcr_index];
829 val &= ~mask;
830 val |= event_encoding(enc, idx);
831 cpuc->pcr[pcr_index] = val;
832
833 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834}
835
836static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
837{
838 u64 mask = mask_for_index(idx);
839 u64 nop = nop_for_index(idx);
840 int pcr_index = 0;
841 u64 val;
842
843 if (sparc_pmu->num_pcrs > 1)
844 pcr_index = idx;
845
846 val = cpuc->pcr[pcr_index];
847 val &= ~mask;
848 val |= nop;
849 cpuc->pcr[pcr_index] = val;
850
851 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852}
853
854static u64 sparc_perf_event_update(struct perf_event *event,
855 struct hw_perf_event *hwc, int idx)
856{
857 int shift = 64 - 32;
858 u64 prev_raw_count, new_raw_count;
859 s64 delta;
860
861again:
862 prev_raw_count = local64_read(&hwc->prev_count);
863 new_raw_count = sparc_pmu->read_pmc(idx);
864
865 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
866 new_raw_count) != prev_raw_count)
867 goto again;
868
869 delta = (new_raw_count << shift) - (prev_raw_count << shift);
870 delta >>= shift;
871
872 local64_add(delta, &event->count);
873 local64_sub(delta, &hwc->period_left);
874
875 return new_raw_count;
876}
877
878static int sparc_perf_event_set_period(struct perf_event *event,
879 struct hw_perf_event *hwc, int idx)
880{
881 s64 left = local64_read(&hwc->period_left);
882 s64 period = hwc->sample_period;
883 int ret = 0;
884
885 if (unlikely(left <= -period)) {
886 left = period;
887 local64_set(&hwc->period_left, left);
888 hwc->last_period = period;
889 ret = 1;
890 }
891
892 if (unlikely(left <= 0)) {
893 left += period;
894 local64_set(&hwc->period_left, left);
895 hwc->last_period = period;
896 ret = 1;
897 }
898 if (left > MAX_PERIOD)
899 left = MAX_PERIOD;
900
901 local64_set(&hwc->prev_count, (u64)-left);
902
903 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
904
905 perf_event_update_userpage(event);
906
907 return ret;
908}
909
910static void read_in_all_counters(struct cpu_hw_events *cpuc)
911{
912 int i;
913
914 for (i = 0; i < cpuc->n_events; i++) {
915 struct perf_event *cp = cpuc->event[i];
916
917 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
918 cpuc->current_idx[i] != cp->hw.idx) {
919 sparc_perf_event_update(cp, &cp->hw,
920 cpuc->current_idx[i]);
921 cpuc->current_idx[i] = PIC_NO_INDEX;
922 }
923 }
924}
925
926/* On this PMU all PICs are programmed using a single PCR. Calculate
927 * the combined control register value.
928 *
929 * For such chips we require that all of the events have the same
930 * configuration, so just fetch the settings from the first entry.
931 */
932static void calculate_single_pcr(struct cpu_hw_events *cpuc)
933{
934 int i;
935
936 if (!cpuc->n_added)
937 goto out;
938
939 /* Assign to counters all unassigned events. */
940 for (i = 0; i < cpuc->n_events; i++) {
941 struct perf_event *cp = cpuc->event[i];
942 struct hw_perf_event *hwc = &cp->hw;
943 int idx = hwc->idx;
944 u64 enc;
945
946 if (cpuc->current_idx[i] != PIC_NO_INDEX)
947 continue;
948
949 sparc_perf_event_set_period(cp, hwc, idx);
950 cpuc->current_idx[i] = idx;
951
952 enc = perf_event_get_enc(cpuc->events[i]);
953 cpuc->pcr[0] &= ~mask_for_index(idx);
954 if (hwc->state & PERF_HES_STOPPED)
955 cpuc->pcr[0] |= nop_for_index(idx);
956 else
957 cpuc->pcr[0] |= event_encoding(enc, idx);
958 }
959out:
960 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
961}
962
963/* On this PMU each PIC has it's own PCR control register. */
964static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
965{
966 int i;
967
968 if (!cpuc->n_added)
969 goto out;
970
971 for (i = 0; i < cpuc->n_events; i++) {
972 struct perf_event *cp = cpuc->event[i];
973 struct hw_perf_event *hwc = &cp->hw;
974 int idx = hwc->idx;
975 u64 enc;
976
977 if (cpuc->current_idx[i] != PIC_NO_INDEX)
978 continue;
979
980 sparc_perf_event_set_period(cp, hwc, idx);
981 cpuc->current_idx[i] = idx;
982
983 enc = perf_event_get_enc(cpuc->events[i]);
984 cpuc->pcr[idx] &= ~mask_for_index(idx);
985 if (hwc->state & PERF_HES_STOPPED)
986 cpuc->pcr[idx] |= nop_for_index(idx);
987 else
988 cpuc->pcr[idx] |= event_encoding(enc, idx);
989 }
990out:
991 for (i = 0; i < cpuc->n_events; i++) {
992 struct perf_event *cp = cpuc->event[i];
993 int idx = cp->hw.idx;
994
995 cpuc->pcr[idx] |= cp->hw.config_base;
996 }
997}
998
999/* If performance event entries have been added, move existing events
1000 * around (if necessary) and then assign new entries to counters.
1001 */
1002static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003{
1004 if (cpuc->n_added)
1005 read_in_all_counters(cpuc);
1006
1007 if (sparc_pmu->num_pcrs == 1) {
1008 calculate_single_pcr(cpuc);
1009 } else {
1010 calculate_multiple_pcrs(cpuc);
1011 }
1012}
1013
1014static void sparc_pmu_enable(struct pmu *pmu)
1015{
1016 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017 int i;
1018
1019 if (cpuc->enabled)
1020 return;
1021
1022 cpuc->enabled = 1;
1023 barrier();
1024
1025 if (cpuc->n_events)
1026 update_pcrs_for_enable(cpuc);
1027
1028 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030}
1031
1032static void sparc_pmu_disable(struct pmu *pmu)
1033{
1034 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035 int i;
1036
1037 if (!cpuc->enabled)
1038 return;
1039
1040 cpuc->enabled = 0;
1041 cpuc->n_added = 0;
1042
1043 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044 u64 val = cpuc->pcr[i];
1045
1046 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048 cpuc->pcr[i] = val;
1049 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050 }
1051}
1052
1053static int active_event_index(struct cpu_hw_events *cpuc,
1054 struct perf_event *event)
1055{
1056 int i;
1057
1058 for (i = 0; i < cpuc->n_events; i++) {
1059 if (cpuc->event[i] == event)
1060 break;
1061 }
1062 BUG_ON(i == cpuc->n_events);
1063 return cpuc->current_idx[i];
1064}
1065
1066static void sparc_pmu_start(struct perf_event *event, int flags)
1067{
1068 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069 int idx = active_event_index(cpuc, event);
1070
1071 if (flags & PERF_EF_RELOAD) {
1072 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073 sparc_perf_event_set_period(event, &event->hw, idx);
1074 }
1075
1076 event->hw.state = 0;
1077
1078 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079}
1080
1081static void sparc_pmu_stop(struct perf_event *event, int flags)
1082{
1083 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084 int idx = active_event_index(cpuc, event);
1085
1086 if (!(event->hw.state & PERF_HES_STOPPED)) {
1087 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088 event->hw.state |= PERF_HES_STOPPED;
1089 }
1090
1091 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092 sparc_perf_event_update(event, &event->hw, idx);
1093 event->hw.state |= PERF_HES_UPTODATE;
1094 }
1095}
1096
1097static void sparc_pmu_del(struct perf_event *event, int _flags)
1098{
1099 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100 unsigned long flags;
1101 int i;
1102
1103 local_irq_save(flags);
1104 perf_pmu_disable(event->pmu);
1105
1106 for (i = 0; i < cpuc->n_events; i++) {
1107 if (event == cpuc->event[i]) {
1108 /* Absorb the final count and turn off the
1109 * event.
1110 */
1111 sparc_pmu_stop(event, PERF_EF_UPDATE);
1112
1113 /* Shift remaining entries down into
1114 * the existing slot.
1115 */
1116 while (++i < cpuc->n_events) {
1117 cpuc->event[i - 1] = cpuc->event[i];
1118 cpuc->events[i - 1] = cpuc->events[i];
1119 cpuc->current_idx[i - 1] =
1120 cpuc->current_idx[i];
1121 }
1122
1123 perf_event_update_userpage(event);
1124
1125 cpuc->n_events--;
1126 break;
1127 }
1128 }
1129
1130 perf_pmu_enable(event->pmu);
1131 local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137 int idx = active_event_index(cpuc, event);
1138 struct hw_perf_event *hwc = &event->hw;
1139
1140 sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149 int i;
1150
1151 stop_nmi_watchdog(NULL);
1152 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156void perf_event_grab_pmc(void)
1157{
1158 if (atomic_inc_not_zero(&active_events))
1159 return;
1160
1161 mutex_lock(&pmc_grab_mutex);
1162 if (atomic_read(&active_events) == 0) {
1163 if (atomic_read(&nmi_active) > 0) {
1164 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165 BUG_ON(atomic_read(&nmi_active) != 0);
1166 }
1167 atomic_inc(&active_events);
1168 }
1169 mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172void perf_event_release_pmc(void)
1173{
1174 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175 if (atomic_read(&nmi_active) == 0)
1176 on_each_cpu(start_nmi_watchdog, NULL, 1);
1177 mutex_unlock(&pmc_grab_mutex);
1178 }
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183 unsigned int cache_type, cache_op, cache_result;
1184 const struct perf_event_map *pmap;
1185
1186 if (!sparc_pmu->cache_map)
1187 return ERR_PTR(-ENOENT);
1188
1189 cache_type = (config >> 0) & 0xff;
1190 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191 return ERR_PTR(-EINVAL);
1192
1193 cache_op = (config >> 8) & 0xff;
1194 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195 return ERR_PTR(-EINVAL);
1196
1197 cache_result = (config >> 16) & 0xff;
1198 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199 return ERR_PTR(-EINVAL);
1200
1201 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204 return ERR_PTR(-ENOENT);
1205
1206 if (pmap->encoding == CACHE_OP_NONSENSE)
1207 return ERR_PTR(-EINVAL);
1208
1209 return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214 perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time. This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success. These are pending indexes. When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228 unsigned long *events, int n_ev)
1229{
1230 u8 msk0 = 0, msk1 = 0;
1231 int idx0 = 0;
1232
1233 /* This case is possible when we are invoked from
1234 * hw_perf_group_sched_in().
1235 */
1236 if (!n_ev)
1237 return 0;
1238
1239 if (n_ev > sparc_pmu->max_hw_events)
1240 return -1;
1241
1242 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243 int i;
1244
1245 for (i = 0; i < n_ev; i++)
1246 evts[i]->hw.idx = i;
1247 return 0;
1248 }
1249
1250 msk0 = perf_event_get_msk(events[0]);
1251 if (n_ev == 1) {
1252 if (msk0 & PIC_LOWER)
1253 idx0 = 1;
1254 goto success;
1255 }
1256 BUG_ON(n_ev != 2);
1257 msk1 = perf_event_get_msk(events[1]);
1258
1259 /* If both events can go on any counter, OK. */
1260 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261 msk1 == (PIC_UPPER | PIC_LOWER))
1262 goto success;
1263
1264 /* If one event is limited to a specific counter,
1265 * and the other can go on both, OK.
1266 */
1267 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268 msk1 == (PIC_UPPER | PIC_LOWER)) {
1269 if (msk0 & PIC_LOWER)
1270 idx0 = 1;
1271 goto success;
1272 }
1273
1274 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275 msk0 == (PIC_UPPER | PIC_LOWER)) {
1276 if (msk1 & PIC_UPPER)
1277 idx0 = 1;
1278 goto success;
1279 }
1280
1281 /* If the events are fixed to different counters, OK. */
1282 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284 if (msk0 & PIC_LOWER)
1285 idx0 = 1;
1286 goto success;
1287 }
1288
1289 /* Otherwise, there is a conflict. */
1290 return -1;
1291
1292success:
1293 evts[0]->hw.idx = idx0;
1294 if (n_ev == 2)
1295 evts[1]->hw.idx = idx0 ^ 1;
1296 return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301 int eu = 0, ek = 0, eh = 0;
1302 struct perf_event *event;
1303 int i, n, first;
1304
1305 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306 return 0;
1307
1308 n = n_prev + n_new;
1309 if (n <= 1)
1310 return 0;
1311
1312 first = 1;
1313 for (i = 0; i < n; i++) {
1314 event = evts[i];
1315 if (first) {
1316 eu = event->attr.exclude_user;
1317 ek = event->attr.exclude_kernel;
1318 eh = event->attr.exclude_hv;
1319 first = 0;
1320 } else if (event->attr.exclude_user != eu ||
1321 event->attr.exclude_kernel != ek ||
1322 event->attr.exclude_hv != eh) {
1323 return -EAGAIN;
1324 }
1325 }
1326
1327 return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331 struct perf_event *evts[], unsigned long *events,
1332 int *current_idx)
1333{
1334 struct perf_event *event;
1335 int n = 0;
1336
1337 if (!is_software_event(group)) {
1338 if (n >= max_count)
1339 return -1;
1340 evts[n] = group;
1341 events[n] = group->hw.event_base;
1342 current_idx[n++] = PIC_NO_INDEX;
1343 }
1344 list_for_each_entry(event, &group->sibling_list, group_entry) {
1345 if (!is_software_event(event) &&
1346 event->state != PERF_EVENT_STATE_OFF) {
1347 if (n >= max_count)
1348 return -1;
1349 evts[n] = event;
1350 events[n] = event->hw.event_base;
1351 current_idx[n++] = PIC_NO_INDEX;
1352 }
1353 }
1354 return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360 int n0, ret = -EAGAIN;
1361 unsigned long flags;
1362
1363 local_irq_save(flags);
1364 perf_pmu_disable(event->pmu);
1365
1366 n0 = cpuc->n_events;
1367 if (n0 >= sparc_pmu->max_hw_events)
1368 goto out;
1369
1370 cpuc->event[n0] = event;
1371 cpuc->events[n0] = event->hw.event_base;
1372 cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374 event->hw.state = PERF_HES_UPTODATE;
1375 if (!(ef_flags & PERF_EF_START))
1376 event->hw.state |= PERF_HES_STOPPED;
1377
1378 /*
1379 * If group events scheduling transaction was started,
1380 * skip the schedulability test here, it will be performed
1381 * at commit time(->commit_txn) as a whole
1382 */
1383 if (cpuc->group_flag & PERF_EVENT_TXN)
1384 goto nocheck;
1385
1386 if (check_excludes(cpuc->event, n0, 1))
1387 goto out;
1388 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 goto out;
1390
1391nocheck:
1392 cpuc->n_events++;
1393 cpuc->n_added++;
1394
1395 ret = 0;
1396out:
1397 perf_pmu_enable(event->pmu);
1398 local_irq_restore(flags);
1399 return ret;
1400}
1401
1402static int sparc_pmu_event_init(struct perf_event *event)
1403{
1404 struct perf_event_attr *attr = &event->attr;
1405 struct perf_event *evts[MAX_HWEVENTS];
1406 struct hw_perf_event *hwc = &event->hw;
1407 unsigned long events[MAX_HWEVENTS];
1408 int current_idx_dmy[MAX_HWEVENTS];
1409 const struct perf_event_map *pmap;
1410 int n;
1411
1412 if (atomic_read(&nmi_active) < 0)
1413 return -ENODEV;
1414
1415 /* does not support taken branch sampling */
1416 if (has_branch_stack(event))
1417 return -EOPNOTSUPP;
1418
1419 switch (attr->type) {
1420 case PERF_TYPE_HARDWARE:
1421 if (attr->config >= sparc_pmu->max_events)
1422 return -EINVAL;
1423 pmap = sparc_pmu->event_map(attr->config);
1424 break;
1425
1426 case PERF_TYPE_HW_CACHE:
1427 pmap = sparc_map_cache_event(attr->config);
1428 if (IS_ERR(pmap))
1429 return PTR_ERR(pmap);
1430 break;
1431
1432 case PERF_TYPE_RAW:
1433 pmap = NULL;
1434 break;
1435
1436 default:
1437 return -ENOENT;
1438
1439 }
1440
1441 if (pmap) {
1442 hwc->event_base = perf_event_encode(pmap);
1443 } else {
1444 /*
1445 * User gives us "(encoding << 16) | pic_mask" for
1446 * PERF_TYPE_RAW events.
1447 */
1448 hwc->event_base = attr->config;
1449 }
1450
1451 /* We save the enable bits in the config_base. */
1452 hwc->config_base = sparc_pmu->irq_bit;
1453 if (!attr->exclude_user)
1454 hwc->config_base |= sparc_pmu->user_bit;
1455 if (!attr->exclude_kernel)
1456 hwc->config_base |= sparc_pmu->priv_bit;
1457 if (!attr->exclude_hv)
1458 hwc->config_base |= sparc_pmu->hv_bit;
1459
1460 n = 0;
1461 if (event->group_leader != event) {
1462 n = collect_events(event->group_leader,
1463 sparc_pmu->max_hw_events - 1,
1464 evts, events, current_idx_dmy);
1465 if (n < 0)
1466 return -EINVAL;
1467 }
1468 events[n] = hwc->event_base;
1469 evts[n] = event;
1470
1471 if (check_excludes(evts, n, 1))
1472 return -EINVAL;
1473
1474 if (sparc_check_constraints(evts, events, n + 1))
1475 return -EINVAL;
1476
1477 hwc->idx = PIC_NO_INDEX;
1478
1479 /* Try to do all error checking before this point, as unwinding
1480 * state after grabbing the PMC is difficult.
1481 */
1482 perf_event_grab_pmc();
1483 event->destroy = hw_perf_event_destroy;
1484
1485 if (!hwc->sample_period) {
1486 hwc->sample_period = MAX_PERIOD;
1487 hwc->last_period = hwc->sample_period;
1488 local64_set(&hwc->period_left, hwc->sample_period);
1489 }
1490
1491 return 0;
1492}
1493
1494/*
1495 * Start group events scheduling transaction
1496 * Set the flag to make pmu::enable() not perform the
1497 * schedulability test, it will be performed at commit time
1498 */
1499static void sparc_pmu_start_txn(struct pmu *pmu)
1500{
1501 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1502
1503 perf_pmu_disable(pmu);
1504 cpuhw->group_flag |= PERF_EVENT_TXN;
1505}
1506
1507/*
1508 * Stop group events scheduling transaction
1509 * Clear the flag and pmu::enable() will perform the
1510 * schedulability test.
1511 */
1512static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513{
1514 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1515
1516 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517 perf_pmu_enable(pmu);
1518}
1519
1520/*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525static int sparc_pmu_commit_txn(struct pmu *pmu)
1526{
1527 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528 int n;
1529
1530 if (!sparc_pmu)
1531 return -EINVAL;
1532
1533 cpuc = &__get_cpu_var(cpu_hw_events);
1534 n = cpuc->n_events;
1535 if (check_excludes(cpuc->event, 0, n))
1536 return -EINVAL;
1537 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538 return -EAGAIN;
1539
1540 cpuc->group_flag &= ~PERF_EVENT_TXN;
1541 perf_pmu_enable(pmu);
1542 return 0;
1543}
1544
1545static struct pmu pmu = {
1546 .pmu_enable = sparc_pmu_enable,
1547 .pmu_disable = sparc_pmu_disable,
1548 .event_init = sparc_pmu_event_init,
1549 .add = sparc_pmu_add,
1550 .del = sparc_pmu_del,
1551 .start = sparc_pmu_start,
1552 .stop = sparc_pmu_stop,
1553 .read = sparc_pmu_read,
1554 .start_txn = sparc_pmu_start_txn,
1555 .cancel_txn = sparc_pmu_cancel_txn,
1556 .commit_txn = sparc_pmu_commit_txn,
1557};
1558
1559void perf_event_print_debug(void)
1560{
1561 unsigned long flags;
1562 int cpu, i;
1563
1564 if (!sparc_pmu)
1565 return;
1566
1567 local_irq_save(flags);
1568
1569 cpu = smp_processor_id();
1570
1571 pr_info("\n");
1572 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573 pr_info("CPU#%d: PCR%d[%016llx]\n",
1574 cpu, i, pcr_ops->read_pcr(i));
1575 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576 pr_info("CPU#%d: PIC%d[%016llx]\n",
1577 cpu, i, pcr_ops->read_pic(i));
1578
1579 local_irq_restore(flags);
1580}
1581
1582static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583 unsigned long cmd, void *__args)
1584{
1585 struct die_args *args = __args;
1586 struct perf_sample_data data;
1587 struct cpu_hw_events *cpuc;
1588 struct pt_regs *regs;
1589 int i;
1590
1591 if (!atomic_read(&active_events))
1592 return NOTIFY_DONE;
1593
1594 switch (cmd) {
1595 case DIE_NMI:
1596 break;
1597
1598 default:
1599 return NOTIFY_DONE;
1600 }
1601
1602 regs = args->regs;
1603
1604 cpuc = &__get_cpu_var(cpu_hw_events);
1605
1606 /* If the PMU has the TOE IRQ enable bits, we need to do a
1607 * dummy write to the %pcr to clear the overflow bits and thus
1608 * the interrupt.
1609 *
1610 * Do this before we peek at the counters to determine
1611 * overflow so we don't lose any events.
1612 */
1613 if (sparc_pmu->irq_bit &&
1614 sparc_pmu->num_pcrs == 1)
1615 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616
1617 for (i = 0; i < cpuc->n_events; i++) {
1618 struct perf_event *event = cpuc->event[i];
1619 int idx = cpuc->current_idx[i];
1620 struct hw_perf_event *hwc;
1621 u64 val;
1622
1623 if (sparc_pmu->irq_bit &&
1624 sparc_pmu->num_pcrs > 1)
1625 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626
1627 hwc = &event->hw;
1628 val = sparc_perf_event_update(event, hwc, idx);
1629 if (val & (1ULL << 31))
1630 continue;
1631
1632 perf_sample_data_init(&data, 0, hwc->last_period);
1633 if (!sparc_perf_event_set_period(event, hwc, idx))
1634 continue;
1635
1636 if (perf_event_overflow(event, &data, regs))
1637 sparc_pmu_stop(event, 0);
1638 }
1639
1640 return NOTIFY_STOP;
1641}
1642
1643static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644 .notifier_call = perf_event_nmi_handler,
1645};
1646
1647static bool __init supported_pmu(void)
1648{
1649 if (!strcmp(sparc_pmu_type, "ultra3") ||
1650 !strcmp(sparc_pmu_type, "ultra3+") ||
1651 !strcmp(sparc_pmu_type, "ultra3i") ||
1652 !strcmp(sparc_pmu_type, "ultra4+")) {
1653 sparc_pmu = &ultra3_pmu;
1654 return true;
1655 }
1656 if (!strcmp(sparc_pmu_type, "niagara")) {
1657 sparc_pmu = &niagara1_pmu;
1658 return true;
1659 }
1660 if (!strcmp(sparc_pmu_type, "niagara2") ||
1661 !strcmp(sparc_pmu_type, "niagara3")) {
1662 sparc_pmu = &niagara2_pmu;
1663 return true;
1664 }
1665 if (!strcmp(sparc_pmu_type, "niagara4")) {
1666 sparc_pmu = &niagara4_pmu;
1667 return true;
1668 }
1669 return false;
1670}
1671
1672int __init init_hw_perf_events(void)
1673{
1674 pr_info("Performance events: ");
1675
1676 if (!supported_pmu()) {
1677 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678 return 0;
1679 }
1680
1681 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682
1683 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684 register_die_notifier(&perf_event_nmi_notifier);
1685
1686 return 0;
1687}
1688early_initcall(init_hw_perf_events);
1689
1690void perf_callchain_kernel(struct perf_callchain_entry *entry,
1691 struct pt_regs *regs)
1692{
1693 unsigned long ksp, fp;
1694#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695 int graph = 0;
1696#endif
1697
1698 stack_trace_flush();
1699
1700 perf_callchain_store(entry, regs->tpc);
1701
1702 ksp = regs->u_regs[UREG_I6];
1703 fp = ksp + STACK_BIAS;
1704 do {
1705 struct sparc_stackf *sf;
1706 struct pt_regs *regs;
1707 unsigned long pc;
1708
1709 if (!kstack_valid(current_thread_info(), fp))
1710 break;
1711
1712 sf = (struct sparc_stackf *) fp;
1713 regs = (struct pt_regs *) (sf + 1);
1714
1715 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716 if (user_mode(regs))
1717 break;
1718 pc = regs->tpc;
1719 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720 } else {
1721 pc = sf->callers_pc;
1722 fp = (unsigned long)sf->fp + STACK_BIAS;
1723 }
1724 perf_callchain_store(entry, pc);
1725#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727 int index = current->curr_ret_stack;
1728 if (current->ret_stack && index >= graph) {
1729 pc = current->ret_stack[index - graph].ret;
1730 perf_callchain_store(entry, pc);
1731 graph++;
1732 }
1733 }
1734#endif
1735 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1736}
1737
1738static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739 struct pt_regs *regs)
1740{
1741 unsigned long ufp;
1742
1743 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744 do {
1745 struct sparc_stackf *usf, sf;
1746 unsigned long pc;
1747
1748 usf = (struct sparc_stackf *) ufp;
1749 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750 break;
1751
1752 pc = sf.callers_pc;
1753 ufp = (unsigned long)sf.fp + STACK_BIAS;
1754 perf_callchain_store(entry, pc);
1755 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1756}
1757
1758static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759 struct pt_regs *regs)
1760{
1761 unsigned long ufp;
1762
1763 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1764 do {
1765 unsigned long pc;
1766
1767 if (thread32_stack_is_64bit(ufp)) {
1768 struct sparc_stackf *usf, sf;
1769
1770 ufp += STACK_BIAS;
1771 usf = (struct sparc_stackf *) ufp;
1772 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1773 break;
1774 pc = sf.callers_pc & 0xffffffff;
1775 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1776 } else {
1777 struct sparc_stackf32 *usf, sf;
1778 usf = (struct sparc_stackf32 *) ufp;
1779 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1780 break;
1781 pc = sf.callers_pc;
1782 ufp = (unsigned long)sf.fp;
1783 }
1784 perf_callchain_store(entry, pc);
1785 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1786}
1787
1788void
1789perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1790{
1791 perf_callchain_store(entry, regs->tpc);
1792
1793 if (!current->mm)
1794 return;
1795
1796 flushw_user();
1797 if (test_thread_flag(TIF_32BIT))
1798 perf_callchain_user_32(entry, regs);
1799 else
1800 perf_callchain_user_64(entry, regs);
1801}