Loading...
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/sched/task.h>
26#include <linux/sched/task_stack.h>
27#include <linux/interrupt.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/smp.h>
39#include <linux/pagemap.h>
40#include <linux/mount.h>
41#include <linux/bitops.h>
42#include <linux/capability.h>
43#include <linux/rcupdate.h>
44#include <linux/completion.h>
45#include <linux/tracehook.h>
46#include <linux/slab.h>
47#include <linux/cpu.h>
48
49#include <asm/errno.h>
50#include <asm/intrinsics.h>
51#include <asm/page.h>
52#include <asm/perfmon.h>
53#include <asm/processor.h>
54#include <asm/signal.h>
55#include <linux/uaccess.h>
56#include <asm/delay.h>
57
58#ifdef CONFIG_PERFMON
59/*
60 * perfmon context state
61 */
62#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
63#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
64#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
65#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
66
67#define PFM_INVALID_ACTIVATION (~0UL)
68
69#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
70#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71
72/*
73 * depth of message queue
74 */
75#define PFM_MAX_MSGS 32
76#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77
78/*
79 * type of a PMU register (bitmask).
80 * bitmask structure:
81 * bit0 : register implemented
82 * bit1 : end marker
83 * bit2-3 : reserved
84 * bit4 : pmc has pmc.pm
85 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
86 * bit6-7 : register type
87 * bit8-31: reserved
88 */
89#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
90#define PFM_REG_IMPL 0x1 /* register implemented */
91#define PFM_REG_END 0x2 /* end marker */
92#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
95#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
96#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
97
98#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
99#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
100
101#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
102
103/* i assumed unsigned */
104#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
106
107/* XXX: these assume that register i is implemented */
108#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
111#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
112
113#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
114#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
115#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
116#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
117
118#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
119#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
120
121#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
122#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
123#define PFM_CTX_TASK(h) (h)->ctx_task
124
125#define PMU_PMC_OI 5 /* position of pmc.oi bit */
126
127/* XXX: does not support more than 64 PMDs */
128#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
130
131#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
132
133#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136#define PFM_CODE_RR 0 /* requesting code range restriction */
137#define PFM_DATA_RR 1 /* requestion data range restriction */
138
139#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
141#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
142
143#define RDEP(x) (1UL<<(x))
144
145/*
146 * context protection macros
147 * in SMP:
148 * - we need to protect against CPU concurrency (spin_lock)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * in UP:
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
152 *
153 * spin_lock_irqsave()/spin_unlock_irqrestore():
154 * in SMP: local_irq_disable + spin_lock
155 * in UP : local_irq_disable
156 *
157 * spin_lock()/spin_lock():
158 * in UP : removed automatically
159 * in SMP: protect against context accesses from other CPU. interrupts
160 * are not masked. This is useful for the PMU interrupt handler
161 * because we know we will not get PMU concurrency in that code.
162 */
163#define PROTECT_CTX(c, f) \
164 do { \
165 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 spin_lock_irqsave(&(c)->ctx_lock, f); \
167 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 } while(0)
169
170#define UNPROTECT_CTX(c, f) \
171 do { \
172 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 } while(0)
175
176#define PROTECT_CTX_NOPRINT(c, f) \
177 do { \
178 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 } while(0)
180
181
182#define UNPROTECT_CTX_NOPRINT(c, f) \
183 do { \
184 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 } while(0)
186
187
188#define PROTECT_CTX_NOIRQ(c) \
189 do { \
190 spin_lock(&(c)->ctx_lock); \
191 } while(0)
192
193#define UNPROTECT_CTX_NOIRQ(c) \
194 do { \
195 spin_unlock(&(c)->ctx_lock); \
196 } while(0)
197
198
199#ifdef CONFIG_SMP
200
201#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
202#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
203#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
204
205#else /* !CONFIG_SMP */
206#define SET_ACTIVATION(t) do {} while(0)
207#define GET_ACTIVATION(t) do {} while(0)
208#define INC_ACTIVATION(t) do {} while(0)
209#endif /* CONFIG_SMP */
210
211#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
213#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
214
215#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
217
218#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219
220/*
221 * cmp0 must be the value of pmc0
222 */
223#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
224
225#define PFMFS_MAGIC 0xa0b4d889
226
227/*
228 * debugging
229 */
230#define PFM_DEBUGGING 1
231#ifdef PFM_DEBUGGING
232#define DPRINT(a) \
233 do { \
234 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 } while (0)
236
237#define DPRINT_ovfl(a) \
238 do { \
239 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 } while (0)
241#endif
242
243/*
244 * 64-bit software counter structure
245 *
246 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 */
248typedef struct {
249 unsigned long val; /* virtual 64bit counter value */
250 unsigned long lval; /* last reset value */
251 unsigned long long_reset; /* reset value on sampling overflow */
252 unsigned long short_reset; /* reset value on overflow */
253 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
254 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
255 unsigned long seed; /* seed for random-number generator */
256 unsigned long mask; /* mask for random-number generator */
257 unsigned int flags; /* notify/do not notify */
258 unsigned long eventid; /* overflow event identifier */
259} pfm_counter_t;
260
261/*
262 * context flags
263 */
264typedef struct {
265 unsigned int block:1; /* when 1, task will blocked on user notifications */
266 unsigned int system:1; /* do system wide monitoring */
267 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
268 unsigned int is_sampling:1; /* true if using a custom format */
269 unsigned int excl_idle:1; /* exclude idle task in system wide session */
270 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
271 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
272 unsigned int no_msg:1; /* no message sent on overflow */
273 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
274 unsigned int reserved:22;
275} pfm_context_flags_t;
276
277#define PFM_TRAP_REASON_NONE 0x0 /* default value */
278#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
279#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280
281
282/*
283 * perfmon context: encapsulates all the state of a monitoring session
284 */
285
286typedef struct pfm_context {
287 spinlock_t ctx_lock; /* context protection */
288
289 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
290 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
291
292 struct task_struct *ctx_task; /* task to which context is attached */
293
294 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
295
296 struct completion ctx_restart_done; /* use for blocking notification mode */
297
298 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
299 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
300 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
301
302 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
303 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
304 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
305
306 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
307
308 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
309 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
310 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
311 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
312
313 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
314
315 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
316 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
317
318 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
319
320 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
321 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
322 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
323
324 int ctx_fd; /* file descriptor used my this context */
325 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
326
327 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
328 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
329 unsigned long ctx_smpl_size; /* size of sampling buffer */
330 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
331
332 wait_queue_head_t ctx_msgq_wait;
333 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
334 int ctx_msgq_head;
335 int ctx_msgq_tail;
336 struct fasync_struct *ctx_async_queue;
337
338 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339} pfm_context_t;
340
341/*
342 * magic number used to verify that structure is really
343 * a perfmon context
344 */
345#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
346
347#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348
349#ifdef CONFIG_SMP
350#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
351#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
352#else
353#define SET_LAST_CPU(ctx, v) do {} while(0)
354#define GET_LAST_CPU(ctx) do {} while(0)
355#endif
356
357
358#define ctx_fl_block ctx_flags.block
359#define ctx_fl_system ctx_flags.system
360#define ctx_fl_using_dbreg ctx_flags.using_dbreg
361#define ctx_fl_is_sampling ctx_flags.is_sampling
362#define ctx_fl_excl_idle ctx_flags.excl_idle
363#define ctx_fl_going_zombie ctx_flags.going_zombie
364#define ctx_fl_trap_reason ctx_flags.trap_reason
365#define ctx_fl_no_msg ctx_flags.no_msg
366#define ctx_fl_can_restart ctx_flags.can_restart
367
368#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
369#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370
371/*
372 * global information about all sessions
373 * mostly used to synchronize between system wide and per-process
374 */
375typedef struct {
376 spinlock_t pfs_lock; /* lock the structure */
377
378 unsigned int pfs_task_sessions; /* number of per task sessions */
379 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
380 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
381 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
382 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383} pfm_session_t;
384
385/*
386 * information about a PMC or PMD.
387 * dep_pmd[]: a bitmask of dependent PMD registers
388 * dep_pmc[]: a bitmask of dependent PMC registers
389 */
390typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391typedef struct {
392 unsigned int type;
393 int pm_pos;
394 unsigned long default_value; /* power-on default value */
395 unsigned long reserved_mask; /* bitmask of reserved bits */
396 pfm_reg_check_t read_check;
397 pfm_reg_check_t write_check;
398 unsigned long dep_pmd[4];
399 unsigned long dep_pmc[4];
400} pfm_reg_desc_t;
401
402/* assume cnum is a valid monitor */
403#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404
405/*
406 * This structure is initialized at boot time and contains
407 * a description of the PMU main characteristics.
408 *
409 * If the probe function is defined, detection is based
410 * on its return value:
411 * - 0 means recognized PMU
412 * - anything else means not supported
413 * When the probe function is not defined, then the pmu_family field
414 * is used and it must match the host CPU family such that:
415 * - cpu->family & config->pmu_family != 0
416 */
417typedef struct {
418 unsigned long ovfl_val; /* overflow value for counters */
419
420 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
421 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
422
423 unsigned int num_pmcs; /* number of PMCS: computed at init time */
424 unsigned int num_pmds; /* number of PMDS: computed at init time */
425 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
426 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
427
428 char *pmu_name; /* PMU family name */
429 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
430 unsigned int flags; /* pmu specific flags */
431 unsigned int num_ibrs; /* number of IBRS: computed at init time */
432 unsigned int num_dbrs; /* number of DBRS: computed at init time */
433 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
434 int (*probe)(void); /* customized probe routine */
435 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
436} pmu_config_t;
437/*
438 * PMU specific flags
439 */
440#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441
442/*
443 * debug register related type definitions
444 */
445typedef struct {
446 unsigned long ibr_mask:56;
447 unsigned long ibr_plm:4;
448 unsigned long ibr_ig:3;
449 unsigned long ibr_x:1;
450} ibr_mask_reg_t;
451
452typedef struct {
453 unsigned long dbr_mask:56;
454 unsigned long dbr_plm:4;
455 unsigned long dbr_ig:2;
456 unsigned long dbr_w:1;
457 unsigned long dbr_r:1;
458} dbr_mask_reg_t;
459
460typedef union {
461 unsigned long val;
462 ibr_mask_reg_t ibr;
463 dbr_mask_reg_t dbr;
464} dbreg_t;
465
466
467/*
468 * perfmon command descriptions
469 */
470typedef struct {
471 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
472 char *cmd_name;
473 int cmd_flags;
474 unsigned int cmd_narg;
475 size_t cmd_argsize;
476 int (*cmd_getsize)(void *arg, size_t *sz);
477} pfm_cmd_desc_t;
478
479#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
480#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
481#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
482#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483
484
485#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
486#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
490
491#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492
493typedef struct {
494 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
495 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
496 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
498 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
500 unsigned long pfm_smpl_handler_calls;
501 unsigned long pfm_smpl_handler_cycles;
502 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503} pfm_stats_t;
504
505/*
506 * perfmon internal variables
507 */
508static pfm_stats_t pfm_stats[NR_CPUS];
509static pfm_session_t pfm_sessions; /* global sessions information */
510
511static DEFINE_SPINLOCK(pfm_alt_install_check);
512static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
513
514static struct proc_dir_entry *perfmon_dir;
515static pfm_uuid_t pfm_null_uuid = {0,};
516
517static spinlock_t pfm_buffer_fmt_lock;
518static LIST_HEAD(pfm_buffer_fmt_list);
519
520static pmu_config_t *pmu_conf;
521
522/* sysctl() controls */
523pfm_sysctl_t pfm_sysctl;
524EXPORT_SYMBOL(pfm_sysctl);
525
526static struct ctl_table pfm_ctl_table[] = {
527 {
528 .procname = "debug",
529 .data = &pfm_sysctl.debug,
530 .maxlen = sizeof(int),
531 .mode = 0666,
532 .proc_handler = proc_dointvec,
533 },
534 {
535 .procname = "debug_ovfl",
536 .data = &pfm_sysctl.debug_ovfl,
537 .maxlen = sizeof(int),
538 .mode = 0666,
539 .proc_handler = proc_dointvec,
540 },
541 {
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = proc_dointvec,
547 },
548 {
549 .procname = "expert_mode",
550 .data = &pfm_sysctl.expert_mode,
551 .maxlen = sizeof(int),
552 .mode = 0600,
553 .proc_handler = proc_dointvec,
554 },
555 {}
556};
557static struct ctl_table pfm_sysctl_dir[] = {
558 {
559 .procname = "perfmon",
560 .mode = 0555,
561 .child = pfm_ctl_table,
562 },
563 {}
564};
565static struct ctl_table pfm_sysctl_root[] = {
566 {
567 .procname = "kernel",
568 .mode = 0555,
569 .child = pfm_sysctl_dir,
570 },
571 {}
572};
573static struct ctl_table_header *pfm_sysctl_header;
574
575static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
576
577#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
578#define pfm_get_cpu_data(a,b) per_cpu(a, b)
579
580static inline void
581pfm_put_task(struct task_struct *task)
582{
583 if (task != current) put_task_struct(task);
584}
585
586static inline void
587pfm_reserve_page(unsigned long a)
588{
589 SetPageReserved(vmalloc_to_page((void *)a));
590}
591static inline void
592pfm_unreserve_page(unsigned long a)
593{
594 ClearPageReserved(vmalloc_to_page((void*)a));
595}
596
597static inline unsigned long
598pfm_protect_ctx_ctxsw(pfm_context_t *x)
599{
600 spin_lock(&(x)->ctx_lock);
601 return 0UL;
602}
603
604static inline void
605pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
606{
607 spin_unlock(&(x)->ctx_lock);
608}
609
610/* forward declaration */
611static const struct dentry_operations pfmfs_dentry_operations;
612
613static struct dentry *
614pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
615{
616 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
617 PFMFS_MAGIC);
618}
619
620static struct file_system_type pfm_fs_type = {
621 .name = "pfmfs",
622 .mount = pfmfs_mount,
623 .kill_sb = kill_anon_super,
624};
625MODULE_ALIAS_FS("pfmfs");
626
627DEFINE_PER_CPU(unsigned long, pfm_syst_info);
628DEFINE_PER_CPU(struct task_struct *, pmu_owner);
629DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
630DEFINE_PER_CPU(unsigned long, pmu_activation_number);
631EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632
633
634/* forward declaration */
635static const struct file_operations pfm_file_ops;
636
637/*
638 * forward declarations
639 */
640#ifndef CONFIG_SMP
641static void pfm_lazy_save_regs (struct task_struct *ta);
642#endif
643
644void dump_pmu_state(const char *);
645static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
646
647#include "perfmon_itanium.h"
648#include "perfmon_mckinley.h"
649#include "perfmon_montecito.h"
650#include "perfmon_generic.h"
651
652static pmu_config_t *pmu_confs[]={
653 &pmu_conf_mont,
654 &pmu_conf_mck,
655 &pmu_conf_ita,
656 &pmu_conf_gen, /* must be last */
657 NULL
658};
659
660
661static int pfm_end_notify_user(pfm_context_t *ctx);
662
663static inline void
664pfm_clear_psr_pp(void)
665{
666 ia64_rsm(IA64_PSR_PP);
667 ia64_srlz_i();
668}
669
670static inline void
671pfm_set_psr_pp(void)
672{
673 ia64_ssm(IA64_PSR_PP);
674 ia64_srlz_i();
675}
676
677static inline void
678pfm_clear_psr_up(void)
679{
680 ia64_rsm(IA64_PSR_UP);
681 ia64_srlz_i();
682}
683
684static inline void
685pfm_set_psr_up(void)
686{
687 ia64_ssm(IA64_PSR_UP);
688 ia64_srlz_i();
689}
690
691static inline unsigned long
692pfm_get_psr(void)
693{
694 unsigned long tmp;
695 tmp = ia64_getreg(_IA64_REG_PSR);
696 ia64_srlz_i();
697 return tmp;
698}
699
700static inline void
701pfm_set_psr_l(unsigned long val)
702{
703 ia64_setreg(_IA64_REG_PSR_L, val);
704 ia64_srlz_i();
705}
706
707static inline void
708pfm_freeze_pmu(void)
709{
710 ia64_set_pmc(0,1UL);
711 ia64_srlz_d();
712}
713
714static inline void
715pfm_unfreeze_pmu(void)
716{
717 ia64_set_pmc(0,0UL);
718 ia64_srlz_d();
719}
720
721static inline void
722pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
723{
724 int i;
725
726 for (i=0; i < nibrs; i++) {
727 ia64_set_ibr(i, ibrs[i]);
728 ia64_dv_serialize_instruction();
729 }
730 ia64_srlz_i();
731}
732
733static inline void
734pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
735{
736 int i;
737
738 for (i=0; i < ndbrs; i++) {
739 ia64_set_dbr(i, dbrs[i]);
740 ia64_dv_serialize_data();
741 }
742 ia64_srlz_d();
743}
744
745/*
746 * PMD[i] must be a counter. no check is made
747 */
748static inline unsigned long
749pfm_read_soft_counter(pfm_context_t *ctx, int i)
750{
751 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
752}
753
754/*
755 * PMD[i] must be a counter. no check is made
756 */
757static inline void
758pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
759{
760 unsigned long ovfl_val = pmu_conf->ovfl_val;
761
762 ctx->ctx_pmds[i].val = val & ~ovfl_val;
763 /*
764 * writing to unimplemented part is ignore, so we do not need to
765 * mask off top part
766 */
767 ia64_set_pmd(i, val & ovfl_val);
768}
769
770static pfm_msg_t *
771pfm_get_new_msg(pfm_context_t *ctx)
772{
773 int idx, next;
774
775 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
776
777 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 if (next == ctx->ctx_msgq_head) return NULL;
779
780 idx = ctx->ctx_msgq_tail;
781 ctx->ctx_msgq_tail = next;
782
783 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
784
785 return ctx->ctx_msgq+idx;
786}
787
788static pfm_msg_t *
789pfm_get_next_msg(pfm_context_t *ctx)
790{
791 pfm_msg_t *msg;
792
793 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
794
795 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796
797 /*
798 * get oldest message
799 */
800 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801
802 /*
803 * and move forward
804 */
805 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
806
807 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
808
809 return msg;
810}
811
812static void
813pfm_reset_msgq(pfm_context_t *ctx)
814{
815 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
816 DPRINT(("ctx=%p msgq reset\n", ctx));
817}
818
819static void *
820pfm_rvmalloc(unsigned long size)
821{
822 void *mem;
823 unsigned long addr;
824
825 size = PAGE_ALIGN(size);
826 mem = vzalloc(size);
827 if (mem) {
828 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 addr = (unsigned long)mem;
830 while (size > 0) {
831 pfm_reserve_page(addr);
832 addr+=PAGE_SIZE;
833 size-=PAGE_SIZE;
834 }
835 }
836 return mem;
837}
838
839static void
840pfm_rvfree(void *mem, unsigned long size)
841{
842 unsigned long addr;
843
844 if (mem) {
845 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
846 addr = (unsigned long) mem;
847 while ((long) size > 0) {
848 pfm_unreserve_page(addr);
849 addr+=PAGE_SIZE;
850 size-=PAGE_SIZE;
851 }
852 vfree(mem);
853 }
854 return;
855}
856
857static pfm_context_t *
858pfm_context_alloc(int ctx_flags)
859{
860 pfm_context_t *ctx;
861
862 /*
863 * allocate context descriptor
864 * must be able to free with interrupts disabled
865 */
866 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
867 if (ctx) {
868 DPRINT(("alloc ctx @%p\n", ctx));
869
870 /*
871 * init context protection lock
872 */
873 spin_lock_init(&ctx->ctx_lock);
874
875 /*
876 * context is unloaded
877 */
878 ctx->ctx_state = PFM_CTX_UNLOADED;
879
880 /*
881 * initialization of context's flags
882 */
883 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
884 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
885 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
886 /*
887 * will move to set properties
888 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
889 */
890
891 /*
892 * init restart semaphore to locked
893 */
894 init_completion(&ctx->ctx_restart_done);
895
896 /*
897 * activation is used in SMP only
898 */
899 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
900 SET_LAST_CPU(ctx, -1);
901
902 /*
903 * initialize notification message queue
904 */
905 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
906 init_waitqueue_head(&ctx->ctx_msgq_wait);
907 init_waitqueue_head(&ctx->ctx_zombieq);
908
909 }
910 return ctx;
911}
912
913static void
914pfm_context_free(pfm_context_t *ctx)
915{
916 if (ctx) {
917 DPRINT(("free ctx @%p\n", ctx));
918 kfree(ctx);
919 }
920}
921
922static void
923pfm_mask_monitoring(struct task_struct *task)
924{
925 pfm_context_t *ctx = PFM_GET_CTX(task);
926 unsigned long mask, val, ovfl_mask;
927 int i;
928
929 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
930
931 ovfl_mask = pmu_conf->ovfl_val;
932 /*
933 * monitoring can only be masked as a result of a valid
934 * counter overflow. In UP, it means that the PMU still
935 * has an owner. Note that the owner can be different
936 * from the current task. However the PMU state belongs
937 * to the owner.
938 * In SMP, a valid overflow only happens when task is
939 * current. Therefore if we come here, we know that
940 * the PMU state belongs to the current task, therefore
941 * we can access the live registers.
942 *
943 * So in both cases, the live register contains the owner's
944 * state. We can ONLY touch the PMU registers and NOT the PSR.
945 *
946 * As a consequence to this call, the ctx->th_pmds[] array
947 * contains stale information which must be ignored
948 * when context is reloaded AND monitoring is active (see
949 * pfm_restart).
950 */
951 mask = ctx->ctx_used_pmds[0];
952 for (i = 0; mask; i++, mask>>=1) {
953 /* skip non used pmds */
954 if ((mask & 0x1) == 0) continue;
955 val = ia64_get_pmd(i);
956
957 if (PMD_IS_COUNTING(i)) {
958 /*
959 * we rebuild the full 64 bit value of the counter
960 */
961 ctx->ctx_pmds[i].val += (val & ovfl_mask);
962 } else {
963 ctx->ctx_pmds[i].val = val;
964 }
965 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
966 i,
967 ctx->ctx_pmds[i].val,
968 val & ovfl_mask));
969 }
970 /*
971 * mask monitoring by setting the privilege level to 0
972 * we cannot use psr.pp/psr.up for this, it is controlled by
973 * the user
974 *
975 * if task is current, modify actual registers, otherwise modify
976 * thread save state, i.e., what will be restored in pfm_load_regs()
977 */
978 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
979 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
980 if ((mask & 0x1) == 0UL) continue;
981 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
982 ctx->th_pmcs[i] &= ~0xfUL;
983 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 }
985 /*
986 * make all of this visible
987 */
988 ia64_srlz_d();
989}
990
991/*
992 * must always be done with task == current
993 *
994 * context must be in MASKED state when calling
995 */
996static void
997pfm_restore_monitoring(struct task_struct *task)
998{
999 pfm_context_t *ctx = PFM_GET_CTX(task);
1000 unsigned long mask, ovfl_mask;
1001 unsigned long psr, val;
1002 int i, is_system;
1003
1004 is_system = ctx->ctx_fl_system;
1005 ovfl_mask = pmu_conf->ovfl_val;
1006
1007 if (task != current) {
1008 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009 return;
1010 }
1011 if (ctx->ctx_state != PFM_CTX_MASKED) {
1012 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014 return;
1015 }
1016 psr = pfm_get_psr();
1017 /*
1018 * monitoring is masked via the PMC.
1019 * As we restore their value, we do not want each counter to
1020 * restart right away. We stop monitoring using the PSR,
1021 * restore the PMC (and PMD) and then re-establish the psr
1022 * as it was. Note that there can be no pending overflow at
1023 * this point, because monitoring was MASKED.
1024 *
1025 * system-wide session are pinned and self-monitoring
1026 */
1027 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 /* disable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030 pfm_clear_psr_pp();
1031 } else {
1032 pfm_clear_psr_up();
1033 }
1034 /*
1035 * first, we restore the PMD
1036 */
1037 mask = ctx->ctx_used_pmds[0];
1038 for (i = 0; mask; i++, mask>>=1) {
1039 /* skip non used pmds */
1040 if ((mask & 0x1) == 0) continue;
1041
1042 if (PMD_IS_COUNTING(i)) {
1043 /*
1044 * we split the 64bit value according to
1045 * counter width
1046 */
1047 val = ctx->ctx_pmds[i].val & ovfl_mask;
1048 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049 } else {
1050 val = ctx->ctx_pmds[i].val;
1051 }
1052 ia64_set_pmd(i, val);
1053
1054 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055 i,
1056 ctx->ctx_pmds[i].val,
1057 val));
1058 }
1059 /*
1060 * restore the PMCs
1061 */
1062 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064 if ((mask & 0x1) == 0UL) continue;
1065 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066 ia64_set_pmc(i, ctx->th_pmcs[i]);
1067 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 task_pid_nr(task), i, ctx->th_pmcs[i]));
1069 }
1070 ia64_srlz_d();
1071
1072 /*
1073 * must restore DBR/IBR because could be modified while masked
1074 * XXX: need to optimize
1075 */
1076 if (ctx->ctx_fl_using_dbreg) {
1077 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079 }
1080
1081 /*
1082 * now restore PSR
1083 */
1084 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085 /* enable dcr pp */
1086 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087 ia64_srlz_i();
1088 }
1089 pfm_set_psr_l(psr);
1090}
1091
1092static inline void
1093pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094{
1095 int i;
1096
1097 ia64_srlz_d();
1098
1099 for (i=0; mask; i++, mask>>=1) {
1100 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 }
1102}
1103
1104/*
1105 * reload from thread state (used for ctxw only)
1106 */
1107static inline void
1108pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109{
1110 int i;
1111 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113 for (i=0; mask; i++, mask>>=1) {
1114 if ((mask & 0x1) == 0) continue;
1115 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116 ia64_set_pmd(i, val);
1117 }
1118 ia64_srlz_d();
1119}
1120
1121/*
1122 * propagate PMD from context to thread-state
1123 */
1124static inline void
1125pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126{
1127 unsigned long ovfl_val = pmu_conf->ovfl_val;
1128 unsigned long mask = ctx->ctx_all_pmds[0];
1129 unsigned long val;
1130 int i;
1131
1132 DPRINT(("mask=0x%lx\n", mask));
1133
1134 for (i=0; mask; i++, mask>>=1) {
1135
1136 val = ctx->ctx_pmds[i].val;
1137
1138 /*
1139 * We break up the 64 bit value into 2 pieces
1140 * the lower bits go to the machine state in the
1141 * thread (will be reloaded on ctxsw in).
1142 * The upper part stays in the soft-counter.
1143 */
1144 if (PMD_IS_COUNTING(i)) {
1145 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146 val &= ovfl_val;
1147 }
1148 ctx->th_pmds[i] = val;
1149
1150 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 i,
1152 ctx->th_pmds[i],
1153 ctx->ctx_pmds[i].val));
1154 }
1155}
1156
1157/*
1158 * propagate PMC from context to thread-state
1159 */
1160static inline void
1161pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162{
1163 unsigned long mask = ctx->ctx_all_pmcs[0];
1164 int i;
1165
1166 DPRINT(("mask=0x%lx\n", mask));
1167
1168 for (i=0; mask; i++, mask>>=1) {
1169 /* masking 0 with ovfl_val yields 0 */
1170 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172 }
1173}
1174
1175
1176
1177static inline void
1178pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179{
1180 int i;
1181
1182 for (i=0; mask; i++, mask>>=1) {
1183 if ((mask & 0x1) == 0) continue;
1184 ia64_set_pmc(i, pmcs[i]);
1185 }
1186 ia64_srlz_d();
1187}
1188
1189static inline int
1190pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191{
1192 return memcmp(a, b, sizeof(pfm_uuid_t));
1193}
1194
1195static inline int
1196pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197{
1198 int ret = 0;
1199 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200 return ret;
1201}
1202
1203static inline int
1204pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205{
1206 int ret = 0;
1207 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208 return ret;
1209}
1210
1211
1212static inline int
1213pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214 int cpu, void *arg)
1215{
1216 int ret = 0;
1217 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218 return ret;
1219}
1220
1221static inline int
1222pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223 int cpu, void *arg)
1224{
1225 int ret = 0;
1226 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227 return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232{
1233 int ret = 0;
1234 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235 return ret;
1236}
1237
1238static inline int
1239pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240{
1241 int ret = 0;
1242 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243 return ret;
1244}
1245
1246static pfm_buffer_fmt_t *
1247__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248{
1249 struct list_head * pos;
1250 pfm_buffer_fmt_t * entry;
1251
1252 list_for_each(pos, &pfm_buffer_fmt_list) {
1253 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255 return entry;
1256 }
1257 return NULL;
1258}
1259
1260/*
1261 * find a buffer format based on its uuid
1262 */
1263static pfm_buffer_fmt_t *
1264pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265{
1266 pfm_buffer_fmt_t * fmt;
1267 spin_lock(&pfm_buffer_fmt_lock);
1268 fmt = __pfm_find_buffer_fmt(uuid);
1269 spin_unlock(&pfm_buffer_fmt_lock);
1270 return fmt;
1271}
1272
1273int
1274pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275{
1276 int ret = 0;
1277
1278 /* some sanity checks */
1279 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281 /* we need at least a handler */
1282 if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284 /*
1285 * XXX: need check validity of fmt_arg_size
1286 */
1287
1288 spin_lock(&pfm_buffer_fmt_lock);
1289
1290 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292 ret = -EBUSY;
1293 goto out;
1294 }
1295 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298out:
1299 spin_unlock(&pfm_buffer_fmt_lock);
1300 return ret;
1301}
1302EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304int
1305pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306{
1307 pfm_buffer_fmt_t *fmt;
1308 int ret = 0;
1309
1310 spin_lock(&pfm_buffer_fmt_lock);
1311
1312 fmt = __pfm_find_buffer_fmt(uuid);
1313 if (!fmt) {
1314 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318 list_del_init(&fmt->fmt_list);
1319 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321out:
1322 spin_unlock(&pfm_buffer_fmt_lock);
1323 return ret;
1324
1325}
1326EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328static int
1329pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330{
1331 unsigned long flags;
1332 /*
1333 * validity checks on cpu_mask have been done upstream
1334 */
1335 LOCK_PFS(flags);
1336
1337 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 pfm_sessions.pfs_sys_sessions,
1339 pfm_sessions.pfs_task_sessions,
1340 pfm_sessions.pfs_sys_use_dbregs,
1341 is_syswide,
1342 cpu));
1343
1344 if (is_syswide) {
1345 /*
1346 * cannot mix system wide and per-task sessions
1347 */
1348 if (pfm_sessions.pfs_task_sessions > 0UL) {
1349 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 pfm_sessions.pfs_task_sessions));
1351 goto abort;
1352 }
1353
1354 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358 pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360 pfm_sessions.pfs_sys_sessions++ ;
1361
1362 } else {
1363 if (pfm_sessions.pfs_sys_sessions) goto abort;
1364 pfm_sessions.pfs_task_sessions++;
1365 }
1366
1367 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 pfm_sessions.pfs_sys_sessions,
1369 pfm_sessions.pfs_task_sessions,
1370 pfm_sessions.pfs_sys_use_dbregs,
1371 is_syswide,
1372 cpu));
1373
1374 /*
1375 * Force idle() into poll mode
1376 */
1377 cpu_idle_poll_ctrl(true);
1378
1379 UNLOCK_PFS(flags);
1380
1381 return 0;
1382
1383error_conflict:
1384 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386 cpu));
1387abort:
1388 UNLOCK_PFS(flags);
1389
1390 return -EBUSY;
1391
1392}
1393
1394static int
1395pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396{
1397 unsigned long flags;
1398 /*
1399 * validity checks on cpu_mask have been done upstream
1400 */
1401 LOCK_PFS(flags);
1402
1403 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 pfm_sessions.pfs_sys_sessions,
1405 pfm_sessions.pfs_task_sessions,
1406 pfm_sessions.pfs_sys_use_dbregs,
1407 is_syswide,
1408 cpu));
1409
1410
1411 if (is_syswide) {
1412 pfm_sessions.pfs_sys_session[cpu] = NULL;
1413 /*
1414 * would not work with perfmon+more than one bit in cpu_mask
1415 */
1416 if (ctx && ctx->ctx_fl_using_dbreg) {
1417 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419 } else {
1420 pfm_sessions.pfs_sys_use_dbregs--;
1421 }
1422 }
1423 pfm_sessions.pfs_sys_sessions--;
1424 } else {
1425 pfm_sessions.pfs_task_sessions--;
1426 }
1427 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 pfm_sessions.pfs_sys_sessions,
1429 pfm_sessions.pfs_task_sessions,
1430 pfm_sessions.pfs_sys_use_dbregs,
1431 is_syswide,
1432 cpu));
1433
1434 /* Undo forced polling. Last session reenables pal_halt */
1435 cpu_idle_poll_ctrl(false);
1436
1437 UNLOCK_PFS(flags);
1438
1439 return 0;
1440}
1441
1442/*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447static int
1448pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449{
1450 struct task_struct *task = current;
1451 int r;
1452
1453 /* sanity checks */
1454 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456 return -EINVAL;
1457 }
1458
1459 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461 /*
1462 * does the actual unmapping
1463 */
1464 r = vm_munmap((unsigned long)vaddr, size);
1465
1466 if (r !=0) {
1467 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 }
1469
1470 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472 return 0;
1473}
1474
1475/*
1476 * free actual physical storage used by sampling buffer
1477 */
1478#if 0
1479static int
1480pfm_free_smpl_buffer(pfm_context_t *ctx)
1481{
1482 pfm_buffer_fmt_t *fmt;
1483
1484 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486 /*
1487 * we won't use the buffer format anymore
1488 */
1489 fmt = ctx->ctx_buf_fmt;
1490
1491 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 ctx->ctx_smpl_hdr,
1493 ctx->ctx_smpl_size,
1494 ctx->ctx_smpl_vaddr));
1495
1496 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498 /*
1499 * free the buffer
1500 */
1501 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503 ctx->ctx_smpl_hdr = NULL;
1504 ctx->ctx_smpl_size = 0UL;
1505
1506 return 0;
1507
1508invalid_free:
1509 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510 return -EINVAL;
1511}
1512#endif
1513
1514static inline void
1515pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516{
1517 if (fmt == NULL) return;
1518
1519 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521}
1522
1523/*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531static int __init
1532init_pfm_fs(void)
1533{
1534 int err = register_filesystem(&pfm_fs_type);
1535 if (!err) {
1536 pfmfs_mnt = kern_mount(&pfm_fs_type);
1537 err = PTR_ERR(pfmfs_mnt);
1538 if (IS_ERR(pfmfs_mnt))
1539 unregister_filesystem(&pfm_fs_type);
1540 else
1541 err = 0;
1542 }
1543 return err;
1544}
1545
1546static ssize_t
1547pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548{
1549 pfm_context_t *ctx;
1550 pfm_msg_t *msg;
1551 ssize_t ret;
1552 unsigned long flags;
1553 DECLARE_WAITQUEUE(wait, current);
1554 if (PFM_IS_FILE(filp) == 0) {
1555 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556 return -EINVAL;
1557 }
1558
1559 ctx = filp->private_data;
1560 if (ctx == NULL) {
1561 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562 return -EINVAL;
1563 }
1564
1565 /*
1566 * check even when there is no message
1567 */
1568 if (size < sizeof(pfm_msg_t)) {
1569 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570 return -EINVAL;
1571 }
1572
1573 PROTECT_CTX(ctx, flags);
1574
1575 /*
1576 * put ourselves on the wait queue
1577 */
1578 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581 for(;;) {
1582 /*
1583 * check wait queue
1584 */
1585
1586 set_current_state(TASK_INTERRUPTIBLE);
1587
1588 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590 ret = 0;
1591 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593 UNPROTECT_CTX(ctx, flags);
1594
1595 /*
1596 * check non-blocking read
1597 */
1598 ret = -EAGAIN;
1599 if(filp->f_flags & O_NONBLOCK) break;
1600
1601 /*
1602 * check pending signals
1603 */
1604 if(signal_pending(current)) {
1605 ret = -EINTR;
1606 break;
1607 }
1608 /*
1609 * no message, so wait
1610 */
1611 schedule();
1612
1613 PROTECT_CTX(ctx, flags);
1614 }
1615 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616 set_current_state(TASK_RUNNING);
1617 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619 if (ret < 0) goto abort;
1620
1621 ret = -EINVAL;
1622 msg = pfm_get_next_msg(ctx);
1623 if (msg == NULL) {
1624 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625 goto abort_locked;
1626 }
1627
1628 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630 ret = -EFAULT;
1631 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633abort_locked:
1634 UNPROTECT_CTX(ctx, flags);
1635abort:
1636 return ret;
1637}
1638
1639static ssize_t
1640pfm_write(struct file *file, const char __user *ubuf,
1641 size_t size, loff_t *ppos)
1642{
1643 DPRINT(("pfm_write called\n"));
1644 return -EINVAL;
1645}
1646
1647static __poll_t
1648pfm_poll(struct file *filp, poll_table * wait)
1649{
1650 pfm_context_t *ctx;
1651 unsigned long flags;
1652 __poll_t mask = 0;
1653
1654 if (PFM_IS_FILE(filp) == 0) {
1655 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656 return 0;
1657 }
1658
1659 ctx = filp->private_data;
1660 if (ctx == NULL) {
1661 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662 return 0;
1663 }
1664
1665
1666 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670 PROTECT_CTX(ctx, flags);
1671
1672 if (PFM_CTXQ_EMPTY(ctx) == 0)
1673 mask = EPOLLIN | EPOLLRDNORM;
1674
1675 UNPROTECT_CTX(ctx, flags);
1676
1677 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679 return mask;
1680}
1681
1682static long
1683pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684{
1685 DPRINT(("pfm_ioctl called\n"));
1686 return -EINVAL;
1687}
1688
1689/*
1690 * interrupt cannot be masked when coming here
1691 */
1692static inline int
1693pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694{
1695 int ret;
1696
1697 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 task_pid_nr(current),
1701 fd,
1702 on,
1703 ctx->ctx_async_queue, ret));
1704
1705 return ret;
1706}
1707
1708static int
1709pfm_fasync(int fd, struct file *filp, int on)
1710{
1711 pfm_context_t *ctx;
1712 int ret;
1713
1714 if (PFM_IS_FILE(filp) == 0) {
1715 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716 return -EBADF;
1717 }
1718
1719 ctx = filp->private_data;
1720 if (ctx == NULL) {
1721 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722 return -EBADF;
1723 }
1724 /*
1725 * we cannot mask interrupts during this call because this may
1726 * may go to sleep if memory is not readily avalaible.
1727 *
1728 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 * done in caller. Serialization of this function is ensured by caller.
1730 */
1731 ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 fd,
1736 on,
1737 ctx->ctx_async_queue, ret));
1738
1739 return ret;
1740}
1741
1742#ifdef CONFIG_SMP
1743/*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748static void
1749pfm_syswide_force_stop(void *info)
1750{
1751 pfm_context_t *ctx = (pfm_context_t *)info;
1752 struct pt_regs *regs = task_pt_regs(current);
1753 struct task_struct *owner;
1754 unsigned long flags;
1755 int ret;
1756
1757 if (ctx->ctx_cpu != smp_processor_id()) {
1758 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1759 ctx->ctx_cpu,
1760 smp_processor_id());
1761 return;
1762 }
1763 owner = GET_PMU_OWNER();
1764 if (owner != ctx->ctx_task) {
1765 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766 smp_processor_id(),
1767 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768 return;
1769 }
1770 if (GET_PMU_CTX() != ctx) {
1771 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772 smp_processor_id(),
1773 GET_PMU_CTX(), ctx);
1774 return;
1775 }
1776
1777 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778 /*
1779 * the context is already protected in pfm_close(), we simply
1780 * need to mask interrupts to avoid a PMU interrupt race on
1781 * this CPU
1782 */
1783 local_irq_save(flags);
1784
1785 ret = pfm_context_unload(ctx, NULL, 0, regs);
1786 if (ret) {
1787 DPRINT(("context_unload returned %d\n", ret));
1788 }
1789
1790 /*
1791 * unmask interrupts, PMU interrupts are now spurious here
1792 */
1793 local_irq_restore(flags);
1794}
1795
1796static void
1797pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798{
1799 int ret;
1800
1801 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804}
1805#endif /* CONFIG_SMP */
1806
1807/*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811static int
1812pfm_flush(struct file *filp, fl_owner_t id)
1813{
1814 pfm_context_t *ctx;
1815 struct task_struct *task;
1816 struct pt_regs *regs;
1817 unsigned long flags;
1818 unsigned long smpl_buf_size = 0UL;
1819 void *smpl_buf_vaddr = NULL;
1820 int state, is_system;
1821
1822 if (PFM_IS_FILE(filp) == 0) {
1823 DPRINT(("bad magic for\n"));
1824 return -EBADF;
1825 }
1826
1827 ctx = filp->private_data;
1828 if (ctx == NULL) {
1829 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830 return -EBADF;
1831 }
1832
1833 /*
1834 * remove our file from the async queue, if we use this mode.
1835 * This can be done without the context being protected. We come
1836 * here when the context has become unreachable by other tasks.
1837 *
1838 * We may still have active monitoring at this point and we may
1839 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 * operates with interrupts disabled and it cleans up the
1841 * queue. If the PMU handler is called prior to entering
1842 * fasync_helper() then it will send a signal. If it is
1843 * invoked after, it will find an empty queue and no
1844 * signal will be sent. In both case, we are safe
1845 */
1846 PROTECT_CTX(ctx, flags);
1847
1848 state = ctx->ctx_state;
1849 is_system = ctx->ctx_fl_system;
1850
1851 task = PFM_CTX_TASK(ctx);
1852 regs = task_pt_regs(task);
1853
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1855 state,
1856 task == current ? 1 : 0));
1857
1858 /*
1859 * if state == UNLOADED, then task is NULL
1860 */
1861
1862 /*
1863 * we must stop and unload because we are losing access to the context.
1864 */
1865 if (task == current) {
1866#ifdef CONFIG_SMP
1867 /*
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1871 *
1872 * We need to release the resource on the ORIGINAL cpu.
1873 */
1874 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877 /*
1878 * keep context protected but unmask interrupt for IPI
1879 */
1880 local_irq_restore(flags);
1881
1882 pfm_syswide_cleanup_other_cpu(ctx);
1883
1884 /*
1885 * restore interrupt masking
1886 */
1887 local_irq_save(flags);
1888
1889 /*
1890 * context is unloaded at this point
1891 */
1892 } else
1893#endif /* CONFIG_SMP */
1894 {
1895
1896 DPRINT(("forcing unload\n"));
1897 /*
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1900 */
1901 pfm_context_unload(ctx, NULL, 0, regs);
1902
1903 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904 }
1905 }
1906
1907 /*
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1910 *
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1913 *
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1916 * do anything here
1917 */
1918 if (ctx->ctx_smpl_vaddr && current->mm) {
1919 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 smpl_buf_size = ctx->ctx_smpl_size;
1921 }
1922
1923 UNPROTECT_CTX(ctx, flags);
1924
1925 /*
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1929 *
1930 */
1931 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933 return 0;
1934}
1935/*
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1949 */
1950static int
1951pfm_close(struct inode *inode, struct file *filp)
1952{
1953 pfm_context_t *ctx;
1954 struct task_struct *task;
1955 struct pt_regs *regs;
1956 DECLARE_WAITQUEUE(wait, current);
1957 unsigned long flags;
1958 unsigned long smpl_buf_size = 0UL;
1959 void *smpl_buf_addr = NULL;
1960 int free_possible = 1;
1961 int state, is_system;
1962
1963 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965 if (PFM_IS_FILE(filp) == 0) {
1966 DPRINT(("bad magic\n"));
1967 return -EBADF;
1968 }
1969
1970 ctx = filp->private_data;
1971 if (ctx == NULL) {
1972 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973 return -EBADF;
1974 }
1975
1976 PROTECT_CTX(ctx, flags);
1977
1978 state = ctx->ctx_state;
1979 is_system = ctx->ctx_fl_system;
1980
1981 task = PFM_CTX_TASK(ctx);
1982 regs = task_pt_regs(task);
1983
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1985 state,
1986 task == current ? 1 : 0));
1987
1988 /*
1989 * if task == current, then pfm_flush() unloaded the context
1990 */
1991 if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993 /*
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1996 */
1997
1998 /*
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2002 *
2003 * This situation is only possible for per-task mode
2004 */
2005 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007 /*
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2010 *
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2017 *
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2020 */
2021 ctx->ctx_fl_going_zombie = 1;
2022
2023 /*
2024 * force task to wake up from MASKED state
2025 */
2026 complete(&ctx->ctx_restart_done);
2027
2028 DPRINT(("waking up ctx_state=%d\n", state));
2029
2030 /*
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2033 *
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2037 */
2038 set_current_state(TASK_INTERRUPTIBLE);
2039 add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041 UNPROTECT_CTX(ctx, flags);
2042
2043 /*
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2047 */
2048 schedule();
2049
2050
2051 PROTECT_CTX(ctx, flags);
2052
2053
2054 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055 set_current_state(TASK_RUNNING);
2056
2057 /*
2058 * context is unloaded at this point
2059 */
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061 }
2062 else if (task != current) {
2063#ifdef CONFIG_SMP
2064 /*
2065 * switch context to zombie state
2066 */
2067 ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070 /*
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2073 */
2074 free_possible = 0;
2075#else
2076 pfm_context_unload(ctx, NULL, 0, regs);
2077#endif
2078 }
2079
2080doit:
2081 /* reload state, may have changed during opening of critical section */
2082 state = ctx->ctx_state;
2083
2084 /*
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2087 */
2088
2089 /*
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2097 */
2098 if (ctx->ctx_smpl_hdr) {
2099 smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 smpl_buf_size = ctx->ctx_smpl_size;
2101 /* no more sampling */
2102 ctx->ctx_smpl_hdr = NULL;
2103 ctx->ctx_fl_is_sampling = 0;
2104 }
2105
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107 state,
2108 free_possible,
2109 smpl_buf_addr,
2110 smpl_buf_size));
2111
2112 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114 /*
2115 * UNLOADED that the session has already been unreserved.
2116 */
2117 if (state == PFM_CTX_ZOMBIE) {
2118 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119 }
2120
2121 /*
2122 * disconnect file descriptor from context must be done
2123 * before we unlock.
2124 */
2125 filp->private_data = NULL;
2126
2127 /*
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2130 * can freely cut.
2131 *
2132 * If we have a deferred free, only the caller side is disconnected.
2133 */
2134 UNPROTECT_CTX(ctx, flags);
2135
2136 /*
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2139 */
2140 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142 /*
2143 * return the memory used by the context
2144 */
2145 if (free_possible) pfm_context_free(ctx);
2146
2147 return 0;
2148}
2149
2150static const struct file_operations pfm_file_ops = {
2151 .llseek = no_llseek,
2152 .read = pfm_read,
2153 .write = pfm_write,
2154 .poll = pfm_poll,
2155 .unlocked_ioctl = pfm_ioctl,
2156 .fasync = pfm_fasync,
2157 .release = pfm_close,
2158 .flush = pfm_flush
2159};
2160
2161static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162{
2163 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164 d_inode(dentry)->i_ino);
2165}
2166
2167static const struct dentry_operations pfmfs_dentry_operations = {
2168 .d_delete = always_delete_dentry,
2169 .d_dname = pfmfs_dname,
2170};
2171
2172
2173static struct file *
2174pfm_alloc_file(pfm_context_t *ctx)
2175{
2176 struct file *file;
2177 struct inode *inode;
2178 struct path path;
2179 struct qstr this = { .name = "" };
2180
2181 /*
2182 * allocate a new inode
2183 */
2184 inode = new_inode(pfmfs_mnt->mnt_sb);
2185 if (!inode)
2186 return ERR_PTR(-ENOMEM);
2187
2188 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190 inode->i_mode = S_IFCHR|S_IRUGO;
2191 inode->i_uid = current_fsuid();
2192 inode->i_gid = current_fsgid();
2193
2194 /*
2195 * allocate a new dcache entry
2196 */
2197 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198 if (!path.dentry) {
2199 iput(inode);
2200 return ERR_PTR(-ENOMEM);
2201 }
2202 path.mnt = mntget(pfmfs_mnt);
2203
2204 d_add(path.dentry, inode);
2205
2206 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207 if (IS_ERR(file)) {
2208 path_put(&path);
2209 return file;
2210 }
2211
2212 file->f_flags = O_RDONLY;
2213 file->private_data = ctx;
2214
2215 return file;
2216}
2217
2218static int
2219pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220{
2221 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223 while (size > 0) {
2224 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228 return -ENOMEM;
2229
2230 addr += PAGE_SIZE;
2231 buf += PAGE_SIZE;
2232 size -= PAGE_SIZE;
2233 }
2234 return 0;
2235}
2236
2237/*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240static int
2241pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242{
2243 struct mm_struct *mm = task->mm;
2244 struct vm_area_struct *vma = NULL;
2245 unsigned long size;
2246 void *smpl_buf;
2247
2248
2249 /*
2250 * the fixed header + requested size and align to page boundary
2251 */
2252 size = PAGE_ALIGN(rsize);
2253
2254 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256 /*
2257 * check requested size to avoid Denial-of-service attacks
2258 * XXX: may have to refine this test
2259 * Check against address space limit.
2260 *
2261 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 * return -ENOMEM;
2263 */
2264 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265 return -ENOMEM;
2266
2267 /*
2268 * We do the easy to undo allocations first.
2269 *
2270 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271 */
2272 smpl_buf = pfm_rvmalloc(size);
2273 if (smpl_buf == NULL) {
2274 DPRINT(("Can't allocate sampling buffer\n"));
2275 return -ENOMEM;
2276 }
2277
2278 DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280 /* allocate vma */
2281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282 if (!vma) {
2283 DPRINT(("Cannot allocate vma\n"));
2284 goto error_kmem;
2285 }
2286 INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288 /*
2289 * partially initialize the vma for the sampling buffer
2290 */
2291 vma->vm_mm = mm;
2292 vma->vm_file = get_file(filp);
2293 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2295
2296 /*
2297 * Now we have everything we need and we can initialize
2298 * and connect all the data structures
2299 */
2300
2301 ctx->ctx_smpl_hdr = smpl_buf;
2302 ctx->ctx_smpl_size = size; /* aligned size */
2303
2304 /*
2305 * Let's do the difficult operations next.
2306 *
2307 * now we atomically find some area in the address space and
2308 * remap the buffer in it.
2309 */
2310 down_write(&task->mm->mmap_sem);
2311
2312 /* find some free area in address space, must have mmap sem held */
2313 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314 if (IS_ERR_VALUE(vma->vm_start)) {
2315 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316 up_write(&task->mm->mmap_sem);
2317 goto error;
2318 }
2319 vma->vm_end = vma->vm_start + size;
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324 /* can only be applied to current task, need to have the mm semaphore held when called */
2325 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326 DPRINT(("Can't remap buffer\n"));
2327 up_write(&task->mm->mmap_sem);
2328 goto error;
2329 }
2330
2331 /*
2332 * now insert the vma in the vm list for the process, must be
2333 * done with mmap lock held
2334 */
2335 insert_vm_struct(mm, vma);
2336
2337 vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338 up_write(&task->mm->mmap_sem);
2339
2340 /*
2341 * keep track of user level virtual address
2342 */
2343 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344 *(unsigned long *)user_vaddr = vma->vm_start;
2345
2346 return 0;
2347
2348error:
2349 kmem_cache_free(vm_area_cachep, vma);
2350error_kmem:
2351 pfm_rvfree(smpl_buf, size);
2352
2353 return -ENOMEM;
2354}
2355
2356/*
2357 * XXX: do something better here
2358 */
2359static int
2360pfm_bad_permissions(struct task_struct *task)
2361{
2362 const struct cred *tcred;
2363 kuid_t uid = current_uid();
2364 kgid_t gid = current_gid();
2365 int ret;
2366
2367 rcu_read_lock();
2368 tcred = __task_cred(task);
2369
2370 /* inspired by ptrace_attach() */
2371 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 from_kuid(&init_user_ns, uid),
2373 from_kgid(&init_user_ns, gid),
2374 from_kuid(&init_user_ns, tcred->euid),
2375 from_kuid(&init_user_ns, tcred->suid),
2376 from_kuid(&init_user_ns, tcred->uid),
2377 from_kgid(&init_user_ns, tcred->egid),
2378 from_kgid(&init_user_ns, tcred->sgid)));
2379
2380 ret = ((!uid_eq(uid, tcred->euid))
2381 || (!uid_eq(uid, tcred->suid))
2382 || (!uid_eq(uid, tcred->uid))
2383 || (!gid_eq(gid, tcred->egid))
2384 || (!gid_eq(gid, tcred->sgid))
2385 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387 rcu_read_unlock();
2388 return ret;
2389}
2390
2391static int
2392pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393{
2394 int ctx_flags;
2395
2396 /* valid signal */
2397
2398 ctx_flags = pfx->ctx_flags;
2399
2400 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402 /*
2403 * cannot block in this mode
2404 */
2405 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407 return -EINVAL;
2408 }
2409 } else {
2410 }
2411 /* probably more to add here */
2412
2413 return 0;
2414}
2415
2416static int
2417pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418 unsigned int cpu, pfarg_context_t *arg)
2419{
2420 pfm_buffer_fmt_t *fmt = NULL;
2421 unsigned long size = 0UL;
2422 void *uaddr = NULL;
2423 void *fmt_arg = NULL;
2424 int ret = 0;
2425#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2426
2427 /* invoke and lock buffer format, if found */
2428 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429 if (fmt == NULL) {
2430 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431 return -EINVAL;
2432 }
2433
2434 /*
2435 * buffer argument MUST be contiguous to pfarg_context_t
2436 */
2437 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443 if (ret) goto error;
2444
2445 /* link buffer format and context */
2446 ctx->ctx_buf_fmt = fmt;
2447 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449 /*
2450 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 */
2452 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453 if (ret) goto error;
2454
2455 if (size) {
2456 /*
2457 * buffer is always remapped into the caller's address space
2458 */
2459 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460 if (ret) goto error;
2461
2462 /* keep track of user address of buffer */
2463 arg->ctx_smpl_vaddr = uaddr;
2464 }
2465 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467error:
2468 return ret;
2469}
2470
2471static void
2472pfm_reset_pmu_state(pfm_context_t *ctx)
2473{
2474 int i;
2475
2476 /*
2477 * install reset values for PMC.
2478 */
2479 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480 if (PMC_IS_IMPL(i) == 0) continue;
2481 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483 }
2484 /*
2485 * PMD registers are set to 0UL when the context in memset()
2486 */
2487
2488 /*
2489 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 * when they are not actively used by the task. In UP, the incoming process
2491 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 * process because they may change what is being measured.
2494 * Therefore, we must systematically reinstall the entire
2495 * PMC state. In SMP, the same thing is possible on the
2496 * same CPU but also on between 2 CPUs.
2497 *
2498 * The problem with PMD is information leaking especially
2499 * to user level when psr.sp=0
2500 *
2501 * There is unfortunately no easy way to avoid this problem
2502 * on either UP or SMP. This definitively slows down the
2503 * pfm_load_regs() function.
2504 */
2505
2506 /*
2507 * bitmask of all PMCs accessible to this context
2508 *
2509 * PMC0 is treated differently.
2510 */
2511 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513 /*
2514 * bitmask of all PMDs that are accessible to this context
2515 */
2516 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520 /*
2521 * useful in case of re-enable after disable
2522 */
2523 ctx->ctx_used_ibrs[0] = 0UL;
2524 ctx->ctx_used_dbrs[0] = 0UL;
2525}
2526
2527static int
2528pfm_ctx_getsize(void *arg, size_t *sz)
2529{
2530 pfarg_context_t *req = (pfarg_context_t *)arg;
2531 pfm_buffer_fmt_t *fmt;
2532
2533 *sz = 0;
2534
2535 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538 if (fmt == NULL) {
2539 DPRINT(("cannot find buffer format\n"));
2540 return -EINVAL;
2541 }
2542 /* get just enough to copy in user parameters */
2543 *sz = fmt->fmt_arg_size;
2544 DPRINT(("arg_size=%lu\n", *sz));
2545
2546 return 0;
2547}
2548
2549
2550
2551/*
2552 * cannot attach if :
2553 * - kernel task
2554 * - task not owned by caller
2555 * - task incompatible with context mode
2556 */
2557static int
2558pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559{
2560 /*
2561 * no kernel task or task not owner by caller
2562 */
2563 if (task->mm == NULL) {
2564 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565 return -EPERM;
2566 }
2567 if (pfm_bad_permissions(task)) {
2568 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2569 return -EPERM;
2570 }
2571 /*
2572 * cannot block in self-monitoring mode
2573 */
2574 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576 return -EINVAL;
2577 }
2578
2579 if (task->exit_state == EXIT_ZOMBIE) {
2580 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2581 return -EBUSY;
2582 }
2583
2584 /*
2585 * always ok for self
2586 */
2587 if (task == current) return 0;
2588
2589 if (!task_is_stopped_or_traced(task)) {
2590 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591 return -EBUSY;
2592 }
2593 /*
2594 * make sure the task is off any CPU
2595 */
2596 wait_task_inactive(task, 0);
2597
2598 /* more to come... */
2599
2600 return 0;
2601}
2602
2603static int
2604pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605{
2606 struct task_struct *p = current;
2607 int ret;
2608
2609 /* XXX: need to add more checks here */
2610 if (pid < 2) return -EPERM;
2611
2612 if (pid != task_pid_vnr(current)) {
2613 /* make sure task cannot go away while we operate on it */
2614 p = find_get_task_by_vpid(pid);
2615 if (!p)
2616 return -ESRCH;
2617 }
2618
2619 ret = pfm_task_incompatible(ctx, p);
2620 if (ret == 0) {
2621 *task = p;
2622 } else if (p != current) {
2623 pfm_put_task(p);
2624 }
2625 return ret;
2626}
2627
2628
2629
2630static int
2631pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2632{
2633 pfarg_context_t *req = (pfarg_context_t *)arg;
2634 struct file *filp;
2635 struct path path;
2636 int ctx_flags;
2637 int fd;
2638 int ret;
2639
2640 /* let's check the arguments first */
2641 ret = pfarg_is_sane(current, req);
2642 if (ret < 0)
2643 return ret;
2644
2645 ctx_flags = req->ctx_flags;
2646
2647 ret = -ENOMEM;
2648
2649 fd = get_unused_fd_flags(0);
2650 if (fd < 0)
2651 return fd;
2652
2653 ctx = pfm_context_alloc(ctx_flags);
2654 if (!ctx)
2655 goto error;
2656
2657 filp = pfm_alloc_file(ctx);
2658 if (IS_ERR(filp)) {
2659 ret = PTR_ERR(filp);
2660 goto error_file;
2661 }
2662
2663 req->ctx_fd = ctx->ctx_fd = fd;
2664
2665 /*
2666 * does the user want to sample?
2667 */
2668 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2669 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2670 if (ret)
2671 goto buffer_error;
2672 }
2673
2674 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2675 ctx,
2676 ctx_flags,
2677 ctx->ctx_fl_system,
2678 ctx->ctx_fl_block,
2679 ctx->ctx_fl_excl_idle,
2680 ctx->ctx_fl_no_msg,
2681 ctx->ctx_fd));
2682
2683 /*
2684 * initialize soft PMU state
2685 */
2686 pfm_reset_pmu_state(ctx);
2687
2688 fd_install(fd, filp);
2689
2690 return 0;
2691
2692buffer_error:
2693 path = filp->f_path;
2694 put_filp(filp);
2695 path_put(&path);
2696
2697 if (ctx->ctx_buf_fmt) {
2698 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2699 }
2700error_file:
2701 pfm_context_free(ctx);
2702
2703error:
2704 put_unused_fd(fd);
2705 return ret;
2706}
2707
2708static inline unsigned long
2709pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2710{
2711 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2712 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2713 extern unsigned long carta_random32 (unsigned long seed);
2714
2715 if (reg->flags & PFM_REGFL_RANDOM) {
2716 new_seed = carta_random32(old_seed);
2717 val -= (old_seed & mask); /* counter values are negative numbers! */
2718 if ((mask >> 32) != 0)
2719 /* construct a full 64-bit random value: */
2720 new_seed |= carta_random32(old_seed >> 32) << 32;
2721 reg->seed = new_seed;
2722 }
2723 reg->lval = val;
2724 return val;
2725}
2726
2727static void
2728pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2729{
2730 unsigned long mask = ovfl_regs[0];
2731 unsigned long reset_others = 0UL;
2732 unsigned long val;
2733 int i;
2734
2735 /*
2736 * now restore reset value on sampling overflowed counters
2737 */
2738 mask >>= PMU_FIRST_COUNTER;
2739 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2740
2741 if ((mask & 0x1UL) == 0UL) continue;
2742
2743 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2744 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2745
2746 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2747 }
2748
2749 /*
2750 * Now take care of resetting the other registers
2751 */
2752 for(i = 0; reset_others; i++, reset_others >>= 1) {
2753
2754 if ((reset_others & 0x1) == 0) continue;
2755
2756 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2757
2758 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2759 is_long_reset ? "long" : "short", i, val));
2760 }
2761}
2762
2763static void
2764pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2765{
2766 unsigned long mask = ovfl_regs[0];
2767 unsigned long reset_others = 0UL;
2768 unsigned long val;
2769 int i;
2770
2771 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2772
2773 if (ctx->ctx_state == PFM_CTX_MASKED) {
2774 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2775 return;
2776 }
2777
2778 /*
2779 * now restore reset value on sampling overflowed counters
2780 */
2781 mask >>= PMU_FIRST_COUNTER;
2782 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784 if ((mask & 0x1UL) == 0UL) continue;
2785
2786 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790
2791 pfm_write_soft_counter(ctx, i, val);
2792 }
2793
2794 /*
2795 * Now take care of resetting the other registers
2796 */
2797 for(i = 0; reset_others; i++, reset_others >>= 1) {
2798
2799 if ((reset_others & 0x1) == 0) continue;
2800
2801 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802
2803 if (PMD_IS_COUNTING(i)) {
2804 pfm_write_soft_counter(ctx, i, val);
2805 } else {
2806 ia64_set_pmd(i, val);
2807 }
2808 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2809 is_long_reset ? "long" : "short", i, val));
2810 }
2811 ia64_srlz_d();
2812}
2813
2814static int
2815pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2816{
2817 struct task_struct *task;
2818 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2819 unsigned long value, pmc_pm;
2820 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2821 unsigned int cnum, reg_flags, flags, pmc_type;
2822 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2823 int is_monitor, is_counting, state;
2824 int ret = -EINVAL;
2825 pfm_reg_check_t wr_func;
2826#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2827
2828 state = ctx->ctx_state;
2829 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2830 is_system = ctx->ctx_fl_system;
2831 task = ctx->ctx_task;
2832 impl_pmds = pmu_conf->impl_pmds[0];
2833
2834 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2835
2836 if (is_loaded) {
2837 /*
2838 * In system wide and when the context is loaded, access can only happen
2839 * when the caller is running on the CPU being monitored by the session.
2840 * It does not have to be the owner (ctx_task) of the context per se.
2841 */
2842 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2843 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2844 return -EBUSY;
2845 }
2846 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2847 }
2848 expert_mode = pfm_sysctl.expert_mode;
2849
2850 for (i = 0; i < count; i++, req++) {
2851
2852 cnum = req->reg_num;
2853 reg_flags = req->reg_flags;
2854 value = req->reg_value;
2855 smpl_pmds = req->reg_smpl_pmds[0];
2856 reset_pmds = req->reg_reset_pmds[0];
2857 flags = 0;
2858
2859
2860 if (cnum >= PMU_MAX_PMCS) {
2861 DPRINT(("pmc%u is invalid\n", cnum));
2862 goto error;
2863 }
2864
2865 pmc_type = pmu_conf->pmc_desc[cnum].type;
2866 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2867 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2868 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2869
2870 /*
2871 * we reject all non implemented PMC as well
2872 * as attempts to modify PMC[0-3] which are used
2873 * as status registers by the PMU
2874 */
2875 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2876 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2877 goto error;
2878 }
2879 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2880 /*
2881 * If the PMC is a monitor, then if the value is not the default:
2882 * - system-wide session: PMCx.pm=1 (privileged monitor)
2883 * - per-task : PMCx.pm=0 (user monitor)
2884 */
2885 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2886 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2887 cnum,
2888 pmc_pm,
2889 is_system));
2890 goto error;
2891 }
2892
2893 if (is_counting) {
2894 /*
2895 * enforce generation of overflow interrupt. Necessary on all
2896 * CPUs.
2897 */
2898 value |= 1 << PMU_PMC_OI;
2899
2900 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2901 flags |= PFM_REGFL_OVFL_NOTIFY;
2902 }
2903
2904 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2905
2906 /* verify validity of smpl_pmds */
2907 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2908 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2909 goto error;
2910 }
2911
2912 /* verify validity of reset_pmds */
2913 if ((reset_pmds & impl_pmds) != reset_pmds) {
2914 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2915 goto error;
2916 }
2917 } else {
2918 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2919 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2920 goto error;
2921 }
2922 /* eventid on non-counting monitors are ignored */
2923 }
2924
2925 /*
2926 * execute write checker, if any
2927 */
2928 if (likely(expert_mode == 0 && wr_func)) {
2929 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2930 if (ret) goto error;
2931 ret = -EINVAL;
2932 }
2933
2934 /*
2935 * no error on this register
2936 */
2937 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2938
2939 /*
2940 * Now we commit the changes to the software state
2941 */
2942
2943 /*
2944 * update overflow information
2945 */
2946 if (is_counting) {
2947 /*
2948 * full flag update each time a register is programmed
2949 */
2950 ctx->ctx_pmds[cnum].flags = flags;
2951
2952 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2953 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2954 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2955
2956 /*
2957 * Mark all PMDS to be accessed as used.
2958 *
2959 * We do not keep track of PMC because we have to
2960 * systematically restore ALL of them.
2961 *
2962 * We do not update the used_monitors mask, because
2963 * if we have not programmed them, then will be in
2964 * a quiescent state, therefore we will not need to
2965 * mask/restore then when context is MASKED.
2966 */
2967 CTX_USED_PMD(ctx, reset_pmds);
2968 CTX_USED_PMD(ctx, smpl_pmds);
2969 /*
2970 * make sure we do not try to reset on
2971 * restart because we have established new values
2972 */
2973 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2974 }
2975 /*
2976 * Needed in case the user does not initialize the equivalent
2977 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2978 * possible leak here.
2979 */
2980 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2981
2982 /*
2983 * keep track of the monitor PMC that we are using.
2984 * we save the value of the pmc in ctx_pmcs[] and if
2985 * the monitoring is not stopped for the context we also
2986 * place it in the saved state area so that it will be
2987 * picked up later by the context switch code.
2988 *
2989 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2990 *
2991 * The value in th_pmcs[] may be modified on overflow, i.e., when
2992 * monitoring needs to be stopped.
2993 */
2994 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2995
2996 /*
2997 * update context state
2998 */
2999 ctx->ctx_pmcs[cnum] = value;
3000
3001 if (is_loaded) {
3002 /*
3003 * write thread state
3004 */
3005 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3006
3007 /*
3008 * write hardware register if we can
3009 */
3010 if (can_access_pmu) {
3011 ia64_set_pmc(cnum, value);
3012 }
3013#ifdef CONFIG_SMP
3014 else {
3015 /*
3016 * per-task SMP only here
3017 *
3018 * we are guaranteed that the task is not running on the other CPU,
3019 * we indicate that this PMD will need to be reloaded if the task
3020 * is rescheduled on the CPU it ran last on.
3021 */
3022 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3023 }
3024#endif
3025 }
3026
3027 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3028 cnum,
3029 value,
3030 is_loaded,
3031 can_access_pmu,
3032 flags,
3033 ctx->ctx_all_pmcs[0],
3034 ctx->ctx_used_pmds[0],
3035 ctx->ctx_pmds[cnum].eventid,
3036 smpl_pmds,
3037 reset_pmds,
3038 ctx->ctx_reload_pmcs[0],
3039 ctx->ctx_used_monitors[0],
3040 ctx->ctx_ovfl_regs[0]));
3041 }
3042
3043 /*
3044 * make sure the changes are visible
3045 */
3046 if (can_access_pmu) ia64_srlz_d();
3047
3048 return 0;
3049error:
3050 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3051 return ret;
3052}
3053
3054static int
3055pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3056{
3057 struct task_struct *task;
3058 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3059 unsigned long value, hw_value, ovfl_mask;
3060 unsigned int cnum;
3061 int i, can_access_pmu = 0, state;
3062 int is_counting, is_loaded, is_system, expert_mode;
3063 int ret = -EINVAL;
3064 pfm_reg_check_t wr_func;
3065
3066
3067 state = ctx->ctx_state;
3068 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3069 is_system = ctx->ctx_fl_system;
3070 ovfl_mask = pmu_conf->ovfl_val;
3071 task = ctx->ctx_task;
3072
3073 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3074
3075 /*
3076 * on both UP and SMP, we can only write to the PMC when the task is
3077 * the owner of the local PMU.
3078 */
3079 if (likely(is_loaded)) {
3080 /*
3081 * In system wide and when the context is loaded, access can only happen
3082 * when the caller is running on the CPU being monitored by the session.
3083 * It does not have to be the owner (ctx_task) of the context per se.
3084 */
3085 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3086 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3087 return -EBUSY;
3088 }
3089 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3090 }
3091 expert_mode = pfm_sysctl.expert_mode;
3092
3093 for (i = 0; i < count; i++, req++) {
3094
3095 cnum = req->reg_num;
3096 value = req->reg_value;
3097
3098 if (!PMD_IS_IMPL(cnum)) {
3099 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3100 goto abort_mission;
3101 }
3102 is_counting = PMD_IS_COUNTING(cnum);
3103 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3104
3105 /*
3106 * execute write checker, if any
3107 */
3108 if (unlikely(expert_mode == 0 && wr_func)) {
3109 unsigned long v = value;
3110
3111 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3112 if (ret) goto abort_mission;
3113
3114 value = v;
3115 ret = -EINVAL;
3116 }
3117
3118 /*
3119 * no error on this register
3120 */
3121 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3122
3123 /*
3124 * now commit changes to software state
3125 */
3126 hw_value = value;
3127
3128 /*
3129 * update virtualized (64bits) counter
3130 */
3131 if (is_counting) {
3132 /*
3133 * write context state
3134 */
3135 ctx->ctx_pmds[cnum].lval = value;
3136
3137 /*
3138 * when context is load we use the split value
3139 */
3140 if (is_loaded) {
3141 hw_value = value & ovfl_mask;
3142 value = value & ~ovfl_mask;
3143 }
3144 }
3145 /*
3146 * update reset values (not just for counters)
3147 */
3148 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3149 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3150
3151 /*
3152 * update randomization parameters (not just for counters)
3153 */
3154 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3155 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3156
3157 /*
3158 * update context value
3159 */
3160 ctx->ctx_pmds[cnum].val = value;
3161
3162 /*
3163 * Keep track of what we use
3164 *
3165 * We do not keep track of PMC because we have to
3166 * systematically restore ALL of them.
3167 */
3168 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3169
3170 /*
3171 * mark this PMD register used as well
3172 */
3173 CTX_USED_PMD(ctx, RDEP(cnum));
3174
3175 /*
3176 * make sure we do not try to reset on
3177 * restart because we have established new values
3178 */
3179 if (is_counting && state == PFM_CTX_MASKED) {
3180 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3181 }
3182
3183 if (is_loaded) {
3184 /*
3185 * write thread state
3186 */
3187 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3188
3189 /*
3190 * write hardware register if we can
3191 */
3192 if (can_access_pmu) {
3193 ia64_set_pmd(cnum, hw_value);
3194 } else {
3195#ifdef CONFIG_SMP
3196 /*
3197 * we are guaranteed that the task is not running on the other CPU,
3198 * we indicate that this PMD will need to be reloaded if the task
3199 * is rescheduled on the CPU it ran last on.
3200 */
3201 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3202#endif
3203 }
3204 }
3205
3206 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3207 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3208 cnum,
3209 value,
3210 is_loaded,
3211 can_access_pmu,
3212 hw_value,
3213 ctx->ctx_pmds[cnum].val,
3214 ctx->ctx_pmds[cnum].short_reset,
3215 ctx->ctx_pmds[cnum].long_reset,
3216 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3217 ctx->ctx_pmds[cnum].seed,
3218 ctx->ctx_pmds[cnum].mask,
3219 ctx->ctx_used_pmds[0],
3220 ctx->ctx_pmds[cnum].reset_pmds[0],
3221 ctx->ctx_reload_pmds[0],
3222 ctx->ctx_all_pmds[0],
3223 ctx->ctx_ovfl_regs[0]));
3224 }
3225
3226 /*
3227 * make changes visible
3228 */
3229 if (can_access_pmu) ia64_srlz_d();
3230
3231 return 0;
3232
3233abort_mission:
3234 /*
3235 * for now, we have only one possibility for error
3236 */
3237 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3238 return ret;
3239}
3240
3241/*
3242 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3243 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3244 * interrupt is delivered during the call, it will be kept pending until we leave, making
3245 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3246 * guaranteed to return consistent data to the user, it may simply be old. It is not
3247 * trivial to treat the overflow while inside the call because you may end up in
3248 * some module sampling buffer code causing deadlocks.
3249 */
3250static int
3251pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3252{
3253 struct task_struct *task;
3254 unsigned long val = 0UL, lval, ovfl_mask, sval;
3255 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3256 unsigned int cnum, reg_flags = 0;
3257 int i, can_access_pmu = 0, state;
3258 int is_loaded, is_system, is_counting, expert_mode;
3259 int ret = -EINVAL;
3260 pfm_reg_check_t rd_func;
3261
3262 /*
3263 * access is possible when loaded only for
3264 * self-monitoring tasks or in UP mode
3265 */
3266
3267 state = ctx->ctx_state;
3268 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3269 is_system = ctx->ctx_fl_system;
3270 ovfl_mask = pmu_conf->ovfl_val;
3271 task = ctx->ctx_task;
3272
3273 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3274
3275 if (likely(is_loaded)) {
3276 /*
3277 * In system wide and when the context is loaded, access can only happen
3278 * when the caller is running on the CPU being monitored by the session.
3279 * It does not have to be the owner (ctx_task) of the context per se.
3280 */
3281 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3282 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3283 return -EBUSY;
3284 }
3285 /*
3286 * this can be true when not self-monitoring only in UP
3287 */
3288 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3289
3290 if (can_access_pmu) ia64_srlz_d();
3291 }
3292 expert_mode = pfm_sysctl.expert_mode;
3293
3294 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3295 is_loaded,
3296 can_access_pmu,
3297 state));
3298
3299 /*
3300 * on both UP and SMP, we can only read the PMD from the hardware register when
3301 * the task is the owner of the local PMU.
3302 */
3303
3304 for (i = 0; i < count; i++, req++) {
3305
3306 cnum = req->reg_num;
3307 reg_flags = req->reg_flags;
3308
3309 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3310 /*
3311 * we can only read the register that we use. That includes
3312 * the one we explicitly initialize AND the one we want included
3313 * in the sampling buffer (smpl_regs).
3314 *
3315 * Having this restriction allows optimization in the ctxsw routine
3316 * without compromising security (leaks)
3317 */
3318 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3319
3320 sval = ctx->ctx_pmds[cnum].val;
3321 lval = ctx->ctx_pmds[cnum].lval;
3322 is_counting = PMD_IS_COUNTING(cnum);
3323
3324 /*
3325 * If the task is not the current one, then we check if the
3326 * PMU state is still in the local live register due to lazy ctxsw.
3327 * If true, then we read directly from the registers.
3328 */
3329 if (can_access_pmu){
3330 val = ia64_get_pmd(cnum);
3331 } else {
3332 /*
3333 * context has been saved
3334 * if context is zombie, then task does not exist anymore.
3335 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3336 */
3337 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3338 }
3339 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3340
3341 if (is_counting) {
3342 /*
3343 * XXX: need to check for overflow when loaded
3344 */
3345 val &= ovfl_mask;
3346 val += sval;
3347 }
3348
3349 /*
3350 * execute read checker, if any
3351 */
3352 if (unlikely(expert_mode == 0 && rd_func)) {
3353 unsigned long v = val;
3354 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3355 if (ret) goto error;
3356 val = v;
3357 ret = -EINVAL;
3358 }
3359
3360 PFM_REG_RETFLAG_SET(reg_flags, 0);
3361
3362 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3363
3364 /*
3365 * update register return value, abort all if problem during copy.
3366 * we only modify the reg_flags field. no check mode is fine because
3367 * access has been verified upfront in sys_perfmonctl().
3368 */
3369 req->reg_value = val;
3370 req->reg_flags = reg_flags;
3371 req->reg_last_reset_val = lval;
3372 }
3373
3374 return 0;
3375
3376error:
3377 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3378 return ret;
3379}
3380
3381int
3382pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3383{
3384 pfm_context_t *ctx;
3385
3386 if (req == NULL) return -EINVAL;
3387
3388 ctx = GET_PMU_CTX();
3389
3390 if (ctx == NULL) return -EINVAL;
3391
3392 /*
3393 * for now limit to current task, which is enough when calling
3394 * from overflow handler
3395 */
3396 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3397
3398 return pfm_write_pmcs(ctx, req, nreq, regs);
3399}
3400EXPORT_SYMBOL(pfm_mod_write_pmcs);
3401
3402int
3403pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3404{
3405 pfm_context_t *ctx;
3406
3407 if (req == NULL) return -EINVAL;
3408
3409 ctx = GET_PMU_CTX();
3410
3411 if (ctx == NULL) return -EINVAL;
3412
3413 /*
3414 * for now limit to current task, which is enough when calling
3415 * from overflow handler
3416 */
3417 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3418
3419 return pfm_read_pmds(ctx, req, nreq, regs);
3420}
3421EXPORT_SYMBOL(pfm_mod_read_pmds);
3422
3423/*
3424 * Only call this function when a process it trying to
3425 * write the debug registers (reading is always allowed)
3426 */
3427int
3428pfm_use_debug_registers(struct task_struct *task)
3429{
3430 pfm_context_t *ctx = task->thread.pfm_context;
3431 unsigned long flags;
3432 int ret = 0;
3433
3434 if (pmu_conf->use_rr_dbregs == 0) return 0;
3435
3436 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3437
3438 /*
3439 * do it only once
3440 */
3441 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3442
3443 /*
3444 * Even on SMP, we do not need to use an atomic here because
3445 * the only way in is via ptrace() and this is possible only when the
3446 * process is stopped. Even in the case where the ctxsw out is not totally
3447 * completed by the time we come here, there is no way the 'stopped' process
3448 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3449 * So this is always safe.
3450 */
3451 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3452
3453 LOCK_PFS(flags);
3454
3455 /*
3456 * We cannot allow setting breakpoints when system wide monitoring
3457 * sessions are using the debug registers.
3458 */
3459 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3460 ret = -1;
3461 else
3462 pfm_sessions.pfs_ptrace_use_dbregs++;
3463
3464 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3465 pfm_sessions.pfs_ptrace_use_dbregs,
3466 pfm_sessions.pfs_sys_use_dbregs,
3467 task_pid_nr(task), ret));
3468
3469 UNLOCK_PFS(flags);
3470
3471 return ret;
3472}
3473
3474/*
3475 * This function is called for every task that exits with the
3476 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3477 * able to use the debug registers for debugging purposes via
3478 * ptrace(). Therefore we know it was not using them for
3479 * performance monitoring, so we only decrement the number
3480 * of "ptraced" debug register users to keep the count up to date
3481 */
3482int
3483pfm_release_debug_registers(struct task_struct *task)
3484{
3485 unsigned long flags;
3486 int ret;
3487
3488 if (pmu_conf->use_rr_dbregs == 0) return 0;
3489
3490 LOCK_PFS(flags);
3491 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3492 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3493 ret = -1;
3494 } else {
3495 pfm_sessions.pfs_ptrace_use_dbregs--;
3496 ret = 0;
3497 }
3498 UNLOCK_PFS(flags);
3499
3500 return ret;
3501}
3502
3503static int
3504pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3505{
3506 struct task_struct *task;
3507 pfm_buffer_fmt_t *fmt;
3508 pfm_ovfl_ctrl_t rst_ctrl;
3509 int state, is_system;
3510 int ret = 0;
3511
3512 state = ctx->ctx_state;
3513 fmt = ctx->ctx_buf_fmt;
3514 is_system = ctx->ctx_fl_system;
3515 task = PFM_CTX_TASK(ctx);
3516
3517 switch(state) {
3518 case PFM_CTX_MASKED:
3519 break;
3520 case PFM_CTX_LOADED:
3521 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3522 /* fall through */
3523 case PFM_CTX_UNLOADED:
3524 case PFM_CTX_ZOMBIE:
3525 DPRINT(("invalid state=%d\n", state));
3526 return -EBUSY;
3527 default:
3528 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3529 return -EINVAL;
3530 }
3531
3532 /*
3533 * In system wide and when the context is loaded, access can only happen
3534 * when the caller is running on the CPU being monitored by the session.
3535 * It does not have to be the owner (ctx_task) of the context per se.
3536 */
3537 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3538 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3539 return -EBUSY;
3540 }
3541
3542 /* sanity check */
3543 if (unlikely(task == NULL)) {
3544 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3545 return -EINVAL;
3546 }
3547
3548 if (task == current || is_system) {
3549
3550 fmt = ctx->ctx_buf_fmt;
3551
3552 DPRINT(("restarting self %d ovfl=0x%lx\n",
3553 task_pid_nr(task),
3554 ctx->ctx_ovfl_regs[0]));
3555
3556 if (CTX_HAS_SMPL(ctx)) {
3557
3558 prefetch(ctx->ctx_smpl_hdr);
3559
3560 rst_ctrl.bits.mask_monitoring = 0;
3561 rst_ctrl.bits.reset_ovfl_pmds = 0;
3562
3563 if (state == PFM_CTX_LOADED)
3564 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3565 else
3566 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3567 } else {
3568 rst_ctrl.bits.mask_monitoring = 0;
3569 rst_ctrl.bits.reset_ovfl_pmds = 1;
3570 }
3571
3572 if (ret == 0) {
3573 if (rst_ctrl.bits.reset_ovfl_pmds)
3574 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3575
3576 if (rst_ctrl.bits.mask_monitoring == 0) {
3577 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3578
3579 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3580 } else {
3581 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3582
3583 // cannot use pfm_stop_monitoring(task, regs);
3584 }
3585 }
3586 /*
3587 * clear overflowed PMD mask to remove any stale information
3588 */
3589 ctx->ctx_ovfl_regs[0] = 0UL;
3590
3591 /*
3592 * back to LOADED state
3593 */
3594 ctx->ctx_state = PFM_CTX_LOADED;
3595
3596 /*
3597 * XXX: not really useful for self monitoring
3598 */
3599 ctx->ctx_fl_can_restart = 0;
3600
3601 return 0;
3602 }
3603
3604 /*
3605 * restart another task
3606 */
3607
3608 /*
3609 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3610 * one is seen by the task.
3611 */
3612 if (state == PFM_CTX_MASKED) {
3613 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3614 /*
3615 * will prevent subsequent restart before this one is
3616 * seen by other task
3617 */
3618 ctx->ctx_fl_can_restart = 0;
3619 }
3620
3621 /*
3622 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3623 * the task is blocked or on its way to block. That's the normal
3624 * restart path. If the monitoring is not masked, then the task
3625 * can be actively monitoring and we cannot directly intervene.
3626 * Therefore we use the trap mechanism to catch the task and
3627 * force it to reset the buffer/reset PMDs.
3628 *
3629 * if non-blocking, then we ensure that the task will go into
3630 * pfm_handle_work() before returning to user mode.
3631 *
3632 * We cannot explicitly reset another task, it MUST always
3633 * be done by the task itself. This works for system wide because
3634 * the tool that is controlling the session is logically doing
3635 * "self-monitoring".
3636 */
3637 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3638 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3639 complete(&ctx->ctx_restart_done);
3640 } else {
3641 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3642
3643 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3644
3645 PFM_SET_WORK_PENDING(task, 1);
3646
3647 set_notify_resume(task);
3648
3649 /*
3650 * XXX: send reschedule if task runs on another CPU
3651 */
3652 }
3653 return 0;
3654}
3655
3656static int
3657pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3658{
3659 unsigned int m = *(unsigned int *)arg;
3660
3661 pfm_sysctl.debug = m == 0 ? 0 : 1;
3662
3663 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3664
3665 if (m == 0) {
3666 memset(pfm_stats, 0, sizeof(pfm_stats));
3667 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3668 }
3669 return 0;
3670}
3671
3672/*
3673 * arg can be NULL and count can be zero for this function
3674 */
3675static int
3676pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3677{
3678 struct thread_struct *thread = NULL;
3679 struct task_struct *task;
3680 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3681 unsigned long flags;
3682 dbreg_t dbreg;
3683 unsigned int rnum;
3684 int first_time;
3685 int ret = 0, state;
3686 int i, can_access_pmu = 0;
3687 int is_system, is_loaded;
3688
3689 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3690
3691 state = ctx->ctx_state;
3692 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3693 is_system = ctx->ctx_fl_system;
3694 task = ctx->ctx_task;
3695
3696 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3697
3698 /*
3699 * on both UP and SMP, we can only write to the PMC when the task is
3700 * the owner of the local PMU.
3701 */
3702 if (is_loaded) {
3703 thread = &task->thread;
3704 /*
3705 * In system wide and when the context is loaded, access can only happen
3706 * when the caller is running on the CPU being monitored by the session.
3707 * It does not have to be the owner (ctx_task) of the context per se.
3708 */
3709 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3710 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3711 return -EBUSY;
3712 }
3713 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3714 }
3715
3716 /*
3717 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3718 * ensuring that no real breakpoint can be installed via this call.
3719 *
3720 * IMPORTANT: regs can be NULL in this function
3721 */
3722
3723 first_time = ctx->ctx_fl_using_dbreg == 0;
3724
3725 /*
3726 * don't bother if we are loaded and task is being debugged
3727 */
3728 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3729 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3730 return -EBUSY;
3731 }
3732
3733 /*
3734 * check for debug registers in system wide mode
3735 *
3736 * If though a check is done in pfm_context_load(),
3737 * we must repeat it here, in case the registers are
3738 * written after the context is loaded
3739 */
3740 if (is_loaded) {
3741 LOCK_PFS(flags);
3742
3743 if (first_time && is_system) {
3744 if (pfm_sessions.pfs_ptrace_use_dbregs)
3745 ret = -EBUSY;
3746 else
3747 pfm_sessions.pfs_sys_use_dbregs++;
3748 }
3749 UNLOCK_PFS(flags);
3750 }
3751
3752 if (ret != 0) return ret;
3753
3754 /*
3755 * mark ourself as user of the debug registers for
3756 * perfmon purposes.
3757 */
3758 ctx->ctx_fl_using_dbreg = 1;
3759
3760 /*
3761 * clear hardware registers to make sure we don't
3762 * pick up stale state.
3763 *
3764 * for a system wide session, we do not use
3765 * thread.dbr, thread.ibr because this process
3766 * never leaves the current CPU and the state
3767 * is shared by all processes running on it
3768 */
3769 if (first_time && can_access_pmu) {
3770 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3771 for (i=0; i < pmu_conf->num_ibrs; i++) {
3772 ia64_set_ibr(i, 0UL);
3773 ia64_dv_serialize_instruction();
3774 }
3775 ia64_srlz_i();
3776 for (i=0; i < pmu_conf->num_dbrs; i++) {
3777 ia64_set_dbr(i, 0UL);
3778 ia64_dv_serialize_data();
3779 }
3780 ia64_srlz_d();
3781 }
3782
3783 /*
3784 * Now install the values into the registers
3785 */
3786 for (i = 0; i < count; i++, req++) {
3787
3788 rnum = req->dbreg_num;
3789 dbreg.val = req->dbreg_value;
3790
3791 ret = -EINVAL;
3792
3793 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3794 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3795 rnum, dbreg.val, mode, i, count));
3796
3797 goto abort_mission;
3798 }
3799
3800 /*
3801 * make sure we do not install enabled breakpoint
3802 */
3803 if (rnum & 0x1) {
3804 if (mode == PFM_CODE_RR)
3805 dbreg.ibr.ibr_x = 0;
3806 else
3807 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3808 }
3809
3810 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3811
3812 /*
3813 * Debug registers, just like PMC, can only be modified
3814 * by a kernel call. Moreover, perfmon() access to those
3815 * registers are centralized in this routine. The hardware
3816 * does not modify the value of these registers, therefore,
3817 * if we save them as they are written, we can avoid having
3818 * to save them on context switch out. This is made possible
3819 * by the fact that when perfmon uses debug registers, ptrace()
3820 * won't be able to modify them concurrently.
3821 */
3822 if (mode == PFM_CODE_RR) {
3823 CTX_USED_IBR(ctx, rnum);
3824
3825 if (can_access_pmu) {
3826 ia64_set_ibr(rnum, dbreg.val);
3827 ia64_dv_serialize_instruction();
3828 }
3829
3830 ctx->ctx_ibrs[rnum] = dbreg.val;
3831
3832 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3833 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3834 } else {
3835 CTX_USED_DBR(ctx, rnum);
3836
3837 if (can_access_pmu) {
3838 ia64_set_dbr(rnum, dbreg.val);
3839 ia64_dv_serialize_data();
3840 }
3841 ctx->ctx_dbrs[rnum] = dbreg.val;
3842
3843 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3844 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3845 }
3846 }
3847
3848 return 0;
3849
3850abort_mission:
3851 /*
3852 * in case it was our first attempt, we undo the global modifications
3853 */
3854 if (first_time) {
3855 LOCK_PFS(flags);
3856 if (ctx->ctx_fl_system) {
3857 pfm_sessions.pfs_sys_use_dbregs--;
3858 }
3859 UNLOCK_PFS(flags);
3860 ctx->ctx_fl_using_dbreg = 0;
3861 }
3862 /*
3863 * install error return flag
3864 */
3865 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3866
3867 return ret;
3868}
3869
3870static int
3871pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3872{
3873 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3874}
3875
3876static int
3877pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3880}
3881
3882int
3883pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3884{
3885 pfm_context_t *ctx;
3886
3887 if (req == NULL) return -EINVAL;
3888
3889 ctx = GET_PMU_CTX();
3890
3891 if (ctx == NULL) return -EINVAL;
3892
3893 /*
3894 * for now limit to current task, which is enough when calling
3895 * from overflow handler
3896 */
3897 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3898
3899 return pfm_write_ibrs(ctx, req, nreq, regs);
3900}
3901EXPORT_SYMBOL(pfm_mod_write_ibrs);
3902
3903int
3904pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3905{
3906 pfm_context_t *ctx;
3907
3908 if (req == NULL) return -EINVAL;
3909
3910 ctx = GET_PMU_CTX();
3911
3912 if (ctx == NULL) return -EINVAL;
3913
3914 /*
3915 * for now limit to current task, which is enough when calling
3916 * from overflow handler
3917 */
3918 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3919
3920 return pfm_write_dbrs(ctx, req, nreq, regs);
3921}
3922EXPORT_SYMBOL(pfm_mod_write_dbrs);
3923
3924
3925static int
3926pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3927{
3928 pfarg_features_t *req = (pfarg_features_t *)arg;
3929
3930 req->ft_version = PFM_VERSION;
3931 return 0;
3932}
3933
3934static int
3935pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3936{
3937 struct pt_regs *tregs;
3938 struct task_struct *task = PFM_CTX_TASK(ctx);
3939 int state, is_system;
3940
3941 state = ctx->ctx_state;
3942 is_system = ctx->ctx_fl_system;
3943
3944 /*
3945 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3946 */
3947 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3948
3949 /*
3950 * In system wide and when the context is loaded, access can only happen
3951 * when the caller is running on the CPU being monitored by the session.
3952 * It does not have to be the owner (ctx_task) of the context per se.
3953 */
3954 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3955 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3956 return -EBUSY;
3957 }
3958 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3959 task_pid_nr(PFM_CTX_TASK(ctx)),
3960 state,
3961 is_system));
3962 /*
3963 * in system mode, we need to update the PMU directly
3964 * and the user level state of the caller, which may not
3965 * necessarily be the creator of the context.
3966 */
3967 if (is_system) {
3968 /*
3969 * Update local PMU first
3970 *
3971 * disable dcr pp
3972 */
3973 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3974 ia64_srlz_i();
3975
3976 /*
3977 * update local cpuinfo
3978 */
3979 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3980
3981 /*
3982 * stop monitoring, does srlz.i
3983 */
3984 pfm_clear_psr_pp();
3985
3986 /*
3987 * stop monitoring in the caller
3988 */
3989 ia64_psr(regs)->pp = 0;
3990
3991 return 0;
3992 }
3993 /*
3994 * per-task mode
3995 */
3996
3997 if (task == current) {
3998 /* stop monitoring at kernel level */
3999 pfm_clear_psr_up();
4000
4001 /*
4002 * stop monitoring at the user level
4003 */
4004 ia64_psr(regs)->up = 0;
4005 } else {
4006 tregs = task_pt_regs(task);
4007
4008 /*
4009 * stop monitoring at the user level
4010 */
4011 ia64_psr(tregs)->up = 0;
4012
4013 /*
4014 * monitoring disabled in kernel at next reschedule
4015 */
4016 ctx->ctx_saved_psr_up = 0;
4017 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4018 }
4019 return 0;
4020}
4021
4022
4023static int
4024pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4025{
4026 struct pt_regs *tregs;
4027 int state, is_system;
4028
4029 state = ctx->ctx_state;
4030 is_system = ctx->ctx_fl_system;
4031
4032 if (state != PFM_CTX_LOADED) return -EINVAL;
4033
4034 /*
4035 * In system wide and when the context is loaded, access can only happen
4036 * when the caller is running on the CPU being monitored by the session.
4037 * It does not have to be the owner (ctx_task) of the context per se.
4038 */
4039 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4040 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4041 return -EBUSY;
4042 }
4043
4044 /*
4045 * in system mode, we need to update the PMU directly
4046 * and the user level state of the caller, which may not
4047 * necessarily be the creator of the context.
4048 */
4049 if (is_system) {
4050
4051 /*
4052 * set user level psr.pp for the caller
4053 */
4054 ia64_psr(regs)->pp = 1;
4055
4056 /*
4057 * now update the local PMU and cpuinfo
4058 */
4059 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4060
4061 /*
4062 * start monitoring at kernel level
4063 */
4064 pfm_set_psr_pp();
4065
4066 /* enable dcr pp */
4067 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4068 ia64_srlz_i();
4069
4070 return 0;
4071 }
4072
4073 /*
4074 * per-process mode
4075 */
4076
4077 if (ctx->ctx_task == current) {
4078
4079 /* start monitoring at kernel level */
4080 pfm_set_psr_up();
4081
4082 /*
4083 * activate monitoring at user level
4084 */
4085 ia64_psr(regs)->up = 1;
4086
4087 } else {
4088 tregs = task_pt_regs(ctx->ctx_task);
4089
4090 /*
4091 * start monitoring at the kernel level the next
4092 * time the task is scheduled
4093 */
4094 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4095
4096 /*
4097 * activate monitoring at user level
4098 */
4099 ia64_psr(tregs)->up = 1;
4100 }
4101 return 0;
4102}
4103
4104static int
4105pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4106{
4107 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4108 unsigned int cnum;
4109 int i;
4110 int ret = -EINVAL;
4111
4112 for (i = 0; i < count; i++, req++) {
4113
4114 cnum = req->reg_num;
4115
4116 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4117
4118 req->reg_value = PMC_DFL_VAL(cnum);
4119
4120 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4121
4122 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4123 }
4124 return 0;
4125
4126abort_mission:
4127 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4128 return ret;
4129}
4130
4131static int
4132pfm_check_task_exist(pfm_context_t *ctx)
4133{
4134 struct task_struct *g, *t;
4135 int ret = -ESRCH;
4136
4137 read_lock(&tasklist_lock);
4138
4139 do_each_thread (g, t) {
4140 if (t->thread.pfm_context == ctx) {
4141 ret = 0;
4142 goto out;
4143 }
4144 } while_each_thread (g, t);
4145out:
4146 read_unlock(&tasklist_lock);
4147
4148 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4149
4150 return ret;
4151}
4152
4153static int
4154pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4155{
4156 struct task_struct *task;
4157 struct thread_struct *thread;
4158 struct pfm_context_t *old;
4159 unsigned long flags;
4160#ifndef CONFIG_SMP
4161 struct task_struct *owner_task = NULL;
4162#endif
4163 pfarg_load_t *req = (pfarg_load_t *)arg;
4164 unsigned long *pmcs_source, *pmds_source;
4165 int the_cpu;
4166 int ret = 0;
4167 int state, is_system, set_dbregs = 0;
4168
4169 state = ctx->ctx_state;
4170 is_system = ctx->ctx_fl_system;
4171 /*
4172 * can only load from unloaded or terminated state
4173 */
4174 if (state != PFM_CTX_UNLOADED) {
4175 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4176 req->load_pid,
4177 ctx->ctx_state));
4178 return -EBUSY;
4179 }
4180
4181 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4182
4183 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4184 DPRINT(("cannot use blocking mode on self\n"));
4185 return -EINVAL;
4186 }
4187
4188 ret = pfm_get_task(ctx, req->load_pid, &task);
4189 if (ret) {
4190 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4191 return ret;
4192 }
4193
4194 ret = -EINVAL;
4195
4196 /*
4197 * system wide is self monitoring only
4198 */
4199 if (is_system && task != current) {
4200 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4201 req->load_pid));
4202 goto error;
4203 }
4204
4205 thread = &task->thread;
4206
4207 ret = 0;
4208 /*
4209 * cannot load a context which is using range restrictions,
4210 * into a task that is being debugged.
4211 */
4212 if (ctx->ctx_fl_using_dbreg) {
4213 if (thread->flags & IA64_THREAD_DBG_VALID) {
4214 ret = -EBUSY;
4215 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4216 goto error;
4217 }
4218 LOCK_PFS(flags);
4219
4220 if (is_system) {
4221 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4222 DPRINT(("cannot load [%d] dbregs in use\n",
4223 task_pid_nr(task)));
4224 ret = -EBUSY;
4225 } else {
4226 pfm_sessions.pfs_sys_use_dbregs++;
4227 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4228 set_dbregs = 1;
4229 }
4230 }
4231
4232 UNLOCK_PFS(flags);
4233
4234 if (ret) goto error;
4235 }
4236
4237 /*
4238 * SMP system-wide monitoring implies self-monitoring.
4239 *
4240 * The programming model expects the task to
4241 * be pinned on a CPU throughout the session.
4242 * Here we take note of the current CPU at the
4243 * time the context is loaded. No call from
4244 * another CPU will be allowed.
4245 *
4246 * The pinning via shed_setaffinity()
4247 * must be done by the calling task prior
4248 * to this call.
4249 *
4250 * systemwide: keep track of CPU this session is supposed to run on
4251 */
4252 the_cpu = ctx->ctx_cpu = smp_processor_id();
4253
4254 ret = -EBUSY;
4255 /*
4256 * now reserve the session
4257 */
4258 ret = pfm_reserve_session(current, is_system, the_cpu);
4259 if (ret) goto error;
4260
4261 /*
4262 * task is necessarily stopped at this point.
4263 *
4264 * If the previous context was zombie, then it got removed in
4265 * pfm_save_regs(). Therefore we should not see it here.
4266 * If we see a context, then this is an active context
4267 *
4268 * XXX: needs to be atomic
4269 */
4270 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4271 thread->pfm_context, ctx));
4272
4273 ret = -EBUSY;
4274 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4275 if (old != NULL) {
4276 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4277 goto error_unres;
4278 }
4279
4280 pfm_reset_msgq(ctx);
4281
4282 ctx->ctx_state = PFM_CTX_LOADED;
4283
4284 /*
4285 * link context to task
4286 */
4287 ctx->ctx_task = task;
4288
4289 if (is_system) {
4290 /*
4291 * we load as stopped
4292 */
4293 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4294 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4295
4296 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4297 } else {
4298 thread->flags |= IA64_THREAD_PM_VALID;
4299 }
4300
4301 /*
4302 * propagate into thread-state
4303 */
4304 pfm_copy_pmds(task, ctx);
4305 pfm_copy_pmcs(task, ctx);
4306
4307 pmcs_source = ctx->th_pmcs;
4308 pmds_source = ctx->th_pmds;
4309
4310 /*
4311 * always the case for system-wide
4312 */
4313 if (task == current) {
4314
4315 if (is_system == 0) {
4316
4317 /* allow user level control */
4318 ia64_psr(regs)->sp = 0;
4319 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4320
4321 SET_LAST_CPU(ctx, smp_processor_id());
4322 INC_ACTIVATION();
4323 SET_ACTIVATION(ctx);
4324#ifndef CONFIG_SMP
4325 /*
4326 * push the other task out, if any
4327 */
4328 owner_task = GET_PMU_OWNER();
4329 if (owner_task) pfm_lazy_save_regs(owner_task);
4330#endif
4331 }
4332 /*
4333 * load all PMD from ctx to PMU (as opposed to thread state)
4334 * restore all PMC from ctx to PMU
4335 */
4336 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4337 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4338
4339 ctx->ctx_reload_pmcs[0] = 0UL;
4340 ctx->ctx_reload_pmds[0] = 0UL;
4341
4342 /*
4343 * guaranteed safe by earlier check against DBG_VALID
4344 */
4345 if (ctx->ctx_fl_using_dbreg) {
4346 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4347 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4348 }
4349 /*
4350 * set new ownership
4351 */
4352 SET_PMU_OWNER(task, ctx);
4353
4354 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4355 } else {
4356 /*
4357 * when not current, task MUST be stopped, so this is safe
4358 */
4359 regs = task_pt_regs(task);
4360
4361 /* force a full reload */
4362 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4363 SET_LAST_CPU(ctx, -1);
4364
4365 /* initial saved psr (stopped) */
4366 ctx->ctx_saved_psr_up = 0UL;
4367 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4368 }
4369
4370 ret = 0;
4371
4372error_unres:
4373 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4374error:
4375 /*
4376 * we must undo the dbregs setting (for system-wide)
4377 */
4378 if (ret && set_dbregs) {
4379 LOCK_PFS(flags);
4380 pfm_sessions.pfs_sys_use_dbregs--;
4381 UNLOCK_PFS(flags);
4382 }
4383 /*
4384 * release task, there is now a link with the context
4385 */
4386 if (is_system == 0 && task != current) {
4387 pfm_put_task(task);
4388
4389 if (ret == 0) {
4390 ret = pfm_check_task_exist(ctx);
4391 if (ret) {
4392 ctx->ctx_state = PFM_CTX_UNLOADED;
4393 ctx->ctx_task = NULL;
4394 }
4395 }
4396 }
4397 return ret;
4398}
4399
4400/*
4401 * in this function, we do not need to increase the use count
4402 * for the task via get_task_struct(), because we hold the
4403 * context lock. If the task were to disappear while having
4404 * a context attached, it would go through pfm_exit_thread()
4405 * which also grabs the context lock and would therefore be blocked
4406 * until we are here.
4407 */
4408static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4409
4410static int
4411pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4412{
4413 struct task_struct *task = PFM_CTX_TASK(ctx);
4414 struct pt_regs *tregs;
4415 int prev_state, is_system;
4416 int ret;
4417
4418 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4419
4420 prev_state = ctx->ctx_state;
4421 is_system = ctx->ctx_fl_system;
4422
4423 /*
4424 * unload only when necessary
4425 */
4426 if (prev_state == PFM_CTX_UNLOADED) {
4427 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4428 return 0;
4429 }
4430
4431 /*
4432 * clear psr and dcr bits
4433 */
4434 ret = pfm_stop(ctx, NULL, 0, regs);
4435 if (ret) return ret;
4436
4437 ctx->ctx_state = PFM_CTX_UNLOADED;
4438
4439 /*
4440 * in system mode, we need to update the PMU directly
4441 * and the user level state of the caller, which may not
4442 * necessarily be the creator of the context.
4443 */
4444 if (is_system) {
4445
4446 /*
4447 * Update cpuinfo
4448 *
4449 * local PMU is taken care of in pfm_stop()
4450 */
4451 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4452 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4453
4454 /*
4455 * save PMDs in context
4456 * release ownership
4457 */
4458 pfm_flush_pmds(current, ctx);
4459
4460 /*
4461 * at this point we are done with the PMU
4462 * so we can unreserve the resource.
4463 */
4464 if (prev_state != PFM_CTX_ZOMBIE)
4465 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4466
4467 /*
4468 * disconnect context from task
4469 */
4470 task->thread.pfm_context = NULL;
4471 /*
4472 * disconnect task from context
4473 */
4474 ctx->ctx_task = NULL;
4475
4476 /*
4477 * There is nothing more to cleanup here.
4478 */
4479 return 0;
4480 }
4481
4482 /*
4483 * per-task mode
4484 */
4485 tregs = task == current ? regs : task_pt_regs(task);
4486
4487 if (task == current) {
4488 /*
4489 * cancel user level control
4490 */
4491 ia64_psr(regs)->sp = 1;
4492
4493 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4494 }
4495 /*
4496 * save PMDs to context
4497 * release ownership
4498 */
4499 pfm_flush_pmds(task, ctx);
4500
4501 /*
4502 * at this point we are done with the PMU
4503 * so we can unreserve the resource.
4504 *
4505 * when state was ZOMBIE, we have already unreserved.
4506 */
4507 if (prev_state != PFM_CTX_ZOMBIE)
4508 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4509
4510 /*
4511 * reset activation counter and psr
4512 */
4513 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4514 SET_LAST_CPU(ctx, -1);
4515
4516 /*
4517 * PMU state will not be restored
4518 */
4519 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4520
4521 /*
4522 * break links between context and task
4523 */
4524 task->thread.pfm_context = NULL;
4525 ctx->ctx_task = NULL;
4526
4527 PFM_SET_WORK_PENDING(task, 0);
4528
4529 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4530 ctx->ctx_fl_can_restart = 0;
4531 ctx->ctx_fl_going_zombie = 0;
4532
4533 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4534
4535 return 0;
4536}
4537
4538
4539/*
4540 * called only from exit_thread()
4541 * we come here only if the task has a context attached (loaded or masked)
4542 */
4543void
4544pfm_exit_thread(struct task_struct *task)
4545{
4546 pfm_context_t *ctx;
4547 unsigned long flags;
4548 struct pt_regs *regs = task_pt_regs(task);
4549 int ret, state;
4550 int free_ok = 0;
4551
4552 ctx = PFM_GET_CTX(task);
4553
4554 PROTECT_CTX(ctx, flags);
4555
4556 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4557
4558 state = ctx->ctx_state;
4559 switch(state) {
4560 case PFM_CTX_UNLOADED:
4561 /*
4562 * only comes to this function if pfm_context is not NULL, i.e., cannot
4563 * be in unloaded state
4564 */
4565 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4566 break;
4567 case PFM_CTX_LOADED:
4568 case PFM_CTX_MASKED:
4569 ret = pfm_context_unload(ctx, NULL, 0, regs);
4570 if (ret) {
4571 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4572 }
4573 DPRINT(("ctx unloaded for current state was %d\n", state));
4574
4575 pfm_end_notify_user(ctx);
4576 break;
4577 case PFM_CTX_ZOMBIE:
4578 ret = pfm_context_unload(ctx, NULL, 0, regs);
4579 if (ret) {
4580 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4581 }
4582 free_ok = 1;
4583 break;
4584 default:
4585 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4586 break;
4587 }
4588 UNPROTECT_CTX(ctx, flags);
4589
4590 { u64 psr = pfm_get_psr();
4591 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4592 BUG_ON(GET_PMU_OWNER());
4593 BUG_ON(ia64_psr(regs)->up);
4594 BUG_ON(ia64_psr(regs)->pp);
4595 }
4596
4597 /*
4598 * All memory free operations (especially for vmalloc'ed memory)
4599 * MUST be done with interrupts ENABLED.
4600 */
4601 if (free_ok) pfm_context_free(ctx);
4602}
4603
4604/*
4605 * functions MUST be listed in the increasing order of their index (see permfon.h)
4606 */
4607#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4608#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4609#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4610#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4611#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4612
4613static pfm_cmd_desc_t pfm_cmd_tab[]={
4614/* 0 */PFM_CMD_NONE,
4615/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4616/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4617/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4618/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4619/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4620/* 6 */PFM_CMD_NONE,
4621/* 7 */PFM_CMD_NONE,
4622/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4623/* 9 */PFM_CMD_NONE,
4624/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4625/* 11 */PFM_CMD_NONE,
4626/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4627/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4628/* 14 */PFM_CMD_NONE,
4629/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4630/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4631/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4632/* 18 */PFM_CMD_NONE,
4633/* 19 */PFM_CMD_NONE,
4634/* 20 */PFM_CMD_NONE,
4635/* 21 */PFM_CMD_NONE,
4636/* 22 */PFM_CMD_NONE,
4637/* 23 */PFM_CMD_NONE,
4638/* 24 */PFM_CMD_NONE,
4639/* 25 */PFM_CMD_NONE,
4640/* 26 */PFM_CMD_NONE,
4641/* 27 */PFM_CMD_NONE,
4642/* 28 */PFM_CMD_NONE,
4643/* 29 */PFM_CMD_NONE,
4644/* 30 */PFM_CMD_NONE,
4645/* 31 */PFM_CMD_NONE,
4646/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4647/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4648};
4649#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4650
4651static int
4652pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4653{
4654 struct task_struct *task;
4655 int state, old_state;
4656
4657recheck:
4658 state = ctx->ctx_state;
4659 task = ctx->ctx_task;
4660
4661 if (task == NULL) {
4662 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4663 return 0;
4664 }
4665
4666 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4667 ctx->ctx_fd,
4668 state,
4669 task_pid_nr(task),
4670 task->state, PFM_CMD_STOPPED(cmd)));
4671
4672 /*
4673 * self-monitoring always ok.
4674 *
4675 * for system-wide the caller can either be the creator of the
4676 * context (to one to which the context is attached to) OR
4677 * a task running on the same CPU as the session.
4678 */
4679 if (task == current || ctx->ctx_fl_system) return 0;
4680
4681 /*
4682 * we are monitoring another thread
4683 */
4684 switch(state) {
4685 case PFM_CTX_UNLOADED:
4686 /*
4687 * if context is UNLOADED we are safe to go
4688 */
4689 return 0;
4690 case PFM_CTX_ZOMBIE:
4691 /*
4692 * no command can operate on a zombie context
4693 */
4694 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4695 return -EINVAL;
4696 case PFM_CTX_MASKED:
4697 /*
4698 * PMU state has been saved to software even though
4699 * the thread may still be running.
4700 */
4701 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4702 }
4703
4704 /*
4705 * context is LOADED or MASKED. Some commands may need to have
4706 * the task stopped.
4707 *
4708 * We could lift this restriction for UP but it would mean that
4709 * the user has no guarantee the task would not run between
4710 * two successive calls to perfmonctl(). That's probably OK.
4711 * If this user wants to ensure the task does not run, then
4712 * the task must be stopped.
4713 */
4714 if (PFM_CMD_STOPPED(cmd)) {
4715 if (!task_is_stopped_or_traced(task)) {
4716 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4717 return -EBUSY;
4718 }
4719 /*
4720 * task is now stopped, wait for ctxsw out
4721 *
4722 * This is an interesting point in the code.
4723 * We need to unprotect the context because
4724 * the pfm_save_regs() routines needs to grab
4725 * the same lock. There are danger in doing
4726 * this because it leaves a window open for
4727 * another task to get access to the context
4728 * and possibly change its state. The one thing
4729 * that is not possible is for the context to disappear
4730 * because we are protected by the VFS layer, i.e.,
4731 * get_fd()/put_fd().
4732 */
4733 old_state = state;
4734
4735 UNPROTECT_CTX(ctx, flags);
4736
4737 wait_task_inactive(task, 0);
4738
4739 PROTECT_CTX(ctx, flags);
4740
4741 /*
4742 * we must recheck to verify if state has changed
4743 */
4744 if (ctx->ctx_state != old_state) {
4745 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4746 goto recheck;
4747 }
4748 }
4749 return 0;
4750}
4751
4752/*
4753 * system-call entry point (must return long)
4754 */
4755asmlinkage long
4756sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4757{
4758 struct fd f = {NULL, 0};
4759 pfm_context_t *ctx = NULL;
4760 unsigned long flags = 0UL;
4761 void *args_k = NULL;
4762 long ret; /* will expand int return types */
4763 size_t base_sz, sz, xtra_sz = 0;
4764 int narg, completed_args = 0, call_made = 0, cmd_flags;
4765 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4766 int (*getsize)(void *arg, size_t *sz);
4767#define PFM_MAX_ARGSIZE 4096
4768
4769 /*
4770 * reject any call if perfmon was disabled at initialization
4771 */
4772 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4773
4774 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4775 DPRINT(("invalid cmd=%d\n", cmd));
4776 return -EINVAL;
4777 }
4778
4779 func = pfm_cmd_tab[cmd].cmd_func;
4780 narg = pfm_cmd_tab[cmd].cmd_narg;
4781 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4782 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4783 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4784
4785 if (unlikely(func == NULL)) {
4786 DPRINT(("invalid cmd=%d\n", cmd));
4787 return -EINVAL;
4788 }
4789
4790 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4791 PFM_CMD_NAME(cmd),
4792 cmd,
4793 narg,
4794 base_sz,
4795 count));
4796
4797 /*
4798 * check if number of arguments matches what the command expects
4799 */
4800 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4801 return -EINVAL;
4802
4803restart_args:
4804 sz = xtra_sz + base_sz*count;
4805 /*
4806 * limit abuse to min page size
4807 */
4808 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4809 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4810 return -E2BIG;
4811 }
4812
4813 /*
4814 * allocate default-sized argument buffer
4815 */
4816 if (likely(count && args_k == NULL)) {
4817 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4818 if (args_k == NULL) return -ENOMEM;
4819 }
4820
4821 ret = -EFAULT;
4822
4823 /*
4824 * copy arguments
4825 *
4826 * assume sz = 0 for command without parameters
4827 */
4828 if (sz && copy_from_user(args_k, arg, sz)) {
4829 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4830 goto error_args;
4831 }
4832
4833 /*
4834 * check if command supports extra parameters
4835 */
4836 if (completed_args == 0 && getsize) {
4837 /*
4838 * get extra parameters size (based on main argument)
4839 */
4840 ret = (*getsize)(args_k, &xtra_sz);
4841 if (ret) goto error_args;
4842
4843 completed_args = 1;
4844
4845 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4846
4847 /* retry if necessary */
4848 if (likely(xtra_sz)) goto restart_args;
4849 }
4850
4851 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4852
4853 ret = -EBADF;
4854
4855 f = fdget(fd);
4856 if (unlikely(f.file == NULL)) {
4857 DPRINT(("invalid fd %d\n", fd));
4858 goto error_args;
4859 }
4860 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4861 DPRINT(("fd %d not related to perfmon\n", fd));
4862 goto error_args;
4863 }
4864
4865 ctx = f.file->private_data;
4866 if (unlikely(ctx == NULL)) {
4867 DPRINT(("no context for fd %d\n", fd));
4868 goto error_args;
4869 }
4870 prefetch(&ctx->ctx_state);
4871
4872 PROTECT_CTX(ctx, flags);
4873
4874 /*
4875 * check task is stopped
4876 */
4877 ret = pfm_check_task_state(ctx, cmd, flags);
4878 if (unlikely(ret)) goto abort_locked;
4879
4880skip_fd:
4881 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4882
4883 call_made = 1;
4884
4885abort_locked:
4886 if (likely(ctx)) {
4887 DPRINT(("context unlocked\n"));
4888 UNPROTECT_CTX(ctx, flags);
4889 }
4890
4891 /* copy argument back to user, if needed */
4892 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4893
4894error_args:
4895 if (f.file)
4896 fdput(f);
4897
4898 kfree(args_k);
4899
4900 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4901
4902 return ret;
4903}
4904
4905static void
4906pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4907{
4908 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4909 pfm_ovfl_ctrl_t rst_ctrl;
4910 int state;
4911 int ret = 0;
4912
4913 state = ctx->ctx_state;
4914 /*
4915 * Unlock sampling buffer and reset index atomically
4916 * XXX: not really needed when blocking
4917 */
4918 if (CTX_HAS_SMPL(ctx)) {
4919
4920 rst_ctrl.bits.mask_monitoring = 0;
4921 rst_ctrl.bits.reset_ovfl_pmds = 0;
4922
4923 if (state == PFM_CTX_LOADED)
4924 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4925 else
4926 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4927 } else {
4928 rst_ctrl.bits.mask_monitoring = 0;
4929 rst_ctrl.bits.reset_ovfl_pmds = 1;
4930 }
4931
4932 if (ret == 0) {
4933 if (rst_ctrl.bits.reset_ovfl_pmds) {
4934 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4935 }
4936 if (rst_ctrl.bits.mask_monitoring == 0) {
4937 DPRINT(("resuming monitoring\n"));
4938 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4939 } else {
4940 DPRINT(("stopping monitoring\n"));
4941 //pfm_stop_monitoring(current, regs);
4942 }
4943 ctx->ctx_state = PFM_CTX_LOADED;
4944 }
4945}
4946
4947/*
4948 * context MUST BE LOCKED when calling
4949 * can only be called for current
4950 */
4951static void
4952pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4953{
4954 int ret;
4955
4956 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4957
4958 ret = pfm_context_unload(ctx, NULL, 0, regs);
4959 if (ret) {
4960 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4961 }
4962
4963 /*
4964 * and wakeup controlling task, indicating we are now disconnected
4965 */
4966 wake_up_interruptible(&ctx->ctx_zombieq);
4967
4968 /*
4969 * given that context is still locked, the controlling
4970 * task will only get access when we return from
4971 * pfm_handle_work().
4972 */
4973}
4974
4975static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4976
4977 /*
4978 * pfm_handle_work() can be called with interrupts enabled
4979 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4980 * call may sleep, therefore we must re-enable interrupts
4981 * to avoid deadlocks. It is safe to do so because this function
4982 * is called ONLY when returning to user level (pUStk=1), in which case
4983 * there is no risk of kernel stack overflow due to deep
4984 * interrupt nesting.
4985 */
4986void
4987pfm_handle_work(void)
4988{
4989 pfm_context_t *ctx;
4990 struct pt_regs *regs;
4991 unsigned long flags, dummy_flags;
4992 unsigned long ovfl_regs;
4993 unsigned int reason;
4994 int ret;
4995
4996 ctx = PFM_GET_CTX(current);
4997 if (ctx == NULL) {
4998 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4999 task_pid_nr(current));
5000 return;
5001 }
5002
5003 PROTECT_CTX(ctx, flags);
5004
5005 PFM_SET_WORK_PENDING(current, 0);
5006
5007 regs = task_pt_regs(current);
5008
5009 /*
5010 * extract reason for being here and clear
5011 */
5012 reason = ctx->ctx_fl_trap_reason;
5013 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5014 ovfl_regs = ctx->ctx_ovfl_regs[0];
5015
5016 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5017
5018 /*
5019 * must be done before we check for simple-reset mode
5020 */
5021 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5022 goto do_zombie;
5023
5024 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5025 if (reason == PFM_TRAP_REASON_RESET)
5026 goto skip_blocking;
5027
5028 /*
5029 * restore interrupt mask to what it was on entry.
5030 * Could be enabled/diasbled.
5031 */
5032 UNPROTECT_CTX(ctx, flags);
5033
5034 /*
5035 * force interrupt enable because of down_interruptible()
5036 */
5037 local_irq_enable();
5038
5039 DPRINT(("before block sleeping\n"));
5040
5041 /*
5042 * may go through without blocking on SMP systems
5043 * if restart has been received already by the time we call down()
5044 */
5045 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5046
5047 DPRINT(("after block sleeping ret=%d\n", ret));
5048
5049 /*
5050 * lock context and mask interrupts again
5051 * We save flags into a dummy because we may have
5052 * altered interrupts mask compared to entry in this
5053 * function.
5054 */
5055 PROTECT_CTX(ctx, dummy_flags);
5056
5057 /*
5058 * we need to read the ovfl_regs only after wake-up
5059 * because we may have had pfm_write_pmds() in between
5060 * and that can changed PMD values and therefore
5061 * ovfl_regs is reset for these new PMD values.
5062 */
5063 ovfl_regs = ctx->ctx_ovfl_regs[0];
5064
5065 if (ctx->ctx_fl_going_zombie) {
5066do_zombie:
5067 DPRINT(("context is zombie, bailing out\n"));
5068 pfm_context_force_terminate(ctx, regs);
5069 goto nothing_to_do;
5070 }
5071 /*
5072 * in case of interruption of down() we don't restart anything
5073 */
5074 if (ret < 0)
5075 goto nothing_to_do;
5076
5077skip_blocking:
5078 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5079 ctx->ctx_ovfl_regs[0] = 0UL;
5080
5081nothing_to_do:
5082 /*
5083 * restore flags as they were upon entry
5084 */
5085 UNPROTECT_CTX(ctx, flags);
5086}
5087
5088static int
5089pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5090{
5091 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5092 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5093 return 0;
5094 }
5095
5096 DPRINT(("waking up somebody\n"));
5097
5098 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5099
5100 /*
5101 * safe, we are not in intr handler, nor in ctxsw when
5102 * we come here
5103 */
5104 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5105
5106 return 0;
5107}
5108
5109static int
5110pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5111{
5112 pfm_msg_t *msg = NULL;
5113
5114 if (ctx->ctx_fl_no_msg == 0) {
5115 msg = pfm_get_new_msg(ctx);
5116 if (msg == NULL) {
5117 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5118 return -1;
5119 }
5120
5121 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5122 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5123 msg->pfm_ovfl_msg.msg_active_set = 0;
5124 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5125 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5126 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5127 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5128 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5129 }
5130
5131 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5132 msg,
5133 ctx->ctx_fl_no_msg,
5134 ctx->ctx_fd,
5135 ovfl_pmds));
5136
5137 return pfm_notify_user(ctx, msg);
5138}
5139
5140static int
5141pfm_end_notify_user(pfm_context_t *ctx)
5142{
5143 pfm_msg_t *msg;
5144
5145 msg = pfm_get_new_msg(ctx);
5146 if (msg == NULL) {
5147 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5148 return -1;
5149 }
5150 /* no leak */
5151 memset(msg, 0, sizeof(*msg));
5152
5153 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5154 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5155 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5156
5157 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5158 msg,
5159 ctx->ctx_fl_no_msg,
5160 ctx->ctx_fd));
5161
5162 return pfm_notify_user(ctx, msg);
5163}
5164
5165/*
5166 * main overflow processing routine.
5167 * it can be called from the interrupt path or explicitly during the context switch code
5168 */
5169static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5170 unsigned long pmc0, struct pt_regs *regs)
5171{
5172 pfm_ovfl_arg_t *ovfl_arg;
5173 unsigned long mask;
5174 unsigned long old_val, ovfl_val, new_val;
5175 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5176 unsigned long tstamp;
5177 pfm_ovfl_ctrl_t ovfl_ctrl;
5178 unsigned int i, has_smpl;
5179 int must_notify = 0;
5180
5181 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5182
5183 /*
5184 * sanity test. Should never happen
5185 */
5186 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5187
5188 tstamp = ia64_get_itc();
5189 mask = pmc0 >> PMU_FIRST_COUNTER;
5190 ovfl_val = pmu_conf->ovfl_val;
5191 has_smpl = CTX_HAS_SMPL(ctx);
5192
5193 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5194 "used_pmds=0x%lx\n",
5195 pmc0,
5196 task ? task_pid_nr(task): -1,
5197 (regs ? regs->cr_iip : 0),
5198 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5199 ctx->ctx_used_pmds[0]));
5200
5201
5202 /*
5203 * first we update the virtual counters
5204 * assume there was a prior ia64_srlz_d() issued
5205 */
5206 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5207
5208 /* skip pmd which did not overflow */
5209 if ((mask & 0x1) == 0) continue;
5210
5211 /*
5212 * Note that the pmd is not necessarily 0 at this point as qualified events
5213 * may have happened before the PMU was frozen. The residual count is not
5214 * taken into consideration here but will be with any read of the pmd via
5215 * pfm_read_pmds().
5216 */
5217 old_val = new_val = ctx->ctx_pmds[i].val;
5218 new_val += 1 + ovfl_val;
5219 ctx->ctx_pmds[i].val = new_val;
5220
5221 /*
5222 * check for overflow condition
5223 */
5224 if (likely(old_val > new_val)) {
5225 ovfl_pmds |= 1UL << i;
5226 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5227 }
5228
5229 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5230 i,
5231 new_val,
5232 old_val,
5233 ia64_get_pmd(i) & ovfl_val,
5234 ovfl_pmds,
5235 ovfl_notify));
5236 }
5237
5238 /*
5239 * there was no 64-bit overflow, nothing else to do
5240 */
5241 if (ovfl_pmds == 0UL) return;
5242
5243 /*
5244 * reset all control bits
5245 */
5246 ovfl_ctrl.val = 0;
5247 reset_pmds = 0UL;
5248
5249 /*
5250 * if a sampling format module exists, then we "cache" the overflow by
5251 * calling the module's handler() routine.
5252 */
5253 if (has_smpl) {
5254 unsigned long start_cycles, end_cycles;
5255 unsigned long pmd_mask;
5256 int j, k, ret = 0;
5257 int this_cpu = smp_processor_id();
5258
5259 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5260 ovfl_arg = &ctx->ctx_ovfl_arg;
5261
5262 prefetch(ctx->ctx_smpl_hdr);
5263
5264 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5265
5266 mask = 1UL << i;
5267
5268 if ((pmd_mask & 0x1) == 0) continue;
5269
5270 ovfl_arg->ovfl_pmd = (unsigned char )i;
5271 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5272 ovfl_arg->active_set = 0;
5273 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5274 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5275
5276 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5277 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5278 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5279
5280 /*
5281 * copy values of pmds of interest. Sampling format may copy them
5282 * into sampling buffer.
5283 */
5284 if (smpl_pmds) {
5285 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5286 if ((smpl_pmds & 0x1) == 0) continue;
5287 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5288 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5289 }
5290 }
5291
5292 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5293
5294 start_cycles = ia64_get_itc();
5295
5296 /*
5297 * call custom buffer format record (handler) routine
5298 */
5299 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5300
5301 end_cycles = ia64_get_itc();
5302
5303 /*
5304 * For those controls, we take the union because they have
5305 * an all or nothing behavior.
5306 */
5307 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5308 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5309 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5310 /*
5311 * build the bitmask of pmds to reset now
5312 */
5313 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5314
5315 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5316 }
5317 /*
5318 * when the module cannot handle the rest of the overflows, we abort right here
5319 */
5320 if (ret && pmd_mask) {
5321 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5322 pmd_mask<<PMU_FIRST_COUNTER));
5323 }
5324 /*
5325 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5326 */
5327 ovfl_pmds &= ~reset_pmds;
5328 } else {
5329 /*
5330 * when no sampling module is used, then the default
5331 * is to notify on overflow if requested by user
5332 */
5333 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5334 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5335 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5336 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5337 /*
5338 * if needed, we reset all overflowed pmds
5339 */
5340 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5341 }
5342
5343 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5344
5345 /*
5346 * reset the requested PMD registers using the short reset values
5347 */
5348 if (reset_pmds) {
5349 unsigned long bm = reset_pmds;
5350 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5351 }
5352
5353 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5354 /*
5355 * keep track of what to reset when unblocking
5356 */
5357 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5358
5359 /*
5360 * check for blocking context
5361 */
5362 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5363
5364 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5365
5366 /*
5367 * set the perfmon specific checking pending work for the task
5368 */
5369 PFM_SET_WORK_PENDING(task, 1);
5370
5371 /*
5372 * when coming from ctxsw, current still points to the
5373 * previous task, therefore we must work with task and not current.
5374 */
5375 set_notify_resume(task);
5376 }
5377 /*
5378 * defer until state is changed (shorten spin window). the context is locked
5379 * anyway, so the signal receiver would come spin for nothing.
5380 */
5381 must_notify = 1;
5382 }
5383
5384 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5385 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5386 PFM_GET_WORK_PENDING(task),
5387 ctx->ctx_fl_trap_reason,
5388 ovfl_pmds,
5389 ovfl_notify,
5390 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5391 /*
5392 * in case monitoring must be stopped, we toggle the psr bits
5393 */
5394 if (ovfl_ctrl.bits.mask_monitoring) {
5395 pfm_mask_monitoring(task);
5396 ctx->ctx_state = PFM_CTX_MASKED;
5397 ctx->ctx_fl_can_restart = 1;
5398 }
5399
5400 /*
5401 * send notification now
5402 */
5403 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5404
5405 return;
5406
5407sanity_check:
5408 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5409 smp_processor_id(),
5410 task ? task_pid_nr(task) : -1,
5411 pmc0);
5412 return;
5413
5414stop_monitoring:
5415 /*
5416 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5417 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5418 * come here as zombie only if the task is the current task. In which case, we
5419 * can access the PMU hardware directly.
5420 *
5421 * Note that zombies do have PM_VALID set. So here we do the minimal.
5422 *
5423 * In case the context was zombified it could not be reclaimed at the time
5424 * the monitoring program exited. At this point, the PMU reservation has been
5425 * returned, the sampiing buffer has been freed. We must convert this call
5426 * into a spurious interrupt. However, we must also avoid infinite overflows
5427 * by stopping monitoring for this task. We can only come here for a per-task
5428 * context. All we need to do is to stop monitoring using the psr bits which
5429 * are always task private. By re-enabling secure montioring, we ensure that
5430 * the monitored task will not be able to re-activate monitoring.
5431 * The task will eventually be context switched out, at which point the context
5432 * will be reclaimed (that includes releasing ownership of the PMU).
5433 *
5434 * So there might be a window of time where the number of per-task session is zero
5435 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5436 * context. This is safe because if a per-task session comes in, it will push this one
5437 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5438 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5439 * also push our zombie context out.
5440 *
5441 * Overall pretty hairy stuff....
5442 */
5443 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5444 pfm_clear_psr_up();
5445 ia64_psr(regs)->up = 0;
5446 ia64_psr(regs)->sp = 1;
5447 return;
5448}
5449
5450static int
5451pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5452{
5453 struct task_struct *task;
5454 pfm_context_t *ctx;
5455 unsigned long flags;
5456 u64 pmc0;
5457 int this_cpu = smp_processor_id();
5458 int retval = 0;
5459
5460 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5461
5462 /*
5463 * srlz.d done before arriving here
5464 */
5465 pmc0 = ia64_get_pmc(0);
5466
5467 task = GET_PMU_OWNER();
5468 ctx = GET_PMU_CTX();
5469
5470 /*
5471 * if we have some pending bits set
5472 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5473 */
5474 if (PMC0_HAS_OVFL(pmc0) && task) {
5475 /*
5476 * we assume that pmc0.fr is always set here
5477 */
5478
5479 /* sanity check */
5480 if (!ctx) goto report_spurious1;
5481
5482 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5483 goto report_spurious2;
5484
5485 PROTECT_CTX_NOPRINT(ctx, flags);
5486
5487 pfm_overflow_handler(task, ctx, pmc0, regs);
5488
5489 UNPROTECT_CTX_NOPRINT(ctx, flags);
5490
5491 } else {
5492 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5493 retval = -1;
5494 }
5495 /*
5496 * keep it unfrozen at all times
5497 */
5498 pfm_unfreeze_pmu();
5499
5500 return retval;
5501
5502report_spurious1:
5503 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5504 this_cpu, task_pid_nr(task));
5505 pfm_unfreeze_pmu();
5506 return -1;
5507report_spurious2:
5508 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5509 this_cpu,
5510 task_pid_nr(task));
5511 pfm_unfreeze_pmu();
5512 return -1;
5513}
5514
5515static irqreturn_t
5516pfm_interrupt_handler(int irq, void *arg)
5517{
5518 unsigned long start_cycles, total_cycles;
5519 unsigned long min, max;
5520 int this_cpu;
5521 int ret;
5522 struct pt_regs *regs = get_irq_regs();
5523
5524 this_cpu = get_cpu();
5525 if (likely(!pfm_alt_intr_handler)) {
5526 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5527 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5528
5529 start_cycles = ia64_get_itc();
5530
5531 ret = pfm_do_interrupt_handler(arg, regs);
5532
5533 total_cycles = ia64_get_itc();
5534
5535 /*
5536 * don't measure spurious interrupts
5537 */
5538 if (likely(ret == 0)) {
5539 total_cycles -= start_cycles;
5540
5541 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5542 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5543
5544 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5545 }
5546 }
5547 else {
5548 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5549 }
5550
5551 put_cpu();
5552 return IRQ_HANDLED;
5553}
5554
5555/*
5556 * /proc/perfmon interface, for debug only
5557 */
5558
5559#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5560
5561static void *
5562pfm_proc_start(struct seq_file *m, loff_t *pos)
5563{
5564 if (*pos == 0) {
5565 return PFM_PROC_SHOW_HEADER;
5566 }
5567
5568 while (*pos <= nr_cpu_ids) {
5569 if (cpu_online(*pos - 1)) {
5570 return (void *)*pos;
5571 }
5572 ++*pos;
5573 }
5574 return NULL;
5575}
5576
5577static void *
5578pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5579{
5580 ++*pos;
5581 return pfm_proc_start(m, pos);
5582}
5583
5584static void
5585pfm_proc_stop(struct seq_file *m, void *v)
5586{
5587}
5588
5589static void
5590pfm_proc_show_header(struct seq_file *m)
5591{
5592 struct list_head * pos;
5593 pfm_buffer_fmt_t * entry;
5594 unsigned long flags;
5595
5596 seq_printf(m,
5597 "perfmon version : %u.%u\n"
5598 "model : %s\n"
5599 "fastctxsw : %s\n"
5600 "expert mode : %s\n"
5601 "ovfl_mask : 0x%lx\n"
5602 "PMU flags : 0x%x\n",
5603 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5604 pmu_conf->pmu_name,
5605 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5606 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5607 pmu_conf->ovfl_val,
5608 pmu_conf->flags);
5609
5610 LOCK_PFS(flags);
5611
5612 seq_printf(m,
5613 "proc_sessions : %u\n"
5614 "sys_sessions : %u\n"
5615 "sys_use_dbregs : %u\n"
5616 "ptrace_use_dbregs : %u\n",
5617 pfm_sessions.pfs_task_sessions,
5618 pfm_sessions.pfs_sys_sessions,
5619 pfm_sessions.pfs_sys_use_dbregs,
5620 pfm_sessions.pfs_ptrace_use_dbregs);
5621
5622 UNLOCK_PFS(flags);
5623
5624 spin_lock(&pfm_buffer_fmt_lock);
5625
5626 list_for_each(pos, &pfm_buffer_fmt_list) {
5627 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5628 seq_printf(m, "format : %16phD %s\n",
5629 entry->fmt_uuid, entry->fmt_name);
5630 }
5631 spin_unlock(&pfm_buffer_fmt_lock);
5632
5633}
5634
5635static int
5636pfm_proc_show(struct seq_file *m, void *v)
5637{
5638 unsigned long psr;
5639 unsigned int i;
5640 int cpu;
5641
5642 if (v == PFM_PROC_SHOW_HEADER) {
5643 pfm_proc_show_header(m);
5644 return 0;
5645 }
5646
5647 /* show info for CPU (v - 1) */
5648
5649 cpu = (long)v - 1;
5650 seq_printf(m,
5651 "CPU%-2d overflow intrs : %lu\n"
5652 "CPU%-2d overflow cycles : %lu\n"
5653 "CPU%-2d overflow min : %lu\n"
5654 "CPU%-2d overflow max : %lu\n"
5655 "CPU%-2d smpl handler calls : %lu\n"
5656 "CPU%-2d smpl handler cycles : %lu\n"
5657 "CPU%-2d spurious intrs : %lu\n"
5658 "CPU%-2d replay intrs : %lu\n"
5659 "CPU%-2d syst_wide : %d\n"
5660 "CPU%-2d dcr_pp : %d\n"
5661 "CPU%-2d exclude idle : %d\n"
5662 "CPU%-2d owner : %d\n"
5663 "CPU%-2d context : %p\n"
5664 "CPU%-2d activations : %lu\n",
5665 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5666 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5667 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5668 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5669 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5670 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5671 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5672 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5673 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5674 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5675 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5676 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5677 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5678 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5679
5680 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5681
5682 psr = pfm_get_psr();
5683
5684 ia64_srlz_d();
5685
5686 seq_printf(m,
5687 "CPU%-2d psr : 0x%lx\n"
5688 "CPU%-2d pmc0 : 0x%lx\n",
5689 cpu, psr,
5690 cpu, ia64_get_pmc(0));
5691
5692 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5693 if (PMC_IS_COUNTING(i) == 0) continue;
5694 seq_printf(m,
5695 "CPU%-2d pmc%u : 0x%lx\n"
5696 "CPU%-2d pmd%u : 0x%lx\n",
5697 cpu, i, ia64_get_pmc(i),
5698 cpu, i, ia64_get_pmd(i));
5699 }
5700 }
5701 return 0;
5702}
5703
5704const struct seq_operations pfm_seq_ops = {
5705 .start = pfm_proc_start,
5706 .next = pfm_proc_next,
5707 .stop = pfm_proc_stop,
5708 .show = pfm_proc_show
5709};
5710
5711static int
5712pfm_proc_open(struct inode *inode, struct file *file)
5713{
5714 return seq_open(file, &pfm_seq_ops);
5715}
5716
5717
5718/*
5719 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5720 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5721 * is active or inactive based on mode. We must rely on the value in
5722 * local_cpu_data->pfm_syst_info
5723 */
5724void
5725pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5726{
5727 struct pt_regs *regs;
5728 unsigned long dcr;
5729 unsigned long dcr_pp;
5730
5731 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5732
5733 /*
5734 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5735 * on every CPU, so we can rely on the pid to identify the idle task.
5736 */
5737 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5738 regs = task_pt_regs(task);
5739 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5740 return;
5741 }
5742 /*
5743 * if monitoring has started
5744 */
5745 if (dcr_pp) {
5746 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5747 /*
5748 * context switching in?
5749 */
5750 if (is_ctxswin) {
5751 /* mask monitoring for the idle task */
5752 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5753 pfm_clear_psr_pp();
5754 ia64_srlz_i();
5755 return;
5756 }
5757 /*
5758 * context switching out
5759 * restore monitoring for next task
5760 *
5761 * Due to inlining this odd if-then-else construction generates
5762 * better code.
5763 */
5764 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5765 pfm_set_psr_pp();
5766 ia64_srlz_i();
5767 }
5768}
5769
5770#ifdef CONFIG_SMP
5771
5772static void
5773pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5774{
5775 struct task_struct *task = ctx->ctx_task;
5776
5777 ia64_psr(regs)->up = 0;
5778 ia64_psr(regs)->sp = 1;
5779
5780 if (GET_PMU_OWNER() == task) {
5781 DPRINT(("cleared ownership for [%d]\n",
5782 task_pid_nr(ctx->ctx_task)));
5783 SET_PMU_OWNER(NULL, NULL);
5784 }
5785
5786 /*
5787 * disconnect the task from the context and vice-versa
5788 */
5789 PFM_SET_WORK_PENDING(task, 0);
5790
5791 task->thread.pfm_context = NULL;
5792 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5793
5794 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5795}
5796
5797
5798/*
5799 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5800 */
5801void
5802pfm_save_regs(struct task_struct *task)
5803{
5804 pfm_context_t *ctx;
5805 unsigned long flags;
5806 u64 psr;
5807
5808
5809 ctx = PFM_GET_CTX(task);
5810 if (ctx == NULL) return;
5811
5812 /*
5813 * we always come here with interrupts ALREADY disabled by
5814 * the scheduler. So we simply need to protect against concurrent
5815 * access, not CPU concurrency.
5816 */
5817 flags = pfm_protect_ctx_ctxsw(ctx);
5818
5819 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5820 struct pt_regs *regs = task_pt_regs(task);
5821
5822 pfm_clear_psr_up();
5823
5824 pfm_force_cleanup(ctx, regs);
5825
5826 BUG_ON(ctx->ctx_smpl_hdr);
5827
5828 pfm_unprotect_ctx_ctxsw(ctx, flags);
5829
5830 pfm_context_free(ctx);
5831 return;
5832 }
5833
5834 /*
5835 * save current PSR: needed because we modify it
5836 */
5837 ia64_srlz_d();
5838 psr = pfm_get_psr();
5839
5840 BUG_ON(psr & (IA64_PSR_I));
5841
5842 /*
5843 * stop monitoring:
5844 * This is the last instruction which may generate an overflow
5845 *
5846 * We do not need to set psr.sp because, it is irrelevant in kernel.
5847 * It will be restored from ipsr when going back to user level
5848 */
5849 pfm_clear_psr_up();
5850
5851 /*
5852 * keep a copy of psr.up (for reload)
5853 */
5854 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5855
5856 /*
5857 * release ownership of this PMU.
5858 * PM interrupts are masked, so nothing
5859 * can happen.
5860 */
5861 SET_PMU_OWNER(NULL, NULL);
5862
5863 /*
5864 * we systematically save the PMD as we have no
5865 * guarantee we will be schedule at that same
5866 * CPU again.
5867 */
5868 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5869
5870 /*
5871 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5872 * we will need it on the restore path to check
5873 * for pending overflow.
5874 */
5875 ctx->th_pmcs[0] = ia64_get_pmc(0);
5876
5877 /*
5878 * unfreeze PMU if had pending overflows
5879 */
5880 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5881
5882 /*
5883 * finally, allow context access.
5884 * interrupts will still be masked after this call.
5885 */
5886 pfm_unprotect_ctx_ctxsw(ctx, flags);
5887}
5888
5889#else /* !CONFIG_SMP */
5890void
5891pfm_save_regs(struct task_struct *task)
5892{
5893 pfm_context_t *ctx;
5894 u64 psr;
5895
5896 ctx = PFM_GET_CTX(task);
5897 if (ctx == NULL) return;
5898
5899 /*
5900 * save current PSR: needed because we modify it
5901 */
5902 psr = pfm_get_psr();
5903
5904 BUG_ON(psr & (IA64_PSR_I));
5905
5906 /*
5907 * stop monitoring:
5908 * This is the last instruction which may generate an overflow
5909 *
5910 * We do not need to set psr.sp because, it is irrelevant in kernel.
5911 * It will be restored from ipsr when going back to user level
5912 */
5913 pfm_clear_psr_up();
5914
5915 /*
5916 * keep a copy of psr.up (for reload)
5917 */
5918 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5919}
5920
5921static void
5922pfm_lazy_save_regs (struct task_struct *task)
5923{
5924 pfm_context_t *ctx;
5925 unsigned long flags;
5926
5927 { u64 psr = pfm_get_psr();
5928 BUG_ON(psr & IA64_PSR_UP);
5929 }
5930
5931 ctx = PFM_GET_CTX(task);
5932
5933 /*
5934 * we need to mask PMU overflow here to
5935 * make sure that we maintain pmc0 until
5936 * we save it. overflow interrupts are
5937 * treated as spurious if there is no
5938 * owner.
5939 *
5940 * XXX: I don't think this is necessary
5941 */
5942 PROTECT_CTX(ctx,flags);
5943
5944 /*
5945 * release ownership of this PMU.
5946 * must be done before we save the registers.
5947 *
5948 * after this call any PMU interrupt is treated
5949 * as spurious.
5950 */
5951 SET_PMU_OWNER(NULL, NULL);
5952
5953 /*
5954 * save all the pmds we use
5955 */
5956 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5957
5958 /*
5959 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5960 * it is needed to check for pended overflow
5961 * on the restore path
5962 */
5963 ctx->th_pmcs[0] = ia64_get_pmc(0);
5964
5965 /*
5966 * unfreeze PMU if had pending overflows
5967 */
5968 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5969
5970 /*
5971 * now get can unmask PMU interrupts, they will
5972 * be treated as purely spurious and we will not
5973 * lose any information
5974 */
5975 UNPROTECT_CTX(ctx,flags);
5976}
5977#endif /* CONFIG_SMP */
5978
5979#ifdef CONFIG_SMP
5980/*
5981 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5982 */
5983void
5984pfm_load_regs (struct task_struct *task)
5985{
5986 pfm_context_t *ctx;
5987 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5988 unsigned long flags;
5989 u64 psr, psr_up;
5990 int need_irq_resend;
5991
5992 ctx = PFM_GET_CTX(task);
5993 if (unlikely(ctx == NULL)) return;
5994
5995 BUG_ON(GET_PMU_OWNER());
5996
5997 /*
5998 * possible on unload
5999 */
6000 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6001
6002 /*
6003 * we always come here with interrupts ALREADY disabled by
6004 * the scheduler. So we simply need to protect against concurrent
6005 * access, not CPU concurrency.
6006 */
6007 flags = pfm_protect_ctx_ctxsw(ctx);
6008 psr = pfm_get_psr();
6009
6010 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6011
6012 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6013 BUG_ON(psr & IA64_PSR_I);
6014
6015 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6016 struct pt_regs *regs = task_pt_regs(task);
6017
6018 BUG_ON(ctx->ctx_smpl_hdr);
6019
6020 pfm_force_cleanup(ctx, regs);
6021
6022 pfm_unprotect_ctx_ctxsw(ctx, flags);
6023
6024 /*
6025 * this one (kmalloc'ed) is fine with interrupts disabled
6026 */
6027 pfm_context_free(ctx);
6028
6029 return;
6030 }
6031
6032 /*
6033 * we restore ALL the debug registers to avoid picking up
6034 * stale state.
6035 */
6036 if (ctx->ctx_fl_using_dbreg) {
6037 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6038 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6039 }
6040 /*
6041 * retrieve saved psr.up
6042 */
6043 psr_up = ctx->ctx_saved_psr_up;
6044
6045 /*
6046 * if we were the last user of the PMU on that CPU,
6047 * then nothing to do except restore psr
6048 */
6049 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6050
6051 /*
6052 * retrieve partial reload masks (due to user modifications)
6053 */
6054 pmc_mask = ctx->ctx_reload_pmcs[0];
6055 pmd_mask = ctx->ctx_reload_pmds[0];
6056
6057 } else {
6058 /*
6059 * To avoid leaking information to the user level when psr.sp=0,
6060 * we must reload ALL implemented pmds (even the ones we don't use).
6061 * In the kernel we only allow PFM_READ_PMDS on registers which
6062 * we initialized or requested (sampling) so there is no risk there.
6063 */
6064 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6065
6066 /*
6067 * ALL accessible PMCs are systematically reloaded, unused registers
6068 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6069 * up stale configuration.
6070 *
6071 * PMC0 is never in the mask. It is always restored separately.
6072 */
6073 pmc_mask = ctx->ctx_all_pmcs[0];
6074 }
6075 /*
6076 * when context is MASKED, we will restore PMC with plm=0
6077 * and PMD with stale information, but that's ok, nothing
6078 * will be captured.
6079 *
6080 * XXX: optimize here
6081 */
6082 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6083 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6084
6085 /*
6086 * check for pending overflow at the time the state
6087 * was saved.
6088 */
6089 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6090 /*
6091 * reload pmc0 with the overflow information
6092 * On McKinley PMU, this will trigger a PMU interrupt
6093 */
6094 ia64_set_pmc(0, ctx->th_pmcs[0]);
6095 ia64_srlz_d();
6096 ctx->th_pmcs[0] = 0UL;
6097
6098 /*
6099 * will replay the PMU interrupt
6100 */
6101 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6102
6103 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6104 }
6105
6106 /*
6107 * we just did a reload, so we reset the partial reload fields
6108 */
6109 ctx->ctx_reload_pmcs[0] = 0UL;
6110 ctx->ctx_reload_pmds[0] = 0UL;
6111
6112 SET_LAST_CPU(ctx, smp_processor_id());
6113
6114 /*
6115 * dump activation value for this PMU
6116 */
6117 INC_ACTIVATION();
6118 /*
6119 * record current activation for this context
6120 */
6121 SET_ACTIVATION(ctx);
6122
6123 /*
6124 * establish new ownership.
6125 */
6126 SET_PMU_OWNER(task, ctx);
6127
6128 /*
6129 * restore the psr.up bit. measurement
6130 * is active again.
6131 * no PMU interrupt can happen at this point
6132 * because we still have interrupts disabled.
6133 */
6134 if (likely(psr_up)) pfm_set_psr_up();
6135
6136 /*
6137 * allow concurrent access to context
6138 */
6139 pfm_unprotect_ctx_ctxsw(ctx, flags);
6140}
6141#else /* !CONFIG_SMP */
6142/*
6143 * reload PMU state for UP kernels
6144 * in 2.5 we come here with interrupts disabled
6145 */
6146void
6147pfm_load_regs (struct task_struct *task)
6148{
6149 pfm_context_t *ctx;
6150 struct task_struct *owner;
6151 unsigned long pmd_mask, pmc_mask;
6152 u64 psr, psr_up;
6153 int need_irq_resend;
6154
6155 owner = GET_PMU_OWNER();
6156 ctx = PFM_GET_CTX(task);
6157 psr = pfm_get_psr();
6158
6159 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6160 BUG_ON(psr & IA64_PSR_I);
6161
6162 /*
6163 * we restore ALL the debug registers to avoid picking up
6164 * stale state.
6165 *
6166 * This must be done even when the task is still the owner
6167 * as the registers may have been modified via ptrace()
6168 * (not perfmon) by the previous task.
6169 */
6170 if (ctx->ctx_fl_using_dbreg) {
6171 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6172 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6173 }
6174
6175 /*
6176 * retrieved saved psr.up
6177 */
6178 psr_up = ctx->ctx_saved_psr_up;
6179 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6180
6181 /*
6182 * short path, our state is still there, just
6183 * need to restore psr and we go
6184 *
6185 * we do not touch either PMC nor PMD. the psr is not touched
6186 * by the overflow_handler. So we are safe w.r.t. to interrupt
6187 * concurrency even without interrupt masking.
6188 */
6189 if (likely(owner == task)) {
6190 if (likely(psr_up)) pfm_set_psr_up();
6191 return;
6192 }
6193
6194 /*
6195 * someone else is still using the PMU, first push it out and
6196 * then we'll be able to install our stuff !
6197 *
6198 * Upon return, there will be no owner for the current PMU
6199 */
6200 if (owner) pfm_lazy_save_regs(owner);
6201
6202 /*
6203 * To avoid leaking information to the user level when psr.sp=0,
6204 * we must reload ALL implemented pmds (even the ones we don't use).
6205 * In the kernel we only allow PFM_READ_PMDS on registers which
6206 * we initialized or requested (sampling) so there is no risk there.
6207 */
6208 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6209
6210 /*
6211 * ALL accessible PMCs are systematically reloaded, unused registers
6212 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6213 * up stale configuration.
6214 *
6215 * PMC0 is never in the mask. It is always restored separately
6216 */
6217 pmc_mask = ctx->ctx_all_pmcs[0];
6218
6219 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6220 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6221
6222 /*
6223 * check for pending overflow at the time the state
6224 * was saved.
6225 */
6226 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6227 /*
6228 * reload pmc0 with the overflow information
6229 * On McKinley PMU, this will trigger a PMU interrupt
6230 */
6231 ia64_set_pmc(0, ctx->th_pmcs[0]);
6232 ia64_srlz_d();
6233
6234 ctx->th_pmcs[0] = 0UL;
6235
6236 /*
6237 * will replay the PMU interrupt
6238 */
6239 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6240
6241 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6242 }
6243
6244 /*
6245 * establish new ownership.
6246 */
6247 SET_PMU_OWNER(task, ctx);
6248
6249 /*
6250 * restore the psr.up bit. measurement
6251 * is active again.
6252 * no PMU interrupt can happen at this point
6253 * because we still have interrupts disabled.
6254 */
6255 if (likely(psr_up)) pfm_set_psr_up();
6256}
6257#endif /* CONFIG_SMP */
6258
6259/*
6260 * this function assumes monitoring is stopped
6261 */
6262static void
6263pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6264{
6265 u64 pmc0;
6266 unsigned long mask2, val, pmd_val, ovfl_val;
6267 int i, can_access_pmu = 0;
6268 int is_self;
6269
6270 /*
6271 * is the caller the task being monitored (or which initiated the
6272 * session for system wide measurements)
6273 */
6274 is_self = ctx->ctx_task == task ? 1 : 0;
6275
6276 /*
6277 * can access PMU is task is the owner of the PMU state on the current CPU
6278 * or if we are running on the CPU bound to the context in system-wide mode
6279 * (that is not necessarily the task the context is attached to in this mode).
6280 * In system-wide we always have can_access_pmu true because a task running on an
6281 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6282 */
6283 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6284 if (can_access_pmu) {
6285 /*
6286 * Mark the PMU as not owned
6287 * This will cause the interrupt handler to do nothing in case an overflow
6288 * interrupt was in-flight
6289 * This also guarantees that pmc0 will contain the final state
6290 * It virtually gives us full control on overflow processing from that point
6291 * on.
6292 */
6293 SET_PMU_OWNER(NULL, NULL);
6294 DPRINT(("releasing ownership\n"));
6295
6296 /*
6297 * read current overflow status:
6298 *
6299 * we are guaranteed to read the final stable state
6300 */
6301 ia64_srlz_d();
6302 pmc0 = ia64_get_pmc(0); /* slow */
6303
6304 /*
6305 * reset freeze bit, overflow status information destroyed
6306 */
6307 pfm_unfreeze_pmu();
6308 } else {
6309 pmc0 = ctx->th_pmcs[0];
6310 /*
6311 * clear whatever overflow status bits there were
6312 */
6313 ctx->th_pmcs[0] = 0;
6314 }
6315 ovfl_val = pmu_conf->ovfl_val;
6316 /*
6317 * we save all the used pmds
6318 * we take care of overflows for counting PMDs
6319 *
6320 * XXX: sampling situation is not taken into account here
6321 */
6322 mask2 = ctx->ctx_used_pmds[0];
6323
6324 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6325
6326 for (i = 0; mask2; i++, mask2>>=1) {
6327
6328 /* skip non used pmds */
6329 if ((mask2 & 0x1) == 0) continue;
6330
6331 /*
6332 * can access PMU always true in system wide mode
6333 */
6334 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6335
6336 if (PMD_IS_COUNTING(i)) {
6337 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6338 task_pid_nr(task),
6339 i,
6340 ctx->ctx_pmds[i].val,
6341 val & ovfl_val));
6342
6343 /*
6344 * we rebuild the full 64 bit value of the counter
6345 */
6346 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6347
6348 /*
6349 * now everything is in ctx_pmds[] and we need
6350 * to clear the saved context from save_regs() such that
6351 * pfm_read_pmds() gets the correct value
6352 */
6353 pmd_val = 0UL;
6354
6355 /*
6356 * take care of overflow inline
6357 */
6358 if (pmc0 & (1UL << i)) {
6359 val += 1 + ovfl_val;
6360 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6361 }
6362 }
6363
6364 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6365
6366 if (is_self) ctx->th_pmds[i] = pmd_val;
6367
6368 ctx->ctx_pmds[i].val = val;
6369 }
6370}
6371
6372static struct irqaction perfmon_irqaction = {
6373 .handler = pfm_interrupt_handler,
6374 .name = "perfmon"
6375};
6376
6377static void
6378pfm_alt_save_pmu_state(void *data)
6379{
6380 struct pt_regs *regs;
6381
6382 regs = task_pt_regs(current);
6383
6384 DPRINT(("called\n"));
6385
6386 /*
6387 * should not be necessary but
6388 * let's take not risk
6389 */
6390 pfm_clear_psr_up();
6391 pfm_clear_psr_pp();
6392 ia64_psr(regs)->pp = 0;
6393
6394 /*
6395 * This call is required
6396 * May cause a spurious interrupt on some processors
6397 */
6398 pfm_freeze_pmu();
6399
6400 ia64_srlz_d();
6401}
6402
6403void
6404pfm_alt_restore_pmu_state(void *data)
6405{
6406 struct pt_regs *regs;
6407
6408 regs = task_pt_regs(current);
6409
6410 DPRINT(("called\n"));
6411
6412 /*
6413 * put PMU back in state expected
6414 * by perfmon
6415 */
6416 pfm_clear_psr_up();
6417 pfm_clear_psr_pp();
6418 ia64_psr(regs)->pp = 0;
6419
6420 /*
6421 * perfmon runs with PMU unfrozen at all times
6422 */
6423 pfm_unfreeze_pmu();
6424
6425 ia64_srlz_d();
6426}
6427
6428int
6429pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6430{
6431 int ret, i;
6432 int reserve_cpu;
6433
6434 /* some sanity checks */
6435 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6436
6437 /* do the easy test first */
6438 if (pfm_alt_intr_handler) return -EBUSY;
6439
6440 /* one at a time in the install or remove, just fail the others */
6441 if (!spin_trylock(&pfm_alt_install_check)) {
6442 return -EBUSY;
6443 }
6444
6445 /* reserve our session */
6446 for_each_online_cpu(reserve_cpu) {
6447 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6448 if (ret) goto cleanup_reserve;
6449 }
6450
6451 /* save the current system wide pmu states */
6452 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6453 if (ret) {
6454 DPRINT(("on_each_cpu() failed: %d\n", ret));
6455 goto cleanup_reserve;
6456 }
6457
6458 /* officially change to the alternate interrupt handler */
6459 pfm_alt_intr_handler = hdl;
6460
6461 spin_unlock(&pfm_alt_install_check);
6462
6463 return 0;
6464
6465cleanup_reserve:
6466 for_each_online_cpu(i) {
6467 /* don't unreserve more than we reserved */
6468 if (i >= reserve_cpu) break;
6469
6470 pfm_unreserve_session(NULL, 1, i);
6471 }
6472
6473 spin_unlock(&pfm_alt_install_check);
6474
6475 return ret;
6476}
6477EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6478
6479int
6480pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481{
6482 int i;
6483 int ret;
6484
6485 if (hdl == NULL) return -EINVAL;
6486
6487 /* cannot remove someone else's handler! */
6488 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6489
6490 /* one at a time in the install or remove, just fail the others */
6491 if (!spin_trylock(&pfm_alt_install_check)) {
6492 return -EBUSY;
6493 }
6494
6495 pfm_alt_intr_handler = NULL;
6496
6497 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6498 if (ret) {
6499 DPRINT(("on_each_cpu() failed: %d\n", ret));
6500 }
6501
6502 for_each_online_cpu(i) {
6503 pfm_unreserve_session(NULL, 1, i);
6504 }
6505
6506 spin_unlock(&pfm_alt_install_check);
6507
6508 return 0;
6509}
6510EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6511
6512/*
6513 * perfmon initialization routine, called from the initcall() table
6514 */
6515static int init_pfm_fs(void);
6516
6517static int __init
6518pfm_probe_pmu(void)
6519{
6520 pmu_config_t **p;
6521 int family;
6522
6523 family = local_cpu_data->family;
6524 p = pmu_confs;
6525
6526 while(*p) {
6527 if ((*p)->probe) {
6528 if ((*p)->probe() == 0) goto found;
6529 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6530 goto found;
6531 }
6532 p++;
6533 }
6534 return -1;
6535found:
6536 pmu_conf = *p;
6537 return 0;
6538}
6539
6540static const struct file_operations pfm_proc_fops = {
6541 .open = pfm_proc_open,
6542 .read = seq_read,
6543 .llseek = seq_lseek,
6544 .release = seq_release,
6545};
6546
6547int __init
6548pfm_init(void)
6549{
6550 unsigned int n, n_counters, i;
6551
6552 printk("perfmon: version %u.%u IRQ %u\n",
6553 PFM_VERSION_MAJ,
6554 PFM_VERSION_MIN,
6555 IA64_PERFMON_VECTOR);
6556
6557 if (pfm_probe_pmu()) {
6558 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6559 local_cpu_data->family);
6560 return -ENODEV;
6561 }
6562
6563 /*
6564 * compute the number of implemented PMD/PMC from the
6565 * description tables
6566 */
6567 n = 0;
6568 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6569 if (PMC_IS_IMPL(i) == 0) continue;
6570 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6571 n++;
6572 }
6573 pmu_conf->num_pmcs = n;
6574
6575 n = 0; n_counters = 0;
6576 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6577 if (PMD_IS_IMPL(i) == 0) continue;
6578 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6579 n++;
6580 if (PMD_IS_COUNTING(i)) n_counters++;
6581 }
6582 pmu_conf->num_pmds = n;
6583 pmu_conf->num_counters = n_counters;
6584
6585 /*
6586 * sanity checks on the number of debug registers
6587 */
6588 if (pmu_conf->use_rr_dbregs) {
6589 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6590 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6591 pmu_conf = NULL;
6592 return -1;
6593 }
6594 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6595 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6596 pmu_conf = NULL;
6597 return -1;
6598 }
6599 }
6600
6601 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6602 pmu_conf->pmu_name,
6603 pmu_conf->num_pmcs,
6604 pmu_conf->num_pmds,
6605 pmu_conf->num_counters,
6606 ffz(pmu_conf->ovfl_val));
6607
6608 /* sanity check */
6609 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6610 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6611 pmu_conf = NULL;
6612 return -1;
6613 }
6614
6615 /*
6616 * create /proc/perfmon (mostly for debugging purposes)
6617 */
6618 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6619 if (perfmon_dir == NULL) {
6620 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6621 pmu_conf = NULL;
6622 return -1;
6623 }
6624
6625 /*
6626 * create /proc/sys/kernel/perfmon (for debugging purposes)
6627 */
6628 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6629
6630 /*
6631 * initialize all our spinlocks
6632 */
6633 spin_lock_init(&pfm_sessions.pfs_lock);
6634 spin_lock_init(&pfm_buffer_fmt_lock);
6635
6636 init_pfm_fs();
6637
6638 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6639
6640 return 0;
6641}
6642
6643__initcall(pfm_init);
6644
6645/*
6646 * this function is called before pfm_init()
6647 */
6648void
6649pfm_init_percpu (void)
6650{
6651 static int first_time=1;
6652 /*
6653 * make sure no measurement is active
6654 * (may inherit programmed PMCs from EFI).
6655 */
6656 pfm_clear_psr_pp();
6657 pfm_clear_psr_up();
6658
6659 /*
6660 * we run with the PMU not frozen at all times
6661 */
6662 pfm_unfreeze_pmu();
6663
6664 if (first_time) {
6665 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6666 first_time=0;
6667 }
6668
6669 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6670 ia64_srlz_d();
6671}
6672
6673/*
6674 * used for debug purposes only
6675 */
6676void
6677dump_pmu_state(const char *from)
6678{
6679 struct task_struct *task;
6680 struct pt_regs *regs;
6681 pfm_context_t *ctx;
6682 unsigned long psr, dcr, info, flags;
6683 int i, this_cpu;
6684
6685 local_irq_save(flags);
6686
6687 this_cpu = smp_processor_id();
6688 regs = task_pt_regs(current);
6689 info = PFM_CPUINFO_GET();
6690 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6691
6692 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6693 local_irq_restore(flags);
6694 return;
6695 }
6696
6697 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6698 this_cpu,
6699 from,
6700 task_pid_nr(current),
6701 regs->cr_iip,
6702 current->comm);
6703
6704 task = GET_PMU_OWNER();
6705 ctx = GET_PMU_CTX();
6706
6707 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6708
6709 psr = pfm_get_psr();
6710
6711 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6712 this_cpu,
6713 ia64_get_pmc(0),
6714 psr & IA64_PSR_PP ? 1 : 0,
6715 psr & IA64_PSR_UP ? 1 : 0,
6716 dcr & IA64_DCR_PP ? 1 : 0,
6717 info,
6718 ia64_psr(regs)->up,
6719 ia64_psr(regs)->pp);
6720
6721 ia64_psr(regs)->up = 0;
6722 ia64_psr(regs)->pp = 0;
6723
6724 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6725 if (PMC_IS_IMPL(i) == 0) continue;
6726 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6727 }
6728
6729 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6730 if (PMD_IS_IMPL(i) == 0) continue;
6731 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6732 }
6733
6734 if (ctx) {
6735 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6736 this_cpu,
6737 ctx->ctx_state,
6738 ctx->ctx_smpl_vaddr,
6739 ctx->ctx_smpl_hdr,
6740 ctx->ctx_msgq_head,
6741 ctx->ctx_msgq_tail,
6742 ctx->ctx_saved_psr_up);
6743 }
6744 local_irq_restore(flags);
6745}
6746
6747/*
6748 * called from process.c:copy_thread(). task is new child.
6749 */
6750void
6751pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6752{
6753 struct thread_struct *thread;
6754
6755 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6756
6757 thread = &task->thread;
6758
6759 /*
6760 * cut links inherited from parent (current)
6761 */
6762 thread->pfm_context = NULL;
6763
6764 PFM_SET_WORK_PENDING(task, 0);
6765
6766 /*
6767 * the psr bits are already set properly in copy_threads()
6768 */
6769}
6770#else /* !CONFIG_PERFMON */
6771asmlinkage long
6772sys_perfmonctl (int fd, int cmd, void *arg, int count)
6773{
6774 return -ENOSYS;
6775}
6776#endif /* CONFIG_PERFMON */
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
36#include <linux/smp.h>
37#include <linux/pagemap.h>
38#include <linux/mount.h>
39#include <linux/bitops.h>
40#include <linux/capability.h>
41#include <linux/rcupdate.h>
42#include <linux/completion.h>
43#include <linux/tracehook.h>
44#include <linux/slab.h>
45
46#include <asm/errno.h>
47#include <asm/intrinsics.h>
48#include <asm/page.h>
49#include <asm/perfmon.h>
50#include <asm/processor.h>
51#include <asm/signal.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
66#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
69/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
293 struct completion ctx_restart_done; /* use for blocking notification mode */
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314
315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
490typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
508static DEFINE_SPINLOCK(pfm_alt_install_check);
509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
522
523static ctl_table pfm_ctl_table[]={
524 {
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
529 .proc_handler = proc_dointvec,
530 },
531 {
532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
536 .proc_handler = proc_dointvec,
537 },
538 {
539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
543 .proc_handler = proc_dointvec,
544 },
545 {
546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
550 .proc_handler = proc_dointvec,
551 },
552 {}
553};
554static ctl_table pfm_sysctl_dir[] = {
555 {
556 .procname = "perfmon",
557 .mode = 0555,
558 .child = pfm_ctl_table,
559 },
560 {}
561};
562static ctl_table pfm_sysctl_root[] = {
563 {
564 .procname = "kernel",
565 .mode = 0555,
566 .child = pfm_sysctl_dir,
567 },
568 {}
569};
570static struct ctl_table_header *pfm_sysctl_header;
571
572static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
573
574#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575#define pfm_get_cpu_data(a,b) per_cpu(a, b)
576
577static inline void
578pfm_put_task(struct task_struct *task)
579{
580 if (task != current) put_task_struct(task);
581}
582
583static inline void
584pfm_reserve_page(unsigned long a)
585{
586 SetPageReserved(vmalloc_to_page((void *)a));
587}
588static inline void
589pfm_unreserve_page(unsigned long a)
590{
591 ClearPageReserved(vmalloc_to_page((void*)a));
592}
593
594static inline unsigned long
595pfm_protect_ctx_ctxsw(pfm_context_t *x)
596{
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
599}
600
601static inline void
602pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603{
604 spin_unlock(&(x)->ctx_lock);
605}
606
607/* forward declaration */
608static const struct dentry_operations pfmfs_dentry_operations;
609
610static struct dentry *
611pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
612{
613 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
614 PFMFS_MAGIC);
615}
616
617static struct file_system_type pfm_fs_type = {
618 .name = "pfmfs",
619 .mount = pfmfs_mount,
620 .kill_sb = kill_anon_super,
621};
622
623DEFINE_PER_CPU(unsigned long, pfm_syst_info);
624DEFINE_PER_CPU(struct task_struct *, pmu_owner);
625DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
626DEFINE_PER_CPU(unsigned long, pmu_activation_number);
627EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
628
629
630/* forward declaration */
631static const struct file_operations pfm_file_ops;
632
633/*
634 * forward declarations
635 */
636#ifndef CONFIG_SMP
637static void pfm_lazy_save_regs (struct task_struct *ta);
638#endif
639
640void dump_pmu_state(const char *);
641static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
642
643#include "perfmon_itanium.h"
644#include "perfmon_mckinley.h"
645#include "perfmon_montecito.h"
646#include "perfmon_generic.h"
647
648static pmu_config_t *pmu_confs[]={
649 &pmu_conf_mont,
650 &pmu_conf_mck,
651 &pmu_conf_ita,
652 &pmu_conf_gen, /* must be last */
653 NULL
654};
655
656
657static int pfm_end_notify_user(pfm_context_t *ctx);
658
659static inline void
660pfm_clear_psr_pp(void)
661{
662 ia64_rsm(IA64_PSR_PP);
663 ia64_srlz_i();
664}
665
666static inline void
667pfm_set_psr_pp(void)
668{
669 ia64_ssm(IA64_PSR_PP);
670 ia64_srlz_i();
671}
672
673static inline void
674pfm_clear_psr_up(void)
675{
676 ia64_rsm(IA64_PSR_UP);
677 ia64_srlz_i();
678}
679
680static inline void
681pfm_set_psr_up(void)
682{
683 ia64_ssm(IA64_PSR_UP);
684 ia64_srlz_i();
685}
686
687static inline unsigned long
688pfm_get_psr(void)
689{
690 unsigned long tmp;
691 tmp = ia64_getreg(_IA64_REG_PSR);
692 ia64_srlz_i();
693 return tmp;
694}
695
696static inline void
697pfm_set_psr_l(unsigned long val)
698{
699 ia64_setreg(_IA64_REG_PSR_L, val);
700 ia64_srlz_i();
701}
702
703static inline void
704pfm_freeze_pmu(void)
705{
706 ia64_set_pmc(0,1UL);
707 ia64_srlz_d();
708}
709
710static inline void
711pfm_unfreeze_pmu(void)
712{
713 ia64_set_pmc(0,0UL);
714 ia64_srlz_d();
715}
716
717static inline void
718pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
719{
720 int i;
721
722 for (i=0; i < nibrs; i++) {
723 ia64_set_ibr(i, ibrs[i]);
724 ia64_dv_serialize_instruction();
725 }
726 ia64_srlz_i();
727}
728
729static inline void
730pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
731{
732 int i;
733
734 for (i=0; i < ndbrs; i++) {
735 ia64_set_dbr(i, dbrs[i]);
736 ia64_dv_serialize_data();
737 }
738 ia64_srlz_d();
739}
740
741/*
742 * PMD[i] must be a counter. no check is made
743 */
744static inline unsigned long
745pfm_read_soft_counter(pfm_context_t *ctx, int i)
746{
747 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
748}
749
750/*
751 * PMD[i] must be a counter. no check is made
752 */
753static inline void
754pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
755{
756 unsigned long ovfl_val = pmu_conf->ovfl_val;
757
758 ctx->ctx_pmds[i].val = val & ~ovfl_val;
759 /*
760 * writing to unimplemented part is ignore, so we do not need to
761 * mask off top part
762 */
763 ia64_set_pmd(i, val & ovfl_val);
764}
765
766static pfm_msg_t *
767pfm_get_new_msg(pfm_context_t *ctx)
768{
769 int idx, next;
770
771 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
772
773 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774 if (next == ctx->ctx_msgq_head) return NULL;
775
776 idx = ctx->ctx_msgq_tail;
777 ctx->ctx_msgq_tail = next;
778
779 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
780
781 return ctx->ctx_msgq+idx;
782}
783
784static pfm_msg_t *
785pfm_get_next_msg(pfm_context_t *ctx)
786{
787 pfm_msg_t *msg;
788
789 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790
791 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
792
793 /*
794 * get oldest message
795 */
796 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
797
798 /*
799 * and move forward
800 */
801 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
802
803 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
804
805 return msg;
806}
807
808static void
809pfm_reset_msgq(pfm_context_t *ctx)
810{
811 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
812 DPRINT(("ctx=%p msgq reset\n", ctx));
813}
814
815static void *
816pfm_rvmalloc(unsigned long size)
817{
818 void *mem;
819 unsigned long addr;
820
821 size = PAGE_ALIGN(size);
822 mem = vzalloc(size);
823 if (mem) {
824 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
825 addr = (unsigned long)mem;
826 while (size > 0) {
827 pfm_reserve_page(addr);
828 addr+=PAGE_SIZE;
829 size-=PAGE_SIZE;
830 }
831 }
832 return mem;
833}
834
835static void
836pfm_rvfree(void *mem, unsigned long size)
837{
838 unsigned long addr;
839
840 if (mem) {
841 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
842 addr = (unsigned long) mem;
843 while ((long) size > 0) {
844 pfm_unreserve_page(addr);
845 addr+=PAGE_SIZE;
846 size-=PAGE_SIZE;
847 }
848 vfree(mem);
849 }
850 return;
851}
852
853static pfm_context_t *
854pfm_context_alloc(int ctx_flags)
855{
856 pfm_context_t *ctx;
857
858 /*
859 * allocate context descriptor
860 * must be able to free with interrupts disabled
861 */
862 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
863 if (ctx) {
864 DPRINT(("alloc ctx @%p\n", ctx));
865
866 /*
867 * init context protection lock
868 */
869 spin_lock_init(&ctx->ctx_lock);
870
871 /*
872 * context is unloaded
873 */
874 ctx->ctx_state = PFM_CTX_UNLOADED;
875
876 /*
877 * initialization of context's flags
878 */
879 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
880 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
881 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
882 /*
883 * will move to set properties
884 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
885 */
886
887 /*
888 * init restart semaphore to locked
889 */
890 init_completion(&ctx->ctx_restart_done);
891
892 /*
893 * activation is used in SMP only
894 */
895 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
896 SET_LAST_CPU(ctx, -1);
897
898 /*
899 * initialize notification message queue
900 */
901 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
902 init_waitqueue_head(&ctx->ctx_msgq_wait);
903 init_waitqueue_head(&ctx->ctx_zombieq);
904
905 }
906 return ctx;
907}
908
909static void
910pfm_context_free(pfm_context_t *ctx)
911{
912 if (ctx) {
913 DPRINT(("free ctx @%p\n", ctx));
914 kfree(ctx);
915 }
916}
917
918static void
919pfm_mask_monitoring(struct task_struct *task)
920{
921 pfm_context_t *ctx = PFM_GET_CTX(task);
922 unsigned long mask, val, ovfl_mask;
923 int i;
924
925 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
926
927 ovfl_mask = pmu_conf->ovfl_val;
928 /*
929 * monitoring can only be masked as a result of a valid
930 * counter overflow. In UP, it means that the PMU still
931 * has an owner. Note that the owner can be different
932 * from the current task. However the PMU state belongs
933 * to the owner.
934 * In SMP, a valid overflow only happens when task is
935 * current. Therefore if we come here, we know that
936 * the PMU state belongs to the current task, therefore
937 * we can access the live registers.
938 *
939 * So in both cases, the live register contains the owner's
940 * state. We can ONLY touch the PMU registers and NOT the PSR.
941 *
942 * As a consequence to this call, the ctx->th_pmds[] array
943 * contains stale information which must be ignored
944 * when context is reloaded AND monitoring is active (see
945 * pfm_restart).
946 */
947 mask = ctx->ctx_used_pmds[0];
948 for (i = 0; mask; i++, mask>>=1) {
949 /* skip non used pmds */
950 if ((mask & 0x1) == 0) continue;
951 val = ia64_get_pmd(i);
952
953 if (PMD_IS_COUNTING(i)) {
954 /*
955 * we rebuild the full 64 bit value of the counter
956 */
957 ctx->ctx_pmds[i].val += (val & ovfl_mask);
958 } else {
959 ctx->ctx_pmds[i].val = val;
960 }
961 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
962 i,
963 ctx->ctx_pmds[i].val,
964 val & ovfl_mask));
965 }
966 /*
967 * mask monitoring by setting the privilege level to 0
968 * we cannot use psr.pp/psr.up for this, it is controlled by
969 * the user
970 *
971 * if task is current, modify actual registers, otherwise modify
972 * thread save state, i.e., what will be restored in pfm_load_regs()
973 */
974 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
975 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
976 if ((mask & 0x1) == 0UL) continue;
977 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
978 ctx->th_pmcs[i] &= ~0xfUL;
979 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
980 }
981 /*
982 * make all of this visible
983 */
984 ia64_srlz_d();
985}
986
987/*
988 * must always be done with task == current
989 *
990 * context must be in MASKED state when calling
991 */
992static void
993pfm_restore_monitoring(struct task_struct *task)
994{
995 pfm_context_t *ctx = PFM_GET_CTX(task);
996 unsigned long mask, ovfl_mask;
997 unsigned long psr, val;
998 int i, is_system;
999
1000 is_system = ctx->ctx_fl_system;
1001 ovfl_mask = pmu_conf->ovfl_val;
1002
1003 if (task != current) {
1004 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1005 return;
1006 }
1007 if (ctx->ctx_state != PFM_CTX_MASKED) {
1008 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1009 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1010 return;
1011 }
1012 psr = pfm_get_psr();
1013 /*
1014 * monitoring is masked via the PMC.
1015 * As we restore their value, we do not want each counter to
1016 * restart right away. We stop monitoring using the PSR,
1017 * restore the PMC (and PMD) and then re-establish the psr
1018 * as it was. Note that there can be no pending overflow at
1019 * this point, because monitoring was MASKED.
1020 *
1021 * system-wide session are pinned and self-monitoring
1022 */
1023 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024 /* disable dcr pp */
1025 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1026 pfm_clear_psr_pp();
1027 } else {
1028 pfm_clear_psr_up();
1029 }
1030 /*
1031 * first, we restore the PMD
1032 */
1033 mask = ctx->ctx_used_pmds[0];
1034 for (i = 0; mask; i++, mask>>=1) {
1035 /* skip non used pmds */
1036 if ((mask & 0x1) == 0) continue;
1037
1038 if (PMD_IS_COUNTING(i)) {
1039 /*
1040 * we split the 64bit value according to
1041 * counter width
1042 */
1043 val = ctx->ctx_pmds[i].val & ovfl_mask;
1044 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1045 } else {
1046 val = ctx->ctx_pmds[i].val;
1047 }
1048 ia64_set_pmd(i, val);
1049
1050 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1051 i,
1052 ctx->ctx_pmds[i].val,
1053 val));
1054 }
1055 /*
1056 * restore the PMCs
1057 */
1058 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1059 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1060 if ((mask & 0x1) == 0UL) continue;
1061 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1062 ia64_set_pmc(i, ctx->th_pmcs[i]);
1063 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1064 task_pid_nr(task), i, ctx->th_pmcs[i]));
1065 }
1066 ia64_srlz_d();
1067
1068 /*
1069 * must restore DBR/IBR because could be modified while masked
1070 * XXX: need to optimize
1071 */
1072 if (ctx->ctx_fl_using_dbreg) {
1073 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1074 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1075 }
1076
1077 /*
1078 * now restore PSR
1079 */
1080 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1081 /* enable dcr pp */
1082 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1083 ia64_srlz_i();
1084 }
1085 pfm_set_psr_l(psr);
1086}
1087
1088static inline void
1089pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1090{
1091 int i;
1092
1093 ia64_srlz_d();
1094
1095 for (i=0; mask; i++, mask>>=1) {
1096 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1097 }
1098}
1099
1100/*
1101 * reload from thread state (used for ctxw only)
1102 */
1103static inline void
1104pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1105{
1106 int i;
1107 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1108
1109 for (i=0; mask; i++, mask>>=1) {
1110 if ((mask & 0x1) == 0) continue;
1111 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1112 ia64_set_pmd(i, val);
1113 }
1114 ia64_srlz_d();
1115}
1116
1117/*
1118 * propagate PMD from context to thread-state
1119 */
1120static inline void
1121pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1122{
1123 unsigned long ovfl_val = pmu_conf->ovfl_val;
1124 unsigned long mask = ctx->ctx_all_pmds[0];
1125 unsigned long val;
1126 int i;
1127
1128 DPRINT(("mask=0x%lx\n", mask));
1129
1130 for (i=0; mask; i++, mask>>=1) {
1131
1132 val = ctx->ctx_pmds[i].val;
1133
1134 /*
1135 * We break up the 64 bit value into 2 pieces
1136 * the lower bits go to the machine state in the
1137 * thread (will be reloaded on ctxsw in).
1138 * The upper part stays in the soft-counter.
1139 */
1140 if (PMD_IS_COUNTING(i)) {
1141 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1142 val &= ovfl_val;
1143 }
1144 ctx->th_pmds[i] = val;
1145
1146 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1147 i,
1148 ctx->th_pmds[i],
1149 ctx->ctx_pmds[i].val));
1150 }
1151}
1152
1153/*
1154 * propagate PMC from context to thread-state
1155 */
1156static inline void
1157pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1158{
1159 unsigned long mask = ctx->ctx_all_pmcs[0];
1160 int i;
1161
1162 DPRINT(("mask=0x%lx\n", mask));
1163
1164 for (i=0; mask; i++, mask>>=1) {
1165 /* masking 0 with ovfl_val yields 0 */
1166 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1167 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1168 }
1169}
1170
1171
1172
1173static inline void
1174pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1175{
1176 int i;
1177
1178 for (i=0; mask; i++, mask>>=1) {
1179 if ((mask & 0x1) == 0) continue;
1180 ia64_set_pmc(i, pmcs[i]);
1181 }
1182 ia64_srlz_d();
1183}
1184
1185static inline int
1186pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1187{
1188 return memcmp(a, b, sizeof(pfm_uuid_t));
1189}
1190
1191static inline int
1192pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1193{
1194 int ret = 0;
1195 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1196 return ret;
1197}
1198
1199static inline int
1200pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1201{
1202 int ret = 0;
1203 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1204 return ret;
1205}
1206
1207
1208static inline int
1209pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1210 int cpu, void *arg)
1211{
1212 int ret = 0;
1213 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1214 return ret;
1215}
1216
1217static inline int
1218pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1219 int cpu, void *arg)
1220{
1221 int ret = 0;
1222 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1223 return ret;
1224}
1225
1226static inline int
1227pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1228{
1229 int ret = 0;
1230 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1231 return ret;
1232}
1233
1234static inline int
1235pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1236{
1237 int ret = 0;
1238 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1239 return ret;
1240}
1241
1242static pfm_buffer_fmt_t *
1243__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1244{
1245 struct list_head * pos;
1246 pfm_buffer_fmt_t * entry;
1247
1248 list_for_each(pos, &pfm_buffer_fmt_list) {
1249 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1250 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1251 return entry;
1252 }
1253 return NULL;
1254}
1255
1256/*
1257 * find a buffer format based on its uuid
1258 */
1259static pfm_buffer_fmt_t *
1260pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261{
1262 pfm_buffer_fmt_t * fmt;
1263 spin_lock(&pfm_buffer_fmt_lock);
1264 fmt = __pfm_find_buffer_fmt(uuid);
1265 spin_unlock(&pfm_buffer_fmt_lock);
1266 return fmt;
1267}
1268
1269int
1270pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1271{
1272 int ret = 0;
1273
1274 /* some sanity checks */
1275 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1276
1277 /* we need at least a handler */
1278 if (fmt->fmt_handler == NULL) return -EINVAL;
1279
1280 /*
1281 * XXX: need check validity of fmt_arg_size
1282 */
1283
1284 spin_lock(&pfm_buffer_fmt_lock);
1285
1286 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1287 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1288 ret = -EBUSY;
1289 goto out;
1290 }
1291 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1292 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1293
1294out:
1295 spin_unlock(&pfm_buffer_fmt_lock);
1296 return ret;
1297}
1298EXPORT_SYMBOL(pfm_register_buffer_fmt);
1299
1300int
1301pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1302{
1303 pfm_buffer_fmt_t *fmt;
1304 int ret = 0;
1305
1306 spin_lock(&pfm_buffer_fmt_lock);
1307
1308 fmt = __pfm_find_buffer_fmt(uuid);
1309 if (!fmt) {
1310 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1311 ret = -EINVAL;
1312 goto out;
1313 }
1314 list_del_init(&fmt->fmt_list);
1315 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1316
1317out:
1318 spin_unlock(&pfm_buffer_fmt_lock);
1319 return ret;
1320
1321}
1322EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1323
1324extern void update_pal_halt_status(int);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329 unsigned long flags;
1330 /*
1331 * validity checks on cpu_mask have been done upstream
1332 */
1333 LOCK_PFS(flags);
1334
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1341
1342 if (is_syswide) {
1343 /*
1344 * cannot mix system wide and per-task sessions
1345 */
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1350 }
1351
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358 pfm_sessions.pfs_sys_sessions++ ;
1359
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1363 }
1364
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1371
1372 /*
1373 * disable default_idle() to go to PAL_HALT
1374 */
1375 update_pal_halt_status(0);
1376
1377 UNLOCK_PFS(flags);
1378
1379 return 0;
1380
1381error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385abort:
1386 UNLOCK_PFS(flags);
1387
1388 return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395 unsigned long flags;
1396 /*
1397 * validity checks on cpu_mask have been done upstream
1398 */
1399 LOCK_PFS(flags);
1400
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1407
1408
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 /*
1412 * would not work with perfmon+more than one bit in cpu_mask
1413 */
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1419 }
1420 }
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1424 }
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1431
1432 /*
1433 * if possible, enable default_idle() to go into PAL_HALT
1434 */
1435 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1436 update_pal_halt_status(1);
1437
1438 UNLOCK_PFS(flags);
1439
1440 return 0;
1441}
1442
1443/*
1444 * removes virtual mapping of the sampling buffer.
1445 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1446 * a PROTECT_CTX() section.
1447 */
1448static int
1449pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1450{
1451 struct task_struct *task = current;
1452 int r;
1453
1454 /* sanity checks */
1455 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1456 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1457 return -EINVAL;
1458 }
1459
1460 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1461
1462 /*
1463 * does the actual unmapping
1464 */
1465 r = vm_munmap((unsigned long)vaddr, size);
1466
1467 if (r !=0) {
1468 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1469 }
1470
1471 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472
1473 return 0;
1474}
1475
1476/*
1477 * free actual physical storage used by sampling buffer
1478 */
1479#if 0
1480static int
1481pfm_free_smpl_buffer(pfm_context_t *ctx)
1482{
1483 pfm_buffer_fmt_t *fmt;
1484
1485 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1486
1487 /*
1488 * we won't use the buffer format anymore
1489 */
1490 fmt = ctx->ctx_buf_fmt;
1491
1492 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1493 ctx->ctx_smpl_hdr,
1494 ctx->ctx_smpl_size,
1495 ctx->ctx_smpl_vaddr));
1496
1497 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1498
1499 /*
1500 * free the buffer
1501 */
1502 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1503
1504 ctx->ctx_smpl_hdr = NULL;
1505 ctx->ctx_smpl_size = 0UL;
1506
1507 return 0;
1508
1509invalid_free:
1510 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1511 return -EINVAL;
1512}
1513#endif
1514
1515static inline void
1516pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1517{
1518 if (fmt == NULL) return;
1519
1520 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1521
1522}
1523
1524/*
1525 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1526 * no real gain from having the whole whorehouse mounted. So we don't need
1527 * any operations on the root directory. However, we need a non-trivial
1528 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529 */
1530static struct vfsmount *pfmfs_mnt __read_mostly;
1531
1532static int __init
1533init_pfm_fs(void)
1534{
1535 int err = register_filesystem(&pfm_fs_type);
1536 if (!err) {
1537 pfmfs_mnt = kern_mount(&pfm_fs_type);
1538 err = PTR_ERR(pfmfs_mnt);
1539 if (IS_ERR(pfmfs_mnt))
1540 unregister_filesystem(&pfm_fs_type);
1541 else
1542 err = 0;
1543 }
1544 return err;
1545}
1546
1547static ssize_t
1548pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1549{
1550 pfm_context_t *ctx;
1551 pfm_msg_t *msg;
1552 ssize_t ret;
1553 unsigned long flags;
1554 DECLARE_WAITQUEUE(wait, current);
1555 if (PFM_IS_FILE(filp) == 0) {
1556 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1557 return -EINVAL;
1558 }
1559
1560 ctx = filp->private_data;
1561 if (ctx == NULL) {
1562 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1563 return -EINVAL;
1564 }
1565
1566 /*
1567 * check even when there is no message
1568 */
1569 if (size < sizeof(pfm_msg_t)) {
1570 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1571 return -EINVAL;
1572 }
1573
1574 PROTECT_CTX(ctx, flags);
1575
1576 /*
1577 * put ourselves on the wait queue
1578 */
1579 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1580
1581
1582 for(;;) {
1583 /*
1584 * check wait queue
1585 */
1586
1587 set_current_state(TASK_INTERRUPTIBLE);
1588
1589 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1590
1591 ret = 0;
1592 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1593
1594 UNPROTECT_CTX(ctx, flags);
1595
1596 /*
1597 * check non-blocking read
1598 */
1599 ret = -EAGAIN;
1600 if(filp->f_flags & O_NONBLOCK) break;
1601
1602 /*
1603 * check pending signals
1604 */
1605 if(signal_pending(current)) {
1606 ret = -EINTR;
1607 break;
1608 }
1609 /*
1610 * no message, so wait
1611 */
1612 schedule();
1613
1614 PROTECT_CTX(ctx, flags);
1615 }
1616 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1617 set_current_state(TASK_RUNNING);
1618 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1619
1620 if (ret < 0) goto abort;
1621
1622 ret = -EINVAL;
1623 msg = pfm_get_next_msg(ctx);
1624 if (msg == NULL) {
1625 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1626 goto abort_locked;
1627 }
1628
1629 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1630
1631 ret = -EFAULT;
1632 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1633
1634abort_locked:
1635 UNPROTECT_CTX(ctx, flags);
1636abort:
1637 return ret;
1638}
1639
1640static ssize_t
1641pfm_write(struct file *file, const char __user *ubuf,
1642 size_t size, loff_t *ppos)
1643{
1644 DPRINT(("pfm_write called\n"));
1645 return -EINVAL;
1646}
1647
1648static unsigned int
1649pfm_poll(struct file *filp, poll_table * wait)
1650{
1651 pfm_context_t *ctx;
1652 unsigned long flags;
1653 unsigned int mask = 0;
1654
1655 if (PFM_IS_FILE(filp) == 0) {
1656 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1657 return 0;
1658 }
1659
1660 ctx = filp->private_data;
1661 if (ctx == NULL) {
1662 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1663 return 0;
1664 }
1665
1666
1667 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1668
1669 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1670
1671 PROTECT_CTX(ctx, flags);
1672
1673 if (PFM_CTXQ_EMPTY(ctx) == 0)
1674 mask = POLLIN | POLLRDNORM;
1675
1676 UNPROTECT_CTX(ctx, flags);
1677
1678 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1679
1680 return mask;
1681}
1682
1683static long
1684pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1685{
1686 DPRINT(("pfm_ioctl called\n"));
1687 return -EINVAL;
1688}
1689
1690/*
1691 * interrupt cannot be masked when coming here
1692 */
1693static inline int
1694pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1695{
1696 int ret;
1697
1698 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1699
1700 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 task_pid_nr(current),
1702 fd,
1703 on,
1704 ctx->ctx_async_queue, ret));
1705
1706 return ret;
1707}
1708
1709static int
1710pfm_fasync(int fd, struct file *filp, int on)
1711{
1712 pfm_context_t *ctx;
1713 int ret;
1714
1715 if (PFM_IS_FILE(filp) == 0) {
1716 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1717 return -EBADF;
1718 }
1719
1720 ctx = filp->private_data;
1721 if (ctx == NULL) {
1722 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1723 return -EBADF;
1724 }
1725 /*
1726 * we cannot mask interrupts during this call because this may
1727 * may go to sleep if memory is not readily avalaible.
1728 *
1729 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1730 * done in caller. Serialization of this function is ensured by caller.
1731 */
1732 ret = pfm_do_fasync(fd, filp, ctx, on);
1733
1734
1735 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1736 fd,
1737 on,
1738 ctx->ctx_async_queue, ret));
1739
1740 return ret;
1741}
1742
1743#ifdef CONFIG_SMP
1744/*
1745 * this function is exclusively called from pfm_close().
1746 * The context is not protected at that time, nor are interrupts
1747 * on the remote CPU. That's necessary to avoid deadlocks.
1748 */
1749static void
1750pfm_syswide_force_stop(void *info)
1751{
1752 pfm_context_t *ctx = (pfm_context_t *)info;
1753 struct pt_regs *regs = task_pt_regs(current);
1754 struct task_struct *owner;
1755 unsigned long flags;
1756 int ret;
1757
1758 if (ctx->ctx_cpu != smp_processor_id()) {
1759 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760 ctx->ctx_cpu,
1761 smp_processor_id());
1762 return;
1763 }
1764 owner = GET_PMU_OWNER();
1765 if (owner != ctx->ctx_task) {
1766 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767 smp_processor_id(),
1768 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1769 return;
1770 }
1771 if (GET_PMU_CTX() != ctx) {
1772 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773 smp_processor_id(),
1774 GET_PMU_CTX(), ctx);
1775 return;
1776 }
1777
1778 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1779 /*
1780 * the context is already protected in pfm_close(), we simply
1781 * need to mask interrupts to avoid a PMU interrupt race on
1782 * this CPU
1783 */
1784 local_irq_save(flags);
1785
1786 ret = pfm_context_unload(ctx, NULL, 0, regs);
1787 if (ret) {
1788 DPRINT(("context_unload returned %d\n", ret));
1789 }
1790
1791 /*
1792 * unmask interrupts, PMU interrupts are now spurious here
1793 */
1794 local_irq_restore(flags);
1795}
1796
1797static void
1798pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1799{
1800 int ret;
1801
1802 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1803 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1804 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1805}
1806#endif /* CONFIG_SMP */
1807
1808/*
1809 * called for each close(). Partially free resources.
1810 * When caller is self-monitoring, the context is unloaded.
1811 */
1812static int
1813pfm_flush(struct file *filp, fl_owner_t id)
1814{
1815 pfm_context_t *ctx;
1816 struct task_struct *task;
1817 struct pt_regs *regs;
1818 unsigned long flags;
1819 unsigned long smpl_buf_size = 0UL;
1820 void *smpl_buf_vaddr = NULL;
1821 int state, is_system;
1822
1823 if (PFM_IS_FILE(filp) == 0) {
1824 DPRINT(("bad magic for\n"));
1825 return -EBADF;
1826 }
1827
1828 ctx = filp->private_data;
1829 if (ctx == NULL) {
1830 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1831 return -EBADF;
1832 }
1833
1834 /*
1835 * remove our file from the async queue, if we use this mode.
1836 * This can be done without the context being protected. We come
1837 * here when the context has become unreachable by other tasks.
1838 *
1839 * We may still have active monitoring at this point and we may
1840 * end up in pfm_overflow_handler(). However, fasync_helper()
1841 * operates with interrupts disabled and it cleans up the
1842 * queue. If the PMU handler is called prior to entering
1843 * fasync_helper() then it will send a signal. If it is
1844 * invoked after, it will find an empty queue and no
1845 * signal will be sent. In both case, we are safe
1846 */
1847 PROTECT_CTX(ctx, flags);
1848
1849 state = ctx->ctx_state;
1850 is_system = ctx->ctx_fl_system;
1851
1852 task = PFM_CTX_TASK(ctx);
1853 regs = task_pt_regs(task);
1854
1855 DPRINT(("ctx_state=%d is_current=%d\n",
1856 state,
1857 task == current ? 1 : 0));
1858
1859 /*
1860 * if state == UNLOADED, then task is NULL
1861 */
1862
1863 /*
1864 * we must stop and unload because we are losing access to the context.
1865 */
1866 if (task == current) {
1867#ifdef CONFIG_SMP
1868 /*
1869 * the task IS the owner but it migrated to another CPU: that's bad
1870 * but we must handle this cleanly. Unfortunately, the kernel does
1871 * not provide a mechanism to block migration (while the context is loaded).
1872 *
1873 * We need to release the resource on the ORIGINAL cpu.
1874 */
1875 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876
1877 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878 /*
1879 * keep context protected but unmask interrupt for IPI
1880 */
1881 local_irq_restore(flags);
1882
1883 pfm_syswide_cleanup_other_cpu(ctx);
1884
1885 /*
1886 * restore interrupt masking
1887 */
1888 local_irq_save(flags);
1889
1890 /*
1891 * context is unloaded at this point
1892 */
1893 } else
1894#endif /* CONFIG_SMP */
1895 {
1896
1897 DPRINT(("forcing unload\n"));
1898 /*
1899 * stop and unload, returning with state UNLOADED
1900 * and session unreserved.
1901 */
1902 pfm_context_unload(ctx, NULL, 0, regs);
1903
1904 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1905 }
1906 }
1907
1908 /*
1909 * remove virtual mapping, if any, for the calling task.
1910 * cannot reset ctx field until last user is calling close().
1911 *
1912 * ctx_smpl_vaddr must never be cleared because it is needed
1913 * by every task with access to the context
1914 *
1915 * When called from do_exit(), the mm context is gone already, therefore
1916 * mm is NULL, i.e., the VMA is already gone and we do not have to
1917 * do anything here
1918 */
1919 if (ctx->ctx_smpl_vaddr && current->mm) {
1920 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921 smpl_buf_size = ctx->ctx_smpl_size;
1922 }
1923
1924 UNPROTECT_CTX(ctx, flags);
1925
1926 /*
1927 * if there was a mapping, then we systematically remove it
1928 * at this point. Cannot be done inside critical section
1929 * because some VM function reenables interrupts.
1930 *
1931 */
1932 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1933
1934 return 0;
1935}
1936/*
1937 * called either on explicit close() or from exit_files().
1938 * Only the LAST user of the file gets to this point, i.e., it is
1939 * called only ONCE.
1940 *
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1942 * (fput()),i.e, last task to access the file. Nobody else can access the
1943 * file at this point.
1944 *
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1947 *
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context.
1950 */
1951static int
1952pfm_close(struct inode *inode, struct file *filp)
1953{
1954 pfm_context_t *ctx;
1955 struct task_struct *task;
1956 struct pt_regs *regs;
1957 DECLARE_WAITQUEUE(wait, current);
1958 unsigned long flags;
1959 unsigned long smpl_buf_size = 0UL;
1960 void *smpl_buf_addr = NULL;
1961 int free_possible = 1;
1962 int state, is_system;
1963
1964 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965
1966 if (PFM_IS_FILE(filp) == 0) {
1967 DPRINT(("bad magic\n"));
1968 return -EBADF;
1969 }
1970
1971 ctx = filp->private_data;
1972 if (ctx == NULL) {
1973 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974 return -EBADF;
1975 }
1976
1977 PROTECT_CTX(ctx, flags);
1978
1979 state = ctx->ctx_state;
1980 is_system = ctx->ctx_fl_system;
1981
1982 task = PFM_CTX_TASK(ctx);
1983 regs = task_pt_regs(task);
1984
1985 DPRINT(("ctx_state=%d is_current=%d\n",
1986 state,
1987 task == current ? 1 : 0));
1988
1989 /*
1990 * if task == current, then pfm_flush() unloaded the context
1991 */
1992 if (state == PFM_CTX_UNLOADED) goto doit;
1993
1994 /*
1995 * context is loaded/masked and task != current, we need to
1996 * either force an unload or go zombie
1997 */
1998
1999 /*
2000 * The task is currently blocked or will block after an overflow.
2001 * we must force it to wakeup to get out of the
2002 * MASKED state and transition to the unloaded state by itself.
2003 *
2004 * This situation is only possible for per-task mode
2005 */
2006 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2007
2008 /*
2009 * set a "partial" zombie state to be checked
2010 * upon return from down() in pfm_handle_work().
2011 *
2012 * We cannot use the ZOMBIE state, because it is checked
2013 * by pfm_load_regs() which is called upon wakeup from down().
2014 * In such case, it would free the context and then we would
2015 * return to pfm_handle_work() which would access the
2016 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017 * but visible to pfm_handle_work().
2018 *
2019 * For some window of time, we have a zombie context with
2020 * ctx_state = MASKED and not ZOMBIE
2021 */
2022 ctx->ctx_fl_going_zombie = 1;
2023
2024 /*
2025 * force task to wake up from MASKED state
2026 */
2027 complete(&ctx->ctx_restart_done);
2028
2029 DPRINT(("waking up ctx_state=%d\n", state));
2030
2031 /*
2032 * put ourself to sleep waiting for the other
2033 * task to report completion
2034 *
2035 * the context is protected by mutex, therefore there
2036 * is no risk of being notified of completion before
2037 * begin actually on the waitq.
2038 */
2039 set_current_state(TASK_INTERRUPTIBLE);
2040 add_wait_queue(&ctx->ctx_zombieq, &wait);
2041
2042 UNPROTECT_CTX(ctx, flags);
2043
2044 /*
2045 * XXX: check for signals :
2046 * - ok for explicit close
2047 * - not ok when coming from exit_files()
2048 */
2049 schedule();
2050
2051
2052 PROTECT_CTX(ctx, flags);
2053
2054
2055 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2056 set_current_state(TASK_RUNNING);
2057
2058 /*
2059 * context is unloaded at this point
2060 */
2061 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062 }
2063 else if (task != current) {
2064#ifdef CONFIG_SMP
2065 /*
2066 * switch context to zombie state
2067 */
2068 ctx->ctx_state = PFM_CTX_ZOMBIE;
2069
2070 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2071 /*
2072 * cannot free the context on the spot. deferred until
2073 * the task notices the ZOMBIE state
2074 */
2075 free_possible = 0;
2076#else
2077 pfm_context_unload(ctx, NULL, 0, regs);
2078#endif
2079 }
2080
2081doit:
2082 /* reload state, may have changed during opening of critical section */
2083 state = ctx->ctx_state;
2084
2085 /*
2086 * the context is still attached to a task (possibly current)
2087 * we cannot destroy it right now
2088 */
2089
2090 /*
2091 * we must free the sampling buffer right here because
2092 * we cannot rely on it being cleaned up later by the
2093 * monitored task. It is not possible to free vmalloc'ed
2094 * memory in pfm_load_regs(). Instead, we remove the buffer
2095 * now. should there be subsequent PMU overflow originally
2096 * meant for sampling, the will be converted to spurious
2097 * and that's fine because the monitoring tools is gone anyway.
2098 */
2099 if (ctx->ctx_smpl_hdr) {
2100 smpl_buf_addr = ctx->ctx_smpl_hdr;
2101 smpl_buf_size = ctx->ctx_smpl_size;
2102 /* no more sampling */
2103 ctx->ctx_smpl_hdr = NULL;
2104 ctx->ctx_fl_is_sampling = 0;
2105 }
2106
2107 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108 state,
2109 free_possible,
2110 smpl_buf_addr,
2111 smpl_buf_size));
2112
2113 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2114
2115 /*
2116 * UNLOADED that the session has already been unreserved.
2117 */
2118 if (state == PFM_CTX_ZOMBIE) {
2119 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120 }
2121
2122 /*
2123 * disconnect file descriptor from context must be done
2124 * before we unlock.
2125 */
2126 filp->private_data = NULL;
2127
2128 /*
2129 * if we free on the spot, the context is now completely unreachable
2130 * from the callers side. The monitored task side is also cut, so we
2131 * can freely cut.
2132 *
2133 * If we have a deferred free, only the caller side is disconnected.
2134 */
2135 UNPROTECT_CTX(ctx, flags);
2136
2137 /*
2138 * All memory free operations (especially for vmalloc'ed memory)
2139 * MUST be done with interrupts ENABLED.
2140 */
2141 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2142
2143 /*
2144 * return the memory used by the context
2145 */
2146 if (free_possible) pfm_context_free(ctx);
2147
2148 return 0;
2149}
2150
2151static int
2152pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153{
2154 DPRINT(("pfm_no_open called\n"));
2155 return -ENXIO;
2156}
2157
2158
2159
2160static const struct file_operations pfm_file_ops = {
2161 .llseek = no_llseek,
2162 .read = pfm_read,
2163 .write = pfm_write,
2164 .poll = pfm_poll,
2165 .unlocked_ioctl = pfm_ioctl,
2166 .open = pfm_no_open, /* special open code to disallow open via /proc */
2167 .fasync = pfm_fasync,
2168 .release = pfm_close,
2169 .flush = pfm_flush
2170};
2171
2172static int
2173pfmfs_delete_dentry(const struct dentry *dentry)
2174{
2175 return 1;
2176}
2177
2178static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2179{
2180 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2181 dentry->d_inode->i_ino);
2182}
2183
2184static const struct dentry_operations pfmfs_dentry_operations = {
2185 .d_delete = pfmfs_delete_dentry,
2186 .d_dname = pfmfs_dname,
2187};
2188
2189
2190static struct file *
2191pfm_alloc_file(pfm_context_t *ctx)
2192{
2193 struct file *file;
2194 struct inode *inode;
2195 struct path path;
2196 struct qstr this = { .name = "" };
2197
2198 /*
2199 * allocate a new inode
2200 */
2201 inode = new_inode(pfmfs_mnt->mnt_sb);
2202 if (!inode)
2203 return ERR_PTR(-ENOMEM);
2204
2205 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2206
2207 inode->i_mode = S_IFCHR|S_IRUGO;
2208 inode->i_uid = current_fsuid();
2209 inode->i_gid = current_fsgid();
2210
2211 /*
2212 * allocate a new dcache entry
2213 */
2214 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2215 if (!path.dentry) {
2216 iput(inode);
2217 return ERR_PTR(-ENOMEM);
2218 }
2219 path.mnt = mntget(pfmfs_mnt);
2220
2221 d_add(path.dentry, inode);
2222
2223 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2224 if (!file) {
2225 path_put(&path);
2226 return ERR_PTR(-ENFILE);
2227 }
2228
2229 file->f_flags = O_RDONLY;
2230 file->private_data = ctx;
2231
2232 return file;
2233}
2234
2235static int
2236pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2237{
2238 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2239
2240 while (size > 0) {
2241 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2242
2243
2244 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245 return -ENOMEM;
2246
2247 addr += PAGE_SIZE;
2248 buf += PAGE_SIZE;
2249 size -= PAGE_SIZE;
2250 }
2251 return 0;
2252}
2253
2254/*
2255 * allocate a sampling buffer and remaps it into the user address space of the task
2256 */
2257static int
2258pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2259{
2260 struct mm_struct *mm = task->mm;
2261 struct vm_area_struct *vma = NULL;
2262 unsigned long size;
2263 void *smpl_buf;
2264
2265
2266 /*
2267 * the fixed header + requested size and align to page boundary
2268 */
2269 size = PAGE_ALIGN(rsize);
2270
2271 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2272
2273 /*
2274 * check requested size to avoid Denial-of-service attacks
2275 * XXX: may have to refine this test
2276 * Check against address space limit.
2277 *
2278 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279 * return -ENOMEM;
2280 */
2281 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2282 return -ENOMEM;
2283
2284 /*
2285 * We do the easy to undo allocations first.
2286 *
2287 * pfm_rvmalloc(), clears the buffer, so there is no leak
2288 */
2289 smpl_buf = pfm_rvmalloc(size);
2290 if (smpl_buf == NULL) {
2291 DPRINT(("Can't allocate sampling buffer\n"));
2292 return -ENOMEM;
2293 }
2294
2295 DPRINT(("smpl_buf @%p\n", smpl_buf));
2296
2297 /* allocate vma */
2298 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2299 if (!vma) {
2300 DPRINT(("Cannot allocate vma\n"));
2301 goto error_kmem;
2302 }
2303 INIT_LIST_HEAD(&vma->anon_vma_chain);
2304
2305 /*
2306 * partially initialize the vma for the sampling buffer
2307 */
2308 vma->vm_mm = mm;
2309 vma->vm_file = filp;
2310 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2311 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2312
2313 /*
2314 * Now we have everything we need and we can initialize
2315 * and connect all the data structures
2316 */
2317
2318 ctx->ctx_smpl_hdr = smpl_buf;
2319 ctx->ctx_smpl_size = size; /* aligned size */
2320
2321 /*
2322 * Let's do the difficult operations next.
2323 *
2324 * now we atomically find some area in the address space and
2325 * remap the buffer in it.
2326 */
2327 down_write(&task->mm->mmap_sem);
2328
2329 /* find some free area in address space, must have mmap sem held */
2330 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2331 if (IS_ERR_VALUE(vma->vm_start)) {
2332 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333 up_write(&task->mm->mmap_sem);
2334 goto error;
2335 }
2336 vma->vm_end = vma->vm_start + size;
2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338
2339 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340
2341 /* can only be applied to current task, need to have the mm semaphore held when called */
2342 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343 DPRINT(("Can't remap buffer\n"));
2344 up_write(&task->mm->mmap_sem);
2345 goto error;
2346 }
2347
2348 get_file(filp);
2349
2350 /*
2351 * now insert the vma in the vm list for the process, must be
2352 * done with mmap lock held
2353 */
2354 insert_vm_struct(mm, vma);
2355
2356 mm->total_vm += size >> PAGE_SHIFT;
2357 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2358 vma_pages(vma));
2359 up_write(&task->mm->mmap_sem);
2360
2361 /*
2362 * keep track of user level virtual address
2363 */
2364 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2365 *(unsigned long *)user_vaddr = vma->vm_start;
2366
2367 return 0;
2368
2369error:
2370 kmem_cache_free(vm_area_cachep, vma);
2371error_kmem:
2372 pfm_rvfree(smpl_buf, size);
2373
2374 return -ENOMEM;
2375}
2376
2377/*
2378 * XXX: do something better here
2379 */
2380static int
2381pfm_bad_permissions(struct task_struct *task)
2382{
2383 const struct cred *tcred;
2384 uid_t uid = current_uid();
2385 gid_t gid = current_gid();
2386 int ret;
2387
2388 rcu_read_lock();
2389 tcred = __task_cred(task);
2390
2391 /* inspired by ptrace_attach() */
2392 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2393 uid,
2394 gid,
2395 tcred->euid,
2396 tcred->suid,
2397 tcred->uid,
2398 tcred->egid,
2399 tcred->sgid));
2400
2401 ret = ((uid != tcred->euid)
2402 || (uid != tcred->suid)
2403 || (uid != tcred->uid)
2404 || (gid != tcred->egid)
2405 || (gid != tcred->sgid)
2406 || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2407
2408 rcu_read_unlock();
2409 return ret;
2410}
2411
2412static int
2413pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2414{
2415 int ctx_flags;
2416
2417 /* valid signal */
2418
2419 ctx_flags = pfx->ctx_flags;
2420
2421 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2422
2423 /*
2424 * cannot block in this mode
2425 */
2426 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2427 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2428 return -EINVAL;
2429 }
2430 } else {
2431 }
2432 /* probably more to add here */
2433
2434 return 0;
2435}
2436
2437static int
2438pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2439 unsigned int cpu, pfarg_context_t *arg)
2440{
2441 pfm_buffer_fmt_t *fmt = NULL;
2442 unsigned long size = 0UL;
2443 void *uaddr = NULL;
2444 void *fmt_arg = NULL;
2445 int ret = 0;
2446#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2447
2448 /* invoke and lock buffer format, if found */
2449 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2450 if (fmt == NULL) {
2451 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2452 return -EINVAL;
2453 }
2454
2455 /*
2456 * buffer argument MUST be contiguous to pfarg_context_t
2457 */
2458 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2459
2460 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2461
2462 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2463
2464 if (ret) goto error;
2465
2466 /* link buffer format and context */
2467 ctx->ctx_buf_fmt = fmt;
2468 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2469
2470 /*
2471 * check if buffer format wants to use perfmon buffer allocation/mapping service
2472 */
2473 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2474 if (ret) goto error;
2475
2476 if (size) {
2477 /*
2478 * buffer is always remapped into the caller's address space
2479 */
2480 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2481 if (ret) goto error;
2482
2483 /* keep track of user address of buffer */
2484 arg->ctx_smpl_vaddr = uaddr;
2485 }
2486 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2487
2488error:
2489 return ret;
2490}
2491
2492static void
2493pfm_reset_pmu_state(pfm_context_t *ctx)
2494{
2495 int i;
2496
2497 /*
2498 * install reset values for PMC.
2499 */
2500 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2501 if (PMC_IS_IMPL(i) == 0) continue;
2502 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2503 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2504 }
2505 /*
2506 * PMD registers are set to 0UL when the context in memset()
2507 */
2508
2509 /*
2510 * On context switched restore, we must restore ALL pmc and ALL pmd even
2511 * when they are not actively used by the task. In UP, the incoming process
2512 * may otherwise pick up left over PMC, PMD state from the previous process.
2513 * As opposed to PMD, stale PMC can cause harm to the incoming
2514 * process because they may change what is being measured.
2515 * Therefore, we must systematically reinstall the entire
2516 * PMC state. In SMP, the same thing is possible on the
2517 * same CPU but also on between 2 CPUs.
2518 *
2519 * The problem with PMD is information leaking especially
2520 * to user level when psr.sp=0
2521 *
2522 * There is unfortunately no easy way to avoid this problem
2523 * on either UP or SMP. This definitively slows down the
2524 * pfm_load_regs() function.
2525 */
2526
2527 /*
2528 * bitmask of all PMCs accessible to this context
2529 *
2530 * PMC0 is treated differently.
2531 */
2532 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2533
2534 /*
2535 * bitmask of all PMDs that are accessible to this context
2536 */
2537 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2538
2539 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2540
2541 /*
2542 * useful in case of re-enable after disable
2543 */
2544 ctx->ctx_used_ibrs[0] = 0UL;
2545 ctx->ctx_used_dbrs[0] = 0UL;
2546}
2547
2548static int
2549pfm_ctx_getsize(void *arg, size_t *sz)
2550{
2551 pfarg_context_t *req = (pfarg_context_t *)arg;
2552 pfm_buffer_fmt_t *fmt;
2553
2554 *sz = 0;
2555
2556 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2557
2558 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2559 if (fmt == NULL) {
2560 DPRINT(("cannot find buffer format\n"));
2561 return -EINVAL;
2562 }
2563 /* get just enough to copy in user parameters */
2564 *sz = fmt->fmt_arg_size;
2565 DPRINT(("arg_size=%lu\n", *sz));
2566
2567 return 0;
2568}
2569
2570
2571
2572/*
2573 * cannot attach if :
2574 * - kernel task
2575 * - task not owned by caller
2576 * - task incompatible with context mode
2577 */
2578static int
2579pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2580{
2581 /*
2582 * no kernel task or task not owner by caller
2583 */
2584 if (task->mm == NULL) {
2585 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2586 return -EPERM;
2587 }
2588 if (pfm_bad_permissions(task)) {
2589 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2590 return -EPERM;
2591 }
2592 /*
2593 * cannot block in self-monitoring mode
2594 */
2595 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2596 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2597 return -EINVAL;
2598 }
2599
2600 if (task->exit_state == EXIT_ZOMBIE) {
2601 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2602 return -EBUSY;
2603 }
2604
2605 /*
2606 * always ok for self
2607 */
2608 if (task == current) return 0;
2609
2610 if (!task_is_stopped_or_traced(task)) {
2611 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2612 return -EBUSY;
2613 }
2614 /*
2615 * make sure the task is off any CPU
2616 */
2617 wait_task_inactive(task, 0);
2618
2619 /* more to come... */
2620
2621 return 0;
2622}
2623
2624static int
2625pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2626{
2627 struct task_struct *p = current;
2628 int ret;
2629
2630 /* XXX: need to add more checks here */
2631 if (pid < 2) return -EPERM;
2632
2633 if (pid != task_pid_vnr(current)) {
2634
2635 read_lock(&tasklist_lock);
2636
2637 p = find_task_by_vpid(pid);
2638
2639 /* make sure task cannot go away while we operate on it */
2640 if (p) get_task_struct(p);
2641
2642 read_unlock(&tasklist_lock);
2643
2644 if (p == NULL) return -ESRCH;
2645 }
2646
2647 ret = pfm_task_incompatible(ctx, p);
2648 if (ret == 0) {
2649 *task = p;
2650 } else if (p != current) {
2651 pfm_put_task(p);
2652 }
2653 return ret;
2654}
2655
2656
2657
2658static int
2659pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2660{
2661 pfarg_context_t *req = (pfarg_context_t *)arg;
2662 struct file *filp;
2663 struct path path;
2664 int ctx_flags;
2665 int fd;
2666 int ret;
2667
2668 /* let's check the arguments first */
2669 ret = pfarg_is_sane(current, req);
2670 if (ret < 0)
2671 return ret;
2672
2673 ctx_flags = req->ctx_flags;
2674
2675 ret = -ENOMEM;
2676
2677 fd = get_unused_fd();
2678 if (fd < 0)
2679 return fd;
2680
2681 ctx = pfm_context_alloc(ctx_flags);
2682 if (!ctx)
2683 goto error;
2684
2685 filp = pfm_alloc_file(ctx);
2686 if (IS_ERR(filp)) {
2687 ret = PTR_ERR(filp);
2688 goto error_file;
2689 }
2690
2691 req->ctx_fd = ctx->ctx_fd = fd;
2692
2693 /*
2694 * does the user want to sample?
2695 */
2696 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2697 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2698 if (ret)
2699 goto buffer_error;
2700 }
2701
2702 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2703 ctx,
2704 ctx_flags,
2705 ctx->ctx_fl_system,
2706 ctx->ctx_fl_block,
2707 ctx->ctx_fl_excl_idle,
2708 ctx->ctx_fl_no_msg,
2709 ctx->ctx_fd));
2710
2711 /*
2712 * initialize soft PMU state
2713 */
2714 pfm_reset_pmu_state(ctx);
2715
2716 fd_install(fd, filp);
2717
2718 return 0;
2719
2720buffer_error:
2721 path = filp->f_path;
2722 put_filp(filp);
2723 path_put(&path);
2724
2725 if (ctx->ctx_buf_fmt) {
2726 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2727 }
2728error_file:
2729 pfm_context_free(ctx);
2730
2731error:
2732 put_unused_fd(fd);
2733 return ret;
2734}
2735
2736static inline unsigned long
2737pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2738{
2739 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2740 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2741 extern unsigned long carta_random32 (unsigned long seed);
2742
2743 if (reg->flags & PFM_REGFL_RANDOM) {
2744 new_seed = carta_random32(old_seed);
2745 val -= (old_seed & mask); /* counter values are negative numbers! */
2746 if ((mask >> 32) != 0)
2747 /* construct a full 64-bit random value: */
2748 new_seed |= carta_random32(old_seed >> 32) << 32;
2749 reg->seed = new_seed;
2750 }
2751 reg->lval = val;
2752 return val;
2753}
2754
2755static void
2756pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2757{
2758 unsigned long mask = ovfl_regs[0];
2759 unsigned long reset_others = 0UL;
2760 unsigned long val;
2761 int i;
2762
2763 /*
2764 * now restore reset value on sampling overflowed counters
2765 */
2766 mask >>= PMU_FIRST_COUNTER;
2767 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2768
2769 if ((mask & 0x1UL) == 0UL) continue;
2770
2771 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2772 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2773
2774 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2775 }
2776
2777 /*
2778 * Now take care of resetting the other registers
2779 */
2780 for(i = 0; reset_others; i++, reset_others >>= 1) {
2781
2782 if ((reset_others & 0x1) == 0) continue;
2783
2784 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2785
2786 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2787 is_long_reset ? "long" : "short", i, val));
2788 }
2789}
2790
2791static void
2792pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2793{
2794 unsigned long mask = ovfl_regs[0];
2795 unsigned long reset_others = 0UL;
2796 unsigned long val;
2797 int i;
2798
2799 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2800
2801 if (ctx->ctx_state == PFM_CTX_MASKED) {
2802 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2803 return;
2804 }
2805
2806 /*
2807 * now restore reset value on sampling overflowed counters
2808 */
2809 mask >>= PMU_FIRST_COUNTER;
2810 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2811
2812 if ((mask & 0x1UL) == 0UL) continue;
2813
2814 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2815 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2816
2817 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2818
2819 pfm_write_soft_counter(ctx, i, val);
2820 }
2821
2822 /*
2823 * Now take care of resetting the other registers
2824 */
2825 for(i = 0; reset_others; i++, reset_others >>= 1) {
2826
2827 if ((reset_others & 0x1) == 0) continue;
2828
2829 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2830
2831 if (PMD_IS_COUNTING(i)) {
2832 pfm_write_soft_counter(ctx, i, val);
2833 } else {
2834 ia64_set_pmd(i, val);
2835 }
2836 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2837 is_long_reset ? "long" : "short", i, val));
2838 }
2839 ia64_srlz_d();
2840}
2841
2842static int
2843pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2844{
2845 struct task_struct *task;
2846 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2847 unsigned long value, pmc_pm;
2848 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2849 unsigned int cnum, reg_flags, flags, pmc_type;
2850 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2851 int is_monitor, is_counting, state;
2852 int ret = -EINVAL;
2853 pfm_reg_check_t wr_func;
2854#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2855
2856 state = ctx->ctx_state;
2857 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2858 is_system = ctx->ctx_fl_system;
2859 task = ctx->ctx_task;
2860 impl_pmds = pmu_conf->impl_pmds[0];
2861
2862 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2863
2864 if (is_loaded) {
2865 /*
2866 * In system wide and when the context is loaded, access can only happen
2867 * when the caller is running on the CPU being monitored by the session.
2868 * It does not have to be the owner (ctx_task) of the context per se.
2869 */
2870 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2871 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2872 return -EBUSY;
2873 }
2874 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2875 }
2876 expert_mode = pfm_sysctl.expert_mode;
2877
2878 for (i = 0; i < count; i++, req++) {
2879
2880 cnum = req->reg_num;
2881 reg_flags = req->reg_flags;
2882 value = req->reg_value;
2883 smpl_pmds = req->reg_smpl_pmds[0];
2884 reset_pmds = req->reg_reset_pmds[0];
2885 flags = 0;
2886
2887
2888 if (cnum >= PMU_MAX_PMCS) {
2889 DPRINT(("pmc%u is invalid\n", cnum));
2890 goto error;
2891 }
2892
2893 pmc_type = pmu_conf->pmc_desc[cnum].type;
2894 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2895 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2896 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2897
2898 /*
2899 * we reject all non implemented PMC as well
2900 * as attempts to modify PMC[0-3] which are used
2901 * as status registers by the PMU
2902 */
2903 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2904 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2905 goto error;
2906 }
2907 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2908 /*
2909 * If the PMC is a monitor, then if the value is not the default:
2910 * - system-wide session: PMCx.pm=1 (privileged monitor)
2911 * - per-task : PMCx.pm=0 (user monitor)
2912 */
2913 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2914 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2915 cnum,
2916 pmc_pm,
2917 is_system));
2918 goto error;
2919 }
2920
2921 if (is_counting) {
2922 /*
2923 * enforce generation of overflow interrupt. Necessary on all
2924 * CPUs.
2925 */
2926 value |= 1 << PMU_PMC_OI;
2927
2928 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2929 flags |= PFM_REGFL_OVFL_NOTIFY;
2930 }
2931
2932 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2933
2934 /* verify validity of smpl_pmds */
2935 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2936 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2937 goto error;
2938 }
2939
2940 /* verify validity of reset_pmds */
2941 if ((reset_pmds & impl_pmds) != reset_pmds) {
2942 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2943 goto error;
2944 }
2945 } else {
2946 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2947 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2948 goto error;
2949 }
2950 /* eventid on non-counting monitors are ignored */
2951 }
2952
2953 /*
2954 * execute write checker, if any
2955 */
2956 if (likely(expert_mode == 0 && wr_func)) {
2957 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2958 if (ret) goto error;
2959 ret = -EINVAL;
2960 }
2961
2962 /*
2963 * no error on this register
2964 */
2965 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2966
2967 /*
2968 * Now we commit the changes to the software state
2969 */
2970
2971 /*
2972 * update overflow information
2973 */
2974 if (is_counting) {
2975 /*
2976 * full flag update each time a register is programmed
2977 */
2978 ctx->ctx_pmds[cnum].flags = flags;
2979
2980 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2981 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2982 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2983
2984 /*
2985 * Mark all PMDS to be accessed as used.
2986 *
2987 * We do not keep track of PMC because we have to
2988 * systematically restore ALL of them.
2989 *
2990 * We do not update the used_monitors mask, because
2991 * if we have not programmed them, then will be in
2992 * a quiescent state, therefore we will not need to
2993 * mask/restore then when context is MASKED.
2994 */
2995 CTX_USED_PMD(ctx, reset_pmds);
2996 CTX_USED_PMD(ctx, smpl_pmds);
2997 /*
2998 * make sure we do not try to reset on
2999 * restart because we have established new values
3000 */
3001 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3002 }
3003 /*
3004 * Needed in case the user does not initialize the equivalent
3005 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3006 * possible leak here.
3007 */
3008 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3009
3010 /*
3011 * keep track of the monitor PMC that we are using.
3012 * we save the value of the pmc in ctx_pmcs[] and if
3013 * the monitoring is not stopped for the context we also
3014 * place it in the saved state area so that it will be
3015 * picked up later by the context switch code.
3016 *
3017 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3018 *
3019 * The value in th_pmcs[] may be modified on overflow, i.e., when
3020 * monitoring needs to be stopped.
3021 */
3022 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3023
3024 /*
3025 * update context state
3026 */
3027 ctx->ctx_pmcs[cnum] = value;
3028
3029 if (is_loaded) {
3030 /*
3031 * write thread state
3032 */
3033 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3034
3035 /*
3036 * write hardware register if we can
3037 */
3038 if (can_access_pmu) {
3039 ia64_set_pmc(cnum, value);
3040 }
3041#ifdef CONFIG_SMP
3042 else {
3043 /*
3044 * per-task SMP only here
3045 *
3046 * we are guaranteed that the task is not running on the other CPU,
3047 * we indicate that this PMD will need to be reloaded if the task
3048 * is rescheduled on the CPU it ran last on.
3049 */
3050 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3051 }
3052#endif
3053 }
3054
3055 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3056 cnum,
3057 value,
3058 is_loaded,
3059 can_access_pmu,
3060 flags,
3061 ctx->ctx_all_pmcs[0],
3062 ctx->ctx_used_pmds[0],
3063 ctx->ctx_pmds[cnum].eventid,
3064 smpl_pmds,
3065 reset_pmds,
3066 ctx->ctx_reload_pmcs[0],
3067 ctx->ctx_used_monitors[0],
3068 ctx->ctx_ovfl_regs[0]));
3069 }
3070
3071 /*
3072 * make sure the changes are visible
3073 */
3074 if (can_access_pmu) ia64_srlz_d();
3075
3076 return 0;
3077error:
3078 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3079 return ret;
3080}
3081
3082static int
3083pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3084{
3085 struct task_struct *task;
3086 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3087 unsigned long value, hw_value, ovfl_mask;
3088 unsigned int cnum;
3089 int i, can_access_pmu = 0, state;
3090 int is_counting, is_loaded, is_system, expert_mode;
3091 int ret = -EINVAL;
3092 pfm_reg_check_t wr_func;
3093
3094
3095 state = ctx->ctx_state;
3096 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3097 is_system = ctx->ctx_fl_system;
3098 ovfl_mask = pmu_conf->ovfl_val;
3099 task = ctx->ctx_task;
3100
3101 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3102
3103 /*
3104 * on both UP and SMP, we can only write to the PMC when the task is
3105 * the owner of the local PMU.
3106 */
3107 if (likely(is_loaded)) {
3108 /*
3109 * In system wide and when the context is loaded, access can only happen
3110 * when the caller is running on the CPU being monitored by the session.
3111 * It does not have to be the owner (ctx_task) of the context per se.
3112 */
3113 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3114 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3115 return -EBUSY;
3116 }
3117 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3118 }
3119 expert_mode = pfm_sysctl.expert_mode;
3120
3121 for (i = 0; i < count; i++, req++) {
3122
3123 cnum = req->reg_num;
3124 value = req->reg_value;
3125
3126 if (!PMD_IS_IMPL(cnum)) {
3127 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3128 goto abort_mission;
3129 }
3130 is_counting = PMD_IS_COUNTING(cnum);
3131 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3132
3133 /*
3134 * execute write checker, if any
3135 */
3136 if (unlikely(expert_mode == 0 && wr_func)) {
3137 unsigned long v = value;
3138
3139 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3140 if (ret) goto abort_mission;
3141
3142 value = v;
3143 ret = -EINVAL;
3144 }
3145
3146 /*
3147 * no error on this register
3148 */
3149 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3150
3151 /*
3152 * now commit changes to software state
3153 */
3154 hw_value = value;
3155
3156 /*
3157 * update virtualized (64bits) counter
3158 */
3159 if (is_counting) {
3160 /*
3161 * write context state
3162 */
3163 ctx->ctx_pmds[cnum].lval = value;
3164
3165 /*
3166 * when context is load we use the split value
3167 */
3168 if (is_loaded) {
3169 hw_value = value & ovfl_mask;
3170 value = value & ~ovfl_mask;
3171 }
3172 }
3173 /*
3174 * update reset values (not just for counters)
3175 */
3176 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3177 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3178
3179 /*
3180 * update randomization parameters (not just for counters)
3181 */
3182 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3183 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3184
3185 /*
3186 * update context value
3187 */
3188 ctx->ctx_pmds[cnum].val = value;
3189
3190 /*
3191 * Keep track of what we use
3192 *
3193 * We do not keep track of PMC because we have to
3194 * systematically restore ALL of them.
3195 */
3196 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3197
3198 /*
3199 * mark this PMD register used as well
3200 */
3201 CTX_USED_PMD(ctx, RDEP(cnum));
3202
3203 /*
3204 * make sure we do not try to reset on
3205 * restart because we have established new values
3206 */
3207 if (is_counting && state == PFM_CTX_MASKED) {
3208 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3209 }
3210
3211 if (is_loaded) {
3212 /*
3213 * write thread state
3214 */
3215 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3216
3217 /*
3218 * write hardware register if we can
3219 */
3220 if (can_access_pmu) {
3221 ia64_set_pmd(cnum, hw_value);
3222 } else {
3223#ifdef CONFIG_SMP
3224 /*
3225 * we are guaranteed that the task is not running on the other CPU,
3226 * we indicate that this PMD will need to be reloaded if the task
3227 * is rescheduled on the CPU it ran last on.
3228 */
3229 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3230#endif
3231 }
3232 }
3233
3234 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3235 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3236 cnum,
3237 value,
3238 is_loaded,
3239 can_access_pmu,
3240 hw_value,
3241 ctx->ctx_pmds[cnum].val,
3242 ctx->ctx_pmds[cnum].short_reset,
3243 ctx->ctx_pmds[cnum].long_reset,
3244 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3245 ctx->ctx_pmds[cnum].seed,
3246 ctx->ctx_pmds[cnum].mask,
3247 ctx->ctx_used_pmds[0],
3248 ctx->ctx_pmds[cnum].reset_pmds[0],
3249 ctx->ctx_reload_pmds[0],
3250 ctx->ctx_all_pmds[0],
3251 ctx->ctx_ovfl_regs[0]));
3252 }
3253
3254 /*
3255 * make changes visible
3256 */
3257 if (can_access_pmu) ia64_srlz_d();
3258
3259 return 0;
3260
3261abort_mission:
3262 /*
3263 * for now, we have only one possibility for error
3264 */
3265 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3266 return ret;
3267}
3268
3269/*
3270 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3271 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3272 * interrupt is delivered during the call, it will be kept pending until we leave, making
3273 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3274 * guaranteed to return consistent data to the user, it may simply be old. It is not
3275 * trivial to treat the overflow while inside the call because you may end up in
3276 * some module sampling buffer code causing deadlocks.
3277 */
3278static int
3279pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3280{
3281 struct task_struct *task;
3282 unsigned long val = 0UL, lval, ovfl_mask, sval;
3283 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3284 unsigned int cnum, reg_flags = 0;
3285 int i, can_access_pmu = 0, state;
3286 int is_loaded, is_system, is_counting, expert_mode;
3287 int ret = -EINVAL;
3288 pfm_reg_check_t rd_func;
3289
3290 /*
3291 * access is possible when loaded only for
3292 * self-monitoring tasks or in UP mode
3293 */
3294
3295 state = ctx->ctx_state;
3296 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3297 is_system = ctx->ctx_fl_system;
3298 ovfl_mask = pmu_conf->ovfl_val;
3299 task = ctx->ctx_task;
3300
3301 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3302
3303 if (likely(is_loaded)) {
3304 /*
3305 * In system wide and when the context is loaded, access can only happen
3306 * when the caller is running on the CPU being monitored by the session.
3307 * It does not have to be the owner (ctx_task) of the context per se.
3308 */
3309 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3310 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3311 return -EBUSY;
3312 }
3313 /*
3314 * this can be true when not self-monitoring only in UP
3315 */
3316 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3317
3318 if (can_access_pmu) ia64_srlz_d();
3319 }
3320 expert_mode = pfm_sysctl.expert_mode;
3321
3322 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3323 is_loaded,
3324 can_access_pmu,
3325 state));
3326
3327 /*
3328 * on both UP and SMP, we can only read the PMD from the hardware register when
3329 * the task is the owner of the local PMU.
3330 */
3331
3332 for (i = 0; i < count; i++, req++) {
3333
3334 cnum = req->reg_num;
3335 reg_flags = req->reg_flags;
3336
3337 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3338 /*
3339 * we can only read the register that we use. That includes
3340 * the one we explicitly initialize AND the one we want included
3341 * in the sampling buffer (smpl_regs).
3342 *
3343 * Having this restriction allows optimization in the ctxsw routine
3344 * without compromising security (leaks)
3345 */
3346 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3347
3348 sval = ctx->ctx_pmds[cnum].val;
3349 lval = ctx->ctx_pmds[cnum].lval;
3350 is_counting = PMD_IS_COUNTING(cnum);
3351
3352 /*
3353 * If the task is not the current one, then we check if the
3354 * PMU state is still in the local live register due to lazy ctxsw.
3355 * If true, then we read directly from the registers.
3356 */
3357 if (can_access_pmu){
3358 val = ia64_get_pmd(cnum);
3359 } else {
3360 /*
3361 * context has been saved
3362 * if context is zombie, then task does not exist anymore.
3363 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3364 */
3365 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3366 }
3367 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3368
3369 if (is_counting) {
3370 /*
3371 * XXX: need to check for overflow when loaded
3372 */
3373 val &= ovfl_mask;
3374 val += sval;
3375 }
3376
3377 /*
3378 * execute read checker, if any
3379 */
3380 if (unlikely(expert_mode == 0 && rd_func)) {
3381 unsigned long v = val;
3382 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3383 if (ret) goto error;
3384 val = v;
3385 ret = -EINVAL;
3386 }
3387
3388 PFM_REG_RETFLAG_SET(reg_flags, 0);
3389
3390 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3391
3392 /*
3393 * update register return value, abort all if problem during copy.
3394 * we only modify the reg_flags field. no check mode is fine because
3395 * access has been verified upfront in sys_perfmonctl().
3396 */
3397 req->reg_value = val;
3398 req->reg_flags = reg_flags;
3399 req->reg_last_reset_val = lval;
3400 }
3401
3402 return 0;
3403
3404error:
3405 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3406 return ret;
3407}
3408
3409int
3410pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411{
3412 pfm_context_t *ctx;
3413
3414 if (req == NULL) return -EINVAL;
3415
3416 ctx = GET_PMU_CTX();
3417
3418 if (ctx == NULL) return -EINVAL;
3419
3420 /*
3421 * for now limit to current task, which is enough when calling
3422 * from overflow handler
3423 */
3424 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425
3426 return pfm_write_pmcs(ctx, req, nreq, regs);
3427}
3428EXPORT_SYMBOL(pfm_mod_write_pmcs);
3429
3430int
3431pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3432{
3433 pfm_context_t *ctx;
3434
3435 if (req == NULL) return -EINVAL;
3436
3437 ctx = GET_PMU_CTX();
3438
3439 if (ctx == NULL) return -EINVAL;
3440
3441 /*
3442 * for now limit to current task, which is enough when calling
3443 * from overflow handler
3444 */
3445 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3446
3447 return pfm_read_pmds(ctx, req, nreq, regs);
3448}
3449EXPORT_SYMBOL(pfm_mod_read_pmds);
3450
3451/*
3452 * Only call this function when a process it trying to
3453 * write the debug registers (reading is always allowed)
3454 */
3455int
3456pfm_use_debug_registers(struct task_struct *task)
3457{
3458 pfm_context_t *ctx = task->thread.pfm_context;
3459 unsigned long flags;
3460 int ret = 0;
3461
3462 if (pmu_conf->use_rr_dbregs == 0) return 0;
3463
3464 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3465
3466 /*
3467 * do it only once
3468 */
3469 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3470
3471 /*
3472 * Even on SMP, we do not need to use an atomic here because
3473 * the only way in is via ptrace() and this is possible only when the
3474 * process is stopped. Even in the case where the ctxsw out is not totally
3475 * completed by the time we come here, there is no way the 'stopped' process
3476 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3477 * So this is always safe.
3478 */
3479 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3480
3481 LOCK_PFS(flags);
3482
3483 /*
3484 * We cannot allow setting breakpoints when system wide monitoring
3485 * sessions are using the debug registers.
3486 */
3487 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3488 ret = -1;
3489 else
3490 pfm_sessions.pfs_ptrace_use_dbregs++;
3491
3492 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3493 pfm_sessions.pfs_ptrace_use_dbregs,
3494 pfm_sessions.pfs_sys_use_dbregs,
3495 task_pid_nr(task), ret));
3496
3497 UNLOCK_PFS(flags);
3498
3499 return ret;
3500}
3501
3502/*
3503 * This function is called for every task that exits with the
3504 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3505 * able to use the debug registers for debugging purposes via
3506 * ptrace(). Therefore we know it was not using them for
3507 * performance monitoring, so we only decrement the number
3508 * of "ptraced" debug register users to keep the count up to date
3509 */
3510int
3511pfm_release_debug_registers(struct task_struct *task)
3512{
3513 unsigned long flags;
3514 int ret;
3515
3516 if (pmu_conf->use_rr_dbregs == 0) return 0;
3517
3518 LOCK_PFS(flags);
3519 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3520 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3521 ret = -1;
3522 } else {
3523 pfm_sessions.pfs_ptrace_use_dbregs--;
3524 ret = 0;
3525 }
3526 UNLOCK_PFS(flags);
3527
3528 return ret;
3529}
3530
3531static int
3532pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3533{
3534 struct task_struct *task;
3535 pfm_buffer_fmt_t *fmt;
3536 pfm_ovfl_ctrl_t rst_ctrl;
3537 int state, is_system;
3538 int ret = 0;
3539
3540 state = ctx->ctx_state;
3541 fmt = ctx->ctx_buf_fmt;
3542 is_system = ctx->ctx_fl_system;
3543 task = PFM_CTX_TASK(ctx);
3544
3545 switch(state) {
3546 case PFM_CTX_MASKED:
3547 break;
3548 case PFM_CTX_LOADED:
3549 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3550 /* fall through */
3551 case PFM_CTX_UNLOADED:
3552 case PFM_CTX_ZOMBIE:
3553 DPRINT(("invalid state=%d\n", state));
3554 return -EBUSY;
3555 default:
3556 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3557 return -EINVAL;
3558 }
3559
3560 /*
3561 * In system wide and when the context is loaded, access can only happen
3562 * when the caller is running on the CPU being monitored by the session.
3563 * It does not have to be the owner (ctx_task) of the context per se.
3564 */
3565 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3566 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3567 return -EBUSY;
3568 }
3569
3570 /* sanity check */
3571 if (unlikely(task == NULL)) {
3572 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3573 return -EINVAL;
3574 }
3575
3576 if (task == current || is_system) {
3577
3578 fmt = ctx->ctx_buf_fmt;
3579
3580 DPRINT(("restarting self %d ovfl=0x%lx\n",
3581 task_pid_nr(task),
3582 ctx->ctx_ovfl_regs[0]));
3583
3584 if (CTX_HAS_SMPL(ctx)) {
3585
3586 prefetch(ctx->ctx_smpl_hdr);
3587
3588 rst_ctrl.bits.mask_monitoring = 0;
3589 rst_ctrl.bits.reset_ovfl_pmds = 0;
3590
3591 if (state == PFM_CTX_LOADED)
3592 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3593 else
3594 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3595 } else {
3596 rst_ctrl.bits.mask_monitoring = 0;
3597 rst_ctrl.bits.reset_ovfl_pmds = 1;
3598 }
3599
3600 if (ret == 0) {
3601 if (rst_ctrl.bits.reset_ovfl_pmds)
3602 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3603
3604 if (rst_ctrl.bits.mask_monitoring == 0) {
3605 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3606
3607 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3608 } else {
3609 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3610
3611 // cannot use pfm_stop_monitoring(task, regs);
3612 }
3613 }
3614 /*
3615 * clear overflowed PMD mask to remove any stale information
3616 */
3617 ctx->ctx_ovfl_regs[0] = 0UL;
3618
3619 /*
3620 * back to LOADED state
3621 */
3622 ctx->ctx_state = PFM_CTX_LOADED;
3623
3624 /*
3625 * XXX: not really useful for self monitoring
3626 */
3627 ctx->ctx_fl_can_restart = 0;
3628
3629 return 0;
3630 }
3631
3632 /*
3633 * restart another task
3634 */
3635
3636 /*
3637 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3638 * one is seen by the task.
3639 */
3640 if (state == PFM_CTX_MASKED) {
3641 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3642 /*
3643 * will prevent subsequent restart before this one is
3644 * seen by other task
3645 */
3646 ctx->ctx_fl_can_restart = 0;
3647 }
3648
3649 /*
3650 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3651 * the task is blocked or on its way to block. That's the normal
3652 * restart path. If the monitoring is not masked, then the task
3653 * can be actively monitoring and we cannot directly intervene.
3654 * Therefore we use the trap mechanism to catch the task and
3655 * force it to reset the buffer/reset PMDs.
3656 *
3657 * if non-blocking, then we ensure that the task will go into
3658 * pfm_handle_work() before returning to user mode.
3659 *
3660 * We cannot explicitly reset another task, it MUST always
3661 * be done by the task itself. This works for system wide because
3662 * the tool that is controlling the session is logically doing
3663 * "self-monitoring".
3664 */
3665 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3666 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3667 complete(&ctx->ctx_restart_done);
3668 } else {
3669 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3670
3671 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3672
3673 PFM_SET_WORK_PENDING(task, 1);
3674
3675 set_notify_resume(task);
3676
3677 /*
3678 * XXX: send reschedule if task runs on another CPU
3679 */
3680 }
3681 return 0;
3682}
3683
3684static int
3685pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3686{
3687 unsigned int m = *(unsigned int *)arg;
3688
3689 pfm_sysctl.debug = m == 0 ? 0 : 1;
3690
3691 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3692
3693 if (m == 0) {
3694 memset(pfm_stats, 0, sizeof(pfm_stats));
3695 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3696 }
3697 return 0;
3698}
3699
3700/*
3701 * arg can be NULL and count can be zero for this function
3702 */
3703static int
3704pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705{
3706 struct thread_struct *thread = NULL;
3707 struct task_struct *task;
3708 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3709 unsigned long flags;
3710 dbreg_t dbreg;
3711 unsigned int rnum;
3712 int first_time;
3713 int ret = 0, state;
3714 int i, can_access_pmu = 0;
3715 int is_system, is_loaded;
3716
3717 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3718
3719 state = ctx->ctx_state;
3720 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3721 is_system = ctx->ctx_fl_system;
3722 task = ctx->ctx_task;
3723
3724 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3725
3726 /*
3727 * on both UP and SMP, we can only write to the PMC when the task is
3728 * the owner of the local PMU.
3729 */
3730 if (is_loaded) {
3731 thread = &task->thread;
3732 /*
3733 * In system wide and when the context is loaded, access can only happen
3734 * when the caller is running on the CPU being monitored by the session.
3735 * It does not have to be the owner (ctx_task) of the context per se.
3736 */
3737 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3738 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3739 return -EBUSY;
3740 }
3741 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3742 }
3743
3744 /*
3745 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3746 * ensuring that no real breakpoint can be installed via this call.
3747 *
3748 * IMPORTANT: regs can be NULL in this function
3749 */
3750
3751 first_time = ctx->ctx_fl_using_dbreg == 0;
3752
3753 /*
3754 * don't bother if we are loaded and task is being debugged
3755 */
3756 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3757 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3758 return -EBUSY;
3759 }
3760
3761 /*
3762 * check for debug registers in system wide mode
3763 *
3764 * If though a check is done in pfm_context_load(),
3765 * we must repeat it here, in case the registers are
3766 * written after the context is loaded
3767 */
3768 if (is_loaded) {
3769 LOCK_PFS(flags);
3770
3771 if (first_time && is_system) {
3772 if (pfm_sessions.pfs_ptrace_use_dbregs)
3773 ret = -EBUSY;
3774 else
3775 pfm_sessions.pfs_sys_use_dbregs++;
3776 }
3777 UNLOCK_PFS(flags);
3778 }
3779
3780 if (ret != 0) return ret;
3781
3782 /*
3783 * mark ourself as user of the debug registers for
3784 * perfmon purposes.
3785 */
3786 ctx->ctx_fl_using_dbreg = 1;
3787
3788 /*
3789 * clear hardware registers to make sure we don't
3790 * pick up stale state.
3791 *
3792 * for a system wide session, we do not use
3793 * thread.dbr, thread.ibr because this process
3794 * never leaves the current CPU and the state
3795 * is shared by all processes running on it
3796 */
3797 if (first_time && can_access_pmu) {
3798 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3799 for (i=0; i < pmu_conf->num_ibrs; i++) {
3800 ia64_set_ibr(i, 0UL);
3801 ia64_dv_serialize_instruction();
3802 }
3803 ia64_srlz_i();
3804 for (i=0; i < pmu_conf->num_dbrs; i++) {
3805 ia64_set_dbr(i, 0UL);
3806 ia64_dv_serialize_data();
3807 }
3808 ia64_srlz_d();
3809 }
3810
3811 /*
3812 * Now install the values into the registers
3813 */
3814 for (i = 0; i < count; i++, req++) {
3815
3816 rnum = req->dbreg_num;
3817 dbreg.val = req->dbreg_value;
3818
3819 ret = -EINVAL;
3820
3821 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3822 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3823 rnum, dbreg.val, mode, i, count));
3824
3825 goto abort_mission;
3826 }
3827
3828 /*
3829 * make sure we do not install enabled breakpoint
3830 */
3831 if (rnum & 0x1) {
3832 if (mode == PFM_CODE_RR)
3833 dbreg.ibr.ibr_x = 0;
3834 else
3835 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3836 }
3837
3838 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3839
3840 /*
3841 * Debug registers, just like PMC, can only be modified
3842 * by a kernel call. Moreover, perfmon() access to those
3843 * registers are centralized in this routine. The hardware
3844 * does not modify the value of these registers, therefore,
3845 * if we save them as they are written, we can avoid having
3846 * to save them on context switch out. This is made possible
3847 * by the fact that when perfmon uses debug registers, ptrace()
3848 * won't be able to modify them concurrently.
3849 */
3850 if (mode == PFM_CODE_RR) {
3851 CTX_USED_IBR(ctx, rnum);
3852
3853 if (can_access_pmu) {
3854 ia64_set_ibr(rnum, dbreg.val);
3855 ia64_dv_serialize_instruction();
3856 }
3857
3858 ctx->ctx_ibrs[rnum] = dbreg.val;
3859
3860 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3861 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3862 } else {
3863 CTX_USED_DBR(ctx, rnum);
3864
3865 if (can_access_pmu) {
3866 ia64_set_dbr(rnum, dbreg.val);
3867 ia64_dv_serialize_data();
3868 }
3869 ctx->ctx_dbrs[rnum] = dbreg.val;
3870
3871 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3872 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3873 }
3874 }
3875
3876 return 0;
3877
3878abort_mission:
3879 /*
3880 * in case it was our first attempt, we undo the global modifications
3881 */
3882 if (first_time) {
3883 LOCK_PFS(flags);
3884 if (ctx->ctx_fl_system) {
3885 pfm_sessions.pfs_sys_use_dbregs--;
3886 }
3887 UNLOCK_PFS(flags);
3888 ctx->ctx_fl_using_dbreg = 0;
3889 }
3890 /*
3891 * install error return flag
3892 */
3893 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3894
3895 return ret;
3896}
3897
3898static int
3899pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900{
3901 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3902}
3903
3904static int
3905pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3906{
3907 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3908}
3909
3910int
3911pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912{
3913 pfm_context_t *ctx;
3914
3915 if (req == NULL) return -EINVAL;
3916
3917 ctx = GET_PMU_CTX();
3918
3919 if (ctx == NULL) return -EINVAL;
3920
3921 /*
3922 * for now limit to current task, which is enough when calling
3923 * from overflow handler
3924 */
3925 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926
3927 return pfm_write_ibrs(ctx, req, nreq, regs);
3928}
3929EXPORT_SYMBOL(pfm_mod_write_ibrs);
3930
3931int
3932pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3933{
3934 pfm_context_t *ctx;
3935
3936 if (req == NULL) return -EINVAL;
3937
3938 ctx = GET_PMU_CTX();
3939
3940 if (ctx == NULL) return -EINVAL;
3941
3942 /*
3943 * for now limit to current task, which is enough when calling
3944 * from overflow handler
3945 */
3946 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3947
3948 return pfm_write_dbrs(ctx, req, nreq, regs);
3949}
3950EXPORT_SYMBOL(pfm_mod_write_dbrs);
3951
3952
3953static int
3954pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3955{
3956 pfarg_features_t *req = (pfarg_features_t *)arg;
3957
3958 req->ft_version = PFM_VERSION;
3959 return 0;
3960}
3961
3962static int
3963pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3964{
3965 struct pt_regs *tregs;
3966 struct task_struct *task = PFM_CTX_TASK(ctx);
3967 int state, is_system;
3968
3969 state = ctx->ctx_state;
3970 is_system = ctx->ctx_fl_system;
3971
3972 /*
3973 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3974 */
3975 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3976
3977 /*
3978 * In system wide and when the context is loaded, access can only happen
3979 * when the caller is running on the CPU being monitored by the session.
3980 * It does not have to be the owner (ctx_task) of the context per se.
3981 */
3982 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3983 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3984 return -EBUSY;
3985 }
3986 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3987 task_pid_nr(PFM_CTX_TASK(ctx)),
3988 state,
3989 is_system));
3990 /*
3991 * in system mode, we need to update the PMU directly
3992 * and the user level state of the caller, which may not
3993 * necessarily be the creator of the context.
3994 */
3995 if (is_system) {
3996 /*
3997 * Update local PMU first
3998 *
3999 * disable dcr pp
4000 */
4001 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4002 ia64_srlz_i();
4003
4004 /*
4005 * update local cpuinfo
4006 */
4007 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4008
4009 /*
4010 * stop monitoring, does srlz.i
4011 */
4012 pfm_clear_psr_pp();
4013
4014 /*
4015 * stop monitoring in the caller
4016 */
4017 ia64_psr(regs)->pp = 0;
4018
4019 return 0;
4020 }
4021 /*
4022 * per-task mode
4023 */
4024
4025 if (task == current) {
4026 /* stop monitoring at kernel level */
4027 pfm_clear_psr_up();
4028
4029 /*
4030 * stop monitoring at the user level
4031 */
4032 ia64_psr(regs)->up = 0;
4033 } else {
4034 tregs = task_pt_regs(task);
4035
4036 /*
4037 * stop monitoring at the user level
4038 */
4039 ia64_psr(tregs)->up = 0;
4040
4041 /*
4042 * monitoring disabled in kernel at next reschedule
4043 */
4044 ctx->ctx_saved_psr_up = 0;
4045 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4046 }
4047 return 0;
4048}
4049
4050
4051static int
4052pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4053{
4054 struct pt_regs *tregs;
4055 int state, is_system;
4056
4057 state = ctx->ctx_state;
4058 is_system = ctx->ctx_fl_system;
4059
4060 if (state != PFM_CTX_LOADED) return -EINVAL;
4061
4062 /*
4063 * In system wide and when the context is loaded, access can only happen
4064 * when the caller is running on the CPU being monitored by the session.
4065 * It does not have to be the owner (ctx_task) of the context per se.
4066 */
4067 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4068 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4069 return -EBUSY;
4070 }
4071
4072 /*
4073 * in system mode, we need to update the PMU directly
4074 * and the user level state of the caller, which may not
4075 * necessarily be the creator of the context.
4076 */
4077 if (is_system) {
4078
4079 /*
4080 * set user level psr.pp for the caller
4081 */
4082 ia64_psr(regs)->pp = 1;
4083
4084 /*
4085 * now update the local PMU and cpuinfo
4086 */
4087 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4088
4089 /*
4090 * start monitoring at kernel level
4091 */
4092 pfm_set_psr_pp();
4093
4094 /* enable dcr pp */
4095 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4096 ia64_srlz_i();
4097
4098 return 0;
4099 }
4100
4101 /*
4102 * per-process mode
4103 */
4104
4105 if (ctx->ctx_task == current) {
4106
4107 /* start monitoring at kernel level */
4108 pfm_set_psr_up();
4109
4110 /*
4111 * activate monitoring at user level
4112 */
4113 ia64_psr(regs)->up = 1;
4114
4115 } else {
4116 tregs = task_pt_regs(ctx->ctx_task);
4117
4118 /*
4119 * start monitoring at the kernel level the next
4120 * time the task is scheduled
4121 */
4122 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4123
4124 /*
4125 * activate monitoring at user level
4126 */
4127 ia64_psr(tregs)->up = 1;
4128 }
4129 return 0;
4130}
4131
4132static int
4133pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4134{
4135 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4136 unsigned int cnum;
4137 int i;
4138 int ret = -EINVAL;
4139
4140 for (i = 0; i < count; i++, req++) {
4141
4142 cnum = req->reg_num;
4143
4144 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4145
4146 req->reg_value = PMC_DFL_VAL(cnum);
4147
4148 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4149
4150 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4151 }
4152 return 0;
4153
4154abort_mission:
4155 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4156 return ret;
4157}
4158
4159static int
4160pfm_check_task_exist(pfm_context_t *ctx)
4161{
4162 struct task_struct *g, *t;
4163 int ret = -ESRCH;
4164
4165 read_lock(&tasklist_lock);
4166
4167 do_each_thread (g, t) {
4168 if (t->thread.pfm_context == ctx) {
4169 ret = 0;
4170 goto out;
4171 }
4172 } while_each_thread (g, t);
4173out:
4174 read_unlock(&tasklist_lock);
4175
4176 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4177
4178 return ret;
4179}
4180
4181static int
4182pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4183{
4184 struct task_struct *task;
4185 struct thread_struct *thread;
4186 struct pfm_context_t *old;
4187 unsigned long flags;
4188#ifndef CONFIG_SMP
4189 struct task_struct *owner_task = NULL;
4190#endif
4191 pfarg_load_t *req = (pfarg_load_t *)arg;
4192 unsigned long *pmcs_source, *pmds_source;
4193 int the_cpu;
4194 int ret = 0;
4195 int state, is_system, set_dbregs = 0;
4196
4197 state = ctx->ctx_state;
4198 is_system = ctx->ctx_fl_system;
4199 /*
4200 * can only load from unloaded or terminated state
4201 */
4202 if (state != PFM_CTX_UNLOADED) {
4203 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4204 req->load_pid,
4205 ctx->ctx_state));
4206 return -EBUSY;
4207 }
4208
4209 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4210
4211 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4212 DPRINT(("cannot use blocking mode on self\n"));
4213 return -EINVAL;
4214 }
4215
4216 ret = pfm_get_task(ctx, req->load_pid, &task);
4217 if (ret) {
4218 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4219 return ret;
4220 }
4221
4222 ret = -EINVAL;
4223
4224 /*
4225 * system wide is self monitoring only
4226 */
4227 if (is_system && task != current) {
4228 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4229 req->load_pid));
4230 goto error;
4231 }
4232
4233 thread = &task->thread;
4234
4235 ret = 0;
4236 /*
4237 * cannot load a context which is using range restrictions,
4238 * into a task that is being debugged.
4239 */
4240 if (ctx->ctx_fl_using_dbreg) {
4241 if (thread->flags & IA64_THREAD_DBG_VALID) {
4242 ret = -EBUSY;
4243 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4244 goto error;
4245 }
4246 LOCK_PFS(flags);
4247
4248 if (is_system) {
4249 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4250 DPRINT(("cannot load [%d] dbregs in use\n",
4251 task_pid_nr(task)));
4252 ret = -EBUSY;
4253 } else {
4254 pfm_sessions.pfs_sys_use_dbregs++;
4255 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4256 set_dbregs = 1;
4257 }
4258 }
4259
4260 UNLOCK_PFS(flags);
4261
4262 if (ret) goto error;
4263 }
4264
4265 /*
4266 * SMP system-wide monitoring implies self-monitoring.
4267 *
4268 * The programming model expects the task to
4269 * be pinned on a CPU throughout the session.
4270 * Here we take note of the current CPU at the
4271 * time the context is loaded. No call from
4272 * another CPU will be allowed.
4273 *
4274 * The pinning via shed_setaffinity()
4275 * must be done by the calling task prior
4276 * to this call.
4277 *
4278 * systemwide: keep track of CPU this session is supposed to run on
4279 */
4280 the_cpu = ctx->ctx_cpu = smp_processor_id();
4281
4282 ret = -EBUSY;
4283 /*
4284 * now reserve the session
4285 */
4286 ret = pfm_reserve_session(current, is_system, the_cpu);
4287 if (ret) goto error;
4288
4289 /*
4290 * task is necessarily stopped at this point.
4291 *
4292 * If the previous context was zombie, then it got removed in
4293 * pfm_save_regs(). Therefore we should not see it here.
4294 * If we see a context, then this is an active context
4295 *
4296 * XXX: needs to be atomic
4297 */
4298 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4299 thread->pfm_context, ctx));
4300
4301 ret = -EBUSY;
4302 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4303 if (old != NULL) {
4304 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4305 goto error_unres;
4306 }
4307
4308 pfm_reset_msgq(ctx);
4309
4310 ctx->ctx_state = PFM_CTX_LOADED;
4311
4312 /*
4313 * link context to task
4314 */
4315 ctx->ctx_task = task;
4316
4317 if (is_system) {
4318 /*
4319 * we load as stopped
4320 */
4321 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4322 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4323
4324 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4325 } else {
4326 thread->flags |= IA64_THREAD_PM_VALID;
4327 }
4328
4329 /*
4330 * propagate into thread-state
4331 */
4332 pfm_copy_pmds(task, ctx);
4333 pfm_copy_pmcs(task, ctx);
4334
4335 pmcs_source = ctx->th_pmcs;
4336 pmds_source = ctx->th_pmds;
4337
4338 /*
4339 * always the case for system-wide
4340 */
4341 if (task == current) {
4342
4343 if (is_system == 0) {
4344
4345 /* allow user level control */
4346 ia64_psr(regs)->sp = 0;
4347 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4348
4349 SET_LAST_CPU(ctx, smp_processor_id());
4350 INC_ACTIVATION();
4351 SET_ACTIVATION(ctx);
4352#ifndef CONFIG_SMP
4353 /*
4354 * push the other task out, if any
4355 */
4356 owner_task = GET_PMU_OWNER();
4357 if (owner_task) pfm_lazy_save_regs(owner_task);
4358#endif
4359 }
4360 /*
4361 * load all PMD from ctx to PMU (as opposed to thread state)
4362 * restore all PMC from ctx to PMU
4363 */
4364 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4365 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4366
4367 ctx->ctx_reload_pmcs[0] = 0UL;
4368 ctx->ctx_reload_pmds[0] = 0UL;
4369
4370 /*
4371 * guaranteed safe by earlier check against DBG_VALID
4372 */
4373 if (ctx->ctx_fl_using_dbreg) {
4374 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4375 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4376 }
4377 /*
4378 * set new ownership
4379 */
4380 SET_PMU_OWNER(task, ctx);
4381
4382 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4383 } else {
4384 /*
4385 * when not current, task MUST be stopped, so this is safe
4386 */
4387 regs = task_pt_regs(task);
4388
4389 /* force a full reload */
4390 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4391 SET_LAST_CPU(ctx, -1);
4392
4393 /* initial saved psr (stopped) */
4394 ctx->ctx_saved_psr_up = 0UL;
4395 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4396 }
4397
4398 ret = 0;
4399
4400error_unres:
4401 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4402error:
4403 /*
4404 * we must undo the dbregs setting (for system-wide)
4405 */
4406 if (ret && set_dbregs) {
4407 LOCK_PFS(flags);
4408 pfm_sessions.pfs_sys_use_dbregs--;
4409 UNLOCK_PFS(flags);
4410 }
4411 /*
4412 * release task, there is now a link with the context
4413 */
4414 if (is_system == 0 && task != current) {
4415 pfm_put_task(task);
4416
4417 if (ret == 0) {
4418 ret = pfm_check_task_exist(ctx);
4419 if (ret) {
4420 ctx->ctx_state = PFM_CTX_UNLOADED;
4421 ctx->ctx_task = NULL;
4422 }
4423 }
4424 }
4425 return ret;
4426}
4427
4428/*
4429 * in this function, we do not need to increase the use count
4430 * for the task via get_task_struct(), because we hold the
4431 * context lock. If the task were to disappear while having
4432 * a context attached, it would go through pfm_exit_thread()
4433 * which also grabs the context lock and would therefore be blocked
4434 * until we are here.
4435 */
4436static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4437
4438static int
4439pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4440{
4441 struct task_struct *task = PFM_CTX_TASK(ctx);
4442 struct pt_regs *tregs;
4443 int prev_state, is_system;
4444 int ret;
4445
4446 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4447
4448 prev_state = ctx->ctx_state;
4449 is_system = ctx->ctx_fl_system;
4450
4451 /*
4452 * unload only when necessary
4453 */
4454 if (prev_state == PFM_CTX_UNLOADED) {
4455 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4456 return 0;
4457 }
4458
4459 /*
4460 * clear psr and dcr bits
4461 */
4462 ret = pfm_stop(ctx, NULL, 0, regs);
4463 if (ret) return ret;
4464
4465 ctx->ctx_state = PFM_CTX_UNLOADED;
4466
4467 /*
4468 * in system mode, we need to update the PMU directly
4469 * and the user level state of the caller, which may not
4470 * necessarily be the creator of the context.
4471 */
4472 if (is_system) {
4473
4474 /*
4475 * Update cpuinfo
4476 *
4477 * local PMU is taken care of in pfm_stop()
4478 */
4479 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4480 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4481
4482 /*
4483 * save PMDs in context
4484 * release ownership
4485 */
4486 pfm_flush_pmds(current, ctx);
4487
4488 /*
4489 * at this point we are done with the PMU
4490 * so we can unreserve the resource.
4491 */
4492 if (prev_state != PFM_CTX_ZOMBIE)
4493 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4494
4495 /*
4496 * disconnect context from task
4497 */
4498 task->thread.pfm_context = NULL;
4499 /*
4500 * disconnect task from context
4501 */
4502 ctx->ctx_task = NULL;
4503
4504 /*
4505 * There is nothing more to cleanup here.
4506 */
4507 return 0;
4508 }
4509
4510 /*
4511 * per-task mode
4512 */
4513 tregs = task == current ? regs : task_pt_regs(task);
4514
4515 if (task == current) {
4516 /*
4517 * cancel user level control
4518 */
4519 ia64_psr(regs)->sp = 1;
4520
4521 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4522 }
4523 /*
4524 * save PMDs to context
4525 * release ownership
4526 */
4527 pfm_flush_pmds(task, ctx);
4528
4529 /*
4530 * at this point we are done with the PMU
4531 * so we can unreserve the resource.
4532 *
4533 * when state was ZOMBIE, we have already unreserved.
4534 */
4535 if (prev_state != PFM_CTX_ZOMBIE)
4536 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4537
4538 /*
4539 * reset activation counter and psr
4540 */
4541 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4542 SET_LAST_CPU(ctx, -1);
4543
4544 /*
4545 * PMU state will not be restored
4546 */
4547 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4548
4549 /*
4550 * break links between context and task
4551 */
4552 task->thread.pfm_context = NULL;
4553 ctx->ctx_task = NULL;
4554
4555 PFM_SET_WORK_PENDING(task, 0);
4556
4557 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4558 ctx->ctx_fl_can_restart = 0;
4559 ctx->ctx_fl_going_zombie = 0;
4560
4561 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4562
4563 return 0;
4564}
4565
4566
4567/*
4568 * called only from exit_thread(): task == current
4569 * we come here only if current has a context attached (loaded or masked)
4570 */
4571void
4572pfm_exit_thread(struct task_struct *task)
4573{
4574 pfm_context_t *ctx;
4575 unsigned long flags;
4576 struct pt_regs *regs = task_pt_regs(task);
4577 int ret, state;
4578 int free_ok = 0;
4579
4580 ctx = PFM_GET_CTX(task);
4581
4582 PROTECT_CTX(ctx, flags);
4583
4584 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4585
4586 state = ctx->ctx_state;
4587 switch(state) {
4588 case PFM_CTX_UNLOADED:
4589 /*
4590 * only comes to this function if pfm_context is not NULL, i.e., cannot
4591 * be in unloaded state
4592 */
4593 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4594 break;
4595 case PFM_CTX_LOADED:
4596 case PFM_CTX_MASKED:
4597 ret = pfm_context_unload(ctx, NULL, 0, regs);
4598 if (ret) {
4599 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4600 }
4601 DPRINT(("ctx unloaded for current state was %d\n", state));
4602
4603 pfm_end_notify_user(ctx);
4604 break;
4605 case PFM_CTX_ZOMBIE:
4606 ret = pfm_context_unload(ctx, NULL, 0, regs);
4607 if (ret) {
4608 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4609 }
4610 free_ok = 1;
4611 break;
4612 default:
4613 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4614 break;
4615 }
4616 UNPROTECT_CTX(ctx, flags);
4617
4618 { u64 psr = pfm_get_psr();
4619 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4620 BUG_ON(GET_PMU_OWNER());
4621 BUG_ON(ia64_psr(regs)->up);
4622 BUG_ON(ia64_psr(regs)->pp);
4623 }
4624
4625 /*
4626 * All memory free operations (especially for vmalloc'ed memory)
4627 * MUST be done with interrupts ENABLED.
4628 */
4629 if (free_ok) pfm_context_free(ctx);
4630}
4631
4632/*
4633 * functions MUST be listed in the increasing order of their index (see permfon.h)
4634 */
4635#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4636#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4637#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4638#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4639#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4640
4641static pfm_cmd_desc_t pfm_cmd_tab[]={
4642/* 0 */PFM_CMD_NONE,
4643/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4644/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4645/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4647/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4648/* 6 */PFM_CMD_NONE,
4649/* 7 */PFM_CMD_NONE,
4650/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4651/* 9 */PFM_CMD_NONE,
4652/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4653/* 11 */PFM_CMD_NONE,
4654/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4655/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4656/* 14 */PFM_CMD_NONE,
4657/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4658/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4659/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4660/* 18 */PFM_CMD_NONE,
4661/* 19 */PFM_CMD_NONE,
4662/* 20 */PFM_CMD_NONE,
4663/* 21 */PFM_CMD_NONE,
4664/* 22 */PFM_CMD_NONE,
4665/* 23 */PFM_CMD_NONE,
4666/* 24 */PFM_CMD_NONE,
4667/* 25 */PFM_CMD_NONE,
4668/* 26 */PFM_CMD_NONE,
4669/* 27 */PFM_CMD_NONE,
4670/* 28 */PFM_CMD_NONE,
4671/* 29 */PFM_CMD_NONE,
4672/* 30 */PFM_CMD_NONE,
4673/* 31 */PFM_CMD_NONE,
4674/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4675/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4676};
4677#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4678
4679static int
4680pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4681{
4682 struct task_struct *task;
4683 int state, old_state;
4684
4685recheck:
4686 state = ctx->ctx_state;
4687 task = ctx->ctx_task;
4688
4689 if (task == NULL) {
4690 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4691 return 0;
4692 }
4693
4694 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4695 ctx->ctx_fd,
4696 state,
4697 task_pid_nr(task),
4698 task->state, PFM_CMD_STOPPED(cmd)));
4699
4700 /*
4701 * self-monitoring always ok.
4702 *
4703 * for system-wide the caller can either be the creator of the
4704 * context (to one to which the context is attached to) OR
4705 * a task running on the same CPU as the session.
4706 */
4707 if (task == current || ctx->ctx_fl_system) return 0;
4708
4709 /*
4710 * we are monitoring another thread
4711 */
4712 switch(state) {
4713 case PFM_CTX_UNLOADED:
4714 /*
4715 * if context is UNLOADED we are safe to go
4716 */
4717 return 0;
4718 case PFM_CTX_ZOMBIE:
4719 /*
4720 * no command can operate on a zombie context
4721 */
4722 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4723 return -EINVAL;
4724 case PFM_CTX_MASKED:
4725 /*
4726 * PMU state has been saved to software even though
4727 * the thread may still be running.
4728 */
4729 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4730 }
4731
4732 /*
4733 * context is LOADED or MASKED. Some commands may need to have
4734 * the task stopped.
4735 *
4736 * We could lift this restriction for UP but it would mean that
4737 * the user has no guarantee the task would not run between
4738 * two successive calls to perfmonctl(). That's probably OK.
4739 * If this user wants to ensure the task does not run, then
4740 * the task must be stopped.
4741 */
4742 if (PFM_CMD_STOPPED(cmd)) {
4743 if (!task_is_stopped_or_traced(task)) {
4744 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4745 return -EBUSY;
4746 }
4747 /*
4748 * task is now stopped, wait for ctxsw out
4749 *
4750 * This is an interesting point in the code.
4751 * We need to unprotect the context because
4752 * the pfm_save_regs() routines needs to grab
4753 * the same lock. There are danger in doing
4754 * this because it leaves a window open for
4755 * another task to get access to the context
4756 * and possibly change its state. The one thing
4757 * that is not possible is for the context to disappear
4758 * because we are protected by the VFS layer, i.e.,
4759 * get_fd()/put_fd().
4760 */
4761 old_state = state;
4762
4763 UNPROTECT_CTX(ctx, flags);
4764
4765 wait_task_inactive(task, 0);
4766
4767 PROTECT_CTX(ctx, flags);
4768
4769 /*
4770 * we must recheck to verify if state has changed
4771 */
4772 if (ctx->ctx_state != old_state) {
4773 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4774 goto recheck;
4775 }
4776 }
4777 return 0;
4778}
4779
4780/*
4781 * system-call entry point (must return long)
4782 */
4783asmlinkage long
4784sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4785{
4786 struct file *file = NULL;
4787 pfm_context_t *ctx = NULL;
4788 unsigned long flags = 0UL;
4789 void *args_k = NULL;
4790 long ret; /* will expand int return types */
4791 size_t base_sz, sz, xtra_sz = 0;
4792 int narg, completed_args = 0, call_made = 0, cmd_flags;
4793 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4794 int (*getsize)(void *arg, size_t *sz);
4795#define PFM_MAX_ARGSIZE 4096
4796
4797 /*
4798 * reject any call if perfmon was disabled at initialization
4799 */
4800 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4801
4802 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4803 DPRINT(("invalid cmd=%d\n", cmd));
4804 return -EINVAL;
4805 }
4806
4807 func = pfm_cmd_tab[cmd].cmd_func;
4808 narg = pfm_cmd_tab[cmd].cmd_narg;
4809 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4810 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4811 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4812
4813 if (unlikely(func == NULL)) {
4814 DPRINT(("invalid cmd=%d\n", cmd));
4815 return -EINVAL;
4816 }
4817
4818 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4819 PFM_CMD_NAME(cmd),
4820 cmd,
4821 narg,
4822 base_sz,
4823 count));
4824
4825 /*
4826 * check if number of arguments matches what the command expects
4827 */
4828 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4829 return -EINVAL;
4830
4831restart_args:
4832 sz = xtra_sz + base_sz*count;
4833 /*
4834 * limit abuse to min page size
4835 */
4836 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4837 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4838 return -E2BIG;
4839 }
4840
4841 /*
4842 * allocate default-sized argument buffer
4843 */
4844 if (likely(count && args_k == NULL)) {
4845 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4846 if (args_k == NULL) return -ENOMEM;
4847 }
4848
4849 ret = -EFAULT;
4850
4851 /*
4852 * copy arguments
4853 *
4854 * assume sz = 0 for command without parameters
4855 */
4856 if (sz && copy_from_user(args_k, arg, sz)) {
4857 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4858 goto error_args;
4859 }
4860
4861 /*
4862 * check if command supports extra parameters
4863 */
4864 if (completed_args == 0 && getsize) {
4865 /*
4866 * get extra parameters size (based on main argument)
4867 */
4868 ret = (*getsize)(args_k, &xtra_sz);
4869 if (ret) goto error_args;
4870
4871 completed_args = 1;
4872
4873 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4874
4875 /* retry if necessary */
4876 if (likely(xtra_sz)) goto restart_args;
4877 }
4878
4879 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4880
4881 ret = -EBADF;
4882
4883 file = fget(fd);
4884 if (unlikely(file == NULL)) {
4885 DPRINT(("invalid fd %d\n", fd));
4886 goto error_args;
4887 }
4888 if (unlikely(PFM_IS_FILE(file) == 0)) {
4889 DPRINT(("fd %d not related to perfmon\n", fd));
4890 goto error_args;
4891 }
4892
4893 ctx = file->private_data;
4894 if (unlikely(ctx == NULL)) {
4895 DPRINT(("no context for fd %d\n", fd));
4896 goto error_args;
4897 }
4898 prefetch(&ctx->ctx_state);
4899
4900 PROTECT_CTX(ctx, flags);
4901
4902 /*
4903 * check task is stopped
4904 */
4905 ret = pfm_check_task_state(ctx, cmd, flags);
4906 if (unlikely(ret)) goto abort_locked;
4907
4908skip_fd:
4909 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4910
4911 call_made = 1;
4912
4913abort_locked:
4914 if (likely(ctx)) {
4915 DPRINT(("context unlocked\n"));
4916 UNPROTECT_CTX(ctx, flags);
4917 }
4918
4919 /* copy argument back to user, if needed */
4920 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4921
4922error_args:
4923 if (file)
4924 fput(file);
4925
4926 kfree(args_k);
4927
4928 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4929
4930 return ret;
4931}
4932
4933static void
4934pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4935{
4936 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4937 pfm_ovfl_ctrl_t rst_ctrl;
4938 int state;
4939 int ret = 0;
4940
4941 state = ctx->ctx_state;
4942 /*
4943 * Unlock sampling buffer and reset index atomically
4944 * XXX: not really needed when blocking
4945 */
4946 if (CTX_HAS_SMPL(ctx)) {
4947
4948 rst_ctrl.bits.mask_monitoring = 0;
4949 rst_ctrl.bits.reset_ovfl_pmds = 0;
4950
4951 if (state == PFM_CTX_LOADED)
4952 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4953 else
4954 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4955 } else {
4956 rst_ctrl.bits.mask_monitoring = 0;
4957 rst_ctrl.bits.reset_ovfl_pmds = 1;
4958 }
4959
4960 if (ret == 0) {
4961 if (rst_ctrl.bits.reset_ovfl_pmds) {
4962 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4963 }
4964 if (rst_ctrl.bits.mask_monitoring == 0) {
4965 DPRINT(("resuming monitoring\n"));
4966 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4967 } else {
4968 DPRINT(("stopping monitoring\n"));
4969 //pfm_stop_monitoring(current, regs);
4970 }
4971 ctx->ctx_state = PFM_CTX_LOADED;
4972 }
4973}
4974
4975/*
4976 * context MUST BE LOCKED when calling
4977 * can only be called for current
4978 */
4979static void
4980pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4981{
4982 int ret;
4983
4984 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4985
4986 ret = pfm_context_unload(ctx, NULL, 0, regs);
4987 if (ret) {
4988 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4989 }
4990
4991 /*
4992 * and wakeup controlling task, indicating we are now disconnected
4993 */
4994 wake_up_interruptible(&ctx->ctx_zombieq);
4995
4996 /*
4997 * given that context is still locked, the controlling
4998 * task will only get access when we return from
4999 * pfm_handle_work().
5000 */
5001}
5002
5003static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5004
5005 /*
5006 * pfm_handle_work() can be called with interrupts enabled
5007 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5008 * call may sleep, therefore we must re-enable interrupts
5009 * to avoid deadlocks. It is safe to do so because this function
5010 * is called ONLY when returning to user level (pUStk=1), in which case
5011 * there is no risk of kernel stack overflow due to deep
5012 * interrupt nesting.
5013 */
5014void
5015pfm_handle_work(void)
5016{
5017 pfm_context_t *ctx;
5018 struct pt_regs *regs;
5019 unsigned long flags, dummy_flags;
5020 unsigned long ovfl_regs;
5021 unsigned int reason;
5022 int ret;
5023
5024 ctx = PFM_GET_CTX(current);
5025 if (ctx == NULL) {
5026 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5027 task_pid_nr(current));
5028 return;
5029 }
5030
5031 PROTECT_CTX(ctx, flags);
5032
5033 PFM_SET_WORK_PENDING(current, 0);
5034
5035 regs = task_pt_regs(current);
5036
5037 /*
5038 * extract reason for being here and clear
5039 */
5040 reason = ctx->ctx_fl_trap_reason;
5041 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5042 ovfl_regs = ctx->ctx_ovfl_regs[0];
5043
5044 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5045
5046 /*
5047 * must be done before we check for simple-reset mode
5048 */
5049 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5050 goto do_zombie;
5051
5052 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5053 if (reason == PFM_TRAP_REASON_RESET)
5054 goto skip_blocking;
5055
5056 /*
5057 * restore interrupt mask to what it was on entry.
5058 * Could be enabled/diasbled.
5059 */
5060 UNPROTECT_CTX(ctx, flags);
5061
5062 /*
5063 * force interrupt enable because of down_interruptible()
5064 */
5065 local_irq_enable();
5066
5067 DPRINT(("before block sleeping\n"));
5068
5069 /*
5070 * may go through without blocking on SMP systems
5071 * if restart has been received already by the time we call down()
5072 */
5073 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5074
5075 DPRINT(("after block sleeping ret=%d\n", ret));
5076
5077 /*
5078 * lock context and mask interrupts again
5079 * We save flags into a dummy because we may have
5080 * altered interrupts mask compared to entry in this
5081 * function.
5082 */
5083 PROTECT_CTX(ctx, dummy_flags);
5084
5085 /*
5086 * we need to read the ovfl_regs only after wake-up
5087 * because we may have had pfm_write_pmds() in between
5088 * and that can changed PMD values and therefore
5089 * ovfl_regs is reset for these new PMD values.
5090 */
5091 ovfl_regs = ctx->ctx_ovfl_regs[0];
5092
5093 if (ctx->ctx_fl_going_zombie) {
5094do_zombie:
5095 DPRINT(("context is zombie, bailing out\n"));
5096 pfm_context_force_terminate(ctx, regs);
5097 goto nothing_to_do;
5098 }
5099 /*
5100 * in case of interruption of down() we don't restart anything
5101 */
5102 if (ret < 0)
5103 goto nothing_to_do;
5104
5105skip_blocking:
5106 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5107 ctx->ctx_ovfl_regs[0] = 0UL;
5108
5109nothing_to_do:
5110 /*
5111 * restore flags as they were upon entry
5112 */
5113 UNPROTECT_CTX(ctx, flags);
5114}
5115
5116static int
5117pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5118{
5119 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5120 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5121 return 0;
5122 }
5123
5124 DPRINT(("waking up somebody\n"));
5125
5126 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5127
5128 /*
5129 * safe, we are not in intr handler, nor in ctxsw when
5130 * we come here
5131 */
5132 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5133
5134 return 0;
5135}
5136
5137static int
5138pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5139{
5140 pfm_msg_t *msg = NULL;
5141
5142 if (ctx->ctx_fl_no_msg == 0) {
5143 msg = pfm_get_new_msg(ctx);
5144 if (msg == NULL) {
5145 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5146 return -1;
5147 }
5148
5149 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5150 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5151 msg->pfm_ovfl_msg.msg_active_set = 0;
5152 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5153 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5154 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5155 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5156 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5157 }
5158
5159 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5160 msg,
5161 ctx->ctx_fl_no_msg,
5162 ctx->ctx_fd,
5163 ovfl_pmds));
5164
5165 return pfm_notify_user(ctx, msg);
5166}
5167
5168static int
5169pfm_end_notify_user(pfm_context_t *ctx)
5170{
5171 pfm_msg_t *msg;
5172
5173 msg = pfm_get_new_msg(ctx);
5174 if (msg == NULL) {
5175 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5176 return -1;
5177 }
5178 /* no leak */
5179 memset(msg, 0, sizeof(*msg));
5180
5181 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5182 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5183 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5184
5185 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5186 msg,
5187 ctx->ctx_fl_no_msg,
5188 ctx->ctx_fd));
5189
5190 return pfm_notify_user(ctx, msg);
5191}
5192
5193/*
5194 * main overflow processing routine.
5195 * it can be called from the interrupt path or explicitly during the context switch code
5196 */
5197static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5198 unsigned long pmc0, struct pt_regs *regs)
5199{
5200 pfm_ovfl_arg_t *ovfl_arg;
5201 unsigned long mask;
5202 unsigned long old_val, ovfl_val, new_val;
5203 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5204 unsigned long tstamp;
5205 pfm_ovfl_ctrl_t ovfl_ctrl;
5206 unsigned int i, has_smpl;
5207 int must_notify = 0;
5208
5209 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5210
5211 /*
5212 * sanity test. Should never happen
5213 */
5214 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5215
5216 tstamp = ia64_get_itc();
5217 mask = pmc0 >> PMU_FIRST_COUNTER;
5218 ovfl_val = pmu_conf->ovfl_val;
5219 has_smpl = CTX_HAS_SMPL(ctx);
5220
5221 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5222 "used_pmds=0x%lx\n",
5223 pmc0,
5224 task ? task_pid_nr(task): -1,
5225 (regs ? regs->cr_iip : 0),
5226 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5227 ctx->ctx_used_pmds[0]));
5228
5229
5230 /*
5231 * first we update the virtual counters
5232 * assume there was a prior ia64_srlz_d() issued
5233 */
5234 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5235
5236 /* skip pmd which did not overflow */
5237 if ((mask & 0x1) == 0) continue;
5238
5239 /*
5240 * Note that the pmd is not necessarily 0 at this point as qualified events
5241 * may have happened before the PMU was frozen. The residual count is not
5242 * taken into consideration here but will be with any read of the pmd via
5243 * pfm_read_pmds().
5244 */
5245 old_val = new_val = ctx->ctx_pmds[i].val;
5246 new_val += 1 + ovfl_val;
5247 ctx->ctx_pmds[i].val = new_val;
5248
5249 /*
5250 * check for overflow condition
5251 */
5252 if (likely(old_val > new_val)) {
5253 ovfl_pmds |= 1UL << i;
5254 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5255 }
5256
5257 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5258 i,
5259 new_val,
5260 old_val,
5261 ia64_get_pmd(i) & ovfl_val,
5262 ovfl_pmds,
5263 ovfl_notify));
5264 }
5265
5266 /*
5267 * there was no 64-bit overflow, nothing else to do
5268 */
5269 if (ovfl_pmds == 0UL) return;
5270
5271 /*
5272 * reset all control bits
5273 */
5274 ovfl_ctrl.val = 0;
5275 reset_pmds = 0UL;
5276
5277 /*
5278 * if a sampling format module exists, then we "cache" the overflow by
5279 * calling the module's handler() routine.
5280 */
5281 if (has_smpl) {
5282 unsigned long start_cycles, end_cycles;
5283 unsigned long pmd_mask;
5284 int j, k, ret = 0;
5285 int this_cpu = smp_processor_id();
5286
5287 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5288 ovfl_arg = &ctx->ctx_ovfl_arg;
5289
5290 prefetch(ctx->ctx_smpl_hdr);
5291
5292 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5293
5294 mask = 1UL << i;
5295
5296 if ((pmd_mask & 0x1) == 0) continue;
5297
5298 ovfl_arg->ovfl_pmd = (unsigned char )i;
5299 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5300 ovfl_arg->active_set = 0;
5301 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5302 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5303
5304 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5305 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5306 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5307
5308 /*
5309 * copy values of pmds of interest. Sampling format may copy them
5310 * into sampling buffer.
5311 */
5312 if (smpl_pmds) {
5313 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5314 if ((smpl_pmds & 0x1) == 0) continue;
5315 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5316 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5317 }
5318 }
5319
5320 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5321
5322 start_cycles = ia64_get_itc();
5323
5324 /*
5325 * call custom buffer format record (handler) routine
5326 */
5327 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5328
5329 end_cycles = ia64_get_itc();
5330
5331 /*
5332 * For those controls, we take the union because they have
5333 * an all or nothing behavior.
5334 */
5335 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5336 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5337 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5338 /*
5339 * build the bitmask of pmds to reset now
5340 */
5341 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5342
5343 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5344 }
5345 /*
5346 * when the module cannot handle the rest of the overflows, we abort right here
5347 */
5348 if (ret && pmd_mask) {
5349 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5350 pmd_mask<<PMU_FIRST_COUNTER));
5351 }
5352 /*
5353 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5354 */
5355 ovfl_pmds &= ~reset_pmds;
5356 } else {
5357 /*
5358 * when no sampling module is used, then the default
5359 * is to notify on overflow if requested by user
5360 */
5361 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5362 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5363 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5364 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5365 /*
5366 * if needed, we reset all overflowed pmds
5367 */
5368 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5369 }
5370
5371 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5372
5373 /*
5374 * reset the requested PMD registers using the short reset values
5375 */
5376 if (reset_pmds) {
5377 unsigned long bm = reset_pmds;
5378 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5379 }
5380
5381 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5382 /*
5383 * keep track of what to reset when unblocking
5384 */
5385 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5386
5387 /*
5388 * check for blocking context
5389 */
5390 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5391
5392 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5393
5394 /*
5395 * set the perfmon specific checking pending work for the task
5396 */
5397 PFM_SET_WORK_PENDING(task, 1);
5398
5399 /*
5400 * when coming from ctxsw, current still points to the
5401 * previous task, therefore we must work with task and not current.
5402 */
5403 set_notify_resume(task);
5404 }
5405 /*
5406 * defer until state is changed (shorten spin window). the context is locked
5407 * anyway, so the signal receiver would come spin for nothing.
5408 */
5409 must_notify = 1;
5410 }
5411
5412 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5413 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5414 PFM_GET_WORK_PENDING(task),
5415 ctx->ctx_fl_trap_reason,
5416 ovfl_pmds,
5417 ovfl_notify,
5418 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5419 /*
5420 * in case monitoring must be stopped, we toggle the psr bits
5421 */
5422 if (ovfl_ctrl.bits.mask_monitoring) {
5423 pfm_mask_monitoring(task);
5424 ctx->ctx_state = PFM_CTX_MASKED;
5425 ctx->ctx_fl_can_restart = 1;
5426 }
5427
5428 /*
5429 * send notification now
5430 */
5431 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5432
5433 return;
5434
5435sanity_check:
5436 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5437 smp_processor_id(),
5438 task ? task_pid_nr(task) : -1,
5439 pmc0);
5440 return;
5441
5442stop_monitoring:
5443 /*
5444 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5445 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5446 * come here as zombie only if the task is the current task. In which case, we
5447 * can access the PMU hardware directly.
5448 *
5449 * Note that zombies do have PM_VALID set. So here we do the minimal.
5450 *
5451 * In case the context was zombified it could not be reclaimed at the time
5452 * the monitoring program exited. At this point, the PMU reservation has been
5453 * returned, the sampiing buffer has been freed. We must convert this call
5454 * into a spurious interrupt. However, we must also avoid infinite overflows
5455 * by stopping monitoring for this task. We can only come here for a per-task
5456 * context. All we need to do is to stop monitoring using the psr bits which
5457 * are always task private. By re-enabling secure montioring, we ensure that
5458 * the monitored task will not be able to re-activate monitoring.
5459 * The task will eventually be context switched out, at which point the context
5460 * will be reclaimed (that includes releasing ownership of the PMU).
5461 *
5462 * So there might be a window of time where the number of per-task session is zero
5463 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5464 * context. This is safe because if a per-task session comes in, it will push this one
5465 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5466 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5467 * also push our zombie context out.
5468 *
5469 * Overall pretty hairy stuff....
5470 */
5471 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5472 pfm_clear_psr_up();
5473 ia64_psr(regs)->up = 0;
5474 ia64_psr(regs)->sp = 1;
5475 return;
5476}
5477
5478static int
5479pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5480{
5481 struct task_struct *task;
5482 pfm_context_t *ctx;
5483 unsigned long flags;
5484 u64 pmc0;
5485 int this_cpu = smp_processor_id();
5486 int retval = 0;
5487
5488 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5489
5490 /*
5491 * srlz.d done before arriving here
5492 */
5493 pmc0 = ia64_get_pmc(0);
5494
5495 task = GET_PMU_OWNER();
5496 ctx = GET_PMU_CTX();
5497
5498 /*
5499 * if we have some pending bits set
5500 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5501 */
5502 if (PMC0_HAS_OVFL(pmc0) && task) {
5503 /*
5504 * we assume that pmc0.fr is always set here
5505 */
5506
5507 /* sanity check */
5508 if (!ctx) goto report_spurious1;
5509
5510 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5511 goto report_spurious2;
5512
5513 PROTECT_CTX_NOPRINT(ctx, flags);
5514
5515 pfm_overflow_handler(task, ctx, pmc0, regs);
5516
5517 UNPROTECT_CTX_NOPRINT(ctx, flags);
5518
5519 } else {
5520 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5521 retval = -1;
5522 }
5523 /*
5524 * keep it unfrozen at all times
5525 */
5526 pfm_unfreeze_pmu();
5527
5528 return retval;
5529
5530report_spurious1:
5531 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5532 this_cpu, task_pid_nr(task));
5533 pfm_unfreeze_pmu();
5534 return -1;
5535report_spurious2:
5536 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5537 this_cpu,
5538 task_pid_nr(task));
5539 pfm_unfreeze_pmu();
5540 return -1;
5541}
5542
5543static irqreturn_t
5544pfm_interrupt_handler(int irq, void *arg)
5545{
5546 unsigned long start_cycles, total_cycles;
5547 unsigned long min, max;
5548 int this_cpu;
5549 int ret;
5550 struct pt_regs *regs = get_irq_regs();
5551
5552 this_cpu = get_cpu();
5553 if (likely(!pfm_alt_intr_handler)) {
5554 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5555 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5556
5557 start_cycles = ia64_get_itc();
5558
5559 ret = pfm_do_interrupt_handler(arg, regs);
5560
5561 total_cycles = ia64_get_itc();
5562
5563 /*
5564 * don't measure spurious interrupts
5565 */
5566 if (likely(ret == 0)) {
5567 total_cycles -= start_cycles;
5568
5569 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5570 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5571
5572 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5573 }
5574 }
5575 else {
5576 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5577 }
5578
5579 put_cpu();
5580 return IRQ_HANDLED;
5581}
5582
5583/*
5584 * /proc/perfmon interface, for debug only
5585 */
5586
5587#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5588
5589static void *
5590pfm_proc_start(struct seq_file *m, loff_t *pos)
5591{
5592 if (*pos == 0) {
5593 return PFM_PROC_SHOW_HEADER;
5594 }
5595
5596 while (*pos <= nr_cpu_ids) {
5597 if (cpu_online(*pos - 1)) {
5598 return (void *)*pos;
5599 }
5600 ++*pos;
5601 }
5602 return NULL;
5603}
5604
5605static void *
5606pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5607{
5608 ++*pos;
5609 return pfm_proc_start(m, pos);
5610}
5611
5612static void
5613pfm_proc_stop(struct seq_file *m, void *v)
5614{
5615}
5616
5617static void
5618pfm_proc_show_header(struct seq_file *m)
5619{
5620 struct list_head * pos;
5621 pfm_buffer_fmt_t * entry;
5622 unsigned long flags;
5623
5624 seq_printf(m,
5625 "perfmon version : %u.%u\n"
5626 "model : %s\n"
5627 "fastctxsw : %s\n"
5628 "expert mode : %s\n"
5629 "ovfl_mask : 0x%lx\n"
5630 "PMU flags : 0x%x\n",
5631 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5632 pmu_conf->pmu_name,
5633 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5634 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5635 pmu_conf->ovfl_val,
5636 pmu_conf->flags);
5637
5638 LOCK_PFS(flags);
5639
5640 seq_printf(m,
5641 "proc_sessions : %u\n"
5642 "sys_sessions : %u\n"
5643 "sys_use_dbregs : %u\n"
5644 "ptrace_use_dbregs : %u\n",
5645 pfm_sessions.pfs_task_sessions,
5646 pfm_sessions.pfs_sys_sessions,
5647 pfm_sessions.pfs_sys_use_dbregs,
5648 pfm_sessions.pfs_ptrace_use_dbregs);
5649
5650 UNLOCK_PFS(flags);
5651
5652 spin_lock(&pfm_buffer_fmt_lock);
5653
5654 list_for_each(pos, &pfm_buffer_fmt_list) {
5655 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5656 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5657 entry->fmt_uuid[0],
5658 entry->fmt_uuid[1],
5659 entry->fmt_uuid[2],
5660 entry->fmt_uuid[3],
5661 entry->fmt_uuid[4],
5662 entry->fmt_uuid[5],
5663 entry->fmt_uuid[6],
5664 entry->fmt_uuid[7],
5665 entry->fmt_uuid[8],
5666 entry->fmt_uuid[9],
5667 entry->fmt_uuid[10],
5668 entry->fmt_uuid[11],
5669 entry->fmt_uuid[12],
5670 entry->fmt_uuid[13],
5671 entry->fmt_uuid[14],
5672 entry->fmt_uuid[15],
5673 entry->fmt_name);
5674 }
5675 spin_unlock(&pfm_buffer_fmt_lock);
5676
5677}
5678
5679static int
5680pfm_proc_show(struct seq_file *m, void *v)
5681{
5682 unsigned long psr;
5683 unsigned int i;
5684 int cpu;
5685
5686 if (v == PFM_PROC_SHOW_HEADER) {
5687 pfm_proc_show_header(m);
5688 return 0;
5689 }
5690
5691 /* show info for CPU (v - 1) */
5692
5693 cpu = (long)v - 1;
5694 seq_printf(m,
5695 "CPU%-2d overflow intrs : %lu\n"
5696 "CPU%-2d overflow cycles : %lu\n"
5697 "CPU%-2d overflow min : %lu\n"
5698 "CPU%-2d overflow max : %lu\n"
5699 "CPU%-2d smpl handler calls : %lu\n"
5700 "CPU%-2d smpl handler cycles : %lu\n"
5701 "CPU%-2d spurious intrs : %lu\n"
5702 "CPU%-2d replay intrs : %lu\n"
5703 "CPU%-2d syst_wide : %d\n"
5704 "CPU%-2d dcr_pp : %d\n"
5705 "CPU%-2d exclude idle : %d\n"
5706 "CPU%-2d owner : %d\n"
5707 "CPU%-2d context : %p\n"
5708 "CPU%-2d activations : %lu\n",
5709 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5710 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5711 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5712 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5713 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5714 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5715 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5716 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5717 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5718 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5719 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5720 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5721 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5722 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5723
5724 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5725
5726 psr = pfm_get_psr();
5727
5728 ia64_srlz_d();
5729
5730 seq_printf(m,
5731 "CPU%-2d psr : 0x%lx\n"
5732 "CPU%-2d pmc0 : 0x%lx\n",
5733 cpu, psr,
5734 cpu, ia64_get_pmc(0));
5735
5736 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5737 if (PMC_IS_COUNTING(i) == 0) continue;
5738 seq_printf(m,
5739 "CPU%-2d pmc%u : 0x%lx\n"
5740 "CPU%-2d pmd%u : 0x%lx\n",
5741 cpu, i, ia64_get_pmc(i),
5742 cpu, i, ia64_get_pmd(i));
5743 }
5744 }
5745 return 0;
5746}
5747
5748const struct seq_operations pfm_seq_ops = {
5749 .start = pfm_proc_start,
5750 .next = pfm_proc_next,
5751 .stop = pfm_proc_stop,
5752 .show = pfm_proc_show
5753};
5754
5755static int
5756pfm_proc_open(struct inode *inode, struct file *file)
5757{
5758 return seq_open(file, &pfm_seq_ops);
5759}
5760
5761
5762/*
5763 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5764 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5765 * is active or inactive based on mode. We must rely on the value in
5766 * local_cpu_data->pfm_syst_info
5767 */
5768void
5769pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5770{
5771 struct pt_regs *regs;
5772 unsigned long dcr;
5773 unsigned long dcr_pp;
5774
5775 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5776
5777 /*
5778 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5779 * on every CPU, so we can rely on the pid to identify the idle task.
5780 */
5781 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5782 regs = task_pt_regs(task);
5783 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5784 return;
5785 }
5786 /*
5787 * if monitoring has started
5788 */
5789 if (dcr_pp) {
5790 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5791 /*
5792 * context switching in?
5793 */
5794 if (is_ctxswin) {
5795 /* mask monitoring for the idle task */
5796 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5797 pfm_clear_psr_pp();
5798 ia64_srlz_i();
5799 return;
5800 }
5801 /*
5802 * context switching out
5803 * restore monitoring for next task
5804 *
5805 * Due to inlining this odd if-then-else construction generates
5806 * better code.
5807 */
5808 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5809 pfm_set_psr_pp();
5810 ia64_srlz_i();
5811 }
5812}
5813
5814#ifdef CONFIG_SMP
5815
5816static void
5817pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5818{
5819 struct task_struct *task = ctx->ctx_task;
5820
5821 ia64_psr(regs)->up = 0;
5822 ia64_psr(regs)->sp = 1;
5823
5824 if (GET_PMU_OWNER() == task) {
5825 DPRINT(("cleared ownership for [%d]\n",
5826 task_pid_nr(ctx->ctx_task)));
5827 SET_PMU_OWNER(NULL, NULL);
5828 }
5829
5830 /*
5831 * disconnect the task from the context and vice-versa
5832 */
5833 PFM_SET_WORK_PENDING(task, 0);
5834
5835 task->thread.pfm_context = NULL;
5836 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5837
5838 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5839}
5840
5841
5842/*
5843 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5844 */
5845void
5846pfm_save_regs(struct task_struct *task)
5847{
5848 pfm_context_t *ctx;
5849 unsigned long flags;
5850 u64 psr;
5851
5852
5853 ctx = PFM_GET_CTX(task);
5854 if (ctx == NULL) return;
5855
5856 /*
5857 * we always come here with interrupts ALREADY disabled by
5858 * the scheduler. So we simply need to protect against concurrent
5859 * access, not CPU concurrency.
5860 */
5861 flags = pfm_protect_ctx_ctxsw(ctx);
5862
5863 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5864 struct pt_regs *regs = task_pt_regs(task);
5865
5866 pfm_clear_psr_up();
5867
5868 pfm_force_cleanup(ctx, regs);
5869
5870 BUG_ON(ctx->ctx_smpl_hdr);
5871
5872 pfm_unprotect_ctx_ctxsw(ctx, flags);
5873
5874 pfm_context_free(ctx);
5875 return;
5876 }
5877
5878 /*
5879 * save current PSR: needed because we modify it
5880 */
5881 ia64_srlz_d();
5882 psr = pfm_get_psr();
5883
5884 BUG_ON(psr & (IA64_PSR_I));
5885
5886 /*
5887 * stop monitoring:
5888 * This is the last instruction which may generate an overflow
5889 *
5890 * We do not need to set psr.sp because, it is irrelevant in kernel.
5891 * It will be restored from ipsr when going back to user level
5892 */
5893 pfm_clear_psr_up();
5894
5895 /*
5896 * keep a copy of psr.up (for reload)
5897 */
5898 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5899
5900 /*
5901 * release ownership of this PMU.
5902 * PM interrupts are masked, so nothing
5903 * can happen.
5904 */
5905 SET_PMU_OWNER(NULL, NULL);
5906
5907 /*
5908 * we systematically save the PMD as we have no
5909 * guarantee we will be schedule at that same
5910 * CPU again.
5911 */
5912 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5913
5914 /*
5915 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5916 * we will need it on the restore path to check
5917 * for pending overflow.
5918 */
5919 ctx->th_pmcs[0] = ia64_get_pmc(0);
5920
5921 /*
5922 * unfreeze PMU if had pending overflows
5923 */
5924 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5925
5926 /*
5927 * finally, allow context access.
5928 * interrupts will still be masked after this call.
5929 */
5930 pfm_unprotect_ctx_ctxsw(ctx, flags);
5931}
5932
5933#else /* !CONFIG_SMP */
5934void
5935pfm_save_regs(struct task_struct *task)
5936{
5937 pfm_context_t *ctx;
5938 u64 psr;
5939
5940 ctx = PFM_GET_CTX(task);
5941 if (ctx == NULL) return;
5942
5943 /*
5944 * save current PSR: needed because we modify it
5945 */
5946 psr = pfm_get_psr();
5947
5948 BUG_ON(psr & (IA64_PSR_I));
5949
5950 /*
5951 * stop monitoring:
5952 * This is the last instruction which may generate an overflow
5953 *
5954 * We do not need to set psr.sp because, it is irrelevant in kernel.
5955 * It will be restored from ipsr when going back to user level
5956 */
5957 pfm_clear_psr_up();
5958
5959 /*
5960 * keep a copy of psr.up (for reload)
5961 */
5962 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5963}
5964
5965static void
5966pfm_lazy_save_regs (struct task_struct *task)
5967{
5968 pfm_context_t *ctx;
5969 unsigned long flags;
5970
5971 { u64 psr = pfm_get_psr();
5972 BUG_ON(psr & IA64_PSR_UP);
5973 }
5974
5975 ctx = PFM_GET_CTX(task);
5976
5977 /*
5978 * we need to mask PMU overflow here to
5979 * make sure that we maintain pmc0 until
5980 * we save it. overflow interrupts are
5981 * treated as spurious if there is no
5982 * owner.
5983 *
5984 * XXX: I don't think this is necessary
5985 */
5986 PROTECT_CTX(ctx,flags);
5987
5988 /*
5989 * release ownership of this PMU.
5990 * must be done before we save the registers.
5991 *
5992 * after this call any PMU interrupt is treated
5993 * as spurious.
5994 */
5995 SET_PMU_OWNER(NULL, NULL);
5996
5997 /*
5998 * save all the pmds we use
5999 */
6000 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6001
6002 /*
6003 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6004 * it is needed to check for pended overflow
6005 * on the restore path
6006 */
6007 ctx->th_pmcs[0] = ia64_get_pmc(0);
6008
6009 /*
6010 * unfreeze PMU if had pending overflows
6011 */
6012 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6013
6014 /*
6015 * now get can unmask PMU interrupts, they will
6016 * be treated as purely spurious and we will not
6017 * lose any information
6018 */
6019 UNPROTECT_CTX(ctx,flags);
6020}
6021#endif /* CONFIG_SMP */
6022
6023#ifdef CONFIG_SMP
6024/*
6025 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6026 */
6027void
6028pfm_load_regs (struct task_struct *task)
6029{
6030 pfm_context_t *ctx;
6031 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6032 unsigned long flags;
6033 u64 psr, psr_up;
6034 int need_irq_resend;
6035
6036 ctx = PFM_GET_CTX(task);
6037 if (unlikely(ctx == NULL)) return;
6038
6039 BUG_ON(GET_PMU_OWNER());
6040
6041 /*
6042 * possible on unload
6043 */
6044 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6045
6046 /*
6047 * we always come here with interrupts ALREADY disabled by
6048 * the scheduler. So we simply need to protect against concurrent
6049 * access, not CPU concurrency.
6050 */
6051 flags = pfm_protect_ctx_ctxsw(ctx);
6052 psr = pfm_get_psr();
6053
6054 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6055
6056 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6057 BUG_ON(psr & IA64_PSR_I);
6058
6059 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6060 struct pt_regs *regs = task_pt_regs(task);
6061
6062 BUG_ON(ctx->ctx_smpl_hdr);
6063
6064 pfm_force_cleanup(ctx, regs);
6065
6066 pfm_unprotect_ctx_ctxsw(ctx, flags);
6067
6068 /*
6069 * this one (kmalloc'ed) is fine with interrupts disabled
6070 */
6071 pfm_context_free(ctx);
6072
6073 return;
6074 }
6075
6076 /*
6077 * we restore ALL the debug registers to avoid picking up
6078 * stale state.
6079 */
6080 if (ctx->ctx_fl_using_dbreg) {
6081 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6082 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6083 }
6084 /*
6085 * retrieve saved psr.up
6086 */
6087 psr_up = ctx->ctx_saved_psr_up;
6088
6089 /*
6090 * if we were the last user of the PMU on that CPU,
6091 * then nothing to do except restore psr
6092 */
6093 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6094
6095 /*
6096 * retrieve partial reload masks (due to user modifications)
6097 */
6098 pmc_mask = ctx->ctx_reload_pmcs[0];
6099 pmd_mask = ctx->ctx_reload_pmds[0];
6100
6101 } else {
6102 /*
6103 * To avoid leaking information to the user level when psr.sp=0,
6104 * we must reload ALL implemented pmds (even the ones we don't use).
6105 * In the kernel we only allow PFM_READ_PMDS on registers which
6106 * we initialized or requested (sampling) so there is no risk there.
6107 */
6108 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6109
6110 /*
6111 * ALL accessible PMCs are systematically reloaded, unused registers
6112 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6113 * up stale configuration.
6114 *
6115 * PMC0 is never in the mask. It is always restored separately.
6116 */
6117 pmc_mask = ctx->ctx_all_pmcs[0];
6118 }
6119 /*
6120 * when context is MASKED, we will restore PMC with plm=0
6121 * and PMD with stale information, but that's ok, nothing
6122 * will be captured.
6123 *
6124 * XXX: optimize here
6125 */
6126 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6127 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6128
6129 /*
6130 * check for pending overflow at the time the state
6131 * was saved.
6132 */
6133 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6134 /*
6135 * reload pmc0 with the overflow information
6136 * On McKinley PMU, this will trigger a PMU interrupt
6137 */
6138 ia64_set_pmc(0, ctx->th_pmcs[0]);
6139 ia64_srlz_d();
6140 ctx->th_pmcs[0] = 0UL;
6141
6142 /*
6143 * will replay the PMU interrupt
6144 */
6145 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6146
6147 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6148 }
6149
6150 /*
6151 * we just did a reload, so we reset the partial reload fields
6152 */
6153 ctx->ctx_reload_pmcs[0] = 0UL;
6154 ctx->ctx_reload_pmds[0] = 0UL;
6155
6156 SET_LAST_CPU(ctx, smp_processor_id());
6157
6158 /*
6159 * dump activation value for this PMU
6160 */
6161 INC_ACTIVATION();
6162 /*
6163 * record current activation for this context
6164 */
6165 SET_ACTIVATION(ctx);
6166
6167 /*
6168 * establish new ownership.
6169 */
6170 SET_PMU_OWNER(task, ctx);
6171
6172 /*
6173 * restore the psr.up bit. measurement
6174 * is active again.
6175 * no PMU interrupt can happen at this point
6176 * because we still have interrupts disabled.
6177 */
6178 if (likely(psr_up)) pfm_set_psr_up();
6179
6180 /*
6181 * allow concurrent access to context
6182 */
6183 pfm_unprotect_ctx_ctxsw(ctx, flags);
6184}
6185#else /* !CONFIG_SMP */
6186/*
6187 * reload PMU state for UP kernels
6188 * in 2.5 we come here with interrupts disabled
6189 */
6190void
6191pfm_load_regs (struct task_struct *task)
6192{
6193 pfm_context_t *ctx;
6194 struct task_struct *owner;
6195 unsigned long pmd_mask, pmc_mask;
6196 u64 psr, psr_up;
6197 int need_irq_resend;
6198
6199 owner = GET_PMU_OWNER();
6200 ctx = PFM_GET_CTX(task);
6201 psr = pfm_get_psr();
6202
6203 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6204 BUG_ON(psr & IA64_PSR_I);
6205
6206 /*
6207 * we restore ALL the debug registers to avoid picking up
6208 * stale state.
6209 *
6210 * This must be done even when the task is still the owner
6211 * as the registers may have been modified via ptrace()
6212 * (not perfmon) by the previous task.
6213 */
6214 if (ctx->ctx_fl_using_dbreg) {
6215 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6216 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6217 }
6218
6219 /*
6220 * retrieved saved psr.up
6221 */
6222 psr_up = ctx->ctx_saved_psr_up;
6223 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6224
6225 /*
6226 * short path, our state is still there, just
6227 * need to restore psr and we go
6228 *
6229 * we do not touch either PMC nor PMD. the psr is not touched
6230 * by the overflow_handler. So we are safe w.r.t. to interrupt
6231 * concurrency even without interrupt masking.
6232 */
6233 if (likely(owner == task)) {
6234 if (likely(psr_up)) pfm_set_psr_up();
6235 return;
6236 }
6237
6238 /*
6239 * someone else is still using the PMU, first push it out and
6240 * then we'll be able to install our stuff !
6241 *
6242 * Upon return, there will be no owner for the current PMU
6243 */
6244 if (owner) pfm_lazy_save_regs(owner);
6245
6246 /*
6247 * To avoid leaking information to the user level when psr.sp=0,
6248 * we must reload ALL implemented pmds (even the ones we don't use).
6249 * In the kernel we only allow PFM_READ_PMDS on registers which
6250 * we initialized or requested (sampling) so there is no risk there.
6251 */
6252 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6253
6254 /*
6255 * ALL accessible PMCs are systematically reloaded, unused registers
6256 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6257 * up stale configuration.
6258 *
6259 * PMC0 is never in the mask. It is always restored separately
6260 */
6261 pmc_mask = ctx->ctx_all_pmcs[0];
6262
6263 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6264 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6265
6266 /*
6267 * check for pending overflow at the time the state
6268 * was saved.
6269 */
6270 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6271 /*
6272 * reload pmc0 with the overflow information
6273 * On McKinley PMU, this will trigger a PMU interrupt
6274 */
6275 ia64_set_pmc(0, ctx->th_pmcs[0]);
6276 ia64_srlz_d();
6277
6278 ctx->th_pmcs[0] = 0UL;
6279
6280 /*
6281 * will replay the PMU interrupt
6282 */
6283 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6284
6285 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6286 }
6287
6288 /*
6289 * establish new ownership.
6290 */
6291 SET_PMU_OWNER(task, ctx);
6292
6293 /*
6294 * restore the psr.up bit. measurement
6295 * is active again.
6296 * no PMU interrupt can happen at this point
6297 * because we still have interrupts disabled.
6298 */
6299 if (likely(psr_up)) pfm_set_psr_up();
6300}
6301#endif /* CONFIG_SMP */
6302
6303/*
6304 * this function assumes monitoring is stopped
6305 */
6306static void
6307pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6308{
6309 u64 pmc0;
6310 unsigned long mask2, val, pmd_val, ovfl_val;
6311 int i, can_access_pmu = 0;
6312 int is_self;
6313
6314 /*
6315 * is the caller the task being monitored (or which initiated the
6316 * session for system wide measurements)
6317 */
6318 is_self = ctx->ctx_task == task ? 1 : 0;
6319
6320 /*
6321 * can access PMU is task is the owner of the PMU state on the current CPU
6322 * or if we are running on the CPU bound to the context in system-wide mode
6323 * (that is not necessarily the task the context is attached to in this mode).
6324 * In system-wide we always have can_access_pmu true because a task running on an
6325 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6326 */
6327 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6328 if (can_access_pmu) {
6329 /*
6330 * Mark the PMU as not owned
6331 * This will cause the interrupt handler to do nothing in case an overflow
6332 * interrupt was in-flight
6333 * This also guarantees that pmc0 will contain the final state
6334 * It virtually gives us full control on overflow processing from that point
6335 * on.
6336 */
6337 SET_PMU_OWNER(NULL, NULL);
6338 DPRINT(("releasing ownership\n"));
6339
6340 /*
6341 * read current overflow status:
6342 *
6343 * we are guaranteed to read the final stable state
6344 */
6345 ia64_srlz_d();
6346 pmc0 = ia64_get_pmc(0); /* slow */
6347
6348 /*
6349 * reset freeze bit, overflow status information destroyed
6350 */
6351 pfm_unfreeze_pmu();
6352 } else {
6353 pmc0 = ctx->th_pmcs[0];
6354 /*
6355 * clear whatever overflow status bits there were
6356 */
6357 ctx->th_pmcs[0] = 0;
6358 }
6359 ovfl_val = pmu_conf->ovfl_val;
6360 /*
6361 * we save all the used pmds
6362 * we take care of overflows for counting PMDs
6363 *
6364 * XXX: sampling situation is not taken into account here
6365 */
6366 mask2 = ctx->ctx_used_pmds[0];
6367
6368 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6369
6370 for (i = 0; mask2; i++, mask2>>=1) {
6371
6372 /* skip non used pmds */
6373 if ((mask2 & 0x1) == 0) continue;
6374
6375 /*
6376 * can access PMU always true in system wide mode
6377 */
6378 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6379
6380 if (PMD_IS_COUNTING(i)) {
6381 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6382 task_pid_nr(task),
6383 i,
6384 ctx->ctx_pmds[i].val,
6385 val & ovfl_val));
6386
6387 /*
6388 * we rebuild the full 64 bit value of the counter
6389 */
6390 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6391
6392 /*
6393 * now everything is in ctx_pmds[] and we need
6394 * to clear the saved context from save_regs() such that
6395 * pfm_read_pmds() gets the correct value
6396 */
6397 pmd_val = 0UL;
6398
6399 /*
6400 * take care of overflow inline
6401 */
6402 if (pmc0 & (1UL << i)) {
6403 val += 1 + ovfl_val;
6404 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6405 }
6406 }
6407
6408 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6409
6410 if (is_self) ctx->th_pmds[i] = pmd_val;
6411
6412 ctx->ctx_pmds[i].val = val;
6413 }
6414}
6415
6416static struct irqaction perfmon_irqaction = {
6417 .handler = pfm_interrupt_handler,
6418 .flags = IRQF_DISABLED,
6419 .name = "perfmon"
6420};
6421
6422static void
6423pfm_alt_save_pmu_state(void *data)
6424{
6425 struct pt_regs *regs;
6426
6427 regs = task_pt_regs(current);
6428
6429 DPRINT(("called\n"));
6430
6431 /*
6432 * should not be necessary but
6433 * let's take not risk
6434 */
6435 pfm_clear_psr_up();
6436 pfm_clear_psr_pp();
6437 ia64_psr(regs)->pp = 0;
6438
6439 /*
6440 * This call is required
6441 * May cause a spurious interrupt on some processors
6442 */
6443 pfm_freeze_pmu();
6444
6445 ia64_srlz_d();
6446}
6447
6448void
6449pfm_alt_restore_pmu_state(void *data)
6450{
6451 struct pt_regs *regs;
6452
6453 regs = task_pt_regs(current);
6454
6455 DPRINT(("called\n"));
6456
6457 /*
6458 * put PMU back in state expected
6459 * by perfmon
6460 */
6461 pfm_clear_psr_up();
6462 pfm_clear_psr_pp();
6463 ia64_psr(regs)->pp = 0;
6464
6465 /*
6466 * perfmon runs with PMU unfrozen at all times
6467 */
6468 pfm_unfreeze_pmu();
6469
6470 ia64_srlz_d();
6471}
6472
6473int
6474pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6475{
6476 int ret, i;
6477 int reserve_cpu;
6478
6479 /* some sanity checks */
6480 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6481
6482 /* do the easy test first */
6483 if (pfm_alt_intr_handler) return -EBUSY;
6484
6485 /* one at a time in the install or remove, just fail the others */
6486 if (!spin_trylock(&pfm_alt_install_check)) {
6487 return -EBUSY;
6488 }
6489
6490 /* reserve our session */
6491 for_each_online_cpu(reserve_cpu) {
6492 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6493 if (ret) goto cleanup_reserve;
6494 }
6495
6496 /* save the current system wide pmu states */
6497 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6498 if (ret) {
6499 DPRINT(("on_each_cpu() failed: %d\n", ret));
6500 goto cleanup_reserve;
6501 }
6502
6503 /* officially change to the alternate interrupt handler */
6504 pfm_alt_intr_handler = hdl;
6505
6506 spin_unlock(&pfm_alt_install_check);
6507
6508 return 0;
6509
6510cleanup_reserve:
6511 for_each_online_cpu(i) {
6512 /* don't unreserve more than we reserved */
6513 if (i >= reserve_cpu) break;
6514
6515 pfm_unreserve_session(NULL, 1, i);
6516 }
6517
6518 spin_unlock(&pfm_alt_install_check);
6519
6520 return ret;
6521}
6522EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6523
6524int
6525pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6526{
6527 int i;
6528 int ret;
6529
6530 if (hdl == NULL) return -EINVAL;
6531
6532 /* cannot remove someone else's handler! */
6533 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6534
6535 /* one at a time in the install or remove, just fail the others */
6536 if (!spin_trylock(&pfm_alt_install_check)) {
6537 return -EBUSY;
6538 }
6539
6540 pfm_alt_intr_handler = NULL;
6541
6542 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6543 if (ret) {
6544 DPRINT(("on_each_cpu() failed: %d\n", ret));
6545 }
6546
6547 for_each_online_cpu(i) {
6548 pfm_unreserve_session(NULL, 1, i);
6549 }
6550
6551 spin_unlock(&pfm_alt_install_check);
6552
6553 return 0;
6554}
6555EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6556
6557/*
6558 * perfmon initialization routine, called from the initcall() table
6559 */
6560static int init_pfm_fs(void);
6561
6562static int __init
6563pfm_probe_pmu(void)
6564{
6565 pmu_config_t **p;
6566 int family;
6567
6568 family = local_cpu_data->family;
6569 p = pmu_confs;
6570
6571 while(*p) {
6572 if ((*p)->probe) {
6573 if ((*p)->probe() == 0) goto found;
6574 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6575 goto found;
6576 }
6577 p++;
6578 }
6579 return -1;
6580found:
6581 pmu_conf = *p;
6582 return 0;
6583}
6584
6585static const struct file_operations pfm_proc_fops = {
6586 .open = pfm_proc_open,
6587 .read = seq_read,
6588 .llseek = seq_lseek,
6589 .release = seq_release,
6590};
6591
6592int __init
6593pfm_init(void)
6594{
6595 unsigned int n, n_counters, i;
6596
6597 printk("perfmon: version %u.%u IRQ %u\n",
6598 PFM_VERSION_MAJ,
6599 PFM_VERSION_MIN,
6600 IA64_PERFMON_VECTOR);
6601
6602 if (pfm_probe_pmu()) {
6603 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6604 local_cpu_data->family);
6605 return -ENODEV;
6606 }
6607
6608 /*
6609 * compute the number of implemented PMD/PMC from the
6610 * description tables
6611 */
6612 n = 0;
6613 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6614 if (PMC_IS_IMPL(i) == 0) continue;
6615 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6616 n++;
6617 }
6618 pmu_conf->num_pmcs = n;
6619
6620 n = 0; n_counters = 0;
6621 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6622 if (PMD_IS_IMPL(i) == 0) continue;
6623 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6624 n++;
6625 if (PMD_IS_COUNTING(i)) n_counters++;
6626 }
6627 pmu_conf->num_pmds = n;
6628 pmu_conf->num_counters = n_counters;
6629
6630 /*
6631 * sanity checks on the number of debug registers
6632 */
6633 if (pmu_conf->use_rr_dbregs) {
6634 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6635 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6636 pmu_conf = NULL;
6637 return -1;
6638 }
6639 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6640 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6641 pmu_conf = NULL;
6642 return -1;
6643 }
6644 }
6645
6646 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6647 pmu_conf->pmu_name,
6648 pmu_conf->num_pmcs,
6649 pmu_conf->num_pmds,
6650 pmu_conf->num_counters,
6651 ffz(pmu_conf->ovfl_val));
6652
6653 /* sanity check */
6654 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6655 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6656 pmu_conf = NULL;
6657 return -1;
6658 }
6659
6660 /*
6661 * create /proc/perfmon (mostly for debugging purposes)
6662 */
6663 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6664 if (perfmon_dir == NULL) {
6665 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6666 pmu_conf = NULL;
6667 return -1;
6668 }
6669
6670 /*
6671 * create /proc/sys/kernel/perfmon (for debugging purposes)
6672 */
6673 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6674
6675 /*
6676 * initialize all our spinlocks
6677 */
6678 spin_lock_init(&pfm_sessions.pfs_lock);
6679 spin_lock_init(&pfm_buffer_fmt_lock);
6680
6681 init_pfm_fs();
6682
6683 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6684
6685 return 0;
6686}
6687
6688__initcall(pfm_init);
6689
6690/*
6691 * this function is called before pfm_init()
6692 */
6693void
6694pfm_init_percpu (void)
6695{
6696 static int first_time=1;
6697 /*
6698 * make sure no measurement is active
6699 * (may inherit programmed PMCs from EFI).
6700 */
6701 pfm_clear_psr_pp();
6702 pfm_clear_psr_up();
6703
6704 /*
6705 * we run with the PMU not frozen at all times
6706 */
6707 pfm_unfreeze_pmu();
6708
6709 if (first_time) {
6710 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6711 first_time=0;
6712 }
6713
6714 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6715 ia64_srlz_d();
6716}
6717
6718/*
6719 * used for debug purposes only
6720 */
6721void
6722dump_pmu_state(const char *from)
6723{
6724 struct task_struct *task;
6725 struct pt_regs *regs;
6726 pfm_context_t *ctx;
6727 unsigned long psr, dcr, info, flags;
6728 int i, this_cpu;
6729
6730 local_irq_save(flags);
6731
6732 this_cpu = smp_processor_id();
6733 regs = task_pt_regs(current);
6734 info = PFM_CPUINFO_GET();
6735 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6736
6737 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6738 local_irq_restore(flags);
6739 return;
6740 }
6741
6742 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6743 this_cpu,
6744 from,
6745 task_pid_nr(current),
6746 regs->cr_iip,
6747 current->comm);
6748
6749 task = GET_PMU_OWNER();
6750 ctx = GET_PMU_CTX();
6751
6752 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6753
6754 psr = pfm_get_psr();
6755
6756 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6757 this_cpu,
6758 ia64_get_pmc(0),
6759 psr & IA64_PSR_PP ? 1 : 0,
6760 psr & IA64_PSR_UP ? 1 : 0,
6761 dcr & IA64_DCR_PP ? 1 : 0,
6762 info,
6763 ia64_psr(regs)->up,
6764 ia64_psr(regs)->pp);
6765
6766 ia64_psr(regs)->up = 0;
6767 ia64_psr(regs)->pp = 0;
6768
6769 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6770 if (PMC_IS_IMPL(i) == 0) continue;
6771 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6772 }
6773
6774 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6775 if (PMD_IS_IMPL(i) == 0) continue;
6776 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6777 }
6778
6779 if (ctx) {
6780 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6781 this_cpu,
6782 ctx->ctx_state,
6783 ctx->ctx_smpl_vaddr,
6784 ctx->ctx_smpl_hdr,
6785 ctx->ctx_msgq_head,
6786 ctx->ctx_msgq_tail,
6787 ctx->ctx_saved_psr_up);
6788 }
6789 local_irq_restore(flags);
6790}
6791
6792/*
6793 * called from process.c:copy_thread(). task is new child.
6794 */
6795void
6796pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6797{
6798 struct thread_struct *thread;
6799
6800 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6801
6802 thread = &task->thread;
6803
6804 /*
6805 * cut links inherited from parent (current)
6806 */
6807 thread->pfm_context = NULL;
6808
6809 PFM_SET_WORK_PENDING(task, 0);
6810
6811 /*
6812 * the psr bits are already set properly in copy_threads()
6813 */
6814}
6815#else /* !CONFIG_PERFMON */
6816asmlinkage long
6817sys_perfmonctl (int fd, int cmd, void *arg, int count)
6818{
6819 return -ENOSYS;
6820}
6821#endif /* CONFIG_PERFMON */