Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>	/* for try_to_release_page(),
  32					buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
 
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64struct scan_control {
 
 
 
 
 
 
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
 
 
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
  70
  71	/* Allocation order */
  72	int order;
  73
  74	/*
  75	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76	 * are scanned.
  77	 */
  78	nodemask_t	*nodemask;
  79
  80	/*
  81	 * The memory cgroup that hit its limit and as a result is the
  82	 * primary target of this reclaim invocation.
  83	 */
  84	struct mem_cgroup *target_mem_cgroup;
  85
  86	/* Scan (total_size >> priority) pages at once */
  87	int priority;
  88
  89	/* The highest zone to isolate pages for reclaim from */
  90	enum zone_type reclaim_idx;
  91
  92	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  93	unsigned int may_writepage:1;
  94
  95	/* Can mapped pages be reclaimed? */
  96	unsigned int may_unmap:1;
  97
  98	/* Can pages be swapped as part of reclaim? */
  99	unsigned int may_swap:1;
 
 
 100
 101	/*
 102	 * Cgroups are not reclaimed below their configured memory.low,
 103	 * unless we threaten to OOM. If any cgroups are skipped due to
 104	 * memory.low and nothing was reclaimed, go back for memory.low.
 105	 */
 106	unsigned int memcg_low_reclaim:1;
 107	unsigned int memcg_low_skipped:1;
 108
 109	unsigned int hibernation_mode:1;
 
 110
 111	/* One of the zones is ready for compaction */
 112	unsigned int compaction_ready:1;
 113
 114	/* Incremented by the number of inactive pages that were scanned */
 115	unsigned long nr_scanned;
 116
 117	/* Number of pages freed so far during a call to shrink_zones() */
 118	unsigned long nr_reclaimed;
 119
 120	struct {
 121		unsigned int dirty;
 122		unsigned int unqueued_dirty;
 123		unsigned int congested;
 124		unsigned int writeback;
 125		unsigned int immediate;
 126		unsigned int file_taken;
 127		unsigned int taken;
 128	} nr;
 129};
 130
 
 
 131#ifdef ARCH_HAS_PREFETCH
 132#define prefetch_prev_lru_page(_page, _base, _field)			\
 133	do {								\
 134		if ((_page)->lru.prev != _base) {			\
 135			struct page *prev;				\
 136									\
 137			prev = lru_to_page(&(_page->lru));		\
 138			prefetch(&prev->_field);			\
 139		}							\
 140	} while (0)
 141#else
 142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 143#endif
 144
 145#ifdef ARCH_HAS_PREFETCHW
 146#define prefetchw_prev_lru_page(_page, _base, _field)			\
 147	do {								\
 148		if ((_page)->lru.prev != _base) {			\
 149			struct page *prev;				\
 150									\
 151			prev = lru_to_page(&(_page->lru));		\
 152			prefetchw(&prev->_field);			\
 153		}							\
 154	} while (0)
 155#else
 156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 157#endif
 158
 159/*
 160 * From 0 .. 100.  Higher means more swappy.
 161 */
 162int vm_swappiness = 60;
 163/*
 164 * The total number of pages which are beyond the high watermark within all
 165 * zones.
 166 */
 167unsigned long vm_total_pages;
 168
 169static LIST_HEAD(shrinker_list);
 170static DECLARE_RWSEM(shrinker_rwsem);
 171
 172#ifdef CONFIG_MEMCG
 173static bool global_reclaim(struct scan_control *sc)
 174{
 175	return !sc->target_mem_cgroup;
 176}
 177
 178/**
 179 * sane_reclaim - is the usual dirty throttling mechanism operational?
 180 * @sc: scan_control in question
 181 *
 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 183 * completely broken with the legacy memcg and direct stalling in
 184 * shrink_page_list() is used for throttling instead, which lacks all the
 185 * niceties such as fairness, adaptive pausing, bandwidth proportional
 186 * allocation and configurability.
 187 *
 188 * This function tests whether the vmscan currently in progress can assume
 189 * that the normal dirty throttling mechanism is operational.
 190 */
 191static bool sane_reclaim(struct scan_control *sc)
 192{
 193	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 194
 195	if (!memcg)
 196		return true;
 197#ifdef CONFIG_CGROUP_WRITEBACK
 198	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 199		return true;
 200#endif
 201	return false;
 202}
 203
 204static void set_memcg_congestion(pg_data_t *pgdat,
 205				struct mem_cgroup *memcg,
 206				bool congested)
 207{
 208	struct mem_cgroup_per_node *mn;
 209
 210	if (!memcg)
 211		return;
 212
 213	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 214	WRITE_ONCE(mn->congested, congested);
 215}
 216
 217static bool memcg_congested(pg_data_t *pgdat,
 218			struct mem_cgroup *memcg)
 219{
 220	struct mem_cgroup_per_node *mn;
 221
 222	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 223	return READ_ONCE(mn->congested);
 224
 225}
 226#else
 227static bool global_reclaim(struct scan_control *sc)
 228{
 229	return true;
 230}
 231
 232static bool sane_reclaim(struct scan_control *sc)
 233{
 234	return true;
 235}
 236
 237static inline void set_memcg_congestion(struct pglist_data *pgdat,
 238				struct mem_cgroup *memcg, bool congested)
 239{
 240}
 241
 242static inline bool memcg_congested(struct pglist_data *pgdat,
 243			struct mem_cgroup *memcg)
 244{
 245	return false;
 246
 247}
 248#endif
 249
 250/*
 251 * This misses isolated pages which are not accounted for to save counters.
 252 * As the data only determines if reclaim or compaction continues, it is
 253 * not expected that isolated pages will be a dominating factor.
 254 */
 255unsigned long zone_reclaimable_pages(struct zone *zone)
 256{
 257	unsigned long nr;
 
 258
 259	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 260		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 261	if (get_nr_swap_pages() > 0)
 262		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 263			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 264
 265	return nr;
 266}
 267
 268/**
 269 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 270 * @lruvec: lru vector
 271 * @lru: lru to use
 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 273 */
 274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 275{
 276	unsigned long lru_size;
 277	int zid;
 278
 279	if (!mem_cgroup_disabled())
 280		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 281	else
 282		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 283
 284	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 285		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 286		unsigned long size;
 287
 288		if (!managed_zone(zone))
 289			continue;
 290
 291		if (!mem_cgroup_disabled())
 292			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 293		else
 294			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 295				       NR_ZONE_LRU_BASE + lru);
 296		lru_size -= min(size, lru_size);
 297	}
 298
 299	return lru_size;
 300
 
 301}
 302
 
 303/*
 304 * Add a shrinker callback to be called from the vm.
 305 */
 306int prealloc_shrinker(struct shrinker *shrinker)
 307{
 308	size_t size = sizeof(*shrinker->nr_deferred);
 309
 310	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 311		size *= nr_node_ids;
 312
 313	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 314	if (!shrinker->nr_deferred)
 315		return -ENOMEM;
 316	return 0;
 317}
 318
 319void free_prealloced_shrinker(struct shrinker *shrinker)
 320{
 321	kfree(shrinker->nr_deferred);
 322	shrinker->nr_deferred = NULL;
 323}
 324
 325void register_shrinker_prepared(struct shrinker *shrinker)
 326{
 
 327	down_write(&shrinker_rwsem);
 328	list_add_tail(&shrinker->list, &shrinker_list);
 329	up_write(&shrinker_rwsem);
 330}
 331
 332int register_shrinker(struct shrinker *shrinker)
 333{
 334	int err = prealloc_shrinker(shrinker);
 335
 336	if (err)
 337		return err;
 338	register_shrinker_prepared(shrinker);
 339	return 0;
 340}
 341EXPORT_SYMBOL(register_shrinker);
 342
 343/*
 344 * Remove one
 345 */
 346void unregister_shrinker(struct shrinker *shrinker)
 347{
 348	if (!shrinker->nr_deferred)
 349		return;
 350	down_write(&shrinker_rwsem);
 351	list_del(&shrinker->list);
 352	up_write(&shrinker_rwsem);
 353	kfree(shrinker->nr_deferred);
 354	shrinker->nr_deferred = NULL;
 355}
 356EXPORT_SYMBOL(unregister_shrinker);
 357
 358#define SHRINK_BATCH 128
 359
 360static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 361				    struct shrinker *shrinker, int priority)
 362{
 363	unsigned long freed = 0;
 364	unsigned long long delta;
 365	long total_scan;
 366	long freeable;
 367	long nr;
 368	long new_nr;
 369	int nid = shrinkctl->nid;
 370	long batch_size = shrinker->batch ? shrinker->batch
 371					  : SHRINK_BATCH;
 372	long scanned = 0, next_deferred;
 373
 374	freeable = shrinker->count_objects(shrinker, shrinkctl);
 375	if (freeable == 0)
 376		return 0;
 377
 378	/*
 379	 * copy the current shrinker scan count into a local variable
 380	 * and zero it so that other concurrent shrinker invocations
 381	 * don't also do this scanning work.
 382	 */
 383	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 384
 385	total_scan = nr;
 386	delta = freeable >> priority;
 387	delta *= 4;
 388	do_div(delta, shrinker->seeks);
 389	total_scan += delta;
 390	if (total_scan < 0) {
 391		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 392		       shrinker->scan_objects, total_scan);
 393		total_scan = freeable;
 394		next_deferred = nr;
 395	} else
 396		next_deferred = total_scan;
 397
 398	/*
 399	 * We need to avoid excessive windup on filesystem shrinkers
 400	 * due to large numbers of GFP_NOFS allocations causing the
 401	 * shrinkers to return -1 all the time. This results in a large
 402	 * nr being built up so when a shrink that can do some work
 403	 * comes along it empties the entire cache due to nr >>>
 404	 * freeable. This is bad for sustaining a working set in
 405	 * memory.
 406	 *
 407	 * Hence only allow the shrinker to scan the entire cache when
 408	 * a large delta change is calculated directly.
 409	 */
 410	if (delta < freeable / 4)
 411		total_scan = min(total_scan, freeable / 2);
 412
 413	/*
 414	 * Avoid risking looping forever due to too large nr value:
 415	 * never try to free more than twice the estimate number of
 416	 * freeable entries.
 417	 */
 418	if (total_scan > freeable * 2)
 419		total_scan = freeable * 2;
 420
 421	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 422				   freeable, delta, total_scan, priority);
 423
 424	/*
 425	 * Normally, we should not scan less than batch_size objects in one
 426	 * pass to avoid too frequent shrinker calls, but if the slab has less
 427	 * than batch_size objects in total and we are really tight on memory,
 428	 * we will try to reclaim all available objects, otherwise we can end
 429	 * up failing allocations although there are plenty of reclaimable
 430	 * objects spread over several slabs with usage less than the
 431	 * batch_size.
 432	 *
 433	 * We detect the "tight on memory" situations by looking at the total
 434	 * number of objects we want to scan (total_scan). If it is greater
 435	 * than the total number of objects on slab (freeable), we must be
 436	 * scanning at high prio and therefore should try to reclaim as much as
 437	 * possible.
 438	 */
 439	while (total_scan >= batch_size ||
 440	       total_scan >= freeable) {
 441		unsigned long ret;
 442		unsigned long nr_to_scan = min(batch_size, total_scan);
 443
 444		shrinkctl->nr_to_scan = nr_to_scan;
 445		shrinkctl->nr_scanned = nr_to_scan;
 446		ret = shrinker->scan_objects(shrinker, shrinkctl);
 447		if (ret == SHRINK_STOP)
 448			break;
 449		freed += ret;
 450
 451		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 452		total_scan -= shrinkctl->nr_scanned;
 453		scanned += shrinkctl->nr_scanned;
 454
 455		cond_resched();
 456	}
 457
 458	if (next_deferred >= scanned)
 459		next_deferred -= scanned;
 460	else
 461		next_deferred = 0;
 462	/*
 463	 * move the unused scan count back into the shrinker in a
 464	 * manner that handles concurrent updates. If we exhausted the
 465	 * scan, there is no need to do an update.
 466	 */
 467	if (next_deferred > 0)
 468		new_nr = atomic_long_add_return(next_deferred,
 469						&shrinker->nr_deferred[nid]);
 470	else
 471		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 472
 473	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 474	return freed;
 475}
 476
 477/**
 478 * shrink_slab - shrink slab caches
 479 * @gfp_mask: allocation context
 480 * @nid: node whose slab caches to target
 481 * @memcg: memory cgroup whose slab caches to target
 482 * @priority: the reclaim priority
 483 *
 484 * Call the shrink functions to age shrinkable caches.
 485 *
 486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 487 * unaware shrinkers will receive a node id of 0 instead.
 488 *
 489 * @memcg specifies the memory cgroup to target. If it is not NULL,
 490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 491 * objects from the memory cgroup specified. Otherwise, only unaware
 492 * shrinkers are called.
 493 *
 494 * @priority is sc->priority, we take the number of objects and >> by priority
 495 * in order to get the scan target.
 496 *
 497 * Returns the number of reclaimed slab objects.
 498 */
 499static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 500				 struct mem_cgroup *memcg,
 501				 int priority)
 502{
 503	struct shrinker *shrinker;
 504	unsigned long freed = 0;
 505
 506	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 507		return 0;
 508
 509	if (!down_read_trylock(&shrinker_rwsem))
 
 
 510		goto out;
 
 511
 512	list_for_each_entry(shrinker, &shrinker_list, list) {
 513		struct shrink_control sc = {
 514			.gfp_mask = gfp_mask,
 515			.nid = nid,
 516			.memcg = memcg,
 517		};
 
 
 
 518
 519		/*
 520		 * If kernel memory accounting is disabled, we ignore
 521		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 522		 * passing NULL for memcg.
 523		 */
 524		if (memcg_kmem_enabled() &&
 525		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 526			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 527
 528		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 529			sc.nid = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531		freed += do_shrink_slab(&sc, shrinker, priority);
 532		/*
 533		 * Bail out if someone want to register a new shrinker to
 534		 * prevent the regsitration from being stalled for long periods
 535		 * by parallel ongoing shrinking.
 536		 */
 537		if (rwsem_is_contended(&shrinker_rwsem)) {
 538			freed = freed ? : 1;
 539			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540		}
 541	}
 542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	up_read(&shrinker_rwsem);
 544out:
 545	cond_resched();
 546	return freed;
 547}
 548
 549void drop_slab_node(int nid)
 
 550{
 551	unsigned long freed;
 552
 553	do {
 554		struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 555
 556		freed = 0;
 557		do {
 558			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 559		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 560	} while (freed > 10);
 
 
 
 
 
 
 561}
 562
 563void drop_slab(void)
 564{
 565	int nid;
 566
 567	for_each_online_node(nid)
 568		drop_slab_node(nid);
 569}
 570
 571static inline int is_page_cache_freeable(struct page *page)
 572{
 573	/*
 574	 * A freeable page cache page is referenced only by the caller
 575	 * that isolated the page, the page cache radix tree and
 576	 * optional buffer heads at page->private.
 577	 */
 578	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
 579		HPAGE_PMD_NR : 1;
 580	return page_count(page) - page_has_private(page) == 1 + radix_pins;
 581}
 582
 583static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 
 584{
 585	if (current->flags & PF_SWAPWRITE)
 586		return 1;
 587	if (!inode_write_congested(inode))
 588		return 1;
 589	if (inode_to_bdi(inode) == current->backing_dev_info)
 
 
 
 
 590		return 1;
 591	return 0;
 592}
 593
 594/*
 595 * We detected a synchronous write error writing a page out.  Probably
 596 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 597 * fsync(), msync() or close().
 598 *
 599 * The tricky part is that after writepage we cannot touch the mapping: nothing
 600 * prevents it from being freed up.  But we have a ref on the page and once
 601 * that page is locked, the mapping is pinned.
 602 *
 603 * We're allowed to run sleeping lock_page() here because we know the caller has
 604 * __GFP_FS.
 605 */
 606static void handle_write_error(struct address_space *mapping,
 607				struct page *page, int error)
 608{
 609	lock_page(page);
 610	if (page_mapping(page) == mapping)
 611		mapping_set_error(mapping, error);
 612	unlock_page(page);
 613}
 614
 615/* possible outcome of pageout() */
 616typedef enum {
 617	/* failed to write page out, page is locked */
 618	PAGE_KEEP,
 619	/* move page to the active list, page is locked */
 620	PAGE_ACTIVATE,
 621	/* page has been sent to the disk successfully, page is unlocked */
 622	PAGE_SUCCESS,
 623	/* page is clean and locked */
 624	PAGE_CLEAN,
 625} pageout_t;
 626
 627/*
 628 * pageout is called by shrink_page_list() for each dirty page.
 629 * Calls ->writepage().
 630 */
 631static pageout_t pageout(struct page *page, struct address_space *mapping,
 632			 struct scan_control *sc)
 633{
 634	/*
 635	 * If the page is dirty, only perform writeback if that write
 636	 * will be non-blocking.  To prevent this allocation from being
 637	 * stalled by pagecache activity.  But note that there may be
 638	 * stalls if we need to run get_block().  We could test
 639	 * PagePrivate for that.
 640	 *
 641	 * If this process is currently in __generic_file_write_iter() against
 642	 * this page's queue, we can perform writeback even if that
 643	 * will block.
 644	 *
 645	 * If the page is swapcache, write it back even if that would
 646	 * block, for some throttling. This happens by accident, because
 647	 * swap_backing_dev_info is bust: it doesn't reflect the
 648	 * congestion state of the swapdevs.  Easy to fix, if needed.
 649	 */
 650	if (!is_page_cache_freeable(page))
 651		return PAGE_KEEP;
 652	if (!mapping) {
 653		/*
 654		 * Some data journaling orphaned pages can have
 655		 * page->mapping == NULL while being dirty with clean buffers.
 656		 */
 657		if (page_has_private(page)) {
 658			if (try_to_free_buffers(page)) {
 659				ClearPageDirty(page);
 660				pr_info("%s: orphaned page\n", __func__);
 661				return PAGE_CLEAN;
 662			}
 663		}
 664		return PAGE_KEEP;
 665	}
 666	if (mapping->a_ops->writepage == NULL)
 667		return PAGE_ACTIVATE;
 668	if (!may_write_to_inode(mapping->host, sc))
 669		return PAGE_KEEP;
 670
 671	if (clear_page_dirty_for_io(page)) {
 672		int res;
 673		struct writeback_control wbc = {
 674			.sync_mode = WB_SYNC_NONE,
 675			.nr_to_write = SWAP_CLUSTER_MAX,
 676			.range_start = 0,
 677			.range_end = LLONG_MAX,
 678			.for_reclaim = 1,
 679		};
 680
 681		SetPageReclaim(page);
 682		res = mapping->a_ops->writepage(page, &wbc);
 683		if (res < 0)
 684			handle_write_error(mapping, page, res);
 685		if (res == AOP_WRITEPAGE_ACTIVATE) {
 686			ClearPageReclaim(page);
 687			return PAGE_ACTIVATE;
 688		}
 689
 
 
 
 
 
 
 
 
 
 690		if (!PageWriteback(page)) {
 691			/* synchronous write or broken a_ops? */
 692			ClearPageReclaim(page);
 693		}
 694		trace_mm_vmscan_writepage(page);
 695		inc_node_page_state(page, NR_VMSCAN_WRITE);
 
 696		return PAGE_SUCCESS;
 697	}
 698
 699	return PAGE_CLEAN;
 700}
 701
 702/*
 703 * Same as remove_mapping, but if the page is removed from the mapping, it
 704 * gets returned with a refcount of 0.
 705 */
 706static int __remove_mapping(struct address_space *mapping, struct page *page,
 707			    bool reclaimed)
 708{
 709	unsigned long flags;
 710	int refcount;
 711
 712	BUG_ON(!PageLocked(page));
 713	BUG_ON(mapping != page_mapping(page));
 714
 715	xa_lock_irqsave(&mapping->i_pages, flags);
 716	/*
 717	 * The non racy check for a busy page.
 718	 *
 719	 * Must be careful with the order of the tests. When someone has
 720	 * a ref to the page, it may be possible that they dirty it then
 721	 * drop the reference. So if PageDirty is tested before page_count
 722	 * here, then the following race may occur:
 723	 *
 724	 * get_user_pages(&page);
 725	 * [user mapping goes away]
 726	 * write_to(page);
 727	 *				!PageDirty(page)    [good]
 728	 * SetPageDirty(page);
 729	 * put_page(page);
 730	 *				!page_count(page)   [good, discard it]
 731	 *
 732	 * [oops, our write_to data is lost]
 733	 *
 734	 * Reversing the order of the tests ensures such a situation cannot
 735	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 736	 * load is not satisfied before that of page->_refcount.
 737	 *
 738	 * Note that if SetPageDirty is always performed via set_page_dirty,
 739	 * and thus under the i_pages lock, then this ordering is not required.
 740	 */
 741	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 742		refcount = 1 + HPAGE_PMD_NR;
 743	else
 744		refcount = 2;
 745	if (!page_ref_freeze(page, refcount))
 746		goto cannot_free;
 747	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 748	if (unlikely(PageDirty(page))) {
 749		page_ref_unfreeze(page, refcount);
 750		goto cannot_free;
 751	}
 752
 753	if (PageSwapCache(page)) {
 754		swp_entry_t swap = { .val = page_private(page) };
 755		mem_cgroup_swapout(page, swap);
 756		__delete_from_swap_cache(page);
 757		xa_unlock_irqrestore(&mapping->i_pages, flags);
 758		put_swap_page(page, swap);
 759	} else {
 760		void (*freepage)(struct page *);
 761		void *shadow = NULL;
 762
 763		freepage = mapping->a_ops->freepage;
 764		/*
 765		 * Remember a shadow entry for reclaimed file cache in
 766		 * order to detect refaults, thus thrashing, later on.
 767		 *
 768		 * But don't store shadows in an address space that is
 769		 * already exiting.  This is not just an optizimation,
 770		 * inode reclaim needs to empty out the radix tree or
 771		 * the nodes are lost.  Don't plant shadows behind its
 772		 * back.
 773		 *
 774		 * We also don't store shadows for DAX mappings because the
 775		 * only page cache pages found in these are zero pages
 776		 * covering holes, and because we don't want to mix DAX
 777		 * exceptional entries and shadow exceptional entries in the
 778		 * same address_space.
 779		 */
 780		if (reclaimed && page_is_file_cache(page) &&
 781		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 782			shadow = workingset_eviction(mapping, page);
 783		__delete_from_page_cache(page, shadow);
 784		xa_unlock_irqrestore(&mapping->i_pages, flags);
 785
 786		if (freepage != NULL)
 787			freepage(page);
 788	}
 789
 790	return 1;
 791
 792cannot_free:
 793	xa_unlock_irqrestore(&mapping->i_pages, flags);
 794	return 0;
 795}
 796
 797/*
 798 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 799 * someone else has a ref on the page, abort and return 0.  If it was
 800 * successfully detached, return 1.  Assumes the caller has a single ref on
 801 * this page.
 802 */
 803int remove_mapping(struct address_space *mapping, struct page *page)
 804{
 805	if (__remove_mapping(mapping, page, false)) {
 806		/*
 807		 * Unfreezing the refcount with 1 rather than 2 effectively
 808		 * drops the pagecache ref for us without requiring another
 809		 * atomic operation.
 810		 */
 811		page_ref_unfreeze(page, 1);
 812		return 1;
 813	}
 814	return 0;
 815}
 816
 817/**
 818 * putback_lru_page - put previously isolated page onto appropriate LRU list
 819 * @page: page to be put back to appropriate lru list
 820 *
 821 * Add previously isolated @page to appropriate LRU list.
 822 * Page may still be unevictable for other reasons.
 823 *
 824 * lru_lock must not be held, interrupts must be enabled.
 825 */
 826void putback_lru_page(struct page *page)
 827{
 828	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	put_page(page);		/* drop ref from isolate */
 830}
 831
 832enum page_references {
 833	PAGEREF_RECLAIM,
 834	PAGEREF_RECLAIM_CLEAN,
 835	PAGEREF_KEEP,
 836	PAGEREF_ACTIVATE,
 837};
 838
 839static enum page_references page_check_references(struct page *page,
 840						  struct scan_control *sc)
 841{
 842	int referenced_ptes, referenced_page;
 843	unsigned long vm_flags;
 844
 845	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 846					  &vm_flags);
 847	referenced_page = TestClearPageReferenced(page);
 848
 
 
 
 
 849	/*
 850	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 851	 * move the page to the unevictable list.
 852	 */
 853	if (vm_flags & VM_LOCKED)
 854		return PAGEREF_RECLAIM;
 855
 856	if (referenced_ptes) {
 857		if (PageSwapBacked(page))
 858			return PAGEREF_ACTIVATE;
 859		/*
 860		 * All mapped pages start out with page table
 861		 * references from the instantiating fault, so we need
 862		 * to look twice if a mapped file page is used more
 863		 * than once.
 864		 *
 865		 * Mark it and spare it for another trip around the
 866		 * inactive list.  Another page table reference will
 867		 * lead to its activation.
 868		 *
 869		 * Note: the mark is set for activated pages as well
 870		 * so that recently deactivated but used pages are
 871		 * quickly recovered.
 872		 */
 873		SetPageReferenced(page);
 874
 875		if (referenced_page || referenced_ptes > 1)
 876			return PAGEREF_ACTIVATE;
 877
 878		/*
 879		 * Activate file-backed executable pages after first usage.
 880		 */
 881		if (vm_flags & VM_EXEC)
 882			return PAGEREF_ACTIVATE;
 883
 884		return PAGEREF_KEEP;
 885	}
 886
 887	/* Reclaim if clean, defer dirty pages to writeback */
 888	if (referenced_page && !PageSwapBacked(page))
 889		return PAGEREF_RECLAIM_CLEAN;
 890
 891	return PAGEREF_RECLAIM;
 892}
 893
 894/* Check if a page is dirty or under writeback */
 895static void page_check_dirty_writeback(struct page *page,
 896				       bool *dirty, bool *writeback)
 897{
 898	struct address_space *mapping;
 899
 900	/*
 901	 * Anonymous pages are not handled by flushers and must be written
 902	 * from reclaim context. Do not stall reclaim based on them
 903	 */
 904	if (!page_is_file_cache(page) ||
 905	    (PageAnon(page) && !PageSwapBacked(page))) {
 906		*dirty = false;
 907		*writeback = false;
 908		return;
 909	}
 910
 911	/* By default assume that the page flags are accurate */
 912	*dirty = PageDirty(page);
 913	*writeback = PageWriteback(page);
 914
 915	/* Verify dirty/writeback state if the filesystem supports it */
 916	if (!page_has_private(page))
 917		return;
 
 
 
 
 918
 919	mapping = page_mapping(page);
 920	if (mapping && mapping->a_ops->is_dirty_writeback)
 921		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 922}
 923
 924/*
 925 * shrink_page_list() returns the number of reclaimed pages
 926 */
 927static unsigned long shrink_page_list(struct list_head *page_list,
 928				      struct pglist_data *pgdat,
 929				      struct scan_control *sc,
 930				      enum ttu_flags ttu_flags,
 931				      struct reclaim_stat *stat,
 932				      bool force_reclaim)
 933{
 934	LIST_HEAD(ret_pages);
 935	LIST_HEAD(free_pages);
 936	int pgactivate = 0;
 937	unsigned nr_unqueued_dirty = 0;
 938	unsigned nr_dirty = 0;
 939	unsigned nr_congested = 0;
 940	unsigned nr_reclaimed = 0;
 941	unsigned nr_writeback = 0;
 942	unsigned nr_immediate = 0;
 943	unsigned nr_ref_keep = 0;
 944	unsigned nr_unmap_fail = 0;
 945
 946	cond_resched();
 947
 948	while (!list_empty(page_list)) {
 
 949		struct address_space *mapping;
 950		struct page *page;
 951		int may_enter_fs;
 952		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 953		bool dirty, writeback;
 954
 955		cond_resched();
 956
 957		page = lru_to_page(page_list);
 958		list_del(&page->lru);
 959
 960		if (!trylock_page(page))
 961			goto keep;
 962
 963		VM_BUG_ON_PAGE(PageActive(page), page);
 
 964
 965		sc->nr_scanned++;
 966
 967		if (unlikely(!page_evictable(page)))
 968			goto activate_locked;
 969
 970		if (!sc->may_unmap && page_mapped(page))
 971			goto keep_locked;
 972
 973		/* Double the slab pressure for mapped and swapcache pages */
 974		if ((page_mapped(page) || PageSwapCache(page)) &&
 975		    !(PageAnon(page) && !PageSwapBacked(page)))
 976			sc->nr_scanned++;
 977
 978		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 979			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 980
 981		/*
 982		 * The number of dirty pages determines if a node is marked
 983		 * reclaim_congested which affects wait_iff_congested. kswapd
 984		 * will stall and start writing pages if the tail of the LRU
 985		 * is all dirty unqueued pages.
 986		 */
 987		page_check_dirty_writeback(page, &dirty, &writeback);
 988		if (dirty || writeback)
 989			nr_dirty++;
 990
 991		if (dirty && !writeback)
 992			nr_unqueued_dirty++;
 993
 994		/*
 995		 * Treat this page as congested if the underlying BDI is or if
 996		 * pages are cycling through the LRU so quickly that the
 997		 * pages marked for immediate reclaim are making it to the
 998		 * end of the LRU a second time.
 999		 */
1000		mapping = page_mapping(page);
1001		if (((dirty || writeback) && mapping &&
1002		     inode_write_congested(mapping->host)) ||
1003		    (writeback && PageReclaim(page)))
1004			nr_congested++;
1005
1006		/*
1007		 * If a page at the tail of the LRU is under writeback, there
1008		 * are three cases to consider.
1009		 *
1010		 * 1) If reclaim is encountering an excessive number of pages
1011		 *    under writeback and this page is both under writeback and
1012		 *    PageReclaim then it indicates that pages are being queued
1013		 *    for IO but are being recycled through the LRU before the
1014		 *    IO can complete. Waiting on the page itself risks an
1015		 *    indefinite stall if it is impossible to writeback the
1016		 *    page due to IO error or disconnected storage so instead
1017		 *    note that the LRU is being scanned too quickly and the
1018		 *    caller can stall after page list has been processed.
1019		 *
1020		 * 2) Global or new memcg reclaim encounters a page that is
1021		 *    not marked for immediate reclaim, or the caller does not
1022		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023		 *    not to fs). In this case mark the page for immediate
1024		 *    reclaim and continue scanning.
1025		 *
1026		 *    Require may_enter_fs because we would wait on fs, which
1027		 *    may not have submitted IO yet. And the loop driver might
1028		 *    enter reclaim, and deadlock if it waits on a page for
1029		 *    which it is needed to do the write (loop masks off
1030		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1031		 *    would probably show more reasons.
1032		 *
1033		 * 3) Legacy memcg encounters a page that is already marked
1034		 *    PageReclaim. memcg does not have any dirty pages
1035		 *    throttling so we could easily OOM just because too many
1036		 *    pages are in writeback and there is nothing else to
1037		 *    reclaim. Wait for the writeback to complete.
1038		 *
1039		 * In cases 1) and 2) we activate the pages to get them out of
1040		 * the way while we continue scanning for clean pages on the
1041		 * inactive list and refilling from the active list. The
1042		 * observation here is that waiting for disk writes is more
1043		 * expensive than potentially causing reloads down the line.
1044		 * Since they're marked for immediate reclaim, they won't put
1045		 * memory pressure on the cache working set any longer than it
1046		 * takes to write them to disk.
1047		 */
1048		if (PageWriteback(page)) {
1049			/* Case 1 above */
1050			if (current_is_kswapd() &&
1051			    PageReclaim(page) &&
1052			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053				nr_immediate++;
1054				goto activate_locked;
1055
1056			/* Case 2 above */
1057			} else if (sane_reclaim(sc) ||
1058			    !PageReclaim(page) || !may_enter_fs) {
1059				/*
1060				 * This is slightly racy - end_page_writeback()
1061				 * might have just cleared PageReclaim, then
1062				 * setting PageReclaim here end up interpreted
1063				 * as PageReadahead - but that does not matter
1064				 * enough to care.  What we do want is for this
1065				 * page to have PageReclaim set next time memcg
1066				 * reclaim reaches the tests above, so it will
1067				 * then wait_on_page_writeback() to avoid OOM;
1068				 * and it's also appropriate in global reclaim.
1069				 */
1070				SetPageReclaim(page);
1071				nr_writeback++;
1072				goto activate_locked;
1073
1074			/* Case 3 above */
1075			} else {
1076				unlock_page(page);
1077				wait_on_page_writeback(page);
1078				/* then go back and try same page again */
1079				list_add_tail(&page->lru, page_list);
1080				continue;
1081			}
1082		}
1083
1084		if (!force_reclaim)
1085			references = page_check_references(page, sc);
1086
1087		switch (references) {
1088		case PAGEREF_ACTIVATE:
1089			goto activate_locked;
1090		case PAGEREF_KEEP:
1091			nr_ref_keep++;
1092			goto keep_locked;
1093		case PAGEREF_RECLAIM:
1094		case PAGEREF_RECLAIM_CLEAN:
1095			; /* try to reclaim the page below */
1096		}
1097
1098		/*
1099		 * Anonymous process memory has backing store?
1100		 * Try to allocate it some swap space here.
1101		 * Lazyfree page could be freed directly
1102		 */
1103		if (PageAnon(page) && PageSwapBacked(page)) {
1104			if (!PageSwapCache(page)) {
1105				if (!(sc->gfp_mask & __GFP_IO))
1106					goto keep_locked;
1107				if (PageTransHuge(page)) {
1108					/* cannot split THP, skip it */
1109					if (!can_split_huge_page(page, NULL))
1110						goto activate_locked;
1111					/*
1112					 * Split pages without a PMD map right
1113					 * away. Chances are some or all of the
1114					 * tail pages can be freed without IO.
1115					 */
1116					if (!compound_mapcount(page) &&
1117					    split_huge_page_to_list(page,
1118								    page_list))
1119						goto activate_locked;
1120				}
1121				if (!add_to_swap(page)) {
1122					if (!PageTransHuge(page))
1123						goto activate_locked;
1124					/* Fallback to swap normal pages */
1125					if (split_huge_page_to_list(page,
1126								    page_list))
1127						goto activate_locked;
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129					count_vm_event(THP_SWPOUT_FALLBACK);
1130#endif
1131					if (!add_to_swap(page))
1132						goto activate_locked;
1133				}
1134
1135				may_enter_fs = 1;
1136
1137				/* Adding to swap updated mapping */
1138				mapping = page_mapping(page);
1139			}
1140		} else if (unlikely(PageTransHuge(page))) {
1141			/* Split file THP */
1142			if (split_huge_page_to_list(page, page_list))
1143				goto keep_locked;
 
 
 
1144		}
1145
 
 
1146		/*
1147		 * The page is mapped into the page tables of one or more
1148		 * processes. Try to unmap it here.
1149		 */
1150		if (page_mapped(page)) {
1151			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152
1153			if (unlikely(PageTransHuge(page)))
1154				flags |= TTU_SPLIT_HUGE_PMD;
1155			if (!try_to_unmap(page, flags)) {
1156				nr_unmap_fail++;
1157				goto activate_locked;
 
 
 
 
 
 
1158			}
1159		}
1160
1161		if (PageDirty(page)) {
1162			/*
1163			 * Only kswapd can writeback filesystem pages
1164			 * to avoid risk of stack overflow. But avoid
1165			 * injecting inefficient single-page IO into
1166			 * flusher writeback as much as possible: only
1167			 * write pages when we've encountered many
1168			 * dirty pages, and when we've already scanned
1169			 * the rest of the LRU for clean pages and see
1170			 * the same dirty pages again (PageReclaim).
1171			 */
1172			if (page_is_file_cache(page) &&
1173			    (!current_is_kswapd() || !PageReclaim(page) ||
1174			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175				/*
1176				 * Immediately reclaim when written back.
1177				 * Similar in principal to deactivate_page()
1178				 * except we already have the page isolated
1179				 * and know it's dirty
1180				 */
1181				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182				SetPageReclaim(page);
1183
1184				goto activate_locked;
1185			}
1186
1187			if (references == PAGEREF_RECLAIM_CLEAN)
1188				goto keep_locked;
1189			if (!may_enter_fs)
1190				goto keep_locked;
1191			if (!sc->may_writepage)
1192				goto keep_locked;
1193
1194			/*
1195			 * Page is dirty. Flush the TLB if a writable entry
1196			 * potentially exists to avoid CPU writes after IO
1197			 * starts and then write it out here.
1198			 */
1199			try_to_unmap_flush_dirty();
1200			switch (pageout(page, mapping, sc)) {
1201			case PAGE_KEEP:
 
1202				goto keep_locked;
1203			case PAGE_ACTIVATE:
1204				goto activate_locked;
1205			case PAGE_SUCCESS:
1206				if (PageWriteback(page))
1207					goto keep;
1208				if (PageDirty(page))
1209					goto keep;
1210
1211				/*
1212				 * A synchronous write - probably a ramdisk.  Go
1213				 * ahead and try to reclaim the page.
1214				 */
1215				if (!trylock_page(page))
1216					goto keep;
1217				if (PageDirty(page) || PageWriteback(page))
1218					goto keep_locked;
1219				mapping = page_mapping(page);
1220			case PAGE_CLEAN:
1221				; /* try to free the page below */
1222			}
1223		}
1224
1225		/*
1226		 * If the page has buffers, try to free the buffer mappings
1227		 * associated with this page. If we succeed we try to free
1228		 * the page as well.
1229		 *
1230		 * We do this even if the page is PageDirty().
1231		 * try_to_release_page() does not perform I/O, but it is
1232		 * possible for a page to have PageDirty set, but it is actually
1233		 * clean (all its buffers are clean).  This happens if the
1234		 * buffers were written out directly, with submit_bh(). ext3
1235		 * will do this, as well as the blockdev mapping.
1236		 * try_to_release_page() will discover that cleanness and will
1237		 * drop the buffers and mark the page clean - it can be freed.
1238		 *
1239		 * Rarely, pages can have buffers and no ->mapping.  These are
1240		 * the pages which were not successfully invalidated in
1241		 * truncate_complete_page().  We try to drop those buffers here
1242		 * and if that worked, and the page is no longer mapped into
1243		 * process address space (page_count == 1) it can be freed.
1244		 * Otherwise, leave the page on the LRU so it is swappable.
1245		 */
1246		if (page_has_private(page)) {
1247			if (!try_to_release_page(page, sc->gfp_mask))
1248				goto activate_locked;
1249			if (!mapping && page_count(page) == 1) {
1250				unlock_page(page);
1251				if (put_page_testzero(page))
1252					goto free_it;
1253				else {
1254					/*
1255					 * rare race with speculative reference.
1256					 * the speculative reference will free
1257					 * this page shortly, so we may
1258					 * increment nr_reclaimed here (and
1259					 * leave it off the LRU).
1260					 */
1261					nr_reclaimed++;
1262					continue;
1263				}
1264			}
1265		}
1266
1267		if (PageAnon(page) && !PageSwapBacked(page)) {
1268			/* follow __remove_mapping for reference */
1269			if (!page_ref_freeze(page, 1))
1270				goto keep_locked;
1271			if (PageDirty(page)) {
1272				page_ref_unfreeze(page, 1);
1273				goto keep_locked;
1274			}
1275
1276			count_vm_event(PGLAZYFREED);
1277			count_memcg_page_event(page, PGLAZYFREED);
1278		} else if (!mapping || !__remove_mapping(mapping, page, true))
1279			goto keep_locked;
 
1280		/*
1281		 * At this point, we have no other references and there is
1282		 * no way to pick any more up (removed from LRU, removed
1283		 * from pagecache). Can use non-atomic bitops now (and
1284		 * we obviously don't have to worry about waking up a process
1285		 * waiting on the page lock, because there are no references.
1286		 */
1287		__ClearPageLocked(page);
1288free_it:
1289		nr_reclaimed++;
1290
1291		/*
1292		 * Is there need to periodically free_page_list? It would
1293		 * appear not as the counts should be low
1294		 */
1295		if (unlikely(PageTransHuge(page))) {
1296			mem_cgroup_uncharge(page);
1297			(*get_compound_page_dtor(page))(page);
1298		} else
1299			list_add(&page->lru, &free_pages);
 
 
 
 
1300		continue;
1301
1302activate_locked:
1303		/* Not a candidate for swapping, so reclaim swap space. */
1304		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305						PageMlocked(page)))
1306			try_to_free_swap(page);
1307		VM_BUG_ON_PAGE(PageActive(page), page);
1308		if (!PageMlocked(page)) {
1309			SetPageActive(page);
1310			pgactivate++;
1311			count_memcg_page_event(page, PGACTIVATE);
1312		}
1313keep_locked:
1314		unlock_page(page);
1315keep:
 
 
1316		list_add(&page->lru, &ret_pages);
1317		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318	}
1319
1320	mem_cgroup_uncharge_list(&free_pages);
1321	try_to_unmap_flush();
1322	free_unref_page_list(&free_pages);
 
 
 
 
 
 
 
1323
1324	list_splice(&ret_pages, page_list);
1325	count_vm_events(PGACTIVATE, pgactivate);
1326
1327	if (stat) {
1328		stat->nr_dirty = nr_dirty;
1329		stat->nr_congested = nr_congested;
1330		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331		stat->nr_writeback = nr_writeback;
1332		stat->nr_immediate = nr_immediate;
1333		stat->nr_activate = pgactivate;
1334		stat->nr_ref_keep = nr_ref_keep;
1335		stat->nr_unmap_fail = nr_unmap_fail;
1336	}
1337	return nr_reclaimed;
1338}
1339
1340unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341					    struct list_head *page_list)
1342{
1343	struct scan_control sc = {
1344		.gfp_mask = GFP_KERNEL,
1345		.priority = DEF_PRIORITY,
1346		.may_unmap = 1,
1347	};
1348	unsigned long ret;
1349	struct page *page, *next;
1350	LIST_HEAD(clean_pages);
1351
1352	list_for_each_entry_safe(page, next, page_list, lru) {
1353		if (page_is_file_cache(page) && !PageDirty(page) &&
1354		    !__PageMovable(page)) {
1355			ClearPageActive(page);
1356			list_move(&page->lru, &clean_pages);
1357		}
1358	}
1359
1360	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361			TTU_IGNORE_ACCESS, NULL, true);
1362	list_splice(&clean_pages, page_list);
1363	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364	return ret;
1365}
1366
1367/*
1368 * Attempt to remove the specified page from its LRU.  Only take this page
1369 * if it is of the appropriate PageActive status.  Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page:	page to consider
1373 * mode:	one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378{
1379	int ret = -EINVAL;
1380
1381	/* Only take pages on the LRU. */
1382	if (!PageLRU(page))
1383		return ret;
1384
1385	/* Compaction should not handle unevictable pages but CMA can do so */
1386	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
 
 
 
 
1387		return ret;
1388
1389	ret = -EBUSY;
 
1390
1391	/*
1392	 * To minimise LRU disruption, the caller can indicate that it only
1393	 * wants to isolate pages it will be able to operate on without
1394	 * blocking - clean pages for the most part.
1395	 *
1396	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397	 * that it is possible to migrate without blocking
1398	 */
1399	if (mode & ISOLATE_ASYNC_MIGRATE) {
1400		/* All the caller can do on PageWriteback is block */
1401		if (PageWriteback(page))
1402			return ret;
1403
1404		if (PageDirty(page)) {
1405			struct address_space *mapping;
1406			bool migrate_dirty;
1407
1408			/*
1409			 * Only pages without mappings or that have a
1410			 * ->migratepage callback are possible to migrate
1411			 * without blocking. However, we can be racing with
1412			 * truncation so it's necessary to lock the page
1413			 * to stabilise the mapping as truncation holds
1414			 * the page lock until after the page is removed
1415			 * from the page cache.
1416			 */
1417			if (!trylock_page(page))
1418				return ret;
1419
1420			mapping = page_mapping(page);
1421			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422			unlock_page(page);
1423			if (!migrate_dirty)
1424				return ret;
1425		}
1426	}
1427
1428	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429		return ret;
1430
 
 
1431	if (likely(get_page_unless_zero(page))) {
1432		/*
1433		 * Be careful not to clear PageLRU until after we're
1434		 * sure the page is not being freed elsewhere -- the
1435		 * page release code relies on it.
1436		 */
1437		ClearPageLRU(page);
1438		ret = 0;
1439	}
1440
1441	return ret;
1442}
1443
1444
1445/*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450			enum lru_list lru, unsigned long *nr_zone_taken)
1451{
1452	int zid;
1453
1454	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455		if (!nr_zone_taken[zid])
1456			continue;
1457
1458		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459#ifdef CONFIG_MEMCG
1460		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461#endif
1462	}
1463
1464}
1465
1466/*
1467 * zone_lru_lock is heavily contended.  Some of the functions that
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan:	The number of eligible pages to look through on the list.
1477 * @lruvec:	The LRU vector to pull pages from.
1478 * @dst:	The temp list to put pages on to.
1479 * @nr_scanned:	The number of pages that were scanned.
1480 * @sc:		The scan_control struct for this reclaim session
1481 * @mode:	One of the LRU isolation modes
1482 * @lru:	LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487		struct lruvec *lruvec, struct list_head *dst,
1488		unsigned long *nr_scanned, struct scan_control *sc,
1489		isolate_mode_t mode, enum lru_list lru)
1490{
1491	struct list_head *src = &lruvec->lists[lru];
1492	unsigned long nr_taken = 0;
1493	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495	unsigned long skipped = 0;
1496	unsigned long scan, total_scan, nr_pages;
1497	LIST_HEAD(pages_skipped);
1498
1499	scan = 0;
1500	for (total_scan = 0;
1501	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502	     total_scan++) {
1503		struct page *page;
 
 
 
 
1504
1505		page = lru_to_page(src);
1506		prefetchw_prev_lru_page(page, src, flags);
1507
1508		VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510		if (page_zonenum(page) > sc->reclaim_idx) {
1511			list_move(&page->lru, &pages_skipped);
1512			nr_skipped[page_zonenum(page)]++;
1513			continue;
1514		}
1515
1516		/*
1517		 * Do not count skipped pages because that makes the function
1518		 * return with no isolated pages if the LRU mostly contains
1519		 * ineligible pages.  This causes the VM to not reclaim any
1520		 * pages, triggering a premature OOM.
1521		 */
1522		scan++;
1523		switch (__isolate_lru_page(page, mode)) {
1524		case 0:
1525			nr_pages = hpage_nr_pages(page);
1526			nr_taken += nr_pages;
1527			nr_zone_taken[page_zonenum(page)] += nr_pages;
1528			list_move(&page->lru, dst);
 
 
1529			break;
1530
1531		case -EBUSY:
1532			/* else it is being freed elsewhere */
1533			list_move(&page->lru, src);
 
1534			continue;
1535
1536		default:
1537			BUG();
1538		}
1539	}
1540
1541	/*
1542	 * Splice any skipped pages to the start of the LRU list. Note that
1543	 * this disrupts the LRU order when reclaiming for lower zones but
1544	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545	 * scanning would soon rescan the same pages to skip and put the
1546	 * system at risk of premature OOM.
1547	 */
1548	if (!list_empty(&pages_skipped)) {
1549		int zid;
1550
1551		list_splice(&pages_skipped, src);
1552		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553			if (!nr_skipped[zid])
 
 
 
 
 
 
 
 
1554				continue;
1555
1556			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557			skipped += nr_skipped[zid];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558		}
 
 
 
 
1559	}
1560	*nr_scanned = total_scan;
1561	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562				    total_scan, skipped, nr_taken, mode, lru);
1563	update_lru_sizes(lruvec, lru, nr_zone_taken);
 
 
 
 
1564	return nr_taken;
1565}
1566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567/**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared.  If it was found on
1578 * the active list, it will have PageActive set.  If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 *     fundamentnal difference from isolate_lru_pages (which is called
1589 *     without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
1592 */
1593int isolate_lru_page(struct page *page)
1594{
1595	int ret = -EBUSY;
1596
1597	VM_BUG_ON_PAGE(!page_count(page), page);
1598	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600	if (PageLRU(page)) {
1601		struct zone *zone = page_zone(page);
1602		struct lruvec *lruvec;
1603
1604		spin_lock_irq(zone_lru_lock(zone));
1605		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606		if (PageLRU(page)) {
1607			int lru = page_lru(page);
 
1608			get_page(page);
1609			ClearPageLRU(page);
1610			del_page_from_lru_list(page, lruvec, lru);
1611			ret = 0;
1612		}
1613		spin_unlock_irq(zone_lru_lock(zone));
1614	}
1615	return ret;
1616}
1617
1618/*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625static int too_many_isolated(struct pglist_data *pgdat, int file,
1626		struct scan_control *sc)
1627{
1628	unsigned long inactive, isolated;
1629
1630	if (current_is_kswapd())
1631		return 0;
1632
1633	if (!sane_reclaim(sc))
1634		return 0;
1635
1636	if (file) {
1637		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639	} else {
1640		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642	}
1643
1644	/*
1645	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646	 * won't get blocked by normal direct-reclaimers, forming a circular
1647	 * deadlock.
1648	 */
1649	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650		inactive >>= 3;
1651
1652	return isolated > inactive;
1653}
1654
 
 
 
1655static noinline_for_stack void
1656putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
1657{
1658	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660	LIST_HEAD(pages_to_free);
 
 
1661
1662	/*
1663	 * Put back any unfreeable pages.
1664	 */
 
1665	while (!list_empty(page_list)) {
1666		struct page *page = lru_to_page(page_list);
1667		int lru;
1668
1669		VM_BUG_ON_PAGE(PageLRU(page), page);
1670		list_del(&page->lru);
1671		if (unlikely(!page_evictable(page))) {
1672			spin_unlock_irq(&pgdat->lru_lock);
1673			putback_lru_page(page);
1674			spin_lock_irq(&pgdat->lru_lock);
1675			continue;
1676		}
1677
1678		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680		SetPageLRU(page);
1681		lru = page_lru(page);
1682		add_page_to_lru_list(page, lruvec, lru);
1683
1684		if (is_active_lru(lru)) {
1685			int file = is_file_lru(lru);
1686			int numpages = hpage_nr_pages(page);
1687			reclaim_stat->recent_rotated[file] += numpages;
1688		}
1689		if (put_page_testzero(page)) {
1690			__ClearPageLRU(page);
1691			__ClearPageActive(page);
1692			del_page_from_lru_list(page, lruvec, lru);
1693
1694			if (unlikely(PageCompound(page))) {
1695				spin_unlock_irq(&pgdat->lru_lock);
1696				mem_cgroup_uncharge(page);
1697				(*get_compound_page_dtor(page))(page);
1698				spin_lock_irq(&pgdat->lru_lock);
1699			} else
1700				list_add(&page->lru, &pages_to_free);
1701		}
1702	}
 
 
1703
1704	/*
1705	 * To save our caller's stack, now use input list for pages to free.
1706	 */
1707	list_splice(&pages_to_free, page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708}
1709
1710/*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested.  In other cases it is safe to throttle.
 
 
1715 */
1716static int current_may_throttle(void)
 
 
 
1717{
1718	return !(current->flags & PF_LESS_THROTTLE) ||
1719		current->backing_dev_info == NULL ||
1720		bdi_write_congested(current->backing_dev_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721}
1722
1723/*
1724 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1725 * of reclaimed pages
1726 */
1727static noinline_for_stack unsigned long
1728shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729		     struct scan_control *sc, enum lru_list lru)
1730{
1731	LIST_HEAD(page_list);
1732	unsigned long nr_scanned;
1733	unsigned long nr_reclaimed = 0;
1734	unsigned long nr_taken;
1735	struct reclaim_stat stat = {};
1736	isolate_mode_t isolate_mode = 0;
1737	int file = is_file_lru(lru);
1738	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740	bool stalled = false;
1741
1742	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743		if (stalled)
1744			return 0;
1745
1746		/* wait a bit for the reclaimer. */
1747		msleep(100);
1748		stalled = true;
1749
1750		/* We are about to die and free our memory. Return now. */
1751		if (fatal_signal_pending(current))
1752			return SWAP_CLUSTER_MAX;
1753	}
1754
 
1755	lru_add_drain();
 
1756
1757	if (!sc->may_unmap)
1758		isolate_mode |= ISOLATE_UNMAPPED;
1759
1760	spin_lock_irq(&pgdat->lru_lock);
1761
1762	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763				     &nr_scanned, sc, isolate_mode, lru);
1764
1765	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766	reclaim_stat->recent_scanned[file] += nr_taken;
1767
1768	if (current_is_kswapd()) {
1769		if (global_reclaim(sc))
1770			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772				   nr_scanned);
1773	} else {
1774		if (global_reclaim(sc))
1775			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777				   nr_scanned);
 
 
 
 
 
 
1778	}
1779	spin_unlock_irq(&pgdat->lru_lock);
1780
1781	if (nr_taken == 0)
 
1782		return 0;
1783
1784	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785				&stat, false);
1786
1787	spin_lock_irq(&pgdat->lru_lock);
1788
1789	if (current_is_kswapd()) {
1790		if (global_reclaim(sc))
1791			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793				   nr_reclaimed);
1794	} else {
1795		if (global_reclaim(sc))
1796			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798				   nr_reclaimed);
1799	}
1800
1801	putback_inactive_pages(lruvec, &page_list);
1802
1803	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804
1805	spin_unlock_irq(&pgdat->lru_lock);
1806
1807	mem_cgroup_uncharge_list(&page_list);
1808	free_unref_page_list(&page_list);
 
 
 
1809
1810	/*
1811	 * If dirty pages are scanned that are not queued for IO, it
1812	 * implies that flushers are not doing their job. This can
1813	 * happen when memory pressure pushes dirty pages to the end of
1814	 * the LRU before the dirty limits are breached and the dirty
1815	 * data has expired. It can also happen when the proportion of
1816	 * dirty pages grows not through writes but through memory
1817	 * pressure reclaiming all the clean cache. And in some cases,
1818	 * the flushers simply cannot keep up with the allocation
1819	 * rate. Nudge the flusher threads in case they are asleep.
1820	 */
1821	if (stat.nr_unqueued_dirty == nr_taken)
1822		wakeup_flusher_threads(WB_REASON_VMSCAN);
1823
1824	sc->nr.dirty += stat.nr_dirty;
1825	sc->nr.congested += stat.nr_congested;
1826	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827	sc->nr.writeback += stat.nr_writeback;
1828	sc->nr.immediate += stat.nr_immediate;
1829	sc->nr.taken += nr_taken;
1830	if (file)
1831		sc->nr.file_taken += nr_taken;
1832
1833	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
 
 
1835	return nr_reclaimed;
1836}
1837
1838/*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation.  But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page.  It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859				     struct list_head *list,
1860				     struct list_head *pages_to_free,
1861				     enum lru_list lru)
1862{
1863	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
 
1864	struct page *page;
1865	int nr_pages;
1866	int nr_moved = 0;
1867
1868	while (!list_empty(list)) {
1869		page = lru_to_page(list);
1870		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872		VM_BUG_ON_PAGE(PageLRU(page), page);
1873		SetPageLRU(page);
1874
1875		nr_pages = hpage_nr_pages(page);
1876		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877		list_move(&page->lru, &lruvec->lists[lru]);
1878
1879		if (put_page_testzero(page)) {
1880			__ClearPageLRU(page);
1881			__ClearPageActive(page);
1882			del_page_from_lru_list(page, lruvec, lru);
1883
1884			if (unlikely(PageCompound(page))) {
1885				spin_unlock_irq(&pgdat->lru_lock);
1886				mem_cgroup_uncharge(page);
1887				(*get_compound_page_dtor(page))(page);
1888				spin_lock_irq(&pgdat->lru_lock);
1889			} else
1890				list_add(&page->lru, pages_to_free);
1891		} else {
1892			nr_moved += nr_pages;
1893		}
1894	}
1895
1896	if (!is_active_lru(lru)) {
1897		__count_vm_events(PGDEACTIVATE, nr_moved);
1898		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899				   nr_moved);
 
 
 
1900	}
1901
1902	return nr_moved;
 
1903}
1904
1905static void shrink_active_list(unsigned long nr_to_scan,
1906			       struct lruvec *lruvec,
1907			       struct scan_control *sc,
1908			       enum lru_list lru)
1909{
1910	unsigned long nr_taken;
1911	unsigned long nr_scanned;
1912	unsigned long vm_flags;
1913	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1914	LIST_HEAD(l_active);
1915	LIST_HEAD(l_inactive);
1916	struct page *page;
1917	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918	unsigned nr_deactivate, nr_activate;
1919	unsigned nr_rotated = 0;
1920	isolate_mode_t isolate_mode = 0;
1921	int file = is_file_lru(lru);
1922	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925
1926	if (!sc->may_unmap)
1927		isolate_mode |= ISOLATE_UNMAPPED;
1928
1929	spin_lock_irq(&pgdat->lru_lock);
1930
1931	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932				     &nr_scanned, sc, isolate_mode, lru);
1933
1934	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935	reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937	__count_vm_events(PGREFILL, nr_scanned);
1938	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939
1940	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
1941
1942	while (!list_empty(&l_hold)) {
1943		cond_resched();
1944		page = lru_to_page(&l_hold);
1945		list_del(&page->lru);
1946
1947		if (unlikely(!page_evictable(page))) {
1948			putback_lru_page(page);
1949			continue;
1950		}
1951
1952		if (unlikely(buffer_heads_over_limit)) {
1953			if (page_has_private(page) && trylock_page(page)) {
1954				if (page_has_private(page))
1955					try_to_release_page(page, 0);
1956				unlock_page(page);
1957			}
1958		}
1959
1960		if (page_referenced(page, 0, sc->target_mem_cgroup,
1961				    &vm_flags)) {
1962			nr_rotated += hpage_nr_pages(page);
1963			/*
1964			 * Identify referenced, file-backed active pages and
1965			 * give them one more trip around the active list. So
1966			 * that executable code get better chances to stay in
1967			 * memory under moderate memory pressure.  Anon pages
1968			 * are not likely to be evicted by use-once streaming
1969			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1970			 * so we ignore them here.
1971			 */
1972			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973				list_add(&page->lru, &l_active);
1974				continue;
1975			}
1976		}
1977
1978		ClearPageActive(page);	/* we are de-activating */
1979		list_add(&page->lru, &l_inactive);
1980	}
1981
1982	/*
1983	 * Move pages back to the lru list.
1984	 */
1985	spin_lock_irq(&pgdat->lru_lock);
1986	/*
1987	 * Count referenced pages from currently used mappings as rotated,
1988	 * even though only some of them are actually re-activated.  This
1989	 * helps balance scan pressure between file and anonymous pages in
1990	 * get_scan_count.
1991	 */
1992	reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997	spin_unlock_irq(&pgdat->lru_lock);
1998
1999	mem_cgroup_uncharge_list(&l_hold);
2000	free_unref_page_list(&l_hold);
2001	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002			nr_deactivate, nr_rotated, sc->priority, file);
2003}
2004
2005/*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total     target    max
2023 * memory    ratio     inactive
2024 * -------------------------------------
2025 *   10MB       1         5MB
2026 *  100MB       1        50MB
2027 *    1GB       3       250MB
2028 *   10GB      10       0.9GB
2029 *  100GB      31         3GB
2030 *    1TB     101        10GB
2031 *   10TB     320        32GB
2032 */
2033static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034				 struct mem_cgroup *memcg,
2035				 struct scan_control *sc, bool actual_reclaim)
2036{
2037	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039	enum lru_list inactive_lru = file * LRU_FILE;
2040	unsigned long inactive, active;
2041	unsigned long inactive_ratio;
2042	unsigned long refaults;
2043	unsigned long gb;
2044
2045	/*
2046	 * If we don't have swap space, anonymous page deactivation
2047	 * is pointless.
2048	 */
2049	if (!file && !total_swap_pages)
2050		return false;
2051
2052	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054
2055	if (memcg)
2056		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057	else
2058		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
 
 
 
 
 
 
 
 
 
2059
2060	/*
2061	 * When refaults are being observed, it means a new workingset
2062	 * is being established. Disable active list protection to get
2063	 * rid of the stale workingset quickly.
2064	 */
2065	if (file && actual_reclaim && lruvec->refaults != refaults) {
2066		inactive_ratio = 0;
2067	} else {
2068		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069		if (gb)
2070			inactive_ratio = int_sqrt(10 * gb);
2071		else
2072			inactive_ratio = 1;
2073	}
2074
2075	if (actual_reclaim)
2076		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079			inactive_ratio, file);
2080
2081	return inactive * inactive_ratio < active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086				 struct scan_control *sc)
2087{
 
 
2088	if (is_active_lru(lru)) {
2089		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090					 memcg, sc, true))
2091			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092		return 0;
2093	}
2094
2095	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096}
2097
2098enum scan_balance {
2099	SCAN_EQUAL,
2100	SCAN_FRACT,
2101	SCAN_ANON,
2102	SCAN_FILE,
2103};
2104
2105/*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned.  The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115			   struct scan_control *sc, unsigned long *nr,
2116			   unsigned long *lru_pages)
2117{
2118	int swappiness = mem_cgroup_swappiness(memcg);
2119	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120	u64 fraction[2];
2121	u64 denominator = 0;	/* gcc */
2122	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123	unsigned long anon_prio, file_prio;
2124	enum scan_balance scan_balance;
2125	unsigned long anon, file;
2126	unsigned long ap, fp;
2127	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129	/* If we have no swap space, do not bother scanning anon pages. */
2130	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131		scan_balance = SCAN_FILE;
2132		goto out;
2133	}
2134
2135	/*
2136	 * Global reclaim will swap to prevent OOM even with no
2137	 * swappiness, but memcg users want to use this knob to
2138	 * disable swapping for individual groups completely when
2139	 * using the memory controller's swap limit feature would be
2140	 * too expensive.
2141	 */
2142	if (!global_reclaim(sc) && !swappiness) {
2143		scan_balance = SCAN_FILE;
2144		goto out;
2145	}
2146
2147	/*
2148	 * Do not apply any pressure balancing cleverness when the
2149	 * system is close to OOM, scan both anon and file equally
2150	 * (unless the swappiness setting disagrees with swapping).
2151	 */
2152	if (!sc->priority && swappiness) {
2153		scan_balance = SCAN_EQUAL;
2154		goto out;
2155	}
2156
2157	/*
2158	 * Prevent the reclaimer from falling into the cache trap: as
2159	 * cache pages start out inactive, every cache fault will tip
2160	 * the scan balance towards the file LRU.  And as the file LRU
2161	 * shrinks, so does the window for rotation from references.
2162	 * This means we have a runaway feedback loop where a tiny
2163	 * thrashing file LRU becomes infinitely more attractive than
2164	 * anon pages.  Try to detect this based on file LRU size.
2165	 */
2166	if (global_reclaim(sc)) {
2167		unsigned long pgdatfile;
2168		unsigned long pgdatfree;
2169		int z;
2170		unsigned long total_high_wmark = 0;
2171
2172		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174			   node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176		for (z = 0; z < MAX_NR_ZONES; z++) {
2177			struct zone *zone = &pgdat->node_zones[z];
2178			if (!managed_zone(zone))
2179				continue;
2180
2181			total_high_wmark += high_wmark_pages(zone);
2182		}
2183
2184		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185			/*
2186			 * Force SCAN_ANON if there are enough inactive
2187			 * anonymous pages on the LRU in eligible zones.
2188			 * Otherwise, the small LRU gets thrashed.
2189			 */
2190			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192					>> sc->priority) {
2193				scan_balance = SCAN_ANON;
2194				goto out;
2195			}
2196		}
2197	}
2198
2199	/*
2200	 * If there is enough inactive page cache, i.e. if the size of the
2201	 * inactive list is greater than that of the active list *and* the
2202	 * inactive list actually has some pages to scan on this priority, we
2203	 * do not reclaim anything from the anonymous working set right now.
2204	 * Without the second condition we could end up never scanning an
2205	 * lruvec even if it has plenty of old anonymous pages unless the
2206	 * system is under heavy pressure.
2207	 */
2208	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210		scan_balance = SCAN_FILE;
2211		goto out;
2212	}
2213
2214	scan_balance = SCAN_FRACT;
2215
2216	/*
2217	 * With swappiness at 100, anonymous and file have the same priority.
2218	 * This scanning priority is essentially the inverse of IO cost.
2219	 */
2220	anon_prio = swappiness;
2221	file_prio = 200 - anon_prio;
2222
2223	/*
2224	 * OK, so we have swap space and a fair amount of page cache
2225	 * pages.  We use the recently rotated / recently scanned
2226	 * ratios to determine how valuable each cache is.
2227	 *
2228	 * Because workloads change over time (and to avoid overflow)
2229	 * we keep these statistics as a floating average, which ends
2230	 * up weighing recent references more than old ones.
2231	 *
2232	 * anon in [0], file in [1]
2233	 */
2234
2235	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240	spin_lock_irq(&pgdat->lru_lock);
2241	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242		reclaim_stat->recent_scanned[0] /= 2;
2243		reclaim_stat->recent_rotated[0] /= 2;
2244	}
2245
2246	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247		reclaim_stat->recent_scanned[1] /= 2;
2248		reclaim_stat->recent_rotated[1] /= 2;
2249	}
2250
2251	/*
2252	 * The amount of pressure on anon vs file pages is inversely
2253	 * proportional to the fraction of recently scanned pages on
2254	 * each list that were recently referenced and in active use.
2255	 */
2256	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257	ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260	fp /= reclaim_stat->recent_rotated[1] + 1;
2261	spin_unlock_irq(&pgdat->lru_lock);
2262
2263	fraction[0] = ap;
2264	fraction[1] = fp;
2265	denominator = ap + fp + 1;
 
 
 
 
 
2266out:
2267	*lru_pages = 0;
2268	for_each_evictable_lru(lru) {
2269		int file = is_file_lru(lru);
2270		unsigned long size;
2271		unsigned long scan;
2272
2273		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274		scan = size >> sc->priority;
2275		/*
2276		 * If the cgroup's already been deleted, make sure to
2277		 * scrape out the remaining cache.
2278		 */
2279		if (!scan && !mem_cgroup_online(memcg))
2280			scan = min(size, SWAP_CLUSTER_MAX);
2281
2282		switch (scan_balance) {
2283		case SCAN_EQUAL:
2284			/* Scan lists relative to size */
2285			break;
2286		case SCAN_FRACT:
2287			/*
2288			 * Scan types proportional to swappiness and
2289			 * their relative recent reclaim efficiency.
2290			 */
2291			scan = div64_u64(scan * fraction[file],
2292					 denominator);
2293			break;
2294		case SCAN_FILE:
2295		case SCAN_ANON:
2296			/* Scan one type exclusively */
2297			if ((scan_balance == SCAN_FILE) != file) {
2298				size = 0;
2299				scan = 0;
2300			}
2301			break;
2302		default:
2303			/* Look ma, no brain */
2304			BUG();
2305		}
2306
2307		*lru_pages += size;
2308		nr[lru] = scan;
2309	}
2310}
2311
2312/*
2313 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2314 */
2315static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316			      struct scan_control *sc, unsigned long *lru_pages)
2317{
2318	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319	unsigned long nr[NR_LRU_LISTS];
2320	unsigned long targets[NR_LRU_LISTS];
2321	unsigned long nr_to_scan;
2322	enum lru_list lru;
2323	unsigned long nr_reclaimed = 0;
2324	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325	struct blk_plug plug;
2326	bool scan_adjusted;
2327
2328	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329
2330	/* Record the original scan target for proportional adjustments later */
2331	memcpy(targets, nr, sizeof(nr));
2332
2333	/*
2334	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335	 * event that can occur when there is little memory pressure e.g.
2336	 * multiple streaming readers/writers. Hence, we do not abort scanning
2337	 * when the requested number of pages are reclaimed when scanning at
2338	 * DEF_PRIORITY on the assumption that the fact we are direct
2339	 * reclaiming implies that kswapd is not keeping up and it is best to
2340	 * do a batch of work at once. For memcg reclaim one check is made to
2341	 * abort proportional reclaim if either the file or anon lru has already
2342	 * dropped to zero at the first pass.
2343	 */
2344	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345			 sc->priority == DEF_PRIORITY);
2346
2347	blk_start_plug(&plug);
2348	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349					nr[LRU_INACTIVE_FILE]) {
2350		unsigned long nr_anon, nr_file, percentage;
2351		unsigned long nr_scanned;
2352
2353		for_each_evictable_lru(lru) {
2354			if (nr[lru]) {
2355				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356				nr[lru] -= nr_to_scan;
2357
2358				nr_reclaimed += shrink_list(lru, nr_to_scan,
2359							    lruvec, memcg, sc);
2360			}
2361		}
2362
2363		cond_resched();
2364
2365		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366			continue;
2367
2368		/*
2369		 * For kswapd and memcg, reclaim at least the number of pages
2370		 * requested. Ensure that the anon and file LRUs are scanned
2371		 * proportionally what was requested by get_scan_count(). We
2372		 * stop reclaiming one LRU and reduce the amount scanning
2373		 * proportional to the original scan target.
2374		 */
2375		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378		/*
2379		 * It's just vindictive to attack the larger once the smaller
2380		 * has gone to zero.  And given the way we stop scanning the
2381		 * smaller below, this makes sure that we only make one nudge
2382		 * towards proportionality once we've got nr_to_reclaim.
2383		 */
2384		if (!nr_file || !nr_anon)
2385			break;
2386
2387		if (nr_file > nr_anon) {
2388			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389						targets[LRU_ACTIVE_ANON] + 1;
2390			lru = LRU_BASE;
2391			percentage = nr_anon * 100 / scan_target;
2392		} else {
2393			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394						targets[LRU_ACTIVE_FILE] + 1;
2395			lru = LRU_FILE;
2396			percentage = nr_file * 100 / scan_target;
2397		}
2398
2399		/* Stop scanning the smaller of the LRU */
2400		nr[lru] = 0;
2401		nr[lru + LRU_ACTIVE] = 0;
2402
2403		/*
2404		 * Recalculate the other LRU scan count based on its original
2405		 * scan target and the percentage scanning already complete
2406		 */
2407		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408		nr_scanned = targets[lru] - nr[lru];
2409		nr[lru] = targets[lru] * (100 - percentage) / 100;
2410		nr[lru] -= min(nr[lru], nr_scanned);
2411
2412		lru += LRU_ACTIVE;
2413		nr_scanned = targets[lru] - nr[lru];
2414		nr[lru] = targets[lru] * (100 - percentage) / 100;
2415		nr[lru] -= min(nr[lru], nr_scanned);
2416
2417		scan_adjusted = true;
2418	}
2419	blk_finish_plug(&plug);
2420	sc->nr_reclaimed += nr_reclaimed;
2421
2422	/*
2423	 * Even if we did not try to evict anon pages at all, we want to
2424	 * rebalance the anon lru active/inactive ratio.
2425	 */
2426	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428				   sc, LRU_ACTIVE_ANON);
2429}
2430
2431/* Use reclaim/compaction for costly allocs or under memory pressure */
2432static bool in_reclaim_compaction(struct scan_control *sc)
2433{
2434	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436			 sc->priority < DEF_PRIORITY - 2))
2437		return true;
2438
2439	return false;
2440}
2441
2442/*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450					unsigned long nr_reclaimed,
2451					unsigned long nr_scanned,
2452					struct scan_control *sc)
2453{
2454	unsigned long pages_for_compaction;
2455	unsigned long inactive_lru_pages;
2456	int z;
2457
2458	/* If not in reclaim/compaction mode, stop */
2459	if (!in_reclaim_compaction(sc))
2460		return false;
2461
2462	/* Consider stopping depending on scan and reclaim activity */
2463	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464		/*
2465		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466		 * full LRU list has been scanned and we are still failing
2467		 * to reclaim pages. This full LRU scan is potentially
2468		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469		 */
2470		if (!nr_reclaimed && !nr_scanned)
2471			return false;
2472	} else {
2473		/*
2474		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475		 * fail without consequence, stop if we failed to reclaim
2476		 * any pages from the last SWAP_CLUSTER_MAX number of
2477		 * pages that were scanned. This will return to the
2478		 * caller faster at the risk reclaim/compaction and
2479		 * the resulting allocation attempt fails
2480		 */
2481		if (!nr_reclaimed)
2482			return false;
2483	}
2484
2485	/*
2486	 * If we have not reclaimed enough pages for compaction and the
2487	 * inactive lists are large enough, continue reclaiming
2488	 */
2489	pages_for_compaction = compact_gap(sc->order);
2490	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491	if (get_nr_swap_pages() > 0)
2492		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493	if (sc->nr_reclaimed < pages_for_compaction &&
2494			inactive_lru_pages > pages_for_compaction)
2495		return true;
2496
2497	/* If compaction would go ahead or the allocation would succeed, stop */
2498	for (z = 0; z <= sc->reclaim_idx; z++) {
2499		struct zone *zone = &pgdat->node_zones[z];
2500		if (!managed_zone(zone))
2501			continue;
2502
2503		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504		case COMPACT_SUCCESS:
2505		case COMPACT_CONTINUE:
2506			return false;
2507		default:
2508			/* check next zone */
2509			;
2510		}
2511	}
2512	return true;
2513}
2514
2515static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516{
2517	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518		(memcg && memcg_congested(pgdat, memcg));
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522{
2523	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2524	unsigned long nr_reclaimed, nr_scanned;
2525	bool reclaimable = false;
2526
2527	do {
2528		struct mem_cgroup *root = sc->target_mem_cgroup;
2529		struct mem_cgroup_reclaim_cookie reclaim = {
2530			.pgdat = pgdat,
2531			.priority = sc->priority,
2532		};
2533		unsigned long node_lru_pages = 0;
2534		struct mem_cgroup *memcg;
2535
2536		memset(&sc->nr, 0, sizeof(sc->nr));
2537
2538		nr_reclaimed = sc->nr_reclaimed;
2539		nr_scanned = sc->nr_scanned;
2540
2541		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542		do {
2543			unsigned long lru_pages;
2544			unsigned long reclaimed;
2545			unsigned long scanned;
2546
2547			if (mem_cgroup_low(root, memcg)) {
2548				if (!sc->memcg_low_reclaim) {
2549					sc->memcg_low_skipped = 1;
2550					continue;
2551				}
2552				memcg_memory_event(memcg, MEMCG_LOW);
2553			}
2554
2555			reclaimed = sc->nr_reclaimed;
2556			scanned = sc->nr_scanned;
2557			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558			node_lru_pages += lru_pages;
2559
2560			if (memcg)
2561				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562					    memcg, sc->priority);
2563
2564			/* Record the group's reclaim efficiency */
2565			vmpressure(sc->gfp_mask, memcg, false,
2566				   sc->nr_scanned - scanned,
2567				   sc->nr_reclaimed - reclaimed);
2568
2569			/*
2570			 * Direct reclaim and kswapd have to scan all memory
2571			 * cgroups to fulfill the overall scan target for the
2572			 * node.
2573			 *
2574			 * Limit reclaim, on the other hand, only cares about
2575			 * nr_to_reclaim pages to be reclaimed and it will
2576			 * retry with decreasing priority if one round over the
2577			 * whole hierarchy is not sufficient.
2578			 */
2579			if (!global_reclaim(sc) &&
2580					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581				mem_cgroup_iter_break(root, memcg);
2582				break;
2583			}
2584		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585
2586		if (global_reclaim(sc))
2587			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588				    sc->priority);
2589
2590		if (reclaim_state) {
2591			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2592			reclaim_state->reclaimed_slab = 0;
2593		}
2594
2595		/* Record the subtree's reclaim efficiency */
2596		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597			   sc->nr_scanned - nr_scanned,
2598			   sc->nr_reclaimed - nr_reclaimed);
2599
2600		if (sc->nr_reclaimed - nr_reclaimed)
2601			reclaimable = true;
2602
2603		if (current_is_kswapd()) {
2604			/*
2605			 * If reclaim is isolating dirty pages under writeback,
2606			 * it implies that the long-lived page allocation rate
2607			 * is exceeding the page laundering rate. Either the
2608			 * global limits are not being effective at throttling
2609			 * processes due to the page distribution throughout
2610			 * zones or there is heavy usage of a slow backing
2611			 * device. The only option is to throttle from reclaim
2612			 * context which is not ideal as there is no guarantee
2613			 * the dirtying process is throttled in the same way
2614			 * balance_dirty_pages() manages.
2615			 *
2616			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2617			 * count the number of pages under pages flagged for
2618			 * immediate reclaim and stall if any are encountered
2619			 * in the nr_immediate check below.
2620			 */
2621			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2622				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623
2624			/*
2625			 * Tag a node as congested if all the dirty pages
2626			 * scanned were backed by a congested BDI and
2627			 * wait_iff_congested will stall.
2628			 */
2629			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2630				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2631
2632			/* Allow kswapd to start writing pages during reclaim.*/
2633			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2634				set_bit(PGDAT_DIRTY, &pgdat->flags);
2635
2636			/*
2637			 * If kswapd scans pages marked marked for immediate
2638			 * reclaim and under writeback (nr_immediate), it
2639			 * implies that pages are cycling through the LRU
2640			 * faster than they are written so also forcibly stall.
2641			 */
2642			if (sc->nr.immediate)
2643				congestion_wait(BLK_RW_ASYNC, HZ/10);
2644		}
2645
2646		/*
2647		 * Legacy memcg will stall in page writeback so avoid forcibly
2648		 * stalling in wait_iff_congested().
2649		 */
2650		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2651		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2652			set_memcg_congestion(pgdat, root, true);
2653
2654		/*
2655		 * Stall direct reclaim for IO completions if underlying BDIs
2656		 * and node is congested. Allow kswapd to continue until it
2657		 * starts encountering unqueued dirty pages or cycling through
2658		 * the LRU too quickly.
 
 
2659		 */
2660		if (!sc->hibernation_mode && !current_is_kswapd() &&
2661		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2662			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2663
2664	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665					 sc->nr_scanned - nr_scanned, sc));
2666
2667	/*
2668	 * Kswapd gives up on balancing particular nodes after too
2669	 * many failures to reclaim anything from them and goes to
2670	 * sleep. On reclaim progress, reset the failure counter. A
2671	 * successful direct reclaim run will revive a dormant kswapd.
2672	 */
2673	if (reclaimable)
2674		pgdat->kswapd_failures = 0;
2675
2676	return reclaimable;
2677}
2678
2679/*
2680 * Returns true if compaction should go ahead for a costly-order request, or
2681 * the allocation would already succeed without compaction. Return false if we
2682 * should reclaim first.
2683 */
2684static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685{
2686	unsigned long watermark;
2687	enum compact_result suitable;
2688
2689	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2690	if (suitable == COMPACT_SUCCESS)
2691		/* Allocation should succeed already. Don't reclaim. */
2692		return true;
2693	if (suitable == COMPACT_SKIPPED)
2694		/* Compaction cannot yet proceed. Do reclaim. */
2695		return false;
2696
2697	/*
2698	 * Compaction is already possible, but it takes time to run and there
2699	 * are potentially other callers using the pages just freed. So proceed
2700	 * with reclaim to make a buffer of free pages available to give
2701	 * compaction a reasonable chance of completing and allocating the page.
2702	 * Note that we won't actually reclaim the whole buffer in one attempt
2703	 * as the target watermark in should_continue_reclaim() is lower. But if
2704	 * we are already above the high+gap watermark, don't reclaim at all.
2705	 */
2706	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2707
2708	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709}
2710
2711/*
2712 * This is the direct reclaim path, for page-allocating processes.  We only
2713 * try to reclaim pages from zones which will satisfy the caller's allocation
2714 * request.
2715 *
 
 
 
 
 
 
 
 
2716 * If a zone is deemed to be full of pinned pages then just give it a light
2717 * scan then give up on it.
2718 */
2719static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 
2720{
2721	struct zoneref *z;
2722	struct zone *zone;
2723	unsigned long nr_soft_reclaimed;
2724	unsigned long nr_soft_scanned;
2725	gfp_t orig_mask;
2726	pg_data_t *last_pgdat = NULL;
2727
2728	/*
2729	 * If the number of buffer_heads in the machine exceeds the maximum
2730	 * allowed level, force direct reclaim to scan the highmem zone as
2731	 * highmem pages could be pinning lowmem pages storing buffer_heads
2732	 */
2733	orig_mask = sc->gfp_mask;
2734	if (buffer_heads_over_limit) {
2735		sc->gfp_mask |= __GFP_HIGHMEM;
2736		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737	}
2738
2739	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740					sc->reclaim_idx, sc->nodemask) {
 
 
2741		/*
2742		 * Take care memory controller reclaiming has small influence
2743		 * to global LRU.
2744		 */
2745		if (global_reclaim(sc)) {
2746			if (!cpuset_zone_allowed(zone,
2747						 GFP_KERNEL | __GFP_HARDWALL))
2748				continue;
2749
2750			/*
2751			 * If we already have plenty of memory free for
2752			 * compaction in this zone, don't free any more.
2753			 * Even though compaction is invoked for any
2754			 * non-zero order, only frequent costly order
2755			 * reclamation is disruptive enough to become a
2756			 * noticeable problem, like transparent huge
2757			 * page allocations.
2758			 */
2759			if (IS_ENABLED(CONFIG_COMPACTION) &&
2760			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761			    compaction_ready(zone, sc)) {
2762				sc->compaction_ready = true;
2763				continue;
2764			}
2765
2766			/*
2767			 * Shrink each node in the zonelist once. If the
2768			 * zonelist is ordered by zone (not the default) then a
2769			 * node may be shrunk multiple times but in that case
2770			 * the user prefers lower zones being preserved.
2771			 */
2772			if (zone->zone_pgdat == last_pgdat)
2773				continue;
2774
2775			/*
2776			 * This steals pages from memory cgroups over softlimit
2777			 * and returns the number of reclaimed pages and
2778			 * scanned pages. This works for global memory pressure
2779			 * and balancing, not for a memcg's limit.
2780			 */
2781			nr_soft_scanned = 0;
2782			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783						sc->order, sc->gfp_mask,
2784						&nr_soft_scanned);
2785			sc->nr_reclaimed += nr_soft_reclaimed;
2786			sc->nr_scanned += nr_soft_scanned;
2787			/* need some check for avoid more shrink_zone() */
2788		}
2789
2790		/* See comment about same check for global reclaim above */
2791		if (zone->zone_pgdat == last_pgdat)
2792			continue;
2793		last_pgdat = zone->zone_pgdat;
2794		shrink_node(zone->zone_pgdat, sc);
2795	}
2796
2797	/*
2798	 * Restore to original mask to avoid the impact on the caller if we
2799	 * promoted it to __GFP_HIGHMEM.
2800	 */
2801	sc->gfp_mask = orig_mask;
2802}
2803
2804static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2805{
2806	struct mem_cgroup *memcg;
 
2807
2808	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2809	do {
2810		unsigned long refaults;
2811		struct lruvec *lruvec;
 
 
2812
2813		if (memcg)
2814			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815		else
2816			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
 
 
 
 
 
2817
2818		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2819		lruvec->refaults = refaults;
2820	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2821}
2822
2823/*
2824 * This is the main entry point to direct page reclaim.
2825 *
2826 * If a full scan of the inactive list fails to free enough memory then we
2827 * are "out of memory" and something needs to be killed.
2828 *
2829 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2830 * high - the zone may be full of dirty or under-writeback pages, which this
2831 * caller can't do much about.  We kick the writeback threads and take explicit
2832 * naps in the hope that some of these pages can be written.  But if the
2833 * allocating task holds filesystem locks which prevent writeout this might not
2834 * work, and the allocation attempt will fail.
2835 *
2836 * returns:	0, if no pages reclaimed
2837 * 		else, the number of pages reclaimed
2838 */
2839static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840					  struct scan_control *sc)
 
2841{
2842	int initial_priority = sc->priority;
2843	pg_data_t *last_pgdat;
 
2844	struct zoneref *z;
2845	struct zone *zone;
2846retry:
 
 
2847	delayacct_freepages_start();
2848
2849	if (global_reclaim(sc))
2850		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2851
2852	do {
2853		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2854				sc->priority);
2855		sc->nr_scanned = 0;
2856		shrink_zones(zonelist, sc);
 
 
 
 
 
 
 
 
 
 
 
 
2857
2858		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859			break;
2860
2861		if (sc->compaction_ready)
2862			break;
 
 
 
 
 
 
 
2863
2864		/*
2865		 * If we're getting trouble reclaiming, start doing
2866		 * writepage even in laptop mode.
2867		 */
2868		if (sc->priority < DEF_PRIORITY - 2)
 
 
 
 
 
2869			sc->may_writepage = 1;
2870	} while (--sc->priority >= 0);
2871
2872	last_pgdat = NULL;
2873	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2874					sc->nodemask) {
2875		if (zone->zone_pgdat == last_pgdat)
2876			continue;
2877		last_pgdat = zone->zone_pgdat;
2878		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
 
 
2880	}
2881
 
2882	delayacct_freepages_end();
 
2883
2884	if (sc->nr_reclaimed)
2885		return sc->nr_reclaimed;
2886
2887	/* Aborted reclaim to try compaction? don't OOM, then */
2888	if (sc->compaction_ready)
2889		return 1;
2890
2891	/* Untapped cgroup reserves?  Don't OOM, retry. */
2892	if (sc->memcg_low_skipped) {
2893		sc->priority = initial_priority;
2894		sc->memcg_low_reclaim = 1;
2895		sc->memcg_low_skipped = 0;
2896		goto retry;
2897	}
2898
2899	return 0;
2900}
2901
2902static bool allow_direct_reclaim(pg_data_t *pgdat)
2903{
2904	struct zone *zone;
2905	unsigned long pfmemalloc_reserve = 0;
2906	unsigned long free_pages = 0;
2907	int i;
2908	bool wmark_ok;
2909
2910	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2911		return true;
2912
2913	for (i = 0; i <= ZONE_NORMAL; i++) {
2914		zone = &pgdat->node_zones[i];
2915		if (!managed_zone(zone))
2916			continue;
2917
2918		if (!zone_reclaimable_pages(zone))
2919			continue;
2920
2921		pfmemalloc_reserve += min_wmark_pages(zone);
2922		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2923	}
2924
2925	/* If there are no reserves (unexpected config) then do not throttle */
2926	if (!pfmemalloc_reserve)
2927		return true;
2928
2929	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2930
2931	/* kswapd must be awake if processes are being throttled */
2932	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934						(enum zone_type)ZONE_NORMAL);
2935		wake_up_interruptible(&pgdat->kswapd_wait);
2936	}
2937
2938	return wmark_ok;
2939}
2940
2941/*
2942 * Throttle direct reclaimers if backing storage is backed by the network
2943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2944 * depleted. kswapd will continue to make progress and wake the processes
2945 * when the low watermark is reached.
2946 *
2947 * Returns true if a fatal signal was delivered during throttling. If this
2948 * happens, the page allocator should not consider triggering the OOM killer.
2949 */
2950static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951					nodemask_t *nodemask)
2952{
2953	struct zoneref *z;
2954	struct zone *zone;
2955	pg_data_t *pgdat = NULL;
2956
2957	/*
2958	 * Kernel threads should not be throttled as they may be indirectly
2959	 * responsible for cleaning pages necessary for reclaim to make forward
2960	 * progress. kjournald for example may enter direct reclaim while
2961	 * committing a transaction where throttling it could forcing other
2962	 * processes to block on log_wait_commit().
2963	 */
2964	if (current->flags & PF_KTHREAD)
2965		goto out;
2966
2967	/*
2968	 * If a fatal signal is pending, this process should not throttle.
2969	 * It should return quickly so it can exit and free its memory
2970	 */
2971	if (fatal_signal_pending(current))
2972		goto out;
2973
2974	/*
2975	 * Check if the pfmemalloc reserves are ok by finding the first node
2976	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2977	 * GFP_KERNEL will be required for allocating network buffers when
2978	 * swapping over the network so ZONE_HIGHMEM is unusable.
2979	 *
2980	 * Throttling is based on the first usable node and throttled processes
2981	 * wait on a queue until kswapd makes progress and wakes them. There
2982	 * is an affinity then between processes waking up and where reclaim
2983	 * progress has been made assuming the process wakes on the same node.
2984	 * More importantly, processes running on remote nodes will not compete
2985	 * for remote pfmemalloc reserves and processes on different nodes
2986	 * should make reasonable progress.
2987	 */
2988	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989					gfp_zone(gfp_mask), nodemask) {
2990		if (zone_idx(zone) > ZONE_NORMAL)
2991			continue;
2992
2993		/* Throttle based on the first usable node */
2994		pgdat = zone->zone_pgdat;
2995		if (allow_direct_reclaim(pgdat))
2996			goto out;
2997		break;
2998	}
2999
3000	/* If no zone was usable by the allocation flags then do not throttle */
3001	if (!pgdat)
3002		goto out;
3003
3004	/* Account for the throttling */
3005	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3006
3007	/*
3008	 * If the caller cannot enter the filesystem, it's possible that it
3009	 * is due to the caller holding an FS lock or performing a journal
3010	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3011	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3012	 * blocked waiting on the same lock. Instead, throttle for up to a
3013	 * second before continuing.
3014	 */
3015	if (!(gfp_mask & __GFP_FS)) {
3016		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017			allow_direct_reclaim(pgdat), HZ);
3018
3019		goto check_pending;
3020	}
3021
3022	/* Throttle until kswapd wakes the process */
3023	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024		allow_direct_reclaim(pgdat));
3025
3026check_pending:
3027	if (fatal_signal_pending(current))
3028		return true;
3029
3030out:
3031	return false;
3032}
3033
3034unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035				gfp_t gfp_mask, nodemask_t *nodemask)
3036{
3037	unsigned long nr_reclaimed;
3038	struct scan_control sc = {
3039		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3040		.gfp_mask = current_gfp_context(gfp_mask),
3041		.reclaim_idx = gfp_zone(gfp_mask),
3042		.order = order,
3043		.nodemask = nodemask,
3044		.priority = DEF_PRIORITY,
3045		.may_writepage = !laptop_mode,
 
3046		.may_unmap = 1,
3047		.may_swap = 1,
 
 
 
 
 
 
3048	};
3049
3050	/*
3051	 * Do not enter reclaim if fatal signal was delivered while throttled.
3052	 * 1 is returned so that the page allocator does not OOM kill at this
3053	 * point.
3054	 */
3055	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056		return 1;
3057
3058	trace_mm_vmscan_direct_reclaim_begin(order,
3059				sc.may_writepage,
3060				sc.gfp_mask,
3061				sc.reclaim_idx);
3062
3063	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064
3065	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3066
3067	return nr_reclaimed;
3068}
3069
3070#ifdef CONFIG_MEMCG
3071
3072unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073						gfp_t gfp_mask, bool noswap,
3074						pg_data_t *pgdat,
3075						unsigned long *nr_scanned)
3076{
3077	struct scan_control sc = {
 
3078		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3079		.target_mem_cgroup = memcg,
3080		.may_writepage = !laptop_mode,
3081		.may_unmap = 1,
3082		.reclaim_idx = MAX_NR_ZONES - 1,
3083		.may_swap = !noswap,
 
 
3084	};
3085	unsigned long lru_pages;
3086
3087	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3088			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089
3090	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091						      sc.may_writepage,
3092						      sc.gfp_mask,
3093						      sc.reclaim_idx);
3094
3095	/*
3096	 * NOTE: Although we can get the priority field, using it
3097	 * here is not a good idea, since it limits the pages we can scan.
3098	 * if we don't reclaim here, the shrink_node from balance_pgdat
3099	 * will pick up pages from other mem cgroup's as well. We hack
3100	 * the priority and make it zero.
3101	 */
3102	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103
3104	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3105
3106	*nr_scanned = sc.nr_scanned;
3107	return sc.nr_reclaimed;
3108}
3109
3110unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111					   unsigned long nr_pages,
3112					   gfp_t gfp_mask,
3113					   bool may_swap)
3114{
3115	struct zonelist *zonelist;
3116	unsigned long nr_reclaimed;
3117	int nid;
3118	unsigned int noreclaim_flag;
3119	struct scan_control sc = {
3120		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3121		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123		.reclaim_idx = MAX_NR_ZONES - 1,
3124		.target_mem_cgroup = memcg,
3125		.priority = DEF_PRIORITY,
3126		.may_writepage = !laptop_mode,
3127		.may_unmap = 1,
3128		.may_swap = may_swap,
 
 
 
 
 
 
 
 
 
3129	};
3130
3131	/*
3132	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3133	 * take care of from where we get pages. So the node where we start the
3134	 * scan does not need to be the current node.
3135	 */
3136	nid = mem_cgroup_select_victim_node(memcg);
3137
3138	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139
3140	trace_mm_vmscan_memcg_reclaim_begin(0,
3141					    sc.may_writepage,
3142					    sc.gfp_mask,
3143					    sc.reclaim_idx);
3144
3145	noreclaim_flag = memalloc_noreclaim_save();
3146	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147	memalloc_noreclaim_restore(noreclaim_flag);
3148
3149	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3150
3151	return nr_reclaimed;
3152}
3153#endif
3154
3155static void age_active_anon(struct pglist_data *pgdat,
3156				struct scan_control *sc)
3157{
3158	struct mem_cgroup *memcg;
3159
3160	if (!total_swap_pages)
3161		return;
3162
3163	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3164	do {
3165		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166
3167		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169					   sc, LRU_ACTIVE_ANON);
3170
3171		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3172	} while (memcg);
3173}
3174
3175/*
3176 * Returns true if there is an eligible zone balanced for the request order
3177 * and classzone_idx
 
 
 
 
 
 
 
 
 
 
 
 
3178 */
3179static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
 
3180{
 
3181	int i;
3182	unsigned long mark = -1;
3183	struct zone *zone;
3184
3185	for (i = 0; i <= classzone_idx; i++) {
3186		zone = pgdat->node_zones + i;
3187
3188		if (!managed_zone(zone))
3189			continue;
3190
3191		mark = high_wmark_pages(zone);
3192		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3193			return true;
3194	}
3195
3196	/*
3197	 * If a node has no populated zone within classzone_idx, it does not
3198	 * need balancing by definition. This can happen if a zone-restricted
3199	 * allocation tries to wake a remote kswapd.
3200	 */
3201	if (mark == -1)
3202		return true;
3203
3204	return false;
 
3205}
3206
3207/* Clear pgdat state for congested, dirty or under writeback. */
3208static void clear_pgdat_congested(pg_data_t *pgdat)
3209{
3210	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3211	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3212	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3213}
3214
3215/*
3216 * Prepare kswapd for sleeping. This verifies that there are no processes
3217 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3218 *
3219 * Returns true if kswapd is ready to sleep
3220 */
3221static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3222{
3223	/*
3224	 * The throttled processes are normally woken up in balance_pgdat() as
3225	 * soon as allow_direct_reclaim() is true. But there is a potential
3226	 * race between when kswapd checks the watermarks and a process gets
3227	 * throttled. There is also a potential race if processes get
3228	 * throttled, kswapd wakes, a large process exits thereby balancing the
3229	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3230	 * the wake up checks. If kswapd is going to sleep, no process should
3231	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3232	 * the wake up is premature, processes will wake kswapd and get
3233	 * throttled again. The difference from wake ups in balance_pgdat() is
3234	 * that here we are under prepare_to_wait().
3235	 */
3236	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3237		wake_up_all(&pgdat->pfmemalloc_wait);
3238
3239	/* Hopeless node, leave it to direct reclaim */
3240	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3241		return true;
3242
3243	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3244		clear_pgdat_congested(pgdat);
3245		return true;
3246	}
3247
3248	return false;
3249}
 
3250
3251/*
3252 * kswapd shrinks a node of pages that are at or below the highest usable
3253 * zone that is currently unbalanced.
3254 *
3255 * Returns true if kswapd scanned at least the requested number of pages to
3256 * reclaim or if the lack of progress was due to pages under writeback.
3257 * This is used to determine if the scanning priority needs to be raised.
3258 */
3259static bool kswapd_shrink_node(pg_data_t *pgdat,
3260			       struct scan_control *sc)
3261{
3262	struct zone *zone;
3263	int z;
3264
3265	/* Reclaim a number of pages proportional to the number of zones */
3266	sc->nr_to_reclaim = 0;
3267	for (z = 0; z <= sc->reclaim_idx; z++) {
3268		zone = pgdat->node_zones + z;
3269		if (!managed_zone(zone))
 
 
 
3270			continue;
 
3271
3272		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
3273	}
3274
3275	/*
3276	 * Historically care was taken to put equal pressure on all zones but
3277	 * now pressure is applied based on node LRU order.
3278	 */
3279	shrink_node(pgdat, sc);
3280
3281	/*
3282	 * Fragmentation may mean that the system cannot be rebalanced for
3283	 * high-order allocations. If twice the allocation size has been
3284	 * reclaimed then recheck watermarks only at order-0 to prevent
3285	 * excessive reclaim. Assume that a process requested a high-order
3286	 * can direct reclaim/compact.
3287	 */
3288	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289		sc->order = 0;
3290
3291	return sc->nr_scanned >= sc->nr_to_reclaim;
3292}
3293
3294/*
3295 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3296 * that are eligible for use by the caller until at least one zone is
3297 * balanced.
3298 *
3299 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
 
 
3300 *
3301 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3302 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3304 * or lower is eligible for reclaim until at least one usable zone is
3305 * balanced.
 
3306 */
3307static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
 
3308{
 
 
 
3309	int i;
 
 
 
3310	unsigned long nr_soft_reclaimed;
3311	unsigned long nr_soft_scanned;
3312	struct zone *zone;
3313	struct scan_control sc = {
3314		.gfp_mask = GFP_KERNEL,
3315		.order = order,
3316		.priority = DEF_PRIORITY,
3317		.may_writepage = !laptop_mode,
3318		.may_unmap = 1,
3319		.may_swap = 1,
 
 
 
 
 
 
 
3320	};
 
 
 
 
 
 
 
3321	count_vm_event(PAGEOUTRUN);
3322
3323	do {
3324		unsigned long nr_reclaimed = sc.nr_reclaimed;
3325		bool raise_priority = true;
3326
3327		sc.reclaim_idx = classzone_idx;
3328
3329		/*
3330		 * If the number of buffer_heads exceeds the maximum allowed
3331		 * then consider reclaiming from all zones. This has a dual
3332		 * purpose -- on 64-bit systems it is expected that
3333		 * buffer_heads are stripped during active rotation. On 32-bit
3334		 * systems, highmem pages can pin lowmem memory and shrinking
3335		 * buffers can relieve lowmem pressure. Reclaim may still not
3336		 * go ahead if all eligible zones for the original allocation
3337		 * request are balanced to avoid excessive reclaim from kswapd.
3338		 */
3339		if (buffer_heads_over_limit) {
3340			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3341				zone = pgdat->node_zones + i;
3342				if (!managed_zone(zone))
3343					continue;
3344
3345				sc.reclaim_idx = i;
3346				break;
3347			}
3348		}
 
 
3349
3350		/*
3351		 * Only reclaim if there are no eligible zones. Note that
3352		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3353		 * have adjusted it.
3354		 */
3355		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3356			goto out;
3357
3358		/*
3359		 * Do some background aging of the anon list, to give
3360		 * pages a chance to be referenced before reclaiming. All
3361		 * pages are rotated regardless of classzone as this is
3362		 * about consistent aging.
3363		 */
3364		age_active_anon(pgdat, &sc);
3365
3366		/*
3367		 * If we're getting trouble reclaiming, start doing writepage
3368		 * even in laptop mode.
3369		 */
3370		if (sc.priority < DEF_PRIORITY - 2)
3371			sc.may_writepage = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
3372
3373		/* Call soft limit reclaim before calling shrink_node. */
3374		sc.nr_scanned = 0;
3375		nr_soft_scanned = 0;
3376		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377						sc.gfp_mask, &nr_soft_scanned);
3378		sc.nr_reclaimed += nr_soft_reclaimed;
3379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380		/*
3381		 * There should be no need to raise the scanning priority if
3382		 * enough pages are already being scanned that that high
3383		 * watermark would be met at 100% efficiency.
3384		 */
3385		if (kswapd_shrink_node(pgdat, &sc))
3386			raise_priority = false;
 
 
 
 
3387
3388		/*
3389		 * If the low watermark is met there is no need for processes
3390		 * to be throttled on pfmemalloc_wait as they should not be
3391		 * able to safely make forward progress. Wake them
 
3392		 */
3393		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394				allow_direct_reclaim(pgdat))
3395			wake_up_all(&pgdat->pfmemalloc_wait);
3396
3397		/* Check if kswapd should be suspending */
3398		if (try_to_freeze() || kthread_should_stop())
3399			break;
 
 
 
 
 
 
 
 
 
 
 
 
3400
3401		/*
3402		 * Raise priority if scanning rate is too low or there was no
3403		 * progress in reclaiming pages
 
 
 
 
 
 
 
 
 
 
3404		 */
3405		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3406		if (raise_priority || !nr_reclaimed)
3407			sc.priority--;
3408	} while (sc.priority >= 1);
3409
3410	if (!sc.nr_reclaimed)
3411		pgdat->kswapd_failures++;
3412
3413out:
3414	snapshot_refaults(NULL, pgdat);
3415	/*
3416	 * Return the order kswapd stopped reclaiming at as
3417	 * prepare_kswapd_sleep() takes it into account. If another caller
3418	 * entered the allocator slow path while kswapd was awake, order will
3419	 * remain at the higher level.
 
 
3420	 */
3421	return sc.order;
3422}
 
3423
3424/*
3425 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3426 * allocation request woke kswapd for. When kswapd has not woken recently,
3427 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3428 * given classzone and returns it or the highest classzone index kswapd
3429 * was recently woke for.
3430 */
3431static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3432					   enum zone_type classzone_idx)
3433{
3434	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3435		return classzone_idx;
3436
3437	return max(pgdat->kswapd_classzone_idx, classzone_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438}
3439
3440static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3441				unsigned int classzone_idx)
3442{
3443	long remaining = 0;
3444	DEFINE_WAIT(wait);
3445
3446	if (freezing(current) || kthread_should_stop())
3447		return;
3448
3449	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3450
3451	/*
3452	 * Try to sleep for a short interval. Note that kcompactd will only be
3453	 * woken if it is possible to sleep for a short interval. This is
3454	 * deliberate on the assumption that if reclaim cannot keep an
3455	 * eligible zone balanced that it's also unlikely that compaction will
3456	 * succeed.
3457	 */
3458	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459		/*
3460		 * Compaction records what page blocks it recently failed to
3461		 * isolate pages from and skips them in the future scanning.
3462		 * When kswapd is going to sleep, it is reasonable to assume
3463		 * that pages and compaction may succeed so reset the cache.
3464		 */
3465		reset_isolation_suitable(pgdat);
3466
3467		/*
3468		 * We have freed the memory, now we should compact it to make
3469		 * allocation of the requested order possible.
3470		 */
3471		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472
3473		remaining = schedule_timeout(HZ/10);
3474
3475		/*
3476		 * If woken prematurely then reset kswapd_classzone_idx and
3477		 * order. The values will either be from a wakeup request or
3478		 * the previous request that slept prematurely.
3479		 */
3480		if (remaining) {
3481			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3483		}
3484
3485		finish_wait(&pgdat->kswapd_wait, &wait);
3486		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3487	}
3488
3489	/*
3490	 * After a short sleep, check if it was a premature sleep. If not, then
3491	 * go fully to sleep until explicitly woken up.
3492	 */
3493	if (!remaining &&
3494	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3496
3497		/*
3498		 * vmstat counters are not perfectly accurate and the estimated
3499		 * value for counters such as NR_FREE_PAGES can deviate from the
3500		 * true value by nr_online_cpus * threshold. To avoid the zone
3501		 * watermarks being breached while under pressure, we reduce the
3502		 * per-cpu vmstat threshold while kswapd is awake and restore
3503		 * them before going back to sleep.
3504		 */
3505		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506
3507		if (!kthread_should_stop())
3508			schedule();
3509
3510		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3511	} else {
3512		if (remaining)
3513			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3514		else
3515			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3516	}
3517	finish_wait(&pgdat->kswapd_wait, &wait);
3518}
3519
3520/*
3521 * The background pageout daemon, started as a kernel thread
3522 * from the init process.
3523 *
3524 * This basically trickles out pages so that we have _some_
3525 * free memory available even if there is no other activity
3526 * that frees anything up. This is needed for things like routing
3527 * etc, where we otherwise might have all activity going on in
3528 * asynchronous contexts that cannot page things out.
3529 *
3530 * If there are applications that are active memory-allocators
3531 * (most normal use), this basically shouldn't matter.
3532 */
3533static int kswapd(void *p)
3534{
3535	unsigned int alloc_order, reclaim_order;
3536	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3537	pg_data_t *pgdat = (pg_data_t*)p;
3538	struct task_struct *tsk = current;
3539
3540	struct reclaim_state reclaim_state = {
3541		.reclaimed_slab = 0,
3542	};
3543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3544
 
 
3545	if (!cpumask_empty(cpumask))
3546		set_cpus_allowed_ptr(tsk, cpumask);
3547	current->reclaim_state = &reclaim_state;
3548
3549	/*
3550	 * Tell the memory management that we're a "memory allocator",
3551	 * and that if we need more memory we should get access to it
3552	 * regardless (see "__alloc_pages()"). "kswapd" should
3553	 * never get caught in the normal page freeing logic.
3554	 *
3555	 * (Kswapd normally doesn't need memory anyway, but sometimes
3556	 * you need a small amount of memory in order to be able to
3557	 * page out something else, and this flag essentially protects
3558	 * us from recursively trying to free more memory as we're
3559	 * trying to free the first piece of memory in the first place).
3560	 */
3561	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562	set_freezable();
3563
3564	pgdat->kswapd_order = 0;
3565	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3566	for ( ; ; ) {
3567		bool ret;
3568
3569		alloc_order = reclaim_order = pgdat->kswapd_order;
3570		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
 
 
 
 
 
 
 
 
 
3571
3572kswapd_try_sleep:
3573		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3574					classzone_idx);
3575
3576		/* Read the new order and classzone_idx */
3577		alloc_order = reclaim_order = pgdat->kswapd_order;
3578		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579		pgdat->kswapd_order = 0;
3580		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
 
 
 
 
 
3581
3582		ret = try_to_freeze();
3583		if (kthread_should_stop())
3584			break;
3585
3586		/*
3587		 * We can speed up thawing tasks if we don't call balance_pgdat
3588		 * after returning from the refrigerator
3589		 */
3590		if (ret)
3591			continue;
3592
3593		/*
3594		 * Reclaim begins at the requested order but if a high-order
3595		 * reclaim fails then kswapd falls back to reclaiming for
3596		 * order-0. If that happens, kswapd will consider sleeping
3597		 * for the order it finished reclaiming at (reclaim_order)
3598		 * but kcompactd is woken to compact for the original
3599		 * request (alloc_order).
3600		 */
3601		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3602						alloc_order);
3603		fs_reclaim_acquire(GFP_KERNEL);
3604		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605		fs_reclaim_release(GFP_KERNEL);
3606		if (reclaim_order < alloc_order)
3607			goto kswapd_try_sleep;
3608	}
3609
3610	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611	current->reclaim_state = NULL;
3612
3613	return 0;
3614}
3615
3616/*
3617 * A zone is low on free memory or too fragmented for high-order memory.  If
3618 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3619 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3620 * has failed or is not needed, still wake up kcompactd if only compaction is
3621 * needed.
3622 */
3623void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3624		   enum zone_type classzone_idx)
3625{
3626	pg_data_t *pgdat;
3627
3628	if (!managed_zone(zone))
3629		return;
3630
3631	if (!cpuset_zone_allowed(zone, gfp_flags))
3632		return;
3633	pgdat = zone->zone_pgdat;
3634	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3635							   classzone_idx);
3636	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
 
3637	if (!waitqueue_active(&pgdat->kswapd_wait))
3638		return;
3639
3640	/* Hopeless node, leave it to direct reclaim if possible */
3641	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3642	    pgdat_balanced(pgdat, order, classzone_idx)) {
3643		/*
3644		 * There may be plenty of free memory available, but it's too
3645		 * fragmented for high-order allocations.  Wake up kcompactd
3646		 * and rely on compaction_suitable() to determine if it's
3647		 * needed.  If it fails, it will defer subsequent attempts to
3648		 * ratelimit its work.
3649		 */
3650		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3651			wakeup_kcompactd(pgdat, order, classzone_idx);
3652		return;
3653	}
3654
3655	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3656				      gfp_flags);
3657	wake_up_interruptible(&pgdat->kswapd_wait);
3658}
3659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660#ifdef CONFIG_HIBERNATION
3661/*
3662 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 * freed pages.
3664 *
3665 * Rather than trying to age LRUs the aim is to preserve the overall
3666 * LRU order by reclaiming preferentially
3667 * inactive > active > active referenced > active mapped
3668 */
3669unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3670{
3671	struct reclaim_state reclaim_state;
3672	struct scan_control sc = {
3673		.nr_to_reclaim = nr_to_reclaim,
3674		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3675		.reclaim_idx = MAX_NR_ZONES - 1,
3676		.priority = DEF_PRIORITY,
3677		.may_writepage = 1,
3678		.may_unmap = 1,
3679		.may_swap = 1,
 
 
 
3680		.hibernation_mode = 1,
 
 
 
 
3681	};
3682	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683	struct task_struct *p = current;
3684	unsigned long nr_reclaimed;
3685	unsigned int noreclaim_flag;
3686
3687	noreclaim_flag = memalloc_noreclaim_save();
3688	fs_reclaim_acquire(sc.gfp_mask);
3689	reclaim_state.reclaimed_slab = 0;
3690	p->reclaim_state = &reclaim_state;
3691
3692	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693
3694	p->reclaim_state = NULL;
3695	fs_reclaim_release(sc.gfp_mask);
3696	memalloc_noreclaim_restore(noreclaim_flag);
3697
3698	return nr_reclaimed;
3699}
3700#endif /* CONFIG_HIBERNATION */
3701
3702/* It's optimal to keep kswapds on the same CPUs as their memory, but
3703   not required for correctness.  So if the last cpu in a node goes
3704   away, we get changed to run anywhere: as the first one comes back,
3705   restore their cpu bindings. */
3706static int kswapd_cpu_online(unsigned int cpu)
 
3707{
3708	int nid;
3709
3710	for_each_node_state(nid, N_MEMORY) {
3711		pg_data_t *pgdat = NODE_DATA(nid);
3712		const struct cpumask *mask;
3713
3714		mask = cpumask_of_node(pgdat->node_id);
3715
3716		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3717			/* One of our CPUs online: restore mask */
3718			set_cpus_allowed_ptr(pgdat->kswapd, mask);
 
 
3719	}
3720	return 0;
3721}
3722
3723/*
3724 * This kswapd start function will be called by init and node-hot-add.
3725 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3726 */
3727int kswapd_run(int nid)
3728{
3729	pg_data_t *pgdat = NODE_DATA(nid);
3730	int ret = 0;
3731
3732	if (pgdat->kswapd)
3733		return 0;
3734
3735	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3736	if (IS_ERR(pgdat->kswapd)) {
3737		/* failure at boot is fatal */
3738		BUG_ON(system_state < SYSTEM_RUNNING);
3739		pr_err("Failed to start kswapd on node %d\n", nid);
3740		ret = PTR_ERR(pgdat->kswapd);
3741		pgdat->kswapd = NULL;
3742	}
3743	return ret;
3744}
3745
3746/*
3747 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3748 * hold mem_hotplug_begin/end().
3749 */
3750void kswapd_stop(int nid)
3751{
3752	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3753
3754	if (kswapd) {
3755		kthread_stop(kswapd);
3756		NODE_DATA(nid)->kswapd = NULL;
3757	}
3758}
3759
3760static int __init kswapd_init(void)
3761{
3762	int nid, ret;
3763
3764	swap_setup();
3765	for_each_node_state(nid, N_MEMORY)
3766 		kswapd_run(nid);
3767	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3768					"mm/vmscan:online", kswapd_cpu_online,
3769					NULL);
3770	WARN_ON(ret < 0);
3771	return 0;
3772}
3773
3774module_init(kswapd_init)
3775
3776#ifdef CONFIG_NUMA
3777/*
3778 * Node reclaim mode
3779 *
3780 * If non-zero call node_reclaim when the number of free pages falls below
3781 * the watermarks.
3782 */
3783int node_reclaim_mode __read_mostly;
3784
3785#define RECLAIM_OFF 0
3786#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3787#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3788#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3789
3790/*
3791 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3793 * a zone.
3794 */
3795#define NODE_RECLAIM_PRIORITY 4
3796
3797/*
3798 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 * occur.
3800 */
3801int sysctl_min_unmapped_ratio = 1;
3802
3803/*
3804 * If the number of slab pages in a zone grows beyond this percentage then
3805 * slab reclaim needs to occur.
3806 */
3807int sysctl_min_slab_ratio = 5;
3808
3809static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810{
3811	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3812	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3813		node_page_state(pgdat, NR_ACTIVE_FILE);
3814
3815	/*
3816	 * It's possible for there to be more file mapped pages than
3817	 * accounted for by the pages on the file LRU lists because
3818	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3819	 */
3820	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3821}
3822
3823/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825{
3826	unsigned long nr_pagecache_reclaimable;
3827	unsigned long delta = 0;
3828
3829	/*
3830	 * If RECLAIM_UNMAP is set, then all file pages are considered
3831	 * potentially reclaimable. Otherwise, we have to worry about
3832	 * pages like swapcache and node_unmapped_file_pages() provides
3833	 * a better estimate
3834	 */
3835	if (node_reclaim_mode & RECLAIM_UNMAP)
3836		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837	else
3838		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839
3840	/* If we can't clean pages, remove dirty pages from consideration */
3841	if (!(node_reclaim_mode & RECLAIM_WRITE))
3842		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843
3844	/* Watch for any possible underflows due to delta */
3845	if (unlikely(delta > nr_pagecache_reclaimable))
3846		delta = nr_pagecache_reclaimable;
3847
3848	return nr_pagecache_reclaimable - delta;
3849}
3850
3851/*
3852 * Try to free up some pages from this node through reclaim.
3853 */
3854static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855{
3856	/* Minimum pages needed in order to stay on node */
3857	const unsigned long nr_pages = 1 << order;
3858	struct task_struct *p = current;
3859	struct reclaim_state reclaim_state;
3860	unsigned int noreclaim_flag;
3861	struct scan_control sc = {
3862		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863		.gfp_mask = current_gfp_context(gfp_mask),
3864		.order = order,
3865		.priority = NODE_RECLAIM_PRIORITY,
3866		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3867		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868		.may_swap = 1,
3869		.reclaim_idx = gfp_zone(gfp_mask),
 
 
 
 
 
 
3870	};
 
3871
3872	cond_resched();
3873	/*
3874	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875	 * and we also need to be able to write out pages for RECLAIM_WRITE
3876	 * and RECLAIM_UNMAP.
3877	 */
3878	noreclaim_flag = memalloc_noreclaim_save();
3879	p->flags |= PF_SWAPWRITE;
3880	fs_reclaim_acquire(sc.gfp_mask);
3881	reclaim_state.reclaimed_slab = 0;
3882	p->reclaim_state = &reclaim_state;
3883
3884	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3885		/*
3886		 * Free memory by calling shrink node with increasing
3887		 * priorities until we have enough memory freed.
3888		 */
 
3889		do {
3890			shrink_node(pgdat, &sc);
3891		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892	}
3893
3894	p->reclaim_state = NULL;
3895	fs_reclaim_release(gfp_mask);
3896	current->flags &= ~PF_SWAPWRITE;
3897	memalloc_noreclaim_restore(noreclaim_flag);
3898	return sc.nr_reclaimed >= nr_pages;
3899}
3900
3901int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902{
 
3903	int ret;
3904
3905	/*
3906	 * Node reclaim reclaims unmapped file backed pages and
3907	 * slab pages if we are over the defined limits.
3908	 *
3909	 * A small portion of unmapped file backed pages is needed for
3910	 * file I/O otherwise pages read by file I/O will be immediately
3911	 * thrown out if the node is overallocated. So we do not reclaim
3912	 * if less than a specified percentage of the node is used by
3913	 * unmapped file backed pages.
3914	 */
3915	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3917		return NODE_RECLAIM_FULL;
 
 
 
3918
3919	/*
3920	 * Do not scan if the allocation should not be delayed.
3921	 */
3922	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923		return NODE_RECLAIM_NOSCAN;
3924
3925	/*
3926	 * Only run node reclaim on the local node or on nodes that do not
3927	 * have associated processors. This will favor the local processor
3928	 * over remote processors and spread off node memory allocations
3929	 * as wide as possible.
3930	 */
3931	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3932		return NODE_RECLAIM_NOSCAN;
 
3933
3934	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3935		return NODE_RECLAIM_NOSCAN;
3936
3937	ret = __node_reclaim(pgdat, gfp_mask, order);
3938	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939
3940	if (!ret)
3941		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3942
3943	return ret;
3944}
3945#endif
3946
3947/*
3948 * page_evictable - test whether a page is evictable
3949 * @page: the page to test
 
3950 *
3951 * Test whether page is evictable--i.e., should be placed on active/inactive
3952 * lists vs unevictable list.
 
3953 *
3954 * Reasons page might not be evictable:
3955 * (1) page's mapping marked unevictable
3956 * (2) page is part of an mlocked VMA
3957 *
3958 */
3959int page_evictable(struct page *page)
3960{
3961	int ret;
3962
3963	/* Prevent address_space of inode and swap cache from being freed */
3964	rcu_read_lock();
3965	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3966	rcu_read_unlock();
3967	return ret;
 
 
3968}
3969
3970#ifdef CONFIG_SHMEM
3971/**
3972 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3973 * @pages:	array of pages to check
3974 * @nr_pages:	number of pages to check
3975 *
3976 * Checks pages for evictability and moves them to the appropriate lru list.
 
3977 *
3978 * This function is only used for SysV IPC SHM_UNLOCK.
 
3979 */
3980void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981{
3982	struct lruvec *lruvec;
3983	struct pglist_data *pgdat = NULL;
3984	int pgscanned = 0;
3985	int pgrescued = 0;
3986	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3987
3988	for (i = 0; i < nr_pages; i++) {
3989		struct page *page = pages[i];
3990		struct pglist_data *pagepgdat = page_pgdat(page);
3991
3992		pgscanned++;
3993		if (pagepgdat != pgdat) {
3994			if (pgdat)
3995				spin_unlock_irq(&pgdat->lru_lock);
3996			pgdat = pagepgdat;
3997			spin_lock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3998		}
3999		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 
 
4000
4001		if (!PageLRU(page) || !PageUnevictable(page))
4002			continue;
 
 
4003
4004		if (page_evictable(page)) {
4005			enum lru_list lru = page_lru_base_type(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4006
4007			VM_BUG_ON_PAGE(PageActive(page), page);
4008			ClearPageUnevictable(page);
4009			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4010			add_page_to_lru_list(page, lruvec, lru);
4011			pgrescued++;
 
4012		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4013	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4014
4015	if (pgdat) {
4016		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4017		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018		spin_unlock_irq(&pgdat->lru_lock);
 
 
 
4019	}
 
4020}
4021#endif /* CONFIG_SHMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.1
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45#include <linux/prefetch.h>
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
 
  51
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/vmscan.h>
  56
  57/*
  58 * reclaim_mode determines how the inactive list is shrunk
  59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  60 * RECLAIM_MODE_ASYNC:  Do not block
  61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  63 *			page from the LRU and reclaim all pages within a
  64 *			naturally aligned range
  65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  66 *			order-0 pages and then compact the zone
  67 */
  68typedef unsigned __bitwise__ reclaim_mode_t;
  69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
  70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
  71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
  72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
  73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
  74
  75struct scan_control {
  76	/* Incremented by the number of inactive pages that were scanned */
  77	unsigned long nr_scanned;
  78
  79	/* Number of pages freed so far during a call to shrink_zones() */
  80	unsigned long nr_reclaimed;
  81
  82	/* How many pages shrink_list() should reclaim */
  83	unsigned long nr_to_reclaim;
  84
  85	unsigned long hibernation_mode;
  86
  87	/* This context's GFP mask */
  88	gfp_t gfp_mask;
  89
  90	int may_writepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Can mapped pages be reclaimed? */
  93	int may_unmap;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	int may_swap;
  97
  98	int order;
  99
 100	/*
 101	 * Intend to reclaim enough continuous memory rather than reclaim
 102	 * enough amount of memory. i.e, mode for high order allocation.
 
 103	 */
 104	reclaim_mode_t reclaim_mode;
 
 105
 106	/* Which cgroup do we reclaim from */
 107	struct mem_cgroup *mem_cgroup;
 108
 109	/*
 110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 111	 * are scanned.
 112	 */
 113	nodemask_t	*nodemask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 114};
 115
 116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 117
 118#ifdef ARCH_HAS_PREFETCH
 119#define prefetch_prev_lru_page(_page, _base, _field)			\
 120	do {								\
 121		if ((_page)->lru.prev != _base) {			\
 122			struct page *prev;				\
 123									\
 124			prev = lru_to_page(&(_page->lru));		\
 125			prefetch(&prev->_field);			\
 126		}							\
 127	} while (0)
 128#else
 129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 130#endif
 131
 132#ifdef ARCH_HAS_PREFETCHW
 133#define prefetchw_prev_lru_page(_page, _base, _field)			\
 134	do {								\
 135		if ((_page)->lru.prev != _base) {			\
 136			struct page *prev;				\
 137									\
 138			prev = lru_to_page(&(_page->lru));		\
 139			prefetchw(&prev->_field);			\
 140		}							\
 141	} while (0)
 142#else
 143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146/*
 147 * From 0 .. 100.  Higher means more swappy.
 148 */
 149int vm_swappiness = 60;
 150long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 151
 152static LIST_HEAD(shrinker_list);
 153static DECLARE_RWSEM(shrinker_rwsem);
 154
 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157#else
 158#define scanning_global_lru(sc)	(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159#endif
 160
 161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 162						  struct scan_control *sc)
 
 
 
 
 163{
 164	if (!scanning_global_lru(sc))
 165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 166
 167	return &zone->reclaim_stat;
 
 
 
 
 
 
 168}
 169
 170static unsigned long zone_nr_lru_pages(struct zone *zone,
 171				struct scan_control *sc, enum lru_list lru)
 
 
 
 
 
 172{
 173	if (!scanning_global_lru(sc))
 174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
 175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176
 177	return zone_page_state(zone, NR_LRU_BASE + lru);
 178}
 179
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185{
 186	shrinker->nr = 0;
 187	down_write(&shrinker_rwsem);
 188	list_add_tail(&shrinker->list, &shrinker_list);
 189	up_write(&shrinker_rwsem);
 190}
 
 
 
 
 
 
 
 
 
 
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 
 
 198	down_write(&shrinker_rwsem);
 199	list_del(&shrinker->list);
 200	up_write(&shrinker_rwsem);
 
 
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204static inline int do_shrinker_shrink(struct shrinker *shrinker,
 205				     struct shrink_control *sc,
 206				     unsigned long nr_to_scan)
 
 207{
 208	sc->nr_to_scan = nr_to_scan;
 209	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210}
 211
 212#define SHRINK_BATCH 128
 213/*
 214 * Call the shrink functions to age shrinkable caches
 215 *
 216 * Here we assume it costs one seek to replace a lru page and that it also
 217 * takes a seek to recreate a cache object.  With this in mind we age equal
 218 * percentages of the lru and ageable caches.  This should balance the seeks
 219 * generated by these structures.
 220 *
 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
 222 * slab to avoid swapping.
 223 *
 224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 225 *
 226 * `lru_pages' represents the number of on-LRU pages in all the zones which
 227 * are eligible for the caller's allocation attempt.  It is used for balancing
 228 * slab reclaim versus page reclaim.
 229 *
 230 * Returns the number of slab objects which we shrunk.
 231 */
 232unsigned long shrink_slab(struct shrink_control *shrink,
 233			  unsigned long nr_pages_scanned,
 234			  unsigned long lru_pages)
 
 
 235{
 236	struct shrinker *shrinker;
 237	unsigned long ret = 0;
 238
 239	if (nr_pages_scanned == 0)
 240		nr_pages_scanned = SWAP_CLUSTER_MAX;
 241
 242	if (!down_read_trylock(&shrinker_rwsem)) {
 243		/* Assume we'll be able to shrink next time */
 244		ret = 1;
 245		goto out;
 246	}
 247
 248	list_for_each_entry(shrinker, &shrinker_list, list) {
 249		unsigned long long delta;
 250		unsigned long total_scan;
 251		unsigned long max_pass;
 252		int shrink_ret = 0;
 253		long nr;
 254		long new_nr;
 255		long batch_size = shrinker->batch ? shrinker->batch
 256						  : SHRINK_BATCH;
 257
 258		/*
 259		 * copy the current shrinker scan count into a local variable
 260		 * and zero it so that other concurrent shrinker invocations
 261		 * don't also do this scanning work.
 262		 */
 263		do {
 264			nr = shrinker->nr;
 265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
 266
 267		total_scan = nr;
 268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 270		delta *= max_pass;
 271		do_div(delta, lru_pages + 1);
 272		total_scan += delta;
 273		if (total_scan < 0) {
 274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 275			       "delete nr=%ld\n",
 276			       shrinker->shrink, total_scan);
 277			total_scan = max_pass;
 278		}
 279
 280		/*
 281		 * We need to avoid excessive windup on filesystem shrinkers
 282		 * due to large numbers of GFP_NOFS allocations causing the
 283		 * shrinkers to return -1 all the time. This results in a large
 284		 * nr being built up so when a shrink that can do some work
 285		 * comes along it empties the entire cache due to nr >>>
 286		 * max_pass.  This is bad for sustaining a working set in
 287		 * memory.
 288		 *
 289		 * Hence only allow the shrinker to scan the entire cache when
 290		 * a large delta change is calculated directly.
 291		 */
 292		if (delta < max_pass / 4)
 293			total_scan = min(total_scan, max_pass / 2);
 294
 
 295		/*
 296		 * Avoid risking looping forever due to too large nr value:
 297		 * never try to free more than twice the estimate number of
 298		 * freeable entries.
 299		 */
 300		if (total_scan > max_pass * 2)
 301			total_scan = max_pass * 2;
 302
 303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 304					nr_pages_scanned, lru_pages,
 305					max_pass, delta, total_scan);
 306
 307		while (total_scan >= batch_size) {
 308			int nr_before;
 309
 310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 312							batch_size);
 313			if (shrink_ret == -1)
 314				break;
 315			if (shrink_ret < nr_before)
 316				ret += nr_before - shrink_ret;
 317			count_vm_events(SLABS_SCANNED, batch_size);
 318			total_scan -= batch_size;
 319
 320			cond_resched();
 321		}
 
 322
 323		/*
 324		 * move the unused scan count back into the shrinker in a
 325		 * manner that handles concurrent updates. If we exhausted the
 326		 * scan, there is no need to do an update.
 327		 */
 328		do {
 329			nr = shrinker->nr;
 330			new_nr = total_scan + nr;
 331			if (total_scan <= 0)
 332				break;
 333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
 334
 335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 336	}
 337	up_read(&shrinker_rwsem);
 338out:
 339	cond_resched();
 340	return ret;
 341}
 342
 343static void set_reclaim_mode(int priority, struct scan_control *sc,
 344				   bool sync)
 345{
 346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 347
 348	/*
 349	 * Initially assume we are entering either lumpy reclaim or
 350	 * reclaim/compaction.Depending on the order, we will either set the
 351	 * sync mode or just reclaim order-0 pages later.
 352	 */
 353	if (COMPACTION_BUILD)
 354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 355	else
 356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 357
 358	/*
 359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
 360	 * restricting when its set to either costly allocations or when
 361	 * under memory pressure
 362	 */
 363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 364		sc->reclaim_mode |= syncmode;
 365	else if (sc->order && priority < DEF_PRIORITY - 2)
 366		sc->reclaim_mode |= syncmode;
 367	else
 368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 369}
 370
 371static void reset_reclaim_mode(struct scan_control *sc)
 372{
 373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 
 
 
 374}
 375
 376static inline int is_page_cache_freeable(struct page *page)
 377{
 378	/*
 379	 * A freeable page cache page is referenced only by the caller
 380	 * that isolated the page, the page cache radix tree and
 381	 * optional buffer heads at page->private.
 382	 */
 383	return page_count(page) - page_has_private(page) == 2;
 
 
 384}
 385
 386static int may_write_to_queue(struct backing_dev_info *bdi,
 387			      struct scan_control *sc)
 388{
 389	if (current->flags & PF_SWAPWRITE)
 390		return 1;
 391	if (!bdi_write_congested(bdi))
 392		return 1;
 393	if (bdi == current->backing_dev_info)
 394		return 1;
 395
 396	/* lumpy reclaim for hugepage often need a lot of write */
 397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 398		return 1;
 399	return 0;
 400}
 401
 402/*
 403 * We detected a synchronous write error writing a page out.  Probably
 404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 405 * fsync(), msync() or close().
 406 *
 407 * The tricky part is that after writepage we cannot touch the mapping: nothing
 408 * prevents it from being freed up.  But we have a ref on the page and once
 409 * that page is locked, the mapping is pinned.
 410 *
 411 * We're allowed to run sleeping lock_page() here because we know the caller has
 412 * __GFP_FS.
 413 */
 414static void handle_write_error(struct address_space *mapping,
 415				struct page *page, int error)
 416{
 417	lock_page(page);
 418	if (page_mapping(page) == mapping)
 419		mapping_set_error(mapping, error);
 420	unlock_page(page);
 421}
 422
 423/* possible outcome of pageout() */
 424typedef enum {
 425	/* failed to write page out, page is locked */
 426	PAGE_KEEP,
 427	/* move page to the active list, page is locked */
 428	PAGE_ACTIVATE,
 429	/* page has been sent to the disk successfully, page is unlocked */
 430	PAGE_SUCCESS,
 431	/* page is clean and locked */
 432	PAGE_CLEAN,
 433} pageout_t;
 434
 435/*
 436 * pageout is called by shrink_page_list() for each dirty page.
 437 * Calls ->writepage().
 438 */
 439static pageout_t pageout(struct page *page, struct address_space *mapping,
 440			 struct scan_control *sc)
 441{
 442	/*
 443	 * If the page is dirty, only perform writeback if that write
 444	 * will be non-blocking.  To prevent this allocation from being
 445	 * stalled by pagecache activity.  But note that there may be
 446	 * stalls if we need to run get_block().  We could test
 447	 * PagePrivate for that.
 448	 *
 449	 * If this process is currently in __generic_file_aio_write() against
 450	 * this page's queue, we can perform writeback even if that
 451	 * will block.
 452	 *
 453	 * If the page is swapcache, write it back even if that would
 454	 * block, for some throttling. This happens by accident, because
 455	 * swap_backing_dev_info is bust: it doesn't reflect the
 456	 * congestion state of the swapdevs.  Easy to fix, if needed.
 457	 */
 458	if (!is_page_cache_freeable(page))
 459		return PAGE_KEEP;
 460	if (!mapping) {
 461		/*
 462		 * Some data journaling orphaned pages can have
 463		 * page->mapping == NULL while being dirty with clean buffers.
 464		 */
 465		if (page_has_private(page)) {
 466			if (try_to_free_buffers(page)) {
 467				ClearPageDirty(page);
 468				printk("%s: orphaned page\n", __func__);
 469				return PAGE_CLEAN;
 470			}
 471		}
 472		return PAGE_KEEP;
 473	}
 474	if (mapping->a_ops->writepage == NULL)
 475		return PAGE_ACTIVATE;
 476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 477		return PAGE_KEEP;
 478
 479	if (clear_page_dirty_for_io(page)) {
 480		int res;
 481		struct writeback_control wbc = {
 482			.sync_mode = WB_SYNC_NONE,
 483			.nr_to_write = SWAP_CLUSTER_MAX,
 484			.range_start = 0,
 485			.range_end = LLONG_MAX,
 486			.for_reclaim = 1,
 487		};
 488
 489		SetPageReclaim(page);
 490		res = mapping->a_ops->writepage(page, &wbc);
 491		if (res < 0)
 492			handle_write_error(mapping, page, res);
 493		if (res == AOP_WRITEPAGE_ACTIVATE) {
 494			ClearPageReclaim(page);
 495			return PAGE_ACTIVATE;
 496		}
 497
 498		/*
 499		 * Wait on writeback if requested to. This happens when
 500		 * direct reclaiming a large contiguous area and the
 501		 * first attempt to free a range of pages fails.
 502		 */
 503		if (PageWriteback(page) &&
 504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 505			wait_on_page_writeback(page);
 506
 507		if (!PageWriteback(page)) {
 508			/* synchronous write or broken a_ops? */
 509			ClearPageReclaim(page);
 510		}
 511		trace_mm_vmscan_writepage(page,
 512			trace_reclaim_flags(page, sc->reclaim_mode));
 513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 514		return PAGE_SUCCESS;
 515	}
 516
 517	return PAGE_CLEAN;
 518}
 519
 520/*
 521 * Same as remove_mapping, but if the page is removed from the mapping, it
 522 * gets returned with a refcount of 0.
 523 */
 524static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 525{
 
 
 
 526	BUG_ON(!PageLocked(page));
 527	BUG_ON(mapping != page_mapping(page));
 528
 529	spin_lock_irq(&mapping->tree_lock);
 530	/*
 531	 * The non racy check for a busy page.
 532	 *
 533	 * Must be careful with the order of the tests. When someone has
 534	 * a ref to the page, it may be possible that they dirty it then
 535	 * drop the reference. So if PageDirty is tested before page_count
 536	 * here, then the following race may occur:
 537	 *
 538	 * get_user_pages(&page);
 539	 * [user mapping goes away]
 540	 * write_to(page);
 541	 *				!PageDirty(page)    [good]
 542	 * SetPageDirty(page);
 543	 * put_page(page);
 544	 *				!page_count(page)   [good, discard it]
 545	 *
 546	 * [oops, our write_to data is lost]
 547	 *
 548	 * Reversing the order of the tests ensures such a situation cannot
 549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 550	 * load is not satisfied before that of page->_count.
 551	 *
 552	 * Note that if SetPageDirty is always performed via set_page_dirty,
 553	 * and thus under tree_lock, then this ordering is not required.
 554	 */
 555	if (!page_freeze_refs(page, 2))
 
 
 
 
 556		goto cannot_free;
 557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 558	if (unlikely(PageDirty(page))) {
 559		page_unfreeze_refs(page, 2);
 560		goto cannot_free;
 561	}
 562
 563	if (PageSwapCache(page)) {
 564		swp_entry_t swap = { .val = page_private(page) };
 
 565		__delete_from_swap_cache(page);
 566		spin_unlock_irq(&mapping->tree_lock);
 567		swapcache_free(swap, page);
 568	} else {
 569		void (*freepage)(struct page *);
 
 570
 571		freepage = mapping->a_ops->freepage;
 572
 573		__delete_from_page_cache(page);
 574		spin_unlock_irq(&mapping->tree_lock);
 575		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577		if (freepage != NULL)
 578			freepage(page);
 579	}
 580
 581	return 1;
 582
 583cannot_free:
 584	spin_unlock_irq(&mapping->tree_lock);
 585	return 0;
 586}
 587
 588/*
 589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 590 * someone else has a ref on the page, abort and return 0.  If it was
 591 * successfully detached, return 1.  Assumes the caller has a single ref on
 592 * this page.
 593 */
 594int remove_mapping(struct address_space *mapping, struct page *page)
 595{
 596	if (__remove_mapping(mapping, page)) {
 597		/*
 598		 * Unfreezing the refcount with 1 rather than 2 effectively
 599		 * drops the pagecache ref for us without requiring another
 600		 * atomic operation.
 601		 */
 602		page_unfreeze_refs(page, 1);
 603		return 1;
 604	}
 605	return 0;
 606}
 607
 608/**
 609 * putback_lru_page - put previously isolated page onto appropriate LRU list
 610 * @page: page to be put back to appropriate lru list
 611 *
 612 * Add previously isolated @page to appropriate LRU list.
 613 * Page may still be unevictable for other reasons.
 614 *
 615 * lru_lock must not be held, interrupts must be enabled.
 616 */
 617void putback_lru_page(struct page *page)
 618{
 619	int lru;
 620	int active = !!TestClearPageActive(page);
 621	int was_unevictable = PageUnevictable(page);
 622
 623	VM_BUG_ON(PageLRU(page));
 624
 625redo:
 626	ClearPageUnevictable(page);
 627
 628	if (page_evictable(page, NULL)) {
 629		/*
 630		 * For evictable pages, we can use the cache.
 631		 * In event of a race, worst case is we end up with an
 632		 * unevictable page on [in]active list.
 633		 * We know how to handle that.
 634		 */
 635		lru = active + page_lru_base_type(page);
 636		lru_cache_add_lru(page, lru);
 637	} else {
 638		/*
 639		 * Put unevictable pages directly on zone's unevictable
 640		 * list.
 641		 */
 642		lru = LRU_UNEVICTABLE;
 643		add_page_to_unevictable_list(page);
 644		/*
 645		 * When racing with an mlock clearing (page is
 646		 * unlocked), make sure that if the other thread does
 647		 * not observe our setting of PG_lru and fails
 648		 * isolation, we see PG_mlocked cleared below and move
 649		 * the page back to the evictable list.
 650		 *
 651		 * The other side is TestClearPageMlocked().
 652		 */
 653		smp_mb();
 654	}
 655
 656	/*
 657	 * page's status can change while we move it among lru. If an evictable
 658	 * page is on unevictable list, it never be freed. To avoid that,
 659	 * check after we added it to the list, again.
 660	 */
 661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 662		if (!isolate_lru_page(page)) {
 663			put_page(page);
 664			goto redo;
 665		}
 666		/* This means someone else dropped this page from LRU
 667		 * So, it will be freed or putback to LRU again. There is
 668		 * nothing to do here.
 669		 */
 670	}
 671
 672	if (was_unevictable && lru != LRU_UNEVICTABLE)
 673		count_vm_event(UNEVICTABLE_PGRESCUED);
 674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 675		count_vm_event(UNEVICTABLE_PGCULLED);
 676
 677	put_page(page);		/* drop ref from isolate */
 678}
 679
 680enum page_references {
 681	PAGEREF_RECLAIM,
 682	PAGEREF_RECLAIM_CLEAN,
 683	PAGEREF_KEEP,
 684	PAGEREF_ACTIVATE,
 685};
 686
 687static enum page_references page_check_references(struct page *page,
 688						  struct scan_control *sc)
 689{
 690	int referenced_ptes, referenced_page;
 691	unsigned long vm_flags;
 692
 693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 
 694	referenced_page = TestClearPageReferenced(page);
 695
 696	/* Lumpy reclaim - ignore references */
 697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 698		return PAGEREF_RECLAIM;
 699
 700	/*
 701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 702	 * move the page to the unevictable list.
 703	 */
 704	if (vm_flags & VM_LOCKED)
 705		return PAGEREF_RECLAIM;
 706
 707	if (referenced_ptes) {
 708		if (PageAnon(page))
 709			return PAGEREF_ACTIVATE;
 710		/*
 711		 * All mapped pages start out with page table
 712		 * references from the instantiating fault, so we need
 713		 * to look twice if a mapped file page is used more
 714		 * than once.
 715		 *
 716		 * Mark it and spare it for another trip around the
 717		 * inactive list.  Another page table reference will
 718		 * lead to its activation.
 719		 *
 720		 * Note: the mark is set for activated pages as well
 721		 * so that recently deactivated but used pages are
 722		 * quickly recovered.
 723		 */
 724		SetPageReferenced(page);
 725
 726		if (referenced_page)
 
 
 
 
 
 
 727			return PAGEREF_ACTIVATE;
 728
 729		return PAGEREF_KEEP;
 730	}
 731
 732	/* Reclaim if clean, defer dirty pages to writeback */
 733	if (referenced_page && !PageSwapBacked(page))
 734		return PAGEREF_RECLAIM_CLEAN;
 735
 736	return PAGEREF_RECLAIM;
 737}
 738
 739static noinline_for_stack void free_page_list(struct list_head *free_pages)
 
 
 740{
 741	struct pagevec freed_pvec;
 742	struct page *page, *tmp;
 
 
 
 
 
 
 
 
 
 
 743
 744	pagevec_init(&freed_pvec, 1);
 
 
 745
 746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 747		list_del(&page->lru);
 748		if (!pagevec_add(&freed_pvec, page)) {
 749			__pagevec_free(&freed_pvec);
 750			pagevec_reinit(&freed_pvec);
 751		}
 752	}
 753
 754	pagevec_free(&freed_pvec);
 
 
 755}
 756
 757/*
 758 * shrink_page_list() returns the number of reclaimed pages
 759 */
 760static unsigned long shrink_page_list(struct list_head *page_list,
 761				      struct zone *zone,
 762				      struct scan_control *sc)
 
 
 
 763{
 764	LIST_HEAD(ret_pages);
 765	LIST_HEAD(free_pages);
 766	int pgactivate = 0;
 767	unsigned long nr_dirty = 0;
 768	unsigned long nr_congested = 0;
 769	unsigned long nr_reclaimed = 0;
 
 
 
 
 
 770
 771	cond_resched();
 772
 773	while (!list_empty(page_list)) {
 774		enum page_references references;
 775		struct address_space *mapping;
 776		struct page *page;
 777		int may_enter_fs;
 
 
 778
 779		cond_resched();
 780
 781		page = lru_to_page(page_list);
 782		list_del(&page->lru);
 783
 784		if (!trylock_page(page))
 785			goto keep;
 786
 787		VM_BUG_ON(PageActive(page));
 788		VM_BUG_ON(page_zone(page) != zone);
 789
 790		sc->nr_scanned++;
 791
 792		if (unlikely(!page_evictable(page, NULL)))
 793			goto cull_mlocked;
 794
 795		if (!sc->may_unmap && page_mapped(page))
 796			goto keep_locked;
 797
 798		/* Double the slab pressure for mapped and swapcache pages */
 799		if (page_mapped(page) || PageSwapCache(page))
 
 800			sc->nr_scanned++;
 801
 802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		if (PageWriteback(page)) {
 806			/*
 807			 * Synchronous reclaim is performed in two passes,
 808			 * first an asynchronous pass over the list to
 809			 * start parallel writeback, and a second synchronous
 810			 * pass to wait for the IO to complete.  Wait here
 811			 * for any page for which writeback has already
 812			 * started.
 813			 */
 814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 815			    may_enter_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816				wait_on_page_writeback(page);
 817			else {
 818				unlock_page(page);
 819				goto keep_lumpy;
 820			}
 821		}
 822
 823		references = page_check_references(page, sc);
 
 
 824		switch (references) {
 825		case PAGEREF_ACTIVATE:
 826			goto activate_locked;
 827		case PAGEREF_KEEP:
 
 828			goto keep_locked;
 829		case PAGEREF_RECLAIM:
 830		case PAGEREF_RECLAIM_CLEAN:
 831			; /* try to reclaim the page below */
 832		}
 833
 834		/*
 835		 * Anonymous process memory has backing store?
 836		 * Try to allocate it some swap space here.
 
 837		 */
 838		if (PageAnon(page) && !PageSwapCache(page)) {
 839			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840				goto keep_locked;
 841			if (!add_to_swap(page))
 842				goto activate_locked;
 843			may_enter_fs = 1;
 844		}
 845
 846		mapping = page_mapping(page);
 847
 848		/*
 849		 * The page is mapped into the page tables of one or more
 850		 * processes. Try to unmap it here.
 851		 */
 852		if (page_mapped(page) && mapping) {
 853			switch (try_to_unmap(page, TTU_UNMAP)) {
 854			case SWAP_FAIL:
 
 
 
 
 855				goto activate_locked;
 856			case SWAP_AGAIN:
 857				goto keep_locked;
 858			case SWAP_MLOCK:
 859				goto cull_mlocked;
 860			case SWAP_SUCCESS:
 861				; /* try to free the page below */
 862			}
 863		}
 864
 865		if (PageDirty(page)) {
 866			nr_dirty++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868			if (references == PAGEREF_RECLAIM_CLEAN)
 869				goto keep_locked;
 870			if (!may_enter_fs)
 871				goto keep_locked;
 872			if (!sc->may_writepage)
 873				goto keep_locked;
 874
 875			/* Page is dirty, try to write it out here */
 
 
 
 
 
 876			switch (pageout(page, mapping, sc)) {
 877			case PAGE_KEEP:
 878				nr_congested++;
 879				goto keep_locked;
 880			case PAGE_ACTIVATE:
 881				goto activate_locked;
 882			case PAGE_SUCCESS:
 883				if (PageWriteback(page))
 884					goto keep_lumpy;
 885				if (PageDirty(page))
 886					goto keep;
 887
 888				/*
 889				 * A synchronous write - probably a ramdisk.  Go
 890				 * ahead and try to reclaim the page.
 891				 */
 892				if (!trylock_page(page))
 893					goto keep;
 894				if (PageDirty(page) || PageWriteback(page))
 895					goto keep_locked;
 896				mapping = page_mapping(page);
 897			case PAGE_CLEAN:
 898				; /* try to free the page below */
 899			}
 900		}
 901
 902		/*
 903		 * If the page has buffers, try to free the buffer mappings
 904		 * associated with this page. If we succeed we try to free
 905		 * the page as well.
 906		 *
 907		 * We do this even if the page is PageDirty().
 908		 * try_to_release_page() does not perform I/O, but it is
 909		 * possible for a page to have PageDirty set, but it is actually
 910		 * clean (all its buffers are clean).  This happens if the
 911		 * buffers were written out directly, with submit_bh(). ext3
 912		 * will do this, as well as the blockdev mapping.
 913		 * try_to_release_page() will discover that cleanness and will
 914		 * drop the buffers and mark the page clean - it can be freed.
 915		 *
 916		 * Rarely, pages can have buffers and no ->mapping.  These are
 917		 * the pages which were not successfully invalidated in
 918		 * truncate_complete_page().  We try to drop those buffers here
 919		 * and if that worked, and the page is no longer mapped into
 920		 * process address space (page_count == 1) it can be freed.
 921		 * Otherwise, leave the page on the LRU so it is swappable.
 922		 */
 923		if (page_has_private(page)) {
 924			if (!try_to_release_page(page, sc->gfp_mask))
 925				goto activate_locked;
 926			if (!mapping && page_count(page) == 1) {
 927				unlock_page(page);
 928				if (put_page_testzero(page))
 929					goto free_it;
 930				else {
 931					/*
 932					 * rare race with speculative reference.
 933					 * the speculative reference will free
 934					 * this page shortly, so we may
 935					 * increment nr_reclaimed here (and
 936					 * leave it off the LRU).
 937					 */
 938					nr_reclaimed++;
 939					continue;
 940				}
 941			}
 942		}
 943
 944		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 945			goto keep_locked;
 946
 947		/*
 948		 * At this point, we have no other references and there is
 949		 * no way to pick any more up (removed from LRU, removed
 950		 * from pagecache). Can use non-atomic bitops now (and
 951		 * we obviously don't have to worry about waking up a process
 952		 * waiting on the page lock, because there are no references.
 953		 */
 954		__clear_page_locked(page);
 955free_it:
 956		nr_reclaimed++;
 957
 958		/*
 959		 * Is there need to periodically free_page_list? It would
 960		 * appear not as the counts should be low
 961		 */
 962		list_add(&page->lru, &free_pages);
 963		continue;
 964
 965cull_mlocked:
 966		if (PageSwapCache(page))
 967			try_to_free_swap(page);
 968		unlock_page(page);
 969		putback_lru_page(page);
 970		reset_reclaim_mode(sc);
 971		continue;
 972
 973activate_locked:
 974		/* Not a candidate for swapping, so reclaim swap space. */
 975		if (PageSwapCache(page) && vm_swap_full())
 
 976			try_to_free_swap(page);
 977		VM_BUG_ON(PageActive(page));
 978		SetPageActive(page);
 979		pgactivate++;
 
 
 
 980keep_locked:
 981		unlock_page(page);
 982keep:
 983		reset_reclaim_mode(sc);
 984keep_lumpy:
 985		list_add(&page->lru, &ret_pages);
 986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 987	}
 988
 989	/*
 990	 * Tag a zone as congested if all the dirty pages encountered were
 991	 * backed by a congested BDI. In this case, reclaimers should just
 992	 * back off and wait for congestion to clear because further reclaim
 993	 * will encounter the same problem
 994	 */
 995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 996		zone_set_flag(zone, ZONE_CONGESTED);
 997
 998	free_page_list(&free_pages);
 999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
 
 
 
 
 
 
 
 
 
 
 
1002	return nr_reclaimed;
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, int mode, int file)
1016{
1017	int ret = -EINVAL;
1018
1019	/* Only take pages on the LRU. */
1020	if (!PageLRU(page))
1021		return ret;
1022
1023	/*
1024	 * When checking the active state, we need to be sure we are
1025	 * dealing with comparible boolean values.  Take the logical not
1026	 * of each.
1027	 */
1028	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029		return ret;
1030
1031	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032		return ret;
1033
1034	/*
1035	 * When this function is being called for lumpy reclaim, we
1036	 * initially look into all LRU pages, active, inactive and
1037	 * unevictable; only give shrink_page_list evictable pages.
 
 
 
1038	 */
1039	if (PageUnevictable(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040		return ret;
1041
1042	ret = -EBUSY;
1043
1044	if (likely(get_page_unless_zero(page))) {
1045		/*
1046		 * Be careful not to clear PageLRU until after we're
1047		 * sure the page is not being freed elsewhere -- the
1048		 * page release code relies on it.
1049		 */
1050		ClearPageLRU(page);
1051		ret = 0;
1052	}
1053
1054	return ret;
1055}
1056
 
1057/*
1058 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1061 *
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1064 *
1065 * Appropriate locks must be held before calling this function.
1066 *
1067 * @nr_to_scan:	The number of pages to look through on the list.
1068 * @src:	The LRU list to pull pages off.
1069 * @dst:	The temp list to put pages on to.
1070 * @scanned:	The number of pages that were scanned.
1071 * @order:	The caller's attempted allocation order
1072 * @mode:	One of the LRU isolation modes
1073 * @file:	True [1] if isolating file [!anon] pages
1074 *
1075 * returns how many pages were moved onto *@dst.
1076 */
1077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078		struct list_head *src, struct list_head *dst,
1079		unsigned long *scanned, int order, int mode, int file)
 
1080{
 
1081	unsigned long nr_taken = 0;
1082	unsigned long nr_lumpy_taken = 0;
1083	unsigned long nr_lumpy_dirty = 0;
1084	unsigned long nr_lumpy_failed = 0;
1085	unsigned long scan;
1086
1087	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
1088		struct page *page;
1089		unsigned long pfn;
1090		unsigned long end_pfn;
1091		unsigned long page_pfn;
1092		int zone_id;
1093
1094		page = lru_to_page(src);
1095		prefetchw_prev_lru_page(page, src, flags);
1096
1097		VM_BUG_ON(!PageLRU(page));
1098
1099		switch (__isolate_lru_page(page, mode, file)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1100		case 0:
 
 
 
1101			list_move(&page->lru, dst);
1102			mem_cgroup_del_lru(page);
1103			nr_taken += hpage_nr_pages(page);
1104			break;
1105
1106		case -EBUSY:
1107			/* else it is being freed elsewhere */
1108			list_move(&page->lru, src);
1109			mem_cgroup_rotate_lru_list(page, page_lru(page));
1110			continue;
1111
1112		default:
1113			BUG();
1114		}
 
1115
1116		if (!order)
1117			continue;
1118
1119		/*
1120		 * Attempt to take all pages in the order aligned region
1121		 * surrounding the tag page.  Only take those pages of
1122		 * the same active state as that tag page.  We may safely
1123		 * round the target page pfn down to the requested order
1124		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125		 * where that page is in a different zone we will detect
1126		 * it from its zone id and abort this block scan.
1127		 */
1128		zone_id = page_zone_id(page);
1129		page_pfn = page_to_pfn(page);
1130		pfn = page_pfn & ~((1 << order) - 1);
1131		end_pfn = pfn + (1 << order);
1132		for (; pfn < end_pfn; pfn++) {
1133			struct page *cursor_page;
1134
1135			/* The target page is in the block, ignore it. */
1136			if (unlikely(pfn == page_pfn))
1137				continue;
1138
1139			/* Avoid holes within the zone. */
1140			if (unlikely(!pfn_valid_within(pfn)))
1141				break;
1142
1143			cursor_page = pfn_to_page(pfn);
1144
1145			/* Check that we have not crossed a zone boundary. */
1146			if (unlikely(page_zone_id(cursor_page) != zone_id))
1147				break;
1148
1149			/*
1150			 * If we don't have enough swap space, reclaiming of
1151			 * anon page which don't already have a swap slot is
1152			 * pointless.
1153			 */
1154			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155			    !PageSwapCache(cursor_page))
1156				break;
1157
1158			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159				list_move(&cursor_page->lru, dst);
1160				mem_cgroup_del_lru(cursor_page);
1161				nr_taken += hpage_nr_pages(page);
1162				nr_lumpy_taken++;
1163				if (PageDirty(cursor_page))
1164					nr_lumpy_dirty++;
1165				scan++;
1166			} else {
1167				/*
1168				 * Check if the page is freed already.
1169				 *
1170				 * We can't use page_count() as that
1171				 * requires compound_head and we don't
1172				 * have a pin on the page here. If a
1173				 * page is tail, we may or may not
1174				 * have isolated the head, so assume
1175				 * it's not free, it'd be tricky to
1176				 * track the head status without a
1177				 * page pin.
1178				 */
1179				if (!PageTail(cursor_page) &&
1180				    !atomic_read(&cursor_page->_count))
1181					continue;
1182				break;
1183			}
1184		}
1185
1186		/* If we break out of the loop above, lumpy reclaim failed */
1187		if (pfn < end_pfn)
1188			nr_lumpy_failed++;
1189	}
1190
1191	*scanned = scan;
1192
1193	trace_mm_vmscan_lru_isolate(order,
1194			nr_to_scan, scan,
1195			nr_taken,
1196			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197			mode);
1198	return nr_taken;
1199}
1200
1201static unsigned long isolate_pages_global(unsigned long nr,
1202					struct list_head *dst,
1203					unsigned long *scanned, int order,
1204					int mode, struct zone *z,
1205					int active, int file)
1206{
1207	int lru = LRU_BASE;
1208	if (active)
1209		lru += LRU_ACTIVE;
1210	if (file)
1211		lru += LRU_FILE;
1212	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213								mode, file);
1214}
1215
1216/*
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1219 */
1220static unsigned long clear_active_flags(struct list_head *page_list,
1221					unsigned int *count)
1222{
1223	int nr_active = 0;
1224	int lru;
1225	struct page *page;
1226
1227	list_for_each_entry(page, page_list, lru) {
1228		int numpages = hpage_nr_pages(page);
1229		lru = page_lru_base_type(page);
1230		if (PageActive(page)) {
1231			lru += LRU_ACTIVE;
1232			ClearPageActive(page);
1233			nr_active += numpages;
1234		}
1235		if (count)
1236			count[lru] += numpages;
1237	}
1238
1239	return nr_active;
1240}
1241
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared.  If it was found on
1253 * the active list, it will have PageActive set.  If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
 
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 *     fundamentnal difference from isolate_lru_pages (which is called
1263 *     without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269	int ret = -EBUSY;
1270
1271	VM_BUG_ON(!page_count(page));
 
1272
1273	if (PageLRU(page)) {
1274		struct zone *zone = page_zone(page);
 
1275
1276		spin_lock_irq(&zone->lru_lock);
 
1277		if (PageLRU(page)) {
1278			int lru = page_lru(page);
1279			ret = 0;
1280			get_page(page);
1281			ClearPageLRU(page);
1282
1283			del_page_from_lru_list(zone, page, lru);
1284		}
1285		spin_unlock_irq(&zone->lru_lock);
1286	}
1287	return ret;
1288}
1289
1290/*
1291 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1292 */
1293static int too_many_isolated(struct zone *zone, int file,
1294		struct scan_control *sc)
1295{
1296	unsigned long inactive, isolated;
1297
1298	if (current_is_kswapd())
1299		return 0;
1300
1301	if (!scanning_global_lru(sc))
1302		return 0;
1303
1304	if (file) {
1305		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307	} else {
1308		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1310	}
1311
 
 
 
 
 
 
 
 
1312	return isolated > inactive;
1313}
1314
1315/*
1316 * TODO: Try merging with migrations version of putback_lru_pages
1317 */
1318static noinline_for_stack void
1319putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320				unsigned long nr_anon, unsigned long nr_file,
1321				struct list_head *page_list)
1322{
1323	struct page *page;
1324	struct pagevec pvec;
1325	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1326
1327	pagevec_init(&pvec, 1);
1328
1329	/*
1330	 * Put back any unfreeable pages.
1331	 */
1332	spin_lock(&zone->lru_lock);
1333	while (!list_empty(page_list)) {
 
1334		int lru;
1335		page = lru_to_page(page_list);
1336		VM_BUG_ON(PageLRU(page));
1337		list_del(&page->lru);
1338		if (unlikely(!page_evictable(page, NULL))) {
1339			spin_unlock_irq(&zone->lru_lock);
1340			putback_lru_page(page);
1341			spin_lock_irq(&zone->lru_lock);
1342			continue;
1343		}
 
 
 
1344		SetPageLRU(page);
1345		lru = page_lru(page);
1346		add_page_to_lru_list(zone, page, lru);
 
1347		if (is_active_lru(lru)) {
1348			int file = is_file_lru(lru);
1349			int numpages = hpage_nr_pages(page);
1350			reclaim_stat->recent_rotated[file] += numpages;
1351		}
1352		if (!pagevec_add(&pvec, page)) {
1353			spin_unlock_irq(&zone->lru_lock);
1354			__pagevec_release(&pvec);
1355			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
1356		}
1357	}
1358	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1360
1361	spin_unlock_irq(&zone->lru_lock);
1362	pagevec_release(&pvec);
1363}
1364
1365static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366					struct scan_control *sc,
1367					unsigned long *nr_anon,
1368					unsigned long *nr_file,
1369					struct list_head *isolated_list)
1370{
1371	unsigned long nr_active;
1372	unsigned int count[NR_LRU_LISTS] = { 0, };
1373	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375	nr_active = clear_active_flags(isolated_list, count);
1376	__count_vm_events(PGDEACTIVATE, nr_active);
1377
1378	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379			      -count[LRU_ACTIVE_FILE]);
1380	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381			      -count[LRU_INACTIVE_FILE]);
1382	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383			      -count[LRU_ACTIVE_ANON]);
1384	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385			      -count[LRU_INACTIVE_ANON]);
1386
1387	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1391
1392	reclaim_stat->recent_scanned[0] += *nr_anon;
1393	reclaim_stat->recent_scanned[1] += *nr_file;
1394}
1395
1396/*
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1398 *
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1403 */
1404static inline bool should_reclaim_stall(unsigned long nr_taken,
1405					unsigned long nr_freed,
1406					int priority,
1407					struct scan_control *sc)
1408{
1409	int lumpy_stall_priority;
1410
1411	/* kswapd should not stall on sync IO */
1412	if (current_is_kswapd())
1413		return false;
1414
1415	/* Only stall on lumpy reclaim */
1416	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417		return false;
1418
1419	/* If we have relaimed everything on the isolated list, no stall */
1420	if (nr_freed == nr_taken)
1421		return false;
1422
1423	/*
1424	 * For high-order allocations, there are two stall thresholds.
1425	 * High-cost allocations stall immediately where as lower
1426	 * order allocations such as stacks require the scanning
1427	 * priority to be much higher before stalling.
1428	 */
1429	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430		lumpy_stall_priority = DEF_PRIORITY;
1431	else
1432		lumpy_stall_priority = DEF_PRIORITY / 3;
1433
1434	return priority <= lumpy_stall_priority;
1435}
1436
1437/*
1438 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1439 * of reclaimed pages
1440 */
1441static noinline_for_stack unsigned long
1442shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443			struct scan_control *sc, int priority, int file)
1444{
1445	LIST_HEAD(page_list);
1446	unsigned long nr_scanned;
1447	unsigned long nr_reclaimed = 0;
1448	unsigned long nr_taken;
1449	unsigned long nr_anon;
1450	unsigned long nr_file;
1451
1452	while (unlikely(too_many_isolated(zone, file, sc))) {
1453		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
 
1454
1455		/* We are about to die and free our memory. Return now. */
1456		if (fatal_signal_pending(current))
1457			return SWAP_CLUSTER_MAX;
1458	}
1459
1460	set_reclaim_mode(priority, sc, false);
1461	lru_add_drain();
1462	spin_lock_irq(&zone->lru_lock);
1463
1464	if (scanning_global_lru(sc)) {
1465		nr_taken = isolate_pages_global(nr_to_scan,
1466			&page_list, &nr_scanned, sc->order,
1467			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468					ISOLATE_BOTH : ISOLATE_INACTIVE,
1469			zone, 0, file);
1470		zone->pages_scanned += nr_scanned;
1471		if (current_is_kswapd())
1472			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473					       nr_scanned);
1474		else
1475			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1476					       nr_scanned);
 
 
 
1477	} else {
1478		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479			&page_list, &nr_scanned, sc->order,
1480			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481					ISOLATE_BOTH : ISOLATE_INACTIVE,
1482			zone, sc->mem_cgroup,
1483			0, file);
1484		/*
1485		 * mem_cgroup_isolate_pages() keeps track of
1486		 * scanned pages on its own.
1487		 */
1488	}
 
1489
1490	if (nr_taken == 0) {
1491		spin_unlock_irq(&zone->lru_lock);
1492		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493	}
1494
1495	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1496
1497	spin_unlock_irq(&zone->lru_lock);
1498
1499	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1500
1501	/* Check if we should syncronously wait for writeback */
1502	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503		set_reclaim_mode(priority, sc, true);
1504		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1505	}
1506
1507	local_irq_disable();
1508	if (current_is_kswapd())
1509		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
 
 
 
 
 
 
 
 
 
1511
1512	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
 
 
 
 
 
 
 
1513
1514	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515		zone_idx(zone),
1516		nr_scanned, nr_reclaimed,
1517		priority,
1518		trace_shrink_flags(file, sc->reclaim_mode));
1519	return nr_reclaimed;
1520}
1521
1522/*
1523 * This moves pages from the active list to the inactive list.
1524 *
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1527 *
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation.  But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page.  It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1535 *
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
 
 
1538 */
1539
1540static void move_active_pages_to_lru(struct zone *zone,
1541				     struct list_head *list,
 
1542				     enum lru_list lru)
1543{
1544	unsigned long pgmoved = 0;
1545	struct pagevec pvec;
1546	struct page *page;
1547
1548	pagevec_init(&pvec, 1);
1549
1550	while (!list_empty(list)) {
1551		page = lru_to_page(list);
 
1552
1553		VM_BUG_ON(PageLRU(page));
1554		SetPageLRU(page);
1555
1556		list_move(&page->lru, &zone->lru[lru].list);
1557		mem_cgroup_add_lru_list(page, lru);
1558		pgmoved += hpage_nr_pages(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561			spin_unlock_irq(&zone->lru_lock);
1562			if (buffer_heads_over_limit)
1563				pagevec_strip(&pvec);
1564			__pagevec_release(&pvec);
1565			spin_lock_irq(&zone->lru_lock);
1566		}
1567	}
1568	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569	if (!is_active_lru(lru))
1570		__count_vm_events(PGDEACTIVATE, pgmoved);
1571}
1572
1573static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574			struct scan_control *sc, int priority, int file)
 
 
1575{
1576	unsigned long nr_taken;
1577	unsigned long pgscanned;
1578	unsigned long vm_flags;
1579	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1580	LIST_HEAD(l_active);
1581	LIST_HEAD(l_inactive);
1582	struct page *page;
1583	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584	unsigned long nr_rotated = 0;
 
 
 
 
1585
1586	lru_add_drain();
1587	spin_lock_irq(&zone->lru_lock);
1588	if (scanning_global_lru(sc)) {
1589		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590						&pgscanned, sc->order,
1591						ISOLATE_ACTIVE, zone,
1592						1, file);
1593		zone->pages_scanned += pgscanned;
1594	} else {
1595		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596						&pgscanned, sc->order,
1597						ISOLATE_ACTIVE, zone,
1598						sc->mem_cgroup, 1, file);
1599		/*
1600		 * mem_cgroup_isolate_pages() keeps track of
1601		 * scanned pages on its own.
1602		 */
1603	}
1604
 
 
 
 
 
 
 
 
 
1605	reclaim_stat->recent_scanned[file] += nr_taken;
1606
1607	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1608	if (file)
1609		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610	else
1611		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613	spin_unlock_irq(&zone->lru_lock);
1614
1615	while (!list_empty(&l_hold)) {
1616		cond_resched();
1617		page = lru_to_page(&l_hold);
1618		list_del(&page->lru);
1619
1620		if (unlikely(!page_evictable(page, NULL))) {
1621			putback_lru_page(page);
1622			continue;
1623		}
1624
1625		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
 
 
 
 
 
 
 
 
 
1626			nr_rotated += hpage_nr_pages(page);
1627			/*
1628			 * Identify referenced, file-backed active pages and
1629			 * give them one more trip around the active list. So
1630			 * that executable code get better chances to stay in
1631			 * memory under moderate memory pressure.  Anon pages
1632			 * are not likely to be evicted by use-once streaming
1633			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634			 * so we ignore them here.
1635			 */
1636			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1637				list_add(&page->lru, &l_active);
1638				continue;
1639			}
1640		}
1641
1642		ClearPageActive(page);	/* we are de-activating */
1643		list_add(&page->lru, &l_inactive);
1644	}
1645
1646	/*
1647	 * Move pages back to the lru list.
1648	 */
1649	spin_lock_irq(&zone->lru_lock);
1650	/*
1651	 * Count referenced pages from currently used mappings as rotated,
1652	 * even though only some of them are actually re-activated.  This
1653	 * helps balance scan pressure between file and anonymous pages in
1654	 * get_scan_ratio.
1655	 */
1656	reclaim_stat->recent_rotated[file] += nr_rotated;
1657
1658	move_active_pages_to_lru(zone, &l_active,
1659						LRU_ACTIVE + file * LRU_FILE);
1660	move_active_pages_to_lru(zone, &l_inactive,
1661						LRU_BASE   + file * LRU_FILE);
1662	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663	spin_unlock_irq(&zone->lru_lock);
 
 
 
1664}
1665
1666#ifdef CONFIG_SWAP
1667static int inactive_anon_is_low_global(struct zone *zone)
1668{
1669	unsigned long active, inactive;
1670
1671	active = zone_page_state(zone, NR_ACTIVE_ANON);
1672	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1673
1674	if (inactive * zone->inactive_ratio < active)
1675		return 1;
1676
1677	return 0;
1678}
1679
1680/**
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc:   scan control of this context
1684 *
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1687 */
1688static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1689{
1690	int low;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	/*
1693	 * If we don't have swap space, anonymous page deactivation
1694	 * is pointless.
1695	 */
1696	if (!total_swap_pages)
1697		return 0;
 
 
 
1698
1699	if (scanning_global_lru(sc))
1700		low = inactive_anon_is_low_global(zone);
1701	else
1702		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703	return low;
1704}
1705#else
1706static inline int inactive_anon_is_low(struct zone *zone,
1707					struct scan_control *sc)
1708{
1709	return 0;
1710}
1711#endif
1712
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715	unsigned long active, inactive;
 
 
 
 
 
 
 
 
 
 
 
1716
1717	active = zone_page_state(zone, NR_ACTIVE_FILE);
1718	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720	return (active > inactive);
1721}
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc:   scan control of this context
1727 *
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1731 *
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1734 *
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1737 */
1738static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1739{
1740	int low;
1741
1742	if (scanning_global_lru(sc))
1743		low = inactive_file_is_low_global(zone);
1744	else
1745		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746	return low;
1747}
1748
1749static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750				int file)
1751{
1752	if (file)
1753		return inactive_file_is_low(zone, sc);
1754	else
1755		return inactive_anon_is_low(zone, sc);
1756}
1757
1758static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759	struct zone *zone, struct scan_control *sc, int priority)
 
1760{
1761	int file = is_file_lru(lru);
1762
1763	if (is_active_lru(lru)) {
1764		if (inactive_list_is_low(zone, sc, file))
1765		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
 
1766		return 0;
1767	}
1768
1769	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1770}
1771
1772static int vmscan_swappiness(struct scan_control *sc)
1773{
1774	if (scanning_global_lru(sc))
1775		return vm_swappiness;
1776	return mem_cgroup_swappiness(sc->mem_cgroup);
1777}
1778
1779/*
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned.  The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1784 *
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1786 */
1787static void get_scan_count(struct zone *zone, struct scan_control *sc,
1788					unsigned long *nr, int priority)
1789{
1790	unsigned long anon, file, free;
 
 
 
 
 
1791	unsigned long anon_prio, file_prio;
 
 
1792	unsigned long ap, fp;
1793	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1794	u64 fraction[2], denominator;
1795	enum lru_list l;
1796	int noswap = 0;
1797	bool force_scan = false;
1798	unsigned long nr_force_scan[2];
1799
1800	/* kswapd does zone balancing and needs to scan this zone */
1801	if (scanning_global_lru(sc) && current_is_kswapd())
1802		force_scan = true;
1803	/* memcg may have small limit and need to avoid priority drop */
1804	if (!scanning_global_lru(sc))
1805		force_scan = true;
1806
1807	/* If we have no swap space, do not bother scanning anon pages. */
1808	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809		noswap = 1;
1810		fraction[0] = 0;
1811		fraction[1] = 1;
1812		denominator = 1;
1813		nr_force_scan[0] = 0;
1814		nr_force_scan[1] = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815		goto out;
1816	}
1817
1818	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823	if (scanning_global_lru(sc)) {
1824		free  = zone_page_state(zone, NR_FREE_PAGES);
1825		/* If we have very few page cache pages,
1826		   force-scan anon pages. */
1827		if (unlikely(file + free <= high_wmark_pages(zone))) {
1828			fraction[0] = 1;
1829			fraction[1] = 0;
1830			denominator = 1;
1831			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1832			nr_force_scan[1] = 0;
1833			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834		}
1835	}
1836
1837	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838	 * With swappiness at 100, anonymous and file have the same priority.
1839	 * This scanning priority is essentially the inverse of IO cost.
1840	 */
1841	anon_prio = vmscan_swappiness(sc);
1842	file_prio = 200 - vmscan_swappiness(sc);
1843
1844	/*
1845	 * OK, so we have swap space and a fair amount of page cache
1846	 * pages.  We use the recently rotated / recently scanned
1847	 * ratios to determine how valuable each cache is.
1848	 *
1849	 * Because workloads change over time (and to avoid overflow)
1850	 * we keep these statistics as a floating average, which ends
1851	 * up weighing recent references more than old ones.
1852	 *
1853	 * anon in [0], file in [1]
1854	 */
1855	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1856	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1857		reclaim_stat->recent_scanned[0] /= 2;
1858		reclaim_stat->recent_rotated[0] /= 2;
1859	}
1860
1861	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1862		reclaim_stat->recent_scanned[1] /= 2;
1863		reclaim_stat->recent_rotated[1] /= 2;
1864	}
1865
1866	/*
1867	 * The amount of pressure on anon vs file pages is inversely
1868	 * proportional to the fraction of recently scanned pages on
1869	 * each list that were recently referenced and in active use.
1870	 */
1871	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1872	ap /= reclaim_stat->recent_rotated[0] + 1;
1873
1874	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1875	fp /= reclaim_stat->recent_rotated[1] + 1;
1876	spin_unlock_irq(&zone->lru_lock);
1877
1878	fraction[0] = ap;
1879	fraction[1] = fp;
1880	denominator = ap + fp + 1;
1881	if (force_scan) {
1882		unsigned long scan = SWAP_CLUSTER_MAX;
1883		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1884		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1885	}
1886out:
1887	for_each_evictable_lru(l) {
1888		int file = is_file_lru(l);
 
 
1889		unsigned long scan;
1890
1891		scan = zone_nr_lru_pages(zone, sc, l);
1892		if (priority || noswap) {
1893			scan >>= priority;
1894			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895		}
1896
 
 
 
 
 
1897		/*
1898		 * If zone is small or memcg is small, nr[l] can be 0.
1899		 * This results no-scan on this priority and priority drop down.
1900		 * For global direct reclaim, it can visit next zone and tend
1901		 * not to have problems. For global kswapd, it's for zone
1902		 * balancing and it need to scan a small amounts. When using
1903		 * memcg, priority drop can cause big latency. So, it's better
1904		 * to scan small amount. See may_noscan above.
 
 
 
 
 
 
 
1905		 */
1906		if (!scan && force_scan)
1907			scan = nr_force_scan[file];
1908		nr[l] = scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912/*
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1918 */
1919static inline bool should_continue_reclaim(struct zone *zone,
1920					unsigned long nr_reclaimed,
1921					unsigned long nr_scanned,
1922					struct scan_control *sc)
1923{
1924	unsigned long pages_for_compaction;
1925	unsigned long inactive_lru_pages;
 
1926
1927	/* If not in reclaim/compaction mode, stop */
1928	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1929		return false;
1930
1931	/* Consider stopping depending on scan and reclaim activity */
1932	if (sc->gfp_mask & __GFP_REPEAT) {
1933		/*
1934		 * For __GFP_REPEAT allocations, stop reclaiming if the
1935		 * full LRU list has been scanned and we are still failing
1936		 * to reclaim pages. This full LRU scan is potentially
1937		 * expensive but a __GFP_REPEAT caller really wants to succeed
1938		 */
1939		if (!nr_reclaimed && !nr_scanned)
1940			return false;
1941	} else {
1942		/*
1943		 * For non-__GFP_REPEAT allocations which can presumably
1944		 * fail without consequence, stop if we failed to reclaim
1945		 * any pages from the last SWAP_CLUSTER_MAX number of
1946		 * pages that were scanned. This will return to the
1947		 * caller faster at the risk reclaim/compaction and
1948		 * the resulting allocation attempt fails
1949		 */
1950		if (!nr_reclaimed)
1951			return false;
1952	}
1953
1954	/*
1955	 * If we have not reclaimed enough pages for compaction and the
1956	 * inactive lists are large enough, continue reclaiming
1957	 */
1958	pages_for_compaction = (2UL << sc->order);
1959	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1960				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
 
1961	if (sc->nr_reclaimed < pages_for_compaction &&
1962			inactive_lru_pages > pages_for_compaction)
1963		return true;
1964
1965	/* If compaction would go ahead or the allocation would succeed, stop */
1966	switch (compaction_suitable(zone, sc->order)) {
1967	case COMPACT_PARTIAL:
1968	case COMPACT_CONTINUE:
1969		return false;
1970	default:
1971		return true;
 
 
 
 
 
 
 
1972	}
 
1973}
1974
1975/*
1976 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1977 */
1978static void shrink_zone(int priority, struct zone *zone,
1979				struct scan_control *sc)
 
 
1980{
1981	unsigned long nr[NR_LRU_LISTS];
1982	unsigned long nr_to_scan;
1983	enum lru_list l;
1984	unsigned long nr_reclaimed, nr_scanned;
1985	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986
1987restart:
1988	nr_reclaimed = 0;
1989	nr_scanned = sc->nr_scanned;
1990	get_scan_count(zone, sc, nr, priority);
 
 
 
 
 
 
 
 
 
1991
1992	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1993					nr[LRU_INACTIVE_FILE]) {
1994		for_each_evictable_lru(l) {
1995			if (nr[l]) {
1996				nr_to_scan = min_t(unsigned long,
1997						   nr[l], SWAP_CLUSTER_MAX);
1998				nr[l] -= nr_to_scan;
 
 
 
 
 
 
1999
2000				nr_reclaimed += shrink_list(l, nr_to_scan,
2001							    zone, sc, priority);
 
 
 
 
 
 
 
 
 
 
 
 
2002			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003		}
 
 
 
 
 
 
 
 
 
2004		/*
2005		 * On large memory systems, scan >> priority can become
2006		 * really large. This is fine for the starting priority;
2007		 * we want to put equal scanning pressure on each zone.
2008		 * However, if the VM has a harder time of freeing pages,
2009		 * with multiple processes reclaiming pages, the total
2010		 * freeing target can get unreasonably large.
2011		 */
2012		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2013			break;
2014	}
2015	sc->nr_reclaimed += nr_reclaimed;
 
 
2016
2017	/*
2018	 * Even if we did not try to evict anon pages at all, we want to
2019	 * rebalance the anon lru active/inactive ratio.
 
 
2020	 */
2021	if (inactive_anon_is_low(zone, sc))
2022		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
 
 
 
2023
2024	/* reclaim/compaction might need reclaim to continue */
2025	if (should_continue_reclaim(zone, nr_reclaimed,
2026					sc->nr_scanned - nr_scanned, sc))
2027		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	throttle_vm_writeout(sc->gfp_mask);
2030}
2031
2032/*
2033 * This is the direct reclaim path, for page-allocating processes.  We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2035 * request.
2036 *
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * Because:
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 *    allocation or
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 *    zone defense algorithm.
2044 *
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
2047 */
2048static void shrink_zones(int priority, struct zonelist *zonelist,
2049					struct scan_control *sc)
2050{
2051	struct zoneref *z;
2052	struct zone *zone;
2053	unsigned long nr_soft_reclaimed;
2054	unsigned long nr_soft_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask), sc->nodemask) {
2058		if (!populated_zone(zone))
2059			continue;
2060		/*
2061		 * Take care memory controller reclaiming has small influence
2062		 * to global LRU.
2063		 */
2064		if (scanning_global_lru(sc)) {
2065			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066				continue;
2067			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2068				continue;	/* Let kswapd poll it */
 
 
 
 
 
 
 
 
 
2069			/*
2070			 * This steals pages from memory cgroups over softlimit
2071			 * and returns the number of reclaimed pages and
2072			 * scanned pages. This works for global memory pressure
2073			 * and balancing, not for a memcg's limit.
2074			 */
2075			nr_soft_scanned = 0;
2076			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2077						sc->order, sc->gfp_mask,
2078						&nr_soft_scanned);
2079			sc->nr_reclaimed += nr_soft_reclaimed;
2080			sc->nr_scanned += nr_soft_scanned;
2081			/* need some check for avoid more shrink_zone() */
2082		}
2083
2084		shrink_zone(priority, zone, sc);
 
 
 
 
2085	}
 
 
 
 
 
 
2086}
2087
2088static bool zone_reclaimable(struct zone *zone)
2089{
2090	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2091}
2092
2093/* All zones in zonelist are unreclaimable? */
2094static bool all_unreclaimable(struct zonelist *zonelist,
2095		struct scan_control *sc)
2096{
2097	struct zoneref *z;
2098	struct zone *zone;
2099
2100	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2101			gfp_zone(sc->gfp_mask), sc->nodemask) {
2102		if (!populated_zone(zone))
2103			continue;
2104		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105			continue;
2106		if (!zone->all_unreclaimable)
2107			return false;
2108	}
2109
2110	return true;
 
 
2111}
2112
2113/*
2114 * This is the main entry point to direct page reclaim.
2115 *
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2118 *
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about.  We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written.  But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2125 *
2126 * returns:	0, if no pages reclaimed
2127 * 		else, the number of pages reclaimed
2128 */
2129static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2130					struct scan_control *sc,
2131					struct shrink_control *shrink)
2132{
2133	int priority;
2134	unsigned long total_scanned = 0;
2135	struct reclaim_state *reclaim_state = current->reclaim_state;
2136	struct zoneref *z;
2137	struct zone *zone;
2138	unsigned long writeback_threshold;
2139
2140	get_mems_allowed();
2141	delayacct_freepages_start();
2142
2143	if (scanning_global_lru(sc))
2144		count_vm_event(ALLOCSTALL);
2145
2146	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 
 
2147		sc->nr_scanned = 0;
2148		if (!priority)
2149			disable_swap_token(sc->mem_cgroup);
2150		shrink_zones(priority, zonelist, sc);
2151		/*
2152		 * Don't shrink slabs when reclaiming memory from
2153		 * over limit cgroups
2154		 */
2155		if (scanning_global_lru(sc)) {
2156			unsigned long lru_pages = 0;
2157			for_each_zone_zonelist(zone, z, zonelist,
2158					gfp_zone(sc->gfp_mask)) {
2159				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2160					continue;
2161
2162				lru_pages += zone_reclaimable_pages(zone);
2163			}
2164
2165			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2166			if (reclaim_state) {
2167				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2168				reclaim_state->reclaimed_slab = 0;
2169			}
2170		}
2171		total_scanned += sc->nr_scanned;
2172		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2173			goto out;
2174
2175		/*
2176		 * Try to write back as many pages as we just scanned.  This
2177		 * tends to cause slow streaming writers to write data to the
2178		 * disk smoothly, at the dirtying rate, which is nice.   But
2179		 * that's undesirable in laptop mode, where we *want* lumpy
2180		 * writeout.  So in laptop mode, write out the whole world.
2181		 */
2182		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2183		if (total_scanned > writeback_threshold) {
2184			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2185			sc->may_writepage = 1;
2186		}
2187
2188		/* Take a nap, wait for some writeback to complete */
2189		if (!sc->hibernation_mode && sc->nr_scanned &&
2190		    priority < DEF_PRIORITY - 2) {
2191			struct zone *preferred_zone;
2192
2193			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2194						&cpuset_current_mems_allowed,
2195						&preferred_zone);
2196			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2197		}
2198	}
2199
2200out:
2201	delayacct_freepages_end();
2202	put_mems_allowed();
2203
2204	if (sc->nr_reclaimed)
2205		return sc->nr_reclaimed;
2206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207	/*
2208	 * As hibernation is going on, kswapd is freezed so that it can't mark
2209	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2210	 * check.
 
 
 
2211	 */
2212	if (oom_killer_disabled)
2213		return 0;
 
 
 
 
 
 
 
 
2214
2215	/* top priority shrink_zones still had more to do? don't OOM, then */
2216	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2217		return 1;
2218
2219	return 0;
 
2220}
2221
2222unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2223				gfp_t gfp_mask, nodemask_t *nodemask)
2224{
2225	unsigned long nr_reclaimed;
2226	struct scan_control sc = {
2227		.gfp_mask = gfp_mask,
 
 
 
 
 
2228		.may_writepage = !laptop_mode,
2229		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2230		.may_unmap = 1,
2231		.may_swap = 1,
2232		.order = order,
2233		.mem_cgroup = NULL,
2234		.nodemask = nodemask,
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
 
 
 
 
 
 
 
 
2239
2240	trace_mm_vmscan_direct_reclaim_begin(order,
2241				sc.may_writepage,
2242				gfp_mask);
 
2243
2244	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2245
2246	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2247
2248	return nr_reclaimed;
2249}
2250
2251#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2252
2253unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2254						gfp_t gfp_mask, bool noswap,
2255						struct zone *zone,
2256						unsigned long *nr_scanned)
2257{
2258	struct scan_control sc = {
2259		.nr_scanned = 0,
2260		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2261		.may_writepage = !laptop_mode,
2262		.may_unmap = 1,
 
2263		.may_swap = !noswap,
2264		.order = 0,
2265		.mem_cgroup = mem,
2266	};
 
2267
2268	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2269			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2270
2271	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2272						      sc.may_writepage,
2273						      sc.gfp_mask);
 
2274
2275	/*
2276	 * NOTE: Although we can get the priority field, using it
2277	 * here is not a good idea, since it limits the pages we can scan.
2278	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279	 * will pick up pages from other mem cgroup's as well. We hack
2280	 * the priority and make it zero.
2281	 */
2282	shrink_zone(0, zone, &sc);
2283
2284	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2285
2286	*nr_scanned = sc.nr_scanned;
2287	return sc.nr_reclaimed;
2288}
2289
2290unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
 
2291					   gfp_t gfp_mask,
2292					   bool noswap)
2293{
2294	struct zonelist *zonelist;
2295	unsigned long nr_reclaimed;
2296	int nid;
 
2297	struct scan_control sc = {
 
 
 
 
 
 
2298		.may_writepage = !laptop_mode,
2299		.may_unmap = 1,
2300		.may_swap = !noswap,
2301		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2302		.order = 0,
2303		.mem_cgroup = mem_cont,
2304		.nodemask = NULL, /* we don't care the placement */
2305		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307	};
2308	struct shrink_control shrink = {
2309		.gfp_mask = sc.gfp_mask,
2310	};
2311
2312	/*
2313	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314	 * take care of from where we get pages. So the node where we start the
2315	 * scan does not need to be the current node.
2316	 */
2317	nid = mem_cgroup_select_victim_node(mem_cont);
2318
2319	zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321	trace_mm_vmscan_memcg_reclaim_begin(0,
2322					    sc.may_writepage,
2323					    sc.gfp_mask);
 
2324
2325	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 
 
2326
2327	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2328
2329	return nr_reclaimed;
2330}
2331#endif
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
2340 * The choice of 25% is due to
2341 *   o a 16M DMA zone that is balanced will not balance a zone on any
2342 *     reasonable sized machine
2343 *   o On all other machines, the top zone must be at least a reasonable
2344 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2345 *     would need to be at least 256M for it to be balance a whole node.
2346 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 *     to balance a node on its own. These seemed like reasonable ratios.
2348 */
2349static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2350						int classzone_idx)
2351{
2352	unsigned long present_pages = 0;
2353	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355	for (i = 0; i <= classzone_idx; i++)
2356		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
2357
2358	/* A special case here: if zone has no page, we think it's balanced */
2359	return balanced_pages >= (present_pages >> 2);
2360}
2361
2362/* is kswapd sleeping prematurely? */
2363static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2364					int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
2365{
2366	int i;
2367	unsigned long balanced = 0;
2368	bool all_zones_ok = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2371	if (remaining)
2372		return true;
 
2373
2374	/* Check the watermark levels */
2375	for (i = 0; i <= classzone_idx; i++) {
2376		struct zone *zone = pgdat->node_zones + i;
2377
2378		if (!populated_zone(zone))
2379			continue;
 
 
 
 
 
 
 
 
 
 
 
2380
2381		/*
2382		 * balance_pgdat() skips over all_unreclaimable after
2383		 * DEF_PRIORITY. Effectively, it considers them balanced so
2384		 * they must be considered balanced here as well if kswapd
2385		 * is to sleep
2386		 */
2387		if (zone->all_unreclaimable) {
2388			balanced += zone->present_pages;
2389			continue;
2390		}
2391
2392		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2393							i, 0))
2394			all_zones_ok = false;
2395		else
2396			balanced += zone->present_pages;
2397	}
2398
2399	/*
2400	 * For high-order requests, the balanced zones must contain at least
2401	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2402	 * must be balanced
 
 
 
 
 
 
 
 
2403	 */
2404	if (order)
2405		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2406	else
2407		return !all_zones_ok;
2408}
2409
2410/*
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
 
2413 *
2414 * Returns the final order kswapd was reclaiming at
2415 *
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2421 * dead and from now on, only perform a short scan.  Basically we're polling
2422 * the zone for when the problem goes away.
2423 *
2424 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2430 */
2431static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2432							int *classzone_idx)
2433{
2434	int all_zones_ok;
2435	unsigned long balanced;
2436	int priority;
2437	int i;
2438	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2439	unsigned long total_scanned;
2440	struct reclaim_state *reclaim_state = current->reclaim_state;
2441	unsigned long nr_soft_reclaimed;
2442	unsigned long nr_soft_scanned;
 
2443	struct scan_control sc = {
2444		.gfp_mask = GFP_KERNEL,
 
 
 
2445		.may_unmap = 1,
2446		.may_swap = 1,
2447		/*
2448		 * kswapd doesn't want to be bailed out while reclaim. because
2449		 * we want to put equal scanning pressure on each zone.
2450		 */
2451		.nr_to_reclaim = ULONG_MAX,
2452		.order = order,
2453		.mem_cgroup = NULL,
2454	};
2455	struct shrink_control shrink = {
2456		.gfp_mask = sc.gfp_mask,
2457	};
2458loop_again:
2459	total_scanned = 0;
2460	sc.nr_reclaimed = 0;
2461	sc.may_writepage = !laptop_mode;
2462	count_vm_event(PAGEOUTRUN);
2463
2464	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2465		unsigned long lru_pages = 0;
2466		int has_under_min_watermark_zone = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467
2468		/* The swap token gets in the way of swapout... */
2469		if (!priority)
2470			disable_swap_token(NULL);
2471
2472		all_zones_ok = 1;
2473		balanced = 0;
2474
2475		/*
2476		 * Scan in the highmem->dma direction for the highest
2477		 * zone which needs scanning
 
2478		 */
2479		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2480			struct zone *zone = pgdat->node_zones + i;
2481
2482			if (!populated_zone(zone))
2483				continue;
2484
2485			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2486				continue;
2487
2488			/*
2489			 * Do some background aging of the anon list, to give
2490			 * pages a chance to be referenced before reclaiming.
2491			 */
2492			if (inactive_anon_is_low(zone, &sc))
2493				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2494							&sc, priority, 0);
2495
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone), 0, 0)) {
2498				end_zone = i;
2499				break;
2500			} else {
2501				/* If balanced, clear the congested flag */
2502				zone_clear_flag(zone, ZONE_CONGESTED);
2503			}
2504		}
2505		if (i < 0)
2506			goto out;
2507
2508		for (i = 0; i <= end_zone; i++) {
2509			struct zone *zone = pgdat->node_zones + i;
2510
2511			lru_pages += zone_reclaimable_pages(zone);
2512		}
 
 
2513
2514		/*
2515		 * Now scan the zone in the dma->highmem direction, stopping
2516		 * at the last zone which needs scanning.
2517		 *
2518		 * We do this because the page allocator works in the opposite
2519		 * direction.  This prevents the page allocator from allocating
2520		 * pages behind kswapd's direction of progress, which would
2521		 * cause too much scanning of the lower zones.
2522		 */
2523		for (i = 0; i <= end_zone; i++) {
2524			struct zone *zone = pgdat->node_zones + i;
2525			int nr_slab;
2526			unsigned long balance_gap;
2527
2528			if (!populated_zone(zone))
2529				continue;
2530
2531			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2532				continue;
2533
2534			sc.nr_scanned = 0;
 
 
 
 
 
2535
2536			nr_soft_scanned = 0;
2537			/*
2538			 * Call soft limit reclaim before calling shrink_zone.
2539			 */
2540			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2541							order, sc.gfp_mask,
2542							&nr_soft_scanned);
2543			sc.nr_reclaimed += nr_soft_reclaimed;
2544			total_scanned += nr_soft_scanned;
2545
2546			/*
2547			 * We put equal pressure on every zone, unless
2548			 * one zone has way too many pages free
2549			 * already. The "too many pages" is defined
2550			 * as the high wmark plus a "gap" where the
2551			 * gap is either the low watermark or 1%
2552			 * of the zone, whichever is smaller.
2553			 */
2554			balance_gap = min(low_wmark_pages(zone),
2555				(zone->present_pages +
2556					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2557				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2558			if (!zone_watermark_ok_safe(zone, order,
2559					high_wmark_pages(zone) + balance_gap,
2560					end_zone, 0)) {
2561				shrink_zone(priority, zone, &sc);
2562
2563				reclaim_state->reclaimed_slab = 0;
2564				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2565				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2566				total_scanned += sc.nr_scanned;
2567
2568				if (nr_slab == 0 && !zone_reclaimable(zone))
2569					zone->all_unreclaimable = 1;
2570			}
2571
2572			/*
2573			 * If we've done a decent amount of scanning and
2574			 * the reclaim ratio is low, start doing writepage
2575			 * even in laptop mode
2576			 */
2577			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2578			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2579				sc.may_writepage = 1;
2580
2581			if (zone->all_unreclaimable) {
2582				if (end_zone && end_zone == i)
2583					end_zone--;
2584				continue;
2585			}
2586
2587			if (!zone_watermark_ok_safe(zone, order,
2588					high_wmark_pages(zone), end_zone, 0)) {
2589				all_zones_ok = 0;
2590				/*
2591				 * We are still under min water mark.  This
2592				 * means that we have a GFP_ATOMIC allocation
2593				 * failure risk. Hurry up!
2594				 */
2595				if (!zone_watermark_ok_safe(zone, order,
2596					    min_wmark_pages(zone), end_zone, 0))
2597					has_under_min_watermark_zone = 1;
2598			} else {
2599				/*
2600				 * If a zone reaches its high watermark,
2601				 * consider it to be no longer congested. It's
2602				 * possible there are dirty pages backed by
2603				 * congested BDIs but as pressure is relieved,
2604				 * spectulatively avoid congestion waits
2605				 */
2606				zone_clear_flag(zone, ZONE_CONGESTED);
2607				if (i <= *classzone_idx)
2608					balanced += zone->present_pages;
2609			}
2610
2611		}
2612		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2613			break;		/* kswapd: all done */
2614		/*
2615		 * OK, kswapd is getting into trouble.  Take a nap, then take
2616		 * another pass across the zones.
 
2617		 */
2618		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2619			if (has_under_min_watermark_zone)
2620				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2621			else
2622				congestion_wait(BLK_RW_ASYNC, HZ/10);
2623		}
2624
2625		/*
2626		 * We do this so kswapd doesn't build up large priorities for
2627		 * example when it is freeing in parallel with allocators. It
2628		 * matches the direct reclaim path behaviour in terms of impact
2629		 * on zone->*_priority.
2630		 */
2631		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 
 
 
 
 
2632			break;
2633	}
2634out:
2635
2636	/*
2637	 * order-0: All zones must meet high watermark for a balanced node
2638	 * high-order: Balanced zones must make up at least 25% of the node
2639	 *             for the node to be balanced
2640	 */
2641	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2642		cond_resched();
2643
2644		try_to_freeze();
2645
2646		/*
2647		 * Fragmentation may mean that the system cannot be
2648		 * rebalanced for high-order allocations in all zones.
2649		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650		 * it means the zones have been fully scanned and are still
2651		 * not balanced. For high-order allocations, there is
2652		 * little point trying all over again as kswapd may
2653		 * infinite loop.
2654		 *
2655		 * Instead, recheck all watermarks at order-0 as they
2656		 * are the most important. If watermarks are ok, kswapd will go
2657		 * back to sleep. High-order users can still perform direct
2658		 * reclaim if they wish.
2659		 */
2660		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2661			order = sc.order = 0;
 
 
2662
2663		goto loop_again;
2664	}
2665
 
 
2666	/*
2667	 * If kswapd was reclaiming at a higher order, it has the option of
2668	 * sleeping without all zones being balanced. Before it does, it must
2669	 * ensure that the watermarks for order-0 on *all* zones are met and
2670	 * that the congestion flags are cleared. The congestion flag must
2671	 * be cleared as kswapd is the only mechanism that clears the flag
2672	 * and it is potentially going to sleep here.
2673	 */
2674	if (order) {
2675		for (i = 0; i <= end_zone; i++) {
2676			struct zone *zone = pgdat->node_zones + i;
2677
2678			if (!populated_zone(zone))
2679				continue;
2680
2681			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2682				continue;
 
 
 
 
 
 
 
2683
2684			/* Confirm the zone is balanced for order-0 */
2685			if (!zone_watermark_ok(zone, 0,
2686					high_wmark_pages(zone), 0, 0)) {
2687				order = sc.order = 0;
2688				goto loop_again;
2689			}
2690
2691			/* If balanced, clear the congested flag */
2692			zone_clear_flag(zone, ZONE_CONGESTED);
2693		}
2694	}
2695
2696	/*
2697	 * Return the order we were reclaiming at so sleeping_prematurely()
2698	 * makes a decision on the order we were last reclaiming at. However,
2699	 * if another caller entered the allocator slow path while kswapd
2700	 * was awake, order will remain at the higher level
2701	 */
2702	*classzone_idx = end_zone;
2703	return order;
2704}
2705
2706static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
2707{
2708	long remaining = 0;
2709	DEFINE_WAIT(wait);
2710
2711	if (freezing(current) || kthread_should_stop())
2712		return;
2713
2714	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715
2716	/* Try to sleep for a short interval */
2717	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
2719		finish_wait(&pgdat->kswapd_wait, &wait);
2720		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721	}
2722
2723	/*
2724	 * After a short sleep, check if it was a premature sleep. If not, then
2725	 * go fully to sleep until explicitly woken up.
2726	 */
2727	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2728		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2729
2730		/*
2731		 * vmstat counters are not perfectly accurate and the estimated
2732		 * value for counters such as NR_FREE_PAGES can deviate from the
2733		 * true value by nr_online_cpus * threshold. To avoid the zone
2734		 * watermarks being breached while under pressure, we reduce the
2735		 * per-cpu vmstat threshold while kswapd is awake and restore
2736		 * them before going back to sleep.
2737		 */
2738		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2739		schedule();
 
 
 
2740		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2741	} else {
2742		if (remaining)
2743			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2744		else
2745			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2746	}
2747	finish_wait(&pgdat->kswapd_wait, &wait);
2748}
2749
2750/*
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2753 *
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2759 *
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2762 */
2763static int kswapd(void *p)
2764{
2765	unsigned long order, new_order;
2766	int classzone_idx, new_classzone_idx;
2767	pg_data_t *pgdat = (pg_data_t*)p;
2768	struct task_struct *tsk = current;
2769
2770	struct reclaim_state reclaim_state = {
2771		.reclaimed_slab = 0,
2772	};
2773	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2774
2775	lockdep_set_current_reclaim_state(GFP_KERNEL);
2776
2777	if (!cpumask_empty(cpumask))
2778		set_cpus_allowed_ptr(tsk, cpumask);
2779	current->reclaim_state = &reclaim_state;
2780
2781	/*
2782	 * Tell the memory management that we're a "memory allocator",
2783	 * and that if we need more memory we should get access to it
2784	 * regardless (see "__alloc_pages()"). "kswapd" should
2785	 * never get caught in the normal page freeing logic.
2786	 *
2787	 * (Kswapd normally doesn't need memory anyway, but sometimes
2788	 * you need a small amount of memory in order to be able to
2789	 * page out something else, and this flag essentially protects
2790	 * us from recursively trying to free more memory as we're
2791	 * trying to free the first piece of memory in the first place).
2792	 */
2793	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2794	set_freezable();
2795
2796	order = new_order = 0;
2797	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2798	for ( ; ; ) {
2799		int ret;
2800
2801		/*
2802		 * If the last balance_pgdat was unsuccessful it's unlikely a
2803		 * new request of a similar or harder type will succeed soon
2804		 * so consider going to sleep on the basis we reclaimed at
2805		 */
2806		if (classzone_idx >= new_classzone_idx && order == new_order) {
2807			new_order = pgdat->kswapd_max_order;
2808			new_classzone_idx = pgdat->classzone_idx;
2809			pgdat->kswapd_max_order =  0;
2810			pgdat->classzone_idx = pgdat->nr_zones - 1;
2811		}
2812
2813		if (order < new_order || classzone_idx > new_classzone_idx) {
2814			/*
2815			 * Don't sleep if someone wants a larger 'order'
2816			 * allocation or has tigher zone constraints
2817			 */
2818			order = new_order;
2819			classzone_idx = new_classzone_idx;
2820		} else {
2821			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2822			order = pgdat->kswapd_max_order;
2823			classzone_idx = pgdat->classzone_idx;
2824			pgdat->kswapd_max_order = 0;
2825			pgdat->classzone_idx = pgdat->nr_zones - 1;
2826		}
2827
2828		ret = try_to_freeze();
2829		if (kthread_should_stop())
2830			break;
2831
2832		/*
2833		 * We can speed up thawing tasks if we don't call balance_pgdat
2834		 * after returning from the refrigerator
2835		 */
2836		if (!ret) {
2837			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2838			order = balance_pgdat(pgdat, order, &classzone_idx);
2839		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840	}
 
 
 
 
2841	return 0;
2842}
2843
2844/*
2845 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2846 */
2847void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2848{
2849	pg_data_t *pgdat;
2850
2851	if (!populated_zone(zone))
2852		return;
2853
2854	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2855		return;
2856	pgdat = zone->zone_pgdat;
2857	if (pgdat->kswapd_max_order < order) {
2858		pgdat->kswapd_max_order = order;
2859		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2860	}
2861	if (!waitqueue_active(&pgdat->kswapd_wait))
2862		return;
2863	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
2864		return;
 
2865
2866	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
2867	wake_up_interruptible(&pgdat->kswapd_wait);
2868}
2869
2870/*
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2876 */
2877unsigned long global_reclaimable_pages(void)
2878{
2879	int nr;
2880
2881	nr = global_page_state(NR_ACTIVE_FILE) +
2882	     global_page_state(NR_INACTIVE_FILE);
2883
2884	if (nr_swap_pages > 0)
2885		nr += global_page_state(NR_ACTIVE_ANON) +
2886		      global_page_state(NR_INACTIVE_ANON);
2887
2888	return nr;
2889}
2890
2891unsigned long zone_reclaimable_pages(struct zone *zone)
2892{
2893	int nr;
2894
2895	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2896	     zone_page_state(zone, NR_INACTIVE_FILE);
2897
2898	if (nr_swap_pages > 0)
2899		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2900		      zone_page_state(zone, NR_INACTIVE_ANON);
2901
2902	return nr;
2903}
2904
2905#ifdef CONFIG_HIBERNATION
2906/*
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2908 * freed pages.
2909 *
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2913 */
2914unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2915{
2916	struct reclaim_state reclaim_state;
2917	struct scan_control sc = {
 
2918		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
2919		.may_swap = 1,
2920		.may_unmap = 1,
2921		.may_writepage = 1,
2922		.nr_to_reclaim = nr_to_reclaim,
2923		.hibernation_mode = 1,
2924		.order = 0,
2925	};
2926	struct shrink_control shrink = {
2927		.gfp_mask = sc.gfp_mask,
2928	};
2929	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2930	struct task_struct *p = current;
2931	unsigned long nr_reclaimed;
 
2932
2933	p->flags |= PF_MEMALLOC;
2934	lockdep_set_current_reclaim_state(sc.gfp_mask);
2935	reclaim_state.reclaimed_slab = 0;
2936	p->reclaim_state = &reclaim_state;
2937
2938	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2939
2940	p->reclaim_state = NULL;
2941	lockdep_clear_current_reclaim_state();
2942	p->flags &= ~PF_MEMALLOC;
2943
2944	return nr_reclaimed;
2945}
2946#endif /* CONFIG_HIBERNATION */
2947
2948/* It's optimal to keep kswapds on the same CPUs as their memory, but
2949   not required for correctness.  So if the last cpu in a node goes
2950   away, we get changed to run anywhere: as the first one comes back,
2951   restore their cpu bindings. */
2952static int __devinit cpu_callback(struct notifier_block *nfb,
2953				  unsigned long action, void *hcpu)
2954{
2955	int nid;
2956
2957	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2958		for_each_node_state(nid, N_HIGH_MEMORY) {
2959			pg_data_t *pgdat = NODE_DATA(nid);
2960			const struct cpumask *mask;
2961
2962			mask = cpumask_of_node(pgdat->node_id);
2963
2964			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2965				/* One of our CPUs online: restore mask */
2966				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2967		}
2968	}
2969	return NOTIFY_OK;
2970}
2971
2972/*
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2975 */
2976int kswapd_run(int nid)
2977{
2978	pg_data_t *pgdat = NODE_DATA(nid);
2979	int ret = 0;
2980
2981	if (pgdat->kswapd)
2982		return 0;
2983
2984	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2985	if (IS_ERR(pgdat->kswapd)) {
2986		/* failure at boot is fatal */
2987		BUG_ON(system_state == SYSTEM_BOOTING);
2988		printk("Failed to start kswapd on node %d\n",nid);
2989		ret = -1;
 
2990	}
2991	return ret;
2992}
2993
2994/*
2995 * Called by memory hotplug when all memory in a node is offlined.
 
2996 */
2997void kswapd_stop(int nid)
2998{
2999	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3000
3001	if (kswapd)
3002		kthread_stop(kswapd);
 
 
3003}
3004
3005static int __init kswapd_init(void)
3006{
3007	int nid;
3008
3009	swap_setup();
3010	for_each_node_state(nid, N_HIGH_MEMORY)
3011 		kswapd_run(nid);
3012	hotcpu_notifier(cpu_callback, 0);
 
 
 
3013	return 0;
3014}
3015
3016module_init(kswapd_init)
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Zone reclaim mode
3021 *
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3023 * the watermarks.
3024 */
3025int zone_reclaim_mode __read_mostly;
3026
3027#define RECLAIM_OFF 0
3028#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3029#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3030#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3031
3032/*
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3035 * a zone.
3036 */
3037#define ZONE_RECLAIM_PRIORITY 4
3038
3039/*
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3041 * occur.
3042 */
3043int sysctl_min_unmapped_ratio = 1;
3044
3045/*
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3048 */
3049int sysctl_min_slab_ratio = 5;
3050
3051static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3052{
3053	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3054	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3055		zone_page_state(zone, NR_ACTIVE_FILE);
3056
3057	/*
3058	 * It's possible for there to be more file mapped pages than
3059	 * accounted for by the pages on the file LRU lists because
3060	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3061	 */
3062	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3063}
3064
3065/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066static long zone_pagecache_reclaimable(struct zone *zone)
3067{
3068	long nr_pagecache_reclaimable;
3069	long delta = 0;
3070
3071	/*
3072	 * If RECLAIM_SWAP is set, then all file pages are considered
3073	 * potentially reclaimable. Otherwise, we have to worry about
3074	 * pages like swapcache and zone_unmapped_file_pages() provides
3075	 * a better estimate
3076	 */
3077	if (zone_reclaim_mode & RECLAIM_SWAP)
3078		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3079	else
3080		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3081
3082	/* If we can't clean pages, remove dirty pages from consideration */
3083	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3084		delta += zone_page_state(zone, NR_FILE_DIRTY);
3085
3086	/* Watch for any possible underflows due to delta */
3087	if (unlikely(delta > nr_pagecache_reclaimable))
3088		delta = nr_pagecache_reclaimable;
3089
3090	return nr_pagecache_reclaimable - delta;
3091}
3092
3093/*
3094 * Try to free up some pages from this zone through reclaim.
3095 */
3096static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3097{
3098	/* Minimum pages needed in order to stay on node */
3099	const unsigned long nr_pages = 1 << order;
3100	struct task_struct *p = current;
3101	struct reclaim_state reclaim_state;
3102	int priority;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 
 
 
 
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
3111	};
3112	struct shrink_control shrink = {
3113		.gfp_mask = sc.gfp_mask,
3114	};
3115	unsigned long nr_slab_pages0, nr_slab_pages1;
3116
3117	cond_resched();
3118	/*
3119	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120	 * and we also need to be able to write out pages for RECLAIM_WRITE
3121	 * and RECLAIM_SWAP.
3122	 */
3123	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3124	lockdep_set_current_reclaim_state(gfp_mask);
 
3125	reclaim_state.reclaimed_slab = 0;
3126	p->reclaim_state = &reclaim_state;
3127
3128	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3129		/*
3130		 * Free memory by calling shrink zone with increasing
3131		 * priorities until we have enough memory freed.
3132		 */
3133		priority = ZONE_RECLAIM_PRIORITY;
3134		do {
3135			shrink_zone(priority, zone, &sc);
3136			priority--;
3137		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3138	}
3139
3140	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3141	if (nr_slab_pages0 > zone->min_slab_pages) {
3142		/*
3143		 * shrink_slab() does not currently allow us to determine how
3144		 * many pages were freed in this zone. So we take the current
3145		 * number of slab pages and shake the slab until it is reduced
3146		 * by the same nr_pages that we used for reclaiming unmapped
3147		 * pages.
3148		 *
3149		 * Note that shrink_slab will free memory on all zones and may
3150		 * take a long time.
3151		 */
3152		for (;;) {
3153			unsigned long lru_pages = zone_reclaimable_pages(zone);
3154
3155			/* No reclaimable slab or very low memory pressure */
3156			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3157				break;
3158
3159			/* Freed enough memory */
3160			nr_slab_pages1 = zone_page_state(zone,
3161							NR_SLAB_RECLAIMABLE);
3162			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3163				break;
3164		}
3165
3166		/*
3167		 * Update nr_reclaimed by the number of slab pages we
3168		 * reclaimed from this zone.
3169		 */
3170		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3171		if (nr_slab_pages1 < nr_slab_pages0)
3172			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3173	}
3174
3175	p->reclaim_state = NULL;
3176	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3177	lockdep_clear_current_reclaim_state();
 
3178	return sc.nr_reclaimed >= nr_pages;
3179}
3180
3181int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182{
3183	int node_id;
3184	int ret;
3185
3186	/*
3187	 * Zone reclaim reclaims unmapped file backed pages and
3188	 * slab pages if we are over the defined limits.
3189	 *
3190	 * A small portion of unmapped file backed pages is needed for
3191	 * file I/O otherwise pages read by file I/O will be immediately
3192	 * thrown out if the zone is overallocated. So we do not reclaim
3193	 * if less than a specified percentage of the zone is used by
3194	 * unmapped file backed pages.
3195	 */
3196	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3197	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3198		return ZONE_RECLAIM_FULL;
3199
3200	if (zone->all_unreclaimable)
3201		return ZONE_RECLAIM_FULL;
3202
3203	/*
3204	 * Do not scan if the allocation should not be delayed.
3205	 */
3206	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3207		return ZONE_RECLAIM_NOSCAN;
3208
3209	/*
3210	 * Only run zone reclaim on the local zone or on zones that do not
3211	 * have associated processors. This will favor the local processor
3212	 * over remote processors and spread off node memory allocations
3213	 * as wide as possible.
3214	 */
3215	node_id = zone_to_nid(zone);
3216	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3217		return ZONE_RECLAIM_NOSCAN;
3218
3219	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	ret = __zone_reclaim(zone, gfp_mask, order);
3223	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3224
3225	if (!ret)
3226		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3227
3228	return ret;
3229}
3230#endif
3231
3232/*
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3236 *
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list.  The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3240 *
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3244 *
3245 */
3246int page_evictable(struct page *page, struct vm_area_struct *vma)
3247{
 
3248
3249	if (mapping_unevictable(page_mapping(page)))
3250		return 0;
3251
3252	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3253		return 0;
3254
3255	return 1;
3256}
3257
 
3258/**
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3262 *
3263 * Checks a page for evictability and moves the page to the appropriate
3264 * zone lru list.
3265 *
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3268 */
3269static void check_move_unevictable_page(struct page *page, struct zone *zone)
3270{
3271	VM_BUG_ON(PageActive(page));
3272
3273retry:
3274	ClearPageUnevictable(page);
3275	if (page_evictable(page, NULL)) {
3276		enum lru_list l = page_lru_base_type(page);
3277
3278		__dec_zone_state(zone, NR_UNEVICTABLE);
3279		list_move(&page->lru, &zone->lru[l].list);
3280		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3281		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3282		__count_vm_event(UNEVICTABLE_PGRESCUED);
3283	} else {
3284		/*
3285		 * rotate unevictable list
3286		 */
3287		SetPageUnevictable(page);
3288		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3289		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3290		if (page_evictable(page, NULL))
3291			goto retry;
3292	}
3293}
3294
3295/**
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3298 *
3299 * Scan all pages in mapping.  Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3301 */
3302void scan_mapping_unevictable_pages(struct address_space *mapping)
3303{
3304	pgoff_t next = 0;
3305	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3306			 PAGE_CACHE_SHIFT;
3307	struct zone *zone;
3308	struct pagevec pvec;
3309
3310	if (mapping->nrpages == 0)
3311		return;
3312
3313	pagevec_init(&pvec, 0);
3314	while (next < end &&
3315		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3316		int i;
3317		int pg_scanned = 0;
3318
3319		zone = NULL;
3320
3321		for (i = 0; i < pagevec_count(&pvec); i++) {
3322			struct page *page = pvec.pages[i];
3323			pgoff_t page_index = page->index;
3324			struct zone *pagezone = page_zone(page);
3325
3326			pg_scanned++;
3327			if (page_index > next)
3328				next = page_index;
3329			next++;
3330
3331			if (pagezone != zone) {
3332				if (zone)
3333					spin_unlock_irq(&zone->lru_lock);
3334				zone = pagezone;
3335				spin_lock_irq(&zone->lru_lock);
3336			}
3337
3338			if (PageLRU(page) && PageUnevictable(page))
3339				check_move_unevictable_page(page, zone);
3340		}
3341		if (zone)
3342			spin_unlock_irq(&zone->lru_lock);
3343		pagevec_release(&pvec);
3344
3345		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346	}
3347
3348}
3349
3350/**
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3353 *
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable.  Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them.  Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3359 */
3360#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361static void scan_zone_unevictable_pages(struct zone *zone)
3362{
3363	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3364	unsigned long scan;
3365	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3366
3367	while (nr_to_scan > 0) {
3368		unsigned long batch_size = min(nr_to_scan,
3369						SCAN_UNEVICTABLE_BATCH_SIZE);
3370
3371		spin_lock_irq(&zone->lru_lock);
3372		for (scan = 0;  scan < batch_size; scan++) {
3373			struct page *page = lru_to_page(l_unevictable);
3374
3375			if (!trylock_page(page))
3376				continue;
3377
3378			prefetchw_prev_lru_page(page, l_unevictable, flags);
3379
3380			if (likely(PageLRU(page) && PageUnevictable(page)))
3381				check_move_unevictable_page(page, zone);
3382
3383			unlock_page(page);
3384		}
3385		spin_unlock_irq(&zone->lru_lock);
3386
3387		nr_to_scan -= batch_size;
3388	}
3389}
3390
3391
3392/**
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3394 *
3395 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable.  Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system.  As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3401 * evictable.
3402 */
3403static void scan_all_zones_unevictable_pages(void)
3404{
3405	struct zone *zone;
3406
3407	for_each_zone(zone) {
3408		scan_zone_unevictable_pages(zone);
3409	}
3410}
3411
3412/*
3413 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3415 */
3416unsigned long scan_unevictable_pages;
3417
3418int scan_unevictable_handler(struct ctl_table *table, int write,
3419			   void __user *buffer,
3420			   size_t *length, loff_t *ppos)
3421{
3422	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3423
3424	if (write && *(unsigned long *)table->data)
3425		scan_all_zones_unevictable_pages();
3426
3427	scan_unevictable_pages = 0;
3428	return 0;
3429}
3430
3431#ifdef CONFIG_NUMA
3432/*
3433 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3435 */
3436
3437static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3438					  struct sysdev_attribute *attr,
3439					  char *buf)
3440{
3441	return sprintf(buf, "0\n");	/* always zero; should fit... */
3442}
3443
3444static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3445					   struct sysdev_attribute *attr,
3446					const char *buf, size_t count)
3447{
3448	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3449	struct zone *zone;
3450	unsigned long res;
3451	unsigned long req = strict_strtoul(buf, 10, &res);
3452
3453	if (!req)
3454		return 1;	/* zero is no-op */
3455
3456	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3457		if (!populated_zone(zone))
3458			continue;
3459		scan_zone_unevictable_pages(zone);
3460	}
3461	return 1;
3462}
3463
3464
3465static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3466			read_scan_unevictable_node,
3467			write_scan_unevictable_node);
3468
3469int scan_unevictable_register_node(struct node *node)
3470{
3471	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3472}
3473
3474void scan_unevictable_unregister_node(struct node *node)
3475{
3476	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3477}
3478#endif