Loading...
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/sched/task.h>
26#include <linux/sched/task_stack.h>
27#include <linux/interrupt.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/smp.h>
39#include <linux/pagemap.h>
40#include <linux/mount.h>
41#include <linux/bitops.h>
42#include <linux/capability.h>
43#include <linux/rcupdate.h>
44#include <linux/completion.h>
45#include <linux/tracehook.h>
46#include <linux/slab.h>
47#include <linux/cpu.h>
48
49#include <asm/errno.h>
50#include <asm/intrinsics.h>
51#include <asm/page.h>
52#include <asm/perfmon.h>
53#include <asm/processor.h>
54#include <asm/signal.h>
55#include <linux/uaccess.h>
56#include <asm/delay.h>
57
58#ifdef CONFIG_PERFMON
59/*
60 * perfmon context state
61 */
62#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
63#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
64#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
65#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
66
67#define PFM_INVALID_ACTIVATION (~0UL)
68
69#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
70#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71
72/*
73 * depth of message queue
74 */
75#define PFM_MAX_MSGS 32
76#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77
78/*
79 * type of a PMU register (bitmask).
80 * bitmask structure:
81 * bit0 : register implemented
82 * bit1 : end marker
83 * bit2-3 : reserved
84 * bit4 : pmc has pmc.pm
85 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
86 * bit6-7 : register type
87 * bit8-31: reserved
88 */
89#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
90#define PFM_REG_IMPL 0x1 /* register implemented */
91#define PFM_REG_END 0x2 /* end marker */
92#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
95#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
96#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
97
98#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
99#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
100
101#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
102
103/* i assumed unsigned */
104#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
106
107/* XXX: these assume that register i is implemented */
108#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
111#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
112
113#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
114#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
115#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
116#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
117
118#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
119#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
120
121#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
122#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
123#define PFM_CTX_TASK(h) (h)->ctx_task
124
125#define PMU_PMC_OI 5 /* position of pmc.oi bit */
126
127/* XXX: does not support more than 64 PMDs */
128#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
130
131#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
132
133#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136#define PFM_CODE_RR 0 /* requesting code range restriction */
137#define PFM_DATA_RR 1 /* requestion data range restriction */
138
139#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
141#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
142
143#define RDEP(x) (1UL<<(x))
144
145/*
146 * context protection macros
147 * in SMP:
148 * - we need to protect against CPU concurrency (spin_lock)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * in UP:
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
152 *
153 * spin_lock_irqsave()/spin_unlock_irqrestore():
154 * in SMP: local_irq_disable + spin_lock
155 * in UP : local_irq_disable
156 *
157 * spin_lock()/spin_lock():
158 * in UP : removed automatically
159 * in SMP: protect against context accesses from other CPU. interrupts
160 * are not masked. This is useful for the PMU interrupt handler
161 * because we know we will not get PMU concurrency in that code.
162 */
163#define PROTECT_CTX(c, f) \
164 do { \
165 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 spin_lock_irqsave(&(c)->ctx_lock, f); \
167 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 } while(0)
169
170#define UNPROTECT_CTX(c, f) \
171 do { \
172 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 } while(0)
175
176#define PROTECT_CTX_NOPRINT(c, f) \
177 do { \
178 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 } while(0)
180
181
182#define UNPROTECT_CTX_NOPRINT(c, f) \
183 do { \
184 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 } while(0)
186
187
188#define PROTECT_CTX_NOIRQ(c) \
189 do { \
190 spin_lock(&(c)->ctx_lock); \
191 } while(0)
192
193#define UNPROTECT_CTX_NOIRQ(c) \
194 do { \
195 spin_unlock(&(c)->ctx_lock); \
196 } while(0)
197
198
199#ifdef CONFIG_SMP
200
201#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
202#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
203#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
204
205#else /* !CONFIG_SMP */
206#define SET_ACTIVATION(t) do {} while(0)
207#define GET_ACTIVATION(t) do {} while(0)
208#define INC_ACTIVATION(t) do {} while(0)
209#endif /* CONFIG_SMP */
210
211#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
213#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
214
215#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
217
218#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219
220/*
221 * cmp0 must be the value of pmc0
222 */
223#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
224
225#define PFMFS_MAGIC 0xa0b4d889
226
227/*
228 * debugging
229 */
230#define PFM_DEBUGGING 1
231#ifdef PFM_DEBUGGING
232#define DPRINT(a) \
233 do { \
234 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 } while (0)
236
237#define DPRINT_ovfl(a) \
238 do { \
239 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 } while (0)
241#endif
242
243/*
244 * 64-bit software counter structure
245 *
246 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 */
248typedef struct {
249 unsigned long val; /* virtual 64bit counter value */
250 unsigned long lval; /* last reset value */
251 unsigned long long_reset; /* reset value on sampling overflow */
252 unsigned long short_reset; /* reset value on overflow */
253 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
254 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
255 unsigned long seed; /* seed for random-number generator */
256 unsigned long mask; /* mask for random-number generator */
257 unsigned int flags; /* notify/do not notify */
258 unsigned long eventid; /* overflow event identifier */
259} pfm_counter_t;
260
261/*
262 * context flags
263 */
264typedef struct {
265 unsigned int block:1; /* when 1, task will blocked on user notifications */
266 unsigned int system:1; /* do system wide monitoring */
267 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
268 unsigned int is_sampling:1; /* true if using a custom format */
269 unsigned int excl_idle:1; /* exclude idle task in system wide session */
270 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
271 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
272 unsigned int no_msg:1; /* no message sent on overflow */
273 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
274 unsigned int reserved:22;
275} pfm_context_flags_t;
276
277#define PFM_TRAP_REASON_NONE 0x0 /* default value */
278#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
279#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280
281
282/*
283 * perfmon context: encapsulates all the state of a monitoring session
284 */
285
286typedef struct pfm_context {
287 spinlock_t ctx_lock; /* context protection */
288
289 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
290 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
291
292 struct task_struct *ctx_task; /* task to which context is attached */
293
294 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
295
296 struct completion ctx_restart_done; /* use for blocking notification mode */
297
298 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
299 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
300 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
301
302 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
303 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
304 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
305
306 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
307
308 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
309 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
310 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
311 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
312
313 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
314
315 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
316 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
317
318 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
319
320 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
321 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
322 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
323
324 int ctx_fd; /* file descriptor used my this context */
325 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
326
327 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
328 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
329 unsigned long ctx_smpl_size; /* size of sampling buffer */
330 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
331
332 wait_queue_head_t ctx_msgq_wait;
333 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
334 int ctx_msgq_head;
335 int ctx_msgq_tail;
336 struct fasync_struct *ctx_async_queue;
337
338 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339} pfm_context_t;
340
341/*
342 * magic number used to verify that structure is really
343 * a perfmon context
344 */
345#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
346
347#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348
349#ifdef CONFIG_SMP
350#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
351#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
352#else
353#define SET_LAST_CPU(ctx, v) do {} while(0)
354#define GET_LAST_CPU(ctx) do {} while(0)
355#endif
356
357
358#define ctx_fl_block ctx_flags.block
359#define ctx_fl_system ctx_flags.system
360#define ctx_fl_using_dbreg ctx_flags.using_dbreg
361#define ctx_fl_is_sampling ctx_flags.is_sampling
362#define ctx_fl_excl_idle ctx_flags.excl_idle
363#define ctx_fl_going_zombie ctx_flags.going_zombie
364#define ctx_fl_trap_reason ctx_flags.trap_reason
365#define ctx_fl_no_msg ctx_flags.no_msg
366#define ctx_fl_can_restart ctx_flags.can_restart
367
368#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
369#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370
371/*
372 * global information about all sessions
373 * mostly used to synchronize between system wide and per-process
374 */
375typedef struct {
376 spinlock_t pfs_lock; /* lock the structure */
377
378 unsigned int pfs_task_sessions; /* number of per task sessions */
379 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
380 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
381 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
382 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383} pfm_session_t;
384
385/*
386 * information about a PMC or PMD.
387 * dep_pmd[]: a bitmask of dependent PMD registers
388 * dep_pmc[]: a bitmask of dependent PMC registers
389 */
390typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391typedef struct {
392 unsigned int type;
393 int pm_pos;
394 unsigned long default_value; /* power-on default value */
395 unsigned long reserved_mask; /* bitmask of reserved bits */
396 pfm_reg_check_t read_check;
397 pfm_reg_check_t write_check;
398 unsigned long dep_pmd[4];
399 unsigned long dep_pmc[4];
400} pfm_reg_desc_t;
401
402/* assume cnum is a valid monitor */
403#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404
405/*
406 * This structure is initialized at boot time and contains
407 * a description of the PMU main characteristics.
408 *
409 * If the probe function is defined, detection is based
410 * on its return value:
411 * - 0 means recognized PMU
412 * - anything else means not supported
413 * When the probe function is not defined, then the pmu_family field
414 * is used and it must match the host CPU family such that:
415 * - cpu->family & config->pmu_family != 0
416 */
417typedef struct {
418 unsigned long ovfl_val; /* overflow value for counters */
419
420 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
421 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
422
423 unsigned int num_pmcs; /* number of PMCS: computed at init time */
424 unsigned int num_pmds; /* number of PMDS: computed at init time */
425 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
426 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
427
428 char *pmu_name; /* PMU family name */
429 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
430 unsigned int flags; /* pmu specific flags */
431 unsigned int num_ibrs; /* number of IBRS: computed at init time */
432 unsigned int num_dbrs; /* number of DBRS: computed at init time */
433 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
434 int (*probe)(void); /* customized probe routine */
435 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
436} pmu_config_t;
437/*
438 * PMU specific flags
439 */
440#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441
442/*
443 * debug register related type definitions
444 */
445typedef struct {
446 unsigned long ibr_mask:56;
447 unsigned long ibr_plm:4;
448 unsigned long ibr_ig:3;
449 unsigned long ibr_x:1;
450} ibr_mask_reg_t;
451
452typedef struct {
453 unsigned long dbr_mask:56;
454 unsigned long dbr_plm:4;
455 unsigned long dbr_ig:2;
456 unsigned long dbr_w:1;
457 unsigned long dbr_r:1;
458} dbr_mask_reg_t;
459
460typedef union {
461 unsigned long val;
462 ibr_mask_reg_t ibr;
463 dbr_mask_reg_t dbr;
464} dbreg_t;
465
466
467/*
468 * perfmon command descriptions
469 */
470typedef struct {
471 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
472 char *cmd_name;
473 int cmd_flags;
474 unsigned int cmd_narg;
475 size_t cmd_argsize;
476 int (*cmd_getsize)(void *arg, size_t *sz);
477} pfm_cmd_desc_t;
478
479#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
480#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
481#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
482#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483
484
485#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
486#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
490
491#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492
493typedef struct {
494 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
495 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
496 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
498 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
500 unsigned long pfm_smpl_handler_calls;
501 unsigned long pfm_smpl_handler_cycles;
502 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503} pfm_stats_t;
504
505/*
506 * perfmon internal variables
507 */
508static pfm_stats_t pfm_stats[NR_CPUS];
509static pfm_session_t pfm_sessions; /* global sessions information */
510
511static DEFINE_SPINLOCK(pfm_alt_install_check);
512static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
513
514static struct proc_dir_entry *perfmon_dir;
515static pfm_uuid_t pfm_null_uuid = {0,};
516
517static spinlock_t pfm_buffer_fmt_lock;
518static LIST_HEAD(pfm_buffer_fmt_list);
519
520static pmu_config_t *pmu_conf;
521
522/* sysctl() controls */
523pfm_sysctl_t pfm_sysctl;
524EXPORT_SYMBOL(pfm_sysctl);
525
526static struct ctl_table pfm_ctl_table[] = {
527 {
528 .procname = "debug",
529 .data = &pfm_sysctl.debug,
530 .maxlen = sizeof(int),
531 .mode = 0666,
532 .proc_handler = proc_dointvec,
533 },
534 {
535 .procname = "debug_ovfl",
536 .data = &pfm_sysctl.debug_ovfl,
537 .maxlen = sizeof(int),
538 .mode = 0666,
539 .proc_handler = proc_dointvec,
540 },
541 {
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = proc_dointvec,
547 },
548 {
549 .procname = "expert_mode",
550 .data = &pfm_sysctl.expert_mode,
551 .maxlen = sizeof(int),
552 .mode = 0600,
553 .proc_handler = proc_dointvec,
554 },
555 {}
556};
557static struct ctl_table pfm_sysctl_dir[] = {
558 {
559 .procname = "perfmon",
560 .mode = 0555,
561 .child = pfm_ctl_table,
562 },
563 {}
564};
565static struct ctl_table pfm_sysctl_root[] = {
566 {
567 .procname = "kernel",
568 .mode = 0555,
569 .child = pfm_sysctl_dir,
570 },
571 {}
572};
573static struct ctl_table_header *pfm_sysctl_header;
574
575static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
576
577#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
578#define pfm_get_cpu_data(a,b) per_cpu(a, b)
579
580static inline void
581pfm_put_task(struct task_struct *task)
582{
583 if (task != current) put_task_struct(task);
584}
585
586static inline void
587pfm_reserve_page(unsigned long a)
588{
589 SetPageReserved(vmalloc_to_page((void *)a));
590}
591static inline void
592pfm_unreserve_page(unsigned long a)
593{
594 ClearPageReserved(vmalloc_to_page((void*)a));
595}
596
597static inline unsigned long
598pfm_protect_ctx_ctxsw(pfm_context_t *x)
599{
600 spin_lock(&(x)->ctx_lock);
601 return 0UL;
602}
603
604static inline void
605pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
606{
607 spin_unlock(&(x)->ctx_lock);
608}
609
610/* forward declaration */
611static const struct dentry_operations pfmfs_dentry_operations;
612
613static struct dentry *
614pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
615{
616 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
617 PFMFS_MAGIC);
618}
619
620static struct file_system_type pfm_fs_type = {
621 .name = "pfmfs",
622 .mount = pfmfs_mount,
623 .kill_sb = kill_anon_super,
624};
625MODULE_ALIAS_FS("pfmfs");
626
627DEFINE_PER_CPU(unsigned long, pfm_syst_info);
628DEFINE_PER_CPU(struct task_struct *, pmu_owner);
629DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
630DEFINE_PER_CPU(unsigned long, pmu_activation_number);
631EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632
633
634/* forward declaration */
635static const struct file_operations pfm_file_ops;
636
637/*
638 * forward declarations
639 */
640#ifndef CONFIG_SMP
641static void pfm_lazy_save_regs (struct task_struct *ta);
642#endif
643
644void dump_pmu_state(const char *);
645static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
646
647#include "perfmon_itanium.h"
648#include "perfmon_mckinley.h"
649#include "perfmon_montecito.h"
650#include "perfmon_generic.h"
651
652static pmu_config_t *pmu_confs[]={
653 &pmu_conf_mont,
654 &pmu_conf_mck,
655 &pmu_conf_ita,
656 &pmu_conf_gen, /* must be last */
657 NULL
658};
659
660
661static int pfm_end_notify_user(pfm_context_t *ctx);
662
663static inline void
664pfm_clear_psr_pp(void)
665{
666 ia64_rsm(IA64_PSR_PP);
667 ia64_srlz_i();
668}
669
670static inline void
671pfm_set_psr_pp(void)
672{
673 ia64_ssm(IA64_PSR_PP);
674 ia64_srlz_i();
675}
676
677static inline void
678pfm_clear_psr_up(void)
679{
680 ia64_rsm(IA64_PSR_UP);
681 ia64_srlz_i();
682}
683
684static inline void
685pfm_set_psr_up(void)
686{
687 ia64_ssm(IA64_PSR_UP);
688 ia64_srlz_i();
689}
690
691static inline unsigned long
692pfm_get_psr(void)
693{
694 unsigned long tmp;
695 tmp = ia64_getreg(_IA64_REG_PSR);
696 ia64_srlz_i();
697 return tmp;
698}
699
700static inline void
701pfm_set_psr_l(unsigned long val)
702{
703 ia64_setreg(_IA64_REG_PSR_L, val);
704 ia64_srlz_i();
705}
706
707static inline void
708pfm_freeze_pmu(void)
709{
710 ia64_set_pmc(0,1UL);
711 ia64_srlz_d();
712}
713
714static inline void
715pfm_unfreeze_pmu(void)
716{
717 ia64_set_pmc(0,0UL);
718 ia64_srlz_d();
719}
720
721static inline void
722pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
723{
724 int i;
725
726 for (i=0; i < nibrs; i++) {
727 ia64_set_ibr(i, ibrs[i]);
728 ia64_dv_serialize_instruction();
729 }
730 ia64_srlz_i();
731}
732
733static inline void
734pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
735{
736 int i;
737
738 for (i=0; i < ndbrs; i++) {
739 ia64_set_dbr(i, dbrs[i]);
740 ia64_dv_serialize_data();
741 }
742 ia64_srlz_d();
743}
744
745/*
746 * PMD[i] must be a counter. no check is made
747 */
748static inline unsigned long
749pfm_read_soft_counter(pfm_context_t *ctx, int i)
750{
751 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
752}
753
754/*
755 * PMD[i] must be a counter. no check is made
756 */
757static inline void
758pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
759{
760 unsigned long ovfl_val = pmu_conf->ovfl_val;
761
762 ctx->ctx_pmds[i].val = val & ~ovfl_val;
763 /*
764 * writing to unimplemented part is ignore, so we do not need to
765 * mask off top part
766 */
767 ia64_set_pmd(i, val & ovfl_val);
768}
769
770static pfm_msg_t *
771pfm_get_new_msg(pfm_context_t *ctx)
772{
773 int idx, next;
774
775 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
776
777 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 if (next == ctx->ctx_msgq_head) return NULL;
779
780 idx = ctx->ctx_msgq_tail;
781 ctx->ctx_msgq_tail = next;
782
783 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
784
785 return ctx->ctx_msgq+idx;
786}
787
788static pfm_msg_t *
789pfm_get_next_msg(pfm_context_t *ctx)
790{
791 pfm_msg_t *msg;
792
793 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
794
795 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796
797 /*
798 * get oldest message
799 */
800 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801
802 /*
803 * and move forward
804 */
805 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
806
807 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
808
809 return msg;
810}
811
812static void
813pfm_reset_msgq(pfm_context_t *ctx)
814{
815 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
816 DPRINT(("ctx=%p msgq reset\n", ctx));
817}
818
819static void *
820pfm_rvmalloc(unsigned long size)
821{
822 void *mem;
823 unsigned long addr;
824
825 size = PAGE_ALIGN(size);
826 mem = vzalloc(size);
827 if (mem) {
828 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 addr = (unsigned long)mem;
830 while (size > 0) {
831 pfm_reserve_page(addr);
832 addr+=PAGE_SIZE;
833 size-=PAGE_SIZE;
834 }
835 }
836 return mem;
837}
838
839static void
840pfm_rvfree(void *mem, unsigned long size)
841{
842 unsigned long addr;
843
844 if (mem) {
845 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
846 addr = (unsigned long) mem;
847 while ((long) size > 0) {
848 pfm_unreserve_page(addr);
849 addr+=PAGE_SIZE;
850 size-=PAGE_SIZE;
851 }
852 vfree(mem);
853 }
854 return;
855}
856
857static pfm_context_t *
858pfm_context_alloc(int ctx_flags)
859{
860 pfm_context_t *ctx;
861
862 /*
863 * allocate context descriptor
864 * must be able to free with interrupts disabled
865 */
866 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
867 if (ctx) {
868 DPRINT(("alloc ctx @%p\n", ctx));
869
870 /*
871 * init context protection lock
872 */
873 spin_lock_init(&ctx->ctx_lock);
874
875 /*
876 * context is unloaded
877 */
878 ctx->ctx_state = PFM_CTX_UNLOADED;
879
880 /*
881 * initialization of context's flags
882 */
883 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
884 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
885 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
886 /*
887 * will move to set properties
888 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
889 */
890
891 /*
892 * init restart semaphore to locked
893 */
894 init_completion(&ctx->ctx_restart_done);
895
896 /*
897 * activation is used in SMP only
898 */
899 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
900 SET_LAST_CPU(ctx, -1);
901
902 /*
903 * initialize notification message queue
904 */
905 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
906 init_waitqueue_head(&ctx->ctx_msgq_wait);
907 init_waitqueue_head(&ctx->ctx_zombieq);
908
909 }
910 return ctx;
911}
912
913static void
914pfm_context_free(pfm_context_t *ctx)
915{
916 if (ctx) {
917 DPRINT(("free ctx @%p\n", ctx));
918 kfree(ctx);
919 }
920}
921
922static void
923pfm_mask_monitoring(struct task_struct *task)
924{
925 pfm_context_t *ctx = PFM_GET_CTX(task);
926 unsigned long mask, val, ovfl_mask;
927 int i;
928
929 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
930
931 ovfl_mask = pmu_conf->ovfl_val;
932 /*
933 * monitoring can only be masked as a result of a valid
934 * counter overflow. In UP, it means that the PMU still
935 * has an owner. Note that the owner can be different
936 * from the current task. However the PMU state belongs
937 * to the owner.
938 * In SMP, a valid overflow only happens when task is
939 * current. Therefore if we come here, we know that
940 * the PMU state belongs to the current task, therefore
941 * we can access the live registers.
942 *
943 * So in both cases, the live register contains the owner's
944 * state. We can ONLY touch the PMU registers and NOT the PSR.
945 *
946 * As a consequence to this call, the ctx->th_pmds[] array
947 * contains stale information which must be ignored
948 * when context is reloaded AND monitoring is active (see
949 * pfm_restart).
950 */
951 mask = ctx->ctx_used_pmds[0];
952 for (i = 0; mask; i++, mask>>=1) {
953 /* skip non used pmds */
954 if ((mask & 0x1) == 0) continue;
955 val = ia64_get_pmd(i);
956
957 if (PMD_IS_COUNTING(i)) {
958 /*
959 * we rebuild the full 64 bit value of the counter
960 */
961 ctx->ctx_pmds[i].val += (val & ovfl_mask);
962 } else {
963 ctx->ctx_pmds[i].val = val;
964 }
965 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
966 i,
967 ctx->ctx_pmds[i].val,
968 val & ovfl_mask));
969 }
970 /*
971 * mask monitoring by setting the privilege level to 0
972 * we cannot use psr.pp/psr.up for this, it is controlled by
973 * the user
974 *
975 * if task is current, modify actual registers, otherwise modify
976 * thread save state, i.e., what will be restored in pfm_load_regs()
977 */
978 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
979 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
980 if ((mask & 0x1) == 0UL) continue;
981 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
982 ctx->th_pmcs[i] &= ~0xfUL;
983 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 }
985 /*
986 * make all of this visible
987 */
988 ia64_srlz_d();
989}
990
991/*
992 * must always be done with task == current
993 *
994 * context must be in MASKED state when calling
995 */
996static void
997pfm_restore_monitoring(struct task_struct *task)
998{
999 pfm_context_t *ctx = PFM_GET_CTX(task);
1000 unsigned long mask, ovfl_mask;
1001 unsigned long psr, val;
1002 int i, is_system;
1003
1004 is_system = ctx->ctx_fl_system;
1005 ovfl_mask = pmu_conf->ovfl_val;
1006
1007 if (task != current) {
1008 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009 return;
1010 }
1011 if (ctx->ctx_state != PFM_CTX_MASKED) {
1012 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014 return;
1015 }
1016 psr = pfm_get_psr();
1017 /*
1018 * monitoring is masked via the PMC.
1019 * As we restore their value, we do not want each counter to
1020 * restart right away. We stop monitoring using the PSR,
1021 * restore the PMC (and PMD) and then re-establish the psr
1022 * as it was. Note that there can be no pending overflow at
1023 * this point, because monitoring was MASKED.
1024 *
1025 * system-wide session are pinned and self-monitoring
1026 */
1027 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 /* disable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030 pfm_clear_psr_pp();
1031 } else {
1032 pfm_clear_psr_up();
1033 }
1034 /*
1035 * first, we restore the PMD
1036 */
1037 mask = ctx->ctx_used_pmds[0];
1038 for (i = 0; mask; i++, mask>>=1) {
1039 /* skip non used pmds */
1040 if ((mask & 0x1) == 0) continue;
1041
1042 if (PMD_IS_COUNTING(i)) {
1043 /*
1044 * we split the 64bit value according to
1045 * counter width
1046 */
1047 val = ctx->ctx_pmds[i].val & ovfl_mask;
1048 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049 } else {
1050 val = ctx->ctx_pmds[i].val;
1051 }
1052 ia64_set_pmd(i, val);
1053
1054 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055 i,
1056 ctx->ctx_pmds[i].val,
1057 val));
1058 }
1059 /*
1060 * restore the PMCs
1061 */
1062 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064 if ((mask & 0x1) == 0UL) continue;
1065 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066 ia64_set_pmc(i, ctx->th_pmcs[i]);
1067 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 task_pid_nr(task), i, ctx->th_pmcs[i]));
1069 }
1070 ia64_srlz_d();
1071
1072 /*
1073 * must restore DBR/IBR because could be modified while masked
1074 * XXX: need to optimize
1075 */
1076 if (ctx->ctx_fl_using_dbreg) {
1077 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079 }
1080
1081 /*
1082 * now restore PSR
1083 */
1084 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085 /* enable dcr pp */
1086 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087 ia64_srlz_i();
1088 }
1089 pfm_set_psr_l(psr);
1090}
1091
1092static inline void
1093pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094{
1095 int i;
1096
1097 ia64_srlz_d();
1098
1099 for (i=0; mask; i++, mask>>=1) {
1100 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 }
1102}
1103
1104/*
1105 * reload from thread state (used for ctxw only)
1106 */
1107static inline void
1108pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109{
1110 int i;
1111 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113 for (i=0; mask; i++, mask>>=1) {
1114 if ((mask & 0x1) == 0) continue;
1115 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116 ia64_set_pmd(i, val);
1117 }
1118 ia64_srlz_d();
1119}
1120
1121/*
1122 * propagate PMD from context to thread-state
1123 */
1124static inline void
1125pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126{
1127 unsigned long ovfl_val = pmu_conf->ovfl_val;
1128 unsigned long mask = ctx->ctx_all_pmds[0];
1129 unsigned long val;
1130 int i;
1131
1132 DPRINT(("mask=0x%lx\n", mask));
1133
1134 for (i=0; mask; i++, mask>>=1) {
1135
1136 val = ctx->ctx_pmds[i].val;
1137
1138 /*
1139 * We break up the 64 bit value into 2 pieces
1140 * the lower bits go to the machine state in the
1141 * thread (will be reloaded on ctxsw in).
1142 * The upper part stays in the soft-counter.
1143 */
1144 if (PMD_IS_COUNTING(i)) {
1145 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146 val &= ovfl_val;
1147 }
1148 ctx->th_pmds[i] = val;
1149
1150 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 i,
1152 ctx->th_pmds[i],
1153 ctx->ctx_pmds[i].val));
1154 }
1155}
1156
1157/*
1158 * propagate PMC from context to thread-state
1159 */
1160static inline void
1161pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162{
1163 unsigned long mask = ctx->ctx_all_pmcs[0];
1164 int i;
1165
1166 DPRINT(("mask=0x%lx\n", mask));
1167
1168 for (i=0; mask; i++, mask>>=1) {
1169 /* masking 0 with ovfl_val yields 0 */
1170 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172 }
1173}
1174
1175
1176
1177static inline void
1178pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179{
1180 int i;
1181
1182 for (i=0; mask; i++, mask>>=1) {
1183 if ((mask & 0x1) == 0) continue;
1184 ia64_set_pmc(i, pmcs[i]);
1185 }
1186 ia64_srlz_d();
1187}
1188
1189static inline int
1190pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191{
1192 return memcmp(a, b, sizeof(pfm_uuid_t));
1193}
1194
1195static inline int
1196pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197{
1198 int ret = 0;
1199 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200 return ret;
1201}
1202
1203static inline int
1204pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205{
1206 int ret = 0;
1207 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208 return ret;
1209}
1210
1211
1212static inline int
1213pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214 int cpu, void *arg)
1215{
1216 int ret = 0;
1217 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218 return ret;
1219}
1220
1221static inline int
1222pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223 int cpu, void *arg)
1224{
1225 int ret = 0;
1226 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227 return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232{
1233 int ret = 0;
1234 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235 return ret;
1236}
1237
1238static inline int
1239pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240{
1241 int ret = 0;
1242 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243 return ret;
1244}
1245
1246static pfm_buffer_fmt_t *
1247__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248{
1249 struct list_head * pos;
1250 pfm_buffer_fmt_t * entry;
1251
1252 list_for_each(pos, &pfm_buffer_fmt_list) {
1253 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255 return entry;
1256 }
1257 return NULL;
1258}
1259
1260/*
1261 * find a buffer format based on its uuid
1262 */
1263static pfm_buffer_fmt_t *
1264pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265{
1266 pfm_buffer_fmt_t * fmt;
1267 spin_lock(&pfm_buffer_fmt_lock);
1268 fmt = __pfm_find_buffer_fmt(uuid);
1269 spin_unlock(&pfm_buffer_fmt_lock);
1270 return fmt;
1271}
1272
1273int
1274pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275{
1276 int ret = 0;
1277
1278 /* some sanity checks */
1279 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281 /* we need at least a handler */
1282 if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284 /*
1285 * XXX: need check validity of fmt_arg_size
1286 */
1287
1288 spin_lock(&pfm_buffer_fmt_lock);
1289
1290 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292 ret = -EBUSY;
1293 goto out;
1294 }
1295 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298out:
1299 spin_unlock(&pfm_buffer_fmt_lock);
1300 return ret;
1301}
1302EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304int
1305pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306{
1307 pfm_buffer_fmt_t *fmt;
1308 int ret = 0;
1309
1310 spin_lock(&pfm_buffer_fmt_lock);
1311
1312 fmt = __pfm_find_buffer_fmt(uuid);
1313 if (!fmt) {
1314 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318 list_del_init(&fmt->fmt_list);
1319 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321out:
1322 spin_unlock(&pfm_buffer_fmt_lock);
1323 return ret;
1324
1325}
1326EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328static int
1329pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330{
1331 unsigned long flags;
1332 /*
1333 * validity checks on cpu_mask have been done upstream
1334 */
1335 LOCK_PFS(flags);
1336
1337 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 pfm_sessions.pfs_sys_sessions,
1339 pfm_sessions.pfs_task_sessions,
1340 pfm_sessions.pfs_sys_use_dbregs,
1341 is_syswide,
1342 cpu));
1343
1344 if (is_syswide) {
1345 /*
1346 * cannot mix system wide and per-task sessions
1347 */
1348 if (pfm_sessions.pfs_task_sessions > 0UL) {
1349 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 pfm_sessions.pfs_task_sessions));
1351 goto abort;
1352 }
1353
1354 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358 pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360 pfm_sessions.pfs_sys_sessions++ ;
1361
1362 } else {
1363 if (pfm_sessions.pfs_sys_sessions) goto abort;
1364 pfm_sessions.pfs_task_sessions++;
1365 }
1366
1367 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 pfm_sessions.pfs_sys_sessions,
1369 pfm_sessions.pfs_task_sessions,
1370 pfm_sessions.pfs_sys_use_dbregs,
1371 is_syswide,
1372 cpu));
1373
1374 /*
1375 * Force idle() into poll mode
1376 */
1377 cpu_idle_poll_ctrl(true);
1378
1379 UNLOCK_PFS(flags);
1380
1381 return 0;
1382
1383error_conflict:
1384 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386 cpu));
1387abort:
1388 UNLOCK_PFS(flags);
1389
1390 return -EBUSY;
1391
1392}
1393
1394static int
1395pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396{
1397 unsigned long flags;
1398 /*
1399 * validity checks on cpu_mask have been done upstream
1400 */
1401 LOCK_PFS(flags);
1402
1403 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 pfm_sessions.pfs_sys_sessions,
1405 pfm_sessions.pfs_task_sessions,
1406 pfm_sessions.pfs_sys_use_dbregs,
1407 is_syswide,
1408 cpu));
1409
1410
1411 if (is_syswide) {
1412 pfm_sessions.pfs_sys_session[cpu] = NULL;
1413 /*
1414 * would not work with perfmon+more than one bit in cpu_mask
1415 */
1416 if (ctx && ctx->ctx_fl_using_dbreg) {
1417 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419 } else {
1420 pfm_sessions.pfs_sys_use_dbregs--;
1421 }
1422 }
1423 pfm_sessions.pfs_sys_sessions--;
1424 } else {
1425 pfm_sessions.pfs_task_sessions--;
1426 }
1427 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 pfm_sessions.pfs_sys_sessions,
1429 pfm_sessions.pfs_task_sessions,
1430 pfm_sessions.pfs_sys_use_dbregs,
1431 is_syswide,
1432 cpu));
1433
1434 /* Undo forced polling. Last session reenables pal_halt */
1435 cpu_idle_poll_ctrl(false);
1436
1437 UNLOCK_PFS(flags);
1438
1439 return 0;
1440}
1441
1442/*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447static int
1448pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449{
1450 struct task_struct *task = current;
1451 int r;
1452
1453 /* sanity checks */
1454 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456 return -EINVAL;
1457 }
1458
1459 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461 /*
1462 * does the actual unmapping
1463 */
1464 r = vm_munmap((unsigned long)vaddr, size);
1465
1466 if (r !=0) {
1467 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 }
1469
1470 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472 return 0;
1473}
1474
1475/*
1476 * free actual physical storage used by sampling buffer
1477 */
1478#if 0
1479static int
1480pfm_free_smpl_buffer(pfm_context_t *ctx)
1481{
1482 pfm_buffer_fmt_t *fmt;
1483
1484 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486 /*
1487 * we won't use the buffer format anymore
1488 */
1489 fmt = ctx->ctx_buf_fmt;
1490
1491 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 ctx->ctx_smpl_hdr,
1493 ctx->ctx_smpl_size,
1494 ctx->ctx_smpl_vaddr));
1495
1496 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498 /*
1499 * free the buffer
1500 */
1501 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503 ctx->ctx_smpl_hdr = NULL;
1504 ctx->ctx_smpl_size = 0UL;
1505
1506 return 0;
1507
1508invalid_free:
1509 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510 return -EINVAL;
1511}
1512#endif
1513
1514static inline void
1515pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516{
1517 if (fmt == NULL) return;
1518
1519 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521}
1522
1523/*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531static int __init
1532init_pfm_fs(void)
1533{
1534 int err = register_filesystem(&pfm_fs_type);
1535 if (!err) {
1536 pfmfs_mnt = kern_mount(&pfm_fs_type);
1537 err = PTR_ERR(pfmfs_mnt);
1538 if (IS_ERR(pfmfs_mnt))
1539 unregister_filesystem(&pfm_fs_type);
1540 else
1541 err = 0;
1542 }
1543 return err;
1544}
1545
1546static ssize_t
1547pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548{
1549 pfm_context_t *ctx;
1550 pfm_msg_t *msg;
1551 ssize_t ret;
1552 unsigned long flags;
1553 DECLARE_WAITQUEUE(wait, current);
1554 if (PFM_IS_FILE(filp) == 0) {
1555 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556 return -EINVAL;
1557 }
1558
1559 ctx = filp->private_data;
1560 if (ctx == NULL) {
1561 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562 return -EINVAL;
1563 }
1564
1565 /*
1566 * check even when there is no message
1567 */
1568 if (size < sizeof(pfm_msg_t)) {
1569 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570 return -EINVAL;
1571 }
1572
1573 PROTECT_CTX(ctx, flags);
1574
1575 /*
1576 * put ourselves on the wait queue
1577 */
1578 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581 for(;;) {
1582 /*
1583 * check wait queue
1584 */
1585
1586 set_current_state(TASK_INTERRUPTIBLE);
1587
1588 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590 ret = 0;
1591 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593 UNPROTECT_CTX(ctx, flags);
1594
1595 /*
1596 * check non-blocking read
1597 */
1598 ret = -EAGAIN;
1599 if(filp->f_flags & O_NONBLOCK) break;
1600
1601 /*
1602 * check pending signals
1603 */
1604 if(signal_pending(current)) {
1605 ret = -EINTR;
1606 break;
1607 }
1608 /*
1609 * no message, so wait
1610 */
1611 schedule();
1612
1613 PROTECT_CTX(ctx, flags);
1614 }
1615 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616 set_current_state(TASK_RUNNING);
1617 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619 if (ret < 0) goto abort;
1620
1621 ret = -EINVAL;
1622 msg = pfm_get_next_msg(ctx);
1623 if (msg == NULL) {
1624 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625 goto abort_locked;
1626 }
1627
1628 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630 ret = -EFAULT;
1631 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633abort_locked:
1634 UNPROTECT_CTX(ctx, flags);
1635abort:
1636 return ret;
1637}
1638
1639static ssize_t
1640pfm_write(struct file *file, const char __user *ubuf,
1641 size_t size, loff_t *ppos)
1642{
1643 DPRINT(("pfm_write called\n"));
1644 return -EINVAL;
1645}
1646
1647static __poll_t
1648pfm_poll(struct file *filp, poll_table * wait)
1649{
1650 pfm_context_t *ctx;
1651 unsigned long flags;
1652 __poll_t mask = 0;
1653
1654 if (PFM_IS_FILE(filp) == 0) {
1655 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656 return 0;
1657 }
1658
1659 ctx = filp->private_data;
1660 if (ctx == NULL) {
1661 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662 return 0;
1663 }
1664
1665
1666 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670 PROTECT_CTX(ctx, flags);
1671
1672 if (PFM_CTXQ_EMPTY(ctx) == 0)
1673 mask = EPOLLIN | EPOLLRDNORM;
1674
1675 UNPROTECT_CTX(ctx, flags);
1676
1677 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679 return mask;
1680}
1681
1682static long
1683pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684{
1685 DPRINT(("pfm_ioctl called\n"));
1686 return -EINVAL;
1687}
1688
1689/*
1690 * interrupt cannot be masked when coming here
1691 */
1692static inline int
1693pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694{
1695 int ret;
1696
1697 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 task_pid_nr(current),
1701 fd,
1702 on,
1703 ctx->ctx_async_queue, ret));
1704
1705 return ret;
1706}
1707
1708static int
1709pfm_fasync(int fd, struct file *filp, int on)
1710{
1711 pfm_context_t *ctx;
1712 int ret;
1713
1714 if (PFM_IS_FILE(filp) == 0) {
1715 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716 return -EBADF;
1717 }
1718
1719 ctx = filp->private_data;
1720 if (ctx == NULL) {
1721 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722 return -EBADF;
1723 }
1724 /*
1725 * we cannot mask interrupts during this call because this may
1726 * may go to sleep if memory is not readily avalaible.
1727 *
1728 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 * done in caller. Serialization of this function is ensured by caller.
1730 */
1731 ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 fd,
1736 on,
1737 ctx->ctx_async_queue, ret));
1738
1739 return ret;
1740}
1741
1742#ifdef CONFIG_SMP
1743/*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748static void
1749pfm_syswide_force_stop(void *info)
1750{
1751 pfm_context_t *ctx = (pfm_context_t *)info;
1752 struct pt_regs *regs = task_pt_regs(current);
1753 struct task_struct *owner;
1754 unsigned long flags;
1755 int ret;
1756
1757 if (ctx->ctx_cpu != smp_processor_id()) {
1758 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1759 ctx->ctx_cpu,
1760 smp_processor_id());
1761 return;
1762 }
1763 owner = GET_PMU_OWNER();
1764 if (owner != ctx->ctx_task) {
1765 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766 smp_processor_id(),
1767 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768 return;
1769 }
1770 if (GET_PMU_CTX() != ctx) {
1771 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772 smp_processor_id(),
1773 GET_PMU_CTX(), ctx);
1774 return;
1775 }
1776
1777 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778 /*
1779 * the context is already protected in pfm_close(), we simply
1780 * need to mask interrupts to avoid a PMU interrupt race on
1781 * this CPU
1782 */
1783 local_irq_save(flags);
1784
1785 ret = pfm_context_unload(ctx, NULL, 0, regs);
1786 if (ret) {
1787 DPRINT(("context_unload returned %d\n", ret));
1788 }
1789
1790 /*
1791 * unmask interrupts, PMU interrupts are now spurious here
1792 */
1793 local_irq_restore(flags);
1794}
1795
1796static void
1797pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798{
1799 int ret;
1800
1801 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804}
1805#endif /* CONFIG_SMP */
1806
1807/*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811static int
1812pfm_flush(struct file *filp, fl_owner_t id)
1813{
1814 pfm_context_t *ctx;
1815 struct task_struct *task;
1816 struct pt_regs *regs;
1817 unsigned long flags;
1818 unsigned long smpl_buf_size = 0UL;
1819 void *smpl_buf_vaddr = NULL;
1820 int state, is_system;
1821
1822 if (PFM_IS_FILE(filp) == 0) {
1823 DPRINT(("bad magic for\n"));
1824 return -EBADF;
1825 }
1826
1827 ctx = filp->private_data;
1828 if (ctx == NULL) {
1829 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830 return -EBADF;
1831 }
1832
1833 /*
1834 * remove our file from the async queue, if we use this mode.
1835 * This can be done without the context being protected. We come
1836 * here when the context has become unreachable by other tasks.
1837 *
1838 * We may still have active monitoring at this point and we may
1839 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 * operates with interrupts disabled and it cleans up the
1841 * queue. If the PMU handler is called prior to entering
1842 * fasync_helper() then it will send a signal. If it is
1843 * invoked after, it will find an empty queue and no
1844 * signal will be sent. In both case, we are safe
1845 */
1846 PROTECT_CTX(ctx, flags);
1847
1848 state = ctx->ctx_state;
1849 is_system = ctx->ctx_fl_system;
1850
1851 task = PFM_CTX_TASK(ctx);
1852 regs = task_pt_regs(task);
1853
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1855 state,
1856 task == current ? 1 : 0));
1857
1858 /*
1859 * if state == UNLOADED, then task is NULL
1860 */
1861
1862 /*
1863 * we must stop and unload because we are losing access to the context.
1864 */
1865 if (task == current) {
1866#ifdef CONFIG_SMP
1867 /*
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1871 *
1872 * We need to release the resource on the ORIGINAL cpu.
1873 */
1874 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877 /*
1878 * keep context protected but unmask interrupt for IPI
1879 */
1880 local_irq_restore(flags);
1881
1882 pfm_syswide_cleanup_other_cpu(ctx);
1883
1884 /*
1885 * restore interrupt masking
1886 */
1887 local_irq_save(flags);
1888
1889 /*
1890 * context is unloaded at this point
1891 */
1892 } else
1893#endif /* CONFIG_SMP */
1894 {
1895
1896 DPRINT(("forcing unload\n"));
1897 /*
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1900 */
1901 pfm_context_unload(ctx, NULL, 0, regs);
1902
1903 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904 }
1905 }
1906
1907 /*
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1910 *
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1913 *
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1916 * do anything here
1917 */
1918 if (ctx->ctx_smpl_vaddr && current->mm) {
1919 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 smpl_buf_size = ctx->ctx_smpl_size;
1921 }
1922
1923 UNPROTECT_CTX(ctx, flags);
1924
1925 /*
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1929 *
1930 */
1931 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933 return 0;
1934}
1935/*
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1949 */
1950static int
1951pfm_close(struct inode *inode, struct file *filp)
1952{
1953 pfm_context_t *ctx;
1954 struct task_struct *task;
1955 struct pt_regs *regs;
1956 DECLARE_WAITQUEUE(wait, current);
1957 unsigned long flags;
1958 unsigned long smpl_buf_size = 0UL;
1959 void *smpl_buf_addr = NULL;
1960 int free_possible = 1;
1961 int state, is_system;
1962
1963 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965 if (PFM_IS_FILE(filp) == 0) {
1966 DPRINT(("bad magic\n"));
1967 return -EBADF;
1968 }
1969
1970 ctx = filp->private_data;
1971 if (ctx == NULL) {
1972 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973 return -EBADF;
1974 }
1975
1976 PROTECT_CTX(ctx, flags);
1977
1978 state = ctx->ctx_state;
1979 is_system = ctx->ctx_fl_system;
1980
1981 task = PFM_CTX_TASK(ctx);
1982 regs = task_pt_regs(task);
1983
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1985 state,
1986 task == current ? 1 : 0));
1987
1988 /*
1989 * if task == current, then pfm_flush() unloaded the context
1990 */
1991 if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993 /*
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1996 */
1997
1998 /*
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2002 *
2003 * This situation is only possible for per-task mode
2004 */
2005 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007 /*
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2010 *
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2017 *
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2020 */
2021 ctx->ctx_fl_going_zombie = 1;
2022
2023 /*
2024 * force task to wake up from MASKED state
2025 */
2026 complete(&ctx->ctx_restart_done);
2027
2028 DPRINT(("waking up ctx_state=%d\n", state));
2029
2030 /*
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2033 *
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2037 */
2038 set_current_state(TASK_INTERRUPTIBLE);
2039 add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041 UNPROTECT_CTX(ctx, flags);
2042
2043 /*
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2047 */
2048 schedule();
2049
2050
2051 PROTECT_CTX(ctx, flags);
2052
2053
2054 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055 set_current_state(TASK_RUNNING);
2056
2057 /*
2058 * context is unloaded at this point
2059 */
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061 }
2062 else if (task != current) {
2063#ifdef CONFIG_SMP
2064 /*
2065 * switch context to zombie state
2066 */
2067 ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070 /*
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2073 */
2074 free_possible = 0;
2075#else
2076 pfm_context_unload(ctx, NULL, 0, regs);
2077#endif
2078 }
2079
2080doit:
2081 /* reload state, may have changed during opening of critical section */
2082 state = ctx->ctx_state;
2083
2084 /*
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2087 */
2088
2089 /*
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2097 */
2098 if (ctx->ctx_smpl_hdr) {
2099 smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 smpl_buf_size = ctx->ctx_smpl_size;
2101 /* no more sampling */
2102 ctx->ctx_smpl_hdr = NULL;
2103 ctx->ctx_fl_is_sampling = 0;
2104 }
2105
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107 state,
2108 free_possible,
2109 smpl_buf_addr,
2110 smpl_buf_size));
2111
2112 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114 /*
2115 * UNLOADED that the session has already been unreserved.
2116 */
2117 if (state == PFM_CTX_ZOMBIE) {
2118 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119 }
2120
2121 /*
2122 * disconnect file descriptor from context must be done
2123 * before we unlock.
2124 */
2125 filp->private_data = NULL;
2126
2127 /*
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2130 * can freely cut.
2131 *
2132 * If we have a deferred free, only the caller side is disconnected.
2133 */
2134 UNPROTECT_CTX(ctx, flags);
2135
2136 /*
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2139 */
2140 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142 /*
2143 * return the memory used by the context
2144 */
2145 if (free_possible) pfm_context_free(ctx);
2146
2147 return 0;
2148}
2149
2150static const struct file_operations pfm_file_ops = {
2151 .llseek = no_llseek,
2152 .read = pfm_read,
2153 .write = pfm_write,
2154 .poll = pfm_poll,
2155 .unlocked_ioctl = pfm_ioctl,
2156 .fasync = pfm_fasync,
2157 .release = pfm_close,
2158 .flush = pfm_flush
2159};
2160
2161static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162{
2163 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164 d_inode(dentry)->i_ino);
2165}
2166
2167static const struct dentry_operations pfmfs_dentry_operations = {
2168 .d_delete = always_delete_dentry,
2169 .d_dname = pfmfs_dname,
2170};
2171
2172
2173static struct file *
2174pfm_alloc_file(pfm_context_t *ctx)
2175{
2176 struct file *file;
2177 struct inode *inode;
2178 struct path path;
2179 struct qstr this = { .name = "" };
2180
2181 /*
2182 * allocate a new inode
2183 */
2184 inode = new_inode(pfmfs_mnt->mnt_sb);
2185 if (!inode)
2186 return ERR_PTR(-ENOMEM);
2187
2188 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190 inode->i_mode = S_IFCHR|S_IRUGO;
2191 inode->i_uid = current_fsuid();
2192 inode->i_gid = current_fsgid();
2193
2194 /*
2195 * allocate a new dcache entry
2196 */
2197 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198 if (!path.dentry) {
2199 iput(inode);
2200 return ERR_PTR(-ENOMEM);
2201 }
2202 path.mnt = mntget(pfmfs_mnt);
2203
2204 d_add(path.dentry, inode);
2205
2206 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207 if (IS_ERR(file)) {
2208 path_put(&path);
2209 return file;
2210 }
2211
2212 file->f_flags = O_RDONLY;
2213 file->private_data = ctx;
2214
2215 return file;
2216}
2217
2218static int
2219pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220{
2221 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223 while (size > 0) {
2224 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228 return -ENOMEM;
2229
2230 addr += PAGE_SIZE;
2231 buf += PAGE_SIZE;
2232 size -= PAGE_SIZE;
2233 }
2234 return 0;
2235}
2236
2237/*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240static int
2241pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242{
2243 struct mm_struct *mm = task->mm;
2244 struct vm_area_struct *vma = NULL;
2245 unsigned long size;
2246 void *smpl_buf;
2247
2248
2249 /*
2250 * the fixed header + requested size and align to page boundary
2251 */
2252 size = PAGE_ALIGN(rsize);
2253
2254 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256 /*
2257 * check requested size to avoid Denial-of-service attacks
2258 * XXX: may have to refine this test
2259 * Check against address space limit.
2260 *
2261 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 * return -ENOMEM;
2263 */
2264 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265 return -ENOMEM;
2266
2267 /*
2268 * We do the easy to undo allocations first.
2269 *
2270 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271 */
2272 smpl_buf = pfm_rvmalloc(size);
2273 if (smpl_buf == NULL) {
2274 DPRINT(("Can't allocate sampling buffer\n"));
2275 return -ENOMEM;
2276 }
2277
2278 DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280 /* allocate vma */
2281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282 if (!vma) {
2283 DPRINT(("Cannot allocate vma\n"));
2284 goto error_kmem;
2285 }
2286 INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288 /*
2289 * partially initialize the vma for the sampling buffer
2290 */
2291 vma->vm_mm = mm;
2292 vma->vm_file = get_file(filp);
2293 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2295
2296 /*
2297 * Now we have everything we need and we can initialize
2298 * and connect all the data structures
2299 */
2300
2301 ctx->ctx_smpl_hdr = smpl_buf;
2302 ctx->ctx_smpl_size = size; /* aligned size */
2303
2304 /*
2305 * Let's do the difficult operations next.
2306 *
2307 * now we atomically find some area in the address space and
2308 * remap the buffer in it.
2309 */
2310 down_write(&task->mm->mmap_sem);
2311
2312 /* find some free area in address space, must have mmap sem held */
2313 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314 if (IS_ERR_VALUE(vma->vm_start)) {
2315 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316 up_write(&task->mm->mmap_sem);
2317 goto error;
2318 }
2319 vma->vm_end = vma->vm_start + size;
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324 /* can only be applied to current task, need to have the mm semaphore held when called */
2325 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326 DPRINT(("Can't remap buffer\n"));
2327 up_write(&task->mm->mmap_sem);
2328 goto error;
2329 }
2330
2331 /*
2332 * now insert the vma in the vm list for the process, must be
2333 * done with mmap lock held
2334 */
2335 insert_vm_struct(mm, vma);
2336
2337 vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338 up_write(&task->mm->mmap_sem);
2339
2340 /*
2341 * keep track of user level virtual address
2342 */
2343 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344 *(unsigned long *)user_vaddr = vma->vm_start;
2345
2346 return 0;
2347
2348error:
2349 kmem_cache_free(vm_area_cachep, vma);
2350error_kmem:
2351 pfm_rvfree(smpl_buf, size);
2352
2353 return -ENOMEM;
2354}
2355
2356/*
2357 * XXX: do something better here
2358 */
2359static int
2360pfm_bad_permissions(struct task_struct *task)
2361{
2362 const struct cred *tcred;
2363 kuid_t uid = current_uid();
2364 kgid_t gid = current_gid();
2365 int ret;
2366
2367 rcu_read_lock();
2368 tcred = __task_cred(task);
2369
2370 /* inspired by ptrace_attach() */
2371 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 from_kuid(&init_user_ns, uid),
2373 from_kgid(&init_user_ns, gid),
2374 from_kuid(&init_user_ns, tcred->euid),
2375 from_kuid(&init_user_ns, tcred->suid),
2376 from_kuid(&init_user_ns, tcred->uid),
2377 from_kgid(&init_user_ns, tcred->egid),
2378 from_kgid(&init_user_ns, tcred->sgid)));
2379
2380 ret = ((!uid_eq(uid, tcred->euid))
2381 || (!uid_eq(uid, tcred->suid))
2382 || (!uid_eq(uid, tcred->uid))
2383 || (!gid_eq(gid, tcred->egid))
2384 || (!gid_eq(gid, tcred->sgid))
2385 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387 rcu_read_unlock();
2388 return ret;
2389}
2390
2391static int
2392pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393{
2394 int ctx_flags;
2395
2396 /* valid signal */
2397
2398 ctx_flags = pfx->ctx_flags;
2399
2400 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402 /*
2403 * cannot block in this mode
2404 */
2405 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407 return -EINVAL;
2408 }
2409 } else {
2410 }
2411 /* probably more to add here */
2412
2413 return 0;
2414}
2415
2416static int
2417pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418 unsigned int cpu, pfarg_context_t *arg)
2419{
2420 pfm_buffer_fmt_t *fmt = NULL;
2421 unsigned long size = 0UL;
2422 void *uaddr = NULL;
2423 void *fmt_arg = NULL;
2424 int ret = 0;
2425#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2426
2427 /* invoke and lock buffer format, if found */
2428 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429 if (fmt == NULL) {
2430 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431 return -EINVAL;
2432 }
2433
2434 /*
2435 * buffer argument MUST be contiguous to pfarg_context_t
2436 */
2437 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443 if (ret) goto error;
2444
2445 /* link buffer format and context */
2446 ctx->ctx_buf_fmt = fmt;
2447 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449 /*
2450 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 */
2452 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453 if (ret) goto error;
2454
2455 if (size) {
2456 /*
2457 * buffer is always remapped into the caller's address space
2458 */
2459 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460 if (ret) goto error;
2461
2462 /* keep track of user address of buffer */
2463 arg->ctx_smpl_vaddr = uaddr;
2464 }
2465 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467error:
2468 return ret;
2469}
2470
2471static void
2472pfm_reset_pmu_state(pfm_context_t *ctx)
2473{
2474 int i;
2475
2476 /*
2477 * install reset values for PMC.
2478 */
2479 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480 if (PMC_IS_IMPL(i) == 0) continue;
2481 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483 }
2484 /*
2485 * PMD registers are set to 0UL when the context in memset()
2486 */
2487
2488 /*
2489 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 * when they are not actively used by the task. In UP, the incoming process
2491 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 * process because they may change what is being measured.
2494 * Therefore, we must systematically reinstall the entire
2495 * PMC state. In SMP, the same thing is possible on the
2496 * same CPU but also on between 2 CPUs.
2497 *
2498 * The problem with PMD is information leaking especially
2499 * to user level when psr.sp=0
2500 *
2501 * There is unfortunately no easy way to avoid this problem
2502 * on either UP or SMP. This definitively slows down the
2503 * pfm_load_regs() function.
2504 */
2505
2506 /*
2507 * bitmask of all PMCs accessible to this context
2508 *
2509 * PMC0 is treated differently.
2510 */
2511 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513 /*
2514 * bitmask of all PMDs that are accessible to this context
2515 */
2516 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520 /*
2521 * useful in case of re-enable after disable
2522 */
2523 ctx->ctx_used_ibrs[0] = 0UL;
2524 ctx->ctx_used_dbrs[0] = 0UL;
2525}
2526
2527static int
2528pfm_ctx_getsize(void *arg, size_t *sz)
2529{
2530 pfarg_context_t *req = (pfarg_context_t *)arg;
2531 pfm_buffer_fmt_t *fmt;
2532
2533 *sz = 0;
2534
2535 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538 if (fmt == NULL) {
2539 DPRINT(("cannot find buffer format\n"));
2540 return -EINVAL;
2541 }
2542 /* get just enough to copy in user parameters */
2543 *sz = fmt->fmt_arg_size;
2544 DPRINT(("arg_size=%lu\n", *sz));
2545
2546 return 0;
2547}
2548
2549
2550
2551/*
2552 * cannot attach if :
2553 * - kernel task
2554 * - task not owned by caller
2555 * - task incompatible with context mode
2556 */
2557static int
2558pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559{
2560 /*
2561 * no kernel task or task not owner by caller
2562 */
2563 if (task->mm == NULL) {
2564 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565 return -EPERM;
2566 }
2567 if (pfm_bad_permissions(task)) {
2568 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2569 return -EPERM;
2570 }
2571 /*
2572 * cannot block in self-monitoring mode
2573 */
2574 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576 return -EINVAL;
2577 }
2578
2579 if (task->exit_state == EXIT_ZOMBIE) {
2580 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2581 return -EBUSY;
2582 }
2583
2584 /*
2585 * always ok for self
2586 */
2587 if (task == current) return 0;
2588
2589 if (!task_is_stopped_or_traced(task)) {
2590 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591 return -EBUSY;
2592 }
2593 /*
2594 * make sure the task is off any CPU
2595 */
2596 wait_task_inactive(task, 0);
2597
2598 /* more to come... */
2599
2600 return 0;
2601}
2602
2603static int
2604pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605{
2606 struct task_struct *p = current;
2607 int ret;
2608
2609 /* XXX: need to add more checks here */
2610 if (pid < 2) return -EPERM;
2611
2612 if (pid != task_pid_vnr(current)) {
2613 /* make sure task cannot go away while we operate on it */
2614 p = find_get_task_by_vpid(pid);
2615 if (!p)
2616 return -ESRCH;
2617 }
2618
2619 ret = pfm_task_incompatible(ctx, p);
2620 if (ret == 0) {
2621 *task = p;
2622 } else if (p != current) {
2623 pfm_put_task(p);
2624 }
2625 return ret;
2626}
2627
2628
2629
2630static int
2631pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2632{
2633 pfarg_context_t *req = (pfarg_context_t *)arg;
2634 struct file *filp;
2635 struct path path;
2636 int ctx_flags;
2637 int fd;
2638 int ret;
2639
2640 /* let's check the arguments first */
2641 ret = pfarg_is_sane(current, req);
2642 if (ret < 0)
2643 return ret;
2644
2645 ctx_flags = req->ctx_flags;
2646
2647 ret = -ENOMEM;
2648
2649 fd = get_unused_fd_flags(0);
2650 if (fd < 0)
2651 return fd;
2652
2653 ctx = pfm_context_alloc(ctx_flags);
2654 if (!ctx)
2655 goto error;
2656
2657 filp = pfm_alloc_file(ctx);
2658 if (IS_ERR(filp)) {
2659 ret = PTR_ERR(filp);
2660 goto error_file;
2661 }
2662
2663 req->ctx_fd = ctx->ctx_fd = fd;
2664
2665 /*
2666 * does the user want to sample?
2667 */
2668 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2669 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2670 if (ret)
2671 goto buffer_error;
2672 }
2673
2674 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2675 ctx,
2676 ctx_flags,
2677 ctx->ctx_fl_system,
2678 ctx->ctx_fl_block,
2679 ctx->ctx_fl_excl_idle,
2680 ctx->ctx_fl_no_msg,
2681 ctx->ctx_fd));
2682
2683 /*
2684 * initialize soft PMU state
2685 */
2686 pfm_reset_pmu_state(ctx);
2687
2688 fd_install(fd, filp);
2689
2690 return 0;
2691
2692buffer_error:
2693 path = filp->f_path;
2694 put_filp(filp);
2695 path_put(&path);
2696
2697 if (ctx->ctx_buf_fmt) {
2698 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2699 }
2700error_file:
2701 pfm_context_free(ctx);
2702
2703error:
2704 put_unused_fd(fd);
2705 return ret;
2706}
2707
2708static inline unsigned long
2709pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2710{
2711 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2712 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2713 extern unsigned long carta_random32 (unsigned long seed);
2714
2715 if (reg->flags & PFM_REGFL_RANDOM) {
2716 new_seed = carta_random32(old_seed);
2717 val -= (old_seed & mask); /* counter values are negative numbers! */
2718 if ((mask >> 32) != 0)
2719 /* construct a full 64-bit random value: */
2720 new_seed |= carta_random32(old_seed >> 32) << 32;
2721 reg->seed = new_seed;
2722 }
2723 reg->lval = val;
2724 return val;
2725}
2726
2727static void
2728pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2729{
2730 unsigned long mask = ovfl_regs[0];
2731 unsigned long reset_others = 0UL;
2732 unsigned long val;
2733 int i;
2734
2735 /*
2736 * now restore reset value on sampling overflowed counters
2737 */
2738 mask >>= PMU_FIRST_COUNTER;
2739 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2740
2741 if ((mask & 0x1UL) == 0UL) continue;
2742
2743 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2744 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2745
2746 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2747 }
2748
2749 /*
2750 * Now take care of resetting the other registers
2751 */
2752 for(i = 0; reset_others; i++, reset_others >>= 1) {
2753
2754 if ((reset_others & 0x1) == 0) continue;
2755
2756 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2757
2758 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2759 is_long_reset ? "long" : "short", i, val));
2760 }
2761}
2762
2763static void
2764pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2765{
2766 unsigned long mask = ovfl_regs[0];
2767 unsigned long reset_others = 0UL;
2768 unsigned long val;
2769 int i;
2770
2771 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2772
2773 if (ctx->ctx_state == PFM_CTX_MASKED) {
2774 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2775 return;
2776 }
2777
2778 /*
2779 * now restore reset value on sampling overflowed counters
2780 */
2781 mask >>= PMU_FIRST_COUNTER;
2782 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784 if ((mask & 0x1UL) == 0UL) continue;
2785
2786 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790
2791 pfm_write_soft_counter(ctx, i, val);
2792 }
2793
2794 /*
2795 * Now take care of resetting the other registers
2796 */
2797 for(i = 0; reset_others; i++, reset_others >>= 1) {
2798
2799 if ((reset_others & 0x1) == 0) continue;
2800
2801 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802
2803 if (PMD_IS_COUNTING(i)) {
2804 pfm_write_soft_counter(ctx, i, val);
2805 } else {
2806 ia64_set_pmd(i, val);
2807 }
2808 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2809 is_long_reset ? "long" : "short", i, val));
2810 }
2811 ia64_srlz_d();
2812}
2813
2814static int
2815pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2816{
2817 struct task_struct *task;
2818 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2819 unsigned long value, pmc_pm;
2820 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2821 unsigned int cnum, reg_flags, flags, pmc_type;
2822 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2823 int is_monitor, is_counting, state;
2824 int ret = -EINVAL;
2825 pfm_reg_check_t wr_func;
2826#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2827
2828 state = ctx->ctx_state;
2829 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2830 is_system = ctx->ctx_fl_system;
2831 task = ctx->ctx_task;
2832 impl_pmds = pmu_conf->impl_pmds[0];
2833
2834 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2835
2836 if (is_loaded) {
2837 /*
2838 * In system wide and when the context is loaded, access can only happen
2839 * when the caller is running on the CPU being monitored by the session.
2840 * It does not have to be the owner (ctx_task) of the context per se.
2841 */
2842 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2843 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2844 return -EBUSY;
2845 }
2846 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2847 }
2848 expert_mode = pfm_sysctl.expert_mode;
2849
2850 for (i = 0; i < count; i++, req++) {
2851
2852 cnum = req->reg_num;
2853 reg_flags = req->reg_flags;
2854 value = req->reg_value;
2855 smpl_pmds = req->reg_smpl_pmds[0];
2856 reset_pmds = req->reg_reset_pmds[0];
2857 flags = 0;
2858
2859
2860 if (cnum >= PMU_MAX_PMCS) {
2861 DPRINT(("pmc%u is invalid\n", cnum));
2862 goto error;
2863 }
2864
2865 pmc_type = pmu_conf->pmc_desc[cnum].type;
2866 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2867 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2868 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2869
2870 /*
2871 * we reject all non implemented PMC as well
2872 * as attempts to modify PMC[0-3] which are used
2873 * as status registers by the PMU
2874 */
2875 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2876 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2877 goto error;
2878 }
2879 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2880 /*
2881 * If the PMC is a monitor, then if the value is not the default:
2882 * - system-wide session: PMCx.pm=1 (privileged monitor)
2883 * - per-task : PMCx.pm=0 (user monitor)
2884 */
2885 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2886 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2887 cnum,
2888 pmc_pm,
2889 is_system));
2890 goto error;
2891 }
2892
2893 if (is_counting) {
2894 /*
2895 * enforce generation of overflow interrupt. Necessary on all
2896 * CPUs.
2897 */
2898 value |= 1 << PMU_PMC_OI;
2899
2900 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2901 flags |= PFM_REGFL_OVFL_NOTIFY;
2902 }
2903
2904 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2905
2906 /* verify validity of smpl_pmds */
2907 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2908 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2909 goto error;
2910 }
2911
2912 /* verify validity of reset_pmds */
2913 if ((reset_pmds & impl_pmds) != reset_pmds) {
2914 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2915 goto error;
2916 }
2917 } else {
2918 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2919 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2920 goto error;
2921 }
2922 /* eventid on non-counting monitors are ignored */
2923 }
2924
2925 /*
2926 * execute write checker, if any
2927 */
2928 if (likely(expert_mode == 0 && wr_func)) {
2929 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2930 if (ret) goto error;
2931 ret = -EINVAL;
2932 }
2933
2934 /*
2935 * no error on this register
2936 */
2937 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2938
2939 /*
2940 * Now we commit the changes to the software state
2941 */
2942
2943 /*
2944 * update overflow information
2945 */
2946 if (is_counting) {
2947 /*
2948 * full flag update each time a register is programmed
2949 */
2950 ctx->ctx_pmds[cnum].flags = flags;
2951
2952 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2953 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2954 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2955
2956 /*
2957 * Mark all PMDS to be accessed as used.
2958 *
2959 * We do not keep track of PMC because we have to
2960 * systematically restore ALL of them.
2961 *
2962 * We do not update the used_monitors mask, because
2963 * if we have not programmed them, then will be in
2964 * a quiescent state, therefore we will not need to
2965 * mask/restore then when context is MASKED.
2966 */
2967 CTX_USED_PMD(ctx, reset_pmds);
2968 CTX_USED_PMD(ctx, smpl_pmds);
2969 /*
2970 * make sure we do not try to reset on
2971 * restart because we have established new values
2972 */
2973 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2974 }
2975 /*
2976 * Needed in case the user does not initialize the equivalent
2977 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2978 * possible leak here.
2979 */
2980 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2981
2982 /*
2983 * keep track of the monitor PMC that we are using.
2984 * we save the value of the pmc in ctx_pmcs[] and if
2985 * the monitoring is not stopped for the context we also
2986 * place it in the saved state area so that it will be
2987 * picked up later by the context switch code.
2988 *
2989 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2990 *
2991 * The value in th_pmcs[] may be modified on overflow, i.e., when
2992 * monitoring needs to be stopped.
2993 */
2994 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2995
2996 /*
2997 * update context state
2998 */
2999 ctx->ctx_pmcs[cnum] = value;
3000
3001 if (is_loaded) {
3002 /*
3003 * write thread state
3004 */
3005 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3006
3007 /*
3008 * write hardware register if we can
3009 */
3010 if (can_access_pmu) {
3011 ia64_set_pmc(cnum, value);
3012 }
3013#ifdef CONFIG_SMP
3014 else {
3015 /*
3016 * per-task SMP only here
3017 *
3018 * we are guaranteed that the task is not running on the other CPU,
3019 * we indicate that this PMD will need to be reloaded if the task
3020 * is rescheduled on the CPU it ran last on.
3021 */
3022 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3023 }
3024#endif
3025 }
3026
3027 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3028 cnum,
3029 value,
3030 is_loaded,
3031 can_access_pmu,
3032 flags,
3033 ctx->ctx_all_pmcs[0],
3034 ctx->ctx_used_pmds[0],
3035 ctx->ctx_pmds[cnum].eventid,
3036 smpl_pmds,
3037 reset_pmds,
3038 ctx->ctx_reload_pmcs[0],
3039 ctx->ctx_used_monitors[0],
3040 ctx->ctx_ovfl_regs[0]));
3041 }
3042
3043 /*
3044 * make sure the changes are visible
3045 */
3046 if (can_access_pmu) ia64_srlz_d();
3047
3048 return 0;
3049error:
3050 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3051 return ret;
3052}
3053
3054static int
3055pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3056{
3057 struct task_struct *task;
3058 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3059 unsigned long value, hw_value, ovfl_mask;
3060 unsigned int cnum;
3061 int i, can_access_pmu = 0, state;
3062 int is_counting, is_loaded, is_system, expert_mode;
3063 int ret = -EINVAL;
3064 pfm_reg_check_t wr_func;
3065
3066
3067 state = ctx->ctx_state;
3068 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3069 is_system = ctx->ctx_fl_system;
3070 ovfl_mask = pmu_conf->ovfl_val;
3071 task = ctx->ctx_task;
3072
3073 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3074
3075 /*
3076 * on both UP and SMP, we can only write to the PMC when the task is
3077 * the owner of the local PMU.
3078 */
3079 if (likely(is_loaded)) {
3080 /*
3081 * In system wide and when the context is loaded, access can only happen
3082 * when the caller is running on the CPU being monitored by the session.
3083 * It does not have to be the owner (ctx_task) of the context per se.
3084 */
3085 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3086 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3087 return -EBUSY;
3088 }
3089 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3090 }
3091 expert_mode = pfm_sysctl.expert_mode;
3092
3093 for (i = 0; i < count; i++, req++) {
3094
3095 cnum = req->reg_num;
3096 value = req->reg_value;
3097
3098 if (!PMD_IS_IMPL(cnum)) {
3099 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3100 goto abort_mission;
3101 }
3102 is_counting = PMD_IS_COUNTING(cnum);
3103 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3104
3105 /*
3106 * execute write checker, if any
3107 */
3108 if (unlikely(expert_mode == 0 && wr_func)) {
3109 unsigned long v = value;
3110
3111 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3112 if (ret) goto abort_mission;
3113
3114 value = v;
3115 ret = -EINVAL;
3116 }
3117
3118 /*
3119 * no error on this register
3120 */
3121 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3122
3123 /*
3124 * now commit changes to software state
3125 */
3126 hw_value = value;
3127
3128 /*
3129 * update virtualized (64bits) counter
3130 */
3131 if (is_counting) {
3132 /*
3133 * write context state
3134 */
3135 ctx->ctx_pmds[cnum].lval = value;
3136
3137 /*
3138 * when context is load we use the split value
3139 */
3140 if (is_loaded) {
3141 hw_value = value & ovfl_mask;
3142 value = value & ~ovfl_mask;
3143 }
3144 }
3145 /*
3146 * update reset values (not just for counters)
3147 */
3148 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3149 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3150
3151 /*
3152 * update randomization parameters (not just for counters)
3153 */
3154 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3155 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3156
3157 /*
3158 * update context value
3159 */
3160 ctx->ctx_pmds[cnum].val = value;
3161
3162 /*
3163 * Keep track of what we use
3164 *
3165 * We do not keep track of PMC because we have to
3166 * systematically restore ALL of them.
3167 */
3168 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3169
3170 /*
3171 * mark this PMD register used as well
3172 */
3173 CTX_USED_PMD(ctx, RDEP(cnum));
3174
3175 /*
3176 * make sure we do not try to reset on
3177 * restart because we have established new values
3178 */
3179 if (is_counting && state == PFM_CTX_MASKED) {
3180 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3181 }
3182
3183 if (is_loaded) {
3184 /*
3185 * write thread state
3186 */
3187 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3188
3189 /*
3190 * write hardware register if we can
3191 */
3192 if (can_access_pmu) {
3193 ia64_set_pmd(cnum, hw_value);
3194 } else {
3195#ifdef CONFIG_SMP
3196 /*
3197 * we are guaranteed that the task is not running on the other CPU,
3198 * we indicate that this PMD will need to be reloaded if the task
3199 * is rescheduled on the CPU it ran last on.
3200 */
3201 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3202#endif
3203 }
3204 }
3205
3206 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3207 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3208 cnum,
3209 value,
3210 is_loaded,
3211 can_access_pmu,
3212 hw_value,
3213 ctx->ctx_pmds[cnum].val,
3214 ctx->ctx_pmds[cnum].short_reset,
3215 ctx->ctx_pmds[cnum].long_reset,
3216 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3217 ctx->ctx_pmds[cnum].seed,
3218 ctx->ctx_pmds[cnum].mask,
3219 ctx->ctx_used_pmds[0],
3220 ctx->ctx_pmds[cnum].reset_pmds[0],
3221 ctx->ctx_reload_pmds[0],
3222 ctx->ctx_all_pmds[0],
3223 ctx->ctx_ovfl_regs[0]));
3224 }
3225
3226 /*
3227 * make changes visible
3228 */
3229 if (can_access_pmu) ia64_srlz_d();
3230
3231 return 0;
3232
3233abort_mission:
3234 /*
3235 * for now, we have only one possibility for error
3236 */
3237 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3238 return ret;
3239}
3240
3241/*
3242 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3243 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3244 * interrupt is delivered during the call, it will be kept pending until we leave, making
3245 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3246 * guaranteed to return consistent data to the user, it may simply be old. It is not
3247 * trivial to treat the overflow while inside the call because you may end up in
3248 * some module sampling buffer code causing deadlocks.
3249 */
3250static int
3251pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3252{
3253 struct task_struct *task;
3254 unsigned long val = 0UL, lval, ovfl_mask, sval;
3255 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3256 unsigned int cnum, reg_flags = 0;
3257 int i, can_access_pmu = 0, state;
3258 int is_loaded, is_system, is_counting, expert_mode;
3259 int ret = -EINVAL;
3260 pfm_reg_check_t rd_func;
3261
3262 /*
3263 * access is possible when loaded only for
3264 * self-monitoring tasks or in UP mode
3265 */
3266
3267 state = ctx->ctx_state;
3268 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3269 is_system = ctx->ctx_fl_system;
3270 ovfl_mask = pmu_conf->ovfl_val;
3271 task = ctx->ctx_task;
3272
3273 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3274
3275 if (likely(is_loaded)) {
3276 /*
3277 * In system wide and when the context is loaded, access can only happen
3278 * when the caller is running on the CPU being monitored by the session.
3279 * It does not have to be the owner (ctx_task) of the context per se.
3280 */
3281 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3282 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3283 return -EBUSY;
3284 }
3285 /*
3286 * this can be true when not self-monitoring only in UP
3287 */
3288 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3289
3290 if (can_access_pmu) ia64_srlz_d();
3291 }
3292 expert_mode = pfm_sysctl.expert_mode;
3293
3294 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3295 is_loaded,
3296 can_access_pmu,
3297 state));
3298
3299 /*
3300 * on both UP and SMP, we can only read the PMD from the hardware register when
3301 * the task is the owner of the local PMU.
3302 */
3303
3304 for (i = 0; i < count; i++, req++) {
3305
3306 cnum = req->reg_num;
3307 reg_flags = req->reg_flags;
3308
3309 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3310 /*
3311 * we can only read the register that we use. That includes
3312 * the one we explicitly initialize AND the one we want included
3313 * in the sampling buffer (smpl_regs).
3314 *
3315 * Having this restriction allows optimization in the ctxsw routine
3316 * without compromising security (leaks)
3317 */
3318 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3319
3320 sval = ctx->ctx_pmds[cnum].val;
3321 lval = ctx->ctx_pmds[cnum].lval;
3322 is_counting = PMD_IS_COUNTING(cnum);
3323
3324 /*
3325 * If the task is not the current one, then we check if the
3326 * PMU state is still in the local live register due to lazy ctxsw.
3327 * If true, then we read directly from the registers.
3328 */
3329 if (can_access_pmu){
3330 val = ia64_get_pmd(cnum);
3331 } else {
3332 /*
3333 * context has been saved
3334 * if context is zombie, then task does not exist anymore.
3335 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3336 */
3337 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3338 }
3339 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3340
3341 if (is_counting) {
3342 /*
3343 * XXX: need to check for overflow when loaded
3344 */
3345 val &= ovfl_mask;
3346 val += sval;
3347 }
3348
3349 /*
3350 * execute read checker, if any
3351 */
3352 if (unlikely(expert_mode == 0 && rd_func)) {
3353 unsigned long v = val;
3354 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3355 if (ret) goto error;
3356 val = v;
3357 ret = -EINVAL;
3358 }
3359
3360 PFM_REG_RETFLAG_SET(reg_flags, 0);
3361
3362 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3363
3364 /*
3365 * update register return value, abort all if problem during copy.
3366 * we only modify the reg_flags field. no check mode is fine because
3367 * access has been verified upfront in sys_perfmonctl().
3368 */
3369 req->reg_value = val;
3370 req->reg_flags = reg_flags;
3371 req->reg_last_reset_val = lval;
3372 }
3373
3374 return 0;
3375
3376error:
3377 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3378 return ret;
3379}
3380
3381int
3382pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3383{
3384 pfm_context_t *ctx;
3385
3386 if (req == NULL) return -EINVAL;
3387
3388 ctx = GET_PMU_CTX();
3389
3390 if (ctx == NULL) return -EINVAL;
3391
3392 /*
3393 * for now limit to current task, which is enough when calling
3394 * from overflow handler
3395 */
3396 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3397
3398 return pfm_write_pmcs(ctx, req, nreq, regs);
3399}
3400EXPORT_SYMBOL(pfm_mod_write_pmcs);
3401
3402int
3403pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3404{
3405 pfm_context_t *ctx;
3406
3407 if (req == NULL) return -EINVAL;
3408
3409 ctx = GET_PMU_CTX();
3410
3411 if (ctx == NULL) return -EINVAL;
3412
3413 /*
3414 * for now limit to current task, which is enough when calling
3415 * from overflow handler
3416 */
3417 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3418
3419 return pfm_read_pmds(ctx, req, nreq, regs);
3420}
3421EXPORT_SYMBOL(pfm_mod_read_pmds);
3422
3423/*
3424 * Only call this function when a process it trying to
3425 * write the debug registers (reading is always allowed)
3426 */
3427int
3428pfm_use_debug_registers(struct task_struct *task)
3429{
3430 pfm_context_t *ctx = task->thread.pfm_context;
3431 unsigned long flags;
3432 int ret = 0;
3433
3434 if (pmu_conf->use_rr_dbregs == 0) return 0;
3435
3436 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3437
3438 /*
3439 * do it only once
3440 */
3441 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3442
3443 /*
3444 * Even on SMP, we do not need to use an atomic here because
3445 * the only way in is via ptrace() and this is possible only when the
3446 * process is stopped. Even in the case where the ctxsw out is not totally
3447 * completed by the time we come here, there is no way the 'stopped' process
3448 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3449 * So this is always safe.
3450 */
3451 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3452
3453 LOCK_PFS(flags);
3454
3455 /*
3456 * We cannot allow setting breakpoints when system wide monitoring
3457 * sessions are using the debug registers.
3458 */
3459 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3460 ret = -1;
3461 else
3462 pfm_sessions.pfs_ptrace_use_dbregs++;
3463
3464 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3465 pfm_sessions.pfs_ptrace_use_dbregs,
3466 pfm_sessions.pfs_sys_use_dbregs,
3467 task_pid_nr(task), ret));
3468
3469 UNLOCK_PFS(flags);
3470
3471 return ret;
3472}
3473
3474/*
3475 * This function is called for every task that exits with the
3476 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3477 * able to use the debug registers for debugging purposes via
3478 * ptrace(). Therefore we know it was not using them for
3479 * performance monitoring, so we only decrement the number
3480 * of "ptraced" debug register users to keep the count up to date
3481 */
3482int
3483pfm_release_debug_registers(struct task_struct *task)
3484{
3485 unsigned long flags;
3486 int ret;
3487
3488 if (pmu_conf->use_rr_dbregs == 0) return 0;
3489
3490 LOCK_PFS(flags);
3491 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3492 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3493 ret = -1;
3494 } else {
3495 pfm_sessions.pfs_ptrace_use_dbregs--;
3496 ret = 0;
3497 }
3498 UNLOCK_PFS(flags);
3499
3500 return ret;
3501}
3502
3503static int
3504pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3505{
3506 struct task_struct *task;
3507 pfm_buffer_fmt_t *fmt;
3508 pfm_ovfl_ctrl_t rst_ctrl;
3509 int state, is_system;
3510 int ret = 0;
3511
3512 state = ctx->ctx_state;
3513 fmt = ctx->ctx_buf_fmt;
3514 is_system = ctx->ctx_fl_system;
3515 task = PFM_CTX_TASK(ctx);
3516
3517 switch(state) {
3518 case PFM_CTX_MASKED:
3519 break;
3520 case PFM_CTX_LOADED:
3521 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3522 /* fall through */
3523 case PFM_CTX_UNLOADED:
3524 case PFM_CTX_ZOMBIE:
3525 DPRINT(("invalid state=%d\n", state));
3526 return -EBUSY;
3527 default:
3528 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3529 return -EINVAL;
3530 }
3531
3532 /*
3533 * In system wide and when the context is loaded, access can only happen
3534 * when the caller is running on the CPU being monitored by the session.
3535 * It does not have to be the owner (ctx_task) of the context per se.
3536 */
3537 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3538 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3539 return -EBUSY;
3540 }
3541
3542 /* sanity check */
3543 if (unlikely(task == NULL)) {
3544 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3545 return -EINVAL;
3546 }
3547
3548 if (task == current || is_system) {
3549
3550 fmt = ctx->ctx_buf_fmt;
3551
3552 DPRINT(("restarting self %d ovfl=0x%lx\n",
3553 task_pid_nr(task),
3554 ctx->ctx_ovfl_regs[0]));
3555
3556 if (CTX_HAS_SMPL(ctx)) {
3557
3558 prefetch(ctx->ctx_smpl_hdr);
3559
3560 rst_ctrl.bits.mask_monitoring = 0;
3561 rst_ctrl.bits.reset_ovfl_pmds = 0;
3562
3563 if (state == PFM_CTX_LOADED)
3564 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3565 else
3566 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3567 } else {
3568 rst_ctrl.bits.mask_monitoring = 0;
3569 rst_ctrl.bits.reset_ovfl_pmds = 1;
3570 }
3571
3572 if (ret == 0) {
3573 if (rst_ctrl.bits.reset_ovfl_pmds)
3574 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3575
3576 if (rst_ctrl.bits.mask_monitoring == 0) {
3577 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3578
3579 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3580 } else {
3581 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3582
3583 // cannot use pfm_stop_monitoring(task, regs);
3584 }
3585 }
3586 /*
3587 * clear overflowed PMD mask to remove any stale information
3588 */
3589 ctx->ctx_ovfl_regs[0] = 0UL;
3590
3591 /*
3592 * back to LOADED state
3593 */
3594 ctx->ctx_state = PFM_CTX_LOADED;
3595
3596 /*
3597 * XXX: not really useful for self monitoring
3598 */
3599 ctx->ctx_fl_can_restart = 0;
3600
3601 return 0;
3602 }
3603
3604 /*
3605 * restart another task
3606 */
3607
3608 /*
3609 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3610 * one is seen by the task.
3611 */
3612 if (state == PFM_CTX_MASKED) {
3613 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3614 /*
3615 * will prevent subsequent restart before this one is
3616 * seen by other task
3617 */
3618 ctx->ctx_fl_can_restart = 0;
3619 }
3620
3621 /*
3622 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3623 * the task is blocked or on its way to block. That's the normal
3624 * restart path. If the monitoring is not masked, then the task
3625 * can be actively monitoring and we cannot directly intervene.
3626 * Therefore we use the trap mechanism to catch the task and
3627 * force it to reset the buffer/reset PMDs.
3628 *
3629 * if non-blocking, then we ensure that the task will go into
3630 * pfm_handle_work() before returning to user mode.
3631 *
3632 * We cannot explicitly reset another task, it MUST always
3633 * be done by the task itself. This works for system wide because
3634 * the tool that is controlling the session is logically doing
3635 * "self-monitoring".
3636 */
3637 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3638 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3639 complete(&ctx->ctx_restart_done);
3640 } else {
3641 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3642
3643 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3644
3645 PFM_SET_WORK_PENDING(task, 1);
3646
3647 set_notify_resume(task);
3648
3649 /*
3650 * XXX: send reschedule if task runs on another CPU
3651 */
3652 }
3653 return 0;
3654}
3655
3656static int
3657pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3658{
3659 unsigned int m = *(unsigned int *)arg;
3660
3661 pfm_sysctl.debug = m == 0 ? 0 : 1;
3662
3663 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3664
3665 if (m == 0) {
3666 memset(pfm_stats, 0, sizeof(pfm_stats));
3667 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3668 }
3669 return 0;
3670}
3671
3672/*
3673 * arg can be NULL and count can be zero for this function
3674 */
3675static int
3676pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3677{
3678 struct thread_struct *thread = NULL;
3679 struct task_struct *task;
3680 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3681 unsigned long flags;
3682 dbreg_t dbreg;
3683 unsigned int rnum;
3684 int first_time;
3685 int ret = 0, state;
3686 int i, can_access_pmu = 0;
3687 int is_system, is_loaded;
3688
3689 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3690
3691 state = ctx->ctx_state;
3692 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3693 is_system = ctx->ctx_fl_system;
3694 task = ctx->ctx_task;
3695
3696 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3697
3698 /*
3699 * on both UP and SMP, we can only write to the PMC when the task is
3700 * the owner of the local PMU.
3701 */
3702 if (is_loaded) {
3703 thread = &task->thread;
3704 /*
3705 * In system wide and when the context is loaded, access can only happen
3706 * when the caller is running on the CPU being monitored by the session.
3707 * It does not have to be the owner (ctx_task) of the context per se.
3708 */
3709 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3710 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3711 return -EBUSY;
3712 }
3713 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3714 }
3715
3716 /*
3717 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3718 * ensuring that no real breakpoint can be installed via this call.
3719 *
3720 * IMPORTANT: regs can be NULL in this function
3721 */
3722
3723 first_time = ctx->ctx_fl_using_dbreg == 0;
3724
3725 /*
3726 * don't bother if we are loaded and task is being debugged
3727 */
3728 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3729 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3730 return -EBUSY;
3731 }
3732
3733 /*
3734 * check for debug registers in system wide mode
3735 *
3736 * If though a check is done in pfm_context_load(),
3737 * we must repeat it here, in case the registers are
3738 * written after the context is loaded
3739 */
3740 if (is_loaded) {
3741 LOCK_PFS(flags);
3742
3743 if (first_time && is_system) {
3744 if (pfm_sessions.pfs_ptrace_use_dbregs)
3745 ret = -EBUSY;
3746 else
3747 pfm_sessions.pfs_sys_use_dbregs++;
3748 }
3749 UNLOCK_PFS(flags);
3750 }
3751
3752 if (ret != 0) return ret;
3753
3754 /*
3755 * mark ourself as user of the debug registers for
3756 * perfmon purposes.
3757 */
3758 ctx->ctx_fl_using_dbreg = 1;
3759
3760 /*
3761 * clear hardware registers to make sure we don't
3762 * pick up stale state.
3763 *
3764 * for a system wide session, we do not use
3765 * thread.dbr, thread.ibr because this process
3766 * never leaves the current CPU and the state
3767 * is shared by all processes running on it
3768 */
3769 if (first_time && can_access_pmu) {
3770 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3771 for (i=0; i < pmu_conf->num_ibrs; i++) {
3772 ia64_set_ibr(i, 0UL);
3773 ia64_dv_serialize_instruction();
3774 }
3775 ia64_srlz_i();
3776 for (i=0; i < pmu_conf->num_dbrs; i++) {
3777 ia64_set_dbr(i, 0UL);
3778 ia64_dv_serialize_data();
3779 }
3780 ia64_srlz_d();
3781 }
3782
3783 /*
3784 * Now install the values into the registers
3785 */
3786 for (i = 0; i < count; i++, req++) {
3787
3788 rnum = req->dbreg_num;
3789 dbreg.val = req->dbreg_value;
3790
3791 ret = -EINVAL;
3792
3793 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3794 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3795 rnum, dbreg.val, mode, i, count));
3796
3797 goto abort_mission;
3798 }
3799
3800 /*
3801 * make sure we do not install enabled breakpoint
3802 */
3803 if (rnum & 0x1) {
3804 if (mode == PFM_CODE_RR)
3805 dbreg.ibr.ibr_x = 0;
3806 else
3807 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3808 }
3809
3810 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3811
3812 /*
3813 * Debug registers, just like PMC, can only be modified
3814 * by a kernel call. Moreover, perfmon() access to those
3815 * registers are centralized in this routine. The hardware
3816 * does not modify the value of these registers, therefore,
3817 * if we save them as they are written, we can avoid having
3818 * to save them on context switch out. This is made possible
3819 * by the fact that when perfmon uses debug registers, ptrace()
3820 * won't be able to modify them concurrently.
3821 */
3822 if (mode == PFM_CODE_RR) {
3823 CTX_USED_IBR(ctx, rnum);
3824
3825 if (can_access_pmu) {
3826 ia64_set_ibr(rnum, dbreg.val);
3827 ia64_dv_serialize_instruction();
3828 }
3829
3830 ctx->ctx_ibrs[rnum] = dbreg.val;
3831
3832 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3833 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3834 } else {
3835 CTX_USED_DBR(ctx, rnum);
3836
3837 if (can_access_pmu) {
3838 ia64_set_dbr(rnum, dbreg.val);
3839 ia64_dv_serialize_data();
3840 }
3841 ctx->ctx_dbrs[rnum] = dbreg.val;
3842
3843 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3844 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3845 }
3846 }
3847
3848 return 0;
3849
3850abort_mission:
3851 /*
3852 * in case it was our first attempt, we undo the global modifications
3853 */
3854 if (first_time) {
3855 LOCK_PFS(flags);
3856 if (ctx->ctx_fl_system) {
3857 pfm_sessions.pfs_sys_use_dbregs--;
3858 }
3859 UNLOCK_PFS(flags);
3860 ctx->ctx_fl_using_dbreg = 0;
3861 }
3862 /*
3863 * install error return flag
3864 */
3865 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3866
3867 return ret;
3868}
3869
3870static int
3871pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3872{
3873 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3874}
3875
3876static int
3877pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3880}
3881
3882int
3883pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3884{
3885 pfm_context_t *ctx;
3886
3887 if (req == NULL) return -EINVAL;
3888
3889 ctx = GET_PMU_CTX();
3890
3891 if (ctx == NULL) return -EINVAL;
3892
3893 /*
3894 * for now limit to current task, which is enough when calling
3895 * from overflow handler
3896 */
3897 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3898
3899 return pfm_write_ibrs(ctx, req, nreq, regs);
3900}
3901EXPORT_SYMBOL(pfm_mod_write_ibrs);
3902
3903int
3904pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3905{
3906 pfm_context_t *ctx;
3907
3908 if (req == NULL) return -EINVAL;
3909
3910 ctx = GET_PMU_CTX();
3911
3912 if (ctx == NULL) return -EINVAL;
3913
3914 /*
3915 * for now limit to current task, which is enough when calling
3916 * from overflow handler
3917 */
3918 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3919
3920 return pfm_write_dbrs(ctx, req, nreq, regs);
3921}
3922EXPORT_SYMBOL(pfm_mod_write_dbrs);
3923
3924
3925static int
3926pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3927{
3928 pfarg_features_t *req = (pfarg_features_t *)arg;
3929
3930 req->ft_version = PFM_VERSION;
3931 return 0;
3932}
3933
3934static int
3935pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3936{
3937 struct pt_regs *tregs;
3938 struct task_struct *task = PFM_CTX_TASK(ctx);
3939 int state, is_system;
3940
3941 state = ctx->ctx_state;
3942 is_system = ctx->ctx_fl_system;
3943
3944 /*
3945 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3946 */
3947 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3948
3949 /*
3950 * In system wide and when the context is loaded, access can only happen
3951 * when the caller is running on the CPU being monitored by the session.
3952 * It does not have to be the owner (ctx_task) of the context per se.
3953 */
3954 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3955 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3956 return -EBUSY;
3957 }
3958 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3959 task_pid_nr(PFM_CTX_TASK(ctx)),
3960 state,
3961 is_system));
3962 /*
3963 * in system mode, we need to update the PMU directly
3964 * and the user level state of the caller, which may not
3965 * necessarily be the creator of the context.
3966 */
3967 if (is_system) {
3968 /*
3969 * Update local PMU first
3970 *
3971 * disable dcr pp
3972 */
3973 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3974 ia64_srlz_i();
3975
3976 /*
3977 * update local cpuinfo
3978 */
3979 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3980
3981 /*
3982 * stop monitoring, does srlz.i
3983 */
3984 pfm_clear_psr_pp();
3985
3986 /*
3987 * stop monitoring in the caller
3988 */
3989 ia64_psr(regs)->pp = 0;
3990
3991 return 0;
3992 }
3993 /*
3994 * per-task mode
3995 */
3996
3997 if (task == current) {
3998 /* stop monitoring at kernel level */
3999 pfm_clear_psr_up();
4000
4001 /*
4002 * stop monitoring at the user level
4003 */
4004 ia64_psr(regs)->up = 0;
4005 } else {
4006 tregs = task_pt_regs(task);
4007
4008 /*
4009 * stop monitoring at the user level
4010 */
4011 ia64_psr(tregs)->up = 0;
4012
4013 /*
4014 * monitoring disabled in kernel at next reschedule
4015 */
4016 ctx->ctx_saved_psr_up = 0;
4017 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4018 }
4019 return 0;
4020}
4021
4022
4023static int
4024pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4025{
4026 struct pt_regs *tregs;
4027 int state, is_system;
4028
4029 state = ctx->ctx_state;
4030 is_system = ctx->ctx_fl_system;
4031
4032 if (state != PFM_CTX_LOADED) return -EINVAL;
4033
4034 /*
4035 * In system wide and when the context is loaded, access can only happen
4036 * when the caller is running on the CPU being monitored by the session.
4037 * It does not have to be the owner (ctx_task) of the context per se.
4038 */
4039 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4040 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4041 return -EBUSY;
4042 }
4043
4044 /*
4045 * in system mode, we need to update the PMU directly
4046 * and the user level state of the caller, which may not
4047 * necessarily be the creator of the context.
4048 */
4049 if (is_system) {
4050
4051 /*
4052 * set user level psr.pp for the caller
4053 */
4054 ia64_psr(regs)->pp = 1;
4055
4056 /*
4057 * now update the local PMU and cpuinfo
4058 */
4059 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4060
4061 /*
4062 * start monitoring at kernel level
4063 */
4064 pfm_set_psr_pp();
4065
4066 /* enable dcr pp */
4067 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4068 ia64_srlz_i();
4069
4070 return 0;
4071 }
4072
4073 /*
4074 * per-process mode
4075 */
4076
4077 if (ctx->ctx_task == current) {
4078
4079 /* start monitoring at kernel level */
4080 pfm_set_psr_up();
4081
4082 /*
4083 * activate monitoring at user level
4084 */
4085 ia64_psr(regs)->up = 1;
4086
4087 } else {
4088 tregs = task_pt_regs(ctx->ctx_task);
4089
4090 /*
4091 * start monitoring at the kernel level the next
4092 * time the task is scheduled
4093 */
4094 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4095
4096 /*
4097 * activate monitoring at user level
4098 */
4099 ia64_psr(tregs)->up = 1;
4100 }
4101 return 0;
4102}
4103
4104static int
4105pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4106{
4107 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4108 unsigned int cnum;
4109 int i;
4110 int ret = -EINVAL;
4111
4112 for (i = 0; i < count; i++, req++) {
4113
4114 cnum = req->reg_num;
4115
4116 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4117
4118 req->reg_value = PMC_DFL_VAL(cnum);
4119
4120 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4121
4122 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4123 }
4124 return 0;
4125
4126abort_mission:
4127 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4128 return ret;
4129}
4130
4131static int
4132pfm_check_task_exist(pfm_context_t *ctx)
4133{
4134 struct task_struct *g, *t;
4135 int ret = -ESRCH;
4136
4137 read_lock(&tasklist_lock);
4138
4139 do_each_thread (g, t) {
4140 if (t->thread.pfm_context == ctx) {
4141 ret = 0;
4142 goto out;
4143 }
4144 } while_each_thread (g, t);
4145out:
4146 read_unlock(&tasklist_lock);
4147
4148 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4149
4150 return ret;
4151}
4152
4153static int
4154pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4155{
4156 struct task_struct *task;
4157 struct thread_struct *thread;
4158 struct pfm_context_t *old;
4159 unsigned long flags;
4160#ifndef CONFIG_SMP
4161 struct task_struct *owner_task = NULL;
4162#endif
4163 pfarg_load_t *req = (pfarg_load_t *)arg;
4164 unsigned long *pmcs_source, *pmds_source;
4165 int the_cpu;
4166 int ret = 0;
4167 int state, is_system, set_dbregs = 0;
4168
4169 state = ctx->ctx_state;
4170 is_system = ctx->ctx_fl_system;
4171 /*
4172 * can only load from unloaded or terminated state
4173 */
4174 if (state != PFM_CTX_UNLOADED) {
4175 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4176 req->load_pid,
4177 ctx->ctx_state));
4178 return -EBUSY;
4179 }
4180
4181 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4182
4183 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4184 DPRINT(("cannot use blocking mode on self\n"));
4185 return -EINVAL;
4186 }
4187
4188 ret = pfm_get_task(ctx, req->load_pid, &task);
4189 if (ret) {
4190 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4191 return ret;
4192 }
4193
4194 ret = -EINVAL;
4195
4196 /*
4197 * system wide is self monitoring only
4198 */
4199 if (is_system && task != current) {
4200 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4201 req->load_pid));
4202 goto error;
4203 }
4204
4205 thread = &task->thread;
4206
4207 ret = 0;
4208 /*
4209 * cannot load a context which is using range restrictions,
4210 * into a task that is being debugged.
4211 */
4212 if (ctx->ctx_fl_using_dbreg) {
4213 if (thread->flags & IA64_THREAD_DBG_VALID) {
4214 ret = -EBUSY;
4215 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4216 goto error;
4217 }
4218 LOCK_PFS(flags);
4219
4220 if (is_system) {
4221 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4222 DPRINT(("cannot load [%d] dbregs in use\n",
4223 task_pid_nr(task)));
4224 ret = -EBUSY;
4225 } else {
4226 pfm_sessions.pfs_sys_use_dbregs++;
4227 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4228 set_dbregs = 1;
4229 }
4230 }
4231
4232 UNLOCK_PFS(flags);
4233
4234 if (ret) goto error;
4235 }
4236
4237 /*
4238 * SMP system-wide monitoring implies self-monitoring.
4239 *
4240 * The programming model expects the task to
4241 * be pinned on a CPU throughout the session.
4242 * Here we take note of the current CPU at the
4243 * time the context is loaded. No call from
4244 * another CPU will be allowed.
4245 *
4246 * The pinning via shed_setaffinity()
4247 * must be done by the calling task prior
4248 * to this call.
4249 *
4250 * systemwide: keep track of CPU this session is supposed to run on
4251 */
4252 the_cpu = ctx->ctx_cpu = smp_processor_id();
4253
4254 ret = -EBUSY;
4255 /*
4256 * now reserve the session
4257 */
4258 ret = pfm_reserve_session(current, is_system, the_cpu);
4259 if (ret) goto error;
4260
4261 /*
4262 * task is necessarily stopped at this point.
4263 *
4264 * If the previous context was zombie, then it got removed in
4265 * pfm_save_regs(). Therefore we should not see it here.
4266 * If we see a context, then this is an active context
4267 *
4268 * XXX: needs to be atomic
4269 */
4270 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4271 thread->pfm_context, ctx));
4272
4273 ret = -EBUSY;
4274 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4275 if (old != NULL) {
4276 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4277 goto error_unres;
4278 }
4279
4280 pfm_reset_msgq(ctx);
4281
4282 ctx->ctx_state = PFM_CTX_LOADED;
4283
4284 /*
4285 * link context to task
4286 */
4287 ctx->ctx_task = task;
4288
4289 if (is_system) {
4290 /*
4291 * we load as stopped
4292 */
4293 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4294 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4295
4296 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4297 } else {
4298 thread->flags |= IA64_THREAD_PM_VALID;
4299 }
4300
4301 /*
4302 * propagate into thread-state
4303 */
4304 pfm_copy_pmds(task, ctx);
4305 pfm_copy_pmcs(task, ctx);
4306
4307 pmcs_source = ctx->th_pmcs;
4308 pmds_source = ctx->th_pmds;
4309
4310 /*
4311 * always the case for system-wide
4312 */
4313 if (task == current) {
4314
4315 if (is_system == 0) {
4316
4317 /* allow user level control */
4318 ia64_psr(regs)->sp = 0;
4319 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4320
4321 SET_LAST_CPU(ctx, smp_processor_id());
4322 INC_ACTIVATION();
4323 SET_ACTIVATION(ctx);
4324#ifndef CONFIG_SMP
4325 /*
4326 * push the other task out, if any
4327 */
4328 owner_task = GET_PMU_OWNER();
4329 if (owner_task) pfm_lazy_save_regs(owner_task);
4330#endif
4331 }
4332 /*
4333 * load all PMD from ctx to PMU (as opposed to thread state)
4334 * restore all PMC from ctx to PMU
4335 */
4336 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4337 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4338
4339 ctx->ctx_reload_pmcs[0] = 0UL;
4340 ctx->ctx_reload_pmds[0] = 0UL;
4341
4342 /*
4343 * guaranteed safe by earlier check against DBG_VALID
4344 */
4345 if (ctx->ctx_fl_using_dbreg) {
4346 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4347 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4348 }
4349 /*
4350 * set new ownership
4351 */
4352 SET_PMU_OWNER(task, ctx);
4353
4354 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4355 } else {
4356 /*
4357 * when not current, task MUST be stopped, so this is safe
4358 */
4359 regs = task_pt_regs(task);
4360
4361 /* force a full reload */
4362 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4363 SET_LAST_CPU(ctx, -1);
4364
4365 /* initial saved psr (stopped) */
4366 ctx->ctx_saved_psr_up = 0UL;
4367 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4368 }
4369
4370 ret = 0;
4371
4372error_unres:
4373 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4374error:
4375 /*
4376 * we must undo the dbregs setting (for system-wide)
4377 */
4378 if (ret && set_dbregs) {
4379 LOCK_PFS(flags);
4380 pfm_sessions.pfs_sys_use_dbregs--;
4381 UNLOCK_PFS(flags);
4382 }
4383 /*
4384 * release task, there is now a link with the context
4385 */
4386 if (is_system == 0 && task != current) {
4387 pfm_put_task(task);
4388
4389 if (ret == 0) {
4390 ret = pfm_check_task_exist(ctx);
4391 if (ret) {
4392 ctx->ctx_state = PFM_CTX_UNLOADED;
4393 ctx->ctx_task = NULL;
4394 }
4395 }
4396 }
4397 return ret;
4398}
4399
4400/*
4401 * in this function, we do not need to increase the use count
4402 * for the task via get_task_struct(), because we hold the
4403 * context lock. If the task were to disappear while having
4404 * a context attached, it would go through pfm_exit_thread()
4405 * which also grabs the context lock and would therefore be blocked
4406 * until we are here.
4407 */
4408static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4409
4410static int
4411pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4412{
4413 struct task_struct *task = PFM_CTX_TASK(ctx);
4414 struct pt_regs *tregs;
4415 int prev_state, is_system;
4416 int ret;
4417
4418 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4419
4420 prev_state = ctx->ctx_state;
4421 is_system = ctx->ctx_fl_system;
4422
4423 /*
4424 * unload only when necessary
4425 */
4426 if (prev_state == PFM_CTX_UNLOADED) {
4427 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4428 return 0;
4429 }
4430
4431 /*
4432 * clear psr and dcr bits
4433 */
4434 ret = pfm_stop(ctx, NULL, 0, regs);
4435 if (ret) return ret;
4436
4437 ctx->ctx_state = PFM_CTX_UNLOADED;
4438
4439 /*
4440 * in system mode, we need to update the PMU directly
4441 * and the user level state of the caller, which may not
4442 * necessarily be the creator of the context.
4443 */
4444 if (is_system) {
4445
4446 /*
4447 * Update cpuinfo
4448 *
4449 * local PMU is taken care of in pfm_stop()
4450 */
4451 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4452 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4453
4454 /*
4455 * save PMDs in context
4456 * release ownership
4457 */
4458 pfm_flush_pmds(current, ctx);
4459
4460 /*
4461 * at this point we are done with the PMU
4462 * so we can unreserve the resource.
4463 */
4464 if (prev_state != PFM_CTX_ZOMBIE)
4465 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4466
4467 /*
4468 * disconnect context from task
4469 */
4470 task->thread.pfm_context = NULL;
4471 /*
4472 * disconnect task from context
4473 */
4474 ctx->ctx_task = NULL;
4475
4476 /*
4477 * There is nothing more to cleanup here.
4478 */
4479 return 0;
4480 }
4481
4482 /*
4483 * per-task mode
4484 */
4485 tregs = task == current ? regs : task_pt_regs(task);
4486
4487 if (task == current) {
4488 /*
4489 * cancel user level control
4490 */
4491 ia64_psr(regs)->sp = 1;
4492
4493 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4494 }
4495 /*
4496 * save PMDs to context
4497 * release ownership
4498 */
4499 pfm_flush_pmds(task, ctx);
4500
4501 /*
4502 * at this point we are done with the PMU
4503 * so we can unreserve the resource.
4504 *
4505 * when state was ZOMBIE, we have already unreserved.
4506 */
4507 if (prev_state != PFM_CTX_ZOMBIE)
4508 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4509
4510 /*
4511 * reset activation counter and psr
4512 */
4513 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4514 SET_LAST_CPU(ctx, -1);
4515
4516 /*
4517 * PMU state will not be restored
4518 */
4519 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4520
4521 /*
4522 * break links between context and task
4523 */
4524 task->thread.pfm_context = NULL;
4525 ctx->ctx_task = NULL;
4526
4527 PFM_SET_WORK_PENDING(task, 0);
4528
4529 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4530 ctx->ctx_fl_can_restart = 0;
4531 ctx->ctx_fl_going_zombie = 0;
4532
4533 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4534
4535 return 0;
4536}
4537
4538
4539/*
4540 * called only from exit_thread()
4541 * we come here only if the task has a context attached (loaded or masked)
4542 */
4543void
4544pfm_exit_thread(struct task_struct *task)
4545{
4546 pfm_context_t *ctx;
4547 unsigned long flags;
4548 struct pt_regs *regs = task_pt_regs(task);
4549 int ret, state;
4550 int free_ok = 0;
4551
4552 ctx = PFM_GET_CTX(task);
4553
4554 PROTECT_CTX(ctx, flags);
4555
4556 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4557
4558 state = ctx->ctx_state;
4559 switch(state) {
4560 case PFM_CTX_UNLOADED:
4561 /*
4562 * only comes to this function if pfm_context is not NULL, i.e., cannot
4563 * be in unloaded state
4564 */
4565 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4566 break;
4567 case PFM_CTX_LOADED:
4568 case PFM_CTX_MASKED:
4569 ret = pfm_context_unload(ctx, NULL, 0, regs);
4570 if (ret) {
4571 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4572 }
4573 DPRINT(("ctx unloaded for current state was %d\n", state));
4574
4575 pfm_end_notify_user(ctx);
4576 break;
4577 case PFM_CTX_ZOMBIE:
4578 ret = pfm_context_unload(ctx, NULL, 0, regs);
4579 if (ret) {
4580 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4581 }
4582 free_ok = 1;
4583 break;
4584 default:
4585 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4586 break;
4587 }
4588 UNPROTECT_CTX(ctx, flags);
4589
4590 { u64 psr = pfm_get_psr();
4591 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4592 BUG_ON(GET_PMU_OWNER());
4593 BUG_ON(ia64_psr(regs)->up);
4594 BUG_ON(ia64_psr(regs)->pp);
4595 }
4596
4597 /*
4598 * All memory free operations (especially for vmalloc'ed memory)
4599 * MUST be done with interrupts ENABLED.
4600 */
4601 if (free_ok) pfm_context_free(ctx);
4602}
4603
4604/*
4605 * functions MUST be listed in the increasing order of their index (see permfon.h)
4606 */
4607#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4608#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4609#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4610#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4611#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4612
4613static pfm_cmd_desc_t pfm_cmd_tab[]={
4614/* 0 */PFM_CMD_NONE,
4615/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4616/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4617/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4618/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4619/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4620/* 6 */PFM_CMD_NONE,
4621/* 7 */PFM_CMD_NONE,
4622/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4623/* 9 */PFM_CMD_NONE,
4624/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4625/* 11 */PFM_CMD_NONE,
4626/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4627/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4628/* 14 */PFM_CMD_NONE,
4629/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4630/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4631/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4632/* 18 */PFM_CMD_NONE,
4633/* 19 */PFM_CMD_NONE,
4634/* 20 */PFM_CMD_NONE,
4635/* 21 */PFM_CMD_NONE,
4636/* 22 */PFM_CMD_NONE,
4637/* 23 */PFM_CMD_NONE,
4638/* 24 */PFM_CMD_NONE,
4639/* 25 */PFM_CMD_NONE,
4640/* 26 */PFM_CMD_NONE,
4641/* 27 */PFM_CMD_NONE,
4642/* 28 */PFM_CMD_NONE,
4643/* 29 */PFM_CMD_NONE,
4644/* 30 */PFM_CMD_NONE,
4645/* 31 */PFM_CMD_NONE,
4646/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4647/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4648};
4649#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4650
4651static int
4652pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4653{
4654 struct task_struct *task;
4655 int state, old_state;
4656
4657recheck:
4658 state = ctx->ctx_state;
4659 task = ctx->ctx_task;
4660
4661 if (task == NULL) {
4662 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4663 return 0;
4664 }
4665
4666 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4667 ctx->ctx_fd,
4668 state,
4669 task_pid_nr(task),
4670 task->state, PFM_CMD_STOPPED(cmd)));
4671
4672 /*
4673 * self-monitoring always ok.
4674 *
4675 * for system-wide the caller can either be the creator of the
4676 * context (to one to which the context is attached to) OR
4677 * a task running on the same CPU as the session.
4678 */
4679 if (task == current || ctx->ctx_fl_system) return 0;
4680
4681 /*
4682 * we are monitoring another thread
4683 */
4684 switch(state) {
4685 case PFM_CTX_UNLOADED:
4686 /*
4687 * if context is UNLOADED we are safe to go
4688 */
4689 return 0;
4690 case PFM_CTX_ZOMBIE:
4691 /*
4692 * no command can operate on a zombie context
4693 */
4694 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4695 return -EINVAL;
4696 case PFM_CTX_MASKED:
4697 /*
4698 * PMU state has been saved to software even though
4699 * the thread may still be running.
4700 */
4701 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4702 }
4703
4704 /*
4705 * context is LOADED or MASKED. Some commands may need to have
4706 * the task stopped.
4707 *
4708 * We could lift this restriction for UP but it would mean that
4709 * the user has no guarantee the task would not run between
4710 * two successive calls to perfmonctl(). That's probably OK.
4711 * If this user wants to ensure the task does not run, then
4712 * the task must be stopped.
4713 */
4714 if (PFM_CMD_STOPPED(cmd)) {
4715 if (!task_is_stopped_or_traced(task)) {
4716 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4717 return -EBUSY;
4718 }
4719 /*
4720 * task is now stopped, wait for ctxsw out
4721 *
4722 * This is an interesting point in the code.
4723 * We need to unprotect the context because
4724 * the pfm_save_regs() routines needs to grab
4725 * the same lock. There are danger in doing
4726 * this because it leaves a window open for
4727 * another task to get access to the context
4728 * and possibly change its state. The one thing
4729 * that is not possible is for the context to disappear
4730 * because we are protected by the VFS layer, i.e.,
4731 * get_fd()/put_fd().
4732 */
4733 old_state = state;
4734
4735 UNPROTECT_CTX(ctx, flags);
4736
4737 wait_task_inactive(task, 0);
4738
4739 PROTECT_CTX(ctx, flags);
4740
4741 /*
4742 * we must recheck to verify if state has changed
4743 */
4744 if (ctx->ctx_state != old_state) {
4745 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4746 goto recheck;
4747 }
4748 }
4749 return 0;
4750}
4751
4752/*
4753 * system-call entry point (must return long)
4754 */
4755asmlinkage long
4756sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4757{
4758 struct fd f = {NULL, 0};
4759 pfm_context_t *ctx = NULL;
4760 unsigned long flags = 0UL;
4761 void *args_k = NULL;
4762 long ret; /* will expand int return types */
4763 size_t base_sz, sz, xtra_sz = 0;
4764 int narg, completed_args = 0, call_made = 0, cmd_flags;
4765 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4766 int (*getsize)(void *arg, size_t *sz);
4767#define PFM_MAX_ARGSIZE 4096
4768
4769 /*
4770 * reject any call if perfmon was disabled at initialization
4771 */
4772 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4773
4774 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4775 DPRINT(("invalid cmd=%d\n", cmd));
4776 return -EINVAL;
4777 }
4778
4779 func = pfm_cmd_tab[cmd].cmd_func;
4780 narg = pfm_cmd_tab[cmd].cmd_narg;
4781 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4782 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4783 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4784
4785 if (unlikely(func == NULL)) {
4786 DPRINT(("invalid cmd=%d\n", cmd));
4787 return -EINVAL;
4788 }
4789
4790 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4791 PFM_CMD_NAME(cmd),
4792 cmd,
4793 narg,
4794 base_sz,
4795 count));
4796
4797 /*
4798 * check if number of arguments matches what the command expects
4799 */
4800 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4801 return -EINVAL;
4802
4803restart_args:
4804 sz = xtra_sz + base_sz*count;
4805 /*
4806 * limit abuse to min page size
4807 */
4808 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4809 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4810 return -E2BIG;
4811 }
4812
4813 /*
4814 * allocate default-sized argument buffer
4815 */
4816 if (likely(count && args_k == NULL)) {
4817 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4818 if (args_k == NULL) return -ENOMEM;
4819 }
4820
4821 ret = -EFAULT;
4822
4823 /*
4824 * copy arguments
4825 *
4826 * assume sz = 0 for command without parameters
4827 */
4828 if (sz && copy_from_user(args_k, arg, sz)) {
4829 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4830 goto error_args;
4831 }
4832
4833 /*
4834 * check if command supports extra parameters
4835 */
4836 if (completed_args == 0 && getsize) {
4837 /*
4838 * get extra parameters size (based on main argument)
4839 */
4840 ret = (*getsize)(args_k, &xtra_sz);
4841 if (ret) goto error_args;
4842
4843 completed_args = 1;
4844
4845 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4846
4847 /* retry if necessary */
4848 if (likely(xtra_sz)) goto restart_args;
4849 }
4850
4851 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4852
4853 ret = -EBADF;
4854
4855 f = fdget(fd);
4856 if (unlikely(f.file == NULL)) {
4857 DPRINT(("invalid fd %d\n", fd));
4858 goto error_args;
4859 }
4860 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4861 DPRINT(("fd %d not related to perfmon\n", fd));
4862 goto error_args;
4863 }
4864
4865 ctx = f.file->private_data;
4866 if (unlikely(ctx == NULL)) {
4867 DPRINT(("no context for fd %d\n", fd));
4868 goto error_args;
4869 }
4870 prefetch(&ctx->ctx_state);
4871
4872 PROTECT_CTX(ctx, flags);
4873
4874 /*
4875 * check task is stopped
4876 */
4877 ret = pfm_check_task_state(ctx, cmd, flags);
4878 if (unlikely(ret)) goto abort_locked;
4879
4880skip_fd:
4881 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4882
4883 call_made = 1;
4884
4885abort_locked:
4886 if (likely(ctx)) {
4887 DPRINT(("context unlocked\n"));
4888 UNPROTECT_CTX(ctx, flags);
4889 }
4890
4891 /* copy argument back to user, if needed */
4892 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4893
4894error_args:
4895 if (f.file)
4896 fdput(f);
4897
4898 kfree(args_k);
4899
4900 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4901
4902 return ret;
4903}
4904
4905static void
4906pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4907{
4908 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4909 pfm_ovfl_ctrl_t rst_ctrl;
4910 int state;
4911 int ret = 0;
4912
4913 state = ctx->ctx_state;
4914 /*
4915 * Unlock sampling buffer and reset index atomically
4916 * XXX: not really needed when blocking
4917 */
4918 if (CTX_HAS_SMPL(ctx)) {
4919
4920 rst_ctrl.bits.mask_monitoring = 0;
4921 rst_ctrl.bits.reset_ovfl_pmds = 0;
4922
4923 if (state == PFM_CTX_LOADED)
4924 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4925 else
4926 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4927 } else {
4928 rst_ctrl.bits.mask_monitoring = 0;
4929 rst_ctrl.bits.reset_ovfl_pmds = 1;
4930 }
4931
4932 if (ret == 0) {
4933 if (rst_ctrl.bits.reset_ovfl_pmds) {
4934 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4935 }
4936 if (rst_ctrl.bits.mask_monitoring == 0) {
4937 DPRINT(("resuming monitoring\n"));
4938 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4939 } else {
4940 DPRINT(("stopping monitoring\n"));
4941 //pfm_stop_monitoring(current, regs);
4942 }
4943 ctx->ctx_state = PFM_CTX_LOADED;
4944 }
4945}
4946
4947/*
4948 * context MUST BE LOCKED when calling
4949 * can only be called for current
4950 */
4951static void
4952pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4953{
4954 int ret;
4955
4956 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4957
4958 ret = pfm_context_unload(ctx, NULL, 0, regs);
4959 if (ret) {
4960 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4961 }
4962
4963 /*
4964 * and wakeup controlling task, indicating we are now disconnected
4965 */
4966 wake_up_interruptible(&ctx->ctx_zombieq);
4967
4968 /*
4969 * given that context is still locked, the controlling
4970 * task will only get access when we return from
4971 * pfm_handle_work().
4972 */
4973}
4974
4975static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4976
4977 /*
4978 * pfm_handle_work() can be called with interrupts enabled
4979 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4980 * call may sleep, therefore we must re-enable interrupts
4981 * to avoid deadlocks. It is safe to do so because this function
4982 * is called ONLY when returning to user level (pUStk=1), in which case
4983 * there is no risk of kernel stack overflow due to deep
4984 * interrupt nesting.
4985 */
4986void
4987pfm_handle_work(void)
4988{
4989 pfm_context_t *ctx;
4990 struct pt_regs *regs;
4991 unsigned long flags, dummy_flags;
4992 unsigned long ovfl_regs;
4993 unsigned int reason;
4994 int ret;
4995
4996 ctx = PFM_GET_CTX(current);
4997 if (ctx == NULL) {
4998 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4999 task_pid_nr(current));
5000 return;
5001 }
5002
5003 PROTECT_CTX(ctx, flags);
5004
5005 PFM_SET_WORK_PENDING(current, 0);
5006
5007 regs = task_pt_regs(current);
5008
5009 /*
5010 * extract reason for being here and clear
5011 */
5012 reason = ctx->ctx_fl_trap_reason;
5013 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5014 ovfl_regs = ctx->ctx_ovfl_regs[0];
5015
5016 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5017
5018 /*
5019 * must be done before we check for simple-reset mode
5020 */
5021 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5022 goto do_zombie;
5023
5024 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5025 if (reason == PFM_TRAP_REASON_RESET)
5026 goto skip_blocking;
5027
5028 /*
5029 * restore interrupt mask to what it was on entry.
5030 * Could be enabled/diasbled.
5031 */
5032 UNPROTECT_CTX(ctx, flags);
5033
5034 /*
5035 * force interrupt enable because of down_interruptible()
5036 */
5037 local_irq_enable();
5038
5039 DPRINT(("before block sleeping\n"));
5040
5041 /*
5042 * may go through without blocking on SMP systems
5043 * if restart has been received already by the time we call down()
5044 */
5045 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5046
5047 DPRINT(("after block sleeping ret=%d\n", ret));
5048
5049 /*
5050 * lock context and mask interrupts again
5051 * We save flags into a dummy because we may have
5052 * altered interrupts mask compared to entry in this
5053 * function.
5054 */
5055 PROTECT_CTX(ctx, dummy_flags);
5056
5057 /*
5058 * we need to read the ovfl_regs only after wake-up
5059 * because we may have had pfm_write_pmds() in between
5060 * and that can changed PMD values and therefore
5061 * ovfl_regs is reset for these new PMD values.
5062 */
5063 ovfl_regs = ctx->ctx_ovfl_regs[0];
5064
5065 if (ctx->ctx_fl_going_zombie) {
5066do_zombie:
5067 DPRINT(("context is zombie, bailing out\n"));
5068 pfm_context_force_terminate(ctx, regs);
5069 goto nothing_to_do;
5070 }
5071 /*
5072 * in case of interruption of down() we don't restart anything
5073 */
5074 if (ret < 0)
5075 goto nothing_to_do;
5076
5077skip_blocking:
5078 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5079 ctx->ctx_ovfl_regs[0] = 0UL;
5080
5081nothing_to_do:
5082 /*
5083 * restore flags as they were upon entry
5084 */
5085 UNPROTECT_CTX(ctx, flags);
5086}
5087
5088static int
5089pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5090{
5091 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5092 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5093 return 0;
5094 }
5095
5096 DPRINT(("waking up somebody\n"));
5097
5098 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5099
5100 /*
5101 * safe, we are not in intr handler, nor in ctxsw when
5102 * we come here
5103 */
5104 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5105
5106 return 0;
5107}
5108
5109static int
5110pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5111{
5112 pfm_msg_t *msg = NULL;
5113
5114 if (ctx->ctx_fl_no_msg == 0) {
5115 msg = pfm_get_new_msg(ctx);
5116 if (msg == NULL) {
5117 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5118 return -1;
5119 }
5120
5121 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5122 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5123 msg->pfm_ovfl_msg.msg_active_set = 0;
5124 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5125 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5126 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5127 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5128 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5129 }
5130
5131 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5132 msg,
5133 ctx->ctx_fl_no_msg,
5134 ctx->ctx_fd,
5135 ovfl_pmds));
5136
5137 return pfm_notify_user(ctx, msg);
5138}
5139
5140static int
5141pfm_end_notify_user(pfm_context_t *ctx)
5142{
5143 pfm_msg_t *msg;
5144
5145 msg = pfm_get_new_msg(ctx);
5146 if (msg == NULL) {
5147 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5148 return -1;
5149 }
5150 /* no leak */
5151 memset(msg, 0, sizeof(*msg));
5152
5153 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5154 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5155 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5156
5157 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5158 msg,
5159 ctx->ctx_fl_no_msg,
5160 ctx->ctx_fd));
5161
5162 return pfm_notify_user(ctx, msg);
5163}
5164
5165/*
5166 * main overflow processing routine.
5167 * it can be called from the interrupt path or explicitly during the context switch code
5168 */
5169static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5170 unsigned long pmc0, struct pt_regs *regs)
5171{
5172 pfm_ovfl_arg_t *ovfl_arg;
5173 unsigned long mask;
5174 unsigned long old_val, ovfl_val, new_val;
5175 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5176 unsigned long tstamp;
5177 pfm_ovfl_ctrl_t ovfl_ctrl;
5178 unsigned int i, has_smpl;
5179 int must_notify = 0;
5180
5181 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5182
5183 /*
5184 * sanity test. Should never happen
5185 */
5186 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5187
5188 tstamp = ia64_get_itc();
5189 mask = pmc0 >> PMU_FIRST_COUNTER;
5190 ovfl_val = pmu_conf->ovfl_val;
5191 has_smpl = CTX_HAS_SMPL(ctx);
5192
5193 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5194 "used_pmds=0x%lx\n",
5195 pmc0,
5196 task ? task_pid_nr(task): -1,
5197 (regs ? regs->cr_iip : 0),
5198 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5199 ctx->ctx_used_pmds[0]));
5200
5201
5202 /*
5203 * first we update the virtual counters
5204 * assume there was a prior ia64_srlz_d() issued
5205 */
5206 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5207
5208 /* skip pmd which did not overflow */
5209 if ((mask & 0x1) == 0) continue;
5210
5211 /*
5212 * Note that the pmd is not necessarily 0 at this point as qualified events
5213 * may have happened before the PMU was frozen. The residual count is not
5214 * taken into consideration here but will be with any read of the pmd via
5215 * pfm_read_pmds().
5216 */
5217 old_val = new_val = ctx->ctx_pmds[i].val;
5218 new_val += 1 + ovfl_val;
5219 ctx->ctx_pmds[i].val = new_val;
5220
5221 /*
5222 * check for overflow condition
5223 */
5224 if (likely(old_val > new_val)) {
5225 ovfl_pmds |= 1UL << i;
5226 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5227 }
5228
5229 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5230 i,
5231 new_val,
5232 old_val,
5233 ia64_get_pmd(i) & ovfl_val,
5234 ovfl_pmds,
5235 ovfl_notify));
5236 }
5237
5238 /*
5239 * there was no 64-bit overflow, nothing else to do
5240 */
5241 if (ovfl_pmds == 0UL) return;
5242
5243 /*
5244 * reset all control bits
5245 */
5246 ovfl_ctrl.val = 0;
5247 reset_pmds = 0UL;
5248
5249 /*
5250 * if a sampling format module exists, then we "cache" the overflow by
5251 * calling the module's handler() routine.
5252 */
5253 if (has_smpl) {
5254 unsigned long start_cycles, end_cycles;
5255 unsigned long pmd_mask;
5256 int j, k, ret = 0;
5257 int this_cpu = smp_processor_id();
5258
5259 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5260 ovfl_arg = &ctx->ctx_ovfl_arg;
5261
5262 prefetch(ctx->ctx_smpl_hdr);
5263
5264 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5265
5266 mask = 1UL << i;
5267
5268 if ((pmd_mask & 0x1) == 0) continue;
5269
5270 ovfl_arg->ovfl_pmd = (unsigned char )i;
5271 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5272 ovfl_arg->active_set = 0;
5273 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5274 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5275
5276 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5277 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5278 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5279
5280 /*
5281 * copy values of pmds of interest. Sampling format may copy them
5282 * into sampling buffer.
5283 */
5284 if (smpl_pmds) {
5285 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5286 if ((smpl_pmds & 0x1) == 0) continue;
5287 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5288 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5289 }
5290 }
5291
5292 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5293
5294 start_cycles = ia64_get_itc();
5295
5296 /*
5297 * call custom buffer format record (handler) routine
5298 */
5299 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5300
5301 end_cycles = ia64_get_itc();
5302
5303 /*
5304 * For those controls, we take the union because they have
5305 * an all or nothing behavior.
5306 */
5307 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5308 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5309 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5310 /*
5311 * build the bitmask of pmds to reset now
5312 */
5313 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5314
5315 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5316 }
5317 /*
5318 * when the module cannot handle the rest of the overflows, we abort right here
5319 */
5320 if (ret && pmd_mask) {
5321 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5322 pmd_mask<<PMU_FIRST_COUNTER));
5323 }
5324 /*
5325 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5326 */
5327 ovfl_pmds &= ~reset_pmds;
5328 } else {
5329 /*
5330 * when no sampling module is used, then the default
5331 * is to notify on overflow if requested by user
5332 */
5333 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5334 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5335 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5336 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5337 /*
5338 * if needed, we reset all overflowed pmds
5339 */
5340 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5341 }
5342
5343 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5344
5345 /*
5346 * reset the requested PMD registers using the short reset values
5347 */
5348 if (reset_pmds) {
5349 unsigned long bm = reset_pmds;
5350 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5351 }
5352
5353 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5354 /*
5355 * keep track of what to reset when unblocking
5356 */
5357 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5358
5359 /*
5360 * check for blocking context
5361 */
5362 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5363
5364 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5365
5366 /*
5367 * set the perfmon specific checking pending work for the task
5368 */
5369 PFM_SET_WORK_PENDING(task, 1);
5370
5371 /*
5372 * when coming from ctxsw, current still points to the
5373 * previous task, therefore we must work with task and not current.
5374 */
5375 set_notify_resume(task);
5376 }
5377 /*
5378 * defer until state is changed (shorten spin window). the context is locked
5379 * anyway, so the signal receiver would come spin for nothing.
5380 */
5381 must_notify = 1;
5382 }
5383
5384 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5385 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5386 PFM_GET_WORK_PENDING(task),
5387 ctx->ctx_fl_trap_reason,
5388 ovfl_pmds,
5389 ovfl_notify,
5390 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5391 /*
5392 * in case monitoring must be stopped, we toggle the psr bits
5393 */
5394 if (ovfl_ctrl.bits.mask_monitoring) {
5395 pfm_mask_monitoring(task);
5396 ctx->ctx_state = PFM_CTX_MASKED;
5397 ctx->ctx_fl_can_restart = 1;
5398 }
5399
5400 /*
5401 * send notification now
5402 */
5403 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5404
5405 return;
5406
5407sanity_check:
5408 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5409 smp_processor_id(),
5410 task ? task_pid_nr(task) : -1,
5411 pmc0);
5412 return;
5413
5414stop_monitoring:
5415 /*
5416 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5417 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5418 * come here as zombie only if the task is the current task. In which case, we
5419 * can access the PMU hardware directly.
5420 *
5421 * Note that zombies do have PM_VALID set. So here we do the minimal.
5422 *
5423 * In case the context was zombified it could not be reclaimed at the time
5424 * the monitoring program exited. At this point, the PMU reservation has been
5425 * returned, the sampiing buffer has been freed. We must convert this call
5426 * into a spurious interrupt. However, we must also avoid infinite overflows
5427 * by stopping monitoring for this task. We can only come here for a per-task
5428 * context. All we need to do is to stop monitoring using the psr bits which
5429 * are always task private. By re-enabling secure montioring, we ensure that
5430 * the monitored task will not be able to re-activate monitoring.
5431 * The task will eventually be context switched out, at which point the context
5432 * will be reclaimed (that includes releasing ownership of the PMU).
5433 *
5434 * So there might be a window of time where the number of per-task session is zero
5435 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5436 * context. This is safe because if a per-task session comes in, it will push this one
5437 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5438 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5439 * also push our zombie context out.
5440 *
5441 * Overall pretty hairy stuff....
5442 */
5443 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5444 pfm_clear_psr_up();
5445 ia64_psr(regs)->up = 0;
5446 ia64_psr(regs)->sp = 1;
5447 return;
5448}
5449
5450static int
5451pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5452{
5453 struct task_struct *task;
5454 pfm_context_t *ctx;
5455 unsigned long flags;
5456 u64 pmc0;
5457 int this_cpu = smp_processor_id();
5458 int retval = 0;
5459
5460 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5461
5462 /*
5463 * srlz.d done before arriving here
5464 */
5465 pmc0 = ia64_get_pmc(0);
5466
5467 task = GET_PMU_OWNER();
5468 ctx = GET_PMU_CTX();
5469
5470 /*
5471 * if we have some pending bits set
5472 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5473 */
5474 if (PMC0_HAS_OVFL(pmc0) && task) {
5475 /*
5476 * we assume that pmc0.fr is always set here
5477 */
5478
5479 /* sanity check */
5480 if (!ctx) goto report_spurious1;
5481
5482 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5483 goto report_spurious2;
5484
5485 PROTECT_CTX_NOPRINT(ctx, flags);
5486
5487 pfm_overflow_handler(task, ctx, pmc0, regs);
5488
5489 UNPROTECT_CTX_NOPRINT(ctx, flags);
5490
5491 } else {
5492 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5493 retval = -1;
5494 }
5495 /*
5496 * keep it unfrozen at all times
5497 */
5498 pfm_unfreeze_pmu();
5499
5500 return retval;
5501
5502report_spurious1:
5503 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5504 this_cpu, task_pid_nr(task));
5505 pfm_unfreeze_pmu();
5506 return -1;
5507report_spurious2:
5508 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5509 this_cpu,
5510 task_pid_nr(task));
5511 pfm_unfreeze_pmu();
5512 return -1;
5513}
5514
5515static irqreturn_t
5516pfm_interrupt_handler(int irq, void *arg)
5517{
5518 unsigned long start_cycles, total_cycles;
5519 unsigned long min, max;
5520 int this_cpu;
5521 int ret;
5522 struct pt_regs *regs = get_irq_regs();
5523
5524 this_cpu = get_cpu();
5525 if (likely(!pfm_alt_intr_handler)) {
5526 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5527 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5528
5529 start_cycles = ia64_get_itc();
5530
5531 ret = pfm_do_interrupt_handler(arg, regs);
5532
5533 total_cycles = ia64_get_itc();
5534
5535 /*
5536 * don't measure spurious interrupts
5537 */
5538 if (likely(ret == 0)) {
5539 total_cycles -= start_cycles;
5540
5541 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5542 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5543
5544 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5545 }
5546 }
5547 else {
5548 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5549 }
5550
5551 put_cpu();
5552 return IRQ_HANDLED;
5553}
5554
5555/*
5556 * /proc/perfmon interface, for debug only
5557 */
5558
5559#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5560
5561static void *
5562pfm_proc_start(struct seq_file *m, loff_t *pos)
5563{
5564 if (*pos == 0) {
5565 return PFM_PROC_SHOW_HEADER;
5566 }
5567
5568 while (*pos <= nr_cpu_ids) {
5569 if (cpu_online(*pos - 1)) {
5570 return (void *)*pos;
5571 }
5572 ++*pos;
5573 }
5574 return NULL;
5575}
5576
5577static void *
5578pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5579{
5580 ++*pos;
5581 return pfm_proc_start(m, pos);
5582}
5583
5584static void
5585pfm_proc_stop(struct seq_file *m, void *v)
5586{
5587}
5588
5589static void
5590pfm_proc_show_header(struct seq_file *m)
5591{
5592 struct list_head * pos;
5593 pfm_buffer_fmt_t * entry;
5594 unsigned long flags;
5595
5596 seq_printf(m,
5597 "perfmon version : %u.%u\n"
5598 "model : %s\n"
5599 "fastctxsw : %s\n"
5600 "expert mode : %s\n"
5601 "ovfl_mask : 0x%lx\n"
5602 "PMU flags : 0x%x\n",
5603 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5604 pmu_conf->pmu_name,
5605 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5606 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5607 pmu_conf->ovfl_val,
5608 pmu_conf->flags);
5609
5610 LOCK_PFS(flags);
5611
5612 seq_printf(m,
5613 "proc_sessions : %u\n"
5614 "sys_sessions : %u\n"
5615 "sys_use_dbregs : %u\n"
5616 "ptrace_use_dbregs : %u\n",
5617 pfm_sessions.pfs_task_sessions,
5618 pfm_sessions.pfs_sys_sessions,
5619 pfm_sessions.pfs_sys_use_dbregs,
5620 pfm_sessions.pfs_ptrace_use_dbregs);
5621
5622 UNLOCK_PFS(flags);
5623
5624 spin_lock(&pfm_buffer_fmt_lock);
5625
5626 list_for_each(pos, &pfm_buffer_fmt_list) {
5627 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5628 seq_printf(m, "format : %16phD %s\n",
5629 entry->fmt_uuid, entry->fmt_name);
5630 }
5631 spin_unlock(&pfm_buffer_fmt_lock);
5632
5633}
5634
5635static int
5636pfm_proc_show(struct seq_file *m, void *v)
5637{
5638 unsigned long psr;
5639 unsigned int i;
5640 int cpu;
5641
5642 if (v == PFM_PROC_SHOW_HEADER) {
5643 pfm_proc_show_header(m);
5644 return 0;
5645 }
5646
5647 /* show info for CPU (v - 1) */
5648
5649 cpu = (long)v - 1;
5650 seq_printf(m,
5651 "CPU%-2d overflow intrs : %lu\n"
5652 "CPU%-2d overflow cycles : %lu\n"
5653 "CPU%-2d overflow min : %lu\n"
5654 "CPU%-2d overflow max : %lu\n"
5655 "CPU%-2d smpl handler calls : %lu\n"
5656 "CPU%-2d smpl handler cycles : %lu\n"
5657 "CPU%-2d spurious intrs : %lu\n"
5658 "CPU%-2d replay intrs : %lu\n"
5659 "CPU%-2d syst_wide : %d\n"
5660 "CPU%-2d dcr_pp : %d\n"
5661 "CPU%-2d exclude idle : %d\n"
5662 "CPU%-2d owner : %d\n"
5663 "CPU%-2d context : %p\n"
5664 "CPU%-2d activations : %lu\n",
5665 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5666 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5667 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5668 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5669 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5670 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5671 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5672 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5673 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5674 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5675 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5676 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5677 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5678 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5679
5680 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5681
5682 psr = pfm_get_psr();
5683
5684 ia64_srlz_d();
5685
5686 seq_printf(m,
5687 "CPU%-2d psr : 0x%lx\n"
5688 "CPU%-2d pmc0 : 0x%lx\n",
5689 cpu, psr,
5690 cpu, ia64_get_pmc(0));
5691
5692 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5693 if (PMC_IS_COUNTING(i) == 0) continue;
5694 seq_printf(m,
5695 "CPU%-2d pmc%u : 0x%lx\n"
5696 "CPU%-2d pmd%u : 0x%lx\n",
5697 cpu, i, ia64_get_pmc(i),
5698 cpu, i, ia64_get_pmd(i));
5699 }
5700 }
5701 return 0;
5702}
5703
5704const struct seq_operations pfm_seq_ops = {
5705 .start = pfm_proc_start,
5706 .next = pfm_proc_next,
5707 .stop = pfm_proc_stop,
5708 .show = pfm_proc_show
5709};
5710
5711static int
5712pfm_proc_open(struct inode *inode, struct file *file)
5713{
5714 return seq_open(file, &pfm_seq_ops);
5715}
5716
5717
5718/*
5719 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5720 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5721 * is active or inactive based on mode. We must rely on the value in
5722 * local_cpu_data->pfm_syst_info
5723 */
5724void
5725pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5726{
5727 struct pt_regs *regs;
5728 unsigned long dcr;
5729 unsigned long dcr_pp;
5730
5731 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5732
5733 /*
5734 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5735 * on every CPU, so we can rely on the pid to identify the idle task.
5736 */
5737 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5738 regs = task_pt_regs(task);
5739 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5740 return;
5741 }
5742 /*
5743 * if monitoring has started
5744 */
5745 if (dcr_pp) {
5746 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5747 /*
5748 * context switching in?
5749 */
5750 if (is_ctxswin) {
5751 /* mask monitoring for the idle task */
5752 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5753 pfm_clear_psr_pp();
5754 ia64_srlz_i();
5755 return;
5756 }
5757 /*
5758 * context switching out
5759 * restore monitoring for next task
5760 *
5761 * Due to inlining this odd if-then-else construction generates
5762 * better code.
5763 */
5764 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5765 pfm_set_psr_pp();
5766 ia64_srlz_i();
5767 }
5768}
5769
5770#ifdef CONFIG_SMP
5771
5772static void
5773pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5774{
5775 struct task_struct *task = ctx->ctx_task;
5776
5777 ia64_psr(regs)->up = 0;
5778 ia64_psr(regs)->sp = 1;
5779
5780 if (GET_PMU_OWNER() == task) {
5781 DPRINT(("cleared ownership for [%d]\n",
5782 task_pid_nr(ctx->ctx_task)));
5783 SET_PMU_OWNER(NULL, NULL);
5784 }
5785
5786 /*
5787 * disconnect the task from the context and vice-versa
5788 */
5789 PFM_SET_WORK_PENDING(task, 0);
5790
5791 task->thread.pfm_context = NULL;
5792 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5793
5794 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5795}
5796
5797
5798/*
5799 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5800 */
5801void
5802pfm_save_regs(struct task_struct *task)
5803{
5804 pfm_context_t *ctx;
5805 unsigned long flags;
5806 u64 psr;
5807
5808
5809 ctx = PFM_GET_CTX(task);
5810 if (ctx == NULL) return;
5811
5812 /*
5813 * we always come here with interrupts ALREADY disabled by
5814 * the scheduler. So we simply need to protect against concurrent
5815 * access, not CPU concurrency.
5816 */
5817 flags = pfm_protect_ctx_ctxsw(ctx);
5818
5819 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5820 struct pt_regs *regs = task_pt_regs(task);
5821
5822 pfm_clear_psr_up();
5823
5824 pfm_force_cleanup(ctx, regs);
5825
5826 BUG_ON(ctx->ctx_smpl_hdr);
5827
5828 pfm_unprotect_ctx_ctxsw(ctx, flags);
5829
5830 pfm_context_free(ctx);
5831 return;
5832 }
5833
5834 /*
5835 * save current PSR: needed because we modify it
5836 */
5837 ia64_srlz_d();
5838 psr = pfm_get_psr();
5839
5840 BUG_ON(psr & (IA64_PSR_I));
5841
5842 /*
5843 * stop monitoring:
5844 * This is the last instruction which may generate an overflow
5845 *
5846 * We do not need to set psr.sp because, it is irrelevant in kernel.
5847 * It will be restored from ipsr when going back to user level
5848 */
5849 pfm_clear_psr_up();
5850
5851 /*
5852 * keep a copy of psr.up (for reload)
5853 */
5854 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5855
5856 /*
5857 * release ownership of this PMU.
5858 * PM interrupts are masked, so nothing
5859 * can happen.
5860 */
5861 SET_PMU_OWNER(NULL, NULL);
5862
5863 /*
5864 * we systematically save the PMD as we have no
5865 * guarantee we will be schedule at that same
5866 * CPU again.
5867 */
5868 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5869
5870 /*
5871 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5872 * we will need it on the restore path to check
5873 * for pending overflow.
5874 */
5875 ctx->th_pmcs[0] = ia64_get_pmc(0);
5876
5877 /*
5878 * unfreeze PMU if had pending overflows
5879 */
5880 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5881
5882 /*
5883 * finally, allow context access.
5884 * interrupts will still be masked after this call.
5885 */
5886 pfm_unprotect_ctx_ctxsw(ctx, flags);
5887}
5888
5889#else /* !CONFIG_SMP */
5890void
5891pfm_save_regs(struct task_struct *task)
5892{
5893 pfm_context_t *ctx;
5894 u64 psr;
5895
5896 ctx = PFM_GET_CTX(task);
5897 if (ctx == NULL) return;
5898
5899 /*
5900 * save current PSR: needed because we modify it
5901 */
5902 psr = pfm_get_psr();
5903
5904 BUG_ON(psr & (IA64_PSR_I));
5905
5906 /*
5907 * stop monitoring:
5908 * This is the last instruction which may generate an overflow
5909 *
5910 * We do not need to set psr.sp because, it is irrelevant in kernel.
5911 * It will be restored from ipsr when going back to user level
5912 */
5913 pfm_clear_psr_up();
5914
5915 /*
5916 * keep a copy of psr.up (for reload)
5917 */
5918 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5919}
5920
5921static void
5922pfm_lazy_save_regs (struct task_struct *task)
5923{
5924 pfm_context_t *ctx;
5925 unsigned long flags;
5926
5927 { u64 psr = pfm_get_psr();
5928 BUG_ON(psr & IA64_PSR_UP);
5929 }
5930
5931 ctx = PFM_GET_CTX(task);
5932
5933 /*
5934 * we need to mask PMU overflow here to
5935 * make sure that we maintain pmc0 until
5936 * we save it. overflow interrupts are
5937 * treated as spurious if there is no
5938 * owner.
5939 *
5940 * XXX: I don't think this is necessary
5941 */
5942 PROTECT_CTX(ctx,flags);
5943
5944 /*
5945 * release ownership of this PMU.
5946 * must be done before we save the registers.
5947 *
5948 * after this call any PMU interrupt is treated
5949 * as spurious.
5950 */
5951 SET_PMU_OWNER(NULL, NULL);
5952
5953 /*
5954 * save all the pmds we use
5955 */
5956 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5957
5958 /*
5959 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5960 * it is needed to check for pended overflow
5961 * on the restore path
5962 */
5963 ctx->th_pmcs[0] = ia64_get_pmc(0);
5964
5965 /*
5966 * unfreeze PMU if had pending overflows
5967 */
5968 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5969
5970 /*
5971 * now get can unmask PMU interrupts, they will
5972 * be treated as purely spurious and we will not
5973 * lose any information
5974 */
5975 UNPROTECT_CTX(ctx,flags);
5976}
5977#endif /* CONFIG_SMP */
5978
5979#ifdef CONFIG_SMP
5980/*
5981 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5982 */
5983void
5984pfm_load_regs (struct task_struct *task)
5985{
5986 pfm_context_t *ctx;
5987 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5988 unsigned long flags;
5989 u64 psr, psr_up;
5990 int need_irq_resend;
5991
5992 ctx = PFM_GET_CTX(task);
5993 if (unlikely(ctx == NULL)) return;
5994
5995 BUG_ON(GET_PMU_OWNER());
5996
5997 /*
5998 * possible on unload
5999 */
6000 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6001
6002 /*
6003 * we always come here with interrupts ALREADY disabled by
6004 * the scheduler. So we simply need to protect against concurrent
6005 * access, not CPU concurrency.
6006 */
6007 flags = pfm_protect_ctx_ctxsw(ctx);
6008 psr = pfm_get_psr();
6009
6010 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6011
6012 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6013 BUG_ON(psr & IA64_PSR_I);
6014
6015 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6016 struct pt_regs *regs = task_pt_regs(task);
6017
6018 BUG_ON(ctx->ctx_smpl_hdr);
6019
6020 pfm_force_cleanup(ctx, regs);
6021
6022 pfm_unprotect_ctx_ctxsw(ctx, flags);
6023
6024 /*
6025 * this one (kmalloc'ed) is fine with interrupts disabled
6026 */
6027 pfm_context_free(ctx);
6028
6029 return;
6030 }
6031
6032 /*
6033 * we restore ALL the debug registers to avoid picking up
6034 * stale state.
6035 */
6036 if (ctx->ctx_fl_using_dbreg) {
6037 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6038 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6039 }
6040 /*
6041 * retrieve saved psr.up
6042 */
6043 psr_up = ctx->ctx_saved_psr_up;
6044
6045 /*
6046 * if we were the last user of the PMU on that CPU,
6047 * then nothing to do except restore psr
6048 */
6049 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6050
6051 /*
6052 * retrieve partial reload masks (due to user modifications)
6053 */
6054 pmc_mask = ctx->ctx_reload_pmcs[0];
6055 pmd_mask = ctx->ctx_reload_pmds[0];
6056
6057 } else {
6058 /*
6059 * To avoid leaking information to the user level when psr.sp=0,
6060 * we must reload ALL implemented pmds (even the ones we don't use).
6061 * In the kernel we only allow PFM_READ_PMDS on registers which
6062 * we initialized or requested (sampling) so there is no risk there.
6063 */
6064 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6065
6066 /*
6067 * ALL accessible PMCs are systematically reloaded, unused registers
6068 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6069 * up stale configuration.
6070 *
6071 * PMC0 is never in the mask. It is always restored separately.
6072 */
6073 pmc_mask = ctx->ctx_all_pmcs[0];
6074 }
6075 /*
6076 * when context is MASKED, we will restore PMC with plm=0
6077 * and PMD with stale information, but that's ok, nothing
6078 * will be captured.
6079 *
6080 * XXX: optimize here
6081 */
6082 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6083 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6084
6085 /*
6086 * check for pending overflow at the time the state
6087 * was saved.
6088 */
6089 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6090 /*
6091 * reload pmc0 with the overflow information
6092 * On McKinley PMU, this will trigger a PMU interrupt
6093 */
6094 ia64_set_pmc(0, ctx->th_pmcs[0]);
6095 ia64_srlz_d();
6096 ctx->th_pmcs[0] = 0UL;
6097
6098 /*
6099 * will replay the PMU interrupt
6100 */
6101 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6102
6103 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6104 }
6105
6106 /*
6107 * we just did a reload, so we reset the partial reload fields
6108 */
6109 ctx->ctx_reload_pmcs[0] = 0UL;
6110 ctx->ctx_reload_pmds[0] = 0UL;
6111
6112 SET_LAST_CPU(ctx, smp_processor_id());
6113
6114 /*
6115 * dump activation value for this PMU
6116 */
6117 INC_ACTIVATION();
6118 /*
6119 * record current activation for this context
6120 */
6121 SET_ACTIVATION(ctx);
6122
6123 /*
6124 * establish new ownership.
6125 */
6126 SET_PMU_OWNER(task, ctx);
6127
6128 /*
6129 * restore the psr.up bit. measurement
6130 * is active again.
6131 * no PMU interrupt can happen at this point
6132 * because we still have interrupts disabled.
6133 */
6134 if (likely(psr_up)) pfm_set_psr_up();
6135
6136 /*
6137 * allow concurrent access to context
6138 */
6139 pfm_unprotect_ctx_ctxsw(ctx, flags);
6140}
6141#else /* !CONFIG_SMP */
6142/*
6143 * reload PMU state for UP kernels
6144 * in 2.5 we come here with interrupts disabled
6145 */
6146void
6147pfm_load_regs (struct task_struct *task)
6148{
6149 pfm_context_t *ctx;
6150 struct task_struct *owner;
6151 unsigned long pmd_mask, pmc_mask;
6152 u64 psr, psr_up;
6153 int need_irq_resend;
6154
6155 owner = GET_PMU_OWNER();
6156 ctx = PFM_GET_CTX(task);
6157 psr = pfm_get_psr();
6158
6159 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6160 BUG_ON(psr & IA64_PSR_I);
6161
6162 /*
6163 * we restore ALL the debug registers to avoid picking up
6164 * stale state.
6165 *
6166 * This must be done even when the task is still the owner
6167 * as the registers may have been modified via ptrace()
6168 * (not perfmon) by the previous task.
6169 */
6170 if (ctx->ctx_fl_using_dbreg) {
6171 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6172 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6173 }
6174
6175 /*
6176 * retrieved saved psr.up
6177 */
6178 psr_up = ctx->ctx_saved_psr_up;
6179 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6180
6181 /*
6182 * short path, our state is still there, just
6183 * need to restore psr and we go
6184 *
6185 * we do not touch either PMC nor PMD. the psr is not touched
6186 * by the overflow_handler. So we are safe w.r.t. to interrupt
6187 * concurrency even without interrupt masking.
6188 */
6189 if (likely(owner == task)) {
6190 if (likely(psr_up)) pfm_set_psr_up();
6191 return;
6192 }
6193
6194 /*
6195 * someone else is still using the PMU, first push it out and
6196 * then we'll be able to install our stuff !
6197 *
6198 * Upon return, there will be no owner for the current PMU
6199 */
6200 if (owner) pfm_lazy_save_regs(owner);
6201
6202 /*
6203 * To avoid leaking information to the user level when psr.sp=0,
6204 * we must reload ALL implemented pmds (even the ones we don't use).
6205 * In the kernel we only allow PFM_READ_PMDS on registers which
6206 * we initialized or requested (sampling) so there is no risk there.
6207 */
6208 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6209
6210 /*
6211 * ALL accessible PMCs are systematically reloaded, unused registers
6212 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6213 * up stale configuration.
6214 *
6215 * PMC0 is never in the mask. It is always restored separately
6216 */
6217 pmc_mask = ctx->ctx_all_pmcs[0];
6218
6219 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6220 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6221
6222 /*
6223 * check for pending overflow at the time the state
6224 * was saved.
6225 */
6226 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6227 /*
6228 * reload pmc0 with the overflow information
6229 * On McKinley PMU, this will trigger a PMU interrupt
6230 */
6231 ia64_set_pmc(0, ctx->th_pmcs[0]);
6232 ia64_srlz_d();
6233
6234 ctx->th_pmcs[0] = 0UL;
6235
6236 /*
6237 * will replay the PMU interrupt
6238 */
6239 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6240
6241 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6242 }
6243
6244 /*
6245 * establish new ownership.
6246 */
6247 SET_PMU_OWNER(task, ctx);
6248
6249 /*
6250 * restore the psr.up bit. measurement
6251 * is active again.
6252 * no PMU interrupt can happen at this point
6253 * because we still have interrupts disabled.
6254 */
6255 if (likely(psr_up)) pfm_set_psr_up();
6256}
6257#endif /* CONFIG_SMP */
6258
6259/*
6260 * this function assumes monitoring is stopped
6261 */
6262static void
6263pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6264{
6265 u64 pmc0;
6266 unsigned long mask2, val, pmd_val, ovfl_val;
6267 int i, can_access_pmu = 0;
6268 int is_self;
6269
6270 /*
6271 * is the caller the task being monitored (or which initiated the
6272 * session for system wide measurements)
6273 */
6274 is_self = ctx->ctx_task == task ? 1 : 0;
6275
6276 /*
6277 * can access PMU is task is the owner of the PMU state on the current CPU
6278 * or if we are running on the CPU bound to the context in system-wide mode
6279 * (that is not necessarily the task the context is attached to in this mode).
6280 * In system-wide we always have can_access_pmu true because a task running on an
6281 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6282 */
6283 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6284 if (can_access_pmu) {
6285 /*
6286 * Mark the PMU as not owned
6287 * This will cause the interrupt handler to do nothing in case an overflow
6288 * interrupt was in-flight
6289 * This also guarantees that pmc0 will contain the final state
6290 * It virtually gives us full control on overflow processing from that point
6291 * on.
6292 */
6293 SET_PMU_OWNER(NULL, NULL);
6294 DPRINT(("releasing ownership\n"));
6295
6296 /*
6297 * read current overflow status:
6298 *
6299 * we are guaranteed to read the final stable state
6300 */
6301 ia64_srlz_d();
6302 pmc0 = ia64_get_pmc(0); /* slow */
6303
6304 /*
6305 * reset freeze bit, overflow status information destroyed
6306 */
6307 pfm_unfreeze_pmu();
6308 } else {
6309 pmc0 = ctx->th_pmcs[0];
6310 /*
6311 * clear whatever overflow status bits there were
6312 */
6313 ctx->th_pmcs[0] = 0;
6314 }
6315 ovfl_val = pmu_conf->ovfl_val;
6316 /*
6317 * we save all the used pmds
6318 * we take care of overflows for counting PMDs
6319 *
6320 * XXX: sampling situation is not taken into account here
6321 */
6322 mask2 = ctx->ctx_used_pmds[0];
6323
6324 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6325
6326 for (i = 0; mask2; i++, mask2>>=1) {
6327
6328 /* skip non used pmds */
6329 if ((mask2 & 0x1) == 0) continue;
6330
6331 /*
6332 * can access PMU always true in system wide mode
6333 */
6334 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6335
6336 if (PMD_IS_COUNTING(i)) {
6337 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6338 task_pid_nr(task),
6339 i,
6340 ctx->ctx_pmds[i].val,
6341 val & ovfl_val));
6342
6343 /*
6344 * we rebuild the full 64 bit value of the counter
6345 */
6346 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6347
6348 /*
6349 * now everything is in ctx_pmds[] and we need
6350 * to clear the saved context from save_regs() such that
6351 * pfm_read_pmds() gets the correct value
6352 */
6353 pmd_val = 0UL;
6354
6355 /*
6356 * take care of overflow inline
6357 */
6358 if (pmc0 & (1UL << i)) {
6359 val += 1 + ovfl_val;
6360 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6361 }
6362 }
6363
6364 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6365
6366 if (is_self) ctx->th_pmds[i] = pmd_val;
6367
6368 ctx->ctx_pmds[i].val = val;
6369 }
6370}
6371
6372static struct irqaction perfmon_irqaction = {
6373 .handler = pfm_interrupt_handler,
6374 .name = "perfmon"
6375};
6376
6377static void
6378pfm_alt_save_pmu_state(void *data)
6379{
6380 struct pt_regs *regs;
6381
6382 regs = task_pt_regs(current);
6383
6384 DPRINT(("called\n"));
6385
6386 /*
6387 * should not be necessary but
6388 * let's take not risk
6389 */
6390 pfm_clear_psr_up();
6391 pfm_clear_psr_pp();
6392 ia64_psr(regs)->pp = 0;
6393
6394 /*
6395 * This call is required
6396 * May cause a spurious interrupt on some processors
6397 */
6398 pfm_freeze_pmu();
6399
6400 ia64_srlz_d();
6401}
6402
6403void
6404pfm_alt_restore_pmu_state(void *data)
6405{
6406 struct pt_regs *regs;
6407
6408 regs = task_pt_regs(current);
6409
6410 DPRINT(("called\n"));
6411
6412 /*
6413 * put PMU back in state expected
6414 * by perfmon
6415 */
6416 pfm_clear_psr_up();
6417 pfm_clear_psr_pp();
6418 ia64_psr(regs)->pp = 0;
6419
6420 /*
6421 * perfmon runs with PMU unfrozen at all times
6422 */
6423 pfm_unfreeze_pmu();
6424
6425 ia64_srlz_d();
6426}
6427
6428int
6429pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6430{
6431 int ret, i;
6432 int reserve_cpu;
6433
6434 /* some sanity checks */
6435 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6436
6437 /* do the easy test first */
6438 if (pfm_alt_intr_handler) return -EBUSY;
6439
6440 /* one at a time in the install or remove, just fail the others */
6441 if (!spin_trylock(&pfm_alt_install_check)) {
6442 return -EBUSY;
6443 }
6444
6445 /* reserve our session */
6446 for_each_online_cpu(reserve_cpu) {
6447 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6448 if (ret) goto cleanup_reserve;
6449 }
6450
6451 /* save the current system wide pmu states */
6452 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6453 if (ret) {
6454 DPRINT(("on_each_cpu() failed: %d\n", ret));
6455 goto cleanup_reserve;
6456 }
6457
6458 /* officially change to the alternate interrupt handler */
6459 pfm_alt_intr_handler = hdl;
6460
6461 spin_unlock(&pfm_alt_install_check);
6462
6463 return 0;
6464
6465cleanup_reserve:
6466 for_each_online_cpu(i) {
6467 /* don't unreserve more than we reserved */
6468 if (i >= reserve_cpu) break;
6469
6470 pfm_unreserve_session(NULL, 1, i);
6471 }
6472
6473 spin_unlock(&pfm_alt_install_check);
6474
6475 return ret;
6476}
6477EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6478
6479int
6480pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481{
6482 int i;
6483 int ret;
6484
6485 if (hdl == NULL) return -EINVAL;
6486
6487 /* cannot remove someone else's handler! */
6488 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6489
6490 /* one at a time in the install or remove, just fail the others */
6491 if (!spin_trylock(&pfm_alt_install_check)) {
6492 return -EBUSY;
6493 }
6494
6495 pfm_alt_intr_handler = NULL;
6496
6497 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6498 if (ret) {
6499 DPRINT(("on_each_cpu() failed: %d\n", ret));
6500 }
6501
6502 for_each_online_cpu(i) {
6503 pfm_unreserve_session(NULL, 1, i);
6504 }
6505
6506 spin_unlock(&pfm_alt_install_check);
6507
6508 return 0;
6509}
6510EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6511
6512/*
6513 * perfmon initialization routine, called from the initcall() table
6514 */
6515static int init_pfm_fs(void);
6516
6517static int __init
6518pfm_probe_pmu(void)
6519{
6520 pmu_config_t **p;
6521 int family;
6522
6523 family = local_cpu_data->family;
6524 p = pmu_confs;
6525
6526 while(*p) {
6527 if ((*p)->probe) {
6528 if ((*p)->probe() == 0) goto found;
6529 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6530 goto found;
6531 }
6532 p++;
6533 }
6534 return -1;
6535found:
6536 pmu_conf = *p;
6537 return 0;
6538}
6539
6540static const struct file_operations pfm_proc_fops = {
6541 .open = pfm_proc_open,
6542 .read = seq_read,
6543 .llseek = seq_lseek,
6544 .release = seq_release,
6545};
6546
6547int __init
6548pfm_init(void)
6549{
6550 unsigned int n, n_counters, i;
6551
6552 printk("perfmon: version %u.%u IRQ %u\n",
6553 PFM_VERSION_MAJ,
6554 PFM_VERSION_MIN,
6555 IA64_PERFMON_VECTOR);
6556
6557 if (pfm_probe_pmu()) {
6558 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6559 local_cpu_data->family);
6560 return -ENODEV;
6561 }
6562
6563 /*
6564 * compute the number of implemented PMD/PMC from the
6565 * description tables
6566 */
6567 n = 0;
6568 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6569 if (PMC_IS_IMPL(i) == 0) continue;
6570 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6571 n++;
6572 }
6573 pmu_conf->num_pmcs = n;
6574
6575 n = 0; n_counters = 0;
6576 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6577 if (PMD_IS_IMPL(i) == 0) continue;
6578 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6579 n++;
6580 if (PMD_IS_COUNTING(i)) n_counters++;
6581 }
6582 pmu_conf->num_pmds = n;
6583 pmu_conf->num_counters = n_counters;
6584
6585 /*
6586 * sanity checks on the number of debug registers
6587 */
6588 if (pmu_conf->use_rr_dbregs) {
6589 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6590 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6591 pmu_conf = NULL;
6592 return -1;
6593 }
6594 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6595 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6596 pmu_conf = NULL;
6597 return -1;
6598 }
6599 }
6600
6601 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6602 pmu_conf->pmu_name,
6603 pmu_conf->num_pmcs,
6604 pmu_conf->num_pmds,
6605 pmu_conf->num_counters,
6606 ffz(pmu_conf->ovfl_val));
6607
6608 /* sanity check */
6609 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6610 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6611 pmu_conf = NULL;
6612 return -1;
6613 }
6614
6615 /*
6616 * create /proc/perfmon (mostly for debugging purposes)
6617 */
6618 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6619 if (perfmon_dir == NULL) {
6620 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6621 pmu_conf = NULL;
6622 return -1;
6623 }
6624
6625 /*
6626 * create /proc/sys/kernel/perfmon (for debugging purposes)
6627 */
6628 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6629
6630 /*
6631 * initialize all our spinlocks
6632 */
6633 spin_lock_init(&pfm_sessions.pfs_lock);
6634 spin_lock_init(&pfm_buffer_fmt_lock);
6635
6636 init_pfm_fs();
6637
6638 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6639
6640 return 0;
6641}
6642
6643__initcall(pfm_init);
6644
6645/*
6646 * this function is called before pfm_init()
6647 */
6648void
6649pfm_init_percpu (void)
6650{
6651 static int first_time=1;
6652 /*
6653 * make sure no measurement is active
6654 * (may inherit programmed PMCs from EFI).
6655 */
6656 pfm_clear_psr_pp();
6657 pfm_clear_psr_up();
6658
6659 /*
6660 * we run with the PMU not frozen at all times
6661 */
6662 pfm_unfreeze_pmu();
6663
6664 if (first_time) {
6665 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6666 first_time=0;
6667 }
6668
6669 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6670 ia64_srlz_d();
6671}
6672
6673/*
6674 * used for debug purposes only
6675 */
6676void
6677dump_pmu_state(const char *from)
6678{
6679 struct task_struct *task;
6680 struct pt_regs *regs;
6681 pfm_context_t *ctx;
6682 unsigned long psr, dcr, info, flags;
6683 int i, this_cpu;
6684
6685 local_irq_save(flags);
6686
6687 this_cpu = smp_processor_id();
6688 regs = task_pt_regs(current);
6689 info = PFM_CPUINFO_GET();
6690 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6691
6692 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6693 local_irq_restore(flags);
6694 return;
6695 }
6696
6697 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6698 this_cpu,
6699 from,
6700 task_pid_nr(current),
6701 regs->cr_iip,
6702 current->comm);
6703
6704 task = GET_PMU_OWNER();
6705 ctx = GET_PMU_CTX();
6706
6707 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6708
6709 psr = pfm_get_psr();
6710
6711 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6712 this_cpu,
6713 ia64_get_pmc(0),
6714 psr & IA64_PSR_PP ? 1 : 0,
6715 psr & IA64_PSR_UP ? 1 : 0,
6716 dcr & IA64_DCR_PP ? 1 : 0,
6717 info,
6718 ia64_psr(regs)->up,
6719 ia64_psr(regs)->pp);
6720
6721 ia64_psr(regs)->up = 0;
6722 ia64_psr(regs)->pp = 0;
6723
6724 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6725 if (PMC_IS_IMPL(i) == 0) continue;
6726 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6727 }
6728
6729 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6730 if (PMD_IS_IMPL(i) == 0) continue;
6731 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6732 }
6733
6734 if (ctx) {
6735 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6736 this_cpu,
6737 ctx->ctx_state,
6738 ctx->ctx_smpl_vaddr,
6739 ctx->ctx_smpl_hdr,
6740 ctx->ctx_msgq_head,
6741 ctx->ctx_msgq_tail,
6742 ctx->ctx_saved_psr_up);
6743 }
6744 local_irq_restore(flags);
6745}
6746
6747/*
6748 * called from process.c:copy_thread(). task is new child.
6749 */
6750void
6751pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6752{
6753 struct thread_struct *thread;
6754
6755 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6756
6757 thread = &task->thread;
6758
6759 /*
6760 * cut links inherited from parent (current)
6761 */
6762 thread->pfm_context = NULL;
6763
6764 PFM_SET_WORK_PENDING(task, 0);
6765
6766 /*
6767 * the psr bits are already set properly in copy_threads()
6768 */
6769}
6770#else /* !CONFIG_PERFMON */
6771asmlinkage long
6772sys_perfmonctl (int fd, int cmd, void *arg, int count)
6773{
6774 return -ENOSYS;
6775}
6776#endif /* CONFIG_PERFMON */
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
36#include <linux/smp.h>
37#include <linux/pagemap.h>
38#include <linux/mount.h>
39#include <linux/bitops.h>
40#include <linux/capability.h>
41#include <linux/rcupdate.h>
42#include <linux/completion.h>
43#include <linux/tracehook.h>
44#include <linux/slab.h>
45#include <linux/cpu.h>
46
47#include <asm/errno.h>
48#include <asm/intrinsics.h>
49#include <asm/page.h>
50#include <asm/perfmon.h>
51#include <asm/processor.h>
52#include <asm/signal.h>
53#include <asm/uaccess.h>
54#include <asm/delay.h>
55
56#ifdef CONFIG_PERFMON
57/*
58 * perfmon context state
59 */
60#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64
65#define PFM_INVALID_ACTIVATION (~0UL)
66
67#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69
70/*
71 * depth of message queue
72 */
73#define PFM_MAX_MSGS 32
74#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75
76/*
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * bit0 : register implemented
80 * bit1 : end marker
81 * bit2-3 : reserved
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
85 * bit8-31: reserved
86 */
87#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88#define PFM_REG_IMPL 0x1 /* register implemented */
89#define PFM_REG_END 0x2 /* end marker */
90#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95
96#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98
99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100
101/* i assumed unsigned */
102#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104
105/* XXX: these assume that register i is implemented */
106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110
111#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115
116#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118
119#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121#define PFM_CTX_TASK(h) (h)->ctx_task
122
123#define PMU_PMC_OI 5 /* position of pmc.oi bit */
124
125/* XXX: does not support more than 64 PMDs */
126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128
129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130
131#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134#define PFM_CODE_RR 0 /* requesting code range restriction */
135#define PFM_DATA_RR 1 /* requestion data range restriction */
136
137#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140
141#define RDEP(x) (1UL<<(x))
142
143/*
144 * context protection macros
145 * in SMP:
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * in UP:
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 *
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
154 *
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
160 */
161#define PROTECT_CTX(c, f) \
162 do { \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 } while(0)
167
168#define UNPROTECT_CTX(c, f) \
169 do { \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 } while(0)
173
174#define PROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
177 } while(0)
178
179
180#define UNPROTECT_CTX_NOPRINT(c, f) \
181 do { \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 } while(0)
184
185
186#define PROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_lock(&(c)->ctx_lock); \
189 } while(0)
190
191#define UNPROTECT_CTX_NOIRQ(c) \
192 do { \
193 spin_unlock(&(c)->ctx_lock); \
194 } while(0)
195
196
197#ifdef CONFIG_SMP
198
199#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202
203#else /* !CONFIG_SMP */
204#define SET_ACTIVATION(t) do {} while(0)
205#define GET_ACTIVATION(t) do {} while(0)
206#define INC_ACTIVATION(t) do {} while(0)
207#endif /* CONFIG_SMP */
208
209#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212
213#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215
216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217
218/*
219 * cmp0 must be the value of pmc0
220 */
221#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222
223#define PFMFS_MAGIC 0xa0b4d889
224
225/*
226 * debugging
227 */
228#define PFM_DEBUGGING 1
229#ifdef PFM_DEBUGGING
230#define DPRINT(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 } while (0)
234
235#define DPRINT_ovfl(a) \
236 do { \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 } while (0)
239#endif
240
241/*
242 * 64-bit software counter structure
243 *
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 */
246typedef struct {
247 unsigned long val; /* virtual 64bit counter value */
248 unsigned long lval; /* last reset value */
249 unsigned long long_reset; /* reset value on sampling overflow */
250 unsigned long short_reset; /* reset value on overflow */
251 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed; /* seed for random-number generator */
254 unsigned long mask; /* mask for random-number generator */
255 unsigned int flags; /* notify/do not notify */
256 unsigned long eventid; /* overflow event identifier */
257} pfm_counter_t;
258
259/*
260 * context flags
261 */
262typedef struct {
263 unsigned int block:1; /* when 1, task will blocked on user notifications */
264 unsigned int system:1; /* do system wide monitoring */
265 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling:1; /* true if using a custom format */
267 unsigned int excl_idle:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg:1; /* no message sent on overflow */
271 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved:22;
273} pfm_context_flags_t;
274
275#define PFM_TRAP_REASON_NONE 0x0 /* default value */
276#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
278
279
280/*
281 * perfmon context: encapsulates all the state of a monitoring session
282 */
283
284typedef struct pfm_context {
285 spinlock_t ctx_lock; /* context protection */
286
287 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289
290 struct task_struct *ctx_task; /* task to which context is attached */
291
292 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293
294 struct completion ctx_restart_done; /* use for blocking notification mode */
295
296 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299
300 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303
304 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305
306 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310
311 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312
313 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
314 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315
316 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
317
318 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321
322 int ctx_fd; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324
325 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
326 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size; /* size of sampling buffer */
328 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329
330 wait_queue_head_t ctx_msgq_wait;
331 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
332 int ctx_msgq_head;
333 int ctx_msgq_tail;
334 struct fasync_struct *ctx_async_queue;
335
336 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
337} pfm_context_t;
338
339/*
340 * magic number used to verify that structure is really
341 * a perfmon context
342 */
343#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344
345#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346
347#ifdef CONFIG_SMP
348#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350#else
351#define SET_LAST_CPU(ctx, v) do {} while(0)
352#define GET_LAST_CPU(ctx) do {} while(0)
353#endif
354
355
356#define ctx_fl_block ctx_flags.block
357#define ctx_fl_system ctx_flags.system
358#define ctx_fl_using_dbreg ctx_flags.using_dbreg
359#define ctx_fl_is_sampling ctx_flags.is_sampling
360#define ctx_fl_excl_idle ctx_flags.excl_idle
361#define ctx_fl_going_zombie ctx_flags.going_zombie
362#define ctx_fl_trap_reason ctx_flags.trap_reason
363#define ctx_fl_no_msg ctx_flags.no_msg
364#define ctx_fl_can_restart ctx_flags.can_restart
365
366#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368
369/*
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
372 */
373typedef struct {
374 spinlock_t pfs_lock; /* lock the structure */
375
376 unsigned int pfs_task_sessions; /* number of per task sessions */
377 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
380 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381} pfm_session_t;
382
383/*
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
387 */
388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389typedef struct {
390 unsigned int type;
391 int pm_pos;
392 unsigned long default_value; /* power-on default value */
393 unsigned long reserved_mask; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check;
395 pfm_reg_check_t write_check;
396 unsigned long dep_pmd[4];
397 unsigned long dep_pmc[4];
398} pfm_reg_desc_t;
399
400/* assume cnum is a valid monitor */
401#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402
403/*
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
406 *
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
414 */
415typedef struct {
416 unsigned long ovfl_val; /* overflow value for counters */
417
418 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420
421 unsigned int num_pmcs; /* number of PMCS: computed at init time */
422 unsigned int num_pmds; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425
426 char *pmu_name; /* PMU family name */
427 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
428 unsigned int flags; /* pmu specific flags */
429 unsigned int num_ibrs; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs; /* number of DBRS: computed at init time */
431 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
434} pmu_config_t;
435/*
436 * PMU specific flags
437 */
438#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439
440/*
441 * debug register related type definitions
442 */
443typedef struct {
444 unsigned long ibr_mask:56;
445 unsigned long ibr_plm:4;
446 unsigned long ibr_ig:3;
447 unsigned long ibr_x:1;
448} ibr_mask_reg_t;
449
450typedef struct {
451 unsigned long dbr_mask:56;
452 unsigned long dbr_plm:4;
453 unsigned long dbr_ig:2;
454 unsigned long dbr_w:1;
455 unsigned long dbr_r:1;
456} dbr_mask_reg_t;
457
458typedef union {
459 unsigned long val;
460 ibr_mask_reg_t ibr;
461 dbr_mask_reg_t dbr;
462} dbreg_t;
463
464
465/*
466 * perfmon command descriptions
467 */
468typedef struct {
469 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 char *cmd_name;
471 int cmd_flags;
472 unsigned int cmd_narg;
473 size_t cmd_argsize;
474 int (*cmd_getsize)(void *arg, size_t *sz);
475} pfm_cmd_desc_t;
476
477#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481
482
483#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488
489#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490
491typedef struct {
492 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls;
499 unsigned long pfm_smpl_handler_cycles;
500 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501} pfm_stats_t;
502
503/*
504 * perfmon internal variables
505 */
506static pfm_stats_t pfm_stats[NR_CPUS];
507static pfm_session_t pfm_sessions; /* global sessions information */
508
509static DEFINE_SPINLOCK(pfm_alt_install_check);
510static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511
512static struct proc_dir_entry *perfmon_dir;
513static pfm_uuid_t pfm_null_uuid = {0,};
514
515static spinlock_t pfm_buffer_fmt_lock;
516static LIST_HEAD(pfm_buffer_fmt_list);
517
518static pmu_config_t *pmu_conf;
519
520/* sysctl() controls */
521pfm_sysctl_t pfm_sysctl;
522EXPORT_SYMBOL(pfm_sysctl);
523
524static ctl_table pfm_ctl_table[]={
525 {
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = proc_dointvec,
531 },
532 {
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
536 .mode = 0666,
537 .proc_handler = proc_dointvec,
538 },
539 {
540 .procname = "fastctxsw",
541 .data = &pfm_sysctl.fastctxsw,
542 .maxlen = sizeof(int),
543 .mode = 0600,
544 .proc_handler = proc_dointvec,
545 },
546 {
547 .procname = "expert_mode",
548 .data = &pfm_sysctl.expert_mode,
549 .maxlen = sizeof(int),
550 .mode = 0600,
551 .proc_handler = proc_dointvec,
552 },
553 {}
554};
555static ctl_table pfm_sysctl_dir[] = {
556 {
557 .procname = "perfmon",
558 .mode = 0555,
559 .child = pfm_ctl_table,
560 },
561 {}
562};
563static ctl_table pfm_sysctl_root[] = {
564 {
565 .procname = "kernel",
566 .mode = 0555,
567 .child = pfm_sysctl_dir,
568 },
569 {}
570};
571static struct ctl_table_header *pfm_sysctl_header;
572
573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574
575#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576#define pfm_get_cpu_data(a,b) per_cpu(a, b)
577
578static inline void
579pfm_put_task(struct task_struct *task)
580{
581 if (task != current) put_task_struct(task);
582}
583
584static inline void
585pfm_reserve_page(unsigned long a)
586{
587 SetPageReserved(vmalloc_to_page((void *)a));
588}
589static inline void
590pfm_unreserve_page(unsigned long a)
591{
592 ClearPageReserved(vmalloc_to_page((void*)a));
593}
594
595static inline unsigned long
596pfm_protect_ctx_ctxsw(pfm_context_t *x)
597{
598 spin_lock(&(x)->ctx_lock);
599 return 0UL;
600}
601
602static inline void
603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604{
605 spin_unlock(&(x)->ctx_lock);
606}
607
608/* forward declaration */
609static const struct dentry_operations pfmfs_dentry_operations;
610
611static struct dentry *
612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613{
614 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 PFMFS_MAGIC);
616}
617
618static struct file_system_type pfm_fs_type = {
619 .name = "pfmfs",
620 .mount = pfmfs_mount,
621 .kill_sb = kill_anon_super,
622};
623MODULE_ALIAS_FS("pfmfs");
624
625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630
631
632/* forward declaration */
633static const struct file_operations pfm_file_ops;
634
635/*
636 * forward declarations
637 */
638#ifndef CONFIG_SMP
639static void pfm_lazy_save_regs (struct task_struct *ta);
640#endif
641
642void dump_pmu_state(const char *);
643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644
645#include "perfmon_itanium.h"
646#include "perfmon_mckinley.h"
647#include "perfmon_montecito.h"
648#include "perfmon_generic.h"
649
650static pmu_config_t *pmu_confs[]={
651 &pmu_conf_mont,
652 &pmu_conf_mck,
653 &pmu_conf_ita,
654 &pmu_conf_gen, /* must be last */
655 NULL
656};
657
658
659static int pfm_end_notify_user(pfm_context_t *ctx);
660
661static inline void
662pfm_clear_psr_pp(void)
663{
664 ia64_rsm(IA64_PSR_PP);
665 ia64_srlz_i();
666}
667
668static inline void
669pfm_set_psr_pp(void)
670{
671 ia64_ssm(IA64_PSR_PP);
672 ia64_srlz_i();
673}
674
675static inline void
676pfm_clear_psr_up(void)
677{
678 ia64_rsm(IA64_PSR_UP);
679 ia64_srlz_i();
680}
681
682static inline void
683pfm_set_psr_up(void)
684{
685 ia64_ssm(IA64_PSR_UP);
686 ia64_srlz_i();
687}
688
689static inline unsigned long
690pfm_get_psr(void)
691{
692 unsigned long tmp;
693 tmp = ia64_getreg(_IA64_REG_PSR);
694 ia64_srlz_i();
695 return tmp;
696}
697
698static inline void
699pfm_set_psr_l(unsigned long val)
700{
701 ia64_setreg(_IA64_REG_PSR_L, val);
702 ia64_srlz_i();
703}
704
705static inline void
706pfm_freeze_pmu(void)
707{
708 ia64_set_pmc(0,1UL);
709 ia64_srlz_d();
710}
711
712static inline void
713pfm_unfreeze_pmu(void)
714{
715 ia64_set_pmc(0,0UL);
716 ia64_srlz_d();
717}
718
719static inline void
720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721{
722 int i;
723
724 for (i=0; i < nibrs; i++) {
725 ia64_set_ibr(i, ibrs[i]);
726 ia64_dv_serialize_instruction();
727 }
728 ia64_srlz_i();
729}
730
731static inline void
732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733{
734 int i;
735
736 for (i=0; i < ndbrs; i++) {
737 ia64_set_dbr(i, dbrs[i]);
738 ia64_dv_serialize_data();
739 }
740 ia64_srlz_d();
741}
742
743/*
744 * PMD[i] must be a counter. no check is made
745 */
746static inline unsigned long
747pfm_read_soft_counter(pfm_context_t *ctx, int i)
748{
749 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750}
751
752/*
753 * PMD[i] must be a counter. no check is made
754 */
755static inline void
756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757{
758 unsigned long ovfl_val = pmu_conf->ovfl_val;
759
760 ctx->ctx_pmds[i].val = val & ~ovfl_val;
761 /*
762 * writing to unimplemented part is ignore, so we do not need to
763 * mask off top part
764 */
765 ia64_set_pmd(i, val & ovfl_val);
766}
767
768static pfm_msg_t *
769pfm_get_new_msg(pfm_context_t *ctx)
770{
771 int idx, next;
772
773 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 if (next == ctx->ctx_msgq_head) return NULL;
777
778 idx = ctx->ctx_msgq_tail;
779 ctx->ctx_msgq_tail = next;
780
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782
783 return ctx->ctx_msgq+idx;
784}
785
786static pfm_msg_t *
787pfm_get_next_msg(pfm_context_t *ctx)
788{
789 pfm_msg_t *msg;
790
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792
793 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794
795 /*
796 * get oldest message
797 */
798 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799
800 /*
801 * and move forward
802 */
803 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806
807 return msg;
808}
809
810static void
811pfm_reset_msgq(pfm_context_t *ctx)
812{
813 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx));
815}
816
817static void *
818pfm_rvmalloc(unsigned long size)
819{
820 void *mem;
821 unsigned long addr;
822
823 size = PAGE_ALIGN(size);
824 mem = vzalloc(size);
825 if (mem) {
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr = (unsigned long)mem;
828 while (size > 0) {
829 pfm_reserve_page(addr);
830 addr+=PAGE_SIZE;
831 size-=PAGE_SIZE;
832 }
833 }
834 return mem;
835}
836
837static void
838pfm_rvfree(void *mem, unsigned long size)
839{
840 unsigned long addr;
841
842 if (mem) {
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 addr = (unsigned long) mem;
845 while ((long) size > 0) {
846 pfm_unreserve_page(addr);
847 addr+=PAGE_SIZE;
848 size-=PAGE_SIZE;
849 }
850 vfree(mem);
851 }
852 return;
853}
854
855static pfm_context_t *
856pfm_context_alloc(int ctx_flags)
857{
858 pfm_context_t *ctx;
859
860 /*
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
863 */
864 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 if (ctx) {
866 DPRINT(("alloc ctx @%p\n", ctx));
867
868 /*
869 * init context protection lock
870 */
871 spin_lock_init(&ctx->ctx_lock);
872
873 /*
874 * context is unloaded
875 */
876 ctx->ctx_state = PFM_CTX_UNLOADED;
877
878 /*
879 * initialization of context's flags
880 */
881 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 /*
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 */
888
889 /*
890 * init restart semaphore to locked
891 */
892 init_completion(&ctx->ctx_restart_done);
893
894 /*
895 * activation is used in SMP only
896 */
897 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 SET_LAST_CPU(ctx, -1);
899
900 /*
901 * initialize notification message queue
902 */
903 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 init_waitqueue_head(&ctx->ctx_msgq_wait);
905 init_waitqueue_head(&ctx->ctx_zombieq);
906
907 }
908 return ctx;
909}
910
911static void
912pfm_context_free(pfm_context_t *ctx)
913{
914 if (ctx) {
915 DPRINT(("free ctx @%p\n", ctx));
916 kfree(ctx);
917 }
918}
919
920static void
921pfm_mask_monitoring(struct task_struct *task)
922{
923 pfm_context_t *ctx = PFM_GET_CTX(task);
924 unsigned long mask, val, ovfl_mask;
925 int i;
926
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928
929 ovfl_mask = pmu_conf->ovfl_val;
930 /*
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
935 * to the owner.
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
940 *
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 *
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
947 * pfm_restart).
948 */
949 mask = ctx->ctx_used_pmds[0];
950 for (i = 0; mask; i++, mask>>=1) {
951 /* skip non used pmds */
952 if ((mask & 0x1) == 0) continue;
953 val = ia64_get_pmd(i);
954
955 if (PMD_IS_COUNTING(i)) {
956 /*
957 * we rebuild the full 64 bit value of the counter
958 */
959 ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 } else {
961 ctx->ctx_pmds[i].val = val;
962 }
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 i,
965 ctx->ctx_pmds[i].val,
966 val & ovfl_mask));
967 }
968 /*
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
971 * the user
972 *
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
975 */
976 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 if ((mask & 0x1) == 0UL) continue;
979 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 ctx->th_pmcs[i] &= ~0xfUL;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 }
983 /*
984 * make all of this visible
985 */
986 ia64_srlz_d();
987}
988
989/*
990 * must always be done with task == current
991 *
992 * context must be in MASKED state when calling
993 */
994static void
995pfm_restore_monitoring(struct task_struct *task)
996{
997 pfm_context_t *ctx = PFM_GET_CTX(task);
998 unsigned long mask, ovfl_mask;
999 unsigned long psr, val;
1000 int i, is_system;
1001
1002 is_system = ctx->ctx_fl_system;
1003 ovfl_mask = pmu_conf->ovfl_val;
1004
1005 if (task != current) {
1006 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 return;
1008 }
1009 if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 return;
1013 }
1014 psr = pfm_get_psr();
1015 /*
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1022 *
1023 * system-wide session are pinned and self-monitoring
1024 */
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 pfm_clear_psr_pp();
1029 } else {
1030 pfm_clear_psr_up();
1031 }
1032 /*
1033 * first, we restore the PMD
1034 */
1035 mask = ctx->ctx_used_pmds[0];
1036 for (i = 0; mask; i++, mask>>=1) {
1037 /* skip non used pmds */
1038 if ((mask & 0x1) == 0) continue;
1039
1040 if (PMD_IS_COUNTING(i)) {
1041 /*
1042 * we split the 64bit value according to
1043 * counter width
1044 */
1045 val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 } else {
1048 val = ctx->ctx_pmds[i].val;
1049 }
1050 ia64_set_pmd(i, val);
1051
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 i,
1054 ctx->ctx_pmds[i].val,
1055 val));
1056 }
1057 /*
1058 * restore the PMCs
1059 */
1060 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 if ((mask & 0x1) == 0UL) continue;
1063 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 }
1068 ia64_srlz_d();
1069
1070 /*
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1073 */
1074 if (ctx->ctx_fl_using_dbreg) {
1075 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 }
1078
1079 /*
1080 * now restore PSR
1081 */
1082 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 /* enable dcr pp */
1084 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 ia64_srlz_i();
1086 }
1087 pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093 int i;
1094
1095 ia64_srlz_d();
1096
1097 for (i=0; mask; i++, mask>>=1) {
1098 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 }
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108 int i;
1109 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111 for (i=0; mask; i++, mask>>=1) {
1112 if ((mask & 0x1) == 0) continue;
1113 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 ia64_set_pmd(i, val);
1115 }
1116 ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125 unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 unsigned long mask = ctx->ctx_all_pmds[0];
1127 unsigned long val;
1128 int i;
1129
1130 DPRINT(("mask=0x%lx\n", mask));
1131
1132 for (i=0; mask; i++, mask>>=1) {
1133
1134 val = ctx->ctx_pmds[i].val;
1135
1136 /*
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1141 */
1142 if (PMD_IS_COUNTING(i)) {
1143 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 val &= ovfl_val;
1145 }
1146 ctx->th_pmds[i] = val;
1147
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 i,
1150 ctx->th_pmds[i],
1151 ctx->ctx_pmds[i].val));
1152 }
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161 unsigned long mask = ctx->ctx_all_pmcs[0];
1162 int i;
1163
1164 DPRINT(("mask=0x%lx\n", mask));
1165
1166 for (i=0; mask; i++, mask>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 }
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178 int i;
1179
1180 for (i=0; mask; i++, mask>>=1) {
1181 if ((mask & 0x1) == 0) continue;
1182 ia64_set_pmc(i, pmcs[i]);
1183 }
1184 ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190 return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196 int ret = 0;
1197 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204 int ret = 0;
1205 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 int cpu, void *arg)
1213{
1214 int ret = 0;
1215 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 int cpu, void *arg)
1222{
1223 int ret = 0;
1224 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231 int ret = 0;
1232 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239 int ret = 0;
1240 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247 struct list_head * pos;
1248 pfm_buffer_fmt_t * entry;
1249
1250 list_for_each(pos, &pfm_buffer_fmt_list) {
1251 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 return entry;
1254 }
1255 return NULL;
1256}
1257
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264 pfm_buffer_fmt_t * fmt;
1265 spin_lock(&pfm_buffer_fmt_lock);
1266 fmt = __pfm_find_buffer_fmt(uuid);
1267 spin_unlock(&pfm_buffer_fmt_lock);
1268 return fmt;
1269}
1270
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274 int ret = 0;
1275
1276 /* some sanity checks */
1277 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279 /* we need at least a handler */
1280 if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282 /*
1283 * XXX: need check validity of fmt_arg_size
1284 */
1285
1286 spin_lock(&pfm_buffer_fmt_lock);
1287
1288 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 ret = -EBUSY;
1291 goto out;
1292 }
1293 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297 spin_unlock(&pfm_buffer_fmt_lock);
1298 return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305 pfm_buffer_fmt_t *fmt;
1306 int ret = 0;
1307
1308 spin_lock(&pfm_buffer_fmt_lock);
1309
1310 fmt = __pfm_find_buffer_fmt(uuid);
1311 if (!fmt) {
1312 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 ret = -EINVAL;
1314 goto out;
1315 }
1316 list_del_init(&fmt->fmt_list);
1317 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320 spin_unlock(&pfm_buffer_fmt_lock);
1321 return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329 unsigned long flags;
1330 /*
1331 * validity checks on cpu_mask have been done upstream
1332 */
1333 LOCK_PFS(flags);
1334
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1341
1342 if (is_syswide) {
1343 /*
1344 * cannot mix system wide and per-task sessions
1345 */
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1350 }
1351
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358 pfm_sessions.pfs_sys_sessions++ ;
1359
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1363 }
1364
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1371
1372 /*
1373 * Force idle() into poll mode
1374 */
1375 cpu_idle_poll_ctrl(true);
1376
1377 UNLOCK_PFS(flags);
1378
1379 return 0;
1380
1381error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385abort:
1386 UNLOCK_PFS(flags);
1387
1388 return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395 unsigned long flags;
1396 /*
1397 * validity checks on cpu_mask have been done upstream
1398 */
1399 LOCK_PFS(flags);
1400
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1407
1408
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 /*
1412 * would not work with perfmon+more than one bit in cpu_mask
1413 */
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1419 }
1420 }
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1424 }
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1431
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1434
1435 UNLOCK_PFS(flags);
1436
1437 return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448 struct task_struct *task = current;
1449 int r;
1450
1451 /* sanity checks */
1452 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 return -EINVAL;
1455 }
1456
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459 /*
1460 * does the actual unmapping
1461 */
1462 r = vm_munmap((unsigned long)vaddr, size);
1463
1464 if (r !=0) {
1465 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 }
1467
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470 return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480 pfm_buffer_fmt_t *fmt;
1481
1482 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484 /*
1485 * we won't use the buffer format anymore
1486 */
1487 fmt = ctx->ctx_buf_fmt;
1488
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_hdr,
1491 ctx->ctx_smpl_size,
1492 ctx->ctx_smpl_vaddr));
1493
1494 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496 /*
1497 * free the buffer
1498 */
1499 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501 ctx->ctx_smpl_hdr = NULL;
1502 ctx->ctx_smpl_size = 0UL;
1503
1504 return 0;
1505
1506invalid_free:
1507 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515 if (fmt == NULL) return;
1516
1517 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532 int err = register_filesystem(&pfm_fs_type);
1533 if (!err) {
1534 pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 err = PTR_ERR(pfmfs_mnt);
1536 if (IS_ERR(pfmfs_mnt))
1537 unregister_filesystem(&pfm_fs_type);
1538 else
1539 err = 0;
1540 }
1541 return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547 pfm_context_t *ctx;
1548 pfm_msg_t *msg;
1549 ssize_t ret;
1550 unsigned long flags;
1551 DECLARE_WAITQUEUE(wait, current);
1552 if (PFM_IS_FILE(filp) == 0) {
1553 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 return -EINVAL;
1555 }
1556
1557 ctx = filp->private_data;
1558 if (ctx == NULL) {
1559 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 return -EINVAL;
1561 }
1562
1563 /*
1564 * check even when there is no message
1565 */
1566 if (size < sizeof(pfm_msg_t)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 return -EINVAL;
1569 }
1570
1571 PROTECT_CTX(ctx, flags);
1572
1573 /*
1574 * put ourselves on the wait queue
1575 */
1576 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579 for(;;) {
1580 /*
1581 * check wait queue
1582 */
1583
1584 set_current_state(TASK_INTERRUPTIBLE);
1585
1586 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588 ret = 0;
1589 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591 UNPROTECT_CTX(ctx, flags);
1592
1593 /*
1594 * check non-blocking read
1595 */
1596 ret = -EAGAIN;
1597 if(filp->f_flags & O_NONBLOCK) break;
1598
1599 /*
1600 * check pending signals
1601 */
1602 if(signal_pending(current)) {
1603 ret = -EINTR;
1604 break;
1605 }
1606 /*
1607 * no message, so wait
1608 */
1609 schedule();
1610
1611 PROTECT_CTX(ctx, flags);
1612 }
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614 set_current_state(TASK_RUNNING);
1615 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617 if (ret < 0) goto abort;
1618
1619 ret = -EINVAL;
1620 msg = pfm_get_next_msg(ctx);
1621 if (msg == NULL) {
1622 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 goto abort_locked;
1624 }
1625
1626 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628 ret = -EFAULT;
1629 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632 UNPROTECT_CTX(ctx, flags);
1633abort:
1634 return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639 size_t size, loff_t *ppos)
1640{
1641 DPRINT(("pfm_write called\n"));
1642 return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648 pfm_context_t *ctx;
1649 unsigned long flags;
1650 unsigned int mask = 0;
1651
1652 if (PFM_IS_FILE(filp) == 0) {
1653 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 return 0;
1655 }
1656
1657 ctx = filp->private_data;
1658 if (ctx == NULL) {
1659 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 return 0;
1661 }
1662
1663
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668 PROTECT_CTX(ctx, flags);
1669
1670 if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 mask = POLLIN | POLLRDNORM;
1672
1673 UNPROTECT_CTX(ctx, flags);
1674
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677 return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683 DPRINT(("pfm_ioctl called\n"));
1684 return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693 int ret;
1694
1695 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current),
1699 fd,
1700 on,
1701 ctx->ctx_async_queue, ret));
1702
1703 return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709 pfm_context_t *ctx;
1710 int ret;
1711
1712 if (PFM_IS_FILE(filp) == 0) {
1713 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 return -EBADF;
1715 }
1716
1717 ctx = filp->private_data;
1718 if (ctx == NULL) {
1719 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 return -EBADF;
1721 }
1722 /*
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1725 *
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1728 */
1729 ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 fd,
1734 on,
1735 ctx->ctx_async_queue, ret));
1736
1737 return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749 pfm_context_t *ctx = (pfm_context_t *)info;
1750 struct pt_regs *regs = task_pt_regs(current);
1751 struct task_struct *owner;
1752 unsigned long flags;
1753 int ret;
1754
1755 if (ctx->ctx_cpu != smp_processor_id()) {
1756 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1757 ctx->ctx_cpu,
1758 smp_processor_id());
1759 return;
1760 }
1761 owner = GET_PMU_OWNER();
1762 if (owner != ctx->ctx_task) {
1763 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 smp_processor_id(),
1765 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 return;
1767 }
1768 if (GET_PMU_CTX() != ctx) {
1769 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 smp_processor_id(),
1771 GET_PMU_CTX(), ctx);
1772 return;
1773 }
1774
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 /*
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1779 * this CPU
1780 */
1781 local_irq_save(flags);
1782
1783 ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 if (ret) {
1785 DPRINT(("context_unload returned %d\n", ret));
1786 }
1787
1788 /*
1789 * unmask interrupts, PMU interrupts are now spurious here
1790 */
1791 local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797 int ret;
1798
1799 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812 pfm_context_t *ctx;
1813 struct task_struct *task;
1814 struct pt_regs *regs;
1815 unsigned long flags;
1816 unsigned long smpl_buf_size = 0UL;
1817 void *smpl_buf_vaddr = NULL;
1818 int state, is_system;
1819
1820 if (PFM_IS_FILE(filp) == 0) {
1821 DPRINT(("bad magic for\n"));
1822 return -EBADF;
1823 }
1824
1825 ctx = filp->private_data;
1826 if (ctx == NULL) {
1827 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 return -EBADF;
1829 }
1830
1831 /*
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1835 *
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1843 */
1844 PROTECT_CTX(ctx, flags);
1845
1846 state = ctx->ctx_state;
1847 is_system = ctx->ctx_fl_system;
1848
1849 task = PFM_CTX_TASK(ctx);
1850 regs = task_pt_regs(task);
1851
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1853 state,
1854 task == current ? 1 : 0));
1855
1856 /*
1857 * if state == UNLOADED, then task is NULL
1858 */
1859
1860 /*
1861 * we must stop and unload because we are losing access to the context.
1862 */
1863 if (task == current) {
1864#ifdef CONFIG_SMP
1865 /*
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1869 *
1870 * We need to release the resource on the ORIGINAL cpu.
1871 */
1872 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 /*
1876 * keep context protected but unmask interrupt for IPI
1877 */
1878 local_irq_restore(flags);
1879
1880 pfm_syswide_cleanup_other_cpu(ctx);
1881
1882 /*
1883 * restore interrupt masking
1884 */
1885 local_irq_save(flags);
1886
1887 /*
1888 * context is unloaded at this point
1889 */
1890 } else
1891#endif /* CONFIG_SMP */
1892 {
1893
1894 DPRINT(("forcing unload\n"));
1895 /*
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1898 */
1899 pfm_context_unload(ctx, NULL, 0, regs);
1900
1901 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 }
1903 }
1904
1905 /*
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1908 *
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1911 *
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1914 * do anything here
1915 */
1916 if (ctx->ctx_smpl_vaddr && current->mm) {
1917 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 smpl_buf_size = ctx->ctx_smpl_size;
1919 }
1920
1921 UNPROTECT_CTX(ctx, flags);
1922
1923 /*
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1927 *
1928 */
1929 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931 return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951 pfm_context_t *ctx;
1952 struct task_struct *task;
1953 struct pt_regs *regs;
1954 DECLARE_WAITQUEUE(wait, current);
1955 unsigned long flags;
1956 unsigned long smpl_buf_size = 0UL;
1957 void *smpl_buf_addr = NULL;
1958 int free_possible = 1;
1959 int state, is_system;
1960
1961 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963 if (PFM_IS_FILE(filp) == 0) {
1964 DPRINT(("bad magic\n"));
1965 return -EBADF;
1966 }
1967
1968 ctx = filp->private_data;
1969 if (ctx == NULL) {
1970 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 return -EBADF;
1972 }
1973
1974 PROTECT_CTX(ctx, flags);
1975
1976 state = ctx->ctx_state;
1977 is_system = ctx->ctx_fl_system;
1978
1979 task = PFM_CTX_TASK(ctx);
1980 regs = task_pt_regs(task);
1981
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1983 state,
1984 task == current ? 1 : 0));
1985
1986 /*
1987 * if task == current, then pfm_flush() unloaded the context
1988 */
1989 if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991 /*
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1994 */
1995
1996 /*
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2000 *
2001 * This situation is only possible for per-task mode
2002 */
2003 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005 /*
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2008 *
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2015 *
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2018 */
2019 ctx->ctx_fl_going_zombie = 1;
2020
2021 /*
2022 * force task to wake up from MASKED state
2023 */
2024 complete(&ctx->ctx_restart_done);
2025
2026 DPRINT(("waking up ctx_state=%d\n", state));
2027
2028 /*
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2031 *
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2035 */
2036 set_current_state(TASK_INTERRUPTIBLE);
2037 add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039 UNPROTECT_CTX(ctx, flags);
2040
2041 /*
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2045 */
2046 schedule();
2047
2048
2049 PROTECT_CTX(ctx, flags);
2050
2051
2052 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053 set_current_state(TASK_RUNNING);
2054
2055 /*
2056 * context is unloaded at this point
2057 */
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 }
2060 else if (task != current) {
2061#ifdef CONFIG_SMP
2062 /*
2063 * switch context to zombie state
2064 */
2065 ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 /*
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2071 */
2072 free_possible = 0;
2073#else
2074 pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076 }
2077
2078doit:
2079 /* reload state, may have changed during opening of critical section */
2080 state = ctx->ctx_state;
2081
2082 /*
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2085 */
2086
2087 /*
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2095 */
2096 if (ctx->ctx_smpl_hdr) {
2097 smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 smpl_buf_size = ctx->ctx_smpl_size;
2099 /* no more sampling */
2100 ctx->ctx_smpl_hdr = NULL;
2101 ctx->ctx_fl_is_sampling = 0;
2102 }
2103
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 state,
2106 free_possible,
2107 smpl_buf_addr,
2108 smpl_buf_size));
2109
2110 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112 /*
2113 * UNLOADED that the session has already been unreserved.
2114 */
2115 if (state == PFM_CTX_ZOMBIE) {
2116 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 }
2118
2119 /*
2120 * disconnect file descriptor from context must be done
2121 * before we unlock.
2122 */
2123 filp->private_data = NULL;
2124
2125 /*
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2128 * can freely cut.
2129 *
2130 * If we have a deferred free, only the caller side is disconnected.
2131 */
2132 UNPROTECT_CTX(ctx, flags);
2133
2134 /*
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2137 */
2138 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140 /*
2141 * return the memory used by the context
2142 */
2143 if (free_possible) pfm_context_free(ctx);
2144
2145 return 0;
2146}
2147
2148static int
2149pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150{
2151 DPRINT(("pfm_no_open called\n"));
2152 return -ENXIO;
2153}
2154
2155
2156
2157static const struct file_operations pfm_file_ops = {
2158 .llseek = no_llseek,
2159 .read = pfm_read,
2160 .write = pfm_write,
2161 .poll = pfm_poll,
2162 .unlocked_ioctl = pfm_ioctl,
2163 .open = pfm_no_open, /* special open code to disallow open via /proc */
2164 .fasync = pfm_fasync,
2165 .release = pfm_close,
2166 .flush = pfm_flush
2167};
2168
2169static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2170{
2171 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2172 dentry->d_inode->i_ino);
2173}
2174
2175static const struct dentry_operations pfmfs_dentry_operations = {
2176 .d_delete = always_delete_dentry,
2177 .d_dname = pfmfs_dname,
2178};
2179
2180
2181static struct file *
2182pfm_alloc_file(pfm_context_t *ctx)
2183{
2184 struct file *file;
2185 struct inode *inode;
2186 struct path path;
2187 struct qstr this = { .name = "" };
2188
2189 /*
2190 * allocate a new inode
2191 */
2192 inode = new_inode(pfmfs_mnt->mnt_sb);
2193 if (!inode)
2194 return ERR_PTR(-ENOMEM);
2195
2196 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2197
2198 inode->i_mode = S_IFCHR|S_IRUGO;
2199 inode->i_uid = current_fsuid();
2200 inode->i_gid = current_fsgid();
2201
2202 /*
2203 * allocate a new dcache entry
2204 */
2205 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2206 if (!path.dentry) {
2207 iput(inode);
2208 return ERR_PTR(-ENOMEM);
2209 }
2210 path.mnt = mntget(pfmfs_mnt);
2211
2212 d_add(path.dentry, inode);
2213
2214 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2215 if (IS_ERR(file)) {
2216 path_put(&path);
2217 return file;
2218 }
2219
2220 file->f_flags = O_RDONLY;
2221 file->private_data = ctx;
2222
2223 return file;
2224}
2225
2226static int
2227pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2228{
2229 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2230
2231 while (size > 0) {
2232 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2233
2234
2235 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236 return -ENOMEM;
2237
2238 addr += PAGE_SIZE;
2239 buf += PAGE_SIZE;
2240 size -= PAGE_SIZE;
2241 }
2242 return 0;
2243}
2244
2245/*
2246 * allocate a sampling buffer and remaps it into the user address space of the task
2247 */
2248static int
2249pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2250{
2251 struct mm_struct *mm = task->mm;
2252 struct vm_area_struct *vma = NULL;
2253 unsigned long size;
2254 void *smpl_buf;
2255
2256
2257 /*
2258 * the fixed header + requested size and align to page boundary
2259 */
2260 size = PAGE_ALIGN(rsize);
2261
2262 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2263
2264 /*
2265 * check requested size to avoid Denial-of-service attacks
2266 * XXX: may have to refine this test
2267 * Check against address space limit.
2268 *
2269 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270 * return -ENOMEM;
2271 */
2272 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2273 return -ENOMEM;
2274
2275 /*
2276 * We do the easy to undo allocations first.
2277 *
2278 * pfm_rvmalloc(), clears the buffer, so there is no leak
2279 */
2280 smpl_buf = pfm_rvmalloc(size);
2281 if (smpl_buf == NULL) {
2282 DPRINT(("Can't allocate sampling buffer\n"));
2283 return -ENOMEM;
2284 }
2285
2286 DPRINT(("smpl_buf @%p\n", smpl_buf));
2287
2288 /* allocate vma */
2289 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2290 if (!vma) {
2291 DPRINT(("Cannot allocate vma\n"));
2292 goto error_kmem;
2293 }
2294 INIT_LIST_HEAD(&vma->anon_vma_chain);
2295
2296 /*
2297 * partially initialize the vma for the sampling buffer
2298 */
2299 vma->vm_mm = mm;
2300 vma->vm_file = get_file(filp);
2301 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2302 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2303
2304 /*
2305 * Now we have everything we need and we can initialize
2306 * and connect all the data structures
2307 */
2308
2309 ctx->ctx_smpl_hdr = smpl_buf;
2310 ctx->ctx_smpl_size = size; /* aligned size */
2311
2312 /*
2313 * Let's do the difficult operations next.
2314 *
2315 * now we atomically find some area in the address space and
2316 * remap the buffer in it.
2317 */
2318 down_write(&task->mm->mmap_sem);
2319
2320 /* find some free area in address space, must have mmap sem held */
2321 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2322 if (IS_ERR_VALUE(vma->vm_start)) {
2323 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2324 up_write(&task->mm->mmap_sem);
2325 goto error;
2326 }
2327 vma->vm_end = vma->vm_start + size;
2328 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2329
2330 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2331
2332 /* can only be applied to current task, need to have the mm semaphore held when called */
2333 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2334 DPRINT(("Can't remap buffer\n"));
2335 up_write(&task->mm->mmap_sem);
2336 goto error;
2337 }
2338
2339 /*
2340 * now insert the vma in the vm list for the process, must be
2341 * done with mmap lock held
2342 */
2343 insert_vm_struct(mm, vma);
2344
2345 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2346 vma_pages(vma));
2347 up_write(&task->mm->mmap_sem);
2348
2349 /*
2350 * keep track of user level virtual address
2351 */
2352 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2353 *(unsigned long *)user_vaddr = vma->vm_start;
2354
2355 return 0;
2356
2357error:
2358 kmem_cache_free(vm_area_cachep, vma);
2359error_kmem:
2360 pfm_rvfree(smpl_buf, size);
2361
2362 return -ENOMEM;
2363}
2364
2365/*
2366 * XXX: do something better here
2367 */
2368static int
2369pfm_bad_permissions(struct task_struct *task)
2370{
2371 const struct cred *tcred;
2372 kuid_t uid = current_uid();
2373 kgid_t gid = current_gid();
2374 int ret;
2375
2376 rcu_read_lock();
2377 tcred = __task_cred(task);
2378
2379 /* inspired by ptrace_attach() */
2380 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381 from_kuid(&init_user_ns, uid),
2382 from_kgid(&init_user_ns, gid),
2383 from_kuid(&init_user_ns, tcred->euid),
2384 from_kuid(&init_user_ns, tcred->suid),
2385 from_kuid(&init_user_ns, tcred->uid),
2386 from_kgid(&init_user_ns, tcred->egid),
2387 from_kgid(&init_user_ns, tcred->sgid)));
2388
2389 ret = ((!uid_eq(uid, tcred->euid))
2390 || (!uid_eq(uid, tcred->suid))
2391 || (!uid_eq(uid, tcred->uid))
2392 || (!gid_eq(gid, tcred->egid))
2393 || (!gid_eq(gid, tcred->sgid))
2394 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2395
2396 rcu_read_unlock();
2397 return ret;
2398}
2399
2400static int
2401pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2402{
2403 int ctx_flags;
2404
2405 /* valid signal */
2406
2407 ctx_flags = pfx->ctx_flags;
2408
2409 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2410
2411 /*
2412 * cannot block in this mode
2413 */
2414 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416 return -EINVAL;
2417 }
2418 } else {
2419 }
2420 /* probably more to add here */
2421
2422 return 0;
2423}
2424
2425static int
2426pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2427 unsigned int cpu, pfarg_context_t *arg)
2428{
2429 pfm_buffer_fmt_t *fmt = NULL;
2430 unsigned long size = 0UL;
2431 void *uaddr = NULL;
2432 void *fmt_arg = NULL;
2433 int ret = 0;
2434#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2435
2436 /* invoke and lock buffer format, if found */
2437 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438 if (fmt == NULL) {
2439 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2440 return -EINVAL;
2441 }
2442
2443 /*
2444 * buffer argument MUST be contiguous to pfarg_context_t
2445 */
2446 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2447
2448 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2449
2450 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2451
2452 if (ret) goto error;
2453
2454 /* link buffer format and context */
2455 ctx->ctx_buf_fmt = fmt;
2456 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2457
2458 /*
2459 * check if buffer format wants to use perfmon buffer allocation/mapping service
2460 */
2461 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2462 if (ret) goto error;
2463
2464 if (size) {
2465 /*
2466 * buffer is always remapped into the caller's address space
2467 */
2468 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2469 if (ret) goto error;
2470
2471 /* keep track of user address of buffer */
2472 arg->ctx_smpl_vaddr = uaddr;
2473 }
2474 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2475
2476error:
2477 return ret;
2478}
2479
2480static void
2481pfm_reset_pmu_state(pfm_context_t *ctx)
2482{
2483 int i;
2484
2485 /*
2486 * install reset values for PMC.
2487 */
2488 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2489 if (PMC_IS_IMPL(i) == 0) continue;
2490 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2491 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2492 }
2493 /*
2494 * PMD registers are set to 0UL when the context in memset()
2495 */
2496
2497 /*
2498 * On context switched restore, we must restore ALL pmc and ALL pmd even
2499 * when they are not actively used by the task. In UP, the incoming process
2500 * may otherwise pick up left over PMC, PMD state from the previous process.
2501 * As opposed to PMD, stale PMC can cause harm to the incoming
2502 * process because they may change what is being measured.
2503 * Therefore, we must systematically reinstall the entire
2504 * PMC state. In SMP, the same thing is possible on the
2505 * same CPU but also on between 2 CPUs.
2506 *
2507 * The problem with PMD is information leaking especially
2508 * to user level when psr.sp=0
2509 *
2510 * There is unfortunately no easy way to avoid this problem
2511 * on either UP or SMP. This definitively slows down the
2512 * pfm_load_regs() function.
2513 */
2514
2515 /*
2516 * bitmask of all PMCs accessible to this context
2517 *
2518 * PMC0 is treated differently.
2519 */
2520 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2521
2522 /*
2523 * bitmask of all PMDs that are accessible to this context
2524 */
2525 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2526
2527 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2528
2529 /*
2530 * useful in case of re-enable after disable
2531 */
2532 ctx->ctx_used_ibrs[0] = 0UL;
2533 ctx->ctx_used_dbrs[0] = 0UL;
2534}
2535
2536static int
2537pfm_ctx_getsize(void *arg, size_t *sz)
2538{
2539 pfarg_context_t *req = (pfarg_context_t *)arg;
2540 pfm_buffer_fmt_t *fmt;
2541
2542 *sz = 0;
2543
2544 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2545
2546 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547 if (fmt == NULL) {
2548 DPRINT(("cannot find buffer format\n"));
2549 return -EINVAL;
2550 }
2551 /* get just enough to copy in user parameters */
2552 *sz = fmt->fmt_arg_size;
2553 DPRINT(("arg_size=%lu\n", *sz));
2554
2555 return 0;
2556}
2557
2558
2559
2560/*
2561 * cannot attach if :
2562 * - kernel task
2563 * - task not owned by caller
2564 * - task incompatible with context mode
2565 */
2566static int
2567pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2568{
2569 /*
2570 * no kernel task or task not owner by caller
2571 */
2572 if (task->mm == NULL) {
2573 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2574 return -EPERM;
2575 }
2576 if (pfm_bad_permissions(task)) {
2577 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2578 return -EPERM;
2579 }
2580 /*
2581 * cannot block in self-monitoring mode
2582 */
2583 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2584 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2585 return -EINVAL;
2586 }
2587
2588 if (task->exit_state == EXIT_ZOMBIE) {
2589 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2590 return -EBUSY;
2591 }
2592
2593 /*
2594 * always ok for self
2595 */
2596 if (task == current) return 0;
2597
2598 if (!task_is_stopped_or_traced(task)) {
2599 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2600 return -EBUSY;
2601 }
2602 /*
2603 * make sure the task is off any CPU
2604 */
2605 wait_task_inactive(task, 0);
2606
2607 /* more to come... */
2608
2609 return 0;
2610}
2611
2612static int
2613pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2614{
2615 struct task_struct *p = current;
2616 int ret;
2617
2618 /* XXX: need to add more checks here */
2619 if (pid < 2) return -EPERM;
2620
2621 if (pid != task_pid_vnr(current)) {
2622
2623 read_lock(&tasklist_lock);
2624
2625 p = find_task_by_vpid(pid);
2626
2627 /* make sure task cannot go away while we operate on it */
2628 if (p) get_task_struct(p);
2629
2630 read_unlock(&tasklist_lock);
2631
2632 if (p == NULL) return -ESRCH;
2633 }
2634
2635 ret = pfm_task_incompatible(ctx, p);
2636 if (ret == 0) {
2637 *task = p;
2638 } else if (p != current) {
2639 pfm_put_task(p);
2640 }
2641 return ret;
2642}
2643
2644
2645
2646static int
2647pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2648{
2649 pfarg_context_t *req = (pfarg_context_t *)arg;
2650 struct file *filp;
2651 struct path path;
2652 int ctx_flags;
2653 int fd;
2654 int ret;
2655
2656 /* let's check the arguments first */
2657 ret = pfarg_is_sane(current, req);
2658 if (ret < 0)
2659 return ret;
2660
2661 ctx_flags = req->ctx_flags;
2662
2663 ret = -ENOMEM;
2664
2665 fd = get_unused_fd();
2666 if (fd < 0)
2667 return fd;
2668
2669 ctx = pfm_context_alloc(ctx_flags);
2670 if (!ctx)
2671 goto error;
2672
2673 filp = pfm_alloc_file(ctx);
2674 if (IS_ERR(filp)) {
2675 ret = PTR_ERR(filp);
2676 goto error_file;
2677 }
2678
2679 req->ctx_fd = ctx->ctx_fd = fd;
2680
2681 /*
2682 * does the user want to sample?
2683 */
2684 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2685 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2686 if (ret)
2687 goto buffer_error;
2688 }
2689
2690 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2691 ctx,
2692 ctx_flags,
2693 ctx->ctx_fl_system,
2694 ctx->ctx_fl_block,
2695 ctx->ctx_fl_excl_idle,
2696 ctx->ctx_fl_no_msg,
2697 ctx->ctx_fd));
2698
2699 /*
2700 * initialize soft PMU state
2701 */
2702 pfm_reset_pmu_state(ctx);
2703
2704 fd_install(fd, filp);
2705
2706 return 0;
2707
2708buffer_error:
2709 path = filp->f_path;
2710 put_filp(filp);
2711 path_put(&path);
2712
2713 if (ctx->ctx_buf_fmt) {
2714 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2715 }
2716error_file:
2717 pfm_context_free(ctx);
2718
2719error:
2720 put_unused_fd(fd);
2721 return ret;
2722}
2723
2724static inline unsigned long
2725pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2726{
2727 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2728 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2729 extern unsigned long carta_random32 (unsigned long seed);
2730
2731 if (reg->flags & PFM_REGFL_RANDOM) {
2732 new_seed = carta_random32(old_seed);
2733 val -= (old_seed & mask); /* counter values are negative numbers! */
2734 if ((mask >> 32) != 0)
2735 /* construct a full 64-bit random value: */
2736 new_seed |= carta_random32(old_seed >> 32) << 32;
2737 reg->seed = new_seed;
2738 }
2739 reg->lval = val;
2740 return val;
2741}
2742
2743static void
2744pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2745{
2746 unsigned long mask = ovfl_regs[0];
2747 unsigned long reset_others = 0UL;
2748 unsigned long val;
2749 int i;
2750
2751 /*
2752 * now restore reset value on sampling overflowed counters
2753 */
2754 mask >>= PMU_FIRST_COUNTER;
2755 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2756
2757 if ((mask & 0x1UL) == 0UL) continue;
2758
2759 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2760 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2761
2762 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2763 }
2764
2765 /*
2766 * Now take care of resetting the other registers
2767 */
2768 for(i = 0; reset_others; i++, reset_others >>= 1) {
2769
2770 if ((reset_others & 0x1) == 0) continue;
2771
2772 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2773
2774 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775 is_long_reset ? "long" : "short", i, val));
2776 }
2777}
2778
2779static void
2780pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2781{
2782 unsigned long mask = ovfl_regs[0];
2783 unsigned long reset_others = 0UL;
2784 unsigned long val;
2785 int i;
2786
2787 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2788
2789 if (ctx->ctx_state == PFM_CTX_MASKED) {
2790 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2791 return;
2792 }
2793
2794 /*
2795 * now restore reset value on sampling overflowed counters
2796 */
2797 mask >>= PMU_FIRST_COUNTER;
2798 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2799
2800 if ((mask & 0x1UL) == 0UL) continue;
2801
2802 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2803 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2804
2805 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2806
2807 pfm_write_soft_counter(ctx, i, val);
2808 }
2809
2810 /*
2811 * Now take care of resetting the other registers
2812 */
2813 for(i = 0; reset_others; i++, reset_others >>= 1) {
2814
2815 if ((reset_others & 0x1) == 0) continue;
2816
2817 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2818
2819 if (PMD_IS_COUNTING(i)) {
2820 pfm_write_soft_counter(ctx, i, val);
2821 } else {
2822 ia64_set_pmd(i, val);
2823 }
2824 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825 is_long_reset ? "long" : "short", i, val));
2826 }
2827 ia64_srlz_d();
2828}
2829
2830static int
2831pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2832{
2833 struct task_struct *task;
2834 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2835 unsigned long value, pmc_pm;
2836 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2837 unsigned int cnum, reg_flags, flags, pmc_type;
2838 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2839 int is_monitor, is_counting, state;
2840 int ret = -EINVAL;
2841 pfm_reg_check_t wr_func;
2842#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2843
2844 state = ctx->ctx_state;
2845 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2846 is_system = ctx->ctx_fl_system;
2847 task = ctx->ctx_task;
2848 impl_pmds = pmu_conf->impl_pmds[0];
2849
2850 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2851
2852 if (is_loaded) {
2853 /*
2854 * In system wide and when the context is loaded, access can only happen
2855 * when the caller is running on the CPU being monitored by the session.
2856 * It does not have to be the owner (ctx_task) of the context per se.
2857 */
2858 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2859 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2860 return -EBUSY;
2861 }
2862 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2863 }
2864 expert_mode = pfm_sysctl.expert_mode;
2865
2866 for (i = 0; i < count; i++, req++) {
2867
2868 cnum = req->reg_num;
2869 reg_flags = req->reg_flags;
2870 value = req->reg_value;
2871 smpl_pmds = req->reg_smpl_pmds[0];
2872 reset_pmds = req->reg_reset_pmds[0];
2873 flags = 0;
2874
2875
2876 if (cnum >= PMU_MAX_PMCS) {
2877 DPRINT(("pmc%u is invalid\n", cnum));
2878 goto error;
2879 }
2880
2881 pmc_type = pmu_conf->pmc_desc[cnum].type;
2882 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2883 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2884 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2885
2886 /*
2887 * we reject all non implemented PMC as well
2888 * as attempts to modify PMC[0-3] which are used
2889 * as status registers by the PMU
2890 */
2891 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2892 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2893 goto error;
2894 }
2895 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2896 /*
2897 * If the PMC is a monitor, then if the value is not the default:
2898 * - system-wide session: PMCx.pm=1 (privileged monitor)
2899 * - per-task : PMCx.pm=0 (user monitor)
2900 */
2901 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2902 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2903 cnum,
2904 pmc_pm,
2905 is_system));
2906 goto error;
2907 }
2908
2909 if (is_counting) {
2910 /*
2911 * enforce generation of overflow interrupt. Necessary on all
2912 * CPUs.
2913 */
2914 value |= 1 << PMU_PMC_OI;
2915
2916 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2917 flags |= PFM_REGFL_OVFL_NOTIFY;
2918 }
2919
2920 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2921
2922 /* verify validity of smpl_pmds */
2923 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2924 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2925 goto error;
2926 }
2927
2928 /* verify validity of reset_pmds */
2929 if ((reset_pmds & impl_pmds) != reset_pmds) {
2930 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2931 goto error;
2932 }
2933 } else {
2934 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2935 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2936 goto error;
2937 }
2938 /* eventid on non-counting monitors are ignored */
2939 }
2940
2941 /*
2942 * execute write checker, if any
2943 */
2944 if (likely(expert_mode == 0 && wr_func)) {
2945 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2946 if (ret) goto error;
2947 ret = -EINVAL;
2948 }
2949
2950 /*
2951 * no error on this register
2952 */
2953 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2954
2955 /*
2956 * Now we commit the changes to the software state
2957 */
2958
2959 /*
2960 * update overflow information
2961 */
2962 if (is_counting) {
2963 /*
2964 * full flag update each time a register is programmed
2965 */
2966 ctx->ctx_pmds[cnum].flags = flags;
2967
2968 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2969 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2970 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2971
2972 /*
2973 * Mark all PMDS to be accessed as used.
2974 *
2975 * We do not keep track of PMC because we have to
2976 * systematically restore ALL of them.
2977 *
2978 * We do not update the used_monitors mask, because
2979 * if we have not programmed them, then will be in
2980 * a quiescent state, therefore we will not need to
2981 * mask/restore then when context is MASKED.
2982 */
2983 CTX_USED_PMD(ctx, reset_pmds);
2984 CTX_USED_PMD(ctx, smpl_pmds);
2985 /*
2986 * make sure we do not try to reset on
2987 * restart because we have established new values
2988 */
2989 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2990 }
2991 /*
2992 * Needed in case the user does not initialize the equivalent
2993 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994 * possible leak here.
2995 */
2996 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2997
2998 /*
2999 * keep track of the monitor PMC that we are using.
3000 * we save the value of the pmc in ctx_pmcs[] and if
3001 * the monitoring is not stopped for the context we also
3002 * place it in the saved state area so that it will be
3003 * picked up later by the context switch code.
3004 *
3005 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3006 *
3007 * The value in th_pmcs[] may be modified on overflow, i.e., when
3008 * monitoring needs to be stopped.
3009 */
3010 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3011
3012 /*
3013 * update context state
3014 */
3015 ctx->ctx_pmcs[cnum] = value;
3016
3017 if (is_loaded) {
3018 /*
3019 * write thread state
3020 */
3021 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3022
3023 /*
3024 * write hardware register if we can
3025 */
3026 if (can_access_pmu) {
3027 ia64_set_pmc(cnum, value);
3028 }
3029#ifdef CONFIG_SMP
3030 else {
3031 /*
3032 * per-task SMP only here
3033 *
3034 * we are guaranteed that the task is not running on the other CPU,
3035 * we indicate that this PMD will need to be reloaded if the task
3036 * is rescheduled on the CPU it ran last on.
3037 */
3038 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3039 }
3040#endif
3041 }
3042
3043 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3044 cnum,
3045 value,
3046 is_loaded,
3047 can_access_pmu,
3048 flags,
3049 ctx->ctx_all_pmcs[0],
3050 ctx->ctx_used_pmds[0],
3051 ctx->ctx_pmds[cnum].eventid,
3052 smpl_pmds,
3053 reset_pmds,
3054 ctx->ctx_reload_pmcs[0],
3055 ctx->ctx_used_monitors[0],
3056 ctx->ctx_ovfl_regs[0]));
3057 }
3058
3059 /*
3060 * make sure the changes are visible
3061 */
3062 if (can_access_pmu) ia64_srlz_d();
3063
3064 return 0;
3065error:
3066 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3067 return ret;
3068}
3069
3070static int
3071pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3072{
3073 struct task_struct *task;
3074 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3075 unsigned long value, hw_value, ovfl_mask;
3076 unsigned int cnum;
3077 int i, can_access_pmu = 0, state;
3078 int is_counting, is_loaded, is_system, expert_mode;
3079 int ret = -EINVAL;
3080 pfm_reg_check_t wr_func;
3081
3082
3083 state = ctx->ctx_state;
3084 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3085 is_system = ctx->ctx_fl_system;
3086 ovfl_mask = pmu_conf->ovfl_val;
3087 task = ctx->ctx_task;
3088
3089 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3090
3091 /*
3092 * on both UP and SMP, we can only write to the PMC when the task is
3093 * the owner of the local PMU.
3094 */
3095 if (likely(is_loaded)) {
3096 /*
3097 * In system wide and when the context is loaded, access can only happen
3098 * when the caller is running on the CPU being monitored by the session.
3099 * It does not have to be the owner (ctx_task) of the context per se.
3100 */
3101 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3102 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3103 return -EBUSY;
3104 }
3105 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3106 }
3107 expert_mode = pfm_sysctl.expert_mode;
3108
3109 for (i = 0; i < count; i++, req++) {
3110
3111 cnum = req->reg_num;
3112 value = req->reg_value;
3113
3114 if (!PMD_IS_IMPL(cnum)) {
3115 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3116 goto abort_mission;
3117 }
3118 is_counting = PMD_IS_COUNTING(cnum);
3119 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3120
3121 /*
3122 * execute write checker, if any
3123 */
3124 if (unlikely(expert_mode == 0 && wr_func)) {
3125 unsigned long v = value;
3126
3127 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3128 if (ret) goto abort_mission;
3129
3130 value = v;
3131 ret = -EINVAL;
3132 }
3133
3134 /*
3135 * no error on this register
3136 */
3137 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3138
3139 /*
3140 * now commit changes to software state
3141 */
3142 hw_value = value;
3143
3144 /*
3145 * update virtualized (64bits) counter
3146 */
3147 if (is_counting) {
3148 /*
3149 * write context state
3150 */
3151 ctx->ctx_pmds[cnum].lval = value;
3152
3153 /*
3154 * when context is load we use the split value
3155 */
3156 if (is_loaded) {
3157 hw_value = value & ovfl_mask;
3158 value = value & ~ovfl_mask;
3159 }
3160 }
3161 /*
3162 * update reset values (not just for counters)
3163 */
3164 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3165 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3166
3167 /*
3168 * update randomization parameters (not just for counters)
3169 */
3170 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3171 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3172
3173 /*
3174 * update context value
3175 */
3176 ctx->ctx_pmds[cnum].val = value;
3177
3178 /*
3179 * Keep track of what we use
3180 *
3181 * We do not keep track of PMC because we have to
3182 * systematically restore ALL of them.
3183 */
3184 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3185
3186 /*
3187 * mark this PMD register used as well
3188 */
3189 CTX_USED_PMD(ctx, RDEP(cnum));
3190
3191 /*
3192 * make sure we do not try to reset on
3193 * restart because we have established new values
3194 */
3195 if (is_counting && state == PFM_CTX_MASKED) {
3196 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3197 }
3198
3199 if (is_loaded) {
3200 /*
3201 * write thread state
3202 */
3203 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3204
3205 /*
3206 * write hardware register if we can
3207 */
3208 if (can_access_pmu) {
3209 ia64_set_pmd(cnum, hw_value);
3210 } else {
3211#ifdef CONFIG_SMP
3212 /*
3213 * we are guaranteed that the task is not running on the other CPU,
3214 * we indicate that this PMD will need to be reloaded if the task
3215 * is rescheduled on the CPU it ran last on.
3216 */
3217 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3218#endif
3219 }
3220 }
3221
3222 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3223 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3224 cnum,
3225 value,
3226 is_loaded,
3227 can_access_pmu,
3228 hw_value,
3229 ctx->ctx_pmds[cnum].val,
3230 ctx->ctx_pmds[cnum].short_reset,
3231 ctx->ctx_pmds[cnum].long_reset,
3232 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3233 ctx->ctx_pmds[cnum].seed,
3234 ctx->ctx_pmds[cnum].mask,
3235 ctx->ctx_used_pmds[0],
3236 ctx->ctx_pmds[cnum].reset_pmds[0],
3237 ctx->ctx_reload_pmds[0],
3238 ctx->ctx_all_pmds[0],
3239 ctx->ctx_ovfl_regs[0]));
3240 }
3241
3242 /*
3243 * make changes visible
3244 */
3245 if (can_access_pmu) ia64_srlz_d();
3246
3247 return 0;
3248
3249abort_mission:
3250 /*
3251 * for now, we have only one possibility for error
3252 */
3253 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3254 return ret;
3255}
3256
3257/*
3258 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260 * interrupt is delivered during the call, it will be kept pending until we leave, making
3261 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262 * guaranteed to return consistent data to the user, it may simply be old. It is not
3263 * trivial to treat the overflow while inside the call because you may end up in
3264 * some module sampling buffer code causing deadlocks.
3265 */
3266static int
3267pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3268{
3269 struct task_struct *task;
3270 unsigned long val = 0UL, lval, ovfl_mask, sval;
3271 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3272 unsigned int cnum, reg_flags = 0;
3273 int i, can_access_pmu = 0, state;
3274 int is_loaded, is_system, is_counting, expert_mode;
3275 int ret = -EINVAL;
3276 pfm_reg_check_t rd_func;
3277
3278 /*
3279 * access is possible when loaded only for
3280 * self-monitoring tasks or in UP mode
3281 */
3282
3283 state = ctx->ctx_state;
3284 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3285 is_system = ctx->ctx_fl_system;
3286 ovfl_mask = pmu_conf->ovfl_val;
3287 task = ctx->ctx_task;
3288
3289 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3290
3291 if (likely(is_loaded)) {
3292 /*
3293 * In system wide and when the context is loaded, access can only happen
3294 * when the caller is running on the CPU being monitored by the session.
3295 * It does not have to be the owner (ctx_task) of the context per se.
3296 */
3297 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3298 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3299 return -EBUSY;
3300 }
3301 /*
3302 * this can be true when not self-monitoring only in UP
3303 */
3304 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3305
3306 if (can_access_pmu) ia64_srlz_d();
3307 }
3308 expert_mode = pfm_sysctl.expert_mode;
3309
3310 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3311 is_loaded,
3312 can_access_pmu,
3313 state));
3314
3315 /*
3316 * on both UP and SMP, we can only read the PMD from the hardware register when
3317 * the task is the owner of the local PMU.
3318 */
3319
3320 for (i = 0; i < count; i++, req++) {
3321
3322 cnum = req->reg_num;
3323 reg_flags = req->reg_flags;
3324
3325 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3326 /*
3327 * we can only read the register that we use. That includes
3328 * the one we explicitly initialize AND the one we want included
3329 * in the sampling buffer (smpl_regs).
3330 *
3331 * Having this restriction allows optimization in the ctxsw routine
3332 * without compromising security (leaks)
3333 */
3334 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3335
3336 sval = ctx->ctx_pmds[cnum].val;
3337 lval = ctx->ctx_pmds[cnum].lval;
3338 is_counting = PMD_IS_COUNTING(cnum);
3339
3340 /*
3341 * If the task is not the current one, then we check if the
3342 * PMU state is still in the local live register due to lazy ctxsw.
3343 * If true, then we read directly from the registers.
3344 */
3345 if (can_access_pmu){
3346 val = ia64_get_pmd(cnum);
3347 } else {
3348 /*
3349 * context has been saved
3350 * if context is zombie, then task does not exist anymore.
3351 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3352 */
3353 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3354 }
3355 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3356
3357 if (is_counting) {
3358 /*
3359 * XXX: need to check for overflow when loaded
3360 */
3361 val &= ovfl_mask;
3362 val += sval;
3363 }
3364
3365 /*
3366 * execute read checker, if any
3367 */
3368 if (unlikely(expert_mode == 0 && rd_func)) {
3369 unsigned long v = val;
3370 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3371 if (ret) goto error;
3372 val = v;
3373 ret = -EINVAL;
3374 }
3375
3376 PFM_REG_RETFLAG_SET(reg_flags, 0);
3377
3378 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3379
3380 /*
3381 * update register return value, abort all if problem during copy.
3382 * we only modify the reg_flags field. no check mode is fine because
3383 * access has been verified upfront in sys_perfmonctl().
3384 */
3385 req->reg_value = val;
3386 req->reg_flags = reg_flags;
3387 req->reg_last_reset_val = lval;
3388 }
3389
3390 return 0;
3391
3392error:
3393 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3394 return ret;
3395}
3396
3397int
3398pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3399{
3400 pfm_context_t *ctx;
3401
3402 if (req == NULL) return -EINVAL;
3403
3404 ctx = GET_PMU_CTX();
3405
3406 if (ctx == NULL) return -EINVAL;
3407
3408 /*
3409 * for now limit to current task, which is enough when calling
3410 * from overflow handler
3411 */
3412 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3413
3414 return pfm_write_pmcs(ctx, req, nreq, regs);
3415}
3416EXPORT_SYMBOL(pfm_mod_write_pmcs);
3417
3418int
3419pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3420{
3421 pfm_context_t *ctx;
3422
3423 if (req == NULL) return -EINVAL;
3424
3425 ctx = GET_PMU_CTX();
3426
3427 if (ctx == NULL) return -EINVAL;
3428
3429 /*
3430 * for now limit to current task, which is enough when calling
3431 * from overflow handler
3432 */
3433 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3434
3435 return pfm_read_pmds(ctx, req, nreq, regs);
3436}
3437EXPORT_SYMBOL(pfm_mod_read_pmds);
3438
3439/*
3440 * Only call this function when a process it trying to
3441 * write the debug registers (reading is always allowed)
3442 */
3443int
3444pfm_use_debug_registers(struct task_struct *task)
3445{
3446 pfm_context_t *ctx = task->thread.pfm_context;
3447 unsigned long flags;
3448 int ret = 0;
3449
3450 if (pmu_conf->use_rr_dbregs == 0) return 0;
3451
3452 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3453
3454 /*
3455 * do it only once
3456 */
3457 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3458
3459 /*
3460 * Even on SMP, we do not need to use an atomic here because
3461 * the only way in is via ptrace() and this is possible only when the
3462 * process is stopped. Even in the case where the ctxsw out is not totally
3463 * completed by the time we come here, there is no way the 'stopped' process
3464 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465 * So this is always safe.
3466 */
3467 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3468
3469 LOCK_PFS(flags);
3470
3471 /*
3472 * We cannot allow setting breakpoints when system wide monitoring
3473 * sessions are using the debug registers.
3474 */
3475 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3476 ret = -1;
3477 else
3478 pfm_sessions.pfs_ptrace_use_dbregs++;
3479
3480 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3481 pfm_sessions.pfs_ptrace_use_dbregs,
3482 pfm_sessions.pfs_sys_use_dbregs,
3483 task_pid_nr(task), ret));
3484
3485 UNLOCK_PFS(flags);
3486
3487 return ret;
3488}
3489
3490/*
3491 * This function is called for every task that exits with the
3492 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493 * able to use the debug registers for debugging purposes via
3494 * ptrace(). Therefore we know it was not using them for
3495 * performance monitoring, so we only decrement the number
3496 * of "ptraced" debug register users to keep the count up to date
3497 */
3498int
3499pfm_release_debug_registers(struct task_struct *task)
3500{
3501 unsigned long flags;
3502 int ret;
3503
3504 if (pmu_conf->use_rr_dbregs == 0) return 0;
3505
3506 LOCK_PFS(flags);
3507 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3508 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3509 ret = -1;
3510 } else {
3511 pfm_sessions.pfs_ptrace_use_dbregs--;
3512 ret = 0;
3513 }
3514 UNLOCK_PFS(flags);
3515
3516 return ret;
3517}
3518
3519static int
3520pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3521{
3522 struct task_struct *task;
3523 pfm_buffer_fmt_t *fmt;
3524 pfm_ovfl_ctrl_t rst_ctrl;
3525 int state, is_system;
3526 int ret = 0;
3527
3528 state = ctx->ctx_state;
3529 fmt = ctx->ctx_buf_fmt;
3530 is_system = ctx->ctx_fl_system;
3531 task = PFM_CTX_TASK(ctx);
3532
3533 switch(state) {
3534 case PFM_CTX_MASKED:
3535 break;
3536 case PFM_CTX_LOADED:
3537 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3538 /* fall through */
3539 case PFM_CTX_UNLOADED:
3540 case PFM_CTX_ZOMBIE:
3541 DPRINT(("invalid state=%d\n", state));
3542 return -EBUSY;
3543 default:
3544 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3545 return -EINVAL;
3546 }
3547
3548 /*
3549 * In system wide and when the context is loaded, access can only happen
3550 * when the caller is running on the CPU being monitored by the session.
3551 * It does not have to be the owner (ctx_task) of the context per se.
3552 */
3553 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3554 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3555 return -EBUSY;
3556 }
3557
3558 /* sanity check */
3559 if (unlikely(task == NULL)) {
3560 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3561 return -EINVAL;
3562 }
3563
3564 if (task == current || is_system) {
3565
3566 fmt = ctx->ctx_buf_fmt;
3567
3568 DPRINT(("restarting self %d ovfl=0x%lx\n",
3569 task_pid_nr(task),
3570 ctx->ctx_ovfl_regs[0]));
3571
3572 if (CTX_HAS_SMPL(ctx)) {
3573
3574 prefetch(ctx->ctx_smpl_hdr);
3575
3576 rst_ctrl.bits.mask_monitoring = 0;
3577 rst_ctrl.bits.reset_ovfl_pmds = 0;
3578
3579 if (state == PFM_CTX_LOADED)
3580 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3581 else
3582 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3583 } else {
3584 rst_ctrl.bits.mask_monitoring = 0;
3585 rst_ctrl.bits.reset_ovfl_pmds = 1;
3586 }
3587
3588 if (ret == 0) {
3589 if (rst_ctrl.bits.reset_ovfl_pmds)
3590 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3591
3592 if (rst_ctrl.bits.mask_monitoring == 0) {
3593 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3594
3595 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3596 } else {
3597 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3598
3599 // cannot use pfm_stop_monitoring(task, regs);
3600 }
3601 }
3602 /*
3603 * clear overflowed PMD mask to remove any stale information
3604 */
3605 ctx->ctx_ovfl_regs[0] = 0UL;
3606
3607 /*
3608 * back to LOADED state
3609 */
3610 ctx->ctx_state = PFM_CTX_LOADED;
3611
3612 /*
3613 * XXX: not really useful for self monitoring
3614 */
3615 ctx->ctx_fl_can_restart = 0;
3616
3617 return 0;
3618 }
3619
3620 /*
3621 * restart another task
3622 */
3623
3624 /*
3625 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3626 * one is seen by the task.
3627 */
3628 if (state == PFM_CTX_MASKED) {
3629 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3630 /*
3631 * will prevent subsequent restart before this one is
3632 * seen by other task
3633 */
3634 ctx->ctx_fl_can_restart = 0;
3635 }
3636
3637 /*
3638 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639 * the task is blocked or on its way to block. That's the normal
3640 * restart path. If the monitoring is not masked, then the task
3641 * can be actively monitoring and we cannot directly intervene.
3642 * Therefore we use the trap mechanism to catch the task and
3643 * force it to reset the buffer/reset PMDs.
3644 *
3645 * if non-blocking, then we ensure that the task will go into
3646 * pfm_handle_work() before returning to user mode.
3647 *
3648 * We cannot explicitly reset another task, it MUST always
3649 * be done by the task itself. This works for system wide because
3650 * the tool that is controlling the session is logically doing
3651 * "self-monitoring".
3652 */
3653 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3654 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3655 complete(&ctx->ctx_restart_done);
3656 } else {
3657 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3658
3659 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3660
3661 PFM_SET_WORK_PENDING(task, 1);
3662
3663 set_notify_resume(task);
3664
3665 /*
3666 * XXX: send reschedule if task runs on another CPU
3667 */
3668 }
3669 return 0;
3670}
3671
3672static int
3673pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3674{
3675 unsigned int m = *(unsigned int *)arg;
3676
3677 pfm_sysctl.debug = m == 0 ? 0 : 1;
3678
3679 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3680
3681 if (m == 0) {
3682 memset(pfm_stats, 0, sizeof(pfm_stats));
3683 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3684 }
3685 return 0;
3686}
3687
3688/*
3689 * arg can be NULL and count can be zero for this function
3690 */
3691static int
3692pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3693{
3694 struct thread_struct *thread = NULL;
3695 struct task_struct *task;
3696 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3697 unsigned long flags;
3698 dbreg_t dbreg;
3699 unsigned int rnum;
3700 int first_time;
3701 int ret = 0, state;
3702 int i, can_access_pmu = 0;
3703 int is_system, is_loaded;
3704
3705 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3706
3707 state = ctx->ctx_state;
3708 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3709 is_system = ctx->ctx_fl_system;
3710 task = ctx->ctx_task;
3711
3712 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3713
3714 /*
3715 * on both UP and SMP, we can only write to the PMC when the task is
3716 * the owner of the local PMU.
3717 */
3718 if (is_loaded) {
3719 thread = &task->thread;
3720 /*
3721 * In system wide and when the context is loaded, access can only happen
3722 * when the caller is running on the CPU being monitored by the session.
3723 * It does not have to be the owner (ctx_task) of the context per se.
3724 */
3725 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3726 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3727 return -EBUSY;
3728 }
3729 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3730 }
3731
3732 /*
3733 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734 * ensuring that no real breakpoint can be installed via this call.
3735 *
3736 * IMPORTANT: regs can be NULL in this function
3737 */
3738
3739 first_time = ctx->ctx_fl_using_dbreg == 0;
3740
3741 /*
3742 * don't bother if we are loaded and task is being debugged
3743 */
3744 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3745 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3746 return -EBUSY;
3747 }
3748
3749 /*
3750 * check for debug registers in system wide mode
3751 *
3752 * If though a check is done in pfm_context_load(),
3753 * we must repeat it here, in case the registers are
3754 * written after the context is loaded
3755 */
3756 if (is_loaded) {
3757 LOCK_PFS(flags);
3758
3759 if (first_time && is_system) {
3760 if (pfm_sessions.pfs_ptrace_use_dbregs)
3761 ret = -EBUSY;
3762 else
3763 pfm_sessions.pfs_sys_use_dbregs++;
3764 }
3765 UNLOCK_PFS(flags);
3766 }
3767
3768 if (ret != 0) return ret;
3769
3770 /*
3771 * mark ourself as user of the debug registers for
3772 * perfmon purposes.
3773 */
3774 ctx->ctx_fl_using_dbreg = 1;
3775
3776 /*
3777 * clear hardware registers to make sure we don't
3778 * pick up stale state.
3779 *
3780 * for a system wide session, we do not use
3781 * thread.dbr, thread.ibr because this process
3782 * never leaves the current CPU and the state
3783 * is shared by all processes running on it
3784 */
3785 if (first_time && can_access_pmu) {
3786 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3787 for (i=0; i < pmu_conf->num_ibrs; i++) {
3788 ia64_set_ibr(i, 0UL);
3789 ia64_dv_serialize_instruction();
3790 }
3791 ia64_srlz_i();
3792 for (i=0; i < pmu_conf->num_dbrs; i++) {
3793 ia64_set_dbr(i, 0UL);
3794 ia64_dv_serialize_data();
3795 }
3796 ia64_srlz_d();
3797 }
3798
3799 /*
3800 * Now install the values into the registers
3801 */
3802 for (i = 0; i < count; i++, req++) {
3803
3804 rnum = req->dbreg_num;
3805 dbreg.val = req->dbreg_value;
3806
3807 ret = -EINVAL;
3808
3809 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3810 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811 rnum, dbreg.val, mode, i, count));
3812
3813 goto abort_mission;
3814 }
3815
3816 /*
3817 * make sure we do not install enabled breakpoint
3818 */
3819 if (rnum & 0x1) {
3820 if (mode == PFM_CODE_RR)
3821 dbreg.ibr.ibr_x = 0;
3822 else
3823 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3824 }
3825
3826 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3827
3828 /*
3829 * Debug registers, just like PMC, can only be modified
3830 * by a kernel call. Moreover, perfmon() access to those
3831 * registers are centralized in this routine. The hardware
3832 * does not modify the value of these registers, therefore,
3833 * if we save them as they are written, we can avoid having
3834 * to save them on context switch out. This is made possible
3835 * by the fact that when perfmon uses debug registers, ptrace()
3836 * won't be able to modify them concurrently.
3837 */
3838 if (mode == PFM_CODE_RR) {
3839 CTX_USED_IBR(ctx, rnum);
3840
3841 if (can_access_pmu) {
3842 ia64_set_ibr(rnum, dbreg.val);
3843 ia64_dv_serialize_instruction();
3844 }
3845
3846 ctx->ctx_ibrs[rnum] = dbreg.val;
3847
3848 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3850 } else {
3851 CTX_USED_DBR(ctx, rnum);
3852
3853 if (can_access_pmu) {
3854 ia64_set_dbr(rnum, dbreg.val);
3855 ia64_dv_serialize_data();
3856 }
3857 ctx->ctx_dbrs[rnum] = dbreg.val;
3858
3859 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3861 }
3862 }
3863
3864 return 0;
3865
3866abort_mission:
3867 /*
3868 * in case it was our first attempt, we undo the global modifications
3869 */
3870 if (first_time) {
3871 LOCK_PFS(flags);
3872 if (ctx->ctx_fl_system) {
3873 pfm_sessions.pfs_sys_use_dbregs--;
3874 }
3875 UNLOCK_PFS(flags);
3876 ctx->ctx_fl_using_dbreg = 0;
3877 }
3878 /*
3879 * install error return flag
3880 */
3881 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3882
3883 return ret;
3884}
3885
3886static int
3887pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3888{
3889 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3890}
3891
3892static int
3893pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894{
3895 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3896}
3897
3898int
3899pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3900{
3901 pfm_context_t *ctx;
3902
3903 if (req == NULL) return -EINVAL;
3904
3905 ctx = GET_PMU_CTX();
3906
3907 if (ctx == NULL) return -EINVAL;
3908
3909 /*
3910 * for now limit to current task, which is enough when calling
3911 * from overflow handler
3912 */
3913 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3914
3915 return pfm_write_ibrs(ctx, req, nreq, regs);
3916}
3917EXPORT_SYMBOL(pfm_mod_write_ibrs);
3918
3919int
3920pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3921{
3922 pfm_context_t *ctx;
3923
3924 if (req == NULL) return -EINVAL;
3925
3926 ctx = GET_PMU_CTX();
3927
3928 if (ctx == NULL) return -EINVAL;
3929
3930 /*
3931 * for now limit to current task, which is enough when calling
3932 * from overflow handler
3933 */
3934 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3935
3936 return pfm_write_dbrs(ctx, req, nreq, regs);
3937}
3938EXPORT_SYMBOL(pfm_mod_write_dbrs);
3939
3940
3941static int
3942pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943{
3944 pfarg_features_t *req = (pfarg_features_t *)arg;
3945
3946 req->ft_version = PFM_VERSION;
3947 return 0;
3948}
3949
3950static int
3951pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952{
3953 struct pt_regs *tregs;
3954 struct task_struct *task = PFM_CTX_TASK(ctx);
3955 int state, is_system;
3956
3957 state = ctx->ctx_state;
3958 is_system = ctx->ctx_fl_system;
3959
3960 /*
3961 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3962 */
3963 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3964
3965 /*
3966 * In system wide and when the context is loaded, access can only happen
3967 * when the caller is running on the CPU being monitored by the session.
3968 * It does not have to be the owner (ctx_task) of the context per se.
3969 */
3970 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3971 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3972 return -EBUSY;
3973 }
3974 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975 task_pid_nr(PFM_CTX_TASK(ctx)),
3976 state,
3977 is_system));
3978 /*
3979 * in system mode, we need to update the PMU directly
3980 * and the user level state of the caller, which may not
3981 * necessarily be the creator of the context.
3982 */
3983 if (is_system) {
3984 /*
3985 * Update local PMU first
3986 *
3987 * disable dcr pp
3988 */
3989 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3990 ia64_srlz_i();
3991
3992 /*
3993 * update local cpuinfo
3994 */
3995 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3996
3997 /*
3998 * stop monitoring, does srlz.i
3999 */
4000 pfm_clear_psr_pp();
4001
4002 /*
4003 * stop monitoring in the caller
4004 */
4005 ia64_psr(regs)->pp = 0;
4006
4007 return 0;
4008 }
4009 /*
4010 * per-task mode
4011 */
4012
4013 if (task == current) {
4014 /* stop monitoring at kernel level */
4015 pfm_clear_psr_up();
4016
4017 /*
4018 * stop monitoring at the user level
4019 */
4020 ia64_psr(regs)->up = 0;
4021 } else {
4022 tregs = task_pt_regs(task);
4023
4024 /*
4025 * stop monitoring at the user level
4026 */
4027 ia64_psr(tregs)->up = 0;
4028
4029 /*
4030 * monitoring disabled in kernel at next reschedule
4031 */
4032 ctx->ctx_saved_psr_up = 0;
4033 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4034 }
4035 return 0;
4036}
4037
4038
4039static int
4040pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4041{
4042 struct pt_regs *tregs;
4043 int state, is_system;
4044
4045 state = ctx->ctx_state;
4046 is_system = ctx->ctx_fl_system;
4047
4048 if (state != PFM_CTX_LOADED) return -EINVAL;
4049
4050 /*
4051 * In system wide and when the context is loaded, access can only happen
4052 * when the caller is running on the CPU being monitored by the session.
4053 * It does not have to be the owner (ctx_task) of the context per se.
4054 */
4055 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4056 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4057 return -EBUSY;
4058 }
4059
4060 /*
4061 * in system mode, we need to update the PMU directly
4062 * and the user level state of the caller, which may not
4063 * necessarily be the creator of the context.
4064 */
4065 if (is_system) {
4066
4067 /*
4068 * set user level psr.pp for the caller
4069 */
4070 ia64_psr(regs)->pp = 1;
4071
4072 /*
4073 * now update the local PMU and cpuinfo
4074 */
4075 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4076
4077 /*
4078 * start monitoring at kernel level
4079 */
4080 pfm_set_psr_pp();
4081
4082 /* enable dcr pp */
4083 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4084 ia64_srlz_i();
4085
4086 return 0;
4087 }
4088
4089 /*
4090 * per-process mode
4091 */
4092
4093 if (ctx->ctx_task == current) {
4094
4095 /* start monitoring at kernel level */
4096 pfm_set_psr_up();
4097
4098 /*
4099 * activate monitoring at user level
4100 */
4101 ia64_psr(regs)->up = 1;
4102
4103 } else {
4104 tregs = task_pt_regs(ctx->ctx_task);
4105
4106 /*
4107 * start monitoring at the kernel level the next
4108 * time the task is scheduled
4109 */
4110 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4111
4112 /*
4113 * activate monitoring at user level
4114 */
4115 ia64_psr(tregs)->up = 1;
4116 }
4117 return 0;
4118}
4119
4120static int
4121pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4122{
4123 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4124 unsigned int cnum;
4125 int i;
4126 int ret = -EINVAL;
4127
4128 for (i = 0; i < count; i++, req++) {
4129
4130 cnum = req->reg_num;
4131
4132 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4133
4134 req->reg_value = PMC_DFL_VAL(cnum);
4135
4136 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4137
4138 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4139 }
4140 return 0;
4141
4142abort_mission:
4143 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4144 return ret;
4145}
4146
4147static int
4148pfm_check_task_exist(pfm_context_t *ctx)
4149{
4150 struct task_struct *g, *t;
4151 int ret = -ESRCH;
4152
4153 read_lock(&tasklist_lock);
4154
4155 do_each_thread (g, t) {
4156 if (t->thread.pfm_context == ctx) {
4157 ret = 0;
4158 goto out;
4159 }
4160 } while_each_thread (g, t);
4161out:
4162 read_unlock(&tasklist_lock);
4163
4164 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4165
4166 return ret;
4167}
4168
4169static int
4170pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4171{
4172 struct task_struct *task;
4173 struct thread_struct *thread;
4174 struct pfm_context_t *old;
4175 unsigned long flags;
4176#ifndef CONFIG_SMP
4177 struct task_struct *owner_task = NULL;
4178#endif
4179 pfarg_load_t *req = (pfarg_load_t *)arg;
4180 unsigned long *pmcs_source, *pmds_source;
4181 int the_cpu;
4182 int ret = 0;
4183 int state, is_system, set_dbregs = 0;
4184
4185 state = ctx->ctx_state;
4186 is_system = ctx->ctx_fl_system;
4187 /*
4188 * can only load from unloaded or terminated state
4189 */
4190 if (state != PFM_CTX_UNLOADED) {
4191 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4192 req->load_pid,
4193 ctx->ctx_state));
4194 return -EBUSY;
4195 }
4196
4197 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4198
4199 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4200 DPRINT(("cannot use blocking mode on self\n"));
4201 return -EINVAL;
4202 }
4203
4204 ret = pfm_get_task(ctx, req->load_pid, &task);
4205 if (ret) {
4206 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4207 return ret;
4208 }
4209
4210 ret = -EINVAL;
4211
4212 /*
4213 * system wide is self monitoring only
4214 */
4215 if (is_system && task != current) {
4216 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4217 req->load_pid));
4218 goto error;
4219 }
4220
4221 thread = &task->thread;
4222
4223 ret = 0;
4224 /*
4225 * cannot load a context which is using range restrictions,
4226 * into a task that is being debugged.
4227 */
4228 if (ctx->ctx_fl_using_dbreg) {
4229 if (thread->flags & IA64_THREAD_DBG_VALID) {
4230 ret = -EBUSY;
4231 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4232 goto error;
4233 }
4234 LOCK_PFS(flags);
4235
4236 if (is_system) {
4237 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4238 DPRINT(("cannot load [%d] dbregs in use\n",
4239 task_pid_nr(task)));
4240 ret = -EBUSY;
4241 } else {
4242 pfm_sessions.pfs_sys_use_dbregs++;
4243 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4244 set_dbregs = 1;
4245 }
4246 }
4247
4248 UNLOCK_PFS(flags);
4249
4250 if (ret) goto error;
4251 }
4252
4253 /*
4254 * SMP system-wide monitoring implies self-monitoring.
4255 *
4256 * The programming model expects the task to
4257 * be pinned on a CPU throughout the session.
4258 * Here we take note of the current CPU at the
4259 * time the context is loaded. No call from
4260 * another CPU will be allowed.
4261 *
4262 * The pinning via shed_setaffinity()
4263 * must be done by the calling task prior
4264 * to this call.
4265 *
4266 * systemwide: keep track of CPU this session is supposed to run on
4267 */
4268 the_cpu = ctx->ctx_cpu = smp_processor_id();
4269
4270 ret = -EBUSY;
4271 /*
4272 * now reserve the session
4273 */
4274 ret = pfm_reserve_session(current, is_system, the_cpu);
4275 if (ret) goto error;
4276
4277 /*
4278 * task is necessarily stopped at this point.
4279 *
4280 * If the previous context was zombie, then it got removed in
4281 * pfm_save_regs(). Therefore we should not see it here.
4282 * If we see a context, then this is an active context
4283 *
4284 * XXX: needs to be atomic
4285 */
4286 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287 thread->pfm_context, ctx));
4288
4289 ret = -EBUSY;
4290 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4291 if (old != NULL) {
4292 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4293 goto error_unres;
4294 }
4295
4296 pfm_reset_msgq(ctx);
4297
4298 ctx->ctx_state = PFM_CTX_LOADED;
4299
4300 /*
4301 * link context to task
4302 */
4303 ctx->ctx_task = task;
4304
4305 if (is_system) {
4306 /*
4307 * we load as stopped
4308 */
4309 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4310 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4311
4312 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4313 } else {
4314 thread->flags |= IA64_THREAD_PM_VALID;
4315 }
4316
4317 /*
4318 * propagate into thread-state
4319 */
4320 pfm_copy_pmds(task, ctx);
4321 pfm_copy_pmcs(task, ctx);
4322
4323 pmcs_source = ctx->th_pmcs;
4324 pmds_source = ctx->th_pmds;
4325
4326 /*
4327 * always the case for system-wide
4328 */
4329 if (task == current) {
4330
4331 if (is_system == 0) {
4332
4333 /* allow user level control */
4334 ia64_psr(regs)->sp = 0;
4335 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4336
4337 SET_LAST_CPU(ctx, smp_processor_id());
4338 INC_ACTIVATION();
4339 SET_ACTIVATION(ctx);
4340#ifndef CONFIG_SMP
4341 /*
4342 * push the other task out, if any
4343 */
4344 owner_task = GET_PMU_OWNER();
4345 if (owner_task) pfm_lazy_save_regs(owner_task);
4346#endif
4347 }
4348 /*
4349 * load all PMD from ctx to PMU (as opposed to thread state)
4350 * restore all PMC from ctx to PMU
4351 */
4352 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4353 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4354
4355 ctx->ctx_reload_pmcs[0] = 0UL;
4356 ctx->ctx_reload_pmds[0] = 0UL;
4357
4358 /*
4359 * guaranteed safe by earlier check against DBG_VALID
4360 */
4361 if (ctx->ctx_fl_using_dbreg) {
4362 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4363 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4364 }
4365 /*
4366 * set new ownership
4367 */
4368 SET_PMU_OWNER(task, ctx);
4369
4370 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4371 } else {
4372 /*
4373 * when not current, task MUST be stopped, so this is safe
4374 */
4375 regs = task_pt_regs(task);
4376
4377 /* force a full reload */
4378 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4379 SET_LAST_CPU(ctx, -1);
4380
4381 /* initial saved psr (stopped) */
4382 ctx->ctx_saved_psr_up = 0UL;
4383 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4384 }
4385
4386 ret = 0;
4387
4388error_unres:
4389 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4390error:
4391 /*
4392 * we must undo the dbregs setting (for system-wide)
4393 */
4394 if (ret && set_dbregs) {
4395 LOCK_PFS(flags);
4396 pfm_sessions.pfs_sys_use_dbregs--;
4397 UNLOCK_PFS(flags);
4398 }
4399 /*
4400 * release task, there is now a link with the context
4401 */
4402 if (is_system == 0 && task != current) {
4403 pfm_put_task(task);
4404
4405 if (ret == 0) {
4406 ret = pfm_check_task_exist(ctx);
4407 if (ret) {
4408 ctx->ctx_state = PFM_CTX_UNLOADED;
4409 ctx->ctx_task = NULL;
4410 }
4411 }
4412 }
4413 return ret;
4414}
4415
4416/*
4417 * in this function, we do not need to increase the use count
4418 * for the task via get_task_struct(), because we hold the
4419 * context lock. If the task were to disappear while having
4420 * a context attached, it would go through pfm_exit_thread()
4421 * which also grabs the context lock and would therefore be blocked
4422 * until we are here.
4423 */
4424static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4425
4426static int
4427pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4428{
4429 struct task_struct *task = PFM_CTX_TASK(ctx);
4430 struct pt_regs *tregs;
4431 int prev_state, is_system;
4432 int ret;
4433
4434 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4435
4436 prev_state = ctx->ctx_state;
4437 is_system = ctx->ctx_fl_system;
4438
4439 /*
4440 * unload only when necessary
4441 */
4442 if (prev_state == PFM_CTX_UNLOADED) {
4443 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4444 return 0;
4445 }
4446
4447 /*
4448 * clear psr and dcr bits
4449 */
4450 ret = pfm_stop(ctx, NULL, 0, regs);
4451 if (ret) return ret;
4452
4453 ctx->ctx_state = PFM_CTX_UNLOADED;
4454
4455 /*
4456 * in system mode, we need to update the PMU directly
4457 * and the user level state of the caller, which may not
4458 * necessarily be the creator of the context.
4459 */
4460 if (is_system) {
4461
4462 /*
4463 * Update cpuinfo
4464 *
4465 * local PMU is taken care of in pfm_stop()
4466 */
4467 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4468 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4469
4470 /*
4471 * save PMDs in context
4472 * release ownership
4473 */
4474 pfm_flush_pmds(current, ctx);
4475
4476 /*
4477 * at this point we are done with the PMU
4478 * so we can unreserve the resource.
4479 */
4480 if (prev_state != PFM_CTX_ZOMBIE)
4481 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4482
4483 /*
4484 * disconnect context from task
4485 */
4486 task->thread.pfm_context = NULL;
4487 /*
4488 * disconnect task from context
4489 */
4490 ctx->ctx_task = NULL;
4491
4492 /*
4493 * There is nothing more to cleanup here.
4494 */
4495 return 0;
4496 }
4497
4498 /*
4499 * per-task mode
4500 */
4501 tregs = task == current ? regs : task_pt_regs(task);
4502
4503 if (task == current) {
4504 /*
4505 * cancel user level control
4506 */
4507 ia64_psr(regs)->sp = 1;
4508
4509 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4510 }
4511 /*
4512 * save PMDs to context
4513 * release ownership
4514 */
4515 pfm_flush_pmds(task, ctx);
4516
4517 /*
4518 * at this point we are done with the PMU
4519 * so we can unreserve the resource.
4520 *
4521 * when state was ZOMBIE, we have already unreserved.
4522 */
4523 if (prev_state != PFM_CTX_ZOMBIE)
4524 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4525
4526 /*
4527 * reset activation counter and psr
4528 */
4529 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4530 SET_LAST_CPU(ctx, -1);
4531
4532 /*
4533 * PMU state will not be restored
4534 */
4535 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4536
4537 /*
4538 * break links between context and task
4539 */
4540 task->thread.pfm_context = NULL;
4541 ctx->ctx_task = NULL;
4542
4543 PFM_SET_WORK_PENDING(task, 0);
4544
4545 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4546 ctx->ctx_fl_can_restart = 0;
4547 ctx->ctx_fl_going_zombie = 0;
4548
4549 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4550
4551 return 0;
4552}
4553
4554
4555/*
4556 * called only from exit_thread(): task == current
4557 * we come here only if current has a context attached (loaded or masked)
4558 */
4559void
4560pfm_exit_thread(struct task_struct *task)
4561{
4562 pfm_context_t *ctx;
4563 unsigned long flags;
4564 struct pt_regs *regs = task_pt_regs(task);
4565 int ret, state;
4566 int free_ok = 0;
4567
4568 ctx = PFM_GET_CTX(task);
4569
4570 PROTECT_CTX(ctx, flags);
4571
4572 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4573
4574 state = ctx->ctx_state;
4575 switch(state) {
4576 case PFM_CTX_UNLOADED:
4577 /*
4578 * only comes to this function if pfm_context is not NULL, i.e., cannot
4579 * be in unloaded state
4580 */
4581 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4582 break;
4583 case PFM_CTX_LOADED:
4584 case PFM_CTX_MASKED:
4585 ret = pfm_context_unload(ctx, NULL, 0, regs);
4586 if (ret) {
4587 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588 }
4589 DPRINT(("ctx unloaded for current state was %d\n", state));
4590
4591 pfm_end_notify_user(ctx);
4592 break;
4593 case PFM_CTX_ZOMBIE:
4594 ret = pfm_context_unload(ctx, NULL, 0, regs);
4595 if (ret) {
4596 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4597 }
4598 free_ok = 1;
4599 break;
4600 default:
4601 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4602 break;
4603 }
4604 UNPROTECT_CTX(ctx, flags);
4605
4606 { u64 psr = pfm_get_psr();
4607 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4608 BUG_ON(GET_PMU_OWNER());
4609 BUG_ON(ia64_psr(regs)->up);
4610 BUG_ON(ia64_psr(regs)->pp);
4611 }
4612
4613 /*
4614 * All memory free operations (especially for vmalloc'ed memory)
4615 * MUST be done with interrupts ENABLED.
4616 */
4617 if (free_ok) pfm_context_free(ctx);
4618}
4619
4620/*
4621 * functions MUST be listed in the increasing order of their index (see permfon.h)
4622 */
4623#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4627#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4628
4629static pfm_cmd_desc_t pfm_cmd_tab[]={
4630/* 0 */PFM_CMD_NONE,
4631/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4632/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4633/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4634/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4635/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4636/* 6 */PFM_CMD_NONE,
4637/* 7 */PFM_CMD_NONE,
4638/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4639/* 9 */PFM_CMD_NONE,
4640/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4641/* 11 */PFM_CMD_NONE,
4642/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4643/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4644/* 14 */PFM_CMD_NONE,
4645/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4647/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4648/* 18 */PFM_CMD_NONE,
4649/* 19 */PFM_CMD_NONE,
4650/* 20 */PFM_CMD_NONE,
4651/* 21 */PFM_CMD_NONE,
4652/* 22 */PFM_CMD_NONE,
4653/* 23 */PFM_CMD_NONE,
4654/* 24 */PFM_CMD_NONE,
4655/* 25 */PFM_CMD_NONE,
4656/* 26 */PFM_CMD_NONE,
4657/* 27 */PFM_CMD_NONE,
4658/* 28 */PFM_CMD_NONE,
4659/* 29 */PFM_CMD_NONE,
4660/* 30 */PFM_CMD_NONE,
4661/* 31 */PFM_CMD_NONE,
4662/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4663/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4664};
4665#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4666
4667static int
4668pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4669{
4670 struct task_struct *task;
4671 int state, old_state;
4672
4673recheck:
4674 state = ctx->ctx_state;
4675 task = ctx->ctx_task;
4676
4677 if (task == NULL) {
4678 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4679 return 0;
4680 }
4681
4682 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4683 ctx->ctx_fd,
4684 state,
4685 task_pid_nr(task),
4686 task->state, PFM_CMD_STOPPED(cmd)));
4687
4688 /*
4689 * self-monitoring always ok.
4690 *
4691 * for system-wide the caller can either be the creator of the
4692 * context (to one to which the context is attached to) OR
4693 * a task running on the same CPU as the session.
4694 */
4695 if (task == current || ctx->ctx_fl_system) return 0;
4696
4697 /*
4698 * we are monitoring another thread
4699 */
4700 switch(state) {
4701 case PFM_CTX_UNLOADED:
4702 /*
4703 * if context is UNLOADED we are safe to go
4704 */
4705 return 0;
4706 case PFM_CTX_ZOMBIE:
4707 /*
4708 * no command can operate on a zombie context
4709 */
4710 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4711 return -EINVAL;
4712 case PFM_CTX_MASKED:
4713 /*
4714 * PMU state has been saved to software even though
4715 * the thread may still be running.
4716 */
4717 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4718 }
4719
4720 /*
4721 * context is LOADED or MASKED. Some commands may need to have
4722 * the task stopped.
4723 *
4724 * We could lift this restriction for UP but it would mean that
4725 * the user has no guarantee the task would not run between
4726 * two successive calls to perfmonctl(). That's probably OK.
4727 * If this user wants to ensure the task does not run, then
4728 * the task must be stopped.
4729 */
4730 if (PFM_CMD_STOPPED(cmd)) {
4731 if (!task_is_stopped_or_traced(task)) {
4732 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4733 return -EBUSY;
4734 }
4735 /*
4736 * task is now stopped, wait for ctxsw out
4737 *
4738 * This is an interesting point in the code.
4739 * We need to unprotect the context because
4740 * the pfm_save_regs() routines needs to grab
4741 * the same lock. There are danger in doing
4742 * this because it leaves a window open for
4743 * another task to get access to the context
4744 * and possibly change its state. The one thing
4745 * that is not possible is for the context to disappear
4746 * because we are protected by the VFS layer, i.e.,
4747 * get_fd()/put_fd().
4748 */
4749 old_state = state;
4750
4751 UNPROTECT_CTX(ctx, flags);
4752
4753 wait_task_inactive(task, 0);
4754
4755 PROTECT_CTX(ctx, flags);
4756
4757 /*
4758 * we must recheck to verify if state has changed
4759 */
4760 if (ctx->ctx_state != old_state) {
4761 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4762 goto recheck;
4763 }
4764 }
4765 return 0;
4766}
4767
4768/*
4769 * system-call entry point (must return long)
4770 */
4771asmlinkage long
4772sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4773{
4774 struct fd f = {NULL, 0};
4775 pfm_context_t *ctx = NULL;
4776 unsigned long flags = 0UL;
4777 void *args_k = NULL;
4778 long ret; /* will expand int return types */
4779 size_t base_sz, sz, xtra_sz = 0;
4780 int narg, completed_args = 0, call_made = 0, cmd_flags;
4781 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4782 int (*getsize)(void *arg, size_t *sz);
4783#define PFM_MAX_ARGSIZE 4096
4784
4785 /*
4786 * reject any call if perfmon was disabled at initialization
4787 */
4788 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4789
4790 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4791 DPRINT(("invalid cmd=%d\n", cmd));
4792 return -EINVAL;
4793 }
4794
4795 func = pfm_cmd_tab[cmd].cmd_func;
4796 narg = pfm_cmd_tab[cmd].cmd_narg;
4797 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4798 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4799 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4800
4801 if (unlikely(func == NULL)) {
4802 DPRINT(("invalid cmd=%d\n", cmd));
4803 return -EINVAL;
4804 }
4805
4806 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4807 PFM_CMD_NAME(cmd),
4808 cmd,
4809 narg,
4810 base_sz,
4811 count));
4812
4813 /*
4814 * check if number of arguments matches what the command expects
4815 */
4816 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4817 return -EINVAL;
4818
4819restart_args:
4820 sz = xtra_sz + base_sz*count;
4821 /*
4822 * limit abuse to min page size
4823 */
4824 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4825 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4826 return -E2BIG;
4827 }
4828
4829 /*
4830 * allocate default-sized argument buffer
4831 */
4832 if (likely(count && args_k == NULL)) {
4833 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4834 if (args_k == NULL) return -ENOMEM;
4835 }
4836
4837 ret = -EFAULT;
4838
4839 /*
4840 * copy arguments
4841 *
4842 * assume sz = 0 for command without parameters
4843 */
4844 if (sz && copy_from_user(args_k, arg, sz)) {
4845 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4846 goto error_args;
4847 }
4848
4849 /*
4850 * check if command supports extra parameters
4851 */
4852 if (completed_args == 0 && getsize) {
4853 /*
4854 * get extra parameters size (based on main argument)
4855 */
4856 ret = (*getsize)(args_k, &xtra_sz);
4857 if (ret) goto error_args;
4858
4859 completed_args = 1;
4860
4861 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4862
4863 /* retry if necessary */
4864 if (likely(xtra_sz)) goto restart_args;
4865 }
4866
4867 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4868
4869 ret = -EBADF;
4870
4871 f = fdget(fd);
4872 if (unlikely(f.file == NULL)) {
4873 DPRINT(("invalid fd %d\n", fd));
4874 goto error_args;
4875 }
4876 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4877 DPRINT(("fd %d not related to perfmon\n", fd));
4878 goto error_args;
4879 }
4880
4881 ctx = f.file->private_data;
4882 if (unlikely(ctx == NULL)) {
4883 DPRINT(("no context for fd %d\n", fd));
4884 goto error_args;
4885 }
4886 prefetch(&ctx->ctx_state);
4887
4888 PROTECT_CTX(ctx, flags);
4889
4890 /*
4891 * check task is stopped
4892 */
4893 ret = pfm_check_task_state(ctx, cmd, flags);
4894 if (unlikely(ret)) goto abort_locked;
4895
4896skip_fd:
4897 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4898
4899 call_made = 1;
4900
4901abort_locked:
4902 if (likely(ctx)) {
4903 DPRINT(("context unlocked\n"));
4904 UNPROTECT_CTX(ctx, flags);
4905 }
4906
4907 /* copy argument back to user, if needed */
4908 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4909
4910error_args:
4911 if (f.file)
4912 fdput(f);
4913
4914 kfree(args_k);
4915
4916 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4917
4918 return ret;
4919}
4920
4921static void
4922pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4923{
4924 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4925 pfm_ovfl_ctrl_t rst_ctrl;
4926 int state;
4927 int ret = 0;
4928
4929 state = ctx->ctx_state;
4930 /*
4931 * Unlock sampling buffer and reset index atomically
4932 * XXX: not really needed when blocking
4933 */
4934 if (CTX_HAS_SMPL(ctx)) {
4935
4936 rst_ctrl.bits.mask_monitoring = 0;
4937 rst_ctrl.bits.reset_ovfl_pmds = 0;
4938
4939 if (state == PFM_CTX_LOADED)
4940 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941 else
4942 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4943 } else {
4944 rst_ctrl.bits.mask_monitoring = 0;
4945 rst_ctrl.bits.reset_ovfl_pmds = 1;
4946 }
4947
4948 if (ret == 0) {
4949 if (rst_ctrl.bits.reset_ovfl_pmds) {
4950 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4951 }
4952 if (rst_ctrl.bits.mask_monitoring == 0) {
4953 DPRINT(("resuming monitoring\n"));
4954 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4955 } else {
4956 DPRINT(("stopping monitoring\n"));
4957 //pfm_stop_monitoring(current, regs);
4958 }
4959 ctx->ctx_state = PFM_CTX_LOADED;
4960 }
4961}
4962
4963/*
4964 * context MUST BE LOCKED when calling
4965 * can only be called for current
4966 */
4967static void
4968pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4969{
4970 int ret;
4971
4972 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4973
4974 ret = pfm_context_unload(ctx, NULL, 0, regs);
4975 if (ret) {
4976 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4977 }
4978
4979 /*
4980 * and wakeup controlling task, indicating we are now disconnected
4981 */
4982 wake_up_interruptible(&ctx->ctx_zombieq);
4983
4984 /*
4985 * given that context is still locked, the controlling
4986 * task will only get access when we return from
4987 * pfm_handle_work().
4988 */
4989}
4990
4991static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4992
4993 /*
4994 * pfm_handle_work() can be called with interrupts enabled
4995 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996 * call may sleep, therefore we must re-enable interrupts
4997 * to avoid deadlocks. It is safe to do so because this function
4998 * is called ONLY when returning to user level (pUStk=1), in which case
4999 * there is no risk of kernel stack overflow due to deep
5000 * interrupt nesting.
5001 */
5002void
5003pfm_handle_work(void)
5004{
5005 pfm_context_t *ctx;
5006 struct pt_regs *regs;
5007 unsigned long flags, dummy_flags;
5008 unsigned long ovfl_regs;
5009 unsigned int reason;
5010 int ret;
5011
5012 ctx = PFM_GET_CTX(current);
5013 if (ctx == NULL) {
5014 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5015 task_pid_nr(current));
5016 return;
5017 }
5018
5019 PROTECT_CTX(ctx, flags);
5020
5021 PFM_SET_WORK_PENDING(current, 0);
5022
5023 regs = task_pt_regs(current);
5024
5025 /*
5026 * extract reason for being here and clear
5027 */
5028 reason = ctx->ctx_fl_trap_reason;
5029 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5030 ovfl_regs = ctx->ctx_ovfl_regs[0];
5031
5032 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5033
5034 /*
5035 * must be done before we check for simple-reset mode
5036 */
5037 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5038 goto do_zombie;
5039
5040 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041 if (reason == PFM_TRAP_REASON_RESET)
5042 goto skip_blocking;
5043
5044 /*
5045 * restore interrupt mask to what it was on entry.
5046 * Could be enabled/diasbled.
5047 */
5048 UNPROTECT_CTX(ctx, flags);
5049
5050 /*
5051 * force interrupt enable because of down_interruptible()
5052 */
5053 local_irq_enable();
5054
5055 DPRINT(("before block sleeping\n"));
5056
5057 /*
5058 * may go through without blocking on SMP systems
5059 * if restart has been received already by the time we call down()
5060 */
5061 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5062
5063 DPRINT(("after block sleeping ret=%d\n", ret));
5064
5065 /*
5066 * lock context and mask interrupts again
5067 * We save flags into a dummy because we may have
5068 * altered interrupts mask compared to entry in this
5069 * function.
5070 */
5071 PROTECT_CTX(ctx, dummy_flags);
5072
5073 /*
5074 * we need to read the ovfl_regs only after wake-up
5075 * because we may have had pfm_write_pmds() in between
5076 * and that can changed PMD values and therefore
5077 * ovfl_regs is reset for these new PMD values.
5078 */
5079 ovfl_regs = ctx->ctx_ovfl_regs[0];
5080
5081 if (ctx->ctx_fl_going_zombie) {
5082do_zombie:
5083 DPRINT(("context is zombie, bailing out\n"));
5084 pfm_context_force_terminate(ctx, regs);
5085 goto nothing_to_do;
5086 }
5087 /*
5088 * in case of interruption of down() we don't restart anything
5089 */
5090 if (ret < 0)
5091 goto nothing_to_do;
5092
5093skip_blocking:
5094 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5095 ctx->ctx_ovfl_regs[0] = 0UL;
5096
5097nothing_to_do:
5098 /*
5099 * restore flags as they were upon entry
5100 */
5101 UNPROTECT_CTX(ctx, flags);
5102}
5103
5104static int
5105pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5106{
5107 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5108 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5109 return 0;
5110 }
5111
5112 DPRINT(("waking up somebody\n"));
5113
5114 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5115
5116 /*
5117 * safe, we are not in intr handler, nor in ctxsw when
5118 * we come here
5119 */
5120 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5121
5122 return 0;
5123}
5124
5125static int
5126pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5127{
5128 pfm_msg_t *msg = NULL;
5129
5130 if (ctx->ctx_fl_no_msg == 0) {
5131 msg = pfm_get_new_msg(ctx);
5132 if (msg == NULL) {
5133 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5134 return -1;
5135 }
5136
5137 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5138 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5139 msg->pfm_ovfl_msg.msg_active_set = 0;
5140 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5141 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5142 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5143 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5144 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5145 }
5146
5147 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148 msg,
5149 ctx->ctx_fl_no_msg,
5150 ctx->ctx_fd,
5151 ovfl_pmds));
5152
5153 return pfm_notify_user(ctx, msg);
5154}
5155
5156static int
5157pfm_end_notify_user(pfm_context_t *ctx)
5158{
5159 pfm_msg_t *msg;
5160
5161 msg = pfm_get_new_msg(ctx);
5162 if (msg == NULL) {
5163 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5164 return -1;
5165 }
5166 /* no leak */
5167 memset(msg, 0, sizeof(*msg));
5168
5169 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5170 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5171 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172
5173 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5174 msg,
5175 ctx->ctx_fl_no_msg,
5176 ctx->ctx_fd));
5177
5178 return pfm_notify_user(ctx, msg);
5179}
5180
5181/*
5182 * main overflow processing routine.
5183 * it can be called from the interrupt path or explicitly during the context switch code
5184 */
5185static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5186 unsigned long pmc0, struct pt_regs *regs)
5187{
5188 pfm_ovfl_arg_t *ovfl_arg;
5189 unsigned long mask;
5190 unsigned long old_val, ovfl_val, new_val;
5191 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5192 unsigned long tstamp;
5193 pfm_ovfl_ctrl_t ovfl_ctrl;
5194 unsigned int i, has_smpl;
5195 int must_notify = 0;
5196
5197 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5198
5199 /*
5200 * sanity test. Should never happen
5201 */
5202 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5203
5204 tstamp = ia64_get_itc();
5205 mask = pmc0 >> PMU_FIRST_COUNTER;
5206 ovfl_val = pmu_conf->ovfl_val;
5207 has_smpl = CTX_HAS_SMPL(ctx);
5208
5209 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210 "used_pmds=0x%lx\n",
5211 pmc0,
5212 task ? task_pid_nr(task): -1,
5213 (regs ? regs->cr_iip : 0),
5214 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5215 ctx->ctx_used_pmds[0]));
5216
5217
5218 /*
5219 * first we update the virtual counters
5220 * assume there was a prior ia64_srlz_d() issued
5221 */
5222 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5223
5224 /* skip pmd which did not overflow */
5225 if ((mask & 0x1) == 0) continue;
5226
5227 /*
5228 * Note that the pmd is not necessarily 0 at this point as qualified events
5229 * may have happened before the PMU was frozen. The residual count is not
5230 * taken into consideration here but will be with any read of the pmd via
5231 * pfm_read_pmds().
5232 */
5233 old_val = new_val = ctx->ctx_pmds[i].val;
5234 new_val += 1 + ovfl_val;
5235 ctx->ctx_pmds[i].val = new_val;
5236
5237 /*
5238 * check for overflow condition
5239 */
5240 if (likely(old_val > new_val)) {
5241 ovfl_pmds |= 1UL << i;
5242 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5243 }
5244
5245 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5246 i,
5247 new_val,
5248 old_val,
5249 ia64_get_pmd(i) & ovfl_val,
5250 ovfl_pmds,
5251 ovfl_notify));
5252 }
5253
5254 /*
5255 * there was no 64-bit overflow, nothing else to do
5256 */
5257 if (ovfl_pmds == 0UL) return;
5258
5259 /*
5260 * reset all control bits
5261 */
5262 ovfl_ctrl.val = 0;
5263 reset_pmds = 0UL;
5264
5265 /*
5266 * if a sampling format module exists, then we "cache" the overflow by
5267 * calling the module's handler() routine.
5268 */
5269 if (has_smpl) {
5270 unsigned long start_cycles, end_cycles;
5271 unsigned long pmd_mask;
5272 int j, k, ret = 0;
5273 int this_cpu = smp_processor_id();
5274
5275 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5276 ovfl_arg = &ctx->ctx_ovfl_arg;
5277
5278 prefetch(ctx->ctx_smpl_hdr);
5279
5280 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5281
5282 mask = 1UL << i;
5283
5284 if ((pmd_mask & 0x1) == 0) continue;
5285
5286 ovfl_arg->ovfl_pmd = (unsigned char )i;
5287 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5288 ovfl_arg->active_set = 0;
5289 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5290 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5291
5292 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5293 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5294 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5295
5296 /*
5297 * copy values of pmds of interest. Sampling format may copy them
5298 * into sampling buffer.
5299 */
5300 if (smpl_pmds) {
5301 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5302 if ((smpl_pmds & 0x1) == 0) continue;
5303 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5304 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5305 }
5306 }
5307
5308 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5309
5310 start_cycles = ia64_get_itc();
5311
5312 /*
5313 * call custom buffer format record (handler) routine
5314 */
5315 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5316
5317 end_cycles = ia64_get_itc();
5318
5319 /*
5320 * For those controls, we take the union because they have
5321 * an all or nothing behavior.
5322 */
5323 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5324 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5325 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5326 /*
5327 * build the bitmask of pmds to reset now
5328 */
5329 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5330
5331 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5332 }
5333 /*
5334 * when the module cannot handle the rest of the overflows, we abort right here
5335 */
5336 if (ret && pmd_mask) {
5337 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338 pmd_mask<<PMU_FIRST_COUNTER));
5339 }
5340 /*
5341 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5342 */
5343 ovfl_pmds &= ~reset_pmds;
5344 } else {
5345 /*
5346 * when no sampling module is used, then the default
5347 * is to notify on overflow if requested by user
5348 */
5349 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5350 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5351 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5352 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5353 /*
5354 * if needed, we reset all overflowed pmds
5355 */
5356 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5357 }
5358
5359 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5360
5361 /*
5362 * reset the requested PMD registers using the short reset values
5363 */
5364 if (reset_pmds) {
5365 unsigned long bm = reset_pmds;
5366 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5367 }
5368
5369 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5370 /*
5371 * keep track of what to reset when unblocking
5372 */
5373 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5374
5375 /*
5376 * check for blocking context
5377 */
5378 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5379
5380 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5381
5382 /*
5383 * set the perfmon specific checking pending work for the task
5384 */
5385 PFM_SET_WORK_PENDING(task, 1);
5386
5387 /*
5388 * when coming from ctxsw, current still points to the
5389 * previous task, therefore we must work with task and not current.
5390 */
5391 set_notify_resume(task);
5392 }
5393 /*
5394 * defer until state is changed (shorten spin window). the context is locked
5395 * anyway, so the signal receiver would come spin for nothing.
5396 */
5397 must_notify = 1;
5398 }
5399
5400 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402 PFM_GET_WORK_PENDING(task),
5403 ctx->ctx_fl_trap_reason,
5404 ovfl_pmds,
5405 ovfl_notify,
5406 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5407 /*
5408 * in case monitoring must be stopped, we toggle the psr bits
5409 */
5410 if (ovfl_ctrl.bits.mask_monitoring) {
5411 pfm_mask_monitoring(task);
5412 ctx->ctx_state = PFM_CTX_MASKED;
5413 ctx->ctx_fl_can_restart = 1;
5414 }
5415
5416 /*
5417 * send notification now
5418 */
5419 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5420
5421 return;
5422
5423sanity_check:
5424 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5425 smp_processor_id(),
5426 task ? task_pid_nr(task) : -1,
5427 pmc0);
5428 return;
5429
5430stop_monitoring:
5431 /*
5432 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434 * come here as zombie only if the task is the current task. In which case, we
5435 * can access the PMU hardware directly.
5436 *
5437 * Note that zombies do have PM_VALID set. So here we do the minimal.
5438 *
5439 * In case the context was zombified it could not be reclaimed at the time
5440 * the monitoring program exited. At this point, the PMU reservation has been
5441 * returned, the sampiing buffer has been freed. We must convert this call
5442 * into a spurious interrupt. However, we must also avoid infinite overflows
5443 * by stopping monitoring for this task. We can only come here for a per-task
5444 * context. All we need to do is to stop monitoring using the psr bits which
5445 * are always task private. By re-enabling secure montioring, we ensure that
5446 * the monitored task will not be able to re-activate monitoring.
5447 * The task will eventually be context switched out, at which point the context
5448 * will be reclaimed (that includes releasing ownership of the PMU).
5449 *
5450 * So there might be a window of time where the number of per-task session is zero
5451 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452 * context. This is safe because if a per-task session comes in, it will push this one
5453 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455 * also push our zombie context out.
5456 *
5457 * Overall pretty hairy stuff....
5458 */
5459 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5460 pfm_clear_psr_up();
5461 ia64_psr(regs)->up = 0;
5462 ia64_psr(regs)->sp = 1;
5463 return;
5464}
5465
5466static int
5467pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5468{
5469 struct task_struct *task;
5470 pfm_context_t *ctx;
5471 unsigned long flags;
5472 u64 pmc0;
5473 int this_cpu = smp_processor_id();
5474 int retval = 0;
5475
5476 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5477
5478 /*
5479 * srlz.d done before arriving here
5480 */
5481 pmc0 = ia64_get_pmc(0);
5482
5483 task = GET_PMU_OWNER();
5484 ctx = GET_PMU_CTX();
5485
5486 /*
5487 * if we have some pending bits set
5488 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5489 */
5490 if (PMC0_HAS_OVFL(pmc0) && task) {
5491 /*
5492 * we assume that pmc0.fr is always set here
5493 */
5494
5495 /* sanity check */
5496 if (!ctx) goto report_spurious1;
5497
5498 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5499 goto report_spurious2;
5500
5501 PROTECT_CTX_NOPRINT(ctx, flags);
5502
5503 pfm_overflow_handler(task, ctx, pmc0, regs);
5504
5505 UNPROTECT_CTX_NOPRINT(ctx, flags);
5506
5507 } else {
5508 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5509 retval = -1;
5510 }
5511 /*
5512 * keep it unfrozen at all times
5513 */
5514 pfm_unfreeze_pmu();
5515
5516 return retval;
5517
5518report_spurious1:
5519 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520 this_cpu, task_pid_nr(task));
5521 pfm_unfreeze_pmu();
5522 return -1;
5523report_spurious2:
5524 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5525 this_cpu,
5526 task_pid_nr(task));
5527 pfm_unfreeze_pmu();
5528 return -1;
5529}
5530
5531static irqreturn_t
5532pfm_interrupt_handler(int irq, void *arg)
5533{
5534 unsigned long start_cycles, total_cycles;
5535 unsigned long min, max;
5536 int this_cpu;
5537 int ret;
5538 struct pt_regs *regs = get_irq_regs();
5539
5540 this_cpu = get_cpu();
5541 if (likely(!pfm_alt_intr_handler)) {
5542 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5543 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5544
5545 start_cycles = ia64_get_itc();
5546
5547 ret = pfm_do_interrupt_handler(arg, regs);
5548
5549 total_cycles = ia64_get_itc();
5550
5551 /*
5552 * don't measure spurious interrupts
5553 */
5554 if (likely(ret == 0)) {
5555 total_cycles -= start_cycles;
5556
5557 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5558 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5559
5560 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5561 }
5562 }
5563 else {
5564 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5565 }
5566
5567 put_cpu();
5568 return IRQ_HANDLED;
5569}
5570
5571/*
5572 * /proc/perfmon interface, for debug only
5573 */
5574
5575#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5576
5577static void *
5578pfm_proc_start(struct seq_file *m, loff_t *pos)
5579{
5580 if (*pos == 0) {
5581 return PFM_PROC_SHOW_HEADER;
5582 }
5583
5584 while (*pos <= nr_cpu_ids) {
5585 if (cpu_online(*pos - 1)) {
5586 return (void *)*pos;
5587 }
5588 ++*pos;
5589 }
5590 return NULL;
5591}
5592
5593static void *
5594pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5595{
5596 ++*pos;
5597 return pfm_proc_start(m, pos);
5598}
5599
5600static void
5601pfm_proc_stop(struct seq_file *m, void *v)
5602{
5603}
5604
5605static void
5606pfm_proc_show_header(struct seq_file *m)
5607{
5608 struct list_head * pos;
5609 pfm_buffer_fmt_t * entry;
5610 unsigned long flags;
5611
5612 seq_printf(m,
5613 "perfmon version : %u.%u\n"
5614 "model : %s\n"
5615 "fastctxsw : %s\n"
5616 "expert mode : %s\n"
5617 "ovfl_mask : 0x%lx\n"
5618 "PMU flags : 0x%x\n",
5619 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5620 pmu_conf->pmu_name,
5621 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5622 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5623 pmu_conf->ovfl_val,
5624 pmu_conf->flags);
5625
5626 LOCK_PFS(flags);
5627
5628 seq_printf(m,
5629 "proc_sessions : %u\n"
5630 "sys_sessions : %u\n"
5631 "sys_use_dbregs : %u\n"
5632 "ptrace_use_dbregs : %u\n",
5633 pfm_sessions.pfs_task_sessions,
5634 pfm_sessions.pfs_sys_sessions,
5635 pfm_sessions.pfs_sys_use_dbregs,
5636 pfm_sessions.pfs_ptrace_use_dbregs);
5637
5638 UNLOCK_PFS(flags);
5639
5640 spin_lock(&pfm_buffer_fmt_lock);
5641
5642 list_for_each(pos, &pfm_buffer_fmt_list) {
5643 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5644 seq_printf(m, "format : %16phD %s\n",
5645 entry->fmt_uuid, entry->fmt_name);
5646 }
5647 spin_unlock(&pfm_buffer_fmt_lock);
5648
5649}
5650
5651static int
5652pfm_proc_show(struct seq_file *m, void *v)
5653{
5654 unsigned long psr;
5655 unsigned int i;
5656 int cpu;
5657
5658 if (v == PFM_PROC_SHOW_HEADER) {
5659 pfm_proc_show_header(m);
5660 return 0;
5661 }
5662
5663 /* show info for CPU (v - 1) */
5664
5665 cpu = (long)v - 1;
5666 seq_printf(m,
5667 "CPU%-2d overflow intrs : %lu\n"
5668 "CPU%-2d overflow cycles : %lu\n"
5669 "CPU%-2d overflow min : %lu\n"
5670 "CPU%-2d overflow max : %lu\n"
5671 "CPU%-2d smpl handler calls : %lu\n"
5672 "CPU%-2d smpl handler cycles : %lu\n"
5673 "CPU%-2d spurious intrs : %lu\n"
5674 "CPU%-2d replay intrs : %lu\n"
5675 "CPU%-2d syst_wide : %d\n"
5676 "CPU%-2d dcr_pp : %d\n"
5677 "CPU%-2d exclude idle : %d\n"
5678 "CPU%-2d owner : %d\n"
5679 "CPU%-2d context : %p\n"
5680 "CPU%-2d activations : %lu\n",
5681 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5682 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5683 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5684 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5685 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5686 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5687 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5688 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5689 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5690 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5691 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5692 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5693 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5694 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5695
5696 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5697
5698 psr = pfm_get_psr();
5699
5700 ia64_srlz_d();
5701
5702 seq_printf(m,
5703 "CPU%-2d psr : 0x%lx\n"
5704 "CPU%-2d pmc0 : 0x%lx\n",
5705 cpu, psr,
5706 cpu, ia64_get_pmc(0));
5707
5708 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5709 if (PMC_IS_COUNTING(i) == 0) continue;
5710 seq_printf(m,
5711 "CPU%-2d pmc%u : 0x%lx\n"
5712 "CPU%-2d pmd%u : 0x%lx\n",
5713 cpu, i, ia64_get_pmc(i),
5714 cpu, i, ia64_get_pmd(i));
5715 }
5716 }
5717 return 0;
5718}
5719
5720const struct seq_operations pfm_seq_ops = {
5721 .start = pfm_proc_start,
5722 .next = pfm_proc_next,
5723 .stop = pfm_proc_stop,
5724 .show = pfm_proc_show
5725};
5726
5727static int
5728pfm_proc_open(struct inode *inode, struct file *file)
5729{
5730 return seq_open(file, &pfm_seq_ops);
5731}
5732
5733
5734/*
5735 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737 * is active or inactive based on mode. We must rely on the value in
5738 * local_cpu_data->pfm_syst_info
5739 */
5740void
5741pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5742{
5743 struct pt_regs *regs;
5744 unsigned long dcr;
5745 unsigned long dcr_pp;
5746
5747 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5748
5749 /*
5750 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751 * on every CPU, so we can rely on the pid to identify the idle task.
5752 */
5753 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5754 regs = task_pt_regs(task);
5755 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5756 return;
5757 }
5758 /*
5759 * if monitoring has started
5760 */
5761 if (dcr_pp) {
5762 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5763 /*
5764 * context switching in?
5765 */
5766 if (is_ctxswin) {
5767 /* mask monitoring for the idle task */
5768 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5769 pfm_clear_psr_pp();
5770 ia64_srlz_i();
5771 return;
5772 }
5773 /*
5774 * context switching out
5775 * restore monitoring for next task
5776 *
5777 * Due to inlining this odd if-then-else construction generates
5778 * better code.
5779 */
5780 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5781 pfm_set_psr_pp();
5782 ia64_srlz_i();
5783 }
5784}
5785
5786#ifdef CONFIG_SMP
5787
5788static void
5789pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5790{
5791 struct task_struct *task = ctx->ctx_task;
5792
5793 ia64_psr(regs)->up = 0;
5794 ia64_psr(regs)->sp = 1;
5795
5796 if (GET_PMU_OWNER() == task) {
5797 DPRINT(("cleared ownership for [%d]\n",
5798 task_pid_nr(ctx->ctx_task)));
5799 SET_PMU_OWNER(NULL, NULL);
5800 }
5801
5802 /*
5803 * disconnect the task from the context and vice-versa
5804 */
5805 PFM_SET_WORK_PENDING(task, 0);
5806
5807 task->thread.pfm_context = NULL;
5808 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5809
5810 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5811}
5812
5813
5814/*
5815 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5816 */
5817void
5818pfm_save_regs(struct task_struct *task)
5819{
5820 pfm_context_t *ctx;
5821 unsigned long flags;
5822 u64 psr;
5823
5824
5825 ctx = PFM_GET_CTX(task);
5826 if (ctx == NULL) return;
5827
5828 /*
5829 * we always come here with interrupts ALREADY disabled by
5830 * the scheduler. So we simply need to protect against concurrent
5831 * access, not CPU concurrency.
5832 */
5833 flags = pfm_protect_ctx_ctxsw(ctx);
5834
5835 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5836 struct pt_regs *regs = task_pt_regs(task);
5837
5838 pfm_clear_psr_up();
5839
5840 pfm_force_cleanup(ctx, regs);
5841
5842 BUG_ON(ctx->ctx_smpl_hdr);
5843
5844 pfm_unprotect_ctx_ctxsw(ctx, flags);
5845
5846 pfm_context_free(ctx);
5847 return;
5848 }
5849
5850 /*
5851 * save current PSR: needed because we modify it
5852 */
5853 ia64_srlz_d();
5854 psr = pfm_get_psr();
5855
5856 BUG_ON(psr & (IA64_PSR_I));
5857
5858 /*
5859 * stop monitoring:
5860 * This is the last instruction which may generate an overflow
5861 *
5862 * We do not need to set psr.sp because, it is irrelevant in kernel.
5863 * It will be restored from ipsr when going back to user level
5864 */
5865 pfm_clear_psr_up();
5866
5867 /*
5868 * keep a copy of psr.up (for reload)
5869 */
5870 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5871
5872 /*
5873 * release ownership of this PMU.
5874 * PM interrupts are masked, so nothing
5875 * can happen.
5876 */
5877 SET_PMU_OWNER(NULL, NULL);
5878
5879 /*
5880 * we systematically save the PMD as we have no
5881 * guarantee we will be schedule at that same
5882 * CPU again.
5883 */
5884 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5885
5886 /*
5887 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888 * we will need it on the restore path to check
5889 * for pending overflow.
5890 */
5891 ctx->th_pmcs[0] = ia64_get_pmc(0);
5892
5893 /*
5894 * unfreeze PMU if had pending overflows
5895 */
5896 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5897
5898 /*
5899 * finally, allow context access.
5900 * interrupts will still be masked after this call.
5901 */
5902 pfm_unprotect_ctx_ctxsw(ctx, flags);
5903}
5904
5905#else /* !CONFIG_SMP */
5906void
5907pfm_save_regs(struct task_struct *task)
5908{
5909 pfm_context_t *ctx;
5910 u64 psr;
5911
5912 ctx = PFM_GET_CTX(task);
5913 if (ctx == NULL) return;
5914
5915 /*
5916 * save current PSR: needed because we modify it
5917 */
5918 psr = pfm_get_psr();
5919
5920 BUG_ON(psr & (IA64_PSR_I));
5921
5922 /*
5923 * stop monitoring:
5924 * This is the last instruction which may generate an overflow
5925 *
5926 * We do not need to set psr.sp because, it is irrelevant in kernel.
5927 * It will be restored from ipsr when going back to user level
5928 */
5929 pfm_clear_psr_up();
5930
5931 /*
5932 * keep a copy of psr.up (for reload)
5933 */
5934 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5935}
5936
5937static void
5938pfm_lazy_save_regs (struct task_struct *task)
5939{
5940 pfm_context_t *ctx;
5941 unsigned long flags;
5942
5943 { u64 psr = pfm_get_psr();
5944 BUG_ON(psr & IA64_PSR_UP);
5945 }
5946
5947 ctx = PFM_GET_CTX(task);
5948
5949 /*
5950 * we need to mask PMU overflow here to
5951 * make sure that we maintain pmc0 until
5952 * we save it. overflow interrupts are
5953 * treated as spurious if there is no
5954 * owner.
5955 *
5956 * XXX: I don't think this is necessary
5957 */
5958 PROTECT_CTX(ctx,flags);
5959
5960 /*
5961 * release ownership of this PMU.
5962 * must be done before we save the registers.
5963 *
5964 * after this call any PMU interrupt is treated
5965 * as spurious.
5966 */
5967 SET_PMU_OWNER(NULL, NULL);
5968
5969 /*
5970 * save all the pmds we use
5971 */
5972 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5973
5974 /*
5975 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976 * it is needed to check for pended overflow
5977 * on the restore path
5978 */
5979 ctx->th_pmcs[0] = ia64_get_pmc(0);
5980
5981 /*
5982 * unfreeze PMU if had pending overflows
5983 */
5984 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5985
5986 /*
5987 * now get can unmask PMU interrupts, they will
5988 * be treated as purely spurious and we will not
5989 * lose any information
5990 */
5991 UNPROTECT_CTX(ctx,flags);
5992}
5993#endif /* CONFIG_SMP */
5994
5995#ifdef CONFIG_SMP
5996/*
5997 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5998 */
5999void
6000pfm_load_regs (struct task_struct *task)
6001{
6002 pfm_context_t *ctx;
6003 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6004 unsigned long flags;
6005 u64 psr, psr_up;
6006 int need_irq_resend;
6007
6008 ctx = PFM_GET_CTX(task);
6009 if (unlikely(ctx == NULL)) return;
6010
6011 BUG_ON(GET_PMU_OWNER());
6012
6013 /*
6014 * possible on unload
6015 */
6016 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6017
6018 /*
6019 * we always come here with interrupts ALREADY disabled by
6020 * the scheduler. So we simply need to protect against concurrent
6021 * access, not CPU concurrency.
6022 */
6023 flags = pfm_protect_ctx_ctxsw(ctx);
6024 psr = pfm_get_psr();
6025
6026 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6027
6028 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6029 BUG_ON(psr & IA64_PSR_I);
6030
6031 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6032 struct pt_regs *regs = task_pt_regs(task);
6033
6034 BUG_ON(ctx->ctx_smpl_hdr);
6035
6036 pfm_force_cleanup(ctx, regs);
6037
6038 pfm_unprotect_ctx_ctxsw(ctx, flags);
6039
6040 /*
6041 * this one (kmalloc'ed) is fine with interrupts disabled
6042 */
6043 pfm_context_free(ctx);
6044
6045 return;
6046 }
6047
6048 /*
6049 * we restore ALL the debug registers to avoid picking up
6050 * stale state.
6051 */
6052 if (ctx->ctx_fl_using_dbreg) {
6053 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6054 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6055 }
6056 /*
6057 * retrieve saved psr.up
6058 */
6059 psr_up = ctx->ctx_saved_psr_up;
6060
6061 /*
6062 * if we were the last user of the PMU on that CPU,
6063 * then nothing to do except restore psr
6064 */
6065 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6066
6067 /*
6068 * retrieve partial reload masks (due to user modifications)
6069 */
6070 pmc_mask = ctx->ctx_reload_pmcs[0];
6071 pmd_mask = ctx->ctx_reload_pmds[0];
6072
6073 } else {
6074 /*
6075 * To avoid leaking information to the user level when psr.sp=0,
6076 * we must reload ALL implemented pmds (even the ones we don't use).
6077 * In the kernel we only allow PFM_READ_PMDS on registers which
6078 * we initialized or requested (sampling) so there is no risk there.
6079 */
6080 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6081
6082 /*
6083 * ALL accessible PMCs are systematically reloaded, unused registers
6084 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085 * up stale configuration.
6086 *
6087 * PMC0 is never in the mask. It is always restored separately.
6088 */
6089 pmc_mask = ctx->ctx_all_pmcs[0];
6090 }
6091 /*
6092 * when context is MASKED, we will restore PMC with plm=0
6093 * and PMD with stale information, but that's ok, nothing
6094 * will be captured.
6095 *
6096 * XXX: optimize here
6097 */
6098 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6099 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6100
6101 /*
6102 * check for pending overflow at the time the state
6103 * was saved.
6104 */
6105 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6106 /*
6107 * reload pmc0 with the overflow information
6108 * On McKinley PMU, this will trigger a PMU interrupt
6109 */
6110 ia64_set_pmc(0, ctx->th_pmcs[0]);
6111 ia64_srlz_d();
6112 ctx->th_pmcs[0] = 0UL;
6113
6114 /*
6115 * will replay the PMU interrupt
6116 */
6117 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6118
6119 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6120 }
6121
6122 /*
6123 * we just did a reload, so we reset the partial reload fields
6124 */
6125 ctx->ctx_reload_pmcs[0] = 0UL;
6126 ctx->ctx_reload_pmds[0] = 0UL;
6127
6128 SET_LAST_CPU(ctx, smp_processor_id());
6129
6130 /*
6131 * dump activation value for this PMU
6132 */
6133 INC_ACTIVATION();
6134 /*
6135 * record current activation for this context
6136 */
6137 SET_ACTIVATION(ctx);
6138
6139 /*
6140 * establish new ownership.
6141 */
6142 SET_PMU_OWNER(task, ctx);
6143
6144 /*
6145 * restore the psr.up bit. measurement
6146 * is active again.
6147 * no PMU interrupt can happen at this point
6148 * because we still have interrupts disabled.
6149 */
6150 if (likely(psr_up)) pfm_set_psr_up();
6151
6152 /*
6153 * allow concurrent access to context
6154 */
6155 pfm_unprotect_ctx_ctxsw(ctx, flags);
6156}
6157#else /* !CONFIG_SMP */
6158/*
6159 * reload PMU state for UP kernels
6160 * in 2.5 we come here with interrupts disabled
6161 */
6162void
6163pfm_load_regs (struct task_struct *task)
6164{
6165 pfm_context_t *ctx;
6166 struct task_struct *owner;
6167 unsigned long pmd_mask, pmc_mask;
6168 u64 psr, psr_up;
6169 int need_irq_resend;
6170
6171 owner = GET_PMU_OWNER();
6172 ctx = PFM_GET_CTX(task);
6173 psr = pfm_get_psr();
6174
6175 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6176 BUG_ON(psr & IA64_PSR_I);
6177
6178 /*
6179 * we restore ALL the debug registers to avoid picking up
6180 * stale state.
6181 *
6182 * This must be done even when the task is still the owner
6183 * as the registers may have been modified via ptrace()
6184 * (not perfmon) by the previous task.
6185 */
6186 if (ctx->ctx_fl_using_dbreg) {
6187 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6188 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6189 }
6190
6191 /*
6192 * retrieved saved psr.up
6193 */
6194 psr_up = ctx->ctx_saved_psr_up;
6195 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6196
6197 /*
6198 * short path, our state is still there, just
6199 * need to restore psr and we go
6200 *
6201 * we do not touch either PMC nor PMD. the psr is not touched
6202 * by the overflow_handler. So we are safe w.r.t. to interrupt
6203 * concurrency even without interrupt masking.
6204 */
6205 if (likely(owner == task)) {
6206 if (likely(psr_up)) pfm_set_psr_up();
6207 return;
6208 }
6209
6210 /*
6211 * someone else is still using the PMU, first push it out and
6212 * then we'll be able to install our stuff !
6213 *
6214 * Upon return, there will be no owner for the current PMU
6215 */
6216 if (owner) pfm_lazy_save_regs(owner);
6217
6218 /*
6219 * To avoid leaking information to the user level when psr.sp=0,
6220 * we must reload ALL implemented pmds (even the ones we don't use).
6221 * In the kernel we only allow PFM_READ_PMDS on registers which
6222 * we initialized or requested (sampling) so there is no risk there.
6223 */
6224 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6225
6226 /*
6227 * ALL accessible PMCs are systematically reloaded, unused registers
6228 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229 * up stale configuration.
6230 *
6231 * PMC0 is never in the mask. It is always restored separately
6232 */
6233 pmc_mask = ctx->ctx_all_pmcs[0];
6234
6235 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6236 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6237
6238 /*
6239 * check for pending overflow at the time the state
6240 * was saved.
6241 */
6242 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6243 /*
6244 * reload pmc0 with the overflow information
6245 * On McKinley PMU, this will trigger a PMU interrupt
6246 */
6247 ia64_set_pmc(0, ctx->th_pmcs[0]);
6248 ia64_srlz_d();
6249
6250 ctx->th_pmcs[0] = 0UL;
6251
6252 /*
6253 * will replay the PMU interrupt
6254 */
6255 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6256
6257 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6258 }
6259
6260 /*
6261 * establish new ownership.
6262 */
6263 SET_PMU_OWNER(task, ctx);
6264
6265 /*
6266 * restore the psr.up bit. measurement
6267 * is active again.
6268 * no PMU interrupt can happen at this point
6269 * because we still have interrupts disabled.
6270 */
6271 if (likely(psr_up)) pfm_set_psr_up();
6272}
6273#endif /* CONFIG_SMP */
6274
6275/*
6276 * this function assumes monitoring is stopped
6277 */
6278static void
6279pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6280{
6281 u64 pmc0;
6282 unsigned long mask2, val, pmd_val, ovfl_val;
6283 int i, can_access_pmu = 0;
6284 int is_self;
6285
6286 /*
6287 * is the caller the task being monitored (or which initiated the
6288 * session for system wide measurements)
6289 */
6290 is_self = ctx->ctx_task == task ? 1 : 0;
6291
6292 /*
6293 * can access PMU is task is the owner of the PMU state on the current CPU
6294 * or if we are running on the CPU bound to the context in system-wide mode
6295 * (that is not necessarily the task the context is attached to in this mode).
6296 * In system-wide we always have can_access_pmu true because a task running on an
6297 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6298 */
6299 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6300 if (can_access_pmu) {
6301 /*
6302 * Mark the PMU as not owned
6303 * This will cause the interrupt handler to do nothing in case an overflow
6304 * interrupt was in-flight
6305 * This also guarantees that pmc0 will contain the final state
6306 * It virtually gives us full control on overflow processing from that point
6307 * on.
6308 */
6309 SET_PMU_OWNER(NULL, NULL);
6310 DPRINT(("releasing ownership\n"));
6311
6312 /*
6313 * read current overflow status:
6314 *
6315 * we are guaranteed to read the final stable state
6316 */
6317 ia64_srlz_d();
6318 pmc0 = ia64_get_pmc(0); /* slow */
6319
6320 /*
6321 * reset freeze bit, overflow status information destroyed
6322 */
6323 pfm_unfreeze_pmu();
6324 } else {
6325 pmc0 = ctx->th_pmcs[0];
6326 /*
6327 * clear whatever overflow status bits there were
6328 */
6329 ctx->th_pmcs[0] = 0;
6330 }
6331 ovfl_val = pmu_conf->ovfl_val;
6332 /*
6333 * we save all the used pmds
6334 * we take care of overflows for counting PMDs
6335 *
6336 * XXX: sampling situation is not taken into account here
6337 */
6338 mask2 = ctx->ctx_used_pmds[0];
6339
6340 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6341
6342 for (i = 0; mask2; i++, mask2>>=1) {
6343
6344 /* skip non used pmds */
6345 if ((mask2 & 0x1) == 0) continue;
6346
6347 /*
6348 * can access PMU always true in system wide mode
6349 */
6350 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6351
6352 if (PMD_IS_COUNTING(i)) {
6353 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6354 task_pid_nr(task),
6355 i,
6356 ctx->ctx_pmds[i].val,
6357 val & ovfl_val));
6358
6359 /*
6360 * we rebuild the full 64 bit value of the counter
6361 */
6362 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6363
6364 /*
6365 * now everything is in ctx_pmds[] and we need
6366 * to clear the saved context from save_regs() such that
6367 * pfm_read_pmds() gets the correct value
6368 */
6369 pmd_val = 0UL;
6370
6371 /*
6372 * take care of overflow inline
6373 */
6374 if (pmc0 & (1UL << i)) {
6375 val += 1 + ovfl_val;
6376 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6377 }
6378 }
6379
6380 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6381
6382 if (is_self) ctx->th_pmds[i] = pmd_val;
6383
6384 ctx->ctx_pmds[i].val = val;
6385 }
6386}
6387
6388static struct irqaction perfmon_irqaction = {
6389 .handler = pfm_interrupt_handler,
6390 .name = "perfmon"
6391};
6392
6393static void
6394pfm_alt_save_pmu_state(void *data)
6395{
6396 struct pt_regs *regs;
6397
6398 regs = task_pt_regs(current);
6399
6400 DPRINT(("called\n"));
6401
6402 /*
6403 * should not be necessary but
6404 * let's take not risk
6405 */
6406 pfm_clear_psr_up();
6407 pfm_clear_psr_pp();
6408 ia64_psr(regs)->pp = 0;
6409
6410 /*
6411 * This call is required
6412 * May cause a spurious interrupt on some processors
6413 */
6414 pfm_freeze_pmu();
6415
6416 ia64_srlz_d();
6417}
6418
6419void
6420pfm_alt_restore_pmu_state(void *data)
6421{
6422 struct pt_regs *regs;
6423
6424 regs = task_pt_regs(current);
6425
6426 DPRINT(("called\n"));
6427
6428 /*
6429 * put PMU back in state expected
6430 * by perfmon
6431 */
6432 pfm_clear_psr_up();
6433 pfm_clear_psr_pp();
6434 ia64_psr(regs)->pp = 0;
6435
6436 /*
6437 * perfmon runs with PMU unfrozen at all times
6438 */
6439 pfm_unfreeze_pmu();
6440
6441 ia64_srlz_d();
6442}
6443
6444int
6445pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6446{
6447 int ret, i;
6448 int reserve_cpu;
6449
6450 /* some sanity checks */
6451 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6452
6453 /* do the easy test first */
6454 if (pfm_alt_intr_handler) return -EBUSY;
6455
6456 /* one at a time in the install or remove, just fail the others */
6457 if (!spin_trylock(&pfm_alt_install_check)) {
6458 return -EBUSY;
6459 }
6460
6461 /* reserve our session */
6462 for_each_online_cpu(reserve_cpu) {
6463 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6464 if (ret) goto cleanup_reserve;
6465 }
6466
6467 /* save the current system wide pmu states */
6468 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6469 if (ret) {
6470 DPRINT(("on_each_cpu() failed: %d\n", ret));
6471 goto cleanup_reserve;
6472 }
6473
6474 /* officially change to the alternate interrupt handler */
6475 pfm_alt_intr_handler = hdl;
6476
6477 spin_unlock(&pfm_alt_install_check);
6478
6479 return 0;
6480
6481cleanup_reserve:
6482 for_each_online_cpu(i) {
6483 /* don't unreserve more than we reserved */
6484 if (i >= reserve_cpu) break;
6485
6486 pfm_unreserve_session(NULL, 1, i);
6487 }
6488
6489 spin_unlock(&pfm_alt_install_check);
6490
6491 return ret;
6492}
6493EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6494
6495int
6496pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6497{
6498 int i;
6499 int ret;
6500
6501 if (hdl == NULL) return -EINVAL;
6502
6503 /* cannot remove someone else's handler! */
6504 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6505
6506 /* one at a time in the install or remove, just fail the others */
6507 if (!spin_trylock(&pfm_alt_install_check)) {
6508 return -EBUSY;
6509 }
6510
6511 pfm_alt_intr_handler = NULL;
6512
6513 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6514 if (ret) {
6515 DPRINT(("on_each_cpu() failed: %d\n", ret));
6516 }
6517
6518 for_each_online_cpu(i) {
6519 pfm_unreserve_session(NULL, 1, i);
6520 }
6521
6522 spin_unlock(&pfm_alt_install_check);
6523
6524 return 0;
6525}
6526EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6527
6528/*
6529 * perfmon initialization routine, called from the initcall() table
6530 */
6531static int init_pfm_fs(void);
6532
6533static int __init
6534pfm_probe_pmu(void)
6535{
6536 pmu_config_t **p;
6537 int family;
6538
6539 family = local_cpu_data->family;
6540 p = pmu_confs;
6541
6542 while(*p) {
6543 if ((*p)->probe) {
6544 if ((*p)->probe() == 0) goto found;
6545 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6546 goto found;
6547 }
6548 p++;
6549 }
6550 return -1;
6551found:
6552 pmu_conf = *p;
6553 return 0;
6554}
6555
6556static const struct file_operations pfm_proc_fops = {
6557 .open = pfm_proc_open,
6558 .read = seq_read,
6559 .llseek = seq_lseek,
6560 .release = seq_release,
6561};
6562
6563int __init
6564pfm_init(void)
6565{
6566 unsigned int n, n_counters, i;
6567
6568 printk("perfmon: version %u.%u IRQ %u\n",
6569 PFM_VERSION_MAJ,
6570 PFM_VERSION_MIN,
6571 IA64_PERFMON_VECTOR);
6572
6573 if (pfm_probe_pmu()) {
6574 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6575 local_cpu_data->family);
6576 return -ENODEV;
6577 }
6578
6579 /*
6580 * compute the number of implemented PMD/PMC from the
6581 * description tables
6582 */
6583 n = 0;
6584 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6585 if (PMC_IS_IMPL(i) == 0) continue;
6586 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6587 n++;
6588 }
6589 pmu_conf->num_pmcs = n;
6590
6591 n = 0; n_counters = 0;
6592 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6593 if (PMD_IS_IMPL(i) == 0) continue;
6594 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6595 n++;
6596 if (PMD_IS_COUNTING(i)) n_counters++;
6597 }
6598 pmu_conf->num_pmds = n;
6599 pmu_conf->num_counters = n_counters;
6600
6601 /*
6602 * sanity checks on the number of debug registers
6603 */
6604 if (pmu_conf->use_rr_dbregs) {
6605 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6606 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6607 pmu_conf = NULL;
6608 return -1;
6609 }
6610 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6611 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6612 pmu_conf = NULL;
6613 return -1;
6614 }
6615 }
6616
6617 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6618 pmu_conf->pmu_name,
6619 pmu_conf->num_pmcs,
6620 pmu_conf->num_pmds,
6621 pmu_conf->num_counters,
6622 ffz(pmu_conf->ovfl_val));
6623
6624 /* sanity check */
6625 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6626 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6627 pmu_conf = NULL;
6628 return -1;
6629 }
6630
6631 /*
6632 * create /proc/perfmon (mostly for debugging purposes)
6633 */
6634 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6635 if (perfmon_dir == NULL) {
6636 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6637 pmu_conf = NULL;
6638 return -1;
6639 }
6640
6641 /*
6642 * create /proc/sys/kernel/perfmon (for debugging purposes)
6643 */
6644 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6645
6646 /*
6647 * initialize all our spinlocks
6648 */
6649 spin_lock_init(&pfm_sessions.pfs_lock);
6650 spin_lock_init(&pfm_buffer_fmt_lock);
6651
6652 init_pfm_fs();
6653
6654 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6655
6656 return 0;
6657}
6658
6659__initcall(pfm_init);
6660
6661/*
6662 * this function is called before pfm_init()
6663 */
6664void
6665pfm_init_percpu (void)
6666{
6667 static int first_time=1;
6668 /*
6669 * make sure no measurement is active
6670 * (may inherit programmed PMCs from EFI).
6671 */
6672 pfm_clear_psr_pp();
6673 pfm_clear_psr_up();
6674
6675 /*
6676 * we run with the PMU not frozen at all times
6677 */
6678 pfm_unfreeze_pmu();
6679
6680 if (first_time) {
6681 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6682 first_time=0;
6683 }
6684
6685 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6686 ia64_srlz_d();
6687}
6688
6689/*
6690 * used for debug purposes only
6691 */
6692void
6693dump_pmu_state(const char *from)
6694{
6695 struct task_struct *task;
6696 struct pt_regs *regs;
6697 pfm_context_t *ctx;
6698 unsigned long psr, dcr, info, flags;
6699 int i, this_cpu;
6700
6701 local_irq_save(flags);
6702
6703 this_cpu = smp_processor_id();
6704 regs = task_pt_regs(current);
6705 info = PFM_CPUINFO_GET();
6706 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6707
6708 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6709 local_irq_restore(flags);
6710 return;
6711 }
6712
6713 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6714 this_cpu,
6715 from,
6716 task_pid_nr(current),
6717 regs->cr_iip,
6718 current->comm);
6719
6720 task = GET_PMU_OWNER();
6721 ctx = GET_PMU_CTX();
6722
6723 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6724
6725 psr = pfm_get_psr();
6726
6727 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6728 this_cpu,
6729 ia64_get_pmc(0),
6730 psr & IA64_PSR_PP ? 1 : 0,
6731 psr & IA64_PSR_UP ? 1 : 0,
6732 dcr & IA64_DCR_PP ? 1 : 0,
6733 info,
6734 ia64_psr(regs)->up,
6735 ia64_psr(regs)->pp);
6736
6737 ia64_psr(regs)->up = 0;
6738 ia64_psr(regs)->pp = 0;
6739
6740 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6741 if (PMC_IS_IMPL(i) == 0) continue;
6742 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6743 }
6744
6745 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6746 if (PMD_IS_IMPL(i) == 0) continue;
6747 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6748 }
6749
6750 if (ctx) {
6751 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6752 this_cpu,
6753 ctx->ctx_state,
6754 ctx->ctx_smpl_vaddr,
6755 ctx->ctx_smpl_hdr,
6756 ctx->ctx_msgq_head,
6757 ctx->ctx_msgq_tail,
6758 ctx->ctx_saved_psr_up);
6759 }
6760 local_irq_restore(flags);
6761}
6762
6763/*
6764 * called from process.c:copy_thread(). task is new child.
6765 */
6766void
6767pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6768{
6769 struct thread_struct *thread;
6770
6771 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6772
6773 thread = &task->thread;
6774
6775 /*
6776 * cut links inherited from parent (current)
6777 */
6778 thread->pfm_context = NULL;
6779
6780 PFM_SET_WORK_PENDING(task, 0);
6781
6782 /*
6783 * the psr bits are already set properly in copy_threads()
6784 */
6785}
6786#else /* !CONFIG_PERFMON */
6787asmlinkage long
6788sys_perfmonctl (int fd, int cmd, void *arg, int count)
6789{
6790 return -ENOSYS;
6791}
6792#endif /* CONFIG_PERFMON */