Loading...
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched/signal.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43
44#include <asm/kmap_types.h>
45#include <linux/uaccess.h>
46
47#include "internal.h"
48
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
69
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74};
75
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
80struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83};
84
85struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_work free_rwork; /* see free_ioctx() */
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157};
158
159/*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170#define KIOCB_CANCELLED ((void *) (~0ULL))
171
172struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
191/*------ sysctl variables----*/
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195/*----end sysctl variables---*/
196
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
199
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
248}
249
250/* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254static int __init aio_setup(void)
255{
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269
270 return 0;
271}
272__initcall(aio_setup);
273
274static void put_aio_ring_file(struct kioctx *ctx)
275{
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 struct address_space *i_mapping;
278
279 if (aio_ring_file) {
280 truncate_setsize(file_inode(aio_ring_file), 0);
281
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping = aio_ring_file->f_mapping;
284 spin_lock(&i_mapping->private_lock);
285 i_mapping->private_data = NULL;
286 ctx->aio_ring_file = NULL;
287 spin_unlock(&i_mapping->private_lock);
288
289 fput(aio_ring_file);
290 }
291}
292
293static void aio_free_ring(struct kioctx *ctx)
294{
295 int i;
296
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
299 */
300 put_aio_ring_file(ctx);
301
302 for (i = 0; i < ctx->nr_pages; i++) {
303 struct page *page;
304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 page_count(ctx->ring_pages[i]));
306 page = ctx->ring_pages[i];
307 if (!page)
308 continue;
309 ctx->ring_pages[i] = NULL;
310 put_page(page);
311 }
312
313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 kfree(ctx->ring_pages);
315 ctx->ring_pages = NULL;
316 }
317}
318
319static int aio_ring_mremap(struct vm_area_struct *vma)
320{
321 struct file *file = vma->vm_file;
322 struct mm_struct *mm = vma->vm_mm;
323 struct kioctx_table *table;
324 int i, res = -EINVAL;
325
326 spin_lock(&mm->ioctx_lock);
327 rcu_read_lock();
328 table = rcu_dereference(mm->ioctx_table);
329 for (i = 0; i < table->nr; i++) {
330 struct kioctx *ctx;
331
332 ctx = rcu_dereference(table->table[i]);
333 if (ctx && ctx->aio_ring_file == file) {
334 if (!atomic_read(&ctx->dead)) {
335 ctx->user_id = ctx->mmap_base = vma->vm_start;
336 res = 0;
337 }
338 break;
339 }
340 }
341
342 rcu_read_unlock();
343 spin_unlock(&mm->ioctx_lock);
344 return res;
345}
346
347static const struct vm_operations_struct aio_ring_vm_ops = {
348 .mremap = aio_ring_mremap,
349#if IS_ENABLED(CONFIG_MMU)
350 .fault = filemap_fault,
351 .map_pages = filemap_map_pages,
352 .page_mkwrite = filemap_page_mkwrite,
353#endif
354};
355
356static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357{
358 vma->vm_flags |= VM_DONTEXPAND;
359 vma->vm_ops = &aio_ring_vm_ops;
360 return 0;
361}
362
363static const struct file_operations aio_ring_fops = {
364 .mmap = aio_ring_mmap,
365};
366
367#if IS_ENABLED(CONFIG_MIGRATION)
368static int aio_migratepage(struct address_space *mapping, struct page *new,
369 struct page *old, enum migrate_mode mode)
370{
371 struct kioctx *ctx;
372 unsigned long flags;
373 pgoff_t idx;
374 int rc;
375
376 /*
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 */
381 if (mode == MIGRATE_SYNC_NO_COPY)
382 return -EINVAL;
383
384 rc = 0;
385
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping->private_lock);
388 ctx = mapping->private_data;
389 if (!ctx) {
390 rc = -EINVAL;
391 goto out;
392 }
393
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
397 */
398 if (!mutex_trylock(&ctx->ring_lock)) {
399 rc = -EAGAIN;
400 goto out;
401 }
402
403 idx = old->index;
404 if (idx < (pgoff_t)ctx->nr_pages) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx->ring_pages[idx] != old)
407 rc = -EAGAIN;
408 } else
409 rc = -EINVAL;
410
411 if (rc != 0)
412 goto out_unlock;
413
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old));
416 get_page(new);
417
418 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 if (rc != MIGRATEPAGE_SUCCESS) {
420 put_page(new);
421 goto out_unlock;
422 }
423
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
427 */
428 spin_lock_irqsave(&ctx->completion_lock, flags);
429 migrate_page_copy(new, old);
430 BUG_ON(ctx->ring_pages[idx] != old);
431 ctx->ring_pages[idx] = new;
432 spin_unlock_irqrestore(&ctx->completion_lock, flags);
433
434 /* The old page is no longer accessible. */
435 put_page(old);
436
437out_unlock:
438 mutex_unlock(&ctx->ring_lock);
439out:
440 spin_unlock(&mapping->private_lock);
441 return rc;
442}
443#endif
444
445static const struct address_space_operations aio_ctx_aops = {
446 .set_page_dirty = __set_page_dirty_no_writeback,
447#if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage = aio_migratepage,
449#endif
450};
451
452static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453{
454 struct aio_ring *ring;
455 struct mm_struct *mm = current->mm;
456 unsigned long size, unused;
457 int nr_pages;
458 int i;
459 struct file *file;
460
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events += 2; /* 1 is required, 2 for good luck */
463
464 size = sizeof(struct aio_ring);
465 size += sizeof(struct io_event) * nr_events;
466
467 nr_pages = PFN_UP(size);
468 if (nr_pages < 0)
469 return -EINVAL;
470
471 file = aio_private_file(ctx, nr_pages);
472 if (IS_ERR(file)) {
473 ctx->aio_ring_file = NULL;
474 return -ENOMEM;
475 }
476
477 ctx->aio_ring_file = file;
478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 / sizeof(struct io_event);
480
481 ctx->ring_pages = ctx->internal_pages;
482 if (nr_pages > AIO_RING_PAGES) {
483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 GFP_KERNEL);
485 if (!ctx->ring_pages) {
486 put_aio_ring_file(ctx);
487 return -ENOMEM;
488 }
489 }
490
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page;
493 page = find_or_create_page(file->f_mapping,
494 i, GFP_HIGHUSER | __GFP_ZERO);
495 if (!page)
496 break;
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current->pid, i, page_count(page));
499 SetPageUptodate(page);
500 unlock_page(page);
501
502 ctx->ring_pages[i] = page;
503 }
504 ctx->nr_pages = i;
505
506 if (unlikely(i != nr_pages)) {
507 aio_free_ring(ctx);
508 return -ENOMEM;
509 }
510
511 ctx->mmap_size = nr_pages * PAGE_SIZE;
512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513
514 if (down_write_killable(&mm->mmap_sem)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -EINTR;
518 }
519
520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 PROT_READ | PROT_WRITE,
522 MAP_SHARED, 0, &unused, NULL);
523 up_write(&mm->mmap_sem);
524 if (IS_ERR((void *)ctx->mmap_base)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -ENOMEM;
528 }
529
530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531
532 ctx->user_id = ctx->mmap_base;
533 ctx->nr_events = nr_events; /* trusted copy */
534
535 ring = kmap_atomic(ctx->ring_pages[0]);
536 ring->nr = nr_events; /* user copy */
537 ring->id = ~0U;
538 ring->head = ring->tail = 0;
539 ring->magic = AIO_RING_MAGIC;
540 ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 ring->header_length = sizeof(struct aio_ring);
543 kunmap_atomic(ring);
544 flush_dcache_page(ctx->ring_pages[0]);
545
546 return 0;
547}
548
549#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552
553void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554{
555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 struct kioctx *ctx = req->ki_ctx;
557 unsigned long flags;
558
559 spin_lock_irqsave(&ctx->ctx_lock, flags);
560
561 if (!req->ki_list.next)
562 list_add(&req->ki_list, &ctx->active_reqs);
563
564 req->ki_cancel = cancel;
565
566 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567}
568EXPORT_SYMBOL(kiocb_set_cancel_fn);
569
570static int kiocb_cancel(struct aio_kiocb *kiocb)
571{
572 kiocb_cancel_fn *old, *cancel;
573
574 /*
575 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 * actually has a cancel function, hence the cmpxchg()
577 */
578
579 cancel = READ_ONCE(kiocb->ki_cancel);
580 do {
581 if (!cancel || cancel == KIOCB_CANCELLED)
582 return -EINVAL;
583
584 old = cancel;
585 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 } while (cancel != old);
587
588 return cancel(&kiocb->common);
589}
590
591/*
592 * free_ioctx() should be RCU delayed to synchronize against the RCU
593 * protected lookup_ioctx() and also needs process context to call
594 * aio_free_ring(). Use rcu_work.
595 */
596static void free_ioctx(struct work_struct *work)
597{
598 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
599 free_rwork);
600 pr_debug("freeing %p\n", ctx);
601
602 aio_free_ring(ctx);
603 free_percpu(ctx->cpu);
604 percpu_ref_exit(&ctx->reqs);
605 percpu_ref_exit(&ctx->users);
606 kmem_cache_free(kioctx_cachep, ctx);
607}
608
609static void free_ioctx_reqs(struct percpu_ref *ref)
610{
611 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
612
613 /* At this point we know that there are no any in-flight requests */
614 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
615 complete(&ctx->rq_wait->comp);
616
617 /* Synchronize against RCU protected table->table[] dereferences */
618 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
619 queue_rcu_work(system_wq, &ctx->free_rwork);
620}
621
622/*
623 * When this function runs, the kioctx has been removed from the "hash table"
624 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
625 * now it's safe to cancel any that need to be.
626 */
627static void free_ioctx_users(struct percpu_ref *ref)
628{
629 struct kioctx *ctx = container_of(ref, struct kioctx, users);
630 struct aio_kiocb *req;
631
632 spin_lock_irq(&ctx->ctx_lock);
633
634 while (!list_empty(&ctx->active_reqs)) {
635 req = list_first_entry(&ctx->active_reqs,
636 struct aio_kiocb, ki_list);
637 kiocb_cancel(req);
638 list_del_init(&req->ki_list);
639 }
640
641 spin_unlock_irq(&ctx->ctx_lock);
642
643 percpu_ref_kill(&ctx->reqs);
644 percpu_ref_put(&ctx->reqs);
645}
646
647static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
648{
649 unsigned i, new_nr;
650 struct kioctx_table *table, *old;
651 struct aio_ring *ring;
652
653 spin_lock(&mm->ioctx_lock);
654 table = rcu_dereference_raw(mm->ioctx_table);
655
656 while (1) {
657 if (table)
658 for (i = 0; i < table->nr; i++)
659 if (!rcu_access_pointer(table->table[i])) {
660 ctx->id = i;
661 rcu_assign_pointer(table->table[i], ctx);
662 spin_unlock(&mm->ioctx_lock);
663
664 /* While kioctx setup is in progress,
665 * we are protected from page migration
666 * changes ring_pages by ->ring_lock.
667 */
668 ring = kmap_atomic(ctx->ring_pages[0]);
669 ring->id = ctx->id;
670 kunmap_atomic(ring);
671 return 0;
672 }
673
674 new_nr = (table ? table->nr : 1) * 4;
675 spin_unlock(&mm->ioctx_lock);
676
677 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
678 new_nr, GFP_KERNEL);
679 if (!table)
680 return -ENOMEM;
681
682 table->nr = new_nr;
683
684 spin_lock(&mm->ioctx_lock);
685 old = rcu_dereference_raw(mm->ioctx_table);
686
687 if (!old) {
688 rcu_assign_pointer(mm->ioctx_table, table);
689 } else if (table->nr > old->nr) {
690 memcpy(table->table, old->table,
691 old->nr * sizeof(struct kioctx *));
692
693 rcu_assign_pointer(mm->ioctx_table, table);
694 kfree_rcu(old, rcu);
695 } else {
696 kfree(table);
697 table = old;
698 }
699 }
700}
701
702static void aio_nr_sub(unsigned nr)
703{
704 spin_lock(&aio_nr_lock);
705 if (WARN_ON(aio_nr - nr > aio_nr))
706 aio_nr = 0;
707 else
708 aio_nr -= nr;
709 spin_unlock(&aio_nr_lock);
710}
711
712/* ioctx_alloc
713 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
714 */
715static struct kioctx *ioctx_alloc(unsigned nr_events)
716{
717 struct mm_struct *mm = current->mm;
718 struct kioctx *ctx;
719 int err = -ENOMEM;
720
721 /*
722 * Store the original nr_events -- what userspace passed to io_setup(),
723 * for counting against the global limit -- before it changes.
724 */
725 unsigned int max_reqs = nr_events;
726
727 /*
728 * We keep track of the number of available ringbuffer slots, to prevent
729 * overflow (reqs_available), and we also use percpu counters for this.
730 *
731 * So since up to half the slots might be on other cpu's percpu counters
732 * and unavailable, double nr_events so userspace sees what they
733 * expected: additionally, we move req_batch slots to/from percpu
734 * counters at a time, so make sure that isn't 0:
735 */
736 nr_events = max(nr_events, num_possible_cpus() * 4);
737 nr_events *= 2;
738
739 /* Prevent overflows */
740 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
741 pr_debug("ENOMEM: nr_events too high\n");
742 return ERR_PTR(-EINVAL);
743 }
744
745 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
746 return ERR_PTR(-EAGAIN);
747
748 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
749 if (!ctx)
750 return ERR_PTR(-ENOMEM);
751
752 ctx->max_reqs = max_reqs;
753
754 spin_lock_init(&ctx->ctx_lock);
755 spin_lock_init(&ctx->completion_lock);
756 mutex_init(&ctx->ring_lock);
757 /* Protect against page migration throughout kiotx setup by keeping
758 * the ring_lock mutex held until setup is complete. */
759 mutex_lock(&ctx->ring_lock);
760 init_waitqueue_head(&ctx->wait);
761
762 INIT_LIST_HEAD(&ctx->active_reqs);
763
764 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
765 goto err;
766
767 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
768 goto err;
769
770 ctx->cpu = alloc_percpu(struct kioctx_cpu);
771 if (!ctx->cpu)
772 goto err;
773
774 err = aio_setup_ring(ctx, nr_events);
775 if (err < 0)
776 goto err;
777
778 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
779 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
780 if (ctx->req_batch < 1)
781 ctx->req_batch = 1;
782
783 /* limit the number of system wide aios */
784 spin_lock(&aio_nr_lock);
785 if (aio_nr + ctx->max_reqs > aio_max_nr ||
786 aio_nr + ctx->max_reqs < aio_nr) {
787 spin_unlock(&aio_nr_lock);
788 err = -EAGAIN;
789 goto err_ctx;
790 }
791 aio_nr += ctx->max_reqs;
792 spin_unlock(&aio_nr_lock);
793
794 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
795 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
796
797 err = ioctx_add_table(ctx, mm);
798 if (err)
799 goto err_cleanup;
800
801 /* Release the ring_lock mutex now that all setup is complete. */
802 mutex_unlock(&ctx->ring_lock);
803
804 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
805 ctx, ctx->user_id, mm, ctx->nr_events);
806 return ctx;
807
808err_cleanup:
809 aio_nr_sub(ctx->max_reqs);
810err_ctx:
811 atomic_set(&ctx->dead, 1);
812 if (ctx->mmap_size)
813 vm_munmap(ctx->mmap_base, ctx->mmap_size);
814 aio_free_ring(ctx);
815err:
816 mutex_unlock(&ctx->ring_lock);
817 free_percpu(ctx->cpu);
818 percpu_ref_exit(&ctx->reqs);
819 percpu_ref_exit(&ctx->users);
820 kmem_cache_free(kioctx_cachep, ctx);
821 pr_debug("error allocating ioctx %d\n", err);
822 return ERR_PTR(err);
823}
824
825/* kill_ioctx
826 * Cancels all outstanding aio requests on an aio context. Used
827 * when the processes owning a context have all exited to encourage
828 * the rapid destruction of the kioctx.
829 */
830static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
831 struct ctx_rq_wait *wait)
832{
833 struct kioctx_table *table;
834
835 spin_lock(&mm->ioctx_lock);
836 if (atomic_xchg(&ctx->dead, 1)) {
837 spin_unlock(&mm->ioctx_lock);
838 return -EINVAL;
839 }
840
841 table = rcu_dereference_raw(mm->ioctx_table);
842 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
843 RCU_INIT_POINTER(table->table[ctx->id], NULL);
844 spin_unlock(&mm->ioctx_lock);
845
846 /* free_ioctx_reqs() will do the necessary RCU synchronization */
847 wake_up_all(&ctx->wait);
848
849 /*
850 * It'd be more correct to do this in free_ioctx(), after all
851 * the outstanding kiocbs have finished - but by then io_destroy
852 * has already returned, so io_setup() could potentially return
853 * -EAGAIN with no ioctxs actually in use (as far as userspace
854 * could tell).
855 */
856 aio_nr_sub(ctx->max_reqs);
857
858 if (ctx->mmap_size)
859 vm_munmap(ctx->mmap_base, ctx->mmap_size);
860
861 ctx->rq_wait = wait;
862 percpu_ref_kill(&ctx->users);
863 return 0;
864}
865
866/*
867 * exit_aio: called when the last user of mm goes away. At this point, there is
868 * no way for any new requests to be submited or any of the io_* syscalls to be
869 * called on the context.
870 *
871 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
872 * them.
873 */
874void exit_aio(struct mm_struct *mm)
875{
876 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
877 struct ctx_rq_wait wait;
878 int i, skipped;
879
880 if (!table)
881 return;
882
883 atomic_set(&wait.count, table->nr);
884 init_completion(&wait.comp);
885
886 skipped = 0;
887 for (i = 0; i < table->nr; ++i) {
888 struct kioctx *ctx =
889 rcu_dereference_protected(table->table[i], true);
890
891 if (!ctx) {
892 skipped++;
893 continue;
894 }
895
896 /*
897 * We don't need to bother with munmap() here - exit_mmap(mm)
898 * is coming and it'll unmap everything. And we simply can't,
899 * this is not necessarily our ->mm.
900 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
901 * that it needs to unmap the area, just set it to 0.
902 */
903 ctx->mmap_size = 0;
904 kill_ioctx(mm, ctx, &wait);
905 }
906
907 if (!atomic_sub_and_test(skipped, &wait.count)) {
908 /* Wait until all IO for the context are done. */
909 wait_for_completion(&wait.comp);
910 }
911
912 RCU_INIT_POINTER(mm->ioctx_table, NULL);
913 kfree(table);
914}
915
916static void put_reqs_available(struct kioctx *ctx, unsigned nr)
917{
918 struct kioctx_cpu *kcpu;
919 unsigned long flags;
920
921 local_irq_save(flags);
922 kcpu = this_cpu_ptr(ctx->cpu);
923 kcpu->reqs_available += nr;
924
925 while (kcpu->reqs_available >= ctx->req_batch * 2) {
926 kcpu->reqs_available -= ctx->req_batch;
927 atomic_add(ctx->req_batch, &ctx->reqs_available);
928 }
929
930 local_irq_restore(flags);
931}
932
933static bool get_reqs_available(struct kioctx *ctx)
934{
935 struct kioctx_cpu *kcpu;
936 bool ret = false;
937 unsigned long flags;
938
939 local_irq_save(flags);
940 kcpu = this_cpu_ptr(ctx->cpu);
941 if (!kcpu->reqs_available) {
942 int old, avail = atomic_read(&ctx->reqs_available);
943
944 do {
945 if (avail < ctx->req_batch)
946 goto out;
947
948 old = avail;
949 avail = atomic_cmpxchg(&ctx->reqs_available,
950 avail, avail - ctx->req_batch);
951 } while (avail != old);
952
953 kcpu->reqs_available += ctx->req_batch;
954 }
955
956 ret = true;
957 kcpu->reqs_available--;
958out:
959 local_irq_restore(flags);
960 return ret;
961}
962
963/* refill_reqs_available
964 * Updates the reqs_available reference counts used for tracking the
965 * number of free slots in the completion ring. This can be called
966 * from aio_complete() (to optimistically update reqs_available) or
967 * from aio_get_req() (the we're out of events case). It must be
968 * called holding ctx->completion_lock.
969 */
970static void refill_reqs_available(struct kioctx *ctx, unsigned head,
971 unsigned tail)
972{
973 unsigned events_in_ring, completed;
974
975 /* Clamp head since userland can write to it. */
976 head %= ctx->nr_events;
977 if (head <= tail)
978 events_in_ring = tail - head;
979 else
980 events_in_ring = ctx->nr_events - (head - tail);
981
982 completed = ctx->completed_events;
983 if (events_in_ring < completed)
984 completed -= events_in_ring;
985 else
986 completed = 0;
987
988 if (!completed)
989 return;
990
991 ctx->completed_events -= completed;
992 put_reqs_available(ctx, completed);
993}
994
995/* user_refill_reqs_available
996 * Called to refill reqs_available when aio_get_req() encounters an
997 * out of space in the completion ring.
998 */
999static void user_refill_reqs_available(struct kioctx *ctx)
1000{
1001 spin_lock_irq(&ctx->completion_lock);
1002 if (ctx->completed_events) {
1003 struct aio_ring *ring;
1004 unsigned head;
1005
1006 /* Access of ring->head may race with aio_read_events_ring()
1007 * here, but that's okay since whether we read the old version
1008 * or the new version, and either will be valid. The important
1009 * part is that head cannot pass tail since we prevent
1010 * aio_complete() from updating tail by holding
1011 * ctx->completion_lock. Even if head is invalid, the check
1012 * against ctx->completed_events below will make sure we do the
1013 * safe/right thing.
1014 */
1015 ring = kmap_atomic(ctx->ring_pages[0]);
1016 head = ring->head;
1017 kunmap_atomic(ring);
1018
1019 refill_reqs_available(ctx, head, ctx->tail);
1020 }
1021
1022 spin_unlock_irq(&ctx->completion_lock);
1023}
1024
1025/* aio_get_req
1026 * Allocate a slot for an aio request.
1027 * Returns NULL if no requests are free.
1028 */
1029static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1030{
1031 struct aio_kiocb *req;
1032
1033 if (!get_reqs_available(ctx)) {
1034 user_refill_reqs_available(ctx);
1035 if (!get_reqs_available(ctx))
1036 return NULL;
1037 }
1038
1039 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1040 if (unlikely(!req))
1041 goto out_put;
1042
1043 percpu_ref_get(&ctx->reqs);
1044
1045 req->ki_ctx = ctx;
1046 return req;
1047out_put:
1048 put_reqs_available(ctx, 1);
1049 return NULL;
1050}
1051
1052static void kiocb_free(struct aio_kiocb *req)
1053{
1054 if (req->common.ki_filp)
1055 fput(req->common.ki_filp);
1056 if (req->ki_eventfd != NULL)
1057 eventfd_ctx_put(req->ki_eventfd);
1058 kmem_cache_free(kiocb_cachep, req);
1059}
1060
1061static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1062{
1063 struct aio_ring __user *ring = (void __user *)ctx_id;
1064 struct mm_struct *mm = current->mm;
1065 struct kioctx *ctx, *ret = NULL;
1066 struct kioctx_table *table;
1067 unsigned id;
1068
1069 if (get_user(id, &ring->id))
1070 return NULL;
1071
1072 rcu_read_lock();
1073 table = rcu_dereference(mm->ioctx_table);
1074
1075 if (!table || id >= table->nr)
1076 goto out;
1077
1078 ctx = rcu_dereference(table->table[id]);
1079 if (ctx && ctx->user_id == ctx_id) {
1080 if (percpu_ref_tryget_live(&ctx->users))
1081 ret = ctx;
1082 }
1083out:
1084 rcu_read_unlock();
1085 return ret;
1086}
1087
1088/* aio_complete
1089 * Called when the io request on the given iocb is complete.
1090 */
1091static void aio_complete(struct kiocb *kiocb, long res, long res2)
1092{
1093 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1094 struct kioctx *ctx = iocb->ki_ctx;
1095 struct aio_ring *ring;
1096 struct io_event *ev_page, *event;
1097 unsigned tail, pos, head;
1098 unsigned long flags;
1099
1100 if (kiocb->ki_flags & IOCB_WRITE) {
1101 struct file *file = kiocb->ki_filp;
1102
1103 /*
1104 * Tell lockdep we inherited freeze protection from submission
1105 * thread.
1106 */
1107 if (S_ISREG(file_inode(file)->i_mode))
1108 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1109 file_end_write(file);
1110 }
1111
1112 /*
1113 * Special case handling for sync iocbs:
1114 * - events go directly into the iocb for fast handling
1115 * - the sync task with the iocb in its stack holds the single iocb
1116 * ref, no other paths have a way to get another ref
1117 * - the sync task helpfully left a reference to itself in the iocb
1118 */
1119 BUG_ON(is_sync_kiocb(kiocb));
1120
1121 if (iocb->ki_list.next) {
1122 unsigned long flags;
1123
1124 spin_lock_irqsave(&ctx->ctx_lock, flags);
1125 list_del(&iocb->ki_list);
1126 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1127 }
1128
1129 /*
1130 * Add a completion event to the ring buffer. Must be done holding
1131 * ctx->completion_lock to prevent other code from messing with the tail
1132 * pointer since we might be called from irq context.
1133 */
1134 spin_lock_irqsave(&ctx->completion_lock, flags);
1135
1136 tail = ctx->tail;
1137 pos = tail + AIO_EVENTS_OFFSET;
1138
1139 if (++tail >= ctx->nr_events)
1140 tail = 0;
1141
1142 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144
1145 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1146 event->data = iocb->ki_user_data;
1147 event->res = res;
1148 event->res2 = res2;
1149
1150 kunmap_atomic(ev_page);
1151 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1152
1153 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1154 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1155 res, res2);
1156
1157 /* after flagging the request as done, we
1158 * must never even look at it again
1159 */
1160 smp_wmb(); /* make event visible before updating tail */
1161
1162 ctx->tail = tail;
1163
1164 ring = kmap_atomic(ctx->ring_pages[0]);
1165 head = ring->head;
1166 ring->tail = tail;
1167 kunmap_atomic(ring);
1168 flush_dcache_page(ctx->ring_pages[0]);
1169
1170 ctx->completed_events++;
1171 if (ctx->completed_events > 1)
1172 refill_reqs_available(ctx, head, tail);
1173 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1174
1175 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1176
1177 /*
1178 * Check if the user asked us to deliver the result through an
1179 * eventfd. The eventfd_signal() function is safe to be called
1180 * from IRQ context.
1181 */
1182 if (iocb->ki_eventfd != NULL)
1183 eventfd_signal(iocb->ki_eventfd, 1);
1184
1185 /* everything turned out well, dispose of the aiocb. */
1186 kiocb_free(iocb);
1187
1188 /*
1189 * We have to order our ring_info tail store above and test
1190 * of the wait list below outside the wait lock. This is
1191 * like in wake_up_bit() where clearing a bit has to be
1192 * ordered with the unlocked test.
1193 */
1194 smp_mb();
1195
1196 if (waitqueue_active(&ctx->wait))
1197 wake_up(&ctx->wait);
1198
1199 percpu_ref_put(&ctx->reqs);
1200}
1201
1202/* aio_read_events_ring
1203 * Pull an event off of the ioctx's event ring. Returns the number of
1204 * events fetched
1205 */
1206static long aio_read_events_ring(struct kioctx *ctx,
1207 struct io_event __user *event, long nr)
1208{
1209 struct aio_ring *ring;
1210 unsigned head, tail, pos;
1211 long ret = 0;
1212 int copy_ret;
1213
1214 /*
1215 * The mutex can block and wake us up and that will cause
1216 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1217 * and repeat. This should be rare enough that it doesn't cause
1218 * peformance issues. See the comment in read_events() for more detail.
1219 */
1220 sched_annotate_sleep();
1221 mutex_lock(&ctx->ring_lock);
1222
1223 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1224 ring = kmap_atomic(ctx->ring_pages[0]);
1225 head = ring->head;
1226 tail = ring->tail;
1227 kunmap_atomic(ring);
1228
1229 /*
1230 * Ensure that once we've read the current tail pointer, that
1231 * we also see the events that were stored up to the tail.
1232 */
1233 smp_rmb();
1234
1235 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1236
1237 if (head == tail)
1238 goto out;
1239
1240 head %= ctx->nr_events;
1241 tail %= ctx->nr_events;
1242
1243 while (ret < nr) {
1244 long avail;
1245 struct io_event *ev;
1246 struct page *page;
1247
1248 avail = (head <= tail ? tail : ctx->nr_events) - head;
1249 if (head == tail)
1250 break;
1251
1252 avail = min(avail, nr - ret);
1253 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1254 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1255
1256 pos = head + AIO_EVENTS_OFFSET;
1257 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1258 pos %= AIO_EVENTS_PER_PAGE;
1259
1260 ev = kmap(page);
1261 copy_ret = copy_to_user(event + ret, ev + pos,
1262 sizeof(*ev) * avail);
1263 kunmap(page);
1264
1265 if (unlikely(copy_ret)) {
1266 ret = -EFAULT;
1267 goto out;
1268 }
1269
1270 ret += avail;
1271 head += avail;
1272 head %= ctx->nr_events;
1273 }
1274
1275 ring = kmap_atomic(ctx->ring_pages[0]);
1276 ring->head = head;
1277 kunmap_atomic(ring);
1278 flush_dcache_page(ctx->ring_pages[0]);
1279
1280 pr_debug("%li h%u t%u\n", ret, head, tail);
1281out:
1282 mutex_unlock(&ctx->ring_lock);
1283
1284 return ret;
1285}
1286
1287static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1288 struct io_event __user *event, long *i)
1289{
1290 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1291
1292 if (ret > 0)
1293 *i += ret;
1294
1295 if (unlikely(atomic_read(&ctx->dead)))
1296 ret = -EINVAL;
1297
1298 if (!*i)
1299 *i = ret;
1300
1301 return ret < 0 || *i >= min_nr;
1302}
1303
1304static long read_events(struct kioctx *ctx, long min_nr, long nr,
1305 struct io_event __user *event,
1306 ktime_t until)
1307{
1308 long ret = 0;
1309
1310 /*
1311 * Note that aio_read_events() is being called as the conditional - i.e.
1312 * we're calling it after prepare_to_wait() has set task state to
1313 * TASK_INTERRUPTIBLE.
1314 *
1315 * But aio_read_events() can block, and if it blocks it's going to flip
1316 * the task state back to TASK_RUNNING.
1317 *
1318 * This should be ok, provided it doesn't flip the state back to
1319 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1320 * will only happen if the mutex_lock() call blocks, and we then find
1321 * the ringbuffer empty. So in practice we should be ok, but it's
1322 * something to be aware of when touching this code.
1323 */
1324 if (until == 0)
1325 aio_read_events(ctx, min_nr, nr, event, &ret);
1326 else
1327 wait_event_interruptible_hrtimeout(ctx->wait,
1328 aio_read_events(ctx, min_nr, nr, event, &ret),
1329 until);
1330
1331 if (!ret && signal_pending(current))
1332 ret = -EINTR;
1333
1334 return ret;
1335}
1336
1337/* sys_io_setup:
1338 * Create an aio_context capable of receiving at least nr_events.
1339 * ctxp must not point to an aio_context that already exists, and
1340 * must be initialized to 0 prior to the call. On successful
1341 * creation of the aio_context, *ctxp is filled in with the resulting
1342 * handle. May fail with -EINVAL if *ctxp is not initialized,
1343 * if the specified nr_events exceeds internal limits. May fail
1344 * with -EAGAIN if the specified nr_events exceeds the user's limit
1345 * of available events. May fail with -ENOMEM if insufficient kernel
1346 * resources are available. May fail with -EFAULT if an invalid
1347 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1348 * implemented.
1349 */
1350SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1351{
1352 struct kioctx *ioctx = NULL;
1353 unsigned long ctx;
1354 long ret;
1355
1356 ret = get_user(ctx, ctxp);
1357 if (unlikely(ret))
1358 goto out;
1359
1360 ret = -EINVAL;
1361 if (unlikely(ctx || nr_events == 0)) {
1362 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1363 ctx, nr_events);
1364 goto out;
1365 }
1366
1367 ioctx = ioctx_alloc(nr_events);
1368 ret = PTR_ERR(ioctx);
1369 if (!IS_ERR(ioctx)) {
1370 ret = put_user(ioctx->user_id, ctxp);
1371 if (ret)
1372 kill_ioctx(current->mm, ioctx, NULL);
1373 percpu_ref_put(&ioctx->users);
1374 }
1375
1376out:
1377 return ret;
1378}
1379
1380#ifdef CONFIG_COMPAT
1381COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1382{
1383 struct kioctx *ioctx = NULL;
1384 unsigned long ctx;
1385 long ret;
1386
1387 ret = get_user(ctx, ctx32p);
1388 if (unlikely(ret))
1389 goto out;
1390
1391 ret = -EINVAL;
1392 if (unlikely(ctx || nr_events == 0)) {
1393 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1394 ctx, nr_events);
1395 goto out;
1396 }
1397
1398 ioctx = ioctx_alloc(nr_events);
1399 ret = PTR_ERR(ioctx);
1400 if (!IS_ERR(ioctx)) {
1401 /* truncating is ok because it's a user address */
1402 ret = put_user((u32)ioctx->user_id, ctx32p);
1403 if (ret)
1404 kill_ioctx(current->mm, ioctx, NULL);
1405 percpu_ref_put(&ioctx->users);
1406 }
1407
1408out:
1409 return ret;
1410}
1411#endif
1412
1413/* sys_io_destroy:
1414 * Destroy the aio_context specified. May cancel any outstanding
1415 * AIOs and block on completion. Will fail with -ENOSYS if not
1416 * implemented. May fail with -EINVAL if the context pointed to
1417 * is invalid.
1418 */
1419SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1420{
1421 struct kioctx *ioctx = lookup_ioctx(ctx);
1422 if (likely(NULL != ioctx)) {
1423 struct ctx_rq_wait wait;
1424 int ret;
1425
1426 init_completion(&wait.comp);
1427 atomic_set(&wait.count, 1);
1428
1429 /* Pass requests_done to kill_ioctx() where it can be set
1430 * in a thread-safe way. If we try to set it here then we have
1431 * a race condition if two io_destroy() called simultaneously.
1432 */
1433 ret = kill_ioctx(current->mm, ioctx, &wait);
1434 percpu_ref_put(&ioctx->users);
1435
1436 /* Wait until all IO for the context are done. Otherwise kernel
1437 * keep using user-space buffers even if user thinks the context
1438 * is destroyed.
1439 */
1440 if (!ret)
1441 wait_for_completion(&wait.comp);
1442
1443 return ret;
1444 }
1445 pr_debug("EINVAL: invalid context id\n");
1446 return -EINVAL;
1447}
1448
1449static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1450 bool vectored, bool compat, struct iov_iter *iter)
1451{
1452 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1453 size_t len = iocb->aio_nbytes;
1454
1455 if (!vectored) {
1456 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1457 *iovec = NULL;
1458 return ret;
1459 }
1460#ifdef CONFIG_COMPAT
1461 if (compat)
1462 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1463 iter);
1464#endif
1465 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1466}
1467
1468static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1469{
1470 switch (ret) {
1471 case -EIOCBQUEUED:
1472 return ret;
1473 case -ERESTARTSYS:
1474 case -ERESTARTNOINTR:
1475 case -ERESTARTNOHAND:
1476 case -ERESTART_RESTARTBLOCK:
1477 /*
1478 * There's no easy way to restart the syscall since other AIO's
1479 * may be already running. Just fail this IO with EINTR.
1480 */
1481 ret = -EINTR;
1482 /*FALLTHRU*/
1483 default:
1484 aio_complete(req, ret, 0);
1485 return 0;
1486 }
1487}
1488
1489static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1490 bool compat)
1491{
1492 struct file *file = req->ki_filp;
1493 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1494 struct iov_iter iter;
1495 ssize_t ret;
1496
1497 if (unlikely(!(file->f_mode & FMODE_READ)))
1498 return -EBADF;
1499 if (unlikely(!file->f_op->read_iter))
1500 return -EINVAL;
1501
1502 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1503 if (ret)
1504 return ret;
1505 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1506 if (!ret)
1507 ret = aio_ret(req, call_read_iter(file, req, &iter));
1508 kfree(iovec);
1509 return ret;
1510}
1511
1512static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1513 bool compat)
1514{
1515 struct file *file = req->ki_filp;
1516 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1517 struct iov_iter iter;
1518 ssize_t ret;
1519
1520 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1521 return -EBADF;
1522 if (unlikely(!file->f_op->write_iter))
1523 return -EINVAL;
1524
1525 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1526 if (ret)
1527 return ret;
1528 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1529 if (!ret) {
1530 req->ki_flags |= IOCB_WRITE;
1531 file_start_write(file);
1532 ret = aio_ret(req, call_write_iter(file, req, &iter));
1533 /*
1534 * We release freeze protection in aio_complete(). Fool lockdep
1535 * by telling it the lock got released so that it doesn't
1536 * complain about held lock when we return to userspace.
1537 */
1538 if (S_ISREG(file_inode(file)->i_mode))
1539 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1540 }
1541 kfree(iovec);
1542 return ret;
1543}
1544
1545static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1546 struct iocb *iocb, bool compat)
1547{
1548 struct aio_kiocb *req;
1549 struct file *file;
1550 ssize_t ret;
1551
1552 /* enforce forwards compatibility on users */
1553 if (unlikely(iocb->aio_reserved2)) {
1554 pr_debug("EINVAL: reserve field set\n");
1555 return -EINVAL;
1556 }
1557
1558 /* prevent overflows */
1559 if (unlikely(
1560 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1561 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1562 ((ssize_t)iocb->aio_nbytes < 0)
1563 )) {
1564 pr_debug("EINVAL: overflow check\n");
1565 return -EINVAL;
1566 }
1567
1568 req = aio_get_req(ctx);
1569 if (unlikely(!req))
1570 return -EAGAIN;
1571
1572 req->common.ki_filp = file = fget(iocb->aio_fildes);
1573 if (unlikely(!req->common.ki_filp)) {
1574 ret = -EBADF;
1575 goto out_put_req;
1576 }
1577 req->common.ki_pos = iocb->aio_offset;
1578 req->common.ki_complete = aio_complete;
1579 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1580 req->common.ki_hint = file_write_hint(file);
1581
1582 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1583 /*
1584 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1585 * instance of the file* now. The file descriptor must be
1586 * an eventfd() fd, and will be signaled for each completed
1587 * event using the eventfd_signal() function.
1588 */
1589 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1590 if (IS_ERR(req->ki_eventfd)) {
1591 ret = PTR_ERR(req->ki_eventfd);
1592 req->ki_eventfd = NULL;
1593 goto out_put_req;
1594 }
1595
1596 req->common.ki_flags |= IOCB_EVENTFD;
1597 }
1598
1599 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1600 if (unlikely(ret)) {
1601 pr_debug("EINVAL: aio_rw_flags\n");
1602 goto out_put_req;
1603 }
1604
1605 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1606 if (unlikely(ret)) {
1607 pr_debug("EFAULT: aio_key\n");
1608 goto out_put_req;
1609 }
1610
1611 req->ki_user_iocb = user_iocb;
1612 req->ki_user_data = iocb->aio_data;
1613
1614 get_file(file);
1615 switch (iocb->aio_lio_opcode) {
1616 case IOCB_CMD_PREAD:
1617 ret = aio_read(&req->common, iocb, false, compat);
1618 break;
1619 case IOCB_CMD_PWRITE:
1620 ret = aio_write(&req->common, iocb, false, compat);
1621 break;
1622 case IOCB_CMD_PREADV:
1623 ret = aio_read(&req->common, iocb, true, compat);
1624 break;
1625 case IOCB_CMD_PWRITEV:
1626 ret = aio_write(&req->common, iocb, true, compat);
1627 break;
1628 default:
1629 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1630 ret = -EINVAL;
1631 break;
1632 }
1633 fput(file);
1634
1635 if (ret && ret != -EIOCBQUEUED)
1636 goto out_put_req;
1637 return 0;
1638out_put_req:
1639 put_reqs_available(ctx, 1);
1640 percpu_ref_put(&ctx->reqs);
1641 kiocb_free(req);
1642 return ret;
1643}
1644
1645static long do_io_submit(aio_context_t ctx_id, long nr,
1646 struct iocb __user *__user *iocbpp, bool compat)
1647{
1648 struct kioctx *ctx;
1649 long ret = 0;
1650 int i = 0;
1651 struct blk_plug plug;
1652
1653 if (unlikely(nr < 0))
1654 return -EINVAL;
1655
1656 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1657 nr = LONG_MAX/sizeof(*iocbpp);
1658
1659 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1660 return -EFAULT;
1661
1662 ctx = lookup_ioctx(ctx_id);
1663 if (unlikely(!ctx)) {
1664 pr_debug("EINVAL: invalid context id\n");
1665 return -EINVAL;
1666 }
1667
1668 blk_start_plug(&plug);
1669
1670 /*
1671 * AKPM: should this return a partial result if some of the IOs were
1672 * successfully submitted?
1673 */
1674 for (i=0; i<nr; i++) {
1675 struct iocb __user *user_iocb;
1676 struct iocb tmp;
1677
1678 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1679 ret = -EFAULT;
1680 break;
1681 }
1682
1683 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1684 ret = -EFAULT;
1685 break;
1686 }
1687
1688 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1689 if (ret)
1690 break;
1691 }
1692 blk_finish_plug(&plug);
1693
1694 percpu_ref_put(&ctx->users);
1695 return i ? i : ret;
1696}
1697
1698/* sys_io_submit:
1699 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1700 * the number of iocbs queued. May return -EINVAL if the aio_context
1701 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1702 * *iocbpp[0] is not properly initialized, if the operation specified
1703 * is invalid for the file descriptor in the iocb. May fail with
1704 * -EFAULT if any of the data structures point to invalid data. May
1705 * fail with -EBADF if the file descriptor specified in the first
1706 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1707 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1708 * fail with -ENOSYS if not implemented.
1709 */
1710SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1711 struct iocb __user * __user *, iocbpp)
1712{
1713 return do_io_submit(ctx_id, nr, iocbpp, 0);
1714}
1715
1716#ifdef CONFIG_COMPAT
1717static inline long
1718copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1719{
1720 compat_uptr_t uptr;
1721 int i;
1722
1723 for (i = 0; i < nr; ++i) {
1724 if (get_user(uptr, ptr32 + i))
1725 return -EFAULT;
1726 if (put_user(compat_ptr(uptr), ptr64 + i))
1727 return -EFAULT;
1728 }
1729 return 0;
1730}
1731
1732#define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1733
1734COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1735 int, nr, u32 __user *, iocb)
1736{
1737 struct iocb __user * __user *iocb64;
1738 long ret;
1739
1740 if (unlikely(nr < 0))
1741 return -EINVAL;
1742
1743 if (nr > MAX_AIO_SUBMITS)
1744 nr = MAX_AIO_SUBMITS;
1745
1746 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1747 ret = copy_iocb(nr, iocb, iocb64);
1748 if (!ret)
1749 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1750 return ret;
1751}
1752#endif
1753
1754/* lookup_kiocb
1755 * Finds a given iocb for cancellation.
1756 */
1757static struct aio_kiocb *
1758lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1759{
1760 struct aio_kiocb *kiocb;
1761
1762 assert_spin_locked(&ctx->ctx_lock);
1763
1764 if (key != KIOCB_KEY)
1765 return NULL;
1766
1767 /* TODO: use a hash or array, this sucks. */
1768 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1769 if (kiocb->ki_user_iocb == iocb)
1770 return kiocb;
1771 }
1772 return NULL;
1773}
1774
1775/* sys_io_cancel:
1776 * Attempts to cancel an iocb previously passed to io_submit. If
1777 * the operation is successfully cancelled, the resulting event is
1778 * copied into the memory pointed to by result without being placed
1779 * into the completion queue and 0 is returned. May fail with
1780 * -EFAULT if any of the data structures pointed to are invalid.
1781 * May fail with -EINVAL if aio_context specified by ctx_id is
1782 * invalid. May fail with -EAGAIN if the iocb specified was not
1783 * cancelled. Will fail with -ENOSYS if not implemented.
1784 */
1785SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1786 struct io_event __user *, result)
1787{
1788 struct kioctx *ctx;
1789 struct aio_kiocb *kiocb;
1790 u32 key;
1791 int ret;
1792
1793 ret = get_user(key, &iocb->aio_key);
1794 if (unlikely(ret))
1795 return -EFAULT;
1796
1797 ctx = lookup_ioctx(ctx_id);
1798 if (unlikely(!ctx))
1799 return -EINVAL;
1800
1801 spin_lock_irq(&ctx->ctx_lock);
1802
1803 kiocb = lookup_kiocb(ctx, iocb, key);
1804 if (kiocb)
1805 ret = kiocb_cancel(kiocb);
1806 else
1807 ret = -EINVAL;
1808
1809 spin_unlock_irq(&ctx->ctx_lock);
1810
1811 if (!ret) {
1812 /*
1813 * The result argument is no longer used - the io_event is
1814 * always delivered via the ring buffer. -EINPROGRESS indicates
1815 * cancellation is progress:
1816 */
1817 ret = -EINPROGRESS;
1818 }
1819
1820 percpu_ref_put(&ctx->users);
1821
1822 return ret;
1823}
1824
1825static long do_io_getevents(aio_context_t ctx_id,
1826 long min_nr,
1827 long nr,
1828 struct io_event __user *events,
1829 struct timespec64 *ts)
1830{
1831 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1832 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1833 long ret = -EINVAL;
1834
1835 if (likely(ioctx)) {
1836 if (likely(min_nr <= nr && min_nr >= 0))
1837 ret = read_events(ioctx, min_nr, nr, events, until);
1838 percpu_ref_put(&ioctx->users);
1839 }
1840
1841 return ret;
1842}
1843
1844/* io_getevents:
1845 * Attempts to read at least min_nr events and up to nr events from
1846 * the completion queue for the aio_context specified by ctx_id. If
1847 * it succeeds, the number of read events is returned. May fail with
1848 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1849 * out of range, if timeout is out of range. May fail with -EFAULT
1850 * if any of the memory specified is invalid. May return 0 or
1851 * < min_nr if the timeout specified by timeout has elapsed
1852 * before sufficient events are available, where timeout == NULL
1853 * specifies an infinite timeout. Note that the timeout pointed to by
1854 * timeout is relative. Will fail with -ENOSYS if not implemented.
1855 */
1856SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1857 long, min_nr,
1858 long, nr,
1859 struct io_event __user *, events,
1860 struct timespec __user *, timeout)
1861{
1862 struct timespec64 ts;
1863
1864 if (timeout) {
1865 if (unlikely(get_timespec64(&ts, timeout)))
1866 return -EFAULT;
1867 }
1868
1869 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1870}
1871
1872#ifdef CONFIG_COMPAT
1873COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1874 compat_long_t, min_nr,
1875 compat_long_t, nr,
1876 struct io_event __user *, events,
1877 struct compat_timespec __user *, timeout)
1878{
1879 struct timespec64 t;
1880
1881 if (timeout) {
1882 if (compat_get_timespec64(&t, timeout))
1883 return -EFAULT;
1884
1885 }
1886
1887 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1888}
1889#endif
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
46
47#include "internal.h"
48
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
69
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
80struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
83
84 struct percpu_ref reqs;
85
86 unsigned long user_id;
87
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
101 */
102 unsigned max_reqs;
103
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
106
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
113 struct work_struct free_work;
114
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
120 struct {
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
126 *
127 * We batch accesses to it with a percpu version.
128 */
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 unsigned tail;
144 spinlock_t completion_lock;
145 } ____cacheline_aligned_in_smp;
146
147 struct page *internal_pages[AIO_RING_PAGES];
148 struct file *aio_ring_file;
149
150 unsigned id;
151};
152
153/*------ sysctl variables----*/
154static DEFINE_SPINLOCK(aio_nr_lock);
155unsigned long aio_nr; /* current system wide number of aio requests */
156unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
157/*----end sysctl variables---*/
158
159static struct kmem_cache *kiocb_cachep;
160static struct kmem_cache *kioctx_cachep;
161
162static struct vfsmount *aio_mnt;
163
164static const struct file_operations aio_ring_fops;
165static const struct address_space_operations aio_ctx_aops;
166
167static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
168{
169 struct qstr this = QSTR_INIT("[aio]", 5);
170 struct file *file;
171 struct path path;
172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
173 if (IS_ERR(inode))
174 return ERR_CAST(inode);
175
176 inode->i_mapping->a_ops = &aio_ctx_aops;
177 inode->i_mapping->private_data = ctx;
178 inode->i_size = PAGE_SIZE * nr_pages;
179
180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
181 if (!path.dentry) {
182 iput(inode);
183 return ERR_PTR(-ENOMEM);
184 }
185 path.mnt = mntget(aio_mnt);
186
187 d_instantiate(path.dentry, inode);
188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
189 if (IS_ERR(file)) {
190 path_put(&path);
191 return file;
192 }
193
194 file->f_flags = O_RDWR;
195 file->private_data = ctx;
196 return file;
197}
198
199static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
201{
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
204 };
205 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
206}
207
208/* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
211 */
212static int __init aio_setup(void)
213{
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
218 };
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
222
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227
228 return 0;
229}
230__initcall(aio_setup);
231
232static void put_aio_ring_file(struct kioctx *ctx)
233{
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
237
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243
244 fput(aio_ring_file);
245 }
246}
247
248static void aio_free_ring(struct kioctx *ctx)
249{
250 int i;
251
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
254 */
255 put_aio_ring_file(ctx);
256
257 for (i = 0; i < ctx->nr_pages; i++) {
258 struct page *page;
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
266 }
267
268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 kfree(ctx->ring_pages);
270 ctx->ring_pages = NULL;
271 }
272}
273
274static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275{
276 vma->vm_ops = &generic_file_vm_ops;
277 return 0;
278}
279
280static const struct file_operations aio_ring_fops = {
281 .mmap = aio_ring_mmap,
282};
283
284static int aio_set_page_dirty(struct page *page)
285{
286 return 0;
287}
288
289#if IS_ENABLED(CONFIG_MIGRATION)
290static int aio_migratepage(struct address_space *mapping, struct page *new,
291 struct page *old, enum migrate_mode mode)
292{
293 struct kioctx *ctx;
294 unsigned long flags;
295 pgoff_t idx;
296 int rc;
297
298 rc = 0;
299
300 /* mapping->private_lock here protects against the kioctx teardown. */
301 spin_lock(&mapping->private_lock);
302 ctx = mapping->private_data;
303 if (!ctx) {
304 rc = -EINVAL;
305 goto out;
306 }
307
308 /* The ring_lock mutex. The prevents aio_read_events() from writing
309 * to the ring's head, and prevents page migration from mucking in
310 * a partially initialized kiotx.
311 */
312 if (!mutex_trylock(&ctx->ring_lock)) {
313 rc = -EAGAIN;
314 goto out;
315 }
316
317 idx = old->index;
318 if (idx < (pgoff_t)ctx->nr_pages) {
319 /* Make sure the old page hasn't already been changed */
320 if (ctx->ring_pages[idx] != old)
321 rc = -EAGAIN;
322 } else
323 rc = -EINVAL;
324
325 if (rc != 0)
326 goto out_unlock;
327
328 /* Writeback must be complete */
329 BUG_ON(PageWriteback(old));
330 get_page(new);
331
332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333 if (rc != MIGRATEPAGE_SUCCESS) {
334 put_page(new);
335 goto out_unlock;
336 }
337
338 /* Take completion_lock to prevent other writes to the ring buffer
339 * while the old page is copied to the new. This prevents new
340 * events from being lost.
341 */
342 spin_lock_irqsave(&ctx->completion_lock, flags);
343 migrate_page_copy(new, old);
344 BUG_ON(ctx->ring_pages[idx] != old);
345 ctx->ring_pages[idx] = new;
346 spin_unlock_irqrestore(&ctx->completion_lock, flags);
347
348 /* The old page is no longer accessible. */
349 put_page(old);
350
351out_unlock:
352 mutex_unlock(&ctx->ring_lock);
353out:
354 spin_unlock(&mapping->private_lock);
355 return rc;
356}
357#endif
358
359static const struct address_space_operations aio_ctx_aops = {
360 .set_page_dirty = aio_set_page_dirty,
361#if IS_ENABLED(CONFIG_MIGRATION)
362 .migratepage = aio_migratepage,
363#endif
364};
365
366static int aio_setup_ring(struct kioctx *ctx)
367{
368 struct aio_ring *ring;
369 unsigned nr_events = ctx->max_reqs;
370 struct mm_struct *mm = current->mm;
371 unsigned long size, unused;
372 int nr_pages;
373 int i;
374 struct file *file;
375
376 /* Compensate for the ring buffer's head/tail overlap entry */
377 nr_events += 2; /* 1 is required, 2 for good luck */
378
379 size = sizeof(struct aio_ring);
380 size += sizeof(struct io_event) * nr_events;
381
382 nr_pages = PFN_UP(size);
383 if (nr_pages < 0)
384 return -EINVAL;
385
386 file = aio_private_file(ctx, nr_pages);
387 if (IS_ERR(file)) {
388 ctx->aio_ring_file = NULL;
389 return -ENOMEM;
390 }
391
392 ctx->aio_ring_file = file;
393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 / sizeof(struct io_event);
395
396 ctx->ring_pages = ctx->internal_pages;
397 if (nr_pages > AIO_RING_PAGES) {
398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 GFP_KERNEL);
400 if (!ctx->ring_pages) {
401 put_aio_ring_file(ctx);
402 return -ENOMEM;
403 }
404 }
405
406 for (i = 0; i < nr_pages; i++) {
407 struct page *page;
408 page = find_or_create_page(file->f_inode->i_mapping,
409 i, GFP_HIGHUSER | __GFP_ZERO);
410 if (!page)
411 break;
412 pr_debug("pid(%d) page[%d]->count=%d\n",
413 current->pid, i, page_count(page));
414 SetPageUptodate(page);
415 SetPageDirty(page);
416 unlock_page(page);
417
418 ctx->ring_pages[i] = page;
419 }
420 ctx->nr_pages = i;
421
422 if (unlikely(i != nr_pages)) {
423 aio_free_ring(ctx);
424 return -ENOMEM;
425 }
426
427 ctx->mmap_size = nr_pages * PAGE_SIZE;
428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429
430 down_write(&mm->mmap_sem);
431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 PROT_READ | PROT_WRITE,
433 MAP_SHARED, 0, &unused);
434 up_write(&mm->mmap_sem);
435 if (IS_ERR((void *)ctx->mmap_base)) {
436 ctx->mmap_size = 0;
437 aio_free_ring(ctx);
438 return -ENOMEM;
439 }
440
441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442
443 ctx->user_id = ctx->mmap_base;
444 ctx->nr_events = nr_events; /* trusted copy */
445
446 ring = kmap_atomic(ctx->ring_pages[0]);
447 ring->nr = nr_events; /* user copy */
448 ring->id = ~0U;
449 ring->head = ring->tail = 0;
450 ring->magic = AIO_RING_MAGIC;
451 ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 ring->header_length = sizeof(struct aio_ring);
454 kunmap_atomic(ring);
455 flush_dcache_page(ctx->ring_pages[0]);
456
457 return 0;
458}
459
460#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
461#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463
464void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465{
466 struct kioctx *ctx = req->ki_ctx;
467 unsigned long flags;
468
469 spin_lock_irqsave(&ctx->ctx_lock, flags);
470
471 if (!req->ki_list.next)
472 list_add(&req->ki_list, &ctx->active_reqs);
473
474 req->ki_cancel = cancel;
475
476 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477}
478EXPORT_SYMBOL(kiocb_set_cancel_fn);
479
480static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
481{
482 kiocb_cancel_fn *old, *cancel;
483
484 /*
485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 * actually has a cancel function, hence the cmpxchg()
487 */
488
489 cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 do {
491 if (!cancel || cancel == KIOCB_CANCELLED)
492 return -EINVAL;
493
494 old = cancel;
495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 } while (cancel != old);
497
498 return cancel(kiocb);
499}
500
501static void free_ioctx(struct work_struct *work)
502{
503 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504
505 pr_debug("freeing %p\n", ctx);
506
507 aio_free_ring(ctx);
508 free_percpu(ctx->cpu);
509 kmem_cache_free(kioctx_cachep, ctx);
510}
511
512static void free_ioctx_reqs(struct percpu_ref *ref)
513{
514 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
515
516 /* At this point we know that there are no any in-flight requests */
517 if (ctx->requests_done)
518 complete(ctx->requests_done);
519
520 INIT_WORK(&ctx->free_work, free_ioctx);
521 schedule_work(&ctx->free_work);
522}
523
524/*
525 * When this function runs, the kioctx has been removed from the "hash table"
526 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
527 * now it's safe to cancel any that need to be.
528 */
529static void free_ioctx_users(struct percpu_ref *ref)
530{
531 struct kioctx *ctx = container_of(ref, struct kioctx, users);
532 struct kiocb *req;
533
534 spin_lock_irq(&ctx->ctx_lock);
535
536 while (!list_empty(&ctx->active_reqs)) {
537 req = list_first_entry(&ctx->active_reqs,
538 struct kiocb, ki_list);
539
540 list_del_init(&req->ki_list);
541 kiocb_cancel(ctx, req);
542 }
543
544 spin_unlock_irq(&ctx->ctx_lock);
545
546 percpu_ref_kill(&ctx->reqs);
547 percpu_ref_put(&ctx->reqs);
548}
549
550static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
551{
552 unsigned i, new_nr;
553 struct kioctx_table *table, *old;
554 struct aio_ring *ring;
555
556 spin_lock(&mm->ioctx_lock);
557 rcu_read_lock();
558 table = rcu_dereference(mm->ioctx_table);
559
560 while (1) {
561 if (table)
562 for (i = 0; i < table->nr; i++)
563 if (!table->table[i]) {
564 ctx->id = i;
565 table->table[i] = ctx;
566 rcu_read_unlock();
567 spin_unlock(&mm->ioctx_lock);
568
569 /* While kioctx setup is in progress,
570 * we are protected from page migration
571 * changes ring_pages by ->ring_lock.
572 */
573 ring = kmap_atomic(ctx->ring_pages[0]);
574 ring->id = ctx->id;
575 kunmap_atomic(ring);
576 return 0;
577 }
578
579 new_nr = (table ? table->nr : 1) * 4;
580
581 rcu_read_unlock();
582 spin_unlock(&mm->ioctx_lock);
583
584 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
585 new_nr, GFP_KERNEL);
586 if (!table)
587 return -ENOMEM;
588
589 table->nr = new_nr;
590
591 spin_lock(&mm->ioctx_lock);
592 rcu_read_lock();
593 old = rcu_dereference(mm->ioctx_table);
594
595 if (!old) {
596 rcu_assign_pointer(mm->ioctx_table, table);
597 } else if (table->nr > old->nr) {
598 memcpy(table->table, old->table,
599 old->nr * sizeof(struct kioctx *));
600
601 rcu_assign_pointer(mm->ioctx_table, table);
602 kfree_rcu(old, rcu);
603 } else {
604 kfree(table);
605 table = old;
606 }
607 }
608}
609
610static void aio_nr_sub(unsigned nr)
611{
612 spin_lock(&aio_nr_lock);
613 if (WARN_ON(aio_nr - nr > aio_nr))
614 aio_nr = 0;
615 else
616 aio_nr -= nr;
617 spin_unlock(&aio_nr_lock);
618}
619
620/* ioctx_alloc
621 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
622 */
623static struct kioctx *ioctx_alloc(unsigned nr_events)
624{
625 struct mm_struct *mm = current->mm;
626 struct kioctx *ctx;
627 int err = -ENOMEM;
628
629 /*
630 * We keep track of the number of available ringbuffer slots, to prevent
631 * overflow (reqs_available), and we also use percpu counters for this.
632 *
633 * So since up to half the slots might be on other cpu's percpu counters
634 * and unavailable, double nr_events so userspace sees what they
635 * expected: additionally, we move req_batch slots to/from percpu
636 * counters at a time, so make sure that isn't 0:
637 */
638 nr_events = max(nr_events, num_possible_cpus() * 4);
639 nr_events *= 2;
640
641 /* Prevent overflows */
642 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
643 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
644 pr_debug("ENOMEM: nr_events too high\n");
645 return ERR_PTR(-EINVAL);
646 }
647
648 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
649 return ERR_PTR(-EAGAIN);
650
651 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
652 if (!ctx)
653 return ERR_PTR(-ENOMEM);
654
655 ctx->max_reqs = nr_events;
656
657 spin_lock_init(&ctx->ctx_lock);
658 spin_lock_init(&ctx->completion_lock);
659 mutex_init(&ctx->ring_lock);
660 /* Protect against page migration throughout kiotx setup by keeping
661 * the ring_lock mutex held until setup is complete. */
662 mutex_lock(&ctx->ring_lock);
663 init_waitqueue_head(&ctx->wait);
664
665 INIT_LIST_HEAD(&ctx->active_reqs);
666
667 if (percpu_ref_init(&ctx->users, free_ioctx_users))
668 goto err;
669
670 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
671 goto err;
672
673 ctx->cpu = alloc_percpu(struct kioctx_cpu);
674 if (!ctx->cpu)
675 goto err;
676
677 err = aio_setup_ring(ctx);
678 if (err < 0)
679 goto err;
680
681 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
682 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
683 if (ctx->req_batch < 1)
684 ctx->req_batch = 1;
685
686 /* limit the number of system wide aios */
687 spin_lock(&aio_nr_lock);
688 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
689 aio_nr + nr_events < aio_nr) {
690 spin_unlock(&aio_nr_lock);
691 err = -EAGAIN;
692 goto err_ctx;
693 }
694 aio_nr += ctx->max_reqs;
695 spin_unlock(&aio_nr_lock);
696
697 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
698 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
699
700 err = ioctx_add_table(ctx, mm);
701 if (err)
702 goto err_cleanup;
703
704 /* Release the ring_lock mutex now that all setup is complete. */
705 mutex_unlock(&ctx->ring_lock);
706
707 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
708 ctx, ctx->user_id, mm, ctx->nr_events);
709 return ctx;
710
711err_cleanup:
712 aio_nr_sub(ctx->max_reqs);
713err_ctx:
714 aio_free_ring(ctx);
715err:
716 mutex_unlock(&ctx->ring_lock);
717 free_percpu(ctx->cpu);
718 free_percpu(ctx->reqs.pcpu_count);
719 free_percpu(ctx->users.pcpu_count);
720 kmem_cache_free(kioctx_cachep, ctx);
721 pr_debug("error allocating ioctx %d\n", err);
722 return ERR_PTR(err);
723}
724
725/* kill_ioctx
726 * Cancels all outstanding aio requests on an aio context. Used
727 * when the processes owning a context have all exited to encourage
728 * the rapid destruction of the kioctx.
729 */
730static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
731 struct completion *requests_done)
732{
733 if (!atomic_xchg(&ctx->dead, 1)) {
734 struct kioctx_table *table;
735
736 spin_lock(&mm->ioctx_lock);
737 rcu_read_lock();
738 table = rcu_dereference(mm->ioctx_table);
739
740 WARN_ON(ctx != table->table[ctx->id]);
741 table->table[ctx->id] = NULL;
742 rcu_read_unlock();
743 spin_unlock(&mm->ioctx_lock);
744
745 /* percpu_ref_kill() will do the necessary call_rcu() */
746 wake_up_all(&ctx->wait);
747
748 /*
749 * It'd be more correct to do this in free_ioctx(), after all
750 * the outstanding kiocbs have finished - but by then io_destroy
751 * has already returned, so io_setup() could potentially return
752 * -EAGAIN with no ioctxs actually in use (as far as userspace
753 * could tell).
754 */
755 aio_nr_sub(ctx->max_reqs);
756
757 if (ctx->mmap_size)
758 vm_munmap(ctx->mmap_base, ctx->mmap_size);
759
760 ctx->requests_done = requests_done;
761 percpu_ref_kill(&ctx->users);
762 } else {
763 if (requests_done)
764 complete(requests_done);
765 }
766}
767
768/* wait_on_sync_kiocb:
769 * Waits on the given sync kiocb to complete.
770 */
771ssize_t wait_on_sync_kiocb(struct kiocb *req)
772{
773 while (!req->ki_ctx) {
774 set_current_state(TASK_UNINTERRUPTIBLE);
775 if (req->ki_ctx)
776 break;
777 io_schedule();
778 }
779 __set_current_state(TASK_RUNNING);
780 return req->ki_user_data;
781}
782EXPORT_SYMBOL(wait_on_sync_kiocb);
783
784/*
785 * exit_aio: called when the last user of mm goes away. At this point, there is
786 * no way for any new requests to be submited or any of the io_* syscalls to be
787 * called on the context.
788 *
789 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
790 * them.
791 */
792void exit_aio(struct mm_struct *mm)
793{
794 struct kioctx_table *table;
795 struct kioctx *ctx;
796 unsigned i = 0;
797
798 while (1) {
799 rcu_read_lock();
800 table = rcu_dereference(mm->ioctx_table);
801
802 do {
803 if (!table || i >= table->nr) {
804 rcu_read_unlock();
805 rcu_assign_pointer(mm->ioctx_table, NULL);
806 if (table)
807 kfree(table);
808 return;
809 }
810
811 ctx = table->table[i++];
812 } while (!ctx);
813
814 rcu_read_unlock();
815
816 /*
817 * We don't need to bother with munmap() here -
818 * exit_mmap(mm) is coming and it'll unmap everything.
819 * Since aio_free_ring() uses non-zero ->mmap_size
820 * as indicator that it needs to unmap the area,
821 * just set it to 0; aio_free_ring() is the only
822 * place that uses ->mmap_size, so it's safe.
823 */
824 ctx->mmap_size = 0;
825
826 kill_ioctx(mm, ctx, NULL);
827 }
828}
829
830static void put_reqs_available(struct kioctx *ctx, unsigned nr)
831{
832 struct kioctx_cpu *kcpu;
833
834 preempt_disable();
835 kcpu = this_cpu_ptr(ctx->cpu);
836
837 kcpu->reqs_available += nr;
838 while (kcpu->reqs_available >= ctx->req_batch * 2) {
839 kcpu->reqs_available -= ctx->req_batch;
840 atomic_add(ctx->req_batch, &ctx->reqs_available);
841 }
842
843 preempt_enable();
844}
845
846static bool get_reqs_available(struct kioctx *ctx)
847{
848 struct kioctx_cpu *kcpu;
849 bool ret = false;
850
851 preempt_disable();
852 kcpu = this_cpu_ptr(ctx->cpu);
853
854 if (!kcpu->reqs_available) {
855 int old, avail = atomic_read(&ctx->reqs_available);
856
857 do {
858 if (avail < ctx->req_batch)
859 goto out;
860
861 old = avail;
862 avail = atomic_cmpxchg(&ctx->reqs_available,
863 avail, avail - ctx->req_batch);
864 } while (avail != old);
865
866 kcpu->reqs_available += ctx->req_batch;
867 }
868
869 ret = true;
870 kcpu->reqs_available--;
871out:
872 preempt_enable();
873 return ret;
874}
875
876/* aio_get_req
877 * Allocate a slot for an aio request.
878 * Returns NULL if no requests are free.
879 */
880static inline struct kiocb *aio_get_req(struct kioctx *ctx)
881{
882 struct kiocb *req;
883
884 if (!get_reqs_available(ctx))
885 return NULL;
886
887 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
888 if (unlikely(!req))
889 goto out_put;
890
891 percpu_ref_get(&ctx->reqs);
892
893 req->ki_ctx = ctx;
894 return req;
895out_put:
896 put_reqs_available(ctx, 1);
897 return NULL;
898}
899
900static void kiocb_free(struct kiocb *req)
901{
902 if (req->ki_filp)
903 fput(req->ki_filp);
904 if (req->ki_eventfd != NULL)
905 eventfd_ctx_put(req->ki_eventfd);
906 kmem_cache_free(kiocb_cachep, req);
907}
908
909static struct kioctx *lookup_ioctx(unsigned long ctx_id)
910{
911 struct aio_ring __user *ring = (void __user *)ctx_id;
912 struct mm_struct *mm = current->mm;
913 struct kioctx *ctx, *ret = NULL;
914 struct kioctx_table *table;
915 unsigned id;
916
917 if (get_user(id, &ring->id))
918 return NULL;
919
920 rcu_read_lock();
921 table = rcu_dereference(mm->ioctx_table);
922
923 if (!table || id >= table->nr)
924 goto out;
925
926 ctx = table->table[id];
927 if (ctx && ctx->user_id == ctx_id) {
928 percpu_ref_get(&ctx->users);
929 ret = ctx;
930 }
931out:
932 rcu_read_unlock();
933 return ret;
934}
935
936/* aio_complete
937 * Called when the io request on the given iocb is complete.
938 */
939void aio_complete(struct kiocb *iocb, long res, long res2)
940{
941 struct kioctx *ctx = iocb->ki_ctx;
942 struct aio_ring *ring;
943 struct io_event *ev_page, *event;
944 unsigned long flags;
945 unsigned tail, pos;
946
947 /*
948 * Special case handling for sync iocbs:
949 * - events go directly into the iocb for fast handling
950 * - the sync task with the iocb in its stack holds the single iocb
951 * ref, no other paths have a way to get another ref
952 * - the sync task helpfully left a reference to itself in the iocb
953 */
954 if (is_sync_kiocb(iocb)) {
955 iocb->ki_user_data = res;
956 smp_wmb();
957 iocb->ki_ctx = ERR_PTR(-EXDEV);
958 wake_up_process(iocb->ki_obj.tsk);
959 return;
960 }
961
962 if (iocb->ki_list.next) {
963 unsigned long flags;
964
965 spin_lock_irqsave(&ctx->ctx_lock, flags);
966 list_del(&iocb->ki_list);
967 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
968 }
969
970 /*
971 * Add a completion event to the ring buffer. Must be done holding
972 * ctx->completion_lock to prevent other code from messing with the tail
973 * pointer since we might be called from irq context.
974 */
975 spin_lock_irqsave(&ctx->completion_lock, flags);
976
977 tail = ctx->tail;
978 pos = tail + AIO_EVENTS_OFFSET;
979
980 if (++tail >= ctx->nr_events)
981 tail = 0;
982
983 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
984 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
985
986 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
987 event->data = iocb->ki_user_data;
988 event->res = res;
989 event->res2 = res2;
990
991 kunmap_atomic(ev_page);
992 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
993
994 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
995 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
996 res, res2);
997
998 /* after flagging the request as done, we
999 * must never even look at it again
1000 */
1001 smp_wmb(); /* make event visible before updating tail */
1002
1003 ctx->tail = tail;
1004
1005 ring = kmap_atomic(ctx->ring_pages[0]);
1006 ring->tail = tail;
1007 kunmap_atomic(ring);
1008 flush_dcache_page(ctx->ring_pages[0]);
1009
1010 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1011
1012 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1013
1014 /*
1015 * Check if the user asked us to deliver the result through an
1016 * eventfd. The eventfd_signal() function is safe to be called
1017 * from IRQ context.
1018 */
1019 if (iocb->ki_eventfd != NULL)
1020 eventfd_signal(iocb->ki_eventfd, 1);
1021
1022 /* everything turned out well, dispose of the aiocb. */
1023 kiocb_free(iocb);
1024
1025 /*
1026 * We have to order our ring_info tail store above and test
1027 * of the wait list below outside the wait lock. This is
1028 * like in wake_up_bit() where clearing a bit has to be
1029 * ordered with the unlocked test.
1030 */
1031 smp_mb();
1032
1033 if (waitqueue_active(&ctx->wait))
1034 wake_up(&ctx->wait);
1035
1036 percpu_ref_put(&ctx->reqs);
1037}
1038EXPORT_SYMBOL(aio_complete);
1039
1040/* aio_read_events
1041 * Pull an event off of the ioctx's event ring. Returns the number of
1042 * events fetched
1043 */
1044static long aio_read_events_ring(struct kioctx *ctx,
1045 struct io_event __user *event, long nr)
1046{
1047 struct aio_ring *ring;
1048 unsigned head, tail, pos;
1049 long ret = 0;
1050 int copy_ret;
1051
1052 mutex_lock(&ctx->ring_lock);
1053
1054 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1055 ring = kmap_atomic(ctx->ring_pages[0]);
1056 head = ring->head;
1057 tail = ring->tail;
1058 kunmap_atomic(ring);
1059
1060 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1061
1062 if (head == tail)
1063 goto out;
1064
1065 while (ret < nr) {
1066 long avail;
1067 struct io_event *ev;
1068 struct page *page;
1069
1070 avail = (head <= tail ? tail : ctx->nr_events) - head;
1071 if (head == tail)
1072 break;
1073
1074 avail = min(avail, nr - ret);
1075 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1076 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1077
1078 pos = head + AIO_EVENTS_OFFSET;
1079 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1080 pos %= AIO_EVENTS_PER_PAGE;
1081
1082 ev = kmap(page);
1083 copy_ret = copy_to_user(event + ret, ev + pos,
1084 sizeof(*ev) * avail);
1085 kunmap(page);
1086
1087 if (unlikely(copy_ret)) {
1088 ret = -EFAULT;
1089 goto out;
1090 }
1091
1092 ret += avail;
1093 head += avail;
1094 head %= ctx->nr_events;
1095 }
1096
1097 ring = kmap_atomic(ctx->ring_pages[0]);
1098 ring->head = head;
1099 kunmap_atomic(ring);
1100 flush_dcache_page(ctx->ring_pages[0]);
1101
1102 pr_debug("%li h%u t%u\n", ret, head, tail);
1103
1104 put_reqs_available(ctx, ret);
1105out:
1106 mutex_unlock(&ctx->ring_lock);
1107
1108 return ret;
1109}
1110
1111static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1112 struct io_event __user *event, long *i)
1113{
1114 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1115
1116 if (ret > 0)
1117 *i += ret;
1118
1119 if (unlikely(atomic_read(&ctx->dead)))
1120 ret = -EINVAL;
1121
1122 if (!*i)
1123 *i = ret;
1124
1125 return ret < 0 || *i >= min_nr;
1126}
1127
1128static long read_events(struct kioctx *ctx, long min_nr, long nr,
1129 struct io_event __user *event,
1130 struct timespec __user *timeout)
1131{
1132 ktime_t until = { .tv64 = KTIME_MAX };
1133 long ret = 0;
1134
1135 if (timeout) {
1136 struct timespec ts;
1137
1138 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1139 return -EFAULT;
1140
1141 until = timespec_to_ktime(ts);
1142 }
1143
1144 /*
1145 * Note that aio_read_events() is being called as the conditional - i.e.
1146 * we're calling it after prepare_to_wait() has set task state to
1147 * TASK_INTERRUPTIBLE.
1148 *
1149 * But aio_read_events() can block, and if it blocks it's going to flip
1150 * the task state back to TASK_RUNNING.
1151 *
1152 * This should be ok, provided it doesn't flip the state back to
1153 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1154 * will only happen if the mutex_lock() call blocks, and we then find
1155 * the ringbuffer empty. So in practice we should be ok, but it's
1156 * something to be aware of when touching this code.
1157 */
1158 wait_event_interruptible_hrtimeout(ctx->wait,
1159 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1160
1161 if (!ret && signal_pending(current))
1162 ret = -EINTR;
1163
1164 return ret;
1165}
1166
1167/* sys_io_setup:
1168 * Create an aio_context capable of receiving at least nr_events.
1169 * ctxp must not point to an aio_context that already exists, and
1170 * must be initialized to 0 prior to the call. On successful
1171 * creation of the aio_context, *ctxp is filled in with the resulting
1172 * handle. May fail with -EINVAL if *ctxp is not initialized,
1173 * if the specified nr_events exceeds internal limits. May fail
1174 * with -EAGAIN if the specified nr_events exceeds the user's limit
1175 * of available events. May fail with -ENOMEM if insufficient kernel
1176 * resources are available. May fail with -EFAULT if an invalid
1177 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1178 * implemented.
1179 */
1180SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1181{
1182 struct kioctx *ioctx = NULL;
1183 unsigned long ctx;
1184 long ret;
1185
1186 ret = get_user(ctx, ctxp);
1187 if (unlikely(ret))
1188 goto out;
1189
1190 ret = -EINVAL;
1191 if (unlikely(ctx || nr_events == 0)) {
1192 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1193 ctx, nr_events);
1194 goto out;
1195 }
1196
1197 ioctx = ioctx_alloc(nr_events);
1198 ret = PTR_ERR(ioctx);
1199 if (!IS_ERR(ioctx)) {
1200 ret = put_user(ioctx->user_id, ctxp);
1201 if (ret)
1202 kill_ioctx(current->mm, ioctx, NULL);
1203 percpu_ref_put(&ioctx->users);
1204 }
1205
1206out:
1207 return ret;
1208}
1209
1210/* sys_io_destroy:
1211 * Destroy the aio_context specified. May cancel any outstanding
1212 * AIOs and block on completion. Will fail with -ENOSYS if not
1213 * implemented. May fail with -EINVAL if the context pointed to
1214 * is invalid.
1215 */
1216SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1217{
1218 struct kioctx *ioctx = lookup_ioctx(ctx);
1219 if (likely(NULL != ioctx)) {
1220 struct completion requests_done =
1221 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1222
1223 /* Pass requests_done to kill_ioctx() where it can be set
1224 * in a thread-safe way. If we try to set it here then we have
1225 * a race condition if two io_destroy() called simultaneously.
1226 */
1227 kill_ioctx(current->mm, ioctx, &requests_done);
1228 percpu_ref_put(&ioctx->users);
1229
1230 /* Wait until all IO for the context are done. Otherwise kernel
1231 * keep using user-space buffers even if user thinks the context
1232 * is destroyed.
1233 */
1234 wait_for_completion(&requests_done);
1235
1236 return 0;
1237 }
1238 pr_debug("EINVAL: io_destroy: invalid context id\n");
1239 return -EINVAL;
1240}
1241
1242typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1243 unsigned long, loff_t);
1244
1245static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1246 int rw, char __user *buf,
1247 unsigned long *nr_segs,
1248 struct iovec **iovec,
1249 bool compat)
1250{
1251 ssize_t ret;
1252
1253 *nr_segs = kiocb->ki_nbytes;
1254
1255#ifdef CONFIG_COMPAT
1256 if (compat)
1257 ret = compat_rw_copy_check_uvector(rw,
1258 (struct compat_iovec __user *)buf,
1259 *nr_segs, 1, *iovec, iovec);
1260 else
1261#endif
1262 ret = rw_copy_check_uvector(rw,
1263 (struct iovec __user *)buf,
1264 *nr_segs, 1, *iovec, iovec);
1265 if (ret < 0)
1266 return ret;
1267
1268 /* ki_nbytes now reflect bytes instead of segs */
1269 kiocb->ki_nbytes = ret;
1270 return 0;
1271}
1272
1273static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1274 int rw, char __user *buf,
1275 unsigned long *nr_segs,
1276 struct iovec *iovec)
1277{
1278 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1279 return -EFAULT;
1280
1281 iovec->iov_base = buf;
1282 iovec->iov_len = kiocb->ki_nbytes;
1283 *nr_segs = 1;
1284 return 0;
1285}
1286
1287/*
1288 * aio_setup_iocb:
1289 * Performs the initial checks and aio retry method
1290 * setup for the kiocb at the time of io submission.
1291 */
1292static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1293 char __user *buf, bool compat)
1294{
1295 struct file *file = req->ki_filp;
1296 ssize_t ret;
1297 unsigned long nr_segs;
1298 int rw;
1299 fmode_t mode;
1300 aio_rw_op *rw_op;
1301 struct iovec inline_vec, *iovec = &inline_vec;
1302
1303 switch (opcode) {
1304 case IOCB_CMD_PREAD:
1305 case IOCB_CMD_PREADV:
1306 mode = FMODE_READ;
1307 rw = READ;
1308 rw_op = file->f_op->aio_read;
1309 goto rw_common;
1310
1311 case IOCB_CMD_PWRITE:
1312 case IOCB_CMD_PWRITEV:
1313 mode = FMODE_WRITE;
1314 rw = WRITE;
1315 rw_op = file->f_op->aio_write;
1316 goto rw_common;
1317rw_common:
1318 if (unlikely(!(file->f_mode & mode)))
1319 return -EBADF;
1320
1321 if (!rw_op)
1322 return -EINVAL;
1323
1324 ret = (opcode == IOCB_CMD_PREADV ||
1325 opcode == IOCB_CMD_PWRITEV)
1326 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1327 &iovec, compat)
1328 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1329 iovec);
1330 if (!ret)
1331 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1332 if (ret < 0) {
1333 if (iovec != &inline_vec)
1334 kfree(iovec);
1335 return ret;
1336 }
1337
1338 req->ki_nbytes = ret;
1339
1340 /* XXX: move/kill - rw_verify_area()? */
1341 /* This matches the pread()/pwrite() logic */
1342 if (req->ki_pos < 0) {
1343 ret = -EINVAL;
1344 break;
1345 }
1346
1347 if (rw == WRITE)
1348 file_start_write(file);
1349
1350 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1351
1352 if (rw == WRITE)
1353 file_end_write(file);
1354 break;
1355
1356 case IOCB_CMD_FDSYNC:
1357 if (!file->f_op->aio_fsync)
1358 return -EINVAL;
1359
1360 ret = file->f_op->aio_fsync(req, 1);
1361 break;
1362
1363 case IOCB_CMD_FSYNC:
1364 if (!file->f_op->aio_fsync)
1365 return -EINVAL;
1366
1367 ret = file->f_op->aio_fsync(req, 0);
1368 break;
1369
1370 default:
1371 pr_debug("EINVAL: no operation provided\n");
1372 return -EINVAL;
1373 }
1374
1375 if (iovec != &inline_vec)
1376 kfree(iovec);
1377
1378 if (ret != -EIOCBQUEUED) {
1379 /*
1380 * There's no easy way to restart the syscall since other AIO's
1381 * may be already running. Just fail this IO with EINTR.
1382 */
1383 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1384 ret == -ERESTARTNOHAND ||
1385 ret == -ERESTART_RESTARTBLOCK))
1386 ret = -EINTR;
1387 aio_complete(req, ret, 0);
1388 }
1389
1390 return 0;
1391}
1392
1393static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1394 struct iocb *iocb, bool compat)
1395{
1396 struct kiocb *req;
1397 ssize_t ret;
1398
1399 /* enforce forwards compatibility on users */
1400 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1401 pr_debug("EINVAL: reserve field set\n");
1402 return -EINVAL;
1403 }
1404
1405 /* prevent overflows */
1406 if (unlikely(
1407 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1408 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1409 ((ssize_t)iocb->aio_nbytes < 0)
1410 )) {
1411 pr_debug("EINVAL: io_submit: overflow check\n");
1412 return -EINVAL;
1413 }
1414
1415 req = aio_get_req(ctx);
1416 if (unlikely(!req))
1417 return -EAGAIN;
1418
1419 req->ki_filp = fget(iocb->aio_fildes);
1420 if (unlikely(!req->ki_filp)) {
1421 ret = -EBADF;
1422 goto out_put_req;
1423 }
1424
1425 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1426 /*
1427 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1428 * instance of the file* now. The file descriptor must be
1429 * an eventfd() fd, and will be signaled for each completed
1430 * event using the eventfd_signal() function.
1431 */
1432 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1433 if (IS_ERR(req->ki_eventfd)) {
1434 ret = PTR_ERR(req->ki_eventfd);
1435 req->ki_eventfd = NULL;
1436 goto out_put_req;
1437 }
1438 }
1439
1440 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1441 if (unlikely(ret)) {
1442 pr_debug("EFAULT: aio_key\n");
1443 goto out_put_req;
1444 }
1445
1446 req->ki_obj.user = user_iocb;
1447 req->ki_user_data = iocb->aio_data;
1448 req->ki_pos = iocb->aio_offset;
1449 req->ki_nbytes = iocb->aio_nbytes;
1450
1451 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1452 (char __user *)(unsigned long)iocb->aio_buf,
1453 compat);
1454 if (ret)
1455 goto out_put_req;
1456
1457 return 0;
1458out_put_req:
1459 put_reqs_available(ctx, 1);
1460 percpu_ref_put(&ctx->reqs);
1461 kiocb_free(req);
1462 return ret;
1463}
1464
1465long do_io_submit(aio_context_t ctx_id, long nr,
1466 struct iocb __user *__user *iocbpp, bool compat)
1467{
1468 struct kioctx *ctx;
1469 long ret = 0;
1470 int i = 0;
1471 struct blk_plug plug;
1472
1473 if (unlikely(nr < 0))
1474 return -EINVAL;
1475
1476 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1477 nr = LONG_MAX/sizeof(*iocbpp);
1478
1479 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1480 return -EFAULT;
1481
1482 ctx = lookup_ioctx(ctx_id);
1483 if (unlikely(!ctx)) {
1484 pr_debug("EINVAL: invalid context id\n");
1485 return -EINVAL;
1486 }
1487
1488 blk_start_plug(&plug);
1489
1490 /*
1491 * AKPM: should this return a partial result if some of the IOs were
1492 * successfully submitted?
1493 */
1494 for (i=0; i<nr; i++) {
1495 struct iocb __user *user_iocb;
1496 struct iocb tmp;
1497
1498 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1499 ret = -EFAULT;
1500 break;
1501 }
1502
1503 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1504 ret = -EFAULT;
1505 break;
1506 }
1507
1508 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1509 if (ret)
1510 break;
1511 }
1512 blk_finish_plug(&plug);
1513
1514 percpu_ref_put(&ctx->users);
1515 return i ? i : ret;
1516}
1517
1518/* sys_io_submit:
1519 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1520 * the number of iocbs queued. May return -EINVAL if the aio_context
1521 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1522 * *iocbpp[0] is not properly initialized, if the operation specified
1523 * is invalid for the file descriptor in the iocb. May fail with
1524 * -EFAULT if any of the data structures point to invalid data. May
1525 * fail with -EBADF if the file descriptor specified in the first
1526 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1527 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1528 * fail with -ENOSYS if not implemented.
1529 */
1530SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1531 struct iocb __user * __user *, iocbpp)
1532{
1533 return do_io_submit(ctx_id, nr, iocbpp, 0);
1534}
1535
1536/* lookup_kiocb
1537 * Finds a given iocb for cancellation.
1538 */
1539static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1540 u32 key)
1541{
1542 struct list_head *pos;
1543
1544 assert_spin_locked(&ctx->ctx_lock);
1545
1546 if (key != KIOCB_KEY)
1547 return NULL;
1548
1549 /* TODO: use a hash or array, this sucks. */
1550 list_for_each(pos, &ctx->active_reqs) {
1551 struct kiocb *kiocb = list_kiocb(pos);
1552 if (kiocb->ki_obj.user == iocb)
1553 return kiocb;
1554 }
1555 return NULL;
1556}
1557
1558/* sys_io_cancel:
1559 * Attempts to cancel an iocb previously passed to io_submit. If
1560 * the operation is successfully cancelled, the resulting event is
1561 * copied into the memory pointed to by result without being placed
1562 * into the completion queue and 0 is returned. May fail with
1563 * -EFAULT if any of the data structures pointed to are invalid.
1564 * May fail with -EINVAL if aio_context specified by ctx_id is
1565 * invalid. May fail with -EAGAIN if the iocb specified was not
1566 * cancelled. Will fail with -ENOSYS if not implemented.
1567 */
1568SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1569 struct io_event __user *, result)
1570{
1571 struct kioctx *ctx;
1572 struct kiocb *kiocb;
1573 u32 key;
1574 int ret;
1575
1576 ret = get_user(key, &iocb->aio_key);
1577 if (unlikely(ret))
1578 return -EFAULT;
1579
1580 ctx = lookup_ioctx(ctx_id);
1581 if (unlikely(!ctx))
1582 return -EINVAL;
1583
1584 spin_lock_irq(&ctx->ctx_lock);
1585
1586 kiocb = lookup_kiocb(ctx, iocb, key);
1587 if (kiocb)
1588 ret = kiocb_cancel(ctx, kiocb);
1589 else
1590 ret = -EINVAL;
1591
1592 spin_unlock_irq(&ctx->ctx_lock);
1593
1594 if (!ret) {
1595 /*
1596 * The result argument is no longer used - the io_event is
1597 * always delivered via the ring buffer. -EINPROGRESS indicates
1598 * cancellation is progress:
1599 */
1600 ret = -EINPROGRESS;
1601 }
1602
1603 percpu_ref_put(&ctx->users);
1604
1605 return ret;
1606}
1607
1608/* io_getevents:
1609 * Attempts to read at least min_nr events and up to nr events from
1610 * the completion queue for the aio_context specified by ctx_id. If
1611 * it succeeds, the number of read events is returned. May fail with
1612 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1613 * out of range, if timeout is out of range. May fail with -EFAULT
1614 * if any of the memory specified is invalid. May return 0 or
1615 * < min_nr if the timeout specified by timeout has elapsed
1616 * before sufficient events are available, where timeout == NULL
1617 * specifies an infinite timeout. Note that the timeout pointed to by
1618 * timeout is relative. Will fail with -ENOSYS if not implemented.
1619 */
1620SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1621 long, min_nr,
1622 long, nr,
1623 struct io_event __user *, events,
1624 struct timespec __user *, timeout)
1625{
1626 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1627 long ret = -EINVAL;
1628
1629 if (likely(ioctx)) {
1630 if (likely(min_nr <= nr && min_nr >= 0))
1631 ret = read_events(ioctx, min_nr, nr, events, timeout);
1632 percpu_ref_put(&ioctx->users);
1633 }
1634 return ret;
1635}