Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
63#define NORMAL 0
64#define COHERENT 1
65
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132{
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136}
137
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161{
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165}
166
167static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173}
174
175static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181}
182
183static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184{
185 return dma_addr == ARM_MAPPING_ERROR;
186}
187
188const struct dma_map_ops arm_dma_ops = {
189 .alloc = arm_dma_alloc,
190 .free = arm_dma_free,
191 .mmap = arm_dma_mmap,
192 .get_sgtable = arm_dma_get_sgtable,
193 .map_page = arm_dma_map_page,
194 .unmap_page = arm_dma_unmap_page,
195 .map_sg = arm_dma_map_sg,
196 .unmap_sg = arm_dma_unmap_sg,
197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
198 .sync_single_for_device = arm_dma_sync_single_for_device,
199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
200 .sync_sg_for_device = arm_dma_sync_sg_for_device,
201 .mapping_error = arm_dma_mapping_error,
202 .dma_supported = arm_dma_supported,
203};
204EXPORT_SYMBOL(arm_dma_ops);
205
206static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 dma_addr_t handle, unsigned long attrs);
210static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 unsigned long attrs);
213
214const struct dma_map_ops arm_coherent_dma_ops = {
215 .alloc = arm_coherent_dma_alloc,
216 .free = arm_coherent_dma_free,
217 .mmap = arm_coherent_dma_mmap,
218 .get_sgtable = arm_dma_get_sgtable,
219 .map_page = arm_coherent_dma_map_page,
220 .map_sg = arm_dma_map_sg,
221 .mapping_error = arm_dma_mapping_error,
222 .dma_supported = arm_dma_supported,
223};
224EXPORT_SYMBOL(arm_coherent_dma_ops);
225
226static int __dma_supported(struct device *dev, u64 mask, bool warn)
227{
228 unsigned long max_dma_pfn;
229
230 /*
231 * If the mask allows for more memory than we can address,
232 * and we actually have that much memory, then we must
233 * indicate that DMA to this device is not supported.
234 */
235 if (sizeof(mask) != sizeof(dma_addr_t) &&
236 mask > (dma_addr_t)~0 &&
237 dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 if (warn) {
239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 mask);
241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 }
243 return 0;
244 }
245
246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247
248 /*
249 * Translate the device's DMA mask to a PFN limit. This
250 * PFN number includes the page which we can DMA to.
251 */
252 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 if (warn)
254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 mask,
256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 max_dma_pfn + 1);
258 return 0;
259 }
260
261 return 1;
262}
263
264static u64 get_coherent_dma_mask(struct device *dev)
265{
266 u64 mask = (u64)DMA_BIT_MASK(32);
267
268 if (dev) {
269 mask = dev->coherent_dma_mask;
270
271 /*
272 * Sanity check the DMA mask - it must be non-zero, and
273 * must be able to be satisfied by a DMA allocation.
274 */
275 if (mask == 0) {
276 dev_warn(dev, "coherent DMA mask is unset\n");
277 return 0;
278 }
279
280 if (!__dma_supported(dev, mask, true))
281 return 0;
282 }
283
284 return mask;
285}
286
287static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288{
289 /*
290 * Ensure that the allocated pages are zeroed, and that any data
291 * lurking in the kernel direct-mapped region is invalidated.
292 */
293 if (PageHighMem(page)) {
294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 phys_addr_t end = base + size;
296 while (size > 0) {
297 void *ptr = kmap_atomic(page);
298 memset(ptr, 0, PAGE_SIZE);
299 if (coherent_flag != COHERENT)
300 dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 kunmap_atomic(ptr);
302 page++;
303 size -= PAGE_SIZE;
304 }
305 if (coherent_flag != COHERENT)
306 outer_flush_range(base, end);
307 } else {
308 void *ptr = page_address(page);
309 memset(ptr, 0, size);
310 if (coherent_flag != COHERENT) {
311 dmac_flush_range(ptr, ptr + size);
312 outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 }
314 }
315}
316
317/*
318 * Allocate a DMA buffer for 'dev' of size 'size' using the
319 * specified gfp mask. Note that 'size' must be page aligned.
320 */
321static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 gfp_t gfp, int coherent_flag)
323{
324 unsigned long order = get_order(size);
325 struct page *page, *p, *e;
326
327 page = alloc_pages(gfp, order);
328 if (!page)
329 return NULL;
330
331 /*
332 * Now split the huge page and free the excess pages
333 */
334 split_page(page, order);
335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 __free_page(p);
337
338 __dma_clear_buffer(page, size, coherent_flag);
339
340 return page;
341}
342
343/*
344 * Free a DMA buffer. 'size' must be page aligned.
345 */
346static void __dma_free_buffer(struct page *page, size_t size)
347{
348 struct page *e = page + (size >> PAGE_SHIFT);
349
350 while (page < e) {
351 __free_page(page);
352 page++;
353 }
354}
355
356static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 pgprot_t prot, struct page **ret_page,
358 const void *caller, bool want_vaddr,
359 int coherent_flag, gfp_t gfp);
360
361static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 pgprot_t prot, struct page **ret_page,
363 const void *caller, bool want_vaddr);
364
365static void *
366__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 const void *caller)
368{
369 /*
370 * DMA allocation can be mapped to user space, so lets
371 * set VM_USERMAP flags too.
372 */
373 return dma_common_contiguous_remap(page, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 prot, caller);
376}
377
378static void __dma_free_remap(void *cpu_addr, size_t size)
379{
380 dma_common_free_remap(cpu_addr, size,
381 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382}
383
384#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
385static struct gen_pool *atomic_pool __ro_after_init;
386
387static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388
389static int __init early_coherent_pool(char *p)
390{
391 atomic_pool_size = memparse(p, &p);
392 return 0;
393}
394early_param("coherent_pool", early_coherent_pool);
395
396/*
397 * Initialise the coherent pool for atomic allocations.
398 */
399static int __init atomic_pool_init(void)
400{
401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402 gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 struct page *page;
404 void *ptr;
405
406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
407 if (!atomic_pool)
408 goto out;
409 /*
410 * The atomic pool is only used for non-coherent allocations
411 * so we must pass NORMAL for coherent_flag.
412 */
413 if (dev_get_cma_area(NULL))
414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 &page, atomic_pool_init, true, NORMAL,
416 GFP_KERNEL);
417 else
418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419 &page, atomic_pool_init, true);
420 if (ptr) {
421 int ret;
422
423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
424 page_to_phys(page),
425 atomic_pool_size, -1);
426 if (ret)
427 goto destroy_genpool;
428
429 gen_pool_set_algo(atomic_pool,
430 gen_pool_first_fit_order_align,
431 NULL);
432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433 atomic_pool_size / 1024);
434 return 0;
435 }
436
437destroy_genpool:
438 gen_pool_destroy(atomic_pool);
439 atomic_pool = NULL;
440out:
441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442 atomic_pool_size / 1024);
443 return -ENOMEM;
444}
445/*
446 * CMA is activated by core_initcall, so we must be called after it.
447 */
448postcore_initcall(atomic_pool_init);
449
450struct dma_contig_early_reserve {
451 phys_addr_t base;
452 unsigned long size;
453};
454
455static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
456
457static int dma_mmu_remap_num __initdata;
458
459void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
460{
461 dma_mmu_remap[dma_mmu_remap_num].base = base;
462 dma_mmu_remap[dma_mmu_remap_num].size = size;
463 dma_mmu_remap_num++;
464}
465
466void __init dma_contiguous_remap(void)
467{
468 int i;
469 for (i = 0; i < dma_mmu_remap_num; i++) {
470 phys_addr_t start = dma_mmu_remap[i].base;
471 phys_addr_t end = start + dma_mmu_remap[i].size;
472 struct map_desc map;
473 unsigned long addr;
474
475 if (end > arm_lowmem_limit)
476 end = arm_lowmem_limit;
477 if (start >= end)
478 continue;
479
480 map.pfn = __phys_to_pfn(start);
481 map.virtual = __phys_to_virt(start);
482 map.length = end - start;
483 map.type = MT_MEMORY_DMA_READY;
484
485 /*
486 * Clear previous low-memory mapping to ensure that the
487 * TLB does not see any conflicting entries, then flush
488 * the TLB of the old entries before creating new mappings.
489 *
490 * This ensures that any speculatively loaded TLB entries
491 * (even though they may be rare) can not cause any problems,
492 * and ensures that this code is architecturally compliant.
493 */
494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
495 addr += PMD_SIZE)
496 pmd_clear(pmd_off_k(addr));
497
498 flush_tlb_kernel_range(__phys_to_virt(start),
499 __phys_to_virt(end));
500
501 iotable_init(&map, 1);
502 }
503}
504
505static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
506 void *data)
507{
508 struct page *page = virt_to_page(addr);
509 pgprot_t prot = *(pgprot_t *)data;
510
511 set_pte_ext(pte, mk_pte(page, prot), 0);
512 return 0;
513}
514
515static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
516{
517 unsigned long start = (unsigned long) page_address(page);
518 unsigned end = start + size;
519
520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
521 flush_tlb_kernel_range(start, end);
522}
523
524static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
525 pgprot_t prot, struct page **ret_page,
526 const void *caller, bool want_vaddr)
527{
528 struct page *page;
529 void *ptr = NULL;
530 /*
531 * __alloc_remap_buffer is only called when the device is
532 * non-coherent
533 */
534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
535 if (!page)
536 return NULL;
537 if (!want_vaddr)
538 goto out;
539
540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
541 if (!ptr) {
542 __dma_free_buffer(page, size);
543 return NULL;
544 }
545
546 out:
547 *ret_page = page;
548 return ptr;
549}
550
551static void *__alloc_from_pool(size_t size, struct page **ret_page)
552{
553 unsigned long val;
554 void *ptr = NULL;
555
556 if (!atomic_pool) {
557 WARN(1, "coherent pool not initialised!\n");
558 return NULL;
559 }
560
561 val = gen_pool_alloc(atomic_pool, size);
562 if (val) {
563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
564
565 *ret_page = phys_to_page(phys);
566 ptr = (void *)val;
567 }
568
569 return ptr;
570}
571
572static bool __in_atomic_pool(void *start, size_t size)
573{
574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
575}
576
577static int __free_from_pool(void *start, size_t size)
578{
579 if (!__in_atomic_pool(start, size))
580 return 0;
581
582 gen_pool_free(atomic_pool, (unsigned long)start, size);
583
584 return 1;
585}
586
587static void *__alloc_from_contiguous(struct device *dev, size_t size,
588 pgprot_t prot, struct page **ret_page,
589 const void *caller, bool want_vaddr,
590 int coherent_flag, gfp_t gfp)
591{
592 unsigned long order = get_order(size);
593 size_t count = size >> PAGE_SHIFT;
594 struct page *page;
595 void *ptr = NULL;
596
597 page = dma_alloc_from_contiguous(dev, count, order, gfp);
598 if (!page)
599 return NULL;
600
601 __dma_clear_buffer(page, size, coherent_flag);
602
603 if (!want_vaddr)
604 goto out;
605
606 if (PageHighMem(page)) {
607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
608 if (!ptr) {
609 dma_release_from_contiguous(dev, page, count);
610 return NULL;
611 }
612 } else {
613 __dma_remap(page, size, prot);
614 ptr = page_address(page);
615 }
616
617 out:
618 *ret_page = page;
619 return ptr;
620}
621
622static void __free_from_contiguous(struct device *dev, struct page *page,
623 void *cpu_addr, size_t size, bool want_vaddr)
624{
625 if (want_vaddr) {
626 if (PageHighMem(page))
627 __dma_free_remap(cpu_addr, size);
628 else
629 __dma_remap(page, size, PAGE_KERNEL);
630 }
631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
632}
633
634static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
635{
636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
637 pgprot_writecombine(prot) :
638 pgprot_dmacoherent(prot);
639 return prot;
640}
641
642static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
643 struct page **ret_page)
644{
645 struct page *page;
646 /* __alloc_simple_buffer is only called when the device is coherent */
647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
648 if (!page)
649 return NULL;
650
651 *ret_page = page;
652 return page_address(page);
653}
654
655static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
656 struct page **ret_page)
657{
658 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
659 ret_page);
660}
661
662static void simple_allocator_free(struct arm_dma_free_args *args)
663{
664 __dma_free_buffer(args->page, args->size);
665}
666
667static struct arm_dma_allocator simple_allocator = {
668 .alloc = simple_allocator_alloc,
669 .free = simple_allocator_free,
670};
671
672static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
673 struct page **ret_page)
674{
675 return __alloc_from_contiguous(args->dev, args->size, args->prot,
676 ret_page, args->caller,
677 args->want_vaddr, args->coherent_flag,
678 args->gfp);
679}
680
681static void cma_allocator_free(struct arm_dma_free_args *args)
682{
683 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
684 args->size, args->want_vaddr);
685}
686
687static struct arm_dma_allocator cma_allocator = {
688 .alloc = cma_allocator_alloc,
689 .free = cma_allocator_free,
690};
691
692static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
693 struct page **ret_page)
694{
695 return __alloc_from_pool(args->size, ret_page);
696}
697
698static void pool_allocator_free(struct arm_dma_free_args *args)
699{
700 __free_from_pool(args->cpu_addr, args->size);
701}
702
703static struct arm_dma_allocator pool_allocator = {
704 .alloc = pool_allocator_alloc,
705 .free = pool_allocator_free,
706};
707
708static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
709 struct page **ret_page)
710{
711 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
712 args->prot, ret_page, args->caller,
713 args->want_vaddr);
714}
715
716static void remap_allocator_free(struct arm_dma_free_args *args)
717{
718 if (args->want_vaddr)
719 __dma_free_remap(args->cpu_addr, args->size);
720
721 __dma_free_buffer(args->page, args->size);
722}
723
724static struct arm_dma_allocator remap_allocator = {
725 .alloc = remap_allocator_alloc,
726 .free = remap_allocator_free,
727};
728
729static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 gfp_t gfp, pgprot_t prot, bool is_coherent,
731 unsigned long attrs, const void *caller)
732{
733 u64 mask = get_coherent_dma_mask(dev);
734 struct page *page = NULL;
735 void *addr;
736 bool allowblock, cma;
737 struct arm_dma_buffer *buf;
738 struct arm_dma_alloc_args args = {
739 .dev = dev,
740 .size = PAGE_ALIGN(size),
741 .gfp = gfp,
742 .prot = prot,
743 .caller = caller,
744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
745 .coherent_flag = is_coherent ? COHERENT : NORMAL,
746 };
747
748#ifdef CONFIG_DMA_API_DEBUG
749 u64 limit = (mask + 1) & ~mask;
750 if (limit && size >= limit) {
751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
752 size, mask);
753 return NULL;
754 }
755#endif
756
757 if (!mask)
758 return NULL;
759
760 buf = kzalloc(sizeof(*buf),
761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
762 if (!buf)
763 return NULL;
764
765 if (mask < 0xffffffffULL)
766 gfp |= GFP_DMA;
767
768 /*
769 * Following is a work-around (a.k.a. hack) to prevent pages
770 * with __GFP_COMP being passed to split_page() which cannot
771 * handle them. The real problem is that this flag probably
772 * should be 0 on ARM as it is not supported on this
773 * platform; see CONFIG_HUGETLBFS.
774 */
775 gfp &= ~(__GFP_COMP);
776 args.gfp = gfp;
777
778 *handle = ARM_MAPPING_ERROR;
779 allowblock = gfpflags_allow_blocking(gfp);
780 cma = allowblock ? dev_get_cma_area(dev) : false;
781
782 if (cma)
783 buf->allocator = &cma_allocator;
784 else if (is_coherent)
785 buf->allocator = &simple_allocator;
786 else if (allowblock)
787 buf->allocator = &remap_allocator;
788 else
789 buf->allocator = &pool_allocator;
790
791 addr = buf->allocator->alloc(&args, &page);
792
793 if (page) {
794 unsigned long flags;
795
796 *handle = pfn_to_dma(dev, page_to_pfn(page));
797 buf->virt = args.want_vaddr ? addr : page;
798
799 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
800 list_add(&buf->list, &arm_dma_bufs);
801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
802 } else {
803 kfree(buf);
804 }
805
806 return args.want_vaddr ? addr : page;
807}
808
809/*
810 * Allocate DMA-coherent memory space and return both the kernel remapped
811 * virtual and bus address for that space.
812 */
813void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
814 gfp_t gfp, unsigned long attrs)
815{
816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
817
818 return __dma_alloc(dev, size, handle, gfp, prot, false,
819 attrs, __builtin_return_address(0));
820}
821
822static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
824{
825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
826 attrs, __builtin_return_address(0));
827}
828
829static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
830 void *cpu_addr, dma_addr_t dma_addr, size_t size,
831 unsigned long attrs)
832{
833 int ret;
834 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
836 unsigned long pfn = dma_to_pfn(dev, dma_addr);
837 unsigned long off = vma->vm_pgoff;
838
839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
840 return ret;
841
842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
843 ret = remap_pfn_range(vma, vma->vm_start,
844 pfn + off,
845 vma->vm_end - vma->vm_start,
846 vma->vm_page_prot);
847 }
848
849 return ret;
850}
851
852/*
853 * Create userspace mapping for the DMA-coherent memory.
854 */
855static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
856 void *cpu_addr, dma_addr_t dma_addr, size_t size,
857 unsigned long attrs)
858{
859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
860}
861
862int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 unsigned long attrs)
865{
866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
868}
869
870/*
871 * Free a buffer as defined by the above mapping.
872 */
873static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t handle, unsigned long attrs,
875 bool is_coherent)
876{
877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
878 struct arm_dma_buffer *buf;
879 struct arm_dma_free_args args = {
880 .dev = dev,
881 .size = PAGE_ALIGN(size),
882 .cpu_addr = cpu_addr,
883 .page = page,
884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
885 };
886
887 buf = arm_dma_buffer_find(cpu_addr);
888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
889 return;
890
891 buf->allocator->free(&args);
892 kfree(buf);
893}
894
895void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 dma_addr_t handle, unsigned long attrs)
897{
898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
899}
900
901static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
902 dma_addr_t handle, unsigned long attrs)
903{
904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
905}
906
907/*
908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
909 * that the intention is to allow exporting memory allocated via the
910 * coherent DMA APIs through the dma_buf API, which only accepts a
911 * scattertable. This presents a couple of problems:
912 * 1. Not all memory allocated via the coherent DMA APIs is backed by
913 * a struct page
914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
915 * as we will try to flush the memory through a different alias to that
916 * actually being used (and the flushes are redundant.)
917 */
918int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
919 void *cpu_addr, dma_addr_t handle, size_t size,
920 unsigned long attrs)
921{
922 unsigned long pfn = dma_to_pfn(dev, handle);
923 struct page *page;
924 int ret;
925
926 /* If the PFN is not valid, we do not have a struct page */
927 if (!pfn_valid(pfn))
928 return -ENXIO;
929
930 page = pfn_to_page(pfn);
931
932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
933 if (unlikely(ret))
934 return ret;
935
936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
937 return 0;
938}
939
940static void dma_cache_maint_page(struct page *page, unsigned long offset,
941 size_t size, enum dma_data_direction dir,
942 void (*op)(const void *, size_t, int))
943{
944 unsigned long pfn;
945 size_t left = size;
946
947 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
948 offset %= PAGE_SIZE;
949
950 /*
951 * A single sg entry may refer to multiple physically contiguous
952 * pages. But we still need to process highmem pages individually.
953 * If highmem is not configured then the bulk of this loop gets
954 * optimized out.
955 */
956 do {
957 size_t len = left;
958 void *vaddr;
959
960 page = pfn_to_page(pfn);
961
962 if (PageHighMem(page)) {
963 if (len + offset > PAGE_SIZE)
964 len = PAGE_SIZE - offset;
965
966 if (cache_is_vipt_nonaliasing()) {
967 vaddr = kmap_atomic(page);
968 op(vaddr + offset, len, dir);
969 kunmap_atomic(vaddr);
970 } else {
971 vaddr = kmap_high_get(page);
972 if (vaddr) {
973 op(vaddr + offset, len, dir);
974 kunmap_high(page);
975 }
976 }
977 } else {
978 vaddr = page_address(page) + offset;
979 op(vaddr, len, dir);
980 }
981 offset = 0;
982 pfn++;
983 left -= len;
984 } while (left);
985}
986
987/*
988 * Make an area consistent for devices.
989 * Note: Drivers should NOT use this function directly, as it will break
990 * platforms with CONFIG_DMABOUNCE.
991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
992 */
993static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
994 size_t size, enum dma_data_direction dir)
995{
996 phys_addr_t paddr;
997
998 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
999
1000 paddr = page_to_phys(page) + off;
1001 if (dir == DMA_FROM_DEVICE) {
1002 outer_inv_range(paddr, paddr + size);
1003 } else {
1004 outer_clean_range(paddr, paddr + size);
1005 }
1006 /* FIXME: non-speculating: flush on bidirectional mappings? */
1007}
1008
1009static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1010 size_t size, enum dma_data_direction dir)
1011{
1012 phys_addr_t paddr = page_to_phys(page) + off;
1013
1014 /* FIXME: non-speculating: not required */
1015 /* in any case, don't bother invalidating if DMA to device */
1016 if (dir != DMA_TO_DEVICE) {
1017 outer_inv_range(paddr, paddr + size);
1018
1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1020 }
1021
1022 /*
1023 * Mark the D-cache clean for these pages to avoid extra flushing.
1024 */
1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1026 unsigned long pfn;
1027 size_t left = size;
1028
1029 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1030 off %= PAGE_SIZE;
1031 if (off) {
1032 pfn++;
1033 left -= PAGE_SIZE - off;
1034 }
1035 while (left >= PAGE_SIZE) {
1036 page = pfn_to_page(pfn++);
1037 set_bit(PG_dcache_clean, &page->flags);
1038 left -= PAGE_SIZE;
1039 }
1040 }
1041}
1042
1043/**
1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map
1048 * @dir: DMA transfer direction
1049 *
1050 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1051 * This is the scatter-gather version of the dma_map_single interface.
1052 * Here the scatter gather list elements are each tagged with the
1053 * appropriate dma address and length. They are obtained via
1054 * sg_dma_{address,length}.
1055 *
1056 * Device ownership issues as mentioned for dma_map_single are the same
1057 * here.
1058 */
1059int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1060 enum dma_data_direction dir, unsigned long attrs)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i, j;
1065
1066 for_each_sg(sg, s, nents, i) {
1067#ifdef CONFIG_NEED_SG_DMA_LENGTH
1068 s->dma_length = s->length;
1069#endif
1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1071 s->length, dir, attrs);
1072 if (dma_mapping_error(dev, s->dma_address))
1073 goto bad_mapping;
1074 }
1075 return nents;
1076
1077 bad_mapping:
1078 for_each_sg(sg, s, i, j)
1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1080 return 0;
1081}
1082
1083/**
1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1086 * @sg: list of buffers
1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1089 *
1090 * Unmap a set of streaming mode DMA translations. Again, CPU access
1091 * rules concerning calls here are the same as for dma_unmap_single().
1092 */
1093void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1094 enum dma_data_direction dir, unsigned long attrs)
1095{
1096 const struct dma_map_ops *ops = get_dma_ops(dev);
1097 struct scatterlist *s;
1098
1099 int i;
1100
1101 for_each_sg(sg, s, nents, i)
1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1103}
1104
1105/**
1106 * arm_dma_sync_sg_for_cpu
1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1108 * @sg: list of buffers
1109 * @nents: number of buffers to map (returned from dma_map_sg)
1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1111 */
1112void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1113 int nents, enum dma_data_direction dir)
1114{
1115 const struct dma_map_ops *ops = get_dma_ops(dev);
1116 struct scatterlist *s;
1117 int i;
1118
1119 for_each_sg(sg, s, nents, i)
1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1121 dir);
1122}
1123
1124/**
1125 * arm_dma_sync_sg_for_device
1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1127 * @sg: list of buffers
1128 * @nents: number of buffers to map (returned from dma_map_sg)
1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1130 */
1131void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1132 int nents, enum dma_data_direction dir)
1133{
1134 const struct dma_map_ops *ops = get_dma_ops(dev);
1135 struct scatterlist *s;
1136 int i;
1137
1138 for_each_sg(sg, s, nents, i)
1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1140 dir);
1141}
1142
1143/*
1144 * Return whether the given device DMA address mask can be supported
1145 * properly. For example, if your device can only drive the low 24-bits
1146 * during bus mastering, then you would pass 0x00ffffff as the mask
1147 * to this function.
1148 */
1149int arm_dma_supported(struct device *dev, u64 mask)
1150{
1151 return __dma_supported(dev, mask, false);
1152}
1153
1154#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1155
1156static int __init dma_debug_do_init(void)
1157{
1158 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1159 return 0;
1160}
1161core_initcall(dma_debug_do_init);
1162
1163#ifdef CONFIG_ARM_DMA_USE_IOMMU
1164
1165static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1166{
1167 int prot = 0;
1168
1169 if (attrs & DMA_ATTR_PRIVILEGED)
1170 prot |= IOMMU_PRIV;
1171
1172 switch (dir) {
1173 case DMA_BIDIRECTIONAL:
1174 return prot | IOMMU_READ | IOMMU_WRITE;
1175 case DMA_TO_DEVICE:
1176 return prot | IOMMU_READ;
1177 case DMA_FROM_DEVICE:
1178 return prot | IOMMU_WRITE;
1179 default:
1180 return prot;
1181 }
1182}
1183
1184/* IOMMU */
1185
1186static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1187
1188static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1189 size_t size)
1190{
1191 unsigned int order = get_order(size);
1192 unsigned int align = 0;
1193 unsigned int count, start;
1194 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1195 unsigned long flags;
1196 dma_addr_t iova;
1197 int i;
1198
1199 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1200 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1201
1202 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1203 align = (1 << order) - 1;
1204
1205 spin_lock_irqsave(&mapping->lock, flags);
1206 for (i = 0; i < mapping->nr_bitmaps; i++) {
1207 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1208 mapping->bits, 0, count, align);
1209
1210 if (start > mapping->bits)
1211 continue;
1212
1213 bitmap_set(mapping->bitmaps[i], start, count);
1214 break;
1215 }
1216
1217 /*
1218 * No unused range found. Try to extend the existing mapping
1219 * and perform a second attempt to reserve an IO virtual
1220 * address range of size bytes.
1221 */
1222 if (i == mapping->nr_bitmaps) {
1223 if (extend_iommu_mapping(mapping)) {
1224 spin_unlock_irqrestore(&mapping->lock, flags);
1225 return ARM_MAPPING_ERROR;
1226 }
1227
1228 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1229 mapping->bits, 0, count, align);
1230
1231 if (start > mapping->bits) {
1232 spin_unlock_irqrestore(&mapping->lock, flags);
1233 return ARM_MAPPING_ERROR;
1234 }
1235
1236 bitmap_set(mapping->bitmaps[i], start, count);
1237 }
1238 spin_unlock_irqrestore(&mapping->lock, flags);
1239
1240 iova = mapping->base + (mapping_size * i);
1241 iova += start << PAGE_SHIFT;
1242
1243 return iova;
1244}
1245
1246static inline void __free_iova(struct dma_iommu_mapping *mapping,
1247 dma_addr_t addr, size_t size)
1248{
1249 unsigned int start, count;
1250 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1251 unsigned long flags;
1252 dma_addr_t bitmap_base;
1253 u32 bitmap_index;
1254
1255 if (!size)
1256 return;
1257
1258 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1259 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1260
1261 bitmap_base = mapping->base + mapping_size * bitmap_index;
1262
1263 start = (addr - bitmap_base) >> PAGE_SHIFT;
1264
1265 if (addr + size > bitmap_base + mapping_size) {
1266 /*
1267 * The address range to be freed reaches into the iova
1268 * range of the next bitmap. This should not happen as
1269 * we don't allow this in __alloc_iova (at the
1270 * moment).
1271 */
1272 BUG();
1273 } else
1274 count = size >> PAGE_SHIFT;
1275
1276 spin_lock_irqsave(&mapping->lock, flags);
1277 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1278 spin_unlock_irqrestore(&mapping->lock, flags);
1279}
1280
1281/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1282static const int iommu_order_array[] = { 9, 8, 4, 0 };
1283
1284static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1285 gfp_t gfp, unsigned long attrs,
1286 int coherent_flag)
1287{
1288 struct page **pages;
1289 int count = size >> PAGE_SHIFT;
1290 int array_size = count * sizeof(struct page *);
1291 int i = 0;
1292 int order_idx = 0;
1293
1294 if (array_size <= PAGE_SIZE)
1295 pages = kzalloc(array_size, GFP_KERNEL);
1296 else
1297 pages = vzalloc(array_size);
1298 if (!pages)
1299 return NULL;
1300
1301 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1302 {
1303 unsigned long order = get_order(size);
1304 struct page *page;
1305
1306 page = dma_alloc_from_contiguous(dev, count, order, gfp);
1307 if (!page)
1308 goto error;
1309
1310 __dma_clear_buffer(page, size, coherent_flag);
1311
1312 for (i = 0; i < count; i++)
1313 pages[i] = page + i;
1314
1315 return pages;
1316 }
1317
1318 /* Go straight to 4K chunks if caller says it's OK. */
1319 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1320 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1321
1322 /*
1323 * IOMMU can map any pages, so himem can also be used here
1324 */
1325 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1326
1327 while (count) {
1328 int j, order;
1329
1330 order = iommu_order_array[order_idx];
1331
1332 /* Drop down when we get small */
1333 if (__fls(count) < order) {
1334 order_idx++;
1335 continue;
1336 }
1337
1338 if (order) {
1339 /* See if it's easy to allocate a high-order chunk */
1340 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1341
1342 /* Go down a notch at first sign of pressure */
1343 if (!pages[i]) {
1344 order_idx++;
1345 continue;
1346 }
1347 } else {
1348 pages[i] = alloc_pages(gfp, 0);
1349 if (!pages[i])
1350 goto error;
1351 }
1352
1353 if (order) {
1354 split_page(pages[i], order);
1355 j = 1 << order;
1356 while (--j)
1357 pages[i + j] = pages[i] + j;
1358 }
1359
1360 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1361 i += 1 << order;
1362 count -= 1 << order;
1363 }
1364
1365 return pages;
1366error:
1367 while (i--)
1368 if (pages[i])
1369 __free_pages(pages[i], 0);
1370 kvfree(pages);
1371 return NULL;
1372}
1373
1374static int __iommu_free_buffer(struct device *dev, struct page **pages,
1375 size_t size, unsigned long attrs)
1376{
1377 int count = size >> PAGE_SHIFT;
1378 int i;
1379
1380 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1381 dma_release_from_contiguous(dev, pages[0], count);
1382 } else {
1383 for (i = 0; i < count; i++)
1384 if (pages[i])
1385 __free_pages(pages[i], 0);
1386 }
1387
1388 kvfree(pages);
1389 return 0;
1390}
1391
1392/*
1393 * Create a CPU mapping for a specified pages
1394 */
1395static void *
1396__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1397 const void *caller)
1398{
1399 return dma_common_pages_remap(pages, size,
1400 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1401}
1402
1403/*
1404 * Create a mapping in device IO address space for specified pages
1405 */
1406static dma_addr_t
1407__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1408 unsigned long attrs)
1409{
1410 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1411 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1412 dma_addr_t dma_addr, iova;
1413 int i;
1414
1415 dma_addr = __alloc_iova(mapping, size);
1416 if (dma_addr == ARM_MAPPING_ERROR)
1417 return dma_addr;
1418
1419 iova = dma_addr;
1420 for (i = 0; i < count; ) {
1421 int ret;
1422
1423 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1424 phys_addr_t phys = page_to_phys(pages[i]);
1425 unsigned int len, j;
1426
1427 for (j = i + 1; j < count; j++, next_pfn++)
1428 if (page_to_pfn(pages[j]) != next_pfn)
1429 break;
1430
1431 len = (j - i) << PAGE_SHIFT;
1432 ret = iommu_map(mapping->domain, iova, phys, len,
1433 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1434 if (ret < 0)
1435 goto fail;
1436 iova += len;
1437 i = j;
1438 }
1439 return dma_addr;
1440fail:
1441 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1442 __free_iova(mapping, dma_addr, size);
1443 return ARM_MAPPING_ERROR;
1444}
1445
1446static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1447{
1448 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1449
1450 /*
1451 * add optional in-page offset from iova to size and align
1452 * result to page size
1453 */
1454 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1455 iova &= PAGE_MASK;
1456
1457 iommu_unmap(mapping->domain, iova, size);
1458 __free_iova(mapping, iova, size);
1459 return 0;
1460}
1461
1462static struct page **__atomic_get_pages(void *addr)
1463{
1464 struct page *page;
1465 phys_addr_t phys;
1466
1467 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1468 page = phys_to_page(phys);
1469
1470 return (struct page **)page;
1471}
1472
1473static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1474{
1475 struct vm_struct *area;
1476
1477 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1478 return __atomic_get_pages(cpu_addr);
1479
1480 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1481 return cpu_addr;
1482
1483 area = find_vm_area(cpu_addr);
1484 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1485 return area->pages;
1486 return NULL;
1487}
1488
1489static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1490 dma_addr_t *handle, int coherent_flag,
1491 unsigned long attrs)
1492{
1493 struct page *page;
1494 void *addr;
1495
1496 if (coherent_flag == COHERENT)
1497 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1498 else
1499 addr = __alloc_from_pool(size, &page);
1500 if (!addr)
1501 return NULL;
1502
1503 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1504 if (*handle == ARM_MAPPING_ERROR)
1505 goto err_mapping;
1506
1507 return addr;
1508
1509err_mapping:
1510 __free_from_pool(addr, size);
1511 return NULL;
1512}
1513
1514static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1515 dma_addr_t handle, size_t size, int coherent_flag)
1516{
1517 __iommu_remove_mapping(dev, handle, size);
1518 if (coherent_flag == COHERENT)
1519 __dma_free_buffer(virt_to_page(cpu_addr), size);
1520 else
1521 __free_from_pool(cpu_addr, size);
1522}
1523
1524static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1525 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1526 int coherent_flag)
1527{
1528 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1529 struct page **pages;
1530 void *addr = NULL;
1531
1532 *handle = ARM_MAPPING_ERROR;
1533 size = PAGE_ALIGN(size);
1534
1535 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1536 return __iommu_alloc_simple(dev, size, gfp, handle,
1537 coherent_flag, attrs);
1538
1539 /*
1540 * Following is a work-around (a.k.a. hack) to prevent pages
1541 * with __GFP_COMP being passed to split_page() which cannot
1542 * handle them. The real problem is that this flag probably
1543 * should be 0 on ARM as it is not supported on this
1544 * platform; see CONFIG_HUGETLBFS.
1545 */
1546 gfp &= ~(__GFP_COMP);
1547
1548 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1549 if (!pages)
1550 return NULL;
1551
1552 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1553 if (*handle == ARM_MAPPING_ERROR)
1554 goto err_buffer;
1555
1556 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1557 return pages;
1558
1559 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1560 __builtin_return_address(0));
1561 if (!addr)
1562 goto err_mapping;
1563
1564 return addr;
1565
1566err_mapping:
1567 __iommu_remove_mapping(dev, *handle, size);
1568err_buffer:
1569 __iommu_free_buffer(dev, pages, size, attrs);
1570 return NULL;
1571}
1572
1573static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1574 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1575{
1576 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1577}
1578
1579static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1580 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1581{
1582 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1583}
1584
1585static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1586 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1587 unsigned long attrs)
1588{
1589 unsigned long uaddr = vma->vm_start;
1590 unsigned long usize = vma->vm_end - vma->vm_start;
1591 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1592 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1593 unsigned long off = vma->vm_pgoff;
1594
1595 if (!pages)
1596 return -ENXIO;
1597
1598 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1599 return -ENXIO;
1600
1601 pages += off;
1602
1603 do {
1604 int ret = vm_insert_page(vma, uaddr, *pages++);
1605 if (ret) {
1606 pr_err("Remapping memory failed: %d\n", ret);
1607 return ret;
1608 }
1609 uaddr += PAGE_SIZE;
1610 usize -= PAGE_SIZE;
1611 } while (usize > 0);
1612
1613 return 0;
1614}
1615static int arm_iommu_mmap_attrs(struct device *dev,
1616 struct vm_area_struct *vma, void *cpu_addr,
1617 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618{
1619 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1620
1621 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1622}
1623
1624static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1625 struct vm_area_struct *vma, void *cpu_addr,
1626 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1627{
1628 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1629}
1630
1631/*
1632 * free a page as defined by the above mapping.
1633 * Must not be called with IRQs disabled.
1634 */
1635void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1636 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1637{
1638 struct page **pages;
1639 size = PAGE_ALIGN(size);
1640
1641 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1642 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1643 return;
1644 }
1645
1646 pages = __iommu_get_pages(cpu_addr, attrs);
1647 if (!pages) {
1648 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1649 return;
1650 }
1651
1652 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1653 dma_common_free_remap(cpu_addr, size,
1654 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1655 }
1656
1657 __iommu_remove_mapping(dev, handle, size);
1658 __iommu_free_buffer(dev, pages, size, attrs);
1659}
1660
1661void arm_iommu_free_attrs(struct device *dev, size_t size,
1662 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1663{
1664 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1665}
1666
1667void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1668 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1669{
1670 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1671}
1672
1673static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1674 void *cpu_addr, dma_addr_t dma_addr,
1675 size_t size, unsigned long attrs)
1676{
1677 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1678 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1679
1680 if (!pages)
1681 return -ENXIO;
1682
1683 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1684 GFP_KERNEL);
1685}
1686
1687/*
1688 * Map a part of the scatter-gather list into contiguous io address space
1689 */
1690static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1691 size_t size, dma_addr_t *handle,
1692 enum dma_data_direction dir, unsigned long attrs,
1693 bool is_coherent)
1694{
1695 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1696 dma_addr_t iova, iova_base;
1697 int ret = 0;
1698 unsigned int count;
1699 struct scatterlist *s;
1700 int prot;
1701
1702 size = PAGE_ALIGN(size);
1703 *handle = ARM_MAPPING_ERROR;
1704
1705 iova_base = iova = __alloc_iova(mapping, size);
1706 if (iova == ARM_MAPPING_ERROR)
1707 return -ENOMEM;
1708
1709 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1710 phys_addr_t phys = page_to_phys(sg_page(s));
1711 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1712
1713 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1715
1716 prot = __dma_info_to_prot(dir, attrs);
1717
1718 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1719 if (ret < 0)
1720 goto fail;
1721 count += len >> PAGE_SHIFT;
1722 iova += len;
1723 }
1724 *handle = iova_base;
1725
1726 return 0;
1727fail:
1728 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1729 __free_iova(mapping, iova_base, size);
1730 return ret;
1731}
1732
1733static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1734 enum dma_data_direction dir, unsigned long attrs,
1735 bool is_coherent)
1736{
1737 struct scatterlist *s = sg, *dma = sg, *start = sg;
1738 int i, count = 0;
1739 unsigned int offset = s->offset;
1740 unsigned int size = s->offset + s->length;
1741 unsigned int max = dma_get_max_seg_size(dev);
1742
1743 for (i = 1; i < nents; i++) {
1744 s = sg_next(s);
1745
1746 s->dma_address = ARM_MAPPING_ERROR;
1747 s->dma_length = 0;
1748
1749 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1750 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1751 dir, attrs, is_coherent) < 0)
1752 goto bad_mapping;
1753
1754 dma->dma_address += offset;
1755 dma->dma_length = size - offset;
1756
1757 size = offset = s->offset;
1758 start = s;
1759 dma = sg_next(dma);
1760 count += 1;
1761 }
1762 size += s->length;
1763 }
1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1765 is_coherent) < 0)
1766 goto bad_mapping;
1767
1768 dma->dma_address += offset;
1769 dma->dma_length = size - offset;
1770
1771 return count+1;
1772
1773bad_mapping:
1774 for_each_sg(sg, s, count, i)
1775 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1776 return 0;
1777}
1778
1779/**
1780 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1781 * @dev: valid struct device pointer
1782 * @sg: list of buffers
1783 * @nents: number of buffers to map
1784 * @dir: DMA transfer direction
1785 *
1786 * Map a set of i/o coherent buffers described by scatterlist in streaming
1787 * mode for DMA. The scatter gather list elements are merged together (if
1788 * possible) and tagged with the appropriate dma address and length. They are
1789 * obtained via sg_dma_{address,length}.
1790 */
1791int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1792 int nents, enum dma_data_direction dir, unsigned long attrs)
1793{
1794 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1795}
1796
1797/**
1798 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1799 * @dev: valid struct device pointer
1800 * @sg: list of buffers
1801 * @nents: number of buffers to map
1802 * @dir: DMA transfer direction
1803 *
1804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1805 * The scatter gather list elements are merged together (if possible) and
1806 * tagged with the appropriate dma address and length. They are obtained via
1807 * sg_dma_{address,length}.
1808 */
1809int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1810 int nents, enum dma_data_direction dir, unsigned long attrs)
1811{
1812 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1813}
1814
1815static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1816 int nents, enum dma_data_direction dir,
1817 unsigned long attrs, bool is_coherent)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i) {
1823 if (sg_dma_len(s))
1824 __iommu_remove_mapping(dev, sg_dma_address(s),
1825 sg_dma_len(s));
1826 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1827 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1828 s->length, dir);
1829 }
1830}
1831
1832/**
1833 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1834 * @dev: valid struct device pointer
1835 * @sg: list of buffers
1836 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1837 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1838 *
1839 * Unmap a set of streaming mode DMA translations. Again, CPU access
1840 * rules concerning calls here are the same as for dma_unmap_single().
1841 */
1842void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1843 int nents, enum dma_data_direction dir,
1844 unsigned long attrs)
1845{
1846 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1847}
1848
1849/**
1850 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1851 * @dev: valid struct device pointer
1852 * @sg: list of buffers
1853 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1854 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1855 *
1856 * Unmap a set of streaming mode DMA translations. Again, CPU access
1857 * rules concerning calls here are the same as for dma_unmap_single().
1858 */
1859void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1860 enum dma_data_direction dir,
1861 unsigned long attrs)
1862{
1863 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1864}
1865
1866/**
1867 * arm_iommu_sync_sg_for_cpu
1868 * @dev: valid struct device pointer
1869 * @sg: list of buffers
1870 * @nents: number of buffers to map (returned from dma_map_sg)
1871 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1872 */
1873void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1874 int nents, enum dma_data_direction dir)
1875{
1876 struct scatterlist *s;
1877 int i;
1878
1879 for_each_sg(sg, s, nents, i)
1880 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1881
1882}
1883
1884/**
1885 * arm_iommu_sync_sg_for_device
1886 * @dev: valid struct device pointer
1887 * @sg: list of buffers
1888 * @nents: number of buffers to map (returned from dma_map_sg)
1889 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1890 */
1891void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1892 int nents, enum dma_data_direction dir)
1893{
1894 struct scatterlist *s;
1895 int i;
1896
1897 for_each_sg(sg, s, nents, i)
1898 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1899}
1900
1901
1902/**
1903 * arm_coherent_iommu_map_page
1904 * @dev: valid struct device pointer
1905 * @page: page that buffer resides in
1906 * @offset: offset into page for start of buffer
1907 * @size: size of buffer to map
1908 * @dir: DMA transfer direction
1909 *
1910 * Coherent IOMMU aware version of arm_dma_map_page()
1911 */
1912static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1913 unsigned long offset, size_t size, enum dma_data_direction dir,
1914 unsigned long attrs)
1915{
1916 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1917 dma_addr_t dma_addr;
1918 int ret, prot, len = PAGE_ALIGN(size + offset);
1919
1920 dma_addr = __alloc_iova(mapping, len);
1921 if (dma_addr == ARM_MAPPING_ERROR)
1922 return dma_addr;
1923
1924 prot = __dma_info_to_prot(dir, attrs);
1925
1926 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1927 if (ret < 0)
1928 goto fail;
1929
1930 return dma_addr + offset;
1931fail:
1932 __free_iova(mapping, dma_addr, len);
1933 return ARM_MAPPING_ERROR;
1934}
1935
1936/**
1937 * arm_iommu_map_page
1938 * @dev: valid struct device pointer
1939 * @page: page that buffer resides in
1940 * @offset: offset into page for start of buffer
1941 * @size: size of buffer to map
1942 * @dir: DMA transfer direction
1943 *
1944 * IOMMU aware version of arm_dma_map_page()
1945 */
1946static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1947 unsigned long offset, size_t size, enum dma_data_direction dir,
1948 unsigned long attrs)
1949{
1950 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1951 __dma_page_cpu_to_dev(page, offset, size, dir);
1952
1953 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1954}
1955
1956/**
1957 * arm_coherent_iommu_unmap_page
1958 * @dev: valid struct device pointer
1959 * @handle: DMA address of buffer
1960 * @size: size of buffer (same as passed to dma_map_page)
1961 * @dir: DMA transfer direction (same as passed to dma_map_page)
1962 *
1963 * Coherent IOMMU aware version of arm_dma_unmap_page()
1964 */
1965static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1966 size_t size, enum dma_data_direction dir, unsigned long attrs)
1967{
1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 dma_addr_t iova = handle & PAGE_MASK;
1970 int offset = handle & ~PAGE_MASK;
1971 int len = PAGE_ALIGN(size + offset);
1972
1973 if (!iova)
1974 return;
1975
1976 iommu_unmap(mapping->domain, iova, len);
1977 __free_iova(mapping, iova, len);
1978}
1979
1980/**
1981 * arm_iommu_unmap_page
1982 * @dev: valid struct device pointer
1983 * @handle: DMA address of buffer
1984 * @size: size of buffer (same as passed to dma_map_page)
1985 * @dir: DMA transfer direction (same as passed to dma_map_page)
1986 *
1987 * IOMMU aware version of arm_dma_unmap_page()
1988 */
1989static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1990 size_t size, enum dma_data_direction dir, unsigned long attrs)
1991{
1992 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1993 dma_addr_t iova = handle & PAGE_MASK;
1994 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1995 int offset = handle & ~PAGE_MASK;
1996 int len = PAGE_ALIGN(size + offset);
1997
1998 if (!iova)
1999 return;
2000
2001 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2002 __dma_page_dev_to_cpu(page, offset, size, dir);
2003
2004 iommu_unmap(mapping->domain, iova, len);
2005 __free_iova(mapping, iova, len);
2006}
2007
2008/**
2009 * arm_iommu_map_resource - map a device resource for DMA
2010 * @dev: valid struct device pointer
2011 * @phys_addr: physical address of resource
2012 * @size: size of resource to map
2013 * @dir: DMA transfer direction
2014 */
2015static dma_addr_t arm_iommu_map_resource(struct device *dev,
2016 phys_addr_t phys_addr, size_t size,
2017 enum dma_data_direction dir, unsigned long attrs)
2018{
2019 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2020 dma_addr_t dma_addr;
2021 int ret, prot;
2022 phys_addr_t addr = phys_addr & PAGE_MASK;
2023 unsigned int offset = phys_addr & ~PAGE_MASK;
2024 size_t len = PAGE_ALIGN(size + offset);
2025
2026 dma_addr = __alloc_iova(mapping, len);
2027 if (dma_addr == ARM_MAPPING_ERROR)
2028 return dma_addr;
2029
2030 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2031
2032 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2033 if (ret < 0)
2034 goto fail;
2035
2036 return dma_addr + offset;
2037fail:
2038 __free_iova(mapping, dma_addr, len);
2039 return ARM_MAPPING_ERROR;
2040}
2041
2042/**
2043 * arm_iommu_unmap_resource - unmap a device DMA resource
2044 * @dev: valid struct device pointer
2045 * @dma_handle: DMA address to resource
2046 * @size: size of resource to map
2047 * @dir: DMA transfer direction
2048 */
2049static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2050 size_t size, enum dma_data_direction dir,
2051 unsigned long attrs)
2052{
2053 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2054 dma_addr_t iova = dma_handle & PAGE_MASK;
2055 unsigned int offset = dma_handle & ~PAGE_MASK;
2056 size_t len = PAGE_ALIGN(size + offset);
2057
2058 if (!iova)
2059 return;
2060
2061 iommu_unmap(mapping->domain, iova, len);
2062 __free_iova(mapping, iova, len);
2063}
2064
2065static void arm_iommu_sync_single_for_cpu(struct device *dev,
2066 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2067{
2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2069 dma_addr_t iova = handle & PAGE_MASK;
2070 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2071 unsigned int offset = handle & ~PAGE_MASK;
2072
2073 if (!iova)
2074 return;
2075
2076 __dma_page_dev_to_cpu(page, offset, size, dir);
2077}
2078
2079static void arm_iommu_sync_single_for_device(struct device *dev,
2080 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081{
2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2083 dma_addr_t iova = handle & PAGE_MASK;
2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 unsigned int offset = handle & ~PAGE_MASK;
2086
2087 if (!iova)
2088 return;
2089
2090 __dma_page_cpu_to_dev(page, offset, size, dir);
2091}
2092
2093const struct dma_map_ops iommu_ops = {
2094 .alloc = arm_iommu_alloc_attrs,
2095 .free = arm_iommu_free_attrs,
2096 .mmap = arm_iommu_mmap_attrs,
2097 .get_sgtable = arm_iommu_get_sgtable,
2098
2099 .map_page = arm_iommu_map_page,
2100 .unmap_page = arm_iommu_unmap_page,
2101 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2102 .sync_single_for_device = arm_iommu_sync_single_for_device,
2103
2104 .map_sg = arm_iommu_map_sg,
2105 .unmap_sg = arm_iommu_unmap_sg,
2106 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2107 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2108
2109 .map_resource = arm_iommu_map_resource,
2110 .unmap_resource = arm_iommu_unmap_resource,
2111
2112 .mapping_error = arm_dma_mapping_error,
2113 .dma_supported = arm_dma_supported,
2114};
2115
2116const struct dma_map_ops iommu_coherent_ops = {
2117 .alloc = arm_coherent_iommu_alloc_attrs,
2118 .free = arm_coherent_iommu_free_attrs,
2119 .mmap = arm_coherent_iommu_mmap_attrs,
2120 .get_sgtable = arm_iommu_get_sgtable,
2121
2122 .map_page = arm_coherent_iommu_map_page,
2123 .unmap_page = arm_coherent_iommu_unmap_page,
2124
2125 .map_sg = arm_coherent_iommu_map_sg,
2126 .unmap_sg = arm_coherent_iommu_unmap_sg,
2127
2128 .map_resource = arm_iommu_map_resource,
2129 .unmap_resource = arm_iommu_unmap_resource,
2130
2131 .mapping_error = arm_dma_mapping_error,
2132 .dma_supported = arm_dma_supported,
2133};
2134
2135/**
2136 * arm_iommu_create_mapping
2137 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2138 * @base: start address of the valid IO address space
2139 * @size: maximum size of the valid IO address space
2140 *
2141 * Creates a mapping structure which holds information about used/unused
2142 * IO address ranges, which is required to perform memory allocation and
2143 * mapping with IOMMU aware functions.
2144 *
2145 * The client device need to be attached to the mapping with
2146 * arm_iommu_attach_device function.
2147 */
2148struct dma_iommu_mapping *
2149arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2150{
2151 unsigned int bits = size >> PAGE_SHIFT;
2152 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2153 struct dma_iommu_mapping *mapping;
2154 int extensions = 1;
2155 int err = -ENOMEM;
2156
2157 /* currently only 32-bit DMA address space is supported */
2158 if (size > DMA_BIT_MASK(32) + 1)
2159 return ERR_PTR(-ERANGE);
2160
2161 if (!bitmap_size)
2162 return ERR_PTR(-EINVAL);
2163
2164 if (bitmap_size > PAGE_SIZE) {
2165 extensions = bitmap_size / PAGE_SIZE;
2166 bitmap_size = PAGE_SIZE;
2167 }
2168
2169 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2170 if (!mapping)
2171 goto err;
2172
2173 mapping->bitmap_size = bitmap_size;
2174 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2175 GFP_KERNEL);
2176 if (!mapping->bitmaps)
2177 goto err2;
2178
2179 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2180 if (!mapping->bitmaps[0])
2181 goto err3;
2182
2183 mapping->nr_bitmaps = 1;
2184 mapping->extensions = extensions;
2185 mapping->base = base;
2186 mapping->bits = BITS_PER_BYTE * bitmap_size;
2187
2188 spin_lock_init(&mapping->lock);
2189
2190 mapping->domain = iommu_domain_alloc(bus);
2191 if (!mapping->domain)
2192 goto err4;
2193
2194 kref_init(&mapping->kref);
2195 return mapping;
2196err4:
2197 kfree(mapping->bitmaps[0]);
2198err3:
2199 kfree(mapping->bitmaps);
2200err2:
2201 kfree(mapping);
2202err:
2203 return ERR_PTR(err);
2204}
2205EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2206
2207static void release_iommu_mapping(struct kref *kref)
2208{
2209 int i;
2210 struct dma_iommu_mapping *mapping =
2211 container_of(kref, struct dma_iommu_mapping, kref);
2212
2213 iommu_domain_free(mapping->domain);
2214 for (i = 0; i < mapping->nr_bitmaps; i++)
2215 kfree(mapping->bitmaps[i]);
2216 kfree(mapping->bitmaps);
2217 kfree(mapping);
2218}
2219
2220static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2221{
2222 int next_bitmap;
2223
2224 if (mapping->nr_bitmaps >= mapping->extensions)
2225 return -EINVAL;
2226
2227 next_bitmap = mapping->nr_bitmaps;
2228 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2229 GFP_ATOMIC);
2230 if (!mapping->bitmaps[next_bitmap])
2231 return -ENOMEM;
2232
2233 mapping->nr_bitmaps++;
2234
2235 return 0;
2236}
2237
2238void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2239{
2240 if (mapping)
2241 kref_put(&mapping->kref, release_iommu_mapping);
2242}
2243EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2244
2245static int __arm_iommu_attach_device(struct device *dev,
2246 struct dma_iommu_mapping *mapping)
2247{
2248 int err;
2249
2250 err = iommu_attach_device(mapping->domain, dev);
2251 if (err)
2252 return err;
2253
2254 kref_get(&mapping->kref);
2255 to_dma_iommu_mapping(dev) = mapping;
2256
2257 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2258 return 0;
2259}
2260
2261/**
2262 * arm_iommu_attach_device
2263 * @dev: valid struct device pointer
2264 * @mapping: io address space mapping structure (returned from
2265 * arm_iommu_create_mapping)
2266 *
2267 * Attaches specified io address space mapping to the provided device.
2268 * This replaces the dma operations (dma_map_ops pointer) with the
2269 * IOMMU aware version.
2270 *
2271 * More than one client might be attached to the same io address space
2272 * mapping.
2273 */
2274int arm_iommu_attach_device(struct device *dev,
2275 struct dma_iommu_mapping *mapping)
2276{
2277 int err;
2278
2279 err = __arm_iommu_attach_device(dev, mapping);
2280 if (err)
2281 return err;
2282
2283 set_dma_ops(dev, &iommu_ops);
2284 return 0;
2285}
2286EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2287
2288/**
2289 * arm_iommu_detach_device
2290 * @dev: valid struct device pointer
2291 *
2292 * Detaches the provided device from a previously attached map.
2293 * This voids the dma operations (dma_map_ops pointer)
2294 */
2295void arm_iommu_detach_device(struct device *dev)
2296{
2297 struct dma_iommu_mapping *mapping;
2298
2299 mapping = to_dma_iommu_mapping(dev);
2300 if (!mapping) {
2301 dev_warn(dev, "Not attached\n");
2302 return;
2303 }
2304
2305 iommu_detach_device(mapping->domain, dev);
2306 kref_put(&mapping->kref, release_iommu_mapping);
2307 to_dma_iommu_mapping(dev) = NULL;
2308 set_dma_ops(dev, NULL);
2309
2310 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311}
2312EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2313
2314static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2315{
2316 return coherent ? &iommu_coherent_ops : &iommu_ops;
2317}
2318
2319static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2320 const struct iommu_ops *iommu)
2321{
2322 struct dma_iommu_mapping *mapping;
2323
2324 if (!iommu)
2325 return false;
2326
2327 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2328 if (IS_ERR(mapping)) {
2329 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2330 size, dev_name(dev));
2331 return false;
2332 }
2333
2334 if (__arm_iommu_attach_device(dev, mapping)) {
2335 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2336 dev_name(dev));
2337 arm_iommu_release_mapping(mapping);
2338 return false;
2339 }
2340
2341 return true;
2342}
2343
2344static void arm_teardown_iommu_dma_ops(struct device *dev)
2345{
2346 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2347
2348 if (!mapping)
2349 return;
2350
2351 arm_iommu_detach_device(dev);
2352 arm_iommu_release_mapping(mapping);
2353}
2354
2355#else
2356
2357static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2358 const struct iommu_ops *iommu)
2359{
2360 return false;
2361}
2362
2363static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2364
2365#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2366
2367#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2368
2369static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2370{
2371 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2372}
2373
2374void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2375 const struct iommu_ops *iommu, bool coherent)
2376{
2377 const struct dma_map_ops *dma_ops;
2378
2379 dev->archdata.dma_coherent = coherent;
2380
2381 /*
2382 * Don't override the dma_ops if they have already been set. Ideally
2383 * this should be the only location where dma_ops are set, remove this
2384 * check when all other callers of set_dma_ops will have disappeared.
2385 */
2386 if (dev->dma_ops)
2387 return;
2388
2389 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2390 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2391 else
2392 dma_ops = arm_get_dma_map_ops(coherent);
2393
2394 set_dma_ops(dev, dma_ops);
2395
2396#ifdef CONFIG_XEN
2397 if (xen_initial_domain()) {
2398 dev->archdata.dev_dma_ops = dev->dma_ops;
2399 dev->dma_ops = xen_dma_ops;
2400 }
2401#endif
2402 dev->archdata.dma_ops_setup = true;
2403}
2404
2405void arch_teardown_dma_ops(struct device *dev)
2406{
2407 if (!dev->archdata.dma_ops_setup)
2408 return;
2409
2410 arm_teardown_iommu_dma_ops(dev);
2411}
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/gfp.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
21#include <linux/dma-contiguous.h>
22#include <linux/highmem.h>
23#include <linux/memblock.h>
24#include <linux/slab.h>
25#include <linux/iommu.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/sizes.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39
40#include "mm.h"
41
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
53 */
54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80}
81
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
110}
111
112static void arm_dma_sync_single_for_cpu(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 __dma_page_dev_to_cpu(page, offset, size, dir);
118}
119
120static void arm_dma_sync_single_for_device(struct device *dev,
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 __dma_page_cpu_to_dev(page, offset, size, dir);
126}
127
128struct dma_map_ops arm_dma_ops = {
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
132 .get_sgtable = arm_dma_get_sgtable,
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
199static u64 get_coherent_dma_mask(struct device *dev)
200{
201 u64 mask = (u64)DMA_BIT_MASK(32);
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
215 if (!__dma_supported(dev, mask, true))
216 return 0;
217 }
218
219 return mask;
220}
221
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
246}
247
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
268 __dma_clear_buffer(page, size);
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
286#ifdef CONFIG_MMU
287
288static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 pgprot_t prot, struct page **ret_page,
290 const void *caller);
291
292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 pgprot_t prot, struct page **ret_page,
294 const void *caller);
295
296static void *
297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 const void *caller)
299{
300 struct vm_struct *area;
301 unsigned long addr;
302
303 /*
304 * DMA allocation can be mapped to user space, so lets
305 * set VM_USERMAP flags too.
306 */
307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 caller);
309 if (!area)
310 return NULL;
311 addr = (unsigned long)area->addr;
312 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313
314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 vunmap((void *)addr);
316 return NULL;
317 }
318 return (void *)addr;
319}
320
321static void __dma_free_remap(void *cpu_addr, size_t size)
322{
323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 struct vm_struct *area = find_vm_area(cpu_addr);
325 if (!area || (area->flags & flags) != flags) {
326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 return;
328 }
329 unmap_kernel_range((unsigned long)cpu_addr, size);
330 vunmap(cpu_addr);
331}
332
333#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
334
335struct dma_pool {
336 size_t size;
337 spinlock_t lock;
338 unsigned long *bitmap;
339 unsigned long nr_pages;
340 void *vaddr;
341 struct page **pages;
342};
343
344static struct dma_pool atomic_pool = {
345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346};
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool.size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355void __init init_dma_coherent_pool_size(unsigned long size)
356{
357 /*
358 * Catch any attempt to set the pool size too late.
359 */
360 BUG_ON(atomic_pool.vaddr);
361
362 /*
363 * Set architecture specific coherent pool size only if
364 * it has not been changed by kernel command line parameter.
365 */
366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 atomic_pool.size = size;
368}
369
370/*
371 * Initialise the coherent pool for atomic allocations.
372 */
373static int __init atomic_pool_init(void)
374{
375 struct dma_pool *pool = &atomic_pool;
376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 unsigned long *bitmap;
380 struct page *page;
381 struct page **pages;
382 void *ptr;
383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384
385 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 if (!bitmap)
387 goto no_bitmap;
388
389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto no_pages;
392
393 if (IS_ENABLED(CONFIG_DMA_CMA))
394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 atomic_pool_init);
396 else
397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 atomic_pool_init);
399 if (ptr) {
400 int i;
401
402 for (i = 0; i < nr_pages; i++)
403 pages[i] = page + i;
404
405 spin_lock_init(&pool->lock);
406 pool->vaddr = ptr;
407 pool->pages = pages;
408 pool->bitmap = bitmap;
409 pool->nr_pages = nr_pages;
410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 (unsigned)pool->size / 1024);
412 return 0;
413 }
414
415 kfree(pages);
416no_pages:
417 kfree(bitmap);
418no_bitmap:
419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 (unsigned)pool->size / 1024);
421 return -ENOMEM;
422}
423/*
424 * CMA is activated by core_initcall, so we must be called after it.
425 */
426postcore_initcall(atomic_pool_init);
427
428struct dma_contig_early_reserve {
429 phys_addr_t base;
430 unsigned long size;
431};
432
433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435static int dma_mmu_remap_num __initdata;
436
437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438{
439 dma_mmu_remap[dma_mmu_remap_num].base = base;
440 dma_mmu_remap[dma_mmu_remap_num].size = size;
441 dma_mmu_remap_num++;
442}
443
444void __init dma_contiguous_remap(void)
445{
446 int i;
447 for (i = 0; i < dma_mmu_remap_num; i++) {
448 phys_addr_t start = dma_mmu_remap[i].base;
449 phys_addr_t end = start + dma_mmu_remap[i].size;
450 struct map_desc map;
451 unsigned long addr;
452
453 if (end > arm_lowmem_limit)
454 end = arm_lowmem_limit;
455 if (start >= end)
456 continue;
457
458 map.pfn = __phys_to_pfn(start);
459 map.virtual = __phys_to_virt(start);
460 map.length = end - start;
461 map.type = MT_MEMORY_DMA_READY;
462
463 /*
464 * Clear previous low-memory mapping
465 */
466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 addr += PMD_SIZE)
468 pmd_clear(pmd_off_k(addr));
469
470 iotable_init(&map, 1);
471 }
472}
473
474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 void *data)
476{
477 struct page *page = virt_to_page(addr);
478 pgprot_t prot = *(pgprot_t *)data;
479
480 set_pte_ext(pte, mk_pte(page, prot), 0);
481 return 0;
482}
483
484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485{
486 unsigned long start = (unsigned long) page_address(page);
487 unsigned end = start + size;
488
489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 flush_tlb_kernel_range(start, end);
491}
492
493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 pgprot_t prot, struct page **ret_page,
495 const void *caller)
496{
497 struct page *page;
498 void *ptr;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 if (!ptr) {
505 __dma_free_buffer(page, size);
506 return NULL;
507 }
508
509 *ret_page = page;
510 return ptr;
511}
512
513static void *__alloc_from_pool(size_t size, struct page **ret_page)
514{
515 struct dma_pool *pool = &atomic_pool;
516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 unsigned int pageno;
518 unsigned long flags;
519 void *ptr = NULL;
520 unsigned long align_mask;
521
522 if (!pool->vaddr) {
523 WARN(1, "coherent pool not initialised!\n");
524 return NULL;
525 }
526
527 /*
528 * Align the region allocation - allocations from pool are rather
529 * small, so align them to their order in pages, minimum is a page
530 * size. This helps reduce fragmentation of the DMA space.
531 */
532 align_mask = (1 << get_order(size)) - 1;
533
534 spin_lock_irqsave(&pool->lock, flags);
535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 0, count, align_mask);
537 if (pageno < pool->nr_pages) {
538 bitmap_set(pool->bitmap, pageno, count);
539 ptr = pool->vaddr + PAGE_SIZE * pageno;
540 *ret_page = pool->pages[pageno];
541 } else {
542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 "Please increase it with coherent_pool= kernel parameter!\n",
544 (unsigned)pool->size / 1024);
545 }
546 spin_unlock_irqrestore(&pool->lock, flags);
547
548 return ptr;
549}
550
551static bool __in_atomic_pool(void *start, size_t size)
552{
553 struct dma_pool *pool = &atomic_pool;
554 void *end = start + size;
555 void *pool_start = pool->vaddr;
556 void *pool_end = pool->vaddr + pool->size;
557
558 if (start < pool_start || start >= pool_end)
559 return false;
560
561 if (end <= pool_end)
562 return true;
563
564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 start, end - 1, pool_start, pool_end - 1);
566
567 return false;
568}
569
570static int __free_from_pool(void *start, size_t size)
571{
572 struct dma_pool *pool = &atomic_pool;
573 unsigned long pageno, count;
574 unsigned long flags;
575
576 if (!__in_atomic_pool(start, size))
577 return 0;
578
579 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 count = size >> PAGE_SHIFT;
581
582 spin_lock_irqsave(&pool->lock, flags);
583 bitmap_clear(pool->bitmap, pageno, count);
584 spin_unlock_irqrestore(&pool->lock, flags);
585
586 return 1;
587}
588
589static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 pgprot_t prot, struct page **ret_page,
591 const void *caller)
592{
593 unsigned long order = get_order(size);
594 size_t count = size >> PAGE_SHIFT;
595 struct page *page;
596 void *ptr;
597
598 page = dma_alloc_from_contiguous(dev, count, order);
599 if (!page)
600 return NULL;
601
602 __dma_clear_buffer(page, size);
603
604 if (PageHighMem(page)) {
605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 if (!ptr) {
607 dma_release_from_contiguous(dev, page, count);
608 return NULL;
609 }
610 } else {
611 __dma_remap(page, size, prot);
612 ptr = page_address(page);
613 }
614 *ret_page = page;
615 return ptr;
616}
617
618static void __free_from_contiguous(struct device *dev, struct page *page,
619 void *cpu_addr, size_t size)
620{
621 if (PageHighMem(page))
622 __dma_free_remap(cpu_addr, size);
623 else
624 __dma_remap(page, size, PAGE_KERNEL);
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626}
627
628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629{
630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634}
635
636#define nommu() 0
637
638#else /* !CONFIG_MMU */
639
640#define nommu() 1
641
642#define __get_dma_pgprot(attrs, prot) __pgprot(0)
643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
644#define __alloc_from_pool(size, ret_page) NULL
645#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
646#define __free_from_pool(cpu_addr, size) 0
647#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
648#define __dma_free_remap(cpu_addr, size) do { } while (0)
649
650#endif /* CONFIG_MMU */
651
652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 struct page **ret_page)
654{
655 struct page *page;
656 page = __dma_alloc_buffer(dev, size, gfp);
657 if (!page)
658 return NULL;
659
660 *ret_page = page;
661 return page_address(page);
662}
663
664
665
666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668{
669 u64 mask = get_coherent_dma_mask(dev);
670 struct page *page = NULL;
671 void *addr;
672
673#ifdef CONFIG_DMA_API_DEBUG
674 u64 limit = (mask + 1) & ~mask;
675 if (limit && size >= limit) {
676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 size, mask);
678 return NULL;
679 }
680#endif
681
682 if (!mask)
683 return NULL;
684
685 if (mask < 0xffffffffULL)
686 gfp |= GFP_DMA;
687
688 /*
689 * Following is a work-around (a.k.a. hack) to prevent pages
690 * with __GFP_COMP being passed to split_page() which cannot
691 * handle them. The real problem is that this flag probably
692 * should be 0 on ARM as it is not supported on this
693 * platform; see CONFIG_HUGETLBFS.
694 */
695 gfp &= ~(__GFP_COMP);
696
697 *handle = DMA_ERROR_CODE;
698 size = PAGE_ALIGN(size);
699
700 if (is_coherent || nommu())
701 addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 else if (!(gfp & __GFP_WAIT))
703 addr = __alloc_from_pool(size, &page);
704 else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 else
707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708
709 if (addr)
710 *handle = pfn_to_dma(dev, page_to_pfn(page));
711
712 return addr;
713}
714
715/*
716 * Allocate DMA-coherent memory space and return both the kernel remapped
717 * virtual and bus address for that space.
718 */
719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 gfp_t gfp, struct dma_attrs *attrs)
721{
722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 void *memory;
724
725 if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 return memory;
727
728 return __dma_alloc(dev, size, handle, gfp, prot, false,
729 __builtin_return_address(0));
730}
731
732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734{
735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 void *memory;
737
738 if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 return memory;
740
741 return __dma_alloc(dev, size, handle, gfp, prot, true,
742 __builtin_return_address(0));
743}
744
745/*
746 * Create userspace mapping for the DMA-coherent memory.
747 */
748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 struct dma_attrs *attrs)
751{
752 int ret = -ENXIO;
753#ifdef CONFIG_MMU
754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 unsigned long off = vma->vm_pgoff;
758
759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 return ret;
763
764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 ret = remap_pfn_range(vma, vma->vm_start,
766 pfn + off,
767 vma->vm_end - vma->vm_start,
768 vma->vm_page_prot);
769 }
770#endif /* CONFIG_MMU */
771
772 return ret;
773}
774
775/*
776 * Free a buffer as defined by the above mapping.
777 */
778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 dma_addr_t handle, struct dma_attrs *attrs,
780 bool is_coherent)
781{
782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783
784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 return;
786
787 size = PAGE_ALIGN(size);
788
789 if (is_coherent || nommu()) {
790 __dma_free_buffer(page, size);
791 } else if (__free_from_pool(cpu_addr, size)) {
792 return;
793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 __dma_free_remap(cpu_addr, size);
795 __dma_free_buffer(page, size);
796 } else {
797 /*
798 * Non-atomic allocations cannot be freed with IRQs disabled
799 */
800 WARN_ON(irqs_disabled());
801 __free_from_contiguous(dev, page, cpu_addr, size);
802 }
803}
804
805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 dma_addr_t handle, struct dma_attrs *attrs)
807{
808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809}
810
811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 dma_addr_t handle, struct dma_attrs *attrs)
813{
814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815}
816
817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 void *cpu_addr, dma_addr_t handle, size_t size,
819 struct dma_attrs *attrs)
820{
821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 int ret;
823
824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 if (unlikely(ret))
826 return ret;
827
828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 return 0;
830}
831
832static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 size_t size, enum dma_data_direction dir,
834 void (*op)(const void *, size_t, int))
835{
836 unsigned long pfn;
837 size_t left = size;
838
839 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 offset %= PAGE_SIZE;
841
842 /*
843 * A single sg entry may refer to multiple physically contiguous
844 * pages. But we still need to process highmem pages individually.
845 * If highmem is not configured then the bulk of this loop gets
846 * optimized out.
847 */
848 do {
849 size_t len = left;
850 void *vaddr;
851
852 page = pfn_to_page(pfn);
853
854 if (PageHighMem(page)) {
855 if (len + offset > PAGE_SIZE)
856 len = PAGE_SIZE - offset;
857
858 if (cache_is_vipt_nonaliasing()) {
859 vaddr = kmap_atomic(page);
860 op(vaddr + offset, len, dir);
861 kunmap_atomic(vaddr);
862 } else {
863 vaddr = kmap_high_get(page);
864 if (vaddr) {
865 op(vaddr + offset, len, dir);
866 kunmap_high(page);
867 }
868 }
869 } else {
870 vaddr = page_address(page) + offset;
871 op(vaddr, len, dir);
872 }
873 offset = 0;
874 pfn++;
875 left -= len;
876 } while (left);
877}
878
879/*
880 * Make an area consistent for devices.
881 * Note: Drivers should NOT use this function directly, as it will break
882 * platforms with CONFIG_DMABOUNCE.
883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884 */
885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 size_t size, enum dma_data_direction dir)
887{
888 unsigned long paddr;
889
890 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891
892 paddr = page_to_phys(page) + off;
893 if (dir == DMA_FROM_DEVICE) {
894 outer_inv_range(paddr, paddr + size);
895 } else {
896 outer_clean_range(paddr, paddr + size);
897 }
898 /* FIXME: non-speculating: flush on bidirectional mappings? */
899}
900
901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 size_t size, enum dma_data_direction dir)
903{
904 unsigned long paddr = page_to_phys(page) + off;
905
906 /* FIXME: non-speculating: not required */
907 /* don't bother invalidating if DMA to device */
908 if (dir != DMA_TO_DEVICE)
909 outer_inv_range(paddr, paddr + size);
910
911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912
913 /*
914 * Mark the D-cache clean for these pages to avoid extra flushing.
915 */
916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 unsigned long pfn;
918 size_t left = size;
919
920 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 off %= PAGE_SIZE;
922 if (off) {
923 pfn++;
924 left -= PAGE_SIZE - off;
925 }
926 while (left >= PAGE_SIZE) {
927 page = pfn_to_page(pfn++);
928 set_bit(PG_dcache_clean, &page->flags);
929 left -= PAGE_SIZE;
930 }
931 }
932}
933
934/**
935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937 * @sg: list of buffers
938 * @nents: number of buffers to map
939 * @dir: DMA transfer direction
940 *
941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
942 * This is the scatter-gather version of the dma_map_single interface.
943 * Here the scatter gather list elements are each tagged with the
944 * appropriate dma address and length. They are obtained via
945 * sg_dma_{address,length}.
946 *
947 * Device ownership issues as mentioned for dma_map_single are the same
948 * here.
949 */
950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 enum dma_data_direction dir, struct dma_attrs *attrs)
952{
953 struct dma_map_ops *ops = get_dma_ops(dev);
954 struct scatterlist *s;
955 int i, j;
956
957 for_each_sg(sg, s, nents, i) {
958#ifdef CONFIG_NEED_SG_DMA_LENGTH
959 s->dma_length = s->length;
960#endif
961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 s->length, dir, attrs);
963 if (dma_mapping_error(dev, s->dma_address))
964 goto bad_mapping;
965 }
966 return nents;
967
968 bad_mapping:
969 for_each_sg(sg, s, i, j)
970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971 return 0;
972}
973
974/**
975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977 * @sg: list of buffers
978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 *
981 * Unmap a set of streaming mode DMA translations. Again, CPU access
982 * rules concerning calls here are the same as for dma_unmap_single().
983 */
984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir, struct dma_attrs *attrs)
986{
987 struct dma_map_ops *ops = get_dma_ops(dev);
988 struct scatterlist *s;
989
990 int i;
991
992 for_each_sg(sg, s, nents, i)
993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994}
995
996/**
997 * arm_dma_sync_sg_for_cpu
998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir)
1005{
1006 struct dma_map_ops *ops = get_dma_ops(dev);
1007 struct scatterlist *s;
1008 int i;
1009
1010 for_each_sg(sg, s, nents, i)
1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 int nents, enum dma_data_direction dir)
1024{
1025 struct dma_map_ops *ops = get_dma_ops(dev);
1026 struct scatterlist *s;
1027 int i;
1028
1029 for_each_sg(sg, s, nents, i)
1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly. For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042 return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 return -EIO;
1050
1051 *dev->dma_mask = dma_mask;
1052
1053 return 0;
1054}
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 return 0;
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 size_t size)
1073{
1074 unsigned int order = get_order(size);
1075 unsigned int align = 0;
1076 unsigned int count, start;
1077 unsigned long flags;
1078 dma_addr_t iova;
1079 int i;
1080
1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 align = (1 << order) - 1;
1086
1087 spin_lock_irqsave(&mapping->lock, flags);
1088 for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 mapping->bits, 0, count, align);
1091
1092 if (start > mapping->bits)
1093 continue;
1094
1095 bitmap_set(mapping->bitmaps[i], start, count);
1096 break;
1097 }
1098
1099 /*
1100 * No unused range found. Try to extend the existing mapping
1101 * and perform a second attempt to reserve an IO virtual
1102 * address range of size bytes.
1103 */
1104 if (i == mapping->nr_bitmaps) {
1105 if (extend_iommu_mapping(mapping)) {
1106 spin_unlock_irqrestore(&mapping->lock, flags);
1107 return DMA_ERROR_CODE;
1108 }
1109
1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 mapping->bits, 0, count, align);
1112
1113 if (start > mapping->bits) {
1114 spin_unlock_irqrestore(&mapping->lock, flags);
1115 return DMA_ERROR_CODE;
1116 }
1117
1118 bitmap_set(mapping->bitmaps[i], start, count);
1119 }
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122 iova = mapping->base + (mapping->size * i);
1123 iova += start << PAGE_SHIFT;
1124
1125 return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 dma_addr_t addr, size_t size)
1130{
1131 unsigned int start, count;
1132 unsigned long flags;
1133 dma_addr_t bitmap_base;
1134 u32 bitmap_index;
1135
1136 if (!size)
1137 return;
1138
1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142 bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144 start = (addr - bitmap_base) >> PAGE_SHIFT;
1145
1146 if (addr + size > bitmap_base + mapping->size) {
1147 /*
1148 * The address range to be freed reaches into the iova
1149 * range of the next bitmap. This should not happen as
1150 * we don't allow this in __alloc_iova (at the
1151 * moment).
1152 */
1153 BUG();
1154 } else
1155 count = size >> PAGE_SHIFT;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 gfp_t gfp, struct dma_attrs *attrs)
1164{
1165 struct page **pages;
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i = 0;
1169
1170 if (array_size <= PAGE_SIZE)
1171 pages = kzalloc(array_size, gfp);
1172 else
1173 pages = vzalloc(array_size);
1174 if (!pages)
1175 return NULL;
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 {
1179 unsigned long order = get_order(size);
1180 struct page *page;
1181
1182 page = dma_alloc_from_contiguous(dev, count, order);
1183 if (!page)
1184 goto error;
1185
1186 __dma_clear_buffer(page, size);
1187
1188 for (i = 0; i < count; i++)
1189 pages[i] = page + i;
1190
1191 return pages;
1192 }
1193
1194 /*
1195 * IOMMU can map any pages, so himem can also be used here
1196 */
1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199 while (count) {
1200 int j, order = __fls(count);
1201
1202 pages[i] = alloc_pages(gfp, order);
1203 while (!pages[i] && order)
1204 pages[i] = alloc_pages(gfp, --order);
1205 if (!pages[i])
1206 goto error;
1207
1208 if (order) {
1209 split_page(pages[i], order);
1210 j = 1 << order;
1211 while (--j)
1212 pages[i + j] = pages[i] + j;
1213 }
1214
1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 i += 1 << order;
1217 count -= 1 << order;
1218 }
1219
1220 return pages;
1221error:
1222 while (i--)
1223 if (pages[i])
1224 __free_pages(pages[i], 0);
1225 if (array_size <= PAGE_SIZE)
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 size_t size, struct dma_attrs *attrs)
1234{
1235 int count = size >> PAGE_SHIFT;
1236 int array_size = count * sizeof(struct page *);
1237 int i;
1238
1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 dma_release_from_contiguous(dev, pages[0], count);
1241 } else {
1242 for (i = 0; i < count; i++)
1243 if (pages[i])
1244 __free_pages(pages[i], 0);
1245 }
1246
1247 if (array_size <= PAGE_SIZE)
1248 kfree(pages);
1249 else
1250 vfree(pages);
1251 return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 const void *caller)
1260{
1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 struct vm_struct *area;
1263 unsigned long p;
1264
1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 caller);
1267 if (!area)
1268 return NULL;
1269
1270 area->pages = pages;
1271 area->nr_pages = nr_pages;
1272 p = (unsigned long)area->addr;
1273
1274 for (i = 0; i < nr_pages; i++) {
1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 goto err;
1278 p += PAGE_SIZE;
1279 }
1280 return area->addr;
1281err:
1282 unmap_kernel_range((unsigned long)area->addr, size);
1283 vunmap(area->addr);
1284 return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292{
1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 dma_addr_t dma_addr, iova;
1296 int i, ret = DMA_ERROR_CODE;
1297
1298 dma_addr = __alloc_iova(mapping, size);
1299 if (dma_addr == DMA_ERROR_CODE)
1300 return dma_addr;
1301
1302 iova = dma_addr;
1303 for (i = 0; i < count; ) {
1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 phys_addr_t phys = page_to_phys(pages[i]);
1306 unsigned int len, j;
1307
1308 for (j = i + 1; j < count; j++, next_pfn++)
1309 if (page_to_pfn(pages[j]) != next_pfn)
1310 break;
1311
1312 len = (j - i) << PAGE_SHIFT;
1313 ret = iommu_map(mapping->domain, iova, phys, len,
1314 IOMMU_READ|IOMMU_WRITE);
1315 if (ret < 0)
1316 goto fail;
1317 iova += len;
1318 i = j;
1319 }
1320 return dma_addr;
1321fail:
1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 __free_iova(mapping, dma_addr, size);
1324 return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331 /*
1332 * add optional in-page offset from iova to size and align
1333 * result to page size
1334 */
1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 iova &= PAGE_MASK;
1337
1338 iommu_unmap(mapping->domain, iova, size);
1339 __free_iova(mapping, iova, size);
1340 return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345 struct dma_pool *pool = &atomic_pool;
1346 struct page **pages = pool->pages;
1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349 return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354 struct vm_struct *area;
1355
1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 return __atomic_get_pages(cpu_addr);
1358
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return cpu_addr;
1361
1362 area = find_vm_area(cpu_addr);
1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 return area->pages;
1365 return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 dma_addr_t *handle)
1370{
1371 struct page *page;
1372 void *addr;
1373
1374 addr = __alloc_from_pool(size, &page);
1375 if (!addr)
1376 return NULL;
1377
1378 *handle = __iommu_create_mapping(dev, &page, size);
1379 if (*handle == DMA_ERROR_CODE)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384err_mapping:
1385 __free_from_pool(addr, size);
1386 return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 dma_addr_t handle, size_t size)
1391{
1392 __iommu_remove_mapping(dev, handle, size);
1393 __free_from_pool(cpu_addr, size);
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 struct page **pages;
1401 void *addr = NULL;
1402
1403 *handle = DMA_ERROR_CODE;
1404 size = PAGE_ALIGN(size);
1405
1406 if (!(gfp & __GFP_WAIT))
1407 return __iommu_alloc_atomic(dev, size, handle);
1408
1409 /*
1410 * Following is a work-around (a.k.a. hack) to prevent pages
1411 * with __GFP_COMP being passed to split_page() which cannot
1412 * handle them. The real problem is that this flag probably
1413 * should be 0 on ARM as it is not supported on this
1414 * platform; see CONFIG_HUGETLBFS.
1415 */
1416 gfp &= ~(__GFP_COMP);
1417
1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 if (!pages)
1420 return NULL;
1421
1422 *handle = __iommu_create_mapping(dev, pages, size);
1423 if (*handle == DMA_ERROR_CODE)
1424 goto err_buffer;
1425
1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 return pages;
1428
1429 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 __builtin_return_address(0));
1431 if (!addr)
1432 goto err_mapping;
1433
1434 return addr;
1435
1436err_mapping:
1437 __iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439 __iommu_free_buffer(dev, pages, size, attrs);
1440 return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 struct dma_attrs *attrs)
1446{
1447 unsigned long uaddr = vma->vm_start;
1448 unsigned long usize = vma->vm_end - vma->vm_start;
1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450
1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452
1453 if (!pages)
1454 return -ENXIO;
1455
1456 do {
1457 int ret = vm_insert_page(vma, uaddr, *pages++);
1458 if (ret) {
1459 pr_err("Remapping memory failed: %d\n", ret);
1460 return ret;
1461 }
1462 uaddr += PAGE_SIZE;
1463 usize -= PAGE_SIZE;
1464 } while (usize > 0);
1465
1466 return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 dma_addr_t handle, struct dma_attrs *attrs)
1475{
1476 struct page **pages;
1477 size = PAGE_ALIGN(size);
1478
1479 if (__in_atomic_pool(cpu_addr, size)) {
1480 __iommu_free_atomic(dev, cpu_addr, handle, size);
1481 return;
1482 }
1483
1484 pages = __iommu_get_pages(cpu_addr, attrs);
1485 if (!pages) {
1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 return;
1488 }
1489
1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 unmap_kernel_range((unsigned long)cpu_addr, size);
1492 vunmap(cpu_addr);
1493 }
1494
1495 __iommu_remove_mapping(dev, handle, size);
1496 __iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 void *cpu_addr, dma_addr_t dma_addr,
1501 size_t size, struct dma_attrs *attrs)
1502{
1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506 if (!pages)
1507 return -ENXIO;
1508
1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515 int prot;
1516
1517 switch (dir) {
1518 case DMA_BIDIRECTIONAL:
1519 prot = IOMMU_READ | IOMMU_WRITE;
1520 break;
1521 case DMA_TO_DEVICE:
1522 prot = IOMMU_READ;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 prot = IOMMU_WRITE;
1526 break;
1527 default:
1528 prot = 0;
1529 }
1530
1531 return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 size_t size, dma_addr_t *handle,
1539 enum dma_data_direction dir, struct dma_attrs *attrs,
1540 bool is_coherent)
1541{
1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 dma_addr_t iova, iova_base;
1544 int ret = 0;
1545 unsigned int count;
1546 struct scatterlist *s;
1547 int prot;
1548
1549 size = PAGE_ALIGN(size);
1550 *handle = DMA_ERROR_CODE;
1551
1552 iova_base = iova = __alloc_iova(mapping, size);
1553 if (iova == DMA_ERROR_CODE)
1554 return -ENOMEM;
1555
1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 phys_addr_t phys = page_to_phys(sg_page(s));
1558 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560 if (!is_coherent &&
1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564 prot = __dma_direction_to_prot(dir);
1565
1566 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 if (ret < 0)
1568 goto fail;
1569 count += len >> PAGE_SHIFT;
1570 iova += len;
1571 }
1572 *handle = iova_base;
1573
1574 return 0;
1575fail:
1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 __free_iova(mapping, iova_base, size);
1578 return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
1584{
1585 struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 int i, count = 0;
1587 unsigned int offset = s->offset;
1588 unsigned int size = s->offset + s->length;
1589 unsigned int max = dma_get_max_seg_size(dev);
1590
1591 for (i = 1; i < nents; i++) {
1592 s = sg_next(s);
1593
1594 s->dma_address = DMA_ERROR_CODE;
1595 s->dma_length = 0;
1596
1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599 dir, attrs, is_coherent) < 0)
1600 goto bad_mapping;
1601
1602 dma->dma_address += offset;
1603 dma->dma_length = size - offset;
1604
1605 size = offset = s->offset;
1606 start = s;
1607 dma = sg_next(dma);
1608 count += 1;
1609 }
1610 size += s->length;
1611 }
1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 is_coherent) < 0)
1614 goto bad_mapping;
1615
1616 dma->dma_address += offset;
1617 dma->dma_length = size - offset;
1618
1619 return count+1;
1620
1621bad_mapping:
1622 for_each_sg(sg, s, count, i)
1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 return 0;
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 bool is_coherent)
1666{
1667 struct scatterlist *s;
1668 int i;
1669
1670 for_each_sg(sg, s, nents, i) {
1671 if (sg_dma_len(s))
1672 __iommu_remove_mapping(dev, sg_dma_address(s),
1673 sg_dma_len(s));
1674 if (!is_coherent &&
1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 s->length, dir);
1678 }
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations. Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations. Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 int nents, enum dma_data_direction dir)
1722{
1723 struct scatterlist *s;
1724 int i;
1725
1726 for_each_sg(sg, s, nents, i)
1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 int nents, enum dma_data_direction dir)
1740{
1741 struct scatterlist *s;
1742 int i;
1743
1744 for_each_sg(sg, s, nents, i)
1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 dma_addr_t dma_addr;
1765 int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767 dma_addr = __alloc_iova(mapping, len);
1768 if (dma_addr == DMA_ERROR_CODE)
1769 return dma_addr;
1770
1771 prot = __dma_direction_to_prot(dir);
1772
1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 if (ret < 0)
1775 goto fail;
1776
1777 return dma_addr + offset;
1778fail:
1779 __free_iova(mapping, dma_addr, len);
1780 return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 unsigned long offset, size_t size, enum dma_data_direction dir,
1795 struct dma_attrs *attrs)
1796{
1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 size_t size, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815{
1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 dma_addr_t iova = handle & PAGE_MASK;
1818 int offset = handle & ~PAGE_MASK;
1819 int len = PAGE_ALIGN(size + offset);
1820
1821 if (!iova)
1822 return;
1823
1824 iommu_unmap(mapping->domain, iova, len);
1825 __free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 size_t size, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
1840{
1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 int offset = handle & ~PAGE_MASK;
1845 int len = PAGE_ALIGN(size + offset);
1846
1847 if (!iova)
1848 return;
1849
1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853 iommu_unmap(mapping->domain, iova, len);
1854 __free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 dma_addr_t iova = handle & PAGE_MASK;
1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 unsigned int offset = handle & ~PAGE_MASK;
1864
1865 if (!iova)
1866 return;
1867
1868 __dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 dma_addr_t iova = handle & PAGE_MASK;
1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 unsigned int offset = handle & ~PAGE_MASK;
1878
1879 if (!iova)
1880 return;
1881
1882 __dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886 .alloc = arm_iommu_alloc_attrs,
1887 .free = arm_iommu_free_attrs,
1888 .mmap = arm_iommu_mmap_attrs,
1889 .get_sgtable = arm_iommu_get_sgtable,
1890
1891 .map_page = arm_iommu_map_page,
1892 .unmap_page = arm_iommu_unmap_page,
1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1894 .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896 .map_sg = arm_iommu_map_sg,
1897 .unmap_sg = arm_iommu_unmap_sg,
1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1900
1901 .set_dma_mask = arm_dma_set_mask,
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905 .alloc = arm_iommu_alloc_attrs,
1906 .free = arm_iommu_free_attrs,
1907 .mmap = arm_iommu_mmap_attrs,
1908 .get_sgtable = arm_iommu_get_sgtable,
1909
1910 .map_page = arm_coherent_iommu_map_page,
1911 .unmap_page = arm_coherent_iommu_unmap_page,
1912
1913 .map_sg = arm_coherent_iommu_map_sg,
1914 .unmap_sg = arm_coherent_iommu_unmap_sg,
1915
1916 .set_dma_mask = arm_dma_set_mask,
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935 unsigned int bits = size >> PAGE_SHIFT;
1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937 struct dma_iommu_mapping *mapping;
1938 int extensions = 1;
1939 int err = -ENOMEM;
1940
1941 if (!bitmap_size)
1942 return ERR_PTR(-EINVAL);
1943
1944 if (bitmap_size > PAGE_SIZE) {
1945 extensions = bitmap_size / PAGE_SIZE;
1946 bitmap_size = PAGE_SIZE;
1947 }
1948
1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 if (!mapping)
1951 goto err;
1952
1953 mapping->bitmap_size = bitmap_size;
1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 GFP_KERNEL);
1956 if (!mapping->bitmaps)
1957 goto err2;
1958
1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 if (!mapping->bitmaps[0])
1961 goto err3;
1962
1963 mapping->nr_bitmaps = 1;
1964 mapping->extensions = extensions;
1965 mapping->base = base;
1966 mapping->bits = BITS_PER_BYTE * bitmap_size;
1967 mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969 spin_lock_init(&mapping->lock);
1970
1971 mapping->domain = iommu_domain_alloc(bus);
1972 if (!mapping->domain)
1973 goto err4;
1974
1975 kref_init(&mapping->kref);
1976 return mapping;
1977err4:
1978 kfree(mapping->bitmaps[0]);
1979err3:
1980 kfree(mapping->bitmaps);
1981err2:
1982 kfree(mapping);
1983err:
1984 return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990 int i;
1991 struct dma_iommu_mapping *mapping =
1992 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994 iommu_domain_free(mapping->domain);
1995 for (i = 0; i < mapping->nr_bitmaps; i++)
1996 kfree(mapping->bitmaps[i]);
1997 kfree(mapping->bitmaps);
1998 kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003 int next_bitmap;
2004
2005 if (mapping->nr_bitmaps > mapping->extensions)
2006 return -EINVAL;
2007
2008 next_bitmap = mapping->nr_bitmaps;
2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 GFP_ATOMIC);
2011 if (!mapping->bitmaps[next_bitmap])
2012 return -ENOMEM;
2013
2014 mapping->nr_bitmaps++;
2015
2016 return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021 if (mapping)
2022 kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 * arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038 struct dma_iommu_mapping *mapping)
2039{
2040 int err;
2041
2042 err = iommu_attach_device(mapping->domain, dev);
2043 if (err)
2044 return err;
2045
2046 kref_get(&mapping->kref);
2047 dev->archdata.mapping = mapping;
2048 set_dma_ops(dev, &iommu_ops);
2049
2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping;
2065
2066 mapping = to_dma_iommu_mapping(dev);
2067 if (!mapping) {
2068 dev_warn(dev, "Not attached\n");
2069 return;
2070 }
2071
2072 iommu_detach_device(mapping->domain, dev);
2073 kref_put(&mapping->kref, release_iommu_mapping);
2074 dev->archdata.mapping = NULL;
2075 set_dma_ops(dev, NULL);
2076
2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081#endif