Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
63#define NORMAL 0
64#define COHERENT 1
65
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132{
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136}
137
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161{
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165}
166
167static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173}
174
175static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181}
182
183static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184{
185 return dma_addr == ARM_MAPPING_ERROR;
186}
187
188const struct dma_map_ops arm_dma_ops = {
189 .alloc = arm_dma_alloc,
190 .free = arm_dma_free,
191 .mmap = arm_dma_mmap,
192 .get_sgtable = arm_dma_get_sgtable,
193 .map_page = arm_dma_map_page,
194 .unmap_page = arm_dma_unmap_page,
195 .map_sg = arm_dma_map_sg,
196 .unmap_sg = arm_dma_unmap_sg,
197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
198 .sync_single_for_device = arm_dma_sync_single_for_device,
199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
200 .sync_sg_for_device = arm_dma_sync_sg_for_device,
201 .mapping_error = arm_dma_mapping_error,
202 .dma_supported = arm_dma_supported,
203};
204EXPORT_SYMBOL(arm_dma_ops);
205
206static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 dma_addr_t handle, unsigned long attrs);
210static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 unsigned long attrs);
213
214const struct dma_map_ops arm_coherent_dma_ops = {
215 .alloc = arm_coherent_dma_alloc,
216 .free = arm_coherent_dma_free,
217 .mmap = arm_coherent_dma_mmap,
218 .get_sgtable = arm_dma_get_sgtable,
219 .map_page = arm_coherent_dma_map_page,
220 .map_sg = arm_dma_map_sg,
221 .mapping_error = arm_dma_mapping_error,
222 .dma_supported = arm_dma_supported,
223};
224EXPORT_SYMBOL(arm_coherent_dma_ops);
225
226static int __dma_supported(struct device *dev, u64 mask, bool warn)
227{
228 unsigned long max_dma_pfn;
229
230 /*
231 * If the mask allows for more memory than we can address,
232 * and we actually have that much memory, then we must
233 * indicate that DMA to this device is not supported.
234 */
235 if (sizeof(mask) != sizeof(dma_addr_t) &&
236 mask > (dma_addr_t)~0 &&
237 dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 if (warn) {
239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 mask);
241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 }
243 return 0;
244 }
245
246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247
248 /*
249 * Translate the device's DMA mask to a PFN limit. This
250 * PFN number includes the page which we can DMA to.
251 */
252 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 if (warn)
254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 mask,
256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 max_dma_pfn + 1);
258 return 0;
259 }
260
261 return 1;
262}
263
264static u64 get_coherent_dma_mask(struct device *dev)
265{
266 u64 mask = (u64)DMA_BIT_MASK(32);
267
268 if (dev) {
269 mask = dev->coherent_dma_mask;
270
271 /*
272 * Sanity check the DMA mask - it must be non-zero, and
273 * must be able to be satisfied by a DMA allocation.
274 */
275 if (mask == 0) {
276 dev_warn(dev, "coherent DMA mask is unset\n");
277 return 0;
278 }
279
280 if (!__dma_supported(dev, mask, true))
281 return 0;
282 }
283
284 return mask;
285}
286
287static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288{
289 /*
290 * Ensure that the allocated pages are zeroed, and that any data
291 * lurking in the kernel direct-mapped region is invalidated.
292 */
293 if (PageHighMem(page)) {
294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 phys_addr_t end = base + size;
296 while (size > 0) {
297 void *ptr = kmap_atomic(page);
298 memset(ptr, 0, PAGE_SIZE);
299 if (coherent_flag != COHERENT)
300 dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 kunmap_atomic(ptr);
302 page++;
303 size -= PAGE_SIZE;
304 }
305 if (coherent_flag != COHERENT)
306 outer_flush_range(base, end);
307 } else {
308 void *ptr = page_address(page);
309 memset(ptr, 0, size);
310 if (coherent_flag != COHERENT) {
311 dmac_flush_range(ptr, ptr + size);
312 outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 }
314 }
315}
316
317/*
318 * Allocate a DMA buffer for 'dev' of size 'size' using the
319 * specified gfp mask. Note that 'size' must be page aligned.
320 */
321static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 gfp_t gfp, int coherent_flag)
323{
324 unsigned long order = get_order(size);
325 struct page *page, *p, *e;
326
327 page = alloc_pages(gfp, order);
328 if (!page)
329 return NULL;
330
331 /*
332 * Now split the huge page and free the excess pages
333 */
334 split_page(page, order);
335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 __free_page(p);
337
338 __dma_clear_buffer(page, size, coherent_flag);
339
340 return page;
341}
342
343/*
344 * Free a DMA buffer. 'size' must be page aligned.
345 */
346static void __dma_free_buffer(struct page *page, size_t size)
347{
348 struct page *e = page + (size >> PAGE_SHIFT);
349
350 while (page < e) {
351 __free_page(page);
352 page++;
353 }
354}
355
356static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 pgprot_t prot, struct page **ret_page,
358 const void *caller, bool want_vaddr,
359 int coherent_flag, gfp_t gfp);
360
361static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 pgprot_t prot, struct page **ret_page,
363 const void *caller, bool want_vaddr);
364
365static void *
366__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 const void *caller)
368{
369 /*
370 * DMA allocation can be mapped to user space, so lets
371 * set VM_USERMAP flags too.
372 */
373 return dma_common_contiguous_remap(page, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 prot, caller);
376}
377
378static void __dma_free_remap(void *cpu_addr, size_t size)
379{
380 dma_common_free_remap(cpu_addr, size,
381 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382}
383
384#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
385static struct gen_pool *atomic_pool __ro_after_init;
386
387static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388
389static int __init early_coherent_pool(char *p)
390{
391 atomic_pool_size = memparse(p, &p);
392 return 0;
393}
394early_param("coherent_pool", early_coherent_pool);
395
396/*
397 * Initialise the coherent pool for atomic allocations.
398 */
399static int __init atomic_pool_init(void)
400{
401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402 gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 struct page *page;
404 void *ptr;
405
406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
407 if (!atomic_pool)
408 goto out;
409 /*
410 * The atomic pool is only used for non-coherent allocations
411 * so we must pass NORMAL for coherent_flag.
412 */
413 if (dev_get_cma_area(NULL))
414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 &page, atomic_pool_init, true, NORMAL,
416 GFP_KERNEL);
417 else
418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419 &page, atomic_pool_init, true);
420 if (ptr) {
421 int ret;
422
423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
424 page_to_phys(page),
425 atomic_pool_size, -1);
426 if (ret)
427 goto destroy_genpool;
428
429 gen_pool_set_algo(atomic_pool,
430 gen_pool_first_fit_order_align,
431 NULL);
432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433 atomic_pool_size / 1024);
434 return 0;
435 }
436
437destroy_genpool:
438 gen_pool_destroy(atomic_pool);
439 atomic_pool = NULL;
440out:
441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442 atomic_pool_size / 1024);
443 return -ENOMEM;
444}
445/*
446 * CMA is activated by core_initcall, so we must be called after it.
447 */
448postcore_initcall(atomic_pool_init);
449
450struct dma_contig_early_reserve {
451 phys_addr_t base;
452 unsigned long size;
453};
454
455static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
456
457static int dma_mmu_remap_num __initdata;
458
459void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
460{
461 dma_mmu_remap[dma_mmu_remap_num].base = base;
462 dma_mmu_remap[dma_mmu_remap_num].size = size;
463 dma_mmu_remap_num++;
464}
465
466void __init dma_contiguous_remap(void)
467{
468 int i;
469 for (i = 0; i < dma_mmu_remap_num; i++) {
470 phys_addr_t start = dma_mmu_remap[i].base;
471 phys_addr_t end = start + dma_mmu_remap[i].size;
472 struct map_desc map;
473 unsigned long addr;
474
475 if (end > arm_lowmem_limit)
476 end = arm_lowmem_limit;
477 if (start >= end)
478 continue;
479
480 map.pfn = __phys_to_pfn(start);
481 map.virtual = __phys_to_virt(start);
482 map.length = end - start;
483 map.type = MT_MEMORY_DMA_READY;
484
485 /*
486 * Clear previous low-memory mapping to ensure that the
487 * TLB does not see any conflicting entries, then flush
488 * the TLB of the old entries before creating new mappings.
489 *
490 * This ensures that any speculatively loaded TLB entries
491 * (even though they may be rare) can not cause any problems,
492 * and ensures that this code is architecturally compliant.
493 */
494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
495 addr += PMD_SIZE)
496 pmd_clear(pmd_off_k(addr));
497
498 flush_tlb_kernel_range(__phys_to_virt(start),
499 __phys_to_virt(end));
500
501 iotable_init(&map, 1);
502 }
503}
504
505static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
506 void *data)
507{
508 struct page *page = virt_to_page(addr);
509 pgprot_t prot = *(pgprot_t *)data;
510
511 set_pte_ext(pte, mk_pte(page, prot), 0);
512 return 0;
513}
514
515static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
516{
517 unsigned long start = (unsigned long) page_address(page);
518 unsigned end = start + size;
519
520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
521 flush_tlb_kernel_range(start, end);
522}
523
524static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
525 pgprot_t prot, struct page **ret_page,
526 const void *caller, bool want_vaddr)
527{
528 struct page *page;
529 void *ptr = NULL;
530 /*
531 * __alloc_remap_buffer is only called when the device is
532 * non-coherent
533 */
534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
535 if (!page)
536 return NULL;
537 if (!want_vaddr)
538 goto out;
539
540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
541 if (!ptr) {
542 __dma_free_buffer(page, size);
543 return NULL;
544 }
545
546 out:
547 *ret_page = page;
548 return ptr;
549}
550
551static void *__alloc_from_pool(size_t size, struct page **ret_page)
552{
553 unsigned long val;
554 void *ptr = NULL;
555
556 if (!atomic_pool) {
557 WARN(1, "coherent pool not initialised!\n");
558 return NULL;
559 }
560
561 val = gen_pool_alloc(atomic_pool, size);
562 if (val) {
563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
564
565 *ret_page = phys_to_page(phys);
566 ptr = (void *)val;
567 }
568
569 return ptr;
570}
571
572static bool __in_atomic_pool(void *start, size_t size)
573{
574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
575}
576
577static int __free_from_pool(void *start, size_t size)
578{
579 if (!__in_atomic_pool(start, size))
580 return 0;
581
582 gen_pool_free(atomic_pool, (unsigned long)start, size);
583
584 return 1;
585}
586
587static void *__alloc_from_contiguous(struct device *dev, size_t size,
588 pgprot_t prot, struct page **ret_page,
589 const void *caller, bool want_vaddr,
590 int coherent_flag, gfp_t gfp)
591{
592 unsigned long order = get_order(size);
593 size_t count = size >> PAGE_SHIFT;
594 struct page *page;
595 void *ptr = NULL;
596
597 page = dma_alloc_from_contiguous(dev, count, order, gfp);
598 if (!page)
599 return NULL;
600
601 __dma_clear_buffer(page, size, coherent_flag);
602
603 if (!want_vaddr)
604 goto out;
605
606 if (PageHighMem(page)) {
607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
608 if (!ptr) {
609 dma_release_from_contiguous(dev, page, count);
610 return NULL;
611 }
612 } else {
613 __dma_remap(page, size, prot);
614 ptr = page_address(page);
615 }
616
617 out:
618 *ret_page = page;
619 return ptr;
620}
621
622static void __free_from_contiguous(struct device *dev, struct page *page,
623 void *cpu_addr, size_t size, bool want_vaddr)
624{
625 if (want_vaddr) {
626 if (PageHighMem(page))
627 __dma_free_remap(cpu_addr, size);
628 else
629 __dma_remap(page, size, PAGE_KERNEL);
630 }
631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
632}
633
634static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
635{
636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
637 pgprot_writecombine(prot) :
638 pgprot_dmacoherent(prot);
639 return prot;
640}
641
642static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
643 struct page **ret_page)
644{
645 struct page *page;
646 /* __alloc_simple_buffer is only called when the device is coherent */
647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
648 if (!page)
649 return NULL;
650
651 *ret_page = page;
652 return page_address(page);
653}
654
655static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
656 struct page **ret_page)
657{
658 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
659 ret_page);
660}
661
662static void simple_allocator_free(struct arm_dma_free_args *args)
663{
664 __dma_free_buffer(args->page, args->size);
665}
666
667static struct arm_dma_allocator simple_allocator = {
668 .alloc = simple_allocator_alloc,
669 .free = simple_allocator_free,
670};
671
672static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
673 struct page **ret_page)
674{
675 return __alloc_from_contiguous(args->dev, args->size, args->prot,
676 ret_page, args->caller,
677 args->want_vaddr, args->coherent_flag,
678 args->gfp);
679}
680
681static void cma_allocator_free(struct arm_dma_free_args *args)
682{
683 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
684 args->size, args->want_vaddr);
685}
686
687static struct arm_dma_allocator cma_allocator = {
688 .alloc = cma_allocator_alloc,
689 .free = cma_allocator_free,
690};
691
692static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
693 struct page **ret_page)
694{
695 return __alloc_from_pool(args->size, ret_page);
696}
697
698static void pool_allocator_free(struct arm_dma_free_args *args)
699{
700 __free_from_pool(args->cpu_addr, args->size);
701}
702
703static struct arm_dma_allocator pool_allocator = {
704 .alloc = pool_allocator_alloc,
705 .free = pool_allocator_free,
706};
707
708static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
709 struct page **ret_page)
710{
711 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
712 args->prot, ret_page, args->caller,
713 args->want_vaddr);
714}
715
716static void remap_allocator_free(struct arm_dma_free_args *args)
717{
718 if (args->want_vaddr)
719 __dma_free_remap(args->cpu_addr, args->size);
720
721 __dma_free_buffer(args->page, args->size);
722}
723
724static struct arm_dma_allocator remap_allocator = {
725 .alloc = remap_allocator_alloc,
726 .free = remap_allocator_free,
727};
728
729static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 gfp_t gfp, pgprot_t prot, bool is_coherent,
731 unsigned long attrs, const void *caller)
732{
733 u64 mask = get_coherent_dma_mask(dev);
734 struct page *page = NULL;
735 void *addr;
736 bool allowblock, cma;
737 struct arm_dma_buffer *buf;
738 struct arm_dma_alloc_args args = {
739 .dev = dev,
740 .size = PAGE_ALIGN(size),
741 .gfp = gfp,
742 .prot = prot,
743 .caller = caller,
744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
745 .coherent_flag = is_coherent ? COHERENT : NORMAL,
746 };
747
748#ifdef CONFIG_DMA_API_DEBUG
749 u64 limit = (mask + 1) & ~mask;
750 if (limit && size >= limit) {
751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
752 size, mask);
753 return NULL;
754 }
755#endif
756
757 if (!mask)
758 return NULL;
759
760 buf = kzalloc(sizeof(*buf),
761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
762 if (!buf)
763 return NULL;
764
765 if (mask < 0xffffffffULL)
766 gfp |= GFP_DMA;
767
768 /*
769 * Following is a work-around (a.k.a. hack) to prevent pages
770 * with __GFP_COMP being passed to split_page() which cannot
771 * handle them. The real problem is that this flag probably
772 * should be 0 on ARM as it is not supported on this
773 * platform; see CONFIG_HUGETLBFS.
774 */
775 gfp &= ~(__GFP_COMP);
776 args.gfp = gfp;
777
778 *handle = ARM_MAPPING_ERROR;
779 allowblock = gfpflags_allow_blocking(gfp);
780 cma = allowblock ? dev_get_cma_area(dev) : false;
781
782 if (cma)
783 buf->allocator = &cma_allocator;
784 else if (is_coherent)
785 buf->allocator = &simple_allocator;
786 else if (allowblock)
787 buf->allocator = &remap_allocator;
788 else
789 buf->allocator = &pool_allocator;
790
791 addr = buf->allocator->alloc(&args, &page);
792
793 if (page) {
794 unsigned long flags;
795
796 *handle = pfn_to_dma(dev, page_to_pfn(page));
797 buf->virt = args.want_vaddr ? addr : page;
798
799 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
800 list_add(&buf->list, &arm_dma_bufs);
801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
802 } else {
803 kfree(buf);
804 }
805
806 return args.want_vaddr ? addr : page;
807}
808
809/*
810 * Allocate DMA-coherent memory space and return both the kernel remapped
811 * virtual and bus address for that space.
812 */
813void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
814 gfp_t gfp, unsigned long attrs)
815{
816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
817
818 return __dma_alloc(dev, size, handle, gfp, prot, false,
819 attrs, __builtin_return_address(0));
820}
821
822static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
824{
825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
826 attrs, __builtin_return_address(0));
827}
828
829static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
830 void *cpu_addr, dma_addr_t dma_addr, size_t size,
831 unsigned long attrs)
832{
833 int ret;
834 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
836 unsigned long pfn = dma_to_pfn(dev, dma_addr);
837 unsigned long off = vma->vm_pgoff;
838
839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
840 return ret;
841
842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
843 ret = remap_pfn_range(vma, vma->vm_start,
844 pfn + off,
845 vma->vm_end - vma->vm_start,
846 vma->vm_page_prot);
847 }
848
849 return ret;
850}
851
852/*
853 * Create userspace mapping for the DMA-coherent memory.
854 */
855static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
856 void *cpu_addr, dma_addr_t dma_addr, size_t size,
857 unsigned long attrs)
858{
859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
860}
861
862int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 unsigned long attrs)
865{
866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
868}
869
870/*
871 * Free a buffer as defined by the above mapping.
872 */
873static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t handle, unsigned long attrs,
875 bool is_coherent)
876{
877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
878 struct arm_dma_buffer *buf;
879 struct arm_dma_free_args args = {
880 .dev = dev,
881 .size = PAGE_ALIGN(size),
882 .cpu_addr = cpu_addr,
883 .page = page,
884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
885 };
886
887 buf = arm_dma_buffer_find(cpu_addr);
888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
889 return;
890
891 buf->allocator->free(&args);
892 kfree(buf);
893}
894
895void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 dma_addr_t handle, unsigned long attrs)
897{
898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
899}
900
901static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
902 dma_addr_t handle, unsigned long attrs)
903{
904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
905}
906
907/*
908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
909 * that the intention is to allow exporting memory allocated via the
910 * coherent DMA APIs through the dma_buf API, which only accepts a
911 * scattertable. This presents a couple of problems:
912 * 1. Not all memory allocated via the coherent DMA APIs is backed by
913 * a struct page
914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
915 * as we will try to flush the memory through a different alias to that
916 * actually being used (and the flushes are redundant.)
917 */
918int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
919 void *cpu_addr, dma_addr_t handle, size_t size,
920 unsigned long attrs)
921{
922 unsigned long pfn = dma_to_pfn(dev, handle);
923 struct page *page;
924 int ret;
925
926 /* If the PFN is not valid, we do not have a struct page */
927 if (!pfn_valid(pfn))
928 return -ENXIO;
929
930 page = pfn_to_page(pfn);
931
932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
933 if (unlikely(ret))
934 return ret;
935
936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
937 return 0;
938}
939
940static void dma_cache_maint_page(struct page *page, unsigned long offset,
941 size_t size, enum dma_data_direction dir,
942 void (*op)(const void *, size_t, int))
943{
944 unsigned long pfn;
945 size_t left = size;
946
947 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
948 offset %= PAGE_SIZE;
949
950 /*
951 * A single sg entry may refer to multiple physically contiguous
952 * pages. But we still need to process highmem pages individually.
953 * If highmem is not configured then the bulk of this loop gets
954 * optimized out.
955 */
956 do {
957 size_t len = left;
958 void *vaddr;
959
960 page = pfn_to_page(pfn);
961
962 if (PageHighMem(page)) {
963 if (len + offset > PAGE_SIZE)
964 len = PAGE_SIZE - offset;
965
966 if (cache_is_vipt_nonaliasing()) {
967 vaddr = kmap_atomic(page);
968 op(vaddr + offset, len, dir);
969 kunmap_atomic(vaddr);
970 } else {
971 vaddr = kmap_high_get(page);
972 if (vaddr) {
973 op(vaddr + offset, len, dir);
974 kunmap_high(page);
975 }
976 }
977 } else {
978 vaddr = page_address(page) + offset;
979 op(vaddr, len, dir);
980 }
981 offset = 0;
982 pfn++;
983 left -= len;
984 } while (left);
985}
986
987/*
988 * Make an area consistent for devices.
989 * Note: Drivers should NOT use this function directly, as it will break
990 * platforms with CONFIG_DMABOUNCE.
991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
992 */
993static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
994 size_t size, enum dma_data_direction dir)
995{
996 phys_addr_t paddr;
997
998 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
999
1000 paddr = page_to_phys(page) + off;
1001 if (dir == DMA_FROM_DEVICE) {
1002 outer_inv_range(paddr, paddr + size);
1003 } else {
1004 outer_clean_range(paddr, paddr + size);
1005 }
1006 /* FIXME: non-speculating: flush on bidirectional mappings? */
1007}
1008
1009static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1010 size_t size, enum dma_data_direction dir)
1011{
1012 phys_addr_t paddr = page_to_phys(page) + off;
1013
1014 /* FIXME: non-speculating: not required */
1015 /* in any case, don't bother invalidating if DMA to device */
1016 if (dir != DMA_TO_DEVICE) {
1017 outer_inv_range(paddr, paddr + size);
1018
1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1020 }
1021
1022 /*
1023 * Mark the D-cache clean for these pages to avoid extra flushing.
1024 */
1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1026 unsigned long pfn;
1027 size_t left = size;
1028
1029 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1030 off %= PAGE_SIZE;
1031 if (off) {
1032 pfn++;
1033 left -= PAGE_SIZE - off;
1034 }
1035 while (left >= PAGE_SIZE) {
1036 page = pfn_to_page(pfn++);
1037 set_bit(PG_dcache_clean, &page->flags);
1038 left -= PAGE_SIZE;
1039 }
1040 }
1041}
1042
1043/**
1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map
1048 * @dir: DMA transfer direction
1049 *
1050 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1051 * This is the scatter-gather version of the dma_map_single interface.
1052 * Here the scatter gather list elements are each tagged with the
1053 * appropriate dma address and length. They are obtained via
1054 * sg_dma_{address,length}.
1055 *
1056 * Device ownership issues as mentioned for dma_map_single are the same
1057 * here.
1058 */
1059int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1060 enum dma_data_direction dir, unsigned long attrs)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i, j;
1065
1066 for_each_sg(sg, s, nents, i) {
1067#ifdef CONFIG_NEED_SG_DMA_LENGTH
1068 s->dma_length = s->length;
1069#endif
1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1071 s->length, dir, attrs);
1072 if (dma_mapping_error(dev, s->dma_address))
1073 goto bad_mapping;
1074 }
1075 return nents;
1076
1077 bad_mapping:
1078 for_each_sg(sg, s, i, j)
1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1080 return 0;
1081}
1082
1083/**
1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1086 * @sg: list of buffers
1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1089 *
1090 * Unmap a set of streaming mode DMA translations. Again, CPU access
1091 * rules concerning calls here are the same as for dma_unmap_single().
1092 */
1093void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1094 enum dma_data_direction dir, unsigned long attrs)
1095{
1096 const struct dma_map_ops *ops = get_dma_ops(dev);
1097 struct scatterlist *s;
1098
1099 int i;
1100
1101 for_each_sg(sg, s, nents, i)
1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1103}
1104
1105/**
1106 * arm_dma_sync_sg_for_cpu
1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1108 * @sg: list of buffers
1109 * @nents: number of buffers to map (returned from dma_map_sg)
1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1111 */
1112void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1113 int nents, enum dma_data_direction dir)
1114{
1115 const struct dma_map_ops *ops = get_dma_ops(dev);
1116 struct scatterlist *s;
1117 int i;
1118
1119 for_each_sg(sg, s, nents, i)
1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1121 dir);
1122}
1123
1124/**
1125 * arm_dma_sync_sg_for_device
1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1127 * @sg: list of buffers
1128 * @nents: number of buffers to map (returned from dma_map_sg)
1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1130 */
1131void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1132 int nents, enum dma_data_direction dir)
1133{
1134 const struct dma_map_ops *ops = get_dma_ops(dev);
1135 struct scatterlist *s;
1136 int i;
1137
1138 for_each_sg(sg, s, nents, i)
1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1140 dir);
1141}
1142
1143/*
1144 * Return whether the given device DMA address mask can be supported
1145 * properly. For example, if your device can only drive the low 24-bits
1146 * during bus mastering, then you would pass 0x00ffffff as the mask
1147 * to this function.
1148 */
1149int arm_dma_supported(struct device *dev, u64 mask)
1150{
1151 return __dma_supported(dev, mask, false);
1152}
1153
1154#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1155
1156static int __init dma_debug_do_init(void)
1157{
1158 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1159 return 0;
1160}
1161core_initcall(dma_debug_do_init);
1162
1163#ifdef CONFIG_ARM_DMA_USE_IOMMU
1164
1165static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1166{
1167 int prot = 0;
1168
1169 if (attrs & DMA_ATTR_PRIVILEGED)
1170 prot |= IOMMU_PRIV;
1171
1172 switch (dir) {
1173 case DMA_BIDIRECTIONAL:
1174 return prot | IOMMU_READ | IOMMU_WRITE;
1175 case DMA_TO_DEVICE:
1176 return prot | IOMMU_READ;
1177 case DMA_FROM_DEVICE:
1178 return prot | IOMMU_WRITE;
1179 default:
1180 return prot;
1181 }
1182}
1183
1184/* IOMMU */
1185
1186static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1187
1188static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1189 size_t size)
1190{
1191 unsigned int order = get_order(size);
1192 unsigned int align = 0;
1193 unsigned int count, start;
1194 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1195 unsigned long flags;
1196 dma_addr_t iova;
1197 int i;
1198
1199 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1200 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1201
1202 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1203 align = (1 << order) - 1;
1204
1205 spin_lock_irqsave(&mapping->lock, flags);
1206 for (i = 0; i < mapping->nr_bitmaps; i++) {
1207 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1208 mapping->bits, 0, count, align);
1209
1210 if (start > mapping->bits)
1211 continue;
1212
1213 bitmap_set(mapping->bitmaps[i], start, count);
1214 break;
1215 }
1216
1217 /*
1218 * No unused range found. Try to extend the existing mapping
1219 * and perform a second attempt to reserve an IO virtual
1220 * address range of size bytes.
1221 */
1222 if (i == mapping->nr_bitmaps) {
1223 if (extend_iommu_mapping(mapping)) {
1224 spin_unlock_irqrestore(&mapping->lock, flags);
1225 return ARM_MAPPING_ERROR;
1226 }
1227
1228 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1229 mapping->bits, 0, count, align);
1230
1231 if (start > mapping->bits) {
1232 spin_unlock_irqrestore(&mapping->lock, flags);
1233 return ARM_MAPPING_ERROR;
1234 }
1235
1236 bitmap_set(mapping->bitmaps[i], start, count);
1237 }
1238 spin_unlock_irqrestore(&mapping->lock, flags);
1239
1240 iova = mapping->base + (mapping_size * i);
1241 iova += start << PAGE_SHIFT;
1242
1243 return iova;
1244}
1245
1246static inline void __free_iova(struct dma_iommu_mapping *mapping,
1247 dma_addr_t addr, size_t size)
1248{
1249 unsigned int start, count;
1250 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1251 unsigned long flags;
1252 dma_addr_t bitmap_base;
1253 u32 bitmap_index;
1254
1255 if (!size)
1256 return;
1257
1258 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1259 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1260
1261 bitmap_base = mapping->base + mapping_size * bitmap_index;
1262
1263 start = (addr - bitmap_base) >> PAGE_SHIFT;
1264
1265 if (addr + size > bitmap_base + mapping_size) {
1266 /*
1267 * The address range to be freed reaches into the iova
1268 * range of the next bitmap. This should not happen as
1269 * we don't allow this in __alloc_iova (at the
1270 * moment).
1271 */
1272 BUG();
1273 } else
1274 count = size >> PAGE_SHIFT;
1275
1276 spin_lock_irqsave(&mapping->lock, flags);
1277 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1278 spin_unlock_irqrestore(&mapping->lock, flags);
1279}
1280
1281/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1282static const int iommu_order_array[] = { 9, 8, 4, 0 };
1283
1284static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1285 gfp_t gfp, unsigned long attrs,
1286 int coherent_flag)
1287{
1288 struct page **pages;
1289 int count = size >> PAGE_SHIFT;
1290 int array_size = count * sizeof(struct page *);
1291 int i = 0;
1292 int order_idx = 0;
1293
1294 if (array_size <= PAGE_SIZE)
1295 pages = kzalloc(array_size, GFP_KERNEL);
1296 else
1297 pages = vzalloc(array_size);
1298 if (!pages)
1299 return NULL;
1300
1301 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1302 {
1303 unsigned long order = get_order(size);
1304 struct page *page;
1305
1306 page = dma_alloc_from_contiguous(dev, count, order, gfp);
1307 if (!page)
1308 goto error;
1309
1310 __dma_clear_buffer(page, size, coherent_flag);
1311
1312 for (i = 0; i < count; i++)
1313 pages[i] = page + i;
1314
1315 return pages;
1316 }
1317
1318 /* Go straight to 4K chunks if caller says it's OK. */
1319 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1320 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1321
1322 /*
1323 * IOMMU can map any pages, so himem can also be used here
1324 */
1325 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1326
1327 while (count) {
1328 int j, order;
1329
1330 order = iommu_order_array[order_idx];
1331
1332 /* Drop down when we get small */
1333 if (__fls(count) < order) {
1334 order_idx++;
1335 continue;
1336 }
1337
1338 if (order) {
1339 /* See if it's easy to allocate a high-order chunk */
1340 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1341
1342 /* Go down a notch at first sign of pressure */
1343 if (!pages[i]) {
1344 order_idx++;
1345 continue;
1346 }
1347 } else {
1348 pages[i] = alloc_pages(gfp, 0);
1349 if (!pages[i])
1350 goto error;
1351 }
1352
1353 if (order) {
1354 split_page(pages[i], order);
1355 j = 1 << order;
1356 while (--j)
1357 pages[i + j] = pages[i] + j;
1358 }
1359
1360 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1361 i += 1 << order;
1362 count -= 1 << order;
1363 }
1364
1365 return pages;
1366error:
1367 while (i--)
1368 if (pages[i])
1369 __free_pages(pages[i], 0);
1370 kvfree(pages);
1371 return NULL;
1372}
1373
1374static int __iommu_free_buffer(struct device *dev, struct page **pages,
1375 size_t size, unsigned long attrs)
1376{
1377 int count = size >> PAGE_SHIFT;
1378 int i;
1379
1380 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1381 dma_release_from_contiguous(dev, pages[0], count);
1382 } else {
1383 for (i = 0; i < count; i++)
1384 if (pages[i])
1385 __free_pages(pages[i], 0);
1386 }
1387
1388 kvfree(pages);
1389 return 0;
1390}
1391
1392/*
1393 * Create a CPU mapping for a specified pages
1394 */
1395static void *
1396__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1397 const void *caller)
1398{
1399 return dma_common_pages_remap(pages, size,
1400 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1401}
1402
1403/*
1404 * Create a mapping in device IO address space for specified pages
1405 */
1406static dma_addr_t
1407__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1408 unsigned long attrs)
1409{
1410 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1411 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1412 dma_addr_t dma_addr, iova;
1413 int i;
1414
1415 dma_addr = __alloc_iova(mapping, size);
1416 if (dma_addr == ARM_MAPPING_ERROR)
1417 return dma_addr;
1418
1419 iova = dma_addr;
1420 for (i = 0; i < count; ) {
1421 int ret;
1422
1423 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1424 phys_addr_t phys = page_to_phys(pages[i]);
1425 unsigned int len, j;
1426
1427 for (j = i + 1; j < count; j++, next_pfn++)
1428 if (page_to_pfn(pages[j]) != next_pfn)
1429 break;
1430
1431 len = (j - i) << PAGE_SHIFT;
1432 ret = iommu_map(mapping->domain, iova, phys, len,
1433 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1434 if (ret < 0)
1435 goto fail;
1436 iova += len;
1437 i = j;
1438 }
1439 return dma_addr;
1440fail:
1441 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1442 __free_iova(mapping, dma_addr, size);
1443 return ARM_MAPPING_ERROR;
1444}
1445
1446static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1447{
1448 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1449
1450 /*
1451 * add optional in-page offset from iova to size and align
1452 * result to page size
1453 */
1454 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1455 iova &= PAGE_MASK;
1456
1457 iommu_unmap(mapping->domain, iova, size);
1458 __free_iova(mapping, iova, size);
1459 return 0;
1460}
1461
1462static struct page **__atomic_get_pages(void *addr)
1463{
1464 struct page *page;
1465 phys_addr_t phys;
1466
1467 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1468 page = phys_to_page(phys);
1469
1470 return (struct page **)page;
1471}
1472
1473static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1474{
1475 struct vm_struct *area;
1476
1477 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1478 return __atomic_get_pages(cpu_addr);
1479
1480 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1481 return cpu_addr;
1482
1483 area = find_vm_area(cpu_addr);
1484 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1485 return area->pages;
1486 return NULL;
1487}
1488
1489static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1490 dma_addr_t *handle, int coherent_flag,
1491 unsigned long attrs)
1492{
1493 struct page *page;
1494 void *addr;
1495
1496 if (coherent_flag == COHERENT)
1497 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1498 else
1499 addr = __alloc_from_pool(size, &page);
1500 if (!addr)
1501 return NULL;
1502
1503 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1504 if (*handle == ARM_MAPPING_ERROR)
1505 goto err_mapping;
1506
1507 return addr;
1508
1509err_mapping:
1510 __free_from_pool(addr, size);
1511 return NULL;
1512}
1513
1514static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1515 dma_addr_t handle, size_t size, int coherent_flag)
1516{
1517 __iommu_remove_mapping(dev, handle, size);
1518 if (coherent_flag == COHERENT)
1519 __dma_free_buffer(virt_to_page(cpu_addr), size);
1520 else
1521 __free_from_pool(cpu_addr, size);
1522}
1523
1524static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1525 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1526 int coherent_flag)
1527{
1528 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1529 struct page **pages;
1530 void *addr = NULL;
1531
1532 *handle = ARM_MAPPING_ERROR;
1533 size = PAGE_ALIGN(size);
1534
1535 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1536 return __iommu_alloc_simple(dev, size, gfp, handle,
1537 coherent_flag, attrs);
1538
1539 /*
1540 * Following is a work-around (a.k.a. hack) to prevent pages
1541 * with __GFP_COMP being passed to split_page() which cannot
1542 * handle them. The real problem is that this flag probably
1543 * should be 0 on ARM as it is not supported on this
1544 * platform; see CONFIG_HUGETLBFS.
1545 */
1546 gfp &= ~(__GFP_COMP);
1547
1548 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1549 if (!pages)
1550 return NULL;
1551
1552 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1553 if (*handle == ARM_MAPPING_ERROR)
1554 goto err_buffer;
1555
1556 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1557 return pages;
1558
1559 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1560 __builtin_return_address(0));
1561 if (!addr)
1562 goto err_mapping;
1563
1564 return addr;
1565
1566err_mapping:
1567 __iommu_remove_mapping(dev, *handle, size);
1568err_buffer:
1569 __iommu_free_buffer(dev, pages, size, attrs);
1570 return NULL;
1571}
1572
1573static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1574 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1575{
1576 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1577}
1578
1579static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1580 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1581{
1582 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1583}
1584
1585static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1586 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1587 unsigned long attrs)
1588{
1589 unsigned long uaddr = vma->vm_start;
1590 unsigned long usize = vma->vm_end - vma->vm_start;
1591 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1592 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1593 unsigned long off = vma->vm_pgoff;
1594
1595 if (!pages)
1596 return -ENXIO;
1597
1598 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1599 return -ENXIO;
1600
1601 pages += off;
1602
1603 do {
1604 int ret = vm_insert_page(vma, uaddr, *pages++);
1605 if (ret) {
1606 pr_err("Remapping memory failed: %d\n", ret);
1607 return ret;
1608 }
1609 uaddr += PAGE_SIZE;
1610 usize -= PAGE_SIZE;
1611 } while (usize > 0);
1612
1613 return 0;
1614}
1615static int arm_iommu_mmap_attrs(struct device *dev,
1616 struct vm_area_struct *vma, void *cpu_addr,
1617 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618{
1619 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1620
1621 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1622}
1623
1624static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1625 struct vm_area_struct *vma, void *cpu_addr,
1626 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1627{
1628 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1629}
1630
1631/*
1632 * free a page as defined by the above mapping.
1633 * Must not be called with IRQs disabled.
1634 */
1635void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1636 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1637{
1638 struct page **pages;
1639 size = PAGE_ALIGN(size);
1640
1641 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1642 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1643 return;
1644 }
1645
1646 pages = __iommu_get_pages(cpu_addr, attrs);
1647 if (!pages) {
1648 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1649 return;
1650 }
1651
1652 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1653 dma_common_free_remap(cpu_addr, size,
1654 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1655 }
1656
1657 __iommu_remove_mapping(dev, handle, size);
1658 __iommu_free_buffer(dev, pages, size, attrs);
1659}
1660
1661void arm_iommu_free_attrs(struct device *dev, size_t size,
1662 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1663{
1664 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1665}
1666
1667void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1668 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1669{
1670 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1671}
1672
1673static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1674 void *cpu_addr, dma_addr_t dma_addr,
1675 size_t size, unsigned long attrs)
1676{
1677 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1678 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1679
1680 if (!pages)
1681 return -ENXIO;
1682
1683 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1684 GFP_KERNEL);
1685}
1686
1687/*
1688 * Map a part of the scatter-gather list into contiguous io address space
1689 */
1690static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1691 size_t size, dma_addr_t *handle,
1692 enum dma_data_direction dir, unsigned long attrs,
1693 bool is_coherent)
1694{
1695 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1696 dma_addr_t iova, iova_base;
1697 int ret = 0;
1698 unsigned int count;
1699 struct scatterlist *s;
1700 int prot;
1701
1702 size = PAGE_ALIGN(size);
1703 *handle = ARM_MAPPING_ERROR;
1704
1705 iova_base = iova = __alloc_iova(mapping, size);
1706 if (iova == ARM_MAPPING_ERROR)
1707 return -ENOMEM;
1708
1709 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1710 phys_addr_t phys = page_to_phys(sg_page(s));
1711 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1712
1713 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1715
1716 prot = __dma_info_to_prot(dir, attrs);
1717
1718 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1719 if (ret < 0)
1720 goto fail;
1721 count += len >> PAGE_SHIFT;
1722 iova += len;
1723 }
1724 *handle = iova_base;
1725
1726 return 0;
1727fail:
1728 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1729 __free_iova(mapping, iova_base, size);
1730 return ret;
1731}
1732
1733static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1734 enum dma_data_direction dir, unsigned long attrs,
1735 bool is_coherent)
1736{
1737 struct scatterlist *s = sg, *dma = sg, *start = sg;
1738 int i, count = 0;
1739 unsigned int offset = s->offset;
1740 unsigned int size = s->offset + s->length;
1741 unsigned int max = dma_get_max_seg_size(dev);
1742
1743 for (i = 1; i < nents; i++) {
1744 s = sg_next(s);
1745
1746 s->dma_address = ARM_MAPPING_ERROR;
1747 s->dma_length = 0;
1748
1749 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1750 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1751 dir, attrs, is_coherent) < 0)
1752 goto bad_mapping;
1753
1754 dma->dma_address += offset;
1755 dma->dma_length = size - offset;
1756
1757 size = offset = s->offset;
1758 start = s;
1759 dma = sg_next(dma);
1760 count += 1;
1761 }
1762 size += s->length;
1763 }
1764 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1765 is_coherent) < 0)
1766 goto bad_mapping;
1767
1768 dma->dma_address += offset;
1769 dma->dma_length = size - offset;
1770
1771 return count+1;
1772
1773bad_mapping:
1774 for_each_sg(sg, s, count, i)
1775 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1776 return 0;
1777}
1778
1779/**
1780 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1781 * @dev: valid struct device pointer
1782 * @sg: list of buffers
1783 * @nents: number of buffers to map
1784 * @dir: DMA transfer direction
1785 *
1786 * Map a set of i/o coherent buffers described by scatterlist in streaming
1787 * mode for DMA. The scatter gather list elements are merged together (if
1788 * possible) and tagged with the appropriate dma address and length. They are
1789 * obtained via sg_dma_{address,length}.
1790 */
1791int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1792 int nents, enum dma_data_direction dir, unsigned long attrs)
1793{
1794 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1795}
1796
1797/**
1798 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1799 * @dev: valid struct device pointer
1800 * @sg: list of buffers
1801 * @nents: number of buffers to map
1802 * @dir: DMA transfer direction
1803 *
1804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1805 * The scatter gather list elements are merged together (if possible) and
1806 * tagged with the appropriate dma address and length. They are obtained via
1807 * sg_dma_{address,length}.
1808 */
1809int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1810 int nents, enum dma_data_direction dir, unsigned long attrs)
1811{
1812 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1813}
1814
1815static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1816 int nents, enum dma_data_direction dir,
1817 unsigned long attrs, bool is_coherent)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i) {
1823 if (sg_dma_len(s))
1824 __iommu_remove_mapping(dev, sg_dma_address(s),
1825 sg_dma_len(s));
1826 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1827 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1828 s->length, dir);
1829 }
1830}
1831
1832/**
1833 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1834 * @dev: valid struct device pointer
1835 * @sg: list of buffers
1836 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1837 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1838 *
1839 * Unmap a set of streaming mode DMA translations. Again, CPU access
1840 * rules concerning calls here are the same as for dma_unmap_single().
1841 */
1842void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1843 int nents, enum dma_data_direction dir,
1844 unsigned long attrs)
1845{
1846 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1847}
1848
1849/**
1850 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1851 * @dev: valid struct device pointer
1852 * @sg: list of buffers
1853 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1854 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1855 *
1856 * Unmap a set of streaming mode DMA translations. Again, CPU access
1857 * rules concerning calls here are the same as for dma_unmap_single().
1858 */
1859void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1860 enum dma_data_direction dir,
1861 unsigned long attrs)
1862{
1863 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1864}
1865
1866/**
1867 * arm_iommu_sync_sg_for_cpu
1868 * @dev: valid struct device pointer
1869 * @sg: list of buffers
1870 * @nents: number of buffers to map (returned from dma_map_sg)
1871 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1872 */
1873void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1874 int nents, enum dma_data_direction dir)
1875{
1876 struct scatterlist *s;
1877 int i;
1878
1879 for_each_sg(sg, s, nents, i)
1880 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1881
1882}
1883
1884/**
1885 * arm_iommu_sync_sg_for_device
1886 * @dev: valid struct device pointer
1887 * @sg: list of buffers
1888 * @nents: number of buffers to map (returned from dma_map_sg)
1889 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1890 */
1891void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1892 int nents, enum dma_data_direction dir)
1893{
1894 struct scatterlist *s;
1895 int i;
1896
1897 for_each_sg(sg, s, nents, i)
1898 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1899}
1900
1901
1902/**
1903 * arm_coherent_iommu_map_page
1904 * @dev: valid struct device pointer
1905 * @page: page that buffer resides in
1906 * @offset: offset into page for start of buffer
1907 * @size: size of buffer to map
1908 * @dir: DMA transfer direction
1909 *
1910 * Coherent IOMMU aware version of arm_dma_map_page()
1911 */
1912static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1913 unsigned long offset, size_t size, enum dma_data_direction dir,
1914 unsigned long attrs)
1915{
1916 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1917 dma_addr_t dma_addr;
1918 int ret, prot, len = PAGE_ALIGN(size + offset);
1919
1920 dma_addr = __alloc_iova(mapping, len);
1921 if (dma_addr == ARM_MAPPING_ERROR)
1922 return dma_addr;
1923
1924 prot = __dma_info_to_prot(dir, attrs);
1925
1926 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1927 if (ret < 0)
1928 goto fail;
1929
1930 return dma_addr + offset;
1931fail:
1932 __free_iova(mapping, dma_addr, len);
1933 return ARM_MAPPING_ERROR;
1934}
1935
1936/**
1937 * arm_iommu_map_page
1938 * @dev: valid struct device pointer
1939 * @page: page that buffer resides in
1940 * @offset: offset into page for start of buffer
1941 * @size: size of buffer to map
1942 * @dir: DMA transfer direction
1943 *
1944 * IOMMU aware version of arm_dma_map_page()
1945 */
1946static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1947 unsigned long offset, size_t size, enum dma_data_direction dir,
1948 unsigned long attrs)
1949{
1950 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1951 __dma_page_cpu_to_dev(page, offset, size, dir);
1952
1953 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1954}
1955
1956/**
1957 * arm_coherent_iommu_unmap_page
1958 * @dev: valid struct device pointer
1959 * @handle: DMA address of buffer
1960 * @size: size of buffer (same as passed to dma_map_page)
1961 * @dir: DMA transfer direction (same as passed to dma_map_page)
1962 *
1963 * Coherent IOMMU aware version of arm_dma_unmap_page()
1964 */
1965static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1966 size_t size, enum dma_data_direction dir, unsigned long attrs)
1967{
1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 dma_addr_t iova = handle & PAGE_MASK;
1970 int offset = handle & ~PAGE_MASK;
1971 int len = PAGE_ALIGN(size + offset);
1972
1973 if (!iova)
1974 return;
1975
1976 iommu_unmap(mapping->domain, iova, len);
1977 __free_iova(mapping, iova, len);
1978}
1979
1980/**
1981 * arm_iommu_unmap_page
1982 * @dev: valid struct device pointer
1983 * @handle: DMA address of buffer
1984 * @size: size of buffer (same as passed to dma_map_page)
1985 * @dir: DMA transfer direction (same as passed to dma_map_page)
1986 *
1987 * IOMMU aware version of arm_dma_unmap_page()
1988 */
1989static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1990 size_t size, enum dma_data_direction dir, unsigned long attrs)
1991{
1992 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1993 dma_addr_t iova = handle & PAGE_MASK;
1994 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1995 int offset = handle & ~PAGE_MASK;
1996 int len = PAGE_ALIGN(size + offset);
1997
1998 if (!iova)
1999 return;
2000
2001 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2002 __dma_page_dev_to_cpu(page, offset, size, dir);
2003
2004 iommu_unmap(mapping->domain, iova, len);
2005 __free_iova(mapping, iova, len);
2006}
2007
2008/**
2009 * arm_iommu_map_resource - map a device resource for DMA
2010 * @dev: valid struct device pointer
2011 * @phys_addr: physical address of resource
2012 * @size: size of resource to map
2013 * @dir: DMA transfer direction
2014 */
2015static dma_addr_t arm_iommu_map_resource(struct device *dev,
2016 phys_addr_t phys_addr, size_t size,
2017 enum dma_data_direction dir, unsigned long attrs)
2018{
2019 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2020 dma_addr_t dma_addr;
2021 int ret, prot;
2022 phys_addr_t addr = phys_addr & PAGE_MASK;
2023 unsigned int offset = phys_addr & ~PAGE_MASK;
2024 size_t len = PAGE_ALIGN(size + offset);
2025
2026 dma_addr = __alloc_iova(mapping, len);
2027 if (dma_addr == ARM_MAPPING_ERROR)
2028 return dma_addr;
2029
2030 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2031
2032 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2033 if (ret < 0)
2034 goto fail;
2035
2036 return dma_addr + offset;
2037fail:
2038 __free_iova(mapping, dma_addr, len);
2039 return ARM_MAPPING_ERROR;
2040}
2041
2042/**
2043 * arm_iommu_unmap_resource - unmap a device DMA resource
2044 * @dev: valid struct device pointer
2045 * @dma_handle: DMA address to resource
2046 * @size: size of resource to map
2047 * @dir: DMA transfer direction
2048 */
2049static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2050 size_t size, enum dma_data_direction dir,
2051 unsigned long attrs)
2052{
2053 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2054 dma_addr_t iova = dma_handle & PAGE_MASK;
2055 unsigned int offset = dma_handle & ~PAGE_MASK;
2056 size_t len = PAGE_ALIGN(size + offset);
2057
2058 if (!iova)
2059 return;
2060
2061 iommu_unmap(mapping->domain, iova, len);
2062 __free_iova(mapping, iova, len);
2063}
2064
2065static void arm_iommu_sync_single_for_cpu(struct device *dev,
2066 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2067{
2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2069 dma_addr_t iova = handle & PAGE_MASK;
2070 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2071 unsigned int offset = handle & ~PAGE_MASK;
2072
2073 if (!iova)
2074 return;
2075
2076 __dma_page_dev_to_cpu(page, offset, size, dir);
2077}
2078
2079static void arm_iommu_sync_single_for_device(struct device *dev,
2080 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081{
2082 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2083 dma_addr_t iova = handle & PAGE_MASK;
2084 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 unsigned int offset = handle & ~PAGE_MASK;
2086
2087 if (!iova)
2088 return;
2089
2090 __dma_page_cpu_to_dev(page, offset, size, dir);
2091}
2092
2093const struct dma_map_ops iommu_ops = {
2094 .alloc = arm_iommu_alloc_attrs,
2095 .free = arm_iommu_free_attrs,
2096 .mmap = arm_iommu_mmap_attrs,
2097 .get_sgtable = arm_iommu_get_sgtable,
2098
2099 .map_page = arm_iommu_map_page,
2100 .unmap_page = arm_iommu_unmap_page,
2101 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2102 .sync_single_for_device = arm_iommu_sync_single_for_device,
2103
2104 .map_sg = arm_iommu_map_sg,
2105 .unmap_sg = arm_iommu_unmap_sg,
2106 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2107 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2108
2109 .map_resource = arm_iommu_map_resource,
2110 .unmap_resource = arm_iommu_unmap_resource,
2111
2112 .mapping_error = arm_dma_mapping_error,
2113 .dma_supported = arm_dma_supported,
2114};
2115
2116const struct dma_map_ops iommu_coherent_ops = {
2117 .alloc = arm_coherent_iommu_alloc_attrs,
2118 .free = arm_coherent_iommu_free_attrs,
2119 .mmap = arm_coherent_iommu_mmap_attrs,
2120 .get_sgtable = arm_iommu_get_sgtable,
2121
2122 .map_page = arm_coherent_iommu_map_page,
2123 .unmap_page = arm_coherent_iommu_unmap_page,
2124
2125 .map_sg = arm_coherent_iommu_map_sg,
2126 .unmap_sg = arm_coherent_iommu_unmap_sg,
2127
2128 .map_resource = arm_iommu_map_resource,
2129 .unmap_resource = arm_iommu_unmap_resource,
2130
2131 .mapping_error = arm_dma_mapping_error,
2132 .dma_supported = arm_dma_supported,
2133};
2134
2135/**
2136 * arm_iommu_create_mapping
2137 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2138 * @base: start address of the valid IO address space
2139 * @size: maximum size of the valid IO address space
2140 *
2141 * Creates a mapping structure which holds information about used/unused
2142 * IO address ranges, which is required to perform memory allocation and
2143 * mapping with IOMMU aware functions.
2144 *
2145 * The client device need to be attached to the mapping with
2146 * arm_iommu_attach_device function.
2147 */
2148struct dma_iommu_mapping *
2149arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2150{
2151 unsigned int bits = size >> PAGE_SHIFT;
2152 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2153 struct dma_iommu_mapping *mapping;
2154 int extensions = 1;
2155 int err = -ENOMEM;
2156
2157 /* currently only 32-bit DMA address space is supported */
2158 if (size > DMA_BIT_MASK(32) + 1)
2159 return ERR_PTR(-ERANGE);
2160
2161 if (!bitmap_size)
2162 return ERR_PTR(-EINVAL);
2163
2164 if (bitmap_size > PAGE_SIZE) {
2165 extensions = bitmap_size / PAGE_SIZE;
2166 bitmap_size = PAGE_SIZE;
2167 }
2168
2169 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2170 if (!mapping)
2171 goto err;
2172
2173 mapping->bitmap_size = bitmap_size;
2174 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2175 GFP_KERNEL);
2176 if (!mapping->bitmaps)
2177 goto err2;
2178
2179 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2180 if (!mapping->bitmaps[0])
2181 goto err3;
2182
2183 mapping->nr_bitmaps = 1;
2184 mapping->extensions = extensions;
2185 mapping->base = base;
2186 mapping->bits = BITS_PER_BYTE * bitmap_size;
2187
2188 spin_lock_init(&mapping->lock);
2189
2190 mapping->domain = iommu_domain_alloc(bus);
2191 if (!mapping->domain)
2192 goto err4;
2193
2194 kref_init(&mapping->kref);
2195 return mapping;
2196err4:
2197 kfree(mapping->bitmaps[0]);
2198err3:
2199 kfree(mapping->bitmaps);
2200err2:
2201 kfree(mapping);
2202err:
2203 return ERR_PTR(err);
2204}
2205EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2206
2207static void release_iommu_mapping(struct kref *kref)
2208{
2209 int i;
2210 struct dma_iommu_mapping *mapping =
2211 container_of(kref, struct dma_iommu_mapping, kref);
2212
2213 iommu_domain_free(mapping->domain);
2214 for (i = 0; i < mapping->nr_bitmaps; i++)
2215 kfree(mapping->bitmaps[i]);
2216 kfree(mapping->bitmaps);
2217 kfree(mapping);
2218}
2219
2220static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2221{
2222 int next_bitmap;
2223
2224 if (mapping->nr_bitmaps >= mapping->extensions)
2225 return -EINVAL;
2226
2227 next_bitmap = mapping->nr_bitmaps;
2228 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2229 GFP_ATOMIC);
2230 if (!mapping->bitmaps[next_bitmap])
2231 return -ENOMEM;
2232
2233 mapping->nr_bitmaps++;
2234
2235 return 0;
2236}
2237
2238void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2239{
2240 if (mapping)
2241 kref_put(&mapping->kref, release_iommu_mapping);
2242}
2243EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2244
2245static int __arm_iommu_attach_device(struct device *dev,
2246 struct dma_iommu_mapping *mapping)
2247{
2248 int err;
2249
2250 err = iommu_attach_device(mapping->domain, dev);
2251 if (err)
2252 return err;
2253
2254 kref_get(&mapping->kref);
2255 to_dma_iommu_mapping(dev) = mapping;
2256
2257 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2258 return 0;
2259}
2260
2261/**
2262 * arm_iommu_attach_device
2263 * @dev: valid struct device pointer
2264 * @mapping: io address space mapping structure (returned from
2265 * arm_iommu_create_mapping)
2266 *
2267 * Attaches specified io address space mapping to the provided device.
2268 * This replaces the dma operations (dma_map_ops pointer) with the
2269 * IOMMU aware version.
2270 *
2271 * More than one client might be attached to the same io address space
2272 * mapping.
2273 */
2274int arm_iommu_attach_device(struct device *dev,
2275 struct dma_iommu_mapping *mapping)
2276{
2277 int err;
2278
2279 err = __arm_iommu_attach_device(dev, mapping);
2280 if (err)
2281 return err;
2282
2283 set_dma_ops(dev, &iommu_ops);
2284 return 0;
2285}
2286EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2287
2288/**
2289 * arm_iommu_detach_device
2290 * @dev: valid struct device pointer
2291 *
2292 * Detaches the provided device from a previously attached map.
2293 * This voids the dma operations (dma_map_ops pointer)
2294 */
2295void arm_iommu_detach_device(struct device *dev)
2296{
2297 struct dma_iommu_mapping *mapping;
2298
2299 mapping = to_dma_iommu_mapping(dev);
2300 if (!mapping) {
2301 dev_warn(dev, "Not attached\n");
2302 return;
2303 }
2304
2305 iommu_detach_device(mapping->domain, dev);
2306 kref_put(&mapping->kref, release_iommu_mapping);
2307 to_dma_iommu_mapping(dev) = NULL;
2308 set_dma_ops(dev, NULL);
2309
2310 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311}
2312EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2313
2314static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2315{
2316 return coherent ? &iommu_coherent_ops : &iommu_ops;
2317}
2318
2319static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2320 const struct iommu_ops *iommu)
2321{
2322 struct dma_iommu_mapping *mapping;
2323
2324 if (!iommu)
2325 return false;
2326
2327 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2328 if (IS_ERR(mapping)) {
2329 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2330 size, dev_name(dev));
2331 return false;
2332 }
2333
2334 if (__arm_iommu_attach_device(dev, mapping)) {
2335 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2336 dev_name(dev));
2337 arm_iommu_release_mapping(mapping);
2338 return false;
2339 }
2340
2341 return true;
2342}
2343
2344static void arm_teardown_iommu_dma_ops(struct device *dev)
2345{
2346 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2347
2348 if (!mapping)
2349 return;
2350
2351 arm_iommu_detach_device(dev);
2352 arm_iommu_release_mapping(mapping);
2353}
2354
2355#else
2356
2357static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2358 const struct iommu_ops *iommu)
2359{
2360 return false;
2361}
2362
2363static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2364
2365#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2366
2367#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2368
2369static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2370{
2371 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2372}
2373
2374void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2375 const struct iommu_ops *iommu, bool coherent)
2376{
2377 const struct dma_map_ops *dma_ops;
2378
2379 dev->archdata.dma_coherent = coherent;
2380
2381 /*
2382 * Don't override the dma_ops if they have already been set. Ideally
2383 * this should be the only location where dma_ops are set, remove this
2384 * check when all other callers of set_dma_ops will have disappeared.
2385 */
2386 if (dev->dma_ops)
2387 return;
2388
2389 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2390 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2391 else
2392 dma_ops = arm_get_dma_map_ops(coherent);
2393
2394 set_dma_ops(dev, dma_ops);
2395
2396#ifdef CONFIG_XEN
2397 if (xen_initial_domain()) {
2398 dev->archdata.dev_dma_ops = dev->dma_ops;
2399 dev->dma_ops = xen_dma_ops;
2400 }
2401#endif
2402 dev->archdata.dma_ops_setup = true;
2403}
2404
2405void arch_teardown_dma_ops(struct device *dev)
2406{
2407 if (!dev->archdata.dma_ops_setup)
2408 return;
2409
2410 arm_teardown_iommu_dma_ops(dev);
2411}
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53};
54
55struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61};
62
63#define NORMAL 0
64#define COHERENT 1
65
66struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70};
71
72struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76};
77
78static LIST_HEAD(arm_dma_bufs);
79static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82{
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96}
97
98/*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115/**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132{
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136}
137
138static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141{
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143}
144
145/**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161{
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165}
166
167static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169{
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173}
174
175static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177{
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181}
182
183struct dma_map_ops arm_dma_ops = {
184 .alloc = arm_dma_alloc,
185 .free = arm_dma_free,
186 .mmap = arm_dma_mmap,
187 .get_sgtable = arm_dma_get_sgtable,
188 .map_page = arm_dma_map_page,
189 .unmap_page = arm_dma_unmap_page,
190 .map_sg = arm_dma_map_sg,
191 .unmap_sg = arm_dma_unmap_sg,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196};
197EXPORT_SYMBOL(arm_dma_ops);
198
199static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 dma_addr_t handle, unsigned long attrs);
203static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 unsigned long attrs);
206
207struct dma_map_ops arm_coherent_dma_ops = {
208 .alloc = arm_coherent_dma_alloc,
209 .free = arm_coherent_dma_free,
210 .mmap = arm_coherent_dma_mmap,
211 .get_sgtable = arm_dma_get_sgtable,
212 .map_page = arm_coherent_dma_map_page,
213 .map_sg = arm_dma_map_sg,
214};
215EXPORT_SYMBOL(arm_coherent_dma_ops);
216
217static int __dma_supported(struct device *dev, u64 mask, bool warn)
218{
219 unsigned long max_dma_pfn;
220
221 /*
222 * If the mask allows for more memory than we can address,
223 * and we actually have that much memory, then we must
224 * indicate that DMA to this device is not supported.
225 */
226 if (sizeof(mask) != sizeof(dma_addr_t) &&
227 mask > (dma_addr_t)~0 &&
228 dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 if (warn) {
230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 mask);
232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 }
234 return 0;
235 }
236
237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238
239 /*
240 * Translate the device's DMA mask to a PFN limit. This
241 * PFN number includes the page which we can DMA to.
242 */
243 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 if (warn)
245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 mask,
247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 max_dma_pfn + 1);
249 return 0;
250 }
251
252 return 1;
253}
254
255static u64 get_coherent_dma_mask(struct device *dev)
256{
257 u64 mask = (u64)DMA_BIT_MASK(32);
258
259 if (dev) {
260 mask = dev->coherent_dma_mask;
261
262 /*
263 * Sanity check the DMA mask - it must be non-zero, and
264 * must be able to be satisfied by a DMA allocation.
265 */
266 if (mask == 0) {
267 dev_warn(dev, "coherent DMA mask is unset\n");
268 return 0;
269 }
270
271 if (!__dma_supported(dev, mask, true))
272 return 0;
273 }
274
275 return mask;
276}
277
278static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279{
280 /*
281 * Ensure that the allocated pages are zeroed, and that any data
282 * lurking in the kernel direct-mapped region is invalidated.
283 */
284 if (PageHighMem(page)) {
285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 phys_addr_t end = base + size;
287 while (size > 0) {
288 void *ptr = kmap_atomic(page);
289 memset(ptr, 0, PAGE_SIZE);
290 if (coherent_flag != COHERENT)
291 dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 kunmap_atomic(ptr);
293 page++;
294 size -= PAGE_SIZE;
295 }
296 if (coherent_flag != COHERENT)
297 outer_flush_range(base, end);
298 } else {
299 void *ptr = page_address(page);
300 memset(ptr, 0, size);
301 if (coherent_flag != COHERENT) {
302 dmac_flush_range(ptr, ptr + size);
303 outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 }
305 }
306}
307
308/*
309 * Allocate a DMA buffer for 'dev' of size 'size' using the
310 * specified gfp mask. Note that 'size' must be page aligned.
311 */
312static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 gfp_t gfp, int coherent_flag)
314{
315 unsigned long order = get_order(size);
316 struct page *page, *p, *e;
317
318 page = alloc_pages(gfp, order);
319 if (!page)
320 return NULL;
321
322 /*
323 * Now split the huge page and free the excess pages
324 */
325 split_page(page, order);
326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 __free_page(p);
328
329 __dma_clear_buffer(page, size, coherent_flag);
330
331 return page;
332}
333
334/*
335 * Free a DMA buffer. 'size' must be page aligned.
336 */
337static void __dma_free_buffer(struct page *page, size_t size)
338{
339 struct page *e = page + (size >> PAGE_SHIFT);
340
341 while (page < e) {
342 __free_page(page);
343 page++;
344 }
345}
346
347#ifdef CONFIG_MMU
348
349static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 pgprot_t prot, struct page **ret_page,
351 const void *caller, bool want_vaddr,
352 int coherent_flag);
353
354static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 pgprot_t prot, struct page **ret_page,
356 const void *caller, bool want_vaddr);
357
358static void *
359__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 const void *caller)
361{
362 /*
363 * DMA allocation can be mapped to user space, so lets
364 * set VM_USERMAP flags too.
365 */
366 return dma_common_contiguous_remap(page, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 prot, caller);
369}
370
371static void __dma_free_remap(void *cpu_addr, size_t size)
372{
373 dma_common_free_remap(cpu_addr, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375}
376
377#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
378static struct gen_pool *atomic_pool;
379
380static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381
382static int __init early_coherent_pool(char *p)
383{
384 atomic_pool_size = memparse(p, &p);
385 return 0;
386}
387early_param("coherent_pool", early_coherent_pool);
388
389void __init init_dma_coherent_pool_size(unsigned long size)
390{
391 /*
392 * Catch any attempt to set the pool size too late.
393 */
394 BUG_ON(atomic_pool);
395
396 /*
397 * Set architecture specific coherent pool size only if
398 * it has not been changed by kernel command line parameter.
399 */
400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 atomic_pool_size = size;
402}
403
404/*
405 * Initialise the coherent pool for atomic allocations.
406 */
407static int __init atomic_pool_init(void)
408{
409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 struct page *page;
412 void *ptr;
413
414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 if (!atomic_pool)
416 goto out;
417 /*
418 * The atomic pool is only used for non-coherent allocations
419 * so we must pass NORMAL for coherent_flag.
420 */
421 if (dev_get_cma_area(NULL))
422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 &page, atomic_pool_init, true, NORMAL);
424 else
425 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
426 &page, atomic_pool_init, true);
427 if (ptr) {
428 int ret;
429
430 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
431 page_to_phys(page),
432 atomic_pool_size, -1);
433 if (ret)
434 goto destroy_genpool;
435
436 gen_pool_set_algo(atomic_pool,
437 gen_pool_first_fit_order_align,
438 (void *)PAGE_SHIFT);
439 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
440 atomic_pool_size / 1024);
441 return 0;
442 }
443
444destroy_genpool:
445 gen_pool_destroy(atomic_pool);
446 atomic_pool = NULL;
447out:
448 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
449 atomic_pool_size / 1024);
450 return -ENOMEM;
451}
452/*
453 * CMA is activated by core_initcall, so we must be called after it.
454 */
455postcore_initcall(atomic_pool_init);
456
457struct dma_contig_early_reserve {
458 phys_addr_t base;
459 unsigned long size;
460};
461
462static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
463
464static int dma_mmu_remap_num __initdata;
465
466void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
467{
468 dma_mmu_remap[dma_mmu_remap_num].base = base;
469 dma_mmu_remap[dma_mmu_remap_num].size = size;
470 dma_mmu_remap_num++;
471}
472
473void __init dma_contiguous_remap(void)
474{
475 int i;
476 for (i = 0; i < dma_mmu_remap_num; i++) {
477 phys_addr_t start = dma_mmu_remap[i].base;
478 phys_addr_t end = start + dma_mmu_remap[i].size;
479 struct map_desc map;
480 unsigned long addr;
481
482 if (end > arm_lowmem_limit)
483 end = arm_lowmem_limit;
484 if (start >= end)
485 continue;
486
487 map.pfn = __phys_to_pfn(start);
488 map.virtual = __phys_to_virt(start);
489 map.length = end - start;
490 map.type = MT_MEMORY_DMA_READY;
491
492 /*
493 * Clear previous low-memory mapping to ensure that the
494 * TLB does not see any conflicting entries, then flush
495 * the TLB of the old entries before creating new mappings.
496 *
497 * This ensures that any speculatively loaded TLB entries
498 * (even though they may be rare) can not cause any problems,
499 * and ensures that this code is architecturally compliant.
500 */
501 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
502 addr += PMD_SIZE)
503 pmd_clear(pmd_off_k(addr));
504
505 flush_tlb_kernel_range(__phys_to_virt(start),
506 __phys_to_virt(end));
507
508 iotable_init(&map, 1);
509 }
510}
511
512static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
513 void *data)
514{
515 struct page *page = virt_to_page(addr);
516 pgprot_t prot = *(pgprot_t *)data;
517
518 set_pte_ext(pte, mk_pte(page, prot), 0);
519 return 0;
520}
521
522static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
523{
524 unsigned long start = (unsigned long) page_address(page);
525 unsigned end = start + size;
526
527 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
528 flush_tlb_kernel_range(start, end);
529}
530
531static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
532 pgprot_t prot, struct page **ret_page,
533 const void *caller, bool want_vaddr)
534{
535 struct page *page;
536 void *ptr = NULL;
537 /*
538 * __alloc_remap_buffer is only called when the device is
539 * non-coherent
540 */
541 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
542 if (!page)
543 return NULL;
544 if (!want_vaddr)
545 goto out;
546
547 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
548 if (!ptr) {
549 __dma_free_buffer(page, size);
550 return NULL;
551 }
552
553 out:
554 *ret_page = page;
555 return ptr;
556}
557
558static void *__alloc_from_pool(size_t size, struct page **ret_page)
559{
560 unsigned long val;
561 void *ptr = NULL;
562
563 if (!atomic_pool) {
564 WARN(1, "coherent pool not initialised!\n");
565 return NULL;
566 }
567
568 val = gen_pool_alloc(atomic_pool, size);
569 if (val) {
570 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
571
572 *ret_page = phys_to_page(phys);
573 ptr = (void *)val;
574 }
575
576 return ptr;
577}
578
579static bool __in_atomic_pool(void *start, size_t size)
580{
581 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
582}
583
584static int __free_from_pool(void *start, size_t size)
585{
586 if (!__in_atomic_pool(start, size))
587 return 0;
588
589 gen_pool_free(atomic_pool, (unsigned long)start, size);
590
591 return 1;
592}
593
594static void *__alloc_from_contiguous(struct device *dev, size_t size,
595 pgprot_t prot, struct page **ret_page,
596 const void *caller, bool want_vaddr,
597 int coherent_flag)
598{
599 unsigned long order = get_order(size);
600 size_t count = size >> PAGE_SHIFT;
601 struct page *page;
602 void *ptr = NULL;
603
604 page = dma_alloc_from_contiguous(dev, count, order);
605 if (!page)
606 return NULL;
607
608 __dma_clear_buffer(page, size, coherent_flag);
609
610 if (!want_vaddr)
611 goto out;
612
613 if (PageHighMem(page)) {
614 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
615 if (!ptr) {
616 dma_release_from_contiguous(dev, page, count);
617 return NULL;
618 }
619 } else {
620 __dma_remap(page, size, prot);
621 ptr = page_address(page);
622 }
623
624 out:
625 *ret_page = page;
626 return ptr;
627}
628
629static void __free_from_contiguous(struct device *dev, struct page *page,
630 void *cpu_addr, size_t size, bool want_vaddr)
631{
632 if (want_vaddr) {
633 if (PageHighMem(page))
634 __dma_free_remap(cpu_addr, size);
635 else
636 __dma_remap(page, size, PAGE_KERNEL);
637 }
638 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
639}
640
641static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
642{
643 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
644 pgprot_writecombine(prot) :
645 pgprot_dmacoherent(prot);
646 return prot;
647}
648
649#define nommu() 0
650
651#else /* !CONFIG_MMU */
652
653#define nommu() 1
654
655#define __get_dma_pgprot(attrs, prot) __pgprot(0)
656#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
657#define __alloc_from_pool(size, ret_page) NULL
658#define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag) NULL
659#define __free_from_pool(cpu_addr, size) do { } while (0)
660#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
661#define __dma_free_remap(cpu_addr, size) do { } while (0)
662
663#endif /* CONFIG_MMU */
664
665static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
666 struct page **ret_page)
667{
668 struct page *page;
669 /* __alloc_simple_buffer is only called when the device is coherent */
670 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
671 if (!page)
672 return NULL;
673
674 *ret_page = page;
675 return page_address(page);
676}
677
678static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
679 struct page **ret_page)
680{
681 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
682 ret_page);
683}
684
685static void simple_allocator_free(struct arm_dma_free_args *args)
686{
687 __dma_free_buffer(args->page, args->size);
688}
689
690static struct arm_dma_allocator simple_allocator = {
691 .alloc = simple_allocator_alloc,
692 .free = simple_allocator_free,
693};
694
695static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
696 struct page **ret_page)
697{
698 return __alloc_from_contiguous(args->dev, args->size, args->prot,
699 ret_page, args->caller,
700 args->want_vaddr, args->coherent_flag);
701}
702
703static void cma_allocator_free(struct arm_dma_free_args *args)
704{
705 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
706 args->size, args->want_vaddr);
707}
708
709static struct arm_dma_allocator cma_allocator = {
710 .alloc = cma_allocator_alloc,
711 .free = cma_allocator_free,
712};
713
714static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716{
717 return __alloc_from_pool(args->size, ret_page);
718}
719
720static void pool_allocator_free(struct arm_dma_free_args *args)
721{
722 __free_from_pool(args->cpu_addr, args->size);
723}
724
725static struct arm_dma_allocator pool_allocator = {
726 .alloc = pool_allocator_alloc,
727 .free = pool_allocator_free,
728};
729
730static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
731 struct page **ret_page)
732{
733 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
734 args->prot, ret_page, args->caller,
735 args->want_vaddr);
736}
737
738static void remap_allocator_free(struct arm_dma_free_args *args)
739{
740 if (args->want_vaddr)
741 __dma_free_remap(args->cpu_addr, args->size);
742
743 __dma_free_buffer(args->page, args->size);
744}
745
746static struct arm_dma_allocator remap_allocator = {
747 .alloc = remap_allocator_alloc,
748 .free = remap_allocator_free,
749};
750
751static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
752 gfp_t gfp, pgprot_t prot, bool is_coherent,
753 unsigned long attrs, const void *caller)
754{
755 u64 mask = get_coherent_dma_mask(dev);
756 struct page *page = NULL;
757 void *addr;
758 bool allowblock, cma;
759 struct arm_dma_buffer *buf;
760 struct arm_dma_alloc_args args = {
761 .dev = dev,
762 .size = PAGE_ALIGN(size),
763 .gfp = gfp,
764 .prot = prot,
765 .caller = caller,
766 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
767 .coherent_flag = is_coherent ? COHERENT : NORMAL,
768 };
769
770#ifdef CONFIG_DMA_API_DEBUG
771 u64 limit = (mask + 1) & ~mask;
772 if (limit && size >= limit) {
773 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
774 size, mask);
775 return NULL;
776 }
777#endif
778
779 if (!mask)
780 return NULL;
781
782 buf = kzalloc(sizeof(*buf),
783 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
784 if (!buf)
785 return NULL;
786
787 if (mask < 0xffffffffULL)
788 gfp |= GFP_DMA;
789
790 /*
791 * Following is a work-around (a.k.a. hack) to prevent pages
792 * with __GFP_COMP being passed to split_page() which cannot
793 * handle them. The real problem is that this flag probably
794 * should be 0 on ARM as it is not supported on this
795 * platform; see CONFIG_HUGETLBFS.
796 */
797 gfp &= ~(__GFP_COMP);
798 args.gfp = gfp;
799
800 *handle = DMA_ERROR_CODE;
801 allowblock = gfpflags_allow_blocking(gfp);
802 cma = allowblock ? dev_get_cma_area(dev) : false;
803
804 if (cma)
805 buf->allocator = &cma_allocator;
806 else if (nommu() || is_coherent)
807 buf->allocator = &simple_allocator;
808 else if (allowblock)
809 buf->allocator = &remap_allocator;
810 else
811 buf->allocator = &pool_allocator;
812
813 addr = buf->allocator->alloc(&args, &page);
814
815 if (page) {
816 unsigned long flags;
817
818 *handle = pfn_to_dma(dev, page_to_pfn(page));
819 buf->virt = args.want_vaddr ? addr : page;
820
821 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
822 list_add(&buf->list, &arm_dma_bufs);
823 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
824 } else {
825 kfree(buf);
826 }
827
828 return args.want_vaddr ? addr : page;
829}
830
831/*
832 * Allocate DMA-coherent memory space and return both the kernel remapped
833 * virtual and bus address for that space.
834 */
835void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
836 gfp_t gfp, unsigned long attrs)
837{
838 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
839
840 return __dma_alloc(dev, size, handle, gfp, prot, false,
841 attrs, __builtin_return_address(0));
842}
843
844static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
845 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
846{
847 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
848 attrs, __builtin_return_address(0));
849}
850
851static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
852 void *cpu_addr, dma_addr_t dma_addr, size_t size,
853 unsigned long attrs)
854{
855 int ret = -ENXIO;
856#ifdef CONFIG_MMU
857 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
858 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
859 unsigned long pfn = dma_to_pfn(dev, dma_addr);
860 unsigned long off = vma->vm_pgoff;
861
862 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
863 return ret;
864
865 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
866 ret = remap_pfn_range(vma, vma->vm_start,
867 pfn + off,
868 vma->vm_end - vma->vm_start,
869 vma->vm_page_prot);
870 }
871#endif /* CONFIG_MMU */
872
873 return ret;
874}
875
876/*
877 * Create userspace mapping for the DMA-coherent memory.
878 */
879static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
880 void *cpu_addr, dma_addr_t dma_addr, size_t size,
881 unsigned long attrs)
882{
883 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
884}
885
886int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
887 void *cpu_addr, dma_addr_t dma_addr, size_t size,
888 unsigned long attrs)
889{
890#ifdef CONFIG_MMU
891 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
892#endif /* CONFIG_MMU */
893 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
894}
895
896/*
897 * Free a buffer as defined by the above mapping.
898 */
899static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
900 dma_addr_t handle, unsigned long attrs,
901 bool is_coherent)
902{
903 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
904 struct arm_dma_buffer *buf;
905 struct arm_dma_free_args args = {
906 .dev = dev,
907 .size = PAGE_ALIGN(size),
908 .cpu_addr = cpu_addr,
909 .page = page,
910 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
911 };
912
913 buf = arm_dma_buffer_find(cpu_addr);
914 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
915 return;
916
917 buf->allocator->free(&args);
918 kfree(buf);
919}
920
921void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
922 dma_addr_t handle, unsigned long attrs)
923{
924 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
925}
926
927static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
928 dma_addr_t handle, unsigned long attrs)
929{
930 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
931}
932
933int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
934 void *cpu_addr, dma_addr_t handle, size_t size,
935 unsigned long attrs)
936{
937 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
938 int ret;
939
940 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
941 if (unlikely(ret))
942 return ret;
943
944 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
945 return 0;
946}
947
948static void dma_cache_maint_page(struct page *page, unsigned long offset,
949 size_t size, enum dma_data_direction dir,
950 void (*op)(const void *, size_t, int))
951{
952 unsigned long pfn;
953 size_t left = size;
954
955 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
956 offset %= PAGE_SIZE;
957
958 /*
959 * A single sg entry may refer to multiple physically contiguous
960 * pages. But we still need to process highmem pages individually.
961 * If highmem is not configured then the bulk of this loop gets
962 * optimized out.
963 */
964 do {
965 size_t len = left;
966 void *vaddr;
967
968 page = pfn_to_page(pfn);
969
970 if (PageHighMem(page)) {
971 if (len + offset > PAGE_SIZE)
972 len = PAGE_SIZE - offset;
973
974 if (cache_is_vipt_nonaliasing()) {
975 vaddr = kmap_atomic(page);
976 op(vaddr + offset, len, dir);
977 kunmap_atomic(vaddr);
978 } else {
979 vaddr = kmap_high_get(page);
980 if (vaddr) {
981 op(vaddr + offset, len, dir);
982 kunmap_high(page);
983 }
984 }
985 } else {
986 vaddr = page_address(page) + offset;
987 op(vaddr, len, dir);
988 }
989 offset = 0;
990 pfn++;
991 left -= len;
992 } while (left);
993}
994
995/*
996 * Make an area consistent for devices.
997 * Note: Drivers should NOT use this function directly, as it will break
998 * platforms with CONFIG_DMABOUNCE.
999 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1000 */
1001static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1002 size_t size, enum dma_data_direction dir)
1003{
1004 phys_addr_t paddr;
1005
1006 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1007
1008 paddr = page_to_phys(page) + off;
1009 if (dir == DMA_FROM_DEVICE) {
1010 outer_inv_range(paddr, paddr + size);
1011 } else {
1012 outer_clean_range(paddr, paddr + size);
1013 }
1014 /* FIXME: non-speculating: flush on bidirectional mappings? */
1015}
1016
1017static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1018 size_t size, enum dma_data_direction dir)
1019{
1020 phys_addr_t paddr = page_to_phys(page) + off;
1021
1022 /* FIXME: non-speculating: not required */
1023 /* in any case, don't bother invalidating if DMA to device */
1024 if (dir != DMA_TO_DEVICE) {
1025 outer_inv_range(paddr, paddr + size);
1026
1027 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1028 }
1029
1030 /*
1031 * Mark the D-cache clean for these pages to avoid extra flushing.
1032 */
1033 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1034 unsigned long pfn;
1035 size_t left = size;
1036
1037 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1038 off %= PAGE_SIZE;
1039 if (off) {
1040 pfn++;
1041 left -= PAGE_SIZE - off;
1042 }
1043 while (left >= PAGE_SIZE) {
1044 page = pfn_to_page(pfn++);
1045 set_bit(PG_dcache_clean, &page->flags);
1046 left -= PAGE_SIZE;
1047 }
1048 }
1049}
1050
1051/**
1052 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1053 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1054 * @sg: list of buffers
1055 * @nents: number of buffers to map
1056 * @dir: DMA transfer direction
1057 *
1058 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1059 * This is the scatter-gather version of the dma_map_single interface.
1060 * Here the scatter gather list elements are each tagged with the
1061 * appropriate dma address and length. They are obtained via
1062 * sg_dma_{address,length}.
1063 *
1064 * Device ownership issues as mentioned for dma_map_single are the same
1065 * here.
1066 */
1067int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1068 enum dma_data_direction dir, unsigned long attrs)
1069{
1070 struct dma_map_ops *ops = get_dma_ops(dev);
1071 struct scatterlist *s;
1072 int i, j;
1073
1074 for_each_sg(sg, s, nents, i) {
1075#ifdef CONFIG_NEED_SG_DMA_LENGTH
1076 s->dma_length = s->length;
1077#endif
1078 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1079 s->length, dir, attrs);
1080 if (dma_mapping_error(dev, s->dma_address))
1081 goto bad_mapping;
1082 }
1083 return nents;
1084
1085 bad_mapping:
1086 for_each_sg(sg, s, i, j)
1087 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1088 return 0;
1089}
1090
1091/**
1092 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1093 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1094 * @sg: list of buffers
1095 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1096 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1097 *
1098 * Unmap a set of streaming mode DMA translations. Again, CPU access
1099 * rules concerning calls here are the same as for dma_unmap_single().
1100 */
1101void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1102 enum dma_data_direction dir, unsigned long attrs)
1103{
1104 struct dma_map_ops *ops = get_dma_ops(dev);
1105 struct scatterlist *s;
1106
1107 int i;
1108
1109 for_each_sg(sg, s, nents, i)
1110 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111}
1112
1113/**
1114 * arm_dma_sync_sg_for_cpu
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
1120void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1121 int nents, enum dma_data_direction dir)
1122{
1123 struct dma_map_ops *ops = get_dma_ops(dev);
1124 struct scatterlist *s;
1125 int i;
1126
1127 for_each_sg(sg, s, nents, i)
1128 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1129 dir);
1130}
1131
1132/**
1133 * arm_dma_sync_sg_for_device
1134 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1135 * @sg: list of buffers
1136 * @nents: number of buffers to map (returned from dma_map_sg)
1137 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1138 */
1139void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1140 int nents, enum dma_data_direction dir)
1141{
1142 struct dma_map_ops *ops = get_dma_ops(dev);
1143 struct scatterlist *s;
1144 int i;
1145
1146 for_each_sg(sg, s, nents, i)
1147 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1148 dir);
1149}
1150
1151/*
1152 * Return whether the given device DMA address mask can be supported
1153 * properly. For example, if your device can only drive the low 24-bits
1154 * during bus mastering, then you would pass 0x00ffffff as the mask
1155 * to this function.
1156 */
1157int dma_supported(struct device *dev, u64 mask)
1158{
1159 return __dma_supported(dev, mask, false);
1160}
1161EXPORT_SYMBOL(dma_supported);
1162
1163#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1164
1165static int __init dma_debug_do_init(void)
1166{
1167 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1168 return 0;
1169}
1170core_initcall(dma_debug_do_init);
1171
1172#ifdef CONFIG_ARM_DMA_USE_IOMMU
1173
1174/* IOMMU */
1175
1176static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177
1178static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179 size_t size)
1180{
1181 unsigned int order = get_order(size);
1182 unsigned int align = 0;
1183 unsigned int count, start;
1184 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185 unsigned long flags;
1186 dma_addr_t iova;
1187 int i;
1188
1189 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191
1192 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 align = (1 << order) - 1;
1194
1195 spin_lock_irqsave(&mapping->lock, flags);
1196 for (i = 0; i < mapping->nr_bitmaps; i++) {
1197 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198 mapping->bits, 0, count, align);
1199
1200 if (start > mapping->bits)
1201 continue;
1202
1203 bitmap_set(mapping->bitmaps[i], start, count);
1204 break;
1205 }
1206
1207 /*
1208 * No unused range found. Try to extend the existing mapping
1209 * and perform a second attempt to reserve an IO virtual
1210 * address range of size bytes.
1211 */
1212 if (i == mapping->nr_bitmaps) {
1213 if (extend_iommu_mapping(mapping)) {
1214 spin_unlock_irqrestore(&mapping->lock, flags);
1215 return DMA_ERROR_CODE;
1216 }
1217
1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219 mapping->bits, 0, count, align);
1220
1221 if (start > mapping->bits) {
1222 spin_unlock_irqrestore(&mapping->lock, flags);
1223 return DMA_ERROR_CODE;
1224 }
1225
1226 bitmap_set(mapping->bitmaps[i], start, count);
1227 }
1228 spin_unlock_irqrestore(&mapping->lock, flags);
1229
1230 iova = mapping->base + (mapping_size * i);
1231 iova += start << PAGE_SHIFT;
1232
1233 return iova;
1234}
1235
1236static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237 dma_addr_t addr, size_t size)
1238{
1239 unsigned int start, count;
1240 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241 unsigned long flags;
1242 dma_addr_t bitmap_base;
1243 u32 bitmap_index;
1244
1245 if (!size)
1246 return;
1247
1248 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250
1251 bitmap_base = mapping->base + mapping_size * bitmap_index;
1252
1253 start = (addr - bitmap_base) >> PAGE_SHIFT;
1254
1255 if (addr + size > bitmap_base + mapping_size) {
1256 /*
1257 * The address range to be freed reaches into the iova
1258 * range of the next bitmap. This should not happen as
1259 * we don't allow this in __alloc_iova (at the
1260 * moment).
1261 */
1262 BUG();
1263 } else
1264 count = size >> PAGE_SHIFT;
1265
1266 spin_lock_irqsave(&mapping->lock, flags);
1267 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 spin_unlock_irqrestore(&mapping->lock, flags);
1269}
1270
1271/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273
1274static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275 gfp_t gfp, unsigned long attrs,
1276 int coherent_flag)
1277{
1278 struct page **pages;
1279 int count = size >> PAGE_SHIFT;
1280 int array_size = count * sizeof(struct page *);
1281 int i = 0;
1282 int order_idx = 0;
1283
1284 if (array_size <= PAGE_SIZE)
1285 pages = kzalloc(array_size, GFP_KERNEL);
1286 else
1287 pages = vzalloc(array_size);
1288 if (!pages)
1289 return NULL;
1290
1291 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 {
1293 unsigned long order = get_order(size);
1294 struct page *page;
1295
1296 page = dma_alloc_from_contiguous(dev, count, order);
1297 if (!page)
1298 goto error;
1299
1300 __dma_clear_buffer(page, size, coherent_flag);
1301
1302 for (i = 0; i < count; i++)
1303 pages[i] = page + i;
1304
1305 return pages;
1306 }
1307
1308 /* Go straight to 4K chunks if caller says it's OK. */
1309 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1310 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1311
1312 /*
1313 * IOMMU can map any pages, so himem can also be used here
1314 */
1315 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1316
1317 while (count) {
1318 int j, order;
1319
1320 order = iommu_order_array[order_idx];
1321
1322 /* Drop down when we get small */
1323 if (__fls(count) < order) {
1324 order_idx++;
1325 continue;
1326 }
1327
1328 if (order) {
1329 /* See if it's easy to allocate a high-order chunk */
1330 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1331
1332 /* Go down a notch at first sign of pressure */
1333 if (!pages[i]) {
1334 order_idx++;
1335 continue;
1336 }
1337 } else {
1338 pages[i] = alloc_pages(gfp, 0);
1339 if (!pages[i])
1340 goto error;
1341 }
1342
1343 if (order) {
1344 split_page(pages[i], order);
1345 j = 1 << order;
1346 while (--j)
1347 pages[i + j] = pages[i] + j;
1348 }
1349
1350 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1351 i += 1 << order;
1352 count -= 1 << order;
1353 }
1354
1355 return pages;
1356error:
1357 while (i--)
1358 if (pages[i])
1359 __free_pages(pages[i], 0);
1360 kvfree(pages);
1361 return NULL;
1362}
1363
1364static int __iommu_free_buffer(struct device *dev, struct page **pages,
1365 size_t size, unsigned long attrs)
1366{
1367 int count = size >> PAGE_SHIFT;
1368 int i;
1369
1370 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1371 dma_release_from_contiguous(dev, pages[0], count);
1372 } else {
1373 for (i = 0; i < count; i++)
1374 if (pages[i])
1375 __free_pages(pages[i], 0);
1376 }
1377
1378 kvfree(pages);
1379 return 0;
1380}
1381
1382/*
1383 * Create a CPU mapping for a specified pages
1384 */
1385static void *
1386__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1387 const void *caller)
1388{
1389 return dma_common_pages_remap(pages, size,
1390 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1391}
1392
1393/*
1394 * Create a mapping in device IO address space for specified pages
1395 */
1396static dma_addr_t
1397__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1398{
1399 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1400 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1401 dma_addr_t dma_addr, iova;
1402 int i;
1403
1404 dma_addr = __alloc_iova(mapping, size);
1405 if (dma_addr == DMA_ERROR_CODE)
1406 return dma_addr;
1407
1408 iova = dma_addr;
1409 for (i = 0; i < count; ) {
1410 int ret;
1411
1412 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1413 phys_addr_t phys = page_to_phys(pages[i]);
1414 unsigned int len, j;
1415
1416 for (j = i + 1; j < count; j++, next_pfn++)
1417 if (page_to_pfn(pages[j]) != next_pfn)
1418 break;
1419
1420 len = (j - i) << PAGE_SHIFT;
1421 ret = iommu_map(mapping->domain, iova, phys, len,
1422 IOMMU_READ|IOMMU_WRITE);
1423 if (ret < 0)
1424 goto fail;
1425 iova += len;
1426 i = j;
1427 }
1428 return dma_addr;
1429fail:
1430 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1431 __free_iova(mapping, dma_addr, size);
1432 return DMA_ERROR_CODE;
1433}
1434
1435static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1436{
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438
1439 /*
1440 * add optional in-page offset from iova to size and align
1441 * result to page size
1442 */
1443 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1444 iova &= PAGE_MASK;
1445
1446 iommu_unmap(mapping->domain, iova, size);
1447 __free_iova(mapping, iova, size);
1448 return 0;
1449}
1450
1451static struct page **__atomic_get_pages(void *addr)
1452{
1453 struct page *page;
1454 phys_addr_t phys;
1455
1456 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1457 page = phys_to_page(phys);
1458
1459 return (struct page **)page;
1460}
1461
1462static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1463{
1464 struct vm_struct *area;
1465
1466 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1467 return __atomic_get_pages(cpu_addr);
1468
1469 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1470 return cpu_addr;
1471
1472 area = find_vm_area(cpu_addr);
1473 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1474 return area->pages;
1475 return NULL;
1476}
1477
1478static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1479 dma_addr_t *handle, int coherent_flag)
1480{
1481 struct page *page;
1482 void *addr;
1483
1484 if (coherent_flag == COHERENT)
1485 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1486 else
1487 addr = __alloc_from_pool(size, &page);
1488 if (!addr)
1489 return NULL;
1490
1491 *handle = __iommu_create_mapping(dev, &page, size);
1492 if (*handle == DMA_ERROR_CODE)
1493 goto err_mapping;
1494
1495 return addr;
1496
1497err_mapping:
1498 __free_from_pool(addr, size);
1499 return NULL;
1500}
1501
1502static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503 dma_addr_t handle, size_t size, int coherent_flag)
1504{
1505 __iommu_remove_mapping(dev, handle, size);
1506 if (coherent_flag == COHERENT)
1507 __dma_free_buffer(virt_to_page(cpu_addr), size);
1508 else
1509 __free_from_pool(cpu_addr, size);
1510}
1511
1512static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514 int coherent_flag)
1515{
1516 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517 struct page **pages;
1518 void *addr = NULL;
1519
1520 *handle = DMA_ERROR_CODE;
1521 size = PAGE_ALIGN(size);
1522
1523 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1524 return __iommu_alloc_simple(dev, size, gfp, handle,
1525 coherent_flag);
1526
1527 /*
1528 * Following is a work-around (a.k.a. hack) to prevent pages
1529 * with __GFP_COMP being passed to split_page() which cannot
1530 * handle them. The real problem is that this flag probably
1531 * should be 0 on ARM as it is not supported on this
1532 * platform; see CONFIG_HUGETLBFS.
1533 */
1534 gfp &= ~(__GFP_COMP);
1535
1536 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537 if (!pages)
1538 return NULL;
1539
1540 *handle = __iommu_create_mapping(dev, pages, size);
1541 if (*handle == DMA_ERROR_CODE)
1542 goto err_buffer;
1543
1544 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545 return pages;
1546
1547 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1548 __builtin_return_address(0));
1549 if (!addr)
1550 goto err_mapping;
1551
1552 return addr;
1553
1554err_mapping:
1555 __iommu_remove_mapping(dev, *handle, size);
1556err_buffer:
1557 __iommu_free_buffer(dev, pages, size, attrs);
1558 return NULL;
1559}
1560
1561static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563{
1564 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1565}
1566
1567static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569{
1570 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1571}
1572
1573static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575 unsigned long attrs)
1576{
1577 unsigned long uaddr = vma->vm_start;
1578 unsigned long usize = vma->vm_end - vma->vm_start;
1579 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1581 unsigned long off = vma->vm_pgoff;
1582
1583 if (!pages)
1584 return -ENXIO;
1585
1586 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1587 return -ENXIO;
1588
1589 pages += off;
1590
1591 do {
1592 int ret = vm_insert_page(vma, uaddr, *pages++);
1593 if (ret) {
1594 pr_err("Remapping memory failed: %d\n", ret);
1595 return ret;
1596 }
1597 uaddr += PAGE_SIZE;
1598 usize -= PAGE_SIZE;
1599 } while (usize > 0);
1600
1601 return 0;
1602}
1603static int arm_iommu_mmap_attrs(struct device *dev,
1604 struct vm_area_struct *vma, void *cpu_addr,
1605 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606{
1607 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1608
1609 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1610}
1611
1612static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1613 struct vm_area_struct *vma, void *cpu_addr,
1614 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615{
1616 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1617}
1618
1619/*
1620 * free a page as defined by the above mapping.
1621 * Must not be called with IRQs disabled.
1622 */
1623void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625{
1626 struct page **pages;
1627 size = PAGE_ALIGN(size);
1628
1629 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1630 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631 return;
1632 }
1633
1634 pages = __iommu_get_pages(cpu_addr, attrs);
1635 if (!pages) {
1636 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637 return;
1638 }
1639
1640 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641 dma_common_free_remap(cpu_addr, size,
1642 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643 }
1644
1645 __iommu_remove_mapping(dev, handle, size);
1646 __iommu_free_buffer(dev, pages, size, attrs);
1647}
1648
1649void arm_iommu_free_attrs(struct device *dev, size_t size,
1650 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651{
1652 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1653}
1654
1655void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657{
1658 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1659}
1660
1661static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1662 void *cpu_addr, dma_addr_t dma_addr,
1663 size_t size, unsigned long attrs)
1664{
1665 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1666 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1667
1668 if (!pages)
1669 return -ENXIO;
1670
1671 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1672 GFP_KERNEL);
1673}
1674
1675static int __dma_direction_to_prot(enum dma_data_direction dir)
1676{
1677 int prot;
1678
1679 switch (dir) {
1680 case DMA_BIDIRECTIONAL:
1681 prot = IOMMU_READ | IOMMU_WRITE;
1682 break;
1683 case DMA_TO_DEVICE:
1684 prot = IOMMU_READ;
1685 break;
1686 case DMA_FROM_DEVICE:
1687 prot = IOMMU_WRITE;
1688 break;
1689 default:
1690 prot = 0;
1691 }
1692
1693 return prot;
1694}
1695
1696/*
1697 * Map a part of the scatter-gather list into contiguous io address space
1698 */
1699static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1700 size_t size, dma_addr_t *handle,
1701 enum dma_data_direction dir, unsigned long attrs,
1702 bool is_coherent)
1703{
1704 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1705 dma_addr_t iova, iova_base;
1706 int ret = 0;
1707 unsigned int count;
1708 struct scatterlist *s;
1709 int prot;
1710
1711 size = PAGE_ALIGN(size);
1712 *handle = DMA_ERROR_CODE;
1713
1714 iova_base = iova = __alloc_iova(mapping, size);
1715 if (iova == DMA_ERROR_CODE)
1716 return -ENOMEM;
1717
1718 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1719 phys_addr_t phys = page_to_phys(sg_page(s));
1720 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1721
1722 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1723 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1724
1725 prot = __dma_direction_to_prot(dir);
1726
1727 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1728 if (ret < 0)
1729 goto fail;
1730 count += len >> PAGE_SHIFT;
1731 iova += len;
1732 }
1733 *handle = iova_base;
1734
1735 return 0;
1736fail:
1737 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1738 __free_iova(mapping, iova_base, size);
1739 return ret;
1740}
1741
1742static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1743 enum dma_data_direction dir, unsigned long attrs,
1744 bool is_coherent)
1745{
1746 struct scatterlist *s = sg, *dma = sg, *start = sg;
1747 int i, count = 0;
1748 unsigned int offset = s->offset;
1749 unsigned int size = s->offset + s->length;
1750 unsigned int max = dma_get_max_seg_size(dev);
1751
1752 for (i = 1; i < nents; i++) {
1753 s = sg_next(s);
1754
1755 s->dma_address = DMA_ERROR_CODE;
1756 s->dma_length = 0;
1757
1758 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1759 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1760 dir, attrs, is_coherent) < 0)
1761 goto bad_mapping;
1762
1763 dma->dma_address += offset;
1764 dma->dma_length = size - offset;
1765
1766 size = offset = s->offset;
1767 start = s;
1768 dma = sg_next(dma);
1769 count += 1;
1770 }
1771 size += s->length;
1772 }
1773 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1774 is_coherent) < 0)
1775 goto bad_mapping;
1776
1777 dma->dma_address += offset;
1778 dma->dma_length = size - offset;
1779
1780 return count+1;
1781
1782bad_mapping:
1783 for_each_sg(sg, s, count, i)
1784 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1785 return 0;
1786}
1787
1788/**
1789 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 * @dev: valid struct device pointer
1791 * @sg: list of buffers
1792 * @nents: number of buffers to map
1793 * @dir: DMA transfer direction
1794 *
1795 * Map a set of i/o coherent buffers described by scatterlist in streaming
1796 * mode for DMA. The scatter gather list elements are merged together (if
1797 * possible) and tagged with the appropriate dma address and length. They are
1798 * obtained via sg_dma_{address,length}.
1799 */
1800int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801 int nents, enum dma_data_direction dir, unsigned long attrs)
1802{
1803 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to map
1811 * @dir: DMA transfer direction
1812 *
1813 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1814 * The scatter gather list elements are merged together (if possible) and
1815 * tagged with the appropriate dma address and length. They are obtained via
1816 * sg_dma_{address,length}.
1817 */
1818int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1819 int nents, enum dma_data_direction dir, unsigned long attrs)
1820{
1821 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1822}
1823
1824static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1825 int nents, enum dma_data_direction dir,
1826 unsigned long attrs, bool is_coherent)
1827{
1828 struct scatterlist *s;
1829 int i;
1830
1831 for_each_sg(sg, s, nents, i) {
1832 if (sg_dma_len(s))
1833 __iommu_remove_mapping(dev, sg_dma_address(s),
1834 sg_dma_len(s));
1835 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1836 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1837 s->length, dir);
1838 }
1839}
1840
1841/**
1842 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1843 * @dev: valid struct device pointer
1844 * @sg: list of buffers
1845 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1846 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1847 *
1848 * Unmap a set of streaming mode DMA translations. Again, CPU access
1849 * rules concerning calls here are the same as for dma_unmap_single().
1850 */
1851void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1852 int nents, enum dma_data_direction dir,
1853 unsigned long attrs)
1854{
1855 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1856}
1857
1858/**
1859 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1860 * @dev: valid struct device pointer
1861 * @sg: list of buffers
1862 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1863 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1864 *
1865 * Unmap a set of streaming mode DMA translations. Again, CPU access
1866 * rules concerning calls here are the same as for dma_unmap_single().
1867 */
1868void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1869 enum dma_data_direction dir,
1870 unsigned long attrs)
1871{
1872 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1873}
1874
1875/**
1876 * arm_iommu_sync_sg_for_cpu
1877 * @dev: valid struct device pointer
1878 * @sg: list of buffers
1879 * @nents: number of buffers to map (returned from dma_map_sg)
1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881 */
1882void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1883 int nents, enum dma_data_direction dir)
1884{
1885 struct scatterlist *s;
1886 int i;
1887
1888 for_each_sg(sg, s, nents, i)
1889 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1890
1891}
1892
1893/**
1894 * arm_iommu_sync_sg_for_device
1895 * @dev: valid struct device pointer
1896 * @sg: list of buffers
1897 * @nents: number of buffers to map (returned from dma_map_sg)
1898 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1899 */
1900void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1901 int nents, enum dma_data_direction dir)
1902{
1903 struct scatterlist *s;
1904 int i;
1905
1906 for_each_sg(sg, s, nents, i)
1907 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1908}
1909
1910
1911/**
1912 * arm_coherent_iommu_map_page
1913 * @dev: valid struct device pointer
1914 * @page: page that buffer resides in
1915 * @offset: offset into page for start of buffer
1916 * @size: size of buffer to map
1917 * @dir: DMA transfer direction
1918 *
1919 * Coherent IOMMU aware version of arm_dma_map_page()
1920 */
1921static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1922 unsigned long offset, size_t size, enum dma_data_direction dir,
1923 unsigned long attrs)
1924{
1925 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926 dma_addr_t dma_addr;
1927 int ret, prot, len = PAGE_ALIGN(size + offset);
1928
1929 dma_addr = __alloc_iova(mapping, len);
1930 if (dma_addr == DMA_ERROR_CODE)
1931 return dma_addr;
1932
1933 prot = __dma_direction_to_prot(dir);
1934
1935 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1936 if (ret < 0)
1937 goto fail;
1938
1939 return dma_addr + offset;
1940fail:
1941 __free_iova(mapping, dma_addr, len);
1942 return DMA_ERROR_CODE;
1943}
1944
1945/**
1946 * arm_iommu_map_page
1947 * @dev: valid struct device pointer
1948 * @page: page that buffer resides in
1949 * @offset: offset into page for start of buffer
1950 * @size: size of buffer to map
1951 * @dir: DMA transfer direction
1952 *
1953 * IOMMU aware version of arm_dma_map_page()
1954 */
1955static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1956 unsigned long offset, size_t size, enum dma_data_direction dir,
1957 unsigned long attrs)
1958{
1959 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1960 __dma_page_cpu_to_dev(page, offset, size, dir);
1961
1962 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1963}
1964
1965/**
1966 * arm_coherent_iommu_unmap_page
1967 * @dev: valid struct device pointer
1968 * @handle: DMA address of buffer
1969 * @size: size of buffer (same as passed to dma_map_page)
1970 * @dir: DMA transfer direction (same as passed to dma_map_page)
1971 *
1972 * Coherent IOMMU aware version of arm_dma_unmap_page()
1973 */
1974static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1975 size_t size, enum dma_data_direction dir, unsigned long attrs)
1976{
1977 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1978 dma_addr_t iova = handle & PAGE_MASK;
1979 int offset = handle & ~PAGE_MASK;
1980 int len = PAGE_ALIGN(size + offset);
1981
1982 if (!iova)
1983 return;
1984
1985 iommu_unmap(mapping->domain, iova, len);
1986 __free_iova(mapping, iova, len);
1987}
1988
1989/**
1990 * arm_iommu_unmap_page
1991 * @dev: valid struct device pointer
1992 * @handle: DMA address of buffer
1993 * @size: size of buffer (same as passed to dma_map_page)
1994 * @dir: DMA transfer direction (same as passed to dma_map_page)
1995 *
1996 * IOMMU aware version of arm_dma_unmap_page()
1997 */
1998static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1999 size_t size, enum dma_data_direction dir, unsigned long attrs)
2000{
2001 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2002 dma_addr_t iova = handle & PAGE_MASK;
2003 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2004 int offset = handle & ~PAGE_MASK;
2005 int len = PAGE_ALIGN(size + offset);
2006
2007 if (!iova)
2008 return;
2009
2010 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2011 __dma_page_dev_to_cpu(page, offset, size, dir);
2012
2013 iommu_unmap(mapping->domain, iova, len);
2014 __free_iova(mapping, iova, len);
2015}
2016
2017/**
2018 * arm_iommu_map_resource - map a device resource for DMA
2019 * @dev: valid struct device pointer
2020 * @phys_addr: physical address of resource
2021 * @size: size of resource to map
2022 * @dir: DMA transfer direction
2023 */
2024static dma_addr_t arm_iommu_map_resource(struct device *dev,
2025 phys_addr_t phys_addr, size_t size,
2026 enum dma_data_direction dir, unsigned long attrs)
2027{
2028 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2029 dma_addr_t dma_addr;
2030 int ret, prot;
2031 phys_addr_t addr = phys_addr & PAGE_MASK;
2032 unsigned int offset = phys_addr & ~PAGE_MASK;
2033 size_t len = PAGE_ALIGN(size + offset);
2034
2035 dma_addr = __alloc_iova(mapping, len);
2036 if (dma_addr == DMA_ERROR_CODE)
2037 return dma_addr;
2038
2039 prot = __dma_direction_to_prot(dir) | IOMMU_MMIO;
2040
2041 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2042 if (ret < 0)
2043 goto fail;
2044
2045 return dma_addr + offset;
2046fail:
2047 __free_iova(mapping, dma_addr, len);
2048 return DMA_ERROR_CODE;
2049}
2050
2051/**
2052 * arm_iommu_unmap_resource - unmap a device DMA resource
2053 * @dev: valid struct device pointer
2054 * @dma_handle: DMA address to resource
2055 * @size: size of resource to map
2056 * @dir: DMA transfer direction
2057 */
2058static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2059 size_t size, enum dma_data_direction dir,
2060 unsigned long attrs)
2061{
2062 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2063 dma_addr_t iova = dma_handle & PAGE_MASK;
2064 unsigned int offset = dma_handle & ~PAGE_MASK;
2065 size_t len = PAGE_ALIGN(size + offset);
2066
2067 if (!iova)
2068 return;
2069
2070 iommu_unmap(mapping->domain, iova, len);
2071 __free_iova(mapping, iova, len);
2072}
2073
2074static void arm_iommu_sync_single_for_cpu(struct device *dev,
2075 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2076{
2077 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2078 dma_addr_t iova = handle & PAGE_MASK;
2079 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2080 unsigned int offset = handle & ~PAGE_MASK;
2081
2082 if (!iova)
2083 return;
2084
2085 __dma_page_dev_to_cpu(page, offset, size, dir);
2086}
2087
2088static void arm_iommu_sync_single_for_device(struct device *dev,
2089 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2090{
2091 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2092 dma_addr_t iova = handle & PAGE_MASK;
2093 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2094 unsigned int offset = handle & ~PAGE_MASK;
2095
2096 if (!iova)
2097 return;
2098
2099 __dma_page_cpu_to_dev(page, offset, size, dir);
2100}
2101
2102struct dma_map_ops iommu_ops = {
2103 .alloc = arm_iommu_alloc_attrs,
2104 .free = arm_iommu_free_attrs,
2105 .mmap = arm_iommu_mmap_attrs,
2106 .get_sgtable = arm_iommu_get_sgtable,
2107
2108 .map_page = arm_iommu_map_page,
2109 .unmap_page = arm_iommu_unmap_page,
2110 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2111 .sync_single_for_device = arm_iommu_sync_single_for_device,
2112
2113 .map_sg = arm_iommu_map_sg,
2114 .unmap_sg = arm_iommu_unmap_sg,
2115 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2116 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2117
2118 .map_resource = arm_iommu_map_resource,
2119 .unmap_resource = arm_iommu_unmap_resource,
2120};
2121
2122struct dma_map_ops iommu_coherent_ops = {
2123 .alloc = arm_coherent_iommu_alloc_attrs,
2124 .free = arm_coherent_iommu_free_attrs,
2125 .mmap = arm_coherent_iommu_mmap_attrs,
2126 .get_sgtable = arm_iommu_get_sgtable,
2127
2128 .map_page = arm_coherent_iommu_map_page,
2129 .unmap_page = arm_coherent_iommu_unmap_page,
2130
2131 .map_sg = arm_coherent_iommu_map_sg,
2132 .unmap_sg = arm_coherent_iommu_unmap_sg,
2133
2134 .map_resource = arm_iommu_map_resource,
2135 .unmap_resource = arm_iommu_unmap_resource,
2136};
2137
2138/**
2139 * arm_iommu_create_mapping
2140 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2141 * @base: start address of the valid IO address space
2142 * @size: maximum size of the valid IO address space
2143 *
2144 * Creates a mapping structure which holds information about used/unused
2145 * IO address ranges, which is required to perform memory allocation and
2146 * mapping with IOMMU aware functions.
2147 *
2148 * The client device need to be attached to the mapping with
2149 * arm_iommu_attach_device function.
2150 */
2151struct dma_iommu_mapping *
2152arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2153{
2154 unsigned int bits = size >> PAGE_SHIFT;
2155 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2156 struct dma_iommu_mapping *mapping;
2157 int extensions = 1;
2158 int err = -ENOMEM;
2159
2160 /* currently only 32-bit DMA address space is supported */
2161 if (size > DMA_BIT_MASK(32) + 1)
2162 return ERR_PTR(-ERANGE);
2163
2164 if (!bitmap_size)
2165 return ERR_PTR(-EINVAL);
2166
2167 if (bitmap_size > PAGE_SIZE) {
2168 extensions = bitmap_size / PAGE_SIZE;
2169 bitmap_size = PAGE_SIZE;
2170 }
2171
2172 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2173 if (!mapping)
2174 goto err;
2175
2176 mapping->bitmap_size = bitmap_size;
2177 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2178 GFP_KERNEL);
2179 if (!mapping->bitmaps)
2180 goto err2;
2181
2182 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2183 if (!mapping->bitmaps[0])
2184 goto err3;
2185
2186 mapping->nr_bitmaps = 1;
2187 mapping->extensions = extensions;
2188 mapping->base = base;
2189 mapping->bits = BITS_PER_BYTE * bitmap_size;
2190
2191 spin_lock_init(&mapping->lock);
2192
2193 mapping->domain = iommu_domain_alloc(bus);
2194 if (!mapping->domain)
2195 goto err4;
2196
2197 kref_init(&mapping->kref);
2198 return mapping;
2199err4:
2200 kfree(mapping->bitmaps[0]);
2201err3:
2202 kfree(mapping->bitmaps);
2203err2:
2204 kfree(mapping);
2205err:
2206 return ERR_PTR(err);
2207}
2208EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2209
2210static void release_iommu_mapping(struct kref *kref)
2211{
2212 int i;
2213 struct dma_iommu_mapping *mapping =
2214 container_of(kref, struct dma_iommu_mapping, kref);
2215
2216 iommu_domain_free(mapping->domain);
2217 for (i = 0; i < mapping->nr_bitmaps; i++)
2218 kfree(mapping->bitmaps[i]);
2219 kfree(mapping->bitmaps);
2220 kfree(mapping);
2221}
2222
2223static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2224{
2225 int next_bitmap;
2226
2227 if (mapping->nr_bitmaps >= mapping->extensions)
2228 return -EINVAL;
2229
2230 next_bitmap = mapping->nr_bitmaps;
2231 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2232 GFP_ATOMIC);
2233 if (!mapping->bitmaps[next_bitmap])
2234 return -ENOMEM;
2235
2236 mapping->nr_bitmaps++;
2237
2238 return 0;
2239}
2240
2241void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2242{
2243 if (mapping)
2244 kref_put(&mapping->kref, release_iommu_mapping);
2245}
2246EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2247
2248static int __arm_iommu_attach_device(struct device *dev,
2249 struct dma_iommu_mapping *mapping)
2250{
2251 int err;
2252
2253 err = iommu_attach_device(mapping->domain, dev);
2254 if (err)
2255 return err;
2256
2257 kref_get(&mapping->kref);
2258 to_dma_iommu_mapping(dev) = mapping;
2259
2260 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2261 return 0;
2262}
2263
2264/**
2265 * arm_iommu_attach_device
2266 * @dev: valid struct device pointer
2267 * @mapping: io address space mapping structure (returned from
2268 * arm_iommu_create_mapping)
2269 *
2270 * Attaches specified io address space mapping to the provided device.
2271 * This replaces the dma operations (dma_map_ops pointer) with the
2272 * IOMMU aware version.
2273 *
2274 * More than one client might be attached to the same io address space
2275 * mapping.
2276 */
2277int arm_iommu_attach_device(struct device *dev,
2278 struct dma_iommu_mapping *mapping)
2279{
2280 int err;
2281
2282 err = __arm_iommu_attach_device(dev, mapping);
2283 if (err)
2284 return err;
2285
2286 set_dma_ops(dev, &iommu_ops);
2287 return 0;
2288}
2289EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2290
2291static void __arm_iommu_detach_device(struct device *dev)
2292{
2293 struct dma_iommu_mapping *mapping;
2294
2295 mapping = to_dma_iommu_mapping(dev);
2296 if (!mapping) {
2297 dev_warn(dev, "Not attached\n");
2298 return;
2299 }
2300
2301 iommu_detach_device(mapping->domain, dev);
2302 kref_put(&mapping->kref, release_iommu_mapping);
2303 to_dma_iommu_mapping(dev) = NULL;
2304
2305 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2306}
2307
2308/**
2309 * arm_iommu_detach_device
2310 * @dev: valid struct device pointer
2311 *
2312 * Detaches the provided device from a previously attached map.
2313 * This voids the dma operations (dma_map_ops pointer)
2314 */
2315void arm_iommu_detach_device(struct device *dev)
2316{
2317 __arm_iommu_detach_device(dev);
2318 set_dma_ops(dev, NULL);
2319}
2320EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2321
2322static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2323{
2324 return coherent ? &iommu_coherent_ops : &iommu_ops;
2325}
2326
2327static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2328 const struct iommu_ops *iommu)
2329{
2330 struct dma_iommu_mapping *mapping;
2331
2332 if (!iommu)
2333 return false;
2334
2335 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2336 if (IS_ERR(mapping)) {
2337 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2338 size, dev_name(dev));
2339 return false;
2340 }
2341
2342 if (__arm_iommu_attach_device(dev, mapping)) {
2343 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2344 dev_name(dev));
2345 arm_iommu_release_mapping(mapping);
2346 return false;
2347 }
2348
2349 return true;
2350}
2351
2352static void arm_teardown_iommu_dma_ops(struct device *dev)
2353{
2354 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2355
2356 if (!mapping)
2357 return;
2358
2359 __arm_iommu_detach_device(dev);
2360 arm_iommu_release_mapping(mapping);
2361}
2362
2363#else
2364
2365static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2366 const struct iommu_ops *iommu)
2367{
2368 return false;
2369}
2370
2371static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2372
2373#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2374
2375#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2376
2377static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2378{
2379 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2380}
2381
2382void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2383 const struct iommu_ops *iommu, bool coherent)
2384{
2385 struct dma_map_ops *dma_ops;
2386
2387 dev->archdata.dma_coherent = coherent;
2388 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2389 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2390 else
2391 dma_ops = arm_get_dma_map_ops(coherent);
2392
2393 set_dma_ops(dev, dma_ops);
2394}
2395
2396void arch_teardown_dma_ops(struct device *dev)
2397{
2398 arm_teardown_iommu_dma_ops(dev);
2399}