Linux Audio

Check our new training course

Loading...
v4.17
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/compiler.h>
  5#include <linux/export.h>
  6#include <linux/err.h>
  7#include <linux/sched.h>
  8#include <linux/sched/mm.h>
  9#include <linux/sched/task_stack.h>
 10#include <linux/security.h>
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/mman.h>
 14#include <linux/hugetlb.h>
 15#include <linux/vmalloc.h>
 16#include <linux/userfaultfd_k.h>
 17
 18#include <asm/sections.h>
 19#include <linux/uaccess.h>
 20
 21#include "internal.h"
 22
 23static inline int is_kernel_rodata(unsigned long addr)
 24{
 25	return addr >= (unsigned long)__start_rodata &&
 26		addr < (unsigned long)__end_rodata;
 27}
 28
 29/**
 30 * kfree_const - conditionally free memory
 31 * @x: pointer to the memory
 32 *
 33 * Function calls kfree only if @x is not in .rodata section.
 34 */
 35void kfree_const(const void *x)
 36{
 37	if (!is_kernel_rodata((unsigned long)x))
 38		kfree(x);
 39}
 40EXPORT_SYMBOL(kfree_const);
 41
 42/**
 43 * kstrdup - allocate space for and copy an existing string
 44 * @s: the string to duplicate
 45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 46 */
 47char *kstrdup(const char *s, gfp_t gfp)
 48{
 49	size_t len;
 50	char *buf;
 51
 52	if (!s)
 53		return NULL;
 54
 55	len = strlen(s) + 1;
 56	buf = kmalloc_track_caller(len, gfp);
 57	if (buf)
 58		memcpy(buf, s, len);
 59	return buf;
 60}
 61EXPORT_SYMBOL(kstrdup);
 62
 63/**
 64 * kstrdup_const - conditionally duplicate an existing const string
 65 * @s: the string to duplicate
 66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 67 *
 68 * Function returns source string if it is in .rodata section otherwise it
 69 * fallbacks to kstrdup.
 70 * Strings allocated by kstrdup_const should be freed by kfree_const.
 71 */
 72const char *kstrdup_const(const char *s, gfp_t gfp)
 73{
 74	if (is_kernel_rodata((unsigned long)s))
 75		return s;
 76
 77	return kstrdup(s, gfp);
 78}
 79EXPORT_SYMBOL(kstrdup_const);
 80
 81/**
 82 * kstrndup - allocate space for and copy an existing string
 83 * @s: the string to duplicate
 84 * @max: read at most @max chars from @s
 85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 86 *
 87 * Note: Use kmemdup_nul() instead if the size is known exactly.
 88 */
 89char *kstrndup(const char *s, size_t max, gfp_t gfp)
 90{
 91	size_t len;
 92	char *buf;
 93
 94	if (!s)
 95		return NULL;
 96
 97	len = strnlen(s, max);
 98	buf = kmalloc_track_caller(len+1, gfp);
 99	if (buf) {
100		memcpy(buf, s, len);
101		buf[len] = '\0';
102	}
103	return buf;
104}
105EXPORT_SYMBOL(kstrndup);
106
107/**
108 * kmemdup - duplicate region of memory
109 *
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
113 */
114void *kmemdup(const void *src, size_t len, gfp_t gfp)
115{
116	void *p;
117
118	p = kmalloc_track_caller(len, gfp);
119	if (p)
120		memcpy(p, src, len);
121	return p;
122}
123EXPORT_SYMBOL(kmemdup);
124
125/**
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130 */
131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132{
133	char *buf;
134
135	if (!s)
136		return NULL;
137
138	buf = kmalloc_track_caller(len + 1, gfp);
139	if (buf) {
140		memcpy(buf, s, len);
141		buf[len] = '\0';
142	}
143	return buf;
144}
145EXPORT_SYMBOL(kmemdup_nul);
146
147/**
148 * memdup_user - duplicate memory region from user space
149 *
150 * @src: source address in user space
151 * @len: number of bytes to copy
152 *
153 * Returns an ERR_PTR() on failure.  Result is physically
154 * contiguous, to be freed by kfree().
155 */
156void *memdup_user(const void __user *src, size_t len)
157{
158	void *p;
159
160	p = kmalloc_track_caller(len, GFP_USER);
 
 
 
 
 
161	if (!p)
162		return ERR_PTR(-ENOMEM);
163
164	if (copy_from_user(p, src, len)) {
165		kfree(p);
166		return ERR_PTR(-EFAULT);
167	}
168
169	return p;
170}
171EXPORT_SYMBOL(memdup_user);
172
173/**
174 * vmemdup_user - duplicate memory region from user space
175 *
176 * @src: source address in user space
177 * @len: number of bytes to copy
178 *
179 * Returns an ERR_PTR() on failure.  Result may be not
180 * physically contiguous.  Use kvfree() to free.
 
181 */
182void *vmemdup_user(const void __user *src, size_t len)
183{
184	void *p;
 
185
186	p = kvmalloc(len, GFP_USER);
187	if (!p)
188		return ERR_PTR(-ENOMEM);
189
190	if (copy_from_user(p, src, len)) {
191		kvfree(p);
192		return ERR_PTR(-EFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193	}
194
195	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196}
197EXPORT_SYMBOL(vmemdup_user);
198
199/*
200 * strndup_user - duplicate an existing string from user space
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
203 */
204char *strndup_user(const char __user *s, long n)
205{
206	char *p;
207	long length;
208
209	length = strnlen_user(s, n);
210
211	if (!length)
212		return ERR_PTR(-EFAULT);
213
214	if (length > n)
215		return ERR_PTR(-EINVAL);
216
217	p = memdup_user(s, length);
218
219	if (IS_ERR(p))
220		return p;
221
222	p[length - 1] = '\0';
223
224	return p;
225}
226EXPORT_SYMBOL(strndup_user);
227
228/**
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
230 *
231 * @src: source address in user space
232 * @len: number of bytes to copy
233 *
234 * Returns an ERR_PTR() on failure.
235 */
236void *memdup_user_nul(const void __user *src, size_t len)
237{
238	char *p;
239
240	/*
241	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242	 * cause pagefault, which makes it pointless to use GFP_NOFS
243	 * or GFP_ATOMIC.
244	 */
245	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246	if (!p)
247		return ERR_PTR(-ENOMEM);
248
249	if (copy_from_user(p, src, len)) {
250		kfree(p);
251		return ERR_PTR(-EFAULT);
252	}
253	p[len] = '\0';
254
255	return p;
256}
257EXPORT_SYMBOL(memdup_user_nul);
258
259void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260		struct vm_area_struct *prev, struct rb_node *rb_parent)
261{
262	struct vm_area_struct *next;
263
264	vma->vm_prev = prev;
265	if (prev) {
266		next = prev->vm_next;
267		prev->vm_next = vma;
268	} else {
269		mm->mmap = vma;
270		if (rb_parent)
271			next = rb_entry(rb_parent,
272					struct vm_area_struct, vm_rb);
273		else
274			next = NULL;
275	}
276	vma->vm_next = next;
277	if (next)
278		next->vm_prev = vma;
279}
280
281/* Check if the vma is being used as a stack by this task */
282int vma_is_stack_for_current(struct vm_area_struct *vma)
283{
284	struct task_struct * __maybe_unused t = current;
285
286	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
287}
288
289#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
291{
292	mm->mmap_base = TASK_UNMAPPED_BASE;
293	mm->get_unmapped_area = arch_get_unmapped_area;
 
294}
295#endif
296
297/*
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
300 * Note a difference with get_user_pages_fast: this always returns the
301 * number of pages pinned, 0 if no pages were pinned.
302 * If the architecture does not support this function, simply return with no
303 * pages pinned.
304 */
305int __weak __get_user_pages_fast(unsigned long start,
306				 int nr_pages, int write, struct page **pages)
307{
308	return 0;
309}
310EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311
312/**
313 * get_user_pages_fast() - pin user pages in memory
314 * @start:	starting user address
315 * @nr_pages:	number of pages from start to pin
316 * @write:	whether pages will be written to
317 * @pages:	array that receives pointers to the pages pinned.
318 *		Should be at least nr_pages long.
319 *
320 * Returns number of pages pinned. This may be fewer than the number
321 * requested. If nr_pages is 0 or negative, returns 0. If no pages
322 * were pinned, returns -errno.
323 *
324 * get_user_pages_fast provides equivalent functionality to get_user_pages,
325 * operating on current and current->mm, with force=0 and vma=NULL. However
326 * unlike get_user_pages, it must be called without mmap_sem held.
327 *
328 * get_user_pages_fast may take mmap_sem and page table locks, so no
329 * assumptions can be made about lack of locking. get_user_pages_fast is to be
330 * implemented in a way that is advantageous (vs get_user_pages()) when the
331 * user memory area is already faulted in and present in ptes. However if the
332 * pages have to be faulted in, it may turn out to be slightly slower so
333 * callers need to carefully consider what to use. On many architectures,
334 * get_user_pages_fast simply falls back to get_user_pages.
335 */
336int __weak get_user_pages_fast(unsigned long start,
337				int nr_pages, int write, struct page **pages)
338{
339	return get_user_pages_unlocked(start, nr_pages, pages,
340				       write ? FOLL_WRITE : 0);
341}
342EXPORT_SYMBOL_GPL(get_user_pages_fast);
343
344unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
345	unsigned long len, unsigned long prot,
346	unsigned long flag, unsigned long pgoff)
347{
348	unsigned long ret;
349	struct mm_struct *mm = current->mm;
350	unsigned long populate;
351	LIST_HEAD(uf);
352
353	ret = security_mmap_file(file, prot, flag);
354	if (!ret) {
355		if (down_write_killable(&mm->mmap_sem))
356			return -EINTR;
357		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
358				    &populate, &uf);
359		up_write(&mm->mmap_sem);
360		userfaultfd_unmap_complete(mm, &uf);
361		if (populate)
362			mm_populate(ret, populate);
363	}
364	return ret;
365}
366
367unsigned long vm_mmap(struct file *file, unsigned long addr,
368	unsigned long len, unsigned long prot,
369	unsigned long flag, unsigned long offset)
370{
371	if (unlikely(offset + PAGE_ALIGN(len) < offset))
372		return -EINVAL;
373	if (unlikely(offset_in_page(offset)))
374		return -EINVAL;
375
376	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
377}
378EXPORT_SYMBOL(vm_mmap);
379
380/**
381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382 * failure, fall back to non-contiguous (vmalloc) allocation.
383 * @size: size of the request.
384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385 * @node: numa node to allocate from
386 *
387 * Uses kmalloc to get the memory but if the allocation fails then falls back
388 * to the vmalloc allocator. Use kvfree for freeing the memory.
389 *
390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392 * preferable to the vmalloc fallback, due to visible performance drawbacks.
393 *
394 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
395 */
396void *kvmalloc_node(size_t size, gfp_t flags, int node)
397{
398	gfp_t kmalloc_flags = flags;
399	void *ret;
400
401	/*
402	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
403	 * so the given set of flags has to be compatible.
404	 */
405	WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
406
407	/*
408	 * We want to attempt a large physically contiguous block first because
409	 * it is less likely to fragment multiple larger blocks and therefore
410	 * contribute to a long term fragmentation less than vmalloc fallback.
411	 * However make sure that larger requests are not too disruptive - no
412	 * OOM killer and no allocation failure warnings as we have a fallback.
413	 */
414	if (size > PAGE_SIZE) {
415		kmalloc_flags |= __GFP_NOWARN;
416
417		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
418			kmalloc_flags |= __GFP_NORETRY;
419	}
420
421	ret = kmalloc_node(size, kmalloc_flags, node);
422
423	/*
424	 * It doesn't really make sense to fallback to vmalloc for sub page
425	 * requests
426	 */
427	if (ret || size <= PAGE_SIZE)
428		return ret;
429
430	return __vmalloc_node_flags_caller(size, node, flags,
431			__builtin_return_address(0));
432}
433EXPORT_SYMBOL(kvmalloc_node);
434
435void kvfree(const void *addr)
436{
437	if (is_vmalloc_addr(addr))
438		vfree(addr);
439	else
440		kfree(addr);
441}
442EXPORT_SYMBOL(kvfree);
443
444static inline void *__page_rmapping(struct page *page)
445{
446	unsigned long mapping;
447
448	mapping = (unsigned long)page->mapping;
449	mapping &= ~PAGE_MAPPING_FLAGS;
450
451	return (void *)mapping;
452}
453
454/* Neutral page->mapping pointer to address_space or anon_vma or other */
455void *page_rmapping(struct page *page)
456{
457	page = compound_head(page);
458	return __page_rmapping(page);
459}
460
461/*
462 * Return true if this page is mapped into pagetables.
463 * For compound page it returns true if any subpage of compound page is mapped.
464 */
465bool page_mapped(struct page *page)
466{
467	int i;
468
469	if (likely(!PageCompound(page)))
470		return atomic_read(&page->_mapcount) >= 0;
471	page = compound_head(page);
472	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
473		return true;
474	if (PageHuge(page))
475		return false;
476	for (i = 0; i < hpage_nr_pages(page); i++) {
477		if (atomic_read(&page[i]._mapcount) >= 0)
478			return true;
479	}
480	return false;
481}
482EXPORT_SYMBOL(page_mapped);
483
484struct anon_vma *page_anon_vma(struct page *page)
485{
486	unsigned long mapping;
487
488	page = compound_head(page);
489	mapping = (unsigned long)page->mapping;
490	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
491		return NULL;
492	return __page_rmapping(page);
493}
494
495struct address_space *page_mapping(struct page *page)
496{
497	struct address_space *mapping;
498
499	page = compound_head(page);
500
501	/* This happens if someone calls flush_dcache_page on slab page */
502	if (unlikely(PageSlab(page)))
503		return NULL;
504
505	if (unlikely(PageSwapCache(page))) {
506		swp_entry_t entry;
507
508		entry.val = page_private(page);
509		return swap_address_space(entry);
510	}
511
512	mapping = page->mapping;
513	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
514		return NULL;
515
516	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
517}
518EXPORT_SYMBOL(page_mapping);
519
520/*
521 * For file cache pages, return the address_space, otherwise return NULL
522 */
523struct address_space *page_mapping_file(struct page *page)
524{
525	if (unlikely(PageSwapCache(page)))
526		return NULL;
527	return page_mapping(page);
528}
529
530/* Slow path of page_mapcount() for compound pages */
531int __page_mapcount(struct page *page)
532{
533	int ret;
534
535	ret = atomic_read(&page->_mapcount) + 1;
536	/*
537	 * For file THP page->_mapcount contains total number of mapping
538	 * of the page: no need to look into compound_mapcount.
539	 */
540	if (!PageAnon(page) && !PageHuge(page))
541		return ret;
542	page = compound_head(page);
543	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
544	if (PageDoubleMap(page))
545		ret--;
546	return ret;
547}
548EXPORT_SYMBOL_GPL(__page_mapcount);
549
550int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
551int sysctl_overcommit_ratio __read_mostly = 50;
552unsigned long sysctl_overcommit_kbytes __read_mostly;
553int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
554unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
555unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
556
557int overcommit_ratio_handler(struct ctl_table *table, int write,
558			     void __user *buffer, size_t *lenp,
559			     loff_t *ppos)
560{
561	int ret;
562
563	ret = proc_dointvec(table, write, buffer, lenp, ppos);
564	if (ret == 0 && write)
565		sysctl_overcommit_kbytes = 0;
566	return ret;
567}
568
569int overcommit_kbytes_handler(struct ctl_table *table, int write,
570			     void __user *buffer, size_t *lenp,
571			     loff_t *ppos)
572{
573	int ret;
574
575	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
576	if (ret == 0 && write)
577		sysctl_overcommit_ratio = 0;
578	return ret;
579}
580
581/*
582 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
583 */
584unsigned long vm_commit_limit(void)
585{
586	unsigned long allowed;
587
588	if (sysctl_overcommit_kbytes)
589		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
590	else
591		allowed = ((totalram_pages - hugetlb_total_pages())
592			   * sysctl_overcommit_ratio / 100);
593	allowed += total_swap_pages;
594
595	return allowed;
596}
597
598/*
599 * Make sure vm_committed_as in one cacheline and not cacheline shared with
600 * other variables. It can be updated by several CPUs frequently.
601 */
602struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
603
604/*
605 * The global memory commitment made in the system can be a metric
606 * that can be used to drive ballooning decisions when Linux is hosted
607 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
608 * balancing memory across competing virtual machines that are hosted.
609 * Several metrics drive this policy engine including the guest reported
610 * memory commitment.
611 */
612unsigned long vm_memory_committed(void)
613{
614	return percpu_counter_read_positive(&vm_committed_as);
615}
616EXPORT_SYMBOL_GPL(vm_memory_committed);
617
618/*
619 * Check that a process has enough memory to allocate a new virtual
620 * mapping. 0 means there is enough memory for the allocation to
621 * succeed and -ENOMEM implies there is not.
622 *
623 * We currently support three overcommit policies, which are set via the
624 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
625 *
626 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
627 * Additional code 2002 Jul 20 by Robert Love.
628 *
629 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
630 *
631 * Note this is a helper function intended to be used by LSMs which
632 * wish to use this logic.
633 */
634int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
635{
636	long free, allowed, reserve;
637
638	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
639			-(s64)vm_committed_as_batch * num_online_cpus(),
640			"memory commitment underflow");
641
642	vm_acct_memory(pages);
643
644	/*
645	 * Sometimes we want to use more memory than we have
646	 */
647	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
648		return 0;
649
650	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
651		free = global_zone_page_state(NR_FREE_PAGES);
652		free += global_node_page_state(NR_FILE_PAGES);
653
654		/*
655		 * shmem pages shouldn't be counted as free in this
656		 * case, they can't be purged, only swapped out, and
657		 * that won't affect the overall amount of available
658		 * memory in the system.
659		 */
660		free -= global_node_page_state(NR_SHMEM);
661
662		free += get_nr_swap_pages();
663
664		/*
665		 * Any slabs which are created with the
666		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
667		 * which are reclaimable, under pressure.  The dentry
668		 * cache and most inode caches should fall into this
669		 */
670		free += global_node_page_state(NR_SLAB_RECLAIMABLE);
671
672		/*
673		 * Part of the kernel memory, which can be released
674		 * under memory pressure.
675		 */
676		free += global_node_page_state(
677			NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
678
679		/*
680		 * Leave reserved pages. The pages are not for anonymous pages.
681		 */
682		if (free <= totalreserve_pages)
683			goto error;
684		else
685			free -= totalreserve_pages;
686
687		/*
688		 * Reserve some for root
689		 */
690		if (!cap_sys_admin)
691			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
692
693		if (free > pages)
694			return 0;
695
696		goto error;
697	}
698
699	allowed = vm_commit_limit();
700	/*
701	 * Reserve some for root
702	 */
703	if (!cap_sys_admin)
704		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
705
706	/*
707	 * Don't let a single process grow so big a user can't recover
708	 */
709	if (mm) {
710		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
711		allowed -= min_t(long, mm->total_vm / 32, reserve);
712	}
713
714	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
715		return 0;
716error:
717	vm_unacct_memory(pages);
718
719	return -ENOMEM;
720}
721
722/**
723 * get_cmdline() - copy the cmdline value to a buffer.
724 * @task:     the task whose cmdline value to copy.
725 * @buffer:   the buffer to copy to.
726 * @buflen:   the length of the buffer. Larger cmdline values are truncated
727 *            to this length.
728 * Returns the size of the cmdline field copied. Note that the copy does
729 * not guarantee an ending NULL byte.
730 */
731int get_cmdline(struct task_struct *task, char *buffer, int buflen)
732{
733	int res = 0;
734	unsigned int len;
735	struct mm_struct *mm = get_task_mm(task);
736	unsigned long arg_start, arg_end, env_start, env_end;
737	if (!mm)
738		goto out;
739	if (!mm->arg_end)
740		goto out_mm;	/* Shh! No looking before we're done */
741
742	down_read(&mm->mmap_sem);
743	arg_start = mm->arg_start;
744	arg_end = mm->arg_end;
745	env_start = mm->env_start;
746	env_end = mm->env_end;
747	up_read(&mm->mmap_sem);
748
749	len = arg_end - arg_start;
750
751	if (len > buflen)
752		len = buflen;
753
754	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
755
756	/*
757	 * If the nul at the end of args has been overwritten, then
758	 * assume application is using setproctitle(3).
759	 */
760	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
761		len = strnlen(buffer, res);
762		if (len < res) {
763			res = len;
764		} else {
765			len = env_end - env_start;
766			if (len > buflen - res)
767				len = buflen - res;
768			res += access_process_vm(task, env_start,
769						 buffer+res, len,
770						 FOLL_FORCE);
771			res = strnlen(buffer, res);
772		}
773	}
774out_mm:
775	mmput(mm);
776out:
777	return res;
778}
v3.1
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/module.h>
 
  5#include <linux/err.h>
  6#include <linux/sched.h>
  7#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
  8
  9#include "internal.h"
 10
 11#define CREATE_TRACE_POINTS
 12#include <trace/events/kmem.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13
 14/**
 15 * kstrdup - allocate space for and copy an existing string
 16 * @s: the string to duplicate
 17 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 18 */
 19char *kstrdup(const char *s, gfp_t gfp)
 20{
 21	size_t len;
 22	char *buf;
 23
 24	if (!s)
 25		return NULL;
 26
 27	len = strlen(s) + 1;
 28	buf = kmalloc_track_caller(len, gfp);
 29	if (buf)
 30		memcpy(buf, s, len);
 31	return buf;
 32}
 33EXPORT_SYMBOL(kstrdup);
 34
 35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36 * kstrndup - allocate space for and copy an existing string
 37 * @s: the string to duplicate
 38 * @max: read at most @max chars from @s
 39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 
 
 40 */
 41char *kstrndup(const char *s, size_t max, gfp_t gfp)
 42{
 43	size_t len;
 44	char *buf;
 45
 46	if (!s)
 47		return NULL;
 48
 49	len = strnlen(s, max);
 50	buf = kmalloc_track_caller(len+1, gfp);
 51	if (buf) {
 52		memcpy(buf, s, len);
 53		buf[len] = '\0';
 54	}
 55	return buf;
 56}
 57EXPORT_SYMBOL(kstrndup);
 58
 59/**
 60 * kmemdup - duplicate region of memory
 61 *
 62 * @src: memory region to duplicate
 63 * @len: memory region length
 64 * @gfp: GFP mask to use
 65 */
 66void *kmemdup(const void *src, size_t len, gfp_t gfp)
 67{
 68	void *p;
 69
 70	p = kmalloc_track_caller(len, gfp);
 71	if (p)
 72		memcpy(p, src, len);
 73	return p;
 74}
 75EXPORT_SYMBOL(kmemdup);
 76
 77/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78 * memdup_user - duplicate memory region from user space
 79 *
 80 * @src: source address in user space
 81 * @len: number of bytes to copy
 82 *
 83 * Returns an ERR_PTR() on failure.
 
 84 */
 85void *memdup_user(const void __user *src, size_t len)
 86{
 87	void *p;
 88
 89	/*
 90	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 91	 * cause pagefault, which makes it pointless to use GFP_NOFS
 92	 * or GFP_ATOMIC.
 93	 */
 94	p = kmalloc_track_caller(len, GFP_KERNEL);
 95	if (!p)
 96		return ERR_PTR(-ENOMEM);
 97
 98	if (copy_from_user(p, src, len)) {
 99		kfree(p);
100		return ERR_PTR(-EFAULT);
101	}
102
103	return p;
104}
105EXPORT_SYMBOL(memdup_user);
106
107/**
108 * __krealloc - like krealloc() but don't free @p.
109 * @p: object to reallocate memory for.
110 * @new_size: how many bytes of memory are required.
111 * @flags: the type of memory to allocate.
112 *
113 * This function is like krealloc() except it never frees the originally
114 * allocated buffer. Use this if you don't want to free the buffer immediately
115 * like, for example, with RCU.
116 */
117void *__krealloc(const void *p, size_t new_size, gfp_t flags)
118{
119	void *ret;
120	size_t ks = 0;
121
122	if (unlikely(!new_size))
123		return ZERO_SIZE_PTR;
 
124
125	if (p)
126		ks = ksize(p);
127
128	if (ks >= new_size)
129		return (void *)p;
130
131	ret = kmalloc_track_caller(new_size, flags);
132	if (ret && p)
133		memcpy(ret, p, ks);
134
135	return ret;
136}
137EXPORT_SYMBOL(__krealloc);
138
139/**
140 * krealloc - reallocate memory. The contents will remain unchanged.
141 * @p: object to reallocate memory for.
142 * @new_size: how many bytes of memory are required.
143 * @flags: the type of memory to allocate.
144 *
145 * The contents of the object pointed to are preserved up to the
146 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
147 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
148 * %NULL pointer, the object pointed to is freed.
149 */
150void *krealloc(const void *p, size_t new_size, gfp_t flags)
151{
152	void *ret;
153
154	if (unlikely(!new_size)) {
155		kfree(p);
156		return ZERO_SIZE_PTR;
157	}
158
159	ret = __krealloc(p, new_size, flags);
160	if (ret && p != ret)
161		kfree(p);
162
163	return ret;
164}
165EXPORT_SYMBOL(krealloc);
166
167/**
168 * kzfree - like kfree but zero memory
169 * @p: object to free memory of
170 *
171 * The memory of the object @p points to is zeroed before freed.
172 * If @p is %NULL, kzfree() does nothing.
173 *
174 * Note: this function zeroes the whole allocated buffer which can be a good
175 * deal bigger than the requested buffer size passed to kmalloc(). So be
176 * careful when using this function in performance sensitive code.
177 */
178void kzfree(const void *p)
179{
180	size_t ks;
181	void *mem = (void *)p;
182
183	if (unlikely(ZERO_OR_NULL_PTR(mem)))
184		return;
185	ks = ksize(mem);
186	memset(mem, 0, ks);
187	kfree(mem);
188}
189EXPORT_SYMBOL(kzfree);
190
191/*
192 * strndup_user - duplicate an existing string from user space
193 * @s: The string to duplicate
194 * @n: Maximum number of bytes to copy, including the trailing NUL.
195 */
196char *strndup_user(const char __user *s, long n)
197{
198	char *p;
199	long length;
200
201	length = strnlen_user(s, n);
202
203	if (!length)
204		return ERR_PTR(-EFAULT);
205
206	if (length > n)
207		return ERR_PTR(-EINVAL);
208
209	p = memdup_user(s, length);
210
211	if (IS_ERR(p))
212		return p;
213
214	p[length - 1] = '\0';
215
216	return p;
217}
218EXPORT_SYMBOL(strndup_user);
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
221		struct vm_area_struct *prev, struct rb_node *rb_parent)
222{
223	struct vm_area_struct *next;
224
225	vma->vm_prev = prev;
226	if (prev) {
227		next = prev->vm_next;
228		prev->vm_next = vma;
229	} else {
230		mm->mmap = vma;
231		if (rb_parent)
232			next = rb_entry(rb_parent,
233					struct vm_area_struct, vm_rb);
234		else
235			next = NULL;
236	}
237	vma->vm_next = next;
238	if (next)
239		next->vm_prev = vma;
240}
241
 
 
 
 
 
 
 
 
242#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
243void arch_pick_mmap_layout(struct mm_struct *mm)
244{
245	mm->mmap_base = TASK_UNMAPPED_BASE;
246	mm->get_unmapped_area = arch_get_unmapped_area;
247	mm->unmap_area = arch_unmap_area;
248}
249#endif
250
251/*
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
255 * page pinned
 
 
256 */
257int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
258				 int nr_pages, int write, struct page **pages)
259{
260	return 0;
261}
262EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263
264/**
265 * get_user_pages_fast() - pin user pages in memory
266 * @start:	starting user address
267 * @nr_pages:	number of pages from start to pin
268 * @write:	whether pages will be written to
269 * @pages:	array that receives pointers to the pages pinned.
270 *		Should be at least nr_pages long.
271 *
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
275 *
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
279 *
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
287 */
288int __attribute__((weak)) get_user_pages_fast(unsigned long start,
289				int nr_pages, int write, struct page **pages)
290{
 
 
 
 
 
 
 
 
 
 
291	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292	int ret;
293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294	down_read(&mm->mmap_sem);
295	ret = get_user_pages(current, mm, start, nr_pages,
296					write, 0, pages, NULL);
 
 
297	up_read(&mm->mmap_sem);
298
299	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300}
301EXPORT_SYMBOL_GPL(get_user_pages_fast);
302
303/* Tracepoints definitions. */
304EXPORT_TRACEPOINT_SYMBOL(kmalloc);
305EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
306EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
307EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
308EXPORT_TRACEPOINT_SYMBOL(kfree);
309EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);