Loading...
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15#include <linux/hashtable.h>
16#include <linux/sched.h>
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
29
30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31
32enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
35};
36
37/*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 */
41struct userfaultfd_ctx {
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq;
50 /* pseudo fd refcounting */
51 atomic_t refcount;
52 /* userfaultfd syscall flags */
53 unsigned int flags;
54 /* state machine */
55 enum userfaultfd_state state;
56 /* released */
57 bool released;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
59 struct mm_struct *mm;
60};
61
62struct userfaultfd_wait_queue {
63 struct uffd_msg msg;
64 wait_queue_t wq;
65 struct userfaultfd_ctx *ctx;
66 bool waken;
67};
68
69struct userfaultfd_wake_range {
70 unsigned long start;
71 unsigned long len;
72};
73
74static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
75 int wake_flags, void *key)
76{
77 struct userfaultfd_wake_range *range = key;
78 int ret;
79 struct userfaultfd_wait_queue *uwq;
80 unsigned long start, len;
81
82 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
83 ret = 0;
84 /* len == 0 means wake all */
85 start = range->start;
86 len = range->len;
87 if (len && (start > uwq->msg.arg.pagefault.address ||
88 start + len <= uwq->msg.arg.pagefault.address))
89 goto out;
90 WRITE_ONCE(uwq->waken, true);
91 /*
92 * The implicit smp_mb__before_spinlock in try_to_wake_up()
93 * renders uwq->waken visible to other CPUs before the task is
94 * waken.
95 */
96 ret = wake_up_state(wq->private, mode);
97 if (ret)
98 /*
99 * Wake only once, autoremove behavior.
100 *
101 * After the effect of list_del_init is visible to the
102 * other CPUs, the waitqueue may disappear from under
103 * us, see the !list_empty_careful() in
104 * handle_userfault(). try_to_wake_up() has an
105 * implicit smp_mb__before_spinlock, and the
106 * wq->private is read before calling the extern
107 * function "wake_up_state" (which in turns calls
108 * try_to_wake_up). While the spin_lock;spin_unlock;
109 * wouldn't be enough, the smp_mb__before_spinlock is
110 * enough to avoid an explicit smp_mb() here.
111 */
112 list_del_init(&wq->task_list);
113out:
114 return ret;
115}
116
117/**
118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
119 * context.
120 * @ctx: [in] Pointer to the userfaultfd context.
121 *
122 * Returns: In case of success, returns not zero.
123 */
124static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
125{
126 if (!atomic_inc_not_zero(&ctx->refcount))
127 BUG();
128}
129
130/**
131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
132 * context.
133 * @ctx: [in] Pointer to userfaultfd context.
134 *
135 * The userfaultfd context reference must have been previously acquired either
136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
137 */
138static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
139{
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
142 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
143 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
144 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
145 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
146 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
147 mmdrop(ctx->mm);
148 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
149 }
150}
151
152static inline void msg_init(struct uffd_msg *msg)
153{
154 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
155 /*
156 * Must use memset to zero out the paddings or kernel data is
157 * leaked to userland.
158 */
159 memset(msg, 0, sizeof(struct uffd_msg));
160}
161
162static inline struct uffd_msg userfault_msg(unsigned long address,
163 unsigned int flags,
164 unsigned long reason)
165{
166 struct uffd_msg msg;
167 msg_init(&msg);
168 msg.event = UFFD_EVENT_PAGEFAULT;
169 msg.arg.pagefault.address = address;
170 if (flags & FAULT_FLAG_WRITE)
171 /*
172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
174 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
175 * was a read fault, otherwise if set it means it's
176 * a write fault.
177 */
178 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
179 if (reason & VM_UFFD_WP)
180 /*
181 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
182 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
183 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
184 * a missing fault, otherwise if set it means it's a
185 * write protect fault.
186 */
187 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
188 return msg;
189}
190
191/*
192 * Verify the pagetables are still not ok after having reigstered into
193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
194 * userfault that has already been resolved, if userfaultfd_read and
195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
196 * threads.
197 */
198static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
199 unsigned long address,
200 unsigned long flags,
201 unsigned long reason)
202{
203 struct mm_struct *mm = ctx->mm;
204 pgd_t *pgd;
205 pud_t *pud;
206 pmd_t *pmd, _pmd;
207 pte_t *pte;
208 bool ret = true;
209
210 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
211
212 pgd = pgd_offset(mm, address);
213 if (!pgd_present(*pgd))
214 goto out;
215 pud = pud_offset(pgd, address);
216 if (!pud_present(*pud))
217 goto out;
218 pmd = pmd_offset(pud, address);
219 /*
220 * READ_ONCE must function as a barrier with narrower scope
221 * and it must be equivalent to:
222 * _pmd = *pmd; barrier();
223 *
224 * This is to deal with the instability (as in
225 * pmd_trans_unstable) of the pmd.
226 */
227 _pmd = READ_ONCE(*pmd);
228 if (!pmd_present(_pmd))
229 goto out;
230
231 ret = false;
232 if (pmd_trans_huge(_pmd))
233 goto out;
234
235 /*
236 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
237 * and use the standard pte_offset_map() instead of parsing _pmd.
238 */
239 pte = pte_offset_map(pmd, address);
240 /*
241 * Lockless access: we're in a wait_event so it's ok if it
242 * changes under us.
243 */
244 if (pte_none(*pte))
245 ret = true;
246 pte_unmap(pte);
247
248out:
249 return ret;
250}
251
252/*
253 * The locking rules involved in returning VM_FAULT_RETRY depending on
254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
256 * recommendation in __lock_page_or_retry is not an understatement.
257 *
258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
260 * not set.
261 *
262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
263 * set, VM_FAULT_RETRY can still be returned if and only if there are
264 * fatal_signal_pending()s, and the mmap_sem must be released before
265 * returning it.
266 */
267int handle_userfault(struct vm_fault *vmf, unsigned long reason)
268{
269 struct mm_struct *mm = vmf->vma->vm_mm;
270 struct userfaultfd_ctx *ctx;
271 struct userfaultfd_wait_queue uwq;
272 int ret;
273 bool must_wait, return_to_userland;
274 long blocking_state;
275
276 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 ret = VM_FAULT_SIGBUS;
279 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
280 if (!ctx)
281 goto out;
282
283 BUG_ON(ctx->mm != mm);
284
285 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
286 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
287
288 /*
289 * If it's already released don't get it. This avoids to loop
290 * in __get_user_pages if userfaultfd_release waits on the
291 * caller of handle_userfault to release the mmap_sem.
292 */
293 if (unlikely(ACCESS_ONCE(ctx->released)))
294 goto out;
295
296 /*
297 * We don't do userfault handling for the final child pid update.
298 */
299 if (current->flags & PF_EXITING)
300 goto out;
301
302 /*
303 * Check that we can return VM_FAULT_RETRY.
304 *
305 * NOTE: it should become possible to return VM_FAULT_RETRY
306 * even if FAULT_FLAG_TRIED is set without leading to gup()
307 * -EBUSY failures, if the userfaultfd is to be extended for
308 * VM_UFFD_WP tracking and we intend to arm the userfault
309 * without first stopping userland access to the memory. For
310 * VM_UFFD_MISSING userfaults this is enough for now.
311 */
312 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
313 /*
314 * Validate the invariant that nowait must allow retry
315 * to be sure not to return SIGBUS erroneously on
316 * nowait invocations.
317 */
318 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
319#ifdef CONFIG_DEBUG_VM
320 if (printk_ratelimit()) {
321 printk(KERN_WARNING
322 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
323 vmf->flags);
324 dump_stack();
325 }
326#endif
327 goto out;
328 }
329
330 /*
331 * Handle nowait, not much to do other than tell it to retry
332 * and wait.
333 */
334 ret = VM_FAULT_RETRY;
335 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
336 goto out;
337
338 /* take the reference before dropping the mmap_sem */
339 userfaultfd_ctx_get(ctx);
340
341 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
342 uwq.wq.private = current;
343 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
344 uwq.ctx = ctx;
345 uwq.waken = false;
346
347 return_to_userland =
348 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
349 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
350 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
351 TASK_KILLABLE;
352
353 spin_lock(&ctx->fault_pending_wqh.lock);
354 /*
355 * After the __add_wait_queue the uwq is visible to userland
356 * through poll/read().
357 */
358 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
359 /*
360 * The smp_mb() after __set_current_state prevents the reads
361 * following the spin_unlock to happen before the list_add in
362 * __add_wait_queue.
363 */
364 set_current_state(blocking_state);
365 spin_unlock(&ctx->fault_pending_wqh.lock);
366
367 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
368 reason);
369 up_read(&mm->mmap_sem);
370
371 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
372 (return_to_userland ? !signal_pending(current) :
373 !fatal_signal_pending(current)))) {
374 wake_up_poll(&ctx->fd_wqh, POLLIN);
375 schedule();
376 ret |= VM_FAULT_MAJOR;
377
378 /*
379 * False wakeups can orginate even from rwsem before
380 * up_read() however userfaults will wait either for a
381 * targeted wakeup on the specific uwq waitqueue from
382 * wake_userfault() or for signals or for uffd
383 * release.
384 */
385 while (!READ_ONCE(uwq.waken)) {
386 /*
387 * This needs the full smp_store_mb()
388 * guarantee as the state write must be
389 * visible to other CPUs before reading
390 * uwq.waken from other CPUs.
391 */
392 set_current_state(blocking_state);
393 if (READ_ONCE(uwq.waken) ||
394 READ_ONCE(ctx->released) ||
395 (return_to_userland ? signal_pending(current) :
396 fatal_signal_pending(current)))
397 break;
398 schedule();
399 }
400 }
401
402 __set_current_state(TASK_RUNNING);
403
404 if (return_to_userland) {
405 if (signal_pending(current) &&
406 !fatal_signal_pending(current)) {
407 /*
408 * If we got a SIGSTOP or SIGCONT and this is
409 * a normal userland page fault, just let
410 * userland return so the signal will be
411 * handled and gdb debugging works. The page
412 * fault code immediately after we return from
413 * this function is going to release the
414 * mmap_sem and it's not depending on it
415 * (unlike gup would if we were not to return
416 * VM_FAULT_RETRY).
417 *
418 * If a fatal signal is pending we still take
419 * the streamlined VM_FAULT_RETRY failure path
420 * and there's no need to retake the mmap_sem
421 * in such case.
422 */
423 down_read(&mm->mmap_sem);
424 ret = 0;
425 }
426 }
427
428 /*
429 * Here we race with the list_del; list_add in
430 * userfaultfd_ctx_read(), however because we don't ever run
431 * list_del_init() to refile across the two lists, the prev
432 * and next pointers will never point to self. list_add also
433 * would never let any of the two pointers to point to
434 * self. So list_empty_careful won't risk to see both pointers
435 * pointing to self at any time during the list refile. The
436 * only case where list_del_init() is called is the full
437 * removal in the wake function and there we don't re-list_add
438 * and it's fine not to block on the spinlock. The uwq on this
439 * kernel stack can be released after the list_del_init.
440 */
441 if (!list_empty_careful(&uwq.wq.task_list)) {
442 spin_lock(&ctx->fault_pending_wqh.lock);
443 /*
444 * No need of list_del_init(), the uwq on the stack
445 * will be freed shortly anyway.
446 */
447 list_del(&uwq.wq.task_list);
448 spin_unlock(&ctx->fault_pending_wqh.lock);
449 }
450
451 /*
452 * ctx may go away after this if the userfault pseudo fd is
453 * already released.
454 */
455 userfaultfd_ctx_put(ctx);
456
457out:
458 return ret;
459}
460
461static int userfaultfd_release(struct inode *inode, struct file *file)
462{
463 struct userfaultfd_ctx *ctx = file->private_data;
464 struct mm_struct *mm = ctx->mm;
465 struct vm_area_struct *vma, *prev;
466 /* len == 0 means wake all */
467 struct userfaultfd_wake_range range = { .len = 0, };
468 unsigned long new_flags;
469
470 ACCESS_ONCE(ctx->released) = true;
471
472 if (!mmget_not_zero(mm))
473 goto wakeup;
474
475 /*
476 * Flush page faults out of all CPUs. NOTE: all page faults
477 * must be retried without returning VM_FAULT_SIGBUS if
478 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
479 * changes while handle_userfault released the mmap_sem. So
480 * it's critical that released is set to true (above), before
481 * taking the mmap_sem for writing.
482 */
483 down_write(&mm->mmap_sem);
484 prev = NULL;
485 for (vma = mm->mmap; vma; vma = vma->vm_next) {
486 cond_resched();
487 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
488 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
489 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
490 prev = vma;
491 continue;
492 }
493 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
494 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
495 new_flags, vma->anon_vma,
496 vma->vm_file, vma->vm_pgoff,
497 vma_policy(vma),
498 NULL_VM_UFFD_CTX);
499 if (prev)
500 vma = prev;
501 else
502 prev = vma;
503 vma->vm_flags = new_flags;
504 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
505 }
506 up_write(&mm->mmap_sem);
507 mmput(mm);
508wakeup:
509 /*
510 * After no new page faults can wait on this fault_*wqh, flush
511 * the last page faults that may have been already waiting on
512 * the fault_*wqh.
513 */
514 spin_lock(&ctx->fault_pending_wqh.lock);
515 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
516 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
517 spin_unlock(&ctx->fault_pending_wqh.lock);
518
519 wake_up_poll(&ctx->fd_wqh, POLLHUP);
520 userfaultfd_ctx_put(ctx);
521 return 0;
522}
523
524/* fault_pending_wqh.lock must be hold by the caller */
525static inline struct userfaultfd_wait_queue *find_userfault(
526 struct userfaultfd_ctx *ctx)
527{
528 wait_queue_t *wq;
529 struct userfaultfd_wait_queue *uwq;
530
531 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
532
533 uwq = NULL;
534 if (!waitqueue_active(&ctx->fault_pending_wqh))
535 goto out;
536 /* walk in reverse to provide FIFO behavior to read userfaults */
537 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
538 typeof(*wq), task_list);
539 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
540out:
541 return uwq;
542}
543
544static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
545{
546 struct userfaultfd_ctx *ctx = file->private_data;
547 unsigned int ret;
548
549 poll_wait(file, &ctx->fd_wqh, wait);
550
551 switch (ctx->state) {
552 case UFFD_STATE_WAIT_API:
553 return POLLERR;
554 case UFFD_STATE_RUNNING:
555 /*
556 * poll() never guarantees that read won't block.
557 * userfaults can be waken before they're read().
558 */
559 if (unlikely(!(file->f_flags & O_NONBLOCK)))
560 return POLLERR;
561 /*
562 * lockless access to see if there are pending faults
563 * __pollwait last action is the add_wait_queue but
564 * the spin_unlock would allow the waitqueue_active to
565 * pass above the actual list_add inside
566 * add_wait_queue critical section. So use a full
567 * memory barrier to serialize the list_add write of
568 * add_wait_queue() with the waitqueue_active read
569 * below.
570 */
571 ret = 0;
572 smp_mb();
573 if (waitqueue_active(&ctx->fault_pending_wqh))
574 ret = POLLIN;
575 return ret;
576 default:
577 BUG();
578 }
579}
580
581static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
582 struct uffd_msg *msg)
583{
584 ssize_t ret;
585 DECLARE_WAITQUEUE(wait, current);
586 struct userfaultfd_wait_queue *uwq;
587
588 /* always take the fd_wqh lock before the fault_pending_wqh lock */
589 spin_lock(&ctx->fd_wqh.lock);
590 __add_wait_queue(&ctx->fd_wqh, &wait);
591 for (;;) {
592 set_current_state(TASK_INTERRUPTIBLE);
593 spin_lock(&ctx->fault_pending_wqh.lock);
594 uwq = find_userfault(ctx);
595 if (uwq) {
596 /*
597 * Use a seqcount to repeat the lockless check
598 * in wake_userfault() to avoid missing
599 * wakeups because during the refile both
600 * waitqueue could become empty if this is the
601 * only userfault.
602 */
603 write_seqcount_begin(&ctx->refile_seq);
604
605 /*
606 * The fault_pending_wqh.lock prevents the uwq
607 * to disappear from under us.
608 *
609 * Refile this userfault from
610 * fault_pending_wqh to fault_wqh, it's not
611 * pending anymore after we read it.
612 *
613 * Use list_del() by hand (as
614 * userfaultfd_wake_function also uses
615 * list_del_init() by hand) to be sure nobody
616 * changes __remove_wait_queue() to use
617 * list_del_init() in turn breaking the
618 * !list_empty_careful() check in
619 * handle_userfault(). The uwq->wq.task_list
620 * must never be empty at any time during the
621 * refile, or the waitqueue could disappear
622 * from under us. The "wait_queue_head_t"
623 * parameter of __remove_wait_queue() is unused
624 * anyway.
625 */
626 list_del(&uwq->wq.task_list);
627 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
628
629 write_seqcount_end(&ctx->refile_seq);
630
631 /* careful to always initialize msg if ret == 0 */
632 *msg = uwq->msg;
633 spin_unlock(&ctx->fault_pending_wqh.lock);
634 ret = 0;
635 break;
636 }
637 spin_unlock(&ctx->fault_pending_wqh.lock);
638 if (signal_pending(current)) {
639 ret = -ERESTARTSYS;
640 break;
641 }
642 if (no_wait) {
643 ret = -EAGAIN;
644 break;
645 }
646 spin_unlock(&ctx->fd_wqh.lock);
647 schedule();
648 spin_lock(&ctx->fd_wqh.lock);
649 }
650 __remove_wait_queue(&ctx->fd_wqh, &wait);
651 __set_current_state(TASK_RUNNING);
652 spin_unlock(&ctx->fd_wqh.lock);
653
654 return ret;
655}
656
657static ssize_t userfaultfd_read(struct file *file, char __user *buf,
658 size_t count, loff_t *ppos)
659{
660 struct userfaultfd_ctx *ctx = file->private_data;
661 ssize_t _ret, ret = 0;
662 struct uffd_msg msg;
663 int no_wait = file->f_flags & O_NONBLOCK;
664
665 if (ctx->state == UFFD_STATE_WAIT_API)
666 return -EINVAL;
667
668 for (;;) {
669 if (count < sizeof(msg))
670 return ret ? ret : -EINVAL;
671 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
672 if (_ret < 0)
673 return ret ? ret : _ret;
674 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
675 return ret ? ret : -EFAULT;
676 ret += sizeof(msg);
677 buf += sizeof(msg);
678 count -= sizeof(msg);
679 /*
680 * Allow to read more than one fault at time but only
681 * block if waiting for the very first one.
682 */
683 no_wait = O_NONBLOCK;
684 }
685}
686
687static void __wake_userfault(struct userfaultfd_ctx *ctx,
688 struct userfaultfd_wake_range *range)
689{
690 unsigned long start, end;
691
692 start = range->start;
693 end = range->start + range->len;
694
695 spin_lock(&ctx->fault_pending_wqh.lock);
696 /* wake all in the range and autoremove */
697 if (waitqueue_active(&ctx->fault_pending_wqh))
698 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
699 range);
700 if (waitqueue_active(&ctx->fault_wqh))
701 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
702 spin_unlock(&ctx->fault_pending_wqh.lock);
703}
704
705static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
706 struct userfaultfd_wake_range *range)
707{
708 unsigned seq;
709 bool need_wakeup;
710
711 /*
712 * To be sure waitqueue_active() is not reordered by the CPU
713 * before the pagetable update, use an explicit SMP memory
714 * barrier here. PT lock release or up_read(mmap_sem) still
715 * have release semantics that can allow the
716 * waitqueue_active() to be reordered before the pte update.
717 */
718 smp_mb();
719
720 /*
721 * Use waitqueue_active because it's very frequent to
722 * change the address space atomically even if there are no
723 * userfaults yet. So we take the spinlock only when we're
724 * sure we've userfaults to wake.
725 */
726 do {
727 seq = read_seqcount_begin(&ctx->refile_seq);
728 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
729 waitqueue_active(&ctx->fault_wqh);
730 cond_resched();
731 } while (read_seqcount_retry(&ctx->refile_seq, seq));
732 if (need_wakeup)
733 __wake_userfault(ctx, range);
734}
735
736static __always_inline int validate_range(struct mm_struct *mm,
737 __u64 start, __u64 len)
738{
739 __u64 task_size = mm->task_size;
740
741 if (start & ~PAGE_MASK)
742 return -EINVAL;
743 if (len & ~PAGE_MASK)
744 return -EINVAL;
745 if (!len)
746 return -EINVAL;
747 if (start < mmap_min_addr)
748 return -EINVAL;
749 if (start >= task_size)
750 return -EINVAL;
751 if (len > task_size - start)
752 return -EINVAL;
753 return 0;
754}
755
756static int userfaultfd_register(struct userfaultfd_ctx *ctx,
757 unsigned long arg)
758{
759 struct mm_struct *mm = ctx->mm;
760 struct vm_area_struct *vma, *prev, *cur;
761 int ret;
762 struct uffdio_register uffdio_register;
763 struct uffdio_register __user *user_uffdio_register;
764 unsigned long vm_flags, new_flags;
765 bool found;
766 unsigned long start, end, vma_end;
767
768 user_uffdio_register = (struct uffdio_register __user *) arg;
769
770 ret = -EFAULT;
771 if (copy_from_user(&uffdio_register, user_uffdio_register,
772 sizeof(uffdio_register)-sizeof(__u64)))
773 goto out;
774
775 ret = -EINVAL;
776 if (!uffdio_register.mode)
777 goto out;
778 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
779 UFFDIO_REGISTER_MODE_WP))
780 goto out;
781 vm_flags = 0;
782 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
783 vm_flags |= VM_UFFD_MISSING;
784 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
785 vm_flags |= VM_UFFD_WP;
786 /*
787 * FIXME: remove the below error constraint by
788 * implementing the wprotect tracking mode.
789 */
790 ret = -EINVAL;
791 goto out;
792 }
793
794 ret = validate_range(mm, uffdio_register.range.start,
795 uffdio_register.range.len);
796 if (ret)
797 goto out;
798
799 start = uffdio_register.range.start;
800 end = start + uffdio_register.range.len;
801
802 ret = -ENOMEM;
803 if (!mmget_not_zero(mm))
804 goto out;
805
806 down_write(&mm->mmap_sem);
807 vma = find_vma_prev(mm, start, &prev);
808 if (!vma)
809 goto out_unlock;
810
811 /* check that there's at least one vma in the range */
812 ret = -EINVAL;
813 if (vma->vm_start >= end)
814 goto out_unlock;
815
816 /*
817 * Search for not compatible vmas.
818 *
819 * FIXME: this shall be relaxed later so that it doesn't fail
820 * on tmpfs backed vmas (in addition to the current allowance
821 * on anonymous vmas).
822 */
823 found = false;
824 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
825 cond_resched();
826
827 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
828 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
829
830 /* check not compatible vmas */
831 ret = -EINVAL;
832 if (cur->vm_ops)
833 goto out_unlock;
834
835 /*
836 * Check that this vma isn't already owned by a
837 * different userfaultfd. We can't allow more than one
838 * userfaultfd to own a single vma simultaneously or we
839 * wouldn't know which one to deliver the userfaults to.
840 */
841 ret = -EBUSY;
842 if (cur->vm_userfaultfd_ctx.ctx &&
843 cur->vm_userfaultfd_ctx.ctx != ctx)
844 goto out_unlock;
845
846 found = true;
847 }
848 BUG_ON(!found);
849
850 if (vma->vm_start < start)
851 prev = vma;
852
853 ret = 0;
854 do {
855 cond_resched();
856
857 BUG_ON(vma->vm_ops);
858 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
859 vma->vm_userfaultfd_ctx.ctx != ctx);
860
861 /*
862 * Nothing to do: this vma is already registered into this
863 * userfaultfd and with the right tracking mode too.
864 */
865 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
866 (vma->vm_flags & vm_flags) == vm_flags)
867 goto skip;
868
869 if (vma->vm_start > start)
870 start = vma->vm_start;
871 vma_end = min(end, vma->vm_end);
872
873 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
874 prev = vma_merge(mm, prev, start, vma_end, new_flags,
875 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
876 vma_policy(vma),
877 ((struct vm_userfaultfd_ctx){ ctx }));
878 if (prev) {
879 vma = prev;
880 goto next;
881 }
882 if (vma->vm_start < start) {
883 ret = split_vma(mm, vma, start, 1);
884 if (ret)
885 break;
886 }
887 if (vma->vm_end > end) {
888 ret = split_vma(mm, vma, end, 0);
889 if (ret)
890 break;
891 }
892 next:
893 /*
894 * In the vma_merge() successful mprotect-like case 8:
895 * the next vma was merged into the current one and
896 * the current one has not been updated yet.
897 */
898 vma->vm_flags = new_flags;
899 vma->vm_userfaultfd_ctx.ctx = ctx;
900
901 skip:
902 prev = vma;
903 start = vma->vm_end;
904 vma = vma->vm_next;
905 } while (vma && vma->vm_start < end);
906out_unlock:
907 up_write(&mm->mmap_sem);
908 mmput(mm);
909 if (!ret) {
910 /*
911 * Now that we scanned all vmas we can already tell
912 * userland which ioctls methods are guaranteed to
913 * succeed on this range.
914 */
915 if (put_user(UFFD_API_RANGE_IOCTLS,
916 &user_uffdio_register->ioctls))
917 ret = -EFAULT;
918 }
919out:
920 return ret;
921}
922
923static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
924 unsigned long arg)
925{
926 struct mm_struct *mm = ctx->mm;
927 struct vm_area_struct *vma, *prev, *cur;
928 int ret;
929 struct uffdio_range uffdio_unregister;
930 unsigned long new_flags;
931 bool found;
932 unsigned long start, end, vma_end;
933 const void __user *buf = (void __user *)arg;
934
935 ret = -EFAULT;
936 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
937 goto out;
938
939 ret = validate_range(mm, uffdio_unregister.start,
940 uffdio_unregister.len);
941 if (ret)
942 goto out;
943
944 start = uffdio_unregister.start;
945 end = start + uffdio_unregister.len;
946
947 ret = -ENOMEM;
948 if (!mmget_not_zero(mm))
949 goto out;
950
951 down_write(&mm->mmap_sem);
952 vma = find_vma_prev(mm, start, &prev);
953 if (!vma)
954 goto out_unlock;
955
956 /* check that there's at least one vma in the range */
957 ret = -EINVAL;
958 if (vma->vm_start >= end)
959 goto out_unlock;
960
961 /*
962 * Search for not compatible vmas.
963 *
964 * FIXME: this shall be relaxed later so that it doesn't fail
965 * on tmpfs backed vmas (in addition to the current allowance
966 * on anonymous vmas).
967 */
968 found = false;
969 ret = -EINVAL;
970 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
971 cond_resched();
972
973 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
974 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
975
976 /*
977 * Check not compatible vmas, not strictly required
978 * here as not compatible vmas cannot have an
979 * userfaultfd_ctx registered on them, but this
980 * provides for more strict behavior to notice
981 * unregistration errors.
982 */
983 if (cur->vm_ops)
984 goto out_unlock;
985
986 found = true;
987 }
988 BUG_ON(!found);
989
990 if (vma->vm_start < start)
991 prev = vma;
992
993 ret = 0;
994 do {
995 cond_resched();
996
997 BUG_ON(vma->vm_ops);
998
999 /*
1000 * Nothing to do: this vma is already registered into this
1001 * userfaultfd and with the right tracking mode too.
1002 */
1003 if (!vma->vm_userfaultfd_ctx.ctx)
1004 goto skip;
1005
1006 if (vma->vm_start > start)
1007 start = vma->vm_start;
1008 vma_end = min(end, vma->vm_end);
1009
1010 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013 vma_policy(vma),
1014 NULL_VM_UFFD_CTX);
1015 if (prev) {
1016 vma = prev;
1017 goto next;
1018 }
1019 if (vma->vm_start < start) {
1020 ret = split_vma(mm, vma, start, 1);
1021 if (ret)
1022 break;
1023 }
1024 if (vma->vm_end > end) {
1025 ret = split_vma(mm, vma, end, 0);
1026 if (ret)
1027 break;
1028 }
1029 next:
1030 /*
1031 * In the vma_merge() successful mprotect-like case 8:
1032 * the next vma was merged into the current one and
1033 * the current one has not been updated yet.
1034 */
1035 vma->vm_flags = new_flags;
1036 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1037
1038 skip:
1039 prev = vma;
1040 start = vma->vm_end;
1041 vma = vma->vm_next;
1042 } while (vma && vma->vm_start < end);
1043out_unlock:
1044 up_write(&mm->mmap_sem);
1045 mmput(mm);
1046out:
1047 return ret;
1048}
1049
1050/*
1051 * userfaultfd_wake may be used in combination with the
1052 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1053 */
1054static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1055 unsigned long arg)
1056{
1057 int ret;
1058 struct uffdio_range uffdio_wake;
1059 struct userfaultfd_wake_range range;
1060 const void __user *buf = (void __user *)arg;
1061
1062 ret = -EFAULT;
1063 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1064 goto out;
1065
1066 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1067 if (ret)
1068 goto out;
1069
1070 range.start = uffdio_wake.start;
1071 range.len = uffdio_wake.len;
1072
1073 /*
1074 * len == 0 means wake all and we don't want to wake all here,
1075 * so check it again to be sure.
1076 */
1077 VM_BUG_ON(!range.len);
1078
1079 wake_userfault(ctx, &range);
1080 ret = 0;
1081
1082out:
1083 return ret;
1084}
1085
1086static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1087 unsigned long arg)
1088{
1089 __s64 ret;
1090 struct uffdio_copy uffdio_copy;
1091 struct uffdio_copy __user *user_uffdio_copy;
1092 struct userfaultfd_wake_range range;
1093
1094 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1095
1096 ret = -EFAULT;
1097 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1098 /* don't copy "copy" last field */
1099 sizeof(uffdio_copy)-sizeof(__s64)))
1100 goto out;
1101
1102 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1103 if (ret)
1104 goto out;
1105 /*
1106 * double check for wraparound just in case. copy_from_user()
1107 * will later check uffdio_copy.src + uffdio_copy.len to fit
1108 * in the userland range.
1109 */
1110 ret = -EINVAL;
1111 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1112 goto out;
1113 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1114 goto out;
1115 if (mmget_not_zero(ctx->mm)) {
1116 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1117 uffdio_copy.len);
1118 mmput(ctx->mm);
1119 }
1120 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1121 return -EFAULT;
1122 if (ret < 0)
1123 goto out;
1124 BUG_ON(!ret);
1125 /* len == 0 would wake all */
1126 range.len = ret;
1127 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1128 range.start = uffdio_copy.dst;
1129 wake_userfault(ctx, &range);
1130 }
1131 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1132out:
1133 return ret;
1134}
1135
1136static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1137 unsigned long arg)
1138{
1139 __s64 ret;
1140 struct uffdio_zeropage uffdio_zeropage;
1141 struct uffdio_zeropage __user *user_uffdio_zeropage;
1142 struct userfaultfd_wake_range range;
1143
1144 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1145
1146 ret = -EFAULT;
1147 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1148 /* don't copy "zeropage" last field */
1149 sizeof(uffdio_zeropage)-sizeof(__s64)))
1150 goto out;
1151
1152 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1153 uffdio_zeropage.range.len);
1154 if (ret)
1155 goto out;
1156 ret = -EINVAL;
1157 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1158 goto out;
1159
1160 if (mmget_not_zero(ctx->mm)) {
1161 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1162 uffdio_zeropage.range.len);
1163 mmput(ctx->mm);
1164 }
1165 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1166 return -EFAULT;
1167 if (ret < 0)
1168 goto out;
1169 /* len == 0 would wake all */
1170 BUG_ON(!ret);
1171 range.len = ret;
1172 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1173 range.start = uffdio_zeropage.range.start;
1174 wake_userfault(ctx, &range);
1175 }
1176 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1177out:
1178 return ret;
1179}
1180
1181/*
1182 * userland asks for a certain API version and we return which bits
1183 * and ioctl commands are implemented in this kernel for such API
1184 * version or -EINVAL if unknown.
1185 */
1186static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1187 unsigned long arg)
1188{
1189 struct uffdio_api uffdio_api;
1190 void __user *buf = (void __user *)arg;
1191 int ret;
1192
1193 ret = -EINVAL;
1194 if (ctx->state != UFFD_STATE_WAIT_API)
1195 goto out;
1196 ret = -EFAULT;
1197 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1198 goto out;
1199 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1200 memset(&uffdio_api, 0, sizeof(uffdio_api));
1201 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1202 goto out;
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206 uffdio_api.features = UFFD_API_FEATURES;
1207 uffdio_api.ioctls = UFFD_API_IOCTLS;
1208 ret = -EFAULT;
1209 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1210 goto out;
1211 ctx->state = UFFD_STATE_RUNNING;
1212 ret = 0;
1213out:
1214 return ret;
1215}
1216
1217static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1218 unsigned long arg)
1219{
1220 int ret = -EINVAL;
1221 struct userfaultfd_ctx *ctx = file->private_data;
1222
1223 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1224 return -EINVAL;
1225
1226 switch(cmd) {
1227 case UFFDIO_API:
1228 ret = userfaultfd_api(ctx, arg);
1229 break;
1230 case UFFDIO_REGISTER:
1231 ret = userfaultfd_register(ctx, arg);
1232 break;
1233 case UFFDIO_UNREGISTER:
1234 ret = userfaultfd_unregister(ctx, arg);
1235 break;
1236 case UFFDIO_WAKE:
1237 ret = userfaultfd_wake(ctx, arg);
1238 break;
1239 case UFFDIO_COPY:
1240 ret = userfaultfd_copy(ctx, arg);
1241 break;
1242 case UFFDIO_ZEROPAGE:
1243 ret = userfaultfd_zeropage(ctx, arg);
1244 break;
1245 }
1246 return ret;
1247}
1248
1249#ifdef CONFIG_PROC_FS
1250static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1251{
1252 struct userfaultfd_ctx *ctx = f->private_data;
1253 wait_queue_t *wq;
1254 struct userfaultfd_wait_queue *uwq;
1255 unsigned long pending = 0, total = 0;
1256
1257 spin_lock(&ctx->fault_pending_wqh.lock);
1258 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1259 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1260 pending++;
1261 total++;
1262 }
1263 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1264 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1265 total++;
1266 }
1267 spin_unlock(&ctx->fault_pending_wqh.lock);
1268
1269 /*
1270 * If more protocols will be added, there will be all shown
1271 * separated by a space. Like this:
1272 * protocols: aa:... bb:...
1273 */
1274 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1275 pending, total, UFFD_API, UFFD_API_FEATURES,
1276 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1277}
1278#endif
1279
1280static const struct file_operations userfaultfd_fops = {
1281#ifdef CONFIG_PROC_FS
1282 .show_fdinfo = userfaultfd_show_fdinfo,
1283#endif
1284 .release = userfaultfd_release,
1285 .poll = userfaultfd_poll,
1286 .read = userfaultfd_read,
1287 .unlocked_ioctl = userfaultfd_ioctl,
1288 .compat_ioctl = userfaultfd_ioctl,
1289 .llseek = noop_llseek,
1290};
1291
1292static void init_once_userfaultfd_ctx(void *mem)
1293{
1294 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1295
1296 init_waitqueue_head(&ctx->fault_pending_wqh);
1297 init_waitqueue_head(&ctx->fault_wqh);
1298 init_waitqueue_head(&ctx->fd_wqh);
1299 seqcount_init(&ctx->refile_seq);
1300}
1301
1302/**
1303 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1304 * @flags: Flags for the userfaultfd file.
1305 *
1306 * This function creates an userfaultfd file pointer, w/out installing
1307 * it into the fd table. This is useful when the userfaultfd file is
1308 * used during the initialization of data structures that require
1309 * extra setup after the userfaultfd creation. So the userfaultfd
1310 * creation is split into the file pointer creation phase, and the
1311 * file descriptor installation phase. In this way races with
1312 * userspace closing the newly installed file descriptor can be
1313 * avoided. Returns an userfaultfd file pointer, or a proper error
1314 * pointer.
1315 */
1316static struct file *userfaultfd_file_create(int flags)
1317{
1318 struct file *file;
1319 struct userfaultfd_ctx *ctx;
1320
1321 BUG_ON(!current->mm);
1322
1323 /* Check the UFFD_* constants for consistency. */
1324 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1325 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1326
1327 file = ERR_PTR(-EINVAL);
1328 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1329 goto out;
1330
1331 file = ERR_PTR(-ENOMEM);
1332 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1333 if (!ctx)
1334 goto out;
1335
1336 atomic_set(&ctx->refcount, 1);
1337 ctx->flags = flags;
1338 ctx->state = UFFD_STATE_WAIT_API;
1339 ctx->released = false;
1340 ctx->mm = current->mm;
1341 /* prevent the mm struct to be freed */
1342 atomic_inc(&ctx->mm->mm_count);
1343
1344 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1345 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1346 if (IS_ERR(file)) {
1347 mmdrop(ctx->mm);
1348 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1349 }
1350out:
1351 return file;
1352}
1353
1354SYSCALL_DEFINE1(userfaultfd, int, flags)
1355{
1356 int fd, error;
1357 struct file *file;
1358
1359 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1360 if (error < 0)
1361 return error;
1362 fd = error;
1363
1364 file = userfaultfd_file_create(flags);
1365 if (IS_ERR(file)) {
1366 error = PTR_ERR(file);
1367 goto err_put_unused_fd;
1368 }
1369 fd_install(fd, file);
1370
1371 return fd;
1372
1373err_put_unused_fd:
1374 put_unused_fd(fd);
1375
1376 return error;
1377}
1378
1379static int __init userfaultfd_init(void)
1380{
1381 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1382 sizeof(struct userfaultfd_ctx),
1383 0,
1384 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1385 init_once_userfaultfd_ctx);
1386 return 0;
1387}
1388__initcall(userfaultfd_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13#include <linux/list.h>
14#include <linux/hashtable.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/mm.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/mmu_notifier.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32#include <linux/swapops.h>
33#include <linux/miscdevice.h>
34
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
48};
49#endif
50
51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
52
53struct userfaultfd_fork_ctx {
54 struct userfaultfd_ctx *orig;
55 struct userfaultfd_ctx *new;
56 struct list_head list;
57};
58
59struct userfaultfd_unmap_ctx {
60 struct userfaultfd_ctx *ctx;
61 unsigned long start;
62 unsigned long end;
63 struct list_head list;
64};
65
66struct userfaultfd_wait_queue {
67 struct uffd_msg msg;
68 wait_queue_entry_t wq;
69 struct userfaultfd_ctx *ctx;
70 bool waken;
71};
72
73struct userfaultfd_wake_range {
74 unsigned long start;
75 unsigned long len;
76};
77
78/* internal indication that UFFD_API ioctl was successfully executed */
79#define UFFD_FEATURE_INITIALIZED (1u << 31)
80
81static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
82{
83 return ctx->features & UFFD_FEATURE_INITIALIZED;
84}
85
86static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
87{
88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
89}
90
91/*
92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
93 * meaningful when userfaultfd_wp()==true on the vma and when it's
94 * anonymous.
95 */
96bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
97{
98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
99
100 if (!ctx)
101 return false;
102
103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
104}
105
106static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
107 vm_flags_t flags)
108{
109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
110
111 vm_flags_reset(vma, flags);
112 /*
113 * For shared mappings, we want to enable writenotify while
114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
116 */
117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118 vma_set_page_prot(vma);
119}
120
121static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
122 int wake_flags, void *key)
123{
124 struct userfaultfd_wake_range *range = key;
125 int ret;
126 struct userfaultfd_wait_queue *uwq;
127 unsigned long start, len;
128
129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
130 ret = 0;
131 /* len == 0 means wake all */
132 start = range->start;
133 len = range->len;
134 if (len && (start > uwq->msg.arg.pagefault.address ||
135 start + len <= uwq->msg.arg.pagefault.address))
136 goto out;
137 WRITE_ONCE(uwq->waken, true);
138 /*
139 * The Program-Order guarantees provided by the scheduler
140 * ensure uwq->waken is visible before the task is woken.
141 */
142 ret = wake_up_state(wq->private, mode);
143 if (ret) {
144 /*
145 * Wake only once, autoremove behavior.
146 *
147 * After the effect of list_del_init is visible to the other
148 * CPUs, the waitqueue may disappear from under us, see the
149 * !list_empty_careful() in handle_userfault().
150 *
151 * try_to_wake_up() has an implicit smp_mb(), and the
152 * wq->private is read before calling the extern function
153 * "wake_up_state" (which in turns calls try_to_wake_up).
154 */
155 list_del_init(&wq->entry);
156 }
157out:
158 return ret;
159}
160
161/**
162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
163 * context.
164 * @ctx: [in] Pointer to the userfaultfd context.
165 */
166static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
167{
168 refcount_inc(&ctx->refcount);
169}
170
171/**
172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
173 * context.
174 * @ctx: [in] Pointer to userfaultfd context.
175 *
176 * The userfaultfd context reference must have been previously acquired either
177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
178 */
179static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
180{
181 if (refcount_dec_and_test(&ctx->refcount)) {
182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
190 mmdrop(ctx->mm);
191 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
192 }
193}
194
195static inline void msg_init(struct uffd_msg *msg)
196{
197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
198 /*
199 * Must use memset to zero out the paddings or kernel data is
200 * leaked to userland.
201 */
202 memset(msg, 0, sizeof(struct uffd_msg));
203}
204
205static inline struct uffd_msg userfault_msg(unsigned long address,
206 unsigned long real_address,
207 unsigned int flags,
208 unsigned long reason,
209 unsigned int features)
210{
211 struct uffd_msg msg;
212
213 msg_init(&msg);
214 msg.event = UFFD_EVENT_PAGEFAULT;
215
216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217 real_address : address;
218
219 /*
220 * These flags indicate why the userfault occurred:
221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223 * - Neither of these flags being set indicates a MISSING fault.
224 *
225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226 * fault. Otherwise, it was a read fault.
227 */
228 if (flags & FAULT_FLAG_WRITE)
229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
230 if (reason & VM_UFFD_WP)
231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
232 if (reason & VM_UFFD_MINOR)
233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
234 if (features & UFFD_FEATURE_THREAD_ID)
235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
236 return msg;
237}
238
239#ifdef CONFIG_HUGETLB_PAGE
240/*
241 * Same functionality as userfaultfd_must_wait below with modifications for
242 * hugepmd ranges.
243 */
244static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
245 struct vm_fault *vmf,
246 unsigned long reason)
247{
248 struct vm_area_struct *vma = vmf->vma;
249 pte_t *ptep, pte;
250 bool ret = true;
251
252 assert_fault_locked(vmf);
253
254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
255 if (!ptep)
256 goto out;
257
258 ret = false;
259 pte = huge_ptep_get(ptep);
260
261 /*
262 * Lockless access: we're in a wait_event so it's ok if it
263 * changes under us. PTE markers should be handled the same as none
264 * ptes here.
265 */
266 if (huge_pte_none_mostly(pte))
267 ret = true;
268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
269 ret = true;
270out:
271 return ret;
272}
273#else
274static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
275 struct vm_fault *vmf,
276 unsigned long reason)
277{
278 return false; /* should never get here */
279}
280#endif /* CONFIG_HUGETLB_PAGE */
281
282/*
283 * Verify the pagetables are still not ok after having reigstered into
284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285 * userfault that has already been resolved, if userfaultfd_read and
286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
287 * threads.
288 */
289static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
290 struct vm_fault *vmf,
291 unsigned long reason)
292{
293 struct mm_struct *mm = ctx->mm;
294 unsigned long address = vmf->address;
295 pgd_t *pgd;
296 p4d_t *p4d;
297 pud_t *pud;
298 pmd_t *pmd, _pmd;
299 pte_t *pte;
300 pte_t ptent;
301 bool ret = true;
302
303 assert_fault_locked(vmf);
304
305 pgd = pgd_offset(mm, address);
306 if (!pgd_present(*pgd))
307 goto out;
308 p4d = p4d_offset(pgd, address);
309 if (!p4d_present(*p4d))
310 goto out;
311 pud = pud_offset(p4d, address);
312 if (!pud_present(*pud))
313 goto out;
314 pmd = pmd_offset(pud, address);
315again:
316 _pmd = pmdp_get_lockless(pmd);
317 if (pmd_none(_pmd))
318 goto out;
319
320 ret = false;
321 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
322 goto out;
323
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 ret = true;
327 goto out;
328 }
329
330 pte = pte_offset_map(pmd, address);
331 if (!pte) {
332 ret = true;
333 goto again;
334 }
335 /*
336 * Lockless access: we're in a wait_event so it's ok if it
337 * changes under us. PTE markers should be handled the same as none
338 * ptes here.
339 */
340 ptent = ptep_get(pte);
341 if (pte_none_mostly(ptent))
342 ret = true;
343 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
344 ret = true;
345 pte_unmap(pte);
346
347out:
348 return ret;
349}
350
351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352{
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
355
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
358
359 return TASK_UNINTERRUPTIBLE;
360}
361
362/*
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
367 *
368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370 * not set.
371 *
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
374 * fatal_signal_pending()s, and the mmap_lock must be released before
375 * returning it.
376 */
377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378{
379 struct vm_area_struct *vma = vmf->vma;
380 struct mm_struct *mm = vma->vm_mm;
381 struct userfaultfd_ctx *ctx;
382 struct userfaultfd_wait_queue uwq;
383 vm_fault_t ret = VM_FAULT_SIGBUS;
384 bool must_wait;
385 unsigned int blocking_state;
386
387 /*
388 * We don't do userfault handling for the final child pid update.
389 *
390 * We also don't do userfault handling during
391 * coredumping. hugetlbfs has the special
392 * hugetlb_follow_page_mask() to skip missing pages in the
393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394 * the no_page_table() helper in follow_page_mask(), but the
395 * shmem_vm_ops->fault method is invoked even during
396 * coredumping and it ends up here.
397 */
398 if (current->flags & (PF_EXITING|PF_DUMPCORE))
399 goto out;
400
401 assert_fault_locked(vmf);
402
403 ctx = vma->vm_userfaultfd_ctx.ctx;
404 if (!ctx)
405 goto out;
406
407 BUG_ON(ctx->mm != mm);
408
409 /* Any unrecognized flag is a bug. */
410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 VM_BUG_ON(!reason || (reason & (reason - 1)));
413
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
417 goto out;
418
419 /*
420 * If it's already released don't get it. This avoids to loop
421 * in __get_user_pages if userfaultfd_release waits on the
422 * caller of handle_userfault to release the mmap_lock.
423 */
424 if (unlikely(READ_ONCE(ctx->released))) {
425 /*
426 * Don't return VM_FAULT_SIGBUS in this case, so a non
427 * cooperative manager can close the uffd after the
428 * last UFFDIO_COPY, without risking to trigger an
429 * involuntary SIGBUS if the process was starting the
430 * userfaultfd while the userfaultfd was still armed
431 * (but after the last UFFDIO_COPY). If the uffd
432 * wasn't already closed when the userfault reached
433 * this point, that would normally be solved by
434 * userfaultfd_must_wait returning 'false'.
435 *
436 * If we were to return VM_FAULT_SIGBUS here, the non
437 * cooperative manager would be instead forced to
438 * always call UFFDIO_UNREGISTER before it can safely
439 * close the uffd.
440 */
441 ret = VM_FAULT_NOPAGE;
442 goto out;
443 }
444
445 /*
446 * Check that we can return VM_FAULT_RETRY.
447 *
448 * NOTE: it should become possible to return VM_FAULT_RETRY
449 * even if FAULT_FLAG_TRIED is set without leading to gup()
450 * -EBUSY failures, if the userfaultfd is to be extended for
451 * VM_UFFD_WP tracking and we intend to arm the userfault
452 * without first stopping userland access to the memory. For
453 * VM_UFFD_MISSING userfaults this is enough for now.
454 */
455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
456 /*
457 * Validate the invariant that nowait must allow retry
458 * to be sure not to return SIGBUS erroneously on
459 * nowait invocations.
460 */
461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
462#ifdef CONFIG_DEBUG_VM
463 if (printk_ratelimit()) {
464 printk(KERN_WARNING
465 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
466 vmf->flags);
467 dump_stack();
468 }
469#endif
470 goto out;
471 }
472
473 /*
474 * Handle nowait, not much to do other than tell it to retry
475 * and wait.
476 */
477 ret = VM_FAULT_RETRY;
478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
479 goto out;
480
481 /* take the reference before dropping the mmap_lock */
482 userfaultfd_ctx_get(ctx);
483
484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485 uwq.wq.private = current;
486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487 reason, ctx->features);
488 uwq.ctx = ctx;
489 uwq.waken = false;
490
491 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
492
493 /*
494 * Take the vma lock now, in order to safely call
495 * userfaultfd_huge_must_wait() later. Since acquiring the
496 * (sleepable) vma lock can modify the current task state, that
497 * must be before explicitly calling set_current_state().
498 */
499 if (is_vm_hugetlb_page(vma))
500 hugetlb_vma_lock_read(vma);
501
502 spin_lock_irq(&ctx->fault_pending_wqh.lock);
503 /*
504 * After the __add_wait_queue the uwq is visible to userland
505 * through poll/read().
506 */
507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
508 /*
509 * The smp_mb() after __set_current_state prevents the reads
510 * following the spin_unlock to happen before the list_add in
511 * __add_wait_queue.
512 */
513 set_current_state(blocking_state);
514 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
515
516 if (!is_vm_hugetlb_page(vma))
517 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
518 else
519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
520 if (is_vm_hugetlb_page(vma))
521 hugetlb_vma_unlock_read(vma);
522 release_fault_lock(vmf);
523
524 if (likely(must_wait && !READ_ONCE(ctx->released))) {
525 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
526 schedule();
527 }
528
529 __set_current_state(TASK_RUNNING);
530
531 /*
532 * Here we race with the list_del; list_add in
533 * userfaultfd_ctx_read(), however because we don't ever run
534 * list_del_init() to refile across the two lists, the prev
535 * and next pointers will never point to self. list_add also
536 * would never let any of the two pointers to point to
537 * self. So list_empty_careful won't risk to see both pointers
538 * pointing to self at any time during the list refile. The
539 * only case where list_del_init() is called is the full
540 * removal in the wake function and there we don't re-list_add
541 * and it's fine not to block on the spinlock. The uwq on this
542 * kernel stack can be released after the list_del_init.
543 */
544 if (!list_empty_careful(&uwq.wq.entry)) {
545 spin_lock_irq(&ctx->fault_pending_wqh.lock);
546 /*
547 * No need of list_del_init(), the uwq on the stack
548 * will be freed shortly anyway.
549 */
550 list_del(&uwq.wq.entry);
551 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
552 }
553
554 /*
555 * ctx may go away after this if the userfault pseudo fd is
556 * already released.
557 */
558 userfaultfd_ctx_put(ctx);
559
560out:
561 return ret;
562}
563
564static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565 struct userfaultfd_wait_queue *ewq)
566{
567 struct userfaultfd_ctx *release_new_ctx;
568
569 if (WARN_ON_ONCE(current->flags & PF_EXITING))
570 goto out;
571
572 ewq->ctx = ctx;
573 init_waitqueue_entry(&ewq->wq, current);
574 release_new_ctx = NULL;
575
576 spin_lock_irq(&ctx->event_wqh.lock);
577 /*
578 * After the __add_wait_queue the uwq is visible to userland
579 * through poll/read().
580 */
581 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
582 for (;;) {
583 set_current_state(TASK_KILLABLE);
584 if (ewq->msg.event == 0)
585 break;
586 if (READ_ONCE(ctx->released) ||
587 fatal_signal_pending(current)) {
588 /*
589 * &ewq->wq may be queued in fork_event, but
590 * __remove_wait_queue ignores the head
591 * parameter. It would be a problem if it
592 * didn't.
593 */
594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
595 if (ewq->msg.event == UFFD_EVENT_FORK) {
596 struct userfaultfd_ctx *new;
597
598 new = (struct userfaultfd_ctx *)
599 (unsigned long)
600 ewq->msg.arg.reserved.reserved1;
601 release_new_ctx = new;
602 }
603 break;
604 }
605
606 spin_unlock_irq(&ctx->event_wqh.lock);
607
608 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
609 schedule();
610
611 spin_lock_irq(&ctx->event_wqh.lock);
612 }
613 __set_current_state(TASK_RUNNING);
614 spin_unlock_irq(&ctx->event_wqh.lock);
615
616 if (release_new_ctx) {
617 struct vm_area_struct *vma;
618 struct mm_struct *mm = release_new_ctx->mm;
619 VMA_ITERATOR(vmi, mm, 0);
620
621 /* the various vma->vm_userfaultfd_ctx still points to it */
622 mmap_write_lock(mm);
623 for_each_vma(vmi, vma) {
624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
625 vma_start_write(vma);
626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
627 userfaultfd_set_vm_flags(vma,
628 vma->vm_flags & ~__VM_UFFD_FLAGS);
629 }
630 }
631 mmap_write_unlock(mm);
632
633 userfaultfd_ctx_put(release_new_ctx);
634 }
635
636 /*
637 * ctx may go away after this if the userfault pseudo fd is
638 * already released.
639 */
640out:
641 atomic_dec(&ctx->mmap_changing);
642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
643 userfaultfd_ctx_put(ctx);
644}
645
646static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 struct userfaultfd_wait_queue *ewq)
648{
649 ewq->msg.event = 0;
650 wake_up_locked(&ctx->event_wqh);
651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652}
653
654int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655{
656 struct userfaultfd_ctx *ctx = NULL, *octx;
657 struct userfaultfd_fork_ctx *fctx;
658
659 octx = vma->vm_userfaultfd_ctx.ctx;
660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661 vma_start_write(vma);
662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
664 return 0;
665 }
666
667 list_for_each_entry(fctx, fcs, list)
668 if (fctx->orig == octx) {
669 ctx = fctx->new;
670 break;
671 }
672
673 if (!ctx) {
674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675 if (!fctx)
676 return -ENOMEM;
677
678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679 if (!ctx) {
680 kfree(fctx);
681 return -ENOMEM;
682 }
683
684 refcount_set(&ctx->refcount, 1);
685 ctx->flags = octx->flags;
686 ctx->features = octx->features;
687 ctx->released = false;
688 init_rwsem(&ctx->map_changing_lock);
689 atomic_set(&ctx->mmap_changing, 0);
690 ctx->mm = vma->vm_mm;
691 mmgrab(ctx->mm);
692
693 userfaultfd_ctx_get(octx);
694 down_write(&octx->map_changing_lock);
695 atomic_inc(&octx->mmap_changing);
696 up_write(&octx->map_changing_lock);
697 fctx->orig = octx;
698 fctx->new = ctx;
699 list_add_tail(&fctx->list, fcs);
700 }
701
702 vma->vm_userfaultfd_ctx.ctx = ctx;
703 return 0;
704}
705
706static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
707{
708 struct userfaultfd_ctx *ctx = fctx->orig;
709 struct userfaultfd_wait_queue ewq;
710
711 msg_init(&ewq.msg);
712
713 ewq.msg.event = UFFD_EVENT_FORK;
714 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
715
716 userfaultfd_event_wait_completion(ctx, &ewq);
717}
718
719void dup_userfaultfd_complete(struct list_head *fcs)
720{
721 struct userfaultfd_fork_ctx *fctx, *n;
722
723 list_for_each_entry_safe(fctx, n, fcs, list) {
724 dup_fctx(fctx);
725 list_del(&fctx->list);
726 kfree(fctx);
727 }
728}
729
730void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731 struct vm_userfaultfd_ctx *vm_ctx)
732{
733 struct userfaultfd_ctx *ctx;
734
735 ctx = vma->vm_userfaultfd_ctx.ctx;
736
737 if (!ctx)
738 return;
739
740 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
741 vm_ctx->ctx = ctx;
742 userfaultfd_ctx_get(ctx);
743 down_write(&ctx->map_changing_lock);
744 atomic_inc(&ctx->mmap_changing);
745 up_write(&ctx->map_changing_lock);
746 } else {
747 /* Drop uffd context if remap feature not enabled */
748 vma_start_write(vma);
749 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
750 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
751 }
752}
753
754void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
755 unsigned long from, unsigned long to,
756 unsigned long len)
757{
758 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
759 struct userfaultfd_wait_queue ewq;
760
761 if (!ctx)
762 return;
763
764 if (to & ~PAGE_MASK) {
765 userfaultfd_ctx_put(ctx);
766 return;
767 }
768
769 msg_init(&ewq.msg);
770
771 ewq.msg.event = UFFD_EVENT_REMAP;
772 ewq.msg.arg.remap.from = from;
773 ewq.msg.arg.remap.to = to;
774 ewq.msg.arg.remap.len = len;
775
776 userfaultfd_event_wait_completion(ctx, &ewq);
777}
778
779bool userfaultfd_remove(struct vm_area_struct *vma,
780 unsigned long start, unsigned long end)
781{
782 struct mm_struct *mm = vma->vm_mm;
783 struct userfaultfd_ctx *ctx;
784 struct userfaultfd_wait_queue ewq;
785
786 ctx = vma->vm_userfaultfd_ctx.ctx;
787 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
788 return true;
789
790 userfaultfd_ctx_get(ctx);
791 down_write(&ctx->map_changing_lock);
792 atomic_inc(&ctx->mmap_changing);
793 up_write(&ctx->map_changing_lock);
794 mmap_read_unlock(mm);
795
796 msg_init(&ewq.msg);
797
798 ewq.msg.event = UFFD_EVENT_REMOVE;
799 ewq.msg.arg.remove.start = start;
800 ewq.msg.arg.remove.end = end;
801
802 userfaultfd_event_wait_completion(ctx, &ewq);
803
804 return false;
805}
806
807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 unsigned long start, unsigned long end)
809{
810 struct userfaultfd_unmap_ctx *unmap_ctx;
811
812 list_for_each_entry(unmap_ctx, unmaps, list)
813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 unmap_ctx->end == end)
815 return true;
816
817 return false;
818}
819
820int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
821 unsigned long end, struct list_head *unmaps)
822{
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
825
826 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827 has_unmap_ctx(ctx, unmaps, start, end))
828 return 0;
829
830 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
831 if (!unmap_ctx)
832 return -ENOMEM;
833
834 userfaultfd_ctx_get(ctx);
835 down_write(&ctx->map_changing_lock);
836 atomic_inc(&ctx->mmap_changing);
837 up_write(&ctx->map_changing_lock);
838 unmap_ctx->ctx = ctx;
839 unmap_ctx->start = start;
840 unmap_ctx->end = end;
841 list_add_tail(&unmap_ctx->list, unmaps);
842
843 return 0;
844}
845
846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847{
848 struct userfaultfd_unmap_ctx *ctx, *n;
849 struct userfaultfd_wait_queue ewq;
850
851 list_for_each_entry_safe(ctx, n, uf, list) {
852 msg_init(&ewq.msg);
853
854 ewq.msg.event = UFFD_EVENT_UNMAP;
855 ewq.msg.arg.remove.start = ctx->start;
856 ewq.msg.arg.remove.end = ctx->end;
857
858 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859
860 list_del(&ctx->list);
861 kfree(ctx);
862 }
863}
864
865static int userfaultfd_release(struct inode *inode, struct file *file)
866{
867 struct userfaultfd_ctx *ctx = file->private_data;
868 struct mm_struct *mm = ctx->mm;
869 struct vm_area_struct *vma, *prev;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range = { .len = 0, };
872 unsigned long new_flags;
873 VMA_ITERATOR(vmi, mm, 0);
874
875 WRITE_ONCE(ctx->released, true);
876
877 if (!mmget_not_zero(mm))
878 goto wakeup;
879
880 /*
881 * Flush page faults out of all CPUs. NOTE: all page faults
882 * must be retried without returning VM_FAULT_SIGBUS if
883 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
884 * changes while handle_userfault released the mmap_lock. So
885 * it's critical that released is set to true (above), before
886 * taking the mmap_lock for writing.
887 */
888 mmap_write_lock(mm);
889 prev = NULL;
890 for_each_vma(vmi, vma) {
891 cond_resched();
892 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
893 !!(vma->vm_flags & __VM_UFFD_FLAGS));
894 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
895 prev = vma;
896 continue;
897 }
898 /* Reset ptes for the whole vma range if wr-protected */
899 if (userfaultfd_wp(vma))
900 uffd_wp_range(vma, vma->vm_start,
901 vma->vm_end - vma->vm_start, false);
902 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
903 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
904 vma->vm_end, new_flags,
905 NULL_VM_UFFD_CTX);
906
907 vma_start_write(vma);
908 userfaultfd_set_vm_flags(vma, new_flags);
909 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
910
911 prev = vma;
912 }
913 mmap_write_unlock(mm);
914 mmput(mm);
915wakeup:
916 /*
917 * After no new page faults can wait on this fault_*wqh, flush
918 * the last page faults that may have been already waiting on
919 * the fault_*wqh.
920 */
921 spin_lock_irq(&ctx->fault_pending_wqh.lock);
922 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
923 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
924 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
925
926 /* Flush pending events that may still wait on event_wqh */
927 wake_up_all(&ctx->event_wqh);
928
929 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
930 userfaultfd_ctx_put(ctx);
931 return 0;
932}
933
934/* fault_pending_wqh.lock must be hold by the caller */
935static inline struct userfaultfd_wait_queue *find_userfault_in(
936 wait_queue_head_t *wqh)
937{
938 wait_queue_entry_t *wq;
939 struct userfaultfd_wait_queue *uwq;
940
941 lockdep_assert_held(&wqh->lock);
942
943 uwq = NULL;
944 if (!waitqueue_active(wqh))
945 goto out;
946 /* walk in reverse to provide FIFO behavior to read userfaults */
947 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
948 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949out:
950 return uwq;
951}
952
953static inline struct userfaultfd_wait_queue *find_userfault(
954 struct userfaultfd_ctx *ctx)
955{
956 return find_userfault_in(&ctx->fault_pending_wqh);
957}
958
959static inline struct userfaultfd_wait_queue *find_userfault_evt(
960 struct userfaultfd_ctx *ctx)
961{
962 return find_userfault_in(&ctx->event_wqh);
963}
964
965static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
966{
967 struct userfaultfd_ctx *ctx = file->private_data;
968 __poll_t ret;
969
970 poll_wait(file, &ctx->fd_wqh, wait);
971
972 if (!userfaultfd_is_initialized(ctx))
973 return EPOLLERR;
974
975 /*
976 * poll() never guarantees that read won't block.
977 * userfaults can be waken before they're read().
978 */
979 if (unlikely(!(file->f_flags & O_NONBLOCK)))
980 return EPOLLERR;
981 /*
982 * lockless access to see if there are pending faults
983 * __pollwait last action is the add_wait_queue but
984 * the spin_unlock would allow the waitqueue_active to
985 * pass above the actual list_add inside
986 * add_wait_queue critical section. So use a full
987 * memory barrier to serialize the list_add write of
988 * add_wait_queue() with the waitqueue_active read
989 * below.
990 */
991 ret = 0;
992 smp_mb();
993 if (waitqueue_active(&ctx->fault_pending_wqh))
994 ret = EPOLLIN;
995 else if (waitqueue_active(&ctx->event_wqh))
996 ret = EPOLLIN;
997
998 return ret;
999}
1000
1001static const struct file_operations userfaultfd_fops;
1002
1003static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004 struct inode *inode,
1005 struct uffd_msg *msg)
1006{
1007 int fd;
1008
1009 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1011 if (fd < 0)
1012 return fd;
1013
1014 msg->arg.reserved.reserved1 = 0;
1015 msg->arg.fork.ufd = fd;
1016 return 0;
1017}
1018
1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020 struct uffd_msg *msg, struct inode *inode)
1021{
1022 ssize_t ret;
1023 DECLARE_WAITQUEUE(wait, current);
1024 struct userfaultfd_wait_queue *uwq;
1025 /*
1026 * Handling fork event requires sleeping operations, so
1027 * we drop the event_wqh lock, then do these ops, then
1028 * lock it back and wake up the waiter. While the lock is
1029 * dropped the ewq may go away so we keep track of it
1030 * carefully.
1031 */
1032 LIST_HEAD(fork_event);
1033 struct userfaultfd_ctx *fork_nctx = NULL;
1034
1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1036 spin_lock_irq(&ctx->fd_wqh.lock);
1037 __add_wait_queue(&ctx->fd_wqh, &wait);
1038 for (;;) {
1039 set_current_state(TASK_INTERRUPTIBLE);
1040 spin_lock(&ctx->fault_pending_wqh.lock);
1041 uwq = find_userfault(ctx);
1042 if (uwq) {
1043 /*
1044 * Use a seqcount to repeat the lockless check
1045 * in wake_userfault() to avoid missing
1046 * wakeups because during the refile both
1047 * waitqueue could become empty if this is the
1048 * only userfault.
1049 */
1050 write_seqcount_begin(&ctx->refile_seq);
1051
1052 /*
1053 * The fault_pending_wqh.lock prevents the uwq
1054 * to disappear from under us.
1055 *
1056 * Refile this userfault from
1057 * fault_pending_wqh to fault_wqh, it's not
1058 * pending anymore after we read it.
1059 *
1060 * Use list_del() by hand (as
1061 * userfaultfd_wake_function also uses
1062 * list_del_init() by hand) to be sure nobody
1063 * changes __remove_wait_queue() to use
1064 * list_del_init() in turn breaking the
1065 * !list_empty_careful() check in
1066 * handle_userfault(). The uwq->wq.head list
1067 * must never be empty at any time during the
1068 * refile, or the waitqueue could disappear
1069 * from under us. The "wait_queue_head_t"
1070 * parameter of __remove_wait_queue() is unused
1071 * anyway.
1072 */
1073 list_del(&uwq->wq.entry);
1074 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
1076 write_seqcount_end(&ctx->refile_seq);
1077
1078 /* careful to always initialize msg if ret == 0 */
1079 *msg = uwq->msg;
1080 spin_unlock(&ctx->fault_pending_wqh.lock);
1081 ret = 0;
1082 break;
1083 }
1084 spin_unlock(&ctx->fault_pending_wqh.lock);
1085
1086 spin_lock(&ctx->event_wqh.lock);
1087 uwq = find_userfault_evt(ctx);
1088 if (uwq) {
1089 *msg = uwq->msg;
1090
1091 if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 fork_nctx = (struct userfaultfd_ctx *)
1093 (unsigned long)
1094 uwq->msg.arg.reserved.reserved1;
1095 list_move(&uwq->wq.entry, &fork_event);
1096 /*
1097 * fork_nctx can be freed as soon as
1098 * we drop the lock, unless we take a
1099 * reference on it.
1100 */
1101 userfaultfd_ctx_get(fork_nctx);
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106
1107 userfaultfd_event_complete(ctx, uwq);
1108 spin_unlock(&ctx->event_wqh.lock);
1109 ret = 0;
1110 break;
1111 }
1112 spin_unlock(&ctx->event_wqh.lock);
1113
1114 if (signal_pending(current)) {
1115 ret = -ERESTARTSYS;
1116 break;
1117 }
1118 if (no_wait) {
1119 ret = -EAGAIN;
1120 break;
1121 }
1122 spin_unlock_irq(&ctx->fd_wqh.lock);
1123 schedule();
1124 spin_lock_irq(&ctx->fd_wqh.lock);
1125 }
1126 __remove_wait_queue(&ctx->fd_wqh, &wait);
1127 __set_current_state(TASK_RUNNING);
1128 spin_unlock_irq(&ctx->fd_wqh.lock);
1129
1130 if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1132 spin_lock_irq(&ctx->event_wqh.lock);
1133 if (!list_empty(&fork_event)) {
1134 /*
1135 * The fork thread didn't abort, so we can
1136 * drop the temporary refcount.
1137 */
1138 userfaultfd_ctx_put(fork_nctx);
1139
1140 uwq = list_first_entry(&fork_event,
1141 typeof(*uwq),
1142 wq.entry);
1143 /*
1144 * If fork_event list wasn't empty and in turn
1145 * the event wasn't already released by fork
1146 * (the event is allocated on fork kernel
1147 * stack), put the event back to its place in
1148 * the event_wq. fork_event head will be freed
1149 * as soon as we return so the event cannot
1150 * stay queued there no matter the current
1151 * "ret" value.
1152 */
1153 list_del(&uwq->wq.entry);
1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155
1156 /*
1157 * Leave the event in the waitqueue and report
1158 * error to userland if we failed to resolve
1159 * the userfault fork.
1160 */
1161 if (likely(!ret))
1162 userfaultfd_event_complete(ctx, uwq);
1163 } else {
1164 /*
1165 * Here the fork thread aborted and the
1166 * refcount from the fork thread on fork_nctx
1167 * has already been released. We still hold
1168 * the reference we took before releasing the
1169 * lock above. If resolve_userfault_fork
1170 * failed we've to drop it because the
1171 * fork_nctx has to be freed in such case. If
1172 * it succeeded we'll hold it because the new
1173 * uffd references it.
1174 */
1175 if (ret)
1176 userfaultfd_ctx_put(fork_nctx);
1177 }
1178 spin_unlock_irq(&ctx->event_wqh.lock);
1179 }
1180
1181 return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 size_t count, loff_t *ppos)
1186{
1187 struct userfaultfd_ctx *ctx = file->private_data;
1188 ssize_t _ret, ret = 0;
1189 struct uffd_msg msg;
1190 int no_wait = file->f_flags & O_NONBLOCK;
1191 struct inode *inode = file_inode(file);
1192
1193 if (!userfaultfd_is_initialized(ctx))
1194 return -EINVAL;
1195
1196 for (;;) {
1197 if (count < sizeof(msg))
1198 return ret ? ret : -EINVAL;
1199 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1200 if (_ret < 0)
1201 return ret ? ret : _ret;
1202 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203 return ret ? ret : -EFAULT;
1204 ret += sizeof(msg);
1205 buf += sizeof(msg);
1206 count -= sizeof(msg);
1207 /*
1208 * Allow to read more than one fault at time but only
1209 * block if waiting for the very first one.
1210 */
1211 no_wait = O_NONBLOCK;
1212 }
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216 struct userfaultfd_wake_range *range)
1217{
1218 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1219 /* wake all in the range and autoremove */
1220 if (waitqueue_active(&ctx->fault_pending_wqh))
1221 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222 range);
1223 if (waitqueue_active(&ctx->fault_wqh))
1224 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1225 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229 struct userfaultfd_wake_range *range)
1230{
1231 unsigned seq;
1232 bool need_wakeup;
1233
1234 /*
1235 * To be sure waitqueue_active() is not reordered by the CPU
1236 * before the pagetable update, use an explicit SMP memory
1237 * barrier here. PT lock release or mmap_read_unlock(mm) still
1238 * have release semantics that can allow the
1239 * waitqueue_active() to be reordered before the pte update.
1240 */
1241 smp_mb();
1242
1243 /*
1244 * Use waitqueue_active because it's very frequent to
1245 * change the address space atomically even if there are no
1246 * userfaults yet. So we take the spinlock only when we're
1247 * sure we've userfaults to wake.
1248 */
1249 do {
1250 seq = read_seqcount_begin(&ctx->refile_seq);
1251 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252 waitqueue_active(&ctx->fault_wqh);
1253 cond_resched();
1254 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1255 if (need_wakeup)
1256 __wake_userfault(ctx, range);
1257}
1258
1259static __always_inline int validate_unaligned_range(
1260 struct mm_struct *mm, __u64 start, __u64 len)
1261{
1262 __u64 task_size = mm->task_size;
1263
1264 if (len & ~PAGE_MASK)
1265 return -EINVAL;
1266 if (!len)
1267 return -EINVAL;
1268 if (start < mmap_min_addr)
1269 return -EINVAL;
1270 if (start >= task_size)
1271 return -EINVAL;
1272 if (len > task_size - start)
1273 return -EINVAL;
1274 if (start + len <= start)
1275 return -EINVAL;
1276 return 0;
1277}
1278
1279static __always_inline int validate_range(struct mm_struct *mm,
1280 __u64 start, __u64 len)
1281{
1282 if (start & ~PAGE_MASK)
1283 return -EINVAL;
1284
1285 return validate_unaligned_range(mm, start, len);
1286}
1287
1288static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289 unsigned long arg)
1290{
1291 struct mm_struct *mm = ctx->mm;
1292 struct vm_area_struct *vma, *prev, *cur;
1293 int ret;
1294 struct uffdio_register uffdio_register;
1295 struct uffdio_register __user *user_uffdio_register;
1296 unsigned long vm_flags, new_flags;
1297 bool found;
1298 bool basic_ioctls;
1299 unsigned long start, end, vma_end;
1300 struct vma_iterator vmi;
1301 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1302
1303 user_uffdio_register = (struct uffdio_register __user *) arg;
1304
1305 ret = -EFAULT;
1306 if (copy_from_user(&uffdio_register, user_uffdio_register,
1307 sizeof(uffdio_register)-sizeof(__u64)))
1308 goto out;
1309
1310 ret = -EINVAL;
1311 if (!uffdio_register.mode)
1312 goto out;
1313 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1314 goto out;
1315 vm_flags = 0;
1316 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317 vm_flags |= VM_UFFD_MISSING;
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320 goto out;
1321#endif
1322 vm_flags |= VM_UFFD_WP;
1323 }
1324 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1326 goto out;
1327#endif
1328 vm_flags |= VM_UFFD_MINOR;
1329 }
1330
1331 ret = validate_range(mm, uffdio_register.range.start,
1332 uffdio_register.range.len);
1333 if (ret)
1334 goto out;
1335
1336 start = uffdio_register.range.start;
1337 end = start + uffdio_register.range.len;
1338
1339 ret = -ENOMEM;
1340 if (!mmget_not_zero(mm))
1341 goto out;
1342
1343 ret = -EINVAL;
1344 mmap_write_lock(mm);
1345 vma_iter_init(&vmi, mm, start);
1346 vma = vma_find(&vmi, end);
1347 if (!vma)
1348 goto out_unlock;
1349
1350 /*
1351 * If the first vma contains huge pages, make sure start address
1352 * is aligned to huge page size.
1353 */
1354 if (is_vm_hugetlb_page(vma)) {
1355 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356
1357 if (start & (vma_hpagesize - 1))
1358 goto out_unlock;
1359 }
1360
1361 /*
1362 * Search for not compatible vmas.
1363 */
1364 found = false;
1365 basic_ioctls = false;
1366 cur = vma;
1367 do {
1368 cond_resched();
1369
1370 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1372
1373 /* check not compatible vmas */
1374 ret = -EINVAL;
1375 if (!vma_can_userfault(cur, vm_flags, wp_async))
1376 goto out_unlock;
1377
1378 /*
1379 * UFFDIO_COPY will fill file holes even without
1380 * PROT_WRITE. This check enforces that if this is a
1381 * MAP_SHARED, the process has write permission to the backing
1382 * file. If VM_MAYWRITE is set it also enforces that on a
1383 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385 */
1386 ret = -EPERM;
1387 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388 goto out_unlock;
1389
1390 /*
1391 * If this vma contains ending address, and huge pages
1392 * check alignment.
1393 */
1394 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395 end > cur->vm_start) {
1396 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398 ret = -EINVAL;
1399
1400 if (end & (vma_hpagesize - 1))
1401 goto out_unlock;
1402 }
1403 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404 goto out_unlock;
1405
1406 /*
1407 * Check that this vma isn't already owned by a
1408 * different userfaultfd. We can't allow more than one
1409 * userfaultfd to own a single vma simultaneously or we
1410 * wouldn't know which one to deliver the userfaults to.
1411 */
1412 ret = -EBUSY;
1413 if (cur->vm_userfaultfd_ctx.ctx &&
1414 cur->vm_userfaultfd_ctx.ctx != ctx)
1415 goto out_unlock;
1416
1417 /*
1418 * Note vmas containing huge pages
1419 */
1420 if (is_vm_hugetlb_page(cur))
1421 basic_ioctls = true;
1422
1423 found = true;
1424 } for_each_vma_range(vmi, cur, end);
1425 BUG_ON(!found);
1426
1427 vma_iter_set(&vmi, start);
1428 prev = vma_prev(&vmi);
1429 if (vma->vm_start < start)
1430 prev = vma;
1431
1432 ret = 0;
1433 for_each_vma_range(vmi, vma, end) {
1434 cond_resched();
1435
1436 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1437 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438 vma->vm_userfaultfd_ctx.ctx != ctx);
1439 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440
1441 /*
1442 * Nothing to do: this vma is already registered into this
1443 * userfaultfd and with the right tracking mode too.
1444 */
1445 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446 (vma->vm_flags & vm_flags) == vm_flags)
1447 goto skip;
1448
1449 if (vma->vm_start > start)
1450 start = vma->vm_start;
1451 vma_end = min(end, vma->vm_end);
1452
1453 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1454 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455 new_flags,
1456 (struct vm_userfaultfd_ctx){ctx});
1457 if (IS_ERR(vma)) {
1458 ret = PTR_ERR(vma);
1459 break;
1460 }
1461
1462 /*
1463 * In the vma_merge() successful mprotect-like case 8:
1464 * the next vma was merged into the current one and
1465 * the current one has not been updated yet.
1466 */
1467 vma_start_write(vma);
1468 userfaultfd_set_vm_flags(vma, new_flags);
1469 vma->vm_userfaultfd_ctx.ctx = ctx;
1470
1471 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472 hugetlb_unshare_all_pmds(vma);
1473
1474 skip:
1475 prev = vma;
1476 start = vma->vm_end;
1477 }
1478
1479out_unlock:
1480 mmap_write_unlock(mm);
1481 mmput(mm);
1482 if (!ret) {
1483 __u64 ioctls_out;
1484
1485 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 UFFD_API_RANGE_IOCTLS;
1487
1488 /*
1489 * Declare the WP ioctl only if the WP mode is
1490 * specified and all checks passed with the range
1491 */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494
1495 /* CONTINUE ioctl is only supported for MINOR ranges. */
1496 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498
1499 /*
1500 * Now that we scanned all vmas we can already tell
1501 * userland which ioctls methods are guaranteed to
1502 * succeed on this range.
1503 */
1504 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1505 ret = -EFAULT;
1506 }
1507out:
1508 return ret;
1509}
1510
1511static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512 unsigned long arg)
1513{
1514 struct mm_struct *mm = ctx->mm;
1515 struct vm_area_struct *vma, *prev, *cur;
1516 int ret;
1517 struct uffdio_range uffdio_unregister;
1518 unsigned long new_flags;
1519 bool found;
1520 unsigned long start, end, vma_end;
1521 const void __user *buf = (void __user *)arg;
1522 struct vma_iterator vmi;
1523 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1524
1525 ret = -EFAULT;
1526 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527 goto out;
1528
1529 ret = validate_range(mm, uffdio_unregister.start,
1530 uffdio_unregister.len);
1531 if (ret)
1532 goto out;
1533
1534 start = uffdio_unregister.start;
1535 end = start + uffdio_unregister.len;
1536
1537 ret = -ENOMEM;
1538 if (!mmget_not_zero(mm))
1539 goto out;
1540
1541 mmap_write_lock(mm);
1542 ret = -EINVAL;
1543 vma_iter_init(&vmi, mm, start);
1544 vma = vma_find(&vmi, end);
1545 if (!vma)
1546 goto out_unlock;
1547
1548 /*
1549 * If the first vma contains huge pages, make sure start address
1550 * is aligned to huge page size.
1551 */
1552 if (is_vm_hugetlb_page(vma)) {
1553 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555 if (start & (vma_hpagesize - 1))
1556 goto out_unlock;
1557 }
1558
1559 /*
1560 * Search for not compatible vmas.
1561 */
1562 found = false;
1563 cur = vma;
1564 do {
1565 cond_resched();
1566
1567 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569
1570 /*
1571 * Check not compatible vmas, not strictly required
1572 * here as not compatible vmas cannot have an
1573 * userfaultfd_ctx registered on them, but this
1574 * provides for more strict behavior to notice
1575 * unregistration errors.
1576 */
1577 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1578 goto out_unlock;
1579
1580 found = true;
1581 } for_each_vma_range(vmi, cur, end);
1582 BUG_ON(!found);
1583
1584 vma_iter_set(&vmi, start);
1585 prev = vma_prev(&vmi);
1586 if (vma->vm_start < start)
1587 prev = vma;
1588
1589 ret = 0;
1590 for_each_vma_range(vmi, vma, end) {
1591 cond_resched();
1592
1593 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1594
1595 /*
1596 * Nothing to do: this vma is already registered into this
1597 * userfaultfd and with the right tracking mode too.
1598 */
1599 if (!vma->vm_userfaultfd_ctx.ctx)
1600 goto skip;
1601
1602 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603
1604 if (vma->vm_start > start)
1605 start = vma->vm_start;
1606 vma_end = min(end, vma->vm_end);
1607
1608 if (userfaultfd_missing(vma)) {
1609 /*
1610 * Wake any concurrent pending userfault while
1611 * we unregister, so they will not hang
1612 * permanently and it avoids userland to call
1613 * UFFDIO_WAKE explicitly.
1614 */
1615 struct userfaultfd_wake_range range;
1616 range.start = start;
1617 range.len = vma_end - start;
1618 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1619 }
1620
1621 /* Reset ptes for the whole vma range if wr-protected */
1622 if (userfaultfd_wp(vma))
1623 uffd_wp_range(vma, start, vma_end - start, false);
1624
1625 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1626 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627 new_flags, NULL_VM_UFFD_CTX);
1628 if (IS_ERR(vma)) {
1629 ret = PTR_ERR(vma);
1630 break;
1631 }
1632
1633 /*
1634 * In the vma_merge() successful mprotect-like case 8:
1635 * the next vma was merged into the current one and
1636 * the current one has not been updated yet.
1637 */
1638 vma_start_write(vma);
1639 userfaultfd_set_vm_flags(vma, new_flags);
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
1645 }
1646
1647out_unlock:
1648 mmap_write_unlock(mm);
1649 mmput(mm);
1650out:
1651 return ret;
1652}
1653
1654/*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660{
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1669
1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 if (ret)
1672 goto out;
1673
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1676
1677 /*
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1680 */
1681 VM_BUG_ON(!range.len);
1682
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1685
1686out:
1687 return ret;
1688}
1689
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1692{
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
1697 uffd_flags_t flags = 0;
1698
1699 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
1701 ret = -EAGAIN;
1702 if (atomic_read(&ctx->mmap_changing))
1703 goto out;
1704
1705 ret = -EFAULT;
1706 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707 /* don't copy "copy" last field */
1708 sizeof(uffdio_copy)-sizeof(__s64)))
1709 goto out;
1710
1711 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712 uffdio_copy.len);
1713 if (ret)
1714 goto out;
1715 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 if (ret)
1717 goto out;
1718
1719 ret = -EINVAL;
1720 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1721 goto out;
1722 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723 flags |= MFILL_ATOMIC_WP;
1724 if (mmget_not_zero(ctx->mm)) {
1725 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726 uffdio_copy.len, flags);
1727 mmput(ctx->mm);
1728 } else {
1729 return -ESRCH;
1730 }
1731 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 return -EFAULT;
1733 if (ret < 0)
1734 goto out;
1735 BUG_ON(!ret);
1736 /* len == 0 would wake all */
1737 range.len = ret;
1738 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 range.start = uffdio_copy.dst;
1740 wake_userfault(ctx, &range);
1741 }
1742 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744 return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 unsigned long arg)
1749{
1750 __s64 ret;
1751 struct uffdio_zeropage uffdio_zeropage;
1752 struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 struct userfaultfd_wake_range range;
1754
1755 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
1757 ret = -EAGAIN;
1758 if (atomic_read(&ctx->mmap_changing))
1759 goto out;
1760
1761 ret = -EFAULT;
1762 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 /* don't copy "zeropage" last field */
1764 sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 goto out;
1766
1767 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768 uffdio_zeropage.range.len);
1769 if (ret)
1770 goto out;
1771 ret = -EINVAL;
1772 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 goto out;
1774
1775 if (mmget_not_zero(ctx->mm)) {
1776 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777 uffdio_zeropage.range.len);
1778 mmput(ctx->mm);
1779 } else {
1780 return -ESRCH;
1781 }
1782 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 return -EFAULT;
1784 if (ret < 0)
1785 goto out;
1786 /* len == 0 would wake all */
1787 BUG_ON(!ret);
1788 range.len = ret;
1789 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 range.start = uffdio_zeropage.range.start;
1791 wake_userfault(ctx, &range);
1792 }
1793 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795 return ret;
1796}
1797
1798static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799 unsigned long arg)
1800{
1801 int ret;
1802 struct uffdio_writeprotect uffdio_wp;
1803 struct uffdio_writeprotect __user *user_uffdio_wp;
1804 struct userfaultfd_wake_range range;
1805 bool mode_wp, mode_dontwake;
1806
1807 if (atomic_read(&ctx->mmap_changing))
1808 return -EAGAIN;
1809
1810 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811
1812 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813 sizeof(struct uffdio_writeprotect)))
1814 return -EFAULT;
1815
1816 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1817 uffdio_wp.range.len);
1818 if (ret)
1819 return ret;
1820
1821 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822 UFFDIO_WRITEPROTECT_MODE_WP))
1823 return -EINVAL;
1824
1825 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827
1828 if (mode_wp && mode_dontwake)
1829 return -EINVAL;
1830
1831 if (mmget_not_zero(ctx->mm)) {
1832 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833 uffdio_wp.range.len, mode_wp);
1834 mmput(ctx->mm);
1835 } else {
1836 return -ESRCH;
1837 }
1838
1839 if (ret)
1840 return ret;
1841
1842 if (!mode_wp && !mode_dontwake) {
1843 range.start = uffdio_wp.range.start;
1844 range.len = uffdio_wp.range.len;
1845 wake_userfault(ctx, &range);
1846 }
1847 return ret;
1848}
1849
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852 __s64 ret;
1853 struct uffdio_continue uffdio_continue;
1854 struct uffdio_continue __user *user_uffdio_continue;
1855 struct userfaultfd_wake_range range;
1856 uffd_flags_t flags = 0;
1857
1858 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859
1860 ret = -EAGAIN;
1861 if (atomic_read(&ctx->mmap_changing))
1862 goto out;
1863
1864 ret = -EFAULT;
1865 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866 /* don't copy the output fields */
1867 sizeof(uffdio_continue) - (sizeof(__s64))))
1868 goto out;
1869
1870 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1871 uffdio_continue.range.len);
1872 if (ret)
1873 goto out;
1874
1875 ret = -EINVAL;
1876 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877 UFFDIO_CONTINUE_MODE_WP))
1878 goto out;
1879 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880 flags |= MFILL_ATOMIC_WP;
1881
1882 if (mmget_not_zero(ctx->mm)) {
1883 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884 uffdio_continue.range.len, flags);
1885 mmput(ctx->mm);
1886 } else {
1887 return -ESRCH;
1888 }
1889
1890 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 return -EFAULT;
1892 if (ret < 0)
1893 goto out;
1894
1895 /* len == 0 would wake all */
1896 BUG_ON(!ret);
1897 range.len = ret;
1898 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 range.start = uffdio_continue.range.start;
1900 wake_userfault(ctx, &range);
1901 }
1902 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905 return ret;
1906}
1907
1908static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909{
1910 __s64 ret;
1911 struct uffdio_poison uffdio_poison;
1912 struct uffdio_poison __user *user_uffdio_poison;
1913 struct userfaultfd_wake_range range;
1914
1915 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916
1917 ret = -EAGAIN;
1918 if (atomic_read(&ctx->mmap_changing))
1919 goto out;
1920
1921 ret = -EFAULT;
1922 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923 /* don't copy the output fields */
1924 sizeof(uffdio_poison) - (sizeof(__s64))))
1925 goto out;
1926
1927 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928 uffdio_poison.range.len);
1929 if (ret)
1930 goto out;
1931
1932 ret = -EINVAL;
1933 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934 goto out;
1935
1936 if (mmget_not_zero(ctx->mm)) {
1937 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938 uffdio_poison.range.len, 0);
1939 mmput(ctx->mm);
1940 } else {
1941 return -ESRCH;
1942 }
1943
1944 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945 return -EFAULT;
1946 if (ret < 0)
1947 goto out;
1948
1949 /* len == 0 would wake all */
1950 BUG_ON(!ret);
1951 range.len = ret;
1952 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953 range.start = uffdio_poison.range.start;
1954 wake_userfault(ctx, &range);
1955 }
1956 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957
1958out:
1959 return ret;
1960}
1961
1962bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963{
1964 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965}
1966
1967static inline unsigned int uffd_ctx_features(__u64 user_features)
1968{
1969 /*
1970 * For the current set of features the bits just coincide. Set
1971 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1972 */
1973 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1974}
1975
1976static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977 unsigned long arg)
1978{
1979 __s64 ret;
1980 struct uffdio_move uffdio_move;
1981 struct uffdio_move __user *user_uffdio_move;
1982 struct userfaultfd_wake_range range;
1983 struct mm_struct *mm = ctx->mm;
1984
1985 user_uffdio_move = (struct uffdio_move __user *) arg;
1986
1987 if (atomic_read(&ctx->mmap_changing))
1988 return -EAGAIN;
1989
1990 if (copy_from_user(&uffdio_move, user_uffdio_move,
1991 /* don't copy "move" last field */
1992 sizeof(uffdio_move)-sizeof(__s64)))
1993 return -EFAULT;
1994
1995 /* Do not allow cross-mm moves. */
1996 if (mm != current->mm)
1997 return -EINVAL;
1998
1999 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000 if (ret)
2001 return ret;
2002
2003 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004 if (ret)
2005 return ret;
2006
2007 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008 UFFDIO_MOVE_MODE_DONTWAKE))
2009 return -EINVAL;
2010
2011 if (mmget_not_zero(mm)) {
2012 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013 uffdio_move.len, uffdio_move.mode);
2014 mmput(mm);
2015 } else {
2016 return -ESRCH;
2017 }
2018
2019 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020 return -EFAULT;
2021 if (ret < 0)
2022 goto out;
2023
2024 /* len == 0 would wake all */
2025 VM_WARN_ON(!ret);
2026 range.len = ret;
2027 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028 range.start = uffdio_move.dst;
2029 wake_userfault(ctx, &range);
2030 }
2031 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032
2033out:
2034 return ret;
2035}
2036
2037/*
2038 * userland asks for a certain API version and we return which bits
2039 * and ioctl commands are implemented in this kernel for such API
2040 * version or -EINVAL if unknown.
2041 */
2042static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043 unsigned long arg)
2044{
2045 struct uffdio_api uffdio_api;
2046 void __user *buf = (void __user *)arg;
2047 unsigned int ctx_features;
2048 int ret;
2049 __u64 features;
2050
2051 ret = -EFAULT;
2052 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2053 goto out;
2054 features = uffdio_api.features;
2055 ret = -EINVAL;
2056 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057 goto err_out;
2058 ret = -EPERM;
2059 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060 goto err_out;
2061
2062 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063 if (features & UFFD_FEATURE_WP_ASYNC)
2064 features |= UFFD_FEATURE_WP_UNPOPULATED;
2065
2066 /* report all available features and ioctls to userland */
2067 uffdio_api.features = UFFD_API_FEATURES;
2068#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2069 uffdio_api.features &=
2070 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2071#endif
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2074#endif
2075#ifndef CONFIG_PTE_MARKER_UFFD_WP
2076 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2077 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2078 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2079#endif
2080 uffdio_api.ioctls = UFFD_API_IOCTLS;
2081 ret = -EFAULT;
2082 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083 goto out;
2084
2085 /* only enable the requested features for this uffd context */
2086 ctx_features = uffd_ctx_features(features);
2087 ret = -EINVAL;
2088 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089 goto err_out;
2090
2091 ret = 0;
2092out:
2093 return ret;
2094err_out:
2095 memset(&uffdio_api, 0, sizeof(uffdio_api));
2096 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097 ret = -EFAULT;
2098 goto out;
2099}
2100
2101static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102 unsigned long arg)
2103{
2104 int ret = -EINVAL;
2105 struct userfaultfd_ctx *ctx = file->private_data;
2106
2107 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108 return -EINVAL;
2109
2110 switch(cmd) {
2111 case UFFDIO_API:
2112 ret = userfaultfd_api(ctx, arg);
2113 break;
2114 case UFFDIO_REGISTER:
2115 ret = userfaultfd_register(ctx, arg);
2116 break;
2117 case UFFDIO_UNREGISTER:
2118 ret = userfaultfd_unregister(ctx, arg);
2119 break;
2120 case UFFDIO_WAKE:
2121 ret = userfaultfd_wake(ctx, arg);
2122 break;
2123 case UFFDIO_COPY:
2124 ret = userfaultfd_copy(ctx, arg);
2125 break;
2126 case UFFDIO_ZEROPAGE:
2127 ret = userfaultfd_zeropage(ctx, arg);
2128 break;
2129 case UFFDIO_MOVE:
2130 ret = userfaultfd_move(ctx, arg);
2131 break;
2132 case UFFDIO_WRITEPROTECT:
2133 ret = userfaultfd_writeprotect(ctx, arg);
2134 break;
2135 case UFFDIO_CONTINUE:
2136 ret = userfaultfd_continue(ctx, arg);
2137 break;
2138 case UFFDIO_POISON:
2139 ret = userfaultfd_poison(ctx, arg);
2140 break;
2141 }
2142 return ret;
2143}
2144
2145#ifdef CONFIG_PROC_FS
2146static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147{
2148 struct userfaultfd_ctx *ctx = f->private_data;
2149 wait_queue_entry_t *wq;
2150 unsigned long pending = 0, total = 0;
2151
2152 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2153 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2154 pending++;
2155 total++;
2156 }
2157 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2158 total++;
2159 }
2160 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2161
2162 /*
2163 * If more protocols will be added, there will be all shown
2164 * separated by a space. Like this:
2165 * protocols: aa:... bb:...
2166 */
2167 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2168 pending, total, UFFD_API, ctx->features,
2169 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170}
2171#endif
2172
2173static const struct file_operations userfaultfd_fops = {
2174#ifdef CONFIG_PROC_FS
2175 .show_fdinfo = userfaultfd_show_fdinfo,
2176#endif
2177 .release = userfaultfd_release,
2178 .poll = userfaultfd_poll,
2179 .read = userfaultfd_read,
2180 .unlocked_ioctl = userfaultfd_ioctl,
2181 .compat_ioctl = compat_ptr_ioctl,
2182 .llseek = noop_llseek,
2183};
2184
2185static void init_once_userfaultfd_ctx(void *mem)
2186{
2187 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188
2189 init_waitqueue_head(&ctx->fault_pending_wqh);
2190 init_waitqueue_head(&ctx->fault_wqh);
2191 init_waitqueue_head(&ctx->event_wqh);
2192 init_waitqueue_head(&ctx->fd_wqh);
2193 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2194}
2195
2196static int new_userfaultfd(int flags)
2197{
2198 struct userfaultfd_ctx *ctx;
2199 int fd;
2200
2201 BUG_ON(!current->mm);
2202
2203 /* Check the UFFD_* constants for consistency. */
2204 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2205 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207
2208 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2209 return -EINVAL;
2210
2211 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2212 if (!ctx)
2213 return -ENOMEM;
2214
2215 refcount_set(&ctx->refcount, 1);
2216 ctx->flags = flags;
2217 ctx->features = 0;
2218 ctx->released = false;
2219 init_rwsem(&ctx->map_changing_lock);
2220 atomic_set(&ctx->mmap_changing, 0);
2221 ctx->mm = current->mm;
2222 /* prevent the mm struct to be freed */
2223 mmgrab(ctx->mm);
2224
2225 /* Create a new inode so that the LSM can block the creation. */
2226 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2227 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2228 if (fd < 0) {
2229 mmdrop(ctx->mm);
2230 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231 }
2232 return fd;
2233}
2234
2235static inline bool userfaultfd_syscall_allowed(int flags)
2236{
2237 /* Userspace-only page faults are always allowed */
2238 if (flags & UFFD_USER_MODE_ONLY)
2239 return true;
2240
2241 /*
2242 * The user is requesting a userfaultfd which can handle kernel faults.
2243 * Privileged users are always allowed to do this.
2244 */
2245 if (capable(CAP_SYS_PTRACE))
2246 return true;
2247
2248 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2249 return sysctl_unprivileged_userfaultfd;
2250}
2251
2252SYSCALL_DEFINE1(userfaultfd, int, flags)
2253{
2254 if (!userfaultfd_syscall_allowed(flags))
2255 return -EPERM;
2256
2257 return new_userfaultfd(flags);
2258}
2259
2260static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261{
2262 if (cmd != USERFAULTFD_IOC_NEW)
2263 return -EINVAL;
2264
2265 return new_userfaultfd(flags);
2266}
2267
2268static const struct file_operations userfaultfd_dev_fops = {
2269 .unlocked_ioctl = userfaultfd_dev_ioctl,
2270 .compat_ioctl = userfaultfd_dev_ioctl,
2271 .owner = THIS_MODULE,
2272 .llseek = noop_llseek,
2273};
2274
2275static struct miscdevice userfaultfd_misc = {
2276 .minor = MISC_DYNAMIC_MINOR,
2277 .name = "userfaultfd",
2278 .fops = &userfaultfd_dev_fops
2279};
2280
2281static int __init userfaultfd_init(void)
2282{
2283 int ret;
2284
2285 ret = misc_register(&userfaultfd_misc);
2286 if (ret)
2287 return ret;
2288
2289 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290 sizeof(struct userfaultfd_ctx),
2291 0,
2292 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293 init_once_userfaultfd_ctx);
2294#ifdef CONFIG_SYSCTL
2295 register_sysctl_init("vm", vm_userfaultfd_table);
2296#endif
2297 return 0;
2298}
2299__initcall(userfaultfd_init);