Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Performance event support for sparc64.
   3 *
   4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   5 *
   6 * This code is based almost entirely upon the x86 perf event
   7 * code, which is:
   8 *
   9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11 *  Copyright (C) 2009 Jaswinder Singh Rajput
  12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  14 */
  15
  16#include <linux/perf_event.h>
  17#include <linux/kprobes.h>
  18#include <linux/ftrace.h>
  19#include <linux/kernel.h>
  20#include <linux/kdebug.h>
  21#include <linux/mutex.h>
  22
  23#include <asm/stacktrace.h>
  24#include <asm/cpudata.h>
  25#include <linux/uaccess.h>
  26#include <linux/atomic.h>
  27#include <asm/nmi.h>
  28#include <asm/pcr.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kernel.h"
  32#include "kstack.h"
  33
  34/* Two classes of sparc64 chips currently exist.  All of which have
  35 * 32-bit counters which can generate overflow interrupts on the
  36 * transition from 0xffffffff to 0.
  37 *
  38 * All chips upto and including SPARC-T3 have two performance
  39 * counters.  The two 32-bit counters are accessed in one go using a
  40 * single 64-bit register.
 
 
  41 *
  42 * On these older chips both counters are controlled using a single
  43 * control register.  The only way to stop all sampling is to clear
  44 * all of the context (user, supervisor, hypervisor) sampling enable
  45 * bits.  But these bits apply to both counters, thus the two counters
  46 * can't be enabled/disabled individually.
  47 *
  48 * Furthermore, the control register on these older chips have two
  49 * event fields, one for each of the two counters.  It's thus nearly
  50 * impossible to have one counter going while keeping the other one
  51 * stopped.  Therefore it is possible to get overflow interrupts for
  52 * counters not currently "in use" and that condition must be checked
  53 * in the overflow interrupt handler.
  54 *
  55 * So we use a hack, in that we program inactive counters with the
  56 * "sw_count0" and "sw_count1" events.  These count how many times
  57 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  58 * unusual way to encode a NOP and therefore will not trigger in
  59 * normal code.
  60 *
  61 * Starting with SPARC-T4 we have one control register per counter.
  62 * And the counters are stored in individual registers.  The registers
  63 * for the counters are 64-bit but only a 32-bit counter is
  64 * implemented.  The event selections on SPARC-T4 lack any
  65 * restrictions, therefore we can elide all of the complicated
  66 * conflict resolution code we have for SPARC-T3 and earlier chips.
  67 */
  68
  69#define MAX_HWEVENTS			4
  70#define MAX_PCRS			4
  71#define MAX_PERIOD			((1UL << 32) - 1)
  72
  73#define PIC_UPPER_INDEX			0
  74#define PIC_LOWER_INDEX			1
  75#define PIC_NO_INDEX			-1
  76
  77struct cpu_hw_events {
  78	/* Number of events currently scheduled onto this cpu.
  79	 * This tells how many entries in the arrays below
  80	 * are valid.
  81	 */
  82	int			n_events;
  83
  84	/* Number of new events added since the last hw_perf_disable().
  85	 * This works because the perf event layer always adds new
  86	 * events inside of a perf_{disable,enable}() sequence.
  87	 */
  88	int			n_added;
  89
  90	/* Array of events current scheduled on this cpu.  */
  91	struct perf_event	*event[MAX_HWEVENTS];
  92
  93	/* Array of encoded longs, specifying the %pcr register
  94	 * encoding and the mask of PIC counters this even can
  95	 * be scheduled on.  See perf_event_encode() et al.
  96	 */
  97	unsigned long		events[MAX_HWEVENTS];
  98
  99	/* The current counter index assigned to an event.  When the
 100	 * event hasn't been programmed into the cpu yet, this will
 101	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 102	 * we ought to schedule the event.
 103	 */
 104	int			current_idx[MAX_HWEVENTS];
 105
 106	/* Software copy of %pcr register(s) on this cpu.  */
 107	u64			pcr[MAX_HWEVENTS];
 108
 109	/* Enabled/disable state.  */
 110	int			enabled;
 111
 112	unsigned int		txn_flags;
 113};
 114static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 115
 116/* An event map describes the characteristics of a performance
 117 * counter event.  In particular it gives the encoding as well as
 118 * a mask telling which counters the event can be measured on.
 119 *
 120 * The mask is unused on SPARC-T4 and later.
 121 */
 122struct perf_event_map {
 123	u16	encoding;
 124	u8	pic_mask;
 125#define PIC_NONE	0x00
 126#define PIC_UPPER	0x01
 127#define PIC_LOWER	0x02
 128};
 129
 130/* Encode a perf_event_map entry into a long.  */
 131static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 132{
 133	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 134}
 135
 136static u8 perf_event_get_msk(unsigned long val)
 137{
 138	return val & 0xff;
 139}
 140
 141static u64 perf_event_get_enc(unsigned long val)
 142{
 143	return val >> 16;
 144}
 145
 146#define C(x) PERF_COUNT_HW_CACHE_##x
 147
 148#define CACHE_OP_UNSUPPORTED	0xfffe
 149#define CACHE_OP_NONSENSE	0xffff
 150
 151typedef struct perf_event_map cache_map_t
 152				[PERF_COUNT_HW_CACHE_MAX]
 153				[PERF_COUNT_HW_CACHE_OP_MAX]
 154				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 155
 156struct sparc_pmu {
 157	const struct perf_event_map	*(*event_map)(int);
 158	const cache_map_t		*cache_map;
 159	int				max_events;
 160	u32				(*read_pmc)(int);
 161	void				(*write_pmc)(int, u64);
 162	int				upper_shift;
 163	int				lower_shift;
 164	int				event_mask;
 165	int				user_bit;
 166	int				priv_bit;
 167	int				hv_bit;
 168	int				irq_bit;
 169	int				upper_nop;
 170	int				lower_nop;
 171	unsigned int			flags;
 172#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 173#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 174	int				max_hw_events;
 175	int				num_pcrs;
 176	int				num_pic_regs;
 177};
 178
 179static u32 sparc_default_read_pmc(int idx)
 180{
 181	u64 val;
 182
 183	val = pcr_ops->read_pic(0);
 184	if (idx == PIC_UPPER_INDEX)
 185		val >>= 32;
 186
 187	return val & 0xffffffff;
 188}
 189
 190static void sparc_default_write_pmc(int idx, u64 val)
 191{
 192	u64 shift, mask, pic;
 193
 194	shift = 0;
 195	if (idx == PIC_UPPER_INDEX)
 196		shift = 32;
 197
 198	mask = ((u64) 0xffffffff) << shift;
 199	val <<= shift;
 200
 201	pic = pcr_ops->read_pic(0);
 202	pic &= ~mask;
 203	pic |= val;
 204	pcr_ops->write_pic(0, pic);
 205}
 206
 207static const struct perf_event_map ultra3_perfmon_event_map[] = {
 208	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 211	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 212};
 213
 214static const struct perf_event_map *ultra3_event_map(int event_id)
 215{
 216	return &ultra3_perfmon_event_map[event_id];
 217}
 218
 219static const cache_map_t ultra3_cache_map = {
 220[C(L1D)] = {
 221	[C(OP_READ)] = {
 222		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 223		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 224	},
 225	[C(OP_WRITE)] = {
 226		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 227		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 228	},
 229	[C(OP_PREFETCH)] = {
 230		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 231		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 232	},
 233},
 234[C(L1I)] = {
 235	[C(OP_READ)] = {
 236		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 237		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 238	},
 239	[ C(OP_WRITE) ] = {
 240		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 241		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 242	},
 243	[ C(OP_PREFETCH) ] = {
 244		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 245		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 246	},
 247},
 248[C(LL)] = {
 249	[C(OP_READ)] = {
 250		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 251		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 252	},
 253	[C(OP_WRITE)] = {
 254		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 255		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 256	},
 257	[C(OP_PREFETCH)] = {
 258		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 259		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 260	},
 261},
 262[C(DTLB)] = {
 263	[C(OP_READ)] = {
 264		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 265		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 266	},
 267	[ C(OP_WRITE) ] = {
 268		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 269		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 270	},
 271	[ C(OP_PREFETCH) ] = {
 272		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 273		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 274	},
 275},
 276[C(ITLB)] = {
 277	[C(OP_READ)] = {
 278		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 279		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 280	},
 281	[ C(OP_WRITE) ] = {
 282		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 283		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 284	},
 285	[ C(OP_PREFETCH) ] = {
 286		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 287		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 288	},
 289},
 290[C(BPU)] = {
 291	[C(OP_READ)] = {
 292		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 293		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 294	},
 295	[ C(OP_WRITE) ] = {
 296		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 297		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 298	},
 299	[ C(OP_PREFETCH) ] = {
 300		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 301		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 302	},
 303},
 304[C(NODE)] = {
 305	[C(OP_READ)] = {
 306		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 307		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 308	},
 309	[ C(OP_WRITE) ] = {
 310		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 311		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 312	},
 313	[ C(OP_PREFETCH) ] = {
 314		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 315		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 316	},
 317},
 318};
 319
 320static const struct sparc_pmu ultra3_pmu = {
 321	.event_map	= ultra3_event_map,
 322	.cache_map	= &ultra3_cache_map,
 323	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 324	.read_pmc	= sparc_default_read_pmc,
 325	.write_pmc	= sparc_default_write_pmc,
 326	.upper_shift	= 11,
 327	.lower_shift	= 4,
 328	.event_mask	= 0x3f,
 329	.user_bit	= PCR_UTRACE,
 330	.priv_bit	= PCR_STRACE,
 331	.upper_nop	= 0x1c,
 332	.lower_nop	= 0x14,
 333	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 334			   SPARC_PMU_HAS_CONFLICTS),
 335	.max_hw_events	= 2,
 336	.num_pcrs	= 1,
 337	.num_pic_regs	= 1,
 338};
 339
 340/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 341 * only instructions, so it is free running which creates all kinds of
 342 * problems.  Some hardware designs make one wonder if the creator
 343 * even looked at how this stuff gets used by software.
 344 */
 345static const struct perf_event_map niagara1_perfmon_event_map[] = {
 346	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 348	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 349	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 350};
 351
 352static const struct perf_event_map *niagara1_event_map(int event_id)
 353{
 354	return &niagara1_perfmon_event_map[event_id];
 355}
 356
 357static const cache_map_t niagara1_cache_map = {
 358[C(L1D)] = {
 359	[C(OP_READ)] = {
 360		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 361		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 362	},
 363	[C(OP_WRITE)] = {
 364		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 365		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 366	},
 367	[C(OP_PREFETCH)] = {
 368		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 369		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 370	},
 371},
 372[C(L1I)] = {
 373	[C(OP_READ)] = {
 374		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 375		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 376	},
 377	[ C(OP_WRITE) ] = {
 378		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 379		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 380	},
 381	[ C(OP_PREFETCH) ] = {
 382		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 383		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 384	},
 385},
 386[C(LL)] = {
 387	[C(OP_READ)] = {
 388		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 389		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 390	},
 391	[C(OP_WRITE)] = {
 392		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 393		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 394	},
 395	[C(OP_PREFETCH)] = {
 396		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 397		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 398	},
 399},
 400[C(DTLB)] = {
 401	[C(OP_READ)] = {
 402		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 403		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 404	},
 405	[ C(OP_WRITE) ] = {
 406		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 407		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 408	},
 409	[ C(OP_PREFETCH) ] = {
 410		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 411		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 412	},
 413},
 414[C(ITLB)] = {
 415	[C(OP_READ)] = {
 416		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 417		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 418	},
 419	[ C(OP_WRITE) ] = {
 420		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 421		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 422	},
 423	[ C(OP_PREFETCH) ] = {
 424		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 425		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 426	},
 427},
 428[C(BPU)] = {
 429	[C(OP_READ)] = {
 430		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432	},
 433	[ C(OP_WRITE) ] = {
 434		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 435		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 436	},
 437	[ C(OP_PREFETCH) ] = {
 438		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 439		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 440	},
 441},
 442[C(NODE)] = {
 443	[C(OP_READ)] = {
 444		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 445		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 446	},
 447	[ C(OP_WRITE) ] = {
 448		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 449		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 450	},
 451	[ C(OP_PREFETCH) ] = {
 452		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 453		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 454	},
 455},
 456};
 457
 458static const struct sparc_pmu niagara1_pmu = {
 459	.event_map	= niagara1_event_map,
 460	.cache_map	= &niagara1_cache_map,
 461	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 462	.read_pmc	= sparc_default_read_pmc,
 463	.write_pmc	= sparc_default_write_pmc,
 464	.upper_shift	= 0,
 465	.lower_shift	= 4,
 466	.event_mask	= 0x7,
 467	.user_bit	= PCR_UTRACE,
 468	.priv_bit	= PCR_STRACE,
 469	.upper_nop	= 0x0,
 470	.lower_nop	= 0x0,
 471	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 472			   SPARC_PMU_HAS_CONFLICTS),
 473	.max_hw_events	= 2,
 474	.num_pcrs	= 1,
 475	.num_pic_regs	= 1,
 476};
 477
 478static const struct perf_event_map niagara2_perfmon_event_map[] = {
 479	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 484	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 485};
 486
 487static const struct perf_event_map *niagara2_event_map(int event_id)
 488{
 489	return &niagara2_perfmon_event_map[event_id];
 490}
 491
 492static const cache_map_t niagara2_cache_map = {
 493[C(L1D)] = {
 494	[C(OP_READ)] = {
 495		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 496		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 497	},
 498	[C(OP_WRITE)] = {
 499		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 500		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 501	},
 502	[C(OP_PREFETCH)] = {
 503		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 504		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 505	},
 506},
 507[C(L1I)] = {
 508	[C(OP_READ)] = {
 509		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 510		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 511	},
 512	[ C(OP_WRITE) ] = {
 513		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 514		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 515	},
 516	[ C(OP_PREFETCH) ] = {
 517		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 518		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 519	},
 520},
 521[C(LL)] = {
 522	[C(OP_READ)] = {
 523		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 524		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 525	},
 526	[C(OP_WRITE)] = {
 527		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 528		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 529	},
 530	[C(OP_PREFETCH)] = {
 531		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 532		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 533	},
 534},
 535[C(DTLB)] = {
 536	[C(OP_READ)] = {
 537		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 538		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 539	},
 540	[ C(OP_WRITE) ] = {
 541		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 542		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 543	},
 544	[ C(OP_PREFETCH) ] = {
 545		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 546		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 547	},
 548},
 549[C(ITLB)] = {
 550	[C(OP_READ)] = {
 551		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 552		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 553	},
 554	[ C(OP_WRITE) ] = {
 555		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 556		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 557	},
 558	[ C(OP_PREFETCH) ] = {
 559		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 560		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 561	},
 562},
 563[C(BPU)] = {
 564	[C(OP_READ)] = {
 565		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 566		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 567	},
 568	[ C(OP_WRITE) ] = {
 569		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 570		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 571	},
 572	[ C(OP_PREFETCH) ] = {
 573		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 574		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 575	},
 576},
 577[C(NODE)] = {
 578	[C(OP_READ)] = {
 579		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 580		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 581	},
 582	[ C(OP_WRITE) ] = {
 583		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 584		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 585	},
 586	[ C(OP_PREFETCH) ] = {
 587		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 588		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 589	},
 590},
 591};
 592
 593static const struct sparc_pmu niagara2_pmu = {
 594	.event_map	= niagara2_event_map,
 595	.cache_map	= &niagara2_cache_map,
 596	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 597	.read_pmc	= sparc_default_read_pmc,
 598	.write_pmc	= sparc_default_write_pmc,
 599	.upper_shift	= 19,
 600	.lower_shift	= 6,
 601	.event_mask	= 0xfff,
 602	.user_bit	= PCR_UTRACE,
 603	.priv_bit	= PCR_STRACE,
 604	.hv_bit		= PCR_N2_HTRACE,
 605	.irq_bit	= 0x30,
 606	.upper_nop	= 0x220,
 607	.lower_nop	= 0x220,
 608	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 609			   SPARC_PMU_HAS_CONFLICTS),
 610	.max_hw_events	= 2,
 611	.num_pcrs	= 1,
 612	.num_pic_regs	= 1,
 613};
 614
 615static const struct perf_event_map niagara4_perfmon_event_map[] = {
 616	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 617	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 618	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 619	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 620	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 621	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 622};
 623
 624static const struct perf_event_map *niagara4_event_map(int event_id)
 625{
 626	return &niagara4_perfmon_event_map[event_id];
 627}
 628
 629static const cache_map_t niagara4_cache_map = {
 630[C(L1D)] = {
 631	[C(OP_READ)] = {
 632		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 633		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 634	},
 635	[C(OP_WRITE)] = {
 636		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 637		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 638	},
 639	[C(OP_PREFETCH)] = {
 640		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 641		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 642	},
 643},
 644[C(L1I)] = {
 645	[C(OP_READ)] = {
 646		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 647		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 648	},
 649	[ C(OP_WRITE) ] = {
 650		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 651		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 652	},
 653	[ C(OP_PREFETCH) ] = {
 654		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 655		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 656	},
 657},
 658[C(LL)] = {
 659	[C(OP_READ)] = {
 660		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 661		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 662	},
 663	[C(OP_WRITE)] = {
 664		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 665		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 666	},
 667	[C(OP_PREFETCH)] = {
 668		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 669		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 670	},
 671},
 672[C(DTLB)] = {
 673	[C(OP_READ)] = {
 674		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 675		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 676	},
 677	[ C(OP_WRITE) ] = {
 678		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 679		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 680	},
 681	[ C(OP_PREFETCH) ] = {
 682		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 683		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 684	},
 685},
 686[C(ITLB)] = {
 687	[C(OP_READ)] = {
 688		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 689		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 690	},
 691	[ C(OP_WRITE) ] = {
 692		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 693		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 694	},
 695	[ C(OP_PREFETCH) ] = {
 696		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 697		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 698	},
 699},
 700[C(BPU)] = {
 701	[C(OP_READ)] = {
 702		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 703		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 704	},
 705	[ C(OP_WRITE) ] = {
 706		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 707		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 708	},
 709	[ C(OP_PREFETCH) ] = {
 710		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 711		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 712	},
 713},
 714[C(NODE)] = {
 715	[C(OP_READ)] = {
 716		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 717		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 718	},
 719	[ C(OP_WRITE) ] = {
 720		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 721		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 722	},
 723	[ C(OP_PREFETCH) ] = {
 724		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 725		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 726	},
 727},
 728};
 729
 730static u32 sparc_vt_read_pmc(int idx)
 731{
 732	u64 val = pcr_ops->read_pic(idx);
 733
 734	return val & 0xffffffff;
 735}
 736
 737static void sparc_vt_write_pmc(int idx, u64 val)
 738{
 739	u64 pcr;
 740
 741	pcr = pcr_ops->read_pcr(idx);
 742	/* ensure ov and ntc are reset */
 743	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 744
 745	pcr_ops->write_pic(idx, val & 0xffffffff);
 746
 747	pcr_ops->write_pcr(idx, pcr);
 748}
 749
 750static const struct sparc_pmu niagara4_pmu = {
 751	.event_map	= niagara4_event_map,
 752	.cache_map	= &niagara4_cache_map,
 753	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 754	.read_pmc	= sparc_vt_read_pmc,
 755	.write_pmc	= sparc_vt_write_pmc,
 756	.upper_shift	= 5,
 757	.lower_shift	= 5,
 758	.event_mask	= 0x7ff,
 759	.user_bit	= PCR_N4_UTRACE,
 760	.priv_bit	= PCR_N4_STRACE,
 761
 762	/* We explicitly don't support hypervisor tracing.  The T4
 763	 * generates the overflow event for precise events via a trap
 764	 * which will not be generated (ie. it's completely lost) if
 765	 * we happen to be in the hypervisor when the event triggers.
 766	 * Essentially, the overflow event reporting is completely
 767	 * unusable when you have hypervisor mode tracing enabled.
 768	 */
 769	.hv_bit		= 0,
 770
 771	.irq_bit	= PCR_N4_TOE,
 772	.upper_nop	= 0,
 773	.lower_nop	= 0,
 774	.flags		= 0,
 775	.max_hw_events	= 4,
 776	.num_pcrs	= 4,
 777	.num_pic_regs	= 4,
 778};
 779
 780static const struct sparc_pmu sparc_m7_pmu = {
 781	.event_map	= niagara4_event_map,
 782	.cache_map	= &niagara4_cache_map,
 783	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 784	.read_pmc	= sparc_vt_read_pmc,
 785	.write_pmc	= sparc_vt_write_pmc,
 786	.upper_shift	= 5,
 787	.lower_shift	= 5,
 788	.event_mask	= 0x7ff,
 789	.user_bit	= PCR_N4_UTRACE,
 790	.priv_bit	= PCR_N4_STRACE,
 791
 792	/* We explicitly don't support hypervisor tracing. */
 793	.hv_bit		= 0,
 794
 795	.irq_bit	= PCR_N4_TOE,
 796	.upper_nop	= 0,
 797	.lower_nop	= 0,
 798	.flags		= 0,
 799	.max_hw_events	= 4,
 800	.num_pcrs	= 4,
 801	.num_pic_regs	= 4,
 802};
 803static const struct sparc_pmu *sparc_pmu __read_mostly;
 804
 805static u64 event_encoding(u64 event_id, int idx)
 806{
 807	if (idx == PIC_UPPER_INDEX)
 808		event_id <<= sparc_pmu->upper_shift;
 809	else
 810		event_id <<= sparc_pmu->lower_shift;
 811	return event_id;
 812}
 813
 814static u64 mask_for_index(int idx)
 815{
 816	return event_encoding(sparc_pmu->event_mask, idx);
 817}
 818
 819static u64 nop_for_index(int idx)
 820{
 821	return event_encoding(idx == PIC_UPPER_INDEX ?
 822			      sparc_pmu->upper_nop :
 823			      sparc_pmu->lower_nop, idx);
 824}
 825
 826static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 827{
 828	u64 enc, val, mask = mask_for_index(idx);
 829	int pcr_index = 0;
 830
 831	if (sparc_pmu->num_pcrs > 1)
 832		pcr_index = idx;
 833
 834	enc = perf_event_get_enc(cpuc->events[idx]);
 835
 836	val = cpuc->pcr[pcr_index];
 837	val &= ~mask;
 838	val |= event_encoding(enc, idx);
 839	cpuc->pcr[pcr_index] = val;
 840
 841	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 842}
 843
 844static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 845{
 846	u64 mask = mask_for_index(idx);
 847	u64 nop = nop_for_index(idx);
 848	int pcr_index = 0;
 849	u64 val;
 850
 851	if (sparc_pmu->num_pcrs > 1)
 852		pcr_index = idx;
 853
 854	val = cpuc->pcr[pcr_index];
 855	val &= ~mask;
 856	val |= nop;
 857	cpuc->pcr[pcr_index] = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 
 
 
 
 
 
 860}
 861
 862static u64 sparc_perf_event_update(struct perf_event *event,
 863				   struct hw_perf_event *hwc, int idx)
 864{
 865	int shift = 64 - 32;
 866	u64 prev_raw_count, new_raw_count;
 867	s64 delta;
 868
 869again:
 870	prev_raw_count = local64_read(&hwc->prev_count);
 871	new_raw_count = sparc_pmu->read_pmc(idx);
 872
 873	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 874			     new_raw_count) != prev_raw_count)
 875		goto again;
 876
 877	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 878	delta >>= shift;
 879
 880	local64_add(delta, &event->count);
 881	local64_sub(delta, &hwc->period_left);
 882
 883	return new_raw_count;
 884}
 885
 886static int sparc_perf_event_set_period(struct perf_event *event,
 887				       struct hw_perf_event *hwc, int idx)
 888{
 889	s64 left = local64_read(&hwc->period_left);
 890	s64 period = hwc->sample_period;
 891	int ret = 0;
 892
 893	if (unlikely(left <= -period)) {
 894		left = period;
 895		local64_set(&hwc->period_left, left);
 896		hwc->last_period = period;
 897		ret = 1;
 898	}
 899
 900	if (unlikely(left <= 0)) {
 901		left += period;
 902		local64_set(&hwc->period_left, left);
 903		hwc->last_period = period;
 904		ret = 1;
 905	}
 906	if (left > MAX_PERIOD)
 907		left = MAX_PERIOD;
 908
 909	local64_set(&hwc->prev_count, (u64)-left);
 910
 911	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 912
 913	perf_event_update_userpage(event);
 914
 915	return ret;
 916}
 917
 918static void read_in_all_counters(struct cpu_hw_events *cpuc)
 
 
 
 
 919{
 920	int i;
 921
 
 
 
 
 922	for (i = 0; i < cpuc->n_events; i++) {
 923		struct perf_event *cp = cpuc->event[i];
 924
 925		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 926		    cpuc->current_idx[i] != cp->hw.idx) {
 927			sparc_perf_event_update(cp, &cp->hw,
 928						cpuc->current_idx[i]);
 929			cpuc->current_idx[i] = PIC_NO_INDEX;
 930		}
 931	}
 932}
 933
 934/* On this PMU all PICs are programmed using a single PCR.  Calculate
 935 * the combined control register value.
 936 *
 937 * For such chips we require that all of the events have the same
 938 * configuration, so just fetch the settings from the first entry.
 939 */
 940static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 941{
 942	int i;
 943
 944	if (!cpuc->n_added)
 945		goto out;
 946
 947	/* Assign to counters all unassigned events.  */
 948	for (i = 0; i < cpuc->n_events; i++) {
 949		struct perf_event *cp = cpuc->event[i];
 950		struct hw_perf_event *hwc = &cp->hw;
 951		int idx = hwc->idx;
 952		u64 enc;
 953
 954		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 955			continue;
 956
 957		sparc_perf_event_set_period(cp, hwc, idx);
 958		cpuc->current_idx[i] = idx;
 959
 960		enc = perf_event_get_enc(cpuc->events[i]);
 961		cpuc->pcr[0] &= ~mask_for_index(idx);
 962		if (hwc->state & PERF_HES_STOPPED)
 963			cpuc->pcr[0] |= nop_for_index(idx);
 964		else
 965			cpuc->pcr[0] |= event_encoding(enc, idx);
 966	}
 967out:
 968	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 969}
 970
 971static void sparc_pmu_start(struct perf_event *event, int flags);
 972
 973/* On this PMU each PIC has it's own PCR control register.  */
 974static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 975{
 976	int i;
 977
 978	if (!cpuc->n_added)
 979		goto out;
 980
 981	for (i = 0; i < cpuc->n_events; i++) {
 982		struct perf_event *cp = cpuc->event[i];
 983		struct hw_perf_event *hwc = &cp->hw;
 984		int idx = hwc->idx;
 985
 986		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 987			continue;
 988
 989		cpuc->current_idx[i] = idx;
 990
 991		sparc_pmu_start(cp, PERF_EF_RELOAD);
 992	}
 993out:
 994	for (i = 0; i < cpuc->n_events; i++) {
 995		struct perf_event *cp = cpuc->event[i];
 996		int idx = cp->hw.idx;
 997
 998		cpuc->pcr[idx] |= cp->hw.config_base;
 999	}
1000}
1001
1002/* If performance event entries have been added, move existing events
1003 * around (if necessary) and then assign new entries to counters.
1004 */
1005static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006{
1007	if (cpuc->n_added)
1008		read_in_all_counters(cpuc);
1009
1010	if (sparc_pmu->num_pcrs == 1) {
1011		calculate_single_pcr(cpuc);
1012	} else {
1013		calculate_multiple_pcrs(cpuc);
1014	}
1015}
1016
1017static void sparc_pmu_enable(struct pmu *pmu)
1018{
1019	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020	int i;
1021
1022	if (cpuc->enabled)
1023		return;
1024
1025	cpuc->enabled = 1;
1026	barrier();
1027
1028	if (cpuc->n_events)
1029		update_pcrs_for_enable(cpuc);
 
 
 
 
 
 
 
 
 
 
1030
1031	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033}
1034
1035static void sparc_pmu_disable(struct pmu *pmu)
1036{
1037	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038	int i;
1039
1040	if (!cpuc->enabled)
1041		return;
1042
1043	cpuc->enabled = 0;
1044	cpuc->n_added = 0;
1045
1046	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047		u64 val = cpuc->pcr[i];
 
 
1048
1049		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051		cpuc->pcr[i] = val;
1052		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053	}
1054}
1055
1056static int active_event_index(struct cpu_hw_events *cpuc,
1057			      struct perf_event *event)
1058{
1059	int i;
1060
1061	for (i = 0; i < cpuc->n_events; i++) {
1062		if (cpuc->event[i] == event)
1063			break;
1064	}
1065	BUG_ON(i == cpuc->n_events);
1066	return cpuc->current_idx[i];
1067}
1068
1069static void sparc_pmu_start(struct perf_event *event, int flags)
1070{
1071	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072	int idx = active_event_index(cpuc, event);
1073
1074	if (flags & PERF_EF_RELOAD) {
1075		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076		sparc_perf_event_set_period(event, &event->hw, idx);
1077	}
1078
1079	event->hw.state = 0;
1080
1081	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1082}
1083
1084static void sparc_pmu_stop(struct perf_event *event, int flags)
1085{
1086	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087	int idx = active_event_index(cpuc, event);
1088
1089	if (!(event->hw.state & PERF_HES_STOPPED)) {
1090		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091		event->hw.state |= PERF_HES_STOPPED;
1092	}
1093
1094	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095		sparc_perf_event_update(event, &event->hw, idx);
1096		event->hw.state |= PERF_HES_UPTODATE;
1097	}
1098}
1099
1100static void sparc_pmu_del(struct perf_event *event, int _flags)
1101{
1102	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103	unsigned long flags;
1104	int i;
1105
1106	local_irq_save(flags);
 
1107
1108	for (i = 0; i < cpuc->n_events; i++) {
1109		if (event == cpuc->event[i]) {
1110			/* Absorb the final count and turn off the
1111			 * event.
1112			 */
1113			sparc_pmu_stop(event, PERF_EF_UPDATE);
1114
1115			/* Shift remaining entries down into
1116			 * the existing slot.
1117			 */
1118			while (++i < cpuc->n_events) {
1119				cpuc->event[i - 1] = cpuc->event[i];
1120				cpuc->events[i - 1] = cpuc->events[i];
1121				cpuc->current_idx[i - 1] =
1122					cpuc->current_idx[i];
1123			}
1124
1125			perf_event_update_userpage(event);
1126
1127			cpuc->n_events--;
1128			break;
1129		}
1130	}
1131
 
1132	local_irq_restore(flags);
1133}
1134
1135static void sparc_pmu_read(struct perf_event *event)
1136{
1137	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138	int idx = active_event_index(cpuc, event);
1139	struct hw_perf_event *hwc = &event->hw;
1140
1141	sparc_perf_event_update(event, hwc, idx);
1142}
1143
1144static atomic_t active_events = ATOMIC_INIT(0);
1145static DEFINE_MUTEX(pmc_grab_mutex);
1146
1147static void perf_stop_nmi_watchdog(void *unused)
1148{
1149	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150	int i;
1151
1152	stop_nmi_watchdog(NULL);
1153	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155}
1156
1157static void perf_event_grab_pmc(void)
1158{
1159	if (atomic_inc_not_zero(&active_events))
1160		return;
1161
1162	mutex_lock(&pmc_grab_mutex);
1163	if (atomic_read(&active_events) == 0) {
1164		if (atomic_read(&nmi_active) > 0) {
1165			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166			BUG_ON(atomic_read(&nmi_active) != 0);
1167		}
1168		atomic_inc(&active_events);
1169	}
1170	mutex_unlock(&pmc_grab_mutex);
1171}
1172
1173static void perf_event_release_pmc(void)
1174{
1175	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176		if (atomic_read(&nmi_active) == 0)
1177			on_each_cpu(start_nmi_watchdog, NULL, 1);
1178		mutex_unlock(&pmc_grab_mutex);
1179	}
1180}
1181
1182static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183{
1184	unsigned int cache_type, cache_op, cache_result;
1185	const struct perf_event_map *pmap;
1186
1187	if (!sparc_pmu->cache_map)
1188		return ERR_PTR(-ENOENT);
1189
1190	cache_type = (config >>  0) & 0xff;
1191	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192		return ERR_PTR(-EINVAL);
1193
1194	cache_op = (config >>  8) & 0xff;
1195	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196		return ERR_PTR(-EINVAL);
1197
1198	cache_result = (config >> 16) & 0xff;
1199	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200		return ERR_PTR(-EINVAL);
1201
1202	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203
1204	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205		return ERR_PTR(-ENOENT);
1206
1207	if (pmap->encoding == CACHE_OP_NONSENSE)
1208		return ERR_PTR(-EINVAL);
1209
1210	return pmap;
1211}
1212
1213static void hw_perf_event_destroy(struct perf_event *event)
1214{
1215	perf_event_release_pmc();
1216}
1217
1218/* Make sure all events can be scheduled into the hardware at
1219 * the same time.  This is simplified by the fact that we only
1220 * need to support 2 simultaneous HW events.
1221 *
1222 * As a side effect, the evts[]->hw.idx values will be assigned
1223 * on success.  These are pending indexes.  When the events are
1224 * actually programmed into the chip, these values will propagate
1225 * to the per-cpu cpuc->current_idx[] slots, see the code in
1226 * maybe_change_configuration() for details.
1227 */
1228static int sparc_check_constraints(struct perf_event **evts,
1229				   unsigned long *events, int n_ev)
1230{
1231	u8 msk0 = 0, msk1 = 0;
1232	int idx0 = 0;
1233
1234	/* This case is possible when we are invoked from
1235	 * hw_perf_group_sched_in().
1236	 */
1237	if (!n_ev)
1238		return 0;
1239
1240	if (n_ev > sparc_pmu->max_hw_events)
1241		return -1;
1242
1243	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244		int i;
1245
1246		for (i = 0; i < n_ev; i++)
1247			evts[i]->hw.idx = i;
1248		return 0;
1249	}
1250
1251	msk0 = perf_event_get_msk(events[0]);
1252	if (n_ev == 1) {
1253		if (msk0 & PIC_LOWER)
1254			idx0 = 1;
1255		goto success;
1256	}
1257	BUG_ON(n_ev != 2);
1258	msk1 = perf_event_get_msk(events[1]);
1259
1260	/* If both events can go on any counter, OK.  */
1261	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262	    msk1 == (PIC_UPPER | PIC_LOWER))
1263		goto success;
1264
1265	/* If one event is limited to a specific counter,
1266	 * and the other can go on both, OK.
1267	 */
1268	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1270		if (msk0 & PIC_LOWER)
1271			idx0 = 1;
1272		goto success;
1273	}
1274
1275	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1277		if (msk1 & PIC_UPPER)
1278			idx0 = 1;
1279		goto success;
1280	}
1281
1282	/* If the events are fixed to different counters, OK.  */
1283	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285		if (msk0 & PIC_LOWER)
1286			idx0 = 1;
1287		goto success;
1288	}
1289
1290	/* Otherwise, there is a conflict.  */
1291	return -1;
1292
1293success:
1294	evts[0]->hw.idx = idx0;
1295	if (n_ev == 2)
1296		evts[1]->hw.idx = idx0 ^ 1;
1297	return 0;
1298}
1299
1300static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301{
1302	int eu = 0, ek = 0, eh = 0;
1303	struct perf_event *event;
1304	int i, n, first;
1305
1306	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307		return 0;
1308
1309	n = n_prev + n_new;
1310	if (n <= 1)
1311		return 0;
1312
1313	first = 1;
1314	for (i = 0; i < n; i++) {
1315		event = evts[i];
1316		if (first) {
1317			eu = event->attr.exclude_user;
1318			ek = event->attr.exclude_kernel;
1319			eh = event->attr.exclude_hv;
1320			first = 0;
1321		} else if (event->attr.exclude_user != eu ||
1322			   event->attr.exclude_kernel != ek ||
1323			   event->attr.exclude_hv != eh) {
1324			return -EAGAIN;
1325		}
1326	}
1327
1328	return 0;
1329}
1330
1331static int collect_events(struct perf_event *group, int max_count,
1332			  struct perf_event *evts[], unsigned long *events,
1333			  int *current_idx)
1334{
1335	struct perf_event *event;
1336	int n = 0;
1337
1338	if (!is_software_event(group)) {
1339		if (n >= max_count)
1340			return -1;
1341		evts[n] = group;
1342		events[n] = group->hw.event_base;
1343		current_idx[n++] = PIC_NO_INDEX;
1344	}
1345	for_each_sibling_event(event, group) {
1346		if (!is_software_event(event) &&
1347		    event->state != PERF_EVENT_STATE_OFF) {
1348			if (n >= max_count)
1349				return -1;
1350			evts[n] = event;
1351			events[n] = event->hw.event_base;
1352			current_idx[n++] = PIC_NO_INDEX;
1353		}
1354	}
1355	return n;
1356}
1357
1358static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359{
1360	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361	int n0, ret = -EAGAIN;
1362	unsigned long flags;
1363
1364	local_irq_save(flags);
 
1365
1366	n0 = cpuc->n_events;
1367	if (n0 >= sparc_pmu->max_hw_events)
1368		goto out;
1369
1370	cpuc->event[n0] = event;
1371	cpuc->events[n0] = event->hw.event_base;
1372	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374	event->hw.state = PERF_HES_UPTODATE;
1375	if (!(ef_flags & PERF_EF_START))
1376		event->hw.state |= PERF_HES_STOPPED;
1377
1378	/*
1379	 * If group events scheduling transaction was started,
1380	 * skip the schedulability test here, it will be performed
1381	 * at commit time(->commit_txn) as a whole
1382	 */
1383	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384		goto nocheck;
1385
1386	if (check_excludes(cpuc->event, n0, 1))
1387		goto out;
1388	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389		goto out;
1390
1391nocheck:
1392	cpuc->n_events++;
1393	cpuc->n_added++;
1394
1395	ret = 0;
1396out:
 
1397	local_irq_restore(flags);
1398	return ret;
1399}
1400
1401static int sparc_pmu_event_init(struct perf_event *event)
1402{
1403	struct perf_event_attr *attr = &event->attr;
1404	struct perf_event *evts[MAX_HWEVENTS];
1405	struct hw_perf_event *hwc = &event->hw;
1406	unsigned long events[MAX_HWEVENTS];
1407	int current_idx_dmy[MAX_HWEVENTS];
1408	const struct perf_event_map *pmap;
1409	int n;
1410
1411	if (atomic_read(&nmi_active) < 0)
1412		return -ENODEV;
1413
1414	/* does not support taken branch sampling */
1415	if (has_branch_stack(event))
1416		return -EOPNOTSUPP;
1417
1418	switch (attr->type) {
1419	case PERF_TYPE_HARDWARE:
1420		if (attr->config >= sparc_pmu->max_events)
1421			return -EINVAL;
1422		pmap = sparc_pmu->event_map(attr->config);
1423		break;
1424
1425	case PERF_TYPE_HW_CACHE:
1426		pmap = sparc_map_cache_event(attr->config);
1427		if (IS_ERR(pmap))
1428			return PTR_ERR(pmap);
1429		break;
1430
1431	case PERF_TYPE_RAW:
1432		pmap = NULL;
1433		break;
1434
1435	default:
1436		return -ENOENT;
1437
1438	}
1439
1440	if (pmap) {
1441		hwc->event_base = perf_event_encode(pmap);
1442	} else {
1443		/*
1444		 * User gives us "(encoding << 16) | pic_mask" for
1445		 * PERF_TYPE_RAW events.
1446		 */
1447		hwc->event_base = attr->config;
1448	}
1449
1450	/* We save the enable bits in the config_base.  */
1451	hwc->config_base = sparc_pmu->irq_bit;
1452	if (!attr->exclude_user)
1453		hwc->config_base |= sparc_pmu->user_bit;
1454	if (!attr->exclude_kernel)
1455		hwc->config_base |= sparc_pmu->priv_bit;
1456	if (!attr->exclude_hv)
1457		hwc->config_base |= sparc_pmu->hv_bit;
1458
1459	n = 0;
1460	if (event->group_leader != event) {
1461		n = collect_events(event->group_leader,
1462				   sparc_pmu->max_hw_events - 1,
1463				   evts, events, current_idx_dmy);
1464		if (n < 0)
1465			return -EINVAL;
1466	}
1467	events[n] = hwc->event_base;
1468	evts[n] = event;
1469
1470	if (check_excludes(evts, n, 1))
1471		return -EINVAL;
1472
1473	if (sparc_check_constraints(evts, events, n + 1))
1474		return -EINVAL;
1475
1476	hwc->idx = PIC_NO_INDEX;
1477
1478	/* Try to do all error checking before this point, as unwinding
1479	 * state after grabbing the PMC is difficult.
1480	 */
1481	perf_event_grab_pmc();
1482	event->destroy = hw_perf_event_destroy;
1483
1484	if (!hwc->sample_period) {
1485		hwc->sample_period = MAX_PERIOD;
1486		hwc->last_period = hwc->sample_period;
1487		local64_set(&hwc->period_left, hwc->sample_period);
1488	}
1489
1490	return 0;
1491}
1492
1493/*
1494 * Start group events scheduling transaction
1495 * Set the flag to make pmu::enable() not perform the
1496 * schedulability test, it will be performed at commit time
1497 */
1498static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499{
1500	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501
1502	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1503
1504	cpuhw->txn_flags = txn_flags;
1505	if (txn_flags & ~PERF_PMU_TXN_ADD)
1506		return;
1507
1508	perf_pmu_disable(pmu);
 
1509}
1510
1511/*
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1515 */
1516static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517{
1518	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519	unsigned int txn_flags;
1520
1521	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1522
1523	txn_flags = cpuhw->txn_flags;
1524	cpuhw->txn_flags = 0;
1525	if (txn_flags & ~PERF_PMU_TXN_ADD)
1526		return;
1527
 
1528	perf_pmu_enable(pmu);
1529}
1530
1531/*
1532 * Commit group events scheduling transaction
1533 * Perform the group schedulability test as a whole
1534 * Return 0 if success
1535 */
1536static int sparc_pmu_commit_txn(struct pmu *pmu)
1537{
1538	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539	int n;
1540
1541	if (!sparc_pmu)
1542		return -EINVAL;
1543
1544	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1545
1546	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547		cpuc->txn_flags = 0;
1548		return 0;
1549	}
1550
1551	n = cpuc->n_events;
1552	if (check_excludes(cpuc->event, 0, n))
1553		return -EINVAL;
1554	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555		return -EAGAIN;
1556
1557	cpuc->txn_flags = 0;
1558	perf_pmu_enable(pmu);
1559	return 0;
1560}
1561
1562static struct pmu pmu = {
1563	.pmu_enable	= sparc_pmu_enable,
1564	.pmu_disable	= sparc_pmu_disable,
1565	.event_init	= sparc_pmu_event_init,
1566	.add		= sparc_pmu_add,
1567	.del		= sparc_pmu_del,
1568	.start		= sparc_pmu_start,
1569	.stop		= sparc_pmu_stop,
1570	.read		= sparc_pmu_read,
1571	.start_txn	= sparc_pmu_start_txn,
1572	.cancel_txn	= sparc_pmu_cancel_txn,
1573	.commit_txn	= sparc_pmu_commit_txn,
1574};
1575
1576void perf_event_print_debug(void)
1577{
1578	unsigned long flags;
1579	int cpu, i;
 
1580
1581	if (!sparc_pmu)
1582		return;
1583
1584	local_irq_save(flags);
1585
1586	cpu = smp_processor_id();
1587
 
 
 
1588	pr_info("\n");
1589	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590		pr_info("CPU#%d: PCR%d[%016llx]\n",
1591			cpu, i, pcr_ops->read_pcr(i));
1592	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593		pr_info("CPU#%d: PIC%d[%016llx]\n",
1594			cpu, i, pcr_ops->read_pic(i));
1595
1596	local_irq_restore(flags);
1597}
1598
1599static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600					    unsigned long cmd, void *__args)
1601{
1602	struct die_args *args = __args;
1603	struct perf_sample_data data;
1604	struct cpu_hw_events *cpuc;
1605	struct pt_regs *regs;
1606	int i;
1607
1608	if (!atomic_read(&active_events))
1609		return NOTIFY_DONE;
1610
1611	switch (cmd) {
1612	case DIE_NMI:
1613		break;
1614
1615	default:
1616		return NOTIFY_DONE;
1617	}
1618
1619	regs = args->regs;
1620
1621	cpuc = this_cpu_ptr(&cpu_hw_events);
 
 
1622
1623	/* If the PMU has the TOE IRQ enable bits, we need to do a
1624	 * dummy write to the %pcr to clear the overflow bits and thus
1625	 * the interrupt.
1626	 *
1627	 * Do this before we peek at the counters to determine
1628	 * overflow so we don't lose any events.
1629	 */
1630	if (sparc_pmu->irq_bit &&
1631	    sparc_pmu->num_pcrs == 1)
1632		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633
1634	for (i = 0; i < cpuc->n_events; i++) {
1635		struct perf_event *event = cpuc->event[i];
1636		int idx = cpuc->current_idx[i];
1637		struct hw_perf_event *hwc;
1638		u64 val;
1639
1640		if (sparc_pmu->irq_bit &&
1641		    sparc_pmu->num_pcrs > 1)
1642			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643
1644		hwc = &event->hw;
1645		val = sparc_perf_event_update(event, hwc, idx);
1646		if (val & (1ULL << 31))
1647			continue;
1648
1649		perf_sample_data_init(&data, 0, hwc->last_period);
1650		if (!sparc_perf_event_set_period(event, hwc, idx))
1651			continue;
1652
1653		if (perf_event_overflow(event, &data, regs))
1654			sparc_pmu_stop(event, 0);
1655	}
1656
1657	return NOTIFY_STOP;
1658}
1659
1660static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661	.notifier_call		= perf_event_nmi_handler,
1662};
1663
1664static bool __init supported_pmu(void)
1665{
1666	if (!strcmp(sparc_pmu_type, "ultra3") ||
1667	    !strcmp(sparc_pmu_type, "ultra3+") ||
1668	    !strcmp(sparc_pmu_type, "ultra3i") ||
1669	    !strcmp(sparc_pmu_type, "ultra4+")) {
1670		sparc_pmu = &ultra3_pmu;
1671		return true;
1672	}
1673	if (!strcmp(sparc_pmu_type, "niagara")) {
1674		sparc_pmu = &niagara1_pmu;
1675		return true;
1676	}
1677	if (!strcmp(sparc_pmu_type, "niagara2") ||
1678	    !strcmp(sparc_pmu_type, "niagara3")) {
1679		sparc_pmu = &niagara2_pmu;
1680		return true;
1681	}
1682	if (!strcmp(sparc_pmu_type, "niagara4") ||
1683	    !strcmp(sparc_pmu_type, "niagara5")) {
1684		sparc_pmu = &niagara4_pmu;
1685		return true;
1686	}
1687	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688		sparc_pmu = &sparc_m7_pmu;
1689		return true;
1690	}
1691	return false;
1692}
1693
1694static int __init init_hw_perf_events(void)
1695{
1696	int err;
1697
1698	pr_info("Performance events: ");
1699
1700	err = pcr_arch_init();
1701	if (err || !supported_pmu()) {
1702		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703		return 0;
1704	}
1705
1706	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707
1708	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709	register_die_notifier(&perf_event_nmi_notifier);
1710
1711	return 0;
1712}
1713pure_initcall(init_hw_perf_events);
1714
1715void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716			   struct pt_regs *regs)
1717{
1718	unsigned long ksp, fp;
1719#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720	int graph = 0;
1721#endif
1722
1723	stack_trace_flush();
1724
1725	perf_callchain_store(entry, regs->tpc);
1726
1727	ksp = regs->u_regs[UREG_I6];
1728	fp = ksp + STACK_BIAS;
1729	do {
1730		struct sparc_stackf *sf;
1731		struct pt_regs *regs;
1732		unsigned long pc;
1733
1734		if (!kstack_valid(current_thread_info(), fp))
1735			break;
1736
1737		sf = (struct sparc_stackf *) fp;
1738		regs = (struct pt_regs *) (sf + 1);
1739
1740		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741			if (user_mode(regs))
1742				break;
1743			pc = regs->tpc;
1744			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745		} else {
1746			pc = sf->callers_pc;
1747			fp = (unsigned long)sf->fp + STACK_BIAS;
1748		}
1749		perf_callchain_store(entry, pc);
1750#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752			int index = current->curr_ret_stack;
1753			if (current->ret_stack && index >= graph) {
1754				pc = current->ret_stack[index - graph].ret;
1755				perf_callchain_store(entry, pc);
1756				graph++;
1757			}
1758		}
1759#endif
1760	} while (entry->nr < entry->max_stack);
1761}
1762
1763static inline int
1764valid_user_frame(const void __user *fp, unsigned long size)
1765{
1766	/* addresses should be at least 4-byte aligned */
1767	if (((unsigned long) fp) & 3)
1768		return 0;
1769
1770	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771}
1772
1773static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774				   struct pt_regs *regs)
1775{
1776	unsigned long ufp;
1777
1778	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
 
 
1779	do {
1780		struct sparc_stackf __user *usf;
1781		struct sparc_stackf sf;
1782		unsigned long pc;
1783
1784		usf = (struct sparc_stackf __user *)ufp;
1785		if (!valid_user_frame(usf, sizeof(sf)))
1786			break;
1787
1788		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789			break;
1790
1791		pc = sf.callers_pc;
1792		ufp = (unsigned long)sf.fp + STACK_BIAS;
1793		perf_callchain_store(entry, pc);
1794	} while (entry->nr < entry->max_stack);
1795}
1796
1797static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
 
 
1803	do {
 
1804		unsigned long pc;
1805
1806		if (thread32_stack_is_64bit(ufp)) {
1807			struct sparc_stackf __user *usf;
1808			struct sparc_stackf sf;
1809
1810			ufp += STACK_BIAS;
1811			usf = (struct sparc_stackf __user *)ufp;
1812			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813				break;
1814			pc = sf.callers_pc & 0xffffffff;
1815			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816		} else {
1817			struct sparc_stackf32 __user *usf;
1818			struct sparc_stackf32 sf;
1819			usf = (struct sparc_stackf32 __user *)ufp;
1820			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821				break;
1822			pc = sf.callers_pc;
1823			ufp = (unsigned long)sf.fp;
1824		}
1825		perf_callchain_store(entry, pc);
1826	} while (entry->nr < entry->max_stack);
1827}
1828
1829void
1830perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831{
1832	u64 saved_fault_address = current_thread_info()->fault_address;
1833	u8 saved_fault_code = get_thread_fault_code();
1834	mm_segment_t old_fs;
1835
1836	perf_callchain_store(entry, regs->tpc);
1837
1838	if (!current->mm)
1839		return;
1840
1841	old_fs = get_fs();
1842	set_fs(USER_DS);
1843
1844	flushw_user();
1845
1846	pagefault_disable();
1847
1848	if (test_thread_flag(TIF_32BIT))
1849		perf_callchain_user_32(entry, regs);
1850	else
1851		perf_callchain_user_64(entry, regs);
1852
1853	pagefault_enable();
1854
1855	set_fs(old_fs);
1856	set_thread_fault_code(saved_fault_code);
1857	current_thread_info()->fault_address = saved_fault_address;
1858}
v3.1
 
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
 
  28
  29#include "kernel.h"
  30#include "kstack.h"
  31
  32/* Sparc64 chips have two performance counters, 32-bits each, with
  33 * overflow interrupts generated on transition from 0xffffffff to 0.
  34 * The counters are accessed in one go using a 64-bit register.
  35 *
  36 * Both counters are controlled using a single control register.  The
  37 * only way to stop all sampling is to clear all of the context (user,
  38 * supervisor, hypervisor) sampling enable bits.  But these bits apply
  39 * to both counters, thus the two counters can't be enabled/disabled
  40 * individually.
  41 *
  42 * The control register has two event fields, one for each of the two
  43 * counters.  It's thus nearly impossible to have one counter going
  44 * while keeping the other one stopped.  Therefore it is possible to
  45 * get overflow interrupts for counters not currently "in use" and
  46 * that condition must be checked in the overflow interrupt handler.
 
 
 
 
 
 
 
  47 *
  48 * So we use a hack, in that we program inactive counters with the
  49 * "sw_count0" and "sw_count1" events.  These count how many times
  50 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  51 * unusual way to encode a NOP and therefore will not trigger in
  52 * normal code.
 
 
 
 
 
 
 
  53 */
  54
  55#define MAX_HWEVENTS			2
 
  56#define MAX_PERIOD			((1UL << 32) - 1)
  57
  58#define PIC_UPPER_INDEX			0
  59#define PIC_LOWER_INDEX			1
  60#define PIC_NO_INDEX			-1
  61
  62struct cpu_hw_events {
  63	/* Number of events currently scheduled onto this cpu.
  64	 * This tells how many entries in the arrays below
  65	 * are valid.
  66	 */
  67	int			n_events;
  68
  69	/* Number of new events added since the last hw_perf_disable().
  70	 * This works because the perf event layer always adds new
  71	 * events inside of a perf_{disable,enable}() sequence.
  72	 */
  73	int			n_added;
  74
  75	/* Array of events current scheduled on this cpu.  */
  76	struct perf_event	*event[MAX_HWEVENTS];
  77
  78	/* Array of encoded longs, specifying the %pcr register
  79	 * encoding and the mask of PIC counters this even can
  80	 * be scheduled on.  See perf_event_encode() et al.
  81	 */
  82	unsigned long		events[MAX_HWEVENTS];
  83
  84	/* The current counter index assigned to an event.  When the
  85	 * event hasn't been programmed into the cpu yet, this will
  86	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
  87	 * we ought to schedule the event.
  88	 */
  89	int			current_idx[MAX_HWEVENTS];
  90
  91	/* Software copy of %pcr register on this cpu.  */
  92	u64			pcr;
  93
  94	/* Enabled/disable state.  */
  95	int			enabled;
  96
  97	unsigned int		group_flag;
  98};
  99DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 100
 101/* An event map describes the characteristics of a performance
 102 * counter event.  In particular it gives the encoding as well as
 103 * a mask telling which counters the event can be measured on.
 
 
 104 */
 105struct perf_event_map {
 106	u16	encoding;
 107	u8	pic_mask;
 108#define PIC_NONE	0x00
 109#define PIC_UPPER	0x01
 110#define PIC_LOWER	0x02
 111};
 112
 113/* Encode a perf_event_map entry into a long.  */
 114static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 115{
 116	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 117}
 118
 119static u8 perf_event_get_msk(unsigned long val)
 120{
 121	return val & 0xff;
 122}
 123
 124static u64 perf_event_get_enc(unsigned long val)
 125{
 126	return val >> 16;
 127}
 128
 129#define C(x) PERF_COUNT_HW_CACHE_##x
 130
 131#define CACHE_OP_UNSUPPORTED	0xfffe
 132#define CACHE_OP_NONSENSE	0xffff
 133
 134typedef struct perf_event_map cache_map_t
 135				[PERF_COUNT_HW_CACHE_MAX]
 136				[PERF_COUNT_HW_CACHE_OP_MAX]
 137				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 138
 139struct sparc_pmu {
 140	const struct perf_event_map	*(*event_map)(int);
 141	const cache_map_t		*cache_map;
 142	int				max_events;
 
 
 143	int				upper_shift;
 144	int				lower_shift;
 145	int				event_mask;
 
 
 146	int				hv_bit;
 147	int				irq_bit;
 148	int				upper_nop;
 149	int				lower_nop;
 
 
 
 
 
 
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152static const struct perf_event_map ultra3_perfmon_event_map[] = {
 153	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 154	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 155	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 156	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 157};
 158
 159static const struct perf_event_map *ultra3_event_map(int event_id)
 160{
 161	return &ultra3_perfmon_event_map[event_id];
 162}
 163
 164static const cache_map_t ultra3_cache_map = {
 165[C(L1D)] = {
 166	[C(OP_READ)] = {
 167		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 168		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 169	},
 170	[C(OP_WRITE)] = {
 171		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 172		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 173	},
 174	[C(OP_PREFETCH)] = {
 175		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 176		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 177	},
 178},
 179[C(L1I)] = {
 180	[C(OP_READ)] = {
 181		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 182		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 183	},
 184	[ C(OP_WRITE) ] = {
 185		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 186		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 187	},
 188	[ C(OP_PREFETCH) ] = {
 189		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 190		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 191	},
 192},
 193[C(LL)] = {
 194	[C(OP_READ)] = {
 195		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 196		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 197	},
 198	[C(OP_WRITE)] = {
 199		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 200		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 201	},
 202	[C(OP_PREFETCH)] = {
 203		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 204		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 205	},
 206},
 207[C(DTLB)] = {
 208	[C(OP_READ)] = {
 209		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 210		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 211	},
 212	[ C(OP_WRITE) ] = {
 213		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 214		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 215	},
 216	[ C(OP_PREFETCH) ] = {
 217		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 218		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 219	},
 220},
 221[C(ITLB)] = {
 222	[C(OP_READ)] = {
 223		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 224		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 225	},
 226	[ C(OP_WRITE) ] = {
 227		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 228		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 229	},
 230	[ C(OP_PREFETCH) ] = {
 231		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 232		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 233	},
 234},
 235[C(BPU)] = {
 236	[C(OP_READ)] = {
 237		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 238		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 239	},
 240	[ C(OP_WRITE) ] = {
 241		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 242		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 243	},
 244	[ C(OP_PREFETCH) ] = {
 245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 247	},
 248},
 249[C(NODE)] = {
 250	[C(OP_READ)] = {
 251		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 252		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 253	},
 254	[ C(OP_WRITE) ] = {
 255		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 256		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 257	},
 258	[ C(OP_PREFETCH) ] = {
 259		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 260		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 261	},
 262},
 263};
 264
 265static const struct sparc_pmu ultra3_pmu = {
 266	.event_map	= ultra3_event_map,
 267	.cache_map	= &ultra3_cache_map,
 268	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 
 
 269	.upper_shift	= 11,
 270	.lower_shift	= 4,
 271	.event_mask	= 0x3f,
 
 
 272	.upper_nop	= 0x1c,
 273	.lower_nop	= 0x14,
 
 
 
 
 
 274};
 275
 276/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 277 * only instructions, so it is free running which creates all kinds of
 278 * problems.  Some hardware designs make one wonder if the creator
 279 * even looked at how this stuff gets used by software.
 280 */
 281static const struct perf_event_map niagara1_perfmon_event_map[] = {
 282	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 283	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 284	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 285	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 286};
 287
 288static const struct perf_event_map *niagara1_event_map(int event_id)
 289{
 290	return &niagara1_perfmon_event_map[event_id];
 291}
 292
 293static const cache_map_t niagara1_cache_map = {
 294[C(L1D)] = {
 295	[C(OP_READ)] = {
 296		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 297		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 298	},
 299	[C(OP_WRITE)] = {
 300		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 301		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 302	},
 303	[C(OP_PREFETCH)] = {
 304		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 305		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 306	},
 307},
 308[C(L1I)] = {
 309	[C(OP_READ)] = {
 310		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 311		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 312	},
 313	[ C(OP_WRITE) ] = {
 314		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 315		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 316	},
 317	[ C(OP_PREFETCH) ] = {
 318		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 319		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 320	},
 321},
 322[C(LL)] = {
 323	[C(OP_READ)] = {
 324		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 325		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 326	},
 327	[C(OP_WRITE)] = {
 328		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 329		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 330	},
 331	[C(OP_PREFETCH)] = {
 332		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 333		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 334	},
 335},
 336[C(DTLB)] = {
 337	[C(OP_READ)] = {
 338		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 339		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 340	},
 341	[ C(OP_WRITE) ] = {
 342		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 343		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 344	},
 345	[ C(OP_PREFETCH) ] = {
 346		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 347		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 348	},
 349},
 350[C(ITLB)] = {
 351	[C(OP_READ)] = {
 352		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 353		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 354	},
 355	[ C(OP_WRITE) ] = {
 356		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 357		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 358	},
 359	[ C(OP_PREFETCH) ] = {
 360		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 361		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 362	},
 363},
 364[C(BPU)] = {
 365	[C(OP_READ)] = {
 366		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 367		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 368	},
 369	[ C(OP_WRITE) ] = {
 370		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 371		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 372	},
 373	[ C(OP_PREFETCH) ] = {
 374		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 375		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 376	},
 377},
 378[C(NODE)] = {
 379	[C(OP_READ)] = {
 380		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 381		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 382	},
 383	[ C(OP_WRITE) ] = {
 384		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 385		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 386	},
 387	[ C(OP_PREFETCH) ] = {
 388		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 389		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 390	},
 391},
 392};
 393
 394static const struct sparc_pmu niagara1_pmu = {
 395	.event_map	= niagara1_event_map,
 396	.cache_map	= &niagara1_cache_map,
 397	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 
 
 398	.upper_shift	= 0,
 399	.lower_shift	= 4,
 400	.event_mask	= 0x7,
 
 
 401	.upper_nop	= 0x0,
 402	.lower_nop	= 0x0,
 
 
 
 
 
 403};
 404
 405static const struct perf_event_map niagara2_perfmon_event_map[] = {
 406	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 407	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 408	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 409	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 410	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 411	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 412};
 413
 414static const struct perf_event_map *niagara2_event_map(int event_id)
 415{
 416	return &niagara2_perfmon_event_map[event_id];
 417}
 418
 419static const cache_map_t niagara2_cache_map = {
 420[C(L1D)] = {
 421	[C(OP_READ)] = {
 422		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 423		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 424	},
 425	[C(OP_WRITE)] = {
 426		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 427		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 428	},
 429	[C(OP_PREFETCH)] = {
 430		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432	},
 433},
 434[C(L1I)] = {
 435	[C(OP_READ)] = {
 436		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 437		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 438	},
 439	[ C(OP_WRITE) ] = {
 440		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 441		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 442	},
 443	[ C(OP_PREFETCH) ] = {
 444		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 445		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 446	},
 447},
 448[C(LL)] = {
 449	[C(OP_READ)] = {
 450		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 451		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 452	},
 453	[C(OP_WRITE)] = {
 454		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 455		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 456	},
 457	[C(OP_PREFETCH)] = {
 458		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 459		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 460	},
 461},
 462[C(DTLB)] = {
 463	[C(OP_READ)] = {
 464		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 465		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 466	},
 467	[ C(OP_WRITE) ] = {
 468		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 469		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 470	},
 471	[ C(OP_PREFETCH) ] = {
 472		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 473		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 474	},
 475},
 476[C(ITLB)] = {
 477	[C(OP_READ)] = {
 478		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 479		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 480	},
 481	[ C(OP_WRITE) ] = {
 482		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 483		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 484	},
 485	[ C(OP_PREFETCH) ] = {
 486		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 487		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 488	},
 489},
 490[C(BPU)] = {
 491	[C(OP_READ)] = {
 492		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 493		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 494	},
 495	[ C(OP_WRITE) ] = {
 496		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 497		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 498	},
 499	[ C(OP_PREFETCH) ] = {
 500		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 501		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 502	},
 503},
 504[C(NODE)] = {
 505	[C(OP_READ)] = {
 506		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 507		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 508	},
 509	[ C(OP_WRITE) ] = {
 510		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 511		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 512	},
 513	[ C(OP_PREFETCH) ] = {
 514		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 515		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 516	},
 517},
 518};
 519
 520static const struct sparc_pmu niagara2_pmu = {
 521	.event_map	= niagara2_event_map,
 522	.cache_map	= &niagara2_cache_map,
 523	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 
 
 524	.upper_shift	= 19,
 525	.lower_shift	= 6,
 526	.event_mask	= 0xfff,
 527	.hv_bit		= 0x8,
 
 
 528	.irq_bit	= 0x30,
 529	.upper_nop	= 0x220,
 530	.lower_nop	= 0x220,
 
 
 
 
 
 531};
 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533static const struct sparc_pmu *sparc_pmu __read_mostly;
 534
 535static u64 event_encoding(u64 event_id, int idx)
 536{
 537	if (idx == PIC_UPPER_INDEX)
 538		event_id <<= sparc_pmu->upper_shift;
 539	else
 540		event_id <<= sparc_pmu->lower_shift;
 541	return event_id;
 542}
 543
 544static u64 mask_for_index(int idx)
 545{
 546	return event_encoding(sparc_pmu->event_mask, idx);
 547}
 548
 549static u64 nop_for_index(int idx)
 550{
 551	return event_encoding(idx == PIC_UPPER_INDEX ?
 552			      sparc_pmu->upper_nop :
 553			      sparc_pmu->lower_nop, idx);
 554}
 555
 556static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 557{
 558	u64 val, mask = mask_for_index(idx);
 
 
 
 
 559
 560	val = cpuc->pcr;
 
 
 561	val &= ~mask;
 562	val |= hwc->config;
 563	cpuc->pcr = val;
 564
 565	pcr_ops->write(cpuc->pcr);
 566}
 567
 568static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 569{
 570	u64 mask = mask_for_index(idx);
 571	u64 nop = nop_for_index(idx);
 
 572	u64 val;
 573
 574	val = cpuc->pcr;
 
 
 
 575	val &= ~mask;
 576	val |= nop;
 577	cpuc->pcr = val;
 578
 579	pcr_ops->write(cpuc->pcr);
 580}
 581
 582static u32 read_pmc(int idx)
 583{
 584	u64 val;
 585
 586	read_pic(val);
 587	if (idx == PIC_UPPER_INDEX)
 588		val >>= 32;
 589
 590	return val & 0xffffffff;
 591}
 592
 593static void write_pmc(int idx, u64 val)
 594{
 595	u64 shift, mask, pic;
 596
 597	shift = 0;
 598	if (idx == PIC_UPPER_INDEX)
 599		shift = 32;
 600
 601	mask = ((u64) 0xffffffff) << shift;
 602	val <<= shift;
 603
 604	read_pic(pic);
 605	pic &= ~mask;
 606	pic |= val;
 607	write_pic(pic);
 608}
 609
 610static u64 sparc_perf_event_update(struct perf_event *event,
 611				   struct hw_perf_event *hwc, int idx)
 612{
 613	int shift = 64 - 32;
 614	u64 prev_raw_count, new_raw_count;
 615	s64 delta;
 616
 617again:
 618	prev_raw_count = local64_read(&hwc->prev_count);
 619	new_raw_count = read_pmc(idx);
 620
 621	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 622			     new_raw_count) != prev_raw_count)
 623		goto again;
 624
 625	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 626	delta >>= shift;
 627
 628	local64_add(delta, &event->count);
 629	local64_sub(delta, &hwc->period_left);
 630
 631	return new_raw_count;
 632}
 633
 634static int sparc_perf_event_set_period(struct perf_event *event,
 635				       struct hw_perf_event *hwc, int idx)
 636{
 637	s64 left = local64_read(&hwc->period_left);
 638	s64 period = hwc->sample_period;
 639	int ret = 0;
 640
 641	if (unlikely(left <= -period)) {
 642		left = period;
 643		local64_set(&hwc->period_left, left);
 644		hwc->last_period = period;
 645		ret = 1;
 646	}
 647
 648	if (unlikely(left <= 0)) {
 649		left += period;
 650		local64_set(&hwc->period_left, left);
 651		hwc->last_period = period;
 652		ret = 1;
 653	}
 654	if (left > MAX_PERIOD)
 655		left = MAX_PERIOD;
 656
 657	local64_set(&hwc->prev_count, (u64)-left);
 658
 659	write_pmc(idx, (u64)(-left) & 0xffffffff);
 660
 661	perf_event_update_userpage(event);
 662
 663	return ret;
 664}
 665
 666/* If performance event entries have been added, move existing
 667 * events around (if necessary) and then assign new entries to
 668 * counters.
 669 */
 670static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 671{
 672	int i;
 673
 674	if (!cpuc->n_added)
 675		goto out;
 676
 677	/* Read in the counters which are moving.  */
 678	for (i = 0; i < cpuc->n_events; i++) {
 679		struct perf_event *cp = cpuc->event[i];
 680
 681		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 682		    cpuc->current_idx[i] != cp->hw.idx) {
 683			sparc_perf_event_update(cp, &cp->hw,
 684						cpuc->current_idx[i]);
 685			cpuc->current_idx[i] = PIC_NO_INDEX;
 686		}
 687	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688
 689	/* Assign to counters all unassigned events.  */
 690	for (i = 0; i < cpuc->n_events; i++) {
 691		struct perf_event *cp = cpuc->event[i];
 692		struct hw_perf_event *hwc = &cp->hw;
 693		int idx = hwc->idx;
 694		u64 enc;
 695
 696		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 697			continue;
 698
 699		sparc_perf_event_set_period(cp, hwc, idx);
 700		cpuc->current_idx[i] = idx;
 701
 702		enc = perf_event_get_enc(cpuc->events[i]);
 703		pcr &= ~mask_for_index(idx);
 704		if (hwc->state & PERF_HES_STOPPED)
 705			pcr |= nop_for_index(idx);
 706		else
 707			pcr |= event_encoding(enc, idx);
 708	}
 709out:
 710	return pcr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713static void sparc_pmu_enable(struct pmu *pmu)
 714{
 715	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 716	u64 pcr;
 717
 718	if (cpuc->enabled)
 719		return;
 720
 721	cpuc->enabled = 1;
 722	barrier();
 723
 724	pcr = cpuc->pcr;
 725	if (!cpuc->n_events) {
 726		pcr = 0;
 727	} else {
 728		pcr = maybe_change_configuration(cpuc, pcr);
 729
 730		/* We require that all of the events have the same
 731		 * configuration, so just fetch the settings from the
 732		 * first entry.
 733		 */
 734		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 735	}
 736
 737	pcr_ops->write(cpuc->pcr);
 
 738}
 739
 740static void sparc_pmu_disable(struct pmu *pmu)
 741{
 742	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 743	u64 val;
 744
 745	if (!cpuc->enabled)
 746		return;
 747
 748	cpuc->enabled = 0;
 749	cpuc->n_added = 0;
 750
 751	val = cpuc->pcr;
 752	val &= ~(PCR_UTRACE | PCR_STRACE |
 753		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 754	cpuc->pcr = val;
 755
 756	pcr_ops->write(cpuc->pcr);
 
 
 
 
 757}
 758
 759static int active_event_index(struct cpu_hw_events *cpuc,
 760			      struct perf_event *event)
 761{
 762	int i;
 763
 764	for (i = 0; i < cpuc->n_events; i++) {
 765		if (cpuc->event[i] == event)
 766			break;
 767	}
 768	BUG_ON(i == cpuc->n_events);
 769	return cpuc->current_idx[i];
 770}
 771
 772static void sparc_pmu_start(struct perf_event *event, int flags)
 773{
 774	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 775	int idx = active_event_index(cpuc, event);
 776
 777	if (flags & PERF_EF_RELOAD) {
 778		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 779		sparc_perf_event_set_period(event, &event->hw, idx);
 780	}
 781
 782	event->hw.state = 0;
 783
 784	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 785}
 786
 787static void sparc_pmu_stop(struct perf_event *event, int flags)
 788{
 789	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 790	int idx = active_event_index(cpuc, event);
 791
 792	if (!(event->hw.state & PERF_HES_STOPPED)) {
 793		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 794		event->hw.state |= PERF_HES_STOPPED;
 795	}
 796
 797	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 798		sparc_perf_event_update(event, &event->hw, idx);
 799		event->hw.state |= PERF_HES_UPTODATE;
 800	}
 801}
 802
 803static void sparc_pmu_del(struct perf_event *event, int _flags)
 804{
 805	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 806	unsigned long flags;
 807	int i;
 808
 809	local_irq_save(flags);
 810	perf_pmu_disable(event->pmu);
 811
 812	for (i = 0; i < cpuc->n_events; i++) {
 813		if (event == cpuc->event[i]) {
 814			/* Absorb the final count and turn off the
 815			 * event.
 816			 */
 817			sparc_pmu_stop(event, PERF_EF_UPDATE);
 818
 819			/* Shift remaining entries down into
 820			 * the existing slot.
 821			 */
 822			while (++i < cpuc->n_events) {
 823				cpuc->event[i - 1] = cpuc->event[i];
 824				cpuc->events[i - 1] = cpuc->events[i];
 825				cpuc->current_idx[i - 1] =
 826					cpuc->current_idx[i];
 827			}
 828
 829			perf_event_update_userpage(event);
 830
 831			cpuc->n_events--;
 832			break;
 833		}
 834	}
 835
 836	perf_pmu_enable(event->pmu);
 837	local_irq_restore(flags);
 838}
 839
 840static void sparc_pmu_read(struct perf_event *event)
 841{
 842	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 843	int idx = active_event_index(cpuc, event);
 844	struct hw_perf_event *hwc = &event->hw;
 845
 846	sparc_perf_event_update(event, hwc, idx);
 847}
 848
 849static atomic_t active_events = ATOMIC_INIT(0);
 850static DEFINE_MUTEX(pmc_grab_mutex);
 851
 852static void perf_stop_nmi_watchdog(void *unused)
 853{
 854	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
 855
 856	stop_nmi_watchdog(NULL);
 857	cpuc->pcr = pcr_ops->read();
 
 858}
 859
 860void perf_event_grab_pmc(void)
 861{
 862	if (atomic_inc_not_zero(&active_events))
 863		return;
 864
 865	mutex_lock(&pmc_grab_mutex);
 866	if (atomic_read(&active_events) == 0) {
 867		if (atomic_read(&nmi_active) > 0) {
 868			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 869			BUG_ON(atomic_read(&nmi_active) != 0);
 870		}
 871		atomic_inc(&active_events);
 872	}
 873	mutex_unlock(&pmc_grab_mutex);
 874}
 875
 876void perf_event_release_pmc(void)
 877{
 878	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 879		if (atomic_read(&nmi_active) == 0)
 880			on_each_cpu(start_nmi_watchdog, NULL, 1);
 881		mutex_unlock(&pmc_grab_mutex);
 882	}
 883}
 884
 885static const struct perf_event_map *sparc_map_cache_event(u64 config)
 886{
 887	unsigned int cache_type, cache_op, cache_result;
 888	const struct perf_event_map *pmap;
 889
 890	if (!sparc_pmu->cache_map)
 891		return ERR_PTR(-ENOENT);
 892
 893	cache_type = (config >>  0) & 0xff;
 894	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 895		return ERR_PTR(-EINVAL);
 896
 897	cache_op = (config >>  8) & 0xff;
 898	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 899		return ERR_PTR(-EINVAL);
 900
 901	cache_result = (config >> 16) & 0xff;
 902	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 903		return ERR_PTR(-EINVAL);
 904
 905	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 906
 907	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 908		return ERR_PTR(-ENOENT);
 909
 910	if (pmap->encoding == CACHE_OP_NONSENSE)
 911		return ERR_PTR(-EINVAL);
 912
 913	return pmap;
 914}
 915
 916static void hw_perf_event_destroy(struct perf_event *event)
 917{
 918	perf_event_release_pmc();
 919}
 920
 921/* Make sure all events can be scheduled into the hardware at
 922 * the same time.  This is simplified by the fact that we only
 923 * need to support 2 simultaneous HW events.
 924 *
 925 * As a side effect, the evts[]->hw.idx values will be assigned
 926 * on success.  These are pending indexes.  When the events are
 927 * actually programmed into the chip, these values will propagate
 928 * to the per-cpu cpuc->current_idx[] slots, see the code in
 929 * maybe_change_configuration() for details.
 930 */
 931static int sparc_check_constraints(struct perf_event **evts,
 932				   unsigned long *events, int n_ev)
 933{
 934	u8 msk0 = 0, msk1 = 0;
 935	int idx0 = 0;
 936
 937	/* This case is possible when we are invoked from
 938	 * hw_perf_group_sched_in().
 939	 */
 940	if (!n_ev)
 941		return 0;
 942
 943	if (n_ev > MAX_HWEVENTS)
 944		return -1;
 945
 
 
 
 
 
 
 
 
 946	msk0 = perf_event_get_msk(events[0]);
 947	if (n_ev == 1) {
 948		if (msk0 & PIC_LOWER)
 949			idx0 = 1;
 950		goto success;
 951	}
 952	BUG_ON(n_ev != 2);
 953	msk1 = perf_event_get_msk(events[1]);
 954
 955	/* If both events can go on any counter, OK.  */
 956	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 957	    msk1 == (PIC_UPPER | PIC_LOWER))
 958		goto success;
 959
 960	/* If one event is limited to a specific counter,
 961	 * and the other can go on both, OK.
 962	 */
 963	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 964	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 965		if (msk0 & PIC_LOWER)
 966			idx0 = 1;
 967		goto success;
 968	}
 969
 970	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 971	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 972		if (msk1 & PIC_UPPER)
 973			idx0 = 1;
 974		goto success;
 975	}
 976
 977	/* If the events are fixed to different counters, OK.  */
 978	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 979	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 980		if (msk0 & PIC_LOWER)
 981			idx0 = 1;
 982		goto success;
 983	}
 984
 985	/* Otherwise, there is a conflict.  */
 986	return -1;
 987
 988success:
 989	evts[0]->hw.idx = idx0;
 990	if (n_ev == 2)
 991		evts[1]->hw.idx = idx0 ^ 1;
 992	return 0;
 993}
 994
 995static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 996{
 997	int eu = 0, ek = 0, eh = 0;
 998	struct perf_event *event;
 999	int i, n, first;
1000
 
 
 
1001	n = n_prev + n_new;
1002	if (n <= 1)
1003		return 0;
1004
1005	first = 1;
1006	for (i = 0; i < n; i++) {
1007		event = evts[i];
1008		if (first) {
1009			eu = event->attr.exclude_user;
1010			ek = event->attr.exclude_kernel;
1011			eh = event->attr.exclude_hv;
1012			first = 0;
1013		} else if (event->attr.exclude_user != eu ||
1014			   event->attr.exclude_kernel != ek ||
1015			   event->attr.exclude_hv != eh) {
1016			return -EAGAIN;
1017		}
1018	}
1019
1020	return 0;
1021}
1022
1023static int collect_events(struct perf_event *group, int max_count,
1024			  struct perf_event *evts[], unsigned long *events,
1025			  int *current_idx)
1026{
1027	struct perf_event *event;
1028	int n = 0;
1029
1030	if (!is_software_event(group)) {
1031		if (n >= max_count)
1032			return -1;
1033		evts[n] = group;
1034		events[n] = group->hw.event_base;
1035		current_idx[n++] = PIC_NO_INDEX;
1036	}
1037	list_for_each_entry(event, &group->sibling_list, group_entry) {
1038		if (!is_software_event(event) &&
1039		    event->state != PERF_EVENT_STATE_OFF) {
1040			if (n >= max_count)
1041				return -1;
1042			evts[n] = event;
1043			events[n] = event->hw.event_base;
1044			current_idx[n++] = PIC_NO_INDEX;
1045		}
1046	}
1047	return n;
1048}
1049
1050static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1051{
1052	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1053	int n0, ret = -EAGAIN;
1054	unsigned long flags;
1055
1056	local_irq_save(flags);
1057	perf_pmu_disable(event->pmu);
1058
1059	n0 = cpuc->n_events;
1060	if (n0 >= MAX_HWEVENTS)
1061		goto out;
1062
1063	cpuc->event[n0] = event;
1064	cpuc->events[n0] = event->hw.event_base;
1065	cpuc->current_idx[n0] = PIC_NO_INDEX;
1066
1067	event->hw.state = PERF_HES_UPTODATE;
1068	if (!(ef_flags & PERF_EF_START))
1069		event->hw.state |= PERF_HES_STOPPED;
1070
1071	/*
1072	 * If group events scheduling transaction was started,
1073	 * skip the schedulability test here, it will be performed
1074	 * at commit time(->commit_txn) as a whole
1075	 */
1076	if (cpuc->group_flag & PERF_EVENT_TXN)
1077		goto nocheck;
1078
1079	if (check_excludes(cpuc->event, n0, 1))
1080		goto out;
1081	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1082		goto out;
1083
1084nocheck:
1085	cpuc->n_events++;
1086	cpuc->n_added++;
1087
1088	ret = 0;
1089out:
1090	perf_pmu_enable(event->pmu);
1091	local_irq_restore(flags);
1092	return ret;
1093}
1094
1095static int sparc_pmu_event_init(struct perf_event *event)
1096{
1097	struct perf_event_attr *attr = &event->attr;
1098	struct perf_event *evts[MAX_HWEVENTS];
1099	struct hw_perf_event *hwc = &event->hw;
1100	unsigned long events[MAX_HWEVENTS];
1101	int current_idx_dmy[MAX_HWEVENTS];
1102	const struct perf_event_map *pmap;
1103	int n;
1104
1105	if (atomic_read(&nmi_active) < 0)
1106		return -ENODEV;
1107
 
 
 
 
1108	switch (attr->type) {
1109	case PERF_TYPE_HARDWARE:
1110		if (attr->config >= sparc_pmu->max_events)
1111			return -EINVAL;
1112		pmap = sparc_pmu->event_map(attr->config);
1113		break;
1114
1115	case PERF_TYPE_HW_CACHE:
1116		pmap = sparc_map_cache_event(attr->config);
1117		if (IS_ERR(pmap))
1118			return PTR_ERR(pmap);
1119		break;
1120
1121	case PERF_TYPE_RAW:
1122		pmap = NULL;
1123		break;
1124
1125	default:
1126		return -ENOENT;
1127
1128	}
1129
1130	if (pmap) {
1131		hwc->event_base = perf_event_encode(pmap);
1132	} else {
1133		/*
1134		 * User gives us "(encoding << 16) | pic_mask" for
1135		 * PERF_TYPE_RAW events.
1136		 */
1137		hwc->event_base = attr->config;
1138	}
1139
1140	/* We save the enable bits in the config_base.  */
1141	hwc->config_base = sparc_pmu->irq_bit;
1142	if (!attr->exclude_user)
1143		hwc->config_base |= PCR_UTRACE;
1144	if (!attr->exclude_kernel)
1145		hwc->config_base |= PCR_STRACE;
1146	if (!attr->exclude_hv)
1147		hwc->config_base |= sparc_pmu->hv_bit;
1148
1149	n = 0;
1150	if (event->group_leader != event) {
1151		n = collect_events(event->group_leader,
1152				   MAX_HWEVENTS - 1,
1153				   evts, events, current_idx_dmy);
1154		if (n < 0)
1155			return -EINVAL;
1156	}
1157	events[n] = hwc->event_base;
1158	evts[n] = event;
1159
1160	if (check_excludes(evts, n, 1))
1161		return -EINVAL;
1162
1163	if (sparc_check_constraints(evts, events, n + 1))
1164		return -EINVAL;
1165
1166	hwc->idx = PIC_NO_INDEX;
1167
1168	/* Try to do all error checking before this point, as unwinding
1169	 * state after grabbing the PMC is difficult.
1170	 */
1171	perf_event_grab_pmc();
1172	event->destroy = hw_perf_event_destroy;
1173
1174	if (!hwc->sample_period) {
1175		hwc->sample_period = MAX_PERIOD;
1176		hwc->last_period = hwc->sample_period;
1177		local64_set(&hwc->period_left, hwc->sample_period);
1178	}
1179
1180	return 0;
1181}
1182
1183/*
1184 * Start group events scheduling transaction
1185 * Set the flag to make pmu::enable() not perform the
1186 * schedulability test, it will be performed at commit time
1187 */
1188static void sparc_pmu_start_txn(struct pmu *pmu)
1189{
1190	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1191
1192	perf_pmu_disable(pmu);
1193	cpuhw->group_flag |= PERF_EVENT_TXN;
1194}
1195
1196/*
1197 * Stop group events scheduling transaction
1198 * Clear the flag and pmu::enable() will perform the
1199 * schedulability test.
1200 */
1201static void sparc_pmu_cancel_txn(struct pmu *pmu)
1202{
1203	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
 
 
1204
1205	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1206	perf_pmu_enable(pmu);
1207}
1208
1209/*
1210 * Commit group events scheduling transaction
1211 * Perform the group schedulability test as a whole
1212 * Return 0 if success
1213 */
1214static int sparc_pmu_commit_txn(struct pmu *pmu)
1215{
1216	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1217	int n;
1218
1219	if (!sparc_pmu)
1220		return -EINVAL;
1221
1222	cpuc = &__get_cpu_var(cpu_hw_events);
 
 
 
 
 
 
1223	n = cpuc->n_events;
1224	if (check_excludes(cpuc->event, 0, n))
1225		return -EINVAL;
1226	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1227		return -EAGAIN;
1228
1229	cpuc->group_flag &= ~PERF_EVENT_TXN;
1230	perf_pmu_enable(pmu);
1231	return 0;
1232}
1233
1234static struct pmu pmu = {
1235	.pmu_enable	= sparc_pmu_enable,
1236	.pmu_disable	= sparc_pmu_disable,
1237	.event_init	= sparc_pmu_event_init,
1238	.add		= sparc_pmu_add,
1239	.del		= sparc_pmu_del,
1240	.start		= sparc_pmu_start,
1241	.stop		= sparc_pmu_stop,
1242	.read		= sparc_pmu_read,
1243	.start_txn	= sparc_pmu_start_txn,
1244	.cancel_txn	= sparc_pmu_cancel_txn,
1245	.commit_txn	= sparc_pmu_commit_txn,
1246};
1247
1248void perf_event_print_debug(void)
1249{
1250	unsigned long flags;
1251	u64 pcr, pic;
1252	int cpu;
1253
1254	if (!sparc_pmu)
1255		return;
1256
1257	local_irq_save(flags);
1258
1259	cpu = smp_processor_id();
1260
1261	pcr = pcr_ops->read();
1262	read_pic(pic);
1263
1264	pr_info("\n");
1265	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1266		cpu, pcr, pic);
 
 
 
 
1267
1268	local_irq_restore(flags);
1269}
1270
1271static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1272					    unsigned long cmd, void *__args)
1273{
1274	struct die_args *args = __args;
1275	struct perf_sample_data data;
1276	struct cpu_hw_events *cpuc;
1277	struct pt_regs *regs;
1278	int i;
1279
1280	if (!atomic_read(&active_events))
1281		return NOTIFY_DONE;
1282
1283	switch (cmd) {
1284	case DIE_NMI:
1285		break;
1286
1287	default:
1288		return NOTIFY_DONE;
1289	}
1290
1291	regs = args->regs;
1292
1293	perf_sample_data_init(&data, 0);
1294
1295	cpuc = &__get_cpu_var(cpu_hw_events);
1296
1297	/* If the PMU has the TOE IRQ enable bits, we need to do a
1298	 * dummy write to the %pcr to clear the overflow bits and thus
1299	 * the interrupt.
1300	 *
1301	 * Do this before we peek at the counters to determine
1302	 * overflow so we don't lose any events.
1303	 */
1304	if (sparc_pmu->irq_bit)
1305		pcr_ops->write(cpuc->pcr);
 
1306
1307	for (i = 0; i < cpuc->n_events; i++) {
1308		struct perf_event *event = cpuc->event[i];
1309		int idx = cpuc->current_idx[i];
1310		struct hw_perf_event *hwc;
1311		u64 val;
1312
 
 
 
 
1313		hwc = &event->hw;
1314		val = sparc_perf_event_update(event, hwc, idx);
1315		if (val & (1ULL << 31))
1316			continue;
1317
1318		data.period = event->hw.last_period;
1319		if (!sparc_perf_event_set_period(event, hwc, idx))
1320			continue;
1321
1322		if (perf_event_overflow(event, &data, regs))
1323			sparc_pmu_stop(event, 0);
1324	}
1325
1326	return NOTIFY_STOP;
1327}
1328
1329static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1330	.notifier_call		= perf_event_nmi_handler,
1331};
1332
1333static bool __init supported_pmu(void)
1334{
1335	if (!strcmp(sparc_pmu_type, "ultra3") ||
1336	    !strcmp(sparc_pmu_type, "ultra3+") ||
1337	    !strcmp(sparc_pmu_type, "ultra3i") ||
1338	    !strcmp(sparc_pmu_type, "ultra4+")) {
1339		sparc_pmu = &ultra3_pmu;
1340		return true;
1341	}
1342	if (!strcmp(sparc_pmu_type, "niagara")) {
1343		sparc_pmu = &niagara1_pmu;
1344		return true;
1345	}
1346	if (!strcmp(sparc_pmu_type, "niagara2") ||
1347	    !strcmp(sparc_pmu_type, "niagara3")) {
1348		sparc_pmu = &niagara2_pmu;
1349		return true;
1350	}
 
 
 
 
 
 
 
 
 
1351	return false;
1352}
1353
1354int __init init_hw_perf_events(void)
1355{
 
 
1356	pr_info("Performance events: ");
1357
1358	if (!supported_pmu()) {
 
1359		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1360		return 0;
1361	}
1362
1363	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1364
1365	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1366	register_die_notifier(&perf_event_nmi_notifier);
1367
1368	return 0;
1369}
1370early_initcall(init_hw_perf_events);
1371
1372void perf_callchain_kernel(struct perf_callchain_entry *entry,
1373			   struct pt_regs *regs)
1374{
1375	unsigned long ksp, fp;
1376#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1377	int graph = 0;
1378#endif
1379
1380	stack_trace_flush();
1381
1382	perf_callchain_store(entry, regs->tpc);
1383
1384	ksp = regs->u_regs[UREG_I6];
1385	fp = ksp + STACK_BIAS;
1386	do {
1387		struct sparc_stackf *sf;
1388		struct pt_regs *regs;
1389		unsigned long pc;
1390
1391		if (!kstack_valid(current_thread_info(), fp))
1392			break;
1393
1394		sf = (struct sparc_stackf *) fp;
1395		regs = (struct pt_regs *) (sf + 1);
1396
1397		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1398			if (user_mode(regs))
1399				break;
1400			pc = regs->tpc;
1401			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1402		} else {
1403			pc = sf->callers_pc;
1404			fp = (unsigned long)sf->fp + STACK_BIAS;
1405		}
1406		perf_callchain_store(entry, pc);
1407#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1408		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1409			int index = current->curr_ret_stack;
1410			if (current->ret_stack && index >= graph) {
1411				pc = current->ret_stack[index - graph].ret;
1412				perf_callchain_store(entry, pc);
1413				graph++;
1414			}
1415		}
1416#endif
1417	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 
 
 
 
 
 
 
 
 
 
1418}
1419
1420static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1421				   struct pt_regs *regs)
1422{
1423	unsigned long ufp;
1424
1425	perf_callchain_store(entry, regs->tpc);
1426
1427	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1428	do {
1429		struct sparc_stackf *usf, sf;
 
1430		unsigned long pc;
1431
1432		usf = (struct sparc_stackf *) ufp;
 
 
 
1433		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1434			break;
1435
1436		pc = sf.callers_pc;
1437		ufp = (unsigned long)sf.fp + STACK_BIAS;
1438		perf_callchain_store(entry, pc);
1439	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1440}
1441
1442static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1443				   struct pt_regs *regs)
1444{
1445	unsigned long ufp;
1446
1447	perf_callchain_store(entry, regs->tpc);
1448
1449	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1450	do {
1451		struct sparc_stackf32 *usf, sf;
1452		unsigned long pc;
1453
1454		usf = (struct sparc_stackf32 *) ufp;
1455		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1456			break;
1457
1458		pc = sf.callers_pc;
1459		ufp = (unsigned long)sf.fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
1460		perf_callchain_store(entry, pc);
1461	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1462}
1463
1464void
1465perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1466{
 
 
 
 
 
 
 
 
 
 
 
 
1467	flushw_user();
 
 
 
1468	if (test_thread_flag(TIF_32BIT))
1469		perf_callchain_user_32(entry, regs);
1470	else
1471		perf_callchain_user_64(entry, regs);
 
 
 
 
 
 
1472}