Linux Audio

Check our new training course

Loading...
v4.17
   1/* bpf_jit_comp.c : BPF JIT compiler
   2 *
   3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; version 2
   9 * of the License.
  10 */
 
 
  11#include <linux/netdevice.h>
  12#include <linux/filter.h>
  13#include <linux/if_vlan.h>
  14#include <linux/bpf.h>
  15
  16#include <asm/set_memory.h>
  17#include <asm/nospec-branch.h>
 
 
 
 
 
 
 
 
 
 
 
  18
  19/*
  20 * assembly code in arch/x86/net/bpf_jit.S
  21 */
  22extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
  23extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  24extern u8 sk_load_byte_positive_offset[];
  25extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  26extern u8 sk_load_byte_negative_offset[];
  27
  28static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  29{
  30	if (len == 1)
  31		*ptr = bytes;
  32	else if (len == 2)
  33		*(u16 *)ptr = bytes;
  34	else {
  35		*(u32 *)ptr = bytes;
  36		barrier();
  37	}
  38	return ptr + len;
  39}
  40
  41#define EMIT(bytes, len) \
  42	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  43
  44#define EMIT1(b1)		EMIT(b1, 1)
  45#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  46#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  47#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  48#define EMIT1_off32(b1, off) \
  49	do {EMIT1(b1); EMIT(off, 4); } while (0)
  50#define EMIT2_off32(b1, b2, off) \
  51	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
  52#define EMIT3_off32(b1, b2, b3, off) \
  53	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  54#define EMIT4_off32(b1, b2, b3, b4, off) \
  55	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  56
  57static bool is_imm8(int value)
  58{
  59	return value <= 127 && value >= -128;
  60}
  61
  62static bool is_simm32(s64 value)
  63{
  64	return value == (s64)(s32)value;
  65}
  66
  67static bool is_uimm32(u64 value)
  68{
  69	return value == (u64)(u32)value;
  70}
  71
  72/* mov dst, src */
  73#define EMIT_mov(DST, SRC) \
  74	do {if (DST != SRC) \
  75		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  76	} while (0)
  77
  78static int bpf_size_to_x86_bytes(int bpf_size)
  79{
  80	if (bpf_size == BPF_W)
  81		return 4;
  82	else if (bpf_size == BPF_H)
  83		return 2;
  84	else if (bpf_size == BPF_B)
  85		return 1;
  86	else if (bpf_size == BPF_DW)
  87		return 4; /* imm32 */
  88	else
  89		return 0;
  90}
  91
  92/* list of x86 cond jumps opcodes (. + s8)
  93 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  94 */
  95#define X86_JB  0x72
  96#define X86_JAE 0x73
  97#define X86_JE  0x74
  98#define X86_JNE 0x75
  99#define X86_JBE 0x76
 100#define X86_JA  0x77
 101#define X86_JL  0x7C
 102#define X86_JGE 0x7D
 103#define X86_JLE 0x7E
 104#define X86_JG  0x7F
 105
 106#define CHOOSE_LOAD_FUNC(K, func) \
 107	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 108
 109/* pick a register outside of BPF range for JIT internal work */
 110#define AUX_REG (MAX_BPF_JIT_REG + 1)
 111
 112/* The following table maps BPF registers to x64 registers.
 113 *
 114 * x64 register r12 is unused, since if used as base address
 115 * register in load/store instructions, it always needs an
 116 * extra byte of encoding and is callee saved.
 117 *
 118 *  r9 caches skb->len - skb->data_len
 119 * r10 caches skb->data, and used for blinding (if enabled)
 120 */
 121static const int reg2hex[] = {
 122	[BPF_REG_0] = 0,  /* rax */
 123	[BPF_REG_1] = 7,  /* rdi */
 124	[BPF_REG_2] = 6,  /* rsi */
 125	[BPF_REG_3] = 2,  /* rdx */
 126	[BPF_REG_4] = 1,  /* rcx */
 127	[BPF_REG_5] = 0,  /* r8 */
 128	[BPF_REG_6] = 3,  /* rbx callee saved */
 129	[BPF_REG_7] = 5,  /* r13 callee saved */
 130	[BPF_REG_8] = 6,  /* r14 callee saved */
 131	[BPF_REG_9] = 7,  /* r15 callee saved */
 132	[BPF_REG_FP] = 5, /* rbp readonly */
 133	[BPF_REG_AX] = 2, /* r10 temp register */
 134	[AUX_REG] = 3,    /* r11 temp register */
 135};
 136
 137/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 138 * which need extra byte of encoding.
 139 * rax,rcx,...,rbp have simpler encoding
 140 */
 141static bool is_ereg(u32 reg)
 142{
 143	return (1 << reg) & (BIT(BPF_REG_5) |
 144			     BIT(AUX_REG) |
 145			     BIT(BPF_REG_7) |
 146			     BIT(BPF_REG_8) |
 147			     BIT(BPF_REG_9) |
 148			     BIT(BPF_REG_AX));
 149}
 150
 151static bool is_axreg(u32 reg)
 152{
 153	return reg == BPF_REG_0;
 154}
 155
 156/* add modifiers if 'reg' maps to x64 registers r8..r15 */
 157static u8 add_1mod(u8 byte, u32 reg)
 158{
 159	if (is_ereg(reg))
 160		byte |= 1;
 161	return byte;
 162}
 163
 164static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 165{
 166	if (is_ereg(r1))
 167		byte |= 1;
 168	if (is_ereg(r2))
 169		byte |= 4;
 170	return byte;
 171}
 172
 173/* encode 'dst_reg' register into x64 opcode 'byte' */
 174static u8 add_1reg(u8 byte, u32 dst_reg)
 175{
 176	return byte + reg2hex[dst_reg];
 177}
 178
 179/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
 180static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 181{
 182	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 183}
 184
 185static void jit_fill_hole(void *area, unsigned int size)
 186{
 187	/* fill whole space with int3 instructions */
 188	memset(area, 0xcc, size);
 189}
 190
 191struct jit_context {
 192	int cleanup_addr; /* epilogue code offset */
 193	bool seen_ld_abs;
 194	bool seen_ax_reg;
 195};
 196
 197/* maximum number of bytes emitted while JITing one eBPF insn */
 198#define BPF_MAX_INSN_SIZE	128
 199#define BPF_INSN_SAFETY		64
 200
 201#define AUX_STACK_SPACE \
 202	(32 /* space for rbx, r13, r14, r15 */ + \
 203	 8 /* space for skb_copy_bits() buffer */)
 204
 205#define PROLOGUE_SIZE 37
 206
 207/* emit x64 prologue code for BPF program and check it's size.
 208 * bpf_tail_call helper will skip it while jumping into another program
 209 */
 210static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
 211{
 212	u8 *prog = *pprog;
 213	int cnt = 0;
 214
 215	EMIT1(0x55); /* push rbp */
 216	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
 217
 218	/* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */
 219	EMIT3_off32(0x48, 0x81, 0xEC,
 220		    round_up(stack_depth, 8) + AUX_STACK_SPACE);
 221
 222	/* sub rbp, AUX_STACK_SPACE */
 223	EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
 224
 225	/* all classic BPF filters use R6(rbx) save it */
 226
 227	/* mov qword ptr [rbp+0],rbx */
 228	EMIT4(0x48, 0x89, 0x5D, 0);
 229
 230	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
 231	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
 232	 * R8(r14). R9(r15) spill could be made conditional, but there is only
 233	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
 234	 * The overhead of extra spill is negligible for any filter other
 235	 * than synthetic ones. Therefore not worth adding complexity.
 236	 */
 237
 238	/* mov qword ptr [rbp+8],r13 */
 239	EMIT4(0x4C, 0x89, 0x6D, 8);
 240	/* mov qword ptr [rbp+16],r14 */
 241	EMIT4(0x4C, 0x89, 0x75, 16);
 242	/* mov qword ptr [rbp+24],r15 */
 243	EMIT4(0x4C, 0x89, 0x7D, 24);
 244
 245	if (!ebpf_from_cbpf) {
 246		/* Clear the tail call counter (tail_call_cnt): for eBPF tail
 247		 * calls we need to reset the counter to 0. It's done in two
 248		 * instructions, resetting rax register to 0, and moving it
 249		 * to the counter location.
 250		 */
 251
 252		/* xor eax, eax */
 253		EMIT2(0x31, 0xc0);
 254		/* mov qword ptr [rbp+32], rax */
 255		EMIT4(0x48, 0x89, 0x45, 32);
 256
 257		BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
 258	}
 259
 260	*pprog = prog;
 261}
 262
 263/* generate the following code:
 264 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 265 *   if (index >= array->map.max_entries)
 266 *     goto out;
 267 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 268 *     goto out;
 269 *   prog = array->ptrs[index];
 270 *   if (prog == NULL)
 271 *     goto out;
 272 *   goto *(prog->bpf_func + prologue_size);
 273 * out:
 274 */
 275static void emit_bpf_tail_call(u8 **pprog)
 276{
 277	u8 *prog = *pprog;
 278	int label1, label2, label3;
 279	int cnt = 0;
 280
 281	/* rdi - pointer to ctx
 282	 * rsi - pointer to bpf_array
 283	 * rdx - index in bpf_array
 284	 */
 285
 286	/* if (index >= array->map.max_entries)
 287	 *   goto out;
 288	 */
 289	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 290	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 291	      offsetof(struct bpf_array, map.max_entries));
 292#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* number of bytes to jump */
 293	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
 294	label1 = cnt;
 295
 296	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 297	 *   goto out;
 298	 */
 299	EMIT2_off32(0x8B, 0x85, 36);              /* mov eax, dword ptr [rbp + 36] */
 300	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 301#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
 302	EMIT2(X86_JA, OFFSET2);                   /* ja out */
 303	label2 = cnt;
 304	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 305	EMIT2_off32(0x89, 0x85, 36);              /* mov dword ptr [rbp + 36], eax */
 306
 307	/* prog = array->ptrs[index]; */
 308	EMIT4_off32(0x48, 0x8B, 0x84, 0xD6,       /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
 309		    offsetof(struct bpf_array, ptrs));
 310
 311	/* if (prog == NULL)
 312	 *   goto out;
 313	 */
 314	EMIT3(0x48, 0x85, 0xC0);		  /* test rax,rax */
 315#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
 316	EMIT2(X86_JE, OFFSET3);                   /* je out */
 317	label3 = cnt;
 318
 319	/* goto *(prog->bpf_func + prologue_size); */
 320	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
 321	      offsetof(struct bpf_prog, bpf_func));
 322	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */
 323
 324	/* now we're ready to jump into next BPF program
 325	 * rdi == ctx (1st arg)
 326	 * rax == prog->bpf_func + prologue_size
 327	 */
 328	RETPOLINE_RAX_BPF_JIT();
 329
 330	/* out: */
 331	BUILD_BUG_ON(cnt - label1 != OFFSET1);
 332	BUILD_BUG_ON(cnt - label2 != OFFSET2);
 333	BUILD_BUG_ON(cnt - label3 != OFFSET3);
 334	*pprog = prog;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336
 337
 338static void emit_load_skb_data_hlen(u8 **pprog)
 339{
 340	u8 *prog = *pprog;
 341	int cnt = 0;
 342
 343	/* r9d = skb->len - skb->data_len (headlen)
 344	 * r10 = skb->data
 345	 */
 346	/* mov %r9d, off32(%rdi) */
 347	EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
 348
 349	/* sub %r9d, off32(%rdi) */
 350	EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
 351
 352	/* mov %r10, off32(%rdi) */
 353	EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
 354	*pprog = prog;
 355}
 356
 357static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 358			   u32 dst_reg, const u32 imm32)
 359{
 360	u8 *prog = *pprog;
 361	u8 b1, b2, b3;
 362	int cnt = 0;
 363
 364	/* optimization: if imm32 is positive, use 'mov %eax, imm32'
 365	 * (which zero-extends imm32) to save 2 bytes.
 366	 */
 367	if (sign_propagate && (s32)imm32 < 0) {
 368		/* 'mov %rax, imm32' sign extends imm32 */
 369		b1 = add_1mod(0x48, dst_reg);
 370		b2 = 0xC7;
 371		b3 = 0xC0;
 372		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 373		goto done;
 374	}
 375
 376	/* optimization: if imm32 is zero, use 'xor %eax, %eax'
 377	 * to save 3 bytes.
 378	 */
 379	if (imm32 == 0) {
 380		if (is_ereg(dst_reg))
 381			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 382		b2 = 0x31; /* xor */
 383		b3 = 0xC0;
 384		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 385		goto done;
 386	}
 387
 388	/* mov %eax, imm32 */
 389	if (is_ereg(dst_reg))
 390		EMIT1(add_1mod(0x40, dst_reg));
 391	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 392done:
 393	*pprog = prog;
 394}
 395
 396static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 397			   const u32 imm32_hi, const u32 imm32_lo)
 398{
 399	u8 *prog = *pprog;
 400	int cnt = 0;
 401
 402	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 403		/* For emitting plain u32, where sign bit must not be
 404		 * propagated LLVM tends to load imm64 over mov32
 405		 * directly, so save couple of bytes by just doing
 406		 * 'mov %eax, imm32' instead.
 407		 */
 408		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 409	} else {
 410		/* movabsq %rax, imm64 */
 411		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 412		EMIT(imm32_lo, 4);
 413		EMIT(imm32_hi, 4);
 414	}
 415
 416	*pprog = prog;
 417}
 418
 419static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 420{
 421	u8 *prog = *pprog;
 422	int cnt = 0;
 423
 424	if (is64) {
 425		/* mov dst, src */
 426		EMIT_mov(dst_reg, src_reg);
 427	} else {
 428		/* mov32 dst, src */
 429		if (is_ereg(dst_reg) || is_ereg(src_reg))
 430			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 431		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 432	}
 
 433
 434	*pprog = prog;
 435}
 436
 437static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
 438		  int oldproglen, struct jit_context *ctx)
 439{
 440	struct bpf_insn *insn = bpf_prog->insnsi;
 441	int insn_cnt = bpf_prog->len;
 442	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
 443	bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
 444	bool seen_exit = false;
 445	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 446	int i, cnt = 0;
 447	int proglen = 0;
 448	u8 *prog = temp;
 449
 450	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 451		      bpf_prog_was_classic(bpf_prog));
 452
 453	if (seen_ld_abs)
 454		emit_load_skb_data_hlen(&prog);
 455
 456	for (i = 0; i < insn_cnt; i++, insn++) {
 457		const s32 imm32 = insn->imm;
 458		u32 dst_reg = insn->dst_reg;
 459		u32 src_reg = insn->src_reg;
 460		u8 b2 = 0, b3 = 0;
 461		s64 jmp_offset;
 462		u8 jmp_cond;
 463		bool reload_skb_data;
 464		int ilen;
 465		u8 *func;
 466
 467		if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
 468			ctx->seen_ax_reg = seen_ax_reg = true;
 469
 470		switch (insn->code) {
 471			/* ALU */
 472		case BPF_ALU | BPF_ADD | BPF_X:
 473		case BPF_ALU | BPF_SUB | BPF_X:
 474		case BPF_ALU | BPF_AND | BPF_X:
 475		case BPF_ALU | BPF_OR | BPF_X:
 476		case BPF_ALU | BPF_XOR | BPF_X:
 477		case BPF_ALU64 | BPF_ADD | BPF_X:
 478		case BPF_ALU64 | BPF_SUB | BPF_X:
 479		case BPF_ALU64 | BPF_AND | BPF_X:
 480		case BPF_ALU64 | BPF_OR | BPF_X:
 481		case BPF_ALU64 | BPF_XOR | BPF_X:
 482			switch (BPF_OP(insn->code)) {
 483			case BPF_ADD: b2 = 0x01; break;
 484			case BPF_SUB: b2 = 0x29; break;
 485			case BPF_AND: b2 = 0x21; break;
 486			case BPF_OR: b2 = 0x09; break;
 487			case BPF_XOR: b2 = 0x31; break;
 488			}
 489			if (BPF_CLASS(insn->code) == BPF_ALU64)
 490				EMIT1(add_2mod(0x48, dst_reg, src_reg));
 491			else if (is_ereg(dst_reg) || is_ereg(src_reg))
 492				EMIT1(add_2mod(0x40, dst_reg, src_reg));
 493			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
 494			break;
 495
 496		case BPF_ALU64 | BPF_MOV | BPF_X:
 497		case BPF_ALU | BPF_MOV | BPF_X:
 498			emit_mov_reg(&prog,
 499				     BPF_CLASS(insn->code) == BPF_ALU64,
 500				     dst_reg, src_reg);
 501			break;
 502
 503			/* neg dst */
 504		case BPF_ALU | BPF_NEG:
 505		case BPF_ALU64 | BPF_NEG:
 506			if (BPF_CLASS(insn->code) == BPF_ALU64)
 507				EMIT1(add_1mod(0x48, dst_reg));
 508			else if (is_ereg(dst_reg))
 509				EMIT1(add_1mod(0x40, dst_reg));
 510			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
 511			break;
 512
 513		case BPF_ALU | BPF_ADD | BPF_K:
 514		case BPF_ALU | BPF_SUB | BPF_K:
 515		case BPF_ALU | BPF_AND | BPF_K:
 516		case BPF_ALU | BPF_OR | BPF_K:
 517		case BPF_ALU | BPF_XOR | BPF_K:
 518		case BPF_ALU64 | BPF_ADD | BPF_K:
 519		case BPF_ALU64 | BPF_SUB | BPF_K:
 520		case BPF_ALU64 | BPF_AND | BPF_K:
 521		case BPF_ALU64 | BPF_OR | BPF_K:
 522		case BPF_ALU64 | BPF_XOR | BPF_K:
 523			if (BPF_CLASS(insn->code) == BPF_ALU64)
 524				EMIT1(add_1mod(0x48, dst_reg));
 525			else if (is_ereg(dst_reg))
 526				EMIT1(add_1mod(0x40, dst_reg));
 527
 528			/* b3 holds 'normal' opcode, b2 short form only valid
 529			 * in case dst is eax/rax.
 530			 */
 531			switch (BPF_OP(insn->code)) {
 532			case BPF_ADD:
 533				b3 = 0xC0;
 534				b2 = 0x05;
 535				break;
 536			case BPF_SUB:
 537				b3 = 0xE8;
 538				b2 = 0x2D;
 539				break;
 540			case BPF_AND:
 541				b3 = 0xE0;
 542				b2 = 0x25;
 543				break;
 544			case BPF_OR:
 545				b3 = 0xC8;
 546				b2 = 0x0D;
 547				break;
 548			case BPF_XOR:
 549				b3 = 0xF0;
 550				b2 = 0x35;
 551				break;
 552			}
 553
 554			if (is_imm8(imm32))
 555				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
 556			else if (is_axreg(dst_reg))
 557				EMIT1_off32(b2, imm32);
 558			else
 559				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
 560			break;
 561
 562		case BPF_ALU64 | BPF_MOV | BPF_K:
 563		case BPF_ALU | BPF_MOV | BPF_K:
 564			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
 565				       dst_reg, imm32);
 566			break;
 567
 568		case BPF_LD | BPF_IMM | BPF_DW:
 569			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
 570			insn++;
 571			i++;
 572			break;
 573
 574			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
 575		case BPF_ALU | BPF_MOD | BPF_X:
 576		case BPF_ALU | BPF_DIV | BPF_X:
 577		case BPF_ALU | BPF_MOD | BPF_K:
 578		case BPF_ALU | BPF_DIV | BPF_K:
 579		case BPF_ALU64 | BPF_MOD | BPF_X:
 580		case BPF_ALU64 | BPF_DIV | BPF_X:
 581		case BPF_ALU64 | BPF_MOD | BPF_K:
 582		case BPF_ALU64 | BPF_DIV | BPF_K:
 583			EMIT1(0x50); /* push rax */
 584			EMIT1(0x52); /* push rdx */
 585
 586			if (BPF_SRC(insn->code) == BPF_X)
 587				/* mov r11, src_reg */
 588				EMIT_mov(AUX_REG, src_reg);
 589			else
 590				/* mov r11, imm32 */
 591				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
 592
 593			/* mov rax, dst_reg */
 594			EMIT_mov(BPF_REG_0, dst_reg);
 595
 596			/* xor edx, edx
 597			 * equivalent to 'xor rdx, rdx', but one byte less
 
 
 
 
 
 
 
 
 
 
 
 
 598			 */
 599			EMIT2(0x31, 0xd2);
 600
 601			if (BPF_CLASS(insn->code) == BPF_ALU64)
 602				/* div r11 */
 603				EMIT3(0x49, 0xF7, 0xF3);
 604			else
 605				/* div r11d */
 606				EMIT3(0x41, 0xF7, 0xF3);
 607
 608			if (BPF_OP(insn->code) == BPF_MOD)
 609				/* mov r11, rdx */
 610				EMIT3(0x49, 0x89, 0xD3);
 611			else
 612				/* mov r11, rax */
 613				EMIT3(0x49, 0x89, 0xC3);
 614
 615			EMIT1(0x5A); /* pop rdx */
 616			EMIT1(0x58); /* pop rax */
 617
 618			/* mov dst_reg, r11 */
 619			EMIT_mov(dst_reg, AUX_REG);
 620			break;
 621
 622		case BPF_ALU | BPF_MUL | BPF_K:
 623		case BPF_ALU | BPF_MUL | BPF_X:
 624		case BPF_ALU64 | BPF_MUL | BPF_K:
 625		case BPF_ALU64 | BPF_MUL | BPF_X:
 626		{
 627			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 628
 629			if (dst_reg != BPF_REG_0)
 630				EMIT1(0x50); /* push rax */
 631			if (dst_reg != BPF_REG_3)
 632				EMIT1(0x52); /* push rdx */
 633
 634			/* mov r11, dst_reg */
 635			EMIT_mov(AUX_REG, dst_reg);
 636
 637			if (BPF_SRC(insn->code) == BPF_X)
 638				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
 639			else
 640				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
 641
 642			if (is64)
 643				EMIT1(add_1mod(0x48, AUX_REG));
 644			else if (is_ereg(AUX_REG))
 645				EMIT1(add_1mod(0x40, AUX_REG));
 646			/* mul(q) r11 */
 647			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
 648
 649			if (dst_reg != BPF_REG_3)
 650				EMIT1(0x5A); /* pop rdx */
 651			if (dst_reg != BPF_REG_0) {
 652				/* mov dst_reg, rax */
 653				EMIT_mov(dst_reg, BPF_REG_0);
 654				EMIT1(0x58); /* pop rax */
 655			}
 656			break;
 657		}
 658			/* shifts */
 659		case BPF_ALU | BPF_LSH | BPF_K:
 660		case BPF_ALU | BPF_RSH | BPF_K:
 661		case BPF_ALU | BPF_ARSH | BPF_K:
 662		case BPF_ALU64 | BPF_LSH | BPF_K:
 663		case BPF_ALU64 | BPF_RSH | BPF_K:
 664		case BPF_ALU64 | BPF_ARSH | BPF_K:
 665			if (BPF_CLASS(insn->code) == BPF_ALU64)
 666				EMIT1(add_1mod(0x48, dst_reg));
 667			else if (is_ereg(dst_reg))
 668				EMIT1(add_1mod(0x40, dst_reg));
 669
 670			switch (BPF_OP(insn->code)) {
 671			case BPF_LSH: b3 = 0xE0; break;
 672			case BPF_RSH: b3 = 0xE8; break;
 673			case BPF_ARSH: b3 = 0xF8; break;
 674			}
 675
 676			if (imm32 == 1)
 677				EMIT2(0xD1, add_1reg(b3, dst_reg));
 678			else
 679				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
 
 
 
 
 
 
 
 
 
 680			break;
 
 
 
 
 681
 682		case BPF_ALU | BPF_LSH | BPF_X:
 683		case BPF_ALU | BPF_RSH | BPF_X:
 684		case BPF_ALU | BPF_ARSH | BPF_X:
 685		case BPF_ALU64 | BPF_LSH | BPF_X:
 686		case BPF_ALU64 | BPF_RSH | BPF_X:
 687		case BPF_ALU64 | BPF_ARSH | BPF_X:
 688
 689			/* check for bad case when dst_reg == rcx */
 690			if (dst_reg == BPF_REG_4) {
 691				/* mov r11, dst_reg */
 692				EMIT_mov(AUX_REG, dst_reg);
 693				dst_reg = AUX_REG;
 694			}
 695
 696			if (src_reg != BPF_REG_4) { /* common case */
 697				EMIT1(0x51); /* push rcx */
 698
 699				/* mov rcx, src_reg */
 700				EMIT_mov(BPF_REG_4, src_reg);
 701			}
 702
 703			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
 704			if (BPF_CLASS(insn->code) == BPF_ALU64)
 705				EMIT1(add_1mod(0x48, dst_reg));
 706			else if (is_ereg(dst_reg))
 707				EMIT1(add_1mod(0x40, dst_reg));
 708
 709			switch (BPF_OP(insn->code)) {
 710			case BPF_LSH: b3 = 0xE0; break;
 711			case BPF_RSH: b3 = 0xE8; break;
 712			case BPF_ARSH: b3 = 0xF8; break;
 713			}
 714			EMIT2(0xD3, add_1reg(b3, dst_reg));
 715
 716			if (src_reg != BPF_REG_4)
 717				EMIT1(0x59); /* pop rcx */
 718
 719			if (insn->dst_reg == BPF_REG_4)
 720				/* mov dst_reg, r11 */
 721				EMIT_mov(insn->dst_reg, AUX_REG);
 722			break;
 723
 724		case BPF_ALU | BPF_END | BPF_FROM_BE:
 725			switch (imm32) {
 726			case 16:
 727				/* emit 'ror %ax, 8' to swap lower 2 bytes */
 728				EMIT1(0x66);
 729				if (is_ereg(dst_reg))
 730					EMIT1(0x41);
 731				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
 732
 733				/* emit 'movzwl eax, ax' */
 734				if (is_ereg(dst_reg))
 735					EMIT3(0x45, 0x0F, 0xB7);
 736				else
 737					EMIT2(0x0F, 0xB7);
 738				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 739				break;
 740			case 32:
 741				/* emit 'bswap eax' to swap lower 4 bytes */
 742				if (is_ereg(dst_reg))
 743					EMIT2(0x41, 0x0F);
 
 
 
 
 
 744				else
 745					EMIT1(0x0F);
 746				EMIT1(add_1reg(0xC8, dst_reg));
 
 
 
 
 
 
 
 
 
 
 
 747				break;
 748			case 64:
 749				/* emit 'bswap rax' to swap 8 bytes */
 750				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
 751				      add_1reg(0xC8, dst_reg));
 
 
 
 
 
 
 
 752				break;
 753			}
 754			break;
 755
 756		case BPF_ALU | BPF_END | BPF_FROM_LE:
 757			switch (imm32) {
 758			case 16:
 759				/* emit 'movzwl eax, ax' to zero extend 16-bit
 760				 * into 64 bit
 761				 */
 762				if (is_ereg(dst_reg))
 763					EMIT3(0x45, 0x0F, 0xB7);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764				else
 765					EMIT2(0x0F, 0xB7);
 766				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
 767				break;
 768			case 32:
 769				/* emit 'mov eax, eax' to clear upper 32-bits */
 770				if (is_ereg(dst_reg))
 771					EMIT1(0x45);
 772				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
 
 
 
 
 
 
 773				break;
 774			case 64:
 775				/* nop */
 
 
 
 
 
 
 
 
 
 776				break;
 777			}
 778			break;
 779
 780			/* ST: *(u8*)(dst_reg + off) = imm */
 781		case BPF_ST | BPF_MEM | BPF_B:
 782			if (is_ereg(dst_reg))
 783				EMIT2(0x41, 0xC6);
 784			else
 785				EMIT1(0xC6);
 786			goto st;
 787		case BPF_ST | BPF_MEM | BPF_H:
 788			if (is_ereg(dst_reg))
 789				EMIT3(0x66, 0x41, 0xC7);
 790			else
 791				EMIT2(0x66, 0xC7);
 792			goto st;
 793		case BPF_ST | BPF_MEM | BPF_W:
 794			if (is_ereg(dst_reg))
 795				EMIT2(0x41, 0xC7);
 796			else
 797				EMIT1(0xC7);
 798			goto st;
 799		case BPF_ST | BPF_MEM | BPF_DW:
 800			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
 801
 802st:			if (is_imm8(insn->off))
 803				EMIT2(add_1reg(0x40, dst_reg), insn->off);
 804			else
 805				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
 806
 807			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
 808			break;
 809
 810			/* STX: *(u8*)(dst_reg + off) = src_reg */
 811		case BPF_STX | BPF_MEM | BPF_B:
 812			/* emit 'mov byte ptr [rax + off], al' */
 813			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
 814			    /* have to add extra byte for x86 SIL, DIL regs */
 815			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
 816				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 817			else
 818				EMIT1(0x88);
 819			goto stx;
 820		case BPF_STX | BPF_MEM | BPF_H:
 821			if (is_ereg(dst_reg) || is_ereg(src_reg))
 822				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 823			else
 824				EMIT2(0x66, 0x89);
 825			goto stx;
 826		case BPF_STX | BPF_MEM | BPF_W:
 827			if (is_ereg(dst_reg) || is_ereg(src_reg))
 828				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 829			else
 830				EMIT1(0x89);
 831			goto stx;
 832		case BPF_STX | BPF_MEM | BPF_DW:
 833			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 834stx:			if (is_imm8(insn->off))
 835				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 836			else
 837				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 838					    insn->off);
 839			break;
 840
 841			/* LDX: dst_reg = *(u8*)(src_reg + off) */
 842		case BPF_LDX | BPF_MEM | BPF_B:
 843			/* emit 'movzx rax, byte ptr [rax + off]' */
 844			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 845			goto ldx;
 846		case BPF_LDX | BPF_MEM | BPF_H:
 847			/* emit 'movzx rax, word ptr [rax + off]' */
 848			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 849			goto ldx;
 850		case BPF_LDX | BPF_MEM | BPF_W:
 851			/* emit 'mov eax, dword ptr [rax+0x14]' */
 852			if (is_ereg(dst_reg) || is_ereg(src_reg))
 853				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 854			else
 855				EMIT1(0x8B);
 856			goto ldx;
 857		case BPF_LDX | BPF_MEM | BPF_DW:
 858			/* emit 'mov rax, qword ptr [rax+0x14]' */
 859			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 860ldx:			/* if insn->off == 0 we can save one extra byte, but
 861			 * special case of x86 r13 which always needs an offset
 862			 * is not worth the hassle
 863			 */
 864			if (is_imm8(insn->off))
 865				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
 866			else
 867				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
 868					    insn->off);
 869			break;
 870
 871			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
 872		case BPF_STX | BPF_XADD | BPF_W:
 873			/* emit 'lock add dword ptr [rax + off], eax' */
 874			if (is_ereg(dst_reg) || is_ereg(src_reg))
 875				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
 876			else
 877				EMIT2(0xF0, 0x01);
 878			goto xadd;
 879		case BPF_STX | BPF_XADD | BPF_DW:
 880			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
 881xadd:			if (is_imm8(insn->off))
 882				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
 883			else
 884				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
 885					    insn->off);
 886			break;
 887
 888			/* call */
 889		case BPF_JMP | BPF_CALL:
 890			func = (u8 *) __bpf_call_base + imm32;
 891			jmp_offset = func - (image + addrs[i]);
 892			if (seen_ld_abs) {
 893				reload_skb_data = bpf_helper_changes_pkt_data(func);
 894				if (reload_skb_data) {
 895					EMIT1(0x57); /* push %rdi */
 896					jmp_offset += 22; /* pop, mov, sub, mov */
 897				} else {
 898					EMIT2(0x41, 0x52); /* push %r10 */
 899					EMIT2(0x41, 0x51); /* push %r9 */
 900					/* need to adjust jmp offset, since
 901					 * pop %r9, pop %r10 take 4 bytes after call insn
 902					 */
 903					jmp_offset += 4;
 904				}
 905			}
 906			if (!imm32 || !is_simm32(jmp_offset)) {
 907				pr_err("unsupported bpf func %d addr %p image %p\n",
 908				       imm32, func, image);
 909				return -EINVAL;
 910			}
 911			EMIT1_off32(0xE8, jmp_offset);
 912			if (seen_ld_abs) {
 913				if (reload_skb_data) {
 914					EMIT1(0x5F); /* pop %rdi */
 915					emit_load_skb_data_hlen(&prog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916				} else {
 917					EMIT2(0x41, 0x59); /* pop %r9 */
 918					EMIT2(0x41, 0x5A); /* pop %r10 */
 919				}
 920			}
 921			break;
 922
 923		case BPF_JMP | BPF_TAIL_CALL:
 924			emit_bpf_tail_call(&prog);
 925			break;
 926
 927			/* cond jump */
 928		case BPF_JMP | BPF_JEQ | BPF_X:
 929		case BPF_JMP | BPF_JNE | BPF_X:
 930		case BPF_JMP | BPF_JGT | BPF_X:
 931		case BPF_JMP | BPF_JLT | BPF_X:
 932		case BPF_JMP | BPF_JGE | BPF_X:
 933		case BPF_JMP | BPF_JLE | BPF_X:
 934		case BPF_JMP | BPF_JSGT | BPF_X:
 935		case BPF_JMP | BPF_JSLT | BPF_X:
 936		case BPF_JMP | BPF_JSGE | BPF_X:
 937		case BPF_JMP | BPF_JSLE | BPF_X:
 938			/* cmp dst_reg, src_reg */
 939			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
 940			      add_2reg(0xC0, dst_reg, src_reg));
 941			goto emit_cond_jmp;
 942
 943		case BPF_JMP | BPF_JSET | BPF_X:
 944			/* test dst_reg, src_reg */
 945			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
 946			      add_2reg(0xC0, dst_reg, src_reg));
 947			goto emit_cond_jmp;
 948
 949		case BPF_JMP | BPF_JSET | BPF_K:
 950			/* test dst_reg, imm32 */
 951			EMIT1(add_1mod(0x48, dst_reg));
 952			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
 953			goto emit_cond_jmp;
 954
 955		case BPF_JMP | BPF_JEQ | BPF_K:
 956		case BPF_JMP | BPF_JNE | BPF_K:
 957		case BPF_JMP | BPF_JGT | BPF_K:
 958		case BPF_JMP | BPF_JLT | BPF_K:
 959		case BPF_JMP | BPF_JGE | BPF_K:
 960		case BPF_JMP | BPF_JLE | BPF_K:
 961		case BPF_JMP | BPF_JSGT | BPF_K:
 962		case BPF_JMP | BPF_JSLT | BPF_K:
 963		case BPF_JMP | BPF_JSGE | BPF_K:
 964		case BPF_JMP | BPF_JSLE | BPF_K:
 965			/* cmp dst_reg, imm8/32 */
 966			EMIT1(add_1mod(0x48, dst_reg));
 967
 968			if (is_imm8(imm32))
 969				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
 970			else
 971				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
 972
 973emit_cond_jmp:		/* convert BPF opcode to x86 */
 974			switch (BPF_OP(insn->code)) {
 975			case BPF_JEQ:
 976				jmp_cond = X86_JE;
 977				break;
 978			case BPF_JSET:
 979			case BPF_JNE:
 980				jmp_cond = X86_JNE;
 981				break;
 982			case BPF_JGT:
 983				/* GT is unsigned '>', JA in x86 */
 984				jmp_cond = X86_JA;
 985				break;
 986			case BPF_JLT:
 987				/* LT is unsigned '<', JB in x86 */
 988				jmp_cond = X86_JB;
 989				break;
 990			case BPF_JGE:
 991				/* GE is unsigned '>=', JAE in x86 */
 992				jmp_cond = X86_JAE;
 993				break;
 994			case BPF_JLE:
 995				/* LE is unsigned '<=', JBE in x86 */
 996				jmp_cond = X86_JBE;
 997				break;
 998			case BPF_JSGT:
 999				/* signed '>', GT in x86 */
1000				jmp_cond = X86_JG;
1001				break;
1002			case BPF_JSLT:
1003				/* signed '<', LT in x86 */
1004				jmp_cond = X86_JL;
1005				break;
1006			case BPF_JSGE:
1007				/* signed '>=', GE in x86 */
1008				jmp_cond = X86_JGE;
1009				break;
1010			case BPF_JSLE:
1011				/* signed '<=', LE in x86 */
1012				jmp_cond = X86_JLE;
1013				break;
1014			default: /* to silence gcc warning */
1015				return -EFAULT;
1016			}
1017			jmp_offset = addrs[i + insn->off] - addrs[i];
1018			if (is_imm8(jmp_offset)) {
1019				EMIT2(jmp_cond, jmp_offset);
1020			} else if (is_simm32(jmp_offset)) {
1021				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1022			} else {
1023				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1024				return -EFAULT;
1025			}
1026
1027			break;
1028
1029		case BPF_JMP | BPF_JA:
1030			if (insn->off == -1)
1031				/* -1 jmp instructions will always jump
1032				 * backwards two bytes. Explicitly handling
1033				 * this case avoids wasting too many passes
1034				 * when there are long sequences of replaced
1035				 * dead code.
1036				 */
1037				jmp_offset = -2;
1038			else
1039				jmp_offset = addrs[i + insn->off] - addrs[i];
1040
1041			if (!jmp_offset)
1042				/* optimize out nop jumps */
1043				break;
1044emit_jmp:
1045			if (is_imm8(jmp_offset)) {
1046				EMIT2(0xEB, jmp_offset);
1047			} else if (is_simm32(jmp_offset)) {
1048				EMIT1_off32(0xE9, jmp_offset);
1049			} else {
1050				pr_err("jmp gen bug %llx\n", jmp_offset);
1051				return -EFAULT;
1052			}
1053			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055		case BPF_LD | BPF_IND | BPF_W:
1056			func = sk_load_word;
1057			goto common_load;
1058		case BPF_LD | BPF_ABS | BPF_W:
1059			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
1060common_load:
1061			ctx->seen_ld_abs = seen_ld_abs = true;
1062			jmp_offset = func - (image + addrs[i]);
1063			if (!func || !is_simm32(jmp_offset)) {
1064				pr_err("unsupported bpf func %d addr %p image %p\n",
1065				       imm32, func, image);
1066				return -EINVAL;
1067			}
1068			if (BPF_MODE(insn->code) == BPF_ABS) {
1069				/* mov %esi, imm32 */
1070				EMIT1_off32(0xBE, imm32);
1071			} else {
1072				/* mov %rsi, src_reg */
1073				EMIT_mov(BPF_REG_2, src_reg);
1074				if (imm32) {
1075					if (is_imm8(imm32))
1076						/* add %esi, imm8 */
1077						EMIT3(0x83, 0xC6, imm32);
1078					else
1079						/* add %esi, imm32 */
1080						EMIT2_off32(0x81, 0xC6, imm32);
 
 
 
 
 
 
 
 
 
 
 
 
1081				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082			}
1083			/* skb pointer is in R6 (%rbx), it will be copied into
1084			 * %rdi if skb_copy_bits() call is necessary.
1085			 * sk_load_* helpers also use %r10 and %r9d.
1086			 * See bpf_jit.S
1087			 */
1088			if (seen_ax_reg)
1089				/* r10 = skb->data, mov %r10, off32(%rbx) */
1090				EMIT3_off32(0x4c, 0x8b, 0x93,
1091					    offsetof(struct sk_buff, data));
1092			EMIT1_off32(0xE8, jmp_offset); /* call */
1093			break;
1094
1095		case BPF_LD | BPF_IND | BPF_H:
1096			func = sk_load_half;
1097			goto common_load;
1098		case BPF_LD | BPF_ABS | BPF_H:
1099			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1100			goto common_load;
1101		case BPF_LD | BPF_IND | BPF_B:
1102			func = sk_load_byte;
1103			goto common_load;
1104		case BPF_LD | BPF_ABS | BPF_B:
1105			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1106			goto common_load;
1107
1108		case BPF_JMP | BPF_EXIT:
1109			if (seen_exit) {
1110				jmp_offset = ctx->cleanup_addr - addrs[i];
1111				goto emit_jmp;
1112			}
1113			seen_exit = true;
1114			/* update cleanup_addr */
1115			ctx->cleanup_addr = proglen;
1116			/* mov rbx, qword ptr [rbp+0] */
1117			EMIT4(0x48, 0x8B, 0x5D, 0);
1118			/* mov r13, qword ptr [rbp+8] */
1119			EMIT4(0x4C, 0x8B, 0x6D, 8);
1120			/* mov r14, qword ptr [rbp+16] */
1121			EMIT4(0x4C, 0x8B, 0x75, 16);
1122			/* mov r15, qword ptr [rbp+24] */
1123			EMIT4(0x4C, 0x8B, 0x7D, 24);
1124
1125			/* add rbp, AUX_STACK_SPACE */
1126			EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1127			EMIT1(0xC9); /* leave */
1128			EMIT1(0xC3); /* ret */
1129			break;
1130
1131		default:
1132			/* By design x64 JIT should support all BPF instructions
1133			 * This error will be seen if new instruction was added
1134			 * to interpreter, but not to JIT
1135			 * or if there is junk in bpf_prog
1136			 */
1137			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1138			return -EINVAL;
1139		}
1140
1141		ilen = prog - temp;
1142		if (ilen > BPF_MAX_INSN_SIZE) {
1143			pr_err("bpf_jit: fatal insn size error\n");
1144			return -EFAULT;
1145		}
1146
1147		if (image) {
1148			if (unlikely(proglen + ilen > oldproglen)) {
1149				pr_err("bpf_jit: fatal error\n");
1150				return -EFAULT;
1151			}
1152			memcpy(image + proglen, temp, ilen);
1153		}
1154		proglen += ilen;
1155		addrs[i] = proglen;
1156		prog = temp;
1157	}
1158	return proglen;
1159}
1160
1161struct x64_jit_data {
1162	struct bpf_binary_header *header;
1163	int *addrs;
1164	u8 *image;
1165	int proglen;
1166	struct jit_context ctx;
1167};
1168
1169struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1170{
1171	struct bpf_binary_header *header = NULL;
1172	struct bpf_prog *tmp, *orig_prog = prog;
1173	struct x64_jit_data *jit_data;
1174	int proglen, oldproglen = 0;
1175	struct jit_context ctx = {};
1176	bool tmp_blinded = false;
1177	bool extra_pass = false;
1178	u8 *image = NULL;
1179	int *addrs;
1180	int pass;
1181	int i;
1182
1183	if (!prog->jit_requested)
1184		return orig_prog;
1185
1186	tmp = bpf_jit_blind_constants(prog);
1187	/* If blinding was requested and we failed during blinding,
1188	 * we must fall back to the interpreter.
1189	 */
1190	if (IS_ERR(tmp))
1191		return orig_prog;
1192	if (tmp != prog) {
1193		tmp_blinded = true;
1194		prog = tmp;
1195	}
1196
1197	jit_data = prog->aux->jit_data;
1198	if (!jit_data) {
1199		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1200		if (!jit_data) {
1201			prog = orig_prog;
1202			goto out;
1203		}
1204		prog->aux->jit_data = jit_data;
1205	}
1206	addrs = jit_data->addrs;
1207	if (addrs) {
1208		ctx = jit_data->ctx;
1209		oldproglen = jit_data->proglen;
1210		image = jit_data->image;
1211		header = jit_data->header;
1212		extra_pass = true;
1213		goto skip_init_addrs;
1214	}
1215	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1216	if (!addrs) {
1217		prog = orig_prog;
1218		goto out_addrs;
1219	}
1220
1221	/* Before first pass, make a rough estimation of addrs[]
1222	 * each bpf instruction is translated to less than 64 bytes
1223	 */
1224	for (proglen = 0, i = 0; i < prog->len; i++) {
1225		proglen += 64;
1226		addrs[i] = proglen;
1227	}
1228	ctx.cleanup_addr = proglen;
1229skip_init_addrs:
1230
1231	/* JITed image shrinks with every pass and the loop iterates
1232	 * until the image stops shrinking. Very large bpf programs
1233	 * may converge on the last pass. In such case do one more
1234	 * pass to emit the final image
1235	 */
1236	for (pass = 0; pass < 20 || image; pass++) {
1237		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1238		if (proglen <= 0) {
1239out_image:
1240			image = NULL;
1241			if (header)
1242				bpf_jit_binary_free(header);
1243			prog = orig_prog;
1244			goto out_addrs;
1245		}
1246		if (image) {
1247			if (proglen != oldproglen) {
1248				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1249				       proglen, oldproglen);
1250				goto out_image;
1251			}
1252			break;
1253		}
1254		if (proglen == oldproglen) {
1255			header = bpf_jit_binary_alloc(proglen, &image,
1256						      1, jit_fill_hole);
1257			if (!header) {
1258				prog = orig_prog;
1259				goto out_addrs;
1260			}
1261		}
1262		oldproglen = proglen;
1263		cond_resched();
1264	}
1265
1266	if (bpf_jit_enable > 1)
1267		bpf_jit_dump(prog->len, proglen, pass + 1, image);
 
1268
1269	if (image) {
1270		if (!prog->is_func || extra_pass) {
1271			bpf_jit_binary_lock_ro(header);
1272		} else {
1273			jit_data->addrs = addrs;
1274			jit_data->ctx = ctx;
1275			jit_data->proglen = proglen;
1276			jit_data->image = image;
1277			jit_data->header = header;
1278		}
1279		prog->bpf_func = (void *)image;
1280		prog->jited = 1;
1281		prog->jited_len = proglen;
1282	} else {
1283		prog = orig_prog;
1284	}
1285
1286	if (!image || !prog->is_func || extra_pass) {
1287out_addrs:
1288		kfree(addrs);
1289		kfree(jit_data);
1290		prog->aux->jit_data = NULL;
1291	}
1292out:
1293	if (tmp_blinded)
1294		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1295					   tmp : orig_prog);
1296	return prog;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297}
v3.1
  1/* bpf_jit_comp.c : BPF JIT compiler
  2 *
  3 * Copyright (C) 2011 Eric Dumazet (eric.dumazet@gmail.com)
 
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License
  7 * as published by the Free Software Foundation; version 2
  8 * of the License.
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <linux/netdevice.h>
 13#include <linux/filter.h>
 
 
 14
 15/*
 16 * Conventions :
 17 *  EAX : BPF A accumulator
 18 *  EBX : BPF X accumulator
 19 *  RDI : pointer to skb   (first argument given to JIT function)
 20 *  RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
 21 *  ECX,EDX,ESI : scratch registers
 22 *  r9d : skb->len - skb->data_len (headlen)
 23 *  r8  : skb->data
 24 * -8(RBP) : saved RBX value
 25 * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
 26 */
 27int bpf_jit_enable __read_mostly;
 28
 29/*
 30 * assembly code in arch/x86/net/bpf_jit.S
 31 */
 32extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
 33extern u8 sk_load_word_ind[], sk_load_half_ind[], sk_load_byte_ind[];
 
 
 
 34
 35static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
 36{
 37	if (len == 1)
 38		*ptr = bytes;
 39	else if (len == 2)
 40		*(u16 *)ptr = bytes;
 41	else {
 42		*(u32 *)ptr = bytes;
 43		barrier();
 44	}
 45	return ptr + len;
 46}
 47
 48#define EMIT(bytes, len)	do { prog = emit_code(prog, bytes, len); } while (0)
 
 49
 50#define EMIT1(b1)		EMIT(b1, 1)
 51#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
 52#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
 53#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
 54#define EMIT1_off32(b1, off)	do { EMIT1(b1); EMIT(off, 4);} while (0)
 
 
 
 
 
 
 
 55
 56#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
 57#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
 
 
 58
 59static inline bool is_imm8(int value)
 60{
 61	return value <= 127 && value >= -128;
 62}
 63
 64static inline bool is_near(int offset)
 65{
 66	return offset <= 127 && offset >= -128;
 67}
 68
 69#define EMIT_JMP(offset)						\
 70do {									\
 71	if (offset) {							\
 72		if (is_near(offset))					\
 73			EMIT2(0xeb, offset); /* jmp .+off8 */		\
 74		else							\
 75			EMIT1_off32(0xe9, offset); /* jmp .+off32 */	\
 76	}								\
 77} while (0)
 
 
 
 
 
 
 
 
 
 
 78
 79/* list of x86 cond jumps opcodes (. + s8)
 80 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 81 */
 82#define X86_JB  0x72
 83#define X86_JAE 0x73
 84#define X86_JE  0x74
 85#define X86_JNE 0x75
 86#define X86_JBE 0x76
 87#define X86_JA  0x77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88
 89#define EMIT_COND_JMP(op, offset)				\
 90do {								\
 91	if (is_near(offset))					\
 92		EMIT2(op, offset); /* jxx .+off8 */		\
 93	else {							\
 94		EMIT2(0x0f, op + 0x10);				\
 95		EMIT(offset, 4); /* jxx .+off32 */		\
 96	}							\
 97} while (0)
 98
 99#define COND_SEL(CODE, TOP, FOP)	\
100	case CODE:			\
101		t_op = TOP;		\
102		f_op = FOP;		\
103		goto cond_branch
104
105
106#define SEEN_DATAREF 1 /* might call external helpers */
107#define SEEN_XREG    2 /* ebx is used */
108#define SEEN_MEM     4 /* use mem[] for temporary storage */
109
110static inline void bpf_flush_icache(void *start, void *end)
111{
112	mm_segment_t old_fs = get_fs();
113
114	set_fs(KERNEL_DS);
115	smp_wmb();
116	flush_icache_range((unsigned long)start, (unsigned long)end);
117	set_fs(old_fs);
118}
119
120
121void bpf_jit_compile(struct sk_filter *fp)
122{
123	u8 temp[64];
124	u8 *prog;
125	unsigned int proglen, oldproglen = 0;
126	int ilen, i;
127	int t_offset, f_offset;
128	u8 t_op, f_op, seen = 0, pass;
129	u8 *image = NULL;
130	u8 *func;
131	int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
132	unsigned int cleanup_addr; /* epilogue code offset */
133	unsigned int *addrs;
134	const struct sock_filter *filter = fp->insns;
135	int flen = fp->len;
136
137	if (!bpf_jit_enable)
138		return;
139
140	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
141	if (addrs == NULL)
142		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
144	/* Before first pass, make a rough estimation of addrs[]
145	 * each bpf instruction is translated to less than 64 bytes
146	 */
147	for (proglen = 0, i = 0; i < flen; i++) {
148		proglen += 64;
149		addrs[i] = proglen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150	}
151	cleanup_addr = proglen; /* epilogue address */
152
153	for (pass = 0; pass < 10; pass++) {
154		/* no prologue/epilogue for trivial filters (RET something) */
155		proglen = 0;
156		prog = temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
158		if (seen) {
159			EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
160			EMIT4(0x48, 0x83, 0xec, 96);	/* subq  $96,%rsp	*/
161			/* note : must save %rbx in case bpf_error is hit */
162			if (seen & (SEEN_XREG | SEEN_DATAREF))
163				EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
164			if (seen & SEEN_XREG)
165				CLEAR_X(); /* make sure we dont leek kernel memory */
166
167			/*
168			 * If this filter needs to access skb data,
169			 * loads r9 and r8 with :
170			 *  r9 = skb->len - skb->data_len
171			 *  r8 = skb->data
172			 */
173			if (seen & SEEN_DATAREF) {
174				if (offsetof(struct sk_buff, len) <= 127)
175					/* mov    off8(%rdi),%r9d */
176					EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
177				else {
178					/* mov    off32(%rdi),%r9d */
179					EMIT3(0x44, 0x8b, 0x8f);
180					EMIT(offsetof(struct sk_buff, len), 4);
181				}
182				if (is_imm8(offsetof(struct sk_buff, data_len)))
183					/* sub    off8(%rdi),%r9d */
184					EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
185				else {
186					EMIT3(0x44, 0x2b, 0x8f);
187					EMIT(offsetof(struct sk_buff, data_len), 4);
188				}
 
 
 
 
 
 
189
190				if (is_imm8(offsetof(struct sk_buff, data)))
191					/* mov off8(%rdi),%r8 */
192					EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
193				else {
194					/* mov off32(%rdi),%r8 */
195					EMIT3(0x4c, 0x8b, 0x87);
196					EMIT(offsetof(struct sk_buff, data), 4);
197				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198			}
 
199		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
201		switch (filter[0].code) {
202		case BPF_S_RET_K:
203		case BPF_S_LD_W_LEN:
204		case BPF_S_ANC_PROTOCOL:
205		case BPF_S_ANC_IFINDEX:
206		case BPF_S_ANC_MARK:
207		case BPF_S_ANC_RXHASH:
208		case BPF_S_ANC_CPU:
209		case BPF_S_ANC_QUEUE:
210		case BPF_S_LD_W_ABS:
211		case BPF_S_LD_H_ABS:
212		case BPF_S_LD_B_ABS:
213			/* first instruction sets A register (or is RET 'constant') */
214			break;
215		default:
216			/* make sure we dont leak kernel information to user */
217			CLEAR_A(); /* A = 0 */
218		}
219
220		for (i = 0; i < flen; i++) {
221			unsigned int K = filter[i].k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223			switch (filter[i].code) {
224			case BPF_S_ALU_ADD_X: /* A += X; */
225				seen |= SEEN_XREG;
226				EMIT2(0x01, 0xd8);		/* add %ebx,%eax */
227				break;
228			case BPF_S_ALU_ADD_K: /* A += K; */
229				if (!K)
230					break;
231				if (is_imm8(K))
232					EMIT3(0x83, 0xc0, K);	/* add imm8,%eax */
 
 
233				else
234					EMIT1_off32(0x05, K);	/* add imm32,%eax */
 
235				break;
236			case BPF_S_ALU_SUB_X: /* A -= X; */
237				seen |= SEEN_XREG;
238				EMIT2(0x29, 0xd8);		/* sub    %ebx,%eax */
239				break;
240			case BPF_S_ALU_SUB_K: /* A -= K */
241				if (!K)
242					break;
243				if (is_imm8(K))
244					EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
245				else
246					EMIT1_off32(0x2d, K); /* sub imm32,%eax */
247				break;
248			case BPF_S_ALU_MUL_X: /* A *= X; */
249				seen |= SEEN_XREG;
250				EMIT3(0x0f, 0xaf, 0xc3);	/* imul %ebx,%eax */
251				break;
252			case BPF_S_ALU_MUL_K: /* A *= K */
253				if (is_imm8(K))
254					EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
255				else {
256					EMIT2(0x69, 0xc0);		/* imul imm32,%eax */
257					EMIT(K, 4);
258				}
259				break;
260			case BPF_S_ALU_DIV_X: /* A /= X; */
261				seen |= SEEN_XREG;
262				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
263				if (pc_ret0 != -1)
264					EMIT_COND_JMP(X86_JE, addrs[pc_ret0] - (addrs[i] - 4));
265				else {
266					EMIT_COND_JMP(X86_JNE, 2 + 5);
267					CLEAR_A();
268					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
269				}
270				EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
271				break;
272			case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
273				EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
274				EMIT(K, 4);
275				EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
276				break;
277			case BPF_S_ALU_AND_X:
278				seen |= SEEN_XREG;
279				EMIT2(0x21, 0xd8);		/* and %ebx,%eax */
280				break;
281			case BPF_S_ALU_AND_K:
282				if (K >= 0xFFFFFF00) {
283					EMIT2(0x24, K & 0xFF); /* and imm8,%al */
284				} else if (K >= 0xFFFF0000) {
285					EMIT2(0x66, 0x25);	/* and imm16,%ax */
286					EMIT2(K, 2);
287				} else {
288					EMIT1_off32(0x25, K);	/* and imm32,%eax */
289				}
290				break;
291			case BPF_S_ALU_OR_X:
292				seen |= SEEN_XREG;
293				EMIT2(0x09, 0xd8);		/* or %ebx,%eax */
294				break;
295			case BPF_S_ALU_OR_K:
296				if (is_imm8(K))
297					EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
298				else
299					EMIT1_off32(0x0d, K);	/* or imm32,%eax */
 
300				break;
301			case BPF_S_ALU_LSH_X: /* A <<= X; */
302				seen |= SEEN_XREG;
303				EMIT4(0x89, 0xd9, 0xd3, 0xe0);	/* mov %ebx,%ecx; shl %cl,%eax */
304				break;
305			case BPF_S_ALU_LSH_K:
306				if (K == 0)
307					break;
308				else if (K == 1)
309					EMIT2(0xd1, 0xe0); /* shl %eax */
310				else
311					EMIT3(0xc1, 0xe0, K);
312				break;
313			case BPF_S_ALU_RSH_X: /* A >>= X; */
314				seen |= SEEN_XREG;
315				EMIT4(0x89, 0xd9, 0xd3, 0xe8);	/* mov %ebx,%ecx; shr %cl,%eax */
316				break;
317			case BPF_S_ALU_RSH_K: /* A >>= K; */
318				if (K == 0)
319					break;
320				else if (K == 1)
321					EMIT2(0xd1, 0xe8); /* shr %eax */
322				else
323					EMIT3(0xc1, 0xe8, K);
324				break;
325			case BPF_S_ALU_NEG:
326				EMIT2(0xf7, 0xd8);		/* neg %eax */
327				break;
328			case BPF_S_RET_K:
329				if (!K) {
330					if (pc_ret0 == -1)
331						pc_ret0 = i;
332					CLEAR_A();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333				} else {
334					EMIT1_off32(0xb8, K);	/* mov $imm32,%eax */
 
 
 
 
 
335				}
336				/* fallinto */
337			case BPF_S_RET_A:
338				if (seen) {
339					if (i != flen - 1) {
340						EMIT_JMP(cleanup_addr - addrs[i]);
341						break;
342					}
343					if (seen & SEEN_XREG)
344						EMIT4(0x48, 0x8b, 0x5d, 0xf8);  /* mov  -8(%rbp),%rbx */
345					EMIT1(0xc9);		/* leaveq */
346				}
347				EMIT1(0xc3);		/* ret */
348				break;
349			case BPF_S_MISC_TAX: /* X = A */
350				seen |= SEEN_XREG;
351				EMIT2(0x89, 0xc3);	/* mov    %eax,%ebx */
352				break;
353			case BPF_S_MISC_TXA: /* A = X */
354				seen |= SEEN_XREG;
355				EMIT2(0x89, 0xd8);	/* mov    %ebx,%eax */
356				break;
357			case BPF_S_LD_IMM: /* A = K */
358				if (!K)
359					CLEAR_A();
360				else
361					EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
362				break;
363			case BPF_S_LDX_IMM: /* X = K */
364				seen |= SEEN_XREG;
365				if (!K)
366					CLEAR_X();
367				else
368					EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
369				break;
370			case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
371				seen |= SEEN_MEM;
372				EMIT3(0x8b, 0x45, 0xf0 - K*4);
373				break;
374			case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
375				seen |= SEEN_XREG | SEEN_MEM;
376				EMIT3(0x8b, 0x5d, 0xf0 - K*4);
377				break;
378			case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
379				seen |= SEEN_MEM;
380				EMIT3(0x89, 0x45, 0xf0 - K*4);
381				break;
382			case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
383				seen |= SEEN_XREG | SEEN_MEM;
384				EMIT3(0x89, 0x5d, 0xf0 - K*4);
385				break;
386			case BPF_S_LD_W_LEN: /*	A = skb->len; */
387				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
388				if (is_imm8(offsetof(struct sk_buff, len)))
389					/* mov    off8(%rdi),%eax */
390					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
391				else {
392					EMIT2(0x8b, 0x87);
393					EMIT(offsetof(struct sk_buff, len), 4);
394				}
395				break;
396			case BPF_S_LDX_W_LEN: /* X = skb->len; */
397				seen |= SEEN_XREG;
398				if (is_imm8(offsetof(struct sk_buff, len)))
399					/* mov off8(%rdi),%ebx */
400					EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
401				else {
402					EMIT2(0x8b, 0x9f);
403					EMIT(offsetof(struct sk_buff, len), 4);
404				}
405				break;
406			case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
407				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
408				if (is_imm8(offsetof(struct sk_buff, protocol))) {
409					/* movzwl off8(%rdi),%eax */
410					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
411				} else {
412					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
413					EMIT(offsetof(struct sk_buff, protocol), 4);
414				}
415				EMIT2(0x86, 0xc4); /* ntohs() : xchg   %al,%ah */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416				break;
417			case BPF_S_ANC_IFINDEX:
418				if (is_imm8(offsetof(struct sk_buff, dev))) {
419					/* movq off8(%rdi),%rax */
420					EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
421				} else {
422					EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
423					EMIT(offsetof(struct sk_buff, dev), 4);
424				}
425				EMIT3(0x48, 0x85, 0xc0);	/* test %rax,%rax */
426				EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
427				BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
428				EMIT2(0x8b, 0x80);	/* mov off32(%rax),%eax */
429				EMIT(offsetof(struct net_device, ifindex), 4);
430				break;
431			case BPF_S_ANC_MARK:
432				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
433				if (is_imm8(offsetof(struct sk_buff, mark))) {
434					/* mov off8(%rdi),%eax */
435					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
436				} else {
437					EMIT2(0x8b, 0x87);
438					EMIT(offsetof(struct sk_buff, mark), 4);
439				}
440				break;
441			case BPF_S_ANC_RXHASH:
442				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
443				if (is_imm8(offsetof(struct sk_buff, rxhash))) {
444					/* mov off8(%rdi),%eax */
445					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
446				} else {
447					EMIT2(0x8b, 0x87);
448					EMIT(offsetof(struct sk_buff, rxhash), 4);
449				}
450				break;
451			case BPF_S_ANC_QUEUE:
452				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
453				if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
454					/* movzwl off8(%rdi),%eax */
455					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
456				} else {
457					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
458					EMIT(offsetof(struct sk_buff, queue_mapping), 4);
459				}
460				break;
461			case BPF_S_ANC_CPU:
462#ifdef CONFIG_SMP
463				EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
464				EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
465#else
466				CLEAR_A();
467#endif
468				break;
469			case BPF_S_LD_W_ABS:
470				func = sk_load_word;
471common_load:			seen |= SEEN_DATAREF;
472				if ((int)K < 0)
473					goto out;
474				t_offset = func - (image + addrs[i]);
475				EMIT1_off32(0xbe, K); /* mov imm32,%esi */
476				EMIT1_off32(0xe8, t_offset); /* call */
477				break;
478			case BPF_S_LD_H_ABS:
479				func = sk_load_half;
480				goto common_load;
481			case BPF_S_LD_B_ABS:
482				func = sk_load_byte;
483				goto common_load;
484			case BPF_S_LDX_B_MSH:
485				if ((int)K < 0) {
486					if (pc_ret0 != -1) {
487						EMIT_JMP(addrs[pc_ret0] - addrs[i]);
488						break;
489					}
490					CLEAR_A();
491					EMIT_JMP(cleanup_addr - addrs[i]);
492					break;
493				}
494				seen |= SEEN_DATAREF | SEEN_XREG;
495				t_offset = sk_load_byte_msh - (image + addrs[i]);
496				EMIT1_off32(0xbe, K);	/* mov imm32,%esi */
497				EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
498				break;
499			case BPF_S_LD_W_IND:
500				func = sk_load_word_ind;
501common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
502				t_offset = func - (image + addrs[i]);
503				EMIT1_off32(0xbe, K);	/* mov imm32,%esi   */
504				EMIT1_off32(0xe8, t_offset);	/* call sk_load_xxx_ind */
505				break;
506			case BPF_S_LD_H_IND:
507				func = sk_load_half_ind;
508				goto common_load_ind;
509			case BPF_S_LD_B_IND:
510				func = sk_load_byte_ind;
511				goto common_load_ind;
512			case BPF_S_JMP_JA:
513				t_offset = addrs[i + K] - addrs[i];
514				EMIT_JMP(t_offset);
515				break;
516			COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
517			COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
518			COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
519			COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
520			COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
521			COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
522			COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
523			COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
524
525cond_branch:			f_offset = addrs[i + filter[i].jf] - addrs[i];
526				t_offset = addrs[i + filter[i].jt] - addrs[i];
527
528				/* same targets, can avoid doing the test :) */
529				if (filter[i].jt == filter[i].jf) {
530					EMIT_JMP(t_offset);
531					break;
532				}
533
534				switch (filter[i].code) {
535				case BPF_S_JMP_JGT_X:
536				case BPF_S_JMP_JGE_X:
537				case BPF_S_JMP_JEQ_X:
538					seen |= SEEN_XREG;
539					EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
540					break;
541				case BPF_S_JMP_JSET_X:
542					seen |= SEEN_XREG;
543					EMIT2(0x85, 0xd8); /* test %ebx,%eax */
544					break;
545				case BPF_S_JMP_JEQ_K:
546					if (K == 0) {
547						EMIT2(0x85, 0xc0); /* test   %eax,%eax */
548						break;
549					}
550				case BPF_S_JMP_JGT_K:
551				case BPF_S_JMP_JGE_K:
552					if (K <= 127)
553						EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
 
 
 
554					else
555						EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
556					break;
557				case BPF_S_JMP_JSET_K:
558					if (K <= 0xFF)
559						EMIT2(0xa8, K); /* test imm8,%al */
560					else if (!(K & 0xFFFF00FF))
561						EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
562					else if (K <= 0xFFFF) {
563						EMIT2(0x66, 0xa9); /* test imm16,%ax */
564						EMIT(K, 2);
565					} else {
566						EMIT1_off32(0xa9, K); /* test imm32,%eax */
567					}
568					break;
569				}
570				if (filter[i].jt != 0) {
571					if (filter[i].jf)
572						t_offset += is_near(f_offset) ? 2 : 6;
573					EMIT_COND_JMP(t_op, t_offset);
574					if (filter[i].jf)
575						EMIT_JMP(f_offset);
576					break;
577				}
578				EMIT_COND_JMP(f_op, f_offset);
579				break;
580			default:
581				/* hmm, too complex filter, give up with jit compiler */
582				goto out;
583			}
584			ilen = prog - temp;
585			if (image) {
586				if (unlikely(proglen + ilen > oldproglen)) {
587					pr_err("bpb_jit_compile fatal error\n");
588					kfree(addrs);
589					module_free(NULL, image);
590					return;
591				}
592				memcpy(image + proglen, temp, ilen);
593			}
594			proglen += ilen;
595			addrs[i] = proglen;
596			prog = temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597		}
598		/* last bpf instruction is always a RET :
599		 * use it to give the cleanup instruction(s) addr
600		 */
601		cleanup_addr = proglen - 1; /* ret */
602		if (seen)
603			cleanup_addr -= 1; /* leaveq */
604		if (seen & SEEN_XREG)
605			cleanup_addr -= 4; /* mov  -8(%rbp),%rbx */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607		if (image) {
608			WARN_ON(proglen != oldproglen);
 
 
 
 
609			break;
610		}
611		if (proglen == oldproglen) {
612			image = module_alloc(max_t(unsigned int,
613						   proglen,
614						   sizeof(struct work_struct)));
615			if (!image)
616				goto out;
 
617		}
618		oldproglen = proglen;
 
619	}
 
620	if (bpf_jit_enable > 1)
621		pr_err("flen=%d proglen=%u pass=%d image=%p\n",
622		       flen, proglen, pass, image);
623
624	if (image) {
625		if (bpf_jit_enable > 1)
626			print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
627				       16, 1, image, proglen, false);
628
629		bpf_flush_icache(image, image + proglen);
 
 
 
 
 
 
 
 
 
 
630
631		fp->bpf_func = (void *)image;
 
 
 
 
632	}
633out:
634	kfree(addrs);
635	return;
636}
637
638static void jit_free_defer(struct work_struct *arg)
639{
640	module_free(NULL, arg);
641}
642
643/* run from softirq, we must use a work_struct to call
644 * module_free() from process context
645 */
646void bpf_jit_free(struct sk_filter *fp)
647{
648	if (fp->bpf_func != sk_run_filter) {
649		struct work_struct *work = (struct work_struct *)fp->bpf_func;
650
651		INIT_WORK(work, jit_free_defer);
652		schedule_work(work);
653	}
654}