Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_mount.h"
  26#include "xfs_defer.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_buf_item.h"
  31#include "xfs_btree.h"
  32#include "xfs_errortag.h"
  33#include "xfs_error.h"
  34#include "xfs_trace.h"
  35#include "xfs_cksum.h"
  36#include "xfs_alloc.h"
  37#include "xfs_log.h"
  38
  39/*
  40 * Cursor allocation zone.
  41 */
  42kmem_zone_t	*xfs_btree_cur_zone;
  43
  44/*
  45 * Btree magic numbers.
  46 */
  47static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  48	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  49	  XFS_FIBT_MAGIC, 0 },
  50	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  51	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  52	  XFS_REFC_CRC_MAGIC }
  53};
  54
  55uint32_t
  56xfs_btree_magic(
  57	int			crc,
  58	xfs_btnum_t		btnum)
  59{
  60	uint32_t		magic = xfs_magics[crc][btnum];
  61
  62	/* Ensure we asked for crc for crc-only magics. */
  63	ASSERT(magic != 0);
  64	return magic;
  65}
  66
  67/*
  68 * Check a long btree block header.  Return the address of the failing check,
  69 * or NULL if everything is ok.
  70 */
  71xfs_failaddr_t
  72__xfs_btree_check_lblock(
  73	struct xfs_btree_cur	*cur,
  74	struct xfs_btree_block	*block,
  75	int			level,
  76	struct xfs_buf		*bp)
  77{
  78	struct xfs_mount	*mp = cur->bc_mp;
  79	xfs_btnum_t		btnum = cur->bc_btnum;
  80	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
  81
  82	if (crc) {
  83		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
  84			return __this_address;
  85		if (block->bb_u.l.bb_blkno !=
  86		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
  87			return __this_address;
  88		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
  89			return __this_address;
  90	}
  91
  92	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
  93		return __this_address;
  94	if (be16_to_cpu(block->bb_level) != level)
  95		return __this_address;
  96	if (be16_to_cpu(block->bb_numrecs) >
  97	    cur->bc_ops->get_maxrecs(cur, level))
  98		return __this_address;
  99	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
 100	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
 101			level + 1))
 102		return __this_address;
 103	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
 104	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
 105			level + 1))
 106		return __this_address;
 107
 108	return NULL;
 109}
 110
 111/* Check a long btree block header. */
 112static int
 113xfs_btree_check_lblock(
 114	struct xfs_btree_cur	*cur,
 115	struct xfs_btree_block	*block,
 116	int			level,
 117	struct xfs_buf		*bp)
 118{
 119	struct xfs_mount	*mp = cur->bc_mp;
 120	xfs_failaddr_t		fa;
 121
 122	fa = __xfs_btree_check_lblock(cur, block, level, bp);
 123	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
 124			XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
 125		if (bp)
 126			trace_xfs_btree_corrupt(bp, _RET_IP_);
 127		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 128		return -EFSCORRUPTED;
 129	}
 130	return 0;
 131}
 132
 133/*
 134 * Check a short btree block header.  Return the address of the failing check,
 135 * or NULL if everything is ok.
 136 */
 137xfs_failaddr_t
 138__xfs_btree_check_sblock(
 139	struct xfs_btree_cur	*cur,
 140	struct xfs_btree_block	*block,
 141	int			level,
 142	struct xfs_buf		*bp)
 143{
 144	struct xfs_mount	*mp = cur->bc_mp;
 145	xfs_btnum_t		btnum = cur->bc_btnum;
 146	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
 147
 148	if (crc) {
 149		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
 150			return __this_address;
 151		if (block->bb_u.s.bb_blkno !=
 152		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
 153			return __this_address;
 154	}
 155
 156	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
 157		return __this_address;
 158	if (be16_to_cpu(block->bb_level) != level)
 159		return __this_address;
 160	if (be16_to_cpu(block->bb_numrecs) >
 161	    cur->bc_ops->get_maxrecs(cur, level))
 162		return __this_address;
 163	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
 164	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
 165			level + 1))
 166		return __this_address;
 167	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
 168	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
 169			level + 1))
 170		return __this_address;
 171
 172	return NULL;
 173}
 174
 175/* Check a short btree block header. */
 176STATIC int
 177xfs_btree_check_sblock(
 178	struct xfs_btree_cur	*cur,
 179	struct xfs_btree_block	*block,
 180	int			level,
 181	struct xfs_buf		*bp)
 182{
 183	struct xfs_mount	*mp = cur->bc_mp;
 184	xfs_failaddr_t		fa;
 185
 186	fa = __xfs_btree_check_sblock(cur, block, level, bp);
 187	if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
 188			XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
 189		if (bp)
 190			trace_xfs_btree_corrupt(bp, _RET_IP_);
 191		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 192		return -EFSCORRUPTED;
 193	}
 194	return 0;
 195}
 196
 197/*
 198 * Debug routine: check that block header is ok.
 199 */
 200int
 201xfs_btree_check_block(
 202	struct xfs_btree_cur	*cur,	/* btree cursor */
 203	struct xfs_btree_block	*block,	/* generic btree block pointer */
 204	int			level,	/* level of the btree block */
 205	struct xfs_buf		*bp)	/* buffer containing block, if any */
 206{
 207	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 208		return xfs_btree_check_lblock(cur, block, level, bp);
 209	else
 210		return xfs_btree_check_sblock(cur, block, level, bp);
 211}
 212
 213/* Check that this long pointer is valid and points within the fs. */
 214bool
 215xfs_btree_check_lptr(
 216	struct xfs_btree_cur	*cur,
 217	xfs_fsblock_t		fsbno,
 218	int			level)
 219{
 220	if (level <= 0)
 221		return false;
 222	return xfs_verify_fsbno(cur->bc_mp, fsbno);
 223}
 224
 225/* Check that this short pointer is valid and points within the AG. */
 226bool
 227xfs_btree_check_sptr(
 228	struct xfs_btree_cur	*cur,
 229	xfs_agblock_t		agbno,
 230	int			level)
 231{
 232	if (level <= 0)
 233		return false;
 234	return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
 235}
 236
 237#ifdef DEBUG
 238/*
 239 * Check that a given (indexed) btree pointer at a certain level of a
 240 * btree is valid and doesn't point past where it should.
 241 */
 242static int
 243xfs_btree_check_ptr(
 244	struct xfs_btree_cur	*cur,
 245	union xfs_btree_ptr	*ptr,
 246	int			index,
 247	int			level)
 248{
 249	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 250		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 251				xfs_btree_check_lptr(cur,
 252					be64_to_cpu((&ptr->l)[index]), level));
 253	} else {
 254		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 255				xfs_btree_check_sptr(cur,
 256					be32_to_cpu((&ptr->s)[index]), level));
 257	}
 258
 259	return 0;
 260}
 261#endif
 262
 263/*
 264 * Calculate CRC on the whole btree block and stuff it into the
 265 * long-form btree header.
 266 *
 267 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 268 * it into the buffer so recovery knows what the last modification was that made
 269 * it to disk.
 270 */
 271void
 272xfs_btree_lblock_calc_crc(
 273	struct xfs_buf		*bp)
 274{
 275	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 276	struct xfs_buf_log_item	*bip = bp->b_log_item;
 277
 278	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 279		return;
 280	if (bip)
 281		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 282	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 283}
 284
 285bool
 286xfs_btree_lblock_verify_crc(
 287	struct xfs_buf		*bp)
 288{
 289	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 290	struct xfs_mount	*mp = bp->b_target->bt_mount;
 291
 292	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 293		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 294			return false;
 295		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 296	}
 297
 298	return true;
 299}
 300
 301/*
 302 * Calculate CRC on the whole btree block and stuff it into the
 303 * short-form btree header.
 304 *
 305 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 306 * it into the buffer so recovery knows what the last modification was that made
 307 * it to disk.
 308 */
 309void
 310xfs_btree_sblock_calc_crc(
 311	struct xfs_buf		*bp)
 312{
 313	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 314	struct xfs_buf_log_item	*bip = bp->b_log_item;
 315
 316	if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 317		return;
 318	if (bip)
 319		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 320	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 321}
 322
 323bool
 324xfs_btree_sblock_verify_crc(
 325	struct xfs_buf		*bp)
 326{
 327	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 328	struct xfs_mount	*mp = bp->b_target->bt_mount;
 329
 330	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 331		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 332			return __this_address;
 333		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 334	}
 335
 336	return true;
 337}
 338
 339static int
 340xfs_btree_free_block(
 341	struct xfs_btree_cur	*cur,
 342	struct xfs_buf		*bp)
 343{
 344	int			error;
 345
 346	error = cur->bc_ops->free_block(cur, bp);
 347	if (!error) {
 348		xfs_trans_binval(cur->bc_tp, bp);
 349		XFS_BTREE_STATS_INC(cur, free);
 350	}
 351	return error;
 352}
 353
 354/*
 355 * Delete the btree cursor.
 356 */
 357void
 358xfs_btree_del_cursor(
 359	xfs_btree_cur_t	*cur,		/* btree cursor */
 360	int		error)		/* del because of error */
 361{
 362	int		i;		/* btree level */
 363
 364	/*
 365	 * Clear the buffer pointers, and release the buffers.
 366	 * If we're doing this in the face of an error, we
 367	 * need to make sure to inspect all of the entries
 368	 * in the bc_bufs array for buffers to be unlocked.
 369	 * This is because some of the btree code works from
 370	 * level n down to 0, and if we get an error along
 371	 * the way we won't have initialized all the entries
 372	 * down to 0.
 373	 */
 374	for (i = 0; i < cur->bc_nlevels; i++) {
 375		if (cur->bc_bufs[i])
 376			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 377		else if (!error)
 378			break;
 379	}
 380	/*
 381	 * Can't free a bmap cursor without having dealt with the
 382	 * allocated indirect blocks' accounting.
 383	 */
 384	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 385	       cur->bc_private.b.allocated == 0);
 386	/*
 387	 * Free the cursor.
 388	 */
 389	kmem_zone_free(xfs_btree_cur_zone, cur);
 390}
 391
 392/*
 393 * Duplicate the btree cursor.
 394 * Allocate a new one, copy the record, re-get the buffers.
 395 */
 396int					/* error */
 397xfs_btree_dup_cursor(
 398	xfs_btree_cur_t	*cur,		/* input cursor */
 399	xfs_btree_cur_t	**ncur)		/* output cursor */
 400{
 401	xfs_buf_t	*bp;		/* btree block's buffer pointer */
 402	int		error;		/* error return value */
 403	int		i;		/* level number of btree block */
 404	xfs_mount_t	*mp;		/* mount structure for filesystem */
 405	xfs_btree_cur_t	*new;		/* new cursor value */
 406	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
 407
 408	tp = cur->bc_tp;
 409	mp = cur->bc_mp;
 410
 411	/*
 412	 * Allocate a new cursor like the old one.
 413	 */
 414	new = cur->bc_ops->dup_cursor(cur);
 415
 416	/*
 417	 * Copy the record currently in the cursor.
 418	 */
 419	new->bc_rec = cur->bc_rec;
 420
 421	/*
 422	 * For each level current, re-get the buffer and copy the ptr value.
 423	 */
 424	for (i = 0; i < new->bc_nlevels; i++) {
 425		new->bc_ptrs[i] = cur->bc_ptrs[i];
 426		new->bc_ra[i] = cur->bc_ra[i];
 427		bp = cur->bc_bufs[i];
 428		if (bp) {
 429			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 430						   XFS_BUF_ADDR(bp), mp->m_bsize,
 431						   0, &bp,
 432						   cur->bc_ops->buf_ops);
 433			if (error) {
 434				xfs_btree_del_cursor(new, error);
 435				*ncur = NULL;
 436				return error;
 437			}
 438		}
 439		new->bc_bufs[i] = bp;
 440	}
 441	*ncur = new;
 442	return 0;
 443}
 444
 445/*
 446 * XFS btree block layout and addressing:
 447 *
 448 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 449 *
 450 * The leaf record start with a header then followed by records containing
 451 * the values.  A non-leaf block also starts with the same header, and
 452 * then first contains lookup keys followed by an equal number of pointers
 453 * to the btree blocks at the previous level.
 454 *
 455 *		+--------+-------+-------+-------+-------+-------+-------+
 456 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 457 *		+--------+-------+-------+-------+-------+-------+-------+
 458 *
 459 *		+--------+-------+-------+-------+-------+-------+-------+
 460 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 461 *		+--------+-------+-------+-------+-------+-------+-------+
 462 *
 463 * The header is called struct xfs_btree_block for reasons better left unknown
 464 * and comes in different versions for short (32bit) and long (64bit) block
 465 * pointers.  The record and key structures are defined by the btree instances
 466 * and opaque to the btree core.  The block pointers are simple disk endian
 467 * integers, available in a short (32bit) and long (64bit) variant.
 468 *
 469 * The helpers below calculate the offset of a given record, key or pointer
 470 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 471 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 472 * inside the btree block is done using indices starting at one, not zero!
 473 *
 474 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 475 * overlapping intervals.  In such a tree, records are still sorted lowest to
 476 * highest and indexed by the smallest key value that refers to the record.
 477 * However, nodes are different: each pointer has two associated keys -- one
 478 * indexing the lowest key available in the block(s) below (the same behavior
 479 * as the key in a regular btree) and another indexing the highest key
 480 * available in the block(s) below.  Because records are /not/ sorted by the
 481 * highest key, all leaf block updates require us to compute the highest key
 482 * that matches any record in the leaf and to recursively update the high keys
 483 * in the nodes going further up in the tree, if necessary.  Nodes look like
 484 * this:
 485 *
 486 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 487 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 488 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
 489 *
 490 * To perform an interval query on an overlapped tree, perform the usual
 491 * depth-first search and use the low and high keys to decide if we can skip
 492 * that particular node.  If a leaf node is reached, return the records that
 493 * intersect the interval.  Note that an interval query may return numerous
 494 * entries.  For a non-overlapped tree, simply search for the record associated
 495 * with the lowest key and iterate forward until a non-matching record is
 496 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 497 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 498 * more detail.
 499 *
 500 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 501 * reverse mapping records on a reflink filesystem:
 502 *
 503 * 1: +- file A startblock B offset C length D -----------+
 504 * 2:      +- file E startblock F offset G length H --------------+
 505 * 3:      +- file I startblock F offset J length K --+
 506 * 4:                                                        +- file L... --+
 507 *
 508 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 509 * we'd simply increment the length of record 1.  But how do we find the record
 510 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 511 * record 3 because the keys are ordered first by startblock.  An interval
 512 * query would return records 1 and 2 because they both overlap (B+D-1), and
 513 * from that we can pick out record 1 as the appropriate left neighbor.
 514 *
 515 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 516 * because a record's interval must end before the next record.
 517 */
 518
 519/*
 520 * Return size of the btree block header for this btree instance.
 521 */
 522static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 523{
 524	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 525		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 526			return XFS_BTREE_LBLOCK_CRC_LEN;
 527		return XFS_BTREE_LBLOCK_LEN;
 528	}
 529	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 530		return XFS_BTREE_SBLOCK_CRC_LEN;
 531	return XFS_BTREE_SBLOCK_LEN;
 532}
 533
 534/*
 535 * Return size of btree block pointers for this btree instance.
 536 */
 537static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 538{
 539	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 540		sizeof(__be64) : sizeof(__be32);
 541}
 542
 543/*
 544 * Calculate offset of the n-th record in a btree block.
 545 */
 546STATIC size_t
 547xfs_btree_rec_offset(
 548	struct xfs_btree_cur	*cur,
 549	int			n)
 550{
 551	return xfs_btree_block_len(cur) +
 552		(n - 1) * cur->bc_ops->rec_len;
 553}
 554
 555/*
 556 * Calculate offset of the n-th key in a btree block.
 557 */
 558STATIC size_t
 559xfs_btree_key_offset(
 560	struct xfs_btree_cur	*cur,
 561	int			n)
 562{
 563	return xfs_btree_block_len(cur) +
 564		(n - 1) * cur->bc_ops->key_len;
 565}
 566
 567/*
 568 * Calculate offset of the n-th high key in a btree block.
 569 */
 570STATIC size_t
 571xfs_btree_high_key_offset(
 572	struct xfs_btree_cur	*cur,
 573	int			n)
 574{
 575	return xfs_btree_block_len(cur) +
 576		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 577}
 578
 579/*
 580 * Calculate offset of the n-th block pointer in a btree block.
 581 */
 582STATIC size_t
 583xfs_btree_ptr_offset(
 584	struct xfs_btree_cur	*cur,
 585	int			n,
 586	int			level)
 587{
 588	return xfs_btree_block_len(cur) +
 589		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 590		(n - 1) * xfs_btree_ptr_len(cur);
 591}
 592
 593/*
 594 * Return a pointer to the n-th record in the btree block.
 595 */
 596union xfs_btree_rec *
 597xfs_btree_rec_addr(
 598	struct xfs_btree_cur	*cur,
 599	int			n,
 600	struct xfs_btree_block	*block)
 601{
 602	return (union xfs_btree_rec *)
 603		((char *)block + xfs_btree_rec_offset(cur, n));
 604}
 605
 606/*
 607 * Return a pointer to the n-th key in the btree block.
 608 */
 609union xfs_btree_key *
 610xfs_btree_key_addr(
 611	struct xfs_btree_cur	*cur,
 612	int			n,
 613	struct xfs_btree_block	*block)
 614{
 615	return (union xfs_btree_key *)
 616		((char *)block + xfs_btree_key_offset(cur, n));
 617}
 618
 619/*
 620 * Return a pointer to the n-th high key in the btree block.
 621 */
 622union xfs_btree_key *
 623xfs_btree_high_key_addr(
 624	struct xfs_btree_cur	*cur,
 625	int			n,
 626	struct xfs_btree_block	*block)
 627{
 628	return (union xfs_btree_key *)
 629		((char *)block + xfs_btree_high_key_offset(cur, n));
 630}
 631
 632/*
 633 * Return a pointer to the n-th block pointer in the btree block.
 634 */
 635union xfs_btree_ptr *
 636xfs_btree_ptr_addr(
 637	struct xfs_btree_cur	*cur,
 638	int			n,
 639	struct xfs_btree_block	*block)
 640{
 641	int			level = xfs_btree_get_level(block);
 642
 643	ASSERT(block->bb_level != 0);
 644
 645	return (union xfs_btree_ptr *)
 646		((char *)block + xfs_btree_ptr_offset(cur, n, level));
 647}
 648
 649/*
 650 * Get the root block which is stored in the inode.
 651 *
 652 * For now this btree implementation assumes the btree root is always
 653 * stored in the if_broot field of an inode fork.
 654 */
 655STATIC struct xfs_btree_block *
 656xfs_btree_get_iroot(
 657	struct xfs_btree_cur	*cur)
 658{
 659	struct xfs_ifork	*ifp;
 660
 661	ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 662	return (struct xfs_btree_block *)ifp->if_broot;
 663}
 664
 665/*
 666 * Retrieve the block pointer from the cursor at the given level.
 667 * This may be an inode btree root or from a buffer.
 668 */
 669struct xfs_btree_block *		/* generic btree block pointer */
 670xfs_btree_get_block(
 671	struct xfs_btree_cur	*cur,	/* btree cursor */
 672	int			level,	/* level in btree */
 673	struct xfs_buf		**bpp)	/* buffer containing the block */
 674{
 675	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 676	    (level == cur->bc_nlevels - 1)) {
 677		*bpp = NULL;
 678		return xfs_btree_get_iroot(cur);
 679	}
 680
 681	*bpp = cur->bc_bufs[level];
 682	return XFS_BUF_TO_BLOCK(*bpp);
 683}
 684
 685/*
 686 * Get a buffer for the block, return it with no data read.
 687 * Long-form addressing.
 688 */
 689xfs_buf_t *				/* buffer for fsbno */
 690xfs_btree_get_bufl(
 691	xfs_mount_t	*mp,		/* file system mount point */
 692	xfs_trans_t	*tp,		/* transaction pointer */
 693	xfs_fsblock_t	fsbno,		/* file system block number */
 694	uint		lock)		/* lock flags for get_buf */
 695{
 696	xfs_daddr_t		d;		/* real disk block address */
 697
 698	ASSERT(fsbno != NULLFSBLOCK);
 699	d = XFS_FSB_TO_DADDR(mp, fsbno);
 700	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 701}
 702
 703/*
 704 * Get a buffer for the block, return it with no data read.
 705 * Short-form addressing.
 706 */
 707xfs_buf_t *				/* buffer for agno/agbno */
 708xfs_btree_get_bufs(
 709	xfs_mount_t	*mp,		/* file system mount point */
 710	xfs_trans_t	*tp,		/* transaction pointer */
 711	xfs_agnumber_t	agno,		/* allocation group number */
 712	xfs_agblock_t	agbno,		/* allocation group block number */
 713	uint		lock)		/* lock flags for get_buf */
 714{
 715	xfs_daddr_t		d;		/* real disk block address */
 716
 717	ASSERT(agno != NULLAGNUMBER);
 718	ASSERT(agbno != NULLAGBLOCK);
 719	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 720	return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 721}
 722
 723/*
 724 * Check for the cursor referring to the last block at the given level.
 725 */
 726int					/* 1=is last block, 0=not last block */
 727xfs_btree_islastblock(
 728	xfs_btree_cur_t		*cur,	/* btree cursor */
 729	int			level)	/* level to check */
 730{
 731	struct xfs_btree_block	*block;	/* generic btree block pointer */
 732	xfs_buf_t		*bp;	/* buffer containing block */
 733
 734	block = xfs_btree_get_block(cur, level, &bp);
 735	xfs_btree_check_block(cur, block, level, bp);
 736	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 737		return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
 738	else
 739		return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
 740}
 741
 742/*
 743 * Change the cursor to point to the first record at the given level.
 744 * Other levels are unaffected.
 745 */
 746STATIC int				/* success=1, failure=0 */
 747xfs_btree_firstrec(
 748	xfs_btree_cur_t		*cur,	/* btree cursor */
 749	int			level)	/* level to change */
 750{
 751	struct xfs_btree_block	*block;	/* generic btree block pointer */
 752	xfs_buf_t		*bp;	/* buffer containing block */
 753
 754	/*
 755	 * Get the block pointer for this level.
 756	 */
 757	block = xfs_btree_get_block(cur, level, &bp);
 758	if (xfs_btree_check_block(cur, block, level, bp))
 759		return 0;
 760	/*
 761	 * It's empty, there is no such record.
 762	 */
 763	if (!block->bb_numrecs)
 764		return 0;
 765	/*
 766	 * Set the ptr value to 1, that's the first record/key.
 767	 */
 768	cur->bc_ptrs[level] = 1;
 769	return 1;
 770}
 771
 772/*
 773 * Change the cursor to point to the last record in the current block
 774 * at the given level.  Other levels are unaffected.
 775 */
 776STATIC int				/* success=1, failure=0 */
 777xfs_btree_lastrec(
 778	xfs_btree_cur_t		*cur,	/* btree cursor */
 779	int			level)	/* level to change */
 780{
 781	struct xfs_btree_block	*block;	/* generic btree block pointer */
 782	xfs_buf_t		*bp;	/* buffer containing block */
 783
 784	/*
 785	 * Get the block pointer for this level.
 786	 */
 787	block = xfs_btree_get_block(cur, level, &bp);
 788	if (xfs_btree_check_block(cur, block, level, bp))
 789		return 0;
 790	/*
 791	 * It's empty, there is no such record.
 792	 */
 793	if (!block->bb_numrecs)
 794		return 0;
 795	/*
 796	 * Set the ptr value to numrecs, that's the last record/key.
 797	 */
 798	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 799	return 1;
 800}
 801
 802/*
 803 * Compute first and last byte offsets for the fields given.
 804 * Interprets the offsets table, which contains struct field offsets.
 805 */
 806void
 807xfs_btree_offsets(
 808	int64_t		fields,		/* bitmask of fields */
 809	const short	*offsets,	/* table of field offsets */
 810	int		nbits,		/* number of bits to inspect */
 811	int		*first,		/* output: first byte offset */
 812	int		*last)		/* output: last byte offset */
 813{
 814	int		i;		/* current bit number */
 815	int64_t		imask;		/* mask for current bit number */
 816
 817	ASSERT(fields != 0);
 818	/*
 819	 * Find the lowest bit, so the first byte offset.
 820	 */
 821	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 822		if (imask & fields) {
 823			*first = offsets[i];
 824			break;
 825		}
 826	}
 827	/*
 828	 * Find the highest bit, so the last byte offset.
 829	 */
 830	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 831		if (imask & fields) {
 832			*last = offsets[i + 1] - 1;
 833			break;
 834		}
 835	}
 836}
 837
 838/*
 839 * Get a buffer for the block, return it read in.
 840 * Long-form addressing.
 841 */
 842int
 843xfs_btree_read_bufl(
 844	struct xfs_mount	*mp,		/* file system mount point */
 845	struct xfs_trans	*tp,		/* transaction pointer */
 846	xfs_fsblock_t		fsbno,		/* file system block number */
 847	uint			lock,		/* lock flags for read_buf */
 848	struct xfs_buf		**bpp,		/* buffer for fsbno */
 849	int			refval,		/* ref count value for buffer */
 850	const struct xfs_buf_ops *ops)
 851{
 852	struct xfs_buf		*bp;		/* return value */
 853	xfs_daddr_t		d;		/* real disk block address */
 854	int			error;
 855
 856	if (!xfs_verify_fsbno(mp, fsbno))
 857		return -EFSCORRUPTED;
 858	d = XFS_FSB_TO_DADDR(mp, fsbno);
 859	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 860				   mp->m_bsize, lock, &bp, ops);
 861	if (error)
 862		return error;
 863	if (bp)
 864		xfs_buf_set_ref(bp, refval);
 865	*bpp = bp;
 866	return 0;
 867}
 868
 869/*
 870 * Read-ahead the block, don't wait for it, don't return a buffer.
 871 * Long-form addressing.
 872 */
 873/* ARGSUSED */
 874void
 875xfs_btree_reada_bufl(
 876	struct xfs_mount	*mp,		/* file system mount point */
 877	xfs_fsblock_t		fsbno,		/* file system block number */
 878	xfs_extlen_t		count,		/* count of filesystem blocks */
 879	const struct xfs_buf_ops *ops)
 880{
 881	xfs_daddr_t		d;
 882
 883	ASSERT(fsbno != NULLFSBLOCK);
 884	d = XFS_FSB_TO_DADDR(mp, fsbno);
 885	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 886}
 887
 888/*
 889 * Read-ahead the block, don't wait for it, don't return a buffer.
 890 * Short-form addressing.
 891 */
 892/* ARGSUSED */
 893void
 894xfs_btree_reada_bufs(
 895	struct xfs_mount	*mp,		/* file system mount point */
 896	xfs_agnumber_t		agno,		/* allocation group number */
 897	xfs_agblock_t		agbno,		/* allocation group block number */
 898	xfs_extlen_t		count,		/* count of filesystem blocks */
 899	const struct xfs_buf_ops *ops)
 900{
 901	xfs_daddr_t		d;
 902
 903	ASSERT(agno != NULLAGNUMBER);
 904	ASSERT(agbno != NULLAGBLOCK);
 905	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 906	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 907}
 908
 909STATIC int
 910xfs_btree_readahead_lblock(
 911	struct xfs_btree_cur	*cur,
 912	int			lr,
 913	struct xfs_btree_block	*block)
 914{
 915	int			rval = 0;
 916	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 917	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 918
 919	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 920		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 921				     cur->bc_ops->buf_ops);
 922		rval++;
 923	}
 924
 925	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 926		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 927				     cur->bc_ops->buf_ops);
 928		rval++;
 929	}
 930
 931	return rval;
 932}
 933
 934STATIC int
 935xfs_btree_readahead_sblock(
 936	struct xfs_btree_cur	*cur,
 937	int			lr,
 938	struct xfs_btree_block *block)
 939{
 940	int			rval = 0;
 941	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 942	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 943
 944
 945	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 946		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 947				     left, 1, cur->bc_ops->buf_ops);
 948		rval++;
 949	}
 950
 951	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 952		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 953				     right, 1, cur->bc_ops->buf_ops);
 954		rval++;
 955	}
 956
 957	return rval;
 958}
 959
 960/*
 961 * Read-ahead btree blocks, at the given level.
 962 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 963 */
 964STATIC int
 965xfs_btree_readahead(
 966	struct xfs_btree_cur	*cur,		/* btree cursor */
 967	int			lev,		/* level in btree */
 968	int			lr)		/* left/right bits */
 969{
 970	struct xfs_btree_block	*block;
 971
 972	/*
 973	 * No readahead needed if we are at the root level and the
 974	 * btree root is stored in the inode.
 975	 */
 976	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 977	    (lev == cur->bc_nlevels - 1))
 978		return 0;
 979
 980	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 981		return 0;
 982
 983	cur->bc_ra[lev] |= lr;
 984	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 985
 986	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 987		return xfs_btree_readahead_lblock(cur, lr, block);
 988	return xfs_btree_readahead_sblock(cur, lr, block);
 989}
 990
 991STATIC xfs_daddr_t
 992xfs_btree_ptr_to_daddr(
 993	struct xfs_btree_cur	*cur,
 994	union xfs_btree_ptr	*ptr)
 995{
 996	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 997		ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
 998
 999		return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000	} else {
1001		ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002		ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1003
1004		return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005					be32_to_cpu(ptr->s));
1006	}
1007}
1008
1009/*
1010 * Readahead @count btree blocks at the given @ptr location.
1011 *
1012 * We don't need to care about long or short form btrees here as we have a
1013 * method of converting the ptr directly to a daddr available to us.
1014 */
1015STATIC void
1016xfs_btree_readahead_ptr(
1017	struct xfs_btree_cur	*cur,
1018	union xfs_btree_ptr	*ptr,
1019	xfs_extlen_t		count)
1020{
1021	xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022			  xfs_btree_ptr_to_daddr(cur, ptr),
1023			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1024}
1025
1026/*
1027 * Set the buffer for level "lev" in the cursor to bp, releasing
1028 * any previous buffer.
1029 */
1030STATIC void
1031xfs_btree_setbuf(
1032	xfs_btree_cur_t		*cur,	/* btree cursor */
1033	int			lev,	/* level in btree */
1034	xfs_buf_t		*bp)	/* new buffer to set */
1035{
1036	struct xfs_btree_block	*b;	/* btree block */
1037
1038	if (cur->bc_bufs[lev])
1039		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1040	cur->bc_bufs[lev] = bp;
1041	cur->bc_ra[lev] = 0;
1042
1043	b = XFS_BUF_TO_BLOCK(bp);
1044	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1045		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1046			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1047		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1048			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049	} else {
1050		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1051			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1052		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1053			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1054	}
1055}
1056
1057bool
1058xfs_btree_ptr_is_null(
1059	struct xfs_btree_cur	*cur,
1060	union xfs_btree_ptr	*ptr)
1061{
1062	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1063		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1064	else
1065		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1066}
1067
1068STATIC void
1069xfs_btree_set_ptr_null(
1070	struct xfs_btree_cur	*cur,
1071	union xfs_btree_ptr	*ptr)
1072{
1073	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1074		ptr->l = cpu_to_be64(NULLFSBLOCK);
1075	else
1076		ptr->s = cpu_to_be32(NULLAGBLOCK);
1077}
1078
1079/*
1080 * Get/set/init sibling pointers
1081 */
1082void
1083xfs_btree_get_sibling(
1084	struct xfs_btree_cur	*cur,
1085	struct xfs_btree_block	*block,
1086	union xfs_btree_ptr	*ptr,
1087	int			lr)
1088{
1089	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1090
1091	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092		if (lr == XFS_BB_RIGHTSIB)
1093			ptr->l = block->bb_u.l.bb_rightsib;
1094		else
1095			ptr->l = block->bb_u.l.bb_leftsib;
1096	} else {
1097		if (lr == XFS_BB_RIGHTSIB)
1098			ptr->s = block->bb_u.s.bb_rightsib;
1099		else
1100			ptr->s = block->bb_u.s.bb_leftsib;
1101	}
1102}
1103
1104STATIC void
1105xfs_btree_set_sibling(
1106	struct xfs_btree_cur	*cur,
1107	struct xfs_btree_block	*block,
1108	union xfs_btree_ptr	*ptr,
1109	int			lr)
1110{
1111	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1112
1113	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114		if (lr == XFS_BB_RIGHTSIB)
1115			block->bb_u.l.bb_rightsib = ptr->l;
1116		else
1117			block->bb_u.l.bb_leftsib = ptr->l;
1118	} else {
1119		if (lr == XFS_BB_RIGHTSIB)
1120			block->bb_u.s.bb_rightsib = ptr->s;
1121		else
1122			block->bb_u.s.bb_leftsib = ptr->s;
1123	}
1124}
1125
1126void
1127xfs_btree_init_block_int(
1128	struct xfs_mount	*mp,
1129	struct xfs_btree_block	*buf,
1130	xfs_daddr_t		blkno,
1131	xfs_btnum_t		btnum,
1132	__u16			level,
1133	__u16			numrecs,
1134	__u64			owner,
1135	unsigned int		flags)
1136{
1137	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1138	__u32			magic = xfs_btree_magic(crc, btnum);
1139
1140	buf->bb_magic = cpu_to_be32(magic);
1141	buf->bb_level = cpu_to_be16(level);
1142	buf->bb_numrecs = cpu_to_be16(numrecs);
1143
1144	if (flags & XFS_BTREE_LONG_PTRS) {
1145		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1147		if (crc) {
1148			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1150			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1151			buf->bb_u.l.bb_pad = 0;
1152			buf->bb_u.l.bb_lsn = 0;
1153		}
1154	} else {
1155		/* owner is a 32 bit value on short blocks */
1156		__u32 __owner = (__u32)owner;
1157
1158		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1160		if (crc) {
1161			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1163			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1164			buf->bb_u.s.bb_lsn = 0;
1165		}
1166	}
1167}
1168
1169void
1170xfs_btree_init_block(
1171	struct xfs_mount *mp,
1172	struct xfs_buf	*bp,
1173	xfs_btnum_t	btnum,
1174	__u16		level,
1175	__u16		numrecs,
1176	__u64		owner,
1177	unsigned int	flags)
1178{
1179	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1180				 btnum, level, numrecs, owner, flags);
1181}
1182
1183STATIC void
1184xfs_btree_init_block_cur(
1185	struct xfs_btree_cur	*cur,
1186	struct xfs_buf		*bp,
1187	int			level,
1188	int			numrecs)
1189{
1190	__u64			owner;
1191
1192	/*
1193	 * we can pull the owner from the cursor right now as the different
1194	 * owners align directly with the pointer size of the btree. This may
1195	 * change in future, but is safe for current users of the generic btree
1196	 * code.
1197	 */
1198	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199		owner = cur->bc_private.b.ip->i_ino;
1200	else
1201		owner = cur->bc_private.a.agno;
1202
1203	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1204				 cur->bc_btnum, level, numrecs,
1205				 owner, cur->bc_flags);
1206}
1207
1208/*
1209 * Return true if ptr is the last record in the btree and
1210 * we need to track updates to this record.  The decision
1211 * will be further refined in the update_lastrec method.
1212 */
1213STATIC int
1214xfs_btree_is_lastrec(
1215	struct xfs_btree_cur	*cur,
1216	struct xfs_btree_block	*block,
1217	int			level)
1218{
1219	union xfs_btree_ptr	ptr;
1220
1221	if (level > 0)
1222		return 0;
1223	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224		return 0;
1225
1226	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227	if (!xfs_btree_ptr_is_null(cur, &ptr))
1228		return 0;
1229	return 1;
1230}
1231
1232STATIC void
1233xfs_btree_buf_to_ptr(
1234	struct xfs_btree_cur	*cur,
1235	struct xfs_buf		*bp,
1236	union xfs_btree_ptr	*ptr)
1237{
1238	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240					XFS_BUF_ADDR(bp)));
1241	else {
1242		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1243					XFS_BUF_ADDR(bp)));
1244	}
1245}
1246
1247STATIC void
1248xfs_btree_set_refs(
1249	struct xfs_btree_cur	*cur,
1250	struct xfs_buf		*bp)
1251{
1252	switch (cur->bc_btnum) {
1253	case XFS_BTNUM_BNO:
1254	case XFS_BTNUM_CNT:
1255		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1256		break;
1257	case XFS_BTNUM_INO:
1258	case XFS_BTNUM_FINO:
1259		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1260		break;
1261	case XFS_BTNUM_BMAP:
1262		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1263		break;
1264	case XFS_BTNUM_RMAP:
1265		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266		break;
1267	case XFS_BTNUM_REFC:
1268		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269		break;
1270	default:
1271		ASSERT(0);
1272	}
1273}
1274
1275STATIC int
1276xfs_btree_get_buf_block(
1277	struct xfs_btree_cur	*cur,
1278	union xfs_btree_ptr	*ptr,
1279	int			flags,
1280	struct xfs_btree_block	**block,
1281	struct xfs_buf		**bpp)
1282{
1283	struct xfs_mount	*mp = cur->bc_mp;
1284	xfs_daddr_t		d;
1285
1286	/* need to sort out how callers deal with failures first */
1287	ASSERT(!(flags & XBF_TRYLOCK));
1288
1289	d = xfs_btree_ptr_to_daddr(cur, ptr);
1290	*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291				 mp->m_bsize, flags);
1292
1293	if (!*bpp)
1294		return -ENOMEM;
1295
1296	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1297	*block = XFS_BUF_TO_BLOCK(*bpp);
1298	return 0;
1299}
1300
1301/*
1302 * Read in the buffer at the given ptr and return the buffer and
1303 * the block pointer within the buffer.
1304 */
1305STATIC int
1306xfs_btree_read_buf_block(
1307	struct xfs_btree_cur	*cur,
1308	union xfs_btree_ptr	*ptr,
1309	int			flags,
1310	struct xfs_btree_block	**block,
1311	struct xfs_buf		**bpp)
1312{
1313	struct xfs_mount	*mp = cur->bc_mp;
1314	xfs_daddr_t		d;
1315	int			error;
1316
1317	/* need to sort out how callers deal with failures first */
1318	ASSERT(!(flags & XBF_TRYLOCK));
1319
1320	d = xfs_btree_ptr_to_daddr(cur, ptr);
1321	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1322				   mp->m_bsize, flags, bpp,
1323				   cur->bc_ops->buf_ops);
1324	if (error)
1325		return error;
1326
1327	xfs_btree_set_refs(cur, *bpp);
1328	*block = XFS_BUF_TO_BLOCK(*bpp);
1329	return 0;
1330}
1331
1332/*
1333 * Copy keys from one btree block to another.
1334 */
1335STATIC void
1336xfs_btree_copy_keys(
1337	struct xfs_btree_cur	*cur,
1338	union xfs_btree_key	*dst_key,
1339	union xfs_btree_key	*src_key,
1340	int			numkeys)
1341{
1342	ASSERT(numkeys >= 0);
1343	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1344}
1345
1346/*
1347 * Copy records from one btree block to another.
1348 */
1349STATIC void
1350xfs_btree_copy_recs(
1351	struct xfs_btree_cur	*cur,
1352	union xfs_btree_rec	*dst_rec,
1353	union xfs_btree_rec	*src_rec,
1354	int			numrecs)
1355{
1356	ASSERT(numrecs >= 0);
1357	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1358}
1359
1360/*
1361 * Copy block pointers from one btree block to another.
1362 */
1363STATIC void
1364xfs_btree_copy_ptrs(
1365	struct xfs_btree_cur	*cur,
1366	union xfs_btree_ptr	*dst_ptr,
1367	union xfs_btree_ptr	*src_ptr,
1368	int			numptrs)
1369{
1370	ASSERT(numptrs >= 0);
1371	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1372}
1373
1374/*
1375 * Shift keys one index left/right inside a single btree block.
1376 */
1377STATIC void
1378xfs_btree_shift_keys(
1379	struct xfs_btree_cur	*cur,
1380	union xfs_btree_key	*key,
1381	int			dir,
1382	int			numkeys)
1383{
1384	char			*dst_key;
1385
1386	ASSERT(numkeys >= 0);
1387	ASSERT(dir == 1 || dir == -1);
1388
1389	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1391}
1392
1393/*
1394 * Shift records one index left/right inside a single btree block.
1395 */
1396STATIC void
1397xfs_btree_shift_recs(
1398	struct xfs_btree_cur	*cur,
1399	union xfs_btree_rec	*rec,
1400	int			dir,
1401	int			numrecs)
1402{
1403	char			*dst_rec;
1404
1405	ASSERT(numrecs >= 0);
1406	ASSERT(dir == 1 || dir == -1);
1407
1408	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1410}
1411
1412/*
1413 * Shift block pointers one index left/right inside a single btree block.
1414 */
1415STATIC void
1416xfs_btree_shift_ptrs(
1417	struct xfs_btree_cur	*cur,
1418	union xfs_btree_ptr	*ptr,
1419	int			dir,
1420	int			numptrs)
1421{
1422	char			*dst_ptr;
1423
1424	ASSERT(numptrs >= 0);
1425	ASSERT(dir == 1 || dir == -1);
1426
1427	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1429}
1430
1431/*
1432 * Log key values from the btree block.
1433 */
1434STATIC void
1435xfs_btree_log_keys(
1436	struct xfs_btree_cur	*cur,
1437	struct xfs_buf		*bp,
1438	int			first,
1439	int			last)
1440{
1441
1442	if (bp) {
1443		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1444		xfs_trans_log_buf(cur->bc_tp, bp,
1445				  xfs_btree_key_offset(cur, first),
1446				  xfs_btree_key_offset(cur, last + 1) - 1);
1447	} else {
1448		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1449				xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1450	}
1451}
1452
1453/*
1454 * Log record values from the btree block.
1455 */
1456void
1457xfs_btree_log_recs(
1458	struct xfs_btree_cur	*cur,
1459	struct xfs_buf		*bp,
1460	int			first,
1461	int			last)
1462{
1463
1464	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1465	xfs_trans_log_buf(cur->bc_tp, bp,
1466			  xfs_btree_rec_offset(cur, first),
1467			  xfs_btree_rec_offset(cur, last + 1) - 1);
1468
1469}
1470
1471/*
1472 * Log block pointer fields from a btree block (nonleaf).
1473 */
1474STATIC void
1475xfs_btree_log_ptrs(
1476	struct xfs_btree_cur	*cur,	/* btree cursor */
1477	struct xfs_buf		*bp,	/* buffer containing btree block */
1478	int			first,	/* index of first pointer to log */
1479	int			last)	/* index of last pointer to log */
1480{
1481
1482	if (bp) {
1483		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1484		int			level = xfs_btree_get_level(block);
1485
1486		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1487		xfs_trans_log_buf(cur->bc_tp, bp,
1488				xfs_btree_ptr_offset(cur, first, level),
1489				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1490	} else {
1491		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1492			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1493	}
1494
1495}
1496
1497/*
1498 * Log fields from a btree block header.
1499 */
1500void
1501xfs_btree_log_block(
1502	struct xfs_btree_cur	*cur,	/* btree cursor */
1503	struct xfs_buf		*bp,	/* buffer containing btree block */
1504	int			fields)	/* mask of fields: XFS_BB_... */
1505{
1506	int			first;	/* first byte offset logged */
1507	int			last;	/* last byte offset logged */
1508	static const short	soffsets[] = {	/* table of offsets (short) */
1509		offsetof(struct xfs_btree_block, bb_magic),
1510		offsetof(struct xfs_btree_block, bb_level),
1511		offsetof(struct xfs_btree_block, bb_numrecs),
1512		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1513		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1514		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1515		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1516		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1517		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1518		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1519		XFS_BTREE_SBLOCK_CRC_LEN
1520	};
1521	static const short	loffsets[] = {	/* table of offsets (long) */
1522		offsetof(struct xfs_btree_block, bb_magic),
1523		offsetof(struct xfs_btree_block, bb_level),
1524		offsetof(struct xfs_btree_block, bb_numrecs),
1525		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1526		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1527		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1528		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1529		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1530		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1531		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1532		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1533		XFS_BTREE_LBLOCK_CRC_LEN
1534	};
1535
1536	if (bp) {
1537		int nbits;
1538
1539		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1540			/*
1541			 * We don't log the CRC when updating a btree
1542			 * block but instead recreate it during log
1543			 * recovery.  As the log buffers have checksums
1544			 * of their own this is safe and avoids logging a crc
1545			 * update in a lot of places.
1546			 */
1547			if (fields == XFS_BB_ALL_BITS)
1548				fields = XFS_BB_ALL_BITS_CRC;
1549			nbits = XFS_BB_NUM_BITS_CRC;
1550		} else {
1551			nbits = XFS_BB_NUM_BITS;
1552		}
1553		xfs_btree_offsets(fields,
1554				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1555					loffsets : soffsets,
1556				  nbits, &first, &last);
1557		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1558		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1559	} else {
1560		xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1561			xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1562	}
1563}
1564
1565/*
1566 * Increment cursor by one record at the level.
1567 * For nonzero levels the leaf-ward information is untouched.
1568 */
1569int						/* error */
1570xfs_btree_increment(
1571	struct xfs_btree_cur	*cur,
1572	int			level,
1573	int			*stat)		/* success/failure */
1574{
1575	struct xfs_btree_block	*block;
1576	union xfs_btree_ptr	ptr;
1577	struct xfs_buf		*bp;
1578	int			error;		/* error return value */
1579	int			lev;
1580
1581	ASSERT(level < cur->bc_nlevels);
1582
1583	/* Read-ahead to the right at this level. */
1584	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1585
1586	/* Get a pointer to the btree block. */
1587	block = xfs_btree_get_block(cur, level, &bp);
1588
1589#ifdef DEBUG
1590	error = xfs_btree_check_block(cur, block, level, bp);
1591	if (error)
1592		goto error0;
1593#endif
1594
1595	/* We're done if we remain in the block after the increment. */
1596	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1597		goto out1;
1598
1599	/* Fail if we just went off the right edge of the tree. */
1600	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1601	if (xfs_btree_ptr_is_null(cur, &ptr))
1602		goto out0;
1603
1604	XFS_BTREE_STATS_INC(cur, increment);
1605
1606	/*
1607	 * March up the tree incrementing pointers.
1608	 * Stop when we don't go off the right edge of a block.
1609	 */
1610	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1611		block = xfs_btree_get_block(cur, lev, &bp);
1612
1613#ifdef DEBUG
1614		error = xfs_btree_check_block(cur, block, lev, bp);
1615		if (error)
1616			goto error0;
1617#endif
1618
1619		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1620			break;
1621
1622		/* Read-ahead the right block for the next loop. */
1623		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1624	}
1625
1626	/*
1627	 * If we went off the root then we are either seriously
1628	 * confused or have the tree root in an inode.
1629	 */
1630	if (lev == cur->bc_nlevels) {
1631		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1632			goto out0;
1633		ASSERT(0);
1634		error = -EFSCORRUPTED;
1635		goto error0;
1636	}
1637	ASSERT(lev < cur->bc_nlevels);
1638
1639	/*
1640	 * Now walk back down the tree, fixing up the cursor's buffer
1641	 * pointers and key numbers.
1642	 */
1643	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1644		union xfs_btree_ptr	*ptrp;
1645
1646		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1647		--lev;
1648		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1649		if (error)
1650			goto error0;
1651
1652		xfs_btree_setbuf(cur, lev, bp);
1653		cur->bc_ptrs[lev] = 1;
1654	}
1655out1:
1656	*stat = 1;
1657	return 0;
1658
1659out0:
1660	*stat = 0;
1661	return 0;
1662
1663error0:
1664	return error;
1665}
1666
1667/*
1668 * Decrement cursor by one record at the level.
1669 * For nonzero levels the leaf-ward information is untouched.
1670 */
1671int						/* error */
1672xfs_btree_decrement(
1673	struct xfs_btree_cur	*cur,
1674	int			level,
1675	int			*stat)		/* success/failure */
1676{
1677	struct xfs_btree_block	*block;
1678	xfs_buf_t		*bp;
1679	int			error;		/* error return value */
1680	int			lev;
1681	union xfs_btree_ptr	ptr;
1682
1683	ASSERT(level < cur->bc_nlevels);
1684
1685	/* Read-ahead to the left at this level. */
1686	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1687
1688	/* We're done if we remain in the block after the decrement. */
1689	if (--cur->bc_ptrs[level] > 0)
1690		goto out1;
1691
1692	/* Get a pointer to the btree block. */
1693	block = xfs_btree_get_block(cur, level, &bp);
1694
1695#ifdef DEBUG
1696	error = xfs_btree_check_block(cur, block, level, bp);
1697	if (error)
1698		goto error0;
1699#endif
1700
1701	/* Fail if we just went off the left edge of the tree. */
1702	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1703	if (xfs_btree_ptr_is_null(cur, &ptr))
1704		goto out0;
1705
1706	XFS_BTREE_STATS_INC(cur, decrement);
1707
1708	/*
1709	 * March up the tree decrementing pointers.
1710	 * Stop when we don't go off the left edge of a block.
1711	 */
1712	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1713		if (--cur->bc_ptrs[lev] > 0)
1714			break;
1715		/* Read-ahead the left block for the next loop. */
1716		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1717	}
1718
1719	/*
1720	 * If we went off the root then we are seriously confused.
1721	 * or the root of the tree is in an inode.
1722	 */
1723	if (lev == cur->bc_nlevels) {
1724		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1725			goto out0;
1726		ASSERT(0);
1727		error = -EFSCORRUPTED;
1728		goto error0;
1729	}
1730	ASSERT(lev < cur->bc_nlevels);
1731
1732	/*
1733	 * Now walk back down the tree, fixing up the cursor's buffer
1734	 * pointers and key numbers.
1735	 */
1736	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1737		union xfs_btree_ptr	*ptrp;
1738
1739		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1740		--lev;
1741		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1742		if (error)
1743			goto error0;
1744		xfs_btree_setbuf(cur, lev, bp);
1745		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1746	}
1747out1:
1748	*stat = 1;
1749	return 0;
1750
1751out0:
1752	*stat = 0;
1753	return 0;
1754
1755error0:
1756	return error;
1757}
1758
1759int
1760xfs_btree_lookup_get_block(
1761	struct xfs_btree_cur	*cur,	/* btree cursor */
1762	int			level,	/* level in the btree */
1763	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1764	struct xfs_btree_block	**blkp) /* return btree block */
1765{
1766	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1767	int			error = 0;
1768
1769	/* special case the root block if in an inode */
1770	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1771	    (level == cur->bc_nlevels - 1)) {
1772		*blkp = xfs_btree_get_iroot(cur);
1773		return 0;
1774	}
1775
1776	/*
1777	 * If the old buffer at this level for the disk address we are
1778	 * looking for re-use it.
1779	 *
1780	 * Otherwise throw it away and get a new one.
1781	 */
1782	bp = cur->bc_bufs[level];
1783	if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1784		*blkp = XFS_BUF_TO_BLOCK(bp);
1785		return 0;
1786	}
1787
1788	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1789	if (error)
1790		return error;
1791
1792	/* Check the inode owner since the verifiers don't. */
1793	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1794	    !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1795	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1796	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1797			cur->bc_private.b.ip->i_ino)
1798		goto out_bad;
1799
1800	/* Did we get the level we were looking for? */
1801	if (be16_to_cpu((*blkp)->bb_level) != level)
1802		goto out_bad;
1803
1804	/* Check that internal nodes have at least one record. */
1805	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1806		goto out_bad;
1807
1808	xfs_btree_setbuf(cur, level, bp);
1809	return 0;
1810
1811out_bad:
1812	*blkp = NULL;
1813	xfs_trans_brelse(cur->bc_tp, bp);
1814	return -EFSCORRUPTED;
1815}
1816
1817/*
1818 * Get current search key.  For level 0 we don't actually have a key
1819 * structure so we make one up from the record.  For all other levels
1820 * we just return the right key.
1821 */
1822STATIC union xfs_btree_key *
1823xfs_lookup_get_search_key(
1824	struct xfs_btree_cur	*cur,
1825	int			level,
1826	int			keyno,
1827	struct xfs_btree_block	*block,
1828	union xfs_btree_key	*kp)
1829{
1830	if (level == 0) {
1831		cur->bc_ops->init_key_from_rec(kp,
1832				xfs_btree_rec_addr(cur, keyno, block));
1833		return kp;
1834	}
1835
1836	return xfs_btree_key_addr(cur, keyno, block);
1837}
1838
1839/*
1840 * Lookup the record.  The cursor is made to point to it, based on dir.
1841 * stat is set to 0 if can't find any such record, 1 for success.
1842 */
1843int					/* error */
1844xfs_btree_lookup(
1845	struct xfs_btree_cur	*cur,	/* btree cursor */
1846	xfs_lookup_t		dir,	/* <=, ==, or >= */
1847	int			*stat)	/* success/failure */
1848{
1849	struct xfs_btree_block	*block;	/* current btree block */
1850	int64_t			diff;	/* difference for the current key */
1851	int			error;	/* error return value */
1852	int			keyno;	/* current key number */
1853	int			level;	/* level in the btree */
1854	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1855	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1856
1857	XFS_BTREE_STATS_INC(cur, lookup);
1858
1859	/* No such thing as a zero-level tree. */
1860	if (cur->bc_nlevels == 0)
1861		return -EFSCORRUPTED;
1862
1863	block = NULL;
1864	keyno = 0;
1865
1866	/* initialise start pointer from cursor */
1867	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1868	pp = &ptr;
1869
1870	/*
1871	 * Iterate over each level in the btree, starting at the root.
1872	 * For each level above the leaves, find the key we need, based
1873	 * on the lookup record, then follow the corresponding block
1874	 * pointer down to the next level.
1875	 */
1876	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1877		/* Get the block we need to do the lookup on. */
1878		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1879		if (error)
1880			goto error0;
1881
1882		if (diff == 0) {
1883			/*
1884			 * If we already had a key match at a higher level, we
1885			 * know we need to use the first entry in this block.
1886			 */
1887			keyno = 1;
1888		} else {
1889			/* Otherwise search this block. Do a binary search. */
1890
1891			int	high;	/* high entry number */
1892			int	low;	/* low entry number */
1893
1894			/* Set low and high entry numbers, 1-based. */
1895			low = 1;
1896			high = xfs_btree_get_numrecs(block);
1897			if (!high) {
1898				/* Block is empty, must be an empty leaf. */
1899				ASSERT(level == 0 && cur->bc_nlevels == 1);
1900
1901				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1902				*stat = 0;
1903				return 0;
1904			}
1905
1906			/* Binary search the block. */
1907			while (low <= high) {
1908				union xfs_btree_key	key;
1909				union xfs_btree_key	*kp;
1910
1911				XFS_BTREE_STATS_INC(cur, compare);
1912
1913				/* keyno is average of low and high. */
1914				keyno = (low + high) >> 1;
1915
1916				/* Get current search key */
1917				kp = xfs_lookup_get_search_key(cur, level,
1918						keyno, block, &key);
1919
1920				/*
1921				 * Compute difference to get next direction:
1922				 *  - less than, move right
1923				 *  - greater than, move left
1924				 *  - equal, we're done
1925				 */
1926				diff = cur->bc_ops->key_diff(cur, kp);
1927				if (diff < 0)
1928					low = keyno + 1;
1929				else if (diff > 0)
1930					high = keyno - 1;
1931				else
1932					break;
1933			}
1934		}
1935
1936		/*
1937		 * If there are more levels, set up for the next level
1938		 * by getting the block number and filling in the cursor.
1939		 */
1940		if (level > 0) {
1941			/*
1942			 * If we moved left, need the previous key number,
1943			 * unless there isn't one.
1944			 */
1945			if (diff > 0 && --keyno < 1)
1946				keyno = 1;
1947			pp = xfs_btree_ptr_addr(cur, keyno, block);
1948
1949#ifdef DEBUG
1950			error = xfs_btree_check_ptr(cur, pp, 0, level);
1951			if (error)
1952				goto error0;
1953#endif
1954			cur->bc_ptrs[level] = keyno;
1955		}
1956	}
1957
1958	/* Done with the search. See if we need to adjust the results. */
1959	if (dir != XFS_LOOKUP_LE && diff < 0) {
1960		keyno++;
1961		/*
1962		 * If ge search and we went off the end of the block, but it's
1963		 * not the last block, we're in the wrong block.
1964		 */
1965		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1966		if (dir == XFS_LOOKUP_GE &&
1967		    keyno > xfs_btree_get_numrecs(block) &&
1968		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1969			int	i;
1970
1971			cur->bc_ptrs[0] = keyno;
1972			error = xfs_btree_increment(cur, 0, &i);
1973			if (error)
1974				goto error0;
1975			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1976			*stat = 1;
1977			return 0;
1978		}
1979	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1980		keyno--;
1981	cur->bc_ptrs[0] = keyno;
1982
1983	/* Return if we succeeded or not. */
1984	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1985		*stat = 0;
1986	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1987		*stat = 1;
1988	else
1989		*stat = 0;
1990	return 0;
1991
1992error0:
1993	return error;
1994}
1995
1996/* Find the high key storage area from a regular key. */
1997union xfs_btree_key *
1998xfs_btree_high_key_from_key(
1999	struct xfs_btree_cur	*cur,
2000	union xfs_btree_key	*key)
2001{
2002	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2003	return (union xfs_btree_key *)((char *)key +
2004			(cur->bc_ops->key_len / 2));
2005}
2006
2007/* Determine the low (and high if overlapped) keys of a leaf block */
2008STATIC void
2009xfs_btree_get_leaf_keys(
2010	struct xfs_btree_cur	*cur,
2011	struct xfs_btree_block	*block,
2012	union xfs_btree_key	*key)
2013{
2014	union xfs_btree_key	max_hkey;
2015	union xfs_btree_key	hkey;
2016	union xfs_btree_rec	*rec;
2017	union xfs_btree_key	*high;
2018	int			n;
2019
2020	rec = xfs_btree_rec_addr(cur, 1, block);
2021	cur->bc_ops->init_key_from_rec(key, rec);
2022
2023	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024
2025		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2026		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2027			rec = xfs_btree_rec_addr(cur, n, block);
2028			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2029			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2030					> 0)
2031				max_hkey = hkey;
2032		}
2033
2034		high = xfs_btree_high_key_from_key(cur, key);
2035		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2036	}
2037}
2038
2039/* Determine the low (and high if overlapped) keys of a node block */
2040STATIC void
2041xfs_btree_get_node_keys(
2042	struct xfs_btree_cur	*cur,
2043	struct xfs_btree_block	*block,
2044	union xfs_btree_key	*key)
2045{
2046	union xfs_btree_key	*hkey;
2047	union xfs_btree_key	*max_hkey;
2048	union xfs_btree_key	*high;
2049	int			n;
2050
2051	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2052		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2053				cur->bc_ops->key_len / 2);
2054
2055		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2056		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2057			hkey = xfs_btree_high_key_addr(cur, n, block);
2058			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2059				max_hkey = hkey;
2060		}
2061
2062		high = xfs_btree_high_key_from_key(cur, key);
2063		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2064	} else {
2065		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2066				cur->bc_ops->key_len);
2067	}
2068}
2069
2070/* Derive the keys for any btree block. */
2071void
2072xfs_btree_get_keys(
2073	struct xfs_btree_cur	*cur,
2074	struct xfs_btree_block	*block,
2075	union xfs_btree_key	*key)
2076{
2077	if (be16_to_cpu(block->bb_level) == 0)
2078		xfs_btree_get_leaf_keys(cur, block, key);
2079	else
2080		xfs_btree_get_node_keys(cur, block, key);
2081}
2082
2083/*
2084 * Decide if we need to update the parent keys of a btree block.  For
2085 * a standard btree this is only necessary if we're updating the first
2086 * record/key.  For an overlapping btree, we must always update the
2087 * keys because the highest key can be in any of the records or keys
2088 * in the block.
2089 */
2090static inline bool
2091xfs_btree_needs_key_update(
2092	struct xfs_btree_cur	*cur,
2093	int			ptr)
2094{
2095	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2096}
2097
2098/*
2099 * Update the low and high parent keys of the given level, progressing
2100 * towards the root.  If force_all is false, stop if the keys for a given
2101 * level do not need updating.
2102 */
2103STATIC int
2104__xfs_btree_updkeys(
2105	struct xfs_btree_cur	*cur,
2106	int			level,
2107	struct xfs_btree_block	*block,
2108	struct xfs_buf		*bp0,
2109	bool			force_all)
2110{
2111	union xfs_btree_key	key;	/* keys from current level */
2112	union xfs_btree_key	*lkey;	/* keys from the next level up */
2113	union xfs_btree_key	*hkey;
2114	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2115	union xfs_btree_key	*nhkey;
2116	struct xfs_buf		*bp;
2117	int			ptr;
2118
2119	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2120
2121	/* Exit if there aren't any parent levels to update. */
2122	if (level + 1 >= cur->bc_nlevels)
2123		return 0;
2124
2125	trace_xfs_btree_updkeys(cur, level, bp0);
2126
2127	lkey = &key;
2128	hkey = xfs_btree_high_key_from_key(cur, lkey);
2129	xfs_btree_get_keys(cur, block, lkey);
2130	for (level++; level < cur->bc_nlevels; level++) {
2131#ifdef DEBUG
2132		int		error;
2133#endif
2134		block = xfs_btree_get_block(cur, level, &bp);
2135		trace_xfs_btree_updkeys(cur, level, bp);
2136#ifdef DEBUG
2137		error = xfs_btree_check_block(cur, block, level, bp);
2138		if (error)
2139			return error;
2140#endif
2141		ptr = cur->bc_ptrs[level];
2142		nlkey = xfs_btree_key_addr(cur, ptr, block);
2143		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2144		if (!force_all &&
2145		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2146		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2147			break;
2148		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2149		xfs_btree_log_keys(cur, bp, ptr, ptr);
2150		if (level + 1 >= cur->bc_nlevels)
2151			break;
2152		xfs_btree_get_node_keys(cur, block, lkey);
2153	}
2154
2155	return 0;
2156}
2157
2158/* Update all the keys from some level in cursor back to the root. */
2159STATIC int
2160xfs_btree_updkeys_force(
2161	struct xfs_btree_cur	*cur,
2162	int			level)
2163{
2164	struct xfs_buf		*bp;
2165	struct xfs_btree_block	*block;
2166
2167	block = xfs_btree_get_block(cur, level, &bp);
2168	return __xfs_btree_updkeys(cur, level, block, bp, true);
2169}
2170
2171/*
2172 * Update the parent keys of the given level, progressing towards the root.
2173 */
2174STATIC int
2175xfs_btree_update_keys(
2176	struct xfs_btree_cur	*cur,
2177	int			level)
2178{
2179	struct xfs_btree_block	*block;
2180	struct xfs_buf		*bp;
2181	union xfs_btree_key	*kp;
2182	union xfs_btree_key	key;
2183	int			ptr;
2184
2185	ASSERT(level >= 0);
2186
2187	block = xfs_btree_get_block(cur, level, &bp);
2188	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2189		return __xfs_btree_updkeys(cur, level, block, bp, false);
2190
2191	/*
2192	 * Go up the tree from this level toward the root.
2193	 * At each level, update the key value to the value input.
2194	 * Stop when we reach a level where the cursor isn't pointing
2195	 * at the first entry in the block.
2196	 */
2197	xfs_btree_get_keys(cur, block, &key);
2198	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2199#ifdef DEBUG
2200		int		error;
2201#endif
2202		block = xfs_btree_get_block(cur, level, &bp);
2203#ifdef DEBUG
2204		error = xfs_btree_check_block(cur, block, level, bp);
2205		if (error)
2206			return error;
2207#endif
2208		ptr = cur->bc_ptrs[level];
2209		kp = xfs_btree_key_addr(cur, ptr, block);
2210		xfs_btree_copy_keys(cur, kp, &key, 1);
2211		xfs_btree_log_keys(cur, bp, ptr, ptr);
2212	}
2213
2214	return 0;
2215}
2216
2217/*
2218 * Update the record referred to by cur to the value in the
2219 * given record. This either works (return 0) or gets an
2220 * EFSCORRUPTED error.
2221 */
2222int
2223xfs_btree_update(
2224	struct xfs_btree_cur	*cur,
2225	union xfs_btree_rec	*rec)
2226{
2227	struct xfs_btree_block	*block;
2228	struct xfs_buf		*bp;
2229	int			error;
2230	int			ptr;
2231	union xfs_btree_rec	*rp;
2232
2233	/* Pick up the current block. */
2234	block = xfs_btree_get_block(cur, 0, &bp);
2235
2236#ifdef DEBUG
2237	error = xfs_btree_check_block(cur, block, 0, bp);
2238	if (error)
2239		goto error0;
2240#endif
2241	/* Get the address of the rec to be updated. */
2242	ptr = cur->bc_ptrs[0];
2243	rp = xfs_btree_rec_addr(cur, ptr, block);
2244
2245	/* Fill in the new contents and log them. */
2246	xfs_btree_copy_recs(cur, rp, rec, 1);
2247	xfs_btree_log_recs(cur, bp, ptr, ptr);
2248
2249	/*
2250	 * If we are tracking the last record in the tree and
2251	 * we are at the far right edge of the tree, update it.
2252	 */
2253	if (xfs_btree_is_lastrec(cur, block, 0)) {
2254		cur->bc_ops->update_lastrec(cur, block, rec,
2255					    ptr, LASTREC_UPDATE);
2256	}
2257
2258	/* Pass new key value up to our parent. */
2259	if (xfs_btree_needs_key_update(cur, ptr)) {
2260		error = xfs_btree_update_keys(cur, 0);
2261		if (error)
2262			goto error0;
2263	}
2264
2265	return 0;
2266
2267error0:
2268	return error;
2269}
2270
2271/*
2272 * Move 1 record left from cur/level if possible.
2273 * Update cur to reflect the new path.
2274 */
2275STATIC int					/* error */
2276xfs_btree_lshift(
2277	struct xfs_btree_cur	*cur,
2278	int			level,
2279	int			*stat)		/* success/failure */
2280{
2281	struct xfs_buf		*lbp;		/* left buffer pointer */
2282	struct xfs_btree_block	*left;		/* left btree block */
2283	int			lrecs;		/* left record count */
2284	struct xfs_buf		*rbp;		/* right buffer pointer */
2285	struct xfs_btree_block	*right;		/* right btree block */
2286	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2287	int			rrecs;		/* right record count */
2288	union xfs_btree_ptr	lptr;		/* left btree pointer */
2289	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2290	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2291	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2292	int			error;		/* error return value */
2293	int			i;
2294
2295	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2296	    level == cur->bc_nlevels - 1)
2297		goto out0;
2298
2299	/* Set up variables for this block as "right". */
2300	right = xfs_btree_get_block(cur, level, &rbp);
2301
2302#ifdef DEBUG
2303	error = xfs_btree_check_block(cur, right, level, rbp);
2304	if (error)
2305		goto error0;
2306#endif
2307
2308	/* If we've got no left sibling then we can't shift an entry left. */
2309	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2310	if (xfs_btree_ptr_is_null(cur, &lptr))
2311		goto out0;
2312
2313	/*
2314	 * If the cursor entry is the one that would be moved, don't
2315	 * do it... it's too complicated.
2316	 */
2317	if (cur->bc_ptrs[level] <= 1)
2318		goto out0;
2319
2320	/* Set up the left neighbor as "left". */
2321	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2322	if (error)
2323		goto error0;
2324
2325	/* If it's full, it can't take another entry. */
2326	lrecs = xfs_btree_get_numrecs(left);
2327	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2328		goto out0;
2329
2330	rrecs = xfs_btree_get_numrecs(right);
2331
2332	/*
2333	 * We add one entry to the left side and remove one for the right side.
2334	 * Account for it here, the changes will be updated on disk and logged
2335	 * later.
2336	 */
2337	lrecs++;
2338	rrecs--;
2339
2340	XFS_BTREE_STATS_INC(cur, lshift);
2341	XFS_BTREE_STATS_ADD(cur, moves, 1);
2342
2343	/*
2344	 * If non-leaf, copy a key and a ptr to the left block.
2345	 * Log the changes to the left block.
2346	 */
2347	if (level > 0) {
2348		/* It's a non-leaf.  Move keys and pointers. */
2349		union xfs_btree_key	*lkp;	/* left btree key */
2350		union xfs_btree_ptr	*lpp;	/* left address pointer */
2351
2352		lkp = xfs_btree_key_addr(cur, lrecs, left);
2353		rkp = xfs_btree_key_addr(cur, 1, right);
2354
2355		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2356		rpp = xfs_btree_ptr_addr(cur, 1, right);
2357#ifdef DEBUG
2358		error = xfs_btree_check_ptr(cur, rpp, 0, level);
2359		if (error)
2360			goto error0;
2361#endif
2362		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2363		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2364
2365		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2366		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2367
2368		ASSERT(cur->bc_ops->keys_inorder(cur,
2369			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2370	} else {
2371		/* It's a leaf.  Move records.  */
2372		union xfs_btree_rec	*lrp;	/* left record pointer */
2373
2374		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2375		rrp = xfs_btree_rec_addr(cur, 1, right);
2376
2377		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2378		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2379
2380		ASSERT(cur->bc_ops->recs_inorder(cur,
2381			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2382	}
2383
2384	xfs_btree_set_numrecs(left, lrecs);
2385	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2386
2387	xfs_btree_set_numrecs(right, rrecs);
2388	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2389
2390	/*
2391	 * Slide the contents of right down one entry.
2392	 */
2393	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2394	if (level > 0) {
2395		/* It's a nonleaf. operate on keys and ptrs */
2396#ifdef DEBUG
2397		int			i;		/* loop index */
2398
2399		for (i = 0; i < rrecs; i++) {
2400			error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2401			if (error)
2402				goto error0;
2403		}
2404#endif
2405		xfs_btree_shift_keys(cur,
2406				xfs_btree_key_addr(cur, 2, right),
2407				-1, rrecs);
2408		xfs_btree_shift_ptrs(cur,
2409				xfs_btree_ptr_addr(cur, 2, right),
2410				-1, rrecs);
2411
2412		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2413		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2414	} else {
2415		/* It's a leaf. operate on records */
2416		xfs_btree_shift_recs(cur,
2417			xfs_btree_rec_addr(cur, 2, right),
2418			-1, rrecs);
2419		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2420	}
2421
2422	/*
2423	 * Using a temporary cursor, update the parent key values of the
2424	 * block on the left.
2425	 */
2426	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2427		error = xfs_btree_dup_cursor(cur, &tcur);
2428		if (error)
2429			goto error0;
2430		i = xfs_btree_firstrec(tcur, level);
2431		XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2432
2433		error = xfs_btree_decrement(tcur, level, &i);
2434		if (error)
2435			goto error1;
2436
2437		/* Update the parent high keys of the left block, if needed. */
2438		error = xfs_btree_update_keys(tcur, level);
2439		if (error)
2440			goto error1;
2441
2442		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2443	}
2444
2445	/* Update the parent keys of the right block. */
2446	error = xfs_btree_update_keys(cur, level);
2447	if (error)
2448		goto error0;
2449
2450	/* Slide the cursor value left one. */
2451	cur->bc_ptrs[level]--;
2452
2453	*stat = 1;
2454	return 0;
2455
2456out0:
2457	*stat = 0;
2458	return 0;
2459
2460error0:
2461	return error;
2462
2463error1:
2464	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2465	return error;
2466}
2467
2468/*
2469 * Move 1 record right from cur/level if possible.
2470 * Update cur to reflect the new path.
2471 */
2472STATIC int					/* error */
2473xfs_btree_rshift(
2474	struct xfs_btree_cur	*cur,
2475	int			level,
2476	int			*stat)		/* success/failure */
2477{
2478	struct xfs_buf		*lbp;		/* left buffer pointer */
2479	struct xfs_btree_block	*left;		/* left btree block */
2480	struct xfs_buf		*rbp;		/* right buffer pointer */
2481	struct xfs_btree_block	*right;		/* right btree block */
2482	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2483	union xfs_btree_ptr	rptr;		/* right block pointer */
2484	union xfs_btree_key	*rkp;		/* right btree key */
2485	int			rrecs;		/* right record count */
2486	int			lrecs;		/* left record count */
2487	int			error;		/* error return value */
2488	int			i;		/* loop counter */
2489
2490	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2491	    (level == cur->bc_nlevels - 1))
2492		goto out0;
2493
2494	/* Set up variables for this block as "left". */
2495	left = xfs_btree_get_block(cur, level, &lbp);
2496
2497#ifdef DEBUG
2498	error = xfs_btree_check_block(cur, left, level, lbp);
2499	if (error)
2500		goto error0;
2501#endif
2502
2503	/* If we've got no right sibling then we can't shift an entry right. */
2504	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2505	if (xfs_btree_ptr_is_null(cur, &rptr))
2506		goto out0;
2507
2508	/*
2509	 * If the cursor entry is the one that would be moved, don't
2510	 * do it... it's too complicated.
2511	 */
2512	lrecs = xfs_btree_get_numrecs(left);
2513	if (cur->bc_ptrs[level] >= lrecs)
2514		goto out0;
2515
2516	/* Set up the right neighbor as "right". */
2517	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2518	if (error)
2519		goto error0;
2520
2521	/* If it's full, it can't take another entry. */
2522	rrecs = xfs_btree_get_numrecs(right);
2523	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2524		goto out0;
2525
2526	XFS_BTREE_STATS_INC(cur, rshift);
2527	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2528
2529	/*
2530	 * Make a hole at the start of the right neighbor block, then
2531	 * copy the last left block entry to the hole.
2532	 */
2533	if (level > 0) {
2534		/* It's a nonleaf. make a hole in the keys and ptrs */
2535		union xfs_btree_key	*lkp;
2536		union xfs_btree_ptr	*lpp;
2537		union xfs_btree_ptr	*rpp;
2538
2539		lkp = xfs_btree_key_addr(cur, lrecs, left);
2540		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2541		rkp = xfs_btree_key_addr(cur, 1, right);
2542		rpp = xfs_btree_ptr_addr(cur, 1, right);
2543
2544#ifdef DEBUG
2545		for (i = rrecs - 1; i >= 0; i--) {
2546			error = xfs_btree_check_ptr(cur, rpp, i, level);
2547			if (error)
2548				goto error0;
2549		}
2550#endif
2551
2552		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2553		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2554
2555#ifdef DEBUG
2556		error = xfs_btree_check_ptr(cur, lpp, 0, level);
2557		if (error)
2558			goto error0;
2559#endif
2560
2561		/* Now put the new data in, and log it. */
2562		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2563		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2564
2565		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2566		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2567
2568		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2569			xfs_btree_key_addr(cur, 2, right)));
2570	} else {
2571		/* It's a leaf. make a hole in the records */
2572		union xfs_btree_rec	*lrp;
2573		union xfs_btree_rec	*rrp;
2574
2575		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2576		rrp = xfs_btree_rec_addr(cur, 1, right);
2577
2578		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2579
2580		/* Now put the new data in, and log it. */
2581		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2582		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2583	}
2584
2585	/*
2586	 * Decrement and log left's numrecs, bump and log right's numrecs.
2587	 */
2588	xfs_btree_set_numrecs(left, --lrecs);
2589	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2590
2591	xfs_btree_set_numrecs(right, ++rrecs);
2592	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2593
2594	/*
2595	 * Using a temporary cursor, update the parent key values of the
2596	 * block on the right.
2597	 */
2598	error = xfs_btree_dup_cursor(cur, &tcur);
2599	if (error)
2600		goto error0;
2601	i = xfs_btree_lastrec(tcur, level);
2602	XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2603
2604	error = xfs_btree_increment(tcur, level, &i);
2605	if (error)
2606		goto error1;
2607
2608	/* Update the parent high keys of the left block, if needed. */
2609	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2610		error = xfs_btree_update_keys(cur, level);
2611		if (error)
2612			goto error1;
2613	}
2614
2615	/* Update the parent keys of the right block. */
2616	error = xfs_btree_update_keys(tcur, level);
2617	if (error)
2618		goto error1;
2619
2620	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2621
2622	*stat = 1;
2623	return 0;
2624
2625out0:
2626	*stat = 0;
2627	return 0;
2628
2629error0:
2630	return error;
2631
2632error1:
2633	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2634	return error;
2635}
2636
2637/*
2638 * Split cur/level block in half.
2639 * Return new block number and the key to its first
2640 * record (to be inserted into parent).
2641 */
2642STATIC int					/* error */
2643__xfs_btree_split(
2644	struct xfs_btree_cur	*cur,
2645	int			level,
2646	union xfs_btree_ptr	*ptrp,
2647	union xfs_btree_key	*key,
2648	struct xfs_btree_cur	**curp,
2649	int			*stat)		/* success/failure */
2650{
2651	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2652	struct xfs_buf		*lbp;		/* left buffer pointer */
2653	struct xfs_btree_block	*left;		/* left btree block */
2654	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2655	struct xfs_buf		*rbp;		/* right buffer pointer */
2656	struct xfs_btree_block	*right;		/* right btree block */
2657	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2658	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2659	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2660	int			lrecs;
2661	int			rrecs;
2662	int			src_index;
2663	int			error;		/* error return value */
2664#ifdef DEBUG
2665	int			i;
2666#endif
2667
2668	XFS_BTREE_STATS_INC(cur, split);
2669
2670	/* Set up left block (current one). */
2671	left = xfs_btree_get_block(cur, level, &lbp);
2672
2673#ifdef DEBUG
2674	error = xfs_btree_check_block(cur, left, level, lbp);
2675	if (error)
2676		goto error0;
2677#endif
2678
2679	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2680
2681	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2682	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2683	if (error)
2684		goto error0;
2685	if (*stat == 0)
2686		goto out0;
2687	XFS_BTREE_STATS_INC(cur, alloc);
2688
2689	/* Set up the new block as "right". */
2690	error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2691	if (error)
2692		goto error0;
2693
2694	/* Fill in the btree header for the new right block. */
2695	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2696
2697	/*
2698	 * Split the entries between the old and the new block evenly.
2699	 * Make sure that if there's an odd number of entries now, that
2700	 * each new block will have the same number of entries.
2701	 */
2702	lrecs = xfs_btree_get_numrecs(left);
2703	rrecs = lrecs / 2;
2704	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2705		rrecs++;
2706	src_index = (lrecs - rrecs + 1);
2707
2708	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2709
2710	/* Adjust numrecs for the later get_*_keys() calls. */
2711	lrecs -= rrecs;
2712	xfs_btree_set_numrecs(left, lrecs);
2713	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2714
2715	/*
2716	 * Copy btree block entries from the left block over to the
2717	 * new block, the right. Update the right block and log the
2718	 * changes.
2719	 */
2720	if (level > 0) {
2721		/* It's a non-leaf.  Move keys and pointers. */
2722		union xfs_btree_key	*lkp;	/* left btree key */
2723		union xfs_btree_ptr	*lpp;	/* left address pointer */
2724		union xfs_btree_key	*rkp;	/* right btree key */
2725		union xfs_btree_ptr	*rpp;	/* right address pointer */
2726
2727		lkp = xfs_btree_key_addr(cur, src_index, left);
2728		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2729		rkp = xfs_btree_key_addr(cur, 1, right);
2730		rpp = xfs_btree_ptr_addr(cur, 1, right);
2731
2732#ifdef DEBUG
2733		for (i = src_index; i < rrecs; i++) {
2734			error = xfs_btree_check_ptr(cur, lpp, i, level);
2735			if (error)
2736				goto error0;
2737		}
2738#endif
2739
2740		/* Copy the keys & pointers to the new block. */
2741		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2742		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2743
2744		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2745		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2746
2747		/* Stash the keys of the new block for later insertion. */
2748		xfs_btree_get_node_keys(cur, right, key);
2749	} else {
2750		/* It's a leaf.  Move records.  */
2751		union xfs_btree_rec	*lrp;	/* left record pointer */
2752		union xfs_btree_rec	*rrp;	/* right record pointer */
2753
2754		lrp = xfs_btree_rec_addr(cur, src_index, left);
2755		rrp = xfs_btree_rec_addr(cur, 1, right);
2756
2757		/* Copy records to the new block. */
2758		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2759		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2760
2761		/* Stash the keys of the new block for later insertion. */
2762		xfs_btree_get_leaf_keys(cur, right, key);
2763	}
2764
2765	/*
2766	 * Find the left block number by looking in the buffer.
2767	 * Adjust sibling pointers.
2768	 */
2769	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2770	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2771	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2772	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2773
2774	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2775	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2776
2777	/*
2778	 * If there's a block to the new block's right, make that block
2779	 * point back to right instead of to left.
2780	 */
2781	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2782		error = xfs_btree_read_buf_block(cur, &rrptr,
2783							0, &rrblock, &rrbp);
2784		if (error)
2785			goto error0;
2786		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2787		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2788	}
2789
2790	/* Update the parent high keys of the left block, if needed. */
2791	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2792		error = xfs_btree_update_keys(cur, level);
2793		if (error)
2794			goto error0;
2795	}
2796
2797	/*
2798	 * If the cursor is really in the right block, move it there.
2799	 * If it's just pointing past the last entry in left, then we'll
2800	 * insert there, so don't change anything in that case.
2801	 */
2802	if (cur->bc_ptrs[level] > lrecs + 1) {
2803		xfs_btree_setbuf(cur, level, rbp);
2804		cur->bc_ptrs[level] -= lrecs;
2805	}
2806	/*
2807	 * If there are more levels, we'll need another cursor which refers
2808	 * the right block, no matter where this cursor was.
2809	 */
2810	if (level + 1 < cur->bc_nlevels) {
2811		error = xfs_btree_dup_cursor(cur, curp);
2812		if (error)
2813			goto error0;
2814		(*curp)->bc_ptrs[level + 1]++;
2815	}
2816	*ptrp = rptr;
2817	*stat = 1;
2818	return 0;
2819out0:
2820	*stat = 0;
2821	return 0;
2822
2823error0:
2824	return error;
2825}
2826
2827struct xfs_btree_split_args {
2828	struct xfs_btree_cur	*cur;
2829	int			level;
2830	union xfs_btree_ptr	*ptrp;
2831	union xfs_btree_key	*key;
2832	struct xfs_btree_cur	**curp;
2833	int			*stat;		/* success/failure */
2834	int			result;
2835	bool			kswapd;	/* allocation in kswapd context */
2836	struct completion	*done;
2837	struct work_struct	work;
2838};
2839
2840/*
2841 * Stack switching interfaces for allocation
2842 */
2843static void
2844xfs_btree_split_worker(
2845	struct work_struct	*work)
2846{
2847	struct xfs_btree_split_args	*args = container_of(work,
2848						struct xfs_btree_split_args, work);
2849	unsigned long		pflags;
2850	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2851
2852	/*
2853	 * we are in a transaction context here, but may also be doing work
2854	 * in kswapd context, and hence we may need to inherit that state
2855	 * temporarily to ensure that we don't block waiting for memory reclaim
2856	 * in any way.
2857	 */
2858	if (args->kswapd)
2859		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2860
2861	current_set_flags_nested(&pflags, new_pflags);
2862
2863	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2864					 args->key, args->curp, args->stat);
2865	complete(args->done);
2866
2867	current_restore_flags_nested(&pflags, new_pflags);
2868}
2869
2870/*
2871 * BMBT split requests often come in with little stack to work on. Push
2872 * them off to a worker thread so there is lots of stack to use. For the other
2873 * btree types, just call directly to avoid the context switch overhead here.
2874 */
2875STATIC int					/* error */
2876xfs_btree_split(
2877	struct xfs_btree_cur	*cur,
2878	int			level,
2879	union xfs_btree_ptr	*ptrp,
2880	union xfs_btree_key	*key,
2881	struct xfs_btree_cur	**curp,
2882	int			*stat)		/* success/failure */
2883{
2884	struct xfs_btree_split_args	args;
2885	DECLARE_COMPLETION_ONSTACK(done);
2886
2887	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2888		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2889
2890	args.cur = cur;
2891	args.level = level;
2892	args.ptrp = ptrp;
2893	args.key = key;
2894	args.curp = curp;
2895	args.stat = stat;
2896	args.done = &done;
2897	args.kswapd = current_is_kswapd();
2898	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2899	queue_work(xfs_alloc_wq, &args.work);
2900	wait_for_completion(&done);
2901	destroy_work_on_stack(&args.work);
2902	return args.result;
2903}
2904
2905
2906/*
2907 * Copy the old inode root contents into a real block and make the
2908 * broot point to it.
2909 */
2910int						/* error */
2911xfs_btree_new_iroot(
2912	struct xfs_btree_cur	*cur,		/* btree cursor */
2913	int			*logflags,	/* logging flags for inode */
2914	int			*stat)		/* return status - 0 fail */
2915{
2916	struct xfs_buf		*cbp;		/* buffer for cblock */
2917	struct xfs_btree_block	*block;		/* btree block */
2918	struct xfs_btree_block	*cblock;	/* child btree block */
2919	union xfs_btree_key	*ckp;		/* child key pointer */
2920	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2921	union xfs_btree_key	*kp;		/* pointer to btree key */
2922	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2923	union xfs_btree_ptr	nptr;		/* new block addr */
2924	int			level;		/* btree level */
2925	int			error;		/* error return code */
2926#ifdef DEBUG
2927	int			i;		/* loop counter */
2928#endif
2929
2930	XFS_BTREE_STATS_INC(cur, newroot);
2931
2932	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934	level = cur->bc_nlevels - 1;
2935
2936	block = xfs_btree_get_iroot(cur);
2937	pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2940	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941	if (error)
2942		goto error0;
2943	if (*stat == 0)
2944		return 0;
2945
2946	XFS_BTREE_STATS_INC(cur, alloc);
2947
2948	/* Copy the root into a real block. */
2949	error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2950	if (error)
2951		goto error0;
2952
2953	/*
2954	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2955	 * In that case have to also ensure the blkno remains correct
2956	 */
2957	memcpy(cblock, block, xfs_btree_block_len(cur));
2958	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2959		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2960			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2961		else
2962			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2963	}
2964
2965	be16_add_cpu(&block->bb_level, 1);
2966	xfs_btree_set_numrecs(block, 1);
2967	cur->bc_nlevels++;
2968	cur->bc_ptrs[level + 1] = 1;
2969
2970	kp = xfs_btree_key_addr(cur, 1, block);
2971	ckp = xfs_btree_key_addr(cur, 1, cblock);
2972	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2973
2974	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2975#ifdef DEBUG
2976	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2977		error = xfs_btree_check_ptr(cur, pp, i, level);
2978		if (error)
2979			goto error0;
2980	}
2981#endif
2982	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2983
2984#ifdef DEBUG
2985	error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2986	if (error)
2987		goto error0;
2988#endif
2989	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2990
2991	xfs_iroot_realloc(cur->bc_private.b.ip,
2992			  1 - xfs_btree_get_numrecs(cblock),
2993			  cur->bc_private.b.whichfork);
2994
2995	xfs_btree_setbuf(cur, level, cbp);
2996
2997	/*
2998	 * Do all this logging at the end so that
2999	 * the root is at the right level.
3000	 */
3001	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3002	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3003	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004
3005	*logflags |=
3006		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3007	*stat = 1;
3008	return 0;
3009error0:
3010	return error;
3011}
3012
3013/*
3014 * Allocate a new root block, fill it in.
3015 */
3016STATIC int				/* error */
3017xfs_btree_new_root(
3018	struct xfs_btree_cur	*cur,	/* btree cursor */
3019	int			*stat)	/* success/failure */
3020{
3021	struct xfs_btree_block	*block;	/* one half of the old root block */
3022	struct xfs_buf		*bp;	/* buffer containing block */
3023	int			error;	/* error return value */
3024	struct xfs_buf		*lbp;	/* left buffer pointer */
3025	struct xfs_btree_block	*left;	/* left btree block */
3026	struct xfs_buf		*nbp;	/* new (root) buffer */
3027	struct xfs_btree_block	*new;	/* new (root) btree block */
3028	int			nptr;	/* new value for key index, 1 or 2 */
3029	struct xfs_buf		*rbp;	/* right buffer pointer */
3030	struct xfs_btree_block	*right;	/* right btree block */
3031	union xfs_btree_ptr	rptr;
3032	union xfs_btree_ptr	lptr;
3033
3034	XFS_BTREE_STATS_INC(cur, newroot);
3035
3036	/* initialise our start point from the cursor */
3037	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038
3039	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3040	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041	if (error)
3042		goto error0;
3043	if (*stat == 0)
3044		goto out0;
3045	XFS_BTREE_STATS_INC(cur, alloc);
3046
3047	/* Set up the new block. */
3048	error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049	if (error)
3050		goto error0;
3051
3052	/* Set the root in the holding structure  increasing the level by 1. */
3053	cur->bc_ops->set_root(cur, &lptr, 1);
3054
3055	/*
3056	 * At the previous root level there are now two blocks: the old root,
3057	 * and the new block generated when it was split.  We don't know which
3058	 * one the cursor is pointing at, so we set up variables "left" and
3059	 * "right" for each case.
3060	 */
3061	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062
3063#ifdef DEBUG
3064	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065	if (error)
3066		goto error0;
3067#endif
3068
3069	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071		/* Our block is left, pick up the right block. */
3072		lbp = bp;
3073		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074		left = block;
3075		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076		if (error)
3077			goto error0;
3078		bp = rbp;
3079		nptr = 1;
3080	} else {
3081		/* Our block is right, pick up the left block. */
3082		rbp = bp;
3083		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084		right = block;
3085		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087		if (error)
3088			goto error0;
3089		bp = lbp;
3090		nptr = 2;
3091	}
3092
3093	/* Fill in the new block's btree header and log it. */
3094	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097			!xfs_btree_ptr_is_null(cur, &rptr));
3098
3099	/* Fill in the key data in the new root. */
3100	if (xfs_btree_get_level(left) > 0) {
3101		/*
3102		 * Get the keys for the left block's keys and put them directly
3103		 * in the parent block.  Do the same for the right block.
3104		 */
3105		xfs_btree_get_node_keys(cur, left,
3106				xfs_btree_key_addr(cur, 1, new));
3107		xfs_btree_get_node_keys(cur, right,
3108				xfs_btree_key_addr(cur, 2, new));
3109	} else {
3110		/*
3111		 * Get the keys for the left block's records and put them
3112		 * directly in the parent block.  Do the same for the right
3113		 * block.
3114		 */
3115		xfs_btree_get_leaf_keys(cur, left,
3116			xfs_btree_key_addr(cur, 1, new));
3117		xfs_btree_get_leaf_keys(cur, right,
3118			xfs_btree_key_addr(cur, 2, new));
3119	}
3120	xfs_btree_log_keys(cur, nbp, 1, 2);
3121
3122	/* Fill in the pointer data in the new root. */
3123	xfs_btree_copy_ptrs(cur,
3124		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125	xfs_btree_copy_ptrs(cur,
3126		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128
3129	/* Fix up the cursor. */
3130	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132	cur->bc_nlevels++;
3133	*stat = 1;
3134	return 0;
3135error0:
3136	return error;
3137out0:
3138	*stat = 0;
3139	return 0;
3140}
3141
3142STATIC int
3143xfs_btree_make_block_unfull(
3144	struct xfs_btree_cur	*cur,	/* btree cursor */
3145	int			level,	/* btree level */
3146	int			numrecs,/* # of recs in block */
3147	int			*oindex,/* old tree index */
3148	int			*index,	/* new tree index */
3149	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3150	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3151	union xfs_btree_key	*key,	/* key of new block */
3152	int			*stat)
3153{
3154	int			error = 0;
3155
3156	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3157	    level == cur->bc_nlevels - 1) {
3158		struct xfs_inode *ip = cur->bc_private.b.ip;
3159
3160		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3161			/* A root block that can be made bigger. */
3162			xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3163			*stat = 1;
3164		} else {
3165			/* A root block that needs replacing */
3166			int	logflags = 0;
3167
3168			error = xfs_btree_new_iroot(cur, &logflags, stat);
3169			if (error || *stat == 0)
3170				return error;
3171
3172			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3173		}
3174
3175		return 0;
3176	}
3177
3178	/* First, try shifting an entry to the right neighbor. */
3179	error = xfs_btree_rshift(cur, level, stat);
3180	if (error || *stat)
3181		return error;
3182
3183	/* Next, try shifting an entry to the left neighbor. */
3184	error = xfs_btree_lshift(cur, level, stat);
3185	if (error)
3186		return error;
3187
3188	if (*stat) {
3189		*oindex = *index = cur->bc_ptrs[level];
3190		return 0;
3191	}
3192
3193	/*
3194	 * Next, try splitting the current block in half.
3195	 *
3196	 * If this works we have to re-set our variables because we
3197	 * could be in a different block now.
3198	 */
3199	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3200	if (error || *stat == 0)
3201		return error;
3202
3203
3204	*index = cur->bc_ptrs[level];
3205	return 0;
3206}
3207
3208/*
3209 * Insert one record/level.  Return information to the caller
3210 * allowing the next level up to proceed if necessary.
3211 */
3212STATIC int
3213xfs_btree_insrec(
3214	struct xfs_btree_cur	*cur,	/* btree cursor */
3215	int			level,	/* level to insert record at */
3216	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3217	union xfs_btree_rec	*rec,	/* record to insert */
3218	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3219	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3220	int			*stat)	/* success/failure */
3221{
3222	struct xfs_btree_block	*block;	/* btree block */
3223	struct xfs_buf		*bp;	/* buffer for block */
3224	union xfs_btree_ptr	nptr;	/* new block ptr */
3225	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3226	union xfs_btree_key	nkey;	/* new block key */
3227	union xfs_btree_key	*lkey;
3228	int			optr;	/* old key/record index */
3229	int			ptr;	/* key/record index */
3230	int			numrecs;/* number of records */
3231	int			error;	/* error return value */
3232#ifdef DEBUG
3233	int			i;
3234#endif
3235	xfs_daddr_t		old_bn;
3236
3237	ncur = NULL;
3238	lkey = &nkey;
3239
3240	/*
3241	 * If we have an external root pointer, and we've made it to the
3242	 * root level, allocate a new root block and we're done.
3243	 */
3244	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245	    (level >= cur->bc_nlevels)) {
3246		error = xfs_btree_new_root(cur, stat);
3247		xfs_btree_set_ptr_null(cur, ptrp);
3248
3249		return error;
3250	}
3251
3252	/* If we're off the left edge, return failure. */
3253	ptr = cur->bc_ptrs[level];
3254	if (ptr == 0) {
3255		*stat = 0;
3256		return 0;
3257	}
3258
3259	optr = ptr;
3260
3261	XFS_BTREE_STATS_INC(cur, insrec);
3262
3263	/* Get pointers to the btree buffer and block. */
3264	block = xfs_btree_get_block(cur, level, &bp);
3265	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266	numrecs = xfs_btree_get_numrecs(block);
3267
3268#ifdef DEBUG
3269	error = xfs_btree_check_block(cur, block, level, bp);
3270	if (error)
3271		goto error0;
3272
3273	/* Check that the new entry is being inserted in the right place. */
3274	if (ptr <= numrecs) {
3275		if (level == 0) {
3276			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277				xfs_btree_rec_addr(cur, ptr, block)));
3278		} else {
3279			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280				xfs_btree_key_addr(cur, ptr, block)));
3281		}
3282	}
3283#endif
3284
3285	/*
3286	 * If the block is full, we can't insert the new entry until we
3287	 * make the block un-full.
3288	 */
3289	xfs_btree_set_ptr_null(cur, &nptr);
3290	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292					&optr, &ptr, &nptr, &ncur, lkey, stat);
3293		if (error || *stat == 0)
3294			goto error0;
3295	}
3296
3297	/*
3298	 * The current block may have changed if the block was
3299	 * previously full and we have just made space in it.
3300	 */
3301	block = xfs_btree_get_block(cur, level, &bp);
3302	numrecs = xfs_btree_get_numrecs(block);
3303
3304#ifdef DEBUG
3305	error = xfs_btree_check_block(cur, block, level, bp);
3306	if (error)
3307		return error;
3308#endif
3309
3310	/*
3311	 * At this point we know there's room for our new entry in the block
3312	 * we're pointing at.
3313	 */
3314	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316	if (level > 0) {
3317		/* It's a nonleaf. make a hole in the keys and ptrs */
3318		union xfs_btree_key	*kp;
3319		union xfs_btree_ptr	*pp;
3320
3321		kp = xfs_btree_key_addr(cur, ptr, block);
3322		pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324#ifdef DEBUG
3325		for (i = numrecs - ptr; i >= 0; i--) {
3326			error = xfs_btree_check_ptr(cur, pp, i, level);
3327			if (error)
3328				return error;
3329		}
3330#endif
3331
3332		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3333		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3334
3335#ifdef DEBUG
3336		error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3337		if (error)
3338			goto error0;
3339#endif
3340
3341		/* Now put the new data in, bump numrecs and log it. */
3342		xfs_btree_copy_keys(cur, kp, key, 1);
3343		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3344		numrecs++;
3345		xfs_btree_set_numrecs(block, numrecs);
3346		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3347		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3348#ifdef DEBUG
3349		if (ptr < numrecs) {
3350			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3351				xfs_btree_key_addr(cur, ptr + 1, block)));
3352		}
3353#endif
3354	} else {
3355		/* It's a leaf. make a hole in the records */
3356		union xfs_btree_rec             *rp;
3357
3358		rp = xfs_btree_rec_addr(cur, ptr, block);
3359
3360		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3361
3362		/* Now put the new data in, bump numrecs and log it. */
3363		xfs_btree_copy_recs(cur, rp, rec, 1);
3364		xfs_btree_set_numrecs(block, ++numrecs);
3365		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3366#ifdef DEBUG
3367		if (ptr < numrecs) {
3368			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3369				xfs_btree_rec_addr(cur, ptr + 1, block)));
3370		}
3371#endif
3372	}
3373
3374	/* Log the new number of records in the btree header. */
3375	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3376
3377	/*
3378	 * If we just inserted into a new tree block, we have to
3379	 * recalculate nkey here because nkey is out of date.
3380	 *
3381	 * Otherwise we're just updating an existing block (having shoved
3382	 * some records into the new tree block), so use the regular key
3383	 * update mechanism.
3384	 */
3385	if (bp && bp->b_bn != old_bn) {
3386		xfs_btree_get_keys(cur, block, lkey);
3387	} else if (xfs_btree_needs_key_update(cur, optr)) {
3388		error = xfs_btree_update_keys(cur, level);
3389		if (error)
3390			goto error0;
3391	}
3392
3393	/*
3394	 * If we are tracking the last record in the tree and
3395	 * we are at the far right edge of the tree, update it.
3396	 */
3397	if (xfs_btree_is_lastrec(cur, block, level)) {
3398		cur->bc_ops->update_lastrec(cur, block, rec,
3399					    ptr, LASTREC_INSREC);
3400	}
3401
3402	/*
3403	 * Return the new block number, if any.
3404	 * If there is one, give back a record value and a cursor too.
3405	 */
3406	*ptrp = nptr;
3407	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3408		xfs_btree_copy_keys(cur, key, lkey, 1);
3409		*curp = ncur;
3410	}
3411
3412	*stat = 1;
3413	return 0;
3414
3415error0:
3416	return error;
3417}
3418
3419/*
3420 * Insert the record at the point referenced by cur.
3421 *
3422 * A multi-level split of the tree on insert will invalidate the original
3423 * cursor.  All callers of this function should assume that the cursor is
3424 * no longer valid and revalidate it.
3425 */
3426int
3427xfs_btree_insert(
3428	struct xfs_btree_cur	*cur,
3429	int			*stat)
3430{
3431	int			error;	/* error return value */
3432	int			i;	/* result value, 0 for failure */
3433	int			level;	/* current level number in btree */
3434	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3435	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3436	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3437	union xfs_btree_key	bkey;	/* key of block to insert */
3438	union xfs_btree_key	*key;
3439	union xfs_btree_rec	rec;	/* record to insert */
3440
3441	level = 0;
3442	ncur = NULL;
3443	pcur = cur;
3444	key = &bkey;
3445
3446	xfs_btree_set_ptr_null(cur, &nptr);
3447
3448	/* Make a key out of the record data to be inserted, and save it. */
3449	cur->bc_ops->init_rec_from_cur(cur, &rec);
3450	cur->bc_ops->init_key_from_rec(key, &rec);
3451
3452	/*
3453	 * Loop going up the tree, starting at the leaf level.
3454	 * Stop when we don't get a split block, that must mean that
3455	 * the insert is finished with this level.
3456	 */
3457	do {
3458		/*
3459		 * Insert nrec/nptr into this level of the tree.
3460		 * Note if we fail, nptr will be null.
3461		 */
3462		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3463				&ncur, &i);
3464		if (error) {
3465			if (pcur != cur)
3466				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3467			goto error0;
3468		}
3469
3470		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3471		level++;
3472
3473		/*
3474		 * See if the cursor we just used is trash.
3475		 * Can't trash the caller's cursor, but otherwise we should
3476		 * if ncur is a new cursor or we're about to be done.
3477		 */
3478		if (pcur != cur &&
3479		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3480			/* Save the state from the cursor before we trash it */
3481			if (cur->bc_ops->update_cursor)
3482				cur->bc_ops->update_cursor(pcur, cur);
3483			cur->bc_nlevels = pcur->bc_nlevels;
3484			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3485		}
3486		/* If we got a new cursor, switch to it. */
3487		if (ncur) {
3488			pcur = ncur;
3489			ncur = NULL;
3490		}
3491	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3492
3493	*stat = i;
3494	return 0;
3495error0:
3496	return error;
3497}
3498
3499/*
3500 * Try to merge a non-leaf block back into the inode root.
3501 *
3502 * Note: the killroot names comes from the fact that we're effectively
3503 * killing the old root block.  But because we can't just delete the
3504 * inode we have to copy the single block it was pointing to into the
3505 * inode.
3506 */
3507STATIC int
3508xfs_btree_kill_iroot(
3509	struct xfs_btree_cur	*cur)
3510{
3511	int			whichfork = cur->bc_private.b.whichfork;
3512	struct xfs_inode	*ip = cur->bc_private.b.ip;
3513	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3514	struct xfs_btree_block	*block;
3515	struct xfs_btree_block	*cblock;
3516	union xfs_btree_key	*kp;
3517	union xfs_btree_key	*ckp;
3518	union xfs_btree_ptr	*pp;
3519	union xfs_btree_ptr	*cpp;
3520	struct xfs_buf		*cbp;
3521	int			level;
3522	int			index;
3523	int			numrecs;
3524	int			error;
3525#ifdef DEBUG
3526	union xfs_btree_ptr	ptr;
3527	int			i;
3528#endif
3529
3530	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3531	ASSERT(cur->bc_nlevels > 1);
3532
3533	/*
3534	 * Don't deal with the root block needs to be a leaf case.
3535	 * We're just going to turn the thing back into extents anyway.
3536	 */
3537	level = cur->bc_nlevels - 1;
3538	if (level == 1)
3539		goto out0;
3540
3541	/*
3542	 * Give up if the root has multiple children.
3543	 */
3544	block = xfs_btree_get_iroot(cur);
3545	if (xfs_btree_get_numrecs(block) != 1)
3546		goto out0;
3547
3548	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3549	numrecs = xfs_btree_get_numrecs(cblock);
3550
3551	/*
3552	 * Only do this if the next level will fit.
3553	 * Then the data must be copied up to the inode,
3554	 * instead of freeing the root you free the next level.
3555	 */
3556	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3557		goto out0;
3558
3559	XFS_BTREE_STATS_INC(cur, killroot);
3560
3561#ifdef DEBUG
3562	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3563	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3564	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3565	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3566#endif
3567
3568	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3569	if (index) {
3570		xfs_iroot_realloc(cur->bc_private.b.ip, index,
3571				  cur->bc_private.b.whichfork);
3572		block = ifp->if_broot;
3573	}
3574
3575	be16_add_cpu(&block->bb_numrecs, index);
3576	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3577
3578	kp = xfs_btree_key_addr(cur, 1, block);
3579	ckp = xfs_btree_key_addr(cur, 1, cblock);
3580	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3581
3582	pp = xfs_btree_ptr_addr(cur, 1, block);
3583	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3584#ifdef DEBUG
3585	for (i = 0; i < numrecs; i++) {
3586		error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3587		if (error)
3588			return error;
3589	}
3590#endif
3591	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3592
3593	error = xfs_btree_free_block(cur, cbp);
3594	if (error)
3595		return error;
3596
3597	cur->bc_bufs[level - 1] = NULL;
3598	be16_add_cpu(&block->bb_level, -1);
3599	xfs_trans_log_inode(cur->bc_tp, ip,
3600		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3601	cur->bc_nlevels--;
3602out0:
3603	return 0;
3604}
3605
3606/*
3607 * Kill the current root node, and replace it with it's only child node.
3608 */
3609STATIC int
3610xfs_btree_kill_root(
3611	struct xfs_btree_cur	*cur,
3612	struct xfs_buf		*bp,
3613	int			level,
3614	union xfs_btree_ptr	*newroot)
3615{
3616	int			error;
3617
3618	XFS_BTREE_STATS_INC(cur, killroot);
3619
3620	/*
3621	 * Update the root pointer, decreasing the level by 1 and then
3622	 * free the old root.
3623	 */
3624	cur->bc_ops->set_root(cur, newroot, -1);
3625
3626	error = xfs_btree_free_block(cur, bp);
3627	if (error)
3628		return error;
3629
3630	cur->bc_bufs[level] = NULL;
3631	cur->bc_ra[level] = 0;
3632	cur->bc_nlevels--;
3633
3634	return 0;
3635}
3636
3637STATIC int
3638xfs_btree_dec_cursor(
3639	struct xfs_btree_cur	*cur,
3640	int			level,
3641	int			*stat)
3642{
3643	int			error;
3644	int			i;
3645
3646	if (level > 0) {
3647		error = xfs_btree_decrement(cur, level, &i);
3648		if (error)
3649			return error;
3650	}
3651
3652	*stat = 1;
3653	return 0;
3654}
3655
3656/*
3657 * Single level of the btree record deletion routine.
3658 * Delete record pointed to by cur/level.
3659 * Remove the record from its block then rebalance the tree.
3660 * Return 0 for error, 1 for done, 2 to go on to the next level.
3661 */
3662STATIC int					/* error */
3663xfs_btree_delrec(
3664	struct xfs_btree_cur	*cur,		/* btree cursor */
3665	int			level,		/* level removing record from */
3666	int			*stat)		/* fail/done/go-on */
3667{
3668	struct xfs_btree_block	*block;		/* btree block */
3669	union xfs_btree_ptr	cptr;		/* current block ptr */
3670	struct xfs_buf		*bp;		/* buffer for block */
3671	int			error;		/* error return value */
3672	int			i;		/* loop counter */
3673	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3674	struct xfs_buf		*lbp;		/* left buffer pointer */
3675	struct xfs_btree_block	*left;		/* left btree block */
3676	int			lrecs = 0;	/* left record count */
3677	int			ptr;		/* key/record index */
3678	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3679	struct xfs_buf		*rbp;		/* right buffer pointer */
3680	struct xfs_btree_block	*right;		/* right btree block */
3681	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3682	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3683	int			rrecs = 0;	/* right record count */
3684	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3685	int			numrecs;	/* temporary numrec count */
3686
3687	tcur = NULL;
3688
3689	/* Get the index of the entry being deleted, check for nothing there. */
3690	ptr = cur->bc_ptrs[level];
3691	if (ptr == 0) {
3692		*stat = 0;
3693		return 0;
3694	}
3695
3696	/* Get the buffer & block containing the record or key/ptr. */
3697	block = xfs_btree_get_block(cur, level, &bp);
3698	numrecs = xfs_btree_get_numrecs(block);
3699
3700#ifdef DEBUG
3701	error = xfs_btree_check_block(cur, block, level, bp);
3702	if (error)
3703		goto error0;
3704#endif
3705
3706	/* Fail if we're off the end of the block. */
3707	if (ptr > numrecs) {
3708		*stat = 0;
3709		return 0;
3710	}
3711
3712	XFS_BTREE_STATS_INC(cur, delrec);
3713	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3714
3715	/* Excise the entries being deleted. */
3716	if (level > 0) {
3717		/* It's a nonleaf. operate on keys and ptrs */
3718		union xfs_btree_key	*lkp;
3719		union xfs_btree_ptr	*lpp;
3720
3721		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3722		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3723
3724#ifdef DEBUG
3725		for (i = 0; i < numrecs - ptr; i++) {
3726			error = xfs_btree_check_ptr(cur, lpp, i, level);
3727			if (error)
3728				goto error0;
3729		}
3730#endif
3731
3732		if (ptr < numrecs) {
3733			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3734			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3735			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3736			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3737		}
3738	} else {
3739		/* It's a leaf. operate on records */
3740		if (ptr < numrecs) {
3741			xfs_btree_shift_recs(cur,
3742				xfs_btree_rec_addr(cur, ptr + 1, block),
3743				-1, numrecs - ptr);
3744			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3745		}
3746	}
3747
3748	/*
3749	 * Decrement and log the number of entries in the block.
3750	 */
3751	xfs_btree_set_numrecs(block, --numrecs);
3752	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3753
3754	/*
3755	 * If we are tracking the last record in the tree and
3756	 * we are at the far right edge of the tree, update it.
3757	 */
3758	if (xfs_btree_is_lastrec(cur, block, level)) {
3759		cur->bc_ops->update_lastrec(cur, block, NULL,
3760					    ptr, LASTREC_DELREC);
3761	}
3762
3763	/*
3764	 * We're at the root level.  First, shrink the root block in-memory.
3765	 * Try to get rid of the next level down.  If we can't then there's
3766	 * nothing left to do.
3767	 */
3768	if (level == cur->bc_nlevels - 1) {
3769		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3770			xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3771					  cur->bc_private.b.whichfork);
3772
3773			error = xfs_btree_kill_iroot(cur);
3774			if (error)
3775				goto error0;
3776
3777			error = xfs_btree_dec_cursor(cur, level, stat);
3778			if (error)
3779				goto error0;
3780			*stat = 1;
3781			return 0;
3782		}
3783
3784		/*
3785		 * If this is the root level, and there's only one entry left,
3786		 * and it's NOT the leaf level, then we can get rid of this
3787		 * level.
3788		 */
3789		if (numrecs == 1 && level > 0) {
3790			union xfs_btree_ptr	*pp;
3791			/*
3792			 * pp is still set to the first pointer in the block.
3793			 * Make it the new root of the btree.
3794			 */
3795			pp = xfs_btree_ptr_addr(cur, 1, block);
3796			error = xfs_btree_kill_root(cur, bp, level, pp);
3797			if (error)
3798				goto error0;
3799		} else if (level > 0) {
3800			error = xfs_btree_dec_cursor(cur, level, stat);
3801			if (error)
3802				goto error0;
3803		}
3804		*stat = 1;
3805		return 0;
3806	}
3807
3808	/*
3809	 * If we deleted the leftmost entry in the block, update the
3810	 * key values above us in the tree.
3811	 */
3812	if (xfs_btree_needs_key_update(cur, ptr)) {
3813		error = xfs_btree_update_keys(cur, level);
3814		if (error)
3815			goto error0;
3816	}
3817
3818	/*
3819	 * If the number of records remaining in the block is at least
3820	 * the minimum, we're done.
3821	 */
3822	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3823		error = xfs_btree_dec_cursor(cur, level, stat);
3824		if (error)
3825			goto error0;
3826		return 0;
3827	}
3828
3829	/*
3830	 * Otherwise, we have to move some records around to keep the
3831	 * tree balanced.  Look at the left and right sibling blocks to
3832	 * see if we can re-balance by moving only one record.
3833	 */
3834	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3835	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3836
3837	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3838		/*
3839		 * One child of root, need to get a chance to copy its contents
3840		 * into the root and delete it. Can't go up to next level,
3841		 * there's nothing to delete there.
3842		 */
3843		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3844		    xfs_btree_ptr_is_null(cur, &lptr) &&
3845		    level == cur->bc_nlevels - 2) {
3846			error = xfs_btree_kill_iroot(cur);
3847			if (!error)
3848				error = xfs_btree_dec_cursor(cur, level, stat);
3849			if (error)
3850				goto error0;
3851			return 0;
3852		}
3853	}
3854
3855	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3856	       !xfs_btree_ptr_is_null(cur, &lptr));
3857
3858	/*
3859	 * Duplicate the cursor so our btree manipulations here won't
3860	 * disrupt the next level up.
3861	 */
3862	error = xfs_btree_dup_cursor(cur, &tcur);
3863	if (error)
3864		goto error0;
3865
3866	/*
3867	 * If there's a right sibling, see if it's ok to shift an entry
3868	 * out of it.
3869	 */
3870	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3871		/*
3872		 * Move the temp cursor to the last entry in the next block.
3873		 * Actually any entry but the first would suffice.
3874		 */
3875		i = xfs_btree_lastrec(tcur, level);
3876		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3877
3878		error = xfs_btree_increment(tcur, level, &i);
3879		if (error)
3880			goto error0;
3881		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882
3883		i = xfs_btree_lastrec(tcur, level);
3884		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3885
3886		/* Grab a pointer to the block. */
3887		right = xfs_btree_get_block(tcur, level, &rbp);
3888#ifdef DEBUG
3889		error = xfs_btree_check_block(tcur, right, level, rbp);
3890		if (error)
3891			goto error0;
3892#endif
3893		/* Grab the current block number, for future use. */
3894		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3895
3896		/*
3897		 * If right block is full enough so that removing one entry
3898		 * won't make it too empty, and left-shifting an entry out
3899		 * of right to us works, we're done.
3900		 */
3901		if (xfs_btree_get_numrecs(right) - 1 >=
3902		    cur->bc_ops->get_minrecs(tcur, level)) {
3903			error = xfs_btree_lshift(tcur, level, &i);
3904			if (error)
3905				goto error0;
3906			if (i) {
3907				ASSERT(xfs_btree_get_numrecs(block) >=
3908				       cur->bc_ops->get_minrecs(tcur, level));
3909
3910				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3911				tcur = NULL;
3912
3913				error = xfs_btree_dec_cursor(cur, level, stat);
3914				if (error)
3915					goto error0;
3916				return 0;
3917			}
3918		}
3919
3920		/*
3921		 * Otherwise, grab the number of records in right for
3922		 * future reference, and fix up the temp cursor to point
3923		 * to our block again (last record).
3924		 */
3925		rrecs = xfs_btree_get_numrecs(right);
3926		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3927			i = xfs_btree_firstrec(tcur, level);
3928			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3929
3930			error = xfs_btree_decrement(tcur, level, &i);
3931			if (error)
3932				goto error0;
3933			XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934		}
3935	}
3936
3937	/*
3938	 * If there's a left sibling, see if it's ok to shift an entry
3939	 * out of it.
3940	 */
3941	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3942		/*
3943		 * Move the temp cursor to the first entry in the
3944		 * previous block.
3945		 */
3946		i = xfs_btree_firstrec(tcur, level);
3947		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949		error = xfs_btree_decrement(tcur, level, &i);
3950		if (error)
3951			goto error0;
3952		i = xfs_btree_firstrec(tcur, level);
3953		XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954
3955		/* Grab a pointer to the block. */
3956		left = xfs_btree_get_block(tcur, level, &lbp);
3957#ifdef DEBUG
3958		error = xfs_btree_check_block(cur, left, level, lbp);
3959		if (error)
3960			goto error0;
3961#endif
3962		/* Grab the current block number, for future use. */
3963		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3964
3965		/*
3966		 * If left block is full enough so that removing one entry
3967		 * won't make it too empty, and right-shifting an entry out
3968		 * of left to us works, we're done.
3969		 */
3970		if (xfs_btree_get_numrecs(left) - 1 >=
3971		    cur->bc_ops->get_minrecs(tcur, level)) {
3972			error = xfs_btree_rshift(tcur, level, &i);
3973			if (error)
3974				goto error0;
3975			if (i) {
3976				ASSERT(xfs_btree_get_numrecs(block) >=
3977				       cur->bc_ops->get_minrecs(tcur, level));
3978				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979				tcur = NULL;
3980				if (level == 0)
3981					cur->bc_ptrs[0]++;
3982
3983				*stat = 1;
3984				return 0;
3985			}
3986		}
3987
3988		/*
3989		 * Otherwise, grab the number of records in right for
3990		 * future reference.
3991		 */
3992		lrecs = xfs_btree_get_numrecs(left);
3993	}
3994
3995	/* Delete the temp cursor, we're done with it. */
3996	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3997	tcur = NULL;
3998
3999	/* If here, we need to do a join to keep the tree balanced. */
4000	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4001
4002	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4003	    lrecs + xfs_btree_get_numrecs(block) <=
4004			cur->bc_ops->get_maxrecs(cur, level)) {
4005		/*
4006		 * Set "right" to be the starting block,
4007		 * "left" to be the left neighbor.
4008		 */
4009		rptr = cptr;
4010		right = block;
4011		rbp = bp;
4012		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4013		if (error)
4014			goto error0;
4015
4016	/*
4017	 * If that won't work, see if we can join with the right neighbor block.
4018	 */
4019	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4020		   rrecs + xfs_btree_get_numrecs(block) <=
4021			cur->bc_ops->get_maxrecs(cur, level)) {
4022		/*
4023		 * Set "left" to be the starting block,
4024		 * "right" to be the right neighbor.
4025		 */
4026		lptr = cptr;
4027		left = block;
4028		lbp = bp;
4029		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4030		if (error)
4031			goto error0;
4032
4033	/*
4034	 * Otherwise, we can't fix the imbalance.
4035	 * Just return.  This is probably a logic error, but it's not fatal.
4036	 */
4037	} else {
4038		error = xfs_btree_dec_cursor(cur, level, stat);
4039		if (error)
4040			goto error0;
4041		return 0;
4042	}
4043
4044	rrecs = xfs_btree_get_numrecs(right);
4045	lrecs = xfs_btree_get_numrecs(left);
4046
4047	/*
4048	 * We're now going to join "left" and "right" by moving all the stuff
4049	 * in "right" to "left" and deleting "right".
4050	 */
4051	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4052	if (level > 0) {
4053		/* It's a non-leaf.  Move keys and pointers. */
4054		union xfs_btree_key	*lkp;	/* left btree key */
4055		union xfs_btree_ptr	*lpp;	/* left address pointer */
4056		union xfs_btree_key	*rkp;	/* right btree key */
4057		union xfs_btree_ptr	*rpp;	/* right address pointer */
4058
4059		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4060		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4061		rkp = xfs_btree_key_addr(cur, 1, right);
4062		rpp = xfs_btree_ptr_addr(cur, 1, right);
4063#ifdef DEBUG
4064		for (i = 1; i < rrecs; i++) {
4065			error = xfs_btree_check_ptr(cur, rpp, i, level);
4066			if (error)
4067				goto error0;
4068		}
4069#endif
4070		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4071		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4072
4073		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4074		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4075	} else {
4076		/* It's a leaf.  Move records.  */
4077		union xfs_btree_rec	*lrp;	/* left record pointer */
4078		union xfs_btree_rec	*rrp;	/* right record pointer */
4079
4080		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4081		rrp = xfs_btree_rec_addr(cur, 1, right);
4082
4083		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4084		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4085	}
4086
4087	XFS_BTREE_STATS_INC(cur, join);
4088
4089	/*
4090	 * Fix up the number of records and right block pointer in the
4091	 * surviving block, and log it.
4092	 */
4093	xfs_btree_set_numrecs(left, lrecs + rrecs);
4094	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4095	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4096	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4097
4098	/* If there is a right sibling, point it to the remaining block. */
4099	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4100	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4101		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4102		if (error)
4103			goto error0;
4104		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4105		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4106	}
4107
4108	/* Free the deleted block. */
4109	error = xfs_btree_free_block(cur, rbp);
4110	if (error)
4111		goto error0;
4112
4113	/*
4114	 * If we joined with the left neighbor, set the buffer in the
4115	 * cursor to the left block, and fix up the index.
4116	 */
4117	if (bp != lbp) {
4118		cur->bc_bufs[level] = lbp;
4119		cur->bc_ptrs[level] += lrecs;
4120		cur->bc_ra[level] = 0;
4121	}
4122	/*
4123	 * If we joined with the right neighbor and there's a level above
4124	 * us, increment the cursor at that level.
4125	 */
4126	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4127		   (level + 1 < cur->bc_nlevels)) {
4128		error = xfs_btree_increment(cur, level + 1, &i);
4129		if (error)
4130			goto error0;
4131	}
4132
4133	/*
4134	 * Readjust the ptr at this level if it's not a leaf, since it's
4135	 * still pointing at the deletion point, which makes the cursor
4136	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4137	 * We can't use decrement because it would change the next level up.
4138	 */
4139	if (level > 0)
4140		cur->bc_ptrs[level]--;
4141
4142	/*
4143	 * We combined blocks, so we have to update the parent keys if the
4144	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4145	 * points to the old block so that the caller knows which record to
4146	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4147	 * for us if we return stat == 2.  The other exit points from this
4148	 * function don't require deletions further up the tree, so they can
4149	 * call updkeys directly.
4150	 */
4151
4152	/* Return value means the next level up has something to do. */
4153	*stat = 2;
4154	return 0;
4155
4156error0:
4157	if (tcur)
4158		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4159	return error;
4160}
4161
4162/*
4163 * Delete the record pointed to by cur.
4164 * The cursor refers to the place where the record was (could be inserted)
4165 * when the operation returns.
4166 */
4167int					/* error */
4168xfs_btree_delete(
4169	struct xfs_btree_cur	*cur,
4170	int			*stat)	/* success/failure */
4171{
4172	int			error;	/* error return value */
4173	int			level;
4174	int			i;
4175	bool			joined = false;
4176
4177	/*
4178	 * Go up the tree, starting at leaf level.
4179	 *
4180	 * If 2 is returned then a join was done; go to the next level.
4181	 * Otherwise we are done.
4182	 */
4183	for (level = 0, i = 2; i == 2; level++) {
4184		error = xfs_btree_delrec(cur, level, &i);
4185		if (error)
4186			goto error0;
4187		if (i == 2)
4188			joined = true;
4189	}
4190
4191	/*
4192	 * If we combined blocks as part of deleting the record, delrec won't
4193	 * have updated the parent high keys so we have to do that here.
4194	 */
4195	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4196		error = xfs_btree_updkeys_force(cur, 0);
4197		if (error)
4198			goto error0;
4199	}
4200
4201	if (i == 0) {
4202		for (level = 1; level < cur->bc_nlevels; level++) {
4203			if (cur->bc_ptrs[level] == 0) {
4204				error = xfs_btree_decrement(cur, level, &i);
4205				if (error)
4206					goto error0;
4207				break;
4208			}
4209		}
4210	}
4211
4212	*stat = i;
4213	return 0;
4214error0:
4215	return error;
4216}
4217
4218/*
4219 * Get the data from the pointed-to record.
4220 */
4221int					/* error */
4222xfs_btree_get_rec(
4223	struct xfs_btree_cur	*cur,	/* btree cursor */
4224	union xfs_btree_rec	**recp,	/* output: btree record */
4225	int			*stat)	/* output: success/failure */
4226{
4227	struct xfs_btree_block	*block;	/* btree block */
4228	struct xfs_buf		*bp;	/* buffer pointer */
4229	int			ptr;	/* record number */
4230#ifdef DEBUG
4231	int			error;	/* error return value */
4232#endif
4233
4234	ptr = cur->bc_ptrs[0];
4235	block = xfs_btree_get_block(cur, 0, &bp);
4236
4237#ifdef DEBUG
4238	error = xfs_btree_check_block(cur, block, 0, bp);
4239	if (error)
4240		return error;
4241#endif
4242
4243	/*
4244	 * Off the right end or left end, return failure.
4245	 */
4246	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4247		*stat = 0;
4248		return 0;
4249	}
4250
4251	/*
4252	 * Point to the record and extract its data.
4253	 */
4254	*recp = xfs_btree_rec_addr(cur, ptr, block);
4255	*stat = 1;
4256	return 0;
4257}
4258
4259/* Visit a block in a btree. */
4260STATIC int
4261xfs_btree_visit_block(
4262	struct xfs_btree_cur		*cur,
4263	int				level,
4264	xfs_btree_visit_blocks_fn	fn,
4265	void				*data)
4266{
4267	struct xfs_btree_block		*block;
4268	struct xfs_buf			*bp;
4269	union xfs_btree_ptr		rptr;
4270	int				error;
4271
4272	/* do right sibling readahead */
4273	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4274	block = xfs_btree_get_block(cur, level, &bp);
4275
4276	/* process the block */
4277	error = fn(cur, level, data);
4278	if (error)
4279		return error;
4280
4281	/* now read rh sibling block for next iteration */
4282	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4283	if (xfs_btree_ptr_is_null(cur, &rptr))
4284		return -ENOENT;
4285
4286	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4287}
4288
4289
4290/* Visit every block in a btree. */
4291int
4292xfs_btree_visit_blocks(
4293	struct xfs_btree_cur		*cur,
4294	xfs_btree_visit_blocks_fn	fn,
4295	void				*data)
4296{
4297	union xfs_btree_ptr		lptr;
4298	int				level;
4299	struct xfs_btree_block		*block = NULL;
4300	int				error = 0;
4301
4302	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4303
4304	/* for each level */
4305	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4306		/* grab the left hand block */
4307		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4308		if (error)
4309			return error;
4310
4311		/* readahead the left most block for the next level down */
4312		if (level > 0) {
4313			union xfs_btree_ptr     *ptr;
4314
4315			ptr = xfs_btree_ptr_addr(cur, 1, block);
4316			xfs_btree_readahead_ptr(cur, ptr, 1);
4317
4318			/* save for the next iteration of the loop */
4319			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4320		}
4321
4322		/* for each buffer in the level */
4323		do {
4324			error = xfs_btree_visit_block(cur, level, fn, data);
4325		} while (!error);
4326
4327		if (error != -ENOENT)
4328			return error;
4329	}
4330
4331	return 0;
4332}
4333
4334/*
4335 * Change the owner of a btree.
4336 *
4337 * The mechanism we use here is ordered buffer logging. Because we don't know
4338 * how many buffers were are going to need to modify, we don't really want to
4339 * have to make transaction reservations for the worst case of every buffer in a
4340 * full size btree as that may be more space that we can fit in the log....
4341 *
4342 * We do the btree walk in the most optimal manner possible - we have sibling
4343 * pointers so we can just walk all the blocks on each level from left to right
4344 * in a single pass, and then move to the next level and do the same. We can
4345 * also do readahead on the sibling pointers to get IO moving more quickly,
4346 * though for slow disks this is unlikely to make much difference to performance
4347 * as the amount of CPU work we have to do before moving to the next block is
4348 * relatively small.
4349 *
4350 * For each btree block that we load, modify the owner appropriately, set the
4351 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4352 * we mark the region we change dirty so that if the buffer is relogged in
4353 * a subsequent transaction the changes we make here as an ordered buffer are
4354 * correctly relogged in that transaction.  If we are in recovery context, then
4355 * just queue the modified buffer as delayed write buffer so the transaction
4356 * recovery completion writes the changes to disk.
4357 */
4358struct xfs_btree_block_change_owner_info {
4359	uint64_t		new_owner;
4360	struct list_head	*buffer_list;
4361};
4362
4363static int
4364xfs_btree_block_change_owner(
4365	struct xfs_btree_cur	*cur,
4366	int			level,
4367	void			*data)
4368{
4369	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4370	struct xfs_btree_block	*block;
4371	struct xfs_buf		*bp;
4372
4373	/* modify the owner */
4374	block = xfs_btree_get_block(cur, level, &bp);
4375	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4376		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4377			return 0;
4378		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4379	} else {
4380		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4381			return 0;
4382		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4383	}
4384
4385	/*
4386	 * If the block is a root block hosted in an inode, we might not have a
4387	 * buffer pointer here and we shouldn't attempt to log the change as the
4388	 * information is already held in the inode and discarded when the root
4389	 * block is formatted into the on-disk inode fork. We still change it,
4390	 * though, so everything is consistent in memory.
4391	 */
4392	if (!bp) {
4393		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4394		ASSERT(level == cur->bc_nlevels - 1);
4395		return 0;
4396	}
4397
4398	if (cur->bc_tp) {
4399		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4400			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4401			return -EAGAIN;
4402		}
4403	} else {
4404		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4405	}
4406
4407	return 0;
4408}
4409
4410int
4411xfs_btree_change_owner(
4412	struct xfs_btree_cur	*cur,
4413	uint64_t		new_owner,
4414	struct list_head	*buffer_list)
4415{
4416	struct xfs_btree_block_change_owner_info	bbcoi;
4417
4418	bbcoi.new_owner = new_owner;
4419	bbcoi.buffer_list = buffer_list;
4420
4421	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4422			&bbcoi);
4423}
4424
4425/* Verify the v5 fields of a long-format btree block. */
4426xfs_failaddr_t
4427xfs_btree_lblock_v5hdr_verify(
4428	struct xfs_buf		*bp,
4429	uint64_t		owner)
4430{
4431	struct xfs_mount	*mp = bp->b_target->bt_mount;
4432	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4433
4434	if (!xfs_sb_version_hascrc(&mp->m_sb))
4435		return __this_address;
4436	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4437		return __this_address;
4438	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4439		return __this_address;
4440	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4441	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4442		return __this_address;
4443	return NULL;
4444}
4445
4446/* Verify a long-format btree block. */
4447xfs_failaddr_t
4448xfs_btree_lblock_verify(
4449	struct xfs_buf		*bp,
4450	unsigned int		max_recs)
4451{
4452	struct xfs_mount	*mp = bp->b_target->bt_mount;
4453	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4454
4455	/* numrecs verification */
4456	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4457		return __this_address;
4458
4459	/* sibling pointer verification */
4460	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4461	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4462		return __this_address;
4463	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4464	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4465		return __this_address;
4466
4467	return NULL;
4468}
4469
4470/**
4471 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4472 *				      btree block
4473 *
4474 * @bp: buffer containing the btree block
4475 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4476 * @pag_max_level: pointer to the per-ag max level field
4477 */
4478xfs_failaddr_t
4479xfs_btree_sblock_v5hdr_verify(
4480	struct xfs_buf		*bp)
4481{
4482	struct xfs_mount	*mp = bp->b_target->bt_mount;
4483	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4484	struct xfs_perag	*pag = bp->b_pag;
4485
4486	if (!xfs_sb_version_hascrc(&mp->m_sb))
4487		return __this_address;
4488	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4489		return __this_address;
4490	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4491		return __this_address;
4492	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4493		return __this_address;
4494	return NULL;
4495}
4496
4497/**
4498 * xfs_btree_sblock_verify() -- verify a short-format btree block
4499 *
4500 * @bp: buffer containing the btree block
4501 * @max_recs: maximum records allowed in this btree node
4502 */
4503xfs_failaddr_t
4504xfs_btree_sblock_verify(
4505	struct xfs_buf		*bp,
4506	unsigned int		max_recs)
4507{
4508	struct xfs_mount	*mp = bp->b_target->bt_mount;
4509	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4510	xfs_agblock_t		agno;
4511
4512	/* numrecs verification */
4513	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4514		return __this_address;
4515
4516	/* sibling pointer verification */
4517	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4518	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4519	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4520		return __this_address;
4521	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4522	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4523		return __this_address;
4524
4525	return NULL;
4526}
4527
4528/*
4529 * Calculate the number of btree levels needed to store a given number of
4530 * records in a short-format btree.
4531 */
4532uint
4533xfs_btree_compute_maxlevels(
4534	uint			*limits,
4535	unsigned long		len)
4536{
4537	uint			level;
4538	unsigned long		maxblocks;
4539
4540	maxblocks = (len + limits[0] - 1) / limits[0];
4541	for (level = 1; maxblocks > 1; level++)
4542		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4543	return level;
4544}
4545
4546/*
4547 * Query a regular btree for all records overlapping a given interval.
4548 * Start with a LE lookup of the key of low_rec and return all records
4549 * until we find a record with a key greater than the key of high_rec.
4550 */
4551STATIC int
4552xfs_btree_simple_query_range(
4553	struct xfs_btree_cur		*cur,
4554	union xfs_btree_key		*low_key,
4555	union xfs_btree_key		*high_key,
4556	xfs_btree_query_range_fn	fn,
4557	void				*priv)
4558{
4559	union xfs_btree_rec		*recp;
4560	union xfs_btree_key		rec_key;
4561	int64_t				diff;
4562	int				stat;
4563	bool				firstrec = true;
4564	int				error;
4565
4566	ASSERT(cur->bc_ops->init_high_key_from_rec);
4567	ASSERT(cur->bc_ops->diff_two_keys);
4568
4569	/*
4570	 * Find the leftmost record.  The btree cursor must be set
4571	 * to the low record used to generate low_key.
4572	 */
4573	stat = 0;
4574	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4575	if (error)
4576		goto out;
4577
4578	/* Nothing?  See if there's anything to the right. */
4579	if (!stat) {
4580		error = xfs_btree_increment(cur, 0, &stat);
4581		if (error)
4582			goto out;
4583	}
4584
4585	while (stat) {
4586		/* Find the record. */
4587		error = xfs_btree_get_rec(cur, &recp, &stat);
4588		if (error || !stat)
4589			break;
4590
4591		/* Skip if high_key(rec) < low_key. */
4592		if (firstrec) {
4593			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4594			firstrec = false;
4595			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4596					&rec_key);
4597			if (diff > 0)
4598				goto advloop;
4599		}
4600
4601		/* Stop if high_key < low_key(rec). */
4602		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4603		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4604		if (diff > 0)
4605			break;
4606
4607		/* Callback */
4608		error = fn(cur, recp, priv);
4609		if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4610			break;
4611
4612advloop:
4613		/* Move on to the next record. */
4614		error = xfs_btree_increment(cur, 0, &stat);
4615		if (error)
4616			break;
4617	}
4618
4619out:
4620	return error;
4621}
4622
4623/*
4624 * Query an overlapped interval btree for all records overlapping a given
4625 * interval.  This function roughly follows the algorithm given in
4626 * "Interval Trees" of _Introduction to Algorithms_, which is section
4627 * 14.3 in the 2nd and 3rd editions.
4628 *
4629 * First, generate keys for the low and high records passed in.
4630 *
4631 * For any leaf node, generate the high and low keys for the record.
4632 * If the record keys overlap with the query low/high keys, pass the
4633 * record to the function iterator.
4634 *
4635 * For any internal node, compare the low and high keys of each
4636 * pointer against the query low/high keys.  If there's an overlap,
4637 * follow the pointer.
4638 *
4639 * As an optimization, we stop scanning a block when we find a low key
4640 * that is greater than the query's high key.
4641 */
4642STATIC int
4643xfs_btree_overlapped_query_range(
4644	struct xfs_btree_cur		*cur,
4645	union xfs_btree_key		*low_key,
4646	union xfs_btree_key		*high_key,
4647	xfs_btree_query_range_fn	fn,
4648	void				*priv)
4649{
4650	union xfs_btree_ptr		ptr;
4651	union xfs_btree_ptr		*pp;
4652	union xfs_btree_key		rec_key;
4653	union xfs_btree_key		rec_hkey;
4654	union xfs_btree_key		*lkp;
4655	union xfs_btree_key		*hkp;
4656	union xfs_btree_rec		*recp;
4657	struct xfs_btree_block		*block;
4658	int64_t				ldiff;
4659	int64_t				hdiff;
4660	int				level;
4661	struct xfs_buf			*bp;
4662	int				i;
4663	int				error;
4664
4665	/* Load the root of the btree. */
4666	level = cur->bc_nlevels - 1;
4667	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4668	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4669	if (error)
4670		return error;
4671	xfs_btree_get_block(cur, level, &bp);
4672	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4673#ifdef DEBUG
4674	error = xfs_btree_check_block(cur, block, level, bp);
4675	if (error)
4676		goto out;
4677#endif
4678	cur->bc_ptrs[level] = 1;
4679
4680	while (level < cur->bc_nlevels) {
4681		block = xfs_btree_get_block(cur, level, &bp);
4682
4683		/* End of node, pop back towards the root. */
4684		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4685pop_up:
4686			if (level < cur->bc_nlevels - 1)
4687				cur->bc_ptrs[level + 1]++;
4688			level++;
4689			continue;
4690		}
4691
4692		if (level == 0) {
4693			/* Handle a leaf node. */
4694			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4695
4696			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4697			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4698					low_key);
4699
4700			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4701			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4702					&rec_key);
4703
4704			/*
4705			 * If (record's high key >= query's low key) and
4706			 *    (query's high key >= record's low key), then
4707			 * this record overlaps the query range; callback.
4708			 */
4709			if (ldiff >= 0 && hdiff >= 0) {
4710				error = fn(cur, recp, priv);
4711				if (error < 0 ||
4712				    error == XFS_BTREE_QUERY_RANGE_ABORT)
4713					break;
4714			} else if (hdiff < 0) {
4715				/* Record is larger than high key; pop. */
4716				goto pop_up;
4717			}
4718			cur->bc_ptrs[level]++;
4719			continue;
4720		}
4721
4722		/* Handle an internal node. */
4723		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4724		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4725		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4726
4727		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4728		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4729
4730		/*
4731		 * If (pointer's high key >= query's low key) and
4732		 *    (query's high key >= pointer's low key), then
4733		 * this record overlaps the query range; follow pointer.
4734		 */
4735		if (ldiff >= 0 && hdiff >= 0) {
4736			level--;
4737			error = xfs_btree_lookup_get_block(cur, level, pp,
4738					&block);
4739			if (error)
4740				goto out;
4741			xfs_btree_get_block(cur, level, &bp);
4742			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4743#ifdef DEBUG
4744			error = xfs_btree_check_block(cur, block, level, bp);
4745			if (error)
4746				goto out;
4747#endif
4748			cur->bc_ptrs[level] = 1;
4749			continue;
4750		} else if (hdiff < 0) {
4751			/* The low key is larger than the upper range; pop. */
4752			goto pop_up;
4753		}
4754		cur->bc_ptrs[level]++;
4755	}
4756
4757out:
4758	/*
4759	 * If we don't end this function with the cursor pointing at a record
4760	 * block, a subsequent non-error cursor deletion will not release
4761	 * node-level buffers, causing a buffer leak.  This is quite possible
4762	 * with a zero-results range query, so release the buffers if we
4763	 * failed to return any results.
4764	 */
4765	if (cur->bc_bufs[0] == NULL) {
4766		for (i = 0; i < cur->bc_nlevels; i++) {
4767			if (cur->bc_bufs[i]) {
4768				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4769				cur->bc_bufs[i] = NULL;
4770				cur->bc_ptrs[i] = 0;
4771				cur->bc_ra[i] = 0;
4772			}
4773		}
4774	}
4775
4776	return error;
4777}
4778
4779/*
4780 * Query a btree for all records overlapping a given interval of keys.  The
4781 * supplied function will be called with each record found; return one of the
4782 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4783 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4784 * negative error code.
4785 */
4786int
4787xfs_btree_query_range(
4788	struct xfs_btree_cur		*cur,
4789	union xfs_btree_irec		*low_rec,
4790	union xfs_btree_irec		*high_rec,
4791	xfs_btree_query_range_fn	fn,
4792	void				*priv)
4793{
4794	union xfs_btree_rec		rec;
4795	union xfs_btree_key		low_key;
4796	union xfs_btree_key		high_key;
4797
4798	/* Find the keys of both ends of the interval. */
4799	cur->bc_rec = *high_rec;
4800	cur->bc_ops->init_rec_from_cur(cur, &rec);
4801	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4802
4803	cur->bc_rec = *low_rec;
4804	cur->bc_ops->init_rec_from_cur(cur, &rec);
4805	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4806
4807	/* Enforce low key < high key. */
4808	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4809		return -EINVAL;
4810
4811	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4812		return xfs_btree_simple_query_range(cur, &low_key,
4813				&high_key, fn, priv);
4814	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4815			fn, priv);
4816}
4817
4818/* Query a btree for all records. */
4819int
4820xfs_btree_query_all(
4821	struct xfs_btree_cur		*cur,
4822	xfs_btree_query_range_fn	fn,
4823	void				*priv)
4824{
4825	union xfs_btree_key		low_key;
4826	union xfs_btree_key		high_key;
4827
4828	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4829	memset(&low_key, 0, sizeof(low_key));
4830	memset(&high_key, 0xFF, sizeof(high_key));
4831
4832	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4833}
4834
4835/*
4836 * Calculate the number of blocks needed to store a given number of records
4837 * in a short-format (per-AG metadata) btree.
4838 */
4839xfs_extlen_t
4840xfs_btree_calc_size(
4841	uint			*limits,
4842	unsigned long long	len)
4843{
4844	int			level;
4845	int			maxrecs;
4846	xfs_extlen_t		rval;
4847
4848	maxrecs = limits[0];
4849	for (level = 0, rval = 0; len > 1; level++) {
4850		len += maxrecs - 1;
4851		do_div(len, maxrecs);
4852		maxrecs = limits[1];
4853		rval += len;
4854	}
4855	return rval;
4856}
4857
4858static int
4859xfs_btree_count_blocks_helper(
4860	struct xfs_btree_cur	*cur,
4861	int			level,
4862	void			*data)
4863{
4864	xfs_extlen_t		*blocks = data;
4865	(*blocks)++;
4866
4867	return 0;
4868}
4869
4870/* Count the blocks in a btree and return the result in *blocks. */
4871int
4872xfs_btree_count_blocks(
4873	struct xfs_btree_cur	*cur,
4874	xfs_extlen_t		*blocks)
4875{
4876	*blocks = 0;
4877	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4878			blocks);
4879}
4880
4881/* Compare two btree pointers. */
4882int64_t
4883xfs_btree_diff_two_ptrs(
4884	struct xfs_btree_cur		*cur,
4885	const union xfs_btree_ptr	*a,
4886	const union xfs_btree_ptr	*b)
4887{
4888	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4889		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4890	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4891}
4892
4893/* If there's an extent, we're done. */
4894STATIC int
4895xfs_btree_has_record_helper(
4896	struct xfs_btree_cur		*cur,
4897	union xfs_btree_rec		*rec,
4898	void				*priv)
4899{
4900	return XFS_BTREE_QUERY_RANGE_ABORT;
4901}
4902
4903/* Is there a record covering a given range of keys? */
4904int
4905xfs_btree_has_record(
4906	struct xfs_btree_cur	*cur,
4907	union xfs_btree_irec	*low,
4908	union xfs_btree_irec	*high,
4909	bool			*exists)
4910{
4911	int			error;
4912
4913	error = xfs_btree_query_range(cur, low, high,
4914			&xfs_btree_has_record_helper, NULL);
4915	if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4916		*exists = true;
4917		return 0;
4918	}
4919	*exists = false;
4920	return error;
4921}