Loading...
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
22/*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49static void
50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51{
52 unsigned long val = (unsigned long)owner;
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 unsigned long owner, *p = (unsigned long *) &lock->owner;
69
70 if (rt_mutex_has_waiters(lock))
71 return;
72
73 /*
74 * The rbtree has no waiters enqueued, now make sure that the
75 * lock->owner still has the waiters bit set, otherwise the
76 * following can happen:
77 *
78 * CPU 0 CPU 1 CPU2
79 * l->owner=T1
80 * rt_mutex_lock(l)
81 * lock(l->lock)
82 * l->owner = T1 | HAS_WAITERS;
83 * enqueue(T2)
84 * boost()
85 * unlock(l->lock)
86 * block()
87 *
88 * rt_mutex_lock(l)
89 * lock(l->lock)
90 * l->owner = T1 | HAS_WAITERS;
91 * enqueue(T3)
92 * boost()
93 * unlock(l->lock)
94 * block()
95 * signal(->T2) signal(->T3)
96 * lock(l->lock)
97 * dequeue(T2)
98 * deboost()
99 * unlock(l->lock)
100 * lock(l->lock)
101 * dequeue(T3)
102 * ==> wait list is empty
103 * deboost()
104 * unlock(l->lock)
105 * lock(l->lock)
106 * fixup_rt_mutex_waiters()
107 * if (wait_list_empty(l) {
108 * l->owner = owner
109 * owner = l->owner & ~HAS_WAITERS;
110 * ==> l->owner = T1
111 * }
112 * lock(l->lock)
113 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
114 * if (wait_list_empty(l) {
115 * owner = l->owner & ~HAS_WAITERS;
116 * cmpxchg(l->owner, T1, NULL)
117 * ===> Success (l->owner = NULL)
118 *
119 * l->owner = owner
120 * ==> l->owner = T1
121 * }
122 *
123 * With the check for the waiter bit in place T3 on CPU2 will not
124 * overwrite. All tasks fiddling with the waiters bit are
125 * serialized by l->lock, so nothing else can modify the waiters
126 * bit. If the bit is set then nothing can change l->owner either
127 * so the simple RMW is safe. The cmpxchg() will simply fail if it
128 * happens in the middle of the RMW because the waiters bit is
129 * still set.
130 */
131 owner = READ_ONCE(*p);
132 if (owner & RT_MUTEX_HAS_WAITERS)
133 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134}
135
136/*
137 * We can speed up the acquire/release, if there's no debugging state to be
138 * set up.
139 */
140#ifndef CONFIG_DEBUG_RT_MUTEXES
141# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144
145/*
146 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148 * relaxed semantics suffice.
149 */
150static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151{
152 unsigned long owner, *p = (unsigned long *) &lock->owner;
153
154 do {
155 owner = *p;
156 } while (cmpxchg_relaxed(p, owner,
157 owner | RT_MUTEX_HAS_WAITERS) != owner);
158}
159
160/*
161 * Safe fastpath aware unlock:
162 * 1) Clear the waiters bit
163 * 2) Drop lock->wait_lock
164 * 3) Try to unlock the lock with cmpxchg
165 */
166static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167 unsigned long flags)
168 __releases(lock->wait_lock)
169{
170 struct task_struct *owner = rt_mutex_owner(lock);
171
172 clear_rt_mutex_waiters(lock);
173 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174 /*
175 * If a new waiter comes in between the unlock and the cmpxchg
176 * we have two situations:
177 *
178 * unlock(wait_lock);
179 * lock(wait_lock);
180 * cmpxchg(p, owner, 0) == owner
181 * mark_rt_mutex_waiters(lock);
182 * acquire(lock);
183 * or:
184 *
185 * unlock(wait_lock);
186 * lock(wait_lock);
187 * mark_rt_mutex_waiters(lock);
188 *
189 * cmpxchg(p, owner, 0) != owner
190 * enqueue_waiter();
191 * unlock(wait_lock);
192 * lock(wait_lock);
193 * wake waiter();
194 * unlock(wait_lock);
195 * lock(wait_lock);
196 * acquire(lock);
197 */
198 return rt_mutex_cmpxchg_release(lock, owner, NULL);
199}
200
201#else
202# define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
203# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
204# define rt_mutex_cmpxchg_release(l,c,n) (0)
205
206static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207{
208 lock->owner = (struct task_struct *)
209 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210}
211
212/*
213 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214 */
215static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216 unsigned long flags)
217 __releases(lock->wait_lock)
218{
219 lock->owner = NULL;
220 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221 return true;
222}
223#endif
224
225static inline int
226rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227 struct rt_mutex_waiter *right)
228{
229 if (left->prio < right->prio)
230 return 1;
231
232 /*
233 * If both waiters have dl_prio(), we check the deadlines of the
234 * associated tasks.
235 * If left waiter has a dl_prio(), and we didn't return 1 above,
236 * then right waiter has a dl_prio() too.
237 */
238 if (dl_prio(left->prio))
239 return dl_time_before(left->task->dl.deadline,
240 right->task->dl.deadline);
241
242 return 0;
243}
244
245static void
246rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
247{
248 struct rb_node **link = &lock->waiters.rb_node;
249 struct rb_node *parent = NULL;
250 struct rt_mutex_waiter *entry;
251 int leftmost = 1;
252
253 while (*link) {
254 parent = *link;
255 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
256 if (rt_mutex_waiter_less(waiter, entry)) {
257 link = &parent->rb_left;
258 } else {
259 link = &parent->rb_right;
260 leftmost = 0;
261 }
262 }
263
264 if (leftmost)
265 lock->waiters_leftmost = &waiter->tree_entry;
266
267 rb_link_node(&waiter->tree_entry, parent, link);
268 rb_insert_color(&waiter->tree_entry, &lock->waiters);
269}
270
271static void
272rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273{
274 if (RB_EMPTY_NODE(&waiter->tree_entry))
275 return;
276
277 if (lock->waiters_leftmost == &waiter->tree_entry)
278 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
279
280 rb_erase(&waiter->tree_entry, &lock->waiters);
281 RB_CLEAR_NODE(&waiter->tree_entry);
282}
283
284static void
285rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
286{
287 struct rb_node **link = &task->pi_waiters.rb_node;
288 struct rb_node *parent = NULL;
289 struct rt_mutex_waiter *entry;
290 int leftmost = 1;
291
292 while (*link) {
293 parent = *link;
294 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
295 if (rt_mutex_waiter_less(waiter, entry)) {
296 link = &parent->rb_left;
297 } else {
298 link = &parent->rb_right;
299 leftmost = 0;
300 }
301 }
302
303 if (leftmost)
304 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
305
306 rb_link_node(&waiter->pi_tree_entry, parent, link);
307 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
308}
309
310static void
311rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312{
313 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
314 return;
315
316 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
317 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
318
319 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
320 RB_CLEAR_NODE(&waiter->pi_tree_entry);
321}
322
323/*
324 * Calculate task priority from the waiter tree priority
325 *
326 * Return task->normal_prio when the waiter tree is empty or when
327 * the waiter is not allowed to do priority boosting
328 */
329int rt_mutex_getprio(struct task_struct *task)
330{
331 if (likely(!task_has_pi_waiters(task)))
332 return task->normal_prio;
333
334 return min(task_top_pi_waiter(task)->prio,
335 task->normal_prio);
336}
337
338struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
339{
340 if (likely(!task_has_pi_waiters(task)))
341 return NULL;
342
343 return task_top_pi_waiter(task)->task;
344}
345
346/*
347 * Called by sched_setscheduler() to get the priority which will be
348 * effective after the change.
349 */
350int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351{
352 if (!task_has_pi_waiters(task))
353 return newprio;
354
355 if (task_top_pi_waiter(task)->task->prio <= newprio)
356 return task_top_pi_waiter(task)->task->prio;
357 return newprio;
358}
359
360/*
361 * Adjust the priority of a task, after its pi_waiters got modified.
362 *
363 * This can be both boosting and unboosting. task->pi_lock must be held.
364 */
365static void __rt_mutex_adjust_prio(struct task_struct *task)
366{
367 int prio = rt_mutex_getprio(task);
368
369 if (task->prio != prio || dl_prio(prio))
370 rt_mutex_setprio(task, prio);
371}
372
373/*
374 * Adjust task priority (undo boosting). Called from the exit path of
375 * rt_mutex_slowunlock() and rt_mutex_slowlock().
376 *
377 * (Note: We do this outside of the protection of lock->wait_lock to
378 * allow the lock to be taken while or before we readjust the priority
379 * of task. We do not use the spin_xx_mutex() variants here as we are
380 * outside of the debug path.)
381 */
382void rt_mutex_adjust_prio(struct task_struct *task)
383{
384 unsigned long flags;
385
386 raw_spin_lock_irqsave(&task->pi_lock, flags);
387 __rt_mutex_adjust_prio(task);
388 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
389}
390
391/*
392 * Deadlock detection is conditional:
393 *
394 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
395 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
396 *
397 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
398 * conducted independent of the detect argument.
399 *
400 * If the waiter argument is NULL this indicates the deboost path and
401 * deadlock detection is disabled independent of the detect argument
402 * and the config settings.
403 */
404static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
405 enum rtmutex_chainwalk chwalk)
406{
407 /*
408 * This is just a wrapper function for the following call,
409 * because debug_rt_mutex_detect_deadlock() smells like a magic
410 * debug feature and I wanted to keep the cond function in the
411 * main source file along with the comments instead of having
412 * two of the same in the headers.
413 */
414 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
415}
416
417/*
418 * Max number of times we'll walk the boosting chain:
419 */
420int max_lock_depth = 1024;
421
422static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
423{
424 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
425}
426
427/*
428 * Adjust the priority chain. Also used for deadlock detection.
429 * Decreases task's usage by one - may thus free the task.
430 *
431 * @task: the task owning the mutex (owner) for which a chain walk is
432 * probably needed
433 * @chwalk: do we have to carry out deadlock detection?
434 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
435 * things for a task that has just got its priority adjusted, and
436 * is waiting on a mutex)
437 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
438 * we dropped its pi_lock. Is never dereferenced, only used for
439 * comparison to detect lock chain changes.
440 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441 * its priority to the mutex owner (can be NULL in the case
442 * depicted above or if the top waiter is gone away and we are
443 * actually deboosting the owner)
444 * @top_task: the current top waiter
445 *
446 * Returns 0 or -EDEADLK.
447 *
448 * Chain walk basics and protection scope
449 *
450 * [R] refcount on task
451 * [P] task->pi_lock held
452 * [L] rtmutex->wait_lock held
453 *
454 * Step Description Protected by
455 * function arguments:
456 * @task [R]
457 * @orig_lock if != NULL @top_task is blocked on it
458 * @next_lock Unprotected. Cannot be
459 * dereferenced. Only used for
460 * comparison.
461 * @orig_waiter if != NULL @top_task is blocked on it
462 * @top_task current, or in case of proxy
463 * locking protected by calling
464 * code
465 * again:
466 * loop_sanity_check();
467 * retry:
468 * [1] lock(task->pi_lock); [R] acquire [P]
469 * [2] waiter = task->pi_blocked_on; [P]
470 * [3] check_exit_conditions_1(); [P]
471 * [4] lock = waiter->lock; [P]
472 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
473 * unlock(task->pi_lock); release [P]
474 * goto retry;
475 * }
476 * [6] check_exit_conditions_2(); [P] + [L]
477 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
478 * [8] unlock(task->pi_lock); release [P]
479 * put_task_struct(task); release [R]
480 * [9] check_exit_conditions_3(); [L]
481 * [10] task = owner(lock); [L]
482 * get_task_struct(task); [L] acquire [R]
483 * lock(task->pi_lock); [L] acquire [P]
484 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
485 * [12] check_exit_conditions_4(); [P] + [L]
486 * [13] unlock(task->pi_lock); release [P]
487 * unlock(lock->wait_lock); release [L]
488 * goto again;
489 */
490static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491 enum rtmutex_chainwalk chwalk,
492 struct rt_mutex *orig_lock,
493 struct rt_mutex *next_lock,
494 struct rt_mutex_waiter *orig_waiter,
495 struct task_struct *top_task)
496{
497 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498 struct rt_mutex_waiter *prerequeue_top_waiter;
499 int ret = 0, depth = 0;
500 struct rt_mutex *lock;
501 bool detect_deadlock;
502 bool requeue = true;
503
504 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
505
506 /*
507 * The (de)boosting is a step by step approach with a lot of
508 * pitfalls. We want this to be preemptible and we want hold a
509 * maximum of two locks per step. So we have to check
510 * carefully whether things change under us.
511 */
512 again:
513 /*
514 * We limit the lock chain length for each invocation.
515 */
516 if (++depth > max_lock_depth) {
517 static int prev_max;
518
519 /*
520 * Print this only once. If the admin changes the limit,
521 * print a new message when reaching the limit again.
522 */
523 if (prev_max != max_lock_depth) {
524 prev_max = max_lock_depth;
525 printk(KERN_WARNING "Maximum lock depth %d reached "
526 "task: %s (%d)\n", max_lock_depth,
527 top_task->comm, task_pid_nr(top_task));
528 }
529 put_task_struct(task);
530
531 return -EDEADLK;
532 }
533
534 /*
535 * We are fully preemptible here and only hold the refcount on
536 * @task. So everything can have changed under us since the
537 * caller or our own code below (goto retry/again) dropped all
538 * locks.
539 */
540 retry:
541 /*
542 * [1] Task cannot go away as we did a get_task() before !
543 */
544 raw_spin_lock_irq(&task->pi_lock);
545
546 /*
547 * [2] Get the waiter on which @task is blocked on.
548 */
549 waiter = task->pi_blocked_on;
550
551 /*
552 * [3] check_exit_conditions_1() protected by task->pi_lock.
553 */
554
555 /*
556 * Check whether the end of the boosting chain has been
557 * reached or the state of the chain has changed while we
558 * dropped the locks.
559 */
560 if (!waiter)
561 goto out_unlock_pi;
562
563 /*
564 * Check the orig_waiter state. After we dropped the locks,
565 * the previous owner of the lock might have released the lock.
566 */
567 if (orig_waiter && !rt_mutex_owner(orig_lock))
568 goto out_unlock_pi;
569
570 /*
571 * We dropped all locks after taking a refcount on @task, so
572 * the task might have moved on in the lock chain or even left
573 * the chain completely and blocks now on an unrelated lock or
574 * on @orig_lock.
575 *
576 * We stored the lock on which @task was blocked in @next_lock,
577 * so we can detect the chain change.
578 */
579 if (next_lock != waiter->lock)
580 goto out_unlock_pi;
581
582 /*
583 * Drop out, when the task has no waiters. Note,
584 * top_waiter can be NULL, when we are in the deboosting
585 * mode!
586 */
587 if (top_waiter) {
588 if (!task_has_pi_waiters(task))
589 goto out_unlock_pi;
590 /*
591 * If deadlock detection is off, we stop here if we
592 * are not the top pi waiter of the task. If deadlock
593 * detection is enabled we continue, but stop the
594 * requeueing in the chain walk.
595 */
596 if (top_waiter != task_top_pi_waiter(task)) {
597 if (!detect_deadlock)
598 goto out_unlock_pi;
599 else
600 requeue = false;
601 }
602 }
603
604 /*
605 * If the waiter priority is the same as the task priority
606 * then there is no further priority adjustment necessary. If
607 * deadlock detection is off, we stop the chain walk. If its
608 * enabled we continue, but stop the requeueing in the chain
609 * walk.
610 */
611 if (waiter->prio == task->prio) {
612 if (!detect_deadlock)
613 goto out_unlock_pi;
614 else
615 requeue = false;
616 }
617
618 /*
619 * [4] Get the next lock
620 */
621 lock = waiter->lock;
622 /*
623 * [5] We need to trylock here as we are holding task->pi_lock,
624 * which is the reverse lock order versus the other rtmutex
625 * operations.
626 */
627 if (!raw_spin_trylock(&lock->wait_lock)) {
628 raw_spin_unlock_irq(&task->pi_lock);
629 cpu_relax();
630 goto retry;
631 }
632
633 /*
634 * [6] check_exit_conditions_2() protected by task->pi_lock and
635 * lock->wait_lock.
636 *
637 * Deadlock detection. If the lock is the same as the original
638 * lock which caused us to walk the lock chain or if the
639 * current lock is owned by the task which initiated the chain
640 * walk, we detected a deadlock.
641 */
642 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644 raw_spin_unlock(&lock->wait_lock);
645 ret = -EDEADLK;
646 goto out_unlock_pi;
647 }
648
649 /*
650 * If we just follow the lock chain for deadlock detection, no
651 * need to do all the requeue operations. To avoid a truckload
652 * of conditionals around the various places below, just do the
653 * minimum chain walk checks.
654 */
655 if (!requeue) {
656 /*
657 * No requeue[7] here. Just release @task [8]
658 */
659 raw_spin_unlock(&task->pi_lock);
660 put_task_struct(task);
661
662 /*
663 * [9] check_exit_conditions_3 protected by lock->wait_lock.
664 * If there is no owner of the lock, end of chain.
665 */
666 if (!rt_mutex_owner(lock)) {
667 raw_spin_unlock_irq(&lock->wait_lock);
668 return 0;
669 }
670
671 /* [10] Grab the next task, i.e. owner of @lock */
672 task = rt_mutex_owner(lock);
673 get_task_struct(task);
674 raw_spin_lock(&task->pi_lock);
675
676 /*
677 * No requeue [11] here. We just do deadlock detection.
678 *
679 * [12] Store whether owner is blocked
680 * itself. Decision is made after dropping the locks
681 */
682 next_lock = task_blocked_on_lock(task);
683 /*
684 * Get the top waiter for the next iteration
685 */
686 top_waiter = rt_mutex_top_waiter(lock);
687
688 /* [13] Drop locks */
689 raw_spin_unlock(&task->pi_lock);
690 raw_spin_unlock_irq(&lock->wait_lock);
691
692 /* If owner is not blocked, end of chain. */
693 if (!next_lock)
694 goto out_put_task;
695 goto again;
696 }
697
698 /*
699 * Store the current top waiter before doing the requeue
700 * operation on @lock. We need it for the boost/deboost
701 * decision below.
702 */
703 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
704
705 /* [7] Requeue the waiter in the lock waiter tree. */
706 rt_mutex_dequeue(lock, waiter);
707 waiter->prio = task->prio;
708 rt_mutex_enqueue(lock, waiter);
709
710 /* [8] Release the task */
711 raw_spin_unlock(&task->pi_lock);
712 put_task_struct(task);
713
714 /*
715 * [9] check_exit_conditions_3 protected by lock->wait_lock.
716 *
717 * We must abort the chain walk if there is no lock owner even
718 * in the dead lock detection case, as we have nothing to
719 * follow here. This is the end of the chain we are walking.
720 */
721 if (!rt_mutex_owner(lock)) {
722 /*
723 * If the requeue [7] above changed the top waiter,
724 * then we need to wake the new top waiter up to try
725 * to get the lock.
726 */
727 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728 wake_up_process(rt_mutex_top_waiter(lock)->task);
729 raw_spin_unlock_irq(&lock->wait_lock);
730 return 0;
731 }
732
733 /* [10] Grab the next task, i.e. the owner of @lock */
734 task = rt_mutex_owner(lock);
735 get_task_struct(task);
736 raw_spin_lock(&task->pi_lock);
737
738 /* [11] requeue the pi waiters if necessary */
739 if (waiter == rt_mutex_top_waiter(lock)) {
740 /*
741 * The waiter became the new top (highest priority)
742 * waiter on the lock. Replace the previous top waiter
743 * in the owner tasks pi waiters tree with this waiter
744 * and adjust the priority of the owner.
745 */
746 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747 rt_mutex_enqueue_pi(task, waiter);
748 __rt_mutex_adjust_prio(task);
749
750 } else if (prerequeue_top_waiter == waiter) {
751 /*
752 * The waiter was the top waiter on the lock, but is
753 * no longer the top prority waiter. Replace waiter in
754 * the owner tasks pi waiters tree with the new top
755 * (highest priority) waiter and adjust the priority
756 * of the owner.
757 * The new top waiter is stored in @waiter so that
758 * @waiter == @top_waiter evaluates to true below and
759 * we continue to deboost the rest of the chain.
760 */
761 rt_mutex_dequeue_pi(task, waiter);
762 waiter = rt_mutex_top_waiter(lock);
763 rt_mutex_enqueue_pi(task, waiter);
764 __rt_mutex_adjust_prio(task);
765 } else {
766 /*
767 * Nothing changed. No need to do any priority
768 * adjustment.
769 */
770 }
771
772 /*
773 * [12] check_exit_conditions_4() protected by task->pi_lock
774 * and lock->wait_lock. The actual decisions are made after we
775 * dropped the locks.
776 *
777 * Check whether the task which owns the current lock is pi
778 * blocked itself. If yes we store a pointer to the lock for
779 * the lock chain change detection above. After we dropped
780 * task->pi_lock next_lock cannot be dereferenced anymore.
781 */
782 next_lock = task_blocked_on_lock(task);
783 /*
784 * Store the top waiter of @lock for the end of chain walk
785 * decision below.
786 */
787 top_waiter = rt_mutex_top_waiter(lock);
788
789 /* [13] Drop the locks */
790 raw_spin_unlock(&task->pi_lock);
791 raw_spin_unlock_irq(&lock->wait_lock);
792
793 /*
794 * Make the actual exit decisions [12], based on the stored
795 * values.
796 *
797 * We reached the end of the lock chain. Stop right here. No
798 * point to go back just to figure that out.
799 */
800 if (!next_lock)
801 goto out_put_task;
802
803 /*
804 * If the current waiter is not the top waiter on the lock,
805 * then we can stop the chain walk here if we are not in full
806 * deadlock detection mode.
807 */
808 if (!detect_deadlock && waiter != top_waiter)
809 goto out_put_task;
810
811 goto again;
812
813 out_unlock_pi:
814 raw_spin_unlock_irq(&task->pi_lock);
815 out_put_task:
816 put_task_struct(task);
817
818 return ret;
819}
820
821/*
822 * Try to take an rt-mutex
823 *
824 * Must be called with lock->wait_lock held and interrupts disabled
825 *
826 * @lock: The lock to be acquired.
827 * @task: The task which wants to acquire the lock
828 * @waiter: The waiter that is queued to the lock's wait tree if the
829 * callsite called task_blocked_on_lock(), otherwise NULL
830 */
831static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832 struct rt_mutex_waiter *waiter)
833{
834 /*
835 * Before testing whether we can acquire @lock, we set the
836 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
837 * other tasks which try to modify @lock into the slow path
838 * and they serialize on @lock->wait_lock.
839 *
840 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
841 * as explained at the top of this file if and only if:
842 *
843 * - There is a lock owner. The caller must fixup the
844 * transient state if it does a trylock or leaves the lock
845 * function due to a signal or timeout.
846 *
847 * - @task acquires the lock and there are no other
848 * waiters. This is undone in rt_mutex_set_owner(@task) at
849 * the end of this function.
850 */
851 mark_rt_mutex_waiters(lock);
852
853 /*
854 * If @lock has an owner, give up.
855 */
856 if (rt_mutex_owner(lock))
857 return 0;
858
859 /*
860 * If @waiter != NULL, @task has already enqueued the waiter
861 * into @lock waiter tree. If @waiter == NULL then this is a
862 * trylock attempt.
863 */
864 if (waiter) {
865 /*
866 * If waiter is not the highest priority waiter of
867 * @lock, give up.
868 */
869 if (waiter != rt_mutex_top_waiter(lock))
870 return 0;
871
872 /*
873 * We can acquire the lock. Remove the waiter from the
874 * lock waiters tree.
875 */
876 rt_mutex_dequeue(lock, waiter);
877
878 } else {
879 /*
880 * If the lock has waiters already we check whether @task is
881 * eligible to take over the lock.
882 *
883 * If there are no other waiters, @task can acquire
884 * the lock. @task->pi_blocked_on is NULL, so it does
885 * not need to be dequeued.
886 */
887 if (rt_mutex_has_waiters(lock)) {
888 /*
889 * If @task->prio is greater than or equal to
890 * the top waiter priority (kernel view),
891 * @task lost.
892 */
893 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
894 return 0;
895
896 /*
897 * The current top waiter stays enqueued. We
898 * don't have to change anything in the lock
899 * waiters order.
900 */
901 } else {
902 /*
903 * No waiters. Take the lock without the
904 * pi_lock dance.@task->pi_blocked_on is NULL
905 * and we have no waiters to enqueue in @task
906 * pi waiters tree.
907 */
908 goto takeit;
909 }
910 }
911
912 /*
913 * Clear @task->pi_blocked_on. Requires protection by
914 * @task->pi_lock. Redundant operation for the @waiter == NULL
915 * case, but conditionals are more expensive than a redundant
916 * store.
917 */
918 raw_spin_lock(&task->pi_lock);
919 task->pi_blocked_on = NULL;
920 /*
921 * Finish the lock acquisition. @task is the new owner. If
922 * other waiters exist we have to insert the highest priority
923 * waiter into @task->pi_waiters tree.
924 */
925 if (rt_mutex_has_waiters(lock))
926 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927 raw_spin_unlock(&task->pi_lock);
928
929takeit:
930 /* We got the lock. */
931 debug_rt_mutex_lock(lock);
932
933 /*
934 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
935 * are still waiters or clears it.
936 */
937 rt_mutex_set_owner(lock, task);
938
939 rt_mutex_deadlock_account_lock(lock, task);
940
941 return 1;
942}
943
944/*
945 * Task blocks on lock.
946 *
947 * Prepare waiter and propagate pi chain
948 *
949 * This must be called with lock->wait_lock held and interrupts disabled
950 */
951static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
952 struct rt_mutex_waiter *waiter,
953 struct task_struct *task,
954 enum rtmutex_chainwalk chwalk)
955{
956 struct task_struct *owner = rt_mutex_owner(lock);
957 struct rt_mutex_waiter *top_waiter = waiter;
958 struct rt_mutex *next_lock;
959 int chain_walk = 0, res;
960
961 /*
962 * Early deadlock detection. We really don't want the task to
963 * enqueue on itself just to untangle the mess later. It's not
964 * only an optimization. We drop the locks, so another waiter
965 * can come in before the chain walk detects the deadlock. So
966 * the other will detect the deadlock and return -EDEADLOCK,
967 * which is wrong, as the other waiter is not in a deadlock
968 * situation.
969 */
970 if (owner == task)
971 return -EDEADLK;
972
973 raw_spin_lock(&task->pi_lock);
974 __rt_mutex_adjust_prio(task);
975 waiter->task = task;
976 waiter->lock = lock;
977 waiter->prio = task->prio;
978
979 /* Get the top priority waiter on the lock */
980 if (rt_mutex_has_waiters(lock))
981 top_waiter = rt_mutex_top_waiter(lock);
982 rt_mutex_enqueue(lock, waiter);
983
984 task->pi_blocked_on = waiter;
985
986 raw_spin_unlock(&task->pi_lock);
987
988 if (!owner)
989 return 0;
990
991 raw_spin_lock(&owner->pi_lock);
992 if (waiter == rt_mutex_top_waiter(lock)) {
993 rt_mutex_dequeue_pi(owner, top_waiter);
994 rt_mutex_enqueue_pi(owner, waiter);
995
996 __rt_mutex_adjust_prio(owner);
997 if (owner->pi_blocked_on)
998 chain_walk = 1;
999 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1000 chain_walk = 1;
1001 }
1002
1003 /* Store the lock on which owner is blocked or NULL */
1004 next_lock = task_blocked_on_lock(owner);
1005
1006 raw_spin_unlock(&owner->pi_lock);
1007 /*
1008 * Even if full deadlock detection is on, if the owner is not
1009 * blocked itself, we can avoid finding this out in the chain
1010 * walk.
1011 */
1012 if (!chain_walk || !next_lock)
1013 return 0;
1014
1015 /*
1016 * The owner can't disappear while holding a lock,
1017 * so the owner struct is protected by wait_lock.
1018 * Gets dropped in rt_mutex_adjust_prio_chain()!
1019 */
1020 get_task_struct(owner);
1021
1022 raw_spin_unlock_irq(&lock->wait_lock);
1023
1024 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1025 next_lock, waiter, task);
1026
1027 raw_spin_lock_irq(&lock->wait_lock);
1028
1029 return res;
1030}
1031
1032/*
1033 * Remove the top waiter from the current tasks pi waiter tree and
1034 * queue it up.
1035 *
1036 * Called with lock->wait_lock held and interrupts disabled.
1037 */
1038static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1039 struct rt_mutex *lock)
1040{
1041 struct rt_mutex_waiter *waiter;
1042
1043 raw_spin_lock(¤t->pi_lock);
1044
1045 waiter = rt_mutex_top_waiter(lock);
1046
1047 /*
1048 * Remove it from current->pi_waiters. We do not adjust a
1049 * possible priority boost right now. We execute wakeup in the
1050 * boosted mode and go back to normal after releasing
1051 * lock->wait_lock.
1052 */
1053 rt_mutex_dequeue_pi(current, waiter);
1054
1055 /*
1056 * As we are waking up the top waiter, and the waiter stays
1057 * queued on the lock until it gets the lock, this lock
1058 * obviously has waiters. Just set the bit here and this has
1059 * the added benefit of forcing all new tasks into the
1060 * slow path making sure no task of lower priority than
1061 * the top waiter can steal this lock.
1062 */
1063 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1064
1065 raw_spin_unlock(¤t->pi_lock);
1066
1067 wake_q_add(wake_q, waiter->task);
1068}
1069
1070/*
1071 * Remove a waiter from a lock and give up
1072 *
1073 * Must be called with lock->wait_lock held and interrupts disabled. I must
1074 * have just failed to try_to_take_rt_mutex().
1075 */
1076static void remove_waiter(struct rt_mutex *lock,
1077 struct rt_mutex_waiter *waiter)
1078{
1079 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1080 struct task_struct *owner = rt_mutex_owner(lock);
1081 struct rt_mutex *next_lock;
1082
1083 raw_spin_lock(¤t->pi_lock);
1084 rt_mutex_dequeue(lock, waiter);
1085 current->pi_blocked_on = NULL;
1086 raw_spin_unlock(¤t->pi_lock);
1087
1088 /*
1089 * Only update priority if the waiter was the highest priority
1090 * waiter of the lock and there is an owner to update.
1091 */
1092 if (!owner || !is_top_waiter)
1093 return;
1094
1095 raw_spin_lock(&owner->pi_lock);
1096
1097 rt_mutex_dequeue_pi(owner, waiter);
1098
1099 if (rt_mutex_has_waiters(lock))
1100 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1101
1102 __rt_mutex_adjust_prio(owner);
1103
1104 /* Store the lock on which owner is blocked or NULL */
1105 next_lock = task_blocked_on_lock(owner);
1106
1107 raw_spin_unlock(&owner->pi_lock);
1108
1109 /*
1110 * Don't walk the chain, if the owner task is not blocked
1111 * itself.
1112 */
1113 if (!next_lock)
1114 return;
1115
1116 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1117 get_task_struct(owner);
1118
1119 raw_spin_unlock_irq(&lock->wait_lock);
1120
1121 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1122 next_lock, NULL, current);
1123
1124 raw_spin_lock_irq(&lock->wait_lock);
1125}
1126
1127/*
1128 * Recheck the pi chain, in case we got a priority setting
1129 *
1130 * Called from sched_setscheduler
1131 */
1132void rt_mutex_adjust_pi(struct task_struct *task)
1133{
1134 struct rt_mutex_waiter *waiter;
1135 struct rt_mutex *next_lock;
1136 unsigned long flags;
1137
1138 raw_spin_lock_irqsave(&task->pi_lock, flags);
1139
1140 waiter = task->pi_blocked_on;
1141 if (!waiter || (waiter->prio == task->prio &&
1142 !dl_prio(task->prio))) {
1143 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1144 return;
1145 }
1146 next_lock = waiter->lock;
1147 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1148
1149 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1150 get_task_struct(task);
1151
1152 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1153 next_lock, NULL, task);
1154}
1155
1156/**
1157 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1158 * @lock: the rt_mutex to take
1159 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1160 * or TASK_UNINTERRUPTIBLE)
1161 * @timeout: the pre-initialized and started timer, or NULL for none
1162 * @waiter: the pre-initialized rt_mutex_waiter
1163 *
1164 * Must be called with lock->wait_lock held and interrupts disabled
1165 */
1166static int __sched
1167__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1168 struct hrtimer_sleeper *timeout,
1169 struct rt_mutex_waiter *waiter)
1170{
1171 int ret = 0;
1172
1173 for (;;) {
1174 /* Try to acquire the lock: */
1175 if (try_to_take_rt_mutex(lock, current, waiter))
1176 break;
1177
1178 /*
1179 * TASK_INTERRUPTIBLE checks for signals and
1180 * timeout. Ignored otherwise.
1181 */
1182 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1183 /* Signal pending? */
1184 if (signal_pending(current))
1185 ret = -EINTR;
1186 if (timeout && !timeout->task)
1187 ret = -ETIMEDOUT;
1188 if (ret)
1189 break;
1190 }
1191
1192 raw_spin_unlock_irq(&lock->wait_lock);
1193
1194 debug_rt_mutex_print_deadlock(waiter);
1195
1196 schedule();
1197
1198 raw_spin_lock_irq(&lock->wait_lock);
1199 set_current_state(state);
1200 }
1201
1202 __set_current_state(TASK_RUNNING);
1203 return ret;
1204}
1205
1206static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1207 struct rt_mutex_waiter *w)
1208{
1209 /*
1210 * If the result is not -EDEADLOCK or the caller requested
1211 * deadlock detection, nothing to do here.
1212 */
1213 if (res != -EDEADLOCK || detect_deadlock)
1214 return;
1215
1216 /*
1217 * Yell lowdly and stop the task right here.
1218 */
1219 rt_mutex_print_deadlock(w);
1220 while (1) {
1221 set_current_state(TASK_INTERRUPTIBLE);
1222 schedule();
1223 }
1224}
1225
1226/*
1227 * Slow path lock function:
1228 */
1229static int __sched
1230rt_mutex_slowlock(struct rt_mutex *lock, int state,
1231 struct hrtimer_sleeper *timeout,
1232 enum rtmutex_chainwalk chwalk)
1233{
1234 struct rt_mutex_waiter waiter;
1235 unsigned long flags;
1236 int ret = 0;
1237
1238 debug_rt_mutex_init_waiter(&waiter);
1239 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1240 RB_CLEAR_NODE(&waiter.tree_entry);
1241
1242 /*
1243 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244 * be called in early boot if the cmpxchg() fast path is disabled
1245 * (debug, no architecture support). In this case we will acquire the
1246 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247 * enable interrupts in that early boot case. So we need to use the
1248 * irqsave/restore variants.
1249 */
1250 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252 /* Try to acquire the lock again: */
1253 if (try_to_take_rt_mutex(lock, current, NULL)) {
1254 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255 return 0;
1256 }
1257
1258 set_current_state(state);
1259
1260 /* Setup the timer, when timeout != NULL */
1261 if (unlikely(timeout))
1262 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263
1264 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265
1266 if (likely(!ret))
1267 /* sleep on the mutex */
1268 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269
1270 if (unlikely(ret)) {
1271 __set_current_state(TASK_RUNNING);
1272 if (rt_mutex_has_waiters(lock))
1273 remove_waiter(lock, &waiter);
1274 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1275 }
1276
1277 /*
1278 * try_to_take_rt_mutex() sets the waiter bit
1279 * unconditionally. We might have to fix that up.
1280 */
1281 fixup_rt_mutex_waiters(lock);
1282
1283 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1284
1285 /* Remove pending timer: */
1286 if (unlikely(timeout))
1287 hrtimer_cancel(&timeout->timer);
1288
1289 debug_rt_mutex_free_waiter(&waiter);
1290
1291 return ret;
1292}
1293
1294/*
1295 * Slow path try-lock function:
1296 */
1297static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1298{
1299 unsigned long flags;
1300 int ret;
1301
1302 /*
1303 * If the lock already has an owner we fail to get the lock.
1304 * This can be done without taking the @lock->wait_lock as
1305 * it is only being read, and this is a trylock anyway.
1306 */
1307 if (rt_mutex_owner(lock))
1308 return 0;
1309
1310 /*
1311 * The mutex has currently no owner. Lock the wait lock and try to
1312 * acquire the lock. We use irqsave here to support early boot calls.
1313 */
1314 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1315
1316 ret = try_to_take_rt_mutex(lock, current, NULL);
1317
1318 /*
1319 * try_to_take_rt_mutex() sets the lock waiters bit
1320 * unconditionally. Clean this up.
1321 */
1322 fixup_rt_mutex_waiters(lock);
1323
1324 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1325
1326 return ret;
1327}
1328
1329/*
1330 * Slow path to release a rt-mutex.
1331 * Return whether the current task needs to undo a potential priority boosting.
1332 */
1333static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1334 struct wake_q_head *wake_q)
1335{
1336 unsigned long flags;
1337
1338 /* irqsave required to support early boot calls */
1339 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1340
1341 debug_rt_mutex_unlock(lock);
1342
1343 rt_mutex_deadlock_account_unlock(current);
1344
1345 /*
1346 * We must be careful here if the fast path is enabled. If we
1347 * have no waiters queued we cannot set owner to NULL here
1348 * because of:
1349 *
1350 * foo->lock->owner = NULL;
1351 * rtmutex_lock(foo->lock); <- fast path
1352 * free = atomic_dec_and_test(foo->refcnt);
1353 * rtmutex_unlock(foo->lock); <- fast path
1354 * if (free)
1355 * kfree(foo);
1356 * raw_spin_unlock(foo->lock->wait_lock);
1357 *
1358 * So for the fastpath enabled kernel:
1359 *
1360 * Nothing can set the waiters bit as long as we hold
1361 * lock->wait_lock. So we do the following sequence:
1362 *
1363 * owner = rt_mutex_owner(lock);
1364 * clear_rt_mutex_waiters(lock);
1365 * raw_spin_unlock(&lock->wait_lock);
1366 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1367 * return;
1368 * goto retry;
1369 *
1370 * The fastpath disabled variant is simple as all access to
1371 * lock->owner is serialized by lock->wait_lock:
1372 *
1373 * lock->owner = NULL;
1374 * raw_spin_unlock(&lock->wait_lock);
1375 */
1376 while (!rt_mutex_has_waiters(lock)) {
1377 /* Drops lock->wait_lock ! */
1378 if (unlock_rt_mutex_safe(lock, flags) == true)
1379 return false;
1380 /* Relock the rtmutex and try again */
1381 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1382 }
1383
1384 /*
1385 * The wakeup next waiter path does not suffer from the above
1386 * race. See the comments there.
1387 *
1388 * Queue the next waiter for wakeup once we release the wait_lock.
1389 */
1390 mark_wakeup_next_waiter(wake_q, lock);
1391
1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394 /* check PI boosting */
1395 return true;
1396}
1397
1398/*
1399 * debug aware fast / slowpath lock,trylock,unlock
1400 *
1401 * The atomic acquire/release ops are compiled away, when either the
1402 * architecture does not support cmpxchg or when debugging is enabled.
1403 */
1404static inline int
1405rt_mutex_fastlock(struct rt_mutex *lock, int state,
1406 int (*slowfn)(struct rt_mutex *lock, int state,
1407 struct hrtimer_sleeper *timeout,
1408 enum rtmutex_chainwalk chwalk))
1409{
1410 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1411 rt_mutex_deadlock_account_lock(lock, current);
1412 return 0;
1413 } else
1414 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1415}
1416
1417static inline int
1418rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419 struct hrtimer_sleeper *timeout,
1420 enum rtmutex_chainwalk chwalk,
1421 int (*slowfn)(struct rt_mutex *lock, int state,
1422 struct hrtimer_sleeper *timeout,
1423 enum rtmutex_chainwalk chwalk))
1424{
1425 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1427 rt_mutex_deadlock_account_lock(lock, current);
1428 return 0;
1429 } else
1430 return slowfn(lock, state, timeout, chwalk);
1431}
1432
1433static inline int
1434rt_mutex_fasttrylock(struct rt_mutex *lock,
1435 int (*slowfn)(struct rt_mutex *lock))
1436{
1437 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1438 rt_mutex_deadlock_account_lock(lock, current);
1439 return 1;
1440 }
1441 return slowfn(lock);
1442}
1443
1444static inline void
1445rt_mutex_fastunlock(struct rt_mutex *lock,
1446 bool (*slowfn)(struct rt_mutex *lock,
1447 struct wake_q_head *wqh))
1448{
1449 DEFINE_WAKE_Q(wake_q);
1450
1451 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1452 rt_mutex_deadlock_account_unlock(current);
1453
1454 } else {
1455 bool deboost = slowfn(lock, &wake_q);
1456
1457 wake_up_q(&wake_q);
1458
1459 /* Undo pi boosting if necessary: */
1460 if (deboost)
1461 rt_mutex_adjust_prio(current);
1462 }
1463}
1464
1465/**
1466 * rt_mutex_lock - lock a rt_mutex
1467 *
1468 * @lock: the rt_mutex to be locked
1469 */
1470void __sched rt_mutex_lock(struct rt_mutex *lock)
1471{
1472 might_sleep();
1473
1474 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475}
1476EXPORT_SYMBOL_GPL(rt_mutex_lock);
1477
1478/**
1479 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1480 *
1481 * @lock: the rt_mutex to be locked
1482 *
1483 * Returns:
1484 * 0 on success
1485 * -EINTR when interrupted by a signal
1486 */
1487int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1488{
1489 might_sleep();
1490
1491 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1492}
1493EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1494
1495/*
1496 * Futex variant with full deadlock detection.
1497 */
1498int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1499 struct hrtimer_sleeper *timeout)
1500{
1501 might_sleep();
1502
1503 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1504 RT_MUTEX_FULL_CHAINWALK,
1505 rt_mutex_slowlock);
1506}
1507
1508/**
1509 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1510 * the timeout structure is provided
1511 * by the caller
1512 *
1513 * @lock: the rt_mutex to be locked
1514 * @timeout: timeout structure or NULL (no timeout)
1515 *
1516 * Returns:
1517 * 0 on success
1518 * -EINTR when interrupted by a signal
1519 * -ETIMEDOUT when the timeout expired
1520 */
1521int
1522rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1523{
1524 might_sleep();
1525
1526 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1527 RT_MUTEX_MIN_CHAINWALK,
1528 rt_mutex_slowlock);
1529}
1530EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1531
1532/**
1533 * rt_mutex_trylock - try to lock a rt_mutex
1534 *
1535 * @lock: the rt_mutex to be locked
1536 *
1537 * This function can only be called in thread context. It's safe to
1538 * call it from atomic regions, but not from hard interrupt or soft
1539 * interrupt context.
1540 *
1541 * Returns 1 on success and 0 on contention
1542 */
1543int __sched rt_mutex_trylock(struct rt_mutex *lock)
1544{
1545 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1546 return 0;
1547
1548 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1549}
1550EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1551
1552/**
1553 * rt_mutex_unlock - unlock a rt_mutex
1554 *
1555 * @lock: the rt_mutex to be unlocked
1556 */
1557void __sched rt_mutex_unlock(struct rt_mutex *lock)
1558{
1559 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1560}
1561EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1562
1563/**
1564 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1565 * @lock: the rt_mutex to be unlocked
1566 *
1567 * Returns: true/false indicating whether priority adjustment is
1568 * required or not.
1569 */
1570bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1571 struct wake_q_head *wqh)
1572{
1573 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1574 rt_mutex_deadlock_account_unlock(current);
1575 return false;
1576 }
1577 return rt_mutex_slowunlock(lock, wqh);
1578}
1579
1580/**
1581 * rt_mutex_destroy - mark a mutex unusable
1582 * @lock: the mutex to be destroyed
1583 *
1584 * This function marks the mutex uninitialized, and any subsequent
1585 * use of the mutex is forbidden. The mutex must not be locked when
1586 * this function is called.
1587 */
1588void rt_mutex_destroy(struct rt_mutex *lock)
1589{
1590 WARN_ON(rt_mutex_is_locked(lock));
1591#ifdef CONFIG_DEBUG_RT_MUTEXES
1592 lock->magic = NULL;
1593#endif
1594}
1595
1596EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1597
1598/**
1599 * __rt_mutex_init - initialize the rt lock
1600 *
1601 * @lock: the rt lock to be initialized
1602 *
1603 * Initialize the rt lock to unlocked state.
1604 *
1605 * Initializing of a locked rt lock is not allowed
1606 */
1607void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1608{
1609 lock->owner = NULL;
1610 raw_spin_lock_init(&lock->wait_lock);
1611 lock->waiters = RB_ROOT;
1612 lock->waiters_leftmost = NULL;
1613
1614 debug_rt_mutex_init(lock, name);
1615}
1616EXPORT_SYMBOL_GPL(__rt_mutex_init);
1617
1618/**
1619 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1620 * proxy owner
1621 *
1622 * @lock: the rt_mutex to be locked
1623 * @proxy_owner:the task to set as owner
1624 *
1625 * No locking. Caller has to do serializing itself
1626 *
1627 * Special API call for PI-futex support. This initializes the rtmutex and
1628 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1629 * possible at this point because the pi_state which contains the rtmutex
1630 * is not yet visible to other tasks.
1631 */
1632void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1633 struct task_struct *proxy_owner)
1634{
1635 __rt_mutex_init(lock, NULL);
1636 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1637 rt_mutex_set_owner(lock, proxy_owner);
1638 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1639}
1640
1641/**
1642 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1643 *
1644 * @lock: the rt_mutex to be locked
1645 *
1646 * No locking. Caller has to do serializing itself
1647 *
1648 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1649 * (debugging) state. Concurrent operations on this rt_mutex are not
1650 * possible because it belongs to the pi_state which is about to be freed
1651 * and it is not longer visible to other tasks.
1652 */
1653void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1654 struct task_struct *proxy_owner)
1655{
1656 debug_rt_mutex_proxy_unlock(lock);
1657 rt_mutex_set_owner(lock, NULL);
1658 rt_mutex_deadlock_account_unlock(proxy_owner);
1659}
1660
1661/**
1662 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1663 * @lock: the rt_mutex to take
1664 * @waiter: the pre-initialized rt_mutex_waiter
1665 * @task: the task to prepare
1666 *
1667 * Returns:
1668 * 0 - task blocked on lock
1669 * 1 - acquired the lock for task, caller should wake it up
1670 * <0 - error
1671 *
1672 * Special API call for FUTEX_REQUEUE_PI support.
1673 */
1674int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1675 struct rt_mutex_waiter *waiter,
1676 struct task_struct *task)
1677{
1678 int ret;
1679
1680 raw_spin_lock_irq(&lock->wait_lock);
1681
1682 if (try_to_take_rt_mutex(lock, task, NULL)) {
1683 raw_spin_unlock_irq(&lock->wait_lock);
1684 return 1;
1685 }
1686
1687 /* We enforce deadlock detection for futexes */
1688 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1689 RT_MUTEX_FULL_CHAINWALK);
1690
1691 if (ret && !rt_mutex_owner(lock)) {
1692 /*
1693 * Reset the return value. We might have
1694 * returned with -EDEADLK and the owner
1695 * released the lock while we were walking the
1696 * pi chain. Let the waiter sort it out.
1697 */
1698 ret = 0;
1699 }
1700
1701 if (unlikely(ret))
1702 remove_waiter(lock, waiter);
1703
1704 raw_spin_unlock_irq(&lock->wait_lock);
1705
1706 debug_rt_mutex_print_deadlock(waiter);
1707
1708 return ret;
1709}
1710
1711/**
1712 * rt_mutex_next_owner - return the next owner of the lock
1713 *
1714 * @lock: the rt lock query
1715 *
1716 * Returns the next owner of the lock or NULL
1717 *
1718 * Caller has to serialize against other accessors to the lock
1719 * itself.
1720 *
1721 * Special API call for PI-futex support
1722 */
1723struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1724{
1725 if (!rt_mutex_has_waiters(lock))
1726 return NULL;
1727
1728 return rt_mutex_top_waiter(lock)->task;
1729}
1730
1731/**
1732 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1733 * @lock: the rt_mutex we were woken on
1734 * @to: the timeout, null if none. hrtimer should already have
1735 * been started.
1736 * @waiter: the pre-initialized rt_mutex_waiter
1737 *
1738 * Complete the lock acquisition started our behalf by another thread.
1739 *
1740 * Returns:
1741 * 0 - success
1742 * <0 - error, one of -EINTR, -ETIMEDOUT
1743 *
1744 * Special API call for PI-futex requeue support
1745 */
1746int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1747 struct hrtimer_sleeper *to,
1748 struct rt_mutex_waiter *waiter)
1749{
1750 int ret;
1751
1752 raw_spin_lock_irq(&lock->wait_lock);
1753
1754 set_current_state(TASK_INTERRUPTIBLE);
1755
1756 /* sleep on the mutex */
1757 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1758
1759 if (unlikely(ret))
1760 remove_waiter(lock, waiter);
1761
1762 /*
1763 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1764 * have to fix that up.
1765 */
1766 fixup_rt_mutex_waiters(lock);
1767
1768 raw_spin_unlock_irq(&lock->wait_lock);
1769
1770 return ret;
1771}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 * Adaptive Spinlocks:
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13 * and Peter Morreale,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16 *
17 * See Documentation/locking/rt-mutex-design.rst for details.
18 */
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/sched/deadline.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/rt.h>
24#include <linux/sched/wake_q.h>
25#include <linux/ww_mutex.h>
26
27#include <trace/events/lock.h>
28
29#include "rtmutex_common.h"
30
31#ifndef WW_RT
32# define build_ww_mutex() (false)
33# define ww_container_of(rtm) NULL
34
35static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 struct rt_mutex *lock,
37 struct ww_acquire_ctx *ww_ctx)
38{
39 return 0;
40}
41
42static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43 struct ww_acquire_ctx *ww_ctx)
44{
45}
46
47static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48 struct ww_acquire_ctx *ww_ctx)
49{
50}
51
52static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53 struct rt_mutex_waiter *waiter,
54 struct ww_acquire_ctx *ww_ctx)
55{
56 return 0;
57}
58
59#else
60# define build_ww_mutex() (true)
61# define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
62# include "ww_mutex.h"
63#endif
64
65/*
66 * lock->owner state tracking:
67 *
68 * lock->owner holds the task_struct pointer of the owner. Bit 0
69 * is used to keep track of the "lock has waiters" state.
70 *
71 * owner bit0
72 * NULL 0 lock is free (fast acquire possible)
73 * NULL 1 lock is free and has waiters and the top waiter
74 * is going to take the lock*
75 * taskpointer 0 lock is held (fast release possible)
76 * taskpointer 1 lock is held and has waiters**
77 *
78 * The fast atomic compare exchange based acquire and release is only
79 * possible when bit 0 of lock->owner is 0.
80 *
81 * (*) It also can be a transitional state when grabbing the lock
82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83 * we need to set the bit0 before looking at the lock, and the owner may be
84 * NULL in this small time, hence this can be a transitional state.
85 *
86 * (**) There is a small time when bit 0 is set but there are no
87 * waiters. This can happen when grabbing the lock in the slow path.
88 * To prevent a cmpxchg of the owner releasing the lock, we need to
89 * set this bit before looking at the lock.
90 */
91
92static __always_inline struct task_struct *
93rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
94{
95 unsigned long val = (unsigned long)owner;
96
97 if (rt_mutex_has_waiters(lock))
98 val |= RT_MUTEX_HAS_WAITERS;
99
100 return (struct task_struct *)val;
101}
102
103static __always_inline void
104rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
105{
106 /*
107 * lock->wait_lock is held but explicit acquire semantics are needed
108 * for a new lock owner so WRITE_ONCE is insufficient.
109 */
110 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
111}
112
113static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
114{
115 /* lock->wait_lock is held so the unlock provides release semantics. */
116 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
117}
118
119static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
120{
121 lock->owner = (struct task_struct *)
122 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
123}
124
125static __always_inline void
126fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
127{
128 unsigned long owner, *p = (unsigned long *) &lock->owner;
129
130 if (rt_mutex_has_waiters(lock))
131 return;
132
133 /*
134 * The rbtree has no waiters enqueued, now make sure that the
135 * lock->owner still has the waiters bit set, otherwise the
136 * following can happen:
137 *
138 * CPU 0 CPU 1 CPU2
139 * l->owner=T1
140 * rt_mutex_lock(l)
141 * lock(l->lock)
142 * l->owner = T1 | HAS_WAITERS;
143 * enqueue(T2)
144 * boost()
145 * unlock(l->lock)
146 * block()
147 *
148 * rt_mutex_lock(l)
149 * lock(l->lock)
150 * l->owner = T1 | HAS_WAITERS;
151 * enqueue(T3)
152 * boost()
153 * unlock(l->lock)
154 * block()
155 * signal(->T2) signal(->T3)
156 * lock(l->lock)
157 * dequeue(T2)
158 * deboost()
159 * unlock(l->lock)
160 * lock(l->lock)
161 * dequeue(T3)
162 * ==> wait list is empty
163 * deboost()
164 * unlock(l->lock)
165 * lock(l->lock)
166 * fixup_rt_mutex_waiters()
167 * if (wait_list_empty(l) {
168 * l->owner = owner
169 * owner = l->owner & ~HAS_WAITERS;
170 * ==> l->owner = T1
171 * }
172 * lock(l->lock)
173 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
174 * if (wait_list_empty(l) {
175 * owner = l->owner & ~HAS_WAITERS;
176 * cmpxchg(l->owner, T1, NULL)
177 * ===> Success (l->owner = NULL)
178 *
179 * l->owner = owner
180 * ==> l->owner = T1
181 * }
182 *
183 * With the check for the waiter bit in place T3 on CPU2 will not
184 * overwrite. All tasks fiddling with the waiters bit are
185 * serialized by l->lock, so nothing else can modify the waiters
186 * bit. If the bit is set then nothing can change l->owner either
187 * so the simple RMW is safe. The cmpxchg() will simply fail if it
188 * happens in the middle of the RMW because the waiters bit is
189 * still set.
190 */
191 owner = READ_ONCE(*p);
192 if (owner & RT_MUTEX_HAS_WAITERS) {
193 /*
194 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
195 * why xchg_acquire() is used for updating owner for
196 * locking and WRITE_ONCE() for unlocking.
197 *
198 * WRITE_ONCE() would work for the acquire case too, but
199 * in case that the lock acquisition failed it might
200 * force other lockers into the slow path unnecessarily.
201 */
202 if (acquire_lock)
203 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
204 else
205 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
206 }
207}
208
209/*
210 * We can speed up the acquire/release, if there's no debugging state to be
211 * set up.
212 */
213#ifndef CONFIG_DEBUG_RT_MUTEXES
214static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
215 struct task_struct *old,
216 struct task_struct *new)
217{
218 return try_cmpxchg_acquire(&lock->owner, &old, new);
219}
220
221static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
222{
223 return rt_mutex_cmpxchg_acquire(lock, NULL, current);
224}
225
226static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
227 struct task_struct *old,
228 struct task_struct *new)
229{
230 return try_cmpxchg_release(&lock->owner, &old, new);
231}
232
233/*
234 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
235 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
236 * relaxed semantics suffice.
237 */
238static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
239{
240 unsigned long *p = (unsigned long *) &lock->owner;
241 unsigned long owner, new;
242
243 owner = READ_ONCE(*p);
244 do {
245 new = owner | RT_MUTEX_HAS_WAITERS;
246 } while (!try_cmpxchg_relaxed(p, &owner, new));
247
248 /*
249 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
250 * operations in the event of contention. Ensure the successful
251 * cmpxchg is visible.
252 */
253 smp_mb__after_atomic();
254}
255
256/*
257 * Safe fastpath aware unlock:
258 * 1) Clear the waiters bit
259 * 2) Drop lock->wait_lock
260 * 3) Try to unlock the lock with cmpxchg
261 */
262static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
263 unsigned long flags)
264 __releases(lock->wait_lock)
265{
266 struct task_struct *owner = rt_mutex_owner(lock);
267
268 clear_rt_mutex_waiters(lock);
269 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
270 /*
271 * If a new waiter comes in between the unlock and the cmpxchg
272 * we have two situations:
273 *
274 * unlock(wait_lock);
275 * lock(wait_lock);
276 * cmpxchg(p, owner, 0) == owner
277 * mark_rt_mutex_waiters(lock);
278 * acquire(lock);
279 * or:
280 *
281 * unlock(wait_lock);
282 * lock(wait_lock);
283 * mark_rt_mutex_waiters(lock);
284 *
285 * cmpxchg(p, owner, 0) != owner
286 * enqueue_waiter();
287 * unlock(wait_lock);
288 * lock(wait_lock);
289 * wake waiter();
290 * unlock(wait_lock);
291 * lock(wait_lock);
292 * acquire(lock);
293 */
294 return rt_mutex_cmpxchg_release(lock, owner, NULL);
295}
296
297#else
298static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
299 struct task_struct *old,
300 struct task_struct *new)
301{
302 return false;
303
304}
305
306static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
307
308static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
309{
310 /*
311 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
312 *
313 * Avoid unconditionally taking the slow path by using
314 * rt_mutex_slow_trylock() which is covered by the debug code and can
315 * acquire a non-contended rtmutex.
316 */
317 return rt_mutex_slowtrylock(lock);
318}
319
320static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
321 struct task_struct *old,
322 struct task_struct *new)
323{
324 return false;
325}
326
327static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
328{
329 lock->owner = (struct task_struct *)
330 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
331}
332
333/*
334 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
335 */
336static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
337 unsigned long flags)
338 __releases(lock->wait_lock)
339{
340 lock->owner = NULL;
341 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
342 return true;
343}
344#endif
345
346static __always_inline int __waiter_prio(struct task_struct *task)
347{
348 int prio = task->prio;
349
350 if (!rt_prio(prio))
351 return DEFAULT_PRIO;
352
353 return prio;
354}
355
356/*
357 * Update the waiter->tree copy of the sort keys.
358 */
359static __always_inline void
360waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
361{
362 lockdep_assert_held(&waiter->lock->wait_lock);
363 lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
364
365 waiter->tree.prio = __waiter_prio(task);
366 waiter->tree.deadline = task->dl.deadline;
367}
368
369/*
370 * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
371 */
372static __always_inline void
373waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
374{
375 lockdep_assert_held(&waiter->lock->wait_lock);
376 lockdep_assert_held(&task->pi_lock);
377 lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
378
379 waiter->pi_tree.prio = waiter->tree.prio;
380 waiter->pi_tree.deadline = waiter->tree.deadline;
381}
382
383/*
384 * Only use with rt_waiter_node_{less,equal}()
385 */
386#define task_to_waiter_node(p) \
387 &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
388#define task_to_waiter(p) \
389 &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
390
391static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
392 struct rt_waiter_node *right)
393{
394 if (left->prio < right->prio)
395 return 1;
396
397 /*
398 * If both waiters have dl_prio(), we check the deadlines of the
399 * associated tasks.
400 * If left waiter has a dl_prio(), and we didn't return 1 above,
401 * then right waiter has a dl_prio() too.
402 */
403 if (dl_prio(left->prio))
404 return dl_time_before(left->deadline, right->deadline);
405
406 return 0;
407}
408
409static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
410 struct rt_waiter_node *right)
411{
412 if (left->prio != right->prio)
413 return 0;
414
415 /*
416 * If both waiters have dl_prio(), we check the deadlines of the
417 * associated tasks.
418 * If left waiter has a dl_prio(), and we didn't return 0 above,
419 * then right waiter has a dl_prio() too.
420 */
421 if (dl_prio(left->prio))
422 return left->deadline == right->deadline;
423
424 return 1;
425}
426
427static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
428 struct rt_mutex_waiter *top_waiter)
429{
430 if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
431 return true;
432
433#ifdef RT_MUTEX_BUILD_SPINLOCKS
434 /*
435 * Note that RT tasks are excluded from same priority (lateral)
436 * steals to prevent the introduction of an unbounded latency.
437 */
438 if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
439 return false;
440
441 return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
442#else
443 return false;
444#endif
445}
446
447#define __node_2_waiter(node) \
448 rb_entry((node), struct rt_mutex_waiter, tree.entry)
449
450static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
451{
452 struct rt_mutex_waiter *aw = __node_2_waiter(a);
453 struct rt_mutex_waiter *bw = __node_2_waiter(b);
454
455 if (rt_waiter_node_less(&aw->tree, &bw->tree))
456 return 1;
457
458 if (!build_ww_mutex())
459 return 0;
460
461 if (rt_waiter_node_less(&bw->tree, &aw->tree))
462 return 0;
463
464 /* NOTE: relies on waiter->ww_ctx being set before insertion */
465 if (aw->ww_ctx) {
466 if (!bw->ww_ctx)
467 return 1;
468
469 return (signed long)(aw->ww_ctx->stamp -
470 bw->ww_ctx->stamp) < 0;
471 }
472
473 return 0;
474}
475
476static __always_inline void
477rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
478{
479 lockdep_assert_held(&lock->wait_lock);
480
481 rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
482}
483
484static __always_inline void
485rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
486{
487 lockdep_assert_held(&lock->wait_lock);
488
489 if (RB_EMPTY_NODE(&waiter->tree.entry))
490 return;
491
492 rb_erase_cached(&waiter->tree.entry, &lock->waiters);
493 RB_CLEAR_NODE(&waiter->tree.entry);
494}
495
496#define __node_2_rt_node(node) \
497 rb_entry((node), struct rt_waiter_node, entry)
498
499static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
500{
501 return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
502}
503
504static __always_inline void
505rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
506{
507 lockdep_assert_held(&task->pi_lock);
508
509 rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
510}
511
512static __always_inline void
513rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
514{
515 lockdep_assert_held(&task->pi_lock);
516
517 if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
518 return;
519
520 rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
521 RB_CLEAR_NODE(&waiter->pi_tree.entry);
522}
523
524static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
525 struct task_struct *p)
526{
527 struct task_struct *pi_task = NULL;
528
529 lockdep_assert_held(&lock->wait_lock);
530 lockdep_assert(rt_mutex_owner(lock) == p);
531 lockdep_assert_held(&p->pi_lock);
532
533 if (task_has_pi_waiters(p))
534 pi_task = task_top_pi_waiter(p)->task;
535
536 rt_mutex_setprio(p, pi_task);
537}
538
539/* RT mutex specific wake_q wrappers */
540static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
541 struct task_struct *task,
542 unsigned int wake_state)
543{
544 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
545 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
546 WARN_ON_ONCE(wqh->rtlock_task);
547 get_task_struct(task);
548 wqh->rtlock_task = task;
549 } else {
550 wake_q_add(&wqh->head, task);
551 }
552}
553
554static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
555 struct rt_mutex_waiter *w)
556{
557 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
558}
559
560static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
561{
562 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
563 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
564 put_task_struct(wqh->rtlock_task);
565 wqh->rtlock_task = NULL;
566 }
567
568 if (!wake_q_empty(&wqh->head))
569 wake_up_q(&wqh->head);
570
571 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
572 preempt_enable();
573}
574
575/*
576 * Deadlock detection is conditional:
577 *
578 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
579 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
580 *
581 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
582 * conducted independent of the detect argument.
583 *
584 * If the waiter argument is NULL this indicates the deboost path and
585 * deadlock detection is disabled independent of the detect argument
586 * and the config settings.
587 */
588static __always_inline bool
589rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
590 enum rtmutex_chainwalk chwalk)
591{
592 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
593 return waiter != NULL;
594 return chwalk == RT_MUTEX_FULL_CHAINWALK;
595}
596
597static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
598{
599 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
600}
601
602/*
603 * Adjust the priority chain. Also used for deadlock detection.
604 * Decreases task's usage by one - may thus free the task.
605 *
606 * @task: the task owning the mutex (owner) for which a chain walk is
607 * probably needed
608 * @chwalk: do we have to carry out deadlock detection?
609 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
610 * things for a task that has just got its priority adjusted, and
611 * is waiting on a mutex)
612 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
613 * we dropped its pi_lock. Is never dereferenced, only used for
614 * comparison to detect lock chain changes.
615 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
616 * its priority to the mutex owner (can be NULL in the case
617 * depicted above or if the top waiter is gone away and we are
618 * actually deboosting the owner)
619 * @top_task: the current top waiter
620 *
621 * Returns 0 or -EDEADLK.
622 *
623 * Chain walk basics and protection scope
624 *
625 * [R] refcount on task
626 * [Pn] task->pi_lock held
627 * [L] rtmutex->wait_lock held
628 *
629 * Normal locking order:
630 *
631 * rtmutex->wait_lock
632 * task->pi_lock
633 *
634 * Step Description Protected by
635 * function arguments:
636 * @task [R]
637 * @orig_lock if != NULL @top_task is blocked on it
638 * @next_lock Unprotected. Cannot be
639 * dereferenced. Only used for
640 * comparison.
641 * @orig_waiter if != NULL @top_task is blocked on it
642 * @top_task current, or in case of proxy
643 * locking protected by calling
644 * code
645 * again:
646 * loop_sanity_check();
647 * retry:
648 * [1] lock(task->pi_lock); [R] acquire [P1]
649 * [2] waiter = task->pi_blocked_on; [P1]
650 * [3] check_exit_conditions_1(); [P1]
651 * [4] lock = waiter->lock; [P1]
652 * [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L]
653 * unlock(task->pi_lock); release [P1]
654 * goto retry;
655 * }
656 * [6] check_exit_conditions_2(); [P1] + [L]
657 * [7] requeue_lock_waiter(lock, waiter); [P1] + [L]
658 * [8] unlock(task->pi_lock); release [P1]
659 * put_task_struct(task); release [R]
660 * [9] check_exit_conditions_3(); [L]
661 * [10] task = owner(lock); [L]
662 * get_task_struct(task); [L] acquire [R]
663 * lock(task->pi_lock); [L] acquire [P2]
664 * [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
665 * [12] check_exit_conditions_4(); [P2] + [L]
666 * [13] unlock(task->pi_lock); release [P2]
667 * unlock(lock->wait_lock); release [L]
668 * goto again;
669 *
670 * Where P1 is the blocking task and P2 is the lock owner; going up one step
671 * the owner becomes the next blocked task etc..
672 *
673*
674 */
675static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
676 enum rtmutex_chainwalk chwalk,
677 struct rt_mutex_base *orig_lock,
678 struct rt_mutex_base *next_lock,
679 struct rt_mutex_waiter *orig_waiter,
680 struct task_struct *top_task)
681{
682 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
683 struct rt_mutex_waiter *prerequeue_top_waiter;
684 int ret = 0, depth = 0;
685 struct rt_mutex_base *lock;
686 bool detect_deadlock;
687 bool requeue = true;
688
689 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
690
691 /*
692 * The (de)boosting is a step by step approach with a lot of
693 * pitfalls. We want this to be preemptible and we want hold a
694 * maximum of two locks per step. So we have to check
695 * carefully whether things change under us.
696 */
697 again:
698 /*
699 * We limit the lock chain length for each invocation.
700 */
701 if (++depth > max_lock_depth) {
702 static int prev_max;
703
704 /*
705 * Print this only once. If the admin changes the limit,
706 * print a new message when reaching the limit again.
707 */
708 if (prev_max != max_lock_depth) {
709 prev_max = max_lock_depth;
710 printk(KERN_WARNING "Maximum lock depth %d reached "
711 "task: %s (%d)\n", max_lock_depth,
712 top_task->comm, task_pid_nr(top_task));
713 }
714 put_task_struct(task);
715
716 return -EDEADLK;
717 }
718
719 /*
720 * We are fully preemptible here and only hold the refcount on
721 * @task. So everything can have changed under us since the
722 * caller or our own code below (goto retry/again) dropped all
723 * locks.
724 */
725 retry:
726 /*
727 * [1] Task cannot go away as we did a get_task() before !
728 */
729 raw_spin_lock_irq(&task->pi_lock);
730
731 /*
732 * [2] Get the waiter on which @task is blocked on.
733 */
734 waiter = task->pi_blocked_on;
735
736 /*
737 * [3] check_exit_conditions_1() protected by task->pi_lock.
738 */
739
740 /*
741 * Check whether the end of the boosting chain has been
742 * reached or the state of the chain has changed while we
743 * dropped the locks.
744 */
745 if (!waiter)
746 goto out_unlock_pi;
747
748 /*
749 * Check the orig_waiter state. After we dropped the locks,
750 * the previous owner of the lock might have released the lock.
751 */
752 if (orig_waiter && !rt_mutex_owner(orig_lock))
753 goto out_unlock_pi;
754
755 /*
756 * We dropped all locks after taking a refcount on @task, so
757 * the task might have moved on in the lock chain or even left
758 * the chain completely and blocks now on an unrelated lock or
759 * on @orig_lock.
760 *
761 * We stored the lock on which @task was blocked in @next_lock,
762 * so we can detect the chain change.
763 */
764 if (next_lock != waiter->lock)
765 goto out_unlock_pi;
766
767 /*
768 * There could be 'spurious' loops in the lock graph due to ww_mutex,
769 * consider:
770 *
771 * P1: A, ww_A, ww_B
772 * P2: ww_B, ww_A
773 * P3: A
774 *
775 * P3 should not return -EDEADLK because it gets trapped in the cycle
776 * created by P1 and P2 (which will resolve -- and runs into
777 * max_lock_depth above). Therefore disable detect_deadlock such that
778 * the below termination condition can trigger once all relevant tasks
779 * are boosted.
780 *
781 * Even when we start with ww_mutex we can disable deadlock detection,
782 * since we would supress a ww_mutex induced deadlock at [6] anyway.
783 * Supressing it here however is not sufficient since we might still
784 * hit [6] due to adjustment driven iteration.
785 *
786 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
787 * utterly fail to report it; lockdep should.
788 */
789 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
790 detect_deadlock = false;
791
792 /*
793 * Drop out, when the task has no waiters. Note,
794 * top_waiter can be NULL, when we are in the deboosting
795 * mode!
796 */
797 if (top_waiter) {
798 if (!task_has_pi_waiters(task))
799 goto out_unlock_pi;
800 /*
801 * If deadlock detection is off, we stop here if we
802 * are not the top pi waiter of the task. If deadlock
803 * detection is enabled we continue, but stop the
804 * requeueing in the chain walk.
805 */
806 if (top_waiter != task_top_pi_waiter(task)) {
807 if (!detect_deadlock)
808 goto out_unlock_pi;
809 else
810 requeue = false;
811 }
812 }
813
814 /*
815 * If the waiter priority is the same as the task priority
816 * then there is no further priority adjustment necessary. If
817 * deadlock detection is off, we stop the chain walk. If its
818 * enabled we continue, but stop the requeueing in the chain
819 * walk.
820 */
821 if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
822 if (!detect_deadlock)
823 goto out_unlock_pi;
824 else
825 requeue = false;
826 }
827
828 /*
829 * [4] Get the next lock; per holding task->pi_lock we can't unblock
830 * and guarantee @lock's existence.
831 */
832 lock = waiter->lock;
833 /*
834 * [5] We need to trylock here as we are holding task->pi_lock,
835 * which is the reverse lock order versus the other rtmutex
836 * operations.
837 *
838 * Per the above, holding task->pi_lock guarantees lock exists, so
839 * inverting this lock order is infeasible from a life-time
840 * perspective.
841 */
842 if (!raw_spin_trylock(&lock->wait_lock)) {
843 raw_spin_unlock_irq(&task->pi_lock);
844 cpu_relax();
845 goto retry;
846 }
847
848 /*
849 * [6] check_exit_conditions_2() protected by task->pi_lock and
850 * lock->wait_lock.
851 *
852 * Deadlock detection. If the lock is the same as the original
853 * lock which caused us to walk the lock chain or if the
854 * current lock is owned by the task which initiated the chain
855 * walk, we detected a deadlock.
856 */
857 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
858 ret = -EDEADLK;
859
860 /*
861 * When the deadlock is due to ww_mutex; also see above. Don't
862 * report the deadlock and instead let the ww_mutex wound/die
863 * logic pick which of the contending threads gets -EDEADLK.
864 *
865 * NOTE: assumes the cycle only contains a single ww_class; any
866 * other configuration and we fail to report; also, see
867 * lockdep.
868 */
869 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
870 ret = 0;
871
872 raw_spin_unlock(&lock->wait_lock);
873 goto out_unlock_pi;
874 }
875
876 /*
877 * If we just follow the lock chain for deadlock detection, no
878 * need to do all the requeue operations. To avoid a truckload
879 * of conditionals around the various places below, just do the
880 * minimum chain walk checks.
881 */
882 if (!requeue) {
883 /*
884 * No requeue[7] here. Just release @task [8]
885 */
886 raw_spin_unlock(&task->pi_lock);
887 put_task_struct(task);
888
889 /*
890 * [9] check_exit_conditions_3 protected by lock->wait_lock.
891 * If there is no owner of the lock, end of chain.
892 */
893 if (!rt_mutex_owner(lock)) {
894 raw_spin_unlock_irq(&lock->wait_lock);
895 return 0;
896 }
897
898 /* [10] Grab the next task, i.e. owner of @lock */
899 task = get_task_struct(rt_mutex_owner(lock));
900 raw_spin_lock(&task->pi_lock);
901
902 /*
903 * No requeue [11] here. We just do deadlock detection.
904 *
905 * [12] Store whether owner is blocked
906 * itself. Decision is made after dropping the locks
907 */
908 next_lock = task_blocked_on_lock(task);
909 /*
910 * Get the top waiter for the next iteration
911 */
912 top_waiter = rt_mutex_top_waiter(lock);
913
914 /* [13] Drop locks */
915 raw_spin_unlock(&task->pi_lock);
916 raw_spin_unlock_irq(&lock->wait_lock);
917
918 /* If owner is not blocked, end of chain. */
919 if (!next_lock)
920 goto out_put_task;
921 goto again;
922 }
923
924 /*
925 * Store the current top waiter before doing the requeue
926 * operation on @lock. We need it for the boost/deboost
927 * decision below.
928 */
929 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
930
931 /* [7] Requeue the waiter in the lock waiter tree. */
932 rt_mutex_dequeue(lock, waiter);
933
934 /*
935 * Update the waiter prio fields now that we're dequeued.
936 *
937 * These values can have changed through either:
938 *
939 * sys_sched_set_scheduler() / sys_sched_setattr()
940 *
941 * or
942 *
943 * DL CBS enforcement advancing the effective deadline.
944 */
945 waiter_update_prio(waiter, task);
946
947 rt_mutex_enqueue(lock, waiter);
948
949 /*
950 * [8] Release the (blocking) task in preparation for
951 * taking the owner task in [10].
952 *
953 * Since we hold lock->waiter_lock, task cannot unblock, even if we
954 * release task->pi_lock.
955 */
956 raw_spin_unlock(&task->pi_lock);
957 put_task_struct(task);
958
959 /*
960 * [9] check_exit_conditions_3 protected by lock->wait_lock.
961 *
962 * We must abort the chain walk if there is no lock owner even
963 * in the dead lock detection case, as we have nothing to
964 * follow here. This is the end of the chain we are walking.
965 */
966 if (!rt_mutex_owner(lock)) {
967 /*
968 * If the requeue [7] above changed the top waiter,
969 * then we need to wake the new top waiter up to try
970 * to get the lock.
971 */
972 top_waiter = rt_mutex_top_waiter(lock);
973 if (prerequeue_top_waiter != top_waiter)
974 wake_up_state(top_waiter->task, top_waiter->wake_state);
975 raw_spin_unlock_irq(&lock->wait_lock);
976 return 0;
977 }
978
979 /*
980 * [10] Grab the next task, i.e. the owner of @lock
981 *
982 * Per holding lock->wait_lock and checking for !owner above, there
983 * must be an owner and it cannot go away.
984 */
985 task = get_task_struct(rt_mutex_owner(lock));
986 raw_spin_lock(&task->pi_lock);
987
988 /* [11] requeue the pi waiters if necessary */
989 if (waiter == rt_mutex_top_waiter(lock)) {
990 /*
991 * The waiter became the new top (highest priority)
992 * waiter on the lock. Replace the previous top waiter
993 * in the owner tasks pi waiters tree with this waiter
994 * and adjust the priority of the owner.
995 */
996 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
997 waiter_clone_prio(waiter, task);
998 rt_mutex_enqueue_pi(task, waiter);
999 rt_mutex_adjust_prio(lock, task);
1000
1001 } else if (prerequeue_top_waiter == waiter) {
1002 /*
1003 * The waiter was the top waiter on the lock, but is
1004 * no longer the top priority waiter. Replace waiter in
1005 * the owner tasks pi waiters tree with the new top
1006 * (highest priority) waiter and adjust the priority
1007 * of the owner.
1008 * The new top waiter is stored in @waiter so that
1009 * @waiter == @top_waiter evaluates to true below and
1010 * we continue to deboost the rest of the chain.
1011 */
1012 rt_mutex_dequeue_pi(task, waiter);
1013 waiter = rt_mutex_top_waiter(lock);
1014 waiter_clone_prio(waiter, task);
1015 rt_mutex_enqueue_pi(task, waiter);
1016 rt_mutex_adjust_prio(lock, task);
1017 } else {
1018 /*
1019 * Nothing changed. No need to do any priority
1020 * adjustment.
1021 */
1022 }
1023
1024 /*
1025 * [12] check_exit_conditions_4() protected by task->pi_lock
1026 * and lock->wait_lock. The actual decisions are made after we
1027 * dropped the locks.
1028 *
1029 * Check whether the task which owns the current lock is pi
1030 * blocked itself. If yes we store a pointer to the lock for
1031 * the lock chain change detection above. After we dropped
1032 * task->pi_lock next_lock cannot be dereferenced anymore.
1033 */
1034 next_lock = task_blocked_on_lock(task);
1035 /*
1036 * Store the top waiter of @lock for the end of chain walk
1037 * decision below.
1038 */
1039 top_waiter = rt_mutex_top_waiter(lock);
1040
1041 /* [13] Drop the locks */
1042 raw_spin_unlock(&task->pi_lock);
1043 raw_spin_unlock_irq(&lock->wait_lock);
1044
1045 /*
1046 * Make the actual exit decisions [12], based on the stored
1047 * values.
1048 *
1049 * We reached the end of the lock chain. Stop right here. No
1050 * point to go back just to figure that out.
1051 */
1052 if (!next_lock)
1053 goto out_put_task;
1054
1055 /*
1056 * If the current waiter is not the top waiter on the lock,
1057 * then we can stop the chain walk here if we are not in full
1058 * deadlock detection mode.
1059 */
1060 if (!detect_deadlock && waiter != top_waiter)
1061 goto out_put_task;
1062
1063 goto again;
1064
1065 out_unlock_pi:
1066 raw_spin_unlock_irq(&task->pi_lock);
1067 out_put_task:
1068 put_task_struct(task);
1069
1070 return ret;
1071}
1072
1073/*
1074 * Try to take an rt-mutex
1075 *
1076 * Must be called with lock->wait_lock held and interrupts disabled
1077 *
1078 * @lock: The lock to be acquired.
1079 * @task: The task which wants to acquire the lock
1080 * @waiter: The waiter that is queued to the lock's wait tree if the
1081 * callsite called task_blocked_on_lock(), otherwise NULL
1082 */
1083static int __sched
1084try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1085 struct rt_mutex_waiter *waiter)
1086{
1087 lockdep_assert_held(&lock->wait_lock);
1088
1089 /*
1090 * Before testing whether we can acquire @lock, we set the
1091 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1092 * other tasks which try to modify @lock into the slow path
1093 * and they serialize on @lock->wait_lock.
1094 *
1095 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1096 * as explained at the top of this file if and only if:
1097 *
1098 * - There is a lock owner. The caller must fixup the
1099 * transient state if it does a trylock or leaves the lock
1100 * function due to a signal or timeout.
1101 *
1102 * - @task acquires the lock and there are no other
1103 * waiters. This is undone in rt_mutex_set_owner(@task) at
1104 * the end of this function.
1105 */
1106 mark_rt_mutex_waiters(lock);
1107
1108 /*
1109 * If @lock has an owner, give up.
1110 */
1111 if (rt_mutex_owner(lock))
1112 return 0;
1113
1114 /*
1115 * If @waiter != NULL, @task has already enqueued the waiter
1116 * into @lock waiter tree. If @waiter == NULL then this is a
1117 * trylock attempt.
1118 */
1119 if (waiter) {
1120 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1121
1122 /*
1123 * If waiter is the highest priority waiter of @lock,
1124 * or allowed to steal it, take it over.
1125 */
1126 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1127 /*
1128 * We can acquire the lock. Remove the waiter from the
1129 * lock waiters tree.
1130 */
1131 rt_mutex_dequeue(lock, waiter);
1132 } else {
1133 return 0;
1134 }
1135 } else {
1136 /*
1137 * If the lock has waiters already we check whether @task is
1138 * eligible to take over the lock.
1139 *
1140 * If there are no other waiters, @task can acquire
1141 * the lock. @task->pi_blocked_on is NULL, so it does
1142 * not need to be dequeued.
1143 */
1144 if (rt_mutex_has_waiters(lock)) {
1145 /* Check whether the trylock can steal it. */
1146 if (!rt_mutex_steal(task_to_waiter(task),
1147 rt_mutex_top_waiter(lock)))
1148 return 0;
1149
1150 /*
1151 * The current top waiter stays enqueued. We
1152 * don't have to change anything in the lock
1153 * waiters order.
1154 */
1155 } else {
1156 /*
1157 * No waiters. Take the lock without the
1158 * pi_lock dance.@task->pi_blocked_on is NULL
1159 * and we have no waiters to enqueue in @task
1160 * pi waiters tree.
1161 */
1162 goto takeit;
1163 }
1164 }
1165
1166 /*
1167 * Clear @task->pi_blocked_on. Requires protection by
1168 * @task->pi_lock. Redundant operation for the @waiter == NULL
1169 * case, but conditionals are more expensive than a redundant
1170 * store.
1171 */
1172 raw_spin_lock(&task->pi_lock);
1173 task->pi_blocked_on = NULL;
1174 /*
1175 * Finish the lock acquisition. @task is the new owner. If
1176 * other waiters exist we have to insert the highest priority
1177 * waiter into @task->pi_waiters tree.
1178 */
1179 if (rt_mutex_has_waiters(lock))
1180 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1181 raw_spin_unlock(&task->pi_lock);
1182
1183takeit:
1184 /*
1185 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1186 * are still waiters or clears it.
1187 */
1188 rt_mutex_set_owner(lock, task);
1189
1190 return 1;
1191}
1192
1193/*
1194 * Task blocks on lock.
1195 *
1196 * Prepare waiter and propagate pi chain
1197 *
1198 * This must be called with lock->wait_lock held and interrupts disabled
1199 */
1200static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1201 struct rt_mutex_waiter *waiter,
1202 struct task_struct *task,
1203 struct ww_acquire_ctx *ww_ctx,
1204 enum rtmutex_chainwalk chwalk)
1205{
1206 struct task_struct *owner = rt_mutex_owner(lock);
1207 struct rt_mutex_waiter *top_waiter = waiter;
1208 struct rt_mutex_base *next_lock;
1209 int chain_walk = 0, res;
1210
1211 lockdep_assert_held(&lock->wait_lock);
1212
1213 /*
1214 * Early deadlock detection. We really don't want the task to
1215 * enqueue on itself just to untangle the mess later. It's not
1216 * only an optimization. We drop the locks, so another waiter
1217 * can come in before the chain walk detects the deadlock. So
1218 * the other will detect the deadlock and return -EDEADLOCK,
1219 * which is wrong, as the other waiter is not in a deadlock
1220 * situation.
1221 *
1222 * Except for ww_mutex, in that case the chain walk must already deal
1223 * with spurious cycles, see the comments at [3] and [6].
1224 */
1225 if (owner == task && !(build_ww_mutex() && ww_ctx))
1226 return -EDEADLK;
1227
1228 raw_spin_lock(&task->pi_lock);
1229 waiter->task = task;
1230 waiter->lock = lock;
1231 waiter_update_prio(waiter, task);
1232 waiter_clone_prio(waiter, task);
1233
1234 /* Get the top priority waiter on the lock */
1235 if (rt_mutex_has_waiters(lock))
1236 top_waiter = rt_mutex_top_waiter(lock);
1237 rt_mutex_enqueue(lock, waiter);
1238
1239 task->pi_blocked_on = waiter;
1240
1241 raw_spin_unlock(&task->pi_lock);
1242
1243 if (build_ww_mutex() && ww_ctx) {
1244 struct rt_mutex *rtm;
1245
1246 /* Check whether the waiter should back out immediately */
1247 rtm = container_of(lock, struct rt_mutex, rtmutex);
1248 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1249 if (res) {
1250 raw_spin_lock(&task->pi_lock);
1251 rt_mutex_dequeue(lock, waiter);
1252 task->pi_blocked_on = NULL;
1253 raw_spin_unlock(&task->pi_lock);
1254 return res;
1255 }
1256 }
1257
1258 if (!owner)
1259 return 0;
1260
1261 raw_spin_lock(&owner->pi_lock);
1262 if (waiter == rt_mutex_top_waiter(lock)) {
1263 rt_mutex_dequeue_pi(owner, top_waiter);
1264 rt_mutex_enqueue_pi(owner, waiter);
1265
1266 rt_mutex_adjust_prio(lock, owner);
1267 if (owner->pi_blocked_on)
1268 chain_walk = 1;
1269 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1270 chain_walk = 1;
1271 }
1272
1273 /* Store the lock on which owner is blocked or NULL */
1274 next_lock = task_blocked_on_lock(owner);
1275
1276 raw_spin_unlock(&owner->pi_lock);
1277 /*
1278 * Even if full deadlock detection is on, if the owner is not
1279 * blocked itself, we can avoid finding this out in the chain
1280 * walk.
1281 */
1282 if (!chain_walk || !next_lock)
1283 return 0;
1284
1285 /*
1286 * The owner can't disappear while holding a lock,
1287 * so the owner struct is protected by wait_lock.
1288 * Gets dropped in rt_mutex_adjust_prio_chain()!
1289 */
1290 get_task_struct(owner);
1291
1292 raw_spin_unlock_irq(&lock->wait_lock);
1293
1294 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1295 next_lock, waiter, task);
1296
1297 raw_spin_lock_irq(&lock->wait_lock);
1298
1299 return res;
1300}
1301
1302/*
1303 * Remove the top waiter from the current tasks pi waiter tree and
1304 * queue it up.
1305 *
1306 * Called with lock->wait_lock held and interrupts disabled.
1307 */
1308static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1309 struct rt_mutex_base *lock)
1310{
1311 struct rt_mutex_waiter *waiter;
1312
1313 lockdep_assert_held(&lock->wait_lock);
1314
1315 raw_spin_lock(¤t->pi_lock);
1316
1317 waiter = rt_mutex_top_waiter(lock);
1318
1319 /*
1320 * Remove it from current->pi_waiters and deboost.
1321 *
1322 * We must in fact deboost here in order to ensure we call
1323 * rt_mutex_setprio() to update p->pi_top_task before the
1324 * task unblocks.
1325 */
1326 rt_mutex_dequeue_pi(current, waiter);
1327 rt_mutex_adjust_prio(lock, current);
1328
1329 /*
1330 * As we are waking up the top waiter, and the waiter stays
1331 * queued on the lock until it gets the lock, this lock
1332 * obviously has waiters. Just set the bit here and this has
1333 * the added benefit of forcing all new tasks into the
1334 * slow path making sure no task of lower priority than
1335 * the top waiter can steal this lock.
1336 */
1337 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1338
1339 /*
1340 * We deboosted before waking the top waiter task such that we don't
1341 * run two tasks with the 'same' priority (and ensure the
1342 * p->pi_top_task pointer points to a blocked task). This however can
1343 * lead to priority inversion if we would get preempted after the
1344 * deboost but before waking our donor task, hence the preempt_disable()
1345 * before unlock.
1346 *
1347 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1348 */
1349 preempt_disable();
1350 rt_mutex_wake_q_add(wqh, waiter);
1351 raw_spin_unlock(¤t->pi_lock);
1352}
1353
1354static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1355{
1356 int ret = try_to_take_rt_mutex(lock, current, NULL);
1357
1358 /*
1359 * try_to_take_rt_mutex() sets the lock waiters bit
1360 * unconditionally. Clean this up.
1361 */
1362 fixup_rt_mutex_waiters(lock, true);
1363
1364 return ret;
1365}
1366
1367/*
1368 * Slow path try-lock function:
1369 */
1370static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1371{
1372 unsigned long flags;
1373 int ret;
1374
1375 /*
1376 * If the lock already has an owner we fail to get the lock.
1377 * This can be done without taking the @lock->wait_lock as
1378 * it is only being read, and this is a trylock anyway.
1379 */
1380 if (rt_mutex_owner(lock))
1381 return 0;
1382
1383 /*
1384 * The mutex has currently no owner. Lock the wait lock and try to
1385 * acquire the lock. We use irqsave here to support early boot calls.
1386 */
1387 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1388
1389 ret = __rt_mutex_slowtrylock(lock);
1390
1391 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1392
1393 return ret;
1394}
1395
1396static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1397{
1398 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1399 return 1;
1400
1401 return rt_mutex_slowtrylock(lock);
1402}
1403
1404/*
1405 * Slow path to release a rt-mutex.
1406 */
1407static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1408{
1409 DEFINE_RT_WAKE_Q(wqh);
1410 unsigned long flags;
1411
1412 /* irqsave required to support early boot calls */
1413 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1414
1415 debug_rt_mutex_unlock(lock);
1416
1417 /*
1418 * We must be careful here if the fast path is enabled. If we
1419 * have no waiters queued we cannot set owner to NULL here
1420 * because of:
1421 *
1422 * foo->lock->owner = NULL;
1423 * rtmutex_lock(foo->lock); <- fast path
1424 * free = atomic_dec_and_test(foo->refcnt);
1425 * rtmutex_unlock(foo->lock); <- fast path
1426 * if (free)
1427 * kfree(foo);
1428 * raw_spin_unlock(foo->lock->wait_lock);
1429 *
1430 * So for the fastpath enabled kernel:
1431 *
1432 * Nothing can set the waiters bit as long as we hold
1433 * lock->wait_lock. So we do the following sequence:
1434 *
1435 * owner = rt_mutex_owner(lock);
1436 * clear_rt_mutex_waiters(lock);
1437 * raw_spin_unlock(&lock->wait_lock);
1438 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1439 * return;
1440 * goto retry;
1441 *
1442 * The fastpath disabled variant is simple as all access to
1443 * lock->owner is serialized by lock->wait_lock:
1444 *
1445 * lock->owner = NULL;
1446 * raw_spin_unlock(&lock->wait_lock);
1447 */
1448 while (!rt_mutex_has_waiters(lock)) {
1449 /* Drops lock->wait_lock ! */
1450 if (unlock_rt_mutex_safe(lock, flags) == true)
1451 return;
1452 /* Relock the rtmutex and try again */
1453 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1454 }
1455
1456 /*
1457 * The wakeup next waiter path does not suffer from the above
1458 * race. See the comments there.
1459 *
1460 * Queue the next waiter for wakeup once we release the wait_lock.
1461 */
1462 mark_wakeup_next_waiter(&wqh, lock);
1463 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1464
1465 rt_mutex_wake_up_q(&wqh);
1466}
1467
1468static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1469{
1470 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1471 return;
1472
1473 rt_mutex_slowunlock(lock);
1474}
1475
1476#ifdef CONFIG_SMP
1477static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1478 struct rt_mutex_waiter *waiter,
1479 struct task_struct *owner)
1480{
1481 bool res = true;
1482
1483 rcu_read_lock();
1484 for (;;) {
1485 /* If owner changed, trylock again. */
1486 if (owner != rt_mutex_owner(lock))
1487 break;
1488 /*
1489 * Ensure that @owner is dereferenced after checking that
1490 * the lock owner still matches @owner. If that fails,
1491 * @owner might point to freed memory. If it still matches,
1492 * the rcu_read_lock() ensures the memory stays valid.
1493 */
1494 barrier();
1495 /*
1496 * Stop spinning when:
1497 * - the lock owner has been scheduled out
1498 * - current is not longer the top waiter
1499 * - current is requested to reschedule (redundant
1500 * for CONFIG_PREEMPT_RCU=y)
1501 * - the VCPU on which owner runs is preempted
1502 */
1503 if (!owner_on_cpu(owner) || need_resched() ||
1504 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1505 res = false;
1506 break;
1507 }
1508 cpu_relax();
1509 }
1510 rcu_read_unlock();
1511 return res;
1512}
1513#else
1514static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1515 struct rt_mutex_waiter *waiter,
1516 struct task_struct *owner)
1517{
1518 return false;
1519}
1520#endif
1521
1522#ifdef RT_MUTEX_BUILD_MUTEX
1523/*
1524 * Functions required for:
1525 * - rtmutex, futex on all kernels
1526 * - mutex and rwsem substitutions on RT kernels
1527 */
1528
1529/*
1530 * Remove a waiter from a lock and give up
1531 *
1532 * Must be called with lock->wait_lock held and interrupts disabled. It must
1533 * have just failed to try_to_take_rt_mutex().
1534 */
1535static void __sched remove_waiter(struct rt_mutex_base *lock,
1536 struct rt_mutex_waiter *waiter)
1537{
1538 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1539 struct task_struct *owner = rt_mutex_owner(lock);
1540 struct rt_mutex_base *next_lock;
1541
1542 lockdep_assert_held(&lock->wait_lock);
1543
1544 raw_spin_lock(¤t->pi_lock);
1545 rt_mutex_dequeue(lock, waiter);
1546 current->pi_blocked_on = NULL;
1547 raw_spin_unlock(¤t->pi_lock);
1548
1549 /*
1550 * Only update priority if the waiter was the highest priority
1551 * waiter of the lock and there is an owner to update.
1552 */
1553 if (!owner || !is_top_waiter)
1554 return;
1555
1556 raw_spin_lock(&owner->pi_lock);
1557
1558 rt_mutex_dequeue_pi(owner, waiter);
1559
1560 if (rt_mutex_has_waiters(lock))
1561 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1562
1563 rt_mutex_adjust_prio(lock, owner);
1564
1565 /* Store the lock on which owner is blocked or NULL */
1566 next_lock = task_blocked_on_lock(owner);
1567
1568 raw_spin_unlock(&owner->pi_lock);
1569
1570 /*
1571 * Don't walk the chain, if the owner task is not blocked
1572 * itself.
1573 */
1574 if (!next_lock)
1575 return;
1576
1577 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1578 get_task_struct(owner);
1579
1580 raw_spin_unlock_irq(&lock->wait_lock);
1581
1582 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1583 next_lock, NULL, current);
1584
1585 raw_spin_lock_irq(&lock->wait_lock);
1586}
1587
1588/**
1589 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1590 * @lock: the rt_mutex to take
1591 * @ww_ctx: WW mutex context pointer
1592 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1593 * or TASK_UNINTERRUPTIBLE)
1594 * @timeout: the pre-initialized and started timer, or NULL for none
1595 * @waiter: the pre-initialized rt_mutex_waiter
1596 *
1597 * Must be called with lock->wait_lock held and interrupts disabled
1598 */
1599static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1600 struct ww_acquire_ctx *ww_ctx,
1601 unsigned int state,
1602 struct hrtimer_sleeper *timeout,
1603 struct rt_mutex_waiter *waiter)
1604{
1605 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1606 struct task_struct *owner;
1607 int ret = 0;
1608
1609 for (;;) {
1610 /* Try to acquire the lock: */
1611 if (try_to_take_rt_mutex(lock, current, waiter))
1612 break;
1613
1614 if (timeout && !timeout->task) {
1615 ret = -ETIMEDOUT;
1616 break;
1617 }
1618 if (signal_pending_state(state, current)) {
1619 ret = -EINTR;
1620 break;
1621 }
1622
1623 if (build_ww_mutex() && ww_ctx) {
1624 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1625 if (ret)
1626 break;
1627 }
1628
1629 if (waiter == rt_mutex_top_waiter(lock))
1630 owner = rt_mutex_owner(lock);
1631 else
1632 owner = NULL;
1633 raw_spin_unlock_irq(&lock->wait_lock);
1634
1635 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1636 rt_mutex_schedule();
1637
1638 raw_spin_lock_irq(&lock->wait_lock);
1639 set_current_state(state);
1640 }
1641
1642 __set_current_state(TASK_RUNNING);
1643 return ret;
1644}
1645
1646static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1647 struct rt_mutex_waiter *w)
1648{
1649 /*
1650 * If the result is not -EDEADLOCK or the caller requested
1651 * deadlock detection, nothing to do here.
1652 */
1653 if (res != -EDEADLOCK || detect_deadlock)
1654 return;
1655
1656 if (build_ww_mutex() && w->ww_ctx)
1657 return;
1658
1659 /*
1660 * Yell loudly and stop the task right here.
1661 */
1662 WARN(1, "rtmutex deadlock detected\n");
1663 while (1) {
1664 set_current_state(TASK_INTERRUPTIBLE);
1665 rt_mutex_schedule();
1666 }
1667}
1668
1669/**
1670 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1671 * @lock: The rtmutex to block lock
1672 * @ww_ctx: WW mutex context pointer
1673 * @state: The task state for sleeping
1674 * @chwalk: Indicator whether full or partial chainwalk is requested
1675 * @waiter: Initializer waiter for blocking
1676 */
1677static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1678 struct ww_acquire_ctx *ww_ctx,
1679 unsigned int state,
1680 enum rtmutex_chainwalk chwalk,
1681 struct rt_mutex_waiter *waiter)
1682{
1683 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1684 struct ww_mutex *ww = ww_container_of(rtm);
1685 int ret;
1686
1687 lockdep_assert_held(&lock->wait_lock);
1688
1689 /* Try to acquire the lock again: */
1690 if (try_to_take_rt_mutex(lock, current, NULL)) {
1691 if (build_ww_mutex() && ww_ctx) {
1692 __ww_mutex_check_waiters(rtm, ww_ctx);
1693 ww_mutex_lock_acquired(ww, ww_ctx);
1694 }
1695 return 0;
1696 }
1697
1698 set_current_state(state);
1699
1700 trace_contention_begin(lock, LCB_F_RT);
1701
1702 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1703 if (likely(!ret))
1704 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1705
1706 if (likely(!ret)) {
1707 /* acquired the lock */
1708 if (build_ww_mutex() && ww_ctx) {
1709 if (!ww_ctx->is_wait_die)
1710 __ww_mutex_check_waiters(rtm, ww_ctx);
1711 ww_mutex_lock_acquired(ww, ww_ctx);
1712 }
1713 } else {
1714 __set_current_state(TASK_RUNNING);
1715 remove_waiter(lock, waiter);
1716 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1717 }
1718
1719 /*
1720 * try_to_take_rt_mutex() sets the waiter bit
1721 * unconditionally. We might have to fix that up.
1722 */
1723 fixup_rt_mutex_waiters(lock, true);
1724
1725 trace_contention_end(lock, ret);
1726
1727 return ret;
1728}
1729
1730static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1731 struct ww_acquire_ctx *ww_ctx,
1732 unsigned int state)
1733{
1734 struct rt_mutex_waiter waiter;
1735 int ret;
1736
1737 rt_mutex_init_waiter(&waiter);
1738 waiter.ww_ctx = ww_ctx;
1739
1740 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1741 &waiter);
1742
1743 debug_rt_mutex_free_waiter(&waiter);
1744 return ret;
1745}
1746
1747/*
1748 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1749 * @lock: The rtmutex to block lock
1750 * @ww_ctx: WW mutex context pointer
1751 * @state: The task state for sleeping
1752 */
1753static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1754 struct ww_acquire_ctx *ww_ctx,
1755 unsigned int state)
1756{
1757 unsigned long flags;
1758 int ret;
1759
1760 /*
1761 * Do all pre-schedule work here, before we queue a waiter and invoke
1762 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1763 * otherwise recurse back into task_blocks_on_rt_mutex() through
1764 * rtlock_slowlock() and will then enqueue a second waiter for this
1765 * same task and things get really confusing real fast.
1766 */
1767 rt_mutex_pre_schedule();
1768
1769 /*
1770 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1771 * be called in early boot if the cmpxchg() fast path is disabled
1772 * (debug, no architecture support). In this case we will acquire the
1773 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1774 * enable interrupts in that early boot case. So we need to use the
1775 * irqsave/restore variants.
1776 */
1777 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1778 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1779 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1780 rt_mutex_post_schedule();
1781
1782 return ret;
1783}
1784
1785static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1786 unsigned int state)
1787{
1788 lockdep_assert(!current->pi_blocked_on);
1789
1790 if (likely(rt_mutex_try_acquire(lock)))
1791 return 0;
1792
1793 return rt_mutex_slowlock(lock, NULL, state);
1794}
1795#endif /* RT_MUTEX_BUILD_MUTEX */
1796
1797#ifdef RT_MUTEX_BUILD_SPINLOCKS
1798/*
1799 * Functions required for spin/rw_lock substitution on RT kernels
1800 */
1801
1802/**
1803 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1804 * @lock: The underlying RT mutex
1805 */
1806static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1807{
1808 struct rt_mutex_waiter waiter;
1809 struct task_struct *owner;
1810
1811 lockdep_assert_held(&lock->wait_lock);
1812
1813 if (try_to_take_rt_mutex(lock, current, NULL))
1814 return;
1815
1816 rt_mutex_init_rtlock_waiter(&waiter);
1817
1818 /* Save current state and set state to TASK_RTLOCK_WAIT */
1819 current_save_and_set_rtlock_wait_state();
1820
1821 trace_contention_begin(lock, LCB_F_RT);
1822
1823 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1824
1825 for (;;) {
1826 /* Try to acquire the lock again */
1827 if (try_to_take_rt_mutex(lock, current, &waiter))
1828 break;
1829
1830 if (&waiter == rt_mutex_top_waiter(lock))
1831 owner = rt_mutex_owner(lock);
1832 else
1833 owner = NULL;
1834 raw_spin_unlock_irq(&lock->wait_lock);
1835
1836 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1837 schedule_rtlock();
1838
1839 raw_spin_lock_irq(&lock->wait_lock);
1840 set_current_state(TASK_RTLOCK_WAIT);
1841 }
1842
1843 /* Restore the task state */
1844 current_restore_rtlock_saved_state();
1845
1846 /*
1847 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1848 * We might have to fix that up:
1849 */
1850 fixup_rt_mutex_waiters(lock, true);
1851 debug_rt_mutex_free_waiter(&waiter);
1852
1853 trace_contention_end(lock, 0);
1854}
1855
1856static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1857{
1858 unsigned long flags;
1859
1860 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1861 rtlock_slowlock_locked(lock);
1862 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1863}
1864
1865#endif /* RT_MUTEX_BUILD_SPINLOCKS */