Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
 
  15#include <linux/hashtable.h>
  16#include <linux/sched.h>
 
  17#include <linux/mm.h>
 
 
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/seq_file.h>
  21#include <linux/file.h>
  22#include <linux/bug.h>
  23#include <linux/anon_inodes.h>
  24#include <linux/syscalls.h>
  25#include <linux/userfaultfd_k.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ioctl.h>
  28#include <linux/security.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29
  30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  31
  32enum userfaultfd_state {
  33	UFFD_STATE_WAIT_API,
  34	UFFD_STATE_RUNNING,
 
  35};
  36
  37/*
  38 * Start with fault_pending_wqh and fault_wqh so they're more likely
  39 * to be in the same cacheline.
  40 */
  41struct userfaultfd_ctx {
  42	/* waitqueue head for the pending (i.e. not read) userfaults */
  43	wait_queue_head_t fault_pending_wqh;
  44	/* waitqueue head for the userfaults */
  45	wait_queue_head_t fault_wqh;
  46	/* waitqueue head for the pseudo fd to wakeup poll/read */
  47	wait_queue_head_t fd_wqh;
  48	/* a refile sequence protected by fault_pending_wqh lock */
  49	struct seqcount refile_seq;
  50	/* pseudo fd refcounting */
  51	atomic_t refcount;
  52	/* userfaultfd syscall flags */
  53	unsigned int flags;
  54	/* state machine */
  55	enum userfaultfd_state state;
  56	/* released */
  57	bool released;
  58	/* mm with one ore more vmas attached to this userfaultfd_ctx */
  59	struct mm_struct *mm;
  60};
  61
  62struct userfaultfd_wait_queue {
  63	struct uffd_msg msg;
  64	wait_queue_t wq;
  65	struct userfaultfd_ctx *ctx;
  66	bool waken;
  67};
  68
  69struct userfaultfd_wake_range {
  70	unsigned long start;
  71	unsigned long len;
  72};
  73
  74static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75				     int wake_flags, void *key)
  76{
  77	struct userfaultfd_wake_range *range = key;
  78	int ret;
  79	struct userfaultfd_wait_queue *uwq;
  80	unsigned long start, len;
  81
  82	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
  83	ret = 0;
  84	/* len == 0 means wake all */
  85	start = range->start;
  86	len = range->len;
  87	if (len && (start > uwq->msg.arg.pagefault.address ||
  88		    start + len <= uwq->msg.arg.pagefault.address))
  89		goto out;
  90	WRITE_ONCE(uwq->waken, true);
  91	/*
  92	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
  93	 * renders uwq->waken visible to other CPUs before the task is
  94	 * waken.
  95	 */
  96	ret = wake_up_state(wq->private, mode);
  97	if (ret)
  98		/*
  99		 * Wake only once, autoremove behavior.
 100		 *
 101		 * After the effect of list_del_init is visible to the
 102		 * other CPUs, the waitqueue may disappear from under
 103		 * us, see the !list_empty_careful() in
 104		 * handle_userfault(). try_to_wake_up() has an
 105		 * implicit smp_mb__before_spinlock, and the
 106		 * wq->private is read before calling the extern
 107		 * function "wake_up_state" (which in turns calls
 108		 * try_to_wake_up). While the spin_lock;spin_unlock;
 109		 * wouldn't be enough, the smp_mb__before_spinlock is
 110		 * enough to avoid an explicit smp_mb() here.
 111		 */
 112		list_del_init(&wq->task_list);
 
 113out:
 114	return ret;
 115}
 116
 117/**
 118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 119 * context.
 120 * @ctx: [in] Pointer to the userfaultfd context.
 121 *
 122 * Returns: In case of success, returns not zero.
 123 */
 124static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 125{
 126	if (!atomic_inc_not_zero(&ctx->refcount))
 127		BUG();
 128}
 129
 130/**
 131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 132 * context.
 133 * @ctx: [in] Pointer to userfaultfd context.
 134 *
 135 * The userfaultfd context reference must have been previously acquired either
 136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 137 */
 138static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 139{
 140	if (atomic_dec_and_test(&ctx->refcount)) {
 141		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 142		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 143		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 144		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 
 
 145		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 146		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 147		mmdrop(ctx->mm);
 148		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 149	}
 150}
 151
 152static inline void msg_init(struct uffd_msg *msg)
 153{
 154	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 155	/*
 156	 * Must use memset to zero out the paddings or kernel data is
 157	 * leaked to userland.
 158	 */
 159	memset(msg, 0, sizeof(struct uffd_msg));
 160}
 161
 162static inline struct uffd_msg userfault_msg(unsigned long address,
 
 163					    unsigned int flags,
 164					    unsigned long reason)
 
 165{
 166	struct uffd_msg msg;
 
 167	msg_init(&msg);
 168	msg.event = UFFD_EVENT_PAGEFAULT;
 169	msg.arg.pagefault.address = address;
 
 
 
 
 
 
 
 
 
 
 
 
 170	if (flags & FAULT_FLAG_WRITE)
 171		/*
 172		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
 173		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 174		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 175		 * was a read fault, otherwise if set it means it's
 176		 * a write fault.
 177		 */
 178		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 179	if (reason & VM_UFFD_WP)
 180		/*
 181		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 182		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 183		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 184		 * a missing fault, otherwise if set it means it's a
 185		 * write protect fault.
 186		 */
 187		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 
 
 
 
 188	return msg;
 189}
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191/*
 192 * Verify the pagetables are still not ok after having reigstered into
 193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 194 * userfault that has already been resolved, if userfaultfd_read and
 195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 196 * threads.
 197 */
 198static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 199					 unsigned long address,
 200					 unsigned long flags,
 201					 unsigned long reason)
 202{
 203	struct mm_struct *mm = ctx->mm;
 
 204	pgd_t *pgd;
 
 205	pud_t *pud;
 206	pmd_t *pmd, _pmd;
 207	pte_t *pte;
 
 208	bool ret = true;
 209
 210	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 211
 212	pgd = pgd_offset(mm, address);
 213	if (!pgd_present(*pgd))
 214		goto out;
 215	pud = pud_offset(pgd, address);
 
 
 
 216	if (!pud_present(*pud))
 217		goto out;
 218	pmd = pmd_offset(pud, address);
 219	/*
 220	 * READ_ONCE must function as a barrier with narrower scope
 221	 * and it must be equivalent to:
 222	 *	_pmd = *pmd; barrier();
 223	 *
 224	 * This is to deal with the instability (as in
 225	 * pmd_trans_unstable) of the pmd.
 226	 */
 227	_pmd = READ_ONCE(*pmd);
 228	if (!pmd_present(_pmd))
 229		goto out;
 230
 231	ret = false;
 232	if (pmd_trans_huge(_pmd))
 233		goto out;
 234
 235	/*
 236	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 237	 * and use the standard pte_offset_map() instead of parsing _pmd.
 238	 */
 
 
 239	pte = pte_offset_map(pmd, address);
 
 
 
 
 240	/*
 241	 * Lockless access: we're in a wait_event so it's ok if it
 242	 * changes under us.
 
 243	 */
 244	if (pte_none(*pte))
 
 
 
 245		ret = true;
 246	pte_unmap(pte);
 247
 248out:
 249	return ret;
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 252/*
 253 * The locking rules involved in returning VM_FAULT_RETRY depending on
 254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 256 * recommendation in __lock_page_or_retry is not an understatement.
 257 *
 258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 260 * not set.
 261 *
 262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 263 * set, VM_FAULT_RETRY can still be returned if and only if there are
 264 * fatal_signal_pending()s, and the mmap_sem must be released before
 265 * returning it.
 266 */
 267int handle_userfault(struct vm_fault *vmf, unsigned long reason)
 268{
 269	struct mm_struct *mm = vmf->vma->vm_mm;
 
 270	struct userfaultfd_ctx *ctx;
 271	struct userfaultfd_wait_queue uwq;
 272	int ret;
 273	bool must_wait, return_to_userland;
 274	long blocking_state;
 275
 276	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	ret = VM_FAULT_SIGBUS;
 279	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 280	if (!ctx)
 281		goto out;
 282
 283	BUG_ON(ctx->mm != mm);
 284
 285	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 286	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 
 
 287
 288	/*
 289	 * If it's already released don't get it. This avoids to loop
 290	 * in __get_user_pages if userfaultfd_release waits on the
 291	 * caller of handle_userfault to release the mmap_sem.
 292	 */
 293	if (unlikely(ACCESS_ONCE(ctx->released)))
 294		goto out;
 295
 296	/*
 297	 * We don't do userfault handling for the final child pid update.
 
 
 298	 */
 299	if (current->flags & PF_EXITING)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300		goto out;
 
 301
 302	/*
 303	 * Check that we can return VM_FAULT_RETRY.
 304	 *
 305	 * NOTE: it should become possible to return VM_FAULT_RETRY
 306	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 307	 * -EBUSY failures, if the userfaultfd is to be extended for
 308	 * VM_UFFD_WP tracking and we intend to arm the userfault
 309	 * without first stopping userland access to the memory. For
 310	 * VM_UFFD_MISSING userfaults this is enough for now.
 311	 */
 312	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 313		/*
 314		 * Validate the invariant that nowait must allow retry
 315		 * to be sure not to return SIGBUS erroneously on
 316		 * nowait invocations.
 317		 */
 318		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 319#ifdef CONFIG_DEBUG_VM
 320		if (printk_ratelimit()) {
 321			printk(KERN_WARNING
 322			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 323			       vmf->flags);
 324			dump_stack();
 325		}
 326#endif
 327		goto out;
 328	}
 329
 330	/*
 331	 * Handle nowait, not much to do other than tell it to retry
 332	 * and wait.
 333	 */
 334	ret = VM_FAULT_RETRY;
 335	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 336		goto out;
 337
 338	/* take the reference before dropping the mmap_sem */
 339	userfaultfd_ctx_get(ctx);
 340
 341	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 342	uwq.wq.private = current;
 343	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
 
 344	uwq.ctx = ctx;
 345	uwq.waken = false;
 346
 347	return_to_userland =
 348		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 349		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 350	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
 351			 TASK_KILLABLE;
 
 
 
 
 
 352
 353	spin_lock(&ctx->fault_pending_wqh.lock);
 354	/*
 355	 * After the __add_wait_queue the uwq is visible to userland
 356	 * through poll/read().
 357	 */
 358	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 359	/*
 360	 * The smp_mb() after __set_current_state prevents the reads
 361	 * following the spin_unlock to happen before the list_add in
 362	 * __add_wait_queue.
 363	 */
 364	set_current_state(blocking_state);
 365	spin_unlock(&ctx->fault_pending_wqh.lock);
 366
 367	must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 368					  reason);
 369	up_read(&mm->mmap_sem);
 370
 371	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
 372		   (return_to_userland ? !signal_pending(current) :
 373		    !fatal_signal_pending(current)))) {
 374		wake_up_poll(&ctx->fd_wqh, POLLIN);
 375		schedule();
 376		ret |= VM_FAULT_MAJOR;
 377
 378		/*
 379		 * False wakeups can orginate even from rwsem before
 380		 * up_read() however userfaults will wait either for a
 381		 * targeted wakeup on the specific uwq waitqueue from
 382		 * wake_userfault() or for signals or for uffd
 383		 * release.
 384		 */
 385		while (!READ_ONCE(uwq.waken)) {
 386			/*
 387			 * This needs the full smp_store_mb()
 388			 * guarantee as the state write must be
 389			 * visible to other CPUs before reading
 390			 * uwq.waken from other CPUs.
 391			 */
 392			set_current_state(blocking_state);
 393			if (READ_ONCE(uwq.waken) ||
 394			    READ_ONCE(ctx->released) ||
 395			    (return_to_userland ? signal_pending(current) :
 396			     fatal_signal_pending(current)))
 397				break;
 398			schedule();
 399		}
 400	}
 401
 402	__set_current_state(TASK_RUNNING);
 403
 404	if (return_to_userland) {
 405		if (signal_pending(current) &&
 406		    !fatal_signal_pending(current)) {
 407			/*
 408			 * If we got a SIGSTOP or SIGCONT and this is
 409			 * a normal userland page fault, just let
 410			 * userland return so the signal will be
 411			 * handled and gdb debugging works.  The page
 412			 * fault code immediately after we return from
 413			 * this function is going to release the
 414			 * mmap_sem and it's not depending on it
 415			 * (unlike gup would if we were not to return
 416			 * VM_FAULT_RETRY).
 417			 *
 418			 * If a fatal signal is pending we still take
 419			 * the streamlined VM_FAULT_RETRY failure path
 420			 * and there's no need to retake the mmap_sem
 421			 * in such case.
 422			 */
 423			down_read(&mm->mmap_sem);
 424			ret = 0;
 425		}
 426	}
 427
 428	/*
 429	 * Here we race with the list_del; list_add in
 430	 * userfaultfd_ctx_read(), however because we don't ever run
 431	 * list_del_init() to refile across the two lists, the prev
 432	 * and next pointers will never point to self. list_add also
 433	 * would never let any of the two pointers to point to
 434	 * self. So list_empty_careful won't risk to see both pointers
 435	 * pointing to self at any time during the list refile. The
 436	 * only case where list_del_init() is called is the full
 437	 * removal in the wake function and there we don't re-list_add
 438	 * and it's fine not to block on the spinlock. The uwq on this
 439	 * kernel stack can be released after the list_del_init.
 440	 */
 441	if (!list_empty_careful(&uwq.wq.task_list)) {
 442		spin_lock(&ctx->fault_pending_wqh.lock);
 443		/*
 444		 * No need of list_del_init(), the uwq on the stack
 445		 * will be freed shortly anyway.
 446		 */
 447		list_del(&uwq.wq.task_list);
 448		spin_unlock(&ctx->fault_pending_wqh.lock);
 449	}
 450
 451	/*
 452	 * ctx may go away after this if the userfault pseudo fd is
 453	 * already released.
 454	 */
 455	userfaultfd_ctx_put(ctx);
 456
 457out:
 458	return ret;
 459}
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461static int userfaultfd_release(struct inode *inode, struct file *file)
 462{
 463	struct userfaultfd_ctx *ctx = file->private_data;
 464	struct mm_struct *mm = ctx->mm;
 465	struct vm_area_struct *vma, *prev;
 466	/* len == 0 means wake all */
 467	struct userfaultfd_wake_range range = { .len = 0, };
 468	unsigned long new_flags;
 
 469
 470	ACCESS_ONCE(ctx->released) = true;
 471
 472	if (!mmget_not_zero(mm))
 473		goto wakeup;
 474
 475	/*
 476	 * Flush page faults out of all CPUs. NOTE: all page faults
 477	 * must be retried without returning VM_FAULT_SIGBUS if
 478	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 479	 * changes while handle_userfault released the mmap_sem. So
 480	 * it's critical that released is set to true (above), before
 481	 * taking the mmap_sem for writing.
 482	 */
 483	down_write(&mm->mmap_sem);
 484	prev = NULL;
 485	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 486		cond_resched();
 487		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 488		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 489		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 490			prev = vma;
 491			continue;
 492		}
 493		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 494		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 495				 new_flags, vma->anon_vma,
 496				 vma->vm_file, vma->vm_pgoff,
 497				 vma_policy(vma),
 498				 NULL_VM_UFFD_CTX);
 499		if (prev)
 500			vma = prev;
 501		else
 502			prev = vma;
 503		vma->vm_flags = new_flags;
 504		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 
 
 505	}
 506	up_write(&mm->mmap_sem);
 507	mmput(mm);
 508wakeup:
 509	/*
 510	 * After no new page faults can wait on this fault_*wqh, flush
 511	 * the last page faults that may have been already waiting on
 512	 * the fault_*wqh.
 513	 */
 514	spin_lock(&ctx->fault_pending_wqh.lock);
 515	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 516	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 517	spin_unlock(&ctx->fault_pending_wqh.lock);
 518
 519	wake_up_poll(&ctx->fd_wqh, POLLHUP);
 
 
 
 520	userfaultfd_ctx_put(ctx);
 521	return 0;
 522}
 523
 524/* fault_pending_wqh.lock must be hold by the caller */
 525static inline struct userfaultfd_wait_queue *find_userfault(
 526	struct userfaultfd_ctx *ctx)
 527{
 528	wait_queue_t *wq;
 529	struct userfaultfd_wait_queue *uwq;
 530
 531	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
 532
 533	uwq = NULL;
 534	if (!waitqueue_active(&ctx->fault_pending_wqh))
 535		goto out;
 536	/* walk in reverse to provide FIFO behavior to read userfaults */
 537	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
 538			     typeof(*wq), task_list);
 539	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 540out:
 541	return uwq;
 542}
 543
 544static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
 
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	struct userfaultfd_ctx *ctx = file->private_data;
 547	unsigned int ret;
 548
 549	poll_wait(file, &ctx->fd_wqh, wait);
 550
 551	switch (ctx->state) {
 552	case UFFD_STATE_WAIT_API:
 553		return POLLERR;
 554	case UFFD_STATE_RUNNING:
 555		/*
 556		 * poll() never guarantees that read won't block.
 557		 * userfaults can be waken before they're read().
 558		 */
 559		if (unlikely(!(file->f_flags & O_NONBLOCK)))
 560			return POLLERR;
 561		/*
 562		 * lockless access to see if there are pending faults
 563		 * __pollwait last action is the add_wait_queue but
 564		 * the spin_unlock would allow the waitqueue_active to
 565		 * pass above the actual list_add inside
 566		 * add_wait_queue critical section. So use a full
 567		 * memory barrier to serialize the list_add write of
 568		 * add_wait_queue() with the waitqueue_active read
 569		 * below.
 570		 */
 571		ret = 0;
 572		smp_mb();
 573		if (waitqueue_active(&ctx->fault_pending_wqh))
 574			ret = POLLIN;
 575		return ret;
 576	default:
 577		BUG();
 578	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579}
 580
 581static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 582				    struct uffd_msg *msg)
 583{
 584	ssize_t ret;
 585	DECLARE_WAITQUEUE(wait, current);
 586	struct userfaultfd_wait_queue *uwq;
 
 
 
 
 
 
 
 
 
 587
 588	/* always take the fd_wqh lock before the fault_pending_wqh lock */
 589	spin_lock(&ctx->fd_wqh.lock);
 590	__add_wait_queue(&ctx->fd_wqh, &wait);
 591	for (;;) {
 592		set_current_state(TASK_INTERRUPTIBLE);
 593		spin_lock(&ctx->fault_pending_wqh.lock);
 594		uwq = find_userfault(ctx);
 595		if (uwq) {
 596			/*
 597			 * Use a seqcount to repeat the lockless check
 598			 * in wake_userfault() to avoid missing
 599			 * wakeups because during the refile both
 600			 * waitqueue could become empty if this is the
 601			 * only userfault.
 602			 */
 603			write_seqcount_begin(&ctx->refile_seq);
 604
 605			/*
 606			 * The fault_pending_wqh.lock prevents the uwq
 607			 * to disappear from under us.
 608			 *
 609			 * Refile this userfault from
 610			 * fault_pending_wqh to fault_wqh, it's not
 611			 * pending anymore after we read it.
 612			 *
 613			 * Use list_del() by hand (as
 614			 * userfaultfd_wake_function also uses
 615			 * list_del_init() by hand) to be sure nobody
 616			 * changes __remove_wait_queue() to use
 617			 * list_del_init() in turn breaking the
 618			 * !list_empty_careful() check in
 619			 * handle_userfault(). The uwq->wq.task_list
 620			 * must never be empty at any time during the
 621			 * refile, or the waitqueue could disappear
 622			 * from under us. The "wait_queue_head_t"
 623			 * parameter of __remove_wait_queue() is unused
 624			 * anyway.
 625			 */
 626			list_del(&uwq->wq.task_list);
 627			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 628
 629			write_seqcount_end(&ctx->refile_seq);
 630
 631			/* careful to always initialize msg if ret == 0 */
 632			*msg = uwq->msg;
 633			spin_unlock(&ctx->fault_pending_wqh.lock);
 634			ret = 0;
 635			break;
 636		}
 637		spin_unlock(&ctx->fault_pending_wqh.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638		if (signal_pending(current)) {
 639			ret = -ERESTARTSYS;
 640			break;
 641		}
 642		if (no_wait) {
 643			ret = -EAGAIN;
 644			break;
 645		}
 646		spin_unlock(&ctx->fd_wqh.lock);
 647		schedule();
 648		spin_lock(&ctx->fd_wqh.lock);
 649	}
 650	__remove_wait_queue(&ctx->fd_wqh, &wait);
 651	__set_current_state(TASK_RUNNING);
 652	spin_unlock(&ctx->fd_wqh.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653
 654	return ret;
 655}
 656
 657static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 658				size_t count, loff_t *ppos)
 659{
 660	struct userfaultfd_ctx *ctx = file->private_data;
 661	ssize_t _ret, ret = 0;
 662	struct uffd_msg msg;
 663	int no_wait = file->f_flags & O_NONBLOCK;
 
 664
 665	if (ctx->state == UFFD_STATE_WAIT_API)
 666		return -EINVAL;
 667
 668	for (;;) {
 669		if (count < sizeof(msg))
 670			return ret ? ret : -EINVAL;
 671		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
 672		if (_ret < 0)
 673			return ret ? ret : _ret;
 674		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 675			return ret ? ret : -EFAULT;
 676		ret += sizeof(msg);
 677		buf += sizeof(msg);
 678		count -= sizeof(msg);
 679		/*
 680		 * Allow to read more than one fault at time but only
 681		 * block if waiting for the very first one.
 682		 */
 683		no_wait = O_NONBLOCK;
 684	}
 685}
 686
 687static void __wake_userfault(struct userfaultfd_ctx *ctx,
 688			     struct userfaultfd_wake_range *range)
 689{
 690	unsigned long start, end;
 691
 692	start = range->start;
 693	end = range->start + range->len;
 694
 695	spin_lock(&ctx->fault_pending_wqh.lock);
 696	/* wake all in the range and autoremove */
 697	if (waitqueue_active(&ctx->fault_pending_wqh))
 698		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 699				     range);
 700	if (waitqueue_active(&ctx->fault_wqh))
 701		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
 702	spin_unlock(&ctx->fault_pending_wqh.lock);
 703}
 704
 705static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 706					   struct userfaultfd_wake_range *range)
 707{
 708	unsigned seq;
 709	bool need_wakeup;
 710
 711	/*
 712	 * To be sure waitqueue_active() is not reordered by the CPU
 713	 * before the pagetable update, use an explicit SMP memory
 714	 * barrier here. PT lock release or up_read(mmap_sem) still
 715	 * have release semantics that can allow the
 716	 * waitqueue_active() to be reordered before the pte update.
 717	 */
 718	smp_mb();
 719
 720	/*
 721	 * Use waitqueue_active because it's very frequent to
 722	 * change the address space atomically even if there are no
 723	 * userfaults yet. So we take the spinlock only when we're
 724	 * sure we've userfaults to wake.
 725	 */
 726	do {
 727		seq = read_seqcount_begin(&ctx->refile_seq);
 728		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 729			waitqueue_active(&ctx->fault_wqh);
 730		cond_resched();
 731	} while (read_seqcount_retry(&ctx->refile_seq, seq));
 732	if (need_wakeup)
 733		__wake_userfault(ctx, range);
 734}
 735
 736static __always_inline int validate_range(struct mm_struct *mm,
 737					  __u64 start, __u64 len)
 738{
 739	__u64 task_size = mm->task_size;
 740
 741	if (start & ~PAGE_MASK)
 742		return -EINVAL;
 743	if (len & ~PAGE_MASK)
 744		return -EINVAL;
 745	if (!len)
 746		return -EINVAL;
 747	if (start < mmap_min_addr)
 748		return -EINVAL;
 749	if (start >= task_size)
 750		return -EINVAL;
 751	if (len > task_size - start)
 752		return -EINVAL;
 
 
 753	return 0;
 754}
 755
 
 
 
 
 
 
 
 
 
 756static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 757				unsigned long arg)
 758{
 759	struct mm_struct *mm = ctx->mm;
 760	struct vm_area_struct *vma, *prev, *cur;
 761	int ret;
 762	struct uffdio_register uffdio_register;
 763	struct uffdio_register __user *user_uffdio_register;
 764	unsigned long vm_flags, new_flags;
 765	bool found;
 
 766	unsigned long start, end, vma_end;
 
 
 767
 768	user_uffdio_register = (struct uffdio_register __user *) arg;
 769
 770	ret = -EFAULT;
 771	if (copy_from_user(&uffdio_register, user_uffdio_register,
 772			   sizeof(uffdio_register)-sizeof(__u64)))
 773		goto out;
 774
 775	ret = -EINVAL;
 776	if (!uffdio_register.mode)
 777		goto out;
 778	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
 779				     UFFDIO_REGISTER_MODE_WP))
 780		goto out;
 781	vm_flags = 0;
 782	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 783		vm_flags |= VM_UFFD_MISSING;
 784	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 
 
 
 785		vm_flags |= VM_UFFD_WP;
 786		/*
 787		 * FIXME: remove the below error constraint by
 788		 * implementing the wprotect tracking mode.
 789		 */
 790		ret = -EINVAL;
 791		goto out;
 
 
 792	}
 793
 794	ret = validate_range(mm, uffdio_register.range.start,
 795			     uffdio_register.range.len);
 796	if (ret)
 797		goto out;
 798
 799	start = uffdio_register.range.start;
 800	end = start + uffdio_register.range.len;
 801
 802	ret = -ENOMEM;
 803	if (!mmget_not_zero(mm))
 804		goto out;
 805
 806	down_write(&mm->mmap_sem);
 807	vma = find_vma_prev(mm, start, &prev);
 
 
 808	if (!vma)
 809		goto out_unlock;
 810
 811	/* check that there's at least one vma in the range */
 812	ret = -EINVAL;
 813	if (vma->vm_start >= end)
 814		goto out_unlock;
 
 
 
 
 
 
 815
 816	/*
 817	 * Search for not compatible vmas.
 818	 *
 819	 * FIXME: this shall be relaxed later so that it doesn't fail
 820	 * on tmpfs backed vmas (in addition to the current allowance
 821	 * on anonymous vmas).
 822	 */
 823	found = false;
 824	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 
 
 825		cond_resched();
 826
 827		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 828		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 829
 830		/* check not compatible vmas */
 831		ret = -EINVAL;
 832		if (cur->vm_ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833			goto out_unlock;
 834
 835		/*
 836		 * Check that this vma isn't already owned by a
 837		 * different userfaultfd. We can't allow more than one
 838		 * userfaultfd to own a single vma simultaneously or we
 839		 * wouldn't know which one to deliver the userfaults to.
 840		 */
 841		ret = -EBUSY;
 842		if (cur->vm_userfaultfd_ctx.ctx &&
 843		    cur->vm_userfaultfd_ctx.ctx != ctx)
 844			goto out_unlock;
 845
 
 
 
 
 
 
 846		found = true;
 847	}
 848	BUG_ON(!found);
 849
 
 
 850	if (vma->vm_start < start)
 851		prev = vma;
 852
 853	ret = 0;
 854	do {
 855		cond_resched();
 856
 857		BUG_ON(vma->vm_ops);
 858		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 859		       vma->vm_userfaultfd_ctx.ctx != ctx);
 
 860
 861		/*
 862		 * Nothing to do: this vma is already registered into this
 863		 * userfaultfd and with the right tracking mode too.
 864		 */
 865		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 866		    (vma->vm_flags & vm_flags) == vm_flags)
 867			goto skip;
 868
 869		if (vma->vm_start > start)
 870			start = vma->vm_start;
 871		vma_end = min(end, vma->vm_end);
 872
 873		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
 874		prev = vma_merge(mm, prev, start, vma_end, new_flags,
 875				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 876				 vma_policy(vma),
 877				 ((struct vm_userfaultfd_ctx){ ctx }));
 878		if (prev) {
 879			vma = prev;
 880			goto next;
 881		}
 882		if (vma->vm_start < start) {
 883			ret = split_vma(mm, vma, start, 1);
 884			if (ret)
 885				break;
 886		}
 887		if (vma->vm_end > end) {
 888			ret = split_vma(mm, vma, end, 0);
 889			if (ret)
 890				break;
 891		}
 892	next:
 893		/*
 894		 * In the vma_merge() successful mprotect-like case 8:
 895		 * the next vma was merged into the current one and
 896		 * the current one has not been updated yet.
 897		 */
 898		vma->vm_flags = new_flags;
 
 899		vma->vm_userfaultfd_ctx.ctx = ctx;
 900
 
 
 
 901	skip:
 902		prev = vma;
 903		start = vma->vm_end;
 904		vma = vma->vm_next;
 905	} while (vma && vma->vm_start < end);
 906out_unlock:
 907	up_write(&mm->mmap_sem);
 908	mmput(mm);
 909	if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910		/*
 911		 * Now that we scanned all vmas we can already tell
 912		 * userland which ioctls methods are guaranteed to
 913		 * succeed on this range.
 914		 */
 915		if (put_user(UFFD_API_RANGE_IOCTLS,
 916			     &user_uffdio_register->ioctls))
 917			ret = -EFAULT;
 918	}
 919out:
 920	return ret;
 921}
 922
 923static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 924				  unsigned long arg)
 925{
 926	struct mm_struct *mm = ctx->mm;
 927	struct vm_area_struct *vma, *prev, *cur;
 928	int ret;
 929	struct uffdio_range uffdio_unregister;
 930	unsigned long new_flags;
 931	bool found;
 932	unsigned long start, end, vma_end;
 933	const void __user *buf = (void __user *)arg;
 
 
 934
 935	ret = -EFAULT;
 936	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 937		goto out;
 938
 939	ret = validate_range(mm, uffdio_unregister.start,
 940			     uffdio_unregister.len);
 941	if (ret)
 942		goto out;
 943
 944	start = uffdio_unregister.start;
 945	end = start + uffdio_unregister.len;
 946
 947	ret = -ENOMEM;
 948	if (!mmget_not_zero(mm))
 949		goto out;
 950
 951	down_write(&mm->mmap_sem);
 952	vma = find_vma_prev(mm, start, &prev);
 
 
 953	if (!vma)
 954		goto out_unlock;
 955
 956	/* check that there's at least one vma in the range */
 957	ret = -EINVAL;
 958	if (vma->vm_start >= end)
 959		goto out_unlock;
 
 
 
 
 
 
 960
 961	/*
 962	 * Search for not compatible vmas.
 963	 *
 964	 * FIXME: this shall be relaxed later so that it doesn't fail
 965	 * on tmpfs backed vmas (in addition to the current allowance
 966	 * on anonymous vmas).
 967	 */
 968	found = false;
 969	ret = -EINVAL;
 970	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 971		cond_resched();
 972
 973		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 974		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 975
 976		/*
 977		 * Check not compatible vmas, not strictly required
 978		 * here as not compatible vmas cannot have an
 979		 * userfaultfd_ctx registered on them, but this
 980		 * provides for more strict behavior to notice
 981		 * unregistration errors.
 982		 */
 983		if (cur->vm_ops)
 984			goto out_unlock;
 985
 986		found = true;
 987	}
 988	BUG_ON(!found);
 989
 
 
 990	if (vma->vm_start < start)
 991		prev = vma;
 992
 993	ret = 0;
 994	do {
 995		cond_resched();
 996
 997		BUG_ON(vma->vm_ops);
 998
 999		/*
1000		 * Nothing to do: this vma is already registered into this
1001		 * userfaultfd and with the right tracking mode too.
1002		 */
1003		if (!vma->vm_userfaultfd_ctx.ctx)
1004			goto skip;
1005
 
 
1006		if (vma->vm_start > start)
1007			start = vma->vm_start;
1008		vma_end = min(end, vma->vm_end);
1009
1010		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013				 vma_policy(vma),
1014				 NULL_VM_UFFD_CTX);
1015		if (prev) {
1016			vma = prev;
1017			goto next;
1018		}
1019		if (vma->vm_start < start) {
1020			ret = split_vma(mm, vma, start, 1);
1021			if (ret)
1022				break;
1023		}
1024		if (vma->vm_end > end) {
1025			ret = split_vma(mm, vma, end, 0);
1026			if (ret)
1027				break;
 
 
 
 
 
 
 
1028		}
1029	next:
1030		/*
1031		 * In the vma_merge() successful mprotect-like case 8:
1032		 * the next vma was merged into the current one and
1033		 * the current one has not been updated yet.
1034		 */
1035		vma->vm_flags = new_flags;
 
1036		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1037
1038	skip:
1039		prev = vma;
1040		start = vma->vm_end;
1041		vma = vma->vm_next;
1042	} while (vma && vma->vm_start < end);
1043out_unlock:
1044	up_write(&mm->mmap_sem);
1045	mmput(mm);
1046out:
1047	return ret;
1048}
1049
1050/*
1051 * userfaultfd_wake may be used in combination with the
1052 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1053 */
1054static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1055			    unsigned long arg)
1056{
1057	int ret;
1058	struct uffdio_range uffdio_wake;
1059	struct userfaultfd_wake_range range;
1060	const void __user *buf = (void __user *)arg;
1061
1062	ret = -EFAULT;
1063	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1064		goto out;
1065
1066	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1067	if (ret)
1068		goto out;
1069
1070	range.start = uffdio_wake.start;
1071	range.len = uffdio_wake.len;
1072
1073	/*
1074	 * len == 0 means wake all and we don't want to wake all here,
1075	 * so check it again to be sure.
1076	 */
1077	VM_BUG_ON(!range.len);
1078
1079	wake_userfault(ctx, &range);
1080	ret = 0;
1081
1082out:
1083	return ret;
1084}
1085
1086static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1087			    unsigned long arg)
1088{
1089	__s64 ret;
1090	struct uffdio_copy uffdio_copy;
1091	struct uffdio_copy __user *user_uffdio_copy;
1092	struct userfaultfd_wake_range range;
 
1093
1094	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1095
 
 
 
 
1096	ret = -EFAULT;
1097	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1098			   /* don't copy "copy" last field */
1099			   sizeof(uffdio_copy)-sizeof(__s64)))
1100		goto out;
1101
 
 
 
 
1102	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1103	if (ret)
1104		goto out;
1105	/*
1106	 * double check for wraparound just in case. copy_from_user()
1107	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1108	 * in the userland range.
1109	 */
1110	ret = -EINVAL;
1111	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1112		goto out;
1113	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1114		goto out;
 
 
1115	if (mmget_not_zero(ctx->mm)) {
1116		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1117				   uffdio_copy.len);
1118		mmput(ctx->mm);
 
 
1119	}
1120	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1121		return -EFAULT;
1122	if (ret < 0)
1123		goto out;
1124	BUG_ON(!ret);
1125	/* len == 0 would wake all */
1126	range.len = ret;
1127	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1128		range.start = uffdio_copy.dst;
1129		wake_userfault(ctx, &range);
1130	}
1131	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1132out:
1133	return ret;
1134}
1135
1136static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1137				unsigned long arg)
1138{
1139	__s64 ret;
1140	struct uffdio_zeropage uffdio_zeropage;
1141	struct uffdio_zeropage __user *user_uffdio_zeropage;
1142	struct userfaultfd_wake_range range;
1143
1144	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1145
 
 
 
 
1146	ret = -EFAULT;
1147	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1148			   /* don't copy "zeropage" last field */
1149			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1150		goto out;
1151
1152	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1153			     uffdio_zeropage.range.len);
1154	if (ret)
1155		goto out;
1156	ret = -EINVAL;
1157	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1158		goto out;
1159
1160	if (mmget_not_zero(ctx->mm)) {
1161		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1162				     uffdio_zeropage.range.len);
1163		mmput(ctx->mm);
 
 
1164	}
1165	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1166		return -EFAULT;
1167	if (ret < 0)
1168		goto out;
1169	/* len == 0 would wake all */
1170	BUG_ON(!ret);
1171	range.len = ret;
1172	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1173		range.start = uffdio_zeropage.range.start;
1174		wake_userfault(ctx, &range);
1175	}
1176	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1177out:
1178	return ret;
1179}
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181/*
1182 * userland asks for a certain API version and we return which bits
1183 * and ioctl commands are implemented in this kernel for such API
1184 * version or -EINVAL if unknown.
1185 */
1186static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1187			   unsigned long arg)
1188{
1189	struct uffdio_api uffdio_api;
1190	void __user *buf = (void __user *)arg;
 
1191	int ret;
 
1192
1193	ret = -EINVAL;
1194	if (ctx->state != UFFD_STATE_WAIT_API)
1195		goto out;
1196	ret = -EFAULT;
1197	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1198		goto out;
1199	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1200		memset(&uffdio_api, 0, sizeof(uffdio_api));
1201		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1202			goto out;
1203		ret = -EINVAL;
1204		goto out;
1205	}
 
 
 
 
 
 
1206	uffdio_api.features = UFFD_API_FEATURES;
 
 
 
 
 
 
 
 
 
 
 
 
1207	uffdio_api.ioctls = UFFD_API_IOCTLS;
1208	ret = -EFAULT;
1209	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1210		goto out;
1211	ctx->state = UFFD_STATE_RUNNING;
 
 
 
 
 
 
1212	ret = 0;
1213out:
1214	return ret;
 
 
 
 
 
1215}
1216
1217static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1218			      unsigned long arg)
1219{
1220	int ret = -EINVAL;
1221	struct userfaultfd_ctx *ctx = file->private_data;
1222
1223	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1224		return -EINVAL;
1225
1226	switch(cmd) {
1227	case UFFDIO_API:
1228		ret = userfaultfd_api(ctx, arg);
1229		break;
1230	case UFFDIO_REGISTER:
1231		ret = userfaultfd_register(ctx, arg);
1232		break;
1233	case UFFDIO_UNREGISTER:
1234		ret = userfaultfd_unregister(ctx, arg);
1235		break;
1236	case UFFDIO_WAKE:
1237		ret = userfaultfd_wake(ctx, arg);
1238		break;
1239	case UFFDIO_COPY:
1240		ret = userfaultfd_copy(ctx, arg);
1241		break;
1242	case UFFDIO_ZEROPAGE:
1243		ret = userfaultfd_zeropage(ctx, arg);
1244		break;
 
 
 
 
 
 
 
 
 
 
 
 
1245	}
1246	return ret;
1247}
1248
1249#ifdef CONFIG_PROC_FS
1250static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1251{
1252	struct userfaultfd_ctx *ctx = f->private_data;
1253	wait_queue_t *wq;
1254	struct userfaultfd_wait_queue *uwq;
1255	unsigned long pending = 0, total = 0;
1256
1257	spin_lock(&ctx->fault_pending_wqh.lock);
1258	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1259		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1260		pending++;
1261		total++;
1262	}
1263	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1264		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1265		total++;
1266	}
1267	spin_unlock(&ctx->fault_pending_wqh.lock);
1268
1269	/*
1270	 * If more protocols will be added, there will be all shown
1271	 * separated by a space. Like this:
1272	 *	protocols: aa:... bb:...
1273	 */
1274	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1275		   pending, total, UFFD_API, UFFD_API_FEATURES,
1276		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1277}
1278#endif
1279
1280static const struct file_operations userfaultfd_fops = {
1281#ifdef CONFIG_PROC_FS
1282	.show_fdinfo	= userfaultfd_show_fdinfo,
1283#endif
1284	.release	= userfaultfd_release,
1285	.poll		= userfaultfd_poll,
1286	.read		= userfaultfd_read,
1287	.unlocked_ioctl = userfaultfd_ioctl,
1288	.compat_ioctl	= userfaultfd_ioctl,
1289	.llseek		= noop_llseek,
1290};
1291
1292static void init_once_userfaultfd_ctx(void *mem)
1293{
1294	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1295
1296	init_waitqueue_head(&ctx->fault_pending_wqh);
1297	init_waitqueue_head(&ctx->fault_wqh);
 
1298	init_waitqueue_head(&ctx->fd_wqh);
1299	seqcount_init(&ctx->refile_seq);
1300}
1301
1302/**
1303 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1304 * @flags: Flags for the userfaultfd file.
1305 *
1306 * This function creates an userfaultfd file pointer, w/out installing
1307 * it into the fd table. This is useful when the userfaultfd file is
1308 * used during the initialization of data structures that require
1309 * extra setup after the userfaultfd creation. So the userfaultfd
1310 * creation is split into the file pointer creation phase, and the
1311 * file descriptor installation phase.  In this way races with
1312 * userspace closing the newly installed file descriptor can be
1313 * avoided.  Returns an userfaultfd file pointer, or a proper error
1314 * pointer.
1315 */
1316static struct file *userfaultfd_file_create(int flags)
1317{
1318	struct file *file;
1319	struct userfaultfd_ctx *ctx;
 
1320
1321	BUG_ON(!current->mm);
1322
1323	/* Check the UFFD_* constants for consistency.  */
 
1324	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1325	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1326
1327	file = ERR_PTR(-EINVAL);
1328	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1329		goto out;
1330
1331	file = ERR_PTR(-ENOMEM);
1332	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1333	if (!ctx)
1334		goto out;
1335
1336	atomic_set(&ctx->refcount, 1);
1337	ctx->flags = flags;
1338	ctx->state = UFFD_STATE_WAIT_API;
1339	ctx->released = false;
 
 
1340	ctx->mm = current->mm;
1341	/* prevent the mm struct to be freed */
1342	atomic_inc(&ctx->mm->mm_count);
1343
1344	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1345				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1346	if (IS_ERR(file)) {
 
1347		mmdrop(ctx->mm);
1348		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1349	}
1350out:
1351	return file;
1352}
1353
1354SYSCALL_DEFINE1(userfaultfd, int, flags)
1355{
1356	int fd, error;
1357	struct file *file;
 
1358
1359	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1360	if (error < 0)
1361		return error;
1362	fd = error;
1363
1364	file = userfaultfd_file_create(flags);
1365	if (IS_ERR(file)) {
1366		error = PTR_ERR(file);
1367		goto err_put_unused_fd;
1368	}
1369	fd_install(fd, file);
1370
1371	return fd;
 
 
1372
1373err_put_unused_fd:
1374	put_unused_fd(fd);
 
 
1375
1376	return error;
1377}
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379static int __init userfaultfd_init(void)
1380{
 
 
 
 
 
 
1381	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1382						sizeof(struct userfaultfd_ctx),
1383						0,
1384						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1385						init_once_userfaultfd_ctx);
 
 
 
1386	return 0;
1387}
1388__initcall(userfaultfd_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  fs/userfaultfd.c
   4 *
   5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   6 *  Copyright (C) 2008-2009 Red Hat, Inc.
   7 *  Copyright (C) 2015  Red Hat, Inc.
   8 *
 
 
 
   9 *  Some part derived from fs/eventfd.c (anon inode setup) and
  10 *  mm/ksm.c (mm hashing).
  11 */
  12
  13#include <linux/list.h>
  14#include <linux/hashtable.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/mm.h>
  17#include <linux/mm.h>
  18#include <linux/mm_inline.h>
  19#include <linux/mmu_notifier.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32#include <linux/swapops.h>
  33#include <linux/miscdevice.h>
  34
  35static int sysctl_unprivileged_userfaultfd __read_mostly;
  36
  37#ifdef CONFIG_SYSCTL
  38static struct ctl_table vm_userfaultfd_table[] = {
  39	{
  40		.procname	= "unprivileged_userfaultfd",
  41		.data		= &sysctl_unprivileged_userfaultfd,
  42		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
  43		.mode		= 0644,
  44		.proc_handler	= proc_dointvec_minmax,
  45		.extra1		= SYSCTL_ZERO,
  46		.extra2		= SYSCTL_ONE,
  47	},
  48};
  49#endif
  50
  51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
  52
  53struct userfaultfd_fork_ctx {
  54	struct userfaultfd_ctx *orig;
  55	struct userfaultfd_ctx *new;
  56	struct list_head list;
  57};
  58
  59struct userfaultfd_unmap_ctx {
  60	struct userfaultfd_ctx *ctx;
  61	unsigned long start;
  62	unsigned long end;
  63	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64};
  65
  66struct userfaultfd_wait_queue {
  67	struct uffd_msg msg;
  68	wait_queue_entry_t wq;
  69	struct userfaultfd_ctx *ctx;
  70	bool waken;
  71};
  72
  73struct userfaultfd_wake_range {
  74	unsigned long start;
  75	unsigned long len;
  76};
  77
  78/* internal indication that UFFD_API ioctl was successfully executed */
  79#define UFFD_FEATURE_INITIALIZED		(1u << 31)
  80
  81static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
  82{
  83	return ctx->features & UFFD_FEATURE_INITIALIZED;
  84}
  85
  86static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
  87{
  88	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
  89}
  90
  91/*
  92 * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
  93 * meaningful when userfaultfd_wp()==true on the vma and when it's
  94 * anonymous.
  95 */
  96bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
  97{
  98	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
  99
 100	if (!ctx)
 101		return false;
 102
 103	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
 104}
 105
 106static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
 107				     vm_flags_t flags)
 108{
 109	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
 110
 111	vm_flags_reset(vma, flags);
 112	/*
 113	 * For shared mappings, we want to enable writenotify while
 114	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
 115	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
 116	 */
 117	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
 118		vma_set_page_prot(vma);
 119}
 120
 121static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 122				     int wake_flags, void *key)
 123{
 124	struct userfaultfd_wake_range *range = key;
 125	int ret;
 126	struct userfaultfd_wait_queue *uwq;
 127	unsigned long start, len;
 128
 129	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 130	ret = 0;
 131	/* len == 0 means wake all */
 132	start = range->start;
 133	len = range->len;
 134	if (len && (start > uwq->msg.arg.pagefault.address ||
 135		    start + len <= uwq->msg.arg.pagefault.address))
 136		goto out;
 137	WRITE_ONCE(uwq->waken, true);
 138	/*
 139	 * The Program-Order guarantees provided by the scheduler
 140	 * ensure uwq->waken is visible before the task is woken.
 
 141	 */
 142	ret = wake_up_state(wq->private, mode);
 143	if (ret) {
 144		/*
 145		 * Wake only once, autoremove behavior.
 146		 *
 147		 * After the effect of list_del_init is visible to the other
 148		 * CPUs, the waitqueue may disappear from under us, see the
 149		 * !list_empty_careful() in handle_userfault().
 150		 *
 151		 * try_to_wake_up() has an implicit smp_mb(), and the
 152		 * wq->private is read before calling the extern function
 153		 * "wake_up_state" (which in turns calls try_to_wake_up).
 
 
 
 154		 */
 155		list_del_init(&wq->entry);
 156	}
 157out:
 158	return ret;
 159}
 160
 161/**
 162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 163 * context.
 164 * @ctx: [in] Pointer to the userfaultfd context.
 
 
 165 */
 166static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 167{
 168	refcount_inc(&ctx->refcount);
 
 169}
 170
 171/**
 172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 173 * context.
 174 * @ctx: [in] Pointer to userfaultfd context.
 175 *
 176 * The userfaultfd context reference must have been previously acquired either
 177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 178 */
 179static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 180{
 181	if (refcount_dec_and_test(&ctx->refcount)) {
 182		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 183		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 184		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 185		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 186		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 187		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 188		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 189		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 190		mmdrop(ctx->mm);
 191		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 192	}
 193}
 194
 195static inline void msg_init(struct uffd_msg *msg)
 196{
 197	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 198	/*
 199	 * Must use memset to zero out the paddings or kernel data is
 200	 * leaked to userland.
 201	 */
 202	memset(msg, 0, sizeof(struct uffd_msg));
 203}
 204
 205static inline struct uffd_msg userfault_msg(unsigned long address,
 206					    unsigned long real_address,
 207					    unsigned int flags,
 208					    unsigned long reason,
 209					    unsigned int features)
 210{
 211	struct uffd_msg msg;
 212
 213	msg_init(&msg);
 214	msg.event = UFFD_EVENT_PAGEFAULT;
 215
 216	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
 217				    real_address : address;
 218
 219	/*
 220	 * These flags indicate why the userfault occurred:
 221	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 222	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 223	 * - Neither of these flags being set indicates a MISSING fault.
 224	 *
 225	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 226	 * fault. Otherwise, it was a read fault.
 227	 */
 228	if (flags & FAULT_FLAG_WRITE)
 
 
 
 
 
 
 
 229		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 230	if (reason & VM_UFFD_WP)
 
 
 
 
 
 
 
 231		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 232	if (reason & VM_UFFD_MINOR)
 233		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 234	if (features & UFFD_FEATURE_THREAD_ID)
 235		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 236	return msg;
 237}
 238
 239#ifdef CONFIG_HUGETLB_PAGE
 240/*
 241 * Same functionality as userfaultfd_must_wait below with modifications for
 242 * hugepmd ranges.
 243 */
 244static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 245					      struct vm_fault *vmf,
 246					      unsigned long reason)
 247{
 248	struct vm_area_struct *vma = vmf->vma;
 249	pte_t *ptep, pte;
 250	bool ret = true;
 251
 252	assert_fault_locked(vmf);
 253
 254	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
 255	if (!ptep)
 256		goto out;
 257
 258	ret = false;
 259	pte = huge_ptep_get(ptep);
 260
 261	/*
 262	 * Lockless access: we're in a wait_event so it's ok if it
 263	 * changes under us.  PTE markers should be handled the same as none
 264	 * ptes here.
 265	 */
 266	if (huge_pte_none_mostly(pte))
 267		ret = true;
 268	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 269		ret = true;
 270out:
 271	return ret;
 272}
 273#else
 274static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 275					      struct vm_fault *vmf,
 276					      unsigned long reason)
 277{
 278	return false;	/* should never get here */
 279}
 280#endif /* CONFIG_HUGETLB_PAGE */
 281
 282/*
 283 * Verify the pagetables are still not ok after having reigstered into
 284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 285 * userfault that has already been resolved, if userfaultfd_read and
 286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 287 * threads.
 288 */
 289static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 290					 struct vm_fault *vmf,
 
 291					 unsigned long reason)
 292{
 293	struct mm_struct *mm = ctx->mm;
 294	unsigned long address = vmf->address;
 295	pgd_t *pgd;
 296	p4d_t *p4d;
 297	pud_t *pud;
 298	pmd_t *pmd, _pmd;
 299	pte_t *pte;
 300	pte_t ptent;
 301	bool ret = true;
 302
 303	assert_fault_locked(vmf);
 304
 305	pgd = pgd_offset(mm, address);
 306	if (!pgd_present(*pgd))
 307		goto out;
 308	p4d = p4d_offset(pgd, address);
 309	if (!p4d_present(*p4d))
 310		goto out;
 311	pud = pud_offset(p4d, address);
 312	if (!pud_present(*pud))
 313		goto out;
 314	pmd = pmd_offset(pud, address);
 315again:
 316	_pmd = pmdp_get_lockless(pmd);
 317	if (pmd_none(_pmd))
 
 
 
 
 
 
 
 318		goto out;
 319
 320	ret = false;
 321	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
 322		goto out;
 323
 324	if (pmd_trans_huge(_pmd)) {
 325		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 326			ret = true;
 327		goto out;
 328	}
 329
 330	pte = pte_offset_map(pmd, address);
 331	if (!pte) {
 332		ret = true;
 333		goto again;
 334	}
 335	/*
 336	 * Lockless access: we're in a wait_event so it's ok if it
 337	 * changes under us.  PTE markers should be handled the same as none
 338	 * ptes here.
 339	 */
 340	ptent = ptep_get(pte);
 341	if (pte_none_mostly(ptent))
 342		ret = true;
 343	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
 344		ret = true;
 345	pte_unmap(pte);
 346
 347out:
 348	return ret;
 349}
 350
 351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 352{
 353	if (flags & FAULT_FLAG_INTERRUPTIBLE)
 354		return TASK_INTERRUPTIBLE;
 355
 356	if (flags & FAULT_FLAG_KILLABLE)
 357		return TASK_KILLABLE;
 358
 359	return TASK_UNINTERRUPTIBLE;
 360}
 361
 362/*
 363 * The locking rules involved in returning VM_FAULT_RETRY depending on
 364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 366 * recommendation in __lock_page_or_retry is not an understatement.
 367 *
 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 370 * not set.
 371 *
 372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 373 * set, VM_FAULT_RETRY can still be returned if and only if there are
 374 * fatal_signal_pending()s, and the mmap_lock must be released before
 375 * returning it.
 376 */
 377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 378{
 379	struct vm_area_struct *vma = vmf->vma;
 380	struct mm_struct *mm = vma->vm_mm;
 381	struct userfaultfd_ctx *ctx;
 382	struct userfaultfd_wait_queue uwq;
 383	vm_fault_t ret = VM_FAULT_SIGBUS;
 384	bool must_wait;
 385	unsigned int blocking_state;
 386
 387	/*
 388	 * We don't do userfault handling for the final child pid update.
 389	 *
 390	 * We also don't do userfault handling during
 391	 * coredumping. hugetlbfs has the special
 392	 * hugetlb_follow_page_mask() to skip missing pages in the
 393	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 394	 * the no_page_table() helper in follow_page_mask(), but the
 395	 * shmem_vm_ops->fault method is invoked even during
 396	 * coredumping and it ends up here.
 397	 */
 398	if (current->flags & (PF_EXITING|PF_DUMPCORE))
 399		goto out;
 400
 401	assert_fault_locked(vmf);
 402
 403	ctx = vma->vm_userfaultfd_ctx.ctx;
 
 404	if (!ctx)
 405		goto out;
 406
 407	BUG_ON(ctx->mm != mm);
 408
 409	/* Any unrecognized flag is a bug. */
 410	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 411	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
 412	VM_BUG_ON(!reason || (reason & (reason - 1)));
 413
 414	if (ctx->features & UFFD_FEATURE_SIGBUS)
 415		goto out;
 416	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
 
 
 
 417		goto out;
 418
 419	/*
 420	 * If it's already released don't get it. This avoids to loop
 421	 * in __get_user_pages if userfaultfd_release waits on the
 422	 * caller of handle_userfault to release the mmap_lock.
 423	 */
 424	if (unlikely(READ_ONCE(ctx->released))) {
 425		/*
 426		 * Don't return VM_FAULT_SIGBUS in this case, so a non
 427		 * cooperative manager can close the uffd after the
 428		 * last UFFDIO_COPY, without risking to trigger an
 429		 * involuntary SIGBUS if the process was starting the
 430		 * userfaultfd while the userfaultfd was still armed
 431		 * (but after the last UFFDIO_COPY). If the uffd
 432		 * wasn't already closed when the userfault reached
 433		 * this point, that would normally be solved by
 434		 * userfaultfd_must_wait returning 'false'.
 435		 *
 436		 * If we were to return VM_FAULT_SIGBUS here, the non
 437		 * cooperative manager would be instead forced to
 438		 * always call UFFDIO_UNREGISTER before it can safely
 439		 * close the uffd.
 440		 */
 441		ret = VM_FAULT_NOPAGE;
 442		goto out;
 443	}
 444
 445	/*
 446	 * Check that we can return VM_FAULT_RETRY.
 447	 *
 448	 * NOTE: it should become possible to return VM_FAULT_RETRY
 449	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 450	 * -EBUSY failures, if the userfaultfd is to be extended for
 451	 * VM_UFFD_WP tracking and we intend to arm the userfault
 452	 * without first stopping userland access to the memory. For
 453	 * VM_UFFD_MISSING userfaults this is enough for now.
 454	 */
 455	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 456		/*
 457		 * Validate the invariant that nowait must allow retry
 458		 * to be sure not to return SIGBUS erroneously on
 459		 * nowait invocations.
 460		 */
 461		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 462#ifdef CONFIG_DEBUG_VM
 463		if (printk_ratelimit()) {
 464			printk(KERN_WARNING
 465			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 466			       vmf->flags);
 467			dump_stack();
 468		}
 469#endif
 470		goto out;
 471	}
 472
 473	/*
 474	 * Handle nowait, not much to do other than tell it to retry
 475	 * and wait.
 476	 */
 477	ret = VM_FAULT_RETRY;
 478	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 479		goto out;
 480
 481	/* take the reference before dropping the mmap_lock */
 482	userfaultfd_ctx_get(ctx);
 483
 484	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 485	uwq.wq.private = current;
 486	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
 487				reason, ctx->features);
 488	uwq.ctx = ctx;
 489	uwq.waken = false;
 490
 491	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 492
 493        /*
 494         * Take the vma lock now, in order to safely call
 495         * userfaultfd_huge_must_wait() later. Since acquiring the
 496         * (sleepable) vma lock can modify the current task state, that
 497         * must be before explicitly calling set_current_state().
 498         */
 499	if (is_vm_hugetlb_page(vma))
 500		hugetlb_vma_lock_read(vma);
 501
 502	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 503	/*
 504	 * After the __add_wait_queue the uwq is visible to userland
 505	 * through poll/read().
 506	 */
 507	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 508	/*
 509	 * The smp_mb() after __set_current_state prevents the reads
 510	 * following the spin_unlock to happen before the list_add in
 511	 * __add_wait_queue.
 512	 */
 513	set_current_state(blocking_state);
 514	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 515
 516	if (!is_vm_hugetlb_page(vma))
 517		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
 518	else
 519		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
 520	if (is_vm_hugetlb_page(vma))
 521		hugetlb_vma_unlock_read(vma);
 522	release_fault_lock(vmf);
 
 
 
 523
 524	if (likely(must_wait && !READ_ONCE(ctx->released))) {
 525		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 526		schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527	}
 528
 529	__set_current_state(TASK_RUNNING);
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	/*
 532	 * Here we race with the list_del; list_add in
 533	 * userfaultfd_ctx_read(), however because we don't ever run
 534	 * list_del_init() to refile across the two lists, the prev
 535	 * and next pointers will never point to self. list_add also
 536	 * would never let any of the two pointers to point to
 537	 * self. So list_empty_careful won't risk to see both pointers
 538	 * pointing to self at any time during the list refile. The
 539	 * only case where list_del_init() is called is the full
 540	 * removal in the wake function and there we don't re-list_add
 541	 * and it's fine not to block on the spinlock. The uwq on this
 542	 * kernel stack can be released after the list_del_init.
 543	 */
 544	if (!list_empty_careful(&uwq.wq.entry)) {
 545		spin_lock_irq(&ctx->fault_pending_wqh.lock);
 546		/*
 547		 * No need of list_del_init(), the uwq on the stack
 548		 * will be freed shortly anyway.
 549		 */
 550		list_del(&uwq.wq.entry);
 551		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 552	}
 553
 554	/*
 555	 * ctx may go away after this if the userfault pseudo fd is
 556	 * already released.
 557	 */
 558	userfaultfd_ctx_put(ctx);
 559
 560out:
 561	return ret;
 562}
 563
 564static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 565					      struct userfaultfd_wait_queue *ewq)
 566{
 567	struct userfaultfd_ctx *release_new_ctx;
 568
 569	if (WARN_ON_ONCE(current->flags & PF_EXITING))
 570		goto out;
 571
 572	ewq->ctx = ctx;
 573	init_waitqueue_entry(&ewq->wq, current);
 574	release_new_ctx = NULL;
 575
 576	spin_lock_irq(&ctx->event_wqh.lock);
 577	/*
 578	 * After the __add_wait_queue the uwq is visible to userland
 579	 * through poll/read().
 580	 */
 581	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
 582	for (;;) {
 583		set_current_state(TASK_KILLABLE);
 584		if (ewq->msg.event == 0)
 585			break;
 586		if (READ_ONCE(ctx->released) ||
 587		    fatal_signal_pending(current)) {
 588			/*
 589			 * &ewq->wq may be queued in fork_event, but
 590			 * __remove_wait_queue ignores the head
 591			 * parameter. It would be a problem if it
 592			 * didn't.
 593			 */
 594			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 595			if (ewq->msg.event == UFFD_EVENT_FORK) {
 596				struct userfaultfd_ctx *new;
 597
 598				new = (struct userfaultfd_ctx *)
 599					(unsigned long)
 600					ewq->msg.arg.reserved.reserved1;
 601				release_new_ctx = new;
 602			}
 603			break;
 604		}
 605
 606		spin_unlock_irq(&ctx->event_wqh.lock);
 607
 608		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 609		schedule();
 610
 611		spin_lock_irq(&ctx->event_wqh.lock);
 612	}
 613	__set_current_state(TASK_RUNNING);
 614	spin_unlock_irq(&ctx->event_wqh.lock);
 615
 616	if (release_new_ctx) {
 617		struct vm_area_struct *vma;
 618		struct mm_struct *mm = release_new_ctx->mm;
 619		VMA_ITERATOR(vmi, mm, 0);
 620
 621		/* the various vma->vm_userfaultfd_ctx still points to it */
 622		mmap_write_lock(mm);
 623		for_each_vma(vmi, vma) {
 624			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 625				vma_start_write(vma);
 626				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 627				userfaultfd_set_vm_flags(vma,
 628							 vma->vm_flags & ~__VM_UFFD_FLAGS);
 629			}
 630		}
 631		mmap_write_unlock(mm);
 632
 633		userfaultfd_ctx_put(release_new_ctx);
 634	}
 635
 636	/*
 637	 * ctx may go away after this if the userfault pseudo fd is
 638	 * already released.
 639	 */
 640out:
 641	atomic_dec(&ctx->mmap_changing);
 642	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
 643	userfaultfd_ctx_put(ctx);
 644}
 645
 646static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 647				       struct userfaultfd_wait_queue *ewq)
 648{
 649	ewq->msg.event = 0;
 650	wake_up_locked(&ctx->event_wqh);
 651	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 652}
 653
 654int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 655{
 656	struct userfaultfd_ctx *ctx = NULL, *octx;
 657	struct userfaultfd_fork_ctx *fctx;
 658
 659	octx = vma->vm_userfaultfd_ctx.ctx;
 660	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 661		vma_start_write(vma);
 662		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 663		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 664		return 0;
 665	}
 666
 667	list_for_each_entry(fctx, fcs, list)
 668		if (fctx->orig == octx) {
 669			ctx = fctx->new;
 670			break;
 671		}
 672
 673	if (!ctx) {
 674		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 675		if (!fctx)
 676			return -ENOMEM;
 677
 678		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 679		if (!ctx) {
 680			kfree(fctx);
 681			return -ENOMEM;
 682		}
 683
 684		refcount_set(&ctx->refcount, 1);
 685		ctx->flags = octx->flags;
 686		ctx->features = octx->features;
 687		ctx->released = false;
 688		init_rwsem(&ctx->map_changing_lock);
 689		atomic_set(&ctx->mmap_changing, 0);
 690		ctx->mm = vma->vm_mm;
 691		mmgrab(ctx->mm);
 692
 693		userfaultfd_ctx_get(octx);
 694		down_write(&octx->map_changing_lock);
 695		atomic_inc(&octx->mmap_changing);
 696		up_write(&octx->map_changing_lock);
 697		fctx->orig = octx;
 698		fctx->new = ctx;
 699		list_add_tail(&fctx->list, fcs);
 700	}
 701
 702	vma->vm_userfaultfd_ctx.ctx = ctx;
 703	return 0;
 704}
 705
 706static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 707{
 708	struct userfaultfd_ctx *ctx = fctx->orig;
 709	struct userfaultfd_wait_queue ewq;
 710
 711	msg_init(&ewq.msg);
 712
 713	ewq.msg.event = UFFD_EVENT_FORK;
 714	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 715
 716	userfaultfd_event_wait_completion(ctx, &ewq);
 717}
 718
 719void dup_userfaultfd_complete(struct list_head *fcs)
 720{
 721	struct userfaultfd_fork_ctx *fctx, *n;
 722
 723	list_for_each_entry_safe(fctx, n, fcs, list) {
 724		dup_fctx(fctx);
 725		list_del(&fctx->list);
 726		kfree(fctx);
 727	}
 728}
 729
 730void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 731			     struct vm_userfaultfd_ctx *vm_ctx)
 732{
 733	struct userfaultfd_ctx *ctx;
 734
 735	ctx = vma->vm_userfaultfd_ctx.ctx;
 736
 737	if (!ctx)
 738		return;
 739
 740	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 741		vm_ctx->ctx = ctx;
 742		userfaultfd_ctx_get(ctx);
 743		down_write(&ctx->map_changing_lock);
 744		atomic_inc(&ctx->mmap_changing);
 745		up_write(&ctx->map_changing_lock);
 746	} else {
 747		/* Drop uffd context if remap feature not enabled */
 748		vma_start_write(vma);
 749		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 750		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 751	}
 752}
 753
 754void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 755				 unsigned long from, unsigned long to,
 756				 unsigned long len)
 757{
 758	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 759	struct userfaultfd_wait_queue ewq;
 760
 761	if (!ctx)
 762		return;
 763
 764	if (to & ~PAGE_MASK) {
 765		userfaultfd_ctx_put(ctx);
 766		return;
 767	}
 768
 769	msg_init(&ewq.msg);
 770
 771	ewq.msg.event = UFFD_EVENT_REMAP;
 772	ewq.msg.arg.remap.from = from;
 773	ewq.msg.arg.remap.to = to;
 774	ewq.msg.arg.remap.len = len;
 775
 776	userfaultfd_event_wait_completion(ctx, &ewq);
 777}
 778
 779bool userfaultfd_remove(struct vm_area_struct *vma,
 780			unsigned long start, unsigned long end)
 781{
 782	struct mm_struct *mm = vma->vm_mm;
 783	struct userfaultfd_ctx *ctx;
 784	struct userfaultfd_wait_queue ewq;
 785
 786	ctx = vma->vm_userfaultfd_ctx.ctx;
 787	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 788		return true;
 789
 790	userfaultfd_ctx_get(ctx);
 791	down_write(&ctx->map_changing_lock);
 792	atomic_inc(&ctx->mmap_changing);
 793	up_write(&ctx->map_changing_lock);
 794	mmap_read_unlock(mm);
 795
 796	msg_init(&ewq.msg);
 797
 798	ewq.msg.event = UFFD_EVENT_REMOVE;
 799	ewq.msg.arg.remove.start = start;
 800	ewq.msg.arg.remove.end = end;
 801
 802	userfaultfd_event_wait_completion(ctx, &ewq);
 803
 804	return false;
 805}
 806
 807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 808			  unsigned long start, unsigned long end)
 809{
 810	struct userfaultfd_unmap_ctx *unmap_ctx;
 811
 812	list_for_each_entry(unmap_ctx, unmaps, list)
 813		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 814		    unmap_ctx->end == end)
 815			return true;
 816
 817	return false;
 818}
 819
 820int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
 821			   unsigned long end, struct list_head *unmaps)
 822{
 823	struct userfaultfd_unmap_ctx *unmap_ctx;
 824	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 825
 826	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 827	    has_unmap_ctx(ctx, unmaps, start, end))
 828		return 0;
 829
 830	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 831	if (!unmap_ctx)
 832		return -ENOMEM;
 833
 834	userfaultfd_ctx_get(ctx);
 835	down_write(&ctx->map_changing_lock);
 836	atomic_inc(&ctx->mmap_changing);
 837	up_write(&ctx->map_changing_lock);
 838	unmap_ctx->ctx = ctx;
 839	unmap_ctx->start = start;
 840	unmap_ctx->end = end;
 841	list_add_tail(&unmap_ctx->list, unmaps);
 842
 843	return 0;
 844}
 845
 846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 847{
 848	struct userfaultfd_unmap_ctx *ctx, *n;
 849	struct userfaultfd_wait_queue ewq;
 850
 851	list_for_each_entry_safe(ctx, n, uf, list) {
 852		msg_init(&ewq.msg);
 853
 854		ewq.msg.event = UFFD_EVENT_UNMAP;
 855		ewq.msg.arg.remove.start = ctx->start;
 856		ewq.msg.arg.remove.end = ctx->end;
 857
 858		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 859
 860		list_del(&ctx->list);
 861		kfree(ctx);
 862	}
 863}
 864
 865static int userfaultfd_release(struct inode *inode, struct file *file)
 866{
 867	struct userfaultfd_ctx *ctx = file->private_data;
 868	struct mm_struct *mm = ctx->mm;
 869	struct vm_area_struct *vma, *prev;
 870	/* len == 0 means wake all */
 871	struct userfaultfd_wake_range range = { .len = 0, };
 872	unsigned long new_flags;
 873	VMA_ITERATOR(vmi, mm, 0);
 874
 875	WRITE_ONCE(ctx->released, true);
 876
 877	if (!mmget_not_zero(mm))
 878		goto wakeup;
 879
 880	/*
 881	 * Flush page faults out of all CPUs. NOTE: all page faults
 882	 * must be retried without returning VM_FAULT_SIGBUS if
 883	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 884	 * changes while handle_userfault released the mmap_lock. So
 885	 * it's critical that released is set to true (above), before
 886	 * taking the mmap_lock for writing.
 887	 */
 888	mmap_write_lock(mm);
 889	prev = NULL;
 890	for_each_vma(vmi, vma) {
 891		cond_resched();
 892		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 893		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 894		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 895			prev = vma;
 896			continue;
 897		}
 898		/* Reset ptes for the whole vma range if wr-protected */
 899		if (userfaultfd_wp(vma))
 900			uffd_wp_range(vma, vma->vm_start,
 901				      vma->vm_end - vma->vm_start, false);
 902		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 903		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
 904					    vma->vm_end, new_flags,
 905					    NULL_VM_UFFD_CTX);
 906
 907		vma_start_write(vma);
 908		userfaultfd_set_vm_flags(vma, new_flags);
 909		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 910
 911		prev = vma;
 912	}
 913	mmap_write_unlock(mm);
 914	mmput(mm);
 915wakeup:
 916	/*
 917	 * After no new page faults can wait on this fault_*wqh, flush
 918	 * the last page faults that may have been already waiting on
 919	 * the fault_*wqh.
 920	 */
 921	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 922	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 923	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 924	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 925
 926	/* Flush pending events that may still wait on event_wqh */
 927	wake_up_all(&ctx->event_wqh);
 928
 929	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 930	userfaultfd_ctx_put(ctx);
 931	return 0;
 932}
 933
 934/* fault_pending_wqh.lock must be hold by the caller */
 935static inline struct userfaultfd_wait_queue *find_userfault_in(
 936		wait_queue_head_t *wqh)
 937{
 938	wait_queue_entry_t *wq;
 939	struct userfaultfd_wait_queue *uwq;
 940
 941	lockdep_assert_held(&wqh->lock);
 942
 943	uwq = NULL;
 944	if (!waitqueue_active(wqh))
 945		goto out;
 946	/* walk in reverse to provide FIFO behavior to read userfaults */
 947	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 
 948	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 949out:
 950	return uwq;
 951}
 952
 953static inline struct userfaultfd_wait_queue *find_userfault(
 954		struct userfaultfd_ctx *ctx)
 955{
 956	return find_userfault_in(&ctx->fault_pending_wqh);
 957}
 958
 959static inline struct userfaultfd_wait_queue *find_userfault_evt(
 960		struct userfaultfd_ctx *ctx)
 961{
 962	return find_userfault_in(&ctx->event_wqh);
 963}
 964
 965static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 966{
 967	struct userfaultfd_ctx *ctx = file->private_data;
 968	__poll_t ret;
 969
 970	poll_wait(file, &ctx->fd_wqh, wait);
 971
 972	if (!userfaultfd_is_initialized(ctx))
 973		return EPOLLERR;
 974
 975	/*
 976	 * poll() never guarantees that read won't block.
 977	 * userfaults can be waken before they're read().
 978	 */
 979	if (unlikely(!(file->f_flags & O_NONBLOCK)))
 980		return EPOLLERR;
 981	/*
 982	 * lockless access to see if there are pending faults
 983	 * __pollwait last action is the add_wait_queue but
 984	 * the spin_unlock would allow the waitqueue_active to
 985	 * pass above the actual list_add inside
 986	 * add_wait_queue critical section. So use a full
 987	 * memory barrier to serialize the list_add write of
 988	 * add_wait_queue() with the waitqueue_active read
 989	 * below.
 990	 */
 991	ret = 0;
 992	smp_mb();
 993	if (waitqueue_active(&ctx->fault_pending_wqh))
 994		ret = EPOLLIN;
 995	else if (waitqueue_active(&ctx->event_wqh))
 996		ret = EPOLLIN;
 997
 998	return ret;
 999}
1000
1001static const struct file_operations userfaultfd_fops;
1002
1003static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004				  struct inode *inode,
1005				  struct uffd_msg *msg)
1006{
1007	int fd;
1008
1009	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1011	if (fd < 0)
1012		return fd;
1013
1014	msg->arg.reserved.reserved1 = 0;
1015	msg->arg.fork.ufd = fd;
1016	return 0;
1017}
1018
1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020				    struct uffd_msg *msg, struct inode *inode)
1021{
1022	ssize_t ret;
1023	DECLARE_WAITQUEUE(wait, current);
1024	struct userfaultfd_wait_queue *uwq;
1025	/*
1026	 * Handling fork event requires sleeping operations, so
1027	 * we drop the event_wqh lock, then do these ops, then
1028	 * lock it back and wake up the waiter. While the lock is
1029	 * dropped the ewq may go away so we keep track of it
1030	 * carefully.
1031	 */
1032	LIST_HEAD(fork_event);
1033	struct userfaultfd_ctx *fork_nctx = NULL;
1034
1035	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1036	spin_lock_irq(&ctx->fd_wqh.lock);
1037	__add_wait_queue(&ctx->fd_wqh, &wait);
1038	for (;;) {
1039		set_current_state(TASK_INTERRUPTIBLE);
1040		spin_lock(&ctx->fault_pending_wqh.lock);
1041		uwq = find_userfault(ctx);
1042		if (uwq) {
1043			/*
1044			 * Use a seqcount to repeat the lockless check
1045			 * in wake_userfault() to avoid missing
1046			 * wakeups because during the refile both
1047			 * waitqueue could become empty if this is the
1048			 * only userfault.
1049			 */
1050			write_seqcount_begin(&ctx->refile_seq);
1051
1052			/*
1053			 * The fault_pending_wqh.lock prevents the uwq
1054			 * to disappear from under us.
1055			 *
1056			 * Refile this userfault from
1057			 * fault_pending_wqh to fault_wqh, it's not
1058			 * pending anymore after we read it.
1059			 *
1060			 * Use list_del() by hand (as
1061			 * userfaultfd_wake_function also uses
1062			 * list_del_init() by hand) to be sure nobody
1063			 * changes __remove_wait_queue() to use
1064			 * list_del_init() in turn breaking the
1065			 * !list_empty_careful() check in
1066			 * handle_userfault(). The uwq->wq.head list
1067			 * must never be empty at any time during the
1068			 * refile, or the waitqueue could disappear
1069			 * from under us. The "wait_queue_head_t"
1070			 * parameter of __remove_wait_queue() is unused
1071			 * anyway.
1072			 */
1073			list_del(&uwq->wq.entry);
1074			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
1076			write_seqcount_end(&ctx->refile_seq);
1077
1078			/* careful to always initialize msg if ret == 0 */
1079			*msg = uwq->msg;
1080			spin_unlock(&ctx->fault_pending_wqh.lock);
1081			ret = 0;
1082			break;
1083		}
1084		spin_unlock(&ctx->fault_pending_wqh.lock);
1085
1086		spin_lock(&ctx->event_wqh.lock);
1087		uwq = find_userfault_evt(ctx);
1088		if (uwq) {
1089			*msg = uwq->msg;
1090
1091			if (uwq->msg.event == UFFD_EVENT_FORK) {
1092				fork_nctx = (struct userfaultfd_ctx *)
1093					(unsigned long)
1094					uwq->msg.arg.reserved.reserved1;
1095				list_move(&uwq->wq.entry, &fork_event);
1096				/*
1097				 * fork_nctx can be freed as soon as
1098				 * we drop the lock, unless we take a
1099				 * reference on it.
1100				 */
1101				userfaultfd_ctx_get(fork_nctx);
1102				spin_unlock(&ctx->event_wqh.lock);
1103				ret = 0;
1104				break;
1105			}
1106
1107			userfaultfd_event_complete(ctx, uwq);
1108			spin_unlock(&ctx->event_wqh.lock);
1109			ret = 0;
1110			break;
1111		}
1112		spin_unlock(&ctx->event_wqh.lock);
1113
1114		if (signal_pending(current)) {
1115			ret = -ERESTARTSYS;
1116			break;
1117		}
1118		if (no_wait) {
1119			ret = -EAGAIN;
1120			break;
1121		}
1122		spin_unlock_irq(&ctx->fd_wqh.lock);
1123		schedule();
1124		spin_lock_irq(&ctx->fd_wqh.lock);
1125	}
1126	__remove_wait_queue(&ctx->fd_wqh, &wait);
1127	__set_current_state(TASK_RUNNING);
1128	spin_unlock_irq(&ctx->fd_wqh.lock);
1129
1130	if (!ret && msg->event == UFFD_EVENT_FORK) {
1131		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1132		spin_lock_irq(&ctx->event_wqh.lock);
1133		if (!list_empty(&fork_event)) {
1134			/*
1135			 * The fork thread didn't abort, so we can
1136			 * drop the temporary refcount.
1137			 */
1138			userfaultfd_ctx_put(fork_nctx);
1139
1140			uwq = list_first_entry(&fork_event,
1141					       typeof(*uwq),
1142					       wq.entry);
1143			/*
1144			 * If fork_event list wasn't empty and in turn
1145			 * the event wasn't already released by fork
1146			 * (the event is allocated on fork kernel
1147			 * stack), put the event back to its place in
1148			 * the event_wq. fork_event head will be freed
1149			 * as soon as we return so the event cannot
1150			 * stay queued there no matter the current
1151			 * "ret" value.
1152			 */
1153			list_del(&uwq->wq.entry);
1154			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155
1156			/*
1157			 * Leave the event in the waitqueue and report
1158			 * error to userland if we failed to resolve
1159			 * the userfault fork.
1160			 */
1161			if (likely(!ret))
1162				userfaultfd_event_complete(ctx, uwq);
1163		} else {
1164			/*
1165			 * Here the fork thread aborted and the
1166			 * refcount from the fork thread on fork_nctx
1167			 * has already been released. We still hold
1168			 * the reference we took before releasing the
1169			 * lock above. If resolve_userfault_fork
1170			 * failed we've to drop it because the
1171			 * fork_nctx has to be freed in such case. If
1172			 * it succeeded we'll hold it because the new
1173			 * uffd references it.
1174			 */
1175			if (ret)
1176				userfaultfd_ctx_put(fork_nctx);
1177		}
1178		spin_unlock_irq(&ctx->event_wqh.lock);
1179	}
1180
1181	return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185				size_t count, loff_t *ppos)
1186{
1187	struct userfaultfd_ctx *ctx = file->private_data;
1188	ssize_t _ret, ret = 0;
1189	struct uffd_msg msg;
1190	int no_wait = file->f_flags & O_NONBLOCK;
1191	struct inode *inode = file_inode(file);
1192
1193	if (!userfaultfd_is_initialized(ctx))
1194		return -EINVAL;
1195
1196	for (;;) {
1197		if (count < sizeof(msg))
1198			return ret ? ret : -EINVAL;
1199		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1200		if (_ret < 0)
1201			return ret ? ret : _ret;
1202		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203			return ret ? ret : -EFAULT;
1204		ret += sizeof(msg);
1205		buf += sizeof(msg);
1206		count -= sizeof(msg);
1207		/*
1208		 * Allow to read more than one fault at time but only
1209		 * block if waiting for the very first one.
1210		 */
1211		no_wait = O_NONBLOCK;
1212	}
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216			     struct userfaultfd_wake_range *range)
1217{
1218	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 
 
 
 
 
1219	/* wake all in the range and autoremove */
1220	if (waitqueue_active(&ctx->fault_pending_wqh))
1221		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222				     range);
1223	if (waitqueue_active(&ctx->fault_wqh))
1224		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1225	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229					   struct userfaultfd_wake_range *range)
1230{
1231	unsigned seq;
1232	bool need_wakeup;
1233
1234	/*
1235	 * To be sure waitqueue_active() is not reordered by the CPU
1236	 * before the pagetable update, use an explicit SMP memory
1237	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1238	 * have release semantics that can allow the
1239	 * waitqueue_active() to be reordered before the pte update.
1240	 */
1241	smp_mb();
1242
1243	/*
1244	 * Use waitqueue_active because it's very frequent to
1245	 * change the address space atomically even if there are no
1246	 * userfaults yet. So we take the spinlock only when we're
1247	 * sure we've userfaults to wake.
1248	 */
1249	do {
1250		seq = read_seqcount_begin(&ctx->refile_seq);
1251		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252			waitqueue_active(&ctx->fault_wqh);
1253		cond_resched();
1254	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1255	if (need_wakeup)
1256		__wake_userfault(ctx, range);
1257}
1258
1259static __always_inline int validate_unaligned_range(
1260	struct mm_struct *mm, __u64 start, __u64 len)
1261{
1262	__u64 task_size = mm->task_size;
1263
 
 
1264	if (len & ~PAGE_MASK)
1265		return -EINVAL;
1266	if (!len)
1267		return -EINVAL;
1268	if (start < mmap_min_addr)
1269		return -EINVAL;
1270	if (start >= task_size)
1271		return -EINVAL;
1272	if (len > task_size - start)
1273		return -EINVAL;
1274	if (start + len <= start)
1275		return -EINVAL;
1276	return 0;
1277}
1278
1279static __always_inline int validate_range(struct mm_struct *mm,
1280					  __u64 start, __u64 len)
1281{
1282	if (start & ~PAGE_MASK)
1283		return -EINVAL;
1284
1285	return validate_unaligned_range(mm, start, len);
1286}
1287
1288static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289				unsigned long arg)
1290{
1291	struct mm_struct *mm = ctx->mm;
1292	struct vm_area_struct *vma, *prev, *cur;
1293	int ret;
1294	struct uffdio_register uffdio_register;
1295	struct uffdio_register __user *user_uffdio_register;
1296	unsigned long vm_flags, new_flags;
1297	bool found;
1298	bool basic_ioctls;
1299	unsigned long start, end, vma_end;
1300	struct vma_iterator vmi;
1301	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1302
1303	user_uffdio_register = (struct uffdio_register __user *) arg;
1304
1305	ret = -EFAULT;
1306	if (copy_from_user(&uffdio_register, user_uffdio_register,
1307			   sizeof(uffdio_register)-sizeof(__u64)))
1308		goto out;
1309
1310	ret = -EINVAL;
1311	if (!uffdio_register.mode)
1312		goto out;
1313	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
 
1314		goto out;
1315	vm_flags = 0;
1316	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317		vm_flags |= VM_UFFD_MISSING;
1318	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320		goto out;
1321#endif
1322		vm_flags |= VM_UFFD_WP;
1323	}
1324	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 
 
1326		goto out;
1327#endif
1328		vm_flags |= VM_UFFD_MINOR;
1329	}
1330
1331	ret = validate_range(mm, uffdio_register.range.start,
1332			     uffdio_register.range.len);
1333	if (ret)
1334		goto out;
1335
1336	start = uffdio_register.range.start;
1337	end = start + uffdio_register.range.len;
1338
1339	ret = -ENOMEM;
1340	if (!mmget_not_zero(mm))
1341		goto out;
1342
1343	ret = -EINVAL;
1344	mmap_write_lock(mm);
1345	vma_iter_init(&vmi, mm, start);
1346	vma = vma_find(&vmi, end);
1347	if (!vma)
1348		goto out_unlock;
1349
1350	/*
1351	 * If the first vma contains huge pages, make sure start address
1352	 * is aligned to huge page size.
1353	 */
1354	if (is_vm_hugetlb_page(vma)) {
1355		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356
1357		if (start & (vma_hpagesize - 1))
1358			goto out_unlock;
1359	}
1360
1361	/*
1362	 * Search for not compatible vmas.
 
 
 
 
1363	 */
1364	found = false;
1365	basic_ioctls = false;
1366	cur = vma;
1367	do {
1368		cond_resched();
1369
1370		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1372
1373		/* check not compatible vmas */
1374		ret = -EINVAL;
1375		if (!vma_can_userfault(cur, vm_flags, wp_async))
1376			goto out_unlock;
1377
1378		/*
1379		 * UFFDIO_COPY will fill file holes even without
1380		 * PROT_WRITE. This check enforces that if this is a
1381		 * MAP_SHARED, the process has write permission to the backing
1382		 * file. If VM_MAYWRITE is set it also enforces that on a
1383		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385		 */
1386		ret = -EPERM;
1387		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388			goto out_unlock;
1389
1390		/*
1391		 * If this vma contains ending address, and huge pages
1392		 * check alignment.
1393		 */
1394		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395		    end > cur->vm_start) {
1396			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398			ret = -EINVAL;
1399
1400			if (end & (vma_hpagesize - 1))
1401				goto out_unlock;
1402		}
1403		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404			goto out_unlock;
1405
1406		/*
1407		 * Check that this vma isn't already owned by a
1408		 * different userfaultfd. We can't allow more than one
1409		 * userfaultfd to own a single vma simultaneously or we
1410		 * wouldn't know which one to deliver the userfaults to.
1411		 */
1412		ret = -EBUSY;
1413		if (cur->vm_userfaultfd_ctx.ctx &&
1414		    cur->vm_userfaultfd_ctx.ctx != ctx)
1415			goto out_unlock;
1416
1417		/*
1418		 * Note vmas containing huge pages
1419		 */
1420		if (is_vm_hugetlb_page(cur))
1421			basic_ioctls = true;
1422
1423		found = true;
1424	} for_each_vma_range(vmi, cur, end);
1425	BUG_ON(!found);
1426
1427	vma_iter_set(&vmi, start);
1428	prev = vma_prev(&vmi);
1429	if (vma->vm_start < start)
1430		prev = vma;
1431
1432	ret = 0;
1433	for_each_vma_range(vmi, vma, end) {
1434		cond_resched();
1435
1436		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1437		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438		       vma->vm_userfaultfd_ctx.ctx != ctx);
1439		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440
1441		/*
1442		 * Nothing to do: this vma is already registered into this
1443		 * userfaultfd and with the right tracking mode too.
1444		 */
1445		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446		    (vma->vm_flags & vm_flags) == vm_flags)
1447			goto skip;
1448
1449		if (vma->vm_start > start)
1450			start = vma->vm_start;
1451		vma_end = min(end, vma->vm_end);
1452
1453		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1454		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455					    new_flags,
1456					    (struct vm_userfaultfd_ctx){ctx});
1457		if (IS_ERR(vma)) {
1458			ret = PTR_ERR(vma);
1459			break;
 
 
 
 
 
 
 
 
 
 
 
1460		}
1461
1462		/*
1463		 * In the vma_merge() successful mprotect-like case 8:
1464		 * the next vma was merged into the current one and
1465		 * the current one has not been updated yet.
1466		 */
1467		vma_start_write(vma);
1468		userfaultfd_set_vm_flags(vma, new_flags);
1469		vma->vm_userfaultfd_ctx.ctx = ctx;
1470
1471		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472			hugetlb_unshare_all_pmds(vma);
1473
1474	skip:
1475		prev = vma;
1476		start = vma->vm_end;
1477	}
1478
1479out_unlock:
1480	mmap_write_unlock(mm);
1481	mmput(mm);
1482	if (!ret) {
1483		__u64 ioctls_out;
1484
1485		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486		    UFFD_API_RANGE_IOCTLS;
1487
1488		/*
1489		 * Declare the WP ioctl only if the WP mode is
1490		 * specified and all checks passed with the range
1491		 */
1492		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494
1495		/* CONTINUE ioctl is only supported for MINOR ranges. */
1496		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498
1499		/*
1500		 * Now that we scanned all vmas we can already tell
1501		 * userland which ioctls methods are guaranteed to
1502		 * succeed on this range.
1503		 */
1504		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
 
1505			ret = -EFAULT;
1506	}
1507out:
1508	return ret;
1509}
1510
1511static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512				  unsigned long arg)
1513{
1514	struct mm_struct *mm = ctx->mm;
1515	struct vm_area_struct *vma, *prev, *cur;
1516	int ret;
1517	struct uffdio_range uffdio_unregister;
1518	unsigned long new_flags;
1519	bool found;
1520	unsigned long start, end, vma_end;
1521	const void __user *buf = (void __user *)arg;
1522	struct vma_iterator vmi;
1523	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1524
1525	ret = -EFAULT;
1526	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527		goto out;
1528
1529	ret = validate_range(mm, uffdio_unregister.start,
1530			     uffdio_unregister.len);
1531	if (ret)
1532		goto out;
1533
1534	start = uffdio_unregister.start;
1535	end = start + uffdio_unregister.len;
1536
1537	ret = -ENOMEM;
1538	if (!mmget_not_zero(mm))
1539		goto out;
1540
1541	mmap_write_lock(mm);
1542	ret = -EINVAL;
1543	vma_iter_init(&vmi, mm, start);
1544	vma = vma_find(&vmi, end);
1545	if (!vma)
1546		goto out_unlock;
1547
1548	/*
1549	 * If the first vma contains huge pages, make sure start address
1550	 * is aligned to huge page size.
1551	 */
1552	if (is_vm_hugetlb_page(vma)) {
1553		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555		if (start & (vma_hpagesize - 1))
1556			goto out_unlock;
1557	}
1558
1559	/*
1560	 * Search for not compatible vmas.
 
 
 
 
1561	 */
1562	found = false;
1563	cur = vma;
1564	do {
1565		cond_resched();
1566
1567		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569
1570		/*
1571		 * Check not compatible vmas, not strictly required
1572		 * here as not compatible vmas cannot have an
1573		 * userfaultfd_ctx registered on them, but this
1574		 * provides for more strict behavior to notice
1575		 * unregistration errors.
1576		 */
1577		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1578			goto out_unlock;
1579
1580		found = true;
1581	} for_each_vma_range(vmi, cur, end);
1582	BUG_ON(!found);
1583
1584	vma_iter_set(&vmi, start);
1585	prev = vma_prev(&vmi);
1586	if (vma->vm_start < start)
1587		prev = vma;
1588
1589	ret = 0;
1590	for_each_vma_range(vmi, vma, end) {
1591		cond_resched();
1592
1593		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1594
1595		/*
1596		 * Nothing to do: this vma is already registered into this
1597		 * userfaultfd and with the right tracking mode too.
1598		 */
1599		if (!vma->vm_userfaultfd_ctx.ctx)
1600			goto skip;
1601
1602		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603
1604		if (vma->vm_start > start)
1605			start = vma->vm_start;
1606		vma_end = min(end, vma->vm_end);
1607
1608		if (userfaultfd_missing(vma)) {
1609			/*
1610			 * Wake any concurrent pending userfault while
1611			 * we unregister, so they will not hang
1612			 * permanently and it avoids userland to call
1613			 * UFFDIO_WAKE explicitly.
1614			 */
1615			struct userfaultfd_wake_range range;
1616			range.start = start;
1617			range.len = vma_end - start;
1618			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
 
 
1619		}
1620
1621		/* Reset ptes for the whole vma range if wr-protected */
1622		if (userfaultfd_wp(vma))
1623			uffd_wp_range(vma, start, vma_end - start, false);
1624
1625		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1626		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627					    new_flags, NULL_VM_UFFD_CTX);
1628		if (IS_ERR(vma)) {
1629			ret = PTR_ERR(vma);
1630			break;
1631		}
1632
1633		/*
1634		 * In the vma_merge() successful mprotect-like case 8:
1635		 * the next vma was merged into the current one and
1636		 * the current one has not been updated yet.
1637		 */
1638		vma_start_write(vma);
1639		userfaultfd_set_vm_flags(vma, new_flags);
1640		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642	skip:
1643		prev = vma;
1644		start = vma->vm_end;
1645	}
1646
1647out_unlock:
1648	mmap_write_unlock(mm);
1649	mmput(mm);
1650out:
1651	return ret;
1652}
1653
1654/*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659			    unsigned long arg)
1660{
1661	int ret;
1662	struct uffdio_range uffdio_wake;
1663	struct userfaultfd_wake_range range;
1664	const void __user *buf = (void __user *)arg;
1665
1666	ret = -EFAULT;
1667	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668		goto out;
1669
1670	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671	if (ret)
1672		goto out;
1673
1674	range.start = uffdio_wake.start;
1675	range.len = uffdio_wake.len;
1676
1677	/*
1678	 * len == 0 means wake all and we don't want to wake all here,
1679	 * so check it again to be sure.
1680	 */
1681	VM_BUG_ON(!range.len);
1682
1683	wake_userfault(ctx, &range);
1684	ret = 0;
1685
1686out:
1687	return ret;
1688}
1689
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691			    unsigned long arg)
1692{
1693	__s64 ret;
1694	struct uffdio_copy uffdio_copy;
1695	struct uffdio_copy __user *user_uffdio_copy;
1696	struct userfaultfd_wake_range range;
1697	uffd_flags_t flags = 0;
1698
1699	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
1701	ret = -EAGAIN;
1702	if (atomic_read(&ctx->mmap_changing))
1703		goto out;
1704
1705	ret = -EFAULT;
1706	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707			   /* don't copy "copy" last field */
1708			   sizeof(uffdio_copy)-sizeof(__s64)))
1709		goto out;
1710
1711	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712				       uffdio_copy.len);
1713	if (ret)
1714		goto out;
1715	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716	if (ret)
1717		goto out;
1718
 
 
 
 
1719	ret = -EINVAL;
1720	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
 
 
1721		goto out;
1722	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723		flags |= MFILL_ATOMIC_WP;
1724	if (mmget_not_zero(ctx->mm)) {
1725		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726					uffdio_copy.len, flags);
1727		mmput(ctx->mm);
1728	} else {
1729		return -ESRCH;
1730	}
1731	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732		return -EFAULT;
1733	if (ret < 0)
1734		goto out;
1735	BUG_ON(!ret);
1736	/* len == 0 would wake all */
1737	range.len = ret;
1738	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739		range.start = uffdio_copy.dst;
1740		wake_userfault(ctx, &range);
1741	}
1742	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744	return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748				unsigned long arg)
1749{
1750	__s64 ret;
1751	struct uffdio_zeropage uffdio_zeropage;
1752	struct uffdio_zeropage __user *user_uffdio_zeropage;
1753	struct userfaultfd_wake_range range;
1754
1755	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
1757	ret = -EAGAIN;
1758	if (atomic_read(&ctx->mmap_changing))
1759		goto out;
1760
1761	ret = -EFAULT;
1762	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763			   /* don't copy "zeropage" last field */
1764			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1765		goto out;
1766
1767	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768			     uffdio_zeropage.range.len);
1769	if (ret)
1770		goto out;
1771	ret = -EINVAL;
1772	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773		goto out;
1774
1775	if (mmget_not_zero(ctx->mm)) {
1776		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777					   uffdio_zeropage.range.len);
1778		mmput(ctx->mm);
1779	} else {
1780		return -ESRCH;
1781	}
1782	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783		return -EFAULT;
1784	if (ret < 0)
1785		goto out;
1786	/* len == 0 would wake all */
1787	BUG_ON(!ret);
1788	range.len = ret;
1789	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790		range.start = uffdio_zeropage.range.start;
1791		wake_userfault(ctx, &range);
1792	}
1793	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795	return ret;
1796}
1797
1798static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799				    unsigned long arg)
1800{
1801	int ret;
1802	struct uffdio_writeprotect uffdio_wp;
1803	struct uffdio_writeprotect __user *user_uffdio_wp;
1804	struct userfaultfd_wake_range range;
1805	bool mode_wp, mode_dontwake;
1806
1807	if (atomic_read(&ctx->mmap_changing))
1808		return -EAGAIN;
1809
1810	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811
1812	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813			   sizeof(struct uffdio_writeprotect)))
1814		return -EFAULT;
1815
1816	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1817			     uffdio_wp.range.len);
1818	if (ret)
1819		return ret;
1820
1821	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822			       UFFDIO_WRITEPROTECT_MODE_WP))
1823		return -EINVAL;
1824
1825	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827
1828	if (mode_wp && mode_dontwake)
1829		return -EINVAL;
1830
1831	if (mmget_not_zero(ctx->mm)) {
1832		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833					  uffdio_wp.range.len, mode_wp);
1834		mmput(ctx->mm);
1835	} else {
1836		return -ESRCH;
1837	}
1838
1839	if (ret)
1840		return ret;
1841
1842	if (!mode_wp && !mode_dontwake) {
1843		range.start = uffdio_wp.range.start;
1844		range.len = uffdio_wp.range.len;
1845		wake_userfault(ctx, &range);
1846	}
1847	return ret;
1848}
1849
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852	__s64 ret;
1853	struct uffdio_continue uffdio_continue;
1854	struct uffdio_continue __user *user_uffdio_continue;
1855	struct userfaultfd_wake_range range;
1856	uffd_flags_t flags = 0;
1857
1858	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859
1860	ret = -EAGAIN;
1861	if (atomic_read(&ctx->mmap_changing))
1862		goto out;
1863
1864	ret = -EFAULT;
1865	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866			   /* don't copy the output fields */
1867			   sizeof(uffdio_continue) - (sizeof(__s64))))
1868		goto out;
1869
1870	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1871			     uffdio_continue.range.len);
1872	if (ret)
1873		goto out;
1874
1875	ret = -EINVAL;
1876	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877				     UFFDIO_CONTINUE_MODE_WP))
1878		goto out;
1879	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880		flags |= MFILL_ATOMIC_WP;
1881
1882	if (mmget_not_zero(ctx->mm)) {
1883		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884					    uffdio_continue.range.len, flags);
1885		mmput(ctx->mm);
1886	} else {
1887		return -ESRCH;
1888	}
1889
1890	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891		return -EFAULT;
1892	if (ret < 0)
1893		goto out;
1894
1895	/* len == 0 would wake all */
1896	BUG_ON(!ret);
1897	range.len = ret;
1898	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899		range.start = uffdio_continue.range.start;
1900		wake_userfault(ctx, &range);
1901	}
1902	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905	return ret;
1906}
1907
1908static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909{
1910	__s64 ret;
1911	struct uffdio_poison uffdio_poison;
1912	struct uffdio_poison __user *user_uffdio_poison;
1913	struct userfaultfd_wake_range range;
1914
1915	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916
1917	ret = -EAGAIN;
1918	if (atomic_read(&ctx->mmap_changing))
1919		goto out;
1920
1921	ret = -EFAULT;
1922	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923			   /* don't copy the output fields */
1924			   sizeof(uffdio_poison) - (sizeof(__s64))))
1925		goto out;
1926
1927	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928			     uffdio_poison.range.len);
1929	if (ret)
1930		goto out;
1931
1932	ret = -EINVAL;
1933	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934		goto out;
1935
1936	if (mmget_not_zero(ctx->mm)) {
1937		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938					  uffdio_poison.range.len, 0);
1939		mmput(ctx->mm);
1940	} else {
1941		return -ESRCH;
1942	}
1943
1944	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945		return -EFAULT;
1946	if (ret < 0)
1947		goto out;
1948
1949	/* len == 0 would wake all */
1950	BUG_ON(!ret);
1951	range.len = ret;
1952	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953		range.start = uffdio_poison.range.start;
1954		wake_userfault(ctx, &range);
1955	}
1956	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957
1958out:
1959	return ret;
1960}
1961
1962bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963{
1964	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965}
1966
1967static inline unsigned int uffd_ctx_features(__u64 user_features)
1968{
1969	/*
1970	 * For the current set of features the bits just coincide. Set
1971	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1972	 */
1973	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1974}
1975
1976static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977			    unsigned long arg)
1978{
1979	__s64 ret;
1980	struct uffdio_move uffdio_move;
1981	struct uffdio_move __user *user_uffdio_move;
1982	struct userfaultfd_wake_range range;
1983	struct mm_struct *mm = ctx->mm;
1984
1985	user_uffdio_move = (struct uffdio_move __user *) arg;
1986
1987	if (atomic_read(&ctx->mmap_changing))
1988		return -EAGAIN;
1989
1990	if (copy_from_user(&uffdio_move, user_uffdio_move,
1991			   /* don't copy "move" last field */
1992			   sizeof(uffdio_move)-sizeof(__s64)))
1993		return -EFAULT;
1994
1995	/* Do not allow cross-mm moves. */
1996	if (mm != current->mm)
1997		return -EINVAL;
1998
1999	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000	if (ret)
2001		return ret;
2002
2003	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004	if (ret)
2005		return ret;
2006
2007	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008				  UFFDIO_MOVE_MODE_DONTWAKE))
2009		return -EINVAL;
2010
2011	if (mmget_not_zero(mm)) {
2012		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013				 uffdio_move.len, uffdio_move.mode);
2014		mmput(mm);
2015	} else {
2016		return -ESRCH;
2017	}
2018
2019	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020		return -EFAULT;
2021	if (ret < 0)
2022		goto out;
2023
2024	/* len == 0 would wake all */
2025	VM_WARN_ON(!ret);
2026	range.len = ret;
2027	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028		range.start = uffdio_move.dst;
2029		wake_userfault(ctx, &range);
2030	}
2031	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032
2033out:
2034	return ret;
2035}
2036
2037/*
2038 * userland asks for a certain API version and we return which bits
2039 * and ioctl commands are implemented in this kernel for such API
2040 * version or -EINVAL if unknown.
2041 */
2042static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043			   unsigned long arg)
2044{
2045	struct uffdio_api uffdio_api;
2046	void __user *buf = (void __user *)arg;
2047	unsigned int ctx_features;
2048	int ret;
2049	__u64 features;
2050
 
 
 
2051	ret = -EFAULT;
2052	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2053		goto out;
2054	features = uffdio_api.features;
2055	ret = -EINVAL;
2056	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057		goto err_out;
2058	ret = -EPERM;
2059	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060		goto err_out;
2061
2062	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063	if (features & UFFD_FEATURE_WP_ASYNC)
2064		features |= UFFD_FEATURE_WP_UNPOPULATED;
2065
2066	/* report all available features and ioctls to userland */
2067	uffdio_api.features = UFFD_API_FEATURES;
2068#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2069	uffdio_api.features &=
2070		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2071#endif
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2074#endif
2075#ifndef CONFIG_PTE_MARKER_UFFD_WP
2076	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2077	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2078	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2079#endif
2080	uffdio_api.ioctls = UFFD_API_IOCTLS;
2081	ret = -EFAULT;
2082	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083		goto out;
2084
2085	/* only enable the requested features for this uffd context */
2086	ctx_features = uffd_ctx_features(features);
2087	ret = -EINVAL;
2088	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089		goto err_out;
2090
2091	ret = 0;
2092out:
2093	return ret;
2094err_out:
2095	memset(&uffdio_api, 0, sizeof(uffdio_api));
2096	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097		ret = -EFAULT;
2098	goto out;
2099}
2100
2101static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102			      unsigned long arg)
2103{
2104	int ret = -EINVAL;
2105	struct userfaultfd_ctx *ctx = file->private_data;
2106
2107	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108		return -EINVAL;
2109
2110	switch(cmd) {
2111	case UFFDIO_API:
2112		ret = userfaultfd_api(ctx, arg);
2113		break;
2114	case UFFDIO_REGISTER:
2115		ret = userfaultfd_register(ctx, arg);
2116		break;
2117	case UFFDIO_UNREGISTER:
2118		ret = userfaultfd_unregister(ctx, arg);
2119		break;
2120	case UFFDIO_WAKE:
2121		ret = userfaultfd_wake(ctx, arg);
2122		break;
2123	case UFFDIO_COPY:
2124		ret = userfaultfd_copy(ctx, arg);
2125		break;
2126	case UFFDIO_ZEROPAGE:
2127		ret = userfaultfd_zeropage(ctx, arg);
2128		break;
2129	case UFFDIO_MOVE:
2130		ret = userfaultfd_move(ctx, arg);
2131		break;
2132	case UFFDIO_WRITEPROTECT:
2133		ret = userfaultfd_writeprotect(ctx, arg);
2134		break;
2135	case UFFDIO_CONTINUE:
2136		ret = userfaultfd_continue(ctx, arg);
2137		break;
2138	case UFFDIO_POISON:
2139		ret = userfaultfd_poison(ctx, arg);
2140		break;
2141	}
2142	return ret;
2143}
2144
2145#ifdef CONFIG_PROC_FS
2146static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147{
2148	struct userfaultfd_ctx *ctx = f->private_data;
2149	wait_queue_entry_t *wq;
 
2150	unsigned long pending = 0, total = 0;
2151
2152	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2153	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
 
2154		pending++;
2155		total++;
2156	}
2157	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
 
2158		total++;
2159	}
2160	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2161
2162	/*
2163	 * If more protocols will be added, there will be all shown
2164	 * separated by a space. Like this:
2165	 *	protocols: aa:... bb:...
2166	 */
2167	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2168		   pending, total, UFFD_API, ctx->features,
2169		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170}
2171#endif
2172
2173static const struct file_operations userfaultfd_fops = {
2174#ifdef CONFIG_PROC_FS
2175	.show_fdinfo	= userfaultfd_show_fdinfo,
2176#endif
2177	.release	= userfaultfd_release,
2178	.poll		= userfaultfd_poll,
2179	.read		= userfaultfd_read,
2180	.unlocked_ioctl = userfaultfd_ioctl,
2181	.compat_ioctl	= compat_ptr_ioctl,
2182	.llseek		= noop_llseek,
2183};
2184
2185static void init_once_userfaultfd_ctx(void *mem)
2186{
2187	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188
2189	init_waitqueue_head(&ctx->fault_pending_wqh);
2190	init_waitqueue_head(&ctx->fault_wqh);
2191	init_waitqueue_head(&ctx->event_wqh);
2192	init_waitqueue_head(&ctx->fd_wqh);
2193	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2194}
2195
2196static int new_userfaultfd(int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197{
 
2198	struct userfaultfd_ctx *ctx;
2199	int fd;
2200
2201	BUG_ON(!current->mm);
2202
2203	/* Check the UFFD_* constants for consistency.  */
2204	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2205	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207
2208	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2209		return -EINVAL;
 
2210
 
2211	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2212	if (!ctx)
2213		return -ENOMEM;
2214
2215	refcount_set(&ctx->refcount, 1);
2216	ctx->flags = flags;
2217	ctx->features = 0;
2218	ctx->released = false;
2219	init_rwsem(&ctx->map_changing_lock);
2220	atomic_set(&ctx->mmap_changing, 0);
2221	ctx->mm = current->mm;
2222	/* prevent the mm struct to be freed */
2223	mmgrab(ctx->mm);
2224
2225	/* Create a new inode so that the LSM can block the creation.  */
2226	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2227			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2228	if (fd < 0) {
2229		mmdrop(ctx->mm);
2230		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231	}
2232	return fd;
 
2233}
2234
2235static inline bool userfaultfd_syscall_allowed(int flags)
2236{
2237	/* Userspace-only page faults are always allowed */
2238	if (flags & UFFD_USER_MODE_ONLY)
2239		return true;
2240
2241	/*
2242	 * The user is requesting a userfaultfd which can handle kernel faults.
2243	 * Privileged users are always allowed to do this.
2244	 */
2245	if (capable(CAP_SYS_PTRACE))
2246		return true;
 
 
 
 
 
2247
2248	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2249	return sysctl_unprivileged_userfaultfd;
2250}
2251
2252SYSCALL_DEFINE1(userfaultfd, int, flags)
2253{
2254	if (!userfaultfd_syscall_allowed(flags))
2255		return -EPERM;
2256
2257	return new_userfaultfd(flags);
2258}
2259
2260static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261{
2262	if (cmd != USERFAULTFD_IOC_NEW)
2263		return -EINVAL;
2264
2265	return new_userfaultfd(flags);
2266}
2267
2268static const struct file_operations userfaultfd_dev_fops = {
2269	.unlocked_ioctl = userfaultfd_dev_ioctl,
2270	.compat_ioctl = userfaultfd_dev_ioctl,
2271	.owner = THIS_MODULE,
2272	.llseek = noop_llseek,
2273};
2274
2275static struct miscdevice userfaultfd_misc = {
2276	.minor = MISC_DYNAMIC_MINOR,
2277	.name = "userfaultfd",
2278	.fops = &userfaultfd_dev_fops
2279};
2280
2281static int __init userfaultfd_init(void)
2282{
2283	int ret;
2284
2285	ret = misc_register(&userfaultfd_misc);
2286	if (ret)
2287		return ret;
2288
2289	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290						sizeof(struct userfaultfd_ctx),
2291						0,
2292						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293						init_once_userfaultfd_ctx);
2294#ifdef CONFIG_SYSCTL
2295	register_sysctl_init("vm", vm_userfaultfd_table);
2296#endif
2297	return 0;
2298}
2299__initcall(userfaultfd_init);