Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.17
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 * 	http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/sched/task.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/interrupt.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/init.h>
  31#include <linux/vmalloc.h>
  32#include <linux/mm.h>
  33#include <linux/sysctl.h>
  34#include <linux/list.h>
  35#include <linux/file.h>
  36#include <linux/poll.h>
  37#include <linux/vfs.h>
  38#include <linux/smp.h>
  39#include <linux/pagemap.h>
  40#include <linux/mount.h>
  41#include <linux/bitops.h>
  42#include <linux/capability.h>
  43#include <linux/rcupdate.h>
  44#include <linux/completion.h>
  45#include <linux/tracehook.h>
  46#include <linux/slab.h>
  47#include <linux/cpu.h>
  48
  49#include <asm/errno.h>
  50#include <asm/intrinsics.h>
  51#include <asm/page.h>
  52#include <asm/perfmon.h>
  53#include <asm/processor.h>
  54#include <asm/signal.h>
  55#include <linux/uaccess.h>
  56#include <asm/delay.h>
  57
  58#ifdef CONFIG_PERFMON
  59/*
  60 * perfmon context state
  61 */
  62#define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
  63#define PFM_CTX_LOADED		2	/* context is loaded onto a task */
  64#define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
  65#define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
  66
  67#define PFM_INVALID_ACTIVATION	(~0UL)
  68
  69#define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
  70#define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
  71
  72/*
  73 * depth of message queue
  74 */
  75#define PFM_MAX_MSGS		32
  76#define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  77
  78/*
  79 * type of a PMU register (bitmask).
  80 * bitmask structure:
  81 * 	bit0   : register implemented
  82 * 	bit1   : end marker
  83 * 	bit2-3 : reserved
  84 * 	bit4   : pmc has pmc.pm
  85 * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  86 * 	bit6-7 : register type
  87 * 	bit8-31: reserved
  88 */
  89#define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
  90#define PFM_REG_IMPL		0x1 /* register implemented */
  91#define PFM_REG_END		0x2 /* end marker */
  92#define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  93#define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  94#define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
  95#define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
  96#define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  97
  98#define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
  99#define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
 100
 101#define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 102
 103/* i assumed unsigned */
 104#define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 105#define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 106
 107/* XXX: these assume that register i is implemented */
 108#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 109#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 110#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 111#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 112
 113#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 114#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 115#define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
 116#define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
 117
 118#define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
 119#define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
 120
 121#define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
 122#define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
 123#define PFM_CTX_TASK(h)		(h)->ctx_task
 124
 125#define PMU_PMC_OI		5 /* position of pmc.oi bit */
 126
 127/* XXX: does not support more than 64 PMDs */
 128#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 129#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 130
 131#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 132
 133#define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 134#define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 135#define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 136#define PFM_CODE_RR	0	/* requesting code range restriction */
 137#define PFM_DATA_RR	1	/* requestion data range restriction */
 138
 139#define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 140#define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
 141#define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
 142
 143#define RDEP(x)	(1UL<<(x))
 144
 145/*
 146 * context protection macros
 147 * in SMP:
 148 * 	- we need to protect against CPU concurrency (spin_lock)
 149 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 150 * in UP:
 151 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 152 *
 153 * spin_lock_irqsave()/spin_unlock_irqrestore():
 154 * 	in SMP: local_irq_disable + spin_lock
 155 * 	in UP : local_irq_disable
 156 *
 157 * spin_lock()/spin_lock():
 158 * 	in UP : removed automatically
 159 * 	in SMP: protect against context accesses from other CPU. interrupts
 160 * 	        are not masked. This is useful for the PMU interrupt handler
 161 * 	        because we know we will not get PMU concurrency in that code.
 162 */
 163#define PROTECT_CTX(c, f) \
 164	do {  \
 165		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 166		spin_lock_irqsave(&(c)->ctx_lock, f); \
 167		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 168	} while(0)
 169
 170#define UNPROTECT_CTX(c, f) \
 171	do { \
 172		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 173		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 174	} while(0)
 175
 176#define PROTECT_CTX_NOPRINT(c, f) \
 177	do {  \
 178		spin_lock_irqsave(&(c)->ctx_lock, f); \
 179	} while(0)
 180
 181
 182#define UNPROTECT_CTX_NOPRINT(c, f) \
 183	do { \
 184		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 185	} while(0)
 186
 187
 188#define PROTECT_CTX_NOIRQ(c) \
 189	do {  \
 190		spin_lock(&(c)->ctx_lock); \
 191	} while(0)
 192
 193#define UNPROTECT_CTX_NOIRQ(c) \
 194	do { \
 195		spin_unlock(&(c)->ctx_lock); \
 196	} while(0)
 197
 198
 199#ifdef CONFIG_SMP
 200
 201#define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
 202#define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
 203#define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
 204
 205#else /* !CONFIG_SMP */
 206#define SET_ACTIVATION(t) 	do {} while(0)
 207#define GET_ACTIVATION(t) 	do {} while(0)
 208#define INC_ACTIVATION(t) 	do {} while(0)
 209#endif /* CONFIG_SMP */
 210
 211#define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 212#define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
 213#define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
 214
 215#define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 216#define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 217
 218#define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 219
 220/*
 221 * cmp0 must be the value of pmc0
 222 */
 223#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 224
 225#define PFMFS_MAGIC 0xa0b4d889
 226
 227/*
 228 * debugging
 229 */
 230#define PFM_DEBUGGING 1
 231#ifdef PFM_DEBUGGING
 232#define DPRINT(a) \
 233	do { \
 234		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 235	} while (0)
 236
 237#define DPRINT_ovfl(a) \
 238	do { \
 239		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 240	} while (0)
 241#endif
 242
 243/*
 244 * 64-bit software counter structure
 245 *
 246 * the next_reset_type is applied to the next call to pfm_reset_regs()
 247 */
 248typedef struct {
 249	unsigned long	val;		/* virtual 64bit counter value */
 250	unsigned long	lval;		/* last reset value */
 251	unsigned long	long_reset;	/* reset value on sampling overflow */
 252	unsigned long	short_reset;    /* reset value on overflow */
 253	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 254	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 255	unsigned long	seed;		/* seed for random-number generator */
 256	unsigned long	mask;		/* mask for random-number generator */
 257	unsigned int 	flags;		/* notify/do not notify */
 258	unsigned long	eventid;	/* overflow event identifier */
 259} pfm_counter_t;
 260
 261/*
 262 * context flags
 263 */
 264typedef struct {
 265	unsigned int block:1;		/* when 1, task will blocked on user notifications */
 266	unsigned int system:1;		/* do system wide monitoring */
 267	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
 268	unsigned int is_sampling:1;	/* true if using a custom format */
 269	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
 270	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
 271	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
 272	unsigned int no_msg:1;		/* no message sent on overflow */
 273	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
 274	unsigned int reserved:22;
 275} pfm_context_flags_t;
 276
 277#define PFM_TRAP_REASON_NONE		0x0	/* default value */
 278#define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
 279#define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
 280
 281
 282/*
 283 * perfmon context: encapsulates all the state of a monitoring session
 284 */
 285
 286typedef struct pfm_context {
 287	spinlock_t		ctx_lock;		/* context protection */
 288
 289	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
 290	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
 291
 292	struct task_struct 	*ctx_task;		/* task to which context is attached */
 293
 294	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
 295
 296	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
 297
 298	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
 299	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
 300	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
 301
 302	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
 303	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
 304	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
 305
 306	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
 307
 308	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
 309	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
 310	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
 311	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
 312
 313	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 314
 315	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
 316	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
 317
 318	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
 319
 320	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
 321	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
 322	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
 323
 324	int			ctx_fd;			/* file descriptor used my this context */
 325	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
 326
 327	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
 328	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
 329	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
 330	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
 331
 332	wait_queue_head_t 	ctx_msgq_wait;
 333	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
 334	int			ctx_msgq_head;
 335	int			ctx_msgq_tail;
 336	struct fasync_struct	*ctx_async_queue;
 337
 338	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
 339} pfm_context_t;
 340
 341/*
 342 * magic number used to verify that structure is really
 343 * a perfmon context
 344 */
 345#define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
 346
 347#define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
 348
 349#ifdef CONFIG_SMP
 350#define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
 351#define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
 352#else
 353#define SET_LAST_CPU(ctx, v)	do {} while(0)
 354#define GET_LAST_CPU(ctx)	do {} while(0)
 355#endif
 356
 357
 358#define ctx_fl_block		ctx_flags.block
 359#define ctx_fl_system		ctx_flags.system
 360#define ctx_fl_using_dbreg	ctx_flags.using_dbreg
 361#define ctx_fl_is_sampling	ctx_flags.is_sampling
 362#define ctx_fl_excl_idle	ctx_flags.excl_idle
 363#define ctx_fl_going_zombie	ctx_flags.going_zombie
 364#define ctx_fl_trap_reason	ctx_flags.trap_reason
 365#define ctx_fl_no_msg		ctx_flags.no_msg
 366#define ctx_fl_can_restart	ctx_flags.can_restart
 367
 368#define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
 369#define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
 370
 371/*
 372 * global information about all sessions
 373 * mostly used to synchronize between system wide and per-process
 374 */
 375typedef struct {
 376	spinlock_t		pfs_lock;		   /* lock the structure */
 377
 378	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
 379	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
 380	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
 381	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
 382	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 383} pfm_session_t;
 384
 385/*
 386 * information about a PMC or PMD.
 387 * dep_pmd[]: a bitmask of dependent PMD registers
 388 * dep_pmc[]: a bitmask of dependent PMC registers
 389 */
 390typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 391typedef struct {
 392	unsigned int		type;
 393	int			pm_pos;
 394	unsigned long		default_value;	/* power-on default value */
 395	unsigned long		reserved_mask;	/* bitmask of reserved bits */
 396	pfm_reg_check_t		read_check;
 397	pfm_reg_check_t		write_check;
 398	unsigned long		dep_pmd[4];
 399	unsigned long		dep_pmc[4];
 400} pfm_reg_desc_t;
 401
 402/* assume cnum is a valid monitor */
 403#define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 404
 405/*
 406 * This structure is initialized at boot time and contains
 407 * a description of the PMU main characteristics.
 408 *
 409 * If the probe function is defined, detection is based
 410 * on its return value: 
 411 * 	- 0 means recognized PMU
 412 * 	- anything else means not supported
 413 * When the probe function is not defined, then the pmu_family field
 414 * is used and it must match the host CPU family such that:
 415 * 	- cpu->family & config->pmu_family != 0
 416 */
 417typedef struct {
 418	unsigned long  ovfl_val;	/* overflow value for counters */
 419
 420	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
 421	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
 422
 423	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
 424	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
 425	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
 426	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
 427
 428	char	      *pmu_name;	/* PMU family name */
 429	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
 430	unsigned int  flags;		/* pmu specific flags */
 431	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
 432	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
 433	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
 434	int           (*probe)(void);   /* customized probe routine */
 435	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
 436} pmu_config_t;
 437/*
 438 * PMU specific flags
 439 */
 440#define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
 441
 442/*
 443 * debug register related type definitions
 444 */
 445typedef struct {
 446	unsigned long ibr_mask:56;
 447	unsigned long ibr_plm:4;
 448	unsigned long ibr_ig:3;
 449	unsigned long ibr_x:1;
 450} ibr_mask_reg_t;
 451
 452typedef struct {
 453	unsigned long dbr_mask:56;
 454	unsigned long dbr_plm:4;
 455	unsigned long dbr_ig:2;
 456	unsigned long dbr_w:1;
 457	unsigned long dbr_r:1;
 458} dbr_mask_reg_t;
 459
 460typedef union {
 461	unsigned long  val;
 462	ibr_mask_reg_t ibr;
 463	dbr_mask_reg_t dbr;
 464} dbreg_t;
 465
 466
 467/*
 468 * perfmon command descriptions
 469 */
 470typedef struct {
 471	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 472	char		*cmd_name;
 473	int		cmd_flags;
 474	unsigned int	cmd_narg;
 475	size_t		cmd_argsize;
 476	int		(*cmd_getsize)(void *arg, size_t *sz);
 477} pfm_cmd_desc_t;
 478
 479#define PFM_CMD_FD		0x01	/* command requires a file descriptor */
 480#define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
 481#define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
 482#define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
 483
 484
 485#define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
 486#define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 487#define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 488#define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 489#define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 490
 491#define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
 492
 493typedef struct {
 494	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
 495	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
 496	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
 497	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
 498	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
 499	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
 500	unsigned long pfm_smpl_handler_calls;
 501	unsigned long pfm_smpl_handler_cycles;
 502	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 503} pfm_stats_t;
 504
 505/*
 506 * perfmon internal variables
 507 */
 508static pfm_stats_t		pfm_stats[NR_CPUS];
 509static pfm_session_t		pfm_sessions;	/* global sessions information */
 510
 511static DEFINE_SPINLOCK(pfm_alt_install_check);
 512static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 513
 514static struct proc_dir_entry 	*perfmon_dir;
 515static pfm_uuid_t		pfm_null_uuid = {0,};
 516
 517static spinlock_t		pfm_buffer_fmt_lock;
 518static LIST_HEAD(pfm_buffer_fmt_list);
 519
 520static pmu_config_t		*pmu_conf;
 521
 522/* sysctl() controls */
 523pfm_sysctl_t pfm_sysctl;
 524EXPORT_SYMBOL(pfm_sysctl);
 525
 526static struct ctl_table pfm_ctl_table[] = {
 527	{
 528		.procname	= "debug",
 529		.data		= &pfm_sysctl.debug,
 530		.maxlen		= sizeof(int),
 531		.mode		= 0666,
 532		.proc_handler	= proc_dointvec,
 533	},
 534	{
 535		.procname	= "debug_ovfl",
 536		.data		= &pfm_sysctl.debug_ovfl,
 537		.maxlen		= sizeof(int),
 538		.mode		= 0666,
 539		.proc_handler	= proc_dointvec,
 540	},
 541	{
 542		.procname	= "fastctxsw",
 543		.data		= &pfm_sysctl.fastctxsw,
 544		.maxlen		= sizeof(int),
 545		.mode		= 0600,
 546		.proc_handler	= proc_dointvec,
 547	},
 548	{
 549		.procname	= "expert_mode",
 550		.data		= &pfm_sysctl.expert_mode,
 551		.maxlen		= sizeof(int),
 552		.mode		= 0600,
 553		.proc_handler	= proc_dointvec,
 554	},
 555	{}
 556};
 557static struct ctl_table pfm_sysctl_dir[] = {
 558	{
 559		.procname	= "perfmon",
 560		.mode		= 0555,
 561		.child		= pfm_ctl_table,
 562	},
 563 	{}
 564};
 565static struct ctl_table pfm_sysctl_root[] = {
 566	{
 567		.procname	= "kernel",
 568		.mode		= 0555,
 569		.child		= pfm_sysctl_dir,
 570	},
 571 	{}
 572};
 573static struct ctl_table_header *pfm_sysctl_header;
 574
 575static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 576
 577#define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
 578#define pfm_get_cpu_data(a,b)		per_cpu(a, b)
 579
 580static inline void
 581pfm_put_task(struct task_struct *task)
 582{
 583	if (task != current) put_task_struct(task);
 584}
 585
 586static inline void
 587pfm_reserve_page(unsigned long a)
 588{
 589	SetPageReserved(vmalloc_to_page((void *)a));
 590}
 591static inline void
 592pfm_unreserve_page(unsigned long a)
 593{
 594	ClearPageReserved(vmalloc_to_page((void*)a));
 595}
 596
 597static inline unsigned long
 598pfm_protect_ctx_ctxsw(pfm_context_t *x)
 599{
 600	spin_lock(&(x)->ctx_lock);
 601	return 0UL;
 602}
 603
 604static inline void
 605pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 606{
 607	spin_unlock(&(x)->ctx_lock);
 608}
 609
 610/* forward declaration */
 611static const struct dentry_operations pfmfs_dentry_operations;
 612
 613static struct dentry *
 614pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 615{
 616	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 617			PFMFS_MAGIC);
 618}
 619
 620static struct file_system_type pfm_fs_type = {
 621	.name     = "pfmfs",
 622	.mount    = pfmfs_mount,
 623	.kill_sb  = kill_anon_super,
 624};
 625MODULE_ALIAS_FS("pfmfs");
 626
 627DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 628DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 629DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 630DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 631EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 632
 633
 634/* forward declaration */
 635static const struct file_operations pfm_file_ops;
 636
 637/*
 638 * forward declarations
 639 */
 640#ifndef CONFIG_SMP
 641static void pfm_lazy_save_regs (struct task_struct *ta);
 642#endif
 643
 644void dump_pmu_state(const char *);
 645static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 646
 647#include "perfmon_itanium.h"
 648#include "perfmon_mckinley.h"
 649#include "perfmon_montecito.h"
 650#include "perfmon_generic.h"
 651
 652static pmu_config_t *pmu_confs[]={
 653	&pmu_conf_mont,
 654	&pmu_conf_mck,
 655	&pmu_conf_ita,
 656	&pmu_conf_gen, /* must be last */
 657	NULL
 658};
 659
 660
 661static int pfm_end_notify_user(pfm_context_t *ctx);
 662
 663static inline void
 664pfm_clear_psr_pp(void)
 665{
 666	ia64_rsm(IA64_PSR_PP);
 667	ia64_srlz_i();
 668}
 669
 670static inline void
 671pfm_set_psr_pp(void)
 672{
 673	ia64_ssm(IA64_PSR_PP);
 674	ia64_srlz_i();
 675}
 676
 677static inline void
 678pfm_clear_psr_up(void)
 679{
 680	ia64_rsm(IA64_PSR_UP);
 681	ia64_srlz_i();
 682}
 683
 684static inline void
 685pfm_set_psr_up(void)
 686{
 687	ia64_ssm(IA64_PSR_UP);
 688	ia64_srlz_i();
 689}
 690
 691static inline unsigned long
 692pfm_get_psr(void)
 693{
 694	unsigned long tmp;
 695	tmp = ia64_getreg(_IA64_REG_PSR);
 696	ia64_srlz_i();
 697	return tmp;
 698}
 699
 700static inline void
 701pfm_set_psr_l(unsigned long val)
 702{
 703	ia64_setreg(_IA64_REG_PSR_L, val);
 704	ia64_srlz_i();
 705}
 706
 707static inline void
 708pfm_freeze_pmu(void)
 709{
 710	ia64_set_pmc(0,1UL);
 711	ia64_srlz_d();
 712}
 713
 714static inline void
 715pfm_unfreeze_pmu(void)
 716{
 717	ia64_set_pmc(0,0UL);
 718	ia64_srlz_d();
 719}
 720
 721static inline void
 722pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 723{
 724	int i;
 725
 726	for (i=0; i < nibrs; i++) {
 727		ia64_set_ibr(i, ibrs[i]);
 728		ia64_dv_serialize_instruction();
 729	}
 730	ia64_srlz_i();
 731}
 732
 733static inline void
 734pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 735{
 736	int i;
 737
 738	for (i=0; i < ndbrs; i++) {
 739		ia64_set_dbr(i, dbrs[i]);
 740		ia64_dv_serialize_data();
 741	}
 742	ia64_srlz_d();
 743}
 744
 745/*
 746 * PMD[i] must be a counter. no check is made
 747 */
 748static inline unsigned long
 749pfm_read_soft_counter(pfm_context_t *ctx, int i)
 750{
 751	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 752}
 753
 754/*
 755 * PMD[i] must be a counter. no check is made
 756 */
 757static inline void
 758pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 759{
 760	unsigned long ovfl_val = pmu_conf->ovfl_val;
 761
 762	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 763	/*
 764	 * writing to unimplemented part is ignore, so we do not need to
 765	 * mask off top part
 766	 */
 767	ia64_set_pmd(i, val & ovfl_val);
 768}
 769
 770static pfm_msg_t *
 771pfm_get_new_msg(pfm_context_t *ctx)
 772{
 773	int idx, next;
 774
 775	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 776
 777	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 778	if (next == ctx->ctx_msgq_head) return NULL;
 779
 780 	idx = 	ctx->ctx_msgq_tail;
 781	ctx->ctx_msgq_tail = next;
 782
 783	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 784
 785	return ctx->ctx_msgq+idx;
 786}
 787
 788static pfm_msg_t *
 789pfm_get_next_msg(pfm_context_t *ctx)
 790{
 791	pfm_msg_t *msg;
 792
 793	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 794
 795	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 796
 797	/*
 798	 * get oldest message
 799	 */
 800	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 801
 802	/*
 803	 * and move forward
 804	 */
 805	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 806
 807	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 808
 809	return msg;
 810}
 811
 812static void
 813pfm_reset_msgq(pfm_context_t *ctx)
 814{
 815	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 816	DPRINT(("ctx=%p msgq reset\n", ctx));
 817}
 818
 819static void *
 820pfm_rvmalloc(unsigned long size)
 821{
 822	void *mem;
 823	unsigned long addr;
 824
 825	size = PAGE_ALIGN(size);
 826	mem  = vzalloc(size);
 827	if (mem) {
 828		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 829		addr = (unsigned long)mem;
 830		while (size > 0) {
 831			pfm_reserve_page(addr);
 832			addr+=PAGE_SIZE;
 833			size-=PAGE_SIZE;
 834		}
 835	}
 836	return mem;
 837}
 838
 839static void
 840pfm_rvfree(void *mem, unsigned long size)
 841{
 842	unsigned long addr;
 843
 844	if (mem) {
 845		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 846		addr = (unsigned long) mem;
 847		while ((long) size > 0) {
 848			pfm_unreserve_page(addr);
 849			addr+=PAGE_SIZE;
 850			size-=PAGE_SIZE;
 851		}
 852		vfree(mem);
 853	}
 854	return;
 855}
 856
 857static pfm_context_t *
 858pfm_context_alloc(int ctx_flags)
 859{
 860	pfm_context_t *ctx;
 861
 862	/* 
 863	 * allocate context descriptor 
 864	 * must be able to free with interrupts disabled
 865	 */
 866	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 867	if (ctx) {
 868		DPRINT(("alloc ctx @%p\n", ctx));
 869
 870		/*
 871		 * init context protection lock
 872		 */
 873		spin_lock_init(&ctx->ctx_lock);
 874
 875		/*
 876		 * context is unloaded
 877		 */
 878		ctx->ctx_state = PFM_CTX_UNLOADED;
 879
 880		/*
 881		 * initialization of context's flags
 882		 */
 883		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 884		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 885		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 886		/*
 887		 * will move to set properties
 888		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 889		 */
 890
 891		/*
 892		 * init restart semaphore to locked
 893		 */
 894		init_completion(&ctx->ctx_restart_done);
 895
 896		/*
 897		 * activation is used in SMP only
 898		 */
 899		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 900		SET_LAST_CPU(ctx, -1);
 901
 902		/*
 903		 * initialize notification message queue
 904		 */
 905		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 906		init_waitqueue_head(&ctx->ctx_msgq_wait);
 907		init_waitqueue_head(&ctx->ctx_zombieq);
 908
 909	}
 910	return ctx;
 911}
 912
 913static void
 914pfm_context_free(pfm_context_t *ctx)
 915{
 916	if (ctx) {
 917		DPRINT(("free ctx @%p\n", ctx));
 918		kfree(ctx);
 919	}
 920}
 921
 922static void
 923pfm_mask_monitoring(struct task_struct *task)
 924{
 925	pfm_context_t *ctx = PFM_GET_CTX(task);
 926	unsigned long mask, val, ovfl_mask;
 927	int i;
 928
 929	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 930
 931	ovfl_mask = pmu_conf->ovfl_val;
 932	/*
 933	 * monitoring can only be masked as a result of a valid
 934	 * counter overflow. In UP, it means that the PMU still
 935	 * has an owner. Note that the owner can be different
 936	 * from the current task. However the PMU state belongs
 937	 * to the owner.
 938	 * In SMP, a valid overflow only happens when task is
 939	 * current. Therefore if we come here, we know that
 940	 * the PMU state belongs to the current task, therefore
 941	 * we can access the live registers.
 942	 *
 943	 * So in both cases, the live register contains the owner's
 944	 * state. We can ONLY touch the PMU registers and NOT the PSR.
 945	 *
 946	 * As a consequence to this call, the ctx->th_pmds[] array
 947	 * contains stale information which must be ignored
 948	 * when context is reloaded AND monitoring is active (see
 949	 * pfm_restart).
 950	 */
 951	mask = ctx->ctx_used_pmds[0];
 952	for (i = 0; mask; i++, mask>>=1) {
 953		/* skip non used pmds */
 954		if ((mask & 0x1) == 0) continue;
 955		val = ia64_get_pmd(i);
 956
 957		if (PMD_IS_COUNTING(i)) {
 958			/*
 959		 	 * we rebuild the full 64 bit value of the counter
 960		 	 */
 961			ctx->ctx_pmds[i].val += (val & ovfl_mask);
 962		} else {
 963			ctx->ctx_pmds[i].val = val;
 964		}
 965		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 966			i,
 967			ctx->ctx_pmds[i].val,
 968			val & ovfl_mask));
 969	}
 970	/*
 971	 * mask monitoring by setting the privilege level to 0
 972	 * we cannot use psr.pp/psr.up for this, it is controlled by
 973	 * the user
 974	 *
 975	 * if task is current, modify actual registers, otherwise modify
 976	 * thread save state, i.e., what will be restored in pfm_load_regs()
 977	 */
 978	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 979	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 980		if ((mask & 0x1) == 0UL) continue;
 981		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 982		ctx->th_pmcs[i] &= ~0xfUL;
 983		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 984	}
 985	/*
 986	 * make all of this visible
 987	 */
 988	ia64_srlz_d();
 989}
 990
 991/*
 992 * must always be done with task == current
 993 *
 994 * context must be in MASKED state when calling
 995 */
 996static void
 997pfm_restore_monitoring(struct task_struct *task)
 998{
 999	pfm_context_t *ctx = PFM_GET_CTX(task);
1000	unsigned long mask, ovfl_mask;
1001	unsigned long psr, val;
1002	int i, is_system;
1003
1004	is_system = ctx->ctx_fl_system;
1005	ovfl_mask = pmu_conf->ovfl_val;
1006
1007	if (task != current) {
1008		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009		return;
1010	}
1011	if (ctx->ctx_state != PFM_CTX_MASKED) {
1012		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014		return;
1015	}
1016	psr = pfm_get_psr();
1017	/*
1018	 * monitoring is masked via the PMC.
1019	 * As we restore their value, we do not want each counter to
1020	 * restart right away. We stop monitoring using the PSR,
1021	 * restore the PMC (and PMD) and then re-establish the psr
1022	 * as it was. Note that there can be no pending overflow at
1023	 * this point, because monitoring was MASKED.
1024	 *
1025	 * system-wide session are pinned and self-monitoring
1026	 */
1027	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028		/* disable dcr pp */
1029		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030		pfm_clear_psr_pp();
1031	} else {
1032		pfm_clear_psr_up();
1033	}
1034	/*
1035	 * first, we restore the PMD
1036	 */
1037	mask = ctx->ctx_used_pmds[0];
1038	for (i = 0; mask; i++, mask>>=1) {
1039		/* skip non used pmds */
1040		if ((mask & 0x1) == 0) continue;
1041
1042		if (PMD_IS_COUNTING(i)) {
1043			/*
1044			 * we split the 64bit value according to
1045			 * counter width
1046			 */
1047			val = ctx->ctx_pmds[i].val & ovfl_mask;
1048			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049		} else {
1050			val = ctx->ctx_pmds[i].val;
1051		}
1052		ia64_set_pmd(i, val);
1053
1054		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055			i,
1056			ctx->ctx_pmds[i].val,
1057			val));
1058	}
1059	/*
1060	 * restore the PMCs
1061	 */
1062	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064		if ((mask & 0x1) == 0UL) continue;
1065		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066		ia64_set_pmc(i, ctx->th_pmcs[i]);
1067		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068					task_pid_nr(task), i, ctx->th_pmcs[i]));
1069	}
1070	ia64_srlz_d();
1071
1072	/*
1073	 * must restore DBR/IBR because could be modified while masked
1074	 * XXX: need to optimize 
1075	 */
1076	if (ctx->ctx_fl_using_dbreg) {
1077		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079	}
1080
1081	/*
1082	 * now restore PSR
1083	 */
1084	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085		/* enable dcr pp */
1086		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087		ia64_srlz_i();
1088	}
1089	pfm_set_psr_l(psr);
1090}
1091
1092static inline void
1093pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094{
1095	int i;
1096
1097	ia64_srlz_d();
1098
1099	for (i=0; mask; i++, mask>>=1) {
1100		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101	}
1102}
1103
1104/*
1105 * reload from thread state (used for ctxw only)
1106 */
1107static inline void
1108pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109{
1110	int i;
1111	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113	for (i=0; mask; i++, mask>>=1) {
1114		if ((mask & 0x1) == 0) continue;
1115		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116		ia64_set_pmd(i, val);
1117	}
1118	ia64_srlz_d();
1119}
1120
1121/*
1122 * propagate PMD from context to thread-state
1123 */
1124static inline void
1125pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126{
1127	unsigned long ovfl_val = pmu_conf->ovfl_val;
1128	unsigned long mask = ctx->ctx_all_pmds[0];
1129	unsigned long val;
1130	int i;
1131
1132	DPRINT(("mask=0x%lx\n", mask));
1133
1134	for (i=0; mask; i++, mask>>=1) {
1135
1136		val = ctx->ctx_pmds[i].val;
1137
1138		/*
1139		 * We break up the 64 bit value into 2 pieces
1140		 * the lower bits go to the machine state in the
1141		 * thread (will be reloaded on ctxsw in).
1142		 * The upper part stays in the soft-counter.
1143		 */
1144		if (PMD_IS_COUNTING(i)) {
1145			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146			 val &= ovfl_val;
1147		}
1148		ctx->th_pmds[i] = val;
1149
1150		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151			i,
1152			ctx->th_pmds[i],
1153			ctx->ctx_pmds[i].val));
1154	}
1155}
1156
1157/*
1158 * propagate PMC from context to thread-state
1159 */
1160static inline void
1161pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162{
1163	unsigned long mask = ctx->ctx_all_pmcs[0];
1164	int i;
1165
1166	DPRINT(("mask=0x%lx\n", mask));
1167
1168	for (i=0; mask; i++, mask>>=1) {
1169		/* masking 0 with ovfl_val yields 0 */
1170		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172	}
1173}
1174
1175
1176
1177static inline void
1178pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179{
1180	int i;
1181
1182	for (i=0; mask; i++, mask>>=1) {
1183		if ((mask & 0x1) == 0) continue;
1184		ia64_set_pmc(i, pmcs[i]);
1185	}
1186	ia64_srlz_d();
1187}
1188
1189static inline int
1190pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191{
1192	return memcmp(a, b, sizeof(pfm_uuid_t));
1193}
1194
1195static inline int
1196pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197{
1198	int ret = 0;
1199	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200	return ret;
1201}
1202
1203static inline int
1204pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205{
1206	int ret = 0;
1207	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208	return ret;
1209}
1210
1211
1212static inline int
1213pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214		     int cpu, void *arg)
1215{
1216	int ret = 0;
1217	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218	return ret;
1219}
1220
1221static inline int
1222pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223		     int cpu, void *arg)
1224{
1225	int ret = 0;
1226	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227	return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232{
1233	int ret = 0;
1234	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235	return ret;
1236}
1237
1238static inline int
1239pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240{
1241	int ret = 0;
1242	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243	return ret;
1244}
1245
1246static pfm_buffer_fmt_t *
1247__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248{
1249	struct list_head * pos;
1250	pfm_buffer_fmt_t * entry;
1251
1252	list_for_each(pos, &pfm_buffer_fmt_list) {
1253		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255			return entry;
1256	}
1257	return NULL;
1258}
1259 
1260/*
1261 * find a buffer format based on its uuid
1262 */
1263static pfm_buffer_fmt_t *
1264pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265{
1266	pfm_buffer_fmt_t * fmt;
1267	spin_lock(&pfm_buffer_fmt_lock);
1268	fmt = __pfm_find_buffer_fmt(uuid);
1269	spin_unlock(&pfm_buffer_fmt_lock);
1270	return fmt;
1271}
1272 
1273int
1274pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275{
1276	int ret = 0;
1277
1278	/* some sanity checks */
1279	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281	/* we need at least a handler */
1282	if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284	/*
1285	 * XXX: need check validity of fmt_arg_size
1286	 */
1287
1288	spin_lock(&pfm_buffer_fmt_lock);
1289
1290	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292		ret = -EBUSY;
1293		goto out;
1294	} 
1295	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298out:
1299	spin_unlock(&pfm_buffer_fmt_lock);
1300 	return ret;
1301}
1302EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304int
1305pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306{
1307	pfm_buffer_fmt_t *fmt;
1308	int ret = 0;
1309
1310	spin_lock(&pfm_buffer_fmt_lock);
1311
1312	fmt = __pfm_find_buffer_fmt(uuid);
1313	if (!fmt) {
1314		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315		ret = -EINVAL;
1316		goto out;
1317	}
1318	list_del_init(&fmt->fmt_list);
1319	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321out:
1322	spin_unlock(&pfm_buffer_fmt_lock);
1323	return ret;
1324
1325}
1326EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328static int
1329pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330{
1331	unsigned long flags;
1332	/*
1333	 * validity checks on cpu_mask have been done upstream
1334	 */
1335	LOCK_PFS(flags);
1336
1337	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338		pfm_sessions.pfs_sys_sessions,
1339		pfm_sessions.pfs_task_sessions,
1340		pfm_sessions.pfs_sys_use_dbregs,
1341		is_syswide,
1342		cpu));
1343
1344	if (is_syswide) {
1345		/*
1346		 * cannot mix system wide and per-task sessions
1347		 */
1348		if (pfm_sessions.pfs_task_sessions > 0UL) {
1349			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350			  	pfm_sessions.pfs_task_sessions));
1351			goto abort;
1352		}
1353
1354		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358		pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360		pfm_sessions.pfs_sys_sessions++ ;
1361
1362	} else {
1363		if (pfm_sessions.pfs_sys_sessions) goto abort;
1364		pfm_sessions.pfs_task_sessions++;
1365	}
1366
1367	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368		pfm_sessions.pfs_sys_sessions,
1369		pfm_sessions.pfs_task_sessions,
1370		pfm_sessions.pfs_sys_use_dbregs,
1371		is_syswide,
1372		cpu));
1373
1374	/*
1375	 * Force idle() into poll mode
1376	 */
1377	cpu_idle_poll_ctrl(true);
1378
1379	UNLOCK_PFS(flags);
1380
1381	return 0;
1382
1383error_conflict:
1384	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385  		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386		cpu));
1387abort:
1388	UNLOCK_PFS(flags);
1389
1390	return -EBUSY;
1391
1392}
1393
1394static int
1395pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396{
1397	unsigned long flags;
1398	/*
1399	 * validity checks on cpu_mask have been done upstream
1400	 */
1401	LOCK_PFS(flags);
1402
1403	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404		pfm_sessions.pfs_sys_sessions,
1405		pfm_sessions.pfs_task_sessions,
1406		pfm_sessions.pfs_sys_use_dbregs,
1407		is_syswide,
1408		cpu));
1409
1410
1411	if (is_syswide) {
1412		pfm_sessions.pfs_sys_session[cpu] = NULL;
1413		/*
1414		 * would not work with perfmon+more than one bit in cpu_mask
1415		 */
1416		if (ctx && ctx->ctx_fl_using_dbreg) {
1417			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419			} else {
1420				pfm_sessions.pfs_sys_use_dbregs--;
1421			}
1422		}
1423		pfm_sessions.pfs_sys_sessions--;
1424	} else {
1425		pfm_sessions.pfs_task_sessions--;
1426	}
1427	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428		pfm_sessions.pfs_sys_sessions,
1429		pfm_sessions.pfs_task_sessions,
1430		pfm_sessions.pfs_sys_use_dbregs,
1431		is_syswide,
1432		cpu));
1433
1434	/* Undo forced polling. Last session reenables pal_halt */
1435	cpu_idle_poll_ctrl(false);
1436
1437	UNLOCK_PFS(flags);
1438
1439	return 0;
1440}
1441
1442/*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447static int
1448pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449{
1450	struct task_struct *task = current;
1451	int r;
1452
1453	/* sanity checks */
1454	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456		return -EINVAL;
1457	}
1458
1459	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461	/*
1462	 * does the actual unmapping
1463	 */
1464	r = vm_munmap((unsigned long)vaddr, size);
1465
1466	if (r !=0) {
1467		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468	}
1469
1470	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472	return 0;
1473}
1474
1475/*
1476 * free actual physical storage used by sampling buffer
1477 */
1478#if 0
1479static int
1480pfm_free_smpl_buffer(pfm_context_t *ctx)
1481{
1482	pfm_buffer_fmt_t *fmt;
1483
1484	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486	/*
1487	 * we won't use the buffer format anymore
1488	 */
1489	fmt = ctx->ctx_buf_fmt;
1490
1491	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492		ctx->ctx_smpl_hdr,
1493		ctx->ctx_smpl_size,
1494		ctx->ctx_smpl_vaddr));
1495
1496	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498	/*
1499	 * free the buffer
1500	 */
1501	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503	ctx->ctx_smpl_hdr  = NULL;
1504	ctx->ctx_smpl_size = 0UL;
1505
1506	return 0;
1507
1508invalid_free:
1509	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510	return -EINVAL;
1511}
1512#endif
1513
1514static inline void
1515pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516{
1517	if (fmt == NULL) return;
1518
1519	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521}
1522
1523/*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531static int __init
1532init_pfm_fs(void)
1533{
1534	int err = register_filesystem(&pfm_fs_type);
1535	if (!err) {
1536		pfmfs_mnt = kern_mount(&pfm_fs_type);
1537		err = PTR_ERR(pfmfs_mnt);
1538		if (IS_ERR(pfmfs_mnt))
1539			unregister_filesystem(&pfm_fs_type);
1540		else
1541			err = 0;
1542	}
1543	return err;
1544}
1545
1546static ssize_t
1547pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548{
1549	pfm_context_t *ctx;
1550	pfm_msg_t *msg;
1551	ssize_t ret;
1552	unsigned long flags;
1553  	DECLARE_WAITQUEUE(wait, current);
1554	if (PFM_IS_FILE(filp) == 0) {
1555		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556		return -EINVAL;
1557	}
1558
1559	ctx = filp->private_data;
1560	if (ctx == NULL) {
1561		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562		return -EINVAL;
1563	}
1564
1565	/*
1566	 * check even when there is no message
1567	 */
1568	if (size < sizeof(pfm_msg_t)) {
1569		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570		return -EINVAL;
1571	}
1572
1573	PROTECT_CTX(ctx, flags);
1574
1575  	/*
1576	 * put ourselves on the wait queue
1577	 */
1578  	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581  	for(;;) {
1582		/*
1583		 * check wait queue
1584		 */
1585
1586  		set_current_state(TASK_INTERRUPTIBLE);
1587
1588		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590		ret = 0;
1591		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593		UNPROTECT_CTX(ctx, flags);
1594
1595		/*
1596		 * check non-blocking read
1597		 */
1598      		ret = -EAGAIN;
1599		if(filp->f_flags & O_NONBLOCK) break;
1600
1601		/*
1602		 * check pending signals
1603		 */
1604		if(signal_pending(current)) {
1605			ret = -EINTR;
1606			break;
1607		}
1608      		/*
1609		 * no message, so wait
1610		 */
1611      		schedule();
1612
1613		PROTECT_CTX(ctx, flags);
1614	}
1615	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616  	set_current_state(TASK_RUNNING);
1617	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619	if (ret < 0) goto abort;
1620
1621	ret = -EINVAL;
1622	msg = pfm_get_next_msg(ctx);
1623	if (msg == NULL) {
1624		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625		goto abort_locked;
1626	}
1627
1628	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630	ret = -EFAULT;
1631  	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633abort_locked:
1634	UNPROTECT_CTX(ctx, flags);
1635abort:
1636	return ret;
1637}
1638
1639static ssize_t
1640pfm_write(struct file *file, const char __user *ubuf,
1641			  size_t size, loff_t *ppos)
1642{
1643	DPRINT(("pfm_write called\n"));
1644	return -EINVAL;
1645}
1646
1647static __poll_t
1648pfm_poll(struct file *filp, poll_table * wait)
1649{
1650	pfm_context_t *ctx;
1651	unsigned long flags;
1652	__poll_t mask = 0;
1653
1654	if (PFM_IS_FILE(filp) == 0) {
1655		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656		return 0;
1657	}
1658
1659	ctx = filp->private_data;
1660	if (ctx == NULL) {
1661		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662		return 0;
1663	}
1664
1665
1666	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670	PROTECT_CTX(ctx, flags);
1671
1672	if (PFM_CTXQ_EMPTY(ctx) == 0)
1673		mask =  EPOLLIN | EPOLLRDNORM;
1674
1675	UNPROTECT_CTX(ctx, flags);
1676
1677	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679	return mask;
1680}
1681
1682static long
1683pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684{
1685	DPRINT(("pfm_ioctl called\n"));
1686	return -EINVAL;
1687}
1688
1689/*
1690 * interrupt cannot be masked when coming here
1691 */
1692static inline int
1693pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694{
1695	int ret;
1696
1697	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700		task_pid_nr(current),
1701		fd,
1702		on,
1703		ctx->ctx_async_queue, ret));
1704
1705	return ret;
1706}
1707
1708static int
1709pfm_fasync(int fd, struct file *filp, int on)
1710{
1711	pfm_context_t *ctx;
1712	int ret;
1713
1714	if (PFM_IS_FILE(filp) == 0) {
1715		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716		return -EBADF;
1717	}
1718
1719	ctx = filp->private_data;
1720	if (ctx == NULL) {
1721		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722		return -EBADF;
1723	}
1724	/*
1725	 * we cannot mask interrupts during this call because this may
1726	 * may go to sleep if memory is not readily avalaible.
1727	 *
1728	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729	 * done in caller. Serialization of this function is ensured by caller.
1730	 */
1731	ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735		fd,
1736		on,
1737		ctx->ctx_async_queue, ret));
1738
1739	return ret;
1740}
1741
1742#ifdef CONFIG_SMP
1743/*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748static void
1749pfm_syswide_force_stop(void *info)
1750{
1751	pfm_context_t   *ctx = (pfm_context_t *)info;
1752	struct pt_regs *regs = task_pt_regs(current);
1753	struct task_struct *owner;
1754	unsigned long flags;
1755	int ret;
1756
1757	if (ctx->ctx_cpu != smp_processor_id()) {
1758		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1759			ctx->ctx_cpu,
1760			smp_processor_id());
1761		return;
1762	}
1763	owner = GET_PMU_OWNER();
1764	if (owner != ctx->ctx_task) {
1765		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766			smp_processor_id(),
1767			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768		return;
1769	}
1770	if (GET_PMU_CTX() != ctx) {
1771		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772			smp_processor_id(),
1773			GET_PMU_CTX(), ctx);
1774		return;
1775	}
1776
1777	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778	/*
1779	 * the context is already protected in pfm_close(), we simply
1780	 * need to mask interrupts to avoid a PMU interrupt race on
1781	 * this CPU
1782	 */
1783	local_irq_save(flags);
1784
1785	ret = pfm_context_unload(ctx, NULL, 0, regs);
1786	if (ret) {
1787		DPRINT(("context_unload returned %d\n", ret));
1788	}
1789
1790	/*
1791	 * unmask interrupts, PMU interrupts are now spurious here
1792	 */
1793	local_irq_restore(flags);
1794}
1795
1796static void
1797pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798{
1799	int ret;
1800
1801	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804}
1805#endif /* CONFIG_SMP */
1806
1807/*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811static int
1812pfm_flush(struct file *filp, fl_owner_t id)
1813{
1814	pfm_context_t *ctx;
1815	struct task_struct *task;
1816	struct pt_regs *regs;
1817	unsigned long flags;
1818	unsigned long smpl_buf_size = 0UL;
1819	void *smpl_buf_vaddr = NULL;
1820	int state, is_system;
1821
1822	if (PFM_IS_FILE(filp) == 0) {
1823		DPRINT(("bad magic for\n"));
1824		return -EBADF;
1825	}
1826
1827	ctx = filp->private_data;
1828	if (ctx == NULL) {
1829		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830		return -EBADF;
1831	}
1832
1833	/*
1834	 * remove our file from the async queue, if we use this mode.
1835	 * This can be done without the context being protected. We come
1836	 * here when the context has become unreachable by other tasks.
1837	 *
1838	 * We may still have active monitoring at this point and we may
1839	 * end up in pfm_overflow_handler(). However, fasync_helper()
1840	 * operates with interrupts disabled and it cleans up the
1841	 * queue. If the PMU handler is called prior to entering
1842	 * fasync_helper() then it will send a signal. If it is
1843	 * invoked after, it will find an empty queue and no
1844	 * signal will be sent. In both case, we are safe
1845	 */
1846	PROTECT_CTX(ctx, flags);
1847
1848	state     = ctx->ctx_state;
1849	is_system = ctx->ctx_fl_system;
1850
1851	task = PFM_CTX_TASK(ctx);
1852	regs = task_pt_regs(task);
1853
1854	DPRINT(("ctx_state=%d is_current=%d\n",
1855		state,
1856		task == current ? 1 : 0));
1857
1858	/*
1859	 * if state == UNLOADED, then task is NULL
1860	 */
1861
1862	/*
1863	 * we must stop and unload because we are losing access to the context.
1864	 */
1865	if (task == current) {
1866#ifdef CONFIG_SMP
1867		/*
1868		 * the task IS the owner but it migrated to another CPU: that's bad
1869		 * but we must handle this cleanly. Unfortunately, the kernel does
1870		 * not provide a mechanism to block migration (while the context is loaded).
1871		 *
1872		 * We need to release the resource on the ORIGINAL cpu.
1873		 */
1874		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877			/*
1878			 * keep context protected but unmask interrupt for IPI
1879			 */
1880			local_irq_restore(flags);
1881
1882			pfm_syswide_cleanup_other_cpu(ctx);
1883
1884			/*
1885			 * restore interrupt masking
1886			 */
1887			local_irq_save(flags);
1888
1889			/*
1890			 * context is unloaded at this point
1891			 */
1892		} else
1893#endif /* CONFIG_SMP */
1894		{
1895
1896			DPRINT(("forcing unload\n"));
1897			/*
1898		 	* stop and unload, returning with state UNLOADED
1899		 	* and session unreserved.
1900		 	*/
1901			pfm_context_unload(ctx, NULL, 0, regs);
1902
1903			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904		}
1905	}
1906
1907	/*
1908	 * remove virtual mapping, if any, for the calling task.
1909	 * cannot reset ctx field until last user is calling close().
1910	 *
1911	 * ctx_smpl_vaddr must never be cleared because it is needed
1912	 * by every task with access to the context
1913	 *
1914	 * When called from do_exit(), the mm context is gone already, therefore
1915	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1916	 * do anything here
1917	 */
1918	if (ctx->ctx_smpl_vaddr && current->mm) {
1919		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920		smpl_buf_size  = ctx->ctx_smpl_size;
1921	}
1922
1923	UNPROTECT_CTX(ctx, flags);
1924
1925	/*
1926	 * if there was a mapping, then we systematically remove it
1927	 * at this point. Cannot be done inside critical section
1928	 * because some VM function reenables interrupts.
1929	 *
1930	 */
1931	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933	return 0;
1934}
1935/*
1936 * called either on explicit close() or from exit_files(). 
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1941 * (fput()),i.e, last task to access the file. Nobody else can access the 
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context. 
1949 */
1950static int
1951pfm_close(struct inode *inode, struct file *filp)
1952{
1953	pfm_context_t *ctx;
1954	struct task_struct *task;
1955	struct pt_regs *regs;
1956  	DECLARE_WAITQUEUE(wait, current);
1957	unsigned long flags;
1958	unsigned long smpl_buf_size = 0UL;
1959	void *smpl_buf_addr = NULL;
1960	int free_possible = 1;
1961	int state, is_system;
1962
1963	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965	if (PFM_IS_FILE(filp) == 0) {
1966		DPRINT(("bad magic\n"));
1967		return -EBADF;
1968	}
1969	
1970	ctx = filp->private_data;
1971	if (ctx == NULL) {
1972		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973		return -EBADF;
1974	}
1975
1976	PROTECT_CTX(ctx, flags);
1977
1978	state     = ctx->ctx_state;
1979	is_system = ctx->ctx_fl_system;
1980
1981	task = PFM_CTX_TASK(ctx);
1982	regs = task_pt_regs(task);
1983
1984	DPRINT(("ctx_state=%d is_current=%d\n", 
1985		state,
1986		task == current ? 1 : 0));
1987
1988	/*
1989	 * if task == current, then pfm_flush() unloaded the context
1990	 */
1991	if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993	/*
1994	 * context is loaded/masked and task != current, we need to
1995	 * either force an unload or go zombie
1996	 */
1997
1998	/*
1999	 * The task is currently blocked or will block after an overflow.
2000	 * we must force it to wakeup to get out of the
2001	 * MASKED state and transition to the unloaded state by itself.
2002	 *
2003	 * This situation is only possible for per-task mode
2004	 */
2005	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007		/*
2008		 * set a "partial" zombie state to be checked
2009		 * upon return from down() in pfm_handle_work().
2010		 *
2011		 * We cannot use the ZOMBIE state, because it is checked
2012		 * by pfm_load_regs() which is called upon wakeup from down().
2013		 * In such case, it would free the context and then we would
2014		 * return to pfm_handle_work() which would access the
2015		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016		 * but visible to pfm_handle_work().
2017		 *
2018		 * For some window of time, we have a zombie context with
2019		 * ctx_state = MASKED  and not ZOMBIE
2020		 */
2021		ctx->ctx_fl_going_zombie = 1;
2022
2023		/*
2024		 * force task to wake up from MASKED state
2025		 */
2026		complete(&ctx->ctx_restart_done);
2027
2028		DPRINT(("waking up ctx_state=%d\n", state));
2029
2030		/*
2031		 * put ourself to sleep waiting for the other
2032		 * task to report completion
2033		 *
2034		 * the context is protected by mutex, therefore there
2035		 * is no risk of being notified of completion before
2036		 * begin actually on the waitq.
2037		 */
2038  		set_current_state(TASK_INTERRUPTIBLE);
2039  		add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041		UNPROTECT_CTX(ctx, flags);
2042
2043		/*
2044		 * XXX: check for signals :
2045		 * 	- ok for explicit close
2046		 * 	- not ok when coming from exit_files()
2047		 */
2048      		schedule();
2049
2050
2051		PROTECT_CTX(ctx, flags);
2052
2053
2054		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055  		set_current_state(TASK_RUNNING);
2056
2057		/*
2058		 * context is unloaded at this point
2059		 */
2060		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061	}
2062	else if (task != current) {
2063#ifdef CONFIG_SMP
2064		/*
2065	 	 * switch context to zombie state
2066	 	 */
2067		ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070		/*
2071		 * cannot free the context on the spot. deferred until
2072		 * the task notices the ZOMBIE state
2073		 */
2074		free_possible = 0;
2075#else
2076		pfm_context_unload(ctx, NULL, 0, regs);
2077#endif
2078	}
2079
2080doit:
2081	/* reload state, may have changed during  opening of critical section */
2082	state = ctx->ctx_state;
2083
2084	/*
2085	 * the context is still attached to a task (possibly current)
2086	 * we cannot destroy it right now
2087	 */
2088
2089	/*
2090	 * we must free the sampling buffer right here because
2091	 * we cannot rely on it being cleaned up later by the
2092	 * monitored task. It is not possible to free vmalloc'ed
2093	 * memory in pfm_load_regs(). Instead, we remove the buffer
2094	 * now. should there be subsequent PMU overflow originally
2095	 * meant for sampling, the will be converted to spurious
2096	 * and that's fine because the monitoring tools is gone anyway.
2097	 */
2098	if (ctx->ctx_smpl_hdr) {
2099		smpl_buf_addr = ctx->ctx_smpl_hdr;
2100		smpl_buf_size = ctx->ctx_smpl_size;
2101		/* no more sampling */
2102		ctx->ctx_smpl_hdr = NULL;
2103		ctx->ctx_fl_is_sampling = 0;
2104	}
2105
2106	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107		state,
2108		free_possible,
2109		smpl_buf_addr,
2110		smpl_buf_size));
2111
2112	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114	/*
2115	 * UNLOADED that the session has already been unreserved.
2116	 */
2117	if (state == PFM_CTX_ZOMBIE) {
2118		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119	}
2120
2121	/*
2122	 * disconnect file descriptor from context must be done
2123	 * before we unlock.
2124	 */
2125	filp->private_data = NULL;
2126
2127	/*
2128	 * if we free on the spot, the context is now completely unreachable
2129	 * from the callers side. The monitored task side is also cut, so we
2130	 * can freely cut.
2131	 *
2132	 * If we have a deferred free, only the caller side is disconnected.
2133	 */
2134	UNPROTECT_CTX(ctx, flags);
2135
2136	/*
2137	 * All memory free operations (especially for vmalloc'ed memory)
2138	 * MUST be done with interrupts ENABLED.
2139	 */
2140	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142	/*
2143	 * return the memory used by the context
2144	 */
2145	if (free_possible) pfm_context_free(ctx);
2146
2147	return 0;
2148}
2149
 
 
 
 
 
 
 
 
 
2150static const struct file_operations pfm_file_ops = {
2151	.llseek		= no_llseek,
2152	.read		= pfm_read,
2153	.write		= pfm_write,
2154	.poll		= pfm_poll,
2155	.unlocked_ioctl = pfm_ioctl,
 
2156	.fasync		= pfm_fasync,
2157	.release	= pfm_close,
2158	.flush		= pfm_flush
2159};
2160
2161static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162{
2163	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164			     d_inode(dentry)->i_ino);
2165}
2166
2167static const struct dentry_operations pfmfs_dentry_operations = {
2168	.d_delete = always_delete_dentry,
2169	.d_dname = pfmfs_dname,
2170};
2171
2172
2173static struct file *
2174pfm_alloc_file(pfm_context_t *ctx)
2175{
2176	struct file *file;
2177	struct inode *inode;
2178	struct path path;
2179	struct qstr this = { .name = "" };
2180
2181	/*
2182	 * allocate a new inode
2183	 */
2184	inode = new_inode(pfmfs_mnt->mnt_sb);
2185	if (!inode)
2186		return ERR_PTR(-ENOMEM);
2187
2188	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190	inode->i_mode = S_IFCHR|S_IRUGO;
2191	inode->i_uid  = current_fsuid();
2192	inode->i_gid  = current_fsgid();
2193
2194	/*
2195	 * allocate a new dcache entry
2196	 */
2197	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198	if (!path.dentry) {
2199		iput(inode);
2200		return ERR_PTR(-ENOMEM);
2201	}
2202	path.mnt = mntget(pfmfs_mnt);
2203
2204	d_add(path.dentry, inode);
2205
2206	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207	if (IS_ERR(file)) {
2208		path_put(&path);
2209		return file;
2210	}
2211
2212	file->f_flags = O_RDONLY;
2213	file->private_data = ctx;
2214
2215	return file;
2216}
2217
2218static int
2219pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220{
2221	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223	while (size > 0) {
2224		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228			return -ENOMEM;
2229
2230		addr  += PAGE_SIZE;
2231		buf   += PAGE_SIZE;
2232		size  -= PAGE_SIZE;
2233	}
2234	return 0;
2235}
2236
2237/*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240static int
2241pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242{
2243	struct mm_struct *mm = task->mm;
2244	struct vm_area_struct *vma = NULL;
2245	unsigned long size;
2246	void *smpl_buf;
2247
2248
2249	/*
2250	 * the fixed header + requested size and align to page boundary
2251	 */
2252	size = PAGE_ALIGN(rsize);
2253
2254	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256	/*
2257	 * check requested size to avoid Denial-of-service attacks
2258	 * XXX: may have to refine this test
2259	 * Check against address space limit.
2260	 *
2261	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262	 * 	return -ENOMEM;
2263	 */
2264	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265		return -ENOMEM;
2266
2267	/*
2268	 * We do the easy to undo allocations first.
2269 	 *
2270	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271	 */
2272	smpl_buf = pfm_rvmalloc(size);
2273	if (smpl_buf == NULL) {
2274		DPRINT(("Can't allocate sampling buffer\n"));
2275		return -ENOMEM;
2276	}
2277
2278	DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280	/* allocate vma */
2281	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282	if (!vma) {
2283		DPRINT(("Cannot allocate vma\n"));
2284		goto error_kmem;
2285	}
2286	INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288	/*
2289	 * partially initialize the vma for the sampling buffer
2290	 */
2291	vma->vm_mm	     = mm;
2292	vma->vm_file	     = get_file(filp);
2293	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2295
2296	/*
2297	 * Now we have everything we need and we can initialize
2298	 * and connect all the data structures
2299	 */
2300
2301	ctx->ctx_smpl_hdr   = smpl_buf;
2302	ctx->ctx_smpl_size  = size; /* aligned size */
2303
2304	/*
2305	 * Let's do the difficult operations next.
2306	 *
2307	 * now we atomically find some area in the address space and
2308	 * remap the buffer in it.
2309	 */
2310	down_write(&task->mm->mmap_sem);
2311
2312	/* find some free area in address space, must have mmap sem held */
2313	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314	if (IS_ERR_VALUE(vma->vm_start)) {
2315		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316		up_write(&task->mm->mmap_sem);
2317		goto error;
2318	}
2319	vma->vm_end = vma->vm_start + size;
2320	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324	/* can only be applied to current task, need to have the mm semaphore held when called */
2325	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326		DPRINT(("Can't remap buffer\n"));
2327		up_write(&task->mm->mmap_sem);
2328		goto error;
2329	}
2330
2331	/*
2332	 * now insert the vma in the vm list for the process, must be
2333	 * done with mmap lock held
2334	 */
2335	insert_vm_struct(mm, vma);
2336
2337	vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
 
2338	up_write(&task->mm->mmap_sem);
2339
2340	/*
2341	 * keep track of user level virtual address
2342	 */
2343	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344	*(unsigned long *)user_vaddr = vma->vm_start;
2345
2346	return 0;
2347
2348error:
2349	kmem_cache_free(vm_area_cachep, vma);
2350error_kmem:
2351	pfm_rvfree(smpl_buf, size);
2352
2353	return -ENOMEM;
2354}
2355
2356/*
2357 * XXX: do something better here
2358 */
2359static int
2360pfm_bad_permissions(struct task_struct *task)
2361{
2362	const struct cred *tcred;
2363	kuid_t uid = current_uid();
2364	kgid_t gid = current_gid();
2365	int ret;
2366
2367	rcu_read_lock();
2368	tcred = __task_cred(task);
2369
2370	/* inspired by ptrace_attach() */
2371	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372		from_kuid(&init_user_ns, uid),
2373		from_kgid(&init_user_ns, gid),
2374		from_kuid(&init_user_ns, tcred->euid),
2375		from_kuid(&init_user_ns, tcred->suid),
2376		from_kuid(&init_user_ns, tcred->uid),
2377		from_kgid(&init_user_ns, tcred->egid),
2378		from_kgid(&init_user_ns, tcred->sgid)));
2379
2380	ret = ((!uid_eq(uid, tcred->euid))
2381	       || (!uid_eq(uid, tcred->suid))
2382	       || (!uid_eq(uid, tcred->uid))
2383	       || (!gid_eq(gid, tcred->egid))
2384	       || (!gid_eq(gid, tcred->sgid))
2385	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387	rcu_read_unlock();
2388	return ret;
2389}
2390
2391static int
2392pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393{
2394	int ctx_flags;
2395
2396	/* valid signal */
2397
2398	ctx_flags = pfx->ctx_flags;
2399
2400	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402		/*
2403		 * cannot block in this mode
2404		 */
2405		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407			return -EINVAL;
2408		}
2409	} else {
2410	}
2411	/* probably more to add here */
2412
2413	return 0;
2414}
2415
2416static int
2417pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418		     unsigned int cpu, pfarg_context_t *arg)
2419{
2420	pfm_buffer_fmt_t *fmt = NULL;
2421	unsigned long size = 0UL;
2422	void *uaddr = NULL;
2423	void *fmt_arg = NULL;
2424	int ret = 0;
2425#define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2426
2427	/* invoke and lock buffer format, if found */
2428	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429	if (fmt == NULL) {
2430		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431		return -EINVAL;
2432	}
2433
2434	/*
2435	 * buffer argument MUST be contiguous to pfarg_context_t
2436	 */
2437	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443	if (ret) goto error;
2444
2445	/* link buffer format and context */
2446	ctx->ctx_buf_fmt = fmt;
2447	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449	/*
2450	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451	 */
2452	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453	if (ret) goto error;
2454
2455	if (size) {
2456		/*
2457		 * buffer is always remapped into the caller's address space
2458		 */
2459		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460		if (ret) goto error;
2461
2462		/* keep track of user address of buffer */
2463		arg->ctx_smpl_vaddr = uaddr;
2464	}
2465	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467error:
2468	return ret;
2469}
2470
2471static void
2472pfm_reset_pmu_state(pfm_context_t *ctx)
2473{
2474	int i;
2475
2476	/*
2477	 * install reset values for PMC.
2478	 */
2479	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480		if (PMC_IS_IMPL(i) == 0) continue;
2481		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483	}
2484	/*
2485	 * PMD registers are set to 0UL when the context in memset()
2486	 */
2487
2488	/*
2489	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490	 * when they are not actively used by the task. In UP, the incoming process
2491	 * may otherwise pick up left over PMC, PMD state from the previous process.
2492	 * As opposed to PMD, stale PMC can cause harm to the incoming
2493	 * process because they may change what is being measured.
2494	 * Therefore, we must systematically reinstall the entire
2495	 * PMC state. In SMP, the same thing is possible on the
2496	 * same CPU but also on between 2 CPUs.
2497	 *
2498	 * The problem with PMD is information leaking especially
2499	 * to user level when psr.sp=0
2500	 *
2501	 * There is unfortunately no easy way to avoid this problem
2502	 * on either UP or SMP. This definitively slows down the
2503	 * pfm_load_regs() function.
2504	 */
2505
2506	 /*
2507	  * bitmask of all PMCs accessible to this context
2508	  *
2509	  * PMC0 is treated differently.
2510	  */
2511	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513	/*
2514	 * bitmask of all PMDs that are accessible to this context
2515	 */
2516	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520	/*
2521	 * useful in case of re-enable after disable
2522	 */
2523	ctx->ctx_used_ibrs[0] = 0UL;
2524	ctx->ctx_used_dbrs[0] = 0UL;
2525}
2526
2527static int
2528pfm_ctx_getsize(void *arg, size_t *sz)
2529{
2530	pfarg_context_t *req = (pfarg_context_t *)arg;
2531	pfm_buffer_fmt_t *fmt;
2532
2533	*sz = 0;
2534
2535	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538	if (fmt == NULL) {
2539		DPRINT(("cannot find buffer format\n"));
2540		return -EINVAL;
2541	}
2542	/* get just enough to copy in user parameters */
2543	*sz = fmt->fmt_arg_size;
2544	DPRINT(("arg_size=%lu\n", *sz));
2545
2546	return 0;
2547}
2548
2549
2550
2551/*
2552 * cannot attach if :
2553 * 	- kernel task
2554 * 	- task not owned by caller
2555 * 	- task incompatible with context mode
2556 */
2557static int
2558pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559{
2560	/*
2561	 * no kernel task or task not owner by caller
2562	 */
2563	if (task->mm == NULL) {
2564		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565		return -EPERM;
2566	}
2567	if (pfm_bad_permissions(task)) {
2568		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2569		return -EPERM;
2570	}
2571	/*
2572	 * cannot block in self-monitoring mode
2573	 */
2574	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576		return -EINVAL;
2577	}
2578
2579	if (task->exit_state == EXIT_ZOMBIE) {
2580		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2581		return -EBUSY;
2582	}
2583
2584	/*
2585	 * always ok for self
2586	 */
2587	if (task == current) return 0;
2588
2589	if (!task_is_stopped_or_traced(task)) {
2590		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591		return -EBUSY;
2592	}
2593	/*
2594	 * make sure the task is off any CPU
2595	 */
2596	wait_task_inactive(task, 0);
2597
2598	/* more to come... */
2599
2600	return 0;
2601}
2602
2603static int
2604pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605{
2606	struct task_struct *p = current;
2607	int ret;
2608
2609	/* XXX: need to add more checks here */
2610	if (pid < 2) return -EPERM;
2611
2612	if (pid != task_pid_vnr(current)) {
 
 
 
 
 
2613		/* make sure task cannot go away while we operate on it */
2614		p = find_get_task_by_vpid(pid);
2615		if (!p)
2616			return -ESRCH;
 
 
2617	}
2618
2619	ret = pfm_task_incompatible(ctx, p);
2620	if (ret == 0) {
2621		*task = p;
2622	} else if (p != current) {
2623		pfm_put_task(p);
2624	}
2625	return ret;
2626}
2627
2628
2629
2630static int
2631pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2632{
2633	pfarg_context_t *req = (pfarg_context_t *)arg;
2634	struct file *filp;
2635	struct path path;
2636	int ctx_flags;
2637	int fd;
2638	int ret;
2639
2640	/* let's check the arguments first */
2641	ret = pfarg_is_sane(current, req);
2642	if (ret < 0)
2643		return ret;
2644
2645	ctx_flags = req->ctx_flags;
2646
2647	ret = -ENOMEM;
2648
2649	fd = get_unused_fd_flags(0);
2650	if (fd < 0)
2651		return fd;
2652
2653	ctx = pfm_context_alloc(ctx_flags);
2654	if (!ctx)
2655		goto error;
2656
2657	filp = pfm_alloc_file(ctx);
2658	if (IS_ERR(filp)) {
2659		ret = PTR_ERR(filp);
2660		goto error_file;
2661	}
2662
2663	req->ctx_fd = ctx->ctx_fd = fd;
2664
2665	/*
2666	 * does the user want to sample?
2667	 */
2668	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2669		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2670		if (ret)
2671			goto buffer_error;
2672	}
2673
2674	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2675		ctx,
2676		ctx_flags,
2677		ctx->ctx_fl_system,
2678		ctx->ctx_fl_block,
2679		ctx->ctx_fl_excl_idle,
2680		ctx->ctx_fl_no_msg,
2681		ctx->ctx_fd));
2682
2683	/*
2684	 * initialize soft PMU state
2685	 */
2686	pfm_reset_pmu_state(ctx);
2687
2688	fd_install(fd, filp);
2689
2690	return 0;
2691
2692buffer_error:
2693	path = filp->f_path;
2694	put_filp(filp);
2695	path_put(&path);
2696
2697	if (ctx->ctx_buf_fmt) {
2698		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2699	}
2700error_file:
2701	pfm_context_free(ctx);
2702
2703error:
2704	put_unused_fd(fd);
2705	return ret;
2706}
2707
2708static inline unsigned long
2709pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2710{
2711	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2712	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2713	extern unsigned long carta_random32 (unsigned long seed);
2714
2715	if (reg->flags & PFM_REGFL_RANDOM) {
2716		new_seed = carta_random32(old_seed);
2717		val -= (old_seed & mask);	/* counter values are negative numbers! */
2718		if ((mask >> 32) != 0)
2719			/* construct a full 64-bit random value: */
2720			new_seed |= carta_random32(old_seed >> 32) << 32;
2721		reg->seed = new_seed;
2722	}
2723	reg->lval = val;
2724	return val;
2725}
2726
2727static void
2728pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2729{
2730	unsigned long mask = ovfl_regs[0];
2731	unsigned long reset_others = 0UL;
2732	unsigned long val;
2733	int i;
2734
2735	/*
2736	 * now restore reset value on sampling overflowed counters
2737	 */
2738	mask >>= PMU_FIRST_COUNTER;
2739	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2740
2741		if ((mask & 0x1UL) == 0UL) continue;
2742
2743		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2744		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2745
2746		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2747	}
2748
2749	/*
2750	 * Now take care of resetting the other registers
2751	 */
2752	for(i = 0; reset_others; i++, reset_others >>= 1) {
2753
2754		if ((reset_others & 0x1) == 0) continue;
2755
2756		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2757
2758		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2759			  is_long_reset ? "long" : "short", i, val));
2760	}
2761}
2762
2763static void
2764pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2765{
2766	unsigned long mask = ovfl_regs[0];
2767	unsigned long reset_others = 0UL;
2768	unsigned long val;
2769	int i;
2770
2771	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2772
2773	if (ctx->ctx_state == PFM_CTX_MASKED) {
2774		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2775		return;
2776	}
2777
2778	/*
2779	 * now restore reset value on sampling overflowed counters
2780	 */
2781	mask >>= PMU_FIRST_COUNTER;
2782	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784		if ((mask & 0x1UL) == 0UL) continue;
2785
2786		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790
2791		pfm_write_soft_counter(ctx, i, val);
2792	}
2793
2794	/*
2795	 * Now take care of resetting the other registers
2796	 */
2797	for(i = 0; reset_others; i++, reset_others >>= 1) {
2798
2799		if ((reset_others & 0x1) == 0) continue;
2800
2801		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802
2803		if (PMD_IS_COUNTING(i)) {
2804			pfm_write_soft_counter(ctx, i, val);
2805		} else {
2806			ia64_set_pmd(i, val);
2807		}
2808		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2809			  is_long_reset ? "long" : "short", i, val));
2810	}
2811	ia64_srlz_d();
2812}
2813
2814static int
2815pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2816{
2817	struct task_struct *task;
2818	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2819	unsigned long value, pmc_pm;
2820	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2821	unsigned int cnum, reg_flags, flags, pmc_type;
2822	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2823	int is_monitor, is_counting, state;
2824	int ret = -EINVAL;
2825	pfm_reg_check_t	wr_func;
2826#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2827
2828	state     = ctx->ctx_state;
2829	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2830	is_system = ctx->ctx_fl_system;
2831	task      = ctx->ctx_task;
2832	impl_pmds = pmu_conf->impl_pmds[0];
2833
2834	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2835
2836	if (is_loaded) {
2837		/*
2838		 * In system wide and when the context is loaded, access can only happen
2839		 * when the caller is running on the CPU being monitored by the session.
2840		 * It does not have to be the owner (ctx_task) of the context per se.
2841		 */
2842		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2843			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2844			return -EBUSY;
2845		}
2846		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2847	}
2848	expert_mode = pfm_sysctl.expert_mode; 
2849
2850	for (i = 0; i < count; i++, req++) {
2851
2852		cnum       = req->reg_num;
2853		reg_flags  = req->reg_flags;
2854		value      = req->reg_value;
2855		smpl_pmds  = req->reg_smpl_pmds[0];
2856		reset_pmds = req->reg_reset_pmds[0];
2857		flags      = 0;
2858
2859
2860		if (cnum >= PMU_MAX_PMCS) {
2861			DPRINT(("pmc%u is invalid\n", cnum));
2862			goto error;
2863		}
2864
2865		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2866		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2867		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2868		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2869
2870		/*
2871		 * we reject all non implemented PMC as well
2872		 * as attempts to modify PMC[0-3] which are used
2873		 * as status registers by the PMU
2874		 */
2875		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2876			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2877			goto error;
2878		}
2879		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2880		/*
2881		 * If the PMC is a monitor, then if the value is not the default:
2882		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2883		 * 	- per-task           : PMCx.pm=0 (user monitor)
2884		 */
2885		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2886			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2887				cnum,
2888				pmc_pm,
2889				is_system));
2890			goto error;
2891		}
2892
2893		if (is_counting) {
2894			/*
2895		 	 * enforce generation of overflow interrupt. Necessary on all
2896		 	 * CPUs.
2897		 	 */
2898			value |= 1 << PMU_PMC_OI;
2899
2900			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2901				flags |= PFM_REGFL_OVFL_NOTIFY;
2902			}
2903
2904			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2905
2906			/* verify validity of smpl_pmds */
2907			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2908				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2909				goto error;
2910			}
2911
2912			/* verify validity of reset_pmds */
2913			if ((reset_pmds & impl_pmds) != reset_pmds) {
2914				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2915				goto error;
2916			}
2917		} else {
2918			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2919				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2920				goto error;
2921			}
2922			/* eventid on non-counting monitors are ignored */
2923		}
2924
2925		/*
2926		 * execute write checker, if any
2927		 */
2928		if (likely(expert_mode == 0 && wr_func)) {
2929			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2930			if (ret) goto error;
2931			ret = -EINVAL;
2932		}
2933
2934		/*
2935		 * no error on this register
2936		 */
2937		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2938
2939		/*
2940		 * Now we commit the changes to the software state
2941		 */
2942
2943		/*
2944		 * update overflow information
2945		 */
2946		if (is_counting) {
2947			/*
2948		 	 * full flag update each time a register is programmed
2949		 	 */
2950			ctx->ctx_pmds[cnum].flags = flags;
2951
2952			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2953			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2954			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2955
2956			/*
2957			 * Mark all PMDS to be accessed as used.
2958			 *
2959			 * We do not keep track of PMC because we have to
2960			 * systematically restore ALL of them.
2961			 *
2962			 * We do not update the used_monitors mask, because
2963			 * if we have not programmed them, then will be in
2964			 * a quiescent state, therefore we will not need to
2965			 * mask/restore then when context is MASKED.
2966			 */
2967			CTX_USED_PMD(ctx, reset_pmds);
2968			CTX_USED_PMD(ctx, smpl_pmds);
2969			/*
2970		 	 * make sure we do not try to reset on
2971		 	 * restart because we have established new values
2972		 	 */
2973			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2974		}
2975		/*
2976		 * Needed in case the user does not initialize the equivalent
2977		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2978		 * possible leak here.
2979		 */
2980		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2981
2982		/*
2983		 * keep track of the monitor PMC that we are using.
2984		 * we save the value of the pmc in ctx_pmcs[] and if
2985		 * the monitoring is not stopped for the context we also
2986		 * place it in the saved state area so that it will be
2987		 * picked up later by the context switch code.
2988		 *
2989		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2990		 *
2991		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2992		 * monitoring needs to be stopped.
2993		 */
2994		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2995
2996		/*
2997		 * update context state
2998		 */
2999		ctx->ctx_pmcs[cnum] = value;
3000
3001		if (is_loaded) {
3002			/*
3003			 * write thread state
3004			 */
3005			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3006
3007			/*
3008			 * write hardware register if we can
3009			 */
3010			if (can_access_pmu) {
3011				ia64_set_pmc(cnum, value);
3012			}
3013#ifdef CONFIG_SMP
3014			else {
3015				/*
3016				 * per-task SMP only here
3017				 *
3018			 	 * we are guaranteed that the task is not running on the other CPU,
3019			 	 * we indicate that this PMD will need to be reloaded if the task
3020			 	 * is rescheduled on the CPU it ran last on.
3021			 	 */
3022				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3023			}
3024#endif
3025		}
3026
3027		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3028			  cnum,
3029			  value,
3030			  is_loaded,
3031			  can_access_pmu,
3032			  flags,
3033			  ctx->ctx_all_pmcs[0],
3034			  ctx->ctx_used_pmds[0],
3035			  ctx->ctx_pmds[cnum].eventid,
3036			  smpl_pmds,
3037			  reset_pmds,
3038			  ctx->ctx_reload_pmcs[0],
3039			  ctx->ctx_used_monitors[0],
3040			  ctx->ctx_ovfl_regs[0]));
3041	}
3042
3043	/*
3044	 * make sure the changes are visible
3045	 */
3046	if (can_access_pmu) ia64_srlz_d();
3047
3048	return 0;
3049error:
3050	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3051	return ret;
3052}
3053
3054static int
3055pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3056{
3057	struct task_struct *task;
3058	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3059	unsigned long value, hw_value, ovfl_mask;
3060	unsigned int cnum;
3061	int i, can_access_pmu = 0, state;
3062	int is_counting, is_loaded, is_system, expert_mode;
3063	int ret = -EINVAL;
3064	pfm_reg_check_t wr_func;
3065
3066
3067	state     = ctx->ctx_state;
3068	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3069	is_system = ctx->ctx_fl_system;
3070	ovfl_mask = pmu_conf->ovfl_val;
3071	task      = ctx->ctx_task;
3072
3073	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3074
3075	/*
3076	 * on both UP and SMP, we can only write to the PMC when the task is
3077	 * the owner of the local PMU.
3078	 */
3079	if (likely(is_loaded)) {
3080		/*
3081		 * In system wide and when the context is loaded, access can only happen
3082		 * when the caller is running on the CPU being monitored by the session.
3083		 * It does not have to be the owner (ctx_task) of the context per se.
3084		 */
3085		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3086			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3087			return -EBUSY;
3088		}
3089		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3090	}
3091	expert_mode = pfm_sysctl.expert_mode; 
3092
3093	for (i = 0; i < count; i++, req++) {
3094
3095		cnum  = req->reg_num;
3096		value = req->reg_value;
3097
3098		if (!PMD_IS_IMPL(cnum)) {
3099			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3100			goto abort_mission;
3101		}
3102		is_counting = PMD_IS_COUNTING(cnum);
3103		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3104
3105		/*
3106		 * execute write checker, if any
3107		 */
3108		if (unlikely(expert_mode == 0 && wr_func)) {
3109			unsigned long v = value;
3110
3111			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3112			if (ret) goto abort_mission;
3113
3114			value = v;
3115			ret   = -EINVAL;
3116		}
3117
3118		/*
3119		 * no error on this register
3120		 */
3121		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3122
3123		/*
3124		 * now commit changes to software state
3125		 */
3126		hw_value = value;
3127
3128		/*
3129		 * update virtualized (64bits) counter
3130		 */
3131		if (is_counting) {
3132			/*
3133			 * write context state
3134			 */
3135			ctx->ctx_pmds[cnum].lval = value;
3136
3137			/*
3138			 * when context is load we use the split value
3139			 */
3140			if (is_loaded) {
3141				hw_value = value &  ovfl_mask;
3142				value    = value & ~ovfl_mask;
3143			}
3144		}
3145		/*
3146		 * update reset values (not just for counters)
3147		 */
3148		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3149		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3150
3151		/*
3152		 * update randomization parameters (not just for counters)
3153		 */
3154		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3155		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3156
3157		/*
3158		 * update context value
3159		 */
3160		ctx->ctx_pmds[cnum].val  = value;
3161
3162		/*
3163		 * Keep track of what we use
3164		 *
3165		 * We do not keep track of PMC because we have to
3166		 * systematically restore ALL of them.
3167		 */
3168		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3169
3170		/*
3171		 * mark this PMD register used as well
3172		 */
3173		CTX_USED_PMD(ctx, RDEP(cnum));
3174
3175		/*
3176		 * make sure we do not try to reset on
3177		 * restart because we have established new values
3178		 */
3179		if (is_counting && state == PFM_CTX_MASKED) {
3180			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3181		}
3182
3183		if (is_loaded) {
3184			/*
3185		 	 * write thread state
3186		 	 */
3187			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3188
3189			/*
3190			 * write hardware register if we can
3191			 */
3192			if (can_access_pmu) {
3193				ia64_set_pmd(cnum, hw_value);
3194			} else {
3195#ifdef CONFIG_SMP
3196				/*
3197			 	 * we are guaranteed that the task is not running on the other CPU,
3198			 	 * we indicate that this PMD will need to be reloaded if the task
3199			 	 * is rescheduled on the CPU it ran last on.
3200			 	 */
3201				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3202#endif
3203			}
3204		}
3205
3206		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3207			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3208			cnum,
3209			value,
3210			is_loaded,
3211			can_access_pmu,
3212			hw_value,
3213			ctx->ctx_pmds[cnum].val,
3214			ctx->ctx_pmds[cnum].short_reset,
3215			ctx->ctx_pmds[cnum].long_reset,
3216			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3217			ctx->ctx_pmds[cnum].seed,
3218			ctx->ctx_pmds[cnum].mask,
3219			ctx->ctx_used_pmds[0],
3220			ctx->ctx_pmds[cnum].reset_pmds[0],
3221			ctx->ctx_reload_pmds[0],
3222			ctx->ctx_all_pmds[0],
3223			ctx->ctx_ovfl_regs[0]));
3224	}
3225
3226	/*
3227	 * make changes visible
3228	 */
3229	if (can_access_pmu) ia64_srlz_d();
3230
3231	return 0;
3232
3233abort_mission:
3234	/*
3235	 * for now, we have only one possibility for error
3236	 */
3237	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3238	return ret;
3239}
3240
3241/*
3242 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3243 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3244 * interrupt is delivered during the call, it will be kept pending until we leave, making
3245 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3246 * guaranteed to return consistent data to the user, it may simply be old. It is not
3247 * trivial to treat the overflow while inside the call because you may end up in
3248 * some module sampling buffer code causing deadlocks.
3249 */
3250static int
3251pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3252{
3253	struct task_struct *task;
3254	unsigned long val = 0UL, lval, ovfl_mask, sval;
3255	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3256	unsigned int cnum, reg_flags = 0;
3257	int i, can_access_pmu = 0, state;
3258	int is_loaded, is_system, is_counting, expert_mode;
3259	int ret = -EINVAL;
3260	pfm_reg_check_t rd_func;
3261
3262	/*
3263	 * access is possible when loaded only for
3264	 * self-monitoring tasks or in UP mode
3265	 */
3266
3267	state     = ctx->ctx_state;
3268	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3269	is_system = ctx->ctx_fl_system;
3270	ovfl_mask = pmu_conf->ovfl_val;
3271	task      = ctx->ctx_task;
3272
3273	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3274
3275	if (likely(is_loaded)) {
3276		/*
3277		 * In system wide and when the context is loaded, access can only happen
3278		 * when the caller is running on the CPU being monitored by the session.
3279		 * It does not have to be the owner (ctx_task) of the context per se.
3280		 */
3281		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3282			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3283			return -EBUSY;
3284		}
3285		/*
3286		 * this can be true when not self-monitoring only in UP
3287		 */
3288		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3289
3290		if (can_access_pmu) ia64_srlz_d();
3291	}
3292	expert_mode = pfm_sysctl.expert_mode; 
3293
3294	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3295		is_loaded,
3296		can_access_pmu,
3297		state));
3298
3299	/*
3300	 * on both UP and SMP, we can only read the PMD from the hardware register when
3301	 * the task is the owner of the local PMU.
3302	 */
3303
3304	for (i = 0; i < count; i++, req++) {
3305
3306		cnum        = req->reg_num;
3307		reg_flags   = req->reg_flags;
3308
3309		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3310		/*
3311		 * we can only read the register that we use. That includes
3312		 * the one we explicitly initialize AND the one we want included
3313		 * in the sampling buffer (smpl_regs).
3314		 *
3315		 * Having this restriction allows optimization in the ctxsw routine
3316		 * without compromising security (leaks)
3317		 */
3318		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3319
3320		sval        = ctx->ctx_pmds[cnum].val;
3321		lval        = ctx->ctx_pmds[cnum].lval;
3322		is_counting = PMD_IS_COUNTING(cnum);
3323
3324		/*
3325		 * If the task is not the current one, then we check if the
3326		 * PMU state is still in the local live register due to lazy ctxsw.
3327		 * If true, then we read directly from the registers.
3328		 */
3329		if (can_access_pmu){
3330			val = ia64_get_pmd(cnum);
3331		} else {
3332			/*
3333			 * context has been saved
3334			 * if context is zombie, then task does not exist anymore.
3335			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3336			 */
3337			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3338		}
3339		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3340
3341		if (is_counting) {
3342			/*
3343			 * XXX: need to check for overflow when loaded
3344			 */
3345			val &= ovfl_mask;
3346			val += sval;
3347		}
3348
3349		/*
3350		 * execute read checker, if any
3351		 */
3352		if (unlikely(expert_mode == 0 && rd_func)) {
3353			unsigned long v = val;
3354			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3355			if (ret) goto error;
3356			val = v;
3357			ret = -EINVAL;
3358		}
3359
3360		PFM_REG_RETFLAG_SET(reg_flags, 0);
3361
3362		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3363
3364		/*
3365		 * update register return value, abort all if problem during copy.
3366		 * we only modify the reg_flags field. no check mode is fine because
3367		 * access has been verified upfront in sys_perfmonctl().
3368		 */
3369		req->reg_value            = val;
3370		req->reg_flags            = reg_flags;
3371		req->reg_last_reset_val   = lval;
3372	}
3373
3374	return 0;
3375
3376error:
3377	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3378	return ret;
3379}
3380
3381int
3382pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3383{
3384	pfm_context_t *ctx;
3385
3386	if (req == NULL) return -EINVAL;
3387
3388 	ctx = GET_PMU_CTX();
3389
3390	if (ctx == NULL) return -EINVAL;
3391
3392	/*
3393	 * for now limit to current task, which is enough when calling
3394	 * from overflow handler
3395	 */
3396	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3397
3398	return pfm_write_pmcs(ctx, req, nreq, regs);
3399}
3400EXPORT_SYMBOL(pfm_mod_write_pmcs);
3401
3402int
3403pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3404{
3405	pfm_context_t *ctx;
3406
3407	if (req == NULL) return -EINVAL;
3408
3409 	ctx = GET_PMU_CTX();
3410
3411	if (ctx == NULL) return -EINVAL;
3412
3413	/*
3414	 * for now limit to current task, which is enough when calling
3415	 * from overflow handler
3416	 */
3417	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3418
3419	return pfm_read_pmds(ctx, req, nreq, regs);
3420}
3421EXPORT_SYMBOL(pfm_mod_read_pmds);
3422
3423/*
3424 * Only call this function when a process it trying to
3425 * write the debug registers (reading is always allowed)
3426 */
3427int
3428pfm_use_debug_registers(struct task_struct *task)
3429{
3430	pfm_context_t *ctx = task->thread.pfm_context;
3431	unsigned long flags;
3432	int ret = 0;
3433
3434	if (pmu_conf->use_rr_dbregs == 0) return 0;
3435
3436	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3437
3438	/*
3439	 * do it only once
3440	 */
3441	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3442
3443	/*
3444	 * Even on SMP, we do not need to use an atomic here because
3445	 * the only way in is via ptrace() and this is possible only when the
3446	 * process is stopped. Even in the case where the ctxsw out is not totally
3447	 * completed by the time we come here, there is no way the 'stopped' process
3448	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3449	 * So this is always safe.
3450	 */
3451	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3452
3453	LOCK_PFS(flags);
3454
3455	/*
3456	 * We cannot allow setting breakpoints when system wide monitoring
3457	 * sessions are using the debug registers.
3458	 */
3459	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3460		ret = -1;
3461	else
3462		pfm_sessions.pfs_ptrace_use_dbregs++;
3463
3464	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3465		  pfm_sessions.pfs_ptrace_use_dbregs,
3466		  pfm_sessions.pfs_sys_use_dbregs,
3467		  task_pid_nr(task), ret));
3468
3469	UNLOCK_PFS(flags);
3470
3471	return ret;
3472}
3473
3474/*
3475 * This function is called for every task that exits with the
3476 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3477 * able to use the debug registers for debugging purposes via
3478 * ptrace(). Therefore we know it was not using them for
3479 * performance monitoring, so we only decrement the number
3480 * of "ptraced" debug register users to keep the count up to date
3481 */
3482int
3483pfm_release_debug_registers(struct task_struct *task)
3484{
3485	unsigned long flags;
3486	int ret;
3487
3488	if (pmu_conf->use_rr_dbregs == 0) return 0;
3489
3490	LOCK_PFS(flags);
3491	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3492		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3493		ret = -1;
3494	}  else {
3495		pfm_sessions.pfs_ptrace_use_dbregs--;
3496		ret = 0;
3497	}
3498	UNLOCK_PFS(flags);
3499
3500	return ret;
3501}
3502
3503static int
3504pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3505{
3506	struct task_struct *task;
3507	pfm_buffer_fmt_t *fmt;
3508	pfm_ovfl_ctrl_t rst_ctrl;
3509	int state, is_system;
3510	int ret = 0;
3511
3512	state     = ctx->ctx_state;
3513	fmt       = ctx->ctx_buf_fmt;
3514	is_system = ctx->ctx_fl_system;
3515	task      = PFM_CTX_TASK(ctx);
3516
3517	switch(state) {
3518		case PFM_CTX_MASKED:
3519			break;
3520		case PFM_CTX_LOADED: 
3521			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3522			/* fall through */
3523		case PFM_CTX_UNLOADED:
3524		case PFM_CTX_ZOMBIE:
3525			DPRINT(("invalid state=%d\n", state));
3526			return -EBUSY;
3527		default:
3528			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3529			return -EINVAL;
3530	}
3531
3532	/*
3533 	 * In system wide and when the context is loaded, access can only happen
3534 	 * when the caller is running on the CPU being monitored by the session.
3535 	 * It does not have to be the owner (ctx_task) of the context per se.
3536 	 */
3537	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3538		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3539		return -EBUSY;
3540	}
3541
3542	/* sanity check */
3543	if (unlikely(task == NULL)) {
3544		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3545		return -EINVAL;
3546	}
3547
3548	if (task == current || is_system) {
3549
3550		fmt = ctx->ctx_buf_fmt;
3551
3552		DPRINT(("restarting self %d ovfl=0x%lx\n",
3553			task_pid_nr(task),
3554			ctx->ctx_ovfl_regs[0]));
3555
3556		if (CTX_HAS_SMPL(ctx)) {
3557
3558			prefetch(ctx->ctx_smpl_hdr);
3559
3560			rst_ctrl.bits.mask_monitoring = 0;
3561			rst_ctrl.bits.reset_ovfl_pmds = 0;
3562
3563			if (state == PFM_CTX_LOADED)
3564				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3565			else
3566				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3567		} else {
3568			rst_ctrl.bits.mask_monitoring = 0;
3569			rst_ctrl.bits.reset_ovfl_pmds = 1;
3570		}
3571
3572		if (ret == 0) {
3573			if (rst_ctrl.bits.reset_ovfl_pmds)
3574				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3575
3576			if (rst_ctrl.bits.mask_monitoring == 0) {
3577				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3578
3579				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3580			} else {
3581				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3582
3583				// cannot use pfm_stop_monitoring(task, regs);
3584			}
3585		}
3586		/*
3587		 * clear overflowed PMD mask to remove any stale information
3588		 */
3589		ctx->ctx_ovfl_regs[0] = 0UL;
3590
3591		/*
3592		 * back to LOADED state
3593		 */
3594		ctx->ctx_state = PFM_CTX_LOADED;
3595
3596		/*
3597		 * XXX: not really useful for self monitoring
3598		 */
3599		ctx->ctx_fl_can_restart = 0;
3600
3601		return 0;
3602	}
3603
3604	/* 
3605	 * restart another task
3606	 */
3607
3608	/*
3609	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3610	 * one is seen by the task.
3611	 */
3612	if (state == PFM_CTX_MASKED) {
3613		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3614		/*
3615		 * will prevent subsequent restart before this one is
3616		 * seen by other task
3617		 */
3618		ctx->ctx_fl_can_restart = 0;
3619	}
3620
3621	/*
3622	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3623	 * the task is blocked or on its way to block. That's the normal
3624	 * restart path. If the monitoring is not masked, then the task
3625	 * can be actively monitoring and we cannot directly intervene.
3626	 * Therefore we use the trap mechanism to catch the task and
3627	 * force it to reset the buffer/reset PMDs.
3628	 *
3629	 * if non-blocking, then we ensure that the task will go into
3630	 * pfm_handle_work() before returning to user mode.
3631	 *
3632	 * We cannot explicitly reset another task, it MUST always
3633	 * be done by the task itself. This works for system wide because
3634	 * the tool that is controlling the session is logically doing 
3635	 * "self-monitoring".
3636	 */
3637	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3638		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3639		complete(&ctx->ctx_restart_done);
3640	} else {
3641		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3642
3643		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3644
3645		PFM_SET_WORK_PENDING(task, 1);
3646
3647		set_notify_resume(task);
3648
3649		/*
3650		 * XXX: send reschedule if task runs on another CPU
3651		 */
3652	}
3653	return 0;
3654}
3655
3656static int
3657pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3658{
3659	unsigned int m = *(unsigned int *)arg;
3660
3661	pfm_sysctl.debug = m == 0 ? 0 : 1;
3662
3663	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3664
3665	if (m == 0) {
3666		memset(pfm_stats, 0, sizeof(pfm_stats));
3667		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3668	}
3669	return 0;
3670}
3671
3672/*
3673 * arg can be NULL and count can be zero for this function
3674 */
3675static int
3676pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3677{
3678	struct thread_struct *thread = NULL;
3679	struct task_struct *task;
3680	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3681	unsigned long flags;
3682	dbreg_t dbreg;
3683	unsigned int rnum;
3684	int first_time;
3685	int ret = 0, state;
3686	int i, can_access_pmu = 0;
3687	int is_system, is_loaded;
3688
3689	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3690
3691	state     = ctx->ctx_state;
3692	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3693	is_system = ctx->ctx_fl_system;
3694	task      = ctx->ctx_task;
3695
3696	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3697
3698	/*
3699	 * on both UP and SMP, we can only write to the PMC when the task is
3700	 * the owner of the local PMU.
3701	 */
3702	if (is_loaded) {
3703		thread = &task->thread;
3704		/*
3705		 * In system wide and when the context is loaded, access can only happen
3706		 * when the caller is running on the CPU being monitored by the session.
3707		 * It does not have to be the owner (ctx_task) of the context per se.
3708		 */
3709		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3710			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3711			return -EBUSY;
3712		}
3713		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3714	}
3715
3716	/*
3717	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3718	 * ensuring that no real breakpoint can be installed via this call.
3719	 *
3720	 * IMPORTANT: regs can be NULL in this function
3721	 */
3722
3723	first_time = ctx->ctx_fl_using_dbreg == 0;
3724
3725	/*
3726	 * don't bother if we are loaded and task is being debugged
3727	 */
3728	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3729		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3730		return -EBUSY;
3731	}
3732
3733	/*
3734	 * check for debug registers in system wide mode
3735	 *
3736	 * If though a check is done in pfm_context_load(),
3737	 * we must repeat it here, in case the registers are
3738	 * written after the context is loaded
3739	 */
3740	if (is_loaded) {
3741		LOCK_PFS(flags);
3742
3743		if (first_time && is_system) {
3744			if (pfm_sessions.pfs_ptrace_use_dbregs)
3745				ret = -EBUSY;
3746			else
3747				pfm_sessions.pfs_sys_use_dbregs++;
3748		}
3749		UNLOCK_PFS(flags);
3750	}
3751
3752	if (ret != 0) return ret;
3753
3754	/*
3755	 * mark ourself as user of the debug registers for
3756	 * perfmon purposes.
3757	 */
3758	ctx->ctx_fl_using_dbreg = 1;
3759
3760	/*
3761 	 * clear hardware registers to make sure we don't
3762 	 * pick up stale state.
3763	 *
3764	 * for a system wide session, we do not use
3765	 * thread.dbr, thread.ibr because this process
3766	 * never leaves the current CPU and the state
3767	 * is shared by all processes running on it
3768 	 */
3769	if (first_time && can_access_pmu) {
3770		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3771		for (i=0; i < pmu_conf->num_ibrs; i++) {
3772			ia64_set_ibr(i, 0UL);
3773			ia64_dv_serialize_instruction();
3774		}
3775		ia64_srlz_i();
3776		for (i=0; i < pmu_conf->num_dbrs; i++) {
3777			ia64_set_dbr(i, 0UL);
3778			ia64_dv_serialize_data();
3779		}
3780		ia64_srlz_d();
3781	}
3782
3783	/*
3784	 * Now install the values into the registers
3785	 */
3786	for (i = 0; i < count; i++, req++) {
3787
3788		rnum      = req->dbreg_num;
3789		dbreg.val = req->dbreg_value;
3790
3791		ret = -EINVAL;
3792
3793		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3794			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3795				  rnum, dbreg.val, mode, i, count));
3796
3797			goto abort_mission;
3798		}
3799
3800		/*
3801		 * make sure we do not install enabled breakpoint
3802		 */
3803		if (rnum & 0x1) {
3804			if (mode == PFM_CODE_RR)
3805				dbreg.ibr.ibr_x = 0;
3806			else
3807				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3808		}
3809
3810		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3811
3812		/*
3813		 * Debug registers, just like PMC, can only be modified
3814		 * by a kernel call. Moreover, perfmon() access to those
3815		 * registers are centralized in this routine. The hardware
3816		 * does not modify the value of these registers, therefore,
3817		 * if we save them as they are written, we can avoid having
3818		 * to save them on context switch out. This is made possible
3819		 * by the fact that when perfmon uses debug registers, ptrace()
3820		 * won't be able to modify them concurrently.
3821		 */
3822		if (mode == PFM_CODE_RR) {
3823			CTX_USED_IBR(ctx, rnum);
3824
3825			if (can_access_pmu) {
3826				ia64_set_ibr(rnum, dbreg.val);
3827				ia64_dv_serialize_instruction();
3828			}
3829
3830			ctx->ctx_ibrs[rnum] = dbreg.val;
3831
3832			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3833				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3834		} else {
3835			CTX_USED_DBR(ctx, rnum);
3836
3837			if (can_access_pmu) {
3838				ia64_set_dbr(rnum, dbreg.val);
3839				ia64_dv_serialize_data();
3840			}
3841			ctx->ctx_dbrs[rnum] = dbreg.val;
3842
3843			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3844				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3845		}
3846	}
3847
3848	return 0;
3849
3850abort_mission:
3851	/*
3852	 * in case it was our first attempt, we undo the global modifications
3853	 */
3854	if (first_time) {
3855		LOCK_PFS(flags);
3856		if (ctx->ctx_fl_system) {
3857			pfm_sessions.pfs_sys_use_dbregs--;
3858		}
3859		UNLOCK_PFS(flags);
3860		ctx->ctx_fl_using_dbreg = 0;
3861	}
3862	/*
3863	 * install error return flag
3864	 */
3865	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3866
3867	return ret;
3868}
3869
3870static int
3871pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3872{
3873	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3874}
3875
3876static int
3877pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3880}
3881
3882int
3883pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3884{
3885	pfm_context_t *ctx;
3886
3887	if (req == NULL) return -EINVAL;
3888
3889 	ctx = GET_PMU_CTX();
3890
3891	if (ctx == NULL) return -EINVAL;
3892
3893	/*
3894	 * for now limit to current task, which is enough when calling
3895	 * from overflow handler
3896	 */
3897	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3898
3899	return pfm_write_ibrs(ctx, req, nreq, regs);
3900}
3901EXPORT_SYMBOL(pfm_mod_write_ibrs);
3902
3903int
3904pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3905{
3906	pfm_context_t *ctx;
3907
3908	if (req == NULL) return -EINVAL;
3909
3910 	ctx = GET_PMU_CTX();
3911
3912	if (ctx == NULL) return -EINVAL;
3913
3914	/*
3915	 * for now limit to current task, which is enough when calling
3916	 * from overflow handler
3917	 */
3918	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3919
3920	return pfm_write_dbrs(ctx, req, nreq, regs);
3921}
3922EXPORT_SYMBOL(pfm_mod_write_dbrs);
3923
3924
3925static int
3926pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3927{
3928	pfarg_features_t *req = (pfarg_features_t *)arg;
3929
3930	req->ft_version = PFM_VERSION;
3931	return 0;
3932}
3933
3934static int
3935pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3936{
3937	struct pt_regs *tregs;
3938	struct task_struct *task = PFM_CTX_TASK(ctx);
3939	int state, is_system;
3940
3941	state     = ctx->ctx_state;
3942	is_system = ctx->ctx_fl_system;
3943
3944	/*
3945	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3946	 */
3947	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3948
3949	/*
3950 	 * In system wide and when the context is loaded, access can only happen
3951 	 * when the caller is running on the CPU being monitored by the session.
3952 	 * It does not have to be the owner (ctx_task) of the context per se.
3953 	 */
3954	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3955		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3956		return -EBUSY;
3957	}
3958	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3959		task_pid_nr(PFM_CTX_TASK(ctx)),
3960		state,
3961		is_system));
3962	/*
3963	 * in system mode, we need to update the PMU directly
3964	 * and the user level state of the caller, which may not
3965	 * necessarily be the creator of the context.
3966	 */
3967	if (is_system) {
3968		/*
3969		 * Update local PMU first
3970		 *
3971		 * disable dcr pp
3972		 */
3973		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3974		ia64_srlz_i();
3975
3976		/*
3977		 * update local cpuinfo
3978		 */
3979		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3980
3981		/*
3982		 * stop monitoring, does srlz.i
3983		 */
3984		pfm_clear_psr_pp();
3985
3986		/*
3987		 * stop monitoring in the caller
3988		 */
3989		ia64_psr(regs)->pp = 0;
3990
3991		return 0;
3992	}
3993	/*
3994	 * per-task mode
3995	 */
3996
3997	if (task == current) {
3998		/* stop monitoring  at kernel level */
3999		pfm_clear_psr_up();
4000
4001		/*
4002	 	 * stop monitoring at the user level
4003	 	 */
4004		ia64_psr(regs)->up = 0;
4005	} else {
4006		tregs = task_pt_regs(task);
4007
4008		/*
4009	 	 * stop monitoring at the user level
4010	 	 */
4011		ia64_psr(tregs)->up = 0;
4012
4013		/*
4014		 * monitoring disabled in kernel at next reschedule
4015		 */
4016		ctx->ctx_saved_psr_up = 0;
4017		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4018	}
4019	return 0;
4020}
4021
4022
4023static int
4024pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4025{
4026	struct pt_regs *tregs;
4027	int state, is_system;
4028
4029	state     = ctx->ctx_state;
4030	is_system = ctx->ctx_fl_system;
4031
4032	if (state != PFM_CTX_LOADED) return -EINVAL;
4033
4034	/*
4035 	 * In system wide and when the context is loaded, access can only happen
4036 	 * when the caller is running on the CPU being monitored by the session.
4037 	 * It does not have to be the owner (ctx_task) of the context per se.
4038 	 */
4039	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4040		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4041		return -EBUSY;
4042	}
4043
4044	/*
4045	 * in system mode, we need to update the PMU directly
4046	 * and the user level state of the caller, which may not
4047	 * necessarily be the creator of the context.
4048	 */
4049	if (is_system) {
4050
4051		/*
4052		 * set user level psr.pp for the caller
4053		 */
4054		ia64_psr(regs)->pp = 1;
4055
4056		/*
4057		 * now update the local PMU and cpuinfo
4058		 */
4059		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4060
4061		/*
4062		 * start monitoring at kernel level
4063		 */
4064		pfm_set_psr_pp();
4065
4066		/* enable dcr pp */
4067		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4068		ia64_srlz_i();
4069
4070		return 0;
4071	}
4072
4073	/*
4074	 * per-process mode
4075	 */
4076
4077	if (ctx->ctx_task == current) {
4078
4079		/* start monitoring at kernel level */
4080		pfm_set_psr_up();
4081
4082		/*
4083		 * activate monitoring at user level
4084		 */
4085		ia64_psr(regs)->up = 1;
4086
4087	} else {
4088		tregs = task_pt_regs(ctx->ctx_task);
4089
4090		/*
4091		 * start monitoring at the kernel level the next
4092		 * time the task is scheduled
4093		 */
4094		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4095
4096		/*
4097		 * activate monitoring at user level
4098		 */
4099		ia64_psr(tregs)->up = 1;
4100	}
4101	return 0;
4102}
4103
4104static int
4105pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4106{
4107	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4108	unsigned int cnum;
4109	int i;
4110	int ret = -EINVAL;
4111
4112	for (i = 0; i < count; i++, req++) {
4113
4114		cnum = req->reg_num;
4115
4116		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4117
4118		req->reg_value = PMC_DFL_VAL(cnum);
4119
4120		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4121
4122		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4123	}
4124	return 0;
4125
4126abort_mission:
4127	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4128	return ret;
4129}
4130
4131static int
4132pfm_check_task_exist(pfm_context_t *ctx)
4133{
4134	struct task_struct *g, *t;
4135	int ret = -ESRCH;
4136
4137	read_lock(&tasklist_lock);
4138
4139	do_each_thread (g, t) {
4140		if (t->thread.pfm_context == ctx) {
4141			ret = 0;
4142			goto out;
4143		}
4144	} while_each_thread (g, t);
4145out:
4146	read_unlock(&tasklist_lock);
4147
4148	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4149
4150	return ret;
4151}
4152
4153static int
4154pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4155{
4156	struct task_struct *task;
4157	struct thread_struct *thread;
4158	struct pfm_context_t *old;
4159	unsigned long flags;
4160#ifndef CONFIG_SMP
4161	struct task_struct *owner_task = NULL;
4162#endif
4163	pfarg_load_t *req = (pfarg_load_t *)arg;
4164	unsigned long *pmcs_source, *pmds_source;
4165	int the_cpu;
4166	int ret = 0;
4167	int state, is_system, set_dbregs = 0;
4168
4169	state     = ctx->ctx_state;
4170	is_system = ctx->ctx_fl_system;
4171	/*
4172	 * can only load from unloaded or terminated state
4173	 */
4174	if (state != PFM_CTX_UNLOADED) {
4175		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4176			req->load_pid,
4177			ctx->ctx_state));
4178		return -EBUSY;
4179	}
4180
4181	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4182
4183	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4184		DPRINT(("cannot use blocking mode on self\n"));
4185		return -EINVAL;
4186	}
4187
4188	ret = pfm_get_task(ctx, req->load_pid, &task);
4189	if (ret) {
4190		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4191		return ret;
4192	}
4193
4194	ret = -EINVAL;
4195
4196	/*
4197	 * system wide is self monitoring only
4198	 */
4199	if (is_system && task != current) {
4200		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4201			req->load_pid));
4202		goto error;
4203	}
4204
4205	thread = &task->thread;
4206
4207	ret = 0;
4208	/*
4209	 * cannot load a context which is using range restrictions,
4210	 * into a task that is being debugged.
4211	 */
4212	if (ctx->ctx_fl_using_dbreg) {
4213		if (thread->flags & IA64_THREAD_DBG_VALID) {
4214			ret = -EBUSY;
4215			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4216			goto error;
4217		}
4218		LOCK_PFS(flags);
4219
4220		if (is_system) {
4221			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4222				DPRINT(("cannot load [%d] dbregs in use\n",
4223							task_pid_nr(task)));
4224				ret = -EBUSY;
4225			} else {
4226				pfm_sessions.pfs_sys_use_dbregs++;
4227				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4228				set_dbregs = 1;
4229			}
4230		}
4231
4232		UNLOCK_PFS(flags);
4233
4234		if (ret) goto error;
4235	}
4236
4237	/*
4238	 * SMP system-wide monitoring implies self-monitoring.
4239	 *
4240	 * The programming model expects the task to
4241	 * be pinned on a CPU throughout the session.
4242	 * Here we take note of the current CPU at the
4243	 * time the context is loaded. No call from
4244	 * another CPU will be allowed.
4245	 *
4246	 * The pinning via shed_setaffinity()
4247	 * must be done by the calling task prior
4248	 * to this call.
4249	 *
4250	 * systemwide: keep track of CPU this session is supposed to run on
4251	 */
4252	the_cpu = ctx->ctx_cpu = smp_processor_id();
4253
4254	ret = -EBUSY;
4255	/*
4256	 * now reserve the session
4257	 */
4258	ret = pfm_reserve_session(current, is_system, the_cpu);
4259	if (ret) goto error;
4260
4261	/*
4262	 * task is necessarily stopped at this point.
4263	 *
4264	 * If the previous context was zombie, then it got removed in
4265	 * pfm_save_regs(). Therefore we should not see it here.
4266	 * If we see a context, then this is an active context
4267	 *
4268	 * XXX: needs to be atomic
4269	 */
4270	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4271		thread->pfm_context, ctx));
4272
4273	ret = -EBUSY;
4274	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4275	if (old != NULL) {
4276		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4277		goto error_unres;
4278	}
4279
4280	pfm_reset_msgq(ctx);
4281
4282	ctx->ctx_state = PFM_CTX_LOADED;
4283
4284	/*
4285	 * link context to task
4286	 */
4287	ctx->ctx_task = task;
4288
4289	if (is_system) {
4290		/*
4291		 * we load as stopped
4292		 */
4293		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4294		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4295
4296		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4297	} else {
4298		thread->flags |= IA64_THREAD_PM_VALID;
4299	}
4300
4301	/*
4302	 * propagate into thread-state
4303	 */
4304	pfm_copy_pmds(task, ctx);
4305	pfm_copy_pmcs(task, ctx);
4306
4307	pmcs_source = ctx->th_pmcs;
4308	pmds_source = ctx->th_pmds;
4309
4310	/*
4311	 * always the case for system-wide
4312	 */
4313	if (task == current) {
4314
4315		if (is_system == 0) {
4316
4317			/* allow user level control */
4318			ia64_psr(regs)->sp = 0;
4319			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4320
4321			SET_LAST_CPU(ctx, smp_processor_id());
4322			INC_ACTIVATION();
4323			SET_ACTIVATION(ctx);
4324#ifndef CONFIG_SMP
4325			/*
4326			 * push the other task out, if any
4327			 */
4328			owner_task = GET_PMU_OWNER();
4329			if (owner_task) pfm_lazy_save_regs(owner_task);
4330#endif
4331		}
4332		/*
4333		 * load all PMD from ctx to PMU (as opposed to thread state)
4334		 * restore all PMC from ctx to PMU
4335		 */
4336		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4337		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4338
4339		ctx->ctx_reload_pmcs[0] = 0UL;
4340		ctx->ctx_reload_pmds[0] = 0UL;
4341
4342		/*
4343		 * guaranteed safe by earlier check against DBG_VALID
4344		 */
4345		if (ctx->ctx_fl_using_dbreg) {
4346			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4347			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4348		}
4349		/*
4350		 * set new ownership
4351		 */
4352		SET_PMU_OWNER(task, ctx);
4353
4354		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4355	} else {
4356		/*
4357		 * when not current, task MUST be stopped, so this is safe
4358		 */
4359		regs = task_pt_regs(task);
4360
4361		/* force a full reload */
4362		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4363		SET_LAST_CPU(ctx, -1);
4364
4365		/* initial saved psr (stopped) */
4366		ctx->ctx_saved_psr_up = 0UL;
4367		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4368	}
4369
4370	ret = 0;
4371
4372error_unres:
4373	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4374error:
4375	/*
4376	 * we must undo the dbregs setting (for system-wide)
4377	 */
4378	if (ret && set_dbregs) {
4379		LOCK_PFS(flags);
4380		pfm_sessions.pfs_sys_use_dbregs--;
4381		UNLOCK_PFS(flags);
4382	}
4383	/*
4384	 * release task, there is now a link with the context
4385	 */
4386	if (is_system == 0 && task != current) {
4387		pfm_put_task(task);
4388
4389		if (ret == 0) {
4390			ret = pfm_check_task_exist(ctx);
4391			if (ret) {
4392				ctx->ctx_state = PFM_CTX_UNLOADED;
4393				ctx->ctx_task  = NULL;
4394			}
4395		}
4396	}
4397	return ret;
4398}
4399
4400/*
4401 * in this function, we do not need to increase the use count
4402 * for the task via get_task_struct(), because we hold the
4403 * context lock. If the task were to disappear while having
4404 * a context attached, it would go through pfm_exit_thread()
4405 * which also grabs the context lock  and would therefore be blocked
4406 * until we are here.
4407 */
4408static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4409
4410static int
4411pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4412{
4413	struct task_struct *task = PFM_CTX_TASK(ctx);
4414	struct pt_regs *tregs;
4415	int prev_state, is_system;
4416	int ret;
4417
4418	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4419
4420	prev_state = ctx->ctx_state;
4421	is_system  = ctx->ctx_fl_system;
4422
4423	/*
4424	 * unload only when necessary
4425	 */
4426	if (prev_state == PFM_CTX_UNLOADED) {
4427		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4428		return 0;
4429	}
4430
4431	/*
4432	 * clear psr and dcr bits
4433	 */
4434	ret = pfm_stop(ctx, NULL, 0, regs);
4435	if (ret) return ret;
4436
4437	ctx->ctx_state = PFM_CTX_UNLOADED;
4438
4439	/*
4440	 * in system mode, we need to update the PMU directly
4441	 * and the user level state of the caller, which may not
4442	 * necessarily be the creator of the context.
4443	 */
4444	if (is_system) {
4445
4446		/*
4447		 * Update cpuinfo
4448		 *
4449		 * local PMU is taken care of in pfm_stop()
4450		 */
4451		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4452		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4453
4454		/*
4455		 * save PMDs in context
4456		 * release ownership
4457		 */
4458		pfm_flush_pmds(current, ctx);
4459
4460		/*
4461		 * at this point we are done with the PMU
4462		 * so we can unreserve the resource.
4463		 */
4464		if (prev_state != PFM_CTX_ZOMBIE) 
4465			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4466
4467		/*
4468		 * disconnect context from task
4469		 */
4470		task->thread.pfm_context = NULL;
4471		/*
4472		 * disconnect task from context
4473		 */
4474		ctx->ctx_task = NULL;
4475
4476		/*
4477		 * There is nothing more to cleanup here.
4478		 */
4479		return 0;
4480	}
4481
4482	/*
4483	 * per-task mode
4484	 */
4485	tregs = task == current ? regs : task_pt_regs(task);
4486
4487	if (task == current) {
4488		/*
4489		 * cancel user level control
4490		 */
4491		ia64_psr(regs)->sp = 1;
4492
4493		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4494	}
4495	/*
4496	 * save PMDs to context
4497	 * release ownership
4498	 */
4499	pfm_flush_pmds(task, ctx);
4500
4501	/*
4502	 * at this point we are done with the PMU
4503	 * so we can unreserve the resource.
4504	 *
4505	 * when state was ZOMBIE, we have already unreserved.
4506	 */
4507	if (prev_state != PFM_CTX_ZOMBIE) 
4508		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4509
4510	/*
4511	 * reset activation counter and psr
4512	 */
4513	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4514	SET_LAST_CPU(ctx, -1);
4515
4516	/*
4517	 * PMU state will not be restored
4518	 */
4519	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4520
4521	/*
4522	 * break links between context and task
4523	 */
4524	task->thread.pfm_context  = NULL;
4525	ctx->ctx_task             = NULL;
4526
4527	PFM_SET_WORK_PENDING(task, 0);
4528
4529	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4530	ctx->ctx_fl_can_restart  = 0;
4531	ctx->ctx_fl_going_zombie = 0;
4532
4533	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4534
4535	return 0;
4536}
4537
4538
4539/*
4540 * called only from exit_thread()
4541 * we come here only if the task has a context attached (loaded or masked)
4542 */
4543void
4544pfm_exit_thread(struct task_struct *task)
4545{
4546	pfm_context_t *ctx;
4547	unsigned long flags;
4548	struct pt_regs *regs = task_pt_regs(task);
4549	int ret, state;
4550	int free_ok = 0;
4551
4552	ctx = PFM_GET_CTX(task);
4553
4554	PROTECT_CTX(ctx, flags);
4555
4556	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4557
4558	state = ctx->ctx_state;
4559	switch(state) {
4560		case PFM_CTX_UNLOADED:
4561			/*
4562	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4563			 * be in unloaded state
4564	 		 */
4565			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4566			break;
4567		case PFM_CTX_LOADED:
4568		case PFM_CTX_MASKED:
4569			ret = pfm_context_unload(ctx, NULL, 0, regs);
4570			if (ret) {
4571				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4572			}
4573			DPRINT(("ctx unloaded for current state was %d\n", state));
4574
4575			pfm_end_notify_user(ctx);
4576			break;
4577		case PFM_CTX_ZOMBIE:
4578			ret = pfm_context_unload(ctx, NULL, 0, regs);
4579			if (ret) {
4580				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4581			}
4582			free_ok = 1;
4583			break;
4584		default:
4585			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4586			break;
4587	}
4588	UNPROTECT_CTX(ctx, flags);
4589
4590	{ u64 psr = pfm_get_psr();
4591	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4592	  BUG_ON(GET_PMU_OWNER());
4593	  BUG_ON(ia64_psr(regs)->up);
4594	  BUG_ON(ia64_psr(regs)->pp);
4595	}
4596
4597	/*
4598	 * All memory free operations (especially for vmalloc'ed memory)
4599	 * MUST be done with interrupts ENABLED.
4600	 */
4601	if (free_ok) pfm_context_free(ctx);
4602}
4603
4604/*
4605 * functions MUST be listed in the increasing order of their index (see permfon.h)
4606 */
4607#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4608#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4609#define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4610#define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4611#define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4612
4613static pfm_cmd_desc_t pfm_cmd_tab[]={
4614/* 0  */PFM_CMD_NONE,
4615/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4616/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4617/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4618/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4619/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4620/* 6  */PFM_CMD_NONE,
4621/* 7  */PFM_CMD_NONE,
4622/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4623/* 9  */PFM_CMD_NONE,
4624/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4625/* 11 */PFM_CMD_NONE,
4626/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4627/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4628/* 14 */PFM_CMD_NONE,
4629/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4630/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4631/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4632/* 18 */PFM_CMD_NONE,
4633/* 19 */PFM_CMD_NONE,
4634/* 20 */PFM_CMD_NONE,
4635/* 21 */PFM_CMD_NONE,
4636/* 22 */PFM_CMD_NONE,
4637/* 23 */PFM_CMD_NONE,
4638/* 24 */PFM_CMD_NONE,
4639/* 25 */PFM_CMD_NONE,
4640/* 26 */PFM_CMD_NONE,
4641/* 27 */PFM_CMD_NONE,
4642/* 28 */PFM_CMD_NONE,
4643/* 29 */PFM_CMD_NONE,
4644/* 30 */PFM_CMD_NONE,
4645/* 31 */PFM_CMD_NONE,
4646/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4647/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4648};
4649#define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4650
4651static int
4652pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4653{
4654	struct task_struct *task;
4655	int state, old_state;
4656
4657recheck:
4658	state = ctx->ctx_state;
4659	task  = ctx->ctx_task;
4660
4661	if (task == NULL) {
4662		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4663		return 0;
4664	}
4665
4666	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4667		ctx->ctx_fd,
4668		state,
4669		task_pid_nr(task),
4670		task->state, PFM_CMD_STOPPED(cmd)));
4671
4672	/*
4673	 * self-monitoring always ok.
4674	 *
4675	 * for system-wide the caller can either be the creator of the
4676	 * context (to one to which the context is attached to) OR
4677	 * a task running on the same CPU as the session.
4678	 */
4679	if (task == current || ctx->ctx_fl_system) return 0;
4680
4681	/*
4682	 * we are monitoring another thread
4683	 */
4684	switch(state) {
4685		case PFM_CTX_UNLOADED:
4686			/*
4687			 * if context is UNLOADED we are safe to go
4688			 */
4689			return 0;
4690		case PFM_CTX_ZOMBIE:
4691			/*
4692			 * no command can operate on a zombie context
4693			 */
4694			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4695			return -EINVAL;
4696		case PFM_CTX_MASKED:
4697			/*
4698			 * PMU state has been saved to software even though
4699			 * the thread may still be running.
4700			 */
4701			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4702	}
4703
4704	/*
4705	 * context is LOADED or MASKED. Some commands may need to have 
4706	 * the task stopped.
4707	 *
4708	 * We could lift this restriction for UP but it would mean that
4709	 * the user has no guarantee the task would not run between
4710	 * two successive calls to perfmonctl(). That's probably OK.
4711	 * If this user wants to ensure the task does not run, then
4712	 * the task must be stopped.
4713	 */
4714	if (PFM_CMD_STOPPED(cmd)) {
4715		if (!task_is_stopped_or_traced(task)) {
4716			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4717			return -EBUSY;
4718		}
4719		/*
4720		 * task is now stopped, wait for ctxsw out
4721		 *
4722		 * This is an interesting point in the code.
4723		 * We need to unprotect the context because
4724		 * the pfm_save_regs() routines needs to grab
4725		 * the same lock. There are danger in doing
4726		 * this because it leaves a window open for
4727		 * another task to get access to the context
4728		 * and possibly change its state. The one thing
4729		 * that is not possible is for the context to disappear
4730		 * because we are protected by the VFS layer, i.e.,
4731		 * get_fd()/put_fd().
4732		 */
4733		old_state = state;
4734
4735		UNPROTECT_CTX(ctx, flags);
4736
4737		wait_task_inactive(task, 0);
4738
4739		PROTECT_CTX(ctx, flags);
4740
4741		/*
4742		 * we must recheck to verify if state has changed
4743		 */
4744		if (ctx->ctx_state != old_state) {
4745			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4746			goto recheck;
4747		}
4748	}
4749	return 0;
4750}
4751
4752/*
4753 * system-call entry point (must return long)
4754 */
4755asmlinkage long
4756sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4757{
4758	struct fd f = {NULL, 0};
4759	pfm_context_t *ctx = NULL;
4760	unsigned long flags = 0UL;
4761	void *args_k = NULL;
4762	long ret; /* will expand int return types */
4763	size_t base_sz, sz, xtra_sz = 0;
4764	int narg, completed_args = 0, call_made = 0, cmd_flags;
4765	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4766	int (*getsize)(void *arg, size_t *sz);
4767#define PFM_MAX_ARGSIZE	4096
4768
4769	/*
4770	 * reject any call if perfmon was disabled at initialization
4771	 */
4772	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4773
4774	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4775		DPRINT(("invalid cmd=%d\n", cmd));
4776		return -EINVAL;
4777	}
4778
4779	func      = pfm_cmd_tab[cmd].cmd_func;
4780	narg      = pfm_cmd_tab[cmd].cmd_narg;
4781	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4782	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4783	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4784
4785	if (unlikely(func == NULL)) {
4786		DPRINT(("invalid cmd=%d\n", cmd));
4787		return -EINVAL;
4788	}
4789
4790	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4791		PFM_CMD_NAME(cmd),
4792		cmd,
4793		narg,
4794		base_sz,
4795		count));
4796
4797	/*
4798	 * check if number of arguments matches what the command expects
4799	 */
4800	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4801		return -EINVAL;
4802
4803restart_args:
4804	sz = xtra_sz + base_sz*count;
4805	/*
4806	 * limit abuse to min page size
4807	 */
4808	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4809		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4810		return -E2BIG;
4811	}
4812
4813	/*
4814	 * allocate default-sized argument buffer
4815	 */
4816	if (likely(count && args_k == NULL)) {
4817		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4818		if (args_k == NULL) return -ENOMEM;
4819	}
4820
4821	ret = -EFAULT;
4822
4823	/*
4824	 * copy arguments
4825	 *
4826	 * assume sz = 0 for command without parameters
4827	 */
4828	if (sz && copy_from_user(args_k, arg, sz)) {
4829		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4830		goto error_args;
4831	}
4832
4833	/*
4834	 * check if command supports extra parameters
4835	 */
4836	if (completed_args == 0 && getsize) {
4837		/*
4838		 * get extra parameters size (based on main argument)
4839		 */
4840		ret = (*getsize)(args_k, &xtra_sz);
4841		if (ret) goto error_args;
4842
4843		completed_args = 1;
4844
4845		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4846
4847		/* retry if necessary */
4848		if (likely(xtra_sz)) goto restart_args;
4849	}
4850
4851	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4852
4853	ret = -EBADF;
4854
4855	f = fdget(fd);
4856	if (unlikely(f.file == NULL)) {
4857		DPRINT(("invalid fd %d\n", fd));
4858		goto error_args;
4859	}
4860	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4861		DPRINT(("fd %d not related to perfmon\n", fd));
4862		goto error_args;
4863	}
4864
4865	ctx = f.file->private_data;
4866	if (unlikely(ctx == NULL)) {
4867		DPRINT(("no context for fd %d\n", fd));
4868		goto error_args;
4869	}
4870	prefetch(&ctx->ctx_state);
4871
4872	PROTECT_CTX(ctx, flags);
4873
4874	/*
4875	 * check task is stopped
4876	 */
4877	ret = pfm_check_task_state(ctx, cmd, flags);
4878	if (unlikely(ret)) goto abort_locked;
4879
4880skip_fd:
4881	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4882
4883	call_made = 1;
4884
4885abort_locked:
4886	if (likely(ctx)) {
4887		DPRINT(("context unlocked\n"));
4888		UNPROTECT_CTX(ctx, flags);
4889	}
4890
4891	/* copy argument back to user, if needed */
4892	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4893
4894error_args:
4895	if (f.file)
4896		fdput(f);
4897
4898	kfree(args_k);
4899
4900	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4901
4902	return ret;
4903}
4904
4905static void
4906pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4907{
4908	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4909	pfm_ovfl_ctrl_t rst_ctrl;
4910	int state;
4911	int ret = 0;
4912
4913	state = ctx->ctx_state;
4914	/*
4915	 * Unlock sampling buffer and reset index atomically
4916	 * XXX: not really needed when blocking
4917	 */
4918	if (CTX_HAS_SMPL(ctx)) {
4919
4920		rst_ctrl.bits.mask_monitoring = 0;
4921		rst_ctrl.bits.reset_ovfl_pmds = 0;
4922
4923		if (state == PFM_CTX_LOADED)
4924			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4925		else
4926			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4927	} else {
4928		rst_ctrl.bits.mask_monitoring = 0;
4929		rst_ctrl.bits.reset_ovfl_pmds = 1;
4930	}
4931
4932	if (ret == 0) {
4933		if (rst_ctrl.bits.reset_ovfl_pmds) {
4934			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4935		}
4936		if (rst_ctrl.bits.mask_monitoring == 0) {
4937			DPRINT(("resuming monitoring\n"));
4938			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4939		} else {
4940			DPRINT(("stopping monitoring\n"));
4941			//pfm_stop_monitoring(current, regs);
4942		}
4943		ctx->ctx_state = PFM_CTX_LOADED;
4944	}
4945}
4946
4947/*
4948 * context MUST BE LOCKED when calling
4949 * can only be called for current
4950 */
4951static void
4952pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4953{
4954	int ret;
4955
4956	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4957
4958	ret = pfm_context_unload(ctx, NULL, 0, regs);
4959	if (ret) {
4960		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4961	}
4962
4963	/*
4964	 * and wakeup controlling task, indicating we are now disconnected
4965	 */
4966	wake_up_interruptible(&ctx->ctx_zombieq);
4967
4968	/*
4969	 * given that context is still locked, the controlling
4970	 * task will only get access when we return from
4971	 * pfm_handle_work().
4972	 */
4973}
4974
4975static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4976
4977 /*
4978  * pfm_handle_work() can be called with interrupts enabled
4979  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4980  * call may sleep, therefore we must re-enable interrupts
4981  * to avoid deadlocks. It is safe to do so because this function
4982  * is called ONLY when returning to user level (pUStk=1), in which case
4983  * there is no risk of kernel stack overflow due to deep
4984  * interrupt nesting.
4985  */
4986void
4987pfm_handle_work(void)
4988{
4989	pfm_context_t *ctx;
4990	struct pt_regs *regs;
4991	unsigned long flags, dummy_flags;
4992	unsigned long ovfl_regs;
4993	unsigned int reason;
4994	int ret;
4995
4996	ctx = PFM_GET_CTX(current);
4997	if (ctx == NULL) {
4998		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4999			task_pid_nr(current));
5000		return;
5001	}
5002
5003	PROTECT_CTX(ctx, flags);
5004
5005	PFM_SET_WORK_PENDING(current, 0);
5006
5007	regs = task_pt_regs(current);
5008
5009	/*
5010	 * extract reason for being here and clear
5011	 */
5012	reason = ctx->ctx_fl_trap_reason;
5013	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5014	ovfl_regs = ctx->ctx_ovfl_regs[0];
5015
5016	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5017
5018	/*
5019	 * must be done before we check for simple-reset mode
5020	 */
5021	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5022		goto do_zombie;
5023
5024	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5025	if (reason == PFM_TRAP_REASON_RESET)
5026		goto skip_blocking;
5027
5028	/*
5029	 * restore interrupt mask to what it was on entry.
5030	 * Could be enabled/diasbled.
5031	 */
5032	UNPROTECT_CTX(ctx, flags);
5033
5034	/*
5035	 * force interrupt enable because of down_interruptible()
5036	 */
5037	local_irq_enable();
5038
5039	DPRINT(("before block sleeping\n"));
5040
5041	/*
5042	 * may go through without blocking on SMP systems
5043	 * if restart has been received already by the time we call down()
5044	 */
5045	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5046
5047	DPRINT(("after block sleeping ret=%d\n", ret));
5048
5049	/*
5050	 * lock context and mask interrupts again
5051	 * We save flags into a dummy because we may have
5052	 * altered interrupts mask compared to entry in this
5053	 * function.
5054	 */
5055	PROTECT_CTX(ctx, dummy_flags);
5056
5057	/*
5058	 * we need to read the ovfl_regs only after wake-up
5059	 * because we may have had pfm_write_pmds() in between
5060	 * and that can changed PMD values and therefore 
5061	 * ovfl_regs is reset for these new PMD values.
5062	 */
5063	ovfl_regs = ctx->ctx_ovfl_regs[0];
5064
5065	if (ctx->ctx_fl_going_zombie) {
5066do_zombie:
5067		DPRINT(("context is zombie, bailing out\n"));
5068		pfm_context_force_terminate(ctx, regs);
5069		goto nothing_to_do;
5070	}
5071	/*
5072	 * in case of interruption of down() we don't restart anything
5073	 */
5074	if (ret < 0)
5075		goto nothing_to_do;
5076
5077skip_blocking:
5078	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5079	ctx->ctx_ovfl_regs[0] = 0UL;
5080
5081nothing_to_do:
5082	/*
5083	 * restore flags as they were upon entry
5084	 */
5085	UNPROTECT_CTX(ctx, flags);
5086}
5087
5088static int
5089pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5090{
5091	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5092		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5093		return 0;
5094	}
5095
5096	DPRINT(("waking up somebody\n"));
5097
5098	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5099
5100	/*
5101	 * safe, we are not in intr handler, nor in ctxsw when
5102	 * we come here
5103	 */
5104	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5105
5106	return 0;
5107}
5108
5109static int
5110pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5111{
5112	pfm_msg_t *msg = NULL;
5113
5114	if (ctx->ctx_fl_no_msg == 0) {
5115		msg = pfm_get_new_msg(ctx);
5116		if (msg == NULL) {
5117			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5118			return -1;
5119		}
5120
5121		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5122		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5123		msg->pfm_ovfl_msg.msg_active_set   = 0;
5124		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5125		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5126		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5127		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5128		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5129	}
5130
5131	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5132		msg,
5133		ctx->ctx_fl_no_msg,
5134		ctx->ctx_fd,
5135		ovfl_pmds));
5136
5137	return pfm_notify_user(ctx, msg);
5138}
5139
5140static int
5141pfm_end_notify_user(pfm_context_t *ctx)
5142{
5143	pfm_msg_t *msg;
5144
5145	msg = pfm_get_new_msg(ctx);
5146	if (msg == NULL) {
5147		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5148		return -1;
5149	}
5150	/* no leak */
5151	memset(msg, 0, sizeof(*msg));
5152
5153	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5154	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5155	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5156
5157	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5158		msg,
5159		ctx->ctx_fl_no_msg,
5160		ctx->ctx_fd));
5161
5162	return pfm_notify_user(ctx, msg);
5163}
5164
5165/*
5166 * main overflow processing routine.
5167 * it can be called from the interrupt path or explicitly during the context switch code
5168 */
5169static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5170				unsigned long pmc0, struct pt_regs *regs)
5171{
5172	pfm_ovfl_arg_t *ovfl_arg;
5173	unsigned long mask;
5174	unsigned long old_val, ovfl_val, new_val;
5175	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5176	unsigned long tstamp;
5177	pfm_ovfl_ctrl_t	ovfl_ctrl;
5178	unsigned int i, has_smpl;
5179	int must_notify = 0;
5180
5181	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5182
5183	/*
5184	 * sanity test. Should never happen
5185	 */
5186	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5187
5188	tstamp   = ia64_get_itc();
5189	mask     = pmc0 >> PMU_FIRST_COUNTER;
5190	ovfl_val = pmu_conf->ovfl_val;
5191	has_smpl = CTX_HAS_SMPL(ctx);
5192
5193	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5194		     "used_pmds=0x%lx\n",
5195			pmc0,
5196			task ? task_pid_nr(task): -1,
5197			(regs ? regs->cr_iip : 0),
5198			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5199			ctx->ctx_used_pmds[0]));
5200
5201
5202	/*
5203	 * first we update the virtual counters
5204	 * assume there was a prior ia64_srlz_d() issued
5205	 */
5206	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5207
5208		/* skip pmd which did not overflow */
5209		if ((mask & 0x1) == 0) continue;
5210
5211		/*
5212		 * Note that the pmd is not necessarily 0 at this point as qualified events
5213		 * may have happened before the PMU was frozen. The residual count is not
5214		 * taken into consideration here but will be with any read of the pmd via
5215		 * pfm_read_pmds().
5216		 */
5217		old_val              = new_val = ctx->ctx_pmds[i].val;
5218		new_val             += 1 + ovfl_val;
5219		ctx->ctx_pmds[i].val = new_val;
5220
5221		/*
5222		 * check for overflow condition
5223		 */
5224		if (likely(old_val > new_val)) {
5225			ovfl_pmds |= 1UL << i;
5226			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5227		}
5228
5229		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5230			i,
5231			new_val,
5232			old_val,
5233			ia64_get_pmd(i) & ovfl_val,
5234			ovfl_pmds,
5235			ovfl_notify));
5236	}
5237
5238	/*
5239	 * there was no 64-bit overflow, nothing else to do
5240	 */
5241	if (ovfl_pmds == 0UL) return;
5242
5243	/* 
5244	 * reset all control bits
5245	 */
5246	ovfl_ctrl.val = 0;
5247	reset_pmds    = 0UL;
5248
5249	/*
5250	 * if a sampling format module exists, then we "cache" the overflow by 
5251	 * calling the module's handler() routine.
5252	 */
5253	if (has_smpl) {
5254		unsigned long start_cycles, end_cycles;
5255		unsigned long pmd_mask;
5256		int j, k, ret = 0;
5257		int this_cpu = smp_processor_id();
5258
5259		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5260		ovfl_arg = &ctx->ctx_ovfl_arg;
5261
5262		prefetch(ctx->ctx_smpl_hdr);
5263
5264		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5265
5266			mask = 1UL << i;
5267
5268			if ((pmd_mask & 0x1) == 0) continue;
5269
5270			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5271			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5272			ovfl_arg->active_set    = 0;
5273			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5274			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5275
5276			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5277			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5278			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5279
5280			/*
5281		 	 * copy values of pmds of interest. Sampling format may copy them
5282		 	 * into sampling buffer.
5283		 	 */
5284			if (smpl_pmds) {
5285				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5286					if ((smpl_pmds & 0x1) == 0) continue;
5287					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5288					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5289				}
5290			}
5291
5292			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5293
5294			start_cycles = ia64_get_itc();
5295
5296			/*
5297		 	 * call custom buffer format record (handler) routine
5298		 	 */
5299			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5300
5301			end_cycles = ia64_get_itc();
5302
5303			/*
5304			 * For those controls, we take the union because they have
5305			 * an all or nothing behavior.
5306			 */
5307			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5308			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5309			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5310			/*
5311			 * build the bitmask of pmds to reset now
5312			 */
5313			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5314
5315			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5316		}
5317		/*
5318		 * when the module cannot handle the rest of the overflows, we abort right here
5319		 */
5320		if (ret && pmd_mask) {
5321			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5322				pmd_mask<<PMU_FIRST_COUNTER));
5323		}
5324		/*
5325		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5326		 */
5327		ovfl_pmds &= ~reset_pmds;
5328	} else {
5329		/*
5330		 * when no sampling module is used, then the default
5331		 * is to notify on overflow if requested by user
5332		 */
5333		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5334		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5335		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5336		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5337		/*
5338		 * if needed, we reset all overflowed pmds
5339		 */
5340		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5341	}
5342
5343	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5344
5345	/*
5346	 * reset the requested PMD registers using the short reset values
5347	 */
5348	if (reset_pmds) {
5349		unsigned long bm = reset_pmds;
5350		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5351	}
5352
5353	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5354		/*
5355		 * keep track of what to reset when unblocking
5356		 */
5357		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5358
5359		/*
5360		 * check for blocking context 
5361		 */
5362		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5363
5364			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5365
5366			/*
5367			 * set the perfmon specific checking pending work for the task
5368			 */
5369			PFM_SET_WORK_PENDING(task, 1);
5370
5371			/*
5372			 * when coming from ctxsw, current still points to the
5373			 * previous task, therefore we must work with task and not current.
5374			 */
5375			set_notify_resume(task);
5376		}
5377		/*
5378		 * defer until state is changed (shorten spin window). the context is locked
5379		 * anyway, so the signal receiver would come spin for nothing.
5380		 */
5381		must_notify = 1;
5382	}
5383
5384	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5385			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5386			PFM_GET_WORK_PENDING(task),
5387			ctx->ctx_fl_trap_reason,
5388			ovfl_pmds,
5389			ovfl_notify,
5390			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5391	/*
5392	 * in case monitoring must be stopped, we toggle the psr bits
5393	 */
5394	if (ovfl_ctrl.bits.mask_monitoring) {
5395		pfm_mask_monitoring(task);
5396		ctx->ctx_state = PFM_CTX_MASKED;
5397		ctx->ctx_fl_can_restart = 1;
5398	}
5399
5400	/*
5401	 * send notification now
5402	 */
5403	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5404
5405	return;
5406
5407sanity_check:
5408	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5409			smp_processor_id(),
5410			task ? task_pid_nr(task) : -1,
5411			pmc0);
5412	return;
5413
5414stop_monitoring:
5415	/*
5416	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5417	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5418	 * come here as zombie only if the task is the current task. In which case, we
5419	 * can access the PMU  hardware directly.
5420	 *
5421	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5422	 *
5423	 * In case the context was zombified it could not be reclaimed at the time
5424	 * the monitoring program exited. At this point, the PMU reservation has been
5425	 * returned, the sampiing buffer has been freed. We must convert this call
5426	 * into a spurious interrupt. However, we must also avoid infinite overflows
5427	 * by stopping monitoring for this task. We can only come here for a per-task
5428	 * context. All we need to do is to stop monitoring using the psr bits which
5429	 * are always task private. By re-enabling secure montioring, we ensure that
5430	 * the monitored task will not be able to re-activate monitoring.
5431	 * The task will eventually be context switched out, at which point the context
5432	 * will be reclaimed (that includes releasing ownership of the PMU).
5433	 *
5434	 * So there might be a window of time where the number of per-task session is zero
5435	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5436	 * context. This is safe because if a per-task session comes in, it will push this one
5437	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5438	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5439	 * also push our zombie context out.
5440	 *
5441	 * Overall pretty hairy stuff....
5442	 */
5443	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5444	pfm_clear_psr_up();
5445	ia64_psr(regs)->up = 0;
5446	ia64_psr(regs)->sp = 1;
5447	return;
5448}
5449
5450static int
5451pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5452{
5453	struct task_struct *task;
5454	pfm_context_t *ctx;
5455	unsigned long flags;
5456	u64 pmc0;
5457	int this_cpu = smp_processor_id();
5458	int retval = 0;
5459
5460	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5461
5462	/*
5463	 * srlz.d done before arriving here
5464	 */
5465	pmc0 = ia64_get_pmc(0);
5466
5467	task = GET_PMU_OWNER();
5468	ctx  = GET_PMU_CTX();
5469
5470	/*
5471	 * if we have some pending bits set
5472	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5473	 */
5474	if (PMC0_HAS_OVFL(pmc0) && task) {
5475		/*
5476		 * we assume that pmc0.fr is always set here
5477		 */
5478
5479		/* sanity check */
5480		if (!ctx) goto report_spurious1;
5481
5482		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5483			goto report_spurious2;
5484
5485		PROTECT_CTX_NOPRINT(ctx, flags);
5486
5487		pfm_overflow_handler(task, ctx, pmc0, regs);
5488
5489		UNPROTECT_CTX_NOPRINT(ctx, flags);
5490
5491	} else {
5492		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5493		retval = -1;
5494	}
5495	/*
5496	 * keep it unfrozen at all times
5497	 */
5498	pfm_unfreeze_pmu();
5499
5500	return retval;
5501
5502report_spurious1:
5503	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5504		this_cpu, task_pid_nr(task));
5505	pfm_unfreeze_pmu();
5506	return -1;
5507report_spurious2:
5508	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5509		this_cpu, 
5510		task_pid_nr(task));
5511	pfm_unfreeze_pmu();
5512	return -1;
5513}
5514
5515static irqreturn_t
5516pfm_interrupt_handler(int irq, void *arg)
5517{
5518	unsigned long start_cycles, total_cycles;
5519	unsigned long min, max;
5520	int this_cpu;
5521	int ret;
5522	struct pt_regs *regs = get_irq_regs();
5523
5524	this_cpu = get_cpu();
5525	if (likely(!pfm_alt_intr_handler)) {
5526		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5527		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5528
5529		start_cycles = ia64_get_itc();
5530
5531		ret = pfm_do_interrupt_handler(arg, regs);
5532
5533		total_cycles = ia64_get_itc();
5534
5535		/*
5536		 * don't measure spurious interrupts
5537		 */
5538		if (likely(ret == 0)) {
5539			total_cycles -= start_cycles;
5540
5541			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5542			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5543
5544			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5545		}
5546	}
5547	else {
5548		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5549	}
5550
5551	put_cpu();
5552	return IRQ_HANDLED;
5553}
5554
5555/*
5556 * /proc/perfmon interface, for debug only
5557 */
5558
5559#define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5560
5561static void *
5562pfm_proc_start(struct seq_file *m, loff_t *pos)
5563{
5564	if (*pos == 0) {
5565		return PFM_PROC_SHOW_HEADER;
5566	}
5567
5568	while (*pos <= nr_cpu_ids) {
5569		if (cpu_online(*pos - 1)) {
5570			return (void *)*pos;
5571		}
5572		++*pos;
5573	}
5574	return NULL;
5575}
5576
5577static void *
5578pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5579{
5580	++*pos;
5581	return pfm_proc_start(m, pos);
5582}
5583
5584static void
5585pfm_proc_stop(struct seq_file *m, void *v)
5586{
5587}
5588
5589static void
5590pfm_proc_show_header(struct seq_file *m)
5591{
5592	struct list_head * pos;
5593	pfm_buffer_fmt_t * entry;
5594	unsigned long flags;
5595
5596 	seq_printf(m,
5597		"perfmon version           : %u.%u\n"
5598		"model                     : %s\n"
5599		"fastctxsw                 : %s\n"
5600		"expert mode               : %s\n"
5601		"ovfl_mask                 : 0x%lx\n"
5602		"PMU flags                 : 0x%x\n",
5603		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5604		pmu_conf->pmu_name,
5605		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5606		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5607		pmu_conf->ovfl_val,
5608		pmu_conf->flags);
5609
5610  	LOCK_PFS(flags);
5611
5612 	seq_printf(m,
5613 		"proc_sessions             : %u\n"
5614 		"sys_sessions              : %u\n"
5615 		"sys_use_dbregs            : %u\n"
5616 		"ptrace_use_dbregs         : %u\n",
5617 		pfm_sessions.pfs_task_sessions,
5618 		pfm_sessions.pfs_sys_sessions,
5619 		pfm_sessions.pfs_sys_use_dbregs,
5620 		pfm_sessions.pfs_ptrace_use_dbregs);
5621
5622  	UNLOCK_PFS(flags);
5623
5624	spin_lock(&pfm_buffer_fmt_lock);
5625
5626	list_for_each(pos, &pfm_buffer_fmt_list) {
5627		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5628		seq_printf(m, "format                    : %16phD %s\n",
5629			   entry->fmt_uuid, entry->fmt_name);
5630	}
5631	spin_unlock(&pfm_buffer_fmt_lock);
5632
5633}
5634
5635static int
5636pfm_proc_show(struct seq_file *m, void *v)
5637{
5638	unsigned long psr;
5639	unsigned int i;
5640	int cpu;
5641
5642	if (v == PFM_PROC_SHOW_HEADER) {
5643		pfm_proc_show_header(m);
5644		return 0;
5645	}
5646
5647	/* show info for CPU (v - 1) */
5648
5649	cpu = (long)v - 1;
5650	seq_printf(m,
5651		"CPU%-2d overflow intrs      : %lu\n"
5652		"CPU%-2d overflow cycles     : %lu\n"
5653		"CPU%-2d overflow min        : %lu\n"
5654		"CPU%-2d overflow max        : %lu\n"
5655		"CPU%-2d smpl handler calls  : %lu\n"
5656		"CPU%-2d smpl handler cycles : %lu\n"
5657		"CPU%-2d spurious intrs      : %lu\n"
5658		"CPU%-2d replay   intrs      : %lu\n"
5659		"CPU%-2d syst_wide           : %d\n"
5660		"CPU%-2d dcr_pp              : %d\n"
5661		"CPU%-2d exclude idle        : %d\n"
5662		"CPU%-2d owner               : %d\n"
5663		"CPU%-2d context             : %p\n"
5664		"CPU%-2d activations         : %lu\n",
5665		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5666		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5667		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5668		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5669		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5670		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5671		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5672		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5673		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5674		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5675		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5676		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5677		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5678		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5679
5680	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5681
5682		psr = pfm_get_psr();
5683
5684		ia64_srlz_d();
5685
5686		seq_printf(m, 
5687			"CPU%-2d psr                 : 0x%lx\n"
5688			"CPU%-2d pmc0                : 0x%lx\n", 
5689			cpu, psr,
5690			cpu, ia64_get_pmc(0));
5691
5692		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5693			if (PMC_IS_COUNTING(i) == 0) continue;
5694   			seq_printf(m, 
5695				"CPU%-2d pmc%u                : 0x%lx\n"
5696   				"CPU%-2d pmd%u                : 0x%lx\n", 
5697				cpu, i, ia64_get_pmc(i),
5698				cpu, i, ia64_get_pmd(i));
5699  		}
5700	}
5701	return 0;
5702}
5703
5704const struct seq_operations pfm_seq_ops = {
5705	.start =	pfm_proc_start,
5706 	.next =		pfm_proc_next,
5707 	.stop =		pfm_proc_stop,
5708 	.show =		pfm_proc_show
5709};
5710
5711static int
5712pfm_proc_open(struct inode *inode, struct file *file)
5713{
5714	return seq_open(file, &pfm_seq_ops);
5715}
5716
5717
5718/*
5719 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5720 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5721 * is active or inactive based on mode. We must rely on the value in
5722 * local_cpu_data->pfm_syst_info
5723 */
5724void
5725pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5726{
5727	struct pt_regs *regs;
5728	unsigned long dcr;
5729	unsigned long dcr_pp;
5730
5731	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5732
5733	/*
5734	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5735	 * on every CPU, so we can rely on the pid to identify the idle task.
5736	 */
5737	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5738		regs = task_pt_regs(task);
5739		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5740		return;
5741	}
5742	/*
5743	 * if monitoring has started
5744	 */
5745	if (dcr_pp) {
5746		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5747		/*
5748		 * context switching in?
5749		 */
5750		if (is_ctxswin) {
5751			/* mask monitoring for the idle task */
5752			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5753			pfm_clear_psr_pp();
5754			ia64_srlz_i();
5755			return;
5756		}
5757		/*
5758		 * context switching out
5759		 * restore monitoring for next task
5760		 *
5761		 * Due to inlining this odd if-then-else construction generates
5762		 * better code.
5763		 */
5764		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5765		pfm_set_psr_pp();
5766		ia64_srlz_i();
5767	}
5768}
5769
5770#ifdef CONFIG_SMP
5771
5772static void
5773pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5774{
5775	struct task_struct *task = ctx->ctx_task;
5776
5777	ia64_psr(regs)->up = 0;
5778	ia64_psr(regs)->sp = 1;
5779
5780	if (GET_PMU_OWNER() == task) {
5781		DPRINT(("cleared ownership for [%d]\n",
5782					task_pid_nr(ctx->ctx_task)));
5783		SET_PMU_OWNER(NULL, NULL);
5784	}
5785
5786	/*
5787	 * disconnect the task from the context and vice-versa
5788	 */
5789	PFM_SET_WORK_PENDING(task, 0);
5790
5791	task->thread.pfm_context  = NULL;
5792	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5793
5794	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5795}
5796
5797
5798/*
5799 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5800 */
5801void
5802pfm_save_regs(struct task_struct *task)
5803{
5804	pfm_context_t *ctx;
5805	unsigned long flags;
5806	u64 psr;
5807
5808
5809	ctx = PFM_GET_CTX(task);
5810	if (ctx == NULL) return;
5811
5812	/*
5813 	 * we always come here with interrupts ALREADY disabled by
5814 	 * the scheduler. So we simply need to protect against concurrent
5815	 * access, not CPU concurrency.
5816	 */
5817	flags = pfm_protect_ctx_ctxsw(ctx);
5818
5819	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5820		struct pt_regs *regs = task_pt_regs(task);
5821
5822		pfm_clear_psr_up();
5823
5824		pfm_force_cleanup(ctx, regs);
5825
5826		BUG_ON(ctx->ctx_smpl_hdr);
5827
5828		pfm_unprotect_ctx_ctxsw(ctx, flags);
5829
5830		pfm_context_free(ctx);
5831		return;
5832	}
5833
5834	/*
5835	 * save current PSR: needed because we modify it
5836	 */
5837	ia64_srlz_d();
5838	psr = pfm_get_psr();
5839
5840	BUG_ON(psr & (IA64_PSR_I));
5841
5842	/*
5843	 * stop monitoring:
5844	 * This is the last instruction which may generate an overflow
5845	 *
5846	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5847	 * It will be restored from ipsr when going back to user level
5848	 */
5849	pfm_clear_psr_up();
5850
5851	/*
5852	 * keep a copy of psr.up (for reload)
5853	 */
5854	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5855
5856	/*
5857	 * release ownership of this PMU.
5858	 * PM interrupts are masked, so nothing
5859	 * can happen.
5860	 */
5861	SET_PMU_OWNER(NULL, NULL);
5862
5863	/*
5864	 * we systematically save the PMD as we have no
5865	 * guarantee we will be schedule at that same
5866	 * CPU again.
5867	 */
5868	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5869
5870	/*
5871	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5872	 * we will need it on the restore path to check
5873	 * for pending overflow.
5874	 */
5875	ctx->th_pmcs[0] = ia64_get_pmc(0);
5876
5877	/*
5878	 * unfreeze PMU if had pending overflows
5879	 */
5880	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5881
5882	/*
5883	 * finally, allow context access.
5884	 * interrupts will still be masked after this call.
5885	 */
5886	pfm_unprotect_ctx_ctxsw(ctx, flags);
5887}
5888
5889#else /* !CONFIG_SMP */
5890void
5891pfm_save_regs(struct task_struct *task)
5892{
5893	pfm_context_t *ctx;
5894	u64 psr;
5895
5896	ctx = PFM_GET_CTX(task);
5897	if (ctx == NULL) return;
5898
5899	/*
5900	 * save current PSR: needed because we modify it
5901	 */
5902	psr = pfm_get_psr();
5903
5904	BUG_ON(psr & (IA64_PSR_I));
5905
5906	/*
5907	 * stop monitoring:
5908	 * This is the last instruction which may generate an overflow
5909	 *
5910	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5911	 * It will be restored from ipsr when going back to user level
5912	 */
5913	pfm_clear_psr_up();
5914
5915	/*
5916	 * keep a copy of psr.up (for reload)
5917	 */
5918	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5919}
5920
5921static void
5922pfm_lazy_save_regs (struct task_struct *task)
5923{
5924	pfm_context_t *ctx;
5925	unsigned long flags;
5926
5927	{ u64 psr  = pfm_get_psr();
5928	  BUG_ON(psr & IA64_PSR_UP);
5929	}
5930
5931	ctx = PFM_GET_CTX(task);
5932
5933	/*
5934	 * we need to mask PMU overflow here to
5935	 * make sure that we maintain pmc0 until
5936	 * we save it. overflow interrupts are
5937	 * treated as spurious if there is no
5938	 * owner.
5939	 *
5940	 * XXX: I don't think this is necessary
5941	 */
5942	PROTECT_CTX(ctx,flags);
5943
5944	/*
5945	 * release ownership of this PMU.
5946	 * must be done before we save the registers.
5947	 *
5948	 * after this call any PMU interrupt is treated
5949	 * as spurious.
5950	 */
5951	SET_PMU_OWNER(NULL, NULL);
5952
5953	/*
5954	 * save all the pmds we use
5955	 */
5956	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5957
5958	/*
5959	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5960	 * it is needed to check for pended overflow
5961	 * on the restore path
5962	 */
5963	ctx->th_pmcs[0] = ia64_get_pmc(0);
5964
5965	/*
5966	 * unfreeze PMU if had pending overflows
5967	 */
5968	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5969
5970	/*
5971	 * now get can unmask PMU interrupts, they will
5972	 * be treated as purely spurious and we will not
5973	 * lose any information
5974	 */
5975	UNPROTECT_CTX(ctx,flags);
5976}
5977#endif /* CONFIG_SMP */
5978
5979#ifdef CONFIG_SMP
5980/*
5981 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5982 */
5983void
5984pfm_load_regs (struct task_struct *task)
5985{
5986	pfm_context_t *ctx;
5987	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5988	unsigned long flags;
5989	u64 psr, psr_up;
5990	int need_irq_resend;
5991
5992	ctx = PFM_GET_CTX(task);
5993	if (unlikely(ctx == NULL)) return;
5994
5995	BUG_ON(GET_PMU_OWNER());
5996
5997	/*
5998	 * possible on unload
5999	 */
6000	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6001
6002	/*
6003 	 * we always come here with interrupts ALREADY disabled by
6004 	 * the scheduler. So we simply need to protect against concurrent
6005	 * access, not CPU concurrency.
6006	 */
6007	flags = pfm_protect_ctx_ctxsw(ctx);
6008	psr   = pfm_get_psr();
6009
6010	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6011
6012	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6013	BUG_ON(psr & IA64_PSR_I);
6014
6015	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6016		struct pt_regs *regs = task_pt_regs(task);
6017
6018		BUG_ON(ctx->ctx_smpl_hdr);
6019
6020		pfm_force_cleanup(ctx, regs);
6021
6022		pfm_unprotect_ctx_ctxsw(ctx, flags);
6023
6024		/*
6025		 * this one (kmalloc'ed) is fine with interrupts disabled
6026		 */
6027		pfm_context_free(ctx);
6028
6029		return;
6030	}
6031
6032	/*
6033	 * we restore ALL the debug registers to avoid picking up
6034	 * stale state.
6035	 */
6036	if (ctx->ctx_fl_using_dbreg) {
6037		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6038		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6039	}
6040	/*
6041	 * retrieve saved psr.up
6042	 */
6043	psr_up = ctx->ctx_saved_psr_up;
6044
6045	/*
6046	 * if we were the last user of the PMU on that CPU,
6047	 * then nothing to do except restore psr
6048	 */
6049	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6050
6051		/*
6052		 * retrieve partial reload masks (due to user modifications)
6053		 */
6054		pmc_mask = ctx->ctx_reload_pmcs[0];
6055		pmd_mask = ctx->ctx_reload_pmds[0];
6056
6057	} else {
6058		/*
6059	 	 * To avoid leaking information to the user level when psr.sp=0,
6060	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6061	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6062	 	 * we initialized or requested (sampling) so there is no risk there.
6063	 	 */
6064		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6065
6066		/*
6067	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6068	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6069	 	 * up stale configuration.
6070	 	 *
6071	 	 * PMC0 is never in the mask. It is always restored separately.
6072	 	 */
6073		pmc_mask = ctx->ctx_all_pmcs[0];
6074	}
6075	/*
6076	 * when context is MASKED, we will restore PMC with plm=0
6077	 * and PMD with stale information, but that's ok, nothing
6078	 * will be captured.
6079	 *
6080	 * XXX: optimize here
6081	 */
6082	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6083	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6084
6085	/*
6086	 * check for pending overflow at the time the state
6087	 * was saved.
6088	 */
6089	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6090		/*
6091		 * reload pmc0 with the overflow information
6092		 * On McKinley PMU, this will trigger a PMU interrupt
6093		 */
6094		ia64_set_pmc(0, ctx->th_pmcs[0]);
6095		ia64_srlz_d();
6096		ctx->th_pmcs[0] = 0UL;
6097
6098		/*
6099		 * will replay the PMU interrupt
6100		 */
6101		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6102
6103		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6104	}
6105
6106	/*
6107	 * we just did a reload, so we reset the partial reload fields
6108	 */
6109	ctx->ctx_reload_pmcs[0] = 0UL;
6110	ctx->ctx_reload_pmds[0] = 0UL;
6111
6112	SET_LAST_CPU(ctx, smp_processor_id());
6113
6114	/*
6115	 * dump activation value for this PMU
6116	 */
6117	INC_ACTIVATION();
6118	/*
6119	 * record current activation for this context
6120	 */
6121	SET_ACTIVATION(ctx);
6122
6123	/*
6124	 * establish new ownership. 
6125	 */
6126	SET_PMU_OWNER(task, ctx);
6127
6128	/*
6129	 * restore the psr.up bit. measurement
6130	 * is active again.
6131	 * no PMU interrupt can happen at this point
6132	 * because we still have interrupts disabled.
6133	 */
6134	if (likely(psr_up)) pfm_set_psr_up();
6135
6136	/*
6137	 * allow concurrent access to context
6138	 */
6139	pfm_unprotect_ctx_ctxsw(ctx, flags);
6140}
6141#else /*  !CONFIG_SMP */
6142/*
6143 * reload PMU state for UP kernels
6144 * in 2.5 we come here with interrupts disabled
6145 */
6146void
6147pfm_load_regs (struct task_struct *task)
6148{
6149	pfm_context_t *ctx;
6150	struct task_struct *owner;
6151	unsigned long pmd_mask, pmc_mask;
6152	u64 psr, psr_up;
6153	int need_irq_resend;
6154
6155	owner = GET_PMU_OWNER();
6156	ctx   = PFM_GET_CTX(task);
6157	psr   = pfm_get_psr();
6158
6159	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6160	BUG_ON(psr & IA64_PSR_I);
6161
6162	/*
6163	 * we restore ALL the debug registers to avoid picking up
6164	 * stale state.
6165	 *
6166	 * This must be done even when the task is still the owner
6167	 * as the registers may have been modified via ptrace()
6168	 * (not perfmon) by the previous task.
6169	 */
6170	if (ctx->ctx_fl_using_dbreg) {
6171		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6172		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6173	}
6174
6175	/*
6176	 * retrieved saved psr.up
6177	 */
6178	psr_up = ctx->ctx_saved_psr_up;
6179	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6180
6181	/*
6182	 * short path, our state is still there, just
6183	 * need to restore psr and we go
6184	 *
6185	 * we do not touch either PMC nor PMD. the psr is not touched
6186	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6187	 * concurrency even without interrupt masking.
6188	 */
6189	if (likely(owner == task)) {
6190		if (likely(psr_up)) pfm_set_psr_up();
6191		return;
6192	}
6193
6194	/*
6195	 * someone else is still using the PMU, first push it out and
6196	 * then we'll be able to install our stuff !
6197	 *
6198	 * Upon return, there will be no owner for the current PMU
6199	 */
6200	if (owner) pfm_lazy_save_regs(owner);
6201
6202	/*
6203	 * To avoid leaking information to the user level when psr.sp=0,
6204	 * we must reload ALL implemented pmds (even the ones we don't use).
6205	 * In the kernel we only allow PFM_READ_PMDS on registers which
6206	 * we initialized or requested (sampling) so there is no risk there.
6207	 */
6208	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6209
6210	/*
6211	 * ALL accessible PMCs are systematically reloaded, unused registers
6212	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6213	 * up stale configuration.
6214	 *
6215	 * PMC0 is never in the mask. It is always restored separately
6216	 */
6217	pmc_mask = ctx->ctx_all_pmcs[0];
6218
6219	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6220	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6221
6222	/*
6223	 * check for pending overflow at the time the state
6224	 * was saved.
6225	 */
6226	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6227		/*
6228		 * reload pmc0 with the overflow information
6229		 * On McKinley PMU, this will trigger a PMU interrupt
6230		 */
6231		ia64_set_pmc(0, ctx->th_pmcs[0]);
6232		ia64_srlz_d();
6233
6234		ctx->th_pmcs[0] = 0UL;
6235
6236		/*
6237		 * will replay the PMU interrupt
6238		 */
6239		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6240
6241		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6242	}
6243
6244	/*
6245	 * establish new ownership. 
6246	 */
6247	SET_PMU_OWNER(task, ctx);
6248
6249	/*
6250	 * restore the psr.up bit. measurement
6251	 * is active again.
6252	 * no PMU interrupt can happen at this point
6253	 * because we still have interrupts disabled.
6254	 */
6255	if (likely(psr_up)) pfm_set_psr_up();
6256}
6257#endif /* CONFIG_SMP */
6258
6259/*
6260 * this function assumes monitoring is stopped
6261 */
6262static void
6263pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6264{
6265	u64 pmc0;
6266	unsigned long mask2, val, pmd_val, ovfl_val;
6267	int i, can_access_pmu = 0;
6268	int is_self;
6269
6270	/*
6271	 * is the caller the task being monitored (or which initiated the
6272	 * session for system wide measurements)
6273	 */
6274	is_self = ctx->ctx_task == task ? 1 : 0;
6275
6276	/*
6277	 * can access PMU is task is the owner of the PMU state on the current CPU
6278	 * or if we are running on the CPU bound to the context in system-wide mode
6279	 * (that is not necessarily the task the context is attached to in this mode).
6280	 * In system-wide we always have can_access_pmu true because a task running on an
6281	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6282	 */
6283	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6284	if (can_access_pmu) {
6285		/*
6286		 * Mark the PMU as not owned
6287		 * This will cause the interrupt handler to do nothing in case an overflow
6288		 * interrupt was in-flight
6289		 * This also guarantees that pmc0 will contain the final state
6290		 * It virtually gives us full control on overflow processing from that point
6291		 * on.
6292		 */
6293		SET_PMU_OWNER(NULL, NULL);
6294		DPRINT(("releasing ownership\n"));
6295
6296		/*
6297		 * read current overflow status:
6298		 *
6299		 * we are guaranteed to read the final stable state
6300		 */
6301		ia64_srlz_d();
6302		pmc0 = ia64_get_pmc(0); /* slow */
6303
6304		/*
6305		 * reset freeze bit, overflow status information destroyed
6306		 */
6307		pfm_unfreeze_pmu();
6308	} else {
6309		pmc0 = ctx->th_pmcs[0];
6310		/*
6311		 * clear whatever overflow status bits there were
6312		 */
6313		ctx->th_pmcs[0] = 0;
6314	}
6315	ovfl_val = pmu_conf->ovfl_val;
6316	/*
6317	 * we save all the used pmds
6318	 * we take care of overflows for counting PMDs
6319	 *
6320	 * XXX: sampling situation is not taken into account here
6321	 */
6322	mask2 = ctx->ctx_used_pmds[0];
6323
6324	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6325
6326	for (i = 0; mask2; i++, mask2>>=1) {
6327
6328		/* skip non used pmds */
6329		if ((mask2 & 0x1) == 0) continue;
6330
6331		/*
6332		 * can access PMU always true in system wide mode
6333		 */
6334		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6335
6336		if (PMD_IS_COUNTING(i)) {
6337			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6338				task_pid_nr(task),
6339				i,
6340				ctx->ctx_pmds[i].val,
6341				val & ovfl_val));
6342
6343			/*
6344			 * we rebuild the full 64 bit value of the counter
6345			 */
6346			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6347
6348			/*
6349			 * now everything is in ctx_pmds[] and we need
6350			 * to clear the saved context from save_regs() such that
6351			 * pfm_read_pmds() gets the correct value
6352			 */
6353			pmd_val = 0UL;
6354
6355			/*
6356			 * take care of overflow inline
6357			 */
6358			if (pmc0 & (1UL << i)) {
6359				val += 1 + ovfl_val;
6360				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6361			}
6362		}
6363
6364		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6365
6366		if (is_self) ctx->th_pmds[i] = pmd_val;
6367
6368		ctx->ctx_pmds[i].val = val;
6369	}
6370}
6371
6372static struct irqaction perfmon_irqaction = {
6373	.handler = pfm_interrupt_handler,
6374	.name    = "perfmon"
6375};
6376
6377static void
6378pfm_alt_save_pmu_state(void *data)
6379{
6380	struct pt_regs *regs;
6381
6382	regs = task_pt_regs(current);
6383
6384	DPRINT(("called\n"));
6385
6386	/*
6387	 * should not be necessary but
6388	 * let's take not risk
6389	 */
6390	pfm_clear_psr_up();
6391	pfm_clear_psr_pp();
6392	ia64_psr(regs)->pp = 0;
6393
6394	/*
6395	 * This call is required
6396	 * May cause a spurious interrupt on some processors
6397	 */
6398	pfm_freeze_pmu();
6399
6400	ia64_srlz_d();
6401}
6402
6403void
6404pfm_alt_restore_pmu_state(void *data)
6405{
6406	struct pt_regs *regs;
6407
6408	regs = task_pt_regs(current);
6409
6410	DPRINT(("called\n"));
6411
6412	/*
6413	 * put PMU back in state expected
6414	 * by perfmon
6415	 */
6416	pfm_clear_psr_up();
6417	pfm_clear_psr_pp();
6418	ia64_psr(regs)->pp = 0;
6419
6420	/*
6421	 * perfmon runs with PMU unfrozen at all times
6422	 */
6423	pfm_unfreeze_pmu();
6424
6425	ia64_srlz_d();
6426}
6427
6428int
6429pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6430{
6431	int ret, i;
6432	int reserve_cpu;
6433
6434	/* some sanity checks */
6435	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6436
6437	/* do the easy test first */
6438	if (pfm_alt_intr_handler) return -EBUSY;
6439
6440	/* one at a time in the install or remove, just fail the others */
6441	if (!spin_trylock(&pfm_alt_install_check)) {
6442		return -EBUSY;
6443	}
6444
6445	/* reserve our session */
6446	for_each_online_cpu(reserve_cpu) {
6447		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6448		if (ret) goto cleanup_reserve;
6449	}
6450
6451	/* save the current system wide pmu states */
6452	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6453	if (ret) {
6454		DPRINT(("on_each_cpu() failed: %d\n", ret));
6455		goto cleanup_reserve;
6456	}
6457
6458	/* officially change to the alternate interrupt handler */
6459	pfm_alt_intr_handler = hdl;
6460
6461	spin_unlock(&pfm_alt_install_check);
6462
6463	return 0;
6464
6465cleanup_reserve:
6466	for_each_online_cpu(i) {
6467		/* don't unreserve more than we reserved */
6468		if (i >= reserve_cpu) break;
6469
6470		pfm_unreserve_session(NULL, 1, i);
6471	}
6472
6473	spin_unlock(&pfm_alt_install_check);
6474
6475	return ret;
6476}
6477EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6478
6479int
6480pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481{
6482	int i;
6483	int ret;
6484
6485	if (hdl == NULL) return -EINVAL;
6486
6487	/* cannot remove someone else's handler! */
6488	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6489
6490	/* one at a time in the install or remove, just fail the others */
6491	if (!spin_trylock(&pfm_alt_install_check)) {
6492		return -EBUSY;
6493	}
6494
6495	pfm_alt_intr_handler = NULL;
6496
6497	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6498	if (ret) {
6499		DPRINT(("on_each_cpu() failed: %d\n", ret));
6500	}
6501
6502	for_each_online_cpu(i) {
6503		pfm_unreserve_session(NULL, 1, i);
6504	}
6505
6506	spin_unlock(&pfm_alt_install_check);
6507
6508	return 0;
6509}
6510EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6511
6512/*
6513 * perfmon initialization routine, called from the initcall() table
6514 */
6515static int init_pfm_fs(void);
6516
6517static int __init
6518pfm_probe_pmu(void)
6519{
6520	pmu_config_t **p;
6521	int family;
6522
6523	family = local_cpu_data->family;
6524	p      = pmu_confs;
6525
6526	while(*p) {
6527		if ((*p)->probe) {
6528			if ((*p)->probe() == 0) goto found;
6529		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6530			goto found;
6531		}
6532		p++;
6533	}
6534	return -1;
6535found:
6536	pmu_conf = *p;
6537	return 0;
6538}
6539
6540static const struct file_operations pfm_proc_fops = {
6541	.open		= pfm_proc_open,
6542	.read		= seq_read,
6543	.llseek		= seq_lseek,
6544	.release	= seq_release,
6545};
6546
6547int __init
6548pfm_init(void)
6549{
6550	unsigned int n, n_counters, i;
6551
6552	printk("perfmon: version %u.%u IRQ %u\n",
6553		PFM_VERSION_MAJ,
6554		PFM_VERSION_MIN,
6555		IA64_PERFMON_VECTOR);
6556
6557	if (pfm_probe_pmu()) {
6558		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6559				local_cpu_data->family);
6560		return -ENODEV;
6561	}
6562
6563	/*
6564	 * compute the number of implemented PMD/PMC from the
6565	 * description tables
6566	 */
6567	n = 0;
6568	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6569		if (PMC_IS_IMPL(i) == 0) continue;
6570		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6571		n++;
6572	}
6573	pmu_conf->num_pmcs = n;
6574
6575	n = 0; n_counters = 0;
6576	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6577		if (PMD_IS_IMPL(i) == 0) continue;
6578		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6579		n++;
6580		if (PMD_IS_COUNTING(i)) n_counters++;
6581	}
6582	pmu_conf->num_pmds      = n;
6583	pmu_conf->num_counters  = n_counters;
6584
6585	/*
6586	 * sanity checks on the number of debug registers
6587	 */
6588	if (pmu_conf->use_rr_dbregs) {
6589		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6590			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6591			pmu_conf = NULL;
6592			return -1;
6593		}
6594		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6595			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6596			pmu_conf = NULL;
6597			return -1;
6598		}
6599	}
6600
6601	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6602	       pmu_conf->pmu_name,
6603	       pmu_conf->num_pmcs,
6604	       pmu_conf->num_pmds,
6605	       pmu_conf->num_counters,
6606	       ffz(pmu_conf->ovfl_val));
6607
6608	/* sanity check */
6609	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6610		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6611		pmu_conf = NULL;
6612		return -1;
6613	}
6614
6615	/*
6616	 * create /proc/perfmon (mostly for debugging purposes)
6617	 */
6618	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6619	if (perfmon_dir == NULL) {
6620		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6621		pmu_conf = NULL;
6622		return -1;
6623	}
6624
6625	/*
6626	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6627	 */
6628	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6629
6630	/*
6631	 * initialize all our spinlocks
6632	 */
6633	spin_lock_init(&pfm_sessions.pfs_lock);
6634	spin_lock_init(&pfm_buffer_fmt_lock);
6635
6636	init_pfm_fs();
6637
6638	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6639
6640	return 0;
6641}
6642
6643__initcall(pfm_init);
6644
6645/*
6646 * this function is called before pfm_init()
6647 */
6648void
6649pfm_init_percpu (void)
6650{
6651	static int first_time=1;
6652	/*
6653	 * make sure no measurement is active
6654	 * (may inherit programmed PMCs from EFI).
6655	 */
6656	pfm_clear_psr_pp();
6657	pfm_clear_psr_up();
6658
6659	/*
6660	 * we run with the PMU not frozen at all times
6661	 */
6662	pfm_unfreeze_pmu();
6663
6664	if (first_time) {
6665		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6666		first_time=0;
6667	}
6668
6669	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6670	ia64_srlz_d();
6671}
6672
6673/*
6674 * used for debug purposes only
6675 */
6676void
6677dump_pmu_state(const char *from)
6678{
6679	struct task_struct *task;
6680	struct pt_regs *regs;
6681	pfm_context_t *ctx;
6682	unsigned long psr, dcr, info, flags;
6683	int i, this_cpu;
6684
6685	local_irq_save(flags);
6686
6687	this_cpu = smp_processor_id();
6688	regs     = task_pt_regs(current);
6689	info     = PFM_CPUINFO_GET();
6690	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6691
6692	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6693		local_irq_restore(flags);
6694		return;
6695	}
6696
6697	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6698		this_cpu, 
6699		from, 
6700		task_pid_nr(current),
6701		regs->cr_iip,
6702		current->comm);
6703
6704	task = GET_PMU_OWNER();
6705	ctx  = GET_PMU_CTX();
6706
6707	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6708
6709	psr = pfm_get_psr();
6710
6711	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6712		this_cpu,
6713		ia64_get_pmc(0),
6714		psr & IA64_PSR_PP ? 1 : 0,
6715		psr & IA64_PSR_UP ? 1 : 0,
6716		dcr & IA64_DCR_PP ? 1 : 0,
6717		info,
6718		ia64_psr(regs)->up,
6719		ia64_psr(regs)->pp);
6720
6721	ia64_psr(regs)->up = 0;
6722	ia64_psr(regs)->pp = 0;
6723
6724	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6725		if (PMC_IS_IMPL(i) == 0) continue;
6726		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6727	}
6728
6729	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6730		if (PMD_IS_IMPL(i) == 0) continue;
6731		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6732	}
6733
6734	if (ctx) {
6735		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6736				this_cpu,
6737				ctx->ctx_state,
6738				ctx->ctx_smpl_vaddr,
6739				ctx->ctx_smpl_hdr,
6740				ctx->ctx_msgq_head,
6741				ctx->ctx_msgq_tail,
6742				ctx->ctx_saved_psr_up);
6743	}
6744	local_irq_restore(flags);
6745}
6746
6747/*
6748 * called from process.c:copy_thread(). task is new child.
6749 */
6750void
6751pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6752{
6753	struct thread_struct *thread;
6754
6755	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6756
6757	thread = &task->thread;
6758
6759	/*
6760	 * cut links inherited from parent (current)
6761	 */
6762	thread->pfm_context = NULL;
6763
6764	PFM_SET_WORK_PENDING(task, 0);
6765
6766	/*
6767	 * the psr bits are already set properly in copy_threads()
6768	 */
6769}
6770#else  /* !CONFIG_PERFMON */
6771asmlinkage long
6772sys_perfmonctl (int fd, int cmd, void *arg, int count)
6773{
6774	return -ENOSYS;
6775}
6776#endif /* CONFIG_PERFMON */
v3.15
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 * 	http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
 
 
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
  61#define PFM_CTX_LOADED		2	/* context is loaded onto a task */
  62#define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION	(~0UL)
  66
  67#define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS		32
  74#define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 * 	bit0   : register implemented
  80 * 	bit1   : end marker
  81 * 	bit2-3 : reserved
  82 * 	bit4   : pmc has pmc.pm
  83 * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 * 	bit6-7 : register type
  85 * 	bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
  88#define PFM_REG_IMPL		0x1 /* register implemented */
  89#define PFM_REG_END		0x2 /* end marker */
  90#define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)		(h)->ctx_task
 122
 123#define PMU_PMC_OI		5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR	0	/* requesting code range restriction */
 135#define PFM_DATA_RR	1	/* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x)	(1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 * 	- we need to protect against CPU concurrency (spin_lock)
 147 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 * 	in SMP: local_irq_disable + spin_lock
 153 * 	in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 * 	in UP : removed automatically
 157 * 	in SMP: protect against context accesses from other CPU. interrupts
 158 * 	        are not masked. This is useful for the PMU interrupt handler
 159 * 	        because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162	do {  \
 163		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164		spin_lock_irqsave(&(c)->ctx_lock, f); \
 165		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166	} while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169	do { \
 170		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172	} while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175	do {  \
 176		spin_lock_irqsave(&(c)->ctx_lock, f); \
 177	} while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181	do { \
 182		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183	} while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187	do {  \
 188		spin_lock(&(c)->ctx_lock); \
 189	} while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192	do { \
 193		spin_unlock(&(c)->ctx_lock); \
 194	} while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t) 	do {} while(0)
 205#define GET_ACTIVATION(t) 	do {} while(0)
 206#define INC_ACTIVATION(t) 	do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231	do { \
 232		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233	} while (0)
 234
 235#define DPRINT_ovfl(a) \
 236	do { \
 237		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238	} while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247	unsigned long	val;		/* virtual 64bit counter value */
 248	unsigned long	lval;		/* last reset value */
 249	unsigned long	long_reset;	/* reset value on sampling overflow */
 250	unsigned long	short_reset;    /* reset value on overflow */
 251	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253	unsigned long	seed;		/* seed for random-number generator */
 254	unsigned long	mask;		/* mask for random-number generator */
 255	unsigned int 	flags;		/* notify/do not notify */
 256	unsigned long	eventid;	/* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263	unsigned int block:1;		/* when 1, task will blocked on user notifications */
 264	unsigned int system:1;		/* do system wide monitoring */
 265	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
 266	unsigned int is_sampling:1;	/* true if using a custom format */
 267	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
 268	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
 269	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
 270	unsigned int no_msg:1;		/* no message sent on overflow */
 271	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
 272	unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE		0x0	/* default value */
 276#define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285	spinlock_t		ctx_lock;		/* context protection */
 286
 287	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
 288	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
 289
 290	struct task_struct 	*ctx_task;		/* task to which context is attached */
 291
 292	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
 293
 294	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
 295
 296	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
 297	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
 298	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
 299
 300	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
 301	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
 302	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
 303
 304	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
 305
 306	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
 307	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
 308	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
 309	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
 310
 311	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
 314	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
 315
 316	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
 317
 318	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
 319	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
 320	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
 321
 322	int			ctx_fd;			/* file descriptor used my this context */
 323	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
 324
 325	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
 326	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
 327	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
 328	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
 329
 330	wait_queue_head_t 	ctx_msgq_wait;
 331	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
 332	int			ctx_msgq_head;
 333	int			ctx_msgq_tail;
 334	struct fasync_struct	*ctx_async_queue;
 335
 336	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)	do {} while(0)
 352#define GET_LAST_CPU(ctx)	do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block		ctx_flags.block
 357#define ctx_fl_system		ctx_flags.system
 358#define ctx_fl_using_dbreg	ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling	ctx_flags.is_sampling
 360#define ctx_fl_excl_idle	ctx_flags.excl_idle
 361#define ctx_fl_going_zombie	ctx_flags.going_zombie
 362#define ctx_fl_trap_reason	ctx_flags.trap_reason
 363#define ctx_fl_no_msg		ctx_flags.no_msg
 364#define ctx_fl_can_restart	ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374	spinlock_t		pfs_lock;		   /* lock the structure */
 375
 376	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
 377	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
 378	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
 379	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
 380	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390	unsigned int		type;
 391	int			pm_pos;
 392	unsigned long		default_value;	/* power-on default value */
 393	unsigned long		reserved_mask;	/* bitmask of reserved bits */
 394	pfm_reg_check_t		read_check;
 395	pfm_reg_check_t		write_check;
 396	unsigned long		dep_pmd[4];
 397	unsigned long		dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 * 	- 0 means recognized PMU
 410 * 	- anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 * 	- cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416	unsigned long  ovfl_val;	/* overflow value for counters */
 417
 418	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
 419	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
 420
 421	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
 422	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
 423	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
 424	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
 425
 426	char	      *pmu_name;	/* PMU family name */
 427	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
 428	unsigned int  flags;		/* pmu specific flags */
 429	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
 430	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
 431	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
 432	int           (*probe)(void);   /* customized probe routine */
 433	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444	unsigned long ibr_mask:56;
 445	unsigned long ibr_plm:4;
 446	unsigned long ibr_ig:3;
 447	unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451	unsigned long dbr_mask:56;
 452	unsigned long dbr_plm:4;
 453	unsigned long dbr_ig:2;
 454	unsigned long dbr_w:1;
 455	unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459	unsigned long  val;
 460	ibr_mask_reg_t ibr;
 461	dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470	char		*cmd_name;
 471	int		cmd_flags;
 472	unsigned int	cmd_narg;
 473	size_t		cmd_argsize;
 474	int		(*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD		0x01	/* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
 479#define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
 480#define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
 490
 491typedef struct {
 492	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
 493	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
 494	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
 495	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
 496	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
 497	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
 498	unsigned long pfm_smpl_handler_calls;
 499	unsigned long pfm_smpl_handler_cycles;
 500	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t		pfm_stats[NR_CPUS];
 507static pfm_session_t		pfm_sessions;	/* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry 	*perfmon_dir;
 513static pfm_uuid_t		pfm_null_uuid = {0,};
 514
 515static spinlock_t		pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t		*pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static ctl_table pfm_ctl_table[]={
 525	{
 526		.procname	= "debug",
 527		.data		= &pfm_sysctl.debug,
 528		.maxlen		= sizeof(int),
 529		.mode		= 0666,
 530		.proc_handler	= proc_dointvec,
 531	},
 532	{
 533		.procname	= "debug_ovfl",
 534		.data		= &pfm_sysctl.debug_ovfl,
 535		.maxlen		= sizeof(int),
 536		.mode		= 0666,
 537		.proc_handler	= proc_dointvec,
 538	},
 539	{
 540		.procname	= "fastctxsw",
 541		.data		= &pfm_sysctl.fastctxsw,
 542		.maxlen		= sizeof(int),
 543		.mode		= 0600,
 544		.proc_handler	= proc_dointvec,
 545	},
 546	{
 547		.procname	= "expert_mode",
 548		.data		= &pfm_sysctl.expert_mode,
 549		.maxlen		= sizeof(int),
 550		.mode		= 0600,
 551		.proc_handler	= proc_dointvec,
 552	},
 553	{}
 554};
 555static ctl_table pfm_sysctl_dir[] = {
 556	{
 557		.procname	= "perfmon",
 558		.mode		= 0555,
 559		.child		= pfm_ctl_table,
 560	},
 561 	{}
 562};
 563static ctl_table pfm_sysctl_root[] = {
 564	{
 565		.procname	= "kernel",
 566		.mode		= 0555,
 567		.child		= pfm_sysctl_dir,
 568	},
 569 	{}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)		per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581	if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587	SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592	ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598	spin_lock(&(x)->ctx_lock);
 599	return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605	spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615			PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619	.name     = "pfmfs",
 620	.mount    = pfmfs_mount,
 621	.kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651	&pmu_conf_mont,
 652	&pmu_conf_mck,
 653	&pmu_conf_ita,
 654	&pmu_conf_gen, /* must be last */
 655	NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664	ia64_rsm(IA64_PSR_PP);
 665	ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671	ia64_ssm(IA64_PSR_PP);
 672	ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678	ia64_rsm(IA64_PSR_UP);
 679	ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685	ia64_ssm(IA64_PSR_UP);
 686	ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692	unsigned long tmp;
 693	tmp = ia64_getreg(_IA64_REG_PSR);
 694	ia64_srlz_i();
 695	return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701	ia64_setreg(_IA64_REG_PSR_L, val);
 702	ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708	ia64_set_pmc(0,1UL);
 709	ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715	ia64_set_pmc(0,0UL);
 716	ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722	int i;
 723
 724	for (i=0; i < nibrs; i++) {
 725		ia64_set_ibr(i, ibrs[i]);
 726		ia64_dv_serialize_instruction();
 727	}
 728	ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734	int i;
 735
 736	for (i=0; i < ndbrs; i++) {
 737		ia64_set_dbr(i, dbrs[i]);
 738		ia64_dv_serialize_data();
 739	}
 740	ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758	unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761	/*
 762	 * writing to unimplemented part is ignore, so we do not need to
 763	 * mask off top part
 764	 */
 765	ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771	int idx, next;
 772
 773	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776	if (next == ctx->ctx_msgq_head) return NULL;
 777
 778 	idx = 	ctx->ctx_msgq_tail;
 779	ctx->ctx_msgq_tail = next;
 780
 781	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783	return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789	pfm_msg_t *msg;
 790
 791	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795	/*
 796	 * get oldest message
 797	 */
 798	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800	/*
 801	 * and move forward
 802	 */
 803	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807	return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814	DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820	void *mem;
 821	unsigned long addr;
 822
 823	size = PAGE_ALIGN(size);
 824	mem  = vzalloc(size);
 825	if (mem) {
 826		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827		addr = (unsigned long)mem;
 828		while (size > 0) {
 829			pfm_reserve_page(addr);
 830			addr+=PAGE_SIZE;
 831			size-=PAGE_SIZE;
 832		}
 833	}
 834	return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840	unsigned long addr;
 841
 842	if (mem) {
 843		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844		addr = (unsigned long) mem;
 845		while ((long) size > 0) {
 846			pfm_unreserve_page(addr);
 847			addr+=PAGE_SIZE;
 848			size-=PAGE_SIZE;
 849		}
 850		vfree(mem);
 851	}
 852	return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858	pfm_context_t *ctx;
 859
 860	/* 
 861	 * allocate context descriptor 
 862	 * must be able to free with interrupts disabled
 863	 */
 864	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865	if (ctx) {
 866		DPRINT(("alloc ctx @%p\n", ctx));
 867
 868		/*
 869		 * init context protection lock
 870		 */
 871		spin_lock_init(&ctx->ctx_lock);
 872
 873		/*
 874		 * context is unloaded
 875		 */
 876		ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878		/*
 879		 * initialization of context's flags
 880		 */
 881		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884		/*
 885		 * will move to set properties
 886		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887		 */
 888
 889		/*
 890		 * init restart semaphore to locked
 891		 */
 892		init_completion(&ctx->ctx_restart_done);
 893
 894		/*
 895		 * activation is used in SMP only
 896		 */
 897		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898		SET_LAST_CPU(ctx, -1);
 899
 900		/*
 901		 * initialize notification message queue
 902		 */
 903		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904		init_waitqueue_head(&ctx->ctx_msgq_wait);
 905		init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907	}
 908	return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914	if (ctx) {
 915		DPRINT(("free ctx @%p\n", ctx));
 916		kfree(ctx);
 917	}
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923	pfm_context_t *ctx = PFM_GET_CTX(task);
 924	unsigned long mask, val, ovfl_mask;
 925	int i;
 926
 927	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929	ovfl_mask = pmu_conf->ovfl_val;
 930	/*
 931	 * monitoring can only be masked as a result of a valid
 932	 * counter overflow. In UP, it means that the PMU still
 933	 * has an owner. Note that the owner can be different
 934	 * from the current task. However the PMU state belongs
 935	 * to the owner.
 936	 * In SMP, a valid overflow only happens when task is
 937	 * current. Therefore if we come here, we know that
 938	 * the PMU state belongs to the current task, therefore
 939	 * we can access the live registers.
 940	 *
 941	 * So in both cases, the live register contains the owner's
 942	 * state. We can ONLY touch the PMU registers and NOT the PSR.
 943	 *
 944	 * As a consequence to this call, the ctx->th_pmds[] array
 945	 * contains stale information which must be ignored
 946	 * when context is reloaded AND monitoring is active (see
 947	 * pfm_restart).
 948	 */
 949	mask = ctx->ctx_used_pmds[0];
 950	for (i = 0; mask; i++, mask>>=1) {
 951		/* skip non used pmds */
 952		if ((mask & 0x1) == 0) continue;
 953		val = ia64_get_pmd(i);
 954
 955		if (PMD_IS_COUNTING(i)) {
 956			/*
 957		 	 * we rebuild the full 64 bit value of the counter
 958		 	 */
 959			ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960		} else {
 961			ctx->ctx_pmds[i].val = val;
 962		}
 963		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964			i,
 965			ctx->ctx_pmds[i].val,
 966			val & ovfl_mask));
 967	}
 968	/*
 969	 * mask monitoring by setting the privilege level to 0
 970	 * we cannot use psr.pp/psr.up for this, it is controlled by
 971	 * the user
 972	 *
 973	 * if task is current, modify actual registers, otherwise modify
 974	 * thread save state, i.e., what will be restored in pfm_load_regs()
 975	 */
 976	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978		if ((mask & 0x1) == 0UL) continue;
 979		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980		ctx->th_pmcs[i] &= ~0xfUL;
 981		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982	}
 983	/*
 984	 * make all of this visible
 985	 */
 986	ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997	pfm_context_t *ctx = PFM_GET_CTX(task);
 998	unsigned long mask, ovfl_mask;
 999	unsigned long psr, val;
1000	int i, is_system;
1001
1002	is_system = ctx->ctx_fl_system;
1003	ovfl_mask = pmu_conf->ovfl_val;
1004
1005	if (task != current) {
1006		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007		return;
1008	}
1009	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012		return;
1013	}
1014	psr = pfm_get_psr();
1015	/*
1016	 * monitoring is masked via the PMC.
1017	 * As we restore their value, we do not want each counter to
1018	 * restart right away. We stop monitoring using the PSR,
1019	 * restore the PMC (and PMD) and then re-establish the psr
1020	 * as it was. Note that there can be no pending overflow at
1021	 * this point, because monitoring was MASKED.
1022	 *
1023	 * system-wide session are pinned and self-monitoring
1024	 */
1025	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026		/* disable dcr pp */
1027		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028		pfm_clear_psr_pp();
1029	} else {
1030		pfm_clear_psr_up();
1031	}
1032	/*
1033	 * first, we restore the PMD
1034	 */
1035	mask = ctx->ctx_used_pmds[0];
1036	for (i = 0; mask; i++, mask>>=1) {
1037		/* skip non used pmds */
1038		if ((mask & 0x1) == 0) continue;
1039
1040		if (PMD_IS_COUNTING(i)) {
1041			/*
1042			 * we split the 64bit value according to
1043			 * counter width
1044			 */
1045			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047		} else {
1048			val = ctx->ctx_pmds[i].val;
1049		}
1050		ia64_set_pmd(i, val);
1051
1052		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053			i,
1054			ctx->ctx_pmds[i].val,
1055			val));
1056	}
1057	/*
1058	 * restore the PMCs
1059	 */
1060	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062		if ((mask & 0x1) == 0UL) continue;
1063		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067	}
1068	ia64_srlz_d();
1069
1070	/*
1071	 * must restore DBR/IBR because could be modified while masked
1072	 * XXX: need to optimize 
1073	 */
1074	if (ctx->ctx_fl_using_dbreg) {
1075		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077	}
1078
1079	/*
1080	 * now restore PSR
1081	 */
1082	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083		/* enable dcr pp */
1084		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085		ia64_srlz_i();
1086	}
1087	pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093	int i;
1094
1095	ia64_srlz_d();
1096
1097	for (i=0; mask; i++, mask>>=1) {
1098		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099	}
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108	int i;
1109	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111	for (i=0; mask; i++, mask>>=1) {
1112		if ((mask & 0x1) == 0) continue;
1113		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114		ia64_set_pmd(i, val);
1115	}
1116	ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126	unsigned long mask = ctx->ctx_all_pmds[0];
1127	unsigned long val;
1128	int i;
1129
1130	DPRINT(("mask=0x%lx\n", mask));
1131
1132	for (i=0; mask; i++, mask>>=1) {
1133
1134		val = ctx->ctx_pmds[i].val;
1135
1136		/*
1137		 * We break up the 64 bit value into 2 pieces
1138		 * the lower bits go to the machine state in the
1139		 * thread (will be reloaded on ctxsw in).
1140		 * The upper part stays in the soft-counter.
1141		 */
1142		if (PMD_IS_COUNTING(i)) {
1143			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144			 val &= ovfl_val;
1145		}
1146		ctx->th_pmds[i] = val;
1147
1148		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149			i,
1150			ctx->th_pmds[i],
1151			ctx->ctx_pmds[i].val));
1152	}
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161	unsigned long mask = ctx->ctx_all_pmcs[0];
1162	int i;
1163
1164	DPRINT(("mask=0x%lx\n", mask));
1165
1166	for (i=0; mask; i++, mask>>=1) {
1167		/* masking 0 with ovfl_val yields 0 */
1168		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170	}
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178	int i;
1179
1180	for (i=0; mask; i++, mask>>=1) {
1181		if ((mask & 0x1) == 0) continue;
1182		ia64_set_pmc(i, pmcs[i]);
1183	}
1184	ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190	return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196	int ret = 0;
1197	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198	return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204	int ret = 0;
1205	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206	return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212		     int cpu, void *arg)
1213{
1214	int ret = 0;
1215	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216	return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221		     int cpu, void *arg)
1222{
1223	int ret = 0;
1224	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225	return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231	int ret = 0;
1232	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233	return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239	int ret = 0;
1240	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241	return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247	struct list_head * pos;
1248	pfm_buffer_fmt_t * entry;
1249
1250	list_for_each(pos, &pfm_buffer_fmt_list) {
1251		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253			return entry;
1254	}
1255	return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264	pfm_buffer_fmt_t * fmt;
1265	spin_lock(&pfm_buffer_fmt_lock);
1266	fmt = __pfm_find_buffer_fmt(uuid);
1267	spin_unlock(&pfm_buffer_fmt_lock);
1268	return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274	int ret = 0;
1275
1276	/* some sanity checks */
1277	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279	/* we need at least a handler */
1280	if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282	/*
1283	 * XXX: need check validity of fmt_arg_size
1284	 */
1285
1286	spin_lock(&pfm_buffer_fmt_lock);
1287
1288	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290		ret = -EBUSY;
1291		goto out;
1292	} 
1293	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297	spin_unlock(&pfm_buffer_fmt_lock);
1298 	return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305	pfm_buffer_fmt_t *fmt;
1306	int ret = 0;
1307
1308	spin_lock(&pfm_buffer_fmt_lock);
1309
1310	fmt = __pfm_find_buffer_fmt(uuid);
1311	if (!fmt) {
1312		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313		ret = -EINVAL;
1314		goto out;
1315	}
1316	list_del_init(&fmt->fmt_list);
1317	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320	spin_unlock(&pfm_buffer_fmt_lock);
1321	return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329	unsigned long flags;
1330	/*
1331	 * validity checks on cpu_mask have been done upstream
1332	 */
1333	LOCK_PFS(flags);
1334
1335	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336		pfm_sessions.pfs_sys_sessions,
1337		pfm_sessions.pfs_task_sessions,
1338		pfm_sessions.pfs_sys_use_dbregs,
1339		is_syswide,
1340		cpu));
1341
1342	if (is_syswide) {
1343		/*
1344		 * cannot mix system wide and per-task sessions
1345		 */
1346		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348			  	pfm_sessions.pfs_task_sessions));
1349			goto abort;
1350		}
1351
1352		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356		pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358		pfm_sessions.pfs_sys_sessions++ ;
1359
1360	} else {
1361		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362		pfm_sessions.pfs_task_sessions++;
1363	}
1364
1365	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366		pfm_sessions.pfs_sys_sessions,
1367		pfm_sessions.pfs_task_sessions,
1368		pfm_sessions.pfs_sys_use_dbregs,
1369		is_syswide,
1370		cpu));
1371
1372	/*
1373	 * Force idle() into poll mode
1374	 */
1375	cpu_idle_poll_ctrl(true);
1376
1377	UNLOCK_PFS(flags);
1378
1379	return 0;
1380
1381error_conflict:
1382	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383  		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384		cpu));
1385abort:
1386	UNLOCK_PFS(flags);
1387
1388	return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395	unsigned long flags;
1396	/*
1397	 * validity checks on cpu_mask have been done upstream
1398	 */
1399	LOCK_PFS(flags);
1400
1401	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402		pfm_sessions.pfs_sys_sessions,
1403		pfm_sessions.pfs_task_sessions,
1404		pfm_sessions.pfs_sys_use_dbregs,
1405		is_syswide,
1406		cpu));
1407
1408
1409	if (is_syswide) {
1410		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411		/*
1412		 * would not work with perfmon+more than one bit in cpu_mask
1413		 */
1414		if (ctx && ctx->ctx_fl_using_dbreg) {
1415			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417			} else {
1418				pfm_sessions.pfs_sys_use_dbregs--;
1419			}
1420		}
1421		pfm_sessions.pfs_sys_sessions--;
1422	} else {
1423		pfm_sessions.pfs_task_sessions--;
1424	}
1425	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426		pfm_sessions.pfs_sys_sessions,
1427		pfm_sessions.pfs_task_sessions,
1428		pfm_sessions.pfs_sys_use_dbregs,
1429		is_syswide,
1430		cpu));
1431
1432	/* Undo forced polling. Last session reenables pal_halt */
1433	cpu_idle_poll_ctrl(false);
1434
1435	UNLOCK_PFS(flags);
1436
1437	return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448	struct task_struct *task = current;
1449	int r;
1450
1451	/* sanity checks */
1452	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454		return -EINVAL;
1455	}
1456
1457	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459	/*
1460	 * does the actual unmapping
1461	 */
1462	r = vm_munmap((unsigned long)vaddr, size);
1463
1464	if (r !=0) {
1465		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466	}
1467
1468	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470	return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480	pfm_buffer_fmt_t *fmt;
1481
1482	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484	/*
1485	 * we won't use the buffer format anymore
1486	 */
1487	fmt = ctx->ctx_buf_fmt;
1488
1489	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490		ctx->ctx_smpl_hdr,
1491		ctx->ctx_smpl_size,
1492		ctx->ctx_smpl_vaddr));
1493
1494	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496	/*
1497	 * free the buffer
1498	 */
1499	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501	ctx->ctx_smpl_hdr  = NULL;
1502	ctx->ctx_smpl_size = 0UL;
1503
1504	return 0;
1505
1506invalid_free:
1507	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508	return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515	if (fmt == NULL) return;
1516
1517	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532	int err = register_filesystem(&pfm_fs_type);
1533	if (!err) {
1534		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535		err = PTR_ERR(pfmfs_mnt);
1536		if (IS_ERR(pfmfs_mnt))
1537			unregister_filesystem(&pfm_fs_type);
1538		else
1539			err = 0;
1540	}
1541	return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547	pfm_context_t *ctx;
1548	pfm_msg_t *msg;
1549	ssize_t ret;
1550	unsigned long flags;
1551  	DECLARE_WAITQUEUE(wait, current);
1552	if (PFM_IS_FILE(filp) == 0) {
1553		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554		return -EINVAL;
1555	}
1556
1557	ctx = filp->private_data;
1558	if (ctx == NULL) {
1559		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560		return -EINVAL;
1561	}
1562
1563	/*
1564	 * check even when there is no message
1565	 */
1566	if (size < sizeof(pfm_msg_t)) {
1567		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568		return -EINVAL;
1569	}
1570
1571	PROTECT_CTX(ctx, flags);
1572
1573  	/*
1574	 * put ourselves on the wait queue
1575	 */
1576  	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579  	for(;;) {
1580		/*
1581		 * check wait queue
1582		 */
1583
1584  		set_current_state(TASK_INTERRUPTIBLE);
1585
1586		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588		ret = 0;
1589		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591		UNPROTECT_CTX(ctx, flags);
1592
1593		/*
1594		 * check non-blocking read
1595		 */
1596      		ret = -EAGAIN;
1597		if(filp->f_flags & O_NONBLOCK) break;
1598
1599		/*
1600		 * check pending signals
1601		 */
1602		if(signal_pending(current)) {
1603			ret = -EINTR;
1604			break;
1605		}
1606      		/*
1607		 * no message, so wait
1608		 */
1609      		schedule();
1610
1611		PROTECT_CTX(ctx, flags);
1612	}
1613	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614  	set_current_state(TASK_RUNNING);
1615	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617	if (ret < 0) goto abort;
1618
1619	ret = -EINVAL;
1620	msg = pfm_get_next_msg(ctx);
1621	if (msg == NULL) {
1622		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623		goto abort_locked;
1624	}
1625
1626	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628	ret = -EFAULT;
1629  	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632	UNPROTECT_CTX(ctx, flags);
1633abort:
1634	return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639			  size_t size, loff_t *ppos)
1640{
1641	DPRINT(("pfm_write called\n"));
1642	return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648	pfm_context_t *ctx;
1649	unsigned long flags;
1650	unsigned int mask = 0;
1651
1652	if (PFM_IS_FILE(filp) == 0) {
1653		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654		return 0;
1655	}
1656
1657	ctx = filp->private_data;
1658	if (ctx == NULL) {
1659		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660		return 0;
1661	}
1662
1663
1664	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668	PROTECT_CTX(ctx, flags);
1669
1670	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671		mask =  POLLIN | POLLRDNORM;
1672
1673	UNPROTECT_CTX(ctx, flags);
1674
1675	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677	return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683	DPRINT(("pfm_ioctl called\n"));
1684	return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693	int ret;
1694
1695	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698		task_pid_nr(current),
1699		fd,
1700		on,
1701		ctx->ctx_async_queue, ret));
1702
1703	return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709	pfm_context_t *ctx;
1710	int ret;
1711
1712	if (PFM_IS_FILE(filp) == 0) {
1713		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714		return -EBADF;
1715	}
1716
1717	ctx = filp->private_data;
1718	if (ctx == NULL) {
1719		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720		return -EBADF;
1721	}
1722	/*
1723	 * we cannot mask interrupts during this call because this may
1724	 * may go to sleep if memory is not readily avalaible.
1725	 *
1726	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727	 * done in caller. Serialization of this function is ensured by caller.
1728	 */
1729	ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733		fd,
1734		on,
1735		ctx->ctx_async_queue, ret));
1736
1737	return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749	pfm_context_t   *ctx = (pfm_context_t *)info;
1750	struct pt_regs *regs = task_pt_regs(current);
1751	struct task_struct *owner;
1752	unsigned long flags;
1753	int ret;
1754
1755	if (ctx->ctx_cpu != smp_processor_id()) {
1756		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757			ctx->ctx_cpu,
1758			smp_processor_id());
1759		return;
1760	}
1761	owner = GET_PMU_OWNER();
1762	if (owner != ctx->ctx_task) {
1763		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764			smp_processor_id(),
1765			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766		return;
1767	}
1768	if (GET_PMU_CTX() != ctx) {
1769		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770			smp_processor_id(),
1771			GET_PMU_CTX(), ctx);
1772		return;
1773	}
1774
1775	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776	/*
1777	 * the context is already protected in pfm_close(), we simply
1778	 * need to mask interrupts to avoid a PMU interrupt race on
1779	 * this CPU
1780	 */
1781	local_irq_save(flags);
1782
1783	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784	if (ret) {
1785		DPRINT(("context_unload returned %d\n", ret));
1786	}
1787
1788	/*
1789	 * unmask interrupts, PMU interrupts are now spurious here
1790	 */
1791	local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797	int ret;
1798
1799	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812	pfm_context_t *ctx;
1813	struct task_struct *task;
1814	struct pt_regs *regs;
1815	unsigned long flags;
1816	unsigned long smpl_buf_size = 0UL;
1817	void *smpl_buf_vaddr = NULL;
1818	int state, is_system;
1819
1820	if (PFM_IS_FILE(filp) == 0) {
1821		DPRINT(("bad magic for\n"));
1822		return -EBADF;
1823	}
1824
1825	ctx = filp->private_data;
1826	if (ctx == NULL) {
1827		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828		return -EBADF;
1829	}
1830
1831	/*
1832	 * remove our file from the async queue, if we use this mode.
1833	 * This can be done without the context being protected. We come
1834	 * here when the context has become unreachable by other tasks.
1835	 *
1836	 * We may still have active monitoring at this point and we may
1837	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838	 * operates with interrupts disabled and it cleans up the
1839	 * queue. If the PMU handler is called prior to entering
1840	 * fasync_helper() then it will send a signal. If it is
1841	 * invoked after, it will find an empty queue and no
1842	 * signal will be sent. In both case, we are safe
1843	 */
1844	PROTECT_CTX(ctx, flags);
1845
1846	state     = ctx->ctx_state;
1847	is_system = ctx->ctx_fl_system;
1848
1849	task = PFM_CTX_TASK(ctx);
1850	regs = task_pt_regs(task);
1851
1852	DPRINT(("ctx_state=%d is_current=%d\n",
1853		state,
1854		task == current ? 1 : 0));
1855
1856	/*
1857	 * if state == UNLOADED, then task is NULL
1858	 */
1859
1860	/*
1861	 * we must stop and unload because we are losing access to the context.
1862	 */
1863	if (task == current) {
1864#ifdef CONFIG_SMP
1865		/*
1866		 * the task IS the owner but it migrated to another CPU: that's bad
1867		 * but we must handle this cleanly. Unfortunately, the kernel does
1868		 * not provide a mechanism to block migration (while the context is loaded).
1869		 *
1870		 * We need to release the resource on the ORIGINAL cpu.
1871		 */
1872		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875			/*
1876			 * keep context protected but unmask interrupt for IPI
1877			 */
1878			local_irq_restore(flags);
1879
1880			pfm_syswide_cleanup_other_cpu(ctx);
1881
1882			/*
1883			 * restore interrupt masking
1884			 */
1885			local_irq_save(flags);
1886
1887			/*
1888			 * context is unloaded at this point
1889			 */
1890		} else
1891#endif /* CONFIG_SMP */
1892		{
1893
1894			DPRINT(("forcing unload\n"));
1895			/*
1896		 	* stop and unload, returning with state UNLOADED
1897		 	* and session unreserved.
1898		 	*/
1899			pfm_context_unload(ctx, NULL, 0, regs);
1900
1901			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902		}
1903	}
1904
1905	/*
1906	 * remove virtual mapping, if any, for the calling task.
1907	 * cannot reset ctx field until last user is calling close().
1908	 *
1909	 * ctx_smpl_vaddr must never be cleared because it is needed
1910	 * by every task with access to the context
1911	 *
1912	 * When called from do_exit(), the mm context is gone already, therefore
1913	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914	 * do anything here
1915	 */
1916	if (ctx->ctx_smpl_vaddr && current->mm) {
1917		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918		smpl_buf_size  = ctx->ctx_smpl_size;
1919	}
1920
1921	UNPROTECT_CTX(ctx, flags);
1922
1923	/*
1924	 * if there was a mapping, then we systematically remove it
1925	 * at this point. Cannot be done inside critical section
1926	 * because some VM function reenables interrupts.
1927	 *
1928	 */
1929	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931	return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951	pfm_context_t *ctx;
1952	struct task_struct *task;
1953	struct pt_regs *regs;
1954  	DECLARE_WAITQUEUE(wait, current);
1955	unsigned long flags;
1956	unsigned long smpl_buf_size = 0UL;
1957	void *smpl_buf_addr = NULL;
1958	int free_possible = 1;
1959	int state, is_system;
1960
1961	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963	if (PFM_IS_FILE(filp) == 0) {
1964		DPRINT(("bad magic\n"));
1965		return -EBADF;
1966	}
1967	
1968	ctx = filp->private_data;
1969	if (ctx == NULL) {
1970		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971		return -EBADF;
1972	}
1973
1974	PROTECT_CTX(ctx, flags);
1975
1976	state     = ctx->ctx_state;
1977	is_system = ctx->ctx_fl_system;
1978
1979	task = PFM_CTX_TASK(ctx);
1980	regs = task_pt_regs(task);
1981
1982	DPRINT(("ctx_state=%d is_current=%d\n", 
1983		state,
1984		task == current ? 1 : 0));
1985
1986	/*
1987	 * if task == current, then pfm_flush() unloaded the context
1988	 */
1989	if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991	/*
1992	 * context is loaded/masked and task != current, we need to
1993	 * either force an unload or go zombie
1994	 */
1995
1996	/*
1997	 * The task is currently blocked or will block after an overflow.
1998	 * we must force it to wakeup to get out of the
1999	 * MASKED state and transition to the unloaded state by itself.
2000	 *
2001	 * This situation is only possible for per-task mode
2002	 */
2003	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005		/*
2006		 * set a "partial" zombie state to be checked
2007		 * upon return from down() in pfm_handle_work().
2008		 *
2009		 * We cannot use the ZOMBIE state, because it is checked
2010		 * by pfm_load_regs() which is called upon wakeup from down().
2011		 * In such case, it would free the context and then we would
2012		 * return to pfm_handle_work() which would access the
2013		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014		 * but visible to pfm_handle_work().
2015		 *
2016		 * For some window of time, we have a zombie context with
2017		 * ctx_state = MASKED  and not ZOMBIE
2018		 */
2019		ctx->ctx_fl_going_zombie = 1;
2020
2021		/*
2022		 * force task to wake up from MASKED state
2023		 */
2024		complete(&ctx->ctx_restart_done);
2025
2026		DPRINT(("waking up ctx_state=%d\n", state));
2027
2028		/*
2029		 * put ourself to sleep waiting for the other
2030		 * task to report completion
2031		 *
2032		 * the context is protected by mutex, therefore there
2033		 * is no risk of being notified of completion before
2034		 * begin actually on the waitq.
2035		 */
2036  		set_current_state(TASK_INTERRUPTIBLE);
2037  		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039		UNPROTECT_CTX(ctx, flags);
2040
2041		/*
2042		 * XXX: check for signals :
2043		 * 	- ok for explicit close
2044		 * 	- not ok when coming from exit_files()
2045		 */
2046      		schedule();
2047
2048
2049		PROTECT_CTX(ctx, flags);
2050
2051
2052		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053  		set_current_state(TASK_RUNNING);
2054
2055		/*
2056		 * context is unloaded at this point
2057		 */
2058		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059	}
2060	else if (task != current) {
2061#ifdef CONFIG_SMP
2062		/*
2063	 	 * switch context to zombie state
2064	 	 */
2065		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068		/*
2069		 * cannot free the context on the spot. deferred until
2070		 * the task notices the ZOMBIE state
2071		 */
2072		free_possible = 0;
2073#else
2074		pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076	}
2077
2078doit:
2079	/* reload state, may have changed during  opening of critical section */
2080	state = ctx->ctx_state;
2081
2082	/*
2083	 * the context is still attached to a task (possibly current)
2084	 * we cannot destroy it right now
2085	 */
2086
2087	/*
2088	 * we must free the sampling buffer right here because
2089	 * we cannot rely on it being cleaned up later by the
2090	 * monitored task. It is not possible to free vmalloc'ed
2091	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092	 * now. should there be subsequent PMU overflow originally
2093	 * meant for sampling, the will be converted to spurious
2094	 * and that's fine because the monitoring tools is gone anyway.
2095	 */
2096	if (ctx->ctx_smpl_hdr) {
2097		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098		smpl_buf_size = ctx->ctx_smpl_size;
2099		/* no more sampling */
2100		ctx->ctx_smpl_hdr = NULL;
2101		ctx->ctx_fl_is_sampling = 0;
2102	}
2103
2104	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105		state,
2106		free_possible,
2107		smpl_buf_addr,
2108		smpl_buf_size));
2109
2110	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112	/*
2113	 * UNLOADED that the session has already been unreserved.
2114	 */
2115	if (state == PFM_CTX_ZOMBIE) {
2116		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117	}
2118
2119	/*
2120	 * disconnect file descriptor from context must be done
2121	 * before we unlock.
2122	 */
2123	filp->private_data = NULL;
2124
2125	/*
2126	 * if we free on the spot, the context is now completely unreachable
2127	 * from the callers side. The monitored task side is also cut, so we
2128	 * can freely cut.
2129	 *
2130	 * If we have a deferred free, only the caller side is disconnected.
2131	 */
2132	UNPROTECT_CTX(ctx, flags);
2133
2134	/*
2135	 * All memory free operations (especially for vmalloc'ed memory)
2136	 * MUST be done with interrupts ENABLED.
2137	 */
2138	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140	/*
2141	 * return the memory used by the context
2142	 */
2143	if (free_possible) pfm_context_free(ctx);
2144
2145	return 0;
2146}
2147
2148static int
2149pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150{
2151	DPRINT(("pfm_no_open called\n"));
2152	return -ENXIO;
2153}
2154
2155
2156
2157static const struct file_operations pfm_file_ops = {
2158	.llseek		= no_llseek,
2159	.read		= pfm_read,
2160	.write		= pfm_write,
2161	.poll		= pfm_poll,
2162	.unlocked_ioctl = pfm_ioctl,
2163	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2164	.fasync		= pfm_fasync,
2165	.release	= pfm_close,
2166	.flush		= pfm_flush
2167};
2168
2169static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2170{
2171	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2172			     dentry->d_inode->i_ino);
2173}
2174
2175static const struct dentry_operations pfmfs_dentry_operations = {
2176	.d_delete = always_delete_dentry,
2177	.d_dname = pfmfs_dname,
2178};
2179
2180
2181static struct file *
2182pfm_alloc_file(pfm_context_t *ctx)
2183{
2184	struct file *file;
2185	struct inode *inode;
2186	struct path path;
2187	struct qstr this = { .name = "" };
2188
2189	/*
2190	 * allocate a new inode
2191	 */
2192	inode = new_inode(pfmfs_mnt->mnt_sb);
2193	if (!inode)
2194		return ERR_PTR(-ENOMEM);
2195
2196	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2197
2198	inode->i_mode = S_IFCHR|S_IRUGO;
2199	inode->i_uid  = current_fsuid();
2200	inode->i_gid  = current_fsgid();
2201
2202	/*
2203	 * allocate a new dcache entry
2204	 */
2205	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2206	if (!path.dentry) {
2207		iput(inode);
2208		return ERR_PTR(-ENOMEM);
2209	}
2210	path.mnt = mntget(pfmfs_mnt);
2211
2212	d_add(path.dentry, inode);
2213
2214	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2215	if (IS_ERR(file)) {
2216		path_put(&path);
2217		return file;
2218	}
2219
2220	file->f_flags = O_RDONLY;
2221	file->private_data = ctx;
2222
2223	return file;
2224}
2225
2226static int
2227pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2228{
2229	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2230
2231	while (size > 0) {
2232		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2233
2234
2235		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2236			return -ENOMEM;
2237
2238		addr  += PAGE_SIZE;
2239		buf   += PAGE_SIZE;
2240		size  -= PAGE_SIZE;
2241	}
2242	return 0;
2243}
2244
2245/*
2246 * allocate a sampling buffer and remaps it into the user address space of the task
2247 */
2248static int
2249pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2250{
2251	struct mm_struct *mm = task->mm;
2252	struct vm_area_struct *vma = NULL;
2253	unsigned long size;
2254	void *smpl_buf;
2255
2256
2257	/*
2258	 * the fixed header + requested size and align to page boundary
2259	 */
2260	size = PAGE_ALIGN(rsize);
2261
2262	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2263
2264	/*
2265	 * check requested size to avoid Denial-of-service attacks
2266	 * XXX: may have to refine this test
2267	 * Check against address space limit.
2268	 *
2269	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2270	 * 	return -ENOMEM;
2271	 */
2272	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2273		return -ENOMEM;
2274
2275	/*
2276	 * We do the easy to undo allocations first.
2277 	 *
2278	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2279	 */
2280	smpl_buf = pfm_rvmalloc(size);
2281	if (smpl_buf == NULL) {
2282		DPRINT(("Can't allocate sampling buffer\n"));
2283		return -ENOMEM;
2284	}
2285
2286	DPRINT(("smpl_buf @%p\n", smpl_buf));
2287
2288	/* allocate vma */
2289	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2290	if (!vma) {
2291		DPRINT(("Cannot allocate vma\n"));
2292		goto error_kmem;
2293	}
2294	INIT_LIST_HEAD(&vma->anon_vma_chain);
2295
2296	/*
2297	 * partially initialize the vma for the sampling buffer
2298	 */
2299	vma->vm_mm	     = mm;
2300	vma->vm_file	     = get_file(filp);
2301	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2302	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2303
2304	/*
2305	 * Now we have everything we need and we can initialize
2306	 * and connect all the data structures
2307	 */
2308
2309	ctx->ctx_smpl_hdr   = smpl_buf;
2310	ctx->ctx_smpl_size  = size; /* aligned size */
2311
2312	/*
2313	 * Let's do the difficult operations next.
2314	 *
2315	 * now we atomically find some area in the address space and
2316	 * remap the buffer in it.
2317	 */
2318	down_write(&task->mm->mmap_sem);
2319
2320	/* find some free area in address space, must have mmap sem held */
2321	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2322	if (IS_ERR_VALUE(vma->vm_start)) {
2323		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2324		up_write(&task->mm->mmap_sem);
2325		goto error;
2326	}
2327	vma->vm_end = vma->vm_start + size;
2328	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2329
2330	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2331
2332	/* can only be applied to current task, need to have the mm semaphore held when called */
2333	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2334		DPRINT(("Can't remap buffer\n"));
2335		up_write(&task->mm->mmap_sem);
2336		goto error;
2337	}
2338
2339	/*
2340	 * now insert the vma in the vm list for the process, must be
2341	 * done with mmap lock held
2342	 */
2343	insert_vm_struct(mm, vma);
2344
2345	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2346							vma_pages(vma));
2347	up_write(&task->mm->mmap_sem);
2348
2349	/*
2350	 * keep track of user level virtual address
2351	 */
2352	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2353	*(unsigned long *)user_vaddr = vma->vm_start;
2354
2355	return 0;
2356
2357error:
2358	kmem_cache_free(vm_area_cachep, vma);
2359error_kmem:
2360	pfm_rvfree(smpl_buf, size);
2361
2362	return -ENOMEM;
2363}
2364
2365/*
2366 * XXX: do something better here
2367 */
2368static int
2369pfm_bad_permissions(struct task_struct *task)
2370{
2371	const struct cred *tcred;
2372	kuid_t uid = current_uid();
2373	kgid_t gid = current_gid();
2374	int ret;
2375
2376	rcu_read_lock();
2377	tcred = __task_cred(task);
2378
2379	/* inspired by ptrace_attach() */
2380	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381		from_kuid(&init_user_ns, uid),
2382		from_kgid(&init_user_ns, gid),
2383		from_kuid(&init_user_ns, tcred->euid),
2384		from_kuid(&init_user_ns, tcred->suid),
2385		from_kuid(&init_user_ns, tcred->uid),
2386		from_kgid(&init_user_ns, tcred->egid),
2387		from_kgid(&init_user_ns, tcred->sgid)));
2388
2389	ret = ((!uid_eq(uid, tcred->euid))
2390	       || (!uid_eq(uid, tcred->suid))
2391	       || (!uid_eq(uid, tcred->uid))
2392	       || (!gid_eq(gid, tcred->egid))
2393	       || (!gid_eq(gid, tcred->sgid))
2394	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2395
2396	rcu_read_unlock();
2397	return ret;
2398}
2399
2400static int
2401pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2402{
2403	int ctx_flags;
2404
2405	/* valid signal */
2406
2407	ctx_flags = pfx->ctx_flags;
2408
2409	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2410
2411		/*
2412		 * cannot block in this mode
2413		 */
2414		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416			return -EINVAL;
2417		}
2418	} else {
2419	}
2420	/* probably more to add here */
2421
2422	return 0;
2423}
2424
2425static int
2426pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2427		     unsigned int cpu, pfarg_context_t *arg)
2428{
2429	pfm_buffer_fmt_t *fmt = NULL;
2430	unsigned long size = 0UL;
2431	void *uaddr = NULL;
2432	void *fmt_arg = NULL;
2433	int ret = 0;
2434#define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2435
2436	/* invoke and lock buffer format, if found */
2437	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438	if (fmt == NULL) {
2439		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2440		return -EINVAL;
2441	}
2442
2443	/*
2444	 * buffer argument MUST be contiguous to pfarg_context_t
2445	 */
2446	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2447
2448	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2449
2450	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2451
2452	if (ret) goto error;
2453
2454	/* link buffer format and context */
2455	ctx->ctx_buf_fmt = fmt;
2456	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2457
2458	/*
2459	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2460	 */
2461	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2462	if (ret) goto error;
2463
2464	if (size) {
2465		/*
2466		 * buffer is always remapped into the caller's address space
2467		 */
2468		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2469		if (ret) goto error;
2470
2471		/* keep track of user address of buffer */
2472		arg->ctx_smpl_vaddr = uaddr;
2473	}
2474	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2475
2476error:
2477	return ret;
2478}
2479
2480static void
2481pfm_reset_pmu_state(pfm_context_t *ctx)
2482{
2483	int i;
2484
2485	/*
2486	 * install reset values for PMC.
2487	 */
2488	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2489		if (PMC_IS_IMPL(i) == 0) continue;
2490		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2491		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2492	}
2493	/*
2494	 * PMD registers are set to 0UL when the context in memset()
2495	 */
2496
2497	/*
2498	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2499	 * when they are not actively used by the task. In UP, the incoming process
2500	 * may otherwise pick up left over PMC, PMD state from the previous process.
2501	 * As opposed to PMD, stale PMC can cause harm to the incoming
2502	 * process because they may change what is being measured.
2503	 * Therefore, we must systematically reinstall the entire
2504	 * PMC state. In SMP, the same thing is possible on the
2505	 * same CPU but also on between 2 CPUs.
2506	 *
2507	 * The problem with PMD is information leaking especially
2508	 * to user level when psr.sp=0
2509	 *
2510	 * There is unfortunately no easy way to avoid this problem
2511	 * on either UP or SMP. This definitively slows down the
2512	 * pfm_load_regs() function.
2513	 */
2514
2515	 /*
2516	  * bitmask of all PMCs accessible to this context
2517	  *
2518	  * PMC0 is treated differently.
2519	  */
2520	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2521
2522	/*
2523	 * bitmask of all PMDs that are accessible to this context
2524	 */
2525	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2526
2527	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2528
2529	/*
2530	 * useful in case of re-enable after disable
2531	 */
2532	ctx->ctx_used_ibrs[0] = 0UL;
2533	ctx->ctx_used_dbrs[0] = 0UL;
2534}
2535
2536static int
2537pfm_ctx_getsize(void *arg, size_t *sz)
2538{
2539	pfarg_context_t *req = (pfarg_context_t *)arg;
2540	pfm_buffer_fmt_t *fmt;
2541
2542	*sz = 0;
2543
2544	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2545
2546	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547	if (fmt == NULL) {
2548		DPRINT(("cannot find buffer format\n"));
2549		return -EINVAL;
2550	}
2551	/* get just enough to copy in user parameters */
2552	*sz = fmt->fmt_arg_size;
2553	DPRINT(("arg_size=%lu\n", *sz));
2554
2555	return 0;
2556}
2557
2558
2559
2560/*
2561 * cannot attach if :
2562 * 	- kernel task
2563 * 	- task not owned by caller
2564 * 	- task incompatible with context mode
2565 */
2566static int
2567pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2568{
2569	/*
2570	 * no kernel task or task not owner by caller
2571	 */
2572	if (task->mm == NULL) {
2573		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2574		return -EPERM;
2575	}
2576	if (pfm_bad_permissions(task)) {
2577		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2578		return -EPERM;
2579	}
2580	/*
2581	 * cannot block in self-monitoring mode
2582	 */
2583	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2584		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2585		return -EINVAL;
2586	}
2587
2588	if (task->exit_state == EXIT_ZOMBIE) {
2589		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2590		return -EBUSY;
2591	}
2592
2593	/*
2594	 * always ok for self
2595	 */
2596	if (task == current) return 0;
2597
2598	if (!task_is_stopped_or_traced(task)) {
2599		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2600		return -EBUSY;
2601	}
2602	/*
2603	 * make sure the task is off any CPU
2604	 */
2605	wait_task_inactive(task, 0);
2606
2607	/* more to come... */
2608
2609	return 0;
2610}
2611
2612static int
2613pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2614{
2615	struct task_struct *p = current;
2616	int ret;
2617
2618	/* XXX: need to add more checks here */
2619	if (pid < 2) return -EPERM;
2620
2621	if (pid != task_pid_vnr(current)) {
2622
2623		read_lock(&tasklist_lock);
2624
2625		p = find_task_by_vpid(pid);
2626
2627		/* make sure task cannot go away while we operate on it */
2628		if (p) get_task_struct(p);
2629
2630		read_unlock(&tasklist_lock);
2631
2632		if (p == NULL) return -ESRCH;
2633	}
2634
2635	ret = pfm_task_incompatible(ctx, p);
2636	if (ret == 0) {
2637		*task = p;
2638	} else if (p != current) {
2639		pfm_put_task(p);
2640	}
2641	return ret;
2642}
2643
2644
2645
2646static int
2647pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2648{
2649	pfarg_context_t *req = (pfarg_context_t *)arg;
2650	struct file *filp;
2651	struct path path;
2652	int ctx_flags;
2653	int fd;
2654	int ret;
2655
2656	/* let's check the arguments first */
2657	ret = pfarg_is_sane(current, req);
2658	if (ret < 0)
2659		return ret;
2660
2661	ctx_flags = req->ctx_flags;
2662
2663	ret = -ENOMEM;
2664
2665	fd = get_unused_fd();
2666	if (fd < 0)
2667		return fd;
2668
2669	ctx = pfm_context_alloc(ctx_flags);
2670	if (!ctx)
2671		goto error;
2672
2673	filp = pfm_alloc_file(ctx);
2674	if (IS_ERR(filp)) {
2675		ret = PTR_ERR(filp);
2676		goto error_file;
2677	}
2678
2679	req->ctx_fd = ctx->ctx_fd = fd;
2680
2681	/*
2682	 * does the user want to sample?
2683	 */
2684	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2685		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2686		if (ret)
2687			goto buffer_error;
2688	}
2689
2690	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2691		ctx,
2692		ctx_flags,
2693		ctx->ctx_fl_system,
2694		ctx->ctx_fl_block,
2695		ctx->ctx_fl_excl_idle,
2696		ctx->ctx_fl_no_msg,
2697		ctx->ctx_fd));
2698
2699	/*
2700	 * initialize soft PMU state
2701	 */
2702	pfm_reset_pmu_state(ctx);
2703
2704	fd_install(fd, filp);
2705
2706	return 0;
2707
2708buffer_error:
2709	path = filp->f_path;
2710	put_filp(filp);
2711	path_put(&path);
2712
2713	if (ctx->ctx_buf_fmt) {
2714		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2715	}
2716error_file:
2717	pfm_context_free(ctx);
2718
2719error:
2720	put_unused_fd(fd);
2721	return ret;
2722}
2723
2724static inline unsigned long
2725pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2726{
2727	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2728	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2729	extern unsigned long carta_random32 (unsigned long seed);
2730
2731	if (reg->flags & PFM_REGFL_RANDOM) {
2732		new_seed = carta_random32(old_seed);
2733		val -= (old_seed & mask);	/* counter values are negative numbers! */
2734		if ((mask >> 32) != 0)
2735			/* construct a full 64-bit random value: */
2736			new_seed |= carta_random32(old_seed >> 32) << 32;
2737		reg->seed = new_seed;
2738	}
2739	reg->lval = val;
2740	return val;
2741}
2742
2743static void
2744pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2745{
2746	unsigned long mask = ovfl_regs[0];
2747	unsigned long reset_others = 0UL;
2748	unsigned long val;
2749	int i;
2750
2751	/*
2752	 * now restore reset value on sampling overflowed counters
2753	 */
2754	mask >>= PMU_FIRST_COUNTER;
2755	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2756
2757		if ((mask & 0x1UL) == 0UL) continue;
2758
2759		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2760		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2761
2762		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2763	}
2764
2765	/*
2766	 * Now take care of resetting the other registers
2767	 */
2768	for(i = 0; reset_others; i++, reset_others >>= 1) {
2769
2770		if ((reset_others & 0x1) == 0) continue;
2771
2772		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2773
2774		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775			  is_long_reset ? "long" : "short", i, val));
2776	}
2777}
2778
2779static void
2780pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2781{
2782	unsigned long mask = ovfl_regs[0];
2783	unsigned long reset_others = 0UL;
2784	unsigned long val;
2785	int i;
2786
2787	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2788
2789	if (ctx->ctx_state == PFM_CTX_MASKED) {
2790		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2791		return;
2792	}
2793
2794	/*
2795	 * now restore reset value on sampling overflowed counters
2796	 */
2797	mask >>= PMU_FIRST_COUNTER;
2798	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2799
2800		if ((mask & 0x1UL) == 0UL) continue;
2801
2802		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2803		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2804
2805		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2806
2807		pfm_write_soft_counter(ctx, i, val);
2808	}
2809
2810	/*
2811	 * Now take care of resetting the other registers
2812	 */
2813	for(i = 0; reset_others; i++, reset_others >>= 1) {
2814
2815		if ((reset_others & 0x1) == 0) continue;
2816
2817		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2818
2819		if (PMD_IS_COUNTING(i)) {
2820			pfm_write_soft_counter(ctx, i, val);
2821		} else {
2822			ia64_set_pmd(i, val);
2823		}
2824		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825			  is_long_reset ? "long" : "short", i, val));
2826	}
2827	ia64_srlz_d();
2828}
2829
2830static int
2831pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2832{
2833	struct task_struct *task;
2834	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2835	unsigned long value, pmc_pm;
2836	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2837	unsigned int cnum, reg_flags, flags, pmc_type;
2838	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2839	int is_monitor, is_counting, state;
2840	int ret = -EINVAL;
2841	pfm_reg_check_t	wr_func;
2842#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2843
2844	state     = ctx->ctx_state;
2845	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2846	is_system = ctx->ctx_fl_system;
2847	task      = ctx->ctx_task;
2848	impl_pmds = pmu_conf->impl_pmds[0];
2849
2850	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2851
2852	if (is_loaded) {
2853		/*
2854		 * In system wide and when the context is loaded, access can only happen
2855		 * when the caller is running on the CPU being monitored by the session.
2856		 * It does not have to be the owner (ctx_task) of the context per se.
2857		 */
2858		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2859			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2860			return -EBUSY;
2861		}
2862		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2863	}
2864	expert_mode = pfm_sysctl.expert_mode; 
2865
2866	for (i = 0; i < count; i++, req++) {
2867
2868		cnum       = req->reg_num;
2869		reg_flags  = req->reg_flags;
2870		value      = req->reg_value;
2871		smpl_pmds  = req->reg_smpl_pmds[0];
2872		reset_pmds = req->reg_reset_pmds[0];
2873		flags      = 0;
2874
2875
2876		if (cnum >= PMU_MAX_PMCS) {
2877			DPRINT(("pmc%u is invalid\n", cnum));
2878			goto error;
2879		}
2880
2881		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2882		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2883		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2884		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2885
2886		/*
2887		 * we reject all non implemented PMC as well
2888		 * as attempts to modify PMC[0-3] which are used
2889		 * as status registers by the PMU
2890		 */
2891		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2892			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2893			goto error;
2894		}
2895		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2896		/*
2897		 * If the PMC is a monitor, then if the value is not the default:
2898		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2899		 * 	- per-task           : PMCx.pm=0 (user monitor)
2900		 */
2901		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2902			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2903				cnum,
2904				pmc_pm,
2905				is_system));
2906			goto error;
2907		}
2908
2909		if (is_counting) {
2910			/*
2911		 	 * enforce generation of overflow interrupt. Necessary on all
2912		 	 * CPUs.
2913		 	 */
2914			value |= 1 << PMU_PMC_OI;
2915
2916			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2917				flags |= PFM_REGFL_OVFL_NOTIFY;
2918			}
2919
2920			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2921
2922			/* verify validity of smpl_pmds */
2923			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2924				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2925				goto error;
2926			}
2927
2928			/* verify validity of reset_pmds */
2929			if ((reset_pmds & impl_pmds) != reset_pmds) {
2930				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2931				goto error;
2932			}
2933		} else {
2934			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2935				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2936				goto error;
2937			}
2938			/* eventid on non-counting monitors are ignored */
2939		}
2940
2941		/*
2942		 * execute write checker, if any
2943		 */
2944		if (likely(expert_mode == 0 && wr_func)) {
2945			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2946			if (ret) goto error;
2947			ret = -EINVAL;
2948		}
2949
2950		/*
2951		 * no error on this register
2952		 */
2953		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2954
2955		/*
2956		 * Now we commit the changes to the software state
2957		 */
2958
2959		/*
2960		 * update overflow information
2961		 */
2962		if (is_counting) {
2963			/*
2964		 	 * full flag update each time a register is programmed
2965		 	 */
2966			ctx->ctx_pmds[cnum].flags = flags;
2967
2968			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2969			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2970			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2971
2972			/*
2973			 * Mark all PMDS to be accessed as used.
2974			 *
2975			 * We do not keep track of PMC because we have to
2976			 * systematically restore ALL of them.
2977			 *
2978			 * We do not update the used_monitors mask, because
2979			 * if we have not programmed them, then will be in
2980			 * a quiescent state, therefore we will not need to
2981			 * mask/restore then when context is MASKED.
2982			 */
2983			CTX_USED_PMD(ctx, reset_pmds);
2984			CTX_USED_PMD(ctx, smpl_pmds);
2985			/*
2986		 	 * make sure we do not try to reset on
2987		 	 * restart because we have established new values
2988		 	 */
2989			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2990		}
2991		/*
2992		 * Needed in case the user does not initialize the equivalent
2993		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994		 * possible leak here.
2995		 */
2996		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2997
2998		/*
2999		 * keep track of the monitor PMC that we are using.
3000		 * we save the value of the pmc in ctx_pmcs[] and if
3001		 * the monitoring is not stopped for the context we also
3002		 * place it in the saved state area so that it will be
3003		 * picked up later by the context switch code.
3004		 *
3005		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3006		 *
3007		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3008		 * monitoring needs to be stopped.
3009		 */
3010		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3011
3012		/*
3013		 * update context state
3014		 */
3015		ctx->ctx_pmcs[cnum] = value;
3016
3017		if (is_loaded) {
3018			/*
3019			 * write thread state
3020			 */
3021			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3022
3023			/*
3024			 * write hardware register if we can
3025			 */
3026			if (can_access_pmu) {
3027				ia64_set_pmc(cnum, value);
3028			}
3029#ifdef CONFIG_SMP
3030			else {
3031				/*
3032				 * per-task SMP only here
3033				 *
3034			 	 * we are guaranteed that the task is not running on the other CPU,
3035			 	 * we indicate that this PMD will need to be reloaded if the task
3036			 	 * is rescheduled on the CPU it ran last on.
3037			 	 */
3038				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3039			}
3040#endif
3041		}
3042
3043		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3044			  cnum,
3045			  value,
3046			  is_loaded,
3047			  can_access_pmu,
3048			  flags,
3049			  ctx->ctx_all_pmcs[0],
3050			  ctx->ctx_used_pmds[0],
3051			  ctx->ctx_pmds[cnum].eventid,
3052			  smpl_pmds,
3053			  reset_pmds,
3054			  ctx->ctx_reload_pmcs[0],
3055			  ctx->ctx_used_monitors[0],
3056			  ctx->ctx_ovfl_regs[0]));
3057	}
3058
3059	/*
3060	 * make sure the changes are visible
3061	 */
3062	if (can_access_pmu) ia64_srlz_d();
3063
3064	return 0;
3065error:
3066	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3067	return ret;
3068}
3069
3070static int
3071pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3072{
3073	struct task_struct *task;
3074	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3075	unsigned long value, hw_value, ovfl_mask;
3076	unsigned int cnum;
3077	int i, can_access_pmu = 0, state;
3078	int is_counting, is_loaded, is_system, expert_mode;
3079	int ret = -EINVAL;
3080	pfm_reg_check_t wr_func;
3081
3082
3083	state     = ctx->ctx_state;
3084	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3085	is_system = ctx->ctx_fl_system;
3086	ovfl_mask = pmu_conf->ovfl_val;
3087	task      = ctx->ctx_task;
3088
3089	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3090
3091	/*
3092	 * on both UP and SMP, we can only write to the PMC when the task is
3093	 * the owner of the local PMU.
3094	 */
3095	if (likely(is_loaded)) {
3096		/*
3097		 * In system wide and when the context is loaded, access can only happen
3098		 * when the caller is running on the CPU being monitored by the session.
3099		 * It does not have to be the owner (ctx_task) of the context per se.
3100		 */
3101		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3102			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3103			return -EBUSY;
3104		}
3105		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3106	}
3107	expert_mode = pfm_sysctl.expert_mode; 
3108
3109	for (i = 0; i < count; i++, req++) {
3110
3111		cnum  = req->reg_num;
3112		value = req->reg_value;
3113
3114		if (!PMD_IS_IMPL(cnum)) {
3115			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3116			goto abort_mission;
3117		}
3118		is_counting = PMD_IS_COUNTING(cnum);
3119		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3120
3121		/*
3122		 * execute write checker, if any
3123		 */
3124		if (unlikely(expert_mode == 0 && wr_func)) {
3125			unsigned long v = value;
3126
3127			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3128			if (ret) goto abort_mission;
3129
3130			value = v;
3131			ret   = -EINVAL;
3132		}
3133
3134		/*
3135		 * no error on this register
3136		 */
3137		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3138
3139		/*
3140		 * now commit changes to software state
3141		 */
3142		hw_value = value;
3143
3144		/*
3145		 * update virtualized (64bits) counter
3146		 */
3147		if (is_counting) {
3148			/*
3149			 * write context state
3150			 */
3151			ctx->ctx_pmds[cnum].lval = value;
3152
3153			/*
3154			 * when context is load we use the split value
3155			 */
3156			if (is_loaded) {
3157				hw_value = value &  ovfl_mask;
3158				value    = value & ~ovfl_mask;
3159			}
3160		}
3161		/*
3162		 * update reset values (not just for counters)
3163		 */
3164		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3165		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3166
3167		/*
3168		 * update randomization parameters (not just for counters)
3169		 */
3170		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3171		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3172
3173		/*
3174		 * update context value
3175		 */
3176		ctx->ctx_pmds[cnum].val  = value;
3177
3178		/*
3179		 * Keep track of what we use
3180		 *
3181		 * We do not keep track of PMC because we have to
3182		 * systematically restore ALL of them.
3183		 */
3184		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3185
3186		/*
3187		 * mark this PMD register used as well
3188		 */
3189		CTX_USED_PMD(ctx, RDEP(cnum));
3190
3191		/*
3192		 * make sure we do not try to reset on
3193		 * restart because we have established new values
3194		 */
3195		if (is_counting && state == PFM_CTX_MASKED) {
3196			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3197		}
3198
3199		if (is_loaded) {
3200			/*
3201		 	 * write thread state
3202		 	 */
3203			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3204
3205			/*
3206			 * write hardware register if we can
3207			 */
3208			if (can_access_pmu) {
3209				ia64_set_pmd(cnum, hw_value);
3210			} else {
3211#ifdef CONFIG_SMP
3212				/*
3213			 	 * we are guaranteed that the task is not running on the other CPU,
3214			 	 * we indicate that this PMD will need to be reloaded if the task
3215			 	 * is rescheduled on the CPU it ran last on.
3216			 	 */
3217				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3218#endif
3219			}
3220		}
3221
3222		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3223			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3224			cnum,
3225			value,
3226			is_loaded,
3227			can_access_pmu,
3228			hw_value,
3229			ctx->ctx_pmds[cnum].val,
3230			ctx->ctx_pmds[cnum].short_reset,
3231			ctx->ctx_pmds[cnum].long_reset,
3232			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3233			ctx->ctx_pmds[cnum].seed,
3234			ctx->ctx_pmds[cnum].mask,
3235			ctx->ctx_used_pmds[0],
3236			ctx->ctx_pmds[cnum].reset_pmds[0],
3237			ctx->ctx_reload_pmds[0],
3238			ctx->ctx_all_pmds[0],
3239			ctx->ctx_ovfl_regs[0]));
3240	}
3241
3242	/*
3243	 * make changes visible
3244	 */
3245	if (can_access_pmu) ia64_srlz_d();
3246
3247	return 0;
3248
3249abort_mission:
3250	/*
3251	 * for now, we have only one possibility for error
3252	 */
3253	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3254	return ret;
3255}
3256
3257/*
3258 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260 * interrupt is delivered during the call, it will be kept pending until we leave, making
3261 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262 * guaranteed to return consistent data to the user, it may simply be old. It is not
3263 * trivial to treat the overflow while inside the call because you may end up in
3264 * some module sampling buffer code causing deadlocks.
3265 */
3266static int
3267pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3268{
3269	struct task_struct *task;
3270	unsigned long val = 0UL, lval, ovfl_mask, sval;
3271	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3272	unsigned int cnum, reg_flags = 0;
3273	int i, can_access_pmu = 0, state;
3274	int is_loaded, is_system, is_counting, expert_mode;
3275	int ret = -EINVAL;
3276	pfm_reg_check_t rd_func;
3277
3278	/*
3279	 * access is possible when loaded only for
3280	 * self-monitoring tasks or in UP mode
3281	 */
3282
3283	state     = ctx->ctx_state;
3284	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3285	is_system = ctx->ctx_fl_system;
3286	ovfl_mask = pmu_conf->ovfl_val;
3287	task      = ctx->ctx_task;
3288
3289	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3290
3291	if (likely(is_loaded)) {
3292		/*
3293		 * In system wide and when the context is loaded, access can only happen
3294		 * when the caller is running on the CPU being monitored by the session.
3295		 * It does not have to be the owner (ctx_task) of the context per se.
3296		 */
3297		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3298			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3299			return -EBUSY;
3300		}
3301		/*
3302		 * this can be true when not self-monitoring only in UP
3303		 */
3304		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3305
3306		if (can_access_pmu) ia64_srlz_d();
3307	}
3308	expert_mode = pfm_sysctl.expert_mode; 
3309
3310	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3311		is_loaded,
3312		can_access_pmu,
3313		state));
3314
3315	/*
3316	 * on both UP and SMP, we can only read the PMD from the hardware register when
3317	 * the task is the owner of the local PMU.
3318	 */
3319
3320	for (i = 0; i < count; i++, req++) {
3321
3322		cnum        = req->reg_num;
3323		reg_flags   = req->reg_flags;
3324
3325		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3326		/*
3327		 * we can only read the register that we use. That includes
3328		 * the one we explicitly initialize AND the one we want included
3329		 * in the sampling buffer (smpl_regs).
3330		 *
3331		 * Having this restriction allows optimization in the ctxsw routine
3332		 * without compromising security (leaks)
3333		 */
3334		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3335
3336		sval        = ctx->ctx_pmds[cnum].val;
3337		lval        = ctx->ctx_pmds[cnum].lval;
3338		is_counting = PMD_IS_COUNTING(cnum);
3339
3340		/*
3341		 * If the task is not the current one, then we check if the
3342		 * PMU state is still in the local live register due to lazy ctxsw.
3343		 * If true, then we read directly from the registers.
3344		 */
3345		if (can_access_pmu){
3346			val = ia64_get_pmd(cnum);
3347		} else {
3348			/*
3349			 * context has been saved
3350			 * if context is zombie, then task does not exist anymore.
3351			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3352			 */
3353			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3354		}
3355		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3356
3357		if (is_counting) {
3358			/*
3359			 * XXX: need to check for overflow when loaded
3360			 */
3361			val &= ovfl_mask;
3362			val += sval;
3363		}
3364
3365		/*
3366		 * execute read checker, if any
3367		 */
3368		if (unlikely(expert_mode == 0 && rd_func)) {
3369			unsigned long v = val;
3370			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3371			if (ret) goto error;
3372			val = v;
3373			ret = -EINVAL;
3374		}
3375
3376		PFM_REG_RETFLAG_SET(reg_flags, 0);
3377
3378		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3379
3380		/*
3381		 * update register return value, abort all if problem during copy.
3382		 * we only modify the reg_flags field. no check mode is fine because
3383		 * access has been verified upfront in sys_perfmonctl().
3384		 */
3385		req->reg_value            = val;
3386		req->reg_flags            = reg_flags;
3387		req->reg_last_reset_val   = lval;
3388	}
3389
3390	return 0;
3391
3392error:
3393	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3394	return ret;
3395}
3396
3397int
3398pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3399{
3400	pfm_context_t *ctx;
3401
3402	if (req == NULL) return -EINVAL;
3403
3404 	ctx = GET_PMU_CTX();
3405
3406	if (ctx == NULL) return -EINVAL;
3407
3408	/*
3409	 * for now limit to current task, which is enough when calling
3410	 * from overflow handler
3411	 */
3412	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3413
3414	return pfm_write_pmcs(ctx, req, nreq, regs);
3415}
3416EXPORT_SYMBOL(pfm_mod_write_pmcs);
3417
3418int
3419pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3420{
3421	pfm_context_t *ctx;
3422
3423	if (req == NULL) return -EINVAL;
3424
3425 	ctx = GET_PMU_CTX();
3426
3427	if (ctx == NULL) return -EINVAL;
3428
3429	/*
3430	 * for now limit to current task, which is enough when calling
3431	 * from overflow handler
3432	 */
3433	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3434
3435	return pfm_read_pmds(ctx, req, nreq, regs);
3436}
3437EXPORT_SYMBOL(pfm_mod_read_pmds);
3438
3439/*
3440 * Only call this function when a process it trying to
3441 * write the debug registers (reading is always allowed)
3442 */
3443int
3444pfm_use_debug_registers(struct task_struct *task)
3445{
3446	pfm_context_t *ctx = task->thread.pfm_context;
3447	unsigned long flags;
3448	int ret = 0;
3449
3450	if (pmu_conf->use_rr_dbregs == 0) return 0;
3451
3452	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3453
3454	/*
3455	 * do it only once
3456	 */
3457	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3458
3459	/*
3460	 * Even on SMP, we do not need to use an atomic here because
3461	 * the only way in is via ptrace() and this is possible only when the
3462	 * process is stopped. Even in the case where the ctxsw out is not totally
3463	 * completed by the time we come here, there is no way the 'stopped' process
3464	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465	 * So this is always safe.
3466	 */
3467	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3468
3469	LOCK_PFS(flags);
3470
3471	/*
3472	 * We cannot allow setting breakpoints when system wide monitoring
3473	 * sessions are using the debug registers.
3474	 */
3475	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3476		ret = -1;
3477	else
3478		pfm_sessions.pfs_ptrace_use_dbregs++;
3479
3480	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3481		  pfm_sessions.pfs_ptrace_use_dbregs,
3482		  pfm_sessions.pfs_sys_use_dbregs,
3483		  task_pid_nr(task), ret));
3484
3485	UNLOCK_PFS(flags);
3486
3487	return ret;
3488}
3489
3490/*
3491 * This function is called for every task that exits with the
3492 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493 * able to use the debug registers for debugging purposes via
3494 * ptrace(). Therefore we know it was not using them for
3495 * performance monitoring, so we only decrement the number
3496 * of "ptraced" debug register users to keep the count up to date
3497 */
3498int
3499pfm_release_debug_registers(struct task_struct *task)
3500{
3501	unsigned long flags;
3502	int ret;
3503
3504	if (pmu_conf->use_rr_dbregs == 0) return 0;
3505
3506	LOCK_PFS(flags);
3507	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3508		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3509		ret = -1;
3510	}  else {
3511		pfm_sessions.pfs_ptrace_use_dbregs--;
3512		ret = 0;
3513	}
3514	UNLOCK_PFS(flags);
3515
3516	return ret;
3517}
3518
3519static int
3520pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3521{
3522	struct task_struct *task;
3523	pfm_buffer_fmt_t *fmt;
3524	pfm_ovfl_ctrl_t rst_ctrl;
3525	int state, is_system;
3526	int ret = 0;
3527
3528	state     = ctx->ctx_state;
3529	fmt       = ctx->ctx_buf_fmt;
3530	is_system = ctx->ctx_fl_system;
3531	task      = PFM_CTX_TASK(ctx);
3532
3533	switch(state) {
3534		case PFM_CTX_MASKED:
3535			break;
3536		case PFM_CTX_LOADED: 
3537			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3538			/* fall through */
3539		case PFM_CTX_UNLOADED:
3540		case PFM_CTX_ZOMBIE:
3541			DPRINT(("invalid state=%d\n", state));
3542			return -EBUSY;
3543		default:
3544			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3545			return -EINVAL;
3546	}
3547
3548	/*
3549 	 * In system wide and when the context is loaded, access can only happen
3550 	 * when the caller is running on the CPU being monitored by the session.
3551 	 * It does not have to be the owner (ctx_task) of the context per se.
3552 	 */
3553	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3554		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3555		return -EBUSY;
3556	}
3557
3558	/* sanity check */
3559	if (unlikely(task == NULL)) {
3560		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3561		return -EINVAL;
3562	}
3563
3564	if (task == current || is_system) {
3565
3566		fmt = ctx->ctx_buf_fmt;
3567
3568		DPRINT(("restarting self %d ovfl=0x%lx\n",
3569			task_pid_nr(task),
3570			ctx->ctx_ovfl_regs[0]));
3571
3572		if (CTX_HAS_SMPL(ctx)) {
3573
3574			prefetch(ctx->ctx_smpl_hdr);
3575
3576			rst_ctrl.bits.mask_monitoring = 0;
3577			rst_ctrl.bits.reset_ovfl_pmds = 0;
3578
3579			if (state == PFM_CTX_LOADED)
3580				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3581			else
3582				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3583		} else {
3584			rst_ctrl.bits.mask_monitoring = 0;
3585			rst_ctrl.bits.reset_ovfl_pmds = 1;
3586		}
3587
3588		if (ret == 0) {
3589			if (rst_ctrl.bits.reset_ovfl_pmds)
3590				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3591
3592			if (rst_ctrl.bits.mask_monitoring == 0) {
3593				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3594
3595				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3596			} else {
3597				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3598
3599				// cannot use pfm_stop_monitoring(task, regs);
3600			}
3601		}
3602		/*
3603		 * clear overflowed PMD mask to remove any stale information
3604		 */
3605		ctx->ctx_ovfl_regs[0] = 0UL;
3606
3607		/*
3608		 * back to LOADED state
3609		 */
3610		ctx->ctx_state = PFM_CTX_LOADED;
3611
3612		/*
3613		 * XXX: not really useful for self monitoring
3614		 */
3615		ctx->ctx_fl_can_restart = 0;
3616
3617		return 0;
3618	}
3619
3620	/* 
3621	 * restart another task
3622	 */
3623
3624	/*
3625	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3626	 * one is seen by the task.
3627	 */
3628	if (state == PFM_CTX_MASKED) {
3629		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3630		/*
3631		 * will prevent subsequent restart before this one is
3632		 * seen by other task
3633		 */
3634		ctx->ctx_fl_can_restart = 0;
3635	}
3636
3637	/*
3638	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639	 * the task is blocked or on its way to block. That's the normal
3640	 * restart path. If the monitoring is not masked, then the task
3641	 * can be actively monitoring and we cannot directly intervene.
3642	 * Therefore we use the trap mechanism to catch the task and
3643	 * force it to reset the buffer/reset PMDs.
3644	 *
3645	 * if non-blocking, then we ensure that the task will go into
3646	 * pfm_handle_work() before returning to user mode.
3647	 *
3648	 * We cannot explicitly reset another task, it MUST always
3649	 * be done by the task itself. This works for system wide because
3650	 * the tool that is controlling the session is logically doing 
3651	 * "self-monitoring".
3652	 */
3653	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3654		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3655		complete(&ctx->ctx_restart_done);
3656	} else {
3657		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3658
3659		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3660
3661		PFM_SET_WORK_PENDING(task, 1);
3662
3663		set_notify_resume(task);
3664
3665		/*
3666		 * XXX: send reschedule if task runs on another CPU
3667		 */
3668	}
3669	return 0;
3670}
3671
3672static int
3673pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3674{
3675	unsigned int m = *(unsigned int *)arg;
3676
3677	pfm_sysctl.debug = m == 0 ? 0 : 1;
3678
3679	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3680
3681	if (m == 0) {
3682		memset(pfm_stats, 0, sizeof(pfm_stats));
3683		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3684	}
3685	return 0;
3686}
3687
3688/*
3689 * arg can be NULL and count can be zero for this function
3690 */
3691static int
3692pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3693{
3694	struct thread_struct *thread = NULL;
3695	struct task_struct *task;
3696	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3697	unsigned long flags;
3698	dbreg_t dbreg;
3699	unsigned int rnum;
3700	int first_time;
3701	int ret = 0, state;
3702	int i, can_access_pmu = 0;
3703	int is_system, is_loaded;
3704
3705	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3706
3707	state     = ctx->ctx_state;
3708	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3709	is_system = ctx->ctx_fl_system;
3710	task      = ctx->ctx_task;
3711
3712	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3713
3714	/*
3715	 * on both UP and SMP, we can only write to the PMC when the task is
3716	 * the owner of the local PMU.
3717	 */
3718	if (is_loaded) {
3719		thread = &task->thread;
3720		/*
3721		 * In system wide and when the context is loaded, access can only happen
3722		 * when the caller is running on the CPU being monitored by the session.
3723		 * It does not have to be the owner (ctx_task) of the context per se.
3724		 */
3725		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3726			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3727			return -EBUSY;
3728		}
3729		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3730	}
3731
3732	/*
3733	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734	 * ensuring that no real breakpoint can be installed via this call.
3735	 *
3736	 * IMPORTANT: regs can be NULL in this function
3737	 */
3738
3739	first_time = ctx->ctx_fl_using_dbreg == 0;
3740
3741	/*
3742	 * don't bother if we are loaded and task is being debugged
3743	 */
3744	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3745		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3746		return -EBUSY;
3747	}
3748
3749	/*
3750	 * check for debug registers in system wide mode
3751	 *
3752	 * If though a check is done in pfm_context_load(),
3753	 * we must repeat it here, in case the registers are
3754	 * written after the context is loaded
3755	 */
3756	if (is_loaded) {
3757		LOCK_PFS(flags);
3758
3759		if (first_time && is_system) {
3760			if (pfm_sessions.pfs_ptrace_use_dbregs)
3761				ret = -EBUSY;
3762			else
3763				pfm_sessions.pfs_sys_use_dbregs++;
3764		}
3765		UNLOCK_PFS(flags);
3766	}
3767
3768	if (ret != 0) return ret;
3769
3770	/*
3771	 * mark ourself as user of the debug registers for
3772	 * perfmon purposes.
3773	 */
3774	ctx->ctx_fl_using_dbreg = 1;
3775
3776	/*
3777 	 * clear hardware registers to make sure we don't
3778 	 * pick up stale state.
3779	 *
3780	 * for a system wide session, we do not use
3781	 * thread.dbr, thread.ibr because this process
3782	 * never leaves the current CPU and the state
3783	 * is shared by all processes running on it
3784 	 */
3785	if (first_time && can_access_pmu) {
3786		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3787		for (i=0; i < pmu_conf->num_ibrs; i++) {
3788			ia64_set_ibr(i, 0UL);
3789			ia64_dv_serialize_instruction();
3790		}
3791		ia64_srlz_i();
3792		for (i=0; i < pmu_conf->num_dbrs; i++) {
3793			ia64_set_dbr(i, 0UL);
3794			ia64_dv_serialize_data();
3795		}
3796		ia64_srlz_d();
3797	}
3798
3799	/*
3800	 * Now install the values into the registers
3801	 */
3802	for (i = 0; i < count; i++, req++) {
3803
3804		rnum      = req->dbreg_num;
3805		dbreg.val = req->dbreg_value;
3806
3807		ret = -EINVAL;
3808
3809		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3810			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811				  rnum, dbreg.val, mode, i, count));
3812
3813			goto abort_mission;
3814		}
3815
3816		/*
3817		 * make sure we do not install enabled breakpoint
3818		 */
3819		if (rnum & 0x1) {
3820			if (mode == PFM_CODE_RR)
3821				dbreg.ibr.ibr_x = 0;
3822			else
3823				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3824		}
3825
3826		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3827
3828		/*
3829		 * Debug registers, just like PMC, can only be modified
3830		 * by a kernel call. Moreover, perfmon() access to those
3831		 * registers are centralized in this routine. The hardware
3832		 * does not modify the value of these registers, therefore,
3833		 * if we save them as they are written, we can avoid having
3834		 * to save them on context switch out. This is made possible
3835		 * by the fact that when perfmon uses debug registers, ptrace()
3836		 * won't be able to modify them concurrently.
3837		 */
3838		if (mode == PFM_CODE_RR) {
3839			CTX_USED_IBR(ctx, rnum);
3840
3841			if (can_access_pmu) {
3842				ia64_set_ibr(rnum, dbreg.val);
3843				ia64_dv_serialize_instruction();
3844			}
3845
3846			ctx->ctx_ibrs[rnum] = dbreg.val;
3847
3848			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3850		} else {
3851			CTX_USED_DBR(ctx, rnum);
3852
3853			if (can_access_pmu) {
3854				ia64_set_dbr(rnum, dbreg.val);
3855				ia64_dv_serialize_data();
3856			}
3857			ctx->ctx_dbrs[rnum] = dbreg.val;
3858
3859			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3861		}
3862	}
3863
3864	return 0;
3865
3866abort_mission:
3867	/*
3868	 * in case it was our first attempt, we undo the global modifications
3869	 */
3870	if (first_time) {
3871		LOCK_PFS(flags);
3872		if (ctx->ctx_fl_system) {
3873			pfm_sessions.pfs_sys_use_dbregs--;
3874		}
3875		UNLOCK_PFS(flags);
3876		ctx->ctx_fl_using_dbreg = 0;
3877	}
3878	/*
3879	 * install error return flag
3880	 */
3881	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3882
3883	return ret;
3884}
3885
3886static int
3887pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3888{
3889	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3890}
3891
3892static int
3893pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894{
3895	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3896}
3897
3898int
3899pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3900{
3901	pfm_context_t *ctx;
3902
3903	if (req == NULL) return -EINVAL;
3904
3905 	ctx = GET_PMU_CTX();
3906
3907	if (ctx == NULL) return -EINVAL;
3908
3909	/*
3910	 * for now limit to current task, which is enough when calling
3911	 * from overflow handler
3912	 */
3913	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3914
3915	return pfm_write_ibrs(ctx, req, nreq, regs);
3916}
3917EXPORT_SYMBOL(pfm_mod_write_ibrs);
3918
3919int
3920pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3921{
3922	pfm_context_t *ctx;
3923
3924	if (req == NULL) return -EINVAL;
3925
3926 	ctx = GET_PMU_CTX();
3927
3928	if (ctx == NULL) return -EINVAL;
3929
3930	/*
3931	 * for now limit to current task, which is enough when calling
3932	 * from overflow handler
3933	 */
3934	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3935
3936	return pfm_write_dbrs(ctx, req, nreq, regs);
3937}
3938EXPORT_SYMBOL(pfm_mod_write_dbrs);
3939
3940
3941static int
3942pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943{
3944	pfarg_features_t *req = (pfarg_features_t *)arg;
3945
3946	req->ft_version = PFM_VERSION;
3947	return 0;
3948}
3949
3950static int
3951pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952{
3953	struct pt_regs *tregs;
3954	struct task_struct *task = PFM_CTX_TASK(ctx);
3955	int state, is_system;
3956
3957	state     = ctx->ctx_state;
3958	is_system = ctx->ctx_fl_system;
3959
3960	/*
3961	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3962	 */
3963	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3964
3965	/*
3966 	 * In system wide and when the context is loaded, access can only happen
3967 	 * when the caller is running on the CPU being monitored by the session.
3968 	 * It does not have to be the owner (ctx_task) of the context per se.
3969 	 */
3970	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3971		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3972		return -EBUSY;
3973	}
3974	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975		task_pid_nr(PFM_CTX_TASK(ctx)),
3976		state,
3977		is_system));
3978	/*
3979	 * in system mode, we need to update the PMU directly
3980	 * and the user level state of the caller, which may not
3981	 * necessarily be the creator of the context.
3982	 */
3983	if (is_system) {
3984		/*
3985		 * Update local PMU first
3986		 *
3987		 * disable dcr pp
3988		 */
3989		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3990		ia64_srlz_i();
3991
3992		/*
3993		 * update local cpuinfo
3994		 */
3995		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3996
3997		/*
3998		 * stop monitoring, does srlz.i
3999		 */
4000		pfm_clear_psr_pp();
4001
4002		/*
4003		 * stop monitoring in the caller
4004		 */
4005		ia64_psr(regs)->pp = 0;
4006
4007		return 0;
4008	}
4009	/*
4010	 * per-task mode
4011	 */
4012
4013	if (task == current) {
4014		/* stop monitoring  at kernel level */
4015		pfm_clear_psr_up();
4016
4017		/*
4018	 	 * stop monitoring at the user level
4019	 	 */
4020		ia64_psr(regs)->up = 0;
4021	} else {
4022		tregs = task_pt_regs(task);
4023
4024		/*
4025	 	 * stop monitoring at the user level
4026	 	 */
4027		ia64_psr(tregs)->up = 0;
4028
4029		/*
4030		 * monitoring disabled in kernel at next reschedule
4031		 */
4032		ctx->ctx_saved_psr_up = 0;
4033		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4034	}
4035	return 0;
4036}
4037
4038
4039static int
4040pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4041{
4042	struct pt_regs *tregs;
4043	int state, is_system;
4044
4045	state     = ctx->ctx_state;
4046	is_system = ctx->ctx_fl_system;
4047
4048	if (state != PFM_CTX_LOADED) return -EINVAL;
4049
4050	/*
4051 	 * In system wide and when the context is loaded, access can only happen
4052 	 * when the caller is running on the CPU being monitored by the session.
4053 	 * It does not have to be the owner (ctx_task) of the context per se.
4054 	 */
4055	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4056		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4057		return -EBUSY;
4058	}
4059
4060	/*
4061	 * in system mode, we need to update the PMU directly
4062	 * and the user level state of the caller, which may not
4063	 * necessarily be the creator of the context.
4064	 */
4065	if (is_system) {
4066
4067		/*
4068		 * set user level psr.pp for the caller
4069		 */
4070		ia64_psr(regs)->pp = 1;
4071
4072		/*
4073		 * now update the local PMU and cpuinfo
4074		 */
4075		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4076
4077		/*
4078		 * start monitoring at kernel level
4079		 */
4080		pfm_set_psr_pp();
4081
4082		/* enable dcr pp */
4083		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4084		ia64_srlz_i();
4085
4086		return 0;
4087	}
4088
4089	/*
4090	 * per-process mode
4091	 */
4092
4093	if (ctx->ctx_task == current) {
4094
4095		/* start monitoring at kernel level */
4096		pfm_set_psr_up();
4097
4098		/*
4099		 * activate monitoring at user level
4100		 */
4101		ia64_psr(regs)->up = 1;
4102
4103	} else {
4104		tregs = task_pt_regs(ctx->ctx_task);
4105
4106		/*
4107		 * start monitoring at the kernel level the next
4108		 * time the task is scheduled
4109		 */
4110		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4111
4112		/*
4113		 * activate monitoring at user level
4114		 */
4115		ia64_psr(tregs)->up = 1;
4116	}
4117	return 0;
4118}
4119
4120static int
4121pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4122{
4123	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4124	unsigned int cnum;
4125	int i;
4126	int ret = -EINVAL;
4127
4128	for (i = 0; i < count; i++, req++) {
4129
4130		cnum = req->reg_num;
4131
4132		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4133
4134		req->reg_value = PMC_DFL_VAL(cnum);
4135
4136		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4137
4138		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4139	}
4140	return 0;
4141
4142abort_mission:
4143	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4144	return ret;
4145}
4146
4147static int
4148pfm_check_task_exist(pfm_context_t *ctx)
4149{
4150	struct task_struct *g, *t;
4151	int ret = -ESRCH;
4152
4153	read_lock(&tasklist_lock);
4154
4155	do_each_thread (g, t) {
4156		if (t->thread.pfm_context == ctx) {
4157			ret = 0;
4158			goto out;
4159		}
4160	} while_each_thread (g, t);
4161out:
4162	read_unlock(&tasklist_lock);
4163
4164	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4165
4166	return ret;
4167}
4168
4169static int
4170pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4171{
4172	struct task_struct *task;
4173	struct thread_struct *thread;
4174	struct pfm_context_t *old;
4175	unsigned long flags;
4176#ifndef CONFIG_SMP
4177	struct task_struct *owner_task = NULL;
4178#endif
4179	pfarg_load_t *req = (pfarg_load_t *)arg;
4180	unsigned long *pmcs_source, *pmds_source;
4181	int the_cpu;
4182	int ret = 0;
4183	int state, is_system, set_dbregs = 0;
4184
4185	state     = ctx->ctx_state;
4186	is_system = ctx->ctx_fl_system;
4187	/*
4188	 * can only load from unloaded or terminated state
4189	 */
4190	if (state != PFM_CTX_UNLOADED) {
4191		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4192			req->load_pid,
4193			ctx->ctx_state));
4194		return -EBUSY;
4195	}
4196
4197	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4198
4199	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4200		DPRINT(("cannot use blocking mode on self\n"));
4201		return -EINVAL;
4202	}
4203
4204	ret = pfm_get_task(ctx, req->load_pid, &task);
4205	if (ret) {
4206		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4207		return ret;
4208	}
4209
4210	ret = -EINVAL;
4211
4212	/*
4213	 * system wide is self monitoring only
4214	 */
4215	if (is_system && task != current) {
4216		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4217			req->load_pid));
4218		goto error;
4219	}
4220
4221	thread = &task->thread;
4222
4223	ret = 0;
4224	/*
4225	 * cannot load a context which is using range restrictions,
4226	 * into a task that is being debugged.
4227	 */
4228	if (ctx->ctx_fl_using_dbreg) {
4229		if (thread->flags & IA64_THREAD_DBG_VALID) {
4230			ret = -EBUSY;
4231			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4232			goto error;
4233		}
4234		LOCK_PFS(flags);
4235
4236		if (is_system) {
4237			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4238				DPRINT(("cannot load [%d] dbregs in use\n",
4239							task_pid_nr(task)));
4240				ret = -EBUSY;
4241			} else {
4242				pfm_sessions.pfs_sys_use_dbregs++;
4243				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4244				set_dbregs = 1;
4245			}
4246		}
4247
4248		UNLOCK_PFS(flags);
4249
4250		if (ret) goto error;
4251	}
4252
4253	/*
4254	 * SMP system-wide monitoring implies self-monitoring.
4255	 *
4256	 * The programming model expects the task to
4257	 * be pinned on a CPU throughout the session.
4258	 * Here we take note of the current CPU at the
4259	 * time the context is loaded. No call from
4260	 * another CPU will be allowed.
4261	 *
4262	 * The pinning via shed_setaffinity()
4263	 * must be done by the calling task prior
4264	 * to this call.
4265	 *
4266	 * systemwide: keep track of CPU this session is supposed to run on
4267	 */
4268	the_cpu = ctx->ctx_cpu = smp_processor_id();
4269
4270	ret = -EBUSY;
4271	/*
4272	 * now reserve the session
4273	 */
4274	ret = pfm_reserve_session(current, is_system, the_cpu);
4275	if (ret) goto error;
4276
4277	/*
4278	 * task is necessarily stopped at this point.
4279	 *
4280	 * If the previous context was zombie, then it got removed in
4281	 * pfm_save_regs(). Therefore we should not see it here.
4282	 * If we see a context, then this is an active context
4283	 *
4284	 * XXX: needs to be atomic
4285	 */
4286	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287		thread->pfm_context, ctx));
4288
4289	ret = -EBUSY;
4290	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4291	if (old != NULL) {
4292		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4293		goto error_unres;
4294	}
4295
4296	pfm_reset_msgq(ctx);
4297
4298	ctx->ctx_state = PFM_CTX_LOADED;
4299
4300	/*
4301	 * link context to task
4302	 */
4303	ctx->ctx_task = task;
4304
4305	if (is_system) {
4306		/*
4307		 * we load as stopped
4308		 */
4309		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4310		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4311
4312		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4313	} else {
4314		thread->flags |= IA64_THREAD_PM_VALID;
4315	}
4316
4317	/*
4318	 * propagate into thread-state
4319	 */
4320	pfm_copy_pmds(task, ctx);
4321	pfm_copy_pmcs(task, ctx);
4322
4323	pmcs_source = ctx->th_pmcs;
4324	pmds_source = ctx->th_pmds;
4325
4326	/*
4327	 * always the case for system-wide
4328	 */
4329	if (task == current) {
4330
4331		if (is_system == 0) {
4332
4333			/* allow user level control */
4334			ia64_psr(regs)->sp = 0;
4335			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4336
4337			SET_LAST_CPU(ctx, smp_processor_id());
4338			INC_ACTIVATION();
4339			SET_ACTIVATION(ctx);
4340#ifndef CONFIG_SMP
4341			/*
4342			 * push the other task out, if any
4343			 */
4344			owner_task = GET_PMU_OWNER();
4345			if (owner_task) pfm_lazy_save_regs(owner_task);
4346#endif
4347		}
4348		/*
4349		 * load all PMD from ctx to PMU (as opposed to thread state)
4350		 * restore all PMC from ctx to PMU
4351		 */
4352		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4353		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4354
4355		ctx->ctx_reload_pmcs[0] = 0UL;
4356		ctx->ctx_reload_pmds[0] = 0UL;
4357
4358		/*
4359		 * guaranteed safe by earlier check against DBG_VALID
4360		 */
4361		if (ctx->ctx_fl_using_dbreg) {
4362			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4363			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4364		}
4365		/*
4366		 * set new ownership
4367		 */
4368		SET_PMU_OWNER(task, ctx);
4369
4370		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4371	} else {
4372		/*
4373		 * when not current, task MUST be stopped, so this is safe
4374		 */
4375		regs = task_pt_regs(task);
4376
4377		/* force a full reload */
4378		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4379		SET_LAST_CPU(ctx, -1);
4380
4381		/* initial saved psr (stopped) */
4382		ctx->ctx_saved_psr_up = 0UL;
4383		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4384	}
4385
4386	ret = 0;
4387
4388error_unres:
4389	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4390error:
4391	/*
4392	 * we must undo the dbregs setting (for system-wide)
4393	 */
4394	if (ret && set_dbregs) {
4395		LOCK_PFS(flags);
4396		pfm_sessions.pfs_sys_use_dbregs--;
4397		UNLOCK_PFS(flags);
4398	}
4399	/*
4400	 * release task, there is now a link with the context
4401	 */
4402	if (is_system == 0 && task != current) {
4403		pfm_put_task(task);
4404
4405		if (ret == 0) {
4406			ret = pfm_check_task_exist(ctx);
4407			if (ret) {
4408				ctx->ctx_state = PFM_CTX_UNLOADED;
4409				ctx->ctx_task  = NULL;
4410			}
4411		}
4412	}
4413	return ret;
4414}
4415
4416/*
4417 * in this function, we do not need to increase the use count
4418 * for the task via get_task_struct(), because we hold the
4419 * context lock. If the task were to disappear while having
4420 * a context attached, it would go through pfm_exit_thread()
4421 * which also grabs the context lock  and would therefore be blocked
4422 * until we are here.
4423 */
4424static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4425
4426static int
4427pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4428{
4429	struct task_struct *task = PFM_CTX_TASK(ctx);
4430	struct pt_regs *tregs;
4431	int prev_state, is_system;
4432	int ret;
4433
4434	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4435
4436	prev_state = ctx->ctx_state;
4437	is_system  = ctx->ctx_fl_system;
4438
4439	/*
4440	 * unload only when necessary
4441	 */
4442	if (prev_state == PFM_CTX_UNLOADED) {
4443		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4444		return 0;
4445	}
4446
4447	/*
4448	 * clear psr and dcr bits
4449	 */
4450	ret = pfm_stop(ctx, NULL, 0, regs);
4451	if (ret) return ret;
4452
4453	ctx->ctx_state = PFM_CTX_UNLOADED;
4454
4455	/*
4456	 * in system mode, we need to update the PMU directly
4457	 * and the user level state of the caller, which may not
4458	 * necessarily be the creator of the context.
4459	 */
4460	if (is_system) {
4461
4462		/*
4463		 * Update cpuinfo
4464		 *
4465		 * local PMU is taken care of in pfm_stop()
4466		 */
4467		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4468		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4469
4470		/*
4471		 * save PMDs in context
4472		 * release ownership
4473		 */
4474		pfm_flush_pmds(current, ctx);
4475
4476		/*
4477		 * at this point we are done with the PMU
4478		 * so we can unreserve the resource.
4479		 */
4480		if (prev_state != PFM_CTX_ZOMBIE) 
4481			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4482
4483		/*
4484		 * disconnect context from task
4485		 */
4486		task->thread.pfm_context = NULL;
4487		/*
4488		 * disconnect task from context
4489		 */
4490		ctx->ctx_task = NULL;
4491
4492		/*
4493		 * There is nothing more to cleanup here.
4494		 */
4495		return 0;
4496	}
4497
4498	/*
4499	 * per-task mode
4500	 */
4501	tregs = task == current ? regs : task_pt_regs(task);
4502
4503	if (task == current) {
4504		/*
4505		 * cancel user level control
4506		 */
4507		ia64_psr(regs)->sp = 1;
4508
4509		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4510	}
4511	/*
4512	 * save PMDs to context
4513	 * release ownership
4514	 */
4515	pfm_flush_pmds(task, ctx);
4516
4517	/*
4518	 * at this point we are done with the PMU
4519	 * so we can unreserve the resource.
4520	 *
4521	 * when state was ZOMBIE, we have already unreserved.
4522	 */
4523	if (prev_state != PFM_CTX_ZOMBIE) 
4524		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4525
4526	/*
4527	 * reset activation counter and psr
4528	 */
4529	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4530	SET_LAST_CPU(ctx, -1);
4531
4532	/*
4533	 * PMU state will not be restored
4534	 */
4535	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4536
4537	/*
4538	 * break links between context and task
4539	 */
4540	task->thread.pfm_context  = NULL;
4541	ctx->ctx_task             = NULL;
4542
4543	PFM_SET_WORK_PENDING(task, 0);
4544
4545	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4546	ctx->ctx_fl_can_restart  = 0;
4547	ctx->ctx_fl_going_zombie = 0;
4548
4549	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4550
4551	return 0;
4552}
4553
4554
4555/*
4556 * called only from exit_thread(): task == current
4557 * we come here only if current has a context attached (loaded or masked)
4558 */
4559void
4560pfm_exit_thread(struct task_struct *task)
4561{
4562	pfm_context_t *ctx;
4563	unsigned long flags;
4564	struct pt_regs *regs = task_pt_regs(task);
4565	int ret, state;
4566	int free_ok = 0;
4567
4568	ctx = PFM_GET_CTX(task);
4569
4570	PROTECT_CTX(ctx, flags);
4571
4572	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4573
4574	state = ctx->ctx_state;
4575	switch(state) {
4576		case PFM_CTX_UNLOADED:
4577			/*
4578	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4579			 * be in unloaded state
4580	 		 */
4581			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4582			break;
4583		case PFM_CTX_LOADED:
4584		case PFM_CTX_MASKED:
4585			ret = pfm_context_unload(ctx, NULL, 0, regs);
4586			if (ret) {
4587				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588			}
4589			DPRINT(("ctx unloaded for current state was %d\n", state));
4590
4591			pfm_end_notify_user(ctx);
4592			break;
4593		case PFM_CTX_ZOMBIE:
4594			ret = pfm_context_unload(ctx, NULL, 0, regs);
4595			if (ret) {
4596				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4597			}
4598			free_ok = 1;
4599			break;
4600		default:
4601			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4602			break;
4603	}
4604	UNPROTECT_CTX(ctx, flags);
4605
4606	{ u64 psr = pfm_get_psr();
4607	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4608	  BUG_ON(GET_PMU_OWNER());
4609	  BUG_ON(ia64_psr(regs)->up);
4610	  BUG_ON(ia64_psr(regs)->pp);
4611	}
4612
4613	/*
4614	 * All memory free operations (especially for vmalloc'ed memory)
4615	 * MUST be done with interrupts ENABLED.
4616	 */
4617	if (free_ok) pfm_context_free(ctx);
4618}
4619
4620/*
4621 * functions MUST be listed in the increasing order of their index (see permfon.h)
4622 */
4623#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625#define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626#define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4627#define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4628
4629static pfm_cmd_desc_t pfm_cmd_tab[]={
4630/* 0  */PFM_CMD_NONE,
4631/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4632/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4633/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4634/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4635/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4636/* 6  */PFM_CMD_NONE,
4637/* 7  */PFM_CMD_NONE,
4638/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4639/* 9  */PFM_CMD_NONE,
4640/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4641/* 11 */PFM_CMD_NONE,
4642/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4643/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4644/* 14 */PFM_CMD_NONE,
4645/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4647/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4648/* 18 */PFM_CMD_NONE,
4649/* 19 */PFM_CMD_NONE,
4650/* 20 */PFM_CMD_NONE,
4651/* 21 */PFM_CMD_NONE,
4652/* 22 */PFM_CMD_NONE,
4653/* 23 */PFM_CMD_NONE,
4654/* 24 */PFM_CMD_NONE,
4655/* 25 */PFM_CMD_NONE,
4656/* 26 */PFM_CMD_NONE,
4657/* 27 */PFM_CMD_NONE,
4658/* 28 */PFM_CMD_NONE,
4659/* 29 */PFM_CMD_NONE,
4660/* 30 */PFM_CMD_NONE,
4661/* 31 */PFM_CMD_NONE,
4662/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4663/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4664};
4665#define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4666
4667static int
4668pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4669{
4670	struct task_struct *task;
4671	int state, old_state;
4672
4673recheck:
4674	state = ctx->ctx_state;
4675	task  = ctx->ctx_task;
4676
4677	if (task == NULL) {
4678		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4679		return 0;
4680	}
4681
4682	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4683		ctx->ctx_fd,
4684		state,
4685		task_pid_nr(task),
4686		task->state, PFM_CMD_STOPPED(cmd)));
4687
4688	/*
4689	 * self-monitoring always ok.
4690	 *
4691	 * for system-wide the caller can either be the creator of the
4692	 * context (to one to which the context is attached to) OR
4693	 * a task running on the same CPU as the session.
4694	 */
4695	if (task == current || ctx->ctx_fl_system) return 0;
4696
4697	/*
4698	 * we are monitoring another thread
4699	 */
4700	switch(state) {
4701		case PFM_CTX_UNLOADED:
4702			/*
4703			 * if context is UNLOADED we are safe to go
4704			 */
4705			return 0;
4706		case PFM_CTX_ZOMBIE:
4707			/*
4708			 * no command can operate on a zombie context
4709			 */
4710			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4711			return -EINVAL;
4712		case PFM_CTX_MASKED:
4713			/*
4714			 * PMU state has been saved to software even though
4715			 * the thread may still be running.
4716			 */
4717			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4718	}
4719
4720	/*
4721	 * context is LOADED or MASKED. Some commands may need to have 
4722	 * the task stopped.
4723	 *
4724	 * We could lift this restriction for UP but it would mean that
4725	 * the user has no guarantee the task would not run between
4726	 * two successive calls to perfmonctl(). That's probably OK.
4727	 * If this user wants to ensure the task does not run, then
4728	 * the task must be stopped.
4729	 */
4730	if (PFM_CMD_STOPPED(cmd)) {
4731		if (!task_is_stopped_or_traced(task)) {
4732			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4733			return -EBUSY;
4734		}
4735		/*
4736		 * task is now stopped, wait for ctxsw out
4737		 *
4738		 * This is an interesting point in the code.
4739		 * We need to unprotect the context because
4740		 * the pfm_save_regs() routines needs to grab
4741		 * the same lock. There are danger in doing
4742		 * this because it leaves a window open for
4743		 * another task to get access to the context
4744		 * and possibly change its state. The one thing
4745		 * that is not possible is for the context to disappear
4746		 * because we are protected by the VFS layer, i.e.,
4747		 * get_fd()/put_fd().
4748		 */
4749		old_state = state;
4750
4751		UNPROTECT_CTX(ctx, flags);
4752
4753		wait_task_inactive(task, 0);
4754
4755		PROTECT_CTX(ctx, flags);
4756
4757		/*
4758		 * we must recheck to verify if state has changed
4759		 */
4760		if (ctx->ctx_state != old_state) {
4761			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4762			goto recheck;
4763		}
4764	}
4765	return 0;
4766}
4767
4768/*
4769 * system-call entry point (must return long)
4770 */
4771asmlinkage long
4772sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4773{
4774	struct fd f = {NULL, 0};
4775	pfm_context_t *ctx = NULL;
4776	unsigned long flags = 0UL;
4777	void *args_k = NULL;
4778	long ret; /* will expand int return types */
4779	size_t base_sz, sz, xtra_sz = 0;
4780	int narg, completed_args = 0, call_made = 0, cmd_flags;
4781	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4782	int (*getsize)(void *arg, size_t *sz);
4783#define PFM_MAX_ARGSIZE	4096
4784
4785	/*
4786	 * reject any call if perfmon was disabled at initialization
4787	 */
4788	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4789
4790	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4791		DPRINT(("invalid cmd=%d\n", cmd));
4792		return -EINVAL;
4793	}
4794
4795	func      = pfm_cmd_tab[cmd].cmd_func;
4796	narg      = pfm_cmd_tab[cmd].cmd_narg;
4797	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4798	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4799	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4800
4801	if (unlikely(func == NULL)) {
4802		DPRINT(("invalid cmd=%d\n", cmd));
4803		return -EINVAL;
4804	}
4805
4806	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4807		PFM_CMD_NAME(cmd),
4808		cmd,
4809		narg,
4810		base_sz,
4811		count));
4812
4813	/*
4814	 * check if number of arguments matches what the command expects
4815	 */
4816	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4817		return -EINVAL;
4818
4819restart_args:
4820	sz = xtra_sz + base_sz*count;
4821	/*
4822	 * limit abuse to min page size
4823	 */
4824	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4825		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4826		return -E2BIG;
4827	}
4828
4829	/*
4830	 * allocate default-sized argument buffer
4831	 */
4832	if (likely(count && args_k == NULL)) {
4833		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4834		if (args_k == NULL) return -ENOMEM;
4835	}
4836
4837	ret = -EFAULT;
4838
4839	/*
4840	 * copy arguments
4841	 *
4842	 * assume sz = 0 for command without parameters
4843	 */
4844	if (sz && copy_from_user(args_k, arg, sz)) {
4845		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4846		goto error_args;
4847	}
4848
4849	/*
4850	 * check if command supports extra parameters
4851	 */
4852	if (completed_args == 0 && getsize) {
4853		/*
4854		 * get extra parameters size (based on main argument)
4855		 */
4856		ret = (*getsize)(args_k, &xtra_sz);
4857		if (ret) goto error_args;
4858
4859		completed_args = 1;
4860
4861		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4862
4863		/* retry if necessary */
4864		if (likely(xtra_sz)) goto restart_args;
4865	}
4866
4867	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4868
4869	ret = -EBADF;
4870
4871	f = fdget(fd);
4872	if (unlikely(f.file == NULL)) {
4873		DPRINT(("invalid fd %d\n", fd));
4874		goto error_args;
4875	}
4876	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4877		DPRINT(("fd %d not related to perfmon\n", fd));
4878		goto error_args;
4879	}
4880
4881	ctx = f.file->private_data;
4882	if (unlikely(ctx == NULL)) {
4883		DPRINT(("no context for fd %d\n", fd));
4884		goto error_args;
4885	}
4886	prefetch(&ctx->ctx_state);
4887
4888	PROTECT_CTX(ctx, flags);
4889
4890	/*
4891	 * check task is stopped
4892	 */
4893	ret = pfm_check_task_state(ctx, cmd, flags);
4894	if (unlikely(ret)) goto abort_locked;
4895
4896skip_fd:
4897	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4898
4899	call_made = 1;
4900
4901abort_locked:
4902	if (likely(ctx)) {
4903		DPRINT(("context unlocked\n"));
4904		UNPROTECT_CTX(ctx, flags);
4905	}
4906
4907	/* copy argument back to user, if needed */
4908	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4909
4910error_args:
4911	if (f.file)
4912		fdput(f);
4913
4914	kfree(args_k);
4915
4916	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4917
4918	return ret;
4919}
4920
4921static void
4922pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4923{
4924	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4925	pfm_ovfl_ctrl_t rst_ctrl;
4926	int state;
4927	int ret = 0;
4928
4929	state = ctx->ctx_state;
4930	/*
4931	 * Unlock sampling buffer and reset index atomically
4932	 * XXX: not really needed when blocking
4933	 */
4934	if (CTX_HAS_SMPL(ctx)) {
4935
4936		rst_ctrl.bits.mask_monitoring = 0;
4937		rst_ctrl.bits.reset_ovfl_pmds = 0;
4938
4939		if (state == PFM_CTX_LOADED)
4940			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4941		else
4942			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4943	} else {
4944		rst_ctrl.bits.mask_monitoring = 0;
4945		rst_ctrl.bits.reset_ovfl_pmds = 1;
4946	}
4947
4948	if (ret == 0) {
4949		if (rst_ctrl.bits.reset_ovfl_pmds) {
4950			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4951		}
4952		if (rst_ctrl.bits.mask_monitoring == 0) {
4953			DPRINT(("resuming monitoring\n"));
4954			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4955		} else {
4956			DPRINT(("stopping monitoring\n"));
4957			//pfm_stop_monitoring(current, regs);
4958		}
4959		ctx->ctx_state = PFM_CTX_LOADED;
4960	}
4961}
4962
4963/*
4964 * context MUST BE LOCKED when calling
4965 * can only be called for current
4966 */
4967static void
4968pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4969{
4970	int ret;
4971
4972	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4973
4974	ret = pfm_context_unload(ctx, NULL, 0, regs);
4975	if (ret) {
4976		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4977	}
4978
4979	/*
4980	 * and wakeup controlling task, indicating we are now disconnected
4981	 */
4982	wake_up_interruptible(&ctx->ctx_zombieq);
4983
4984	/*
4985	 * given that context is still locked, the controlling
4986	 * task will only get access when we return from
4987	 * pfm_handle_work().
4988	 */
4989}
4990
4991static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4992
4993 /*
4994  * pfm_handle_work() can be called with interrupts enabled
4995  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996  * call may sleep, therefore we must re-enable interrupts
4997  * to avoid deadlocks. It is safe to do so because this function
4998  * is called ONLY when returning to user level (pUStk=1), in which case
4999  * there is no risk of kernel stack overflow due to deep
5000  * interrupt nesting.
5001  */
5002void
5003pfm_handle_work(void)
5004{
5005	pfm_context_t *ctx;
5006	struct pt_regs *regs;
5007	unsigned long flags, dummy_flags;
5008	unsigned long ovfl_regs;
5009	unsigned int reason;
5010	int ret;
5011
5012	ctx = PFM_GET_CTX(current);
5013	if (ctx == NULL) {
5014		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5015			task_pid_nr(current));
5016		return;
5017	}
5018
5019	PROTECT_CTX(ctx, flags);
5020
5021	PFM_SET_WORK_PENDING(current, 0);
5022
5023	regs = task_pt_regs(current);
5024
5025	/*
5026	 * extract reason for being here and clear
5027	 */
5028	reason = ctx->ctx_fl_trap_reason;
5029	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5030	ovfl_regs = ctx->ctx_ovfl_regs[0];
5031
5032	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5033
5034	/*
5035	 * must be done before we check for simple-reset mode
5036	 */
5037	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5038		goto do_zombie;
5039
5040	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041	if (reason == PFM_TRAP_REASON_RESET)
5042		goto skip_blocking;
5043
5044	/*
5045	 * restore interrupt mask to what it was on entry.
5046	 * Could be enabled/diasbled.
5047	 */
5048	UNPROTECT_CTX(ctx, flags);
5049
5050	/*
5051	 * force interrupt enable because of down_interruptible()
5052	 */
5053	local_irq_enable();
5054
5055	DPRINT(("before block sleeping\n"));
5056
5057	/*
5058	 * may go through without blocking on SMP systems
5059	 * if restart has been received already by the time we call down()
5060	 */
5061	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5062
5063	DPRINT(("after block sleeping ret=%d\n", ret));
5064
5065	/*
5066	 * lock context and mask interrupts again
5067	 * We save flags into a dummy because we may have
5068	 * altered interrupts mask compared to entry in this
5069	 * function.
5070	 */
5071	PROTECT_CTX(ctx, dummy_flags);
5072
5073	/*
5074	 * we need to read the ovfl_regs only after wake-up
5075	 * because we may have had pfm_write_pmds() in between
5076	 * and that can changed PMD values and therefore 
5077	 * ovfl_regs is reset for these new PMD values.
5078	 */
5079	ovfl_regs = ctx->ctx_ovfl_regs[0];
5080
5081	if (ctx->ctx_fl_going_zombie) {
5082do_zombie:
5083		DPRINT(("context is zombie, bailing out\n"));
5084		pfm_context_force_terminate(ctx, regs);
5085		goto nothing_to_do;
5086	}
5087	/*
5088	 * in case of interruption of down() we don't restart anything
5089	 */
5090	if (ret < 0)
5091		goto nothing_to_do;
5092
5093skip_blocking:
5094	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5095	ctx->ctx_ovfl_regs[0] = 0UL;
5096
5097nothing_to_do:
5098	/*
5099	 * restore flags as they were upon entry
5100	 */
5101	UNPROTECT_CTX(ctx, flags);
5102}
5103
5104static int
5105pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5106{
5107	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5108		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5109		return 0;
5110	}
5111
5112	DPRINT(("waking up somebody\n"));
5113
5114	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5115
5116	/*
5117	 * safe, we are not in intr handler, nor in ctxsw when
5118	 * we come here
5119	 */
5120	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5121
5122	return 0;
5123}
5124
5125static int
5126pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5127{
5128	pfm_msg_t *msg = NULL;
5129
5130	if (ctx->ctx_fl_no_msg == 0) {
5131		msg = pfm_get_new_msg(ctx);
5132		if (msg == NULL) {
5133			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5134			return -1;
5135		}
5136
5137		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5138		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5139		msg->pfm_ovfl_msg.msg_active_set   = 0;
5140		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5141		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5142		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5143		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5144		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5145	}
5146
5147	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5148		msg,
5149		ctx->ctx_fl_no_msg,
5150		ctx->ctx_fd,
5151		ovfl_pmds));
5152
5153	return pfm_notify_user(ctx, msg);
5154}
5155
5156static int
5157pfm_end_notify_user(pfm_context_t *ctx)
5158{
5159	pfm_msg_t *msg;
5160
5161	msg = pfm_get_new_msg(ctx);
5162	if (msg == NULL) {
5163		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5164		return -1;
5165	}
5166	/* no leak */
5167	memset(msg, 0, sizeof(*msg));
5168
5169	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5170	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5171	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172
5173	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5174		msg,
5175		ctx->ctx_fl_no_msg,
5176		ctx->ctx_fd));
5177
5178	return pfm_notify_user(ctx, msg);
5179}
5180
5181/*
5182 * main overflow processing routine.
5183 * it can be called from the interrupt path or explicitly during the context switch code
5184 */
5185static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5186				unsigned long pmc0, struct pt_regs *regs)
5187{
5188	pfm_ovfl_arg_t *ovfl_arg;
5189	unsigned long mask;
5190	unsigned long old_val, ovfl_val, new_val;
5191	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5192	unsigned long tstamp;
5193	pfm_ovfl_ctrl_t	ovfl_ctrl;
5194	unsigned int i, has_smpl;
5195	int must_notify = 0;
5196
5197	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5198
5199	/*
5200	 * sanity test. Should never happen
5201	 */
5202	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5203
5204	tstamp   = ia64_get_itc();
5205	mask     = pmc0 >> PMU_FIRST_COUNTER;
5206	ovfl_val = pmu_conf->ovfl_val;
5207	has_smpl = CTX_HAS_SMPL(ctx);
5208
5209	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210		     "used_pmds=0x%lx\n",
5211			pmc0,
5212			task ? task_pid_nr(task): -1,
5213			(regs ? regs->cr_iip : 0),
5214			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5215			ctx->ctx_used_pmds[0]));
5216
5217
5218	/*
5219	 * first we update the virtual counters
5220	 * assume there was a prior ia64_srlz_d() issued
5221	 */
5222	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5223
5224		/* skip pmd which did not overflow */
5225		if ((mask & 0x1) == 0) continue;
5226
5227		/*
5228		 * Note that the pmd is not necessarily 0 at this point as qualified events
5229		 * may have happened before the PMU was frozen. The residual count is not
5230		 * taken into consideration here but will be with any read of the pmd via
5231		 * pfm_read_pmds().
5232		 */
5233		old_val              = new_val = ctx->ctx_pmds[i].val;
5234		new_val             += 1 + ovfl_val;
5235		ctx->ctx_pmds[i].val = new_val;
5236
5237		/*
5238		 * check for overflow condition
5239		 */
5240		if (likely(old_val > new_val)) {
5241			ovfl_pmds |= 1UL << i;
5242			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5243		}
5244
5245		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5246			i,
5247			new_val,
5248			old_val,
5249			ia64_get_pmd(i) & ovfl_val,
5250			ovfl_pmds,
5251			ovfl_notify));
5252	}
5253
5254	/*
5255	 * there was no 64-bit overflow, nothing else to do
5256	 */
5257	if (ovfl_pmds == 0UL) return;
5258
5259	/* 
5260	 * reset all control bits
5261	 */
5262	ovfl_ctrl.val = 0;
5263	reset_pmds    = 0UL;
5264
5265	/*
5266	 * if a sampling format module exists, then we "cache" the overflow by 
5267	 * calling the module's handler() routine.
5268	 */
5269	if (has_smpl) {
5270		unsigned long start_cycles, end_cycles;
5271		unsigned long pmd_mask;
5272		int j, k, ret = 0;
5273		int this_cpu = smp_processor_id();
5274
5275		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5276		ovfl_arg = &ctx->ctx_ovfl_arg;
5277
5278		prefetch(ctx->ctx_smpl_hdr);
5279
5280		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5281
5282			mask = 1UL << i;
5283
5284			if ((pmd_mask & 0x1) == 0) continue;
5285
5286			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5287			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5288			ovfl_arg->active_set    = 0;
5289			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5290			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5291
5292			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5293			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5294			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5295
5296			/*
5297		 	 * copy values of pmds of interest. Sampling format may copy them
5298		 	 * into sampling buffer.
5299		 	 */
5300			if (smpl_pmds) {
5301				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5302					if ((smpl_pmds & 0x1) == 0) continue;
5303					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5304					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5305				}
5306			}
5307
5308			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5309
5310			start_cycles = ia64_get_itc();
5311
5312			/*
5313		 	 * call custom buffer format record (handler) routine
5314		 	 */
5315			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5316
5317			end_cycles = ia64_get_itc();
5318
5319			/*
5320			 * For those controls, we take the union because they have
5321			 * an all or nothing behavior.
5322			 */
5323			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5324			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5325			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5326			/*
5327			 * build the bitmask of pmds to reset now
5328			 */
5329			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5330
5331			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5332		}
5333		/*
5334		 * when the module cannot handle the rest of the overflows, we abort right here
5335		 */
5336		if (ret && pmd_mask) {
5337			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338				pmd_mask<<PMU_FIRST_COUNTER));
5339		}
5340		/*
5341		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5342		 */
5343		ovfl_pmds &= ~reset_pmds;
5344	} else {
5345		/*
5346		 * when no sampling module is used, then the default
5347		 * is to notify on overflow if requested by user
5348		 */
5349		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5350		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5351		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5352		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5353		/*
5354		 * if needed, we reset all overflowed pmds
5355		 */
5356		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5357	}
5358
5359	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5360
5361	/*
5362	 * reset the requested PMD registers using the short reset values
5363	 */
5364	if (reset_pmds) {
5365		unsigned long bm = reset_pmds;
5366		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5367	}
5368
5369	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5370		/*
5371		 * keep track of what to reset when unblocking
5372		 */
5373		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5374
5375		/*
5376		 * check for blocking context 
5377		 */
5378		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5379
5380			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5381
5382			/*
5383			 * set the perfmon specific checking pending work for the task
5384			 */
5385			PFM_SET_WORK_PENDING(task, 1);
5386
5387			/*
5388			 * when coming from ctxsw, current still points to the
5389			 * previous task, therefore we must work with task and not current.
5390			 */
5391			set_notify_resume(task);
5392		}
5393		/*
5394		 * defer until state is changed (shorten spin window). the context is locked
5395		 * anyway, so the signal receiver would come spin for nothing.
5396		 */
5397		must_notify = 1;
5398	}
5399
5400	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402			PFM_GET_WORK_PENDING(task),
5403			ctx->ctx_fl_trap_reason,
5404			ovfl_pmds,
5405			ovfl_notify,
5406			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5407	/*
5408	 * in case monitoring must be stopped, we toggle the psr bits
5409	 */
5410	if (ovfl_ctrl.bits.mask_monitoring) {
5411		pfm_mask_monitoring(task);
5412		ctx->ctx_state = PFM_CTX_MASKED;
5413		ctx->ctx_fl_can_restart = 1;
5414	}
5415
5416	/*
5417	 * send notification now
5418	 */
5419	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5420
5421	return;
5422
5423sanity_check:
5424	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5425			smp_processor_id(),
5426			task ? task_pid_nr(task) : -1,
5427			pmc0);
5428	return;
5429
5430stop_monitoring:
5431	/*
5432	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434	 * come here as zombie only if the task is the current task. In which case, we
5435	 * can access the PMU  hardware directly.
5436	 *
5437	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5438	 *
5439	 * In case the context was zombified it could not be reclaimed at the time
5440	 * the monitoring program exited. At this point, the PMU reservation has been
5441	 * returned, the sampiing buffer has been freed. We must convert this call
5442	 * into a spurious interrupt. However, we must also avoid infinite overflows
5443	 * by stopping monitoring for this task. We can only come here for a per-task
5444	 * context. All we need to do is to stop monitoring using the psr bits which
5445	 * are always task private. By re-enabling secure montioring, we ensure that
5446	 * the monitored task will not be able to re-activate monitoring.
5447	 * The task will eventually be context switched out, at which point the context
5448	 * will be reclaimed (that includes releasing ownership of the PMU).
5449	 *
5450	 * So there might be a window of time where the number of per-task session is zero
5451	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452	 * context. This is safe because if a per-task session comes in, it will push this one
5453	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455	 * also push our zombie context out.
5456	 *
5457	 * Overall pretty hairy stuff....
5458	 */
5459	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5460	pfm_clear_psr_up();
5461	ia64_psr(regs)->up = 0;
5462	ia64_psr(regs)->sp = 1;
5463	return;
5464}
5465
5466static int
5467pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5468{
5469	struct task_struct *task;
5470	pfm_context_t *ctx;
5471	unsigned long flags;
5472	u64 pmc0;
5473	int this_cpu = smp_processor_id();
5474	int retval = 0;
5475
5476	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5477
5478	/*
5479	 * srlz.d done before arriving here
5480	 */
5481	pmc0 = ia64_get_pmc(0);
5482
5483	task = GET_PMU_OWNER();
5484	ctx  = GET_PMU_CTX();
5485
5486	/*
5487	 * if we have some pending bits set
5488	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5489	 */
5490	if (PMC0_HAS_OVFL(pmc0) && task) {
5491		/*
5492		 * we assume that pmc0.fr is always set here
5493		 */
5494
5495		/* sanity check */
5496		if (!ctx) goto report_spurious1;
5497
5498		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5499			goto report_spurious2;
5500
5501		PROTECT_CTX_NOPRINT(ctx, flags);
5502
5503		pfm_overflow_handler(task, ctx, pmc0, regs);
5504
5505		UNPROTECT_CTX_NOPRINT(ctx, flags);
5506
5507	} else {
5508		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5509		retval = -1;
5510	}
5511	/*
5512	 * keep it unfrozen at all times
5513	 */
5514	pfm_unfreeze_pmu();
5515
5516	return retval;
5517
5518report_spurious1:
5519	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520		this_cpu, task_pid_nr(task));
5521	pfm_unfreeze_pmu();
5522	return -1;
5523report_spurious2:
5524	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5525		this_cpu, 
5526		task_pid_nr(task));
5527	pfm_unfreeze_pmu();
5528	return -1;
5529}
5530
5531static irqreturn_t
5532pfm_interrupt_handler(int irq, void *arg)
5533{
5534	unsigned long start_cycles, total_cycles;
5535	unsigned long min, max;
5536	int this_cpu;
5537	int ret;
5538	struct pt_regs *regs = get_irq_regs();
5539
5540	this_cpu = get_cpu();
5541	if (likely(!pfm_alt_intr_handler)) {
5542		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5543		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5544
5545		start_cycles = ia64_get_itc();
5546
5547		ret = pfm_do_interrupt_handler(arg, regs);
5548
5549		total_cycles = ia64_get_itc();
5550
5551		/*
5552		 * don't measure spurious interrupts
5553		 */
5554		if (likely(ret == 0)) {
5555			total_cycles -= start_cycles;
5556
5557			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5558			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5559
5560			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5561		}
5562	}
5563	else {
5564		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5565	}
5566
5567	put_cpu();
5568	return IRQ_HANDLED;
5569}
5570
5571/*
5572 * /proc/perfmon interface, for debug only
5573 */
5574
5575#define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5576
5577static void *
5578pfm_proc_start(struct seq_file *m, loff_t *pos)
5579{
5580	if (*pos == 0) {
5581		return PFM_PROC_SHOW_HEADER;
5582	}
5583
5584	while (*pos <= nr_cpu_ids) {
5585		if (cpu_online(*pos - 1)) {
5586			return (void *)*pos;
5587		}
5588		++*pos;
5589	}
5590	return NULL;
5591}
5592
5593static void *
5594pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5595{
5596	++*pos;
5597	return pfm_proc_start(m, pos);
5598}
5599
5600static void
5601pfm_proc_stop(struct seq_file *m, void *v)
5602{
5603}
5604
5605static void
5606pfm_proc_show_header(struct seq_file *m)
5607{
5608	struct list_head * pos;
5609	pfm_buffer_fmt_t * entry;
5610	unsigned long flags;
5611
5612 	seq_printf(m,
5613		"perfmon version           : %u.%u\n"
5614		"model                     : %s\n"
5615		"fastctxsw                 : %s\n"
5616		"expert mode               : %s\n"
5617		"ovfl_mask                 : 0x%lx\n"
5618		"PMU flags                 : 0x%x\n",
5619		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5620		pmu_conf->pmu_name,
5621		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5622		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5623		pmu_conf->ovfl_val,
5624		pmu_conf->flags);
5625
5626  	LOCK_PFS(flags);
5627
5628 	seq_printf(m,
5629 		"proc_sessions             : %u\n"
5630 		"sys_sessions              : %u\n"
5631 		"sys_use_dbregs            : %u\n"
5632 		"ptrace_use_dbregs         : %u\n",
5633 		pfm_sessions.pfs_task_sessions,
5634 		pfm_sessions.pfs_sys_sessions,
5635 		pfm_sessions.pfs_sys_use_dbregs,
5636 		pfm_sessions.pfs_ptrace_use_dbregs);
5637
5638  	UNLOCK_PFS(flags);
5639
5640	spin_lock(&pfm_buffer_fmt_lock);
5641
5642	list_for_each(pos, &pfm_buffer_fmt_list) {
5643		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5644		seq_printf(m, "format                    : %16phD %s\n",
5645			   entry->fmt_uuid, entry->fmt_name);
5646	}
5647	spin_unlock(&pfm_buffer_fmt_lock);
5648
5649}
5650
5651static int
5652pfm_proc_show(struct seq_file *m, void *v)
5653{
5654	unsigned long psr;
5655	unsigned int i;
5656	int cpu;
5657
5658	if (v == PFM_PROC_SHOW_HEADER) {
5659		pfm_proc_show_header(m);
5660		return 0;
5661	}
5662
5663	/* show info for CPU (v - 1) */
5664
5665	cpu = (long)v - 1;
5666	seq_printf(m,
5667		"CPU%-2d overflow intrs      : %lu\n"
5668		"CPU%-2d overflow cycles     : %lu\n"
5669		"CPU%-2d overflow min        : %lu\n"
5670		"CPU%-2d overflow max        : %lu\n"
5671		"CPU%-2d smpl handler calls  : %lu\n"
5672		"CPU%-2d smpl handler cycles : %lu\n"
5673		"CPU%-2d spurious intrs      : %lu\n"
5674		"CPU%-2d replay   intrs      : %lu\n"
5675		"CPU%-2d syst_wide           : %d\n"
5676		"CPU%-2d dcr_pp              : %d\n"
5677		"CPU%-2d exclude idle        : %d\n"
5678		"CPU%-2d owner               : %d\n"
5679		"CPU%-2d context             : %p\n"
5680		"CPU%-2d activations         : %lu\n",
5681		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5682		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5683		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5684		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5685		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5686		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5687		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5688		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5689		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5690		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5691		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5692		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5693		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5694		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5695
5696	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5697
5698		psr = pfm_get_psr();
5699
5700		ia64_srlz_d();
5701
5702		seq_printf(m, 
5703			"CPU%-2d psr                 : 0x%lx\n"
5704			"CPU%-2d pmc0                : 0x%lx\n", 
5705			cpu, psr,
5706			cpu, ia64_get_pmc(0));
5707
5708		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5709			if (PMC_IS_COUNTING(i) == 0) continue;
5710   			seq_printf(m, 
5711				"CPU%-2d pmc%u                : 0x%lx\n"
5712   				"CPU%-2d pmd%u                : 0x%lx\n", 
5713				cpu, i, ia64_get_pmc(i),
5714				cpu, i, ia64_get_pmd(i));
5715  		}
5716	}
5717	return 0;
5718}
5719
5720const struct seq_operations pfm_seq_ops = {
5721	.start =	pfm_proc_start,
5722 	.next =		pfm_proc_next,
5723 	.stop =		pfm_proc_stop,
5724 	.show =		pfm_proc_show
5725};
5726
5727static int
5728pfm_proc_open(struct inode *inode, struct file *file)
5729{
5730	return seq_open(file, &pfm_seq_ops);
5731}
5732
5733
5734/*
5735 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737 * is active or inactive based on mode. We must rely on the value in
5738 * local_cpu_data->pfm_syst_info
5739 */
5740void
5741pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5742{
5743	struct pt_regs *regs;
5744	unsigned long dcr;
5745	unsigned long dcr_pp;
5746
5747	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5748
5749	/*
5750	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751	 * on every CPU, so we can rely on the pid to identify the idle task.
5752	 */
5753	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5754		regs = task_pt_regs(task);
5755		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5756		return;
5757	}
5758	/*
5759	 * if monitoring has started
5760	 */
5761	if (dcr_pp) {
5762		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5763		/*
5764		 * context switching in?
5765		 */
5766		if (is_ctxswin) {
5767			/* mask monitoring for the idle task */
5768			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5769			pfm_clear_psr_pp();
5770			ia64_srlz_i();
5771			return;
5772		}
5773		/*
5774		 * context switching out
5775		 * restore monitoring for next task
5776		 *
5777		 * Due to inlining this odd if-then-else construction generates
5778		 * better code.
5779		 */
5780		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5781		pfm_set_psr_pp();
5782		ia64_srlz_i();
5783	}
5784}
5785
5786#ifdef CONFIG_SMP
5787
5788static void
5789pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5790{
5791	struct task_struct *task = ctx->ctx_task;
5792
5793	ia64_psr(regs)->up = 0;
5794	ia64_psr(regs)->sp = 1;
5795
5796	if (GET_PMU_OWNER() == task) {
5797		DPRINT(("cleared ownership for [%d]\n",
5798					task_pid_nr(ctx->ctx_task)));
5799		SET_PMU_OWNER(NULL, NULL);
5800	}
5801
5802	/*
5803	 * disconnect the task from the context and vice-versa
5804	 */
5805	PFM_SET_WORK_PENDING(task, 0);
5806
5807	task->thread.pfm_context  = NULL;
5808	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5809
5810	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5811}
5812
5813
5814/*
5815 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5816 */
5817void
5818pfm_save_regs(struct task_struct *task)
5819{
5820	pfm_context_t *ctx;
5821	unsigned long flags;
5822	u64 psr;
5823
5824
5825	ctx = PFM_GET_CTX(task);
5826	if (ctx == NULL) return;
5827
5828	/*
5829 	 * we always come here with interrupts ALREADY disabled by
5830 	 * the scheduler. So we simply need to protect against concurrent
5831	 * access, not CPU concurrency.
5832	 */
5833	flags = pfm_protect_ctx_ctxsw(ctx);
5834
5835	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5836		struct pt_regs *regs = task_pt_regs(task);
5837
5838		pfm_clear_psr_up();
5839
5840		pfm_force_cleanup(ctx, regs);
5841
5842		BUG_ON(ctx->ctx_smpl_hdr);
5843
5844		pfm_unprotect_ctx_ctxsw(ctx, flags);
5845
5846		pfm_context_free(ctx);
5847		return;
5848	}
5849
5850	/*
5851	 * save current PSR: needed because we modify it
5852	 */
5853	ia64_srlz_d();
5854	psr = pfm_get_psr();
5855
5856	BUG_ON(psr & (IA64_PSR_I));
5857
5858	/*
5859	 * stop monitoring:
5860	 * This is the last instruction which may generate an overflow
5861	 *
5862	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5863	 * It will be restored from ipsr when going back to user level
5864	 */
5865	pfm_clear_psr_up();
5866
5867	/*
5868	 * keep a copy of psr.up (for reload)
5869	 */
5870	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5871
5872	/*
5873	 * release ownership of this PMU.
5874	 * PM interrupts are masked, so nothing
5875	 * can happen.
5876	 */
5877	SET_PMU_OWNER(NULL, NULL);
5878
5879	/*
5880	 * we systematically save the PMD as we have no
5881	 * guarantee we will be schedule at that same
5882	 * CPU again.
5883	 */
5884	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5885
5886	/*
5887	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888	 * we will need it on the restore path to check
5889	 * for pending overflow.
5890	 */
5891	ctx->th_pmcs[0] = ia64_get_pmc(0);
5892
5893	/*
5894	 * unfreeze PMU if had pending overflows
5895	 */
5896	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5897
5898	/*
5899	 * finally, allow context access.
5900	 * interrupts will still be masked after this call.
5901	 */
5902	pfm_unprotect_ctx_ctxsw(ctx, flags);
5903}
5904
5905#else /* !CONFIG_SMP */
5906void
5907pfm_save_regs(struct task_struct *task)
5908{
5909	pfm_context_t *ctx;
5910	u64 psr;
5911
5912	ctx = PFM_GET_CTX(task);
5913	if (ctx == NULL) return;
5914
5915	/*
5916	 * save current PSR: needed because we modify it
5917	 */
5918	psr = pfm_get_psr();
5919
5920	BUG_ON(psr & (IA64_PSR_I));
5921
5922	/*
5923	 * stop monitoring:
5924	 * This is the last instruction which may generate an overflow
5925	 *
5926	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5927	 * It will be restored from ipsr when going back to user level
5928	 */
5929	pfm_clear_psr_up();
5930
5931	/*
5932	 * keep a copy of psr.up (for reload)
5933	 */
5934	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5935}
5936
5937static void
5938pfm_lazy_save_regs (struct task_struct *task)
5939{
5940	pfm_context_t *ctx;
5941	unsigned long flags;
5942
5943	{ u64 psr  = pfm_get_psr();
5944	  BUG_ON(psr & IA64_PSR_UP);
5945	}
5946
5947	ctx = PFM_GET_CTX(task);
5948
5949	/*
5950	 * we need to mask PMU overflow here to
5951	 * make sure that we maintain pmc0 until
5952	 * we save it. overflow interrupts are
5953	 * treated as spurious if there is no
5954	 * owner.
5955	 *
5956	 * XXX: I don't think this is necessary
5957	 */
5958	PROTECT_CTX(ctx,flags);
5959
5960	/*
5961	 * release ownership of this PMU.
5962	 * must be done before we save the registers.
5963	 *
5964	 * after this call any PMU interrupt is treated
5965	 * as spurious.
5966	 */
5967	SET_PMU_OWNER(NULL, NULL);
5968
5969	/*
5970	 * save all the pmds we use
5971	 */
5972	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5973
5974	/*
5975	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976	 * it is needed to check for pended overflow
5977	 * on the restore path
5978	 */
5979	ctx->th_pmcs[0] = ia64_get_pmc(0);
5980
5981	/*
5982	 * unfreeze PMU if had pending overflows
5983	 */
5984	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5985
5986	/*
5987	 * now get can unmask PMU interrupts, they will
5988	 * be treated as purely spurious and we will not
5989	 * lose any information
5990	 */
5991	UNPROTECT_CTX(ctx,flags);
5992}
5993#endif /* CONFIG_SMP */
5994
5995#ifdef CONFIG_SMP
5996/*
5997 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5998 */
5999void
6000pfm_load_regs (struct task_struct *task)
6001{
6002	pfm_context_t *ctx;
6003	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6004	unsigned long flags;
6005	u64 psr, psr_up;
6006	int need_irq_resend;
6007
6008	ctx = PFM_GET_CTX(task);
6009	if (unlikely(ctx == NULL)) return;
6010
6011	BUG_ON(GET_PMU_OWNER());
6012
6013	/*
6014	 * possible on unload
6015	 */
6016	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6017
6018	/*
6019 	 * we always come here with interrupts ALREADY disabled by
6020 	 * the scheduler. So we simply need to protect against concurrent
6021	 * access, not CPU concurrency.
6022	 */
6023	flags = pfm_protect_ctx_ctxsw(ctx);
6024	psr   = pfm_get_psr();
6025
6026	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6027
6028	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6029	BUG_ON(psr & IA64_PSR_I);
6030
6031	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6032		struct pt_regs *regs = task_pt_regs(task);
6033
6034		BUG_ON(ctx->ctx_smpl_hdr);
6035
6036		pfm_force_cleanup(ctx, regs);
6037
6038		pfm_unprotect_ctx_ctxsw(ctx, flags);
6039
6040		/*
6041		 * this one (kmalloc'ed) is fine with interrupts disabled
6042		 */
6043		pfm_context_free(ctx);
6044
6045		return;
6046	}
6047
6048	/*
6049	 * we restore ALL the debug registers to avoid picking up
6050	 * stale state.
6051	 */
6052	if (ctx->ctx_fl_using_dbreg) {
6053		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6054		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6055	}
6056	/*
6057	 * retrieve saved psr.up
6058	 */
6059	psr_up = ctx->ctx_saved_psr_up;
6060
6061	/*
6062	 * if we were the last user of the PMU on that CPU,
6063	 * then nothing to do except restore psr
6064	 */
6065	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6066
6067		/*
6068		 * retrieve partial reload masks (due to user modifications)
6069		 */
6070		pmc_mask = ctx->ctx_reload_pmcs[0];
6071		pmd_mask = ctx->ctx_reload_pmds[0];
6072
6073	} else {
6074		/*
6075	 	 * To avoid leaking information to the user level when psr.sp=0,
6076	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6077	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6078	 	 * we initialized or requested (sampling) so there is no risk there.
6079	 	 */
6080		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6081
6082		/*
6083	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6084	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085	 	 * up stale configuration.
6086	 	 *
6087	 	 * PMC0 is never in the mask. It is always restored separately.
6088	 	 */
6089		pmc_mask = ctx->ctx_all_pmcs[0];
6090	}
6091	/*
6092	 * when context is MASKED, we will restore PMC with plm=0
6093	 * and PMD with stale information, but that's ok, nothing
6094	 * will be captured.
6095	 *
6096	 * XXX: optimize here
6097	 */
6098	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6099	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6100
6101	/*
6102	 * check for pending overflow at the time the state
6103	 * was saved.
6104	 */
6105	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6106		/*
6107		 * reload pmc0 with the overflow information
6108		 * On McKinley PMU, this will trigger a PMU interrupt
6109		 */
6110		ia64_set_pmc(0, ctx->th_pmcs[0]);
6111		ia64_srlz_d();
6112		ctx->th_pmcs[0] = 0UL;
6113
6114		/*
6115		 * will replay the PMU interrupt
6116		 */
6117		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6118
6119		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6120	}
6121
6122	/*
6123	 * we just did a reload, so we reset the partial reload fields
6124	 */
6125	ctx->ctx_reload_pmcs[0] = 0UL;
6126	ctx->ctx_reload_pmds[0] = 0UL;
6127
6128	SET_LAST_CPU(ctx, smp_processor_id());
6129
6130	/*
6131	 * dump activation value for this PMU
6132	 */
6133	INC_ACTIVATION();
6134	/*
6135	 * record current activation for this context
6136	 */
6137	SET_ACTIVATION(ctx);
6138
6139	/*
6140	 * establish new ownership. 
6141	 */
6142	SET_PMU_OWNER(task, ctx);
6143
6144	/*
6145	 * restore the psr.up bit. measurement
6146	 * is active again.
6147	 * no PMU interrupt can happen at this point
6148	 * because we still have interrupts disabled.
6149	 */
6150	if (likely(psr_up)) pfm_set_psr_up();
6151
6152	/*
6153	 * allow concurrent access to context
6154	 */
6155	pfm_unprotect_ctx_ctxsw(ctx, flags);
6156}
6157#else /*  !CONFIG_SMP */
6158/*
6159 * reload PMU state for UP kernels
6160 * in 2.5 we come here with interrupts disabled
6161 */
6162void
6163pfm_load_regs (struct task_struct *task)
6164{
6165	pfm_context_t *ctx;
6166	struct task_struct *owner;
6167	unsigned long pmd_mask, pmc_mask;
6168	u64 psr, psr_up;
6169	int need_irq_resend;
6170
6171	owner = GET_PMU_OWNER();
6172	ctx   = PFM_GET_CTX(task);
6173	psr   = pfm_get_psr();
6174
6175	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6176	BUG_ON(psr & IA64_PSR_I);
6177
6178	/*
6179	 * we restore ALL the debug registers to avoid picking up
6180	 * stale state.
6181	 *
6182	 * This must be done even when the task is still the owner
6183	 * as the registers may have been modified via ptrace()
6184	 * (not perfmon) by the previous task.
6185	 */
6186	if (ctx->ctx_fl_using_dbreg) {
6187		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6188		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6189	}
6190
6191	/*
6192	 * retrieved saved psr.up
6193	 */
6194	psr_up = ctx->ctx_saved_psr_up;
6195	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6196
6197	/*
6198	 * short path, our state is still there, just
6199	 * need to restore psr and we go
6200	 *
6201	 * we do not touch either PMC nor PMD. the psr is not touched
6202	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6203	 * concurrency even without interrupt masking.
6204	 */
6205	if (likely(owner == task)) {
6206		if (likely(psr_up)) pfm_set_psr_up();
6207		return;
6208	}
6209
6210	/*
6211	 * someone else is still using the PMU, first push it out and
6212	 * then we'll be able to install our stuff !
6213	 *
6214	 * Upon return, there will be no owner for the current PMU
6215	 */
6216	if (owner) pfm_lazy_save_regs(owner);
6217
6218	/*
6219	 * To avoid leaking information to the user level when psr.sp=0,
6220	 * we must reload ALL implemented pmds (even the ones we don't use).
6221	 * In the kernel we only allow PFM_READ_PMDS on registers which
6222	 * we initialized or requested (sampling) so there is no risk there.
6223	 */
6224	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6225
6226	/*
6227	 * ALL accessible PMCs are systematically reloaded, unused registers
6228	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229	 * up stale configuration.
6230	 *
6231	 * PMC0 is never in the mask. It is always restored separately
6232	 */
6233	pmc_mask = ctx->ctx_all_pmcs[0];
6234
6235	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6236	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6237
6238	/*
6239	 * check for pending overflow at the time the state
6240	 * was saved.
6241	 */
6242	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6243		/*
6244		 * reload pmc0 with the overflow information
6245		 * On McKinley PMU, this will trigger a PMU interrupt
6246		 */
6247		ia64_set_pmc(0, ctx->th_pmcs[0]);
6248		ia64_srlz_d();
6249
6250		ctx->th_pmcs[0] = 0UL;
6251
6252		/*
6253		 * will replay the PMU interrupt
6254		 */
6255		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6256
6257		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6258	}
6259
6260	/*
6261	 * establish new ownership. 
6262	 */
6263	SET_PMU_OWNER(task, ctx);
6264
6265	/*
6266	 * restore the psr.up bit. measurement
6267	 * is active again.
6268	 * no PMU interrupt can happen at this point
6269	 * because we still have interrupts disabled.
6270	 */
6271	if (likely(psr_up)) pfm_set_psr_up();
6272}
6273#endif /* CONFIG_SMP */
6274
6275/*
6276 * this function assumes monitoring is stopped
6277 */
6278static void
6279pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6280{
6281	u64 pmc0;
6282	unsigned long mask2, val, pmd_val, ovfl_val;
6283	int i, can_access_pmu = 0;
6284	int is_self;
6285
6286	/*
6287	 * is the caller the task being monitored (or which initiated the
6288	 * session for system wide measurements)
6289	 */
6290	is_self = ctx->ctx_task == task ? 1 : 0;
6291
6292	/*
6293	 * can access PMU is task is the owner of the PMU state on the current CPU
6294	 * or if we are running on the CPU bound to the context in system-wide mode
6295	 * (that is not necessarily the task the context is attached to in this mode).
6296	 * In system-wide we always have can_access_pmu true because a task running on an
6297	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6298	 */
6299	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6300	if (can_access_pmu) {
6301		/*
6302		 * Mark the PMU as not owned
6303		 * This will cause the interrupt handler to do nothing in case an overflow
6304		 * interrupt was in-flight
6305		 * This also guarantees that pmc0 will contain the final state
6306		 * It virtually gives us full control on overflow processing from that point
6307		 * on.
6308		 */
6309		SET_PMU_OWNER(NULL, NULL);
6310		DPRINT(("releasing ownership\n"));
6311
6312		/*
6313		 * read current overflow status:
6314		 *
6315		 * we are guaranteed to read the final stable state
6316		 */
6317		ia64_srlz_d();
6318		pmc0 = ia64_get_pmc(0); /* slow */
6319
6320		/*
6321		 * reset freeze bit, overflow status information destroyed
6322		 */
6323		pfm_unfreeze_pmu();
6324	} else {
6325		pmc0 = ctx->th_pmcs[0];
6326		/*
6327		 * clear whatever overflow status bits there were
6328		 */
6329		ctx->th_pmcs[0] = 0;
6330	}
6331	ovfl_val = pmu_conf->ovfl_val;
6332	/*
6333	 * we save all the used pmds
6334	 * we take care of overflows for counting PMDs
6335	 *
6336	 * XXX: sampling situation is not taken into account here
6337	 */
6338	mask2 = ctx->ctx_used_pmds[0];
6339
6340	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6341
6342	for (i = 0; mask2; i++, mask2>>=1) {
6343
6344		/* skip non used pmds */
6345		if ((mask2 & 0x1) == 0) continue;
6346
6347		/*
6348		 * can access PMU always true in system wide mode
6349		 */
6350		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6351
6352		if (PMD_IS_COUNTING(i)) {
6353			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6354				task_pid_nr(task),
6355				i,
6356				ctx->ctx_pmds[i].val,
6357				val & ovfl_val));
6358
6359			/*
6360			 * we rebuild the full 64 bit value of the counter
6361			 */
6362			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6363
6364			/*
6365			 * now everything is in ctx_pmds[] and we need
6366			 * to clear the saved context from save_regs() such that
6367			 * pfm_read_pmds() gets the correct value
6368			 */
6369			pmd_val = 0UL;
6370
6371			/*
6372			 * take care of overflow inline
6373			 */
6374			if (pmc0 & (1UL << i)) {
6375				val += 1 + ovfl_val;
6376				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6377			}
6378		}
6379
6380		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6381
6382		if (is_self) ctx->th_pmds[i] = pmd_val;
6383
6384		ctx->ctx_pmds[i].val = val;
6385	}
6386}
6387
6388static struct irqaction perfmon_irqaction = {
6389	.handler = pfm_interrupt_handler,
6390	.name    = "perfmon"
6391};
6392
6393static void
6394pfm_alt_save_pmu_state(void *data)
6395{
6396	struct pt_regs *regs;
6397
6398	regs = task_pt_regs(current);
6399
6400	DPRINT(("called\n"));
6401
6402	/*
6403	 * should not be necessary but
6404	 * let's take not risk
6405	 */
6406	pfm_clear_psr_up();
6407	pfm_clear_psr_pp();
6408	ia64_psr(regs)->pp = 0;
6409
6410	/*
6411	 * This call is required
6412	 * May cause a spurious interrupt on some processors
6413	 */
6414	pfm_freeze_pmu();
6415
6416	ia64_srlz_d();
6417}
6418
6419void
6420pfm_alt_restore_pmu_state(void *data)
6421{
6422	struct pt_regs *regs;
6423
6424	regs = task_pt_regs(current);
6425
6426	DPRINT(("called\n"));
6427
6428	/*
6429	 * put PMU back in state expected
6430	 * by perfmon
6431	 */
6432	pfm_clear_psr_up();
6433	pfm_clear_psr_pp();
6434	ia64_psr(regs)->pp = 0;
6435
6436	/*
6437	 * perfmon runs with PMU unfrozen at all times
6438	 */
6439	pfm_unfreeze_pmu();
6440
6441	ia64_srlz_d();
6442}
6443
6444int
6445pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6446{
6447	int ret, i;
6448	int reserve_cpu;
6449
6450	/* some sanity checks */
6451	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6452
6453	/* do the easy test first */
6454	if (pfm_alt_intr_handler) return -EBUSY;
6455
6456	/* one at a time in the install or remove, just fail the others */
6457	if (!spin_trylock(&pfm_alt_install_check)) {
6458		return -EBUSY;
6459	}
6460
6461	/* reserve our session */
6462	for_each_online_cpu(reserve_cpu) {
6463		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6464		if (ret) goto cleanup_reserve;
6465	}
6466
6467	/* save the current system wide pmu states */
6468	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6469	if (ret) {
6470		DPRINT(("on_each_cpu() failed: %d\n", ret));
6471		goto cleanup_reserve;
6472	}
6473
6474	/* officially change to the alternate interrupt handler */
6475	pfm_alt_intr_handler = hdl;
6476
6477	spin_unlock(&pfm_alt_install_check);
6478
6479	return 0;
6480
6481cleanup_reserve:
6482	for_each_online_cpu(i) {
6483		/* don't unreserve more than we reserved */
6484		if (i >= reserve_cpu) break;
6485
6486		pfm_unreserve_session(NULL, 1, i);
6487	}
6488
6489	spin_unlock(&pfm_alt_install_check);
6490
6491	return ret;
6492}
6493EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6494
6495int
6496pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6497{
6498	int i;
6499	int ret;
6500
6501	if (hdl == NULL) return -EINVAL;
6502
6503	/* cannot remove someone else's handler! */
6504	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6505
6506	/* one at a time in the install or remove, just fail the others */
6507	if (!spin_trylock(&pfm_alt_install_check)) {
6508		return -EBUSY;
6509	}
6510
6511	pfm_alt_intr_handler = NULL;
6512
6513	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6514	if (ret) {
6515		DPRINT(("on_each_cpu() failed: %d\n", ret));
6516	}
6517
6518	for_each_online_cpu(i) {
6519		pfm_unreserve_session(NULL, 1, i);
6520	}
6521
6522	spin_unlock(&pfm_alt_install_check);
6523
6524	return 0;
6525}
6526EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6527
6528/*
6529 * perfmon initialization routine, called from the initcall() table
6530 */
6531static int init_pfm_fs(void);
6532
6533static int __init
6534pfm_probe_pmu(void)
6535{
6536	pmu_config_t **p;
6537	int family;
6538
6539	family = local_cpu_data->family;
6540	p      = pmu_confs;
6541
6542	while(*p) {
6543		if ((*p)->probe) {
6544			if ((*p)->probe() == 0) goto found;
6545		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6546			goto found;
6547		}
6548		p++;
6549	}
6550	return -1;
6551found:
6552	pmu_conf = *p;
6553	return 0;
6554}
6555
6556static const struct file_operations pfm_proc_fops = {
6557	.open		= pfm_proc_open,
6558	.read		= seq_read,
6559	.llseek		= seq_lseek,
6560	.release	= seq_release,
6561};
6562
6563int __init
6564pfm_init(void)
6565{
6566	unsigned int n, n_counters, i;
6567
6568	printk("perfmon: version %u.%u IRQ %u\n",
6569		PFM_VERSION_MAJ,
6570		PFM_VERSION_MIN,
6571		IA64_PERFMON_VECTOR);
6572
6573	if (pfm_probe_pmu()) {
6574		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6575				local_cpu_data->family);
6576		return -ENODEV;
6577	}
6578
6579	/*
6580	 * compute the number of implemented PMD/PMC from the
6581	 * description tables
6582	 */
6583	n = 0;
6584	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6585		if (PMC_IS_IMPL(i) == 0) continue;
6586		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6587		n++;
6588	}
6589	pmu_conf->num_pmcs = n;
6590
6591	n = 0; n_counters = 0;
6592	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6593		if (PMD_IS_IMPL(i) == 0) continue;
6594		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6595		n++;
6596		if (PMD_IS_COUNTING(i)) n_counters++;
6597	}
6598	pmu_conf->num_pmds      = n;
6599	pmu_conf->num_counters  = n_counters;
6600
6601	/*
6602	 * sanity checks on the number of debug registers
6603	 */
6604	if (pmu_conf->use_rr_dbregs) {
6605		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6606			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6607			pmu_conf = NULL;
6608			return -1;
6609		}
6610		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6611			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6612			pmu_conf = NULL;
6613			return -1;
6614		}
6615	}
6616
6617	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6618	       pmu_conf->pmu_name,
6619	       pmu_conf->num_pmcs,
6620	       pmu_conf->num_pmds,
6621	       pmu_conf->num_counters,
6622	       ffz(pmu_conf->ovfl_val));
6623
6624	/* sanity check */
6625	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6626		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6627		pmu_conf = NULL;
6628		return -1;
6629	}
6630
6631	/*
6632	 * create /proc/perfmon (mostly for debugging purposes)
6633	 */
6634	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6635	if (perfmon_dir == NULL) {
6636		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6637		pmu_conf = NULL;
6638		return -1;
6639	}
6640
6641	/*
6642	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6643	 */
6644	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6645
6646	/*
6647	 * initialize all our spinlocks
6648	 */
6649	spin_lock_init(&pfm_sessions.pfs_lock);
6650	spin_lock_init(&pfm_buffer_fmt_lock);
6651
6652	init_pfm_fs();
6653
6654	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6655
6656	return 0;
6657}
6658
6659__initcall(pfm_init);
6660
6661/*
6662 * this function is called before pfm_init()
6663 */
6664void
6665pfm_init_percpu (void)
6666{
6667	static int first_time=1;
6668	/*
6669	 * make sure no measurement is active
6670	 * (may inherit programmed PMCs from EFI).
6671	 */
6672	pfm_clear_psr_pp();
6673	pfm_clear_psr_up();
6674
6675	/*
6676	 * we run with the PMU not frozen at all times
6677	 */
6678	pfm_unfreeze_pmu();
6679
6680	if (first_time) {
6681		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6682		first_time=0;
6683	}
6684
6685	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6686	ia64_srlz_d();
6687}
6688
6689/*
6690 * used for debug purposes only
6691 */
6692void
6693dump_pmu_state(const char *from)
6694{
6695	struct task_struct *task;
6696	struct pt_regs *regs;
6697	pfm_context_t *ctx;
6698	unsigned long psr, dcr, info, flags;
6699	int i, this_cpu;
6700
6701	local_irq_save(flags);
6702
6703	this_cpu = smp_processor_id();
6704	regs     = task_pt_regs(current);
6705	info     = PFM_CPUINFO_GET();
6706	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6707
6708	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6709		local_irq_restore(flags);
6710		return;
6711	}
6712
6713	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6714		this_cpu, 
6715		from, 
6716		task_pid_nr(current),
6717		regs->cr_iip,
6718		current->comm);
6719
6720	task = GET_PMU_OWNER();
6721	ctx  = GET_PMU_CTX();
6722
6723	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6724
6725	psr = pfm_get_psr();
6726
6727	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6728		this_cpu,
6729		ia64_get_pmc(0),
6730		psr & IA64_PSR_PP ? 1 : 0,
6731		psr & IA64_PSR_UP ? 1 : 0,
6732		dcr & IA64_DCR_PP ? 1 : 0,
6733		info,
6734		ia64_psr(regs)->up,
6735		ia64_psr(regs)->pp);
6736
6737	ia64_psr(regs)->up = 0;
6738	ia64_psr(regs)->pp = 0;
6739
6740	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6741		if (PMC_IS_IMPL(i) == 0) continue;
6742		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6743	}
6744
6745	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6746		if (PMD_IS_IMPL(i) == 0) continue;
6747		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6748	}
6749
6750	if (ctx) {
6751		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6752				this_cpu,
6753				ctx->ctx_state,
6754				ctx->ctx_smpl_vaddr,
6755				ctx->ctx_smpl_hdr,
6756				ctx->ctx_msgq_head,
6757				ctx->ctx_msgq_tail,
6758				ctx->ctx_saved_psr_up);
6759	}
6760	local_irq_restore(flags);
6761}
6762
6763/*
6764 * called from process.c:copy_thread(). task is new child.
6765 */
6766void
6767pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6768{
6769	struct thread_struct *thread;
6770
6771	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6772
6773	thread = &task->thread;
6774
6775	/*
6776	 * cut links inherited from parent (current)
6777	 */
6778	thread->pfm_context = NULL;
6779
6780	PFM_SET_WORK_PENDING(task, 0);
6781
6782	/*
6783	 * the psr bits are already set properly in copy_threads()
6784	 */
6785}
6786#else  /* !CONFIG_PERFMON */
6787asmlinkage long
6788sys_perfmonctl (int fd, int cmd, void *arg, int count)
6789{
6790	return -ENOSYS;
6791}
6792#endif /* CONFIG_PERFMON */