Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_mount.h"
26#include "xfs_defer.h"
27#include "xfs_inode.h"
28#include "xfs_trans.h"
29#include "xfs_inode_item.h"
30#include "xfs_buf_item.h"
31#include "xfs_btree.h"
32#include "xfs_errortag.h"
33#include "xfs_error.h"
34#include "xfs_trace.h"
35#include "xfs_cksum.h"
36#include "xfs_alloc.h"
37#include "xfs_log.h"
38
39/*
40 * Cursor allocation zone.
41 */
42kmem_zone_t *xfs_btree_cur_zone;
43
44/*
45 * Btree magic numbers.
46 */
47static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
48 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
49 XFS_FIBT_MAGIC, 0 },
50 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
51 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
52 XFS_REFC_CRC_MAGIC }
53};
54
55uint32_t
56xfs_btree_magic(
57 int crc,
58 xfs_btnum_t btnum)
59{
60 uint32_t magic = xfs_magics[crc][btnum];
61
62 /* Ensure we asked for crc for crc-only magics. */
63 ASSERT(magic != 0);
64 return magic;
65}
66
67/*
68 * Check a long btree block header. Return the address of the failing check,
69 * or NULL if everything is ok.
70 */
71xfs_failaddr_t
72__xfs_btree_check_lblock(
73 struct xfs_btree_cur *cur,
74 struct xfs_btree_block *block,
75 int level,
76 struct xfs_buf *bp)
77{
78 struct xfs_mount *mp = cur->bc_mp;
79 xfs_btnum_t btnum = cur->bc_btnum;
80 int crc = xfs_sb_version_hascrc(&mp->m_sb);
81
82 if (crc) {
83 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
84 return __this_address;
85 if (block->bb_u.l.bb_blkno !=
86 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
87 return __this_address;
88 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
89 return __this_address;
90 }
91
92 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
93 return __this_address;
94 if (be16_to_cpu(block->bb_level) != level)
95 return __this_address;
96 if (be16_to_cpu(block->bb_numrecs) >
97 cur->bc_ops->get_maxrecs(cur, level))
98 return __this_address;
99 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
100 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
101 level + 1))
102 return __this_address;
103 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
104 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
105 level + 1))
106 return __this_address;
107
108 return NULL;
109}
110
111/* Check a long btree block header. */
112static int
113xfs_btree_check_lblock(
114 struct xfs_btree_cur *cur,
115 struct xfs_btree_block *block,
116 int level,
117 struct xfs_buf *bp)
118{
119 struct xfs_mount *mp = cur->bc_mp;
120 xfs_failaddr_t fa;
121
122 fa = __xfs_btree_check_lblock(cur, block, level, bp);
123 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
124 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
125 if (bp)
126 trace_xfs_btree_corrupt(bp, _RET_IP_);
127 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
128 return -EFSCORRUPTED;
129 }
130 return 0;
131}
132
133/*
134 * Check a short btree block header. Return the address of the failing check,
135 * or NULL if everything is ok.
136 */
137xfs_failaddr_t
138__xfs_btree_check_sblock(
139 struct xfs_btree_cur *cur,
140 struct xfs_btree_block *block,
141 int level,
142 struct xfs_buf *bp)
143{
144 struct xfs_mount *mp = cur->bc_mp;
145 xfs_btnum_t btnum = cur->bc_btnum;
146 int crc = xfs_sb_version_hascrc(&mp->m_sb);
147
148 if (crc) {
149 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
150 return __this_address;
151 if (block->bb_u.s.bb_blkno !=
152 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
153 return __this_address;
154 }
155
156 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
157 return __this_address;
158 if (be16_to_cpu(block->bb_level) != level)
159 return __this_address;
160 if (be16_to_cpu(block->bb_numrecs) >
161 cur->bc_ops->get_maxrecs(cur, level))
162 return __this_address;
163 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
164 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
165 level + 1))
166 return __this_address;
167 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
168 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
169 level + 1))
170 return __this_address;
171
172 return NULL;
173}
174
175/* Check a short btree block header. */
176STATIC int
177xfs_btree_check_sblock(
178 struct xfs_btree_cur *cur,
179 struct xfs_btree_block *block,
180 int level,
181 struct xfs_buf *bp)
182{
183 struct xfs_mount *mp = cur->bc_mp;
184 xfs_failaddr_t fa;
185
186 fa = __xfs_btree_check_sblock(cur, block, level, bp);
187 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
188 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
189 if (bp)
190 trace_xfs_btree_corrupt(bp, _RET_IP_);
191 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
192 return -EFSCORRUPTED;
193 }
194 return 0;
195}
196
197/*
198 * Debug routine: check that block header is ok.
199 */
200int
201xfs_btree_check_block(
202 struct xfs_btree_cur *cur, /* btree cursor */
203 struct xfs_btree_block *block, /* generic btree block pointer */
204 int level, /* level of the btree block */
205 struct xfs_buf *bp) /* buffer containing block, if any */
206{
207 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
208 return xfs_btree_check_lblock(cur, block, level, bp);
209 else
210 return xfs_btree_check_sblock(cur, block, level, bp);
211}
212
213/* Check that this long pointer is valid and points within the fs. */
214bool
215xfs_btree_check_lptr(
216 struct xfs_btree_cur *cur,
217 xfs_fsblock_t fsbno,
218 int level)
219{
220 if (level <= 0)
221 return false;
222 return xfs_verify_fsbno(cur->bc_mp, fsbno);
223}
224
225/* Check that this short pointer is valid and points within the AG. */
226bool
227xfs_btree_check_sptr(
228 struct xfs_btree_cur *cur,
229 xfs_agblock_t agbno,
230 int level)
231{
232 if (level <= 0)
233 return false;
234 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
235}
236
237#ifdef DEBUG
238/*
239 * Check that a given (indexed) btree pointer at a certain level of a
240 * btree is valid and doesn't point past where it should.
241 */
242static int
243xfs_btree_check_ptr(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_ptr *ptr,
246 int index,
247 int level)
248{
249 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
250 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
251 xfs_btree_check_lptr(cur,
252 be64_to_cpu((&ptr->l)[index]), level));
253 } else {
254 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
255 xfs_btree_check_sptr(cur,
256 be32_to_cpu((&ptr->s)[index]), level));
257 }
258
259 return 0;
260}
261#endif
262
263/*
264 * Calculate CRC on the whole btree block and stuff it into the
265 * long-form btree header.
266 *
267 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
268 * it into the buffer so recovery knows what the last modification was that made
269 * it to disk.
270 */
271void
272xfs_btree_lblock_calc_crc(
273 struct xfs_buf *bp)
274{
275 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
276 struct xfs_buf_log_item *bip = bp->b_log_item;
277
278 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
279 return;
280 if (bip)
281 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
282 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
283}
284
285bool
286xfs_btree_lblock_verify_crc(
287 struct xfs_buf *bp)
288{
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_mount *mp = bp->b_target->bt_mount;
291
292 if (xfs_sb_version_hascrc(&mp->m_sb)) {
293 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
294 return false;
295 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
296 }
297
298 return true;
299}
300
301/*
302 * Calculate CRC on the whole btree block and stuff it into the
303 * short-form btree header.
304 *
305 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
306 * it into the buffer so recovery knows what the last modification was that made
307 * it to disk.
308 */
309void
310xfs_btree_sblock_calc_crc(
311 struct xfs_buf *bp)
312{
313 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
314 struct xfs_buf_log_item *bip = bp->b_log_item;
315
316 if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
317 return;
318 if (bip)
319 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
320 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
321}
322
323bool
324xfs_btree_sblock_verify_crc(
325 struct xfs_buf *bp)
326{
327 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
328 struct xfs_mount *mp = bp->b_target->bt_mount;
329
330 if (xfs_sb_version_hascrc(&mp->m_sb)) {
331 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
332 return __this_address;
333 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
334 }
335
336 return true;
337}
338
339static int
340xfs_btree_free_block(
341 struct xfs_btree_cur *cur,
342 struct xfs_buf *bp)
343{
344 int error;
345
346 error = cur->bc_ops->free_block(cur, bp);
347 if (!error) {
348 xfs_trans_binval(cur->bc_tp, bp);
349 XFS_BTREE_STATS_INC(cur, free);
350 }
351 return error;
352}
353
354/*
355 * Delete the btree cursor.
356 */
357void
358xfs_btree_del_cursor(
359 xfs_btree_cur_t *cur, /* btree cursor */
360 int error) /* del because of error */
361{
362 int i; /* btree level */
363
364 /*
365 * Clear the buffer pointers, and release the buffers.
366 * If we're doing this in the face of an error, we
367 * need to make sure to inspect all of the entries
368 * in the bc_bufs array for buffers to be unlocked.
369 * This is because some of the btree code works from
370 * level n down to 0, and if we get an error along
371 * the way we won't have initialized all the entries
372 * down to 0.
373 */
374 for (i = 0; i < cur->bc_nlevels; i++) {
375 if (cur->bc_bufs[i])
376 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
377 else if (!error)
378 break;
379 }
380 /*
381 * Can't free a bmap cursor without having dealt with the
382 * allocated indirect blocks' accounting.
383 */
384 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
385 cur->bc_private.b.allocated == 0);
386 /*
387 * Free the cursor.
388 */
389 kmem_zone_free(xfs_btree_cur_zone, cur);
390}
391
392/*
393 * Duplicate the btree cursor.
394 * Allocate a new one, copy the record, re-get the buffers.
395 */
396int /* error */
397xfs_btree_dup_cursor(
398 xfs_btree_cur_t *cur, /* input cursor */
399 xfs_btree_cur_t **ncur) /* output cursor */
400{
401 xfs_buf_t *bp; /* btree block's buffer pointer */
402 int error; /* error return value */
403 int i; /* level number of btree block */
404 xfs_mount_t *mp; /* mount structure for filesystem */
405 xfs_btree_cur_t *new; /* new cursor value */
406 xfs_trans_t *tp; /* transaction pointer, can be NULL */
407
408 tp = cur->bc_tp;
409 mp = cur->bc_mp;
410
411 /*
412 * Allocate a new cursor like the old one.
413 */
414 new = cur->bc_ops->dup_cursor(cur);
415
416 /*
417 * Copy the record currently in the cursor.
418 */
419 new->bc_rec = cur->bc_rec;
420
421 /*
422 * For each level current, re-get the buffer and copy the ptr value.
423 */
424 for (i = 0; i < new->bc_nlevels; i++) {
425 new->bc_ptrs[i] = cur->bc_ptrs[i];
426 new->bc_ra[i] = cur->bc_ra[i];
427 bp = cur->bc_bufs[i];
428 if (bp) {
429 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
430 XFS_BUF_ADDR(bp), mp->m_bsize,
431 0, &bp,
432 cur->bc_ops->buf_ops);
433 if (error) {
434 xfs_btree_del_cursor(new, error);
435 *ncur = NULL;
436 return error;
437 }
438 }
439 new->bc_bufs[i] = bp;
440 }
441 *ncur = new;
442 return 0;
443}
444
445/*
446 * XFS btree block layout and addressing:
447 *
448 * There are two types of blocks in the btree: leaf and non-leaf blocks.
449 *
450 * The leaf record start with a header then followed by records containing
451 * the values. A non-leaf block also starts with the same header, and
452 * then first contains lookup keys followed by an equal number of pointers
453 * to the btree blocks at the previous level.
454 *
455 * +--------+-------+-------+-------+-------+-------+-------+
456 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
457 * +--------+-------+-------+-------+-------+-------+-------+
458 *
459 * +--------+-------+-------+-------+-------+-------+-------+
460 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
461 * +--------+-------+-------+-------+-------+-------+-------+
462 *
463 * The header is called struct xfs_btree_block for reasons better left unknown
464 * and comes in different versions for short (32bit) and long (64bit) block
465 * pointers. The record and key structures are defined by the btree instances
466 * and opaque to the btree core. The block pointers are simple disk endian
467 * integers, available in a short (32bit) and long (64bit) variant.
468 *
469 * The helpers below calculate the offset of a given record, key or pointer
470 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
471 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
472 * inside the btree block is done using indices starting at one, not zero!
473 *
474 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
475 * overlapping intervals. In such a tree, records are still sorted lowest to
476 * highest and indexed by the smallest key value that refers to the record.
477 * However, nodes are different: each pointer has two associated keys -- one
478 * indexing the lowest key available in the block(s) below (the same behavior
479 * as the key in a regular btree) and another indexing the highest key
480 * available in the block(s) below. Because records are /not/ sorted by the
481 * highest key, all leaf block updates require us to compute the highest key
482 * that matches any record in the leaf and to recursively update the high keys
483 * in the nodes going further up in the tree, if necessary. Nodes look like
484 * this:
485 *
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
488 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
489 *
490 * To perform an interval query on an overlapped tree, perform the usual
491 * depth-first search and use the low and high keys to decide if we can skip
492 * that particular node. If a leaf node is reached, return the records that
493 * intersect the interval. Note that an interval query may return numerous
494 * entries. For a non-overlapped tree, simply search for the record associated
495 * with the lowest key and iterate forward until a non-matching record is
496 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
497 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
498 * more detail.
499 *
500 * Why do we care about overlapping intervals? Let's say you have a bunch of
501 * reverse mapping records on a reflink filesystem:
502 *
503 * 1: +- file A startblock B offset C length D -----------+
504 * 2: +- file E startblock F offset G length H --------------+
505 * 3: +- file I startblock F offset J length K --+
506 * 4: +- file L... --+
507 *
508 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
509 * we'd simply increment the length of record 1. But how do we find the record
510 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
511 * record 3 because the keys are ordered first by startblock. An interval
512 * query would return records 1 and 2 because they both overlap (B+D-1), and
513 * from that we can pick out record 1 as the appropriate left neighbor.
514 *
515 * In the non-overlapped case you can do a LE lookup and decrement the cursor
516 * because a record's interval must end before the next record.
517 */
518
519/*
520 * Return size of the btree block header for this btree instance.
521 */
522static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
523{
524 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526 return XFS_BTREE_LBLOCK_CRC_LEN;
527 return XFS_BTREE_LBLOCK_LEN;
528 }
529 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
530 return XFS_BTREE_SBLOCK_CRC_LEN;
531 return XFS_BTREE_SBLOCK_LEN;
532}
533
534/*
535 * Return size of btree block pointers for this btree instance.
536 */
537static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
538{
539 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
540 sizeof(__be64) : sizeof(__be32);
541}
542
543/*
544 * Calculate offset of the n-th record in a btree block.
545 */
546STATIC size_t
547xfs_btree_rec_offset(
548 struct xfs_btree_cur *cur,
549 int n)
550{
551 return xfs_btree_block_len(cur) +
552 (n - 1) * cur->bc_ops->rec_len;
553}
554
555/*
556 * Calculate offset of the n-th key in a btree block.
557 */
558STATIC size_t
559xfs_btree_key_offset(
560 struct xfs_btree_cur *cur,
561 int n)
562{
563 return xfs_btree_block_len(cur) +
564 (n - 1) * cur->bc_ops->key_len;
565}
566
567/*
568 * Calculate offset of the n-th high key in a btree block.
569 */
570STATIC size_t
571xfs_btree_high_key_offset(
572 struct xfs_btree_cur *cur,
573 int n)
574{
575 return xfs_btree_block_len(cur) +
576 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
577}
578
579/*
580 * Calculate offset of the n-th block pointer in a btree block.
581 */
582STATIC size_t
583xfs_btree_ptr_offset(
584 struct xfs_btree_cur *cur,
585 int n,
586 int level)
587{
588 return xfs_btree_block_len(cur) +
589 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
590 (n - 1) * xfs_btree_ptr_len(cur);
591}
592
593/*
594 * Return a pointer to the n-th record in the btree block.
595 */
596union xfs_btree_rec *
597xfs_btree_rec_addr(
598 struct xfs_btree_cur *cur,
599 int n,
600 struct xfs_btree_block *block)
601{
602 return (union xfs_btree_rec *)
603 ((char *)block + xfs_btree_rec_offset(cur, n));
604}
605
606/*
607 * Return a pointer to the n-th key in the btree block.
608 */
609union xfs_btree_key *
610xfs_btree_key_addr(
611 struct xfs_btree_cur *cur,
612 int n,
613 struct xfs_btree_block *block)
614{
615 return (union xfs_btree_key *)
616 ((char *)block + xfs_btree_key_offset(cur, n));
617}
618
619/*
620 * Return a pointer to the n-th high key in the btree block.
621 */
622union xfs_btree_key *
623xfs_btree_high_key_addr(
624 struct xfs_btree_cur *cur,
625 int n,
626 struct xfs_btree_block *block)
627{
628 return (union xfs_btree_key *)
629 ((char *)block + xfs_btree_high_key_offset(cur, n));
630}
631
632/*
633 * Return a pointer to the n-th block pointer in the btree block.
634 */
635union xfs_btree_ptr *
636xfs_btree_ptr_addr(
637 struct xfs_btree_cur *cur,
638 int n,
639 struct xfs_btree_block *block)
640{
641 int level = xfs_btree_get_level(block);
642
643 ASSERT(block->bb_level != 0);
644
645 return (union xfs_btree_ptr *)
646 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
647}
648
649/*
650 * Get the root block which is stored in the inode.
651 *
652 * For now this btree implementation assumes the btree root is always
653 * stored in the if_broot field of an inode fork.
654 */
655STATIC struct xfs_btree_block *
656xfs_btree_get_iroot(
657 struct xfs_btree_cur *cur)
658{
659 struct xfs_ifork *ifp;
660
661 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
662 return (struct xfs_btree_block *)ifp->if_broot;
663}
664
665/*
666 * Retrieve the block pointer from the cursor at the given level.
667 * This may be an inode btree root or from a buffer.
668 */
669struct xfs_btree_block * /* generic btree block pointer */
670xfs_btree_get_block(
671 struct xfs_btree_cur *cur, /* btree cursor */
672 int level, /* level in btree */
673 struct xfs_buf **bpp) /* buffer containing the block */
674{
675 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
676 (level == cur->bc_nlevels - 1)) {
677 *bpp = NULL;
678 return xfs_btree_get_iroot(cur);
679 }
680
681 *bpp = cur->bc_bufs[level];
682 return XFS_BUF_TO_BLOCK(*bpp);
683}
684
685/*
686 * Get a buffer for the block, return it with no data read.
687 * Long-form addressing.
688 */
689xfs_buf_t * /* buffer for fsbno */
690xfs_btree_get_bufl(
691 xfs_mount_t *mp, /* file system mount point */
692 xfs_trans_t *tp, /* transaction pointer */
693 xfs_fsblock_t fsbno, /* file system block number */
694 uint lock) /* lock flags for get_buf */
695{
696 xfs_daddr_t d; /* real disk block address */
697
698 ASSERT(fsbno != NULLFSBLOCK);
699 d = XFS_FSB_TO_DADDR(mp, fsbno);
700 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
701}
702
703/*
704 * Get a buffer for the block, return it with no data read.
705 * Short-form addressing.
706 */
707xfs_buf_t * /* buffer for agno/agbno */
708xfs_btree_get_bufs(
709 xfs_mount_t *mp, /* file system mount point */
710 xfs_trans_t *tp, /* transaction pointer */
711 xfs_agnumber_t agno, /* allocation group number */
712 xfs_agblock_t agbno, /* allocation group block number */
713 uint lock) /* lock flags for get_buf */
714{
715 xfs_daddr_t d; /* real disk block address */
716
717 ASSERT(agno != NULLAGNUMBER);
718 ASSERT(agbno != NULLAGBLOCK);
719 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
720 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
721}
722
723/*
724 * Check for the cursor referring to the last block at the given level.
725 */
726int /* 1=is last block, 0=not last block */
727xfs_btree_islastblock(
728 xfs_btree_cur_t *cur, /* btree cursor */
729 int level) /* level to check */
730{
731 struct xfs_btree_block *block; /* generic btree block pointer */
732 xfs_buf_t *bp; /* buffer containing block */
733
734 block = xfs_btree_get_block(cur, level, &bp);
735 xfs_btree_check_block(cur, block, level, bp);
736 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
737 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
738 else
739 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
740}
741
742/*
743 * Change the cursor to point to the first record at the given level.
744 * Other levels are unaffected.
745 */
746STATIC int /* success=1, failure=0 */
747xfs_btree_firstrec(
748 xfs_btree_cur_t *cur, /* btree cursor */
749 int level) /* level to change */
750{
751 struct xfs_btree_block *block; /* generic btree block pointer */
752 xfs_buf_t *bp; /* buffer containing block */
753
754 /*
755 * Get the block pointer for this level.
756 */
757 block = xfs_btree_get_block(cur, level, &bp);
758 if (xfs_btree_check_block(cur, block, level, bp))
759 return 0;
760 /*
761 * It's empty, there is no such record.
762 */
763 if (!block->bb_numrecs)
764 return 0;
765 /*
766 * Set the ptr value to 1, that's the first record/key.
767 */
768 cur->bc_ptrs[level] = 1;
769 return 1;
770}
771
772/*
773 * Change the cursor to point to the last record in the current block
774 * at the given level. Other levels are unaffected.
775 */
776STATIC int /* success=1, failure=0 */
777xfs_btree_lastrec(
778 xfs_btree_cur_t *cur, /* btree cursor */
779 int level) /* level to change */
780{
781 struct xfs_btree_block *block; /* generic btree block pointer */
782 xfs_buf_t *bp; /* buffer containing block */
783
784 /*
785 * Get the block pointer for this level.
786 */
787 block = xfs_btree_get_block(cur, level, &bp);
788 if (xfs_btree_check_block(cur, block, level, bp))
789 return 0;
790 /*
791 * It's empty, there is no such record.
792 */
793 if (!block->bb_numrecs)
794 return 0;
795 /*
796 * Set the ptr value to numrecs, that's the last record/key.
797 */
798 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
799 return 1;
800}
801
802/*
803 * Compute first and last byte offsets for the fields given.
804 * Interprets the offsets table, which contains struct field offsets.
805 */
806void
807xfs_btree_offsets(
808 int64_t fields, /* bitmask of fields */
809 const short *offsets, /* table of field offsets */
810 int nbits, /* number of bits to inspect */
811 int *first, /* output: first byte offset */
812 int *last) /* output: last byte offset */
813{
814 int i; /* current bit number */
815 int64_t imask; /* mask for current bit number */
816
817 ASSERT(fields != 0);
818 /*
819 * Find the lowest bit, so the first byte offset.
820 */
821 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
822 if (imask & fields) {
823 *first = offsets[i];
824 break;
825 }
826 }
827 /*
828 * Find the highest bit, so the last byte offset.
829 */
830 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
831 if (imask & fields) {
832 *last = offsets[i + 1] - 1;
833 break;
834 }
835 }
836}
837
838/*
839 * Get a buffer for the block, return it read in.
840 * Long-form addressing.
841 */
842int
843xfs_btree_read_bufl(
844 struct xfs_mount *mp, /* file system mount point */
845 struct xfs_trans *tp, /* transaction pointer */
846 xfs_fsblock_t fsbno, /* file system block number */
847 uint lock, /* lock flags for read_buf */
848 struct xfs_buf **bpp, /* buffer for fsbno */
849 int refval, /* ref count value for buffer */
850 const struct xfs_buf_ops *ops)
851{
852 struct xfs_buf *bp; /* return value */
853 xfs_daddr_t d; /* real disk block address */
854 int error;
855
856 if (!xfs_verify_fsbno(mp, fsbno))
857 return -EFSCORRUPTED;
858 d = XFS_FSB_TO_DADDR(mp, fsbno);
859 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
860 mp->m_bsize, lock, &bp, ops);
861 if (error)
862 return error;
863 if (bp)
864 xfs_buf_set_ref(bp, refval);
865 *bpp = bp;
866 return 0;
867}
868
869/*
870 * Read-ahead the block, don't wait for it, don't return a buffer.
871 * Long-form addressing.
872 */
873/* ARGSUSED */
874void
875xfs_btree_reada_bufl(
876 struct xfs_mount *mp, /* file system mount point */
877 xfs_fsblock_t fsbno, /* file system block number */
878 xfs_extlen_t count, /* count of filesystem blocks */
879 const struct xfs_buf_ops *ops)
880{
881 xfs_daddr_t d;
882
883 ASSERT(fsbno != NULLFSBLOCK);
884 d = XFS_FSB_TO_DADDR(mp, fsbno);
885 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
886}
887
888/*
889 * Read-ahead the block, don't wait for it, don't return a buffer.
890 * Short-form addressing.
891 */
892/* ARGSUSED */
893void
894xfs_btree_reada_bufs(
895 struct xfs_mount *mp, /* file system mount point */
896 xfs_agnumber_t agno, /* allocation group number */
897 xfs_agblock_t agbno, /* allocation group block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
899 const struct xfs_buf_ops *ops)
900{
901 xfs_daddr_t d;
902
903 ASSERT(agno != NULLAGNUMBER);
904 ASSERT(agbno != NULLAGBLOCK);
905 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
906 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
907}
908
909STATIC int
910xfs_btree_readahead_lblock(
911 struct xfs_btree_cur *cur,
912 int lr,
913 struct xfs_btree_block *block)
914{
915 int rval = 0;
916 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
917 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
918
919 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
920 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
921 cur->bc_ops->buf_ops);
922 rval++;
923 }
924
925 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
926 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
927 cur->bc_ops->buf_ops);
928 rval++;
929 }
930
931 return rval;
932}
933
934STATIC int
935xfs_btree_readahead_sblock(
936 struct xfs_btree_cur *cur,
937 int lr,
938 struct xfs_btree_block *block)
939{
940 int rval = 0;
941 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
942 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
943
944
945 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
946 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
947 left, 1, cur->bc_ops->buf_ops);
948 rval++;
949 }
950
951 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
952 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
953 right, 1, cur->bc_ops->buf_ops);
954 rval++;
955 }
956
957 return rval;
958}
959
960/*
961 * Read-ahead btree blocks, at the given level.
962 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
963 */
964STATIC int
965xfs_btree_readahead(
966 struct xfs_btree_cur *cur, /* btree cursor */
967 int lev, /* level in btree */
968 int lr) /* left/right bits */
969{
970 struct xfs_btree_block *block;
971
972 /*
973 * No readahead needed if we are at the root level and the
974 * btree root is stored in the inode.
975 */
976 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
977 (lev == cur->bc_nlevels - 1))
978 return 0;
979
980 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
981 return 0;
982
983 cur->bc_ra[lev] |= lr;
984 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
985
986 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
987 return xfs_btree_readahead_lblock(cur, lr, block);
988 return xfs_btree_readahead_sblock(cur, lr, block);
989}
990
991STATIC xfs_daddr_t
992xfs_btree_ptr_to_daddr(
993 struct xfs_btree_cur *cur,
994 union xfs_btree_ptr *ptr)
995{
996 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
997 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
998
999 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1000 } else {
1001 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
1002 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
1003
1004 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1005 be32_to_cpu(ptr->s));
1006 }
1007}
1008
1009/*
1010 * Readahead @count btree blocks at the given @ptr location.
1011 *
1012 * We don't need to care about long or short form btrees here as we have a
1013 * method of converting the ptr directly to a daddr available to us.
1014 */
1015STATIC void
1016xfs_btree_readahead_ptr(
1017 struct xfs_btree_cur *cur,
1018 union xfs_btree_ptr *ptr,
1019 xfs_extlen_t count)
1020{
1021 xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
1022 xfs_btree_ptr_to_daddr(cur, ptr),
1023 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1024}
1025
1026/*
1027 * Set the buffer for level "lev" in the cursor to bp, releasing
1028 * any previous buffer.
1029 */
1030STATIC void
1031xfs_btree_setbuf(
1032 xfs_btree_cur_t *cur, /* btree cursor */
1033 int lev, /* level in btree */
1034 xfs_buf_t *bp) /* new buffer to set */
1035{
1036 struct xfs_btree_block *b; /* btree block */
1037
1038 if (cur->bc_bufs[lev])
1039 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1040 cur->bc_bufs[lev] = bp;
1041 cur->bc_ra[lev] = 0;
1042
1043 b = XFS_BUF_TO_BLOCK(bp);
1044 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1045 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1046 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1047 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1048 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1049 } else {
1050 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1051 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1052 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1053 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1054 }
1055}
1056
1057bool
1058xfs_btree_ptr_is_null(
1059 struct xfs_btree_cur *cur,
1060 union xfs_btree_ptr *ptr)
1061{
1062 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1063 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1064 else
1065 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1066}
1067
1068STATIC void
1069xfs_btree_set_ptr_null(
1070 struct xfs_btree_cur *cur,
1071 union xfs_btree_ptr *ptr)
1072{
1073 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1074 ptr->l = cpu_to_be64(NULLFSBLOCK);
1075 else
1076 ptr->s = cpu_to_be32(NULLAGBLOCK);
1077}
1078
1079/*
1080 * Get/set/init sibling pointers
1081 */
1082void
1083xfs_btree_get_sibling(
1084 struct xfs_btree_cur *cur,
1085 struct xfs_btree_block *block,
1086 union xfs_btree_ptr *ptr,
1087 int lr)
1088{
1089 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1090
1091 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1092 if (lr == XFS_BB_RIGHTSIB)
1093 ptr->l = block->bb_u.l.bb_rightsib;
1094 else
1095 ptr->l = block->bb_u.l.bb_leftsib;
1096 } else {
1097 if (lr == XFS_BB_RIGHTSIB)
1098 ptr->s = block->bb_u.s.bb_rightsib;
1099 else
1100 ptr->s = block->bb_u.s.bb_leftsib;
1101 }
1102}
1103
1104STATIC void
1105xfs_btree_set_sibling(
1106 struct xfs_btree_cur *cur,
1107 struct xfs_btree_block *block,
1108 union xfs_btree_ptr *ptr,
1109 int lr)
1110{
1111 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1112
1113 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1114 if (lr == XFS_BB_RIGHTSIB)
1115 block->bb_u.l.bb_rightsib = ptr->l;
1116 else
1117 block->bb_u.l.bb_leftsib = ptr->l;
1118 } else {
1119 if (lr == XFS_BB_RIGHTSIB)
1120 block->bb_u.s.bb_rightsib = ptr->s;
1121 else
1122 block->bb_u.s.bb_leftsib = ptr->s;
1123 }
1124}
1125
1126void
1127xfs_btree_init_block_int(
1128 struct xfs_mount *mp,
1129 struct xfs_btree_block *buf,
1130 xfs_daddr_t blkno,
1131 xfs_btnum_t btnum,
1132 __u16 level,
1133 __u16 numrecs,
1134 __u64 owner,
1135 unsigned int flags)
1136{
1137 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1138 __u32 magic = xfs_btree_magic(crc, btnum);
1139
1140 buf->bb_magic = cpu_to_be32(magic);
1141 buf->bb_level = cpu_to_be16(level);
1142 buf->bb_numrecs = cpu_to_be16(numrecs);
1143
1144 if (flags & XFS_BTREE_LONG_PTRS) {
1145 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1146 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1147 if (crc) {
1148 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1149 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1150 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1151 buf->bb_u.l.bb_pad = 0;
1152 buf->bb_u.l.bb_lsn = 0;
1153 }
1154 } else {
1155 /* owner is a 32 bit value on short blocks */
1156 __u32 __owner = (__u32)owner;
1157
1158 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1159 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1160 if (crc) {
1161 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1162 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1163 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1164 buf->bb_u.s.bb_lsn = 0;
1165 }
1166 }
1167}
1168
1169void
1170xfs_btree_init_block(
1171 struct xfs_mount *mp,
1172 struct xfs_buf *bp,
1173 xfs_btnum_t btnum,
1174 __u16 level,
1175 __u16 numrecs,
1176 __u64 owner,
1177 unsigned int flags)
1178{
1179 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1180 btnum, level, numrecs, owner, flags);
1181}
1182
1183STATIC void
1184xfs_btree_init_block_cur(
1185 struct xfs_btree_cur *cur,
1186 struct xfs_buf *bp,
1187 int level,
1188 int numrecs)
1189{
1190 __u64 owner;
1191
1192 /*
1193 * we can pull the owner from the cursor right now as the different
1194 * owners align directly with the pointer size of the btree. This may
1195 * change in future, but is safe for current users of the generic btree
1196 * code.
1197 */
1198 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1199 owner = cur->bc_private.b.ip->i_ino;
1200 else
1201 owner = cur->bc_private.a.agno;
1202
1203 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1204 cur->bc_btnum, level, numrecs,
1205 owner, cur->bc_flags);
1206}
1207
1208/*
1209 * Return true if ptr is the last record in the btree and
1210 * we need to track updates to this record. The decision
1211 * will be further refined in the update_lastrec method.
1212 */
1213STATIC int
1214xfs_btree_is_lastrec(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_btree_block *block,
1217 int level)
1218{
1219 union xfs_btree_ptr ptr;
1220
1221 if (level > 0)
1222 return 0;
1223 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1224 return 0;
1225
1226 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1227 if (!xfs_btree_ptr_is_null(cur, &ptr))
1228 return 0;
1229 return 1;
1230}
1231
1232STATIC void
1233xfs_btree_buf_to_ptr(
1234 struct xfs_btree_cur *cur,
1235 struct xfs_buf *bp,
1236 union xfs_btree_ptr *ptr)
1237{
1238 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1239 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1240 XFS_BUF_ADDR(bp)));
1241 else {
1242 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1243 XFS_BUF_ADDR(bp)));
1244 }
1245}
1246
1247STATIC void
1248xfs_btree_set_refs(
1249 struct xfs_btree_cur *cur,
1250 struct xfs_buf *bp)
1251{
1252 switch (cur->bc_btnum) {
1253 case XFS_BTNUM_BNO:
1254 case XFS_BTNUM_CNT:
1255 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1256 break;
1257 case XFS_BTNUM_INO:
1258 case XFS_BTNUM_FINO:
1259 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1260 break;
1261 case XFS_BTNUM_BMAP:
1262 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1263 break;
1264 case XFS_BTNUM_RMAP:
1265 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1266 break;
1267 case XFS_BTNUM_REFC:
1268 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1269 break;
1270 default:
1271 ASSERT(0);
1272 }
1273}
1274
1275STATIC int
1276xfs_btree_get_buf_block(
1277 struct xfs_btree_cur *cur,
1278 union xfs_btree_ptr *ptr,
1279 int flags,
1280 struct xfs_btree_block **block,
1281 struct xfs_buf **bpp)
1282{
1283 struct xfs_mount *mp = cur->bc_mp;
1284 xfs_daddr_t d;
1285
1286 /* need to sort out how callers deal with failures first */
1287 ASSERT(!(flags & XBF_TRYLOCK));
1288
1289 d = xfs_btree_ptr_to_daddr(cur, ptr);
1290 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1291 mp->m_bsize, flags);
1292
1293 if (!*bpp)
1294 return -ENOMEM;
1295
1296 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1297 *block = XFS_BUF_TO_BLOCK(*bpp);
1298 return 0;
1299}
1300
1301/*
1302 * Read in the buffer at the given ptr and return the buffer and
1303 * the block pointer within the buffer.
1304 */
1305STATIC int
1306xfs_btree_read_buf_block(
1307 struct xfs_btree_cur *cur,
1308 union xfs_btree_ptr *ptr,
1309 int flags,
1310 struct xfs_btree_block **block,
1311 struct xfs_buf **bpp)
1312{
1313 struct xfs_mount *mp = cur->bc_mp;
1314 xfs_daddr_t d;
1315 int error;
1316
1317 /* need to sort out how callers deal with failures first */
1318 ASSERT(!(flags & XBF_TRYLOCK));
1319
1320 d = xfs_btree_ptr_to_daddr(cur, ptr);
1321 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1322 mp->m_bsize, flags, bpp,
1323 cur->bc_ops->buf_ops);
1324 if (error)
1325 return error;
1326
1327 xfs_btree_set_refs(cur, *bpp);
1328 *block = XFS_BUF_TO_BLOCK(*bpp);
1329 return 0;
1330}
1331
1332/*
1333 * Copy keys from one btree block to another.
1334 */
1335STATIC void
1336xfs_btree_copy_keys(
1337 struct xfs_btree_cur *cur,
1338 union xfs_btree_key *dst_key,
1339 union xfs_btree_key *src_key,
1340 int numkeys)
1341{
1342 ASSERT(numkeys >= 0);
1343 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1344}
1345
1346/*
1347 * Copy records from one btree block to another.
1348 */
1349STATIC void
1350xfs_btree_copy_recs(
1351 struct xfs_btree_cur *cur,
1352 union xfs_btree_rec *dst_rec,
1353 union xfs_btree_rec *src_rec,
1354 int numrecs)
1355{
1356 ASSERT(numrecs >= 0);
1357 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1358}
1359
1360/*
1361 * Copy block pointers from one btree block to another.
1362 */
1363STATIC void
1364xfs_btree_copy_ptrs(
1365 struct xfs_btree_cur *cur,
1366 union xfs_btree_ptr *dst_ptr,
1367 union xfs_btree_ptr *src_ptr,
1368 int numptrs)
1369{
1370 ASSERT(numptrs >= 0);
1371 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1372}
1373
1374/*
1375 * Shift keys one index left/right inside a single btree block.
1376 */
1377STATIC void
1378xfs_btree_shift_keys(
1379 struct xfs_btree_cur *cur,
1380 union xfs_btree_key *key,
1381 int dir,
1382 int numkeys)
1383{
1384 char *dst_key;
1385
1386 ASSERT(numkeys >= 0);
1387 ASSERT(dir == 1 || dir == -1);
1388
1389 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1390 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1391}
1392
1393/*
1394 * Shift records one index left/right inside a single btree block.
1395 */
1396STATIC void
1397xfs_btree_shift_recs(
1398 struct xfs_btree_cur *cur,
1399 union xfs_btree_rec *rec,
1400 int dir,
1401 int numrecs)
1402{
1403 char *dst_rec;
1404
1405 ASSERT(numrecs >= 0);
1406 ASSERT(dir == 1 || dir == -1);
1407
1408 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1409 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1410}
1411
1412/*
1413 * Shift block pointers one index left/right inside a single btree block.
1414 */
1415STATIC void
1416xfs_btree_shift_ptrs(
1417 struct xfs_btree_cur *cur,
1418 union xfs_btree_ptr *ptr,
1419 int dir,
1420 int numptrs)
1421{
1422 char *dst_ptr;
1423
1424 ASSERT(numptrs >= 0);
1425 ASSERT(dir == 1 || dir == -1);
1426
1427 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1428 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1429}
1430
1431/*
1432 * Log key values from the btree block.
1433 */
1434STATIC void
1435xfs_btree_log_keys(
1436 struct xfs_btree_cur *cur,
1437 struct xfs_buf *bp,
1438 int first,
1439 int last)
1440{
1441
1442 if (bp) {
1443 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1444 xfs_trans_log_buf(cur->bc_tp, bp,
1445 xfs_btree_key_offset(cur, first),
1446 xfs_btree_key_offset(cur, last + 1) - 1);
1447 } else {
1448 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1449 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1450 }
1451}
1452
1453/*
1454 * Log record values from the btree block.
1455 */
1456void
1457xfs_btree_log_recs(
1458 struct xfs_btree_cur *cur,
1459 struct xfs_buf *bp,
1460 int first,
1461 int last)
1462{
1463
1464 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1465 xfs_trans_log_buf(cur->bc_tp, bp,
1466 xfs_btree_rec_offset(cur, first),
1467 xfs_btree_rec_offset(cur, last + 1) - 1);
1468
1469}
1470
1471/*
1472 * Log block pointer fields from a btree block (nonleaf).
1473 */
1474STATIC void
1475xfs_btree_log_ptrs(
1476 struct xfs_btree_cur *cur, /* btree cursor */
1477 struct xfs_buf *bp, /* buffer containing btree block */
1478 int first, /* index of first pointer to log */
1479 int last) /* index of last pointer to log */
1480{
1481
1482 if (bp) {
1483 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1484 int level = xfs_btree_get_level(block);
1485
1486 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1487 xfs_trans_log_buf(cur->bc_tp, bp,
1488 xfs_btree_ptr_offset(cur, first, level),
1489 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1490 } else {
1491 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1492 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1493 }
1494
1495}
1496
1497/*
1498 * Log fields from a btree block header.
1499 */
1500void
1501xfs_btree_log_block(
1502 struct xfs_btree_cur *cur, /* btree cursor */
1503 struct xfs_buf *bp, /* buffer containing btree block */
1504 int fields) /* mask of fields: XFS_BB_... */
1505{
1506 int first; /* first byte offset logged */
1507 int last; /* last byte offset logged */
1508 static const short soffsets[] = { /* table of offsets (short) */
1509 offsetof(struct xfs_btree_block, bb_magic),
1510 offsetof(struct xfs_btree_block, bb_level),
1511 offsetof(struct xfs_btree_block, bb_numrecs),
1512 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1513 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1514 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1515 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1516 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1517 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1518 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1519 XFS_BTREE_SBLOCK_CRC_LEN
1520 };
1521 static const short loffsets[] = { /* table of offsets (long) */
1522 offsetof(struct xfs_btree_block, bb_magic),
1523 offsetof(struct xfs_btree_block, bb_level),
1524 offsetof(struct xfs_btree_block, bb_numrecs),
1525 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1526 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1527 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1528 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1529 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1530 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1531 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1532 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1533 XFS_BTREE_LBLOCK_CRC_LEN
1534 };
1535
1536 if (bp) {
1537 int nbits;
1538
1539 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1540 /*
1541 * We don't log the CRC when updating a btree
1542 * block but instead recreate it during log
1543 * recovery. As the log buffers have checksums
1544 * of their own this is safe and avoids logging a crc
1545 * update in a lot of places.
1546 */
1547 if (fields == XFS_BB_ALL_BITS)
1548 fields = XFS_BB_ALL_BITS_CRC;
1549 nbits = XFS_BB_NUM_BITS_CRC;
1550 } else {
1551 nbits = XFS_BB_NUM_BITS;
1552 }
1553 xfs_btree_offsets(fields,
1554 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1555 loffsets : soffsets,
1556 nbits, &first, &last);
1557 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1558 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1559 } else {
1560 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1561 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1562 }
1563}
1564
1565/*
1566 * Increment cursor by one record at the level.
1567 * For nonzero levels the leaf-ward information is untouched.
1568 */
1569int /* error */
1570xfs_btree_increment(
1571 struct xfs_btree_cur *cur,
1572 int level,
1573 int *stat) /* success/failure */
1574{
1575 struct xfs_btree_block *block;
1576 union xfs_btree_ptr ptr;
1577 struct xfs_buf *bp;
1578 int error; /* error return value */
1579 int lev;
1580
1581 ASSERT(level < cur->bc_nlevels);
1582
1583 /* Read-ahead to the right at this level. */
1584 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1585
1586 /* Get a pointer to the btree block. */
1587 block = xfs_btree_get_block(cur, level, &bp);
1588
1589#ifdef DEBUG
1590 error = xfs_btree_check_block(cur, block, level, bp);
1591 if (error)
1592 goto error0;
1593#endif
1594
1595 /* We're done if we remain in the block after the increment. */
1596 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1597 goto out1;
1598
1599 /* Fail if we just went off the right edge of the tree. */
1600 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1601 if (xfs_btree_ptr_is_null(cur, &ptr))
1602 goto out0;
1603
1604 XFS_BTREE_STATS_INC(cur, increment);
1605
1606 /*
1607 * March up the tree incrementing pointers.
1608 * Stop when we don't go off the right edge of a block.
1609 */
1610 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1611 block = xfs_btree_get_block(cur, lev, &bp);
1612
1613#ifdef DEBUG
1614 error = xfs_btree_check_block(cur, block, lev, bp);
1615 if (error)
1616 goto error0;
1617#endif
1618
1619 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1620 break;
1621
1622 /* Read-ahead the right block for the next loop. */
1623 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1624 }
1625
1626 /*
1627 * If we went off the root then we are either seriously
1628 * confused or have the tree root in an inode.
1629 */
1630 if (lev == cur->bc_nlevels) {
1631 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1632 goto out0;
1633 ASSERT(0);
1634 error = -EFSCORRUPTED;
1635 goto error0;
1636 }
1637 ASSERT(lev < cur->bc_nlevels);
1638
1639 /*
1640 * Now walk back down the tree, fixing up the cursor's buffer
1641 * pointers and key numbers.
1642 */
1643 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1644 union xfs_btree_ptr *ptrp;
1645
1646 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1647 --lev;
1648 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1649 if (error)
1650 goto error0;
1651
1652 xfs_btree_setbuf(cur, lev, bp);
1653 cur->bc_ptrs[lev] = 1;
1654 }
1655out1:
1656 *stat = 1;
1657 return 0;
1658
1659out0:
1660 *stat = 0;
1661 return 0;
1662
1663error0:
1664 return error;
1665}
1666
1667/*
1668 * Decrement cursor by one record at the level.
1669 * For nonzero levels the leaf-ward information is untouched.
1670 */
1671int /* error */
1672xfs_btree_decrement(
1673 struct xfs_btree_cur *cur,
1674 int level,
1675 int *stat) /* success/failure */
1676{
1677 struct xfs_btree_block *block;
1678 xfs_buf_t *bp;
1679 int error; /* error return value */
1680 int lev;
1681 union xfs_btree_ptr ptr;
1682
1683 ASSERT(level < cur->bc_nlevels);
1684
1685 /* Read-ahead to the left at this level. */
1686 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1687
1688 /* We're done if we remain in the block after the decrement. */
1689 if (--cur->bc_ptrs[level] > 0)
1690 goto out1;
1691
1692 /* Get a pointer to the btree block. */
1693 block = xfs_btree_get_block(cur, level, &bp);
1694
1695#ifdef DEBUG
1696 error = xfs_btree_check_block(cur, block, level, bp);
1697 if (error)
1698 goto error0;
1699#endif
1700
1701 /* Fail if we just went off the left edge of the tree. */
1702 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1703 if (xfs_btree_ptr_is_null(cur, &ptr))
1704 goto out0;
1705
1706 XFS_BTREE_STATS_INC(cur, decrement);
1707
1708 /*
1709 * March up the tree decrementing pointers.
1710 * Stop when we don't go off the left edge of a block.
1711 */
1712 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1713 if (--cur->bc_ptrs[lev] > 0)
1714 break;
1715 /* Read-ahead the left block for the next loop. */
1716 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1717 }
1718
1719 /*
1720 * If we went off the root then we are seriously confused.
1721 * or the root of the tree is in an inode.
1722 */
1723 if (lev == cur->bc_nlevels) {
1724 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1725 goto out0;
1726 ASSERT(0);
1727 error = -EFSCORRUPTED;
1728 goto error0;
1729 }
1730 ASSERT(lev < cur->bc_nlevels);
1731
1732 /*
1733 * Now walk back down the tree, fixing up the cursor's buffer
1734 * pointers and key numbers.
1735 */
1736 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1737 union xfs_btree_ptr *ptrp;
1738
1739 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1740 --lev;
1741 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1742 if (error)
1743 goto error0;
1744 xfs_btree_setbuf(cur, lev, bp);
1745 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1746 }
1747out1:
1748 *stat = 1;
1749 return 0;
1750
1751out0:
1752 *stat = 0;
1753 return 0;
1754
1755error0:
1756 return error;
1757}
1758
1759int
1760xfs_btree_lookup_get_block(
1761 struct xfs_btree_cur *cur, /* btree cursor */
1762 int level, /* level in the btree */
1763 union xfs_btree_ptr *pp, /* ptr to btree block */
1764 struct xfs_btree_block **blkp) /* return btree block */
1765{
1766 struct xfs_buf *bp; /* buffer pointer for btree block */
1767 int error = 0;
1768
1769 /* special case the root block if in an inode */
1770 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1771 (level == cur->bc_nlevels - 1)) {
1772 *blkp = xfs_btree_get_iroot(cur);
1773 return 0;
1774 }
1775
1776 /*
1777 * If the old buffer at this level for the disk address we are
1778 * looking for re-use it.
1779 *
1780 * Otherwise throw it away and get a new one.
1781 */
1782 bp = cur->bc_bufs[level];
1783 if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1784 *blkp = XFS_BUF_TO_BLOCK(bp);
1785 return 0;
1786 }
1787
1788 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1789 if (error)
1790 return error;
1791
1792 /* Check the inode owner since the verifiers don't. */
1793 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1794 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1795 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1796 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1797 cur->bc_private.b.ip->i_ino)
1798 goto out_bad;
1799
1800 /* Did we get the level we were looking for? */
1801 if (be16_to_cpu((*blkp)->bb_level) != level)
1802 goto out_bad;
1803
1804 /* Check that internal nodes have at least one record. */
1805 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1806 goto out_bad;
1807
1808 xfs_btree_setbuf(cur, level, bp);
1809 return 0;
1810
1811out_bad:
1812 *blkp = NULL;
1813 xfs_trans_brelse(cur->bc_tp, bp);
1814 return -EFSCORRUPTED;
1815}
1816
1817/*
1818 * Get current search key. For level 0 we don't actually have a key
1819 * structure so we make one up from the record. For all other levels
1820 * we just return the right key.
1821 */
1822STATIC union xfs_btree_key *
1823xfs_lookup_get_search_key(
1824 struct xfs_btree_cur *cur,
1825 int level,
1826 int keyno,
1827 struct xfs_btree_block *block,
1828 union xfs_btree_key *kp)
1829{
1830 if (level == 0) {
1831 cur->bc_ops->init_key_from_rec(kp,
1832 xfs_btree_rec_addr(cur, keyno, block));
1833 return kp;
1834 }
1835
1836 return xfs_btree_key_addr(cur, keyno, block);
1837}
1838
1839/*
1840 * Lookup the record. The cursor is made to point to it, based on dir.
1841 * stat is set to 0 if can't find any such record, 1 for success.
1842 */
1843int /* error */
1844xfs_btree_lookup(
1845 struct xfs_btree_cur *cur, /* btree cursor */
1846 xfs_lookup_t dir, /* <=, ==, or >= */
1847 int *stat) /* success/failure */
1848{
1849 struct xfs_btree_block *block; /* current btree block */
1850 int64_t diff; /* difference for the current key */
1851 int error; /* error return value */
1852 int keyno; /* current key number */
1853 int level; /* level in the btree */
1854 union xfs_btree_ptr *pp; /* ptr to btree block */
1855 union xfs_btree_ptr ptr; /* ptr to btree block */
1856
1857 XFS_BTREE_STATS_INC(cur, lookup);
1858
1859 /* No such thing as a zero-level tree. */
1860 if (cur->bc_nlevels == 0)
1861 return -EFSCORRUPTED;
1862
1863 block = NULL;
1864 keyno = 0;
1865
1866 /* initialise start pointer from cursor */
1867 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1868 pp = &ptr;
1869
1870 /*
1871 * Iterate over each level in the btree, starting at the root.
1872 * For each level above the leaves, find the key we need, based
1873 * on the lookup record, then follow the corresponding block
1874 * pointer down to the next level.
1875 */
1876 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1877 /* Get the block we need to do the lookup on. */
1878 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1879 if (error)
1880 goto error0;
1881
1882 if (diff == 0) {
1883 /*
1884 * If we already had a key match at a higher level, we
1885 * know we need to use the first entry in this block.
1886 */
1887 keyno = 1;
1888 } else {
1889 /* Otherwise search this block. Do a binary search. */
1890
1891 int high; /* high entry number */
1892 int low; /* low entry number */
1893
1894 /* Set low and high entry numbers, 1-based. */
1895 low = 1;
1896 high = xfs_btree_get_numrecs(block);
1897 if (!high) {
1898 /* Block is empty, must be an empty leaf. */
1899 ASSERT(level == 0 && cur->bc_nlevels == 1);
1900
1901 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1902 *stat = 0;
1903 return 0;
1904 }
1905
1906 /* Binary search the block. */
1907 while (low <= high) {
1908 union xfs_btree_key key;
1909 union xfs_btree_key *kp;
1910
1911 XFS_BTREE_STATS_INC(cur, compare);
1912
1913 /* keyno is average of low and high. */
1914 keyno = (low + high) >> 1;
1915
1916 /* Get current search key */
1917 kp = xfs_lookup_get_search_key(cur, level,
1918 keyno, block, &key);
1919
1920 /*
1921 * Compute difference to get next direction:
1922 * - less than, move right
1923 * - greater than, move left
1924 * - equal, we're done
1925 */
1926 diff = cur->bc_ops->key_diff(cur, kp);
1927 if (diff < 0)
1928 low = keyno + 1;
1929 else if (diff > 0)
1930 high = keyno - 1;
1931 else
1932 break;
1933 }
1934 }
1935
1936 /*
1937 * If there are more levels, set up for the next level
1938 * by getting the block number and filling in the cursor.
1939 */
1940 if (level > 0) {
1941 /*
1942 * If we moved left, need the previous key number,
1943 * unless there isn't one.
1944 */
1945 if (diff > 0 && --keyno < 1)
1946 keyno = 1;
1947 pp = xfs_btree_ptr_addr(cur, keyno, block);
1948
1949#ifdef DEBUG
1950 error = xfs_btree_check_ptr(cur, pp, 0, level);
1951 if (error)
1952 goto error0;
1953#endif
1954 cur->bc_ptrs[level] = keyno;
1955 }
1956 }
1957
1958 /* Done with the search. See if we need to adjust the results. */
1959 if (dir != XFS_LOOKUP_LE && diff < 0) {
1960 keyno++;
1961 /*
1962 * If ge search and we went off the end of the block, but it's
1963 * not the last block, we're in the wrong block.
1964 */
1965 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1966 if (dir == XFS_LOOKUP_GE &&
1967 keyno > xfs_btree_get_numrecs(block) &&
1968 !xfs_btree_ptr_is_null(cur, &ptr)) {
1969 int i;
1970
1971 cur->bc_ptrs[0] = keyno;
1972 error = xfs_btree_increment(cur, 0, &i);
1973 if (error)
1974 goto error0;
1975 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1976 *stat = 1;
1977 return 0;
1978 }
1979 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1980 keyno--;
1981 cur->bc_ptrs[0] = keyno;
1982
1983 /* Return if we succeeded or not. */
1984 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1985 *stat = 0;
1986 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1987 *stat = 1;
1988 else
1989 *stat = 0;
1990 return 0;
1991
1992error0:
1993 return error;
1994}
1995
1996/* Find the high key storage area from a regular key. */
1997union xfs_btree_key *
1998xfs_btree_high_key_from_key(
1999 struct xfs_btree_cur *cur,
2000 union xfs_btree_key *key)
2001{
2002 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2003 return (union xfs_btree_key *)((char *)key +
2004 (cur->bc_ops->key_len / 2));
2005}
2006
2007/* Determine the low (and high if overlapped) keys of a leaf block */
2008STATIC void
2009xfs_btree_get_leaf_keys(
2010 struct xfs_btree_cur *cur,
2011 struct xfs_btree_block *block,
2012 union xfs_btree_key *key)
2013{
2014 union xfs_btree_key max_hkey;
2015 union xfs_btree_key hkey;
2016 union xfs_btree_rec *rec;
2017 union xfs_btree_key *high;
2018 int n;
2019
2020 rec = xfs_btree_rec_addr(cur, 1, block);
2021 cur->bc_ops->init_key_from_rec(key, rec);
2022
2023 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024
2025 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2026 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2027 rec = xfs_btree_rec_addr(cur, n, block);
2028 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2029 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2030 > 0)
2031 max_hkey = hkey;
2032 }
2033
2034 high = xfs_btree_high_key_from_key(cur, key);
2035 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2036 }
2037}
2038
2039/* Determine the low (and high if overlapped) keys of a node block */
2040STATIC void
2041xfs_btree_get_node_keys(
2042 struct xfs_btree_cur *cur,
2043 struct xfs_btree_block *block,
2044 union xfs_btree_key *key)
2045{
2046 union xfs_btree_key *hkey;
2047 union xfs_btree_key *max_hkey;
2048 union xfs_btree_key *high;
2049 int n;
2050
2051 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2052 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2053 cur->bc_ops->key_len / 2);
2054
2055 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2056 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2057 hkey = xfs_btree_high_key_addr(cur, n, block);
2058 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2059 max_hkey = hkey;
2060 }
2061
2062 high = xfs_btree_high_key_from_key(cur, key);
2063 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2064 } else {
2065 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2066 cur->bc_ops->key_len);
2067 }
2068}
2069
2070/* Derive the keys for any btree block. */
2071void
2072xfs_btree_get_keys(
2073 struct xfs_btree_cur *cur,
2074 struct xfs_btree_block *block,
2075 union xfs_btree_key *key)
2076{
2077 if (be16_to_cpu(block->bb_level) == 0)
2078 xfs_btree_get_leaf_keys(cur, block, key);
2079 else
2080 xfs_btree_get_node_keys(cur, block, key);
2081}
2082
2083/*
2084 * Decide if we need to update the parent keys of a btree block. For
2085 * a standard btree this is only necessary if we're updating the first
2086 * record/key. For an overlapping btree, we must always update the
2087 * keys because the highest key can be in any of the records or keys
2088 * in the block.
2089 */
2090static inline bool
2091xfs_btree_needs_key_update(
2092 struct xfs_btree_cur *cur,
2093 int ptr)
2094{
2095 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2096}
2097
2098/*
2099 * Update the low and high parent keys of the given level, progressing
2100 * towards the root. If force_all is false, stop if the keys for a given
2101 * level do not need updating.
2102 */
2103STATIC int
2104__xfs_btree_updkeys(
2105 struct xfs_btree_cur *cur,
2106 int level,
2107 struct xfs_btree_block *block,
2108 struct xfs_buf *bp0,
2109 bool force_all)
2110{
2111 union xfs_btree_key key; /* keys from current level */
2112 union xfs_btree_key *lkey; /* keys from the next level up */
2113 union xfs_btree_key *hkey;
2114 union xfs_btree_key *nlkey; /* keys from the next level up */
2115 union xfs_btree_key *nhkey;
2116 struct xfs_buf *bp;
2117 int ptr;
2118
2119 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2120
2121 /* Exit if there aren't any parent levels to update. */
2122 if (level + 1 >= cur->bc_nlevels)
2123 return 0;
2124
2125 trace_xfs_btree_updkeys(cur, level, bp0);
2126
2127 lkey = &key;
2128 hkey = xfs_btree_high_key_from_key(cur, lkey);
2129 xfs_btree_get_keys(cur, block, lkey);
2130 for (level++; level < cur->bc_nlevels; level++) {
2131#ifdef DEBUG
2132 int error;
2133#endif
2134 block = xfs_btree_get_block(cur, level, &bp);
2135 trace_xfs_btree_updkeys(cur, level, bp);
2136#ifdef DEBUG
2137 error = xfs_btree_check_block(cur, block, level, bp);
2138 if (error)
2139 return error;
2140#endif
2141 ptr = cur->bc_ptrs[level];
2142 nlkey = xfs_btree_key_addr(cur, ptr, block);
2143 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2144 if (!force_all &&
2145 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2146 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2147 break;
2148 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2149 xfs_btree_log_keys(cur, bp, ptr, ptr);
2150 if (level + 1 >= cur->bc_nlevels)
2151 break;
2152 xfs_btree_get_node_keys(cur, block, lkey);
2153 }
2154
2155 return 0;
2156}
2157
2158/* Update all the keys from some level in cursor back to the root. */
2159STATIC int
2160xfs_btree_updkeys_force(
2161 struct xfs_btree_cur *cur,
2162 int level)
2163{
2164 struct xfs_buf *bp;
2165 struct xfs_btree_block *block;
2166
2167 block = xfs_btree_get_block(cur, level, &bp);
2168 return __xfs_btree_updkeys(cur, level, block, bp, true);
2169}
2170
2171/*
2172 * Update the parent keys of the given level, progressing towards the root.
2173 */
2174STATIC int
2175xfs_btree_update_keys(
2176 struct xfs_btree_cur *cur,
2177 int level)
2178{
2179 struct xfs_btree_block *block;
2180 struct xfs_buf *bp;
2181 union xfs_btree_key *kp;
2182 union xfs_btree_key key;
2183 int ptr;
2184
2185 ASSERT(level >= 0);
2186
2187 block = xfs_btree_get_block(cur, level, &bp);
2188 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2189 return __xfs_btree_updkeys(cur, level, block, bp, false);
2190
2191 /*
2192 * Go up the tree from this level toward the root.
2193 * At each level, update the key value to the value input.
2194 * Stop when we reach a level where the cursor isn't pointing
2195 * at the first entry in the block.
2196 */
2197 xfs_btree_get_keys(cur, block, &key);
2198 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2199#ifdef DEBUG
2200 int error;
2201#endif
2202 block = xfs_btree_get_block(cur, level, &bp);
2203#ifdef DEBUG
2204 error = xfs_btree_check_block(cur, block, level, bp);
2205 if (error)
2206 return error;
2207#endif
2208 ptr = cur->bc_ptrs[level];
2209 kp = xfs_btree_key_addr(cur, ptr, block);
2210 xfs_btree_copy_keys(cur, kp, &key, 1);
2211 xfs_btree_log_keys(cur, bp, ptr, ptr);
2212 }
2213
2214 return 0;
2215}
2216
2217/*
2218 * Update the record referred to by cur to the value in the
2219 * given record. This either works (return 0) or gets an
2220 * EFSCORRUPTED error.
2221 */
2222int
2223xfs_btree_update(
2224 struct xfs_btree_cur *cur,
2225 union xfs_btree_rec *rec)
2226{
2227 struct xfs_btree_block *block;
2228 struct xfs_buf *bp;
2229 int error;
2230 int ptr;
2231 union xfs_btree_rec *rp;
2232
2233 /* Pick up the current block. */
2234 block = xfs_btree_get_block(cur, 0, &bp);
2235
2236#ifdef DEBUG
2237 error = xfs_btree_check_block(cur, block, 0, bp);
2238 if (error)
2239 goto error0;
2240#endif
2241 /* Get the address of the rec to be updated. */
2242 ptr = cur->bc_ptrs[0];
2243 rp = xfs_btree_rec_addr(cur, ptr, block);
2244
2245 /* Fill in the new contents and log them. */
2246 xfs_btree_copy_recs(cur, rp, rec, 1);
2247 xfs_btree_log_recs(cur, bp, ptr, ptr);
2248
2249 /*
2250 * If we are tracking the last record in the tree and
2251 * we are at the far right edge of the tree, update it.
2252 */
2253 if (xfs_btree_is_lastrec(cur, block, 0)) {
2254 cur->bc_ops->update_lastrec(cur, block, rec,
2255 ptr, LASTREC_UPDATE);
2256 }
2257
2258 /* Pass new key value up to our parent. */
2259 if (xfs_btree_needs_key_update(cur, ptr)) {
2260 error = xfs_btree_update_keys(cur, 0);
2261 if (error)
2262 goto error0;
2263 }
2264
2265 return 0;
2266
2267error0:
2268 return error;
2269}
2270
2271/*
2272 * Move 1 record left from cur/level if possible.
2273 * Update cur to reflect the new path.
2274 */
2275STATIC int /* error */
2276xfs_btree_lshift(
2277 struct xfs_btree_cur *cur,
2278 int level,
2279 int *stat) /* success/failure */
2280{
2281 struct xfs_buf *lbp; /* left buffer pointer */
2282 struct xfs_btree_block *left; /* left btree block */
2283 int lrecs; /* left record count */
2284 struct xfs_buf *rbp; /* right buffer pointer */
2285 struct xfs_btree_block *right; /* right btree block */
2286 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2287 int rrecs; /* right record count */
2288 union xfs_btree_ptr lptr; /* left btree pointer */
2289 union xfs_btree_key *rkp = NULL; /* right btree key */
2290 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2291 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2292 int error; /* error return value */
2293 int i;
2294
2295 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2296 level == cur->bc_nlevels - 1)
2297 goto out0;
2298
2299 /* Set up variables for this block as "right". */
2300 right = xfs_btree_get_block(cur, level, &rbp);
2301
2302#ifdef DEBUG
2303 error = xfs_btree_check_block(cur, right, level, rbp);
2304 if (error)
2305 goto error0;
2306#endif
2307
2308 /* If we've got no left sibling then we can't shift an entry left. */
2309 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2310 if (xfs_btree_ptr_is_null(cur, &lptr))
2311 goto out0;
2312
2313 /*
2314 * If the cursor entry is the one that would be moved, don't
2315 * do it... it's too complicated.
2316 */
2317 if (cur->bc_ptrs[level] <= 1)
2318 goto out0;
2319
2320 /* Set up the left neighbor as "left". */
2321 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2322 if (error)
2323 goto error0;
2324
2325 /* If it's full, it can't take another entry. */
2326 lrecs = xfs_btree_get_numrecs(left);
2327 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2328 goto out0;
2329
2330 rrecs = xfs_btree_get_numrecs(right);
2331
2332 /*
2333 * We add one entry to the left side and remove one for the right side.
2334 * Account for it here, the changes will be updated on disk and logged
2335 * later.
2336 */
2337 lrecs++;
2338 rrecs--;
2339
2340 XFS_BTREE_STATS_INC(cur, lshift);
2341 XFS_BTREE_STATS_ADD(cur, moves, 1);
2342
2343 /*
2344 * If non-leaf, copy a key and a ptr to the left block.
2345 * Log the changes to the left block.
2346 */
2347 if (level > 0) {
2348 /* It's a non-leaf. Move keys and pointers. */
2349 union xfs_btree_key *lkp; /* left btree key */
2350 union xfs_btree_ptr *lpp; /* left address pointer */
2351
2352 lkp = xfs_btree_key_addr(cur, lrecs, left);
2353 rkp = xfs_btree_key_addr(cur, 1, right);
2354
2355 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2356 rpp = xfs_btree_ptr_addr(cur, 1, right);
2357#ifdef DEBUG
2358 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2359 if (error)
2360 goto error0;
2361#endif
2362 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2363 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2364
2365 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2366 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2367
2368 ASSERT(cur->bc_ops->keys_inorder(cur,
2369 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2370 } else {
2371 /* It's a leaf. Move records. */
2372 union xfs_btree_rec *lrp; /* left record pointer */
2373
2374 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2375 rrp = xfs_btree_rec_addr(cur, 1, right);
2376
2377 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2378 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2379
2380 ASSERT(cur->bc_ops->recs_inorder(cur,
2381 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2382 }
2383
2384 xfs_btree_set_numrecs(left, lrecs);
2385 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2386
2387 xfs_btree_set_numrecs(right, rrecs);
2388 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2389
2390 /*
2391 * Slide the contents of right down one entry.
2392 */
2393 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2394 if (level > 0) {
2395 /* It's a nonleaf. operate on keys and ptrs */
2396#ifdef DEBUG
2397 int i; /* loop index */
2398
2399 for (i = 0; i < rrecs; i++) {
2400 error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2401 if (error)
2402 goto error0;
2403 }
2404#endif
2405 xfs_btree_shift_keys(cur,
2406 xfs_btree_key_addr(cur, 2, right),
2407 -1, rrecs);
2408 xfs_btree_shift_ptrs(cur,
2409 xfs_btree_ptr_addr(cur, 2, right),
2410 -1, rrecs);
2411
2412 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2413 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2414 } else {
2415 /* It's a leaf. operate on records */
2416 xfs_btree_shift_recs(cur,
2417 xfs_btree_rec_addr(cur, 2, right),
2418 -1, rrecs);
2419 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2420 }
2421
2422 /*
2423 * Using a temporary cursor, update the parent key values of the
2424 * block on the left.
2425 */
2426 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2427 error = xfs_btree_dup_cursor(cur, &tcur);
2428 if (error)
2429 goto error0;
2430 i = xfs_btree_firstrec(tcur, level);
2431 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2432
2433 error = xfs_btree_decrement(tcur, level, &i);
2434 if (error)
2435 goto error1;
2436
2437 /* Update the parent high keys of the left block, if needed. */
2438 error = xfs_btree_update_keys(tcur, level);
2439 if (error)
2440 goto error1;
2441
2442 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2443 }
2444
2445 /* Update the parent keys of the right block. */
2446 error = xfs_btree_update_keys(cur, level);
2447 if (error)
2448 goto error0;
2449
2450 /* Slide the cursor value left one. */
2451 cur->bc_ptrs[level]--;
2452
2453 *stat = 1;
2454 return 0;
2455
2456out0:
2457 *stat = 0;
2458 return 0;
2459
2460error0:
2461 return error;
2462
2463error1:
2464 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2465 return error;
2466}
2467
2468/*
2469 * Move 1 record right from cur/level if possible.
2470 * Update cur to reflect the new path.
2471 */
2472STATIC int /* error */
2473xfs_btree_rshift(
2474 struct xfs_btree_cur *cur,
2475 int level,
2476 int *stat) /* success/failure */
2477{
2478 struct xfs_buf *lbp; /* left buffer pointer */
2479 struct xfs_btree_block *left; /* left btree block */
2480 struct xfs_buf *rbp; /* right buffer pointer */
2481 struct xfs_btree_block *right; /* right btree block */
2482 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2483 union xfs_btree_ptr rptr; /* right block pointer */
2484 union xfs_btree_key *rkp; /* right btree key */
2485 int rrecs; /* right record count */
2486 int lrecs; /* left record count */
2487 int error; /* error return value */
2488 int i; /* loop counter */
2489
2490 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2491 (level == cur->bc_nlevels - 1))
2492 goto out0;
2493
2494 /* Set up variables for this block as "left". */
2495 left = xfs_btree_get_block(cur, level, &lbp);
2496
2497#ifdef DEBUG
2498 error = xfs_btree_check_block(cur, left, level, lbp);
2499 if (error)
2500 goto error0;
2501#endif
2502
2503 /* If we've got no right sibling then we can't shift an entry right. */
2504 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2505 if (xfs_btree_ptr_is_null(cur, &rptr))
2506 goto out0;
2507
2508 /*
2509 * If the cursor entry is the one that would be moved, don't
2510 * do it... it's too complicated.
2511 */
2512 lrecs = xfs_btree_get_numrecs(left);
2513 if (cur->bc_ptrs[level] >= lrecs)
2514 goto out0;
2515
2516 /* Set up the right neighbor as "right". */
2517 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2518 if (error)
2519 goto error0;
2520
2521 /* If it's full, it can't take another entry. */
2522 rrecs = xfs_btree_get_numrecs(right);
2523 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2524 goto out0;
2525
2526 XFS_BTREE_STATS_INC(cur, rshift);
2527 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2528
2529 /*
2530 * Make a hole at the start of the right neighbor block, then
2531 * copy the last left block entry to the hole.
2532 */
2533 if (level > 0) {
2534 /* It's a nonleaf. make a hole in the keys and ptrs */
2535 union xfs_btree_key *lkp;
2536 union xfs_btree_ptr *lpp;
2537 union xfs_btree_ptr *rpp;
2538
2539 lkp = xfs_btree_key_addr(cur, lrecs, left);
2540 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2541 rkp = xfs_btree_key_addr(cur, 1, right);
2542 rpp = xfs_btree_ptr_addr(cur, 1, right);
2543
2544#ifdef DEBUG
2545 for (i = rrecs - 1; i >= 0; i--) {
2546 error = xfs_btree_check_ptr(cur, rpp, i, level);
2547 if (error)
2548 goto error0;
2549 }
2550#endif
2551
2552 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2553 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2554
2555#ifdef DEBUG
2556 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2557 if (error)
2558 goto error0;
2559#endif
2560
2561 /* Now put the new data in, and log it. */
2562 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2563 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2564
2565 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2566 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2567
2568 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2569 xfs_btree_key_addr(cur, 2, right)));
2570 } else {
2571 /* It's a leaf. make a hole in the records */
2572 union xfs_btree_rec *lrp;
2573 union xfs_btree_rec *rrp;
2574
2575 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2576 rrp = xfs_btree_rec_addr(cur, 1, right);
2577
2578 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2579
2580 /* Now put the new data in, and log it. */
2581 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2582 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2583 }
2584
2585 /*
2586 * Decrement and log left's numrecs, bump and log right's numrecs.
2587 */
2588 xfs_btree_set_numrecs(left, --lrecs);
2589 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2590
2591 xfs_btree_set_numrecs(right, ++rrecs);
2592 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2593
2594 /*
2595 * Using a temporary cursor, update the parent key values of the
2596 * block on the right.
2597 */
2598 error = xfs_btree_dup_cursor(cur, &tcur);
2599 if (error)
2600 goto error0;
2601 i = xfs_btree_lastrec(tcur, level);
2602 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2603
2604 error = xfs_btree_increment(tcur, level, &i);
2605 if (error)
2606 goto error1;
2607
2608 /* Update the parent high keys of the left block, if needed. */
2609 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2610 error = xfs_btree_update_keys(cur, level);
2611 if (error)
2612 goto error1;
2613 }
2614
2615 /* Update the parent keys of the right block. */
2616 error = xfs_btree_update_keys(tcur, level);
2617 if (error)
2618 goto error1;
2619
2620 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2621
2622 *stat = 1;
2623 return 0;
2624
2625out0:
2626 *stat = 0;
2627 return 0;
2628
2629error0:
2630 return error;
2631
2632error1:
2633 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2634 return error;
2635}
2636
2637/*
2638 * Split cur/level block in half.
2639 * Return new block number and the key to its first
2640 * record (to be inserted into parent).
2641 */
2642STATIC int /* error */
2643__xfs_btree_split(
2644 struct xfs_btree_cur *cur,
2645 int level,
2646 union xfs_btree_ptr *ptrp,
2647 union xfs_btree_key *key,
2648 struct xfs_btree_cur **curp,
2649 int *stat) /* success/failure */
2650{
2651 union xfs_btree_ptr lptr; /* left sibling block ptr */
2652 struct xfs_buf *lbp; /* left buffer pointer */
2653 struct xfs_btree_block *left; /* left btree block */
2654 union xfs_btree_ptr rptr; /* right sibling block ptr */
2655 struct xfs_buf *rbp; /* right buffer pointer */
2656 struct xfs_btree_block *right; /* right btree block */
2657 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2658 struct xfs_buf *rrbp; /* right-right buffer pointer */
2659 struct xfs_btree_block *rrblock; /* right-right btree block */
2660 int lrecs;
2661 int rrecs;
2662 int src_index;
2663 int error; /* error return value */
2664#ifdef DEBUG
2665 int i;
2666#endif
2667
2668 XFS_BTREE_STATS_INC(cur, split);
2669
2670 /* Set up left block (current one). */
2671 left = xfs_btree_get_block(cur, level, &lbp);
2672
2673#ifdef DEBUG
2674 error = xfs_btree_check_block(cur, left, level, lbp);
2675 if (error)
2676 goto error0;
2677#endif
2678
2679 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2680
2681 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2682 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2683 if (error)
2684 goto error0;
2685 if (*stat == 0)
2686 goto out0;
2687 XFS_BTREE_STATS_INC(cur, alloc);
2688
2689 /* Set up the new block as "right". */
2690 error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2691 if (error)
2692 goto error0;
2693
2694 /* Fill in the btree header for the new right block. */
2695 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2696
2697 /*
2698 * Split the entries between the old and the new block evenly.
2699 * Make sure that if there's an odd number of entries now, that
2700 * each new block will have the same number of entries.
2701 */
2702 lrecs = xfs_btree_get_numrecs(left);
2703 rrecs = lrecs / 2;
2704 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2705 rrecs++;
2706 src_index = (lrecs - rrecs + 1);
2707
2708 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2709
2710 /* Adjust numrecs for the later get_*_keys() calls. */
2711 lrecs -= rrecs;
2712 xfs_btree_set_numrecs(left, lrecs);
2713 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2714
2715 /*
2716 * Copy btree block entries from the left block over to the
2717 * new block, the right. Update the right block and log the
2718 * changes.
2719 */
2720 if (level > 0) {
2721 /* It's a non-leaf. Move keys and pointers. */
2722 union xfs_btree_key *lkp; /* left btree key */
2723 union xfs_btree_ptr *lpp; /* left address pointer */
2724 union xfs_btree_key *rkp; /* right btree key */
2725 union xfs_btree_ptr *rpp; /* right address pointer */
2726
2727 lkp = xfs_btree_key_addr(cur, src_index, left);
2728 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2729 rkp = xfs_btree_key_addr(cur, 1, right);
2730 rpp = xfs_btree_ptr_addr(cur, 1, right);
2731
2732#ifdef DEBUG
2733 for (i = src_index; i < rrecs; i++) {
2734 error = xfs_btree_check_ptr(cur, lpp, i, level);
2735 if (error)
2736 goto error0;
2737 }
2738#endif
2739
2740 /* Copy the keys & pointers to the new block. */
2741 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2742 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2743
2744 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2745 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2746
2747 /* Stash the keys of the new block for later insertion. */
2748 xfs_btree_get_node_keys(cur, right, key);
2749 } else {
2750 /* It's a leaf. Move records. */
2751 union xfs_btree_rec *lrp; /* left record pointer */
2752 union xfs_btree_rec *rrp; /* right record pointer */
2753
2754 lrp = xfs_btree_rec_addr(cur, src_index, left);
2755 rrp = xfs_btree_rec_addr(cur, 1, right);
2756
2757 /* Copy records to the new block. */
2758 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2759 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2760
2761 /* Stash the keys of the new block for later insertion. */
2762 xfs_btree_get_leaf_keys(cur, right, key);
2763 }
2764
2765 /*
2766 * Find the left block number by looking in the buffer.
2767 * Adjust sibling pointers.
2768 */
2769 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2770 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2771 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2772 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2773
2774 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2775 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2776
2777 /*
2778 * If there's a block to the new block's right, make that block
2779 * point back to right instead of to left.
2780 */
2781 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2782 error = xfs_btree_read_buf_block(cur, &rrptr,
2783 0, &rrblock, &rrbp);
2784 if (error)
2785 goto error0;
2786 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2787 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2788 }
2789
2790 /* Update the parent high keys of the left block, if needed. */
2791 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2792 error = xfs_btree_update_keys(cur, level);
2793 if (error)
2794 goto error0;
2795 }
2796
2797 /*
2798 * If the cursor is really in the right block, move it there.
2799 * If it's just pointing past the last entry in left, then we'll
2800 * insert there, so don't change anything in that case.
2801 */
2802 if (cur->bc_ptrs[level] > lrecs + 1) {
2803 xfs_btree_setbuf(cur, level, rbp);
2804 cur->bc_ptrs[level] -= lrecs;
2805 }
2806 /*
2807 * If there are more levels, we'll need another cursor which refers
2808 * the right block, no matter where this cursor was.
2809 */
2810 if (level + 1 < cur->bc_nlevels) {
2811 error = xfs_btree_dup_cursor(cur, curp);
2812 if (error)
2813 goto error0;
2814 (*curp)->bc_ptrs[level + 1]++;
2815 }
2816 *ptrp = rptr;
2817 *stat = 1;
2818 return 0;
2819out0:
2820 *stat = 0;
2821 return 0;
2822
2823error0:
2824 return error;
2825}
2826
2827struct xfs_btree_split_args {
2828 struct xfs_btree_cur *cur;
2829 int level;
2830 union xfs_btree_ptr *ptrp;
2831 union xfs_btree_key *key;
2832 struct xfs_btree_cur **curp;
2833 int *stat; /* success/failure */
2834 int result;
2835 bool kswapd; /* allocation in kswapd context */
2836 struct completion *done;
2837 struct work_struct work;
2838};
2839
2840/*
2841 * Stack switching interfaces for allocation
2842 */
2843static void
2844xfs_btree_split_worker(
2845 struct work_struct *work)
2846{
2847 struct xfs_btree_split_args *args = container_of(work,
2848 struct xfs_btree_split_args, work);
2849 unsigned long pflags;
2850 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2851
2852 /*
2853 * we are in a transaction context here, but may also be doing work
2854 * in kswapd context, and hence we may need to inherit that state
2855 * temporarily to ensure that we don't block waiting for memory reclaim
2856 * in any way.
2857 */
2858 if (args->kswapd)
2859 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2860
2861 current_set_flags_nested(&pflags, new_pflags);
2862
2863 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2864 args->key, args->curp, args->stat);
2865 complete(args->done);
2866
2867 current_restore_flags_nested(&pflags, new_pflags);
2868}
2869
2870/*
2871 * BMBT split requests often come in with little stack to work on. Push
2872 * them off to a worker thread so there is lots of stack to use. For the other
2873 * btree types, just call directly to avoid the context switch overhead here.
2874 */
2875STATIC int /* error */
2876xfs_btree_split(
2877 struct xfs_btree_cur *cur,
2878 int level,
2879 union xfs_btree_ptr *ptrp,
2880 union xfs_btree_key *key,
2881 struct xfs_btree_cur **curp,
2882 int *stat) /* success/failure */
2883{
2884 struct xfs_btree_split_args args;
2885 DECLARE_COMPLETION_ONSTACK(done);
2886
2887 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2888 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2889
2890 args.cur = cur;
2891 args.level = level;
2892 args.ptrp = ptrp;
2893 args.key = key;
2894 args.curp = curp;
2895 args.stat = stat;
2896 args.done = &done;
2897 args.kswapd = current_is_kswapd();
2898 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2899 queue_work(xfs_alloc_wq, &args.work);
2900 wait_for_completion(&done);
2901 destroy_work_on_stack(&args.work);
2902 return args.result;
2903}
2904
2905
2906/*
2907 * Copy the old inode root contents into a real block and make the
2908 * broot point to it.
2909 */
2910int /* error */
2911xfs_btree_new_iroot(
2912 struct xfs_btree_cur *cur, /* btree cursor */
2913 int *logflags, /* logging flags for inode */
2914 int *stat) /* return status - 0 fail */
2915{
2916 struct xfs_buf *cbp; /* buffer for cblock */
2917 struct xfs_btree_block *block; /* btree block */
2918 struct xfs_btree_block *cblock; /* child btree block */
2919 union xfs_btree_key *ckp; /* child key pointer */
2920 union xfs_btree_ptr *cpp; /* child ptr pointer */
2921 union xfs_btree_key *kp; /* pointer to btree key */
2922 union xfs_btree_ptr *pp; /* pointer to block addr */
2923 union xfs_btree_ptr nptr; /* new block addr */
2924 int level; /* btree level */
2925 int error; /* error return code */
2926#ifdef DEBUG
2927 int i; /* loop counter */
2928#endif
2929
2930 XFS_BTREE_STATS_INC(cur, newroot);
2931
2932 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2933
2934 level = cur->bc_nlevels - 1;
2935
2936 block = xfs_btree_get_iroot(cur);
2937 pp = xfs_btree_ptr_addr(cur, 1, block);
2938
2939 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2940 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2941 if (error)
2942 goto error0;
2943 if (*stat == 0)
2944 return 0;
2945
2946 XFS_BTREE_STATS_INC(cur, alloc);
2947
2948 /* Copy the root into a real block. */
2949 error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2950 if (error)
2951 goto error0;
2952
2953 /*
2954 * we can't just memcpy() the root in for CRC enabled btree blocks.
2955 * In that case have to also ensure the blkno remains correct
2956 */
2957 memcpy(cblock, block, xfs_btree_block_len(cur));
2958 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2959 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2960 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2961 else
2962 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2963 }
2964
2965 be16_add_cpu(&block->bb_level, 1);
2966 xfs_btree_set_numrecs(block, 1);
2967 cur->bc_nlevels++;
2968 cur->bc_ptrs[level + 1] = 1;
2969
2970 kp = xfs_btree_key_addr(cur, 1, block);
2971 ckp = xfs_btree_key_addr(cur, 1, cblock);
2972 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2973
2974 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2975#ifdef DEBUG
2976 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2977 error = xfs_btree_check_ptr(cur, pp, i, level);
2978 if (error)
2979 goto error0;
2980 }
2981#endif
2982 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2983
2984#ifdef DEBUG
2985 error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2986 if (error)
2987 goto error0;
2988#endif
2989 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2990
2991 xfs_iroot_realloc(cur->bc_private.b.ip,
2992 1 - xfs_btree_get_numrecs(cblock),
2993 cur->bc_private.b.whichfork);
2994
2995 xfs_btree_setbuf(cur, level, cbp);
2996
2997 /*
2998 * Do all this logging at the end so that
2999 * the root is at the right level.
3000 */
3001 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3002 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3003 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3004
3005 *logflags |=
3006 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3007 *stat = 1;
3008 return 0;
3009error0:
3010 return error;
3011}
3012
3013/*
3014 * Allocate a new root block, fill it in.
3015 */
3016STATIC int /* error */
3017xfs_btree_new_root(
3018 struct xfs_btree_cur *cur, /* btree cursor */
3019 int *stat) /* success/failure */
3020{
3021 struct xfs_btree_block *block; /* one half of the old root block */
3022 struct xfs_buf *bp; /* buffer containing block */
3023 int error; /* error return value */
3024 struct xfs_buf *lbp; /* left buffer pointer */
3025 struct xfs_btree_block *left; /* left btree block */
3026 struct xfs_buf *nbp; /* new (root) buffer */
3027 struct xfs_btree_block *new; /* new (root) btree block */
3028 int nptr; /* new value for key index, 1 or 2 */
3029 struct xfs_buf *rbp; /* right buffer pointer */
3030 struct xfs_btree_block *right; /* right btree block */
3031 union xfs_btree_ptr rptr;
3032 union xfs_btree_ptr lptr;
3033
3034 XFS_BTREE_STATS_INC(cur, newroot);
3035
3036 /* initialise our start point from the cursor */
3037 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038
3039 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3040 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041 if (error)
3042 goto error0;
3043 if (*stat == 0)
3044 goto out0;
3045 XFS_BTREE_STATS_INC(cur, alloc);
3046
3047 /* Set up the new block. */
3048 error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049 if (error)
3050 goto error0;
3051
3052 /* Set the root in the holding structure increasing the level by 1. */
3053 cur->bc_ops->set_root(cur, &lptr, 1);
3054
3055 /*
3056 * At the previous root level there are now two blocks: the old root,
3057 * and the new block generated when it was split. We don't know which
3058 * one the cursor is pointing at, so we set up variables "left" and
3059 * "right" for each case.
3060 */
3061 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062
3063#ifdef DEBUG
3064 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065 if (error)
3066 goto error0;
3067#endif
3068
3069 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071 /* Our block is left, pick up the right block. */
3072 lbp = bp;
3073 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074 left = block;
3075 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076 if (error)
3077 goto error0;
3078 bp = rbp;
3079 nptr = 1;
3080 } else {
3081 /* Our block is right, pick up the left block. */
3082 rbp = bp;
3083 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084 right = block;
3085 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087 if (error)
3088 goto error0;
3089 bp = lbp;
3090 nptr = 2;
3091 }
3092
3093 /* Fill in the new block's btree header and log it. */
3094 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097 !xfs_btree_ptr_is_null(cur, &rptr));
3098
3099 /* Fill in the key data in the new root. */
3100 if (xfs_btree_get_level(left) > 0) {
3101 /*
3102 * Get the keys for the left block's keys and put them directly
3103 * in the parent block. Do the same for the right block.
3104 */
3105 xfs_btree_get_node_keys(cur, left,
3106 xfs_btree_key_addr(cur, 1, new));
3107 xfs_btree_get_node_keys(cur, right,
3108 xfs_btree_key_addr(cur, 2, new));
3109 } else {
3110 /*
3111 * Get the keys for the left block's records and put them
3112 * directly in the parent block. Do the same for the right
3113 * block.
3114 */
3115 xfs_btree_get_leaf_keys(cur, left,
3116 xfs_btree_key_addr(cur, 1, new));
3117 xfs_btree_get_leaf_keys(cur, right,
3118 xfs_btree_key_addr(cur, 2, new));
3119 }
3120 xfs_btree_log_keys(cur, nbp, 1, 2);
3121
3122 /* Fill in the pointer data in the new root. */
3123 xfs_btree_copy_ptrs(cur,
3124 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128
3129 /* Fix up the cursor. */
3130 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132 cur->bc_nlevels++;
3133 *stat = 1;
3134 return 0;
3135error0:
3136 return error;
3137out0:
3138 *stat = 0;
3139 return 0;
3140}
3141
3142STATIC int
3143xfs_btree_make_block_unfull(
3144 struct xfs_btree_cur *cur, /* btree cursor */
3145 int level, /* btree level */
3146 int numrecs,/* # of recs in block */
3147 int *oindex,/* old tree index */
3148 int *index, /* new tree index */
3149 union xfs_btree_ptr *nptr, /* new btree ptr */
3150 struct xfs_btree_cur **ncur, /* new btree cursor */
3151 union xfs_btree_key *key, /* key of new block */
3152 int *stat)
3153{
3154 int error = 0;
3155
3156 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3157 level == cur->bc_nlevels - 1) {
3158 struct xfs_inode *ip = cur->bc_private.b.ip;
3159
3160 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3161 /* A root block that can be made bigger. */
3162 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3163 *stat = 1;
3164 } else {
3165 /* A root block that needs replacing */
3166 int logflags = 0;
3167
3168 error = xfs_btree_new_iroot(cur, &logflags, stat);
3169 if (error || *stat == 0)
3170 return error;
3171
3172 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3173 }
3174
3175 return 0;
3176 }
3177
3178 /* First, try shifting an entry to the right neighbor. */
3179 error = xfs_btree_rshift(cur, level, stat);
3180 if (error || *stat)
3181 return error;
3182
3183 /* Next, try shifting an entry to the left neighbor. */
3184 error = xfs_btree_lshift(cur, level, stat);
3185 if (error)
3186 return error;
3187
3188 if (*stat) {
3189 *oindex = *index = cur->bc_ptrs[level];
3190 return 0;
3191 }
3192
3193 /*
3194 * Next, try splitting the current block in half.
3195 *
3196 * If this works we have to re-set our variables because we
3197 * could be in a different block now.
3198 */
3199 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3200 if (error || *stat == 0)
3201 return error;
3202
3203
3204 *index = cur->bc_ptrs[level];
3205 return 0;
3206}
3207
3208/*
3209 * Insert one record/level. Return information to the caller
3210 * allowing the next level up to proceed if necessary.
3211 */
3212STATIC int
3213xfs_btree_insrec(
3214 struct xfs_btree_cur *cur, /* btree cursor */
3215 int level, /* level to insert record at */
3216 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3217 union xfs_btree_rec *rec, /* record to insert */
3218 union xfs_btree_key *key, /* i/o: block key for ptrp */
3219 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3220 int *stat) /* success/failure */
3221{
3222 struct xfs_btree_block *block; /* btree block */
3223 struct xfs_buf *bp; /* buffer for block */
3224 union xfs_btree_ptr nptr; /* new block ptr */
3225 struct xfs_btree_cur *ncur; /* new btree cursor */
3226 union xfs_btree_key nkey; /* new block key */
3227 union xfs_btree_key *lkey;
3228 int optr; /* old key/record index */
3229 int ptr; /* key/record index */
3230 int numrecs;/* number of records */
3231 int error; /* error return value */
3232#ifdef DEBUG
3233 int i;
3234#endif
3235 xfs_daddr_t old_bn;
3236
3237 ncur = NULL;
3238 lkey = &nkey;
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
3255 *stat = 0;
3256 return 0;
3257 }
3258
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268#ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283#endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304#ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308#endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324#ifdef DEBUG
3325 for (i = numrecs - ptr; i >= 0; i--) {
3326 error = xfs_btree_check_ptr(cur, pp, i, level);
3327 if (error)
3328 return error;
3329 }
3330#endif
3331
3332 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3333 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3334
3335#ifdef DEBUG
3336 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3337 if (error)
3338 goto error0;
3339#endif
3340
3341 /* Now put the new data in, bump numrecs and log it. */
3342 xfs_btree_copy_keys(cur, kp, key, 1);
3343 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3344 numrecs++;
3345 xfs_btree_set_numrecs(block, numrecs);
3346 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3347 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3348#ifdef DEBUG
3349 if (ptr < numrecs) {
3350 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3351 xfs_btree_key_addr(cur, ptr + 1, block)));
3352 }
3353#endif
3354 } else {
3355 /* It's a leaf. make a hole in the records */
3356 union xfs_btree_rec *rp;
3357
3358 rp = xfs_btree_rec_addr(cur, ptr, block);
3359
3360 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3361
3362 /* Now put the new data in, bump numrecs and log it. */
3363 xfs_btree_copy_recs(cur, rp, rec, 1);
3364 xfs_btree_set_numrecs(block, ++numrecs);
3365 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3366#ifdef DEBUG
3367 if (ptr < numrecs) {
3368 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3369 xfs_btree_rec_addr(cur, ptr + 1, block)));
3370 }
3371#endif
3372 }
3373
3374 /* Log the new number of records in the btree header. */
3375 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3376
3377 /*
3378 * If we just inserted into a new tree block, we have to
3379 * recalculate nkey here because nkey is out of date.
3380 *
3381 * Otherwise we're just updating an existing block (having shoved
3382 * some records into the new tree block), so use the regular key
3383 * update mechanism.
3384 */
3385 if (bp && bp->b_bn != old_bn) {
3386 xfs_btree_get_keys(cur, block, lkey);
3387 } else if (xfs_btree_needs_key_update(cur, optr)) {
3388 error = xfs_btree_update_keys(cur, level);
3389 if (error)
3390 goto error0;
3391 }
3392
3393 /*
3394 * If we are tracking the last record in the tree and
3395 * we are at the far right edge of the tree, update it.
3396 */
3397 if (xfs_btree_is_lastrec(cur, block, level)) {
3398 cur->bc_ops->update_lastrec(cur, block, rec,
3399 ptr, LASTREC_INSREC);
3400 }
3401
3402 /*
3403 * Return the new block number, if any.
3404 * If there is one, give back a record value and a cursor too.
3405 */
3406 *ptrp = nptr;
3407 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3408 xfs_btree_copy_keys(cur, key, lkey, 1);
3409 *curp = ncur;
3410 }
3411
3412 *stat = 1;
3413 return 0;
3414
3415error0:
3416 return error;
3417}
3418
3419/*
3420 * Insert the record at the point referenced by cur.
3421 *
3422 * A multi-level split of the tree on insert will invalidate the original
3423 * cursor. All callers of this function should assume that the cursor is
3424 * no longer valid and revalidate it.
3425 */
3426int
3427xfs_btree_insert(
3428 struct xfs_btree_cur *cur,
3429 int *stat)
3430{
3431 int error; /* error return value */
3432 int i; /* result value, 0 for failure */
3433 int level; /* current level number in btree */
3434 union xfs_btree_ptr nptr; /* new block number (split result) */
3435 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3436 struct xfs_btree_cur *pcur; /* previous level's cursor */
3437 union xfs_btree_key bkey; /* key of block to insert */
3438 union xfs_btree_key *key;
3439 union xfs_btree_rec rec; /* record to insert */
3440
3441 level = 0;
3442 ncur = NULL;
3443 pcur = cur;
3444 key = &bkey;
3445
3446 xfs_btree_set_ptr_null(cur, &nptr);
3447
3448 /* Make a key out of the record data to be inserted, and save it. */
3449 cur->bc_ops->init_rec_from_cur(cur, &rec);
3450 cur->bc_ops->init_key_from_rec(key, &rec);
3451
3452 /*
3453 * Loop going up the tree, starting at the leaf level.
3454 * Stop when we don't get a split block, that must mean that
3455 * the insert is finished with this level.
3456 */
3457 do {
3458 /*
3459 * Insert nrec/nptr into this level of the tree.
3460 * Note if we fail, nptr will be null.
3461 */
3462 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3463 &ncur, &i);
3464 if (error) {
3465 if (pcur != cur)
3466 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3467 goto error0;
3468 }
3469
3470 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3471 level++;
3472
3473 /*
3474 * See if the cursor we just used is trash.
3475 * Can't trash the caller's cursor, but otherwise we should
3476 * if ncur is a new cursor or we're about to be done.
3477 */
3478 if (pcur != cur &&
3479 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3480 /* Save the state from the cursor before we trash it */
3481 if (cur->bc_ops->update_cursor)
3482 cur->bc_ops->update_cursor(pcur, cur);
3483 cur->bc_nlevels = pcur->bc_nlevels;
3484 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3485 }
3486 /* If we got a new cursor, switch to it. */
3487 if (ncur) {
3488 pcur = ncur;
3489 ncur = NULL;
3490 }
3491 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3492
3493 *stat = i;
3494 return 0;
3495error0:
3496 return error;
3497}
3498
3499/*
3500 * Try to merge a non-leaf block back into the inode root.
3501 *
3502 * Note: the killroot names comes from the fact that we're effectively
3503 * killing the old root block. But because we can't just delete the
3504 * inode we have to copy the single block it was pointing to into the
3505 * inode.
3506 */
3507STATIC int
3508xfs_btree_kill_iroot(
3509 struct xfs_btree_cur *cur)
3510{
3511 int whichfork = cur->bc_private.b.whichfork;
3512 struct xfs_inode *ip = cur->bc_private.b.ip;
3513 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3514 struct xfs_btree_block *block;
3515 struct xfs_btree_block *cblock;
3516 union xfs_btree_key *kp;
3517 union xfs_btree_key *ckp;
3518 union xfs_btree_ptr *pp;
3519 union xfs_btree_ptr *cpp;
3520 struct xfs_buf *cbp;
3521 int level;
3522 int index;
3523 int numrecs;
3524 int error;
3525#ifdef DEBUG
3526 union xfs_btree_ptr ptr;
3527 int i;
3528#endif
3529
3530 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3531 ASSERT(cur->bc_nlevels > 1);
3532
3533 /*
3534 * Don't deal with the root block needs to be a leaf case.
3535 * We're just going to turn the thing back into extents anyway.
3536 */
3537 level = cur->bc_nlevels - 1;
3538 if (level == 1)
3539 goto out0;
3540
3541 /*
3542 * Give up if the root has multiple children.
3543 */
3544 block = xfs_btree_get_iroot(cur);
3545 if (xfs_btree_get_numrecs(block) != 1)
3546 goto out0;
3547
3548 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3549 numrecs = xfs_btree_get_numrecs(cblock);
3550
3551 /*
3552 * Only do this if the next level will fit.
3553 * Then the data must be copied up to the inode,
3554 * instead of freeing the root you free the next level.
3555 */
3556 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3557 goto out0;
3558
3559 XFS_BTREE_STATS_INC(cur, killroot);
3560
3561#ifdef DEBUG
3562 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3563 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3564 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3565 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3566#endif
3567
3568 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3569 if (index) {
3570 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3571 cur->bc_private.b.whichfork);
3572 block = ifp->if_broot;
3573 }
3574
3575 be16_add_cpu(&block->bb_numrecs, index);
3576 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3577
3578 kp = xfs_btree_key_addr(cur, 1, block);
3579 ckp = xfs_btree_key_addr(cur, 1, cblock);
3580 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3581
3582 pp = xfs_btree_ptr_addr(cur, 1, block);
3583 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3584#ifdef DEBUG
3585 for (i = 0; i < numrecs; i++) {
3586 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3587 if (error)
3588 return error;
3589 }
3590#endif
3591 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3592
3593 error = xfs_btree_free_block(cur, cbp);
3594 if (error)
3595 return error;
3596
3597 cur->bc_bufs[level - 1] = NULL;
3598 be16_add_cpu(&block->bb_level, -1);
3599 xfs_trans_log_inode(cur->bc_tp, ip,
3600 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3601 cur->bc_nlevels--;
3602out0:
3603 return 0;
3604}
3605
3606/*
3607 * Kill the current root node, and replace it with it's only child node.
3608 */
3609STATIC int
3610xfs_btree_kill_root(
3611 struct xfs_btree_cur *cur,
3612 struct xfs_buf *bp,
3613 int level,
3614 union xfs_btree_ptr *newroot)
3615{
3616 int error;
3617
3618 XFS_BTREE_STATS_INC(cur, killroot);
3619
3620 /*
3621 * Update the root pointer, decreasing the level by 1 and then
3622 * free the old root.
3623 */
3624 cur->bc_ops->set_root(cur, newroot, -1);
3625
3626 error = xfs_btree_free_block(cur, bp);
3627 if (error)
3628 return error;
3629
3630 cur->bc_bufs[level] = NULL;
3631 cur->bc_ra[level] = 0;
3632 cur->bc_nlevels--;
3633
3634 return 0;
3635}
3636
3637STATIC int
3638xfs_btree_dec_cursor(
3639 struct xfs_btree_cur *cur,
3640 int level,
3641 int *stat)
3642{
3643 int error;
3644 int i;
3645
3646 if (level > 0) {
3647 error = xfs_btree_decrement(cur, level, &i);
3648 if (error)
3649 return error;
3650 }
3651
3652 *stat = 1;
3653 return 0;
3654}
3655
3656/*
3657 * Single level of the btree record deletion routine.
3658 * Delete record pointed to by cur/level.
3659 * Remove the record from its block then rebalance the tree.
3660 * Return 0 for error, 1 for done, 2 to go on to the next level.
3661 */
3662STATIC int /* error */
3663xfs_btree_delrec(
3664 struct xfs_btree_cur *cur, /* btree cursor */
3665 int level, /* level removing record from */
3666 int *stat) /* fail/done/go-on */
3667{
3668 struct xfs_btree_block *block; /* btree block */
3669 union xfs_btree_ptr cptr; /* current block ptr */
3670 struct xfs_buf *bp; /* buffer for block */
3671 int error; /* error return value */
3672 int i; /* loop counter */
3673 union xfs_btree_ptr lptr; /* left sibling block ptr */
3674 struct xfs_buf *lbp; /* left buffer pointer */
3675 struct xfs_btree_block *left; /* left btree block */
3676 int lrecs = 0; /* left record count */
3677 int ptr; /* key/record index */
3678 union xfs_btree_ptr rptr; /* right sibling block ptr */
3679 struct xfs_buf *rbp; /* right buffer pointer */
3680 struct xfs_btree_block *right; /* right btree block */
3681 struct xfs_btree_block *rrblock; /* right-right btree block */
3682 struct xfs_buf *rrbp; /* right-right buffer pointer */
3683 int rrecs = 0; /* right record count */
3684 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3685 int numrecs; /* temporary numrec count */
3686
3687 tcur = NULL;
3688
3689 /* Get the index of the entry being deleted, check for nothing there. */
3690 ptr = cur->bc_ptrs[level];
3691 if (ptr == 0) {
3692 *stat = 0;
3693 return 0;
3694 }
3695
3696 /* Get the buffer & block containing the record or key/ptr. */
3697 block = xfs_btree_get_block(cur, level, &bp);
3698 numrecs = xfs_btree_get_numrecs(block);
3699
3700#ifdef DEBUG
3701 error = xfs_btree_check_block(cur, block, level, bp);
3702 if (error)
3703 goto error0;
3704#endif
3705
3706 /* Fail if we're off the end of the block. */
3707 if (ptr > numrecs) {
3708 *stat = 0;
3709 return 0;
3710 }
3711
3712 XFS_BTREE_STATS_INC(cur, delrec);
3713 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3714
3715 /* Excise the entries being deleted. */
3716 if (level > 0) {
3717 /* It's a nonleaf. operate on keys and ptrs */
3718 union xfs_btree_key *lkp;
3719 union xfs_btree_ptr *lpp;
3720
3721 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3722 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3723
3724#ifdef DEBUG
3725 for (i = 0; i < numrecs - ptr; i++) {
3726 error = xfs_btree_check_ptr(cur, lpp, i, level);
3727 if (error)
3728 goto error0;
3729 }
3730#endif
3731
3732 if (ptr < numrecs) {
3733 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3734 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3735 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3736 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3737 }
3738 } else {
3739 /* It's a leaf. operate on records */
3740 if (ptr < numrecs) {
3741 xfs_btree_shift_recs(cur,
3742 xfs_btree_rec_addr(cur, ptr + 1, block),
3743 -1, numrecs - ptr);
3744 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3745 }
3746 }
3747
3748 /*
3749 * Decrement and log the number of entries in the block.
3750 */
3751 xfs_btree_set_numrecs(block, --numrecs);
3752 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3753
3754 /*
3755 * If we are tracking the last record in the tree and
3756 * we are at the far right edge of the tree, update it.
3757 */
3758 if (xfs_btree_is_lastrec(cur, block, level)) {
3759 cur->bc_ops->update_lastrec(cur, block, NULL,
3760 ptr, LASTREC_DELREC);
3761 }
3762
3763 /*
3764 * We're at the root level. First, shrink the root block in-memory.
3765 * Try to get rid of the next level down. If we can't then there's
3766 * nothing left to do.
3767 */
3768 if (level == cur->bc_nlevels - 1) {
3769 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3770 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3771 cur->bc_private.b.whichfork);
3772
3773 error = xfs_btree_kill_iroot(cur);
3774 if (error)
3775 goto error0;
3776
3777 error = xfs_btree_dec_cursor(cur, level, stat);
3778 if (error)
3779 goto error0;
3780 *stat = 1;
3781 return 0;
3782 }
3783
3784 /*
3785 * If this is the root level, and there's only one entry left,
3786 * and it's NOT the leaf level, then we can get rid of this
3787 * level.
3788 */
3789 if (numrecs == 1 && level > 0) {
3790 union xfs_btree_ptr *pp;
3791 /*
3792 * pp is still set to the first pointer in the block.
3793 * Make it the new root of the btree.
3794 */
3795 pp = xfs_btree_ptr_addr(cur, 1, block);
3796 error = xfs_btree_kill_root(cur, bp, level, pp);
3797 if (error)
3798 goto error0;
3799 } else if (level > 0) {
3800 error = xfs_btree_dec_cursor(cur, level, stat);
3801 if (error)
3802 goto error0;
3803 }
3804 *stat = 1;
3805 return 0;
3806 }
3807
3808 /*
3809 * If we deleted the leftmost entry in the block, update the
3810 * key values above us in the tree.
3811 */
3812 if (xfs_btree_needs_key_update(cur, ptr)) {
3813 error = xfs_btree_update_keys(cur, level);
3814 if (error)
3815 goto error0;
3816 }
3817
3818 /*
3819 * If the number of records remaining in the block is at least
3820 * the minimum, we're done.
3821 */
3822 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3823 error = xfs_btree_dec_cursor(cur, level, stat);
3824 if (error)
3825 goto error0;
3826 return 0;
3827 }
3828
3829 /*
3830 * Otherwise, we have to move some records around to keep the
3831 * tree balanced. Look at the left and right sibling blocks to
3832 * see if we can re-balance by moving only one record.
3833 */
3834 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3835 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3836
3837 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3838 /*
3839 * One child of root, need to get a chance to copy its contents
3840 * into the root and delete it. Can't go up to next level,
3841 * there's nothing to delete there.
3842 */
3843 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3844 xfs_btree_ptr_is_null(cur, &lptr) &&
3845 level == cur->bc_nlevels - 2) {
3846 error = xfs_btree_kill_iroot(cur);
3847 if (!error)
3848 error = xfs_btree_dec_cursor(cur, level, stat);
3849 if (error)
3850 goto error0;
3851 return 0;
3852 }
3853 }
3854
3855 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3856 !xfs_btree_ptr_is_null(cur, &lptr));
3857
3858 /*
3859 * Duplicate the cursor so our btree manipulations here won't
3860 * disrupt the next level up.
3861 */
3862 error = xfs_btree_dup_cursor(cur, &tcur);
3863 if (error)
3864 goto error0;
3865
3866 /*
3867 * If there's a right sibling, see if it's ok to shift an entry
3868 * out of it.
3869 */
3870 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3871 /*
3872 * Move the temp cursor to the last entry in the next block.
3873 * Actually any entry but the first would suffice.
3874 */
3875 i = xfs_btree_lastrec(tcur, level);
3876 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3877
3878 error = xfs_btree_increment(tcur, level, &i);
3879 if (error)
3880 goto error0;
3881 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3882
3883 i = xfs_btree_lastrec(tcur, level);
3884 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3885
3886 /* Grab a pointer to the block. */
3887 right = xfs_btree_get_block(tcur, level, &rbp);
3888#ifdef DEBUG
3889 error = xfs_btree_check_block(tcur, right, level, rbp);
3890 if (error)
3891 goto error0;
3892#endif
3893 /* Grab the current block number, for future use. */
3894 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3895
3896 /*
3897 * If right block is full enough so that removing one entry
3898 * won't make it too empty, and left-shifting an entry out
3899 * of right to us works, we're done.
3900 */
3901 if (xfs_btree_get_numrecs(right) - 1 >=
3902 cur->bc_ops->get_minrecs(tcur, level)) {
3903 error = xfs_btree_lshift(tcur, level, &i);
3904 if (error)
3905 goto error0;
3906 if (i) {
3907 ASSERT(xfs_btree_get_numrecs(block) >=
3908 cur->bc_ops->get_minrecs(tcur, level));
3909
3910 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3911 tcur = NULL;
3912
3913 error = xfs_btree_dec_cursor(cur, level, stat);
3914 if (error)
3915 goto error0;
3916 return 0;
3917 }
3918 }
3919
3920 /*
3921 * Otherwise, grab the number of records in right for
3922 * future reference, and fix up the temp cursor to point
3923 * to our block again (last record).
3924 */
3925 rrecs = xfs_btree_get_numrecs(right);
3926 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3927 i = xfs_btree_firstrec(tcur, level);
3928 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3929
3930 error = xfs_btree_decrement(tcur, level, &i);
3931 if (error)
3932 goto error0;
3933 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934 }
3935 }
3936
3937 /*
3938 * If there's a left sibling, see if it's ok to shift an entry
3939 * out of it.
3940 */
3941 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3942 /*
3943 * Move the temp cursor to the first entry in the
3944 * previous block.
3945 */
3946 i = xfs_btree_firstrec(tcur, level);
3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949 error = xfs_btree_decrement(tcur, level, &i);
3950 if (error)
3951 goto error0;
3952 i = xfs_btree_firstrec(tcur, level);
3953 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954
3955 /* Grab a pointer to the block. */
3956 left = xfs_btree_get_block(tcur, level, &lbp);
3957#ifdef DEBUG
3958 error = xfs_btree_check_block(cur, left, level, lbp);
3959 if (error)
3960 goto error0;
3961#endif
3962 /* Grab the current block number, for future use. */
3963 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3964
3965 /*
3966 * If left block is full enough so that removing one entry
3967 * won't make it too empty, and right-shifting an entry out
3968 * of left to us works, we're done.
3969 */
3970 if (xfs_btree_get_numrecs(left) - 1 >=
3971 cur->bc_ops->get_minrecs(tcur, level)) {
3972 error = xfs_btree_rshift(tcur, level, &i);
3973 if (error)
3974 goto error0;
3975 if (i) {
3976 ASSERT(xfs_btree_get_numrecs(block) >=
3977 cur->bc_ops->get_minrecs(tcur, level));
3978 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3979 tcur = NULL;
3980 if (level == 0)
3981 cur->bc_ptrs[0]++;
3982
3983 *stat = 1;
3984 return 0;
3985 }
3986 }
3987
3988 /*
3989 * Otherwise, grab the number of records in right for
3990 * future reference.
3991 */
3992 lrecs = xfs_btree_get_numrecs(left);
3993 }
3994
3995 /* Delete the temp cursor, we're done with it. */
3996 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3997 tcur = NULL;
3998
3999 /* If here, we need to do a join to keep the tree balanced. */
4000 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4001
4002 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4003 lrecs + xfs_btree_get_numrecs(block) <=
4004 cur->bc_ops->get_maxrecs(cur, level)) {
4005 /*
4006 * Set "right" to be the starting block,
4007 * "left" to be the left neighbor.
4008 */
4009 rptr = cptr;
4010 right = block;
4011 rbp = bp;
4012 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4013 if (error)
4014 goto error0;
4015
4016 /*
4017 * If that won't work, see if we can join with the right neighbor block.
4018 */
4019 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4020 rrecs + xfs_btree_get_numrecs(block) <=
4021 cur->bc_ops->get_maxrecs(cur, level)) {
4022 /*
4023 * Set "left" to be the starting block,
4024 * "right" to be the right neighbor.
4025 */
4026 lptr = cptr;
4027 left = block;
4028 lbp = bp;
4029 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4030 if (error)
4031 goto error0;
4032
4033 /*
4034 * Otherwise, we can't fix the imbalance.
4035 * Just return. This is probably a logic error, but it's not fatal.
4036 */
4037 } else {
4038 error = xfs_btree_dec_cursor(cur, level, stat);
4039 if (error)
4040 goto error0;
4041 return 0;
4042 }
4043
4044 rrecs = xfs_btree_get_numrecs(right);
4045 lrecs = xfs_btree_get_numrecs(left);
4046
4047 /*
4048 * We're now going to join "left" and "right" by moving all the stuff
4049 * in "right" to "left" and deleting "right".
4050 */
4051 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4052 if (level > 0) {
4053 /* It's a non-leaf. Move keys and pointers. */
4054 union xfs_btree_key *lkp; /* left btree key */
4055 union xfs_btree_ptr *lpp; /* left address pointer */
4056 union xfs_btree_key *rkp; /* right btree key */
4057 union xfs_btree_ptr *rpp; /* right address pointer */
4058
4059 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4060 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4061 rkp = xfs_btree_key_addr(cur, 1, right);
4062 rpp = xfs_btree_ptr_addr(cur, 1, right);
4063#ifdef DEBUG
4064 for (i = 1; i < rrecs; i++) {
4065 error = xfs_btree_check_ptr(cur, rpp, i, level);
4066 if (error)
4067 goto error0;
4068 }
4069#endif
4070 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4071 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4072
4073 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4074 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4075 } else {
4076 /* It's a leaf. Move records. */
4077 union xfs_btree_rec *lrp; /* left record pointer */
4078 union xfs_btree_rec *rrp; /* right record pointer */
4079
4080 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4081 rrp = xfs_btree_rec_addr(cur, 1, right);
4082
4083 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4084 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4085 }
4086
4087 XFS_BTREE_STATS_INC(cur, join);
4088
4089 /*
4090 * Fix up the number of records and right block pointer in the
4091 * surviving block, and log it.
4092 */
4093 xfs_btree_set_numrecs(left, lrecs + rrecs);
4094 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4095 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4096 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4097
4098 /* If there is a right sibling, point it to the remaining block. */
4099 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4100 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4101 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4102 if (error)
4103 goto error0;
4104 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4105 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4106 }
4107
4108 /* Free the deleted block. */
4109 error = xfs_btree_free_block(cur, rbp);
4110 if (error)
4111 goto error0;
4112
4113 /*
4114 * If we joined with the left neighbor, set the buffer in the
4115 * cursor to the left block, and fix up the index.
4116 */
4117 if (bp != lbp) {
4118 cur->bc_bufs[level] = lbp;
4119 cur->bc_ptrs[level] += lrecs;
4120 cur->bc_ra[level] = 0;
4121 }
4122 /*
4123 * If we joined with the right neighbor and there's a level above
4124 * us, increment the cursor at that level.
4125 */
4126 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4127 (level + 1 < cur->bc_nlevels)) {
4128 error = xfs_btree_increment(cur, level + 1, &i);
4129 if (error)
4130 goto error0;
4131 }
4132
4133 /*
4134 * Readjust the ptr at this level if it's not a leaf, since it's
4135 * still pointing at the deletion point, which makes the cursor
4136 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4137 * We can't use decrement because it would change the next level up.
4138 */
4139 if (level > 0)
4140 cur->bc_ptrs[level]--;
4141
4142 /*
4143 * We combined blocks, so we have to update the parent keys if the
4144 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4145 * points to the old block so that the caller knows which record to
4146 * delete. Therefore, the caller must be savvy enough to call updkeys
4147 * for us if we return stat == 2. The other exit points from this
4148 * function don't require deletions further up the tree, so they can
4149 * call updkeys directly.
4150 */
4151
4152 /* Return value means the next level up has something to do. */
4153 *stat = 2;
4154 return 0;
4155
4156error0:
4157 if (tcur)
4158 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4159 return error;
4160}
4161
4162/*
4163 * Delete the record pointed to by cur.
4164 * The cursor refers to the place where the record was (could be inserted)
4165 * when the operation returns.
4166 */
4167int /* error */
4168xfs_btree_delete(
4169 struct xfs_btree_cur *cur,
4170 int *stat) /* success/failure */
4171{
4172 int error; /* error return value */
4173 int level;
4174 int i;
4175 bool joined = false;
4176
4177 /*
4178 * Go up the tree, starting at leaf level.
4179 *
4180 * If 2 is returned then a join was done; go to the next level.
4181 * Otherwise we are done.
4182 */
4183 for (level = 0, i = 2; i == 2; level++) {
4184 error = xfs_btree_delrec(cur, level, &i);
4185 if (error)
4186 goto error0;
4187 if (i == 2)
4188 joined = true;
4189 }
4190
4191 /*
4192 * If we combined blocks as part of deleting the record, delrec won't
4193 * have updated the parent high keys so we have to do that here.
4194 */
4195 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4196 error = xfs_btree_updkeys_force(cur, 0);
4197 if (error)
4198 goto error0;
4199 }
4200
4201 if (i == 0) {
4202 for (level = 1; level < cur->bc_nlevels; level++) {
4203 if (cur->bc_ptrs[level] == 0) {
4204 error = xfs_btree_decrement(cur, level, &i);
4205 if (error)
4206 goto error0;
4207 break;
4208 }
4209 }
4210 }
4211
4212 *stat = i;
4213 return 0;
4214error0:
4215 return error;
4216}
4217
4218/*
4219 * Get the data from the pointed-to record.
4220 */
4221int /* error */
4222xfs_btree_get_rec(
4223 struct xfs_btree_cur *cur, /* btree cursor */
4224 union xfs_btree_rec **recp, /* output: btree record */
4225 int *stat) /* output: success/failure */
4226{
4227 struct xfs_btree_block *block; /* btree block */
4228 struct xfs_buf *bp; /* buffer pointer */
4229 int ptr; /* record number */
4230#ifdef DEBUG
4231 int error; /* error return value */
4232#endif
4233
4234 ptr = cur->bc_ptrs[0];
4235 block = xfs_btree_get_block(cur, 0, &bp);
4236
4237#ifdef DEBUG
4238 error = xfs_btree_check_block(cur, block, 0, bp);
4239 if (error)
4240 return error;
4241#endif
4242
4243 /*
4244 * Off the right end or left end, return failure.
4245 */
4246 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4247 *stat = 0;
4248 return 0;
4249 }
4250
4251 /*
4252 * Point to the record and extract its data.
4253 */
4254 *recp = xfs_btree_rec_addr(cur, ptr, block);
4255 *stat = 1;
4256 return 0;
4257}
4258
4259/* Visit a block in a btree. */
4260STATIC int
4261xfs_btree_visit_block(
4262 struct xfs_btree_cur *cur,
4263 int level,
4264 xfs_btree_visit_blocks_fn fn,
4265 void *data)
4266{
4267 struct xfs_btree_block *block;
4268 struct xfs_buf *bp;
4269 union xfs_btree_ptr rptr;
4270 int error;
4271
4272 /* do right sibling readahead */
4273 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4274 block = xfs_btree_get_block(cur, level, &bp);
4275
4276 /* process the block */
4277 error = fn(cur, level, data);
4278 if (error)
4279 return error;
4280
4281 /* now read rh sibling block for next iteration */
4282 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4283 if (xfs_btree_ptr_is_null(cur, &rptr))
4284 return -ENOENT;
4285
4286 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4287}
4288
4289
4290/* Visit every block in a btree. */
4291int
4292xfs_btree_visit_blocks(
4293 struct xfs_btree_cur *cur,
4294 xfs_btree_visit_blocks_fn fn,
4295 void *data)
4296{
4297 union xfs_btree_ptr lptr;
4298 int level;
4299 struct xfs_btree_block *block = NULL;
4300 int error = 0;
4301
4302 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4303
4304 /* for each level */
4305 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4306 /* grab the left hand block */
4307 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4308 if (error)
4309 return error;
4310
4311 /* readahead the left most block for the next level down */
4312 if (level > 0) {
4313 union xfs_btree_ptr *ptr;
4314
4315 ptr = xfs_btree_ptr_addr(cur, 1, block);
4316 xfs_btree_readahead_ptr(cur, ptr, 1);
4317
4318 /* save for the next iteration of the loop */
4319 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4320 }
4321
4322 /* for each buffer in the level */
4323 do {
4324 error = xfs_btree_visit_block(cur, level, fn, data);
4325 } while (!error);
4326
4327 if (error != -ENOENT)
4328 return error;
4329 }
4330
4331 return 0;
4332}
4333
4334/*
4335 * Change the owner of a btree.
4336 *
4337 * The mechanism we use here is ordered buffer logging. Because we don't know
4338 * how many buffers were are going to need to modify, we don't really want to
4339 * have to make transaction reservations for the worst case of every buffer in a
4340 * full size btree as that may be more space that we can fit in the log....
4341 *
4342 * We do the btree walk in the most optimal manner possible - we have sibling
4343 * pointers so we can just walk all the blocks on each level from left to right
4344 * in a single pass, and then move to the next level and do the same. We can
4345 * also do readahead on the sibling pointers to get IO moving more quickly,
4346 * though for slow disks this is unlikely to make much difference to performance
4347 * as the amount of CPU work we have to do before moving to the next block is
4348 * relatively small.
4349 *
4350 * For each btree block that we load, modify the owner appropriately, set the
4351 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4352 * we mark the region we change dirty so that if the buffer is relogged in
4353 * a subsequent transaction the changes we make here as an ordered buffer are
4354 * correctly relogged in that transaction. If we are in recovery context, then
4355 * just queue the modified buffer as delayed write buffer so the transaction
4356 * recovery completion writes the changes to disk.
4357 */
4358struct xfs_btree_block_change_owner_info {
4359 uint64_t new_owner;
4360 struct list_head *buffer_list;
4361};
4362
4363static int
4364xfs_btree_block_change_owner(
4365 struct xfs_btree_cur *cur,
4366 int level,
4367 void *data)
4368{
4369 struct xfs_btree_block_change_owner_info *bbcoi = data;
4370 struct xfs_btree_block *block;
4371 struct xfs_buf *bp;
4372
4373 /* modify the owner */
4374 block = xfs_btree_get_block(cur, level, &bp);
4375 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4376 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4377 return 0;
4378 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4379 } else {
4380 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4381 return 0;
4382 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4383 }
4384
4385 /*
4386 * If the block is a root block hosted in an inode, we might not have a
4387 * buffer pointer here and we shouldn't attempt to log the change as the
4388 * information is already held in the inode and discarded when the root
4389 * block is formatted into the on-disk inode fork. We still change it,
4390 * though, so everything is consistent in memory.
4391 */
4392 if (!bp) {
4393 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4394 ASSERT(level == cur->bc_nlevels - 1);
4395 return 0;
4396 }
4397
4398 if (cur->bc_tp) {
4399 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4400 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4401 return -EAGAIN;
4402 }
4403 } else {
4404 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4405 }
4406
4407 return 0;
4408}
4409
4410int
4411xfs_btree_change_owner(
4412 struct xfs_btree_cur *cur,
4413 uint64_t new_owner,
4414 struct list_head *buffer_list)
4415{
4416 struct xfs_btree_block_change_owner_info bbcoi;
4417
4418 bbcoi.new_owner = new_owner;
4419 bbcoi.buffer_list = buffer_list;
4420
4421 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4422 &bbcoi);
4423}
4424
4425/* Verify the v5 fields of a long-format btree block. */
4426xfs_failaddr_t
4427xfs_btree_lblock_v5hdr_verify(
4428 struct xfs_buf *bp,
4429 uint64_t owner)
4430{
4431 struct xfs_mount *mp = bp->b_target->bt_mount;
4432 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4433
4434 if (!xfs_sb_version_hascrc(&mp->m_sb))
4435 return __this_address;
4436 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4437 return __this_address;
4438 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4439 return __this_address;
4440 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4441 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4442 return __this_address;
4443 return NULL;
4444}
4445
4446/* Verify a long-format btree block. */
4447xfs_failaddr_t
4448xfs_btree_lblock_verify(
4449 struct xfs_buf *bp,
4450 unsigned int max_recs)
4451{
4452 struct xfs_mount *mp = bp->b_target->bt_mount;
4453 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4454
4455 /* numrecs verification */
4456 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4457 return __this_address;
4458
4459 /* sibling pointer verification */
4460 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4461 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4462 return __this_address;
4463 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4464 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4465 return __this_address;
4466
4467 return NULL;
4468}
4469
4470/**
4471 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4472 * btree block
4473 *
4474 * @bp: buffer containing the btree block
4475 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4476 * @pag_max_level: pointer to the per-ag max level field
4477 */
4478xfs_failaddr_t
4479xfs_btree_sblock_v5hdr_verify(
4480 struct xfs_buf *bp)
4481{
4482 struct xfs_mount *mp = bp->b_target->bt_mount;
4483 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4484 struct xfs_perag *pag = bp->b_pag;
4485
4486 if (!xfs_sb_version_hascrc(&mp->m_sb))
4487 return __this_address;
4488 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4489 return __this_address;
4490 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4491 return __this_address;
4492 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4493 return __this_address;
4494 return NULL;
4495}
4496
4497/**
4498 * xfs_btree_sblock_verify() -- verify a short-format btree block
4499 *
4500 * @bp: buffer containing the btree block
4501 * @max_recs: maximum records allowed in this btree node
4502 */
4503xfs_failaddr_t
4504xfs_btree_sblock_verify(
4505 struct xfs_buf *bp,
4506 unsigned int max_recs)
4507{
4508 struct xfs_mount *mp = bp->b_target->bt_mount;
4509 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4510 xfs_agblock_t agno;
4511
4512 /* numrecs verification */
4513 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4514 return __this_address;
4515
4516 /* sibling pointer verification */
4517 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4518 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4519 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4520 return __this_address;
4521 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4522 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4523 return __this_address;
4524
4525 return NULL;
4526}
4527
4528/*
4529 * Calculate the number of btree levels needed to store a given number of
4530 * records in a short-format btree.
4531 */
4532uint
4533xfs_btree_compute_maxlevels(
4534 uint *limits,
4535 unsigned long len)
4536{
4537 uint level;
4538 unsigned long maxblocks;
4539
4540 maxblocks = (len + limits[0] - 1) / limits[0];
4541 for (level = 1; maxblocks > 1; level++)
4542 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4543 return level;
4544}
4545
4546/*
4547 * Query a regular btree for all records overlapping a given interval.
4548 * Start with a LE lookup of the key of low_rec and return all records
4549 * until we find a record with a key greater than the key of high_rec.
4550 */
4551STATIC int
4552xfs_btree_simple_query_range(
4553 struct xfs_btree_cur *cur,
4554 union xfs_btree_key *low_key,
4555 union xfs_btree_key *high_key,
4556 xfs_btree_query_range_fn fn,
4557 void *priv)
4558{
4559 union xfs_btree_rec *recp;
4560 union xfs_btree_key rec_key;
4561 int64_t diff;
4562 int stat;
4563 bool firstrec = true;
4564 int error;
4565
4566 ASSERT(cur->bc_ops->init_high_key_from_rec);
4567 ASSERT(cur->bc_ops->diff_two_keys);
4568
4569 /*
4570 * Find the leftmost record. The btree cursor must be set
4571 * to the low record used to generate low_key.
4572 */
4573 stat = 0;
4574 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4575 if (error)
4576 goto out;
4577
4578 /* Nothing? See if there's anything to the right. */
4579 if (!stat) {
4580 error = xfs_btree_increment(cur, 0, &stat);
4581 if (error)
4582 goto out;
4583 }
4584
4585 while (stat) {
4586 /* Find the record. */
4587 error = xfs_btree_get_rec(cur, &recp, &stat);
4588 if (error || !stat)
4589 break;
4590
4591 /* Skip if high_key(rec) < low_key. */
4592 if (firstrec) {
4593 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4594 firstrec = false;
4595 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4596 &rec_key);
4597 if (diff > 0)
4598 goto advloop;
4599 }
4600
4601 /* Stop if high_key < low_key(rec). */
4602 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4603 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4604 if (diff > 0)
4605 break;
4606
4607 /* Callback */
4608 error = fn(cur, recp, priv);
4609 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4610 break;
4611
4612advloop:
4613 /* Move on to the next record. */
4614 error = xfs_btree_increment(cur, 0, &stat);
4615 if (error)
4616 break;
4617 }
4618
4619out:
4620 return error;
4621}
4622
4623/*
4624 * Query an overlapped interval btree for all records overlapping a given
4625 * interval. This function roughly follows the algorithm given in
4626 * "Interval Trees" of _Introduction to Algorithms_, which is section
4627 * 14.3 in the 2nd and 3rd editions.
4628 *
4629 * First, generate keys for the low and high records passed in.
4630 *
4631 * For any leaf node, generate the high and low keys for the record.
4632 * If the record keys overlap with the query low/high keys, pass the
4633 * record to the function iterator.
4634 *
4635 * For any internal node, compare the low and high keys of each
4636 * pointer against the query low/high keys. If there's an overlap,
4637 * follow the pointer.
4638 *
4639 * As an optimization, we stop scanning a block when we find a low key
4640 * that is greater than the query's high key.
4641 */
4642STATIC int
4643xfs_btree_overlapped_query_range(
4644 struct xfs_btree_cur *cur,
4645 union xfs_btree_key *low_key,
4646 union xfs_btree_key *high_key,
4647 xfs_btree_query_range_fn fn,
4648 void *priv)
4649{
4650 union xfs_btree_ptr ptr;
4651 union xfs_btree_ptr *pp;
4652 union xfs_btree_key rec_key;
4653 union xfs_btree_key rec_hkey;
4654 union xfs_btree_key *lkp;
4655 union xfs_btree_key *hkp;
4656 union xfs_btree_rec *recp;
4657 struct xfs_btree_block *block;
4658 int64_t ldiff;
4659 int64_t hdiff;
4660 int level;
4661 struct xfs_buf *bp;
4662 int i;
4663 int error;
4664
4665 /* Load the root of the btree. */
4666 level = cur->bc_nlevels - 1;
4667 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4668 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4669 if (error)
4670 return error;
4671 xfs_btree_get_block(cur, level, &bp);
4672 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4673#ifdef DEBUG
4674 error = xfs_btree_check_block(cur, block, level, bp);
4675 if (error)
4676 goto out;
4677#endif
4678 cur->bc_ptrs[level] = 1;
4679
4680 while (level < cur->bc_nlevels) {
4681 block = xfs_btree_get_block(cur, level, &bp);
4682
4683 /* End of node, pop back towards the root. */
4684 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4685pop_up:
4686 if (level < cur->bc_nlevels - 1)
4687 cur->bc_ptrs[level + 1]++;
4688 level++;
4689 continue;
4690 }
4691
4692 if (level == 0) {
4693 /* Handle a leaf node. */
4694 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4695
4696 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4697 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4698 low_key);
4699
4700 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4701 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4702 &rec_key);
4703
4704 /*
4705 * If (record's high key >= query's low key) and
4706 * (query's high key >= record's low key), then
4707 * this record overlaps the query range; callback.
4708 */
4709 if (ldiff >= 0 && hdiff >= 0) {
4710 error = fn(cur, recp, priv);
4711 if (error < 0 ||
4712 error == XFS_BTREE_QUERY_RANGE_ABORT)
4713 break;
4714 } else if (hdiff < 0) {
4715 /* Record is larger than high key; pop. */
4716 goto pop_up;
4717 }
4718 cur->bc_ptrs[level]++;
4719 continue;
4720 }
4721
4722 /* Handle an internal node. */
4723 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4724 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4725 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4726
4727 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4728 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4729
4730 /*
4731 * If (pointer's high key >= query's low key) and
4732 * (query's high key >= pointer's low key), then
4733 * this record overlaps the query range; follow pointer.
4734 */
4735 if (ldiff >= 0 && hdiff >= 0) {
4736 level--;
4737 error = xfs_btree_lookup_get_block(cur, level, pp,
4738 &block);
4739 if (error)
4740 goto out;
4741 xfs_btree_get_block(cur, level, &bp);
4742 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4743#ifdef DEBUG
4744 error = xfs_btree_check_block(cur, block, level, bp);
4745 if (error)
4746 goto out;
4747#endif
4748 cur->bc_ptrs[level] = 1;
4749 continue;
4750 } else if (hdiff < 0) {
4751 /* The low key is larger than the upper range; pop. */
4752 goto pop_up;
4753 }
4754 cur->bc_ptrs[level]++;
4755 }
4756
4757out:
4758 /*
4759 * If we don't end this function with the cursor pointing at a record
4760 * block, a subsequent non-error cursor deletion will not release
4761 * node-level buffers, causing a buffer leak. This is quite possible
4762 * with a zero-results range query, so release the buffers if we
4763 * failed to return any results.
4764 */
4765 if (cur->bc_bufs[0] == NULL) {
4766 for (i = 0; i < cur->bc_nlevels; i++) {
4767 if (cur->bc_bufs[i]) {
4768 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4769 cur->bc_bufs[i] = NULL;
4770 cur->bc_ptrs[i] = 0;
4771 cur->bc_ra[i] = 0;
4772 }
4773 }
4774 }
4775
4776 return error;
4777}
4778
4779/*
4780 * Query a btree for all records overlapping a given interval of keys. The
4781 * supplied function will be called with each record found; return one of the
4782 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4783 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4784 * negative error code.
4785 */
4786int
4787xfs_btree_query_range(
4788 struct xfs_btree_cur *cur,
4789 union xfs_btree_irec *low_rec,
4790 union xfs_btree_irec *high_rec,
4791 xfs_btree_query_range_fn fn,
4792 void *priv)
4793{
4794 union xfs_btree_rec rec;
4795 union xfs_btree_key low_key;
4796 union xfs_btree_key high_key;
4797
4798 /* Find the keys of both ends of the interval. */
4799 cur->bc_rec = *high_rec;
4800 cur->bc_ops->init_rec_from_cur(cur, &rec);
4801 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4802
4803 cur->bc_rec = *low_rec;
4804 cur->bc_ops->init_rec_from_cur(cur, &rec);
4805 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4806
4807 /* Enforce low key < high key. */
4808 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4809 return -EINVAL;
4810
4811 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4812 return xfs_btree_simple_query_range(cur, &low_key,
4813 &high_key, fn, priv);
4814 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4815 fn, priv);
4816}
4817
4818/* Query a btree for all records. */
4819int
4820xfs_btree_query_all(
4821 struct xfs_btree_cur *cur,
4822 xfs_btree_query_range_fn fn,
4823 void *priv)
4824{
4825 union xfs_btree_key low_key;
4826 union xfs_btree_key high_key;
4827
4828 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4829 memset(&low_key, 0, sizeof(low_key));
4830 memset(&high_key, 0xFF, sizeof(high_key));
4831
4832 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4833}
4834
4835/*
4836 * Calculate the number of blocks needed to store a given number of records
4837 * in a short-format (per-AG metadata) btree.
4838 */
4839xfs_extlen_t
4840xfs_btree_calc_size(
4841 uint *limits,
4842 unsigned long long len)
4843{
4844 int level;
4845 int maxrecs;
4846 xfs_extlen_t rval;
4847
4848 maxrecs = limits[0];
4849 for (level = 0, rval = 0; len > 1; level++) {
4850 len += maxrecs - 1;
4851 do_div(len, maxrecs);
4852 maxrecs = limits[1];
4853 rval += len;
4854 }
4855 return rval;
4856}
4857
4858static int
4859xfs_btree_count_blocks_helper(
4860 struct xfs_btree_cur *cur,
4861 int level,
4862 void *data)
4863{
4864 xfs_extlen_t *blocks = data;
4865 (*blocks)++;
4866
4867 return 0;
4868}
4869
4870/* Count the blocks in a btree and return the result in *blocks. */
4871int
4872xfs_btree_count_blocks(
4873 struct xfs_btree_cur *cur,
4874 xfs_extlen_t *blocks)
4875{
4876 *blocks = 0;
4877 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4878 blocks);
4879}
4880
4881/* Compare two btree pointers. */
4882int64_t
4883xfs_btree_diff_two_ptrs(
4884 struct xfs_btree_cur *cur,
4885 const union xfs_btree_ptr *a,
4886 const union xfs_btree_ptr *b)
4887{
4888 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4889 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4890 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4891}
4892
4893/* If there's an extent, we're done. */
4894STATIC int
4895xfs_btree_has_record_helper(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_rec *rec,
4898 void *priv)
4899{
4900 return XFS_BTREE_QUERY_RANGE_ABORT;
4901}
4902
4903/* Is there a record covering a given range of keys? */
4904int
4905xfs_btree_has_record(
4906 struct xfs_btree_cur *cur,
4907 union xfs_btree_irec *low,
4908 union xfs_btree_irec *high,
4909 bool *exists)
4910{
4911 int error;
4912
4913 error = xfs_btree_query_range(cur, low, high,
4914 &xfs_btree_has_record_helper, NULL);
4915 if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
4916 *exists = true;
4917 return 0;
4918 }
4919 *exists = false;
4920 return error;
4921}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23
24/*
25 * Cursor allocation zone.
26 */
27kmem_zone_t *xfs_btree_cur_zone;
28
29/*
30 * Btree magic numbers.
31 */
32static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34 XFS_FIBT_MAGIC, 0 },
35 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37 XFS_REFC_CRC_MAGIC }
38};
39
40uint32_t
41xfs_btree_magic(
42 int crc,
43 xfs_btnum_t btnum)
44{
45 uint32_t magic = xfs_magics[crc][btnum];
46
47 /* Ensure we asked for crc for crc-only magics. */
48 ASSERT(magic != 0);
49 return magic;
50}
51
52/*
53 * Check a long btree block header. Return the address of the failing check,
54 * or NULL if everything is ok.
55 */
56xfs_failaddr_t
57__xfs_btree_check_lblock(
58 struct xfs_btree_cur *cur,
59 struct xfs_btree_block *block,
60 int level,
61 struct xfs_buf *bp)
62{
63 struct xfs_mount *mp = cur->bc_mp;
64 xfs_btnum_t btnum = cur->bc_btnum;
65 int crc = xfs_sb_version_hascrc(&mp->m_sb);
66
67 if (crc) {
68 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69 return __this_address;
70 if (block->bb_u.l.bb_blkno !=
71 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72 return __this_address;
73 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74 return __this_address;
75 }
76
77 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78 return __this_address;
79 if (be16_to_cpu(block->bb_level) != level)
80 return __this_address;
81 if (be16_to_cpu(block->bb_numrecs) >
82 cur->bc_ops->get_maxrecs(cur, level))
83 return __this_address;
84 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86 level + 1))
87 return __this_address;
88 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90 level + 1))
91 return __this_address;
92
93 return NULL;
94}
95
96/* Check a long btree block header. */
97static int
98xfs_btree_check_lblock(
99 struct xfs_btree_cur *cur,
100 struct xfs_btree_block *block,
101 int level,
102 struct xfs_buf *bp)
103{
104 struct xfs_mount *mp = cur->bc_mp;
105 xfs_failaddr_t fa;
106
107 fa = __xfs_btree_check_lblock(cur, block, level, bp);
108 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
109 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
110 if (bp)
111 trace_xfs_btree_corrupt(bp, _RET_IP_);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116}
117
118/*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128{
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158}
159
160/* Check a short btree block header. */
161STATIC int
162xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167{
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
173 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180}
181
182/*
183 * Debug routine: check that block header is ok.
184 */
185int
186xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191{
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196}
197
198/* Check that this long pointer is valid and points within the fs. */
199bool
200xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204{
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208}
209
210/* Check that this short pointer is valid and points within the AG. */
211bool
212xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216{
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
220}
221
222/*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226static int
227xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232{
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_private.b.ip->i_ino,
240 cur->bc_private.b.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247"AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_private.a.agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253}
254
255#ifdef DEBUG
256# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257#else
258# define xfs_btree_debug_check_ptr(...) (0)
259#endif
260
261/*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269void
270xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272{
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281}
282
283bool
284xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286{
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297}
298
299/*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307void
308xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310{
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319}
320
321bool
322xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324{
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335}
336
337static int
338xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341{
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350}
351
352/*
353 * Delete the btree cursor.
354 */
355void
356xfs_btree_del_cursor(
357 xfs_btree_cur_t *cur, /* btree cursor */
358 int error) /* del because of error */
359{
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers, and release the buffers.
364 * If we're doing this in the face of an error, we
365 * need to make sure to inspect all of the entries
366 * in the bc_bufs array for buffers to be unlocked.
367 * This is because some of the btree code works from
368 * level n down to 0, and if we get an error along
369 * the way we won't have initialized all the entries
370 * down to 0.
371 */
372 for (i = 0; i < cur->bc_nlevels; i++) {
373 if (cur->bc_bufs[i])
374 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
375 else if (!error)
376 break;
377 }
378 /*
379 * Can't free a bmap cursor without having dealt with the
380 * allocated indirect blocks' accounting.
381 */
382 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
383 cur->bc_private.b.allocated == 0);
384 /*
385 * Free the cursor.
386 */
387 kmem_zone_free(xfs_btree_cur_zone, cur);
388}
389
390/*
391 * Duplicate the btree cursor.
392 * Allocate a new one, copy the record, re-get the buffers.
393 */
394int /* error */
395xfs_btree_dup_cursor(
396 xfs_btree_cur_t *cur, /* input cursor */
397 xfs_btree_cur_t **ncur) /* output cursor */
398{
399 xfs_buf_t *bp; /* btree block's buffer pointer */
400 int error; /* error return value */
401 int i; /* level number of btree block */
402 xfs_mount_t *mp; /* mount structure for filesystem */
403 xfs_btree_cur_t *new; /* new cursor value */
404 xfs_trans_t *tp; /* transaction pointer, can be NULL */
405
406 tp = cur->bc_tp;
407 mp = cur->bc_mp;
408
409 /*
410 * Allocate a new cursor like the old one.
411 */
412 new = cur->bc_ops->dup_cursor(cur);
413
414 /*
415 * Copy the record currently in the cursor.
416 */
417 new->bc_rec = cur->bc_rec;
418
419 /*
420 * For each level current, re-get the buffer and copy the ptr value.
421 */
422 for (i = 0; i < new->bc_nlevels; i++) {
423 new->bc_ptrs[i] = cur->bc_ptrs[i];
424 new->bc_ra[i] = cur->bc_ra[i];
425 bp = cur->bc_bufs[i];
426 if (bp) {
427 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
428 XFS_BUF_ADDR(bp), mp->m_bsize,
429 0, &bp,
430 cur->bc_ops->buf_ops);
431 if (error) {
432 xfs_btree_del_cursor(new, error);
433 *ncur = NULL;
434 return error;
435 }
436 }
437 new->bc_bufs[i] = bp;
438 }
439 *ncur = new;
440 return 0;
441}
442
443/*
444 * XFS btree block layout and addressing:
445 *
446 * There are two types of blocks in the btree: leaf and non-leaf blocks.
447 *
448 * The leaf record start with a header then followed by records containing
449 * the values. A non-leaf block also starts with the same header, and
450 * then first contains lookup keys followed by an equal number of pointers
451 * to the btree blocks at the previous level.
452 *
453 * +--------+-------+-------+-------+-------+-------+-------+
454 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
455 * +--------+-------+-------+-------+-------+-------+-------+
456 *
457 * +--------+-------+-------+-------+-------+-------+-------+
458 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
459 * +--------+-------+-------+-------+-------+-------+-------+
460 *
461 * The header is called struct xfs_btree_block for reasons better left unknown
462 * and comes in different versions for short (32bit) and long (64bit) block
463 * pointers. The record and key structures are defined by the btree instances
464 * and opaque to the btree core. The block pointers are simple disk endian
465 * integers, available in a short (32bit) and long (64bit) variant.
466 *
467 * The helpers below calculate the offset of a given record, key or pointer
468 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
469 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
470 * inside the btree block is done using indices starting at one, not zero!
471 *
472 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
473 * overlapping intervals. In such a tree, records are still sorted lowest to
474 * highest and indexed by the smallest key value that refers to the record.
475 * However, nodes are different: each pointer has two associated keys -- one
476 * indexing the lowest key available in the block(s) below (the same behavior
477 * as the key in a regular btree) and another indexing the highest key
478 * available in the block(s) below. Because records are /not/ sorted by the
479 * highest key, all leaf block updates require us to compute the highest key
480 * that matches any record in the leaf and to recursively update the high keys
481 * in the nodes going further up in the tree, if necessary. Nodes look like
482 * this:
483 *
484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
486 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
487 *
488 * To perform an interval query on an overlapped tree, perform the usual
489 * depth-first search and use the low and high keys to decide if we can skip
490 * that particular node. If a leaf node is reached, return the records that
491 * intersect the interval. Note that an interval query may return numerous
492 * entries. For a non-overlapped tree, simply search for the record associated
493 * with the lowest key and iterate forward until a non-matching record is
494 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
495 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
496 * more detail.
497 *
498 * Why do we care about overlapping intervals? Let's say you have a bunch of
499 * reverse mapping records on a reflink filesystem:
500 *
501 * 1: +- file A startblock B offset C length D -----------+
502 * 2: +- file E startblock F offset G length H --------------+
503 * 3: +- file I startblock F offset J length K --+
504 * 4: +- file L... --+
505 *
506 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
507 * we'd simply increment the length of record 1. But how do we find the record
508 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
509 * record 3 because the keys are ordered first by startblock. An interval
510 * query would return records 1 and 2 because they both overlap (B+D-1), and
511 * from that we can pick out record 1 as the appropriate left neighbor.
512 *
513 * In the non-overlapped case you can do a LE lookup and decrement the cursor
514 * because a record's interval must end before the next record.
515 */
516
517/*
518 * Return size of the btree block header for this btree instance.
519 */
520static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
521{
522 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
523 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
524 return XFS_BTREE_LBLOCK_CRC_LEN;
525 return XFS_BTREE_LBLOCK_LEN;
526 }
527 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
528 return XFS_BTREE_SBLOCK_CRC_LEN;
529 return XFS_BTREE_SBLOCK_LEN;
530}
531
532/*
533 * Return size of btree block pointers for this btree instance.
534 */
535static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
536{
537 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
538 sizeof(__be64) : sizeof(__be32);
539}
540
541/*
542 * Calculate offset of the n-th record in a btree block.
543 */
544STATIC size_t
545xfs_btree_rec_offset(
546 struct xfs_btree_cur *cur,
547 int n)
548{
549 return xfs_btree_block_len(cur) +
550 (n - 1) * cur->bc_ops->rec_len;
551}
552
553/*
554 * Calculate offset of the n-th key in a btree block.
555 */
556STATIC size_t
557xfs_btree_key_offset(
558 struct xfs_btree_cur *cur,
559 int n)
560{
561 return xfs_btree_block_len(cur) +
562 (n - 1) * cur->bc_ops->key_len;
563}
564
565/*
566 * Calculate offset of the n-th high key in a btree block.
567 */
568STATIC size_t
569xfs_btree_high_key_offset(
570 struct xfs_btree_cur *cur,
571 int n)
572{
573 return xfs_btree_block_len(cur) +
574 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
575}
576
577/*
578 * Calculate offset of the n-th block pointer in a btree block.
579 */
580STATIC size_t
581xfs_btree_ptr_offset(
582 struct xfs_btree_cur *cur,
583 int n,
584 int level)
585{
586 return xfs_btree_block_len(cur) +
587 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
588 (n - 1) * xfs_btree_ptr_len(cur);
589}
590
591/*
592 * Return a pointer to the n-th record in the btree block.
593 */
594union xfs_btree_rec *
595xfs_btree_rec_addr(
596 struct xfs_btree_cur *cur,
597 int n,
598 struct xfs_btree_block *block)
599{
600 return (union xfs_btree_rec *)
601 ((char *)block + xfs_btree_rec_offset(cur, n));
602}
603
604/*
605 * Return a pointer to the n-th key in the btree block.
606 */
607union xfs_btree_key *
608xfs_btree_key_addr(
609 struct xfs_btree_cur *cur,
610 int n,
611 struct xfs_btree_block *block)
612{
613 return (union xfs_btree_key *)
614 ((char *)block + xfs_btree_key_offset(cur, n));
615}
616
617/*
618 * Return a pointer to the n-th high key in the btree block.
619 */
620union xfs_btree_key *
621xfs_btree_high_key_addr(
622 struct xfs_btree_cur *cur,
623 int n,
624 struct xfs_btree_block *block)
625{
626 return (union xfs_btree_key *)
627 ((char *)block + xfs_btree_high_key_offset(cur, n));
628}
629
630/*
631 * Return a pointer to the n-th block pointer in the btree block.
632 */
633union xfs_btree_ptr *
634xfs_btree_ptr_addr(
635 struct xfs_btree_cur *cur,
636 int n,
637 struct xfs_btree_block *block)
638{
639 int level = xfs_btree_get_level(block);
640
641 ASSERT(block->bb_level != 0);
642
643 return (union xfs_btree_ptr *)
644 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
645}
646
647/*
648 * Get the root block which is stored in the inode.
649 *
650 * For now this btree implementation assumes the btree root is always
651 * stored in the if_broot field of an inode fork.
652 */
653STATIC struct xfs_btree_block *
654xfs_btree_get_iroot(
655 struct xfs_btree_cur *cur)
656{
657 struct xfs_ifork *ifp;
658
659 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
660 return (struct xfs_btree_block *)ifp->if_broot;
661}
662
663/*
664 * Retrieve the block pointer from the cursor at the given level.
665 * This may be an inode btree root or from a buffer.
666 */
667struct xfs_btree_block * /* generic btree block pointer */
668xfs_btree_get_block(
669 struct xfs_btree_cur *cur, /* btree cursor */
670 int level, /* level in btree */
671 struct xfs_buf **bpp) /* buffer containing the block */
672{
673 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
674 (level == cur->bc_nlevels - 1)) {
675 *bpp = NULL;
676 return xfs_btree_get_iroot(cur);
677 }
678
679 *bpp = cur->bc_bufs[level];
680 return XFS_BUF_TO_BLOCK(*bpp);
681}
682
683/*
684 * Get a buffer for the block, return it with no data read.
685 * Long-form addressing.
686 */
687xfs_buf_t * /* buffer for fsbno */
688xfs_btree_get_bufl(
689 xfs_mount_t *mp, /* file system mount point */
690 xfs_trans_t *tp, /* transaction pointer */
691 xfs_fsblock_t fsbno) /* file system block number */
692{
693 xfs_daddr_t d; /* real disk block address */
694
695 ASSERT(fsbno != NULLFSBLOCK);
696 d = XFS_FSB_TO_DADDR(mp, fsbno);
697 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
698}
699
700/*
701 * Get a buffer for the block, return it with no data read.
702 * Short-form addressing.
703 */
704xfs_buf_t * /* buffer for agno/agbno */
705xfs_btree_get_bufs(
706 xfs_mount_t *mp, /* file system mount point */
707 xfs_trans_t *tp, /* transaction pointer */
708 xfs_agnumber_t agno, /* allocation group number */
709 xfs_agblock_t agbno) /* allocation group block number */
710{
711 xfs_daddr_t d; /* real disk block address */
712
713 ASSERT(agno != NULLAGNUMBER);
714 ASSERT(agbno != NULLAGBLOCK);
715 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
716 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
717}
718
719/*
720 * Check for the cursor referring to the last block at the given level.
721 */
722int /* 1=is last block, 0=not last block */
723xfs_btree_islastblock(
724 xfs_btree_cur_t *cur, /* btree cursor */
725 int level) /* level to check */
726{
727 struct xfs_btree_block *block; /* generic btree block pointer */
728 xfs_buf_t *bp; /* buffer containing block */
729
730 block = xfs_btree_get_block(cur, level, &bp);
731 xfs_btree_check_block(cur, block, level, bp);
732 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
733 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
734 else
735 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
736}
737
738/*
739 * Change the cursor to point to the first record at the given level.
740 * Other levels are unaffected.
741 */
742STATIC int /* success=1, failure=0 */
743xfs_btree_firstrec(
744 xfs_btree_cur_t *cur, /* btree cursor */
745 int level) /* level to change */
746{
747 struct xfs_btree_block *block; /* generic btree block pointer */
748 xfs_buf_t *bp; /* buffer containing block */
749
750 /*
751 * Get the block pointer for this level.
752 */
753 block = xfs_btree_get_block(cur, level, &bp);
754 if (xfs_btree_check_block(cur, block, level, bp))
755 return 0;
756 /*
757 * It's empty, there is no such record.
758 */
759 if (!block->bb_numrecs)
760 return 0;
761 /*
762 * Set the ptr value to 1, that's the first record/key.
763 */
764 cur->bc_ptrs[level] = 1;
765 return 1;
766}
767
768/*
769 * Change the cursor to point to the last record in the current block
770 * at the given level. Other levels are unaffected.
771 */
772STATIC int /* success=1, failure=0 */
773xfs_btree_lastrec(
774 xfs_btree_cur_t *cur, /* btree cursor */
775 int level) /* level to change */
776{
777 struct xfs_btree_block *block; /* generic btree block pointer */
778 xfs_buf_t *bp; /* buffer containing block */
779
780 /*
781 * Get the block pointer for this level.
782 */
783 block = xfs_btree_get_block(cur, level, &bp);
784 if (xfs_btree_check_block(cur, block, level, bp))
785 return 0;
786 /*
787 * It's empty, there is no such record.
788 */
789 if (!block->bb_numrecs)
790 return 0;
791 /*
792 * Set the ptr value to numrecs, that's the last record/key.
793 */
794 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
795 return 1;
796}
797
798/*
799 * Compute first and last byte offsets for the fields given.
800 * Interprets the offsets table, which contains struct field offsets.
801 */
802void
803xfs_btree_offsets(
804 int64_t fields, /* bitmask of fields */
805 const short *offsets, /* table of field offsets */
806 int nbits, /* number of bits to inspect */
807 int *first, /* output: first byte offset */
808 int *last) /* output: last byte offset */
809{
810 int i; /* current bit number */
811 int64_t imask; /* mask for current bit number */
812
813 ASSERT(fields != 0);
814 /*
815 * Find the lowest bit, so the first byte offset.
816 */
817 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
818 if (imask & fields) {
819 *first = offsets[i];
820 break;
821 }
822 }
823 /*
824 * Find the highest bit, so the last byte offset.
825 */
826 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
827 if (imask & fields) {
828 *last = offsets[i + 1] - 1;
829 break;
830 }
831 }
832}
833
834/*
835 * Get a buffer for the block, return it read in.
836 * Long-form addressing.
837 */
838int
839xfs_btree_read_bufl(
840 struct xfs_mount *mp, /* file system mount point */
841 struct xfs_trans *tp, /* transaction pointer */
842 xfs_fsblock_t fsbno, /* file system block number */
843 struct xfs_buf **bpp, /* buffer for fsbno */
844 int refval, /* ref count value for buffer */
845 const struct xfs_buf_ops *ops)
846{
847 struct xfs_buf *bp; /* return value */
848 xfs_daddr_t d; /* real disk block address */
849 int error;
850
851 if (!xfs_verify_fsbno(mp, fsbno))
852 return -EFSCORRUPTED;
853 d = XFS_FSB_TO_DADDR(mp, fsbno);
854 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
855 mp->m_bsize, 0, &bp, ops);
856 if (error)
857 return error;
858 if (bp)
859 xfs_buf_set_ref(bp, refval);
860 *bpp = bp;
861 return 0;
862}
863
864/*
865 * Read-ahead the block, don't wait for it, don't return a buffer.
866 * Long-form addressing.
867 */
868/* ARGSUSED */
869void
870xfs_btree_reada_bufl(
871 struct xfs_mount *mp, /* file system mount point */
872 xfs_fsblock_t fsbno, /* file system block number */
873 xfs_extlen_t count, /* count of filesystem blocks */
874 const struct xfs_buf_ops *ops)
875{
876 xfs_daddr_t d;
877
878 ASSERT(fsbno != NULLFSBLOCK);
879 d = XFS_FSB_TO_DADDR(mp, fsbno);
880 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
881}
882
883/*
884 * Read-ahead the block, don't wait for it, don't return a buffer.
885 * Short-form addressing.
886 */
887/* ARGSUSED */
888void
889xfs_btree_reada_bufs(
890 struct xfs_mount *mp, /* file system mount point */
891 xfs_agnumber_t agno, /* allocation group number */
892 xfs_agblock_t agbno, /* allocation group block number */
893 xfs_extlen_t count, /* count of filesystem blocks */
894 const struct xfs_buf_ops *ops)
895{
896 xfs_daddr_t d;
897
898 ASSERT(agno != NULLAGNUMBER);
899 ASSERT(agbno != NULLAGBLOCK);
900 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
901 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
902}
903
904STATIC int
905xfs_btree_readahead_lblock(
906 struct xfs_btree_cur *cur,
907 int lr,
908 struct xfs_btree_block *block)
909{
910 int rval = 0;
911 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
912 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
913
914 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
915 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
916 cur->bc_ops->buf_ops);
917 rval++;
918 }
919
920 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
921 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
922 cur->bc_ops->buf_ops);
923 rval++;
924 }
925
926 return rval;
927}
928
929STATIC int
930xfs_btree_readahead_sblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934{
935 int rval = 0;
936 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
937 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
938
939
940 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
941 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
942 left, 1, cur->bc_ops->buf_ops);
943 rval++;
944 }
945
946 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
947 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
948 right, 1, cur->bc_ops->buf_ops);
949 rval++;
950 }
951
952 return rval;
953}
954
955/*
956 * Read-ahead btree blocks, at the given level.
957 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
958 */
959STATIC int
960xfs_btree_readahead(
961 struct xfs_btree_cur *cur, /* btree cursor */
962 int lev, /* level in btree */
963 int lr) /* left/right bits */
964{
965 struct xfs_btree_block *block;
966
967 /*
968 * No readahead needed if we are at the root level and the
969 * btree root is stored in the inode.
970 */
971 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
972 (lev == cur->bc_nlevels - 1))
973 return 0;
974
975 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
976 return 0;
977
978 cur->bc_ra[lev] |= lr;
979 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
980
981 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
982 return xfs_btree_readahead_lblock(cur, lr, block);
983 return xfs_btree_readahead_sblock(cur, lr, block);
984}
985
986STATIC int
987xfs_btree_ptr_to_daddr(
988 struct xfs_btree_cur *cur,
989 union xfs_btree_ptr *ptr,
990 xfs_daddr_t *daddr)
991{
992 xfs_fsblock_t fsbno;
993 xfs_agblock_t agbno;
994 int error;
995
996 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
997 if (error)
998 return error;
999
1000 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001 fsbno = be64_to_cpu(ptr->l);
1002 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1003 } else {
1004 agbno = be32_to_cpu(ptr->s);
1005 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
1006 agbno);
1007 }
1008
1009 return 0;
1010}
1011
1012/*
1013 * Readahead @count btree blocks at the given @ptr location.
1014 *
1015 * We don't need to care about long or short form btrees here as we have a
1016 * method of converting the ptr directly to a daddr available to us.
1017 */
1018STATIC void
1019xfs_btree_readahead_ptr(
1020 struct xfs_btree_cur *cur,
1021 union xfs_btree_ptr *ptr,
1022 xfs_extlen_t count)
1023{
1024 xfs_daddr_t daddr;
1025
1026 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1027 return;
1028 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1029 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1030}
1031
1032/*
1033 * Set the buffer for level "lev" in the cursor to bp, releasing
1034 * any previous buffer.
1035 */
1036STATIC void
1037xfs_btree_setbuf(
1038 xfs_btree_cur_t *cur, /* btree cursor */
1039 int lev, /* level in btree */
1040 xfs_buf_t *bp) /* new buffer to set */
1041{
1042 struct xfs_btree_block *b; /* btree block */
1043
1044 if (cur->bc_bufs[lev])
1045 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1046 cur->bc_bufs[lev] = bp;
1047 cur->bc_ra[lev] = 0;
1048
1049 b = XFS_BUF_TO_BLOCK(bp);
1050 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1052 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1053 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1054 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1055 } else {
1056 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1057 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1058 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1059 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1060 }
1061}
1062
1063bool
1064xfs_btree_ptr_is_null(
1065 struct xfs_btree_cur *cur,
1066 union xfs_btree_ptr *ptr)
1067{
1068 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1069 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1070 else
1071 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1072}
1073
1074STATIC void
1075xfs_btree_set_ptr_null(
1076 struct xfs_btree_cur *cur,
1077 union xfs_btree_ptr *ptr)
1078{
1079 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1080 ptr->l = cpu_to_be64(NULLFSBLOCK);
1081 else
1082 ptr->s = cpu_to_be32(NULLAGBLOCK);
1083}
1084
1085/*
1086 * Get/set/init sibling pointers
1087 */
1088void
1089xfs_btree_get_sibling(
1090 struct xfs_btree_cur *cur,
1091 struct xfs_btree_block *block,
1092 union xfs_btree_ptr *ptr,
1093 int lr)
1094{
1095 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1096
1097 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1098 if (lr == XFS_BB_RIGHTSIB)
1099 ptr->l = block->bb_u.l.bb_rightsib;
1100 else
1101 ptr->l = block->bb_u.l.bb_leftsib;
1102 } else {
1103 if (lr == XFS_BB_RIGHTSIB)
1104 ptr->s = block->bb_u.s.bb_rightsib;
1105 else
1106 ptr->s = block->bb_u.s.bb_leftsib;
1107 }
1108}
1109
1110STATIC void
1111xfs_btree_set_sibling(
1112 struct xfs_btree_cur *cur,
1113 struct xfs_btree_block *block,
1114 union xfs_btree_ptr *ptr,
1115 int lr)
1116{
1117 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1118
1119 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1120 if (lr == XFS_BB_RIGHTSIB)
1121 block->bb_u.l.bb_rightsib = ptr->l;
1122 else
1123 block->bb_u.l.bb_leftsib = ptr->l;
1124 } else {
1125 if (lr == XFS_BB_RIGHTSIB)
1126 block->bb_u.s.bb_rightsib = ptr->s;
1127 else
1128 block->bb_u.s.bb_leftsib = ptr->s;
1129 }
1130}
1131
1132void
1133xfs_btree_init_block_int(
1134 struct xfs_mount *mp,
1135 struct xfs_btree_block *buf,
1136 xfs_daddr_t blkno,
1137 xfs_btnum_t btnum,
1138 __u16 level,
1139 __u16 numrecs,
1140 __u64 owner,
1141 unsigned int flags)
1142{
1143 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1144 __u32 magic = xfs_btree_magic(crc, btnum);
1145
1146 buf->bb_magic = cpu_to_be32(magic);
1147 buf->bb_level = cpu_to_be16(level);
1148 buf->bb_numrecs = cpu_to_be16(numrecs);
1149
1150 if (flags & XFS_BTREE_LONG_PTRS) {
1151 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1152 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1153 if (crc) {
1154 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1155 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1156 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1157 buf->bb_u.l.bb_pad = 0;
1158 buf->bb_u.l.bb_lsn = 0;
1159 }
1160 } else {
1161 /* owner is a 32 bit value on short blocks */
1162 __u32 __owner = (__u32)owner;
1163
1164 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1165 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1166 if (crc) {
1167 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1168 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1169 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1170 buf->bb_u.s.bb_lsn = 0;
1171 }
1172 }
1173}
1174
1175void
1176xfs_btree_init_block(
1177 struct xfs_mount *mp,
1178 struct xfs_buf *bp,
1179 xfs_btnum_t btnum,
1180 __u16 level,
1181 __u16 numrecs,
1182 __u64 owner)
1183{
1184 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1185 btnum, level, numrecs, owner, 0);
1186}
1187
1188STATIC void
1189xfs_btree_init_block_cur(
1190 struct xfs_btree_cur *cur,
1191 struct xfs_buf *bp,
1192 int level,
1193 int numrecs)
1194{
1195 __u64 owner;
1196
1197 /*
1198 * we can pull the owner from the cursor right now as the different
1199 * owners align directly with the pointer size of the btree. This may
1200 * change in future, but is safe for current users of the generic btree
1201 * code.
1202 */
1203 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1204 owner = cur->bc_private.b.ip->i_ino;
1205 else
1206 owner = cur->bc_private.a.agno;
1207
1208 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1209 cur->bc_btnum, level, numrecs,
1210 owner, cur->bc_flags);
1211}
1212
1213/*
1214 * Return true if ptr is the last record in the btree and
1215 * we need to track updates to this record. The decision
1216 * will be further refined in the update_lastrec method.
1217 */
1218STATIC int
1219xfs_btree_is_lastrec(
1220 struct xfs_btree_cur *cur,
1221 struct xfs_btree_block *block,
1222 int level)
1223{
1224 union xfs_btree_ptr ptr;
1225
1226 if (level > 0)
1227 return 0;
1228 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1229 return 0;
1230
1231 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1232 if (!xfs_btree_ptr_is_null(cur, &ptr))
1233 return 0;
1234 return 1;
1235}
1236
1237STATIC void
1238xfs_btree_buf_to_ptr(
1239 struct xfs_btree_cur *cur,
1240 struct xfs_buf *bp,
1241 union xfs_btree_ptr *ptr)
1242{
1243 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1244 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1245 XFS_BUF_ADDR(bp)));
1246 else {
1247 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1248 XFS_BUF_ADDR(bp)));
1249 }
1250}
1251
1252STATIC void
1253xfs_btree_set_refs(
1254 struct xfs_btree_cur *cur,
1255 struct xfs_buf *bp)
1256{
1257 switch (cur->bc_btnum) {
1258 case XFS_BTNUM_BNO:
1259 case XFS_BTNUM_CNT:
1260 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1261 break;
1262 case XFS_BTNUM_INO:
1263 case XFS_BTNUM_FINO:
1264 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1265 break;
1266 case XFS_BTNUM_BMAP:
1267 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1268 break;
1269 case XFS_BTNUM_RMAP:
1270 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1271 break;
1272 case XFS_BTNUM_REFC:
1273 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1274 break;
1275 default:
1276 ASSERT(0);
1277 }
1278}
1279
1280STATIC int
1281xfs_btree_get_buf_block(
1282 struct xfs_btree_cur *cur,
1283 union xfs_btree_ptr *ptr,
1284 struct xfs_btree_block **block,
1285 struct xfs_buf **bpp)
1286{
1287 struct xfs_mount *mp = cur->bc_mp;
1288 xfs_daddr_t d;
1289 int error;
1290
1291 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1292 if (error)
1293 return error;
1294 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1295 mp->m_bsize, 0);
1296
1297 if (!*bpp)
1298 return -ENOMEM;
1299
1300 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1301 *block = XFS_BUF_TO_BLOCK(*bpp);
1302 return 0;
1303}
1304
1305/*
1306 * Read in the buffer at the given ptr and return the buffer and
1307 * the block pointer within the buffer.
1308 */
1309STATIC int
1310xfs_btree_read_buf_block(
1311 struct xfs_btree_cur *cur,
1312 union xfs_btree_ptr *ptr,
1313 int flags,
1314 struct xfs_btree_block **block,
1315 struct xfs_buf **bpp)
1316{
1317 struct xfs_mount *mp = cur->bc_mp;
1318 xfs_daddr_t d;
1319 int error;
1320
1321 /* need to sort out how callers deal with failures first */
1322 ASSERT(!(flags & XBF_TRYLOCK));
1323
1324 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1325 if (error)
1326 return error;
1327 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1328 mp->m_bsize, flags, bpp,
1329 cur->bc_ops->buf_ops);
1330 if (error)
1331 return error;
1332
1333 xfs_btree_set_refs(cur, *bpp);
1334 *block = XFS_BUF_TO_BLOCK(*bpp);
1335 return 0;
1336}
1337
1338/*
1339 * Copy keys from one btree block to another.
1340 */
1341STATIC void
1342xfs_btree_copy_keys(
1343 struct xfs_btree_cur *cur,
1344 union xfs_btree_key *dst_key,
1345 union xfs_btree_key *src_key,
1346 int numkeys)
1347{
1348 ASSERT(numkeys >= 0);
1349 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1350}
1351
1352/*
1353 * Copy records from one btree block to another.
1354 */
1355STATIC void
1356xfs_btree_copy_recs(
1357 struct xfs_btree_cur *cur,
1358 union xfs_btree_rec *dst_rec,
1359 union xfs_btree_rec *src_rec,
1360 int numrecs)
1361{
1362 ASSERT(numrecs >= 0);
1363 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1364}
1365
1366/*
1367 * Copy block pointers from one btree block to another.
1368 */
1369STATIC void
1370xfs_btree_copy_ptrs(
1371 struct xfs_btree_cur *cur,
1372 union xfs_btree_ptr *dst_ptr,
1373 union xfs_btree_ptr *src_ptr,
1374 int numptrs)
1375{
1376 ASSERT(numptrs >= 0);
1377 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1378}
1379
1380/*
1381 * Shift keys one index left/right inside a single btree block.
1382 */
1383STATIC void
1384xfs_btree_shift_keys(
1385 struct xfs_btree_cur *cur,
1386 union xfs_btree_key *key,
1387 int dir,
1388 int numkeys)
1389{
1390 char *dst_key;
1391
1392 ASSERT(numkeys >= 0);
1393 ASSERT(dir == 1 || dir == -1);
1394
1395 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1396 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1397}
1398
1399/*
1400 * Shift records one index left/right inside a single btree block.
1401 */
1402STATIC void
1403xfs_btree_shift_recs(
1404 struct xfs_btree_cur *cur,
1405 union xfs_btree_rec *rec,
1406 int dir,
1407 int numrecs)
1408{
1409 char *dst_rec;
1410
1411 ASSERT(numrecs >= 0);
1412 ASSERT(dir == 1 || dir == -1);
1413
1414 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1415 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1416}
1417
1418/*
1419 * Shift block pointers one index left/right inside a single btree block.
1420 */
1421STATIC void
1422xfs_btree_shift_ptrs(
1423 struct xfs_btree_cur *cur,
1424 union xfs_btree_ptr *ptr,
1425 int dir,
1426 int numptrs)
1427{
1428 char *dst_ptr;
1429
1430 ASSERT(numptrs >= 0);
1431 ASSERT(dir == 1 || dir == -1);
1432
1433 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1434 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1435}
1436
1437/*
1438 * Log key values from the btree block.
1439 */
1440STATIC void
1441xfs_btree_log_keys(
1442 struct xfs_btree_cur *cur,
1443 struct xfs_buf *bp,
1444 int first,
1445 int last)
1446{
1447
1448 if (bp) {
1449 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1450 xfs_trans_log_buf(cur->bc_tp, bp,
1451 xfs_btree_key_offset(cur, first),
1452 xfs_btree_key_offset(cur, last + 1) - 1);
1453 } else {
1454 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1455 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1456 }
1457}
1458
1459/*
1460 * Log record values from the btree block.
1461 */
1462void
1463xfs_btree_log_recs(
1464 struct xfs_btree_cur *cur,
1465 struct xfs_buf *bp,
1466 int first,
1467 int last)
1468{
1469
1470 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1471 xfs_trans_log_buf(cur->bc_tp, bp,
1472 xfs_btree_rec_offset(cur, first),
1473 xfs_btree_rec_offset(cur, last + 1) - 1);
1474
1475}
1476
1477/*
1478 * Log block pointer fields from a btree block (nonleaf).
1479 */
1480STATIC void
1481xfs_btree_log_ptrs(
1482 struct xfs_btree_cur *cur, /* btree cursor */
1483 struct xfs_buf *bp, /* buffer containing btree block */
1484 int first, /* index of first pointer to log */
1485 int last) /* index of last pointer to log */
1486{
1487
1488 if (bp) {
1489 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1490 int level = xfs_btree_get_level(block);
1491
1492 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1493 xfs_trans_log_buf(cur->bc_tp, bp,
1494 xfs_btree_ptr_offset(cur, first, level),
1495 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1496 } else {
1497 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1498 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1499 }
1500
1501}
1502
1503/*
1504 * Log fields from a btree block header.
1505 */
1506void
1507xfs_btree_log_block(
1508 struct xfs_btree_cur *cur, /* btree cursor */
1509 struct xfs_buf *bp, /* buffer containing btree block */
1510 int fields) /* mask of fields: XFS_BB_... */
1511{
1512 int first; /* first byte offset logged */
1513 int last; /* last byte offset logged */
1514 static const short soffsets[] = { /* table of offsets (short) */
1515 offsetof(struct xfs_btree_block, bb_magic),
1516 offsetof(struct xfs_btree_block, bb_level),
1517 offsetof(struct xfs_btree_block, bb_numrecs),
1518 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1519 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1520 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1521 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1522 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1523 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1524 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1525 XFS_BTREE_SBLOCK_CRC_LEN
1526 };
1527 static const short loffsets[] = { /* table of offsets (long) */
1528 offsetof(struct xfs_btree_block, bb_magic),
1529 offsetof(struct xfs_btree_block, bb_level),
1530 offsetof(struct xfs_btree_block, bb_numrecs),
1531 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1532 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1533 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1534 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1535 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1536 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1537 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1538 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1539 XFS_BTREE_LBLOCK_CRC_LEN
1540 };
1541
1542 if (bp) {
1543 int nbits;
1544
1545 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1546 /*
1547 * We don't log the CRC when updating a btree
1548 * block but instead recreate it during log
1549 * recovery. As the log buffers have checksums
1550 * of their own this is safe and avoids logging a crc
1551 * update in a lot of places.
1552 */
1553 if (fields == XFS_BB_ALL_BITS)
1554 fields = XFS_BB_ALL_BITS_CRC;
1555 nbits = XFS_BB_NUM_BITS_CRC;
1556 } else {
1557 nbits = XFS_BB_NUM_BITS;
1558 }
1559 xfs_btree_offsets(fields,
1560 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1561 loffsets : soffsets,
1562 nbits, &first, &last);
1563 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1565 } else {
1566 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1567 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1568 }
1569}
1570
1571/*
1572 * Increment cursor by one record at the level.
1573 * For nonzero levels the leaf-ward information is untouched.
1574 */
1575int /* error */
1576xfs_btree_increment(
1577 struct xfs_btree_cur *cur,
1578 int level,
1579 int *stat) /* success/failure */
1580{
1581 struct xfs_btree_block *block;
1582 union xfs_btree_ptr ptr;
1583 struct xfs_buf *bp;
1584 int error; /* error return value */
1585 int lev;
1586
1587 ASSERT(level < cur->bc_nlevels);
1588
1589 /* Read-ahead to the right at this level. */
1590 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1591
1592 /* Get a pointer to the btree block. */
1593 block = xfs_btree_get_block(cur, level, &bp);
1594
1595#ifdef DEBUG
1596 error = xfs_btree_check_block(cur, block, level, bp);
1597 if (error)
1598 goto error0;
1599#endif
1600
1601 /* We're done if we remain in the block after the increment. */
1602 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1603 goto out1;
1604
1605 /* Fail if we just went off the right edge of the tree. */
1606 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1607 if (xfs_btree_ptr_is_null(cur, &ptr))
1608 goto out0;
1609
1610 XFS_BTREE_STATS_INC(cur, increment);
1611
1612 /*
1613 * March up the tree incrementing pointers.
1614 * Stop when we don't go off the right edge of a block.
1615 */
1616 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1617 block = xfs_btree_get_block(cur, lev, &bp);
1618
1619#ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, lev, bp);
1621 if (error)
1622 goto error0;
1623#endif
1624
1625 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1626 break;
1627
1628 /* Read-ahead the right block for the next loop. */
1629 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1630 }
1631
1632 /*
1633 * If we went off the root then we are either seriously
1634 * confused or have the tree root in an inode.
1635 */
1636 if (lev == cur->bc_nlevels) {
1637 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1638 goto out0;
1639 ASSERT(0);
1640 error = -EFSCORRUPTED;
1641 goto error0;
1642 }
1643 ASSERT(lev < cur->bc_nlevels);
1644
1645 /*
1646 * Now walk back down the tree, fixing up the cursor's buffer
1647 * pointers and key numbers.
1648 */
1649 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1650 union xfs_btree_ptr *ptrp;
1651
1652 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1653 --lev;
1654 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1655 if (error)
1656 goto error0;
1657
1658 xfs_btree_setbuf(cur, lev, bp);
1659 cur->bc_ptrs[lev] = 1;
1660 }
1661out1:
1662 *stat = 1;
1663 return 0;
1664
1665out0:
1666 *stat = 0;
1667 return 0;
1668
1669error0:
1670 return error;
1671}
1672
1673/*
1674 * Decrement cursor by one record at the level.
1675 * For nonzero levels the leaf-ward information is untouched.
1676 */
1677int /* error */
1678xfs_btree_decrement(
1679 struct xfs_btree_cur *cur,
1680 int level,
1681 int *stat) /* success/failure */
1682{
1683 struct xfs_btree_block *block;
1684 xfs_buf_t *bp;
1685 int error; /* error return value */
1686 int lev;
1687 union xfs_btree_ptr ptr;
1688
1689 ASSERT(level < cur->bc_nlevels);
1690
1691 /* Read-ahead to the left at this level. */
1692 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1693
1694 /* We're done if we remain in the block after the decrement. */
1695 if (--cur->bc_ptrs[level] > 0)
1696 goto out1;
1697
1698 /* Get a pointer to the btree block. */
1699 block = xfs_btree_get_block(cur, level, &bp);
1700
1701#ifdef DEBUG
1702 error = xfs_btree_check_block(cur, block, level, bp);
1703 if (error)
1704 goto error0;
1705#endif
1706
1707 /* Fail if we just went off the left edge of the tree. */
1708 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1709 if (xfs_btree_ptr_is_null(cur, &ptr))
1710 goto out0;
1711
1712 XFS_BTREE_STATS_INC(cur, decrement);
1713
1714 /*
1715 * March up the tree decrementing pointers.
1716 * Stop when we don't go off the left edge of a block.
1717 */
1718 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1719 if (--cur->bc_ptrs[lev] > 0)
1720 break;
1721 /* Read-ahead the left block for the next loop. */
1722 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1723 }
1724
1725 /*
1726 * If we went off the root then we are seriously confused.
1727 * or the root of the tree is in an inode.
1728 */
1729 if (lev == cur->bc_nlevels) {
1730 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1731 goto out0;
1732 ASSERT(0);
1733 error = -EFSCORRUPTED;
1734 goto error0;
1735 }
1736 ASSERT(lev < cur->bc_nlevels);
1737
1738 /*
1739 * Now walk back down the tree, fixing up the cursor's buffer
1740 * pointers and key numbers.
1741 */
1742 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1743 union xfs_btree_ptr *ptrp;
1744
1745 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1746 --lev;
1747 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1748 if (error)
1749 goto error0;
1750 xfs_btree_setbuf(cur, lev, bp);
1751 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1752 }
1753out1:
1754 *stat = 1;
1755 return 0;
1756
1757out0:
1758 *stat = 0;
1759 return 0;
1760
1761error0:
1762 return error;
1763}
1764
1765int
1766xfs_btree_lookup_get_block(
1767 struct xfs_btree_cur *cur, /* btree cursor */
1768 int level, /* level in the btree */
1769 union xfs_btree_ptr *pp, /* ptr to btree block */
1770 struct xfs_btree_block **blkp) /* return btree block */
1771{
1772 struct xfs_buf *bp; /* buffer pointer for btree block */
1773 xfs_daddr_t daddr;
1774 int error = 0;
1775
1776 /* special case the root block if in an inode */
1777 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1778 (level == cur->bc_nlevels - 1)) {
1779 *blkp = xfs_btree_get_iroot(cur);
1780 return 0;
1781 }
1782
1783 /*
1784 * If the old buffer at this level for the disk address we are
1785 * looking for re-use it.
1786 *
1787 * Otherwise throw it away and get a new one.
1788 */
1789 bp = cur->bc_bufs[level];
1790 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1791 if (error)
1792 return error;
1793 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1794 *blkp = XFS_BUF_TO_BLOCK(bp);
1795 return 0;
1796 }
1797
1798 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1799 if (error)
1800 return error;
1801
1802 /* Check the inode owner since the verifiers don't. */
1803 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1804 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1805 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1806 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1807 cur->bc_private.b.ip->i_ino)
1808 goto out_bad;
1809
1810 /* Did we get the level we were looking for? */
1811 if (be16_to_cpu((*blkp)->bb_level) != level)
1812 goto out_bad;
1813
1814 /* Check that internal nodes have at least one record. */
1815 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1816 goto out_bad;
1817
1818 xfs_btree_setbuf(cur, level, bp);
1819 return 0;
1820
1821out_bad:
1822 *blkp = NULL;
1823 xfs_trans_brelse(cur->bc_tp, bp);
1824 return -EFSCORRUPTED;
1825}
1826
1827/*
1828 * Get current search key. For level 0 we don't actually have a key
1829 * structure so we make one up from the record. For all other levels
1830 * we just return the right key.
1831 */
1832STATIC union xfs_btree_key *
1833xfs_lookup_get_search_key(
1834 struct xfs_btree_cur *cur,
1835 int level,
1836 int keyno,
1837 struct xfs_btree_block *block,
1838 union xfs_btree_key *kp)
1839{
1840 if (level == 0) {
1841 cur->bc_ops->init_key_from_rec(kp,
1842 xfs_btree_rec_addr(cur, keyno, block));
1843 return kp;
1844 }
1845
1846 return xfs_btree_key_addr(cur, keyno, block);
1847}
1848
1849/*
1850 * Lookup the record. The cursor is made to point to it, based on dir.
1851 * stat is set to 0 if can't find any such record, 1 for success.
1852 */
1853int /* error */
1854xfs_btree_lookup(
1855 struct xfs_btree_cur *cur, /* btree cursor */
1856 xfs_lookup_t dir, /* <=, ==, or >= */
1857 int *stat) /* success/failure */
1858{
1859 struct xfs_btree_block *block; /* current btree block */
1860 int64_t diff; /* difference for the current key */
1861 int error; /* error return value */
1862 int keyno; /* current key number */
1863 int level; /* level in the btree */
1864 union xfs_btree_ptr *pp; /* ptr to btree block */
1865 union xfs_btree_ptr ptr; /* ptr to btree block */
1866
1867 XFS_BTREE_STATS_INC(cur, lookup);
1868
1869 /* No such thing as a zero-level tree. */
1870 if (cur->bc_nlevels == 0)
1871 return -EFSCORRUPTED;
1872
1873 block = NULL;
1874 keyno = 0;
1875
1876 /* initialise start pointer from cursor */
1877 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1878 pp = &ptr;
1879
1880 /*
1881 * Iterate over each level in the btree, starting at the root.
1882 * For each level above the leaves, find the key we need, based
1883 * on the lookup record, then follow the corresponding block
1884 * pointer down to the next level.
1885 */
1886 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1887 /* Get the block we need to do the lookup on. */
1888 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1889 if (error)
1890 goto error0;
1891
1892 if (diff == 0) {
1893 /*
1894 * If we already had a key match at a higher level, we
1895 * know we need to use the first entry in this block.
1896 */
1897 keyno = 1;
1898 } else {
1899 /* Otherwise search this block. Do a binary search. */
1900
1901 int high; /* high entry number */
1902 int low; /* low entry number */
1903
1904 /* Set low and high entry numbers, 1-based. */
1905 low = 1;
1906 high = xfs_btree_get_numrecs(block);
1907 if (!high) {
1908 /* Block is empty, must be an empty leaf. */
1909 if (level != 0 || cur->bc_nlevels != 1) {
1910 XFS_CORRUPTION_ERROR(__func__,
1911 XFS_ERRLEVEL_LOW,
1912 cur->bc_mp, block,
1913 sizeof(*block));
1914 return -EFSCORRUPTED;
1915 }
1916
1917 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1918 *stat = 0;
1919 return 0;
1920 }
1921
1922 /* Binary search the block. */
1923 while (low <= high) {
1924 union xfs_btree_key key;
1925 union xfs_btree_key *kp;
1926
1927 XFS_BTREE_STATS_INC(cur, compare);
1928
1929 /* keyno is average of low and high. */
1930 keyno = (low + high) >> 1;
1931
1932 /* Get current search key */
1933 kp = xfs_lookup_get_search_key(cur, level,
1934 keyno, block, &key);
1935
1936 /*
1937 * Compute difference to get next direction:
1938 * - less than, move right
1939 * - greater than, move left
1940 * - equal, we're done
1941 */
1942 diff = cur->bc_ops->key_diff(cur, kp);
1943 if (diff < 0)
1944 low = keyno + 1;
1945 else if (diff > 0)
1946 high = keyno - 1;
1947 else
1948 break;
1949 }
1950 }
1951
1952 /*
1953 * If there are more levels, set up for the next level
1954 * by getting the block number and filling in the cursor.
1955 */
1956 if (level > 0) {
1957 /*
1958 * If we moved left, need the previous key number,
1959 * unless there isn't one.
1960 */
1961 if (diff > 0 && --keyno < 1)
1962 keyno = 1;
1963 pp = xfs_btree_ptr_addr(cur, keyno, block);
1964
1965 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1966 if (error)
1967 goto error0;
1968
1969 cur->bc_ptrs[level] = keyno;
1970 }
1971 }
1972
1973 /* Done with the search. See if we need to adjust the results. */
1974 if (dir != XFS_LOOKUP_LE && diff < 0) {
1975 keyno++;
1976 /*
1977 * If ge search and we went off the end of the block, but it's
1978 * not the last block, we're in the wrong block.
1979 */
1980 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1981 if (dir == XFS_LOOKUP_GE &&
1982 keyno > xfs_btree_get_numrecs(block) &&
1983 !xfs_btree_ptr_is_null(cur, &ptr)) {
1984 int i;
1985
1986 cur->bc_ptrs[0] = keyno;
1987 error = xfs_btree_increment(cur, 0, &i);
1988 if (error)
1989 goto error0;
1990 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1991 *stat = 1;
1992 return 0;
1993 }
1994 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1995 keyno--;
1996 cur->bc_ptrs[0] = keyno;
1997
1998 /* Return if we succeeded or not. */
1999 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2000 *stat = 0;
2001 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2002 *stat = 1;
2003 else
2004 *stat = 0;
2005 return 0;
2006
2007error0:
2008 return error;
2009}
2010
2011/* Find the high key storage area from a regular key. */
2012union xfs_btree_key *
2013xfs_btree_high_key_from_key(
2014 struct xfs_btree_cur *cur,
2015 union xfs_btree_key *key)
2016{
2017 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2018 return (union xfs_btree_key *)((char *)key +
2019 (cur->bc_ops->key_len / 2));
2020}
2021
2022/* Determine the low (and high if overlapped) keys of a leaf block */
2023STATIC void
2024xfs_btree_get_leaf_keys(
2025 struct xfs_btree_cur *cur,
2026 struct xfs_btree_block *block,
2027 union xfs_btree_key *key)
2028{
2029 union xfs_btree_key max_hkey;
2030 union xfs_btree_key hkey;
2031 union xfs_btree_rec *rec;
2032 union xfs_btree_key *high;
2033 int n;
2034
2035 rec = xfs_btree_rec_addr(cur, 1, block);
2036 cur->bc_ops->init_key_from_rec(key, rec);
2037
2038 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2039
2040 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2041 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2042 rec = xfs_btree_rec_addr(cur, n, block);
2043 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2044 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2045 > 0)
2046 max_hkey = hkey;
2047 }
2048
2049 high = xfs_btree_high_key_from_key(cur, key);
2050 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2051 }
2052}
2053
2054/* Determine the low (and high if overlapped) keys of a node block */
2055STATIC void
2056xfs_btree_get_node_keys(
2057 struct xfs_btree_cur *cur,
2058 struct xfs_btree_block *block,
2059 union xfs_btree_key *key)
2060{
2061 union xfs_btree_key *hkey;
2062 union xfs_btree_key *max_hkey;
2063 union xfs_btree_key *high;
2064 int n;
2065
2066 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2067 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2068 cur->bc_ops->key_len / 2);
2069
2070 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2071 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2072 hkey = xfs_btree_high_key_addr(cur, n, block);
2073 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2074 max_hkey = hkey;
2075 }
2076
2077 high = xfs_btree_high_key_from_key(cur, key);
2078 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2079 } else {
2080 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2081 cur->bc_ops->key_len);
2082 }
2083}
2084
2085/* Derive the keys for any btree block. */
2086void
2087xfs_btree_get_keys(
2088 struct xfs_btree_cur *cur,
2089 struct xfs_btree_block *block,
2090 union xfs_btree_key *key)
2091{
2092 if (be16_to_cpu(block->bb_level) == 0)
2093 xfs_btree_get_leaf_keys(cur, block, key);
2094 else
2095 xfs_btree_get_node_keys(cur, block, key);
2096}
2097
2098/*
2099 * Decide if we need to update the parent keys of a btree block. For
2100 * a standard btree this is only necessary if we're updating the first
2101 * record/key. For an overlapping btree, we must always update the
2102 * keys because the highest key can be in any of the records or keys
2103 * in the block.
2104 */
2105static inline bool
2106xfs_btree_needs_key_update(
2107 struct xfs_btree_cur *cur,
2108 int ptr)
2109{
2110 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2111}
2112
2113/*
2114 * Update the low and high parent keys of the given level, progressing
2115 * towards the root. If force_all is false, stop if the keys for a given
2116 * level do not need updating.
2117 */
2118STATIC int
2119__xfs_btree_updkeys(
2120 struct xfs_btree_cur *cur,
2121 int level,
2122 struct xfs_btree_block *block,
2123 struct xfs_buf *bp0,
2124 bool force_all)
2125{
2126 union xfs_btree_key key; /* keys from current level */
2127 union xfs_btree_key *lkey; /* keys from the next level up */
2128 union xfs_btree_key *hkey;
2129 union xfs_btree_key *nlkey; /* keys from the next level up */
2130 union xfs_btree_key *nhkey;
2131 struct xfs_buf *bp;
2132 int ptr;
2133
2134 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2135
2136 /* Exit if there aren't any parent levels to update. */
2137 if (level + 1 >= cur->bc_nlevels)
2138 return 0;
2139
2140 trace_xfs_btree_updkeys(cur, level, bp0);
2141
2142 lkey = &key;
2143 hkey = xfs_btree_high_key_from_key(cur, lkey);
2144 xfs_btree_get_keys(cur, block, lkey);
2145 for (level++; level < cur->bc_nlevels; level++) {
2146#ifdef DEBUG
2147 int error;
2148#endif
2149 block = xfs_btree_get_block(cur, level, &bp);
2150 trace_xfs_btree_updkeys(cur, level, bp);
2151#ifdef DEBUG
2152 error = xfs_btree_check_block(cur, block, level, bp);
2153 if (error)
2154 return error;
2155#endif
2156 ptr = cur->bc_ptrs[level];
2157 nlkey = xfs_btree_key_addr(cur, ptr, block);
2158 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2159 if (!force_all &&
2160 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2161 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2162 break;
2163 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2164 xfs_btree_log_keys(cur, bp, ptr, ptr);
2165 if (level + 1 >= cur->bc_nlevels)
2166 break;
2167 xfs_btree_get_node_keys(cur, block, lkey);
2168 }
2169
2170 return 0;
2171}
2172
2173/* Update all the keys from some level in cursor back to the root. */
2174STATIC int
2175xfs_btree_updkeys_force(
2176 struct xfs_btree_cur *cur,
2177 int level)
2178{
2179 struct xfs_buf *bp;
2180 struct xfs_btree_block *block;
2181
2182 block = xfs_btree_get_block(cur, level, &bp);
2183 return __xfs_btree_updkeys(cur, level, block, bp, true);
2184}
2185
2186/*
2187 * Update the parent keys of the given level, progressing towards the root.
2188 */
2189STATIC int
2190xfs_btree_update_keys(
2191 struct xfs_btree_cur *cur,
2192 int level)
2193{
2194 struct xfs_btree_block *block;
2195 struct xfs_buf *bp;
2196 union xfs_btree_key *kp;
2197 union xfs_btree_key key;
2198 int ptr;
2199
2200 ASSERT(level >= 0);
2201
2202 block = xfs_btree_get_block(cur, level, &bp);
2203 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2204 return __xfs_btree_updkeys(cur, level, block, bp, false);
2205
2206 /*
2207 * Go up the tree from this level toward the root.
2208 * At each level, update the key value to the value input.
2209 * Stop when we reach a level where the cursor isn't pointing
2210 * at the first entry in the block.
2211 */
2212 xfs_btree_get_keys(cur, block, &key);
2213 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2214#ifdef DEBUG
2215 int error;
2216#endif
2217 block = xfs_btree_get_block(cur, level, &bp);
2218#ifdef DEBUG
2219 error = xfs_btree_check_block(cur, block, level, bp);
2220 if (error)
2221 return error;
2222#endif
2223 ptr = cur->bc_ptrs[level];
2224 kp = xfs_btree_key_addr(cur, ptr, block);
2225 xfs_btree_copy_keys(cur, kp, &key, 1);
2226 xfs_btree_log_keys(cur, bp, ptr, ptr);
2227 }
2228
2229 return 0;
2230}
2231
2232/*
2233 * Update the record referred to by cur to the value in the
2234 * given record. This either works (return 0) or gets an
2235 * EFSCORRUPTED error.
2236 */
2237int
2238xfs_btree_update(
2239 struct xfs_btree_cur *cur,
2240 union xfs_btree_rec *rec)
2241{
2242 struct xfs_btree_block *block;
2243 struct xfs_buf *bp;
2244 int error;
2245 int ptr;
2246 union xfs_btree_rec *rp;
2247
2248 /* Pick up the current block. */
2249 block = xfs_btree_get_block(cur, 0, &bp);
2250
2251#ifdef DEBUG
2252 error = xfs_btree_check_block(cur, block, 0, bp);
2253 if (error)
2254 goto error0;
2255#endif
2256 /* Get the address of the rec to be updated. */
2257 ptr = cur->bc_ptrs[0];
2258 rp = xfs_btree_rec_addr(cur, ptr, block);
2259
2260 /* Fill in the new contents and log them. */
2261 xfs_btree_copy_recs(cur, rp, rec, 1);
2262 xfs_btree_log_recs(cur, bp, ptr, ptr);
2263
2264 /*
2265 * If we are tracking the last record in the tree and
2266 * we are at the far right edge of the tree, update it.
2267 */
2268 if (xfs_btree_is_lastrec(cur, block, 0)) {
2269 cur->bc_ops->update_lastrec(cur, block, rec,
2270 ptr, LASTREC_UPDATE);
2271 }
2272
2273 /* Pass new key value up to our parent. */
2274 if (xfs_btree_needs_key_update(cur, ptr)) {
2275 error = xfs_btree_update_keys(cur, 0);
2276 if (error)
2277 goto error0;
2278 }
2279
2280 return 0;
2281
2282error0:
2283 return error;
2284}
2285
2286/*
2287 * Move 1 record left from cur/level if possible.
2288 * Update cur to reflect the new path.
2289 */
2290STATIC int /* error */
2291xfs_btree_lshift(
2292 struct xfs_btree_cur *cur,
2293 int level,
2294 int *stat) /* success/failure */
2295{
2296 struct xfs_buf *lbp; /* left buffer pointer */
2297 struct xfs_btree_block *left; /* left btree block */
2298 int lrecs; /* left record count */
2299 struct xfs_buf *rbp; /* right buffer pointer */
2300 struct xfs_btree_block *right; /* right btree block */
2301 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2302 int rrecs; /* right record count */
2303 union xfs_btree_ptr lptr; /* left btree pointer */
2304 union xfs_btree_key *rkp = NULL; /* right btree key */
2305 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2306 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2307 int error; /* error return value */
2308 int i;
2309
2310 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2311 level == cur->bc_nlevels - 1)
2312 goto out0;
2313
2314 /* Set up variables for this block as "right". */
2315 right = xfs_btree_get_block(cur, level, &rbp);
2316
2317#ifdef DEBUG
2318 error = xfs_btree_check_block(cur, right, level, rbp);
2319 if (error)
2320 goto error0;
2321#endif
2322
2323 /* If we've got no left sibling then we can't shift an entry left. */
2324 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2325 if (xfs_btree_ptr_is_null(cur, &lptr))
2326 goto out0;
2327
2328 /*
2329 * If the cursor entry is the one that would be moved, don't
2330 * do it... it's too complicated.
2331 */
2332 if (cur->bc_ptrs[level] <= 1)
2333 goto out0;
2334
2335 /* Set up the left neighbor as "left". */
2336 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2337 if (error)
2338 goto error0;
2339
2340 /* If it's full, it can't take another entry. */
2341 lrecs = xfs_btree_get_numrecs(left);
2342 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2343 goto out0;
2344
2345 rrecs = xfs_btree_get_numrecs(right);
2346
2347 /*
2348 * We add one entry to the left side and remove one for the right side.
2349 * Account for it here, the changes will be updated on disk and logged
2350 * later.
2351 */
2352 lrecs++;
2353 rrecs--;
2354
2355 XFS_BTREE_STATS_INC(cur, lshift);
2356 XFS_BTREE_STATS_ADD(cur, moves, 1);
2357
2358 /*
2359 * If non-leaf, copy a key and a ptr to the left block.
2360 * Log the changes to the left block.
2361 */
2362 if (level > 0) {
2363 /* It's a non-leaf. Move keys and pointers. */
2364 union xfs_btree_key *lkp; /* left btree key */
2365 union xfs_btree_ptr *lpp; /* left address pointer */
2366
2367 lkp = xfs_btree_key_addr(cur, lrecs, left);
2368 rkp = xfs_btree_key_addr(cur, 1, right);
2369
2370 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2371 rpp = xfs_btree_ptr_addr(cur, 1, right);
2372
2373 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2374 if (error)
2375 goto error0;
2376
2377 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2378 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2379
2380 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2381 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2382
2383 ASSERT(cur->bc_ops->keys_inorder(cur,
2384 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2385 } else {
2386 /* It's a leaf. Move records. */
2387 union xfs_btree_rec *lrp; /* left record pointer */
2388
2389 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2390 rrp = xfs_btree_rec_addr(cur, 1, right);
2391
2392 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2393 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2394
2395 ASSERT(cur->bc_ops->recs_inorder(cur,
2396 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2397 }
2398
2399 xfs_btree_set_numrecs(left, lrecs);
2400 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2401
2402 xfs_btree_set_numrecs(right, rrecs);
2403 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2404
2405 /*
2406 * Slide the contents of right down one entry.
2407 */
2408 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2409 if (level > 0) {
2410 /* It's a nonleaf. operate on keys and ptrs */
2411 int i; /* loop index */
2412
2413 for (i = 0; i < rrecs; i++) {
2414 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2415 if (error)
2416 goto error0;
2417 }
2418
2419 xfs_btree_shift_keys(cur,
2420 xfs_btree_key_addr(cur, 2, right),
2421 -1, rrecs);
2422 xfs_btree_shift_ptrs(cur,
2423 xfs_btree_ptr_addr(cur, 2, right),
2424 -1, rrecs);
2425
2426 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2427 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2428 } else {
2429 /* It's a leaf. operate on records */
2430 xfs_btree_shift_recs(cur,
2431 xfs_btree_rec_addr(cur, 2, right),
2432 -1, rrecs);
2433 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2434 }
2435
2436 /*
2437 * Using a temporary cursor, update the parent key values of the
2438 * block on the left.
2439 */
2440 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2441 error = xfs_btree_dup_cursor(cur, &tcur);
2442 if (error)
2443 goto error0;
2444 i = xfs_btree_firstrec(tcur, level);
2445 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2446
2447 error = xfs_btree_decrement(tcur, level, &i);
2448 if (error)
2449 goto error1;
2450
2451 /* Update the parent high keys of the left block, if needed. */
2452 error = xfs_btree_update_keys(tcur, level);
2453 if (error)
2454 goto error1;
2455
2456 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2457 }
2458
2459 /* Update the parent keys of the right block. */
2460 error = xfs_btree_update_keys(cur, level);
2461 if (error)
2462 goto error0;
2463
2464 /* Slide the cursor value left one. */
2465 cur->bc_ptrs[level]--;
2466
2467 *stat = 1;
2468 return 0;
2469
2470out0:
2471 *stat = 0;
2472 return 0;
2473
2474error0:
2475 return error;
2476
2477error1:
2478 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2479 return error;
2480}
2481
2482/*
2483 * Move 1 record right from cur/level if possible.
2484 * Update cur to reflect the new path.
2485 */
2486STATIC int /* error */
2487xfs_btree_rshift(
2488 struct xfs_btree_cur *cur,
2489 int level,
2490 int *stat) /* success/failure */
2491{
2492 struct xfs_buf *lbp; /* left buffer pointer */
2493 struct xfs_btree_block *left; /* left btree block */
2494 struct xfs_buf *rbp; /* right buffer pointer */
2495 struct xfs_btree_block *right; /* right btree block */
2496 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2497 union xfs_btree_ptr rptr; /* right block pointer */
2498 union xfs_btree_key *rkp; /* right btree key */
2499 int rrecs; /* right record count */
2500 int lrecs; /* left record count */
2501 int error; /* error return value */
2502 int i; /* loop counter */
2503
2504 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2505 (level == cur->bc_nlevels - 1))
2506 goto out0;
2507
2508 /* Set up variables for this block as "left". */
2509 left = xfs_btree_get_block(cur, level, &lbp);
2510
2511#ifdef DEBUG
2512 error = xfs_btree_check_block(cur, left, level, lbp);
2513 if (error)
2514 goto error0;
2515#endif
2516
2517 /* If we've got no right sibling then we can't shift an entry right. */
2518 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2519 if (xfs_btree_ptr_is_null(cur, &rptr))
2520 goto out0;
2521
2522 /*
2523 * If the cursor entry is the one that would be moved, don't
2524 * do it... it's too complicated.
2525 */
2526 lrecs = xfs_btree_get_numrecs(left);
2527 if (cur->bc_ptrs[level] >= lrecs)
2528 goto out0;
2529
2530 /* Set up the right neighbor as "right". */
2531 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2532 if (error)
2533 goto error0;
2534
2535 /* If it's full, it can't take another entry. */
2536 rrecs = xfs_btree_get_numrecs(right);
2537 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2538 goto out0;
2539
2540 XFS_BTREE_STATS_INC(cur, rshift);
2541 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2542
2543 /*
2544 * Make a hole at the start of the right neighbor block, then
2545 * copy the last left block entry to the hole.
2546 */
2547 if (level > 0) {
2548 /* It's a nonleaf. make a hole in the keys and ptrs */
2549 union xfs_btree_key *lkp;
2550 union xfs_btree_ptr *lpp;
2551 union xfs_btree_ptr *rpp;
2552
2553 lkp = xfs_btree_key_addr(cur, lrecs, left);
2554 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2555 rkp = xfs_btree_key_addr(cur, 1, right);
2556 rpp = xfs_btree_ptr_addr(cur, 1, right);
2557
2558 for (i = rrecs - 1; i >= 0; i--) {
2559 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2560 if (error)
2561 goto error0;
2562 }
2563
2564 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2565 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2566
2567 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2568 if (error)
2569 goto error0;
2570
2571 /* Now put the new data in, and log it. */
2572 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2573 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2574
2575 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2576 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2577
2578 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2579 xfs_btree_key_addr(cur, 2, right)));
2580 } else {
2581 /* It's a leaf. make a hole in the records */
2582 union xfs_btree_rec *lrp;
2583 union xfs_btree_rec *rrp;
2584
2585 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2586 rrp = xfs_btree_rec_addr(cur, 1, right);
2587
2588 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2589
2590 /* Now put the new data in, and log it. */
2591 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2592 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2593 }
2594
2595 /*
2596 * Decrement and log left's numrecs, bump and log right's numrecs.
2597 */
2598 xfs_btree_set_numrecs(left, --lrecs);
2599 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2600
2601 xfs_btree_set_numrecs(right, ++rrecs);
2602 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2603
2604 /*
2605 * Using a temporary cursor, update the parent key values of the
2606 * block on the right.
2607 */
2608 error = xfs_btree_dup_cursor(cur, &tcur);
2609 if (error)
2610 goto error0;
2611 i = xfs_btree_lastrec(tcur, level);
2612 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2613
2614 error = xfs_btree_increment(tcur, level, &i);
2615 if (error)
2616 goto error1;
2617
2618 /* Update the parent high keys of the left block, if needed. */
2619 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2620 error = xfs_btree_update_keys(cur, level);
2621 if (error)
2622 goto error1;
2623 }
2624
2625 /* Update the parent keys of the right block. */
2626 error = xfs_btree_update_keys(tcur, level);
2627 if (error)
2628 goto error1;
2629
2630 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2631
2632 *stat = 1;
2633 return 0;
2634
2635out0:
2636 *stat = 0;
2637 return 0;
2638
2639error0:
2640 return error;
2641
2642error1:
2643 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2644 return error;
2645}
2646
2647/*
2648 * Split cur/level block in half.
2649 * Return new block number and the key to its first
2650 * record (to be inserted into parent).
2651 */
2652STATIC int /* error */
2653__xfs_btree_split(
2654 struct xfs_btree_cur *cur,
2655 int level,
2656 union xfs_btree_ptr *ptrp,
2657 union xfs_btree_key *key,
2658 struct xfs_btree_cur **curp,
2659 int *stat) /* success/failure */
2660{
2661 union xfs_btree_ptr lptr; /* left sibling block ptr */
2662 struct xfs_buf *lbp; /* left buffer pointer */
2663 struct xfs_btree_block *left; /* left btree block */
2664 union xfs_btree_ptr rptr; /* right sibling block ptr */
2665 struct xfs_buf *rbp; /* right buffer pointer */
2666 struct xfs_btree_block *right; /* right btree block */
2667 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2668 struct xfs_buf *rrbp; /* right-right buffer pointer */
2669 struct xfs_btree_block *rrblock; /* right-right btree block */
2670 int lrecs;
2671 int rrecs;
2672 int src_index;
2673 int error; /* error return value */
2674 int i;
2675
2676 XFS_BTREE_STATS_INC(cur, split);
2677
2678 /* Set up left block (current one). */
2679 left = xfs_btree_get_block(cur, level, &lbp);
2680
2681#ifdef DEBUG
2682 error = xfs_btree_check_block(cur, left, level, lbp);
2683 if (error)
2684 goto error0;
2685#endif
2686
2687 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2688
2689 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2690 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2691 if (error)
2692 goto error0;
2693 if (*stat == 0)
2694 goto out0;
2695 XFS_BTREE_STATS_INC(cur, alloc);
2696
2697 /* Set up the new block as "right". */
2698 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2699 if (error)
2700 goto error0;
2701
2702 /* Fill in the btree header for the new right block. */
2703 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2704
2705 /*
2706 * Split the entries between the old and the new block evenly.
2707 * Make sure that if there's an odd number of entries now, that
2708 * each new block will have the same number of entries.
2709 */
2710 lrecs = xfs_btree_get_numrecs(left);
2711 rrecs = lrecs / 2;
2712 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2713 rrecs++;
2714 src_index = (lrecs - rrecs + 1);
2715
2716 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2717
2718 /* Adjust numrecs for the later get_*_keys() calls. */
2719 lrecs -= rrecs;
2720 xfs_btree_set_numrecs(left, lrecs);
2721 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2722
2723 /*
2724 * Copy btree block entries from the left block over to the
2725 * new block, the right. Update the right block and log the
2726 * changes.
2727 */
2728 if (level > 0) {
2729 /* It's a non-leaf. Move keys and pointers. */
2730 union xfs_btree_key *lkp; /* left btree key */
2731 union xfs_btree_ptr *lpp; /* left address pointer */
2732 union xfs_btree_key *rkp; /* right btree key */
2733 union xfs_btree_ptr *rpp; /* right address pointer */
2734
2735 lkp = xfs_btree_key_addr(cur, src_index, left);
2736 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2737 rkp = xfs_btree_key_addr(cur, 1, right);
2738 rpp = xfs_btree_ptr_addr(cur, 1, right);
2739
2740 for (i = src_index; i < rrecs; i++) {
2741 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2742 if (error)
2743 goto error0;
2744 }
2745
2746 /* Copy the keys & pointers to the new block. */
2747 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2748 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2749
2750 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2751 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2752
2753 /* Stash the keys of the new block for later insertion. */
2754 xfs_btree_get_node_keys(cur, right, key);
2755 } else {
2756 /* It's a leaf. Move records. */
2757 union xfs_btree_rec *lrp; /* left record pointer */
2758 union xfs_btree_rec *rrp; /* right record pointer */
2759
2760 lrp = xfs_btree_rec_addr(cur, src_index, left);
2761 rrp = xfs_btree_rec_addr(cur, 1, right);
2762
2763 /* Copy records to the new block. */
2764 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2765 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2766
2767 /* Stash the keys of the new block for later insertion. */
2768 xfs_btree_get_leaf_keys(cur, right, key);
2769 }
2770
2771 /*
2772 * Find the left block number by looking in the buffer.
2773 * Adjust sibling pointers.
2774 */
2775 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2776 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2777 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2778 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2779
2780 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2781 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2782
2783 /*
2784 * If there's a block to the new block's right, make that block
2785 * point back to right instead of to left.
2786 */
2787 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2788 error = xfs_btree_read_buf_block(cur, &rrptr,
2789 0, &rrblock, &rrbp);
2790 if (error)
2791 goto error0;
2792 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2793 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2794 }
2795
2796 /* Update the parent high keys of the left block, if needed. */
2797 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2798 error = xfs_btree_update_keys(cur, level);
2799 if (error)
2800 goto error0;
2801 }
2802
2803 /*
2804 * If the cursor is really in the right block, move it there.
2805 * If it's just pointing past the last entry in left, then we'll
2806 * insert there, so don't change anything in that case.
2807 */
2808 if (cur->bc_ptrs[level] > lrecs + 1) {
2809 xfs_btree_setbuf(cur, level, rbp);
2810 cur->bc_ptrs[level] -= lrecs;
2811 }
2812 /*
2813 * If there are more levels, we'll need another cursor which refers
2814 * the right block, no matter where this cursor was.
2815 */
2816 if (level + 1 < cur->bc_nlevels) {
2817 error = xfs_btree_dup_cursor(cur, curp);
2818 if (error)
2819 goto error0;
2820 (*curp)->bc_ptrs[level + 1]++;
2821 }
2822 *ptrp = rptr;
2823 *stat = 1;
2824 return 0;
2825out0:
2826 *stat = 0;
2827 return 0;
2828
2829error0:
2830 return error;
2831}
2832
2833struct xfs_btree_split_args {
2834 struct xfs_btree_cur *cur;
2835 int level;
2836 union xfs_btree_ptr *ptrp;
2837 union xfs_btree_key *key;
2838 struct xfs_btree_cur **curp;
2839 int *stat; /* success/failure */
2840 int result;
2841 bool kswapd; /* allocation in kswapd context */
2842 struct completion *done;
2843 struct work_struct work;
2844};
2845
2846/*
2847 * Stack switching interfaces for allocation
2848 */
2849static void
2850xfs_btree_split_worker(
2851 struct work_struct *work)
2852{
2853 struct xfs_btree_split_args *args = container_of(work,
2854 struct xfs_btree_split_args, work);
2855 unsigned long pflags;
2856 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2857
2858 /*
2859 * we are in a transaction context here, but may also be doing work
2860 * in kswapd context, and hence we may need to inherit that state
2861 * temporarily to ensure that we don't block waiting for memory reclaim
2862 * in any way.
2863 */
2864 if (args->kswapd)
2865 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2866
2867 current_set_flags_nested(&pflags, new_pflags);
2868
2869 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2870 args->key, args->curp, args->stat);
2871 complete(args->done);
2872
2873 current_restore_flags_nested(&pflags, new_pflags);
2874}
2875
2876/*
2877 * BMBT split requests often come in with little stack to work on. Push
2878 * them off to a worker thread so there is lots of stack to use. For the other
2879 * btree types, just call directly to avoid the context switch overhead here.
2880 */
2881STATIC int /* error */
2882xfs_btree_split(
2883 struct xfs_btree_cur *cur,
2884 int level,
2885 union xfs_btree_ptr *ptrp,
2886 union xfs_btree_key *key,
2887 struct xfs_btree_cur **curp,
2888 int *stat) /* success/failure */
2889{
2890 struct xfs_btree_split_args args;
2891 DECLARE_COMPLETION_ONSTACK(done);
2892
2893 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2894 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2895
2896 args.cur = cur;
2897 args.level = level;
2898 args.ptrp = ptrp;
2899 args.key = key;
2900 args.curp = curp;
2901 args.stat = stat;
2902 args.done = &done;
2903 args.kswapd = current_is_kswapd();
2904 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2905 queue_work(xfs_alloc_wq, &args.work);
2906 wait_for_completion(&done);
2907 destroy_work_on_stack(&args.work);
2908 return args.result;
2909}
2910
2911
2912/*
2913 * Copy the old inode root contents into a real block and make the
2914 * broot point to it.
2915 */
2916int /* error */
2917xfs_btree_new_iroot(
2918 struct xfs_btree_cur *cur, /* btree cursor */
2919 int *logflags, /* logging flags for inode */
2920 int *stat) /* return status - 0 fail */
2921{
2922 struct xfs_buf *cbp; /* buffer for cblock */
2923 struct xfs_btree_block *block; /* btree block */
2924 struct xfs_btree_block *cblock; /* child btree block */
2925 union xfs_btree_key *ckp; /* child key pointer */
2926 union xfs_btree_ptr *cpp; /* child ptr pointer */
2927 union xfs_btree_key *kp; /* pointer to btree key */
2928 union xfs_btree_ptr *pp; /* pointer to block addr */
2929 union xfs_btree_ptr nptr; /* new block addr */
2930 int level; /* btree level */
2931 int error; /* error return code */
2932 int i; /* loop counter */
2933
2934 XFS_BTREE_STATS_INC(cur, newroot);
2935
2936 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2937
2938 level = cur->bc_nlevels - 1;
2939
2940 block = xfs_btree_get_iroot(cur);
2941 pp = xfs_btree_ptr_addr(cur, 1, block);
2942
2943 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2944 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2945 if (error)
2946 goto error0;
2947 if (*stat == 0)
2948 return 0;
2949
2950 XFS_BTREE_STATS_INC(cur, alloc);
2951
2952 /* Copy the root into a real block. */
2953 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2954 if (error)
2955 goto error0;
2956
2957 /*
2958 * we can't just memcpy() the root in for CRC enabled btree blocks.
2959 * In that case have to also ensure the blkno remains correct
2960 */
2961 memcpy(cblock, block, xfs_btree_block_len(cur));
2962 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2963 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2964 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2965 else
2966 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2967 }
2968
2969 be16_add_cpu(&block->bb_level, 1);
2970 xfs_btree_set_numrecs(block, 1);
2971 cur->bc_nlevels++;
2972 cur->bc_ptrs[level + 1] = 1;
2973
2974 kp = xfs_btree_key_addr(cur, 1, block);
2975 ckp = xfs_btree_key_addr(cur, 1, cblock);
2976 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2977
2978 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2979 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2980 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2981 if (error)
2982 goto error0;
2983 }
2984
2985 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2986
2987 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2988 if (error)
2989 goto error0;
2990
2991 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2992
2993 xfs_iroot_realloc(cur->bc_private.b.ip,
2994 1 - xfs_btree_get_numrecs(cblock),
2995 cur->bc_private.b.whichfork);
2996
2997 xfs_btree_setbuf(cur, level, cbp);
2998
2999 /*
3000 * Do all this logging at the end so that
3001 * the root is at the right level.
3002 */
3003 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3004 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3005 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3006
3007 *logflags |=
3008 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3009 *stat = 1;
3010 return 0;
3011error0:
3012 return error;
3013}
3014
3015/*
3016 * Allocate a new root block, fill it in.
3017 */
3018STATIC int /* error */
3019xfs_btree_new_root(
3020 struct xfs_btree_cur *cur, /* btree cursor */
3021 int *stat) /* success/failure */
3022{
3023 struct xfs_btree_block *block; /* one half of the old root block */
3024 struct xfs_buf *bp; /* buffer containing block */
3025 int error; /* error return value */
3026 struct xfs_buf *lbp; /* left buffer pointer */
3027 struct xfs_btree_block *left; /* left btree block */
3028 struct xfs_buf *nbp; /* new (root) buffer */
3029 struct xfs_btree_block *new; /* new (root) btree block */
3030 int nptr; /* new value for key index, 1 or 2 */
3031 struct xfs_buf *rbp; /* right buffer pointer */
3032 struct xfs_btree_block *right; /* right btree block */
3033 union xfs_btree_ptr rptr;
3034 union xfs_btree_ptr lptr;
3035
3036 XFS_BTREE_STATS_INC(cur, newroot);
3037
3038 /* initialise our start point from the cursor */
3039 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3040
3041 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3042 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3043 if (error)
3044 goto error0;
3045 if (*stat == 0)
3046 goto out0;
3047 XFS_BTREE_STATS_INC(cur, alloc);
3048
3049 /* Set up the new block. */
3050 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3051 if (error)
3052 goto error0;
3053
3054 /* Set the root in the holding structure increasing the level by 1. */
3055 cur->bc_ops->set_root(cur, &lptr, 1);
3056
3057 /*
3058 * At the previous root level there are now two blocks: the old root,
3059 * and the new block generated when it was split. We don't know which
3060 * one the cursor is pointing at, so we set up variables "left" and
3061 * "right" for each case.
3062 */
3063 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3064
3065#ifdef DEBUG
3066 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3067 if (error)
3068 goto error0;
3069#endif
3070
3071 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3072 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3073 /* Our block is left, pick up the right block. */
3074 lbp = bp;
3075 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3076 left = block;
3077 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3078 if (error)
3079 goto error0;
3080 bp = rbp;
3081 nptr = 1;
3082 } else {
3083 /* Our block is right, pick up the left block. */
3084 rbp = bp;
3085 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3086 right = block;
3087 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3088 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3089 if (error)
3090 goto error0;
3091 bp = lbp;
3092 nptr = 2;
3093 }
3094
3095 /* Fill in the new block's btree header and log it. */
3096 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3097 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3098 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3099 !xfs_btree_ptr_is_null(cur, &rptr));
3100
3101 /* Fill in the key data in the new root. */
3102 if (xfs_btree_get_level(left) > 0) {
3103 /*
3104 * Get the keys for the left block's keys and put them directly
3105 * in the parent block. Do the same for the right block.
3106 */
3107 xfs_btree_get_node_keys(cur, left,
3108 xfs_btree_key_addr(cur, 1, new));
3109 xfs_btree_get_node_keys(cur, right,
3110 xfs_btree_key_addr(cur, 2, new));
3111 } else {
3112 /*
3113 * Get the keys for the left block's records and put them
3114 * directly in the parent block. Do the same for the right
3115 * block.
3116 */
3117 xfs_btree_get_leaf_keys(cur, left,
3118 xfs_btree_key_addr(cur, 1, new));
3119 xfs_btree_get_leaf_keys(cur, right,
3120 xfs_btree_key_addr(cur, 2, new));
3121 }
3122 xfs_btree_log_keys(cur, nbp, 1, 2);
3123
3124 /* Fill in the pointer data in the new root. */
3125 xfs_btree_copy_ptrs(cur,
3126 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3127 xfs_btree_copy_ptrs(cur,
3128 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3129 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3130
3131 /* Fix up the cursor. */
3132 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3133 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3134 cur->bc_nlevels++;
3135 *stat = 1;
3136 return 0;
3137error0:
3138 return error;
3139out0:
3140 *stat = 0;
3141 return 0;
3142}
3143
3144STATIC int
3145xfs_btree_make_block_unfull(
3146 struct xfs_btree_cur *cur, /* btree cursor */
3147 int level, /* btree level */
3148 int numrecs,/* # of recs in block */
3149 int *oindex,/* old tree index */
3150 int *index, /* new tree index */
3151 union xfs_btree_ptr *nptr, /* new btree ptr */
3152 struct xfs_btree_cur **ncur, /* new btree cursor */
3153 union xfs_btree_key *key, /* key of new block */
3154 int *stat)
3155{
3156 int error = 0;
3157
3158 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3159 level == cur->bc_nlevels - 1) {
3160 struct xfs_inode *ip = cur->bc_private.b.ip;
3161
3162 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3163 /* A root block that can be made bigger. */
3164 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3165 *stat = 1;
3166 } else {
3167 /* A root block that needs replacing */
3168 int logflags = 0;
3169
3170 error = xfs_btree_new_iroot(cur, &logflags, stat);
3171 if (error || *stat == 0)
3172 return error;
3173
3174 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3175 }
3176
3177 return 0;
3178 }
3179
3180 /* First, try shifting an entry to the right neighbor. */
3181 error = xfs_btree_rshift(cur, level, stat);
3182 if (error || *stat)
3183 return error;
3184
3185 /* Next, try shifting an entry to the left neighbor. */
3186 error = xfs_btree_lshift(cur, level, stat);
3187 if (error)
3188 return error;
3189
3190 if (*stat) {
3191 *oindex = *index = cur->bc_ptrs[level];
3192 return 0;
3193 }
3194
3195 /*
3196 * Next, try splitting the current block in half.
3197 *
3198 * If this works we have to re-set our variables because we
3199 * could be in a different block now.
3200 */
3201 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3202 if (error || *stat == 0)
3203 return error;
3204
3205
3206 *index = cur->bc_ptrs[level];
3207 return 0;
3208}
3209
3210/*
3211 * Insert one record/level. Return information to the caller
3212 * allowing the next level up to proceed if necessary.
3213 */
3214STATIC int
3215xfs_btree_insrec(
3216 struct xfs_btree_cur *cur, /* btree cursor */
3217 int level, /* level to insert record at */
3218 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3219 union xfs_btree_rec *rec, /* record to insert */
3220 union xfs_btree_key *key, /* i/o: block key for ptrp */
3221 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3222 int *stat) /* success/failure */
3223{
3224 struct xfs_btree_block *block; /* btree block */
3225 struct xfs_buf *bp; /* buffer for block */
3226 union xfs_btree_ptr nptr; /* new block ptr */
3227 struct xfs_btree_cur *ncur; /* new btree cursor */
3228 union xfs_btree_key nkey; /* new block key */
3229 union xfs_btree_key *lkey;
3230 int optr; /* old key/record index */
3231 int ptr; /* key/record index */
3232 int numrecs;/* number of records */
3233 int error; /* error return value */
3234 int i;
3235 xfs_daddr_t old_bn;
3236
3237 ncur = NULL;
3238 lkey = &nkey;
3239
3240 /*
3241 * If we have an external root pointer, and we've made it to the
3242 * root level, allocate a new root block and we're done.
3243 */
3244 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3245 (level >= cur->bc_nlevels)) {
3246 error = xfs_btree_new_root(cur, stat);
3247 xfs_btree_set_ptr_null(cur, ptrp);
3248
3249 return error;
3250 }
3251
3252 /* If we're off the left edge, return failure. */
3253 ptr = cur->bc_ptrs[level];
3254 if (ptr == 0) {
3255 *stat = 0;
3256 return 0;
3257 }
3258
3259 optr = ptr;
3260
3261 XFS_BTREE_STATS_INC(cur, insrec);
3262
3263 /* Get pointers to the btree buffer and block. */
3264 block = xfs_btree_get_block(cur, level, &bp);
3265 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3266 numrecs = xfs_btree_get_numrecs(block);
3267
3268#ifdef DEBUG
3269 error = xfs_btree_check_block(cur, block, level, bp);
3270 if (error)
3271 goto error0;
3272
3273 /* Check that the new entry is being inserted in the right place. */
3274 if (ptr <= numrecs) {
3275 if (level == 0) {
3276 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3277 xfs_btree_rec_addr(cur, ptr, block)));
3278 } else {
3279 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3280 xfs_btree_key_addr(cur, ptr, block)));
3281 }
3282 }
3283#endif
3284
3285 /*
3286 * If the block is full, we can't insert the new entry until we
3287 * make the block un-full.
3288 */
3289 xfs_btree_set_ptr_null(cur, &nptr);
3290 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3291 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3292 &optr, &ptr, &nptr, &ncur, lkey, stat);
3293 if (error || *stat == 0)
3294 goto error0;
3295 }
3296
3297 /*
3298 * The current block may have changed if the block was
3299 * previously full and we have just made space in it.
3300 */
3301 block = xfs_btree_get_block(cur, level, &bp);
3302 numrecs = xfs_btree_get_numrecs(block);
3303
3304#ifdef DEBUG
3305 error = xfs_btree_check_block(cur, block, level, bp);
3306 if (error)
3307 return error;
3308#endif
3309
3310 /*
3311 * At this point we know there's room for our new entry in the block
3312 * we're pointing at.
3313 */
3314 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3315
3316 if (level > 0) {
3317 /* It's a nonleaf. make a hole in the keys and ptrs */
3318 union xfs_btree_key *kp;
3319 union xfs_btree_ptr *pp;
3320
3321 kp = xfs_btree_key_addr(cur, ptr, block);
3322 pp = xfs_btree_ptr_addr(cur, ptr, block);
3323
3324 for (i = numrecs - ptr; i >= 0; i--) {
3325 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3326 if (error)
3327 return error;
3328 }
3329
3330 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3331 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3332
3333 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3334 if (error)
3335 goto error0;
3336
3337 /* Now put the new data in, bump numrecs and log it. */
3338 xfs_btree_copy_keys(cur, kp, key, 1);
3339 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3340 numrecs++;
3341 xfs_btree_set_numrecs(block, numrecs);
3342 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3343 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3344#ifdef DEBUG
3345 if (ptr < numrecs) {
3346 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3347 xfs_btree_key_addr(cur, ptr + 1, block)));
3348 }
3349#endif
3350 } else {
3351 /* It's a leaf. make a hole in the records */
3352 union xfs_btree_rec *rp;
3353
3354 rp = xfs_btree_rec_addr(cur, ptr, block);
3355
3356 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3357
3358 /* Now put the new data in, bump numrecs and log it. */
3359 xfs_btree_copy_recs(cur, rp, rec, 1);
3360 xfs_btree_set_numrecs(block, ++numrecs);
3361 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3362#ifdef DEBUG
3363 if (ptr < numrecs) {
3364 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3365 xfs_btree_rec_addr(cur, ptr + 1, block)));
3366 }
3367#endif
3368 }
3369
3370 /* Log the new number of records in the btree header. */
3371 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3372
3373 /*
3374 * If we just inserted into a new tree block, we have to
3375 * recalculate nkey here because nkey is out of date.
3376 *
3377 * Otherwise we're just updating an existing block (having shoved
3378 * some records into the new tree block), so use the regular key
3379 * update mechanism.
3380 */
3381 if (bp && bp->b_bn != old_bn) {
3382 xfs_btree_get_keys(cur, block, lkey);
3383 } else if (xfs_btree_needs_key_update(cur, optr)) {
3384 error = xfs_btree_update_keys(cur, level);
3385 if (error)
3386 goto error0;
3387 }
3388
3389 /*
3390 * If we are tracking the last record in the tree and
3391 * we are at the far right edge of the tree, update it.
3392 */
3393 if (xfs_btree_is_lastrec(cur, block, level)) {
3394 cur->bc_ops->update_lastrec(cur, block, rec,
3395 ptr, LASTREC_INSREC);
3396 }
3397
3398 /*
3399 * Return the new block number, if any.
3400 * If there is one, give back a record value and a cursor too.
3401 */
3402 *ptrp = nptr;
3403 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3404 xfs_btree_copy_keys(cur, key, lkey, 1);
3405 *curp = ncur;
3406 }
3407
3408 *stat = 1;
3409 return 0;
3410
3411error0:
3412 return error;
3413}
3414
3415/*
3416 * Insert the record at the point referenced by cur.
3417 *
3418 * A multi-level split of the tree on insert will invalidate the original
3419 * cursor. All callers of this function should assume that the cursor is
3420 * no longer valid and revalidate it.
3421 */
3422int
3423xfs_btree_insert(
3424 struct xfs_btree_cur *cur,
3425 int *stat)
3426{
3427 int error; /* error return value */
3428 int i; /* result value, 0 for failure */
3429 int level; /* current level number in btree */
3430 union xfs_btree_ptr nptr; /* new block number (split result) */
3431 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3432 struct xfs_btree_cur *pcur; /* previous level's cursor */
3433 union xfs_btree_key bkey; /* key of block to insert */
3434 union xfs_btree_key *key;
3435 union xfs_btree_rec rec; /* record to insert */
3436
3437 level = 0;
3438 ncur = NULL;
3439 pcur = cur;
3440 key = &bkey;
3441
3442 xfs_btree_set_ptr_null(cur, &nptr);
3443
3444 /* Make a key out of the record data to be inserted, and save it. */
3445 cur->bc_ops->init_rec_from_cur(cur, &rec);
3446 cur->bc_ops->init_key_from_rec(key, &rec);
3447
3448 /*
3449 * Loop going up the tree, starting at the leaf level.
3450 * Stop when we don't get a split block, that must mean that
3451 * the insert is finished with this level.
3452 */
3453 do {
3454 /*
3455 * Insert nrec/nptr into this level of the tree.
3456 * Note if we fail, nptr will be null.
3457 */
3458 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3459 &ncur, &i);
3460 if (error) {
3461 if (pcur != cur)
3462 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3463 goto error0;
3464 }
3465
3466 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3467 level++;
3468
3469 /*
3470 * See if the cursor we just used is trash.
3471 * Can't trash the caller's cursor, but otherwise we should
3472 * if ncur is a new cursor or we're about to be done.
3473 */
3474 if (pcur != cur &&
3475 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3476 /* Save the state from the cursor before we trash it */
3477 if (cur->bc_ops->update_cursor)
3478 cur->bc_ops->update_cursor(pcur, cur);
3479 cur->bc_nlevels = pcur->bc_nlevels;
3480 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3481 }
3482 /* If we got a new cursor, switch to it. */
3483 if (ncur) {
3484 pcur = ncur;
3485 ncur = NULL;
3486 }
3487 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3488
3489 *stat = i;
3490 return 0;
3491error0:
3492 return error;
3493}
3494
3495/*
3496 * Try to merge a non-leaf block back into the inode root.
3497 *
3498 * Note: the killroot names comes from the fact that we're effectively
3499 * killing the old root block. But because we can't just delete the
3500 * inode we have to copy the single block it was pointing to into the
3501 * inode.
3502 */
3503STATIC int
3504xfs_btree_kill_iroot(
3505 struct xfs_btree_cur *cur)
3506{
3507 int whichfork = cur->bc_private.b.whichfork;
3508 struct xfs_inode *ip = cur->bc_private.b.ip;
3509 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3510 struct xfs_btree_block *block;
3511 struct xfs_btree_block *cblock;
3512 union xfs_btree_key *kp;
3513 union xfs_btree_key *ckp;
3514 union xfs_btree_ptr *pp;
3515 union xfs_btree_ptr *cpp;
3516 struct xfs_buf *cbp;
3517 int level;
3518 int index;
3519 int numrecs;
3520 int error;
3521#ifdef DEBUG
3522 union xfs_btree_ptr ptr;
3523#endif
3524 int i;
3525
3526 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3527 ASSERT(cur->bc_nlevels > 1);
3528
3529 /*
3530 * Don't deal with the root block needs to be a leaf case.
3531 * We're just going to turn the thing back into extents anyway.
3532 */
3533 level = cur->bc_nlevels - 1;
3534 if (level == 1)
3535 goto out0;
3536
3537 /*
3538 * Give up if the root has multiple children.
3539 */
3540 block = xfs_btree_get_iroot(cur);
3541 if (xfs_btree_get_numrecs(block) != 1)
3542 goto out0;
3543
3544 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3545 numrecs = xfs_btree_get_numrecs(cblock);
3546
3547 /*
3548 * Only do this if the next level will fit.
3549 * Then the data must be copied up to the inode,
3550 * instead of freeing the root you free the next level.
3551 */
3552 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3553 goto out0;
3554
3555 XFS_BTREE_STATS_INC(cur, killroot);
3556
3557#ifdef DEBUG
3558 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3559 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3560 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3561 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3562#endif
3563
3564 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3565 if (index) {
3566 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3567 cur->bc_private.b.whichfork);
3568 block = ifp->if_broot;
3569 }
3570
3571 be16_add_cpu(&block->bb_numrecs, index);
3572 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3573
3574 kp = xfs_btree_key_addr(cur, 1, block);
3575 ckp = xfs_btree_key_addr(cur, 1, cblock);
3576 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3577
3578 pp = xfs_btree_ptr_addr(cur, 1, block);
3579 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3580
3581 for (i = 0; i < numrecs; i++) {
3582 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3583 if (error)
3584 return error;
3585 }
3586
3587 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3588
3589 error = xfs_btree_free_block(cur, cbp);
3590 if (error)
3591 return error;
3592
3593 cur->bc_bufs[level - 1] = NULL;
3594 be16_add_cpu(&block->bb_level, -1);
3595 xfs_trans_log_inode(cur->bc_tp, ip,
3596 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3597 cur->bc_nlevels--;
3598out0:
3599 return 0;
3600}
3601
3602/*
3603 * Kill the current root node, and replace it with it's only child node.
3604 */
3605STATIC int
3606xfs_btree_kill_root(
3607 struct xfs_btree_cur *cur,
3608 struct xfs_buf *bp,
3609 int level,
3610 union xfs_btree_ptr *newroot)
3611{
3612 int error;
3613
3614 XFS_BTREE_STATS_INC(cur, killroot);
3615
3616 /*
3617 * Update the root pointer, decreasing the level by 1 and then
3618 * free the old root.
3619 */
3620 cur->bc_ops->set_root(cur, newroot, -1);
3621
3622 error = xfs_btree_free_block(cur, bp);
3623 if (error)
3624 return error;
3625
3626 cur->bc_bufs[level] = NULL;
3627 cur->bc_ra[level] = 0;
3628 cur->bc_nlevels--;
3629
3630 return 0;
3631}
3632
3633STATIC int
3634xfs_btree_dec_cursor(
3635 struct xfs_btree_cur *cur,
3636 int level,
3637 int *stat)
3638{
3639 int error;
3640 int i;
3641
3642 if (level > 0) {
3643 error = xfs_btree_decrement(cur, level, &i);
3644 if (error)
3645 return error;
3646 }
3647
3648 *stat = 1;
3649 return 0;
3650}
3651
3652/*
3653 * Single level of the btree record deletion routine.
3654 * Delete record pointed to by cur/level.
3655 * Remove the record from its block then rebalance the tree.
3656 * Return 0 for error, 1 for done, 2 to go on to the next level.
3657 */
3658STATIC int /* error */
3659xfs_btree_delrec(
3660 struct xfs_btree_cur *cur, /* btree cursor */
3661 int level, /* level removing record from */
3662 int *stat) /* fail/done/go-on */
3663{
3664 struct xfs_btree_block *block; /* btree block */
3665 union xfs_btree_ptr cptr; /* current block ptr */
3666 struct xfs_buf *bp; /* buffer for block */
3667 int error; /* error return value */
3668 int i; /* loop counter */
3669 union xfs_btree_ptr lptr; /* left sibling block ptr */
3670 struct xfs_buf *lbp; /* left buffer pointer */
3671 struct xfs_btree_block *left; /* left btree block */
3672 int lrecs = 0; /* left record count */
3673 int ptr; /* key/record index */
3674 union xfs_btree_ptr rptr; /* right sibling block ptr */
3675 struct xfs_buf *rbp; /* right buffer pointer */
3676 struct xfs_btree_block *right; /* right btree block */
3677 struct xfs_btree_block *rrblock; /* right-right btree block */
3678 struct xfs_buf *rrbp; /* right-right buffer pointer */
3679 int rrecs = 0; /* right record count */
3680 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3681 int numrecs; /* temporary numrec count */
3682
3683 tcur = NULL;
3684
3685 /* Get the index of the entry being deleted, check for nothing there. */
3686 ptr = cur->bc_ptrs[level];
3687 if (ptr == 0) {
3688 *stat = 0;
3689 return 0;
3690 }
3691
3692 /* Get the buffer & block containing the record or key/ptr. */
3693 block = xfs_btree_get_block(cur, level, &bp);
3694 numrecs = xfs_btree_get_numrecs(block);
3695
3696#ifdef DEBUG
3697 error = xfs_btree_check_block(cur, block, level, bp);
3698 if (error)
3699 goto error0;
3700#endif
3701
3702 /* Fail if we're off the end of the block. */
3703 if (ptr > numrecs) {
3704 *stat = 0;
3705 return 0;
3706 }
3707
3708 XFS_BTREE_STATS_INC(cur, delrec);
3709 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3710
3711 /* Excise the entries being deleted. */
3712 if (level > 0) {
3713 /* It's a nonleaf. operate on keys and ptrs */
3714 union xfs_btree_key *lkp;
3715 union xfs_btree_ptr *lpp;
3716
3717 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3718 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3719
3720 for (i = 0; i < numrecs - ptr; i++) {
3721 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3722 if (error)
3723 goto error0;
3724 }
3725
3726 if (ptr < numrecs) {
3727 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3728 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3729 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3730 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3731 }
3732 } else {
3733 /* It's a leaf. operate on records */
3734 if (ptr < numrecs) {
3735 xfs_btree_shift_recs(cur,
3736 xfs_btree_rec_addr(cur, ptr + 1, block),
3737 -1, numrecs - ptr);
3738 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3739 }
3740 }
3741
3742 /*
3743 * Decrement and log the number of entries in the block.
3744 */
3745 xfs_btree_set_numrecs(block, --numrecs);
3746 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3747
3748 /*
3749 * If we are tracking the last record in the tree and
3750 * we are at the far right edge of the tree, update it.
3751 */
3752 if (xfs_btree_is_lastrec(cur, block, level)) {
3753 cur->bc_ops->update_lastrec(cur, block, NULL,
3754 ptr, LASTREC_DELREC);
3755 }
3756
3757 /*
3758 * We're at the root level. First, shrink the root block in-memory.
3759 * Try to get rid of the next level down. If we can't then there's
3760 * nothing left to do.
3761 */
3762 if (level == cur->bc_nlevels - 1) {
3763 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3764 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3765 cur->bc_private.b.whichfork);
3766
3767 error = xfs_btree_kill_iroot(cur);
3768 if (error)
3769 goto error0;
3770
3771 error = xfs_btree_dec_cursor(cur, level, stat);
3772 if (error)
3773 goto error0;
3774 *stat = 1;
3775 return 0;
3776 }
3777
3778 /*
3779 * If this is the root level, and there's only one entry left,
3780 * and it's NOT the leaf level, then we can get rid of this
3781 * level.
3782 */
3783 if (numrecs == 1 && level > 0) {
3784 union xfs_btree_ptr *pp;
3785 /*
3786 * pp is still set to the first pointer in the block.
3787 * Make it the new root of the btree.
3788 */
3789 pp = xfs_btree_ptr_addr(cur, 1, block);
3790 error = xfs_btree_kill_root(cur, bp, level, pp);
3791 if (error)
3792 goto error0;
3793 } else if (level > 0) {
3794 error = xfs_btree_dec_cursor(cur, level, stat);
3795 if (error)
3796 goto error0;
3797 }
3798 *stat = 1;
3799 return 0;
3800 }
3801
3802 /*
3803 * If we deleted the leftmost entry in the block, update the
3804 * key values above us in the tree.
3805 */
3806 if (xfs_btree_needs_key_update(cur, ptr)) {
3807 error = xfs_btree_update_keys(cur, level);
3808 if (error)
3809 goto error0;
3810 }
3811
3812 /*
3813 * If the number of records remaining in the block is at least
3814 * the minimum, we're done.
3815 */
3816 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3817 error = xfs_btree_dec_cursor(cur, level, stat);
3818 if (error)
3819 goto error0;
3820 return 0;
3821 }
3822
3823 /*
3824 * Otherwise, we have to move some records around to keep the
3825 * tree balanced. Look at the left and right sibling blocks to
3826 * see if we can re-balance by moving only one record.
3827 */
3828 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3829 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3830
3831 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3832 /*
3833 * One child of root, need to get a chance to copy its contents
3834 * into the root and delete it. Can't go up to next level,
3835 * there's nothing to delete there.
3836 */
3837 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3838 xfs_btree_ptr_is_null(cur, &lptr) &&
3839 level == cur->bc_nlevels - 2) {
3840 error = xfs_btree_kill_iroot(cur);
3841 if (!error)
3842 error = xfs_btree_dec_cursor(cur, level, stat);
3843 if (error)
3844 goto error0;
3845 return 0;
3846 }
3847 }
3848
3849 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3850 !xfs_btree_ptr_is_null(cur, &lptr));
3851
3852 /*
3853 * Duplicate the cursor so our btree manipulations here won't
3854 * disrupt the next level up.
3855 */
3856 error = xfs_btree_dup_cursor(cur, &tcur);
3857 if (error)
3858 goto error0;
3859
3860 /*
3861 * If there's a right sibling, see if it's ok to shift an entry
3862 * out of it.
3863 */
3864 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3865 /*
3866 * Move the temp cursor to the last entry in the next block.
3867 * Actually any entry but the first would suffice.
3868 */
3869 i = xfs_btree_lastrec(tcur, level);
3870 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3871
3872 error = xfs_btree_increment(tcur, level, &i);
3873 if (error)
3874 goto error0;
3875 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3876
3877 i = xfs_btree_lastrec(tcur, level);
3878 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3879
3880 /* Grab a pointer to the block. */
3881 right = xfs_btree_get_block(tcur, level, &rbp);
3882#ifdef DEBUG
3883 error = xfs_btree_check_block(tcur, right, level, rbp);
3884 if (error)
3885 goto error0;
3886#endif
3887 /* Grab the current block number, for future use. */
3888 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3889
3890 /*
3891 * If right block is full enough so that removing one entry
3892 * won't make it too empty, and left-shifting an entry out
3893 * of right to us works, we're done.
3894 */
3895 if (xfs_btree_get_numrecs(right) - 1 >=
3896 cur->bc_ops->get_minrecs(tcur, level)) {
3897 error = xfs_btree_lshift(tcur, level, &i);
3898 if (error)
3899 goto error0;
3900 if (i) {
3901 ASSERT(xfs_btree_get_numrecs(block) >=
3902 cur->bc_ops->get_minrecs(tcur, level));
3903
3904 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3905 tcur = NULL;
3906
3907 error = xfs_btree_dec_cursor(cur, level, stat);
3908 if (error)
3909 goto error0;
3910 return 0;
3911 }
3912 }
3913
3914 /*
3915 * Otherwise, grab the number of records in right for
3916 * future reference, and fix up the temp cursor to point
3917 * to our block again (last record).
3918 */
3919 rrecs = xfs_btree_get_numrecs(right);
3920 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3921 i = xfs_btree_firstrec(tcur, level);
3922 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3923
3924 error = xfs_btree_decrement(tcur, level, &i);
3925 if (error)
3926 goto error0;
3927 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3928 }
3929 }
3930
3931 /*
3932 * If there's a left sibling, see if it's ok to shift an entry
3933 * out of it.
3934 */
3935 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3936 /*
3937 * Move the temp cursor to the first entry in the
3938 * previous block.
3939 */
3940 i = xfs_btree_firstrec(tcur, level);
3941 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3942
3943 error = xfs_btree_decrement(tcur, level, &i);
3944 if (error)
3945 goto error0;
3946 i = xfs_btree_firstrec(tcur, level);
3947 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3948
3949 /* Grab a pointer to the block. */
3950 left = xfs_btree_get_block(tcur, level, &lbp);
3951#ifdef DEBUG
3952 error = xfs_btree_check_block(cur, left, level, lbp);
3953 if (error)
3954 goto error0;
3955#endif
3956 /* Grab the current block number, for future use. */
3957 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3958
3959 /*
3960 * If left block is full enough so that removing one entry
3961 * won't make it too empty, and right-shifting an entry out
3962 * of left to us works, we're done.
3963 */
3964 if (xfs_btree_get_numrecs(left) - 1 >=
3965 cur->bc_ops->get_minrecs(tcur, level)) {
3966 error = xfs_btree_rshift(tcur, level, &i);
3967 if (error)
3968 goto error0;
3969 if (i) {
3970 ASSERT(xfs_btree_get_numrecs(block) >=
3971 cur->bc_ops->get_minrecs(tcur, level));
3972 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3973 tcur = NULL;
3974 if (level == 0)
3975 cur->bc_ptrs[0]++;
3976
3977 *stat = 1;
3978 return 0;
3979 }
3980 }
3981
3982 /*
3983 * Otherwise, grab the number of records in right for
3984 * future reference.
3985 */
3986 lrecs = xfs_btree_get_numrecs(left);
3987 }
3988
3989 /* Delete the temp cursor, we're done with it. */
3990 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3991 tcur = NULL;
3992
3993 /* If here, we need to do a join to keep the tree balanced. */
3994 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3995
3996 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3997 lrecs + xfs_btree_get_numrecs(block) <=
3998 cur->bc_ops->get_maxrecs(cur, level)) {
3999 /*
4000 * Set "right" to be the starting block,
4001 * "left" to be the left neighbor.
4002 */
4003 rptr = cptr;
4004 right = block;
4005 rbp = bp;
4006 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4007 if (error)
4008 goto error0;
4009
4010 /*
4011 * If that won't work, see if we can join with the right neighbor block.
4012 */
4013 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4014 rrecs + xfs_btree_get_numrecs(block) <=
4015 cur->bc_ops->get_maxrecs(cur, level)) {
4016 /*
4017 * Set "left" to be the starting block,
4018 * "right" to be the right neighbor.
4019 */
4020 lptr = cptr;
4021 left = block;
4022 lbp = bp;
4023 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4024 if (error)
4025 goto error0;
4026
4027 /*
4028 * Otherwise, we can't fix the imbalance.
4029 * Just return. This is probably a logic error, but it's not fatal.
4030 */
4031 } else {
4032 error = xfs_btree_dec_cursor(cur, level, stat);
4033 if (error)
4034 goto error0;
4035 return 0;
4036 }
4037
4038 rrecs = xfs_btree_get_numrecs(right);
4039 lrecs = xfs_btree_get_numrecs(left);
4040
4041 /*
4042 * We're now going to join "left" and "right" by moving all the stuff
4043 * in "right" to "left" and deleting "right".
4044 */
4045 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4046 if (level > 0) {
4047 /* It's a non-leaf. Move keys and pointers. */
4048 union xfs_btree_key *lkp; /* left btree key */
4049 union xfs_btree_ptr *lpp; /* left address pointer */
4050 union xfs_btree_key *rkp; /* right btree key */
4051 union xfs_btree_ptr *rpp; /* right address pointer */
4052
4053 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4054 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4055 rkp = xfs_btree_key_addr(cur, 1, right);
4056 rpp = xfs_btree_ptr_addr(cur, 1, right);
4057
4058 for (i = 1; i < rrecs; i++) {
4059 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4060 if (error)
4061 goto error0;
4062 }
4063
4064 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4065 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4066
4067 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4068 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4069 } else {
4070 /* It's a leaf. Move records. */
4071 union xfs_btree_rec *lrp; /* left record pointer */
4072 union xfs_btree_rec *rrp; /* right record pointer */
4073
4074 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4075 rrp = xfs_btree_rec_addr(cur, 1, right);
4076
4077 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4078 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4079 }
4080
4081 XFS_BTREE_STATS_INC(cur, join);
4082
4083 /*
4084 * Fix up the number of records and right block pointer in the
4085 * surviving block, and log it.
4086 */
4087 xfs_btree_set_numrecs(left, lrecs + rrecs);
4088 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4089 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4090 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4091
4092 /* If there is a right sibling, point it to the remaining block. */
4093 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4094 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4095 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4096 if (error)
4097 goto error0;
4098 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4099 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4100 }
4101
4102 /* Free the deleted block. */
4103 error = xfs_btree_free_block(cur, rbp);
4104 if (error)
4105 goto error0;
4106
4107 /*
4108 * If we joined with the left neighbor, set the buffer in the
4109 * cursor to the left block, and fix up the index.
4110 */
4111 if (bp != lbp) {
4112 cur->bc_bufs[level] = lbp;
4113 cur->bc_ptrs[level] += lrecs;
4114 cur->bc_ra[level] = 0;
4115 }
4116 /*
4117 * If we joined with the right neighbor and there's a level above
4118 * us, increment the cursor at that level.
4119 */
4120 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4121 (level + 1 < cur->bc_nlevels)) {
4122 error = xfs_btree_increment(cur, level + 1, &i);
4123 if (error)
4124 goto error0;
4125 }
4126
4127 /*
4128 * Readjust the ptr at this level if it's not a leaf, since it's
4129 * still pointing at the deletion point, which makes the cursor
4130 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4131 * We can't use decrement because it would change the next level up.
4132 */
4133 if (level > 0)
4134 cur->bc_ptrs[level]--;
4135
4136 /*
4137 * We combined blocks, so we have to update the parent keys if the
4138 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4139 * points to the old block so that the caller knows which record to
4140 * delete. Therefore, the caller must be savvy enough to call updkeys
4141 * for us if we return stat == 2. The other exit points from this
4142 * function don't require deletions further up the tree, so they can
4143 * call updkeys directly.
4144 */
4145
4146 /* Return value means the next level up has something to do. */
4147 *stat = 2;
4148 return 0;
4149
4150error0:
4151 if (tcur)
4152 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4153 return error;
4154}
4155
4156/*
4157 * Delete the record pointed to by cur.
4158 * The cursor refers to the place where the record was (could be inserted)
4159 * when the operation returns.
4160 */
4161int /* error */
4162xfs_btree_delete(
4163 struct xfs_btree_cur *cur,
4164 int *stat) /* success/failure */
4165{
4166 int error; /* error return value */
4167 int level;
4168 int i;
4169 bool joined = false;
4170
4171 /*
4172 * Go up the tree, starting at leaf level.
4173 *
4174 * If 2 is returned then a join was done; go to the next level.
4175 * Otherwise we are done.
4176 */
4177 for (level = 0, i = 2; i == 2; level++) {
4178 error = xfs_btree_delrec(cur, level, &i);
4179 if (error)
4180 goto error0;
4181 if (i == 2)
4182 joined = true;
4183 }
4184
4185 /*
4186 * If we combined blocks as part of deleting the record, delrec won't
4187 * have updated the parent high keys so we have to do that here.
4188 */
4189 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4190 error = xfs_btree_updkeys_force(cur, 0);
4191 if (error)
4192 goto error0;
4193 }
4194
4195 if (i == 0) {
4196 for (level = 1; level < cur->bc_nlevels; level++) {
4197 if (cur->bc_ptrs[level] == 0) {
4198 error = xfs_btree_decrement(cur, level, &i);
4199 if (error)
4200 goto error0;
4201 break;
4202 }
4203 }
4204 }
4205
4206 *stat = i;
4207 return 0;
4208error0:
4209 return error;
4210}
4211
4212/*
4213 * Get the data from the pointed-to record.
4214 */
4215int /* error */
4216xfs_btree_get_rec(
4217 struct xfs_btree_cur *cur, /* btree cursor */
4218 union xfs_btree_rec **recp, /* output: btree record */
4219 int *stat) /* output: success/failure */
4220{
4221 struct xfs_btree_block *block; /* btree block */
4222 struct xfs_buf *bp; /* buffer pointer */
4223 int ptr; /* record number */
4224#ifdef DEBUG
4225 int error; /* error return value */
4226#endif
4227
4228 ptr = cur->bc_ptrs[0];
4229 block = xfs_btree_get_block(cur, 0, &bp);
4230
4231#ifdef DEBUG
4232 error = xfs_btree_check_block(cur, block, 0, bp);
4233 if (error)
4234 return error;
4235#endif
4236
4237 /*
4238 * Off the right end or left end, return failure.
4239 */
4240 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4241 *stat = 0;
4242 return 0;
4243 }
4244
4245 /*
4246 * Point to the record and extract its data.
4247 */
4248 *recp = xfs_btree_rec_addr(cur, ptr, block);
4249 *stat = 1;
4250 return 0;
4251}
4252
4253/* Visit a block in a btree. */
4254STATIC int
4255xfs_btree_visit_block(
4256 struct xfs_btree_cur *cur,
4257 int level,
4258 xfs_btree_visit_blocks_fn fn,
4259 void *data)
4260{
4261 struct xfs_btree_block *block;
4262 struct xfs_buf *bp;
4263 union xfs_btree_ptr rptr;
4264 int error;
4265
4266 /* do right sibling readahead */
4267 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4268 block = xfs_btree_get_block(cur, level, &bp);
4269
4270 /* process the block */
4271 error = fn(cur, level, data);
4272 if (error)
4273 return error;
4274
4275 /* now read rh sibling block for next iteration */
4276 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4277 if (xfs_btree_ptr_is_null(cur, &rptr))
4278 return -ENOENT;
4279
4280 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4281}
4282
4283
4284/* Visit every block in a btree. */
4285int
4286xfs_btree_visit_blocks(
4287 struct xfs_btree_cur *cur,
4288 xfs_btree_visit_blocks_fn fn,
4289 void *data)
4290{
4291 union xfs_btree_ptr lptr;
4292 int level;
4293 struct xfs_btree_block *block = NULL;
4294 int error = 0;
4295
4296 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4297
4298 /* for each level */
4299 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4300 /* grab the left hand block */
4301 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4302 if (error)
4303 return error;
4304
4305 /* readahead the left most block for the next level down */
4306 if (level > 0) {
4307 union xfs_btree_ptr *ptr;
4308
4309 ptr = xfs_btree_ptr_addr(cur, 1, block);
4310 xfs_btree_readahead_ptr(cur, ptr, 1);
4311
4312 /* save for the next iteration of the loop */
4313 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4314 }
4315
4316 /* for each buffer in the level */
4317 do {
4318 error = xfs_btree_visit_block(cur, level, fn, data);
4319 } while (!error);
4320
4321 if (error != -ENOENT)
4322 return error;
4323 }
4324
4325 return 0;
4326}
4327
4328/*
4329 * Change the owner of a btree.
4330 *
4331 * The mechanism we use here is ordered buffer logging. Because we don't know
4332 * how many buffers were are going to need to modify, we don't really want to
4333 * have to make transaction reservations for the worst case of every buffer in a
4334 * full size btree as that may be more space that we can fit in the log....
4335 *
4336 * We do the btree walk in the most optimal manner possible - we have sibling
4337 * pointers so we can just walk all the blocks on each level from left to right
4338 * in a single pass, and then move to the next level and do the same. We can
4339 * also do readahead on the sibling pointers to get IO moving more quickly,
4340 * though for slow disks this is unlikely to make much difference to performance
4341 * as the amount of CPU work we have to do before moving to the next block is
4342 * relatively small.
4343 *
4344 * For each btree block that we load, modify the owner appropriately, set the
4345 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4346 * we mark the region we change dirty so that if the buffer is relogged in
4347 * a subsequent transaction the changes we make here as an ordered buffer are
4348 * correctly relogged in that transaction. If we are in recovery context, then
4349 * just queue the modified buffer as delayed write buffer so the transaction
4350 * recovery completion writes the changes to disk.
4351 */
4352struct xfs_btree_block_change_owner_info {
4353 uint64_t new_owner;
4354 struct list_head *buffer_list;
4355};
4356
4357static int
4358xfs_btree_block_change_owner(
4359 struct xfs_btree_cur *cur,
4360 int level,
4361 void *data)
4362{
4363 struct xfs_btree_block_change_owner_info *bbcoi = data;
4364 struct xfs_btree_block *block;
4365 struct xfs_buf *bp;
4366
4367 /* modify the owner */
4368 block = xfs_btree_get_block(cur, level, &bp);
4369 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4370 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4371 return 0;
4372 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4373 } else {
4374 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4375 return 0;
4376 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4377 }
4378
4379 /*
4380 * If the block is a root block hosted in an inode, we might not have a
4381 * buffer pointer here and we shouldn't attempt to log the change as the
4382 * information is already held in the inode and discarded when the root
4383 * block is formatted into the on-disk inode fork. We still change it,
4384 * though, so everything is consistent in memory.
4385 */
4386 if (!bp) {
4387 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4388 ASSERT(level == cur->bc_nlevels - 1);
4389 return 0;
4390 }
4391
4392 if (cur->bc_tp) {
4393 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4394 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4395 return -EAGAIN;
4396 }
4397 } else {
4398 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4399 }
4400
4401 return 0;
4402}
4403
4404int
4405xfs_btree_change_owner(
4406 struct xfs_btree_cur *cur,
4407 uint64_t new_owner,
4408 struct list_head *buffer_list)
4409{
4410 struct xfs_btree_block_change_owner_info bbcoi;
4411
4412 bbcoi.new_owner = new_owner;
4413 bbcoi.buffer_list = buffer_list;
4414
4415 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4416 &bbcoi);
4417}
4418
4419/* Verify the v5 fields of a long-format btree block. */
4420xfs_failaddr_t
4421xfs_btree_lblock_v5hdr_verify(
4422 struct xfs_buf *bp,
4423 uint64_t owner)
4424{
4425 struct xfs_mount *mp = bp->b_mount;
4426 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4427
4428 if (!xfs_sb_version_hascrc(&mp->m_sb))
4429 return __this_address;
4430 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4431 return __this_address;
4432 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4433 return __this_address;
4434 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4435 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4436 return __this_address;
4437 return NULL;
4438}
4439
4440/* Verify a long-format btree block. */
4441xfs_failaddr_t
4442xfs_btree_lblock_verify(
4443 struct xfs_buf *bp,
4444 unsigned int max_recs)
4445{
4446 struct xfs_mount *mp = bp->b_mount;
4447 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4448
4449 /* numrecs verification */
4450 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4451 return __this_address;
4452
4453 /* sibling pointer verification */
4454 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4455 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4456 return __this_address;
4457 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4458 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4459 return __this_address;
4460
4461 return NULL;
4462}
4463
4464/**
4465 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4466 * btree block
4467 *
4468 * @bp: buffer containing the btree block
4469 */
4470xfs_failaddr_t
4471xfs_btree_sblock_v5hdr_verify(
4472 struct xfs_buf *bp)
4473{
4474 struct xfs_mount *mp = bp->b_mount;
4475 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4476 struct xfs_perag *pag = bp->b_pag;
4477
4478 if (!xfs_sb_version_hascrc(&mp->m_sb))
4479 return __this_address;
4480 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4481 return __this_address;
4482 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4483 return __this_address;
4484 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4485 return __this_address;
4486 return NULL;
4487}
4488
4489/**
4490 * xfs_btree_sblock_verify() -- verify a short-format btree block
4491 *
4492 * @bp: buffer containing the btree block
4493 * @max_recs: maximum records allowed in this btree node
4494 */
4495xfs_failaddr_t
4496xfs_btree_sblock_verify(
4497 struct xfs_buf *bp,
4498 unsigned int max_recs)
4499{
4500 struct xfs_mount *mp = bp->b_mount;
4501 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4502 xfs_agblock_t agno;
4503
4504 /* numrecs verification */
4505 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4506 return __this_address;
4507
4508 /* sibling pointer verification */
4509 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4510 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4511 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4512 return __this_address;
4513 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4514 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4515 return __this_address;
4516
4517 return NULL;
4518}
4519
4520/*
4521 * Calculate the number of btree levels needed to store a given number of
4522 * records in a short-format btree.
4523 */
4524uint
4525xfs_btree_compute_maxlevels(
4526 uint *limits,
4527 unsigned long len)
4528{
4529 uint level;
4530 unsigned long maxblocks;
4531
4532 maxblocks = (len + limits[0] - 1) / limits[0];
4533 for (level = 1; maxblocks > 1; level++)
4534 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4535 return level;
4536}
4537
4538/*
4539 * Query a regular btree for all records overlapping a given interval.
4540 * Start with a LE lookup of the key of low_rec and return all records
4541 * until we find a record with a key greater than the key of high_rec.
4542 */
4543STATIC int
4544xfs_btree_simple_query_range(
4545 struct xfs_btree_cur *cur,
4546 union xfs_btree_key *low_key,
4547 union xfs_btree_key *high_key,
4548 xfs_btree_query_range_fn fn,
4549 void *priv)
4550{
4551 union xfs_btree_rec *recp;
4552 union xfs_btree_key rec_key;
4553 int64_t diff;
4554 int stat;
4555 bool firstrec = true;
4556 int error;
4557
4558 ASSERT(cur->bc_ops->init_high_key_from_rec);
4559 ASSERT(cur->bc_ops->diff_two_keys);
4560
4561 /*
4562 * Find the leftmost record. The btree cursor must be set
4563 * to the low record used to generate low_key.
4564 */
4565 stat = 0;
4566 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4567 if (error)
4568 goto out;
4569
4570 /* Nothing? See if there's anything to the right. */
4571 if (!stat) {
4572 error = xfs_btree_increment(cur, 0, &stat);
4573 if (error)
4574 goto out;
4575 }
4576
4577 while (stat) {
4578 /* Find the record. */
4579 error = xfs_btree_get_rec(cur, &recp, &stat);
4580 if (error || !stat)
4581 break;
4582
4583 /* Skip if high_key(rec) < low_key. */
4584 if (firstrec) {
4585 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4586 firstrec = false;
4587 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4588 &rec_key);
4589 if (diff > 0)
4590 goto advloop;
4591 }
4592
4593 /* Stop if high_key < low_key(rec). */
4594 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4595 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4596 if (diff > 0)
4597 break;
4598
4599 /* Callback */
4600 error = fn(cur, recp, priv);
4601 if (error)
4602 break;
4603
4604advloop:
4605 /* Move on to the next record. */
4606 error = xfs_btree_increment(cur, 0, &stat);
4607 if (error)
4608 break;
4609 }
4610
4611out:
4612 return error;
4613}
4614
4615/*
4616 * Query an overlapped interval btree for all records overlapping a given
4617 * interval. This function roughly follows the algorithm given in
4618 * "Interval Trees" of _Introduction to Algorithms_, which is section
4619 * 14.3 in the 2nd and 3rd editions.
4620 *
4621 * First, generate keys for the low and high records passed in.
4622 *
4623 * For any leaf node, generate the high and low keys for the record.
4624 * If the record keys overlap with the query low/high keys, pass the
4625 * record to the function iterator.
4626 *
4627 * For any internal node, compare the low and high keys of each
4628 * pointer against the query low/high keys. If there's an overlap,
4629 * follow the pointer.
4630 *
4631 * As an optimization, we stop scanning a block when we find a low key
4632 * that is greater than the query's high key.
4633 */
4634STATIC int
4635xfs_btree_overlapped_query_range(
4636 struct xfs_btree_cur *cur,
4637 union xfs_btree_key *low_key,
4638 union xfs_btree_key *high_key,
4639 xfs_btree_query_range_fn fn,
4640 void *priv)
4641{
4642 union xfs_btree_ptr ptr;
4643 union xfs_btree_ptr *pp;
4644 union xfs_btree_key rec_key;
4645 union xfs_btree_key rec_hkey;
4646 union xfs_btree_key *lkp;
4647 union xfs_btree_key *hkp;
4648 union xfs_btree_rec *recp;
4649 struct xfs_btree_block *block;
4650 int64_t ldiff;
4651 int64_t hdiff;
4652 int level;
4653 struct xfs_buf *bp;
4654 int i;
4655 int error;
4656
4657 /* Load the root of the btree. */
4658 level = cur->bc_nlevels - 1;
4659 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4660 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4661 if (error)
4662 return error;
4663 xfs_btree_get_block(cur, level, &bp);
4664 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4665#ifdef DEBUG
4666 error = xfs_btree_check_block(cur, block, level, bp);
4667 if (error)
4668 goto out;
4669#endif
4670 cur->bc_ptrs[level] = 1;
4671
4672 while (level < cur->bc_nlevels) {
4673 block = xfs_btree_get_block(cur, level, &bp);
4674
4675 /* End of node, pop back towards the root. */
4676 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4677pop_up:
4678 if (level < cur->bc_nlevels - 1)
4679 cur->bc_ptrs[level + 1]++;
4680 level++;
4681 continue;
4682 }
4683
4684 if (level == 0) {
4685 /* Handle a leaf node. */
4686 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4687
4688 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4689 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4690 low_key);
4691
4692 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4693 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4694 &rec_key);
4695
4696 /*
4697 * If (record's high key >= query's low key) and
4698 * (query's high key >= record's low key), then
4699 * this record overlaps the query range; callback.
4700 */
4701 if (ldiff >= 0 && hdiff >= 0) {
4702 error = fn(cur, recp, priv);
4703 if (error)
4704 break;
4705 } else if (hdiff < 0) {
4706 /* Record is larger than high key; pop. */
4707 goto pop_up;
4708 }
4709 cur->bc_ptrs[level]++;
4710 continue;
4711 }
4712
4713 /* Handle an internal node. */
4714 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4715 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4716 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4717
4718 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4719 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4720
4721 /*
4722 * If (pointer's high key >= query's low key) and
4723 * (query's high key >= pointer's low key), then
4724 * this record overlaps the query range; follow pointer.
4725 */
4726 if (ldiff >= 0 && hdiff >= 0) {
4727 level--;
4728 error = xfs_btree_lookup_get_block(cur, level, pp,
4729 &block);
4730 if (error)
4731 goto out;
4732 xfs_btree_get_block(cur, level, &bp);
4733 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4734#ifdef DEBUG
4735 error = xfs_btree_check_block(cur, block, level, bp);
4736 if (error)
4737 goto out;
4738#endif
4739 cur->bc_ptrs[level] = 1;
4740 continue;
4741 } else if (hdiff < 0) {
4742 /* The low key is larger than the upper range; pop. */
4743 goto pop_up;
4744 }
4745 cur->bc_ptrs[level]++;
4746 }
4747
4748out:
4749 /*
4750 * If we don't end this function with the cursor pointing at a record
4751 * block, a subsequent non-error cursor deletion will not release
4752 * node-level buffers, causing a buffer leak. This is quite possible
4753 * with a zero-results range query, so release the buffers if we
4754 * failed to return any results.
4755 */
4756 if (cur->bc_bufs[0] == NULL) {
4757 for (i = 0; i < cur->bc_nlevels; i++) {
4758 if (cur->bc_bufs[i]) {
4759 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4760 cur->bc_bufs[i] = NULL;
4761 cur->bc_ptrs[i] = 0;
4762 cur->bc_ra[i] = 0;
4763 }
4764 }
4765 }
4766
4767 return error;
4768}
4769
4770/*
4771 * Query a btree for all records overlapping a given interval of keys. The
4772 * supplied function will be called with each record found; return one of the
4773 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4774 * code. This function returns -ECANCELED, zero, or a negative error code.
4775 */
4776int
4777xfs_btree_query_range(
4778 struct xfs_btree_cur *cur,
4779 union xfs_btree_irec *low_rec,
4780 union xfs_btree_irec *high_rec,
4781 xfs_btree_query_range_fn fn,
4782 void *priv)
4783{
4784 union xfs_btree_rec rec;
4785 union xfs_btree_key low_key;
4786 union xfs_btree_key high_key;
4787
4788 /* Find the keys of both ends of the interval. */
4789 cur->bc_rec = *high_rec;
4790 cur->bc_ops->init_rec_from_cur(cur, &rec);
4791 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4792
4793 cur->bc_rec = *low_rec;
4794 cur->bc_ops->init_rec_from_cur(cur, &rec);
4795 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4796
4797 /* Enforce low key < high key. */
4798 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4799 return -EINVAL;
4800
4801 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4802 return xfs_btree_simple_query_range(cur, &low_key,
4803 &high_key, fn, priv);
4804 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4805 fn, priv);
4806}
4807
4808/* Query a btree for all records. */
4809int
4810xfs_btree_query_all(
4811 struct xfs_btree_cur *cur,
4812 xfs_btree_query_range_fn fn,
4813 void *priv)
4814{
4815 union xfs_btree_key low_key;
4816 union xfs_btree_key high_key;
4817
4818 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4819 memset(&low_key, 0, sizeof(low_key));
4820 memset(&high_key, 0xFF, sizeof(high_key));
4821
4822 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4823}
4824
4825/*
4826 * Calculate the number of blocks needed to store a given number of records
4827 * in a short-format (per-AG metadata) btree.
4828 */
4829unsigned long long
4830xfs_btree_calc_size(
4831 uint *limits,
4832 unsigned long long len)
4833{
4834 int level;
4835 int maxrecs;
4836 unsigned long long rval;
4837
4838 maxrecs = limits[0];
4839 for (level = 0, rval = 0; len > 1; level++) {
4840 len += maxrecs - 1;
4841 do_div(len, maxrecs);
4842 maxrecs = limits[1];
4843 rval += len;
4844 }
4845 return rval;
4846}
4847
4848static int
4849xfs_btree_count_blocks_helper(
4850 struct xfs_btree_cur *cur,
4851 int level,
4852 void *data)
4853{
4854 xfs_extlen_t *blocks = data;
4855 (*blocks)++;
4856
4857 return 0;
4858}
4859
4860/* Count the blocks in a btree and return the result in *blocks. */
4861int
4862xfs_btree_count_blocks(
4863 struct xfs_btree_cur *cur,
4864 xfs_extlen_t *blocks)
4865{
4866 *blocks = 0;
4867 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4868 blocks);
4869}
4870
4871/* Compare two btree pointers. */
4872int64_t
4873xfs_btree_diff_two_ptrs(
4874 struct xfs_btree_cur *cur,
4875 const union xfs_btree_ptr *a,
4876 const union xfs_btree_ptr *b)
4877{
4878 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4879 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4880 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4881}
4882
4883/* If there's an extent, we're done. */
4884STATIC int
4885xfs_btree_has_record_helper(
4886 struct xfs_btree_cur *cur,
4887 union xfs_btree_rec *rec,
4888 void *priv)
4889{
4890 return -ECANCELED;
4891}
4892
4893/* Is there a record covering a given range of keys? */
4894int
4895xfs_btree_has_record(
4896 struct xfs_btree_cur *cur,
4897 union xfs_btree_irec *low,
4898 union xfs_btree_irec *high,
4899 bool *exists)
4900{
4901 int error;
4902
4903 error = xfs_btree_query_range(cur, low, high,
4904 &xfs_btree_has_record_helper, NULL);
4905 if (error == -ECANCELED) {
4906 *exists = true;
4907 return 0;
4908 }
4909 *exists = false;
4910 return error;
4911}
4912
4913/* Are there more records in this btree? */
4914bool
4915xfs_btree_has_more_records(
4916 struct xfs_btree_cur *cur)
4917{
4918 struct xfs_btree_block *block;
4919 struct xfs_buf *bp;
4920
4921 block = xfs_btree_get_block(cur, 0, &bp);
4922
4923 /* There are still records in this block. */
4924 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4925 return true;
4926
4927 /* There are more record blocks. */
4928 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4929 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4930 else
4931 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4932}