Loading...
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
22/*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49static void
50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51{
52 unsigned long val = (unsigned long)owner;
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 unsigned long owner, *p = (unsigned long *) &lock->owner;
69
70 if (rt_mutex_has_waiters(lock))
71 return;
72
73 /*
74 * The rbtree has no waiters enqueued, now make sure that the
75 * lock->owner still has the waiters bit set, otherwise the
76 * following can happen:
77 *
78 * CPU 0 CPU 1 CPU2
79 * l->owner=T1
80 * rt_mutex_lock(l)
81 * lock(l->lock)
82 * l->owner = T1 | HAS_WAITERS;
83 * enqueue(T2)
84 * boost()
85 * unlock(l->lock)
86 * block()
87 *
88 * rt_mutex_lock(l)
89 * lock(l->lock)
90 * l->owner = T1 | HAS_WAITERS;
91 * enqueue(T3)
92 * boost()
93 * unlock(l->lock)
94 * block()
95 * signal(->T2) signal(->T3)
96 * lock(l->lock)
97 * dequeue(T2)
98 * deboost()
99 * unlock(l->lock)
100 * lock(l->lock)
101 * dequeue(T3)
102 * ==> wait list is empty
103 * deboost()
104 * unlock(l->lock)
105 * lock(l->lock)
106 * fixup_rt_mutex_waiters()
107 * if (wait_list_empty(l) {
108 * l->owner = owner
109 * owner = l->owner & ~HAS_WAITERS;
110 * ==> l->owner = T1
111 * }
112 * lock(l->lock)
113 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
114 * if (wait_list_empty(l) {
115 * owner = l->owner & ~HAS_WAITERS;
116 * cmpxchg(l->owner, T1, NULL)
117 * ===> Success (l->owner = NULL)
118 *
119 * l->owner = owner
120 * ==> l->owner = T1
121 * }
122 *
123 * With the check for the waiter bit in place T3 on CPU2 will not
124 * overwrite. All tasks fiddling with the waiters bit are
125 * serialized by l->lock, so nothing else can modify the waiters
126 * bit. If the bit is set then nothing can change l->owner either
127 * so the simple RMW is safe. The cmpxchg() will simply fail if it
128 * happens in the middle of the RMW because the waiters bit is
129 * still set.
130 */
131 owner = READ_ONCE(*p);
132 if (owner & RT_MUTEX_HAS_WAITERS)
133 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134}
135
136/*
137 * We can speed up the acquire/release, if there's no debugging state to be
138 * set up.
139 */
140#ifndef CONFIG_DEBUG_RT_MUTEXES
141# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144
145/*
146 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148 * relaxed semantics suffice.
149 */
150static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151{
152 unsigned long owner, *p = (unsigned long *) &lock->owner;
153
154 do {
155 owner = *p;
156 } while (cmpxchg_relaxed(p, owner,
157 owner | RT_MUTEX_HAS_WAITERS) != owner);
158}
159
160/*
161 * Safe fastpath aware unlock:
162 * 1) Clear the waiters bit
163 * 2) Drop lock->wait_lock
164 * 3) Try to unlock the lock with cmpxchg
165 */
166static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167 unsigned long flags)
168 __releases(lock->wait_lock)
169{
170 struct task_struct *owner = rt_mutex_owner(lock);
171
172 clear_rt_mutex_waiters(lock);
173 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174 /*
175 * If a new waiter comes in between the unlock and the cmpxchg
176 * we have two situations:
177 *
178 * unlock(wait_lock);
179 * lock(wait_lock);
180 * cmpxchg(p, owner, 0) == owner
181 * mark_rt_mutex_waiters(lock);
182 * acquire(lock);
183 * or:
184 *
185 * unlock(wait_lock);
186 * lock(wait_lock);
187 * mark_rt_mutex_waiters(lock);
188 *
189 * cmpxchg(p, owner, 0) != owner
190 * enqueue_waiter();
191 * unlock(wait_lock);
192 * lock(wait_lock);
193 * wake waiter();
194 * unlock(wait_lock);
195 * lock(wait_lock);
196 * acquire(lock);
197 */
198 return rt_mutex_cmpxchg_release(lock, owner, NULL);
199}
200
201#else
202# define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
203# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
204# define rt_mutex_cmpxchg_release(l,c,n) (0)
205
206static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207{
208 lock->owner = (struct task_struct *)
209 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210}
211
212/*
213 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214 */
215static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216 unsigned long flags)
217 __releases(lock->wait_lock)
218{
219 lock->owner = NULL;
220 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221 return true;
222}
223#endif
224
225static inline int
226rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227 struct rt_mutex_waiter *right)
228{
229 if (left->prio < right->prio)
230 return 1;
231
232 /*
233 * If both waiters have dl_prio(), we check the deadlines of the
234 * associated tasks.
235 * If left waiter has a dl_prio(), and we didn't return 1 above,
236 * then right waiter has a dl_prio() too.
237 */
238 if (dl_prio(left->prio))
239 return dl_time_before(left->task->dl.deadline,
240 right->task->dl.deadline);
241
242 return 0;
243}
244
245static void
246rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
247{
248 struct rb_node **link = &lock->waiters.rb_node;
249 struct rb_node *parent = NULL;
250 struct rt_mutex_waiter *entry;
251 int leftmost = 1;
252
253 while (*link) {
254 parent = *link;
255 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
256 if (rt_mutex_waiter_less(waiter, entry)) {
257 link = &parent->rb_left;
258 } else {
259 link = &parent->rb_right;
260 leftmost = 0;
261 }
262 }
263
264 if (leftmost)
265 lock->waiters_leftmost = &waiter->tree_entry;
266
267 rb_link_node(&waiter->tree_entry, parent, link);
268 rb_insert_color(&waiter->tree_entry, &lock->waiters);
269}
270
271static void
272rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273{
274 if (RB_EMPTY_NODE(&waiter->tree_entry))
275 return;
276
277 if (lock->waiters_leftmost == &waiter->tree_entry)
278 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
279
280 rb_erase(&waiter->tree_entry, &lock->waiters);
281 RB_CLEAR_NODE(&waiter->tree_entry);
282}
283
284static void
285rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
286{
287 struct rb_node **link = &task->pi_waiters.rb_node;
288 struct rb_node *parent = NULL;
289 struct rt_mutex_waiter *entry;
290 int leftmost = 1;
291
292 while (*link) {
293 parent = *link;
294 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
295 if (rt_mutex_waiter_less(waiter, entry)) {
296 link = &parent->rb_left;
297 } else {
298 link = &parent->rb_right;
299 leftmost = 0;
300 }
301 }
302
303 if (leftmost)
304 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
305
306 rb_link_node(&waiter->pi_tree_entry, parent, link);
307 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
308}
309
310static void
311rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312{
313 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
314 return;
315
316 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
317 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
318
319 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
320 RB_CLEAR_NODE(&waiter->pi_tree_entry);
321}
322
323/*
324 * Calculate task priority from the waiter tree priority
325 *
326 * Return task->normal_prio when the waiter tree is empty or when
327 * the waiter is not allowed to do priority boosting
328 */
329int rt_mutex_getprio(struct task_struct *task)
330{
331 if (likely(!task_has_pi_waiters(task)))
332 return task->normal_prio;
333
334 return min(task_top_pi_waiter(task)->prio,
335 task->normal_prio);
336}
337
338struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
339{
340 if (likely(!task_has_pi_waiters(task)))
341 return NULL;
342
343 return task_top_pi_waiter(task)->task;
344}
345
346/*
347 * Called by sched_setscheduler() to get the priority which will be
348 * effective after the change.
349 */
350int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351{
352 if (!task_has_pi_waiters(task))
353 return newprio;
354
355 if (task_top_pi_waiter(task)->task->prio <= newprio)
356 return task_top_pi_waiter(task)->task->prio;
357 return newprio;
358}
359
360/*
361 * Adjust the priority of a task, after its pi_waiters got modified.
362 *
363 * This can be both boosting and unboosting. task->pi_lock must be held.
364 */
365static void __rt_mutex_adjust_prio(struct task_struct *task)
366{
367 int prio = rt_mutex_getprio(task);
368
369 if (task->prio != prio || dl_prio(prio))
370 rt_mutex_setprio(task, prio);
371}
372
373/*
374 * Adjust task priority (undo boosting). Called from the exit path of
375 * rt_mutex_slowunlock() and rt_mutex_slowlock().
376 *
377 * (Note: We do this outside of the protection of lock->wait_lock to
378 * allow the lock to be taken while or before we readjust the priority
379 * of task. We do not use the spin_xx_mutex() variants here as we are
380 * outside of the debug path.)
381 */
382void rt_mutex_adjust_prio(struct task_struct *task)
383{
384 unsigned long flags;
385
386 raw_spin_lock_irqsave(&task->pi_lock, flags);
387 __rt_mutex_adjust_prio(task);
388 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
389}
390
391/*
392 * Deadlock detection is conditional:
393 *
394 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
395 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
396 *
397 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
398 * conducted independent of the detect argument.
399 *
400 * If the waiter argument is NULL this indicates the deboost path and
401 * deadlock detection is disabled independent of the detect argument
402 * and the config settings.
403 */
404static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
405 enum rtmutex_chainwalk chwalk)
406{
407 /*
408 * This is just a wrapper function for the following call,
409 * because debug_rt_mutex_detect_deadlock() smells like a magic
410 * debug feature and I wanted to keep the cond function in the
411 * main source file along with the comments instead of having
412 * two of the same in the headers.
413 */
414 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
415}
416
417/*
418 * Max number of times we'll walk the boosting chain:
419 */
420int max_lock_depth = 1024;
421
422static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
423{
424 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
425}
426
427/*
428 * Adjust the priority chain. Also used for deadlock detection.
429 * Decreases task's usage by one - may thus free the task.
430 *
431 * @task: the task owning the mutex (owner) for which a chain walk is
432 * probably needed
433 * @chwalk: do we have to carry out deadlock detection?
434 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
435 * things for a task that has just got its priority adjusted, and
436 * is waiting on a mutex)
437 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
438 * we dropped its pi_lock. Is never dereferenced, only used for
439 * comparison to detect lock chain changes.
440 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441 * its priority to the mutex owner (can be NULL in the case
442 * depicted above or if the top waiter is gone away and we are
443 * actually deboosting the owner)
444 * @top_task: the current top waiter
445 *
446 * Returns 0 or -EDEADLK.
447 *
448 * Chain walk basics and protection scope
449 *
450 * [R] refcount on task
451 * [P] task->pi_lock held
452 * [L] rtmutex->wait_lock held
453 *
454 * Step Description Protected by
455 * function arguments:
456 * @task [R]
457 * @orig_lock if != NULL @top_task is blocked on it
458 * @next_lock Unprotected. Cannot be
459 * dereferenced. Only used for
460 * comparison.
461 * @orig_waiter if != NULL @top_task is blocked on it
462 * @top_task current, or in case of proxy
463 * locking protected by calling
464 * code
465 * again:
466 * loop_sanity_check();
467 * retry:
468 * [1] lock(task->pi_lock); [R] acquire [P]
469 * [2] waiter = task->pi_blocked_on; [P]
470 * [3] check_exit_conditions_1(); [P]
471 * [4] lock = waiter->lock; [P]
472 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
473 * unlock(task->pi_lock); release [P]
474 * goto retry;
475 * }
476 * [6] check_exit_conditions_2(); [P] + [L]
477 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
478 * [8] unlock(task->pi_lock); release [P]
479 * put_task_struct(task); release [R]
480 * [9] check_exit_conditions_3(); [L]
481 * [10] task = owner(lock); [L]
482 * get_task_struct(task); [L] acquire [R]
483 * lock(task->pi_lock); [L] acquire [P]
484 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
485 * [12] check_exit_conditions_4(); [P] + [L]
486 * [13] unlock(task->pi_lock); release [P]
487 * unlock(lock->wait_lock); release [L]
488 * goto again;
489 */
490static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491 enum rtmutex_chainwalk chwalk,
492 struct rt_mutex *orig_lock,
493 struct rt_mutex *next_lock,
494 struct rt_mutex_waiter *orig_waiter,
495 struct task_struct *top_task)
496{
497 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498 struct rt_mutex_waiter *prerequeue_top_waiter;
499 int ret = 0, depth = 0;
500 struct rt_mutex *lock;
501 bool detect_deadlock;
502 bool requeue = true;
503
504 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
505
506 /*
507 * The (de)boosting is a step by step approach with a lot of
508 * pitfalls. We want this to be preemptible and we want hold a
509 * maximum of two locks per step. So we have to check
510 * carefully whether things change under us.
511 */
512 again:
513 /*
514 * We limit the lock chain length for each invocation.
515 */
516 if (++depth > max_lock_depth) {
517 static int prev_max;
518
519 /*
520 * Print this only once. If the admin changes the limit,
521 * print a new message when reaching the limit again.
522 */
523 if (prev_max != max_lock_depth) {
524 prev_max = max_lock_depth;
525 printk(KERN_WARNING "Maximum lock depth %d reached "
526 "task: %s (%d)\n", max_lock_depth,
527 top_task->comm, task_pid_nr(top_task));
528 }
529 put_task_struct(task);
530
531 return -EDEADLK;
532 }
533
534 /*
535 * We are fully preemptible here and only hold the refcount on
536 * @task. So everything can have changed under us since the
537 * caller or our own code below (goto retry/again) dropped all
538 * locks.
539 */
540 retry:
541 /*
542 * [1] Task cannot go away as we did a get_task() before !
543 */
544 raw_spin_lock_irq(&task->pi_lock);
545
546 /*
547 * [2] Get the waiter on which @task is blocked on.
548 */
549 waiter = task->pi_blocked_on;
550
551 /*
552 * [3] check_exit_conditions_1() protected by task->pi_lock.
553 */
554
555 /*
556 * Check whether the end of the boosting chain has been
557 * reached or the state of the chain has changed while we
558 * dropped the locks.
559 */
560 if (!waiter)
561 goto out_unlock_pi;
562
563 /*
564 * Check the orig_waiter state. After we dropped the locks,
565 * the previous owner of the lock might have released the lock.
566 */
567 if (orig_waiter && !rt_mutex_owner(orig_lock))
568 goto out_unlock_pi;
569
570 /*
571 * We dropped all locks after taking a refcount on @task, so
572 * the task might have moved on in the lock chain or even left
573 * the chain completely and blocks now on an unrelated lock or
574 * on @orig_lock.
575 *
576 * We stored the lock on which @task was blocked in @next_lock,
577 * so we can detect the chain change.
578 */
579 if (next_lock != waiter->lock)
580 goto out_unlock_pi;
581
582 /*
583 * Drop out, when the task has no waiters. Note,
584 * top_waiter can be NULL, when we are in the deboosting
585 * mode!
586 */
587 if (top_waiter) {
588 if (!task_has_pi_waiters(task))
589 goto out_unlock_pi;
590 /*
591 * If deadlock detection is off, we stop here if we
592 * are not the top pi waiter of the task. If deadlock
593 * detection is enabled we continue, but stop the
594 * requeueing in the chain walk.
595 */
596 if (top_waiter != task_top_pi_waiter(task)) {
597 if (!detect_deadlock)
598 goto out_unlock_pi;
599 else
600 requeue = false;
601 }
602 }
603
604 /*
605 * If the waiter priority is the same as the task priority
606 * then there is no further priority adjustment necessary. If
607 * deadlock detection is off, we stop the chain walk. If its
608 * enabled we continue, but stop the requeueing in the chain
609 * walk.
610 */
611 if (waiter->prio == task->prio) {
612 if (!detect_deadlock)
613 goto out_unlock_pi;
614 else
615 requeue = false;
616 }
617
618 /*
619 * [4] Get the next lock
620 */
621 lock = waiter->lock;
622 /*
623 * [5] We need to trylock here as we are holding task->pi_lock,
624 * which is the reverse lock order versus the other rtmutex
625 * operations.
626 */
627 if (!raw_spin_trylock(&lock->wait_lock)) {
628 raw_spin_unlock_irq(&task->pi_lock);
629 cpu_relax();
630 goto retry;
631 }
632
633 /*
634 * [6] check_exit_conditions_2() protected by task->pi_lock and
635 * lock->wait_lock.
636 *
637 * Deadlock detection. If the lock is the same as the original
638 * lock which caused us to walk the lock chain or if the
639 * current lock is owned by the task which initiated the chain
640 * walk, we detected a deadlock.
641 */
642 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644 raw_spin_unlock(&lock->wait_lock);
645 ret = -EDEADLK;
646 goto out_unlock_pi;
647 }
648
649 /*
650 * If we just follow the lock chain for deadlock detection, no
651 * need to do all the requeue operations. To avoid a truckload
652 * of conditionals around the various places below, just do the
653 * minimum chain walk checks.
654 */
655 if (!requeue) {
656 /*
657 * No requeue[7] here. Just release @task [8]
658 */
659 raw_spin_unlock(&task->pi_lock);
660 put_task_struct(task);
661
662 /*
663 * [9] check_exit_conditions_3 protected by lock->wait_lock.
664 * If there is no owner of the lock, end of chain.
665 */
666 if (!rt_mutex_owner(lock)) {
667 raw_spin_unlock_irq(&lock->wait_lock);
668 return 0;
669 }
670
671 /* [10] Grab the next task, i.e. owner of @lock */
672 task = rt_mutex_owner(lock);
673 get_task_struct(task);
674 raw_spin_lock(&task->pi_lock);
675
676 /*
677 * No requeue [11] here. We just do deadlock detection.
678 *
679 * [12] Store whether owner is blocked
680 * itself. Decision is made after dropping the locks
681 */
682 next_lock = task_blocked_on_lock(task);
683 /*
684 * Get the top waiter for the next iteration
685 */
686 top_waiter = rt_mutex_top_waiter(lock);
687
688 /* [13] Drop locks */
689 raw_spin_unlock(&task->pi_lock);
690 raw_spin_unlock_irq(&lock->wait_lock);
691
692 /* If owner is not blocked, end of chain. */
693 if (!next_lock)
694 goto out_put_task;
695 goto again;
696 }
697
698 /*
699 * Store the current top waiter before doing the requeue
700 * operation on @lock. We need it for the boost/deboost
701 * decision below.
702 */
703 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
704
705 /* [7] Requeue the waiter in the lock waiter tree. */
706 rt_mutex_dequeue(lock, waiter);
707 waiter->prio = task->prio;
708 rt_mutex_enqueue(lock, waiter);
709
710 /* [8] Release the task */
711 raw_spin_unlock(&task->pi_lock);
712 put_task_struct(task);
713
714 /*
715 * [9] check_exit_conditions_3 protected by lock->wait_lock.
716 *
717 * We must abort the chain walk if there is no lock owner even
718 * in the dead lock detection case, as we have nothing to
719 * follow here. This is the end of the chain we are walking.
720 */
721 if (!rt_mutex_owner(lock)) {
722 /*
723 * If the requeue [7] above changed the top waiter,
724 * then we need to wake the new top waiter up to try
725 * to get the lock.
726 */
727 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728 wake_up_process(rt_mutex_top_waiter(lock)->task);
729 raw_spin_unlock_irq(&lock->wait_lock);
730 return 0;
731 }
732
733 /* [10] Grab the next task, i.e. the owner of @lock */
734 task = rt_mutex_owner(lock);
735 get_task_struct(task);
736 raw_spin_lock(&task->pi_lock);
737
738 /* [11] requeue the pi waiters if necessary */
739 if (waiter == rt_mutex_top_waiter(lock)) {
740 /*
741 * The waiter became the new top (highest priority)
742 * waiter on the lock. Replace the previous top waiter
743 * in the owner tasks pi waiters tree with this waiter
744 * and adjust the priority of the owner.
745 */
746 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747 rt_mutex_enqueue_pi(task, waiter);
748 __rt_mutex_adjust_prio(task);
749
750 } else if (prerequeue_top_waiter == waiter) {
751 /*
752 * The waiter was the top waiter on the lock, but is
753 * no longer the top prority waiter. Replace waiter in
754 * the owner tasks pi waiters tree with the new top
755 * (highest priority) waiter and adjust the priority
756 * of the owner.
757 * The new top waiter is stored in @waiter so that
758 * @waiter == @top_waiter evaluates to true below and
759 * we continue to deboost the rest of the chain.
760 */
761 rt_mutex_dequeue_pi(task, waiter);
762 waiter = rt_mutex_top_waiter(lock);
763 rt_mutex_enqueue_pi(task, waiter);
764 __rt_mutex_adjust_prio(task);
765 } else {
766 /*
767 * Nothing changed. No need to do any priority
768 * adjustment.
769 */
770 }
771
772 /*
773 * [12] check_exit_conditions_4() protected by task->pi_lock
774 * and lock->wait_lock. The actual decisions are made after we
775 * dropped the locks.
776 *
777 * Check whether the task which owns the current lock is pi
778 * blocked itself. If yes we store a pointer to the lock for
779 * the lock chain change detection above. After we dropped
780 * task->pi_lock next_lock cannot be dereferenced anymore.
781 */
782 next_lock = task_blocked_on_lock(task);
783 /*
784 * Store the top waiter of @lock for the end of chain walk
785 * decision below.
786 */
787 top_waiter = rt_mutex_top_waiter(lock);
788
789 /* [13] Drop the locks */
790 raw_spin_unlock(&task->pi_lock);
791 raw_spin_unlock_irq(&lock->wait_lock);
792
793 /*
794 * Make the actual exit decisions [12], based on the stored
795 * values.
796 *
797 * We reached the end of the lock chain. Stop right here. No
798 * point to go back just to figure that out.
799 */
800 if (!next_lock)
801 goto out_put_task;
802
803 /*
804 * If the current waiter is not the top waiter on the lock,
805 * then we can stop the chain walk here if we are not in full
806 * deadlock detection mode.
807 */
808 if (!detect_deadlock && waiter != top_waiter)
809 goto out_put_task;
810
811 goto again;
812
813 out_unlock_pi:
814 raw_spin_unlock_irq(&task->pi_lock);
815 out_put_task:
816 put_task_struct(task);
817
818 return ret;
819}
820
821/*
822 * Try to take an rt-mutex
823 *
824 * Must be called with lock->wait_lock held and interrupts disabled
825 *
826 * @lock: The lock to be acquired.
827 * @task: The task which wants to acquire the lock
828 * @waiter: The waiter that is queued to the lock's wait tree if the
829 * callsite called task_blocked_on_lock(), otherwise NULL
830 */
831static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832 struct rt_mutex_waiter *waiter)
833{
834 /*
835 * Before testing whether we can acquire @lock, we set the
836 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
837 * other tasks which try to modify @lock into the slow path
838 * and they serialize on @lock->wait_lock.
839 *
840 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
841 * as explained at the top of this file if and only if:
842 *
843 * - There is a lock owner. The caller must fixup the
844 * transient state if it does a trylock or leaves the lock
845 * function due to a signal or timeout.
846 *
847 * - @task acquires the lock and there are no other
848 * waiters. This is undone in rt_mutex_set_owner(@task) at
849 * the end of this function.
850 */
851 mark_rt_mutex_waiters(lock);
852
853 /*
854 * If @lock has an owner, give up.
855 */
856 if (rt_mutex_owner(lock))
857 return 0;
858
859 /*
860 * If @waiter != NULL, @task has already enqueued the waiter
861 * into @lock waiter tree. If @waiter == NULL then this is a
862 * trylock attempt.
863 */
864 if (waiter) {
865 /*
866 * If waiter is not the highest priority waiter of
867 * @lock, give up.
868 */
869 if (waiter != rt_mutex_top_waiter(lock))
870 return 0;
871
872 /*
873 * We can acquire the lock. Remove the waiter from the
874 * lock waiters tree.
875 */
876 rt_mutex_dequeue(lock, waiter);
877
878 } else {
879 /*
880 * If the lock has waiters already we check whether @task is
881 * eligible to take over the lock.
882 *
883 * If there are no other waiters, @task can acquire
884 * the lock. @task->pi_blocked_on is NULL, so it does
885 * not need to be dequeued.
886 */
887 if (rt_mutex_has_waiters(lock)) {
888 /*
889 * If @task->prio is greater than or equal to
890 * the top waiter priority (kernel view),
891 * @task lost.
892 */
893 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
894 return 0;
895
896 /*
897 * The current top waiter stays enqueued. We
898 * don't have to change anything in the lock
899 * waiters order.
900 */
901 } else {
902 /*
903 * No waiters. Take the lock without the
904 * pi_lock dance.@task->pi_blocked_on is NULL
905 * and we have no waiters to enqueue in @task
906 * pi waiters tree.
907 */
908 goto takeit;
909 }
910 }
911
912 /*
913 * Clear @task->pi_blocked_on. Requires protection by
914 * @task->pi_lock. Redundant operation for the @waiter == NULL
915 * case, but conditionals are more expensive than a redundant
916 * store.
917 */
918 raw_spin_lock(&task->pi_lock);
919 task->pi_blocked_on = NULL;
920 /*
921 * Finish the lock acquisition. @task is the new owner. If
922 * other waiters exist we have to insert the highest priority
923 * waiter into @task->pi_waiters tree.
924 */
925 if (rt_mutex_has_waiters(lock))
926 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927 raw_spin_unlock(&task->pi_lock);
928
929takeit:
930 /* We got the lock. */
931 debug_rt_mutex_lock(lock);
932
933 /*
934 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
935 * are still waiters or clears it.
936 */
937 rt_mutex_set_owner(lock, task);
938
939 rt_mutex_deadlock_account_lock(lock, task);
940
941 return 1;
942}
943
944/*
945 * Task blocks on lock.
946 *
947 * Prepare waiter and propagate pi chain
948 *
949 * This must be called with lock->wait_lock held and interrupts disabled
950 */
951static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
952 struct rt_mutex_waiter *waiter,
953 struct task_struct *task,
954 enum rtmutex_chainwalk chwalk)
955{
956 struct task_struct *owner = rt_mutex_owner(lock);
957 struct rt_mutex_waiter *top_waiter = waiter;
958 struct rt_mutex *next_lock;
959 int chain_walk = 0, res;
960
961 /*
962 * Early deadlock detection. We really don't want the task to
963 * enqueue on itself just to untangle the mess later. It's not
964 * only an optimization. We drop the locks, so another waiter
965 * can come in before the chain walk detects the deadlock. So
966 * the other will detect the deadlock and return -EDEADLOCK,
967 * which is wrong, as the other waiter is not in a deadlock
968 * situation.
969 */
970 if (owner == task)
971 return -EDEADLK;
972
973 raw_spin_lock(&task->pi_lock);
974 __rt_mutex_adjust_prio(task);
975 waiter->task = task;
976 waiter->lock = lock;
977 waiter->prio = task->prio;
978
979 /* Get the top priority waiter on the lock */
980 if (rt_mutex_has_waiters(lock))
981 top_waiter = rt_mutex_top_waiter(lock);
982 rt_mutex_enqueue(lock, waiter);
983
984 task->pi_blocked_on = waiter;
985
986 raw_spin_unlock(&task->pi_lock);
987
988 if (!owner)
989 return 0;
990
991 raw_spin_lock(&owner->pi_lock);
992 if (waiter == rt_mutex_top_waiter(lock)) {
993 rt_mutex_dequeue_pi(owner, top_waiter);
994 rt_mutex_enqueue_pi(owner, waiter);
995
996 __rt_mutex_adjust_prio(owner);
997 if (owner->pi_blocked_on)
998 chain_walk = 1;
999 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1000 chain_walk = 1;
1001 }
1002
1003 /* Store the lock on which owner is blocked or NULL */
1004 next_lock = task_blocked_on_lock(owner);
1005
1006 raw_spin_unlock(&owner->pi_lock);
1007 /*
1008 * Even if full deadlock detection is on, if the owner is not
1009 * blocked itself, we can avoid finding this out in the chain
1010 * walk.
1011 */
1012 if (!chain_walk || !next_lock)
1013 return 0;
1014
1015 /*
1016 * The owner can't disappear while holding a lock,
1017 * so the owner struct is protected by wait_lock.
1018 * Gets dropped in rt_mutex_adjust_prio_chain()!
1019 */
1020 get_task_struct(owner);
1021
1022 raw_spin_unlock_irq(&lock->wait_lock);
1023
1024 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1025 next_lock, waiter, task);
1026
1027 raw_spin_lock_irq(&lock->wait_lock);
1028
1029 return res;
1030}
1031
1032/*
1033 * Remove the top waiter from the current tasks pi waiter tree and
1034 * queue it up.
1035 *
1036 * Called with lock->wait_lock held and interrupts disabled.
1037 */
1038static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1039 struct rt_mutex *lock)
1040{
1041 struct rt_mutex_waiter *waiter;
1042
1043 raw_spin_lock(¤t->pi_lock);
1044
1045 waiter = rt_mutex_top_waiter(lock);
1046
1047 /*
1048 * Remove it from current->pi_waiters. We do not adjust a
1049 * possible priority boost right now. We execute wakeup in the
1050 * boosted mode and go back to normal after releasing
1051 * lock->wait_lock.
1052 */
1053 rt_mutex_dequeue_pi(current, waiter);
1054
1055 /*
1056 * As we are waking up the top waiter, and the waiter stays
1057 * queued on the lock until it gets the lock, this lock
1058 * obviously has waiters. Just set the bit here and this has
1059 * the added benefit of forcing all new tasks into the
1060 * slow path making sure no task of lower priority than
1061 * the top waiter can steal this lock.
1062 */
1063 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1064
1065 raw_spin_unlock(¤t->pi_lock);
1066
1067 wake_q_add(wake_q, waiter->task);
1068}
1069
1070/*
1071 * Remove a waiter from a lock and give up
1072 *
1073 * Must be called with lock->wait_lock held and interrupts disabled. I must
1074 * have just failed to try_to_take_rt_mutex().
1075 */
1076static void remove_waiter(struct rt_mutex *lock,
1077 struct rt_mutex_waiter *waiter)
1078{
1079 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1080 struct task_struct *owner = rt_mutex_owner(lock);
1081 struct rt_mutex *next_lock;
1082
1083 raw_spin_lock(¤t->pi_lock);
1084 rt_mutex_dequeue(lock, waiter);
1085 current->pi_blocked_on = NULL;
1086 raw_spin_unlock(¤t->pi_lock);
1087
1088 /*
1089 * Only update priority if the waiter was the highest priority
1090 * waiter of the lock and there is an owner to update.
1091 */
1092 if (!owner || !is_top_waiter)
1093 return;
1094
1095 raw_spin_lock(&owner->pi_lock);
1096
1097 rt_mutex_dequeue_pi(owner, waiter);
1098
1099 if (rt_mutex_has_waiters(lock))
1100 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1101
1102 __rt_mutex_adjust_prio(owner);
1103
1104 /* Store the lock on which owner is blocked or NULL */
1105 next_lock = task_blocked_on_lock(owner);
1106
1107 raw_spin_unlock(&owner->pi_lock);
1108
1109 /*
1110 * Don't walk the chain, if the owner task is not blocked
1111 * itself.
1112 */
1113 if (!next_lock)
1114 return;
1115
1116 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1117 get_task_struct(owner);
1118
1119 raw_spin_unlock_irq(&lock->wait_lock);
1120
1121 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1122 next_lock, NULL, current);
1123
1124 raw_spin_lock_irq(&lock->wait_lock);
1125}
1126
1127/*
1128 * Recheck the pi chain, in case we got a priority setting
1129 *
1130 * Called from sched_setscheduler
1131 */
1132void rt_mutex_adjust_pi(struct task_struct *task)
1133{
1134 struct rt_mutex_waiter *waiter;
1135 struct rt_mutex *next_lock;
1136 unsigned long flags;
1137
1138 raw_spin_lock_irqsave(&task->pi_lock, flags);
1139
1140 waiter = task->pi_blocked_on;
1141 if (!waiter || (waiter->prio == task->prio &&
1142 !dl_prio(task->prio))) {
1143 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1144 return;
1145 }
1146 next_lock = waiter->lock;
1147 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1148
1149 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1150 get_task_struct(task);
1151
1152 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1153 next_lock, NULL, task);
1154}
1155
1156/**
1157 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1158 * @lock: the rt_mutex to take
1159 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1160 * or TASK_UNINTERRUPTIBLE)
1161 * @timeout: the pre-initialized and started timer, or NULL for none
1162 * @waiter: the pre-initialized rt_mutex_waiter
1163 *
1164 * Must be called with lock->wait_lock held and interrupts disabled
1165 */
1166static int __sched
1167__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1168 struct hrtimer_sleeper *timeout,
1169 struct rt_mutex_waiter *waiter)
1170{
1171 int ret = 0;
1172
1173 for (;;) {
1174 /* Try to acquire the lock: */
1175 if (try_to_take_rt_mutex(lock, current, waiter))
1176 break;
1177
1178 /*
1179 * TASK_INTERRUPTIBLE checks for signals and
1180 * timeout. Ignored otherwise.
1181 */
1182 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1183 /* Signal pending? */
1184 if (signal_pending(current))
1185 ret = -EINTR;
1186 if (timeout && !timeout->task)
1187 ret = -ETIMEDOUT;
1188 if (ret)
1189 break;
1190 }
1191
1192 raw_spin_unlock_irq(&lock->wait_lock);
1193
1194 debug_rt_mutex_print_deadlock(waiter);
1195
1196 schedule();
1197
1198 raw_spin_lock_irq(&lock->wait_lock);
1199 set_current_state(state);
1200 }
1201
1202 __set_current_state(TASK_RUNNING);
1203 return ret;
1204}
1205
1206static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1207 struct rt_mutex_waiter *w)
1208{
1209 /*
1210 * If the result is not -EDEADLOCK or the caller requested
1211 * deadlock detection, nothing to do here.
1212 */
1213 if (res != -EDEADLOCK || detect_deadlock)
1214 return;
1215
1216 /*
1217 * Yell lowdly and stop the task right here.
1218 */
1219 rt_mutex_print_deadlock(w);
1220 while (1) {
1221 set_current_state(TASK_INTERRUPTIBLE);
1222 schedule();
1223 }
1224}
1225
1226/*
1227 * Slow path lock function:
1228 */
1229static int __sched
1230rt_mutex_slowlock(struct rt_mutex *lock, int state,
1231 struct hrtimer_sleeper *timeout,
1232 enum rtmutex_chainwalk chwalk)
1233{
1234 struct rt_mutex_waiter waiter;
1235 unsigned long flags;
1236 int ret = 0;
1237
1238 debug_rt_mutex_init_waiter(&waiter);
1239 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1240 RB_CLEAR_NODE(&waiter.tree_entry);
1241
1242 /*
1243 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244 * be called in early boot if the cmpxchg() fast path is disabled
1245 * (debug, no architecture support). In this case we will acquire the
1246 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247 * enable interrupts in that early boot case. So we need to use the
1248 * irqsave/restore variants.
1249 */
1250 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252 /* Try to acquire the lock again: */
1253 if (try_to_take_rt_mutex(lock, current, NULL)) {
1254 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255 return 0;
1256 }
1257
1258 set_current_state(state);
1259
1260 /* Setup the timer, when timeout != NULL */
1261 if (unlikely(timeout))
1262 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263
1264 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265
1266 if (likely(!ret))
1267 /* sleep on the mutex */
1268 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269
1270 if (unlikely(ret)) {
1271 __set_current_state(TASK_RUNNING);
1272 if (rt_mutex_has_waiters(lock))
1273 remove_waiter(lock, &waiter);
1274 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1275 }
1276
1277 /*
1278 * try_to_take_rt_mutex() sets the waiter bit
1279 * unconditionally. We might have to fix that up.
1280 */
1281 fixup_rt_mutex_waiters(lock);
1282
1283 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1284
1285 /* Remove pending timer: */
1286 if (unlikely(timeout))
1287 hrtimer_cancel(&timeout->timer);
1288
1289 debug_rt_mutex_free_waiter(&waiter);
1290
1291 return ret;
1292}
1293
1294/*
1295 * Slow path try-lock function:
1296 */
1297static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1298{
1299 unsigned long flags;
1300 int ret;
1301
1302 /*
1303 * If the lock already has an owner we fail to get the lock.
1304 * This can be done without taking the @lock->wait_lock as
1305 * it is only being read, and this is a trylock anyway.
1306 */
1307 if (rt_mutex_owner(lock))
1308 return 0;
1309
1310 /*
1311 * The mutex has currently no owner. Lock the wait lock and try to
1312 * acquire the lock. We use irqsave here to support early boot calls.
1313 */
1314 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1315
1316 ret = try_to_take_rt_mutex(lock, current, NULL);
1317
1318 /*
1319 * try_to_take_rt_mutex() sets the lock waiters bit
1320 * unconditionally. Clean this up.
1321 */
1322 fixup_rt_mutex_waiters(lock);
1323
1324 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1325
1326 return ret;
1327}
1328
1329/*
1330 * Slow path to release a rt-mutex.
1331 * Return whether the current task needs to undo a potential priority boosting.
1332 */
1333static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1334 struct wake_q_head *wake_q)
1335{
1336 unsigned long flags;
1337
1338 /* irqsave required to support early boot calls */
1339 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1340
1341 debug_rt_mutex_unlock(lock);
1342
1343 rt_mutex_deadlock_account_unlock(current);
1344
1345 /*
1346 * We must be careful here if the fast path is enabled. If we
1347 * have no waiters queued we cannot set owner to NULL here
1348 * because of:
1349 *
1350 * foo->lock->owner = NULL;
1351 * rtmutex_lock(foo->lock); <- fast path
1352 * free = atomic_dec_and_test(foo->refcnt);
1353 * rtmutex_unlock(foo->lock); <- fast path
1354 * if (free)
1355 * kfree(foo);
1356 * raw_spin_unlock(foo->lock->wait_lock);
1357 *
1358 * So for the fastpath enabled kernel:
1359 *
1360 * Nothing can set the waiters bit as long as we hold
1361 * lock->wait_lock. So we do the following sequence:
1362 *
1363 * owner = rt_mutex_owner(lock);
1364 * clear_rt_mutex_waiters(lock);
1365 * raw_spin_unlock(&lock->wait_lock);
1366 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1367 * return;
1368 * goto retry;
1369 *
1370 * The fastpath disabled variant is simple as all access to
1371 * lock->owner is serialized by lock->wait_lock:
1372 *
1373 * lock->owner = NULL;
1374 * raw_spin_unlock(&lock->wait_lock);
1375 */
1376 while (!rt_mutex_has_waiters(lock)) {
1377 /* Drops lock->wait_lock ! */
1378 if (unlock_rt_mutex_safe(lock, flags) == true)
1379 return false;
1380 /* Relock the rtmutex and try again */
1381 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1382 }
1383
1384 /*
1385 * The wakeup next waiter path does not suffer from the above
1386 * race. See the comments there.
1387 *
1388 * Queue the next waiter for wakeup once we release the wait_lock.
1389 */
1390 mark_wakeup_next_waiter(wake_q, lock);
1391
1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394 /* check PI boosting */
1395 return true;
1396}
1397
1398/*
1399 * debug aware fast / slowpath lock,trylock,unlock
1400 *
1401 * The atomic acquire/release ops are compiled away, when either the
1402 * architecture does not support cmpxchg or when debugging is enabled.
1403 */
1404static inline int
1405rt_mutex_fastlock(struct rt_mutex *lock, int state,
1406 int (*slowfn)(struct rt_mutex *lock, int state,
1407 struct hrtimer_sleeper *timeout,
1408 enum rtmutex_chainwalk chwalk))
1409{
1410 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1411 rt_mutex_deadlock_account_lock(lock, current);
1412 return 0;
1413 } else
1414 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1415}
1416
1417static inline int
1418rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419 struct hrtimer_sleeper *timeout,
1420 enum rtmutex_chainwalk chwalk,
1421 int (*slowfn)(struct rt_mutex *lock, int state,
1422 struct hrtimer_sleeper *timeout,
1423 enum rtmutex_chainwalk chwalk))
1424{
1425 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1427 rt_mutex_deadlock_account_lock(lock, current);
1428 return 0;
1429 } else
1430 return slowfn(lock, state, timeout, chwalk);
1431}
1432
1433static inline int
1434rt_mutex_fasttrylock(struct rt_mutex *lock,
1435 int (*slowfn)(struct rt_mutex *lock))
1436{
1437 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1438 rt_mutex_deadlock_account_lock(lock, current);
1439 return 1;
1440 }
1441 return slowfn(lock);
1442}
1443
1444static inline void
1445rt_mutex_fastunlock(struct rt_mutex *lock,
1446 bool (*slowfn)(struct rt_mutex *lock,
1447 struct wake_q_head *wqh))
1448{
1449 DEFINE_WAKE_Q(wake_q);
1450
1451 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1452 rt_mutex_deadlock_account_unlock(current);
1453
1454 } else {
1455 bool deboost = slowfn(lock, &wake_q);
1456
1457 wake_up_q(&wake_q);
1458
1459 /* Undo pi boosting if necessary: */
1460 if (deboost)
1461 rt_mutex_adjust_prio(current);
1462 }
1463}
1464
1465/**
1466 * rt_mutex_lock - lock a rt_mutex
1467 *
1468 * @lock: the rt_mutex to be locked
1469 */
1470void __sched rt_mutex_lock(struct rt_mutex *lock)
1471{
1472 might_sleep();
1473
1474 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475}
1476EXPORT_SYMBOL_GPL(rt_mutex_lock);
1477
1478/**
1479 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1480 *
1481 * @lock: the rt_mutex to be locked
1482 *
1483 * Returns:
1484 * 0 on success
1485 * -EINTR when interrupted by a signal
1486 */
1487int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1488{
1489 might_sleep();
1490
1491 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1492}
1493EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1494
1495/*
1496 * Futex variant with full deadlock detection.
1497 */
1498int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1499 struct hrtimer_sleeper *timeout)
1500{
1501 might_sleep();
1502
1503 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1504 RT_MUTEX_FULL_CHAINWALK,
1505 rt_mutex_slowlock);
1506}
1507
1508/**
1509 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1510 * the timeout structure is provided
1511 * by the caller
1512 *
1513 * @lock: the rt_mutex to be locked
1514 * @timeout: timeout structure or NULL (no timeout)
1515 *
1516 * Returns:
1517 * 0 on success
1518 * -EINTR when interrupted by a signal
1519 * -ETIMEDOUT when the timeout expired
1520 */
1521int
1522rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1523{
1524 might_sleep();
1525
1526 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1527 RT_MUTEX_MIN_CHAINWALK,
1528 rt_mutex_slowlock);
1529}
1530EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1531
1532/**
1533 * rt_mutex_trylock - try to lock a rt_mutex
1534 *
1535 * @lock: the rt_mutex to be locked
1536 *
1537 * This function can only be called in thread context. It's safe to
1538 * call it from atomic regions, but not from hard interrupt or soft
1539 * interrupt context.
1540 *
1541 * Returns 1 on success and 0 on contention
1542 */
1543int __sched rt_mutex_trylock(struct rt_mutex *lock)
1544{
1545 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1546 return 0;
1547
1548 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1549}
1550EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1551
1552/**
1553 * rt_mutex_unlock - unlock a rt_mutex
1554 *
1555 * @lock: the rt_mutex to be unlocked
1556 */
1557void __sched rt_mutex_unlock(struct rt_mutex *lock)
1558{
1559 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1560}
1561EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1562
1563/**
1564 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1565 * @lock: the rt_mutex to be unlocked
1566 *
1567 * Returns: true/false indicating whether priority adjustment is
1568 * required or not.
1569 */
1570bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1571 struct wake_q_head *wqh)
1572{
1573 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1574 rt_mutex_deadlock_account_unlock(current);
1575 return false;
1576 }
1577 return rt_mutex_slowunlock(lock, wqh);
1578}
1579
1580/**
1581 * rt_mutex_destroy - mark a mutex unusable
1582 * @lock: the mutex to be destroyed
1583 *
1584 * This function marks the mutex uninitialized, and any subsequent
1585 * use of the mutex is forbidden. The mutex must not be locked when
1586 * this function is called.
1587 */
1588void rt_mutex_destroy(struct rt_mutex *lock)
1589{
1590 WARN_ON(rt_mutex_is_locked(lock));
1591#ifdef CONFIG_DEBUG_RT_MUTEXES
1592 lock->magic = NULL;
1593#endif
1594}
1595
1596EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1597
1598/**
1599 * __rt_mutex_init - initialize the rt lock
1600 *
1601 * @lock: the rt lock to be initialized
1602 *
1603 * Initialize the rt lock to unlocked state.
1604 *
1605 * Initializing of a locked rt lock is not allowed
1606 */
1607void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1608{
1609 lock->owner = NULL;
1610 raw_spin_lock_init(&lock->wait_lock);
1611 lock->waiters = RB_ROOT;
1612 lock->waiters_leftmost = NULL;
1613
1614 debug_rt_mutex_init(lock, name);
1615}
1616EXPORT_SYMBOL_GPL(__rt_mutex_init);
1617
1618/**
1619 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1620 * proxy owner
1621 *
1622 * @lock: the rt_mutex to be locked
1623 * @proxy_owner:the task to set as owner
1624 *
1625 * No locking. Caller has to do serializing itself
1626 *
1627 * Special API call for PI-futex support. This initializes the rtmutex and
1628 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1629 * possible at this point because the pi_state which contains the rtmutex
1630 * is not yet visible to other tasks.
1631 */
1632void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1633 struct task_struct *proxy_owner)
1634{
1635 __rt_mutex_init(lock, NULL);
1636 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1637 rt_mutex_set_owner(lock, proxy_owner);
1638 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1639}
1640
1641/**
1642 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1643 *
1644 * @lock: the rt_mutex to be locked
1645 *
1646 * No locking. Caller has to do serializing itself
1647 *
1648 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1649 * (debugging) state. Concurrent operations on this rt_mutex are not
1650 * possible because it belongs to the pi_state which is about to be freed
1651 * and it is not longer visible to other tasks.
1652 */
1653void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1654 struct task_struct *proxy_owner)
1655{
1656 debug_rt_mutex_proxy_unlock(lock);
1657 rt_mutex_set_owner(lock, NULL);
1658 rt_mutex_deadlock_account_unlock(proxy_owner);
1659}
1660
1661/**
1662 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1663 * @lock: the rt_mutex to take
1664 * @waiter: the pre-initialized rt_mutex_waiter
1665 * @task: the task to prepare
1666 *
1667 * Returns:
1668 * 0 - task blocked on lock
1669 * 1 - acquired the lock for task, caller should wake it up
1670 * <0 - error
1671 *
1672 * Special API call for FUTEX_REQUEUE_PI support.
1673 */
1674int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1675 struct rt_mutex_waiter *waiter,
1676 struct task_struct *task)
1677{
1678 int ret;
1679
1680 raw_spin_lock_irq(&lock->wait_lock);
1681
1682 if (try_to_take_rt_mutex(lock, task, NULL)) {
1683 raw_spin_unlock_irq(&lock->wait_lock);
1684 return 1;
1685 }
1686
1687 /* We enforce deadlock detection for futexes */
1688 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1689 RT_MUTEX_FULL_CHAINWALK);
1690
1691 if (ret && !rt_mutex_owner(lock)) {
1692 /*
1693 * Reset the return value. We might have
1694 * returned with -EDEADLK and the owner
1695 * released the lock while we were walking the
1696 * pi chain. Let the waiter sort it out.
1697 */
1698 ret = 0;
1699 }
1700
1701 if (unlikely(ret))
1702 remove_waiter(lock, waiter);
1703
1704 raw_spin_unlock_irq(&lock->wait_lock);
1705
1706 debug_rt_mutex_print_deadlock(waiter);
1707
1708 return ret;
1709}
1710
1711/**
1712 * rt_mutex_next_owner - return the next owner of the lock
1713 *
1714 * @lock: the rt lock query
1715 *
1716 * Returns the next owner of the lock or NULL
1717 *
1718 * Caller has to serialize against other accessors to the lock
1719 * itself.
1720 *
1721 * Special API call for PI-futex support
1722 */
1723struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1724{
1725 if (!rt_mutex_has_waiters(lock))
1726 return NULL;
1727
1728 return rt_mutex_top_waiter(lock)->task;
1729}
1730
1731/**
1732 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1733 * @lock: the rt_mutex we were woken on
1734 * @to: the timeout, null if none. hrtimer should already have
1735 * been started.
1736 * @waiter: the pre-initialized rt_mutex_waiter
1737 *
1738 * Complete the lock acquisition started our behalf by another thread.
1739 *
1740 * Returns:
1741 * 0 - success
1742 * <0 - error, one of -EINTR, -ETIMEDOUT
1743 *
1744 * Special API call for PI-futex requeue support
1745 */
1746int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1747 struct hrtimer_sleeper *to,
1748 struct rt_mutex_waiter *waiter)
1749{
1750 int ret;
1751
1752 raw_spin_lock_irq(&lock->wait_lock);
1753
1754 set_current_state(TASK_INTERRUPTIBLE);
1755
1756 /* sleep on the mutex */
1757 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1758
1759 if (unlikely(ret))
1760 remove_waiter(lock, waiter);
1761
1762 /*
1763 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1764 * have to fix that up.
1765 */
1766 fixup_rt_mutex_waiters(lock);
1767
1768 raw_spin_unlock_irq(&lock->wait_lock);
1769
1770 return ret;
1771}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14#include <linux/spinlock.h>
15#include <linux/export.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/rt.h>
18#include <linux/sched/deadline.h>
19#include <linux/sched/wake_q.h>
20#include <linux/sched/debug.h>
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
25/*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52static void
53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54{
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61}
62
63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137}
138
139/*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143#ifndef CONFIG_DEBUG_RT_MUTEXES
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160}
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201}
202
203#else
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
207static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
216static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223}
224#endif
225
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232static inline int
233rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235{
236 if (left->prio < right->prio)
237 return 1;
238
239 /*
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
244 */
245 if (dl_prio(left->prio))
246 return dl_time_before(left->deadline, right->deadline);
247
248 return 0;
249}
250
251static inline int
252rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254{
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268}
269
270static void
271rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272{
273 struct rb_node **link = &lock->waiters.rb_root.rb_node;
274 struct rb_node *parent = NULL;
275 struct rt_mutex_waiter *entry;
276 bool leftmost = true;
277
278 while (*link) {
279 parent = *link;
280 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
281 if (rt_mutex_waiter_less(waiter, entry)) {
282 link = &parent->rb_left;
283 } else {
284 link = &parent->rb_right;
285 leftmost = false;
286 }
287 }
288
289 rb_link_node(&waiter->tree_entry, parent, link);
290 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
291}
292
293static void
294rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
295{
296 if (RB_EMPTY_NODE(&waiter->tree_entry))
297 return;
298
299 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
300 RB_CLEAR_NODE(&waiter->tree_entry);
301}
302
303static void
304rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
305{
306 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rt_mutex_waiter *entry;
309 bool leftmost = true;
310
311 while (*link) {
312 parent = *link;
313 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
314 if (rt_mutex_waiter_less(waiter, entry)) {
315 link = &parent->rb_left;
316 } else {
317 link = &parent->rb_right;
318 leftmost = false;
319 }
320 }
321
322 rb_link_node(&waiter->pi_tree_entry, parent, link);
323 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
324}
325
326static void
327rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
328{
329 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
330 return;
331
332 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
333 RB_CLEAR_NODE(&waiter->pi_tree_entry);
334}
335
336static void rt_mutex_adjust_prio(struct task_struct *p)
337{
338 struct task_struct *pi_task = NULL;
339
340 lockdep_assert_held(&p->pi_lock);
341
342 if (task_has_pi_waiters(p))
343 pi_task = task_top_pi_waiter(p)->task;
344
345 rt_mutex_setprio(p, pi_task);
346}
347
348/*
349 * Deadlock detection is conditional:
350 *
351 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
352 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
353 *
354 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
355 * conducted independent of the detect argument.
356 *
357 * If the waiter argument is NULL this indicates the deboost path and
358 * deadlock detection is disabled independent of the detect argument
359 * and the config settings.
360 */
361static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
362 enum rtmutex_chainwalk chwalk)
363{
364 /*
365 * This is just a wrapper function for the following call,
366 * because debug_rt_mutex_detect_deadlock() smells like a magic
367 * debug feature and I wanted to keep the cond function in the
368 * main source file along with the comments instead of having
369 * two of the same in the headers.
370 */
371 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
372}
373
374/*
375 * Max number of times we'll walk the boosting chain:
376 */
377int max_lock_depth = 1024;
378
379static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
380{
381 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
382}
383
384/*
385 * Adjust the priority chain. Also used for deadlock detection.
386 * Decreases task's usage by one - may thus free the task.
387 *
388 * @task: the task owning the mutex (owner) for which a chain walk is
389 * probably needed
390 * @chwalk: do we have to carry out deadlock detection?
391 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
392 * things for a task that has just got its priority adjusted, and
393 * is waiting on a mutex)
394 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
395 * we dropped its pi_lock. Is never dereferenced, only used for
396 * comparison to detect lock chain changes.
397 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
398 * its priority to the mutex owner (can be NULL in the case
399 * depicted above or if the top waiter is gone away and we are
400 * actually deboosting the owner)
401 * @top_task: the current top waiter
402 *
403 * Returns 0 or -EDEADLK.
404 *
405 * Chain walk basics and protection scope
406 *
407 * [R] refcount on task
408 * [P] task->pi_lock held
409 * [L] rtmutex->wait_lock held
410 *
411 * Step Description Protected by
412 * function arguments:
413 * @task [R]
414 * @orig_lock if != NULL @top_task is blocked on it
415 * @next_lock Unprotected. Cannot be
416 * dereferenced. Only used for
417 * comparison.
418 * @orig_waiter if != NULL @top_task is blocked on it
419 * @top_task current, or in case of proxy
420 * locking protected by calling
421 * code
422 * again:
423 * loop_sanity_check();
424 * retry:
425 * [1] lock(task->pi_lock); [R] acquire [P]
426 * [2] waiter = task->pi_blocked_on; [P]
427 * [3] check_exit_conditions_1(); [P]
428 * [4] lock = waiter->lock; [P]
429 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
430 * unlock(task->pi_lock); release [P]
431 * goto retry;
432 * }
433 * [6] check_exit_conditions_2(); [P] + [L]
434 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
435 * [8] unlock(task->pi_lock); release [P]
436 * put_task_struct(task); release [R]
437 * [9] check_exit_conditions_3(); [L]
438 * [10] task = owner(lock); [L]
439 * get_task_struct(task); [L] acquire [R]
440 * lock(task->pi_lock); [L] acquire [P]
441 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
442 * [12] check_exit_conditions_4(); [P] + [L]
443 * [13] unlock(task->pi_lock); release [P]
444 * unlock(lock->wait_lock); release [L]
445 * goto again;
446 */
447static int rt_mutex_adjust_prio_chain(struct task_struct *task,
448 enum rtmutex_chainwalk chwalk,
449 struct rt_mutex *orig_lock,
450 struct rt_mutex *next_lock,
451 struct rt_mutex_waiter *orig_waiter,
452 struct task_struct *top_task)
453{
454 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
455 struct rt_mutex_waiter *prerequeue_top_waiter;
456 int ret = 0, depth = 0;
457 struct rt_mutex *lock;
458 bool detect_deadlock;
459 bool requeue = true;
460
461 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
462
463 /*
464 * The (de)boosting is a step by step approach with a lot of
465 * pitfalls. We want this to be preemptible and we want hold a
466 * maximum of two locks per step. So we have to check
467 * carefully whether things change under us.
468 */
469 again:
470 /*
471 * We limit the lock chain length for each invocation.
472 */
473 if (++depth > max_lock_depth) {
474 static int prev_max;
475
476 /*
477 * Print this only once. If the admin changes the limit,
478 * print a new message when reaching the limit again.
479 */
480 if (prev_max != max_lock_depth) {
481 prev_max = max_lock_depth;
482 printk(KERN_WARNING "Maximum lock depth %d reached "
483 "task: %s (%d)\n", max_lock_depth,
484 top_task->comm, task_pid_nr(top_task));
485 }
486 put_task_struct(task);
487
488 return -EDEADLK;
489 }
490
491 /*
492 * We are fully preemptible here and only hold the refcount on
493 * @task. So everything can have changed under us since the
494 * caller or our own code below (goto retry/again) dropped all
495 * locks.
496 */
497 retry:
498 /*
499 * [1] Task cannot go away as we did a get_task() before !
500 */
501 raw_spin_lock_irq(&task->pi_lock);
502
503 /*
504 * [2] Get the waiter on which @task is blocked on.
505 */
506 waiter = task->pi_blocked_on;
507
508 /*
509 * [3] check_exit_conditions_1() protected by task->pi_lock.
510 */
511
512 /*
513 * Check whether the end of the boosting chain has been
514 * reached or the state of the chain has changed while we
515 * dropped the locks.
516 */
517 if (!waiter)
518 goto out_unlock_pi;
519
520 /*
521 * Check the orig_waiter state. After we dropped the locks,
522 * the previous owner of the lock might have released the lock.
523 */
524 if (orig_waiter && !rt_mutex_owner(orig_lock))
525 goto out_unlock_pi;
526
527 /*
528 * We dropped all locks after taking a refcount on @task, so
529 * the task might have moved on in the lock chain or even left
530 * the chain completely and blocks now on an unrelated lock or
531 * on @orig_lock.
532 *
533 * We stored the lock on which @task was blocked in @next_lock,
534 * so we can detect the chain change.
535 */
536 if (next_lock != waiter->lock)
537 goto out_unlock_pi;
538
539 /*
540 * Drop out, when the task has no waiters. Note,
541 * top_waiter can be NULL, when we are in the deboosting
542 * mode!
543 */
544 if (top_waiter) {
545 if (!task_has_pi_waiters(task))
546 goto out_unlock_pi;
547 /*
548 * If deadlock detection is off, we stop here if we
549 * are not the top pi waiter of the task. If deadlock
550 * detection is enabled we continue, but stop the
551 * requeueing in the chain walk.
552 */
553 if (top_waiter != task_top_pi_waiter(task)) {
554 if (!detect_deadlock)
555 goto out_unlock_pi;
556 else
557 requeue = false;
558 }
559 }
560
561 /*
562 * If the waiter priority is the same as the task priority
563 * then there is no further priority adjustment necessary. If
564 * deadlock detection is off, we stop the chain walk. If its
565 * enabled we continue, but stop the requeueing in the chain
566 * walk.
567 */
568 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
569 if (!detect_deadlock)
570 goto out_unlock_pi;
571 else
572 requeue = false;
573 }
574
575 /*
576 * [4] Get the next lock
577 */
578 lock = waiter->lock;
579 /*
580 * [5] We need to trylock here as we are holding task->pi_lock,
581 * which is the reverse lock order versus the other rtmutex
582 * operations.
583 */
584 if (!raw_spin_trylock(&lock->wait_lock)) {
585 raw_spin_unlock_irq(&task->pi_lock);
586 cpu_relax();
587 goto retry;
588 }
589
590 /*
591 * [6] check_exit_conditions_2() protected by task->pi_lock and
592 * lock->wait_lock.
593 *
594 * Deadlock detection. If the lock is the same as the original
595 * lock which caused us to walk the lock chain or if the
596 * current lock is owned by the task which initiated the chain
597 * walk, we detected a deadlock.
598 */
599 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
600 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
601 raw_spin_unlock(&lock->wait_lock);
602 ret = -EDEADLK;
603 goto out_unlock_pi;
604 }
605
606 /*
607 * If we just follow the lock chain for deadlock detection, no
608 * need to do all the requeue operations. To avoid a truckload
609 * of conditionals around the various places below, just do the
610 * minimum chain walk checks.
611 */
612 if (!requeue) {
613 /*
614 * No requeue[7] here. Just release @task [8]
615 */
616 raw_spin_unlock(&task->pi_lock);
617 put_task_struct(task);
618
619 /*
620 * [9] check_exit_conditions_3 protected by lock->wait_lock.
621 * If there is no owner of the lock, end of chain.
622 */
623 if (!rt_mutex_owner(lock)) {
624 raw_spin_unlock_irq(&lock->wait_lock);
625 return 0;
626 }
627
628 /* [10] Grab the next task, i.e. owner of @lock */
629 task = get_task_struct(rt_mutex_owner(lock));
630 raw_spin_lock(&task->pi_lock);
631
632 /*
633 * No requeue [11] here. We just do deadlock detection.
634 *
635 * [12] Store whether owner is blocked
636 * itself. Decision is made after dropping the locks
637 */
638 next_lock = task_blocked_on_lock(task);
639 /*
640 * Get the top waiter for the next iteration
641 */
642 top_waiter = rt_mutex_top_waiter(lock);
643
644 /* [13] Drop locks */
645 raw_spin_unlock(&task->pi_lock);
646 raw_spin_unlock_irq(&lock->wait_lock);
647
648 /* If owner is not blocked, end of chain. */
649 if (!next_lock)
650 goto out_put_task;
651 goto again;
652 }
653
654 /*
655 * Store the current top waiter before doing the requeue
656 * operation on @lock. We need it for the boost/deboost
657 * decision below.
658 */
659 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
660
661 /* [7] Requeue the waiter in the lock waiter tree. */
662 rt_mutex_dequeue(lock, waiter);
663
664 /*
665 * Update the waiter prio fields now that we're dequeued.
666 *
667 * These values can have changed through either:
668 *
669 * sys_sched_set_scheduler() / sys_sched_setattr()
670 *
671 * or
672 *
673 * DL CBS enforcement advancing the effective deadline.
674 *
675 * Even though pi_waiters also uses these fields, and that tree is only
676 * updated in [11], we can do this here, since we hold [L], which
677 * serializes all pi_waiters access and rb_erase() does not care about
678 * the values of the node being removed.
679 */
680 waiter->prio = task->prio;
681 waiter->deadline = task->dl.deadline;
682
683 rt_mutex_enqueue(lock, waiter);
684
685 /* [8] Release the task */
686 raw_spin_unlock(&task->pi_lock);
687 put_task_struct(task);
688
689 /*
690 * [9] check_exit_conditions_3 protected by lock->wait_lock.
691 *
692 * We must abort the chain walk if there is no lock owner even
693 * in the dead lock detection case, as we have nothing to
694 * follow here. This is the end of the chain we are walking.
695 */
696 if (!rt_mutex_owner(lock)) {
697 /*
698 * If the requeue [7] above changed the top waiter,
699 * then we need to wake the new top waiter up to try
700 * to get the lock.
701 */
702 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
703 wake_up_process(rt_mutex_top_waiter(lock)->task);
704 raw_spin_unlock_irq(&lock->wait_lock);
705 return 0;
706 }
707
708 /* [10] Grab the next task, i.e. the owner of @lock */
709 task = get_task_struct(rt_mutex_owner(lock));
710 raw_spin_lock(&task->pi_lock);
711
712 /* [11] requeue the pi waiters if necessary */
713 if (waiter == rt_mutex_top_waiter(lock)) {
714 /*
715 * The waiter became the new top (highest priority)
716 * waiter on the lock. Replace the previous top waiter
717 * in the owner tasks pi waiters tree with this waiter
718 * and adjust the priority of the owner.
719 */
720 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
721 rt_mutex_enqueue_pi(task, waiter);
722 rt_mutex_adjust_prio(task);
723
724 } else if (prerequeue_top_waiter == waiter) {
725 /*
726 * The waiter was the top waiter on the lock, but is
727 * no longer the top prority waiter. Replace waiter in
728 * the owner tasks pi waiters tree with the new top
729 * (highest priority) waiter and adjust the priority
730 * of the owner.
731 * The new top waiter is stored in @waiter so that
732 * @waiter == @top_waiter evaluates to true below and
733 * we continue to deboost the rest of the chain.
734 */
735 rt_mutex_dequeue_pi(task, waiter);
736 waiter = rt_mutex_top_waiter(lock);
737 rt_mutex_enqueue_pi(task, waiter);
738 rt_mutex_adjust_prio(task);
739 } else {
740 /*
741 * Nothing changed. No need to do any priority
742 * adjustment.
743 */
744 }
745
746 /*
747 * [12] check_exit_conditions_4() protected by task->pi_lock
748 * and lock->wait_lock. The actual decisions are made after we
749 * dropped the locks.
750 *
751 * Check whether the task which owns the current lock is pi
752 * blocked itself. If yes we store a pointer to the lock for
753 * the lock chain change detection above. After we dropped
754 * task->pi_lock next_lock cannot be dereferenced anymore.
755 */
756 next_lock = task_blocked_on_lock(task);
757 /*
758 * Store the top waiter of @lock for the end of chain walk
759 * decision below.
760 */
761 top_waiter = rt_mutex_top_waiter(lock);
762
763 /* [13] Drop the locks */
764 raw_spin_unlock(&task->pi_lock);
765 raw_spin_unlock_irq(&lock->wait_lock);
766
767 /*
768 * Make the actual exit decisions [12], based on the stored
769 * values.
770 *
771 * We reached the end of the lock chain. Stop right here. No
772 * point to go back just to figure that out.
773 */
774 if (!next_lock)
775 goto out_put_task;
776
777 /*
778 * If the current waiter is not the top waiter on the lock,
779 * then we can stop the chain walk here if we are not in full
780 * deadlock detection mode.
781 */
782 if (!detect_deadlock && waiter != top_waiter)
783 goto out_put_task;
784
785 goto again;
786
787 out_unlock_pi:
788 raw_spin_unlock_irq(&task->pi_lock);
789 out_put_task:
790 put_task_struct(task);
791
792 return ret;
793}
794
795/*
796 * Try to take an rt-mutex
797 *
798 * Must be called with lock->wait_lock held and interrupts disabled
799 *
800 * @lock: The lock to be acquired.
801 * @task: The task which wants to acquire the lock
802 * @waiter: The waiter that is queued to the lock's wait tree if the
803 * callsite called task_blocked_on_lock(), otherwise NULL
804 */
805static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
806 struct rt_mutex_waiter *waiter)
807{
808 lockdep_assert_held(&lock->wait_lock);
809
810 /*
811 * Before testing whether we can acquire @lock, we set the
812 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
813 * other tasks which try to modify @lock into the slow path
814 * and they serialize on @lock->wait_lock.
815 *
816 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
817 * as explained at the top of this file if and only if:
818 *
819 * - There is a lock owner. The caller must fixup the
820 * transient state if it does a trylock or leaves the lock
821 * function due to a signal or timeout.
822 *
823 * - @task acquires the lock and there are no other
824 * waiters. This is undone in rt_mutex_set_owner(@task) at
825 * the end of this function.
826 */
827 mark_rt_mutex_waiters(lock);
828
829 /*
830 * If @lock has an owner, give up.
831 */
832 if (rt_mutex_owner(lock))
833 return 0;
834
835 /*
836 * If @waiter != NULL, @task has already enqueued the waiter
837 * into @lock waiter tree. If @waiter == NULL then this is a
838 * trylock attempt.
839 */
840 if (waiter) {
841 /*
842 * If waiter is not the highest priority waiter of
843 * @lock, give up.
844 */
845 if (waiter != rt_mutex_top_waiter(lock))
846 return 0;
847
848 /*
849 * We can acquire the lock. Remove the waiter from the
850 * lock waiters tree.
851 */
852 rt_mutex_dequeue(lock, waiter);
853
854 } else {
855 /*
856 * If the lock has waiters already we check whether @task is
857 * eligible to take over the lock.
858 *
859 * If there are no other waiters, @task can acquire
860 * the lock. @task->pi_blocked_on is NULL, so it does
861 * not need to be dequeued.
862 */
863 if (rt_mutex_has_waiters(lock)) {
864 /*
865 * If @task->prio is greater than or equal to
866 * the top waiter priority (kernel view),
867 * @task lost.
868 */
869 if (!rt_mutex_waiter_less(task_to_waiter(task),
870 rt_mutex_top_waiter(lock)))
871 return 0;
872
873 /*
874 * The current top waiter stays enqueued. We
875 * don't have to change anything in the lock
876 * waiters order.
877 */
878 } else {
879 /*
880 * No waiters. Take the lock without the
881 * pi_lock dance.@task->pi_blocked_on is NULL
882 * and we have no waiters to enqueue in @task
883 * pi waiters tree.
884 */
885 goto takeit;
886 }
887 }
888
889 /*
890 * Clear @task->pi_blocked_on. Requires protection by
891 * @task->pi_lock. Redundant operation for the @waiter == NULL
892 * case, but conditionals are more expensive than a redundant
893 * store.
894 */
895 raw_spin_lock(&task->pi_lock);
896 task->pi_blocked_on = NULL;
897 /*
898 * Finish the lock acquisition. @task is the new owner. If
899 * other waiters exist we have to insert the highest priority
900 * waiter into @task->pi_waiters tree.
901 */
902 if (rt_mutex_has_waiters(lock))
903 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
904 raw_spin_unlock(&task->pi_lock);
905
906takeit:
907 /* We got the lock. */
908 debug_rt_mutex_lock(lock);
909
910 /*
911 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
912 * are still waiters or clears it.
913 */
914 rt_mutex_set_owner(lock, task);
915
916 return 1;
917}
918
919/*
920 * Task blocks on lock.
921 *
922 * Prepare waiter and propagate pi chain
923 *
924 * This must be called with lock->wait_lock held and interrupts disabled
925 */
926static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
927 struct rt_mutex_waiter *waiter,
928 struct task_struct *task,
929 enum rtmutex_chainwalk chwalk)
930{
931 struct task_struct *owner = rt_mutex_owner(lock);
932 struct rt_mutex_waiter *top_waiter = waiter;
933 struct rt_mutex *next_lock;
934 int chain_walk = 0, res;
935
936 lockdep_assert_held(&lock->wait_lock);
937
938 /*
939 * Early deadlock detection. We really don't want the task to
940 * enqueue on itself just to untangle the mess later. It's not
941 * only an optimization. We drop the locks, so another waiter
942 * can come in before the chain walk detects the deadlock. So
943 * the other will detect the deadlock and return -EDEADLOCK,
944 * which is wrong, as the other waiter is not in a deadlock
945 * situation.
946 */
947 if (owner == task)
948 return -EDEADLK;
949
950 raw_spin_lock(&task->pi_lock);
951 waiter->task = task;
952 waiter->lock = lock;
953 waiter->prio = task->prio;
954 waiter->deadline = task->dl.deadline;
955
956 /* Get the top priority waiter on the lock */
957 if (rt_mutex_has_waiters(lock))
958 top_waiter = rt_mutex_top_waiter(lock);
959 rt_mutex_enqueue(lock, waiter);
960
961 task->pi_blocked_on = waiter;
962
963 raw_spin_unlock(&task->pi_lock);
964
965 if (!owner)
966 return 0;
967
968 raw_spin_lock(&owner->pi_lock);
969 if (waiter == rt_mutex_top_waiter(lock)) {
970 rt_mutex_dequeue_pi(owner, top_waiter);
971 rt_mutex_enqueue_pi(owner, waiter);
972
973 rt_mutex_adjust_prio(owner);
974 if (owner->pi_blocked_on)
975 chain_walk = 1;
976 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
977 chain_walk = 1;
978 }
979
980 /* Store the lock on which owner is blocked or NULL */
981 next_lock = task_blocked_on_lock(owner);
982
983 raw_spin_unlock(&owner->pi_lock);
984 /*
985 * Even if full deadlock detection is on, if the owner is not
986 * blocked itself, we can avoid finding this out in the chain
987 * walk.
988 */
989 if (!chain_walk || !next_lock)
990 return 0;
991
992 /*
993 * The owner can't disappear while holding a lock,
994 * so the owner struct is protected by wait_lock.
995 * Gets dropped in rt_mutex_adjust_prio_chain()!
996 */
997 get_task_struct(owner);
998
999 raw_spin_unlock_irq(&lock->wait_lock);
1000
1001 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1002 next_lock, waiter, task);
1003
1004 raw_spin_lock_irq(&lock->wait_lock);
1005
1006 return res;
1007}
1008
1009/*
1010 * Remove the top waiter from the current tasks pi waiter tree and
1011 * queue it up.
1012 *
1013 * Called with lock->wait_lock held and interrupts disabled.
1014 */
1015static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1016 struct rt_mutex *lock)
1017{
1018 struct rt_mutex_waiter *waiter;
1019
1020 raw_spin_lock(¤t->pi_lock);
1021
1022 waiter = rt_mutex_top_waiter(lock);
1023
1024 /*
1025 * Remove it from current->pi_waiters and deboost.
1026 *
1027 * We must in fact deboost here in order to ensure we call
1028 * rt_mutex_setprio() to update p->pi_top_task before the
1029 * task unblocks.
1030 */
1031 rt_mutex_dequeue_pi(current, waiter);
1032 rt_mutex_adjust_prio(current);
1033
1034 /*
1035 * As we are waking up the top waiter, and the waiter stays
1036 * queued on the lock until it gets the lock, this lock
1037 * obviously has waiters. Just set the bit here and this has
1038 * the added benefit of forcing all new tasks into the
1039 * slow path making sure no task of lower priority than
1040 * the top waiter can steal this lock.
1041 */
1042 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1043
1044 /*
1045 * We deboosted before waking the top waiter task such that we don't
1046 * run two tasks with the 'same' priority (and ensure the
1047 * p->pi_top_task pointer points to a blocked task). This however can
1048 * lead to priority inversion if we would get preempted after the
1049 * deboost but before waking our donor task, hence the preempt_disable()
1050 * before unlock.
1051 *
1052 * Pairs with preempt_enable() in rt_mutex_postunlock();
1053 */
1054 preempt_disable();
1055 wake_q_add(wake_q, waiter->task);
1056 raw_spin_unlock(¤t->pi_lock);
1057}
1058
1059/*
1060 * Remove a waiter from a lock and give up
1061 *
1062 * Must be called with lock->wait_lock held and interrupts disabled. I must
1063 * have just failed to try_to_take_rt_mutex().
1064 */
1065static void remove_waiter(struct rt_mutex *lock,
1066 struct rt_mutex_waiter *waiter)
1067{
1068 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1069 struct task_struct *owner = rt_mutex_owner(lock);
1070 struct rt_mutex *next_lock;
1071
1072 lockdep_assert_held(&lock->wait_lock);
1073
1074 raw_spin_lock(¤t->pi_lock);
1075 rt_mutex_dequeue(lock, waiter);
1076 current->pi_blocked_on = NULL;
1077 raw_spin_unlock(¤t->pi_lock);
1078
1079 /*
1080 * Only update priority if the waiter was the highest priority
1081 * waiter of the lock and there is an owner to update.
1082 */
1083 if (!owner || !is_top_waiter)
1084 return;
1085
1086 raw_spin_lock(&owner->pi_lock);
1087
1088 rt_mutex_dequeue_pi(owner, waiter);
1089
1090 if (rt_mutex_has_waiters(lock))
1091 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1092
1093 rt_mutex_adjust_prio(owner);
1094
1095 /* Store the lock on which owner is blocked or NULL */
1096 next_lock = task_blocked_on_lock(owner);
1097
1098 raw_spin_unlock(&owner->pi_lock);
1099
1100 /*
1101 * Don't walk the chain, if the owner task is not blocked
1102 * itself.
1103 */
1104 if (!next_lock)
1105 return;
1106
1107 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1108 get_task_struct(owner);
1109
1110 raw_spin_unlock_irq(&lock->wait_lock);
1111
1112 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1113 next_lock, NULL, current);
1114
1115 raw_spin_lock_irq(&lock->wait_lock);
1116}
1117
1118/*
1119 * Recheck the pi chain, in case we got a priority setting
1120 *
1121 * Called from sched_setscheduler
1122 */
1123void rt_mutex_adjust_pi(struct task_struct *task)
1124{
1125 struct rt_mutex_waiter *waiter;
1126 struct rt_mutex *next_lock;
1127 unsigned long flags;
1128
1129 raw_spin_lock_irqsave(&task->pi_lock, flags);
1130
1131 waiter = task->pi_blocked_on;
1132 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1133 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1134 return;
1135 }
1136 next_lock = waiter->lock;
1137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138
1139 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1140 get_task_struct(task);
1141
1142 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1143 next_lock, NULL, task);
1144}
1145
1146void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1147{
1148 debug_rt_mutex_init_waiter(waiter);
1149 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1150 RB_CLEAR_NODE(&waiter->tree_entry);
1151 waiter->task = NULL;
1152}
1153
1154/**
1155 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1156 * @lock: the rt_mutex to take
1157 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1158 * or TASK_UNINTERRUPTIBLE)
1159 * @timeout: the pre-initialized and started timer, or NULL for none
1160 * @waiter: the pre-initialized rt_mutex_waiter
1161 *
1162 * Must be called with lock->wait_lock held and interrupts disabled
1163 */
1164static int __sched
1165__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1166 struct hrtimer_sleeper *timeout,
1167 struct rt_mutex_waiter *waiter)
1168{
1169 int ret = 0;
1170
1171 for (;;) {
1172 /* Try to acquire the lock: */
1173 if (try_to_take_rt_mutex(lock, current, waiter))
1174 break;
1175
1176 /*
1177 * TASK_INTERRUPTIBLE checks for signals and
1178 * timeout. Ignored otherwise.
1179 */
1180 if (likely(state == TASK_INTERRUPTIBLE)) {
1181 /* Signal pending? */
1182 if (signal_pending(current))
1183 ret = -EINTR;
1184 if (timeout && !timeout->task)
1185 ret = -ETIMEDOUT;
1186 if (ret)
1187 break;
1188 }
1189
1190 raw_spin_unlock_irq(&lock->wait_lock);
1191
1192 debug_rt_mutex_print_deadlock(waiter);
1193
1194 schedule();
1195
1196 raw_spin_lock_irq(&lock->wait_lock);
1197 set_current_state(state);
1198 }
1199
1200 __set_current_state(TASK_RUNNING);
1201 return ret;
1202}
1203
1204static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1205 struct rt_mutex_waiter *w)
1206{
1207 /*
1208 * If the result is not -EDEADLOCK or the caller requested
1209 * deadlock detection, nothing to do here.
1210 */
1211 if (res != -EDEADLOCK || detect_deadlock)
1212 return;
1213
1214 /*
1215 * Yell lowdly and stop the task right here.
1216 */
1217 rt_mutex_print_deadlock(w);
1218 while (1) {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220 schedule();
1221 }
1222}
1223
1224/*
1225 * Slow path lock function:
1226 */
1227static int __sched
1228rt_mutex_slowlock(struct rt_mutex *lock, int state,
1229 struct hrtimer_sleeper *timeout,
1230 enum rtmutex_chainwalk chwalk)
1231{
1232 struct rt_mutex_waiter waiter;
1233 unsigned long flags;
1234 int ret = 0;
1235
1236 rt_mutex_init_waiter(&waiter);
1237
1238 /*
1239 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1240 * be called in early boot if the cmpxchg() fast path is disabled
1241 * (debug, no architecture support). In this case we will acquire the
1242 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1243 * enable interrupts in that early boot case. So we need to use the
1244 * irqsave/restore variants.
1245 */
1246 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1247
1248 /* Try to acquire the lock again: */
1249 if (try_to_take_rt_mutex(lock, current, NULL)) {
1250 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1251 return 0;
1252 }
1253
1254 set_current_state(state);
1255
1256 /* Setup the timer, when timeout != NULL */
1257 if (unlikely(timeout))
1258 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1259
1260 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1261
1262 if (likely(!ret))
1263 /* sleep on the mutex */
1264 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1265
1266 if (unlikely(ret)) {
1267 __set_current_state(TASK_RUNNING);
1268 remove_waiter(lock, &waiter);
1269 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1270 }
1271
1272 /*
1273 * try_to_take_rt_mutex() sets the waiter bit
1274 * unconditionally. We might have to fix that up.
1275 */
1276 fixup_rt_mutex_waiters(lock);
1277
1278 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1279
1280 /* Remove pending timer: */
1281 if (unlikely(timeout))
1282 hrtimer_cancel(&timeout->timer);
1283
1284 debug_rt_mutex_free_waiter(&waiter);
1285
1286 return ret;
1287}
1288
1289static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1290{
1291 int ret = try_to_take_rt_mutex(lock, current, NULL);
1292
1293 /*
1294 * try_to_take_rt_mutex() sets the lock waiters bit
1295 * unconditionally. Clean this up.
1296 */
1297 fixup_rt_mutex_waiters(lock);
1298
1299 return ret;
1300}
1301
1302/*
1303 * Slow path try-lock function:
1304 */
1305static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1306{
1307 unsigned long flags;
1308 int ret;
1309
1310 /*
1311 * If the lock already has an owner we fail to get the lock.
1312 * This can be done without taking the @lock->wait_lock as
1313 * it is only being read, and this is a trylock anyway.
1314 */
1315 if (rt_mutex_owner(lock))
1316 return 0;
1317
1318 /*
1319 * The mutex has currently no owner. Lock the wait lock and try to
1320 * acquire the lock. We use irqsave here to support early boot calls.
1321 */
1322 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1323
1324 ret = __rt_mutex_slowtrylock(lock);
1325
1326 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327
1328 return ret;
1329}
1330
1331/*
1332 * Slow path to release a rt-mutex.
1333 *
1334 * Return whether the current task needs to call rt_mutex_postunlock().
1335 */
1336static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1337 struct wake_q_head *wake_q)
1338{
1339 unsigned long flags;
1340
1341 /* irqsave required to support early boot calls */
1342 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1343
1344 debug_rt_mutex_unlock(lock);
1345
1346 /*
1347 * We must be careful here if the fast path is enabled. If we
1348 * have no waiters queued we cannot set owner to NULL here
1349 * because of:
1350 *
1351 * foo->lock->owner = NULL;
1352 * rtmutex_lock(foo->lock); <- fast path
1353 * free = atomic_dec_and_test(foo->refcnt);
1354 * rtmutex_unlock(foo->lock); <- fast path
1355 * if (free)
1356 * kfree(foo);
1357 * raw_spin_unlock(foo->lock->wait_lock);
1358 *
1359 * So for the fastpath enabled kernel:
1360 *
1361 * Nothing can set the waiters bit as long as we hold
1362 * lock->wait_lock. So we do the following sequence:
1363 *
1364 * owner = rt_mutex_owner(lock);
1365 * clear_rt_mutex_waiters(lock);
1366 * raw_spin_unlock(&lock->wait_lock);
1367 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1368 * return;
1369 * goto retry;
1370 *
1371 * The fastpath disabled variant is simple as all access to
1372 * lock->owner is serialized by lock->wait_lock:
1373 *
1374 * lock->owner = NULL;
1375 * raw_spin_unlock(&lock->wait_lock);
1376 */
1377 while (!rt_mutex_has_waiters(lock)) {
1378 /* Drops lock->wait_lock ! */
1379 if (unlock_rt_mutex_safe(lock, flags) == true)
1380 return false;
1381 /* Relock the rtmutex and try again */
1382 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1383 }
1384
1385 /*
1386 * The wakeup next waiter path does not suffer from the above
1387 * race. See the comments there.
1388 *
1389 * Queue the next waiter for wakeup once we release the wait_lock.
1390 */
1391 mark_wakeup_next_waiter(wake_q, lock);
1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394 return true; /* call rt_mutex_postunlock() */
1395}
1396
1397/*
1398 * debug aware fast / slowpath lock,trylock,unlock
1399 *
1400 * The atomic acquire/release ops are compiled away, when either the
1401 * architecture does not support cmpxchg or when debugging is enabled.
1402 */
1403static inline int
1404rt_mutex_fastlock(struct rt_mutex *lock, int state,
1405 int (*slowfn)(struct rt_mutex *lock, int state,
1406 struct hrtimer_sleeper *timeout,
1407 enum rtmutex_chainwalk chwalk))
1408{
1409 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1410 return 0;
1411
1412 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1413}
1414
1415static inline int
1416rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1417 struct hrtimer_sleeper *timeout,
1418 enum rtmutex_chainwalk chwalk,
1419 int (*slowfn)(struct rt_mutex *lock, int state,
1420 struct hrtimer_sleeper *timeout,
1421 enum rtmutex_chainwalk chwalk))
1422{
1423 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1424 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1425 return 0;
1426
1427 return slowfn(lock, state, timeout, chwalk);
1428}
1429
1430static inline int
1431rt_mutex_fasttrylock(struct rt_mutex *lock,
1432 int (*slowfn)(struct rt_mutex *lock))
1433{
1434 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 return 1;
1436
1437 return slowfn(lock);
1438}
1439
1440/*
1441 * Performs the wakeup of the the top-waiter and re-enables preemption.
1442 */
1443void rt_mutex_postunlock(struct wake_q_head *wake_q)
1444{
1445 wake_up_q(wake_q);
1446
1447 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1448 preempt_enable();
1449}
1450
1451static inline void
1452rt_mutex_fastunlock(struct rt_mutex *lock,
1453 bool (*slowfn)(struct rt_mutex *lock,
1454 struct wake_q_head *wqh))
1455{
1456 DEFINE_WAKE_Q(wake_q);
1457
1458 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459 return;
1460
1461 if (slowfn(lock, &wake_q))
1462 rt_mutex_postunlock(&wake_q);
1463}
1464
1465static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1466{
1467 might_sleep();
1468
1469 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1470 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1471}
1472
1473#ifdef CONFIG_DEBUG_LOCK_ALLOC
1474/**
1475 * rt_mutex_lock_nested - lock a rt_mutex
1476 *
1477 * @lock: the rt_mutex to be locked
1478 * @subclass: the lockdep subclass
1479 */
1480void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1481{
1482 __rt_mutex_lock(lock, subclass);
1483}
1484EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1485
1486#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1487
1488/**
1489 * rt_mutex_lock - lock a rt_mutex
1490 *
1491 * @lock: the rt_mutex to be locked
1492 */
1493void __sched rt_mutex_lock(struct rt_mutex *lock)
1494{
1495 __rt_mutex_lock(lock, 0);
1496}
1497EXPORT_SYMBOL_GPL(rt_mutex_lock);
1498#endif
1499
1500/**
1501 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1502 *
1503 * @lock: the rt_mutex to be locked
1504 *
1505 * Returns:
1506 * 0 on success
1507 * -EINTR when interrupted by a signal
1508 */
1509int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1510{
1511 int ret;
1512
1513 might_sleep();
1514
1515 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1516 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1517 if (ret)
1518 mutex_release(&lock->dep_map, _RET_IP_);
1519
1520 return ret;
1521}
1522EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1523
1524/*
1525 * Futex variant, must not use fastpath.
1526 */
1527int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1528{
1529 return rt_mutex_slowtrylock(lock);
1530}
1531
1532int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1533{
1534 return __rt_mutex_slowtrylock(lock);
1535}
1536
1537/**
1538 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1539 * the timeout structure is provided
1540 * by the caller
1541 *
1542 * @lock: the rt_mutex to be locked
1543 * @timeout: timeout structure or NULL (no timeout)
1544 *
1545 * Returns:
1546 * 0 on success
1547 * -EINTR when interrupted by a signal
1548 * -ETIMEDOUT when the timeout expired
1549 */
1550int
1551rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1552{
1553 int ret;
1554
1555 might_sleep();
1556
1557 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1558 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1559 RT_MUTEX_MIN_CHAINWALK,
1560 rt_mutex_slowlock);
1561 if (ret)
1562 mutex_release(&lock->dep_map, _RET_IP_);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1567
1568/**
1569 * rt_mutex_trylock - try to lock a rt_mutex
1570 *
1571 * @lock: the rt_mutex to be locked
1572 *
1573 * This function can only be called in thread context. It's safe to
1574 * call it from atomic regions, but not from hard interrupt or soft
1575 * interrupt context.
1576 *
1577 * Returns 1 on success and 0 on contention
1578 */
1579int __sched rt_mutex_trylock(struct rt_mutex *lock)
1580{
1581 int ret;
1582
1583 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1584 return 0;
1585
1586 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1587 if (ret)
1588 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1589
1590 return ret;
1591}
1592EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1593
1594/**
1595 * rt_mutex_unlock - unlock a rt_mutex
1596 *
1597 * @lock: the rt_mutex to be unlocked
1598 */
1599void __sched rt_mutex_unlock(struct rt_mutex *lock)
1600{
1601 mutex_release(&lock->dep_map, _RET_IP_);
1602 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1603}
1604EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1605
1606/**
1607 * Futex variant, that since futex variants do not use the fast-path, can be
1608 * simple and will not need to retry.
1609 */
1610bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1611 struct wake_q_head *wake_q)
1612{
1613 lockdep_assert_held(&lock->wait_lock);
1614
1615 debug_rt_mutex_unlock(lock);
1616
1617 if (!rt_mutex_has_waiters(lock)) {
1618 lock->owner = NULL;
1619 return false; /* done */
1620 }
1621
1622 /*
1623 * We've already deboosted, mark_wakeup_next_waiter() will
1624 * retain preempt_disabled when we drop the wait_lock, to
1625 * avoid inversion prior to the wakeup. preempt_disable()
1626 * therein pairs with rt_mutex_postunlock().
1627 */
1628 mark_wakeup_next_waiter(wake_q, lock);
1629
1630 return true; /* call postunlock() */
1631}
1632
1633void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1634{
1635 DEFINE_WAKE_Q(wake_q);
1636 unsigned long flags;
1637 bool postunlock;
1638
1639 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1640 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1641 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1642
1643 if (postunlock)
1644 rt_mutex_postunlock(&wake_q);
1645}
1646
1647/**
1648 * rt_mutex_destroy - mark a mutex unusable
1649 * @lock: the mutex to be destroyed
1650 *
1651 * This function marks the mutex uninitialized, and any subsequent
1652 * use of the mutex is forbidden. The mutex must not be locked when
1653 * this function is called.
1654 */
1655void rt_mutex_destroy(struct rt_mutex *lock)
1656{
1657 WARN_ON(rt_mutex_is_locked(lock));
1658#ifdef CONFIG_DEBUG_RT_MUTEXES
1659 lock->magic = NULL;
1660#endif
1661}
1662EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1663
1664/**
1665 * __rt_mutex_init - initialize the rt lock
1666 *
1667 * @lock: the rt lock to be initialized
1668 *
1669 * Initialize the rt lock to unlocked state.
1670 *
1671 * Initializing of a locked rt lock is not allowed
1672 */
1673void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1674 struct lock_class_key *key)
1675{
1676 lock->owner = NULL;
1677 raw_spin_lock_init(&lock->wait_lock);
1678 lock->waiters = RB_ROOT_CACHED;
1679
1680 if (name && key)
1681 debug_rt_mutex_init(lock, name, key);
1682}
1683EXPORT_SYMBOL_GPL(__rt_mutex_init);
1684
1685/**
1686 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1687 * proxy owner
1688 *
1689 * @lock: the rt_mutex to be locked
1690 * @proxy_owner:the task to set as owner
1691 *
1692 * No locking. Caller has to do serializing itself
1693 *
1694 * Special API call for PI-futex support. This initializes the rtmutex and
1695 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1696 * possible at this point because the pi_state which contains the rtmutex
1697 * is not yet visible to other tasks.
1698 */
1699void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1700 struct task_struct *proxy_owner)
1701{
1702 __rt_mutex_init(lock, NULL, NULL);
1703 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1704 rt_mutex_set_owner(lock, proxy_owner);
1705}
1706
1707/**
1708 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1709 *
1710 * @lock: the rt_mutex to be locked
1711 *
1712 * No locking. Caller has to do serializing itself
1713 *
1714 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1715 * (debugging) state. Concurrent operations on this rt_mutex are not
1716 * possible because it belongs to the pi_state which is about to be freed
1717 * and it is not longer visible to other tasks.
1718 */
1719void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1720 struct task_struct *proxy_owner)
1721{
1722 debug_rt_mutex_proxy_unlock(lock);
1723 rt_mutex_set_owner(lock, NULL);
1724}
1725
1726/**
1727 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1728 * @lock: the rt_mutex to take
1729 * @waiter: the pre-initialized rt_mutex_waiter
1730 * @task: the task to prepare
1731 *
1732 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1733 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1734 *
1735 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1736 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1737 *
1738 * Returns:
1739 * 0 - task blocked on lock
1740 * 1 - acquired the lock for task, caller should wake it up
1741 * <0 - error
1742 *
1743 * Special API call for PI-futex support.
1744 */
1745int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1746 struct rt_mutex_waiter *waiter,
1747 struct task_struct *task)
1748{
1749 int ret;
1750
1751 lockdep_assert_held(&lock->wait_lock);
1752
1753 if (try_to_take_rt_mutex(lock, task, NULL))
1754 return 1;
1755
1756 /* We enforce deadlock detection for futexes */
1757 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1758 RT_MUTEX_FULL_CHAINWALK);
1759
1760 if (ret && !rt_mutex_owner(lock)) {
1761 /*
1762 * Reset the return value. We might have
1763 * returned with -EDEADLK and the owner
1764 * released the lock while we were walking the
1765 * pi chain. Let the waiter sort it out.
1766 */
1767 ret = 0;
1768 }
1769
1770 debug_rt_mutex_print_deadlock(waiter);
1771
1772 return ret;
1773}
1774
1775/**
1776 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1777 * @lock: the rt_mutex to take
1778 * @waiter: the pre-initialized rt_mutex_waiter
1779 * @task: the task to prepare
1780 *
1781 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1782 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1783 *
1784 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1785 * on failure.
1786 *
1787 * Returns:
1788 * 0 - task blocked on lock
1789 * 1 - acquired the lock for task, caller should wake it up
1790 * <0 - error
1791 *
1792 * Special API call for PI-futex support.
1793 */
1794int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1795 struct rt_mutex_waiter *waiter,
1796 struct task_struct *task)
1797{
1798 int ret;
1799
1800 raw_spin_lock_irq(&lock->wait_lock);
1801 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1802 if (unlikely(ret))
1803 remove_waiter(lock, waiter);
1804 raw_spin_unlock_irq(&lock->wait_lock);
1805
1806 return ret;
1807}
1808
1809/**
1810 * rt_mutex_next_owner - return the next owner of the lock
1811 *
1812 * @lock: the rt lock query
1813 *
1814 * Returns the next owner of the lock or NULL
1815 *
1816 * Caller has to serialize against other accessors to the lock
1817 * itself.
1818 *
1819 * Special API call for PI-futex support
1820 */
1821struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1822{
1823 if (!rt_mutex_has_waiters(lock))
1824 return NULL;
1825
1826 return rt_mutex_top_waiter(lock)->task;
1827}
1828
1829/**
1830 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1831 * @lock: the rt_mutex we were woken on
1832 * @to: the timeout, null if none. hrtimer should already have
1833 * been started.
1834 * @waiter: the pre-initialized rt_mutex_waiter
1835 *
1836 * Wait for the the lock acquisition started on our behalf by
1837 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1838 * rt_mutex_cleanup_proxy_lock().
1839 *
1840 * Returns:
1841 * 0 - success
1842 * <0 - error, one of -EINTR, -ETIMEDOUT
1843 *
1844 * Special API call for PI-futex support
1845 */
1846int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1847 struct hrtimer_sleeper *to,
1848 struct rt_mutex_waiter *waiter)
1849{
1850 int ret;
1851
1852 raw_spin_lock_irq(&lock->wait_lock);
1853 /* sleep on the mutex */
1854 set_current_state(TASK_INTERRUPTIBLE);
1855 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1856 /*
1857 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1858 * have to fix that up.
1859 */
1860 fixup_rt_mutex_waiters(lock);
1861 raw_spin_unlock_irq(&lock->wait_lock);
1862
1863 return ret;
1864}
1865
1866/**
1867 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1868 * @lock: the rt_mutex we were woken on
1869 * @waiter: the pre-initialized rt_mutex_waiter
1870 *
1871 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1872 * rt_mutex_wait_proxy_lock().
1873 *
1874 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1875 * in fact still be granted ownership until we're removed. Therefore we can
1876 * find we are in fact the owner and must disregard the
1877 * rt_mutex_wait_proxy_lock() failure.
1878 *
1879 * Returns:
1880 * true - did the cleanup, we done.
1881 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1882 * caller should disregards its return value.
1883 *
1884 * Special API call for PI-futex support
1885 */
1886bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1887 struct rt_mutex_waiter *waiter)
1888{
1889 bool cleanup = false;
1890
1891 raw_spin_lock_irq(&lock->wait_lock);
1892 /*
1893 * Do an unconditional try-lock, this deals with the lock stealing
1894 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1895 * sets a NULL owner.
1896 *
1897 * We're not interested in the return value, because the subsequent
1898 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1899 * we will own the lock and it will have removed the waiter. If we
1900 * failed the trylock, we're still not owner and we need to remove
1901 * ourselves.
1902 */
1903 try_to_take_rt_mutex(lock, current, waiter);
1904 /*
1905 * Unless we're the owner; we're still enqueued on the wait_list.
1906 * So check if we became owner, if not, take us off the wait_list.
1907 */
1908 if (rt_mutex_owner(lock) != current) {
1909 remove_waiter(lock, waiter);
1910 cleanup = true;
1911 }
1912 /*
1913 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1914 * have to fix that up.
1915 */
1916 fixup_rt_mutex_waiters(lock);
1917
1918 raw_spin_unlock_irq(&lock->wait_lock);
1919
1920 return cleanup;
1921}