Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
 
  15#include <linux/hashtable.h>
  16#include <linux/sched.h>
 
  17#include <linux/mm.h>
 
 
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/seq_file.h>
  21#include <linux/file.h>
  22#include <linux/bug.h>
  23#include <linux/anon_inodes.h>
  24#include <linux/syscalls.h>
  25#include <linux/userfaultfd_k.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ioctl.h>
  28#include <linux/security.h>
  29
  30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  31
  32enum userfaultfd_state {
  33	UFFD_STATE_WAIT_API,
  34	UFFD_STATE_RUNNING,
 
 
 
 
 
 
 
 
 
 
 
  35};
 
 
 
  36
  37/*
  38 * Start with fault_pending_wqh and fault_wqh so they're more likely
  39 * to be in the same cacheline.
 
 
 
 
 
 
 
 
 
 
  40 */
  41struct userfaultfd_ctx {
  42	/* waitqueue head for the pending (i.e. not read) userfaults */
  43	wait_queue_head_t fault_pending_wqh;
  44	/* waitqueue head for the userfaults */
  45	wait_queue_head_t fault_wqh;
  46	/* waitqueue head for the pseudo fd to wakeup poll/read */
  47	wait_queue_head_t fd_wqh;
 
 
  48	/* a refile sequence protected by fault_pending_wqh lock */
  49	struct seqcount refile_seq;
  50	/* pseudo fd refcounting */
  51	atomic_t refcount;
  52	/* userfaultfd syscall flags */
  53	unsigned int flags;
  54	/* state machine */
  55	enum userfaultfd_state state;
  56	/* released */
  57	bool released;
 
 
  58	/* mm with one ore more vmas attached to this userfaultfd_ctx */
  59	struct mm_struct *mm;
  60};
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
  62struct userfaultfd_wait_queue {
  63	struct uffd_msg msg;
  64	wait_queue_t wq;
  65	struct userfaultfd_ctx *ctx;
  66	bool waken;
  67};
  68
  69struct userfaultfd_wake_range {
  70	unsigned long start;
  71	unsigned long len;
  72};
  73
  74static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75				     int wake_flags, void *key)
  76{
  77	struct userfaultfd_wake_range *range = key;
  78	int ret;
  79	struct userfaultfd_wait_queue *uwq;
  80	unsigned long start, len;
  81
  82	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
  83	ret = 0;
  84	/* len == 0 means wake all */
  85	start = range->start;
  86	len = range->len;
  87	if (len && (start > uwq->msg.arg.pagefault.address ||
  88		    start + len <= uwq->msg.arg.pagefault.address))
  89		goto out;
  90	WRITE_ONCE(uwq->waken, true);
  91	/*
  92	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
  93	 * renders uwq->waken visible to other CPUs before the task is
  94	 * waken.
  95	 */
  96	ret = wake_up_state(wq->private, mode);
  97	if (ret)
  98		/*
  99		 * Wake only once, autoremove behavior.
 100		 *
 101		 * After the effect of list_del_init is visible to the
 102		 * other CPUs, the waitqueue may disappear from under
 103		 * us, see the !list_empty_careful() in
 104		 * handle_userfault(). try_to_wake_up() has an
 105		 * implicit smp_mb__before_spinlock, and the
 106		 * wq->private is read before calling the extern
 107		 * function "wake_up_state" (which in turns calls
 108		 * try_to_wake_up). While the spin_lock;spin_unlock;
 109		 * wouldn't be enough, the smp_mb__before_spinlock is
 110		 * enough to avoid an explicit smp_mb() here.
 111		 */
 112		list_del_init(&wq->task_list);
 
 113out:
 114	return ret;
 115}
 116
 117/**
 118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 119 * context.
 120 * @ctx: [in] Pointer to the userfaultfd context.
 121 *
 122 * Returns: In case of success, returns not zero.
 123 */
 124static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 125{
 126	if (!atomic_inc_not_zero(&ctx->refcount))
 127		BUG();
 128}
 129
 130/**
 131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 132 * context.
 133 * @ctx: [in] Pointer to userfaultfd context.
 134 *
 135 * The userfaultfd context reference must have been previously acquired either
 136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 137 */
 138static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 139{
 140	if (atomic_dec_and_test(&ctx->refcount)) {
 141		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 142		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 143		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 144		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 
 
 145		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 146		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 147		mmdrop(ctx->mm);
 148		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 149	}
 150}
 151
 152static inline void msg_init(struct uffd_msg *msg)
 153{
 154	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 155	/*
 156	 * Must use memset to zero out the paddings or kernel data is
 157	 * leaked to userland.
 158	 */
 159	memset(msg, 0, sizeof(struct uffd_msg));
 160}
 161
 162static inline struct uffd_msg userfault_msg(unsigned long address,
 
 163					    unsigned int flags,
 164					    unsigned long reason)
 
 165{
 166	struct uffd_msg msg;
 
 167	msg_init(&msg);
 168	msg.event = UFFD_EVENT_PAGEFAULT;
 169	msg.arg.pagefault.address = address;
 
 
 
 
 
 
 
 
 
 
 
 
 170	if (flags & FAULT_FLAG_WRITE)
 171		/*
 172		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
 173		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 174		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 175		 * was a read fault, otherwise if set it means it's
 176		 * a write fault.
 177		 */
 178		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 179	if (reason & VM_UFFD_WP)
 180		/*
 181		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 182		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 183		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 184		 * a missing fault, otherwise if set it means it's a
 185		 * write protect fault.
 186		 */
 187		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 
 
 
 
 188	return msg;
 189}
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191/*
 192 * Verify the pagetables are still not ok after having reigstered into
 193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 194 * userfault that has already been resolved, if userfaultfd_read and
 195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 196 * threads.
 197 */
 198static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 199					 unsigned long address,
 200					 unsigned long flags,
 201					 unsigned long reason)
 202{
 203	struct mm_struct *mm = ctx->mm;
 
 204	pgd_t *pgd;
 
 205	pud_t *pud;
 206	pmd_t *pmd, _pmd;
 207	pte_t *pte;
 
 208	bool ret = true;
 209
 210	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 211
 212	pgd = pgd_offset(mm, address);
 213	if (!pgd_present(*pgd))
 214		goto out;
 215	pud = pud_offset(pgd, address);
 
 
 
 216	if (!pud_present(*pud))
 217		goto out;
 218	pmd = pmd_offset(pud, address);
 219	/*
 220	 * READ_ONCE must function as a barrier with narrower scope
 221	 * and it must be equivalent to:
 222	 *	_pmd = *pmd; barrier();
 223	 *
 224	 * This is to deal with the instability (as in
 225	 * pmd_trans_unstable) of the pmd.
 226	 */
 227	_pmd = READ_ONCE(*pmd);
 228	if (!pmd_present(_pmd))
 229		goto out;
 230
 231	ret = false;
 232	if (pmd_trans_huge(_pmd))
 233		goto out;
 234
 235	/*
 236	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 237	 * and use the standard pte_offset_map() instead of parsing _pmd.
 238	 */
 
 
 239	pte = pte_offset_map(pmd, address);
 
 
 
 
 240	/*
 241	 * Lockless access: we're in a wait_event so it's ok if it
 242	 * changes under us.
 
 243	 */
 244	if (pte_none(*pte))
 
 
 
 245		ret = true;
 246	pte_unmap(pte);
 247
 248out:
 249	return ret;
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 252/*
 253 * The locking rules involved in returning VM_FAULT_RETRY depending on
 254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 256 * recommendation in __lock_page_or_retry is not an understatement.
 257 *
 258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 260 * not set.
 261 *
 262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 263 * set, VM_FAULT_RETRY can still be returned if and only if there are
 264 * fatal_signal_pending()s, and the mmap_sem must be released before
 265 * returning it.
 266 */
 267int handle_userfault(struct vm_fault *vmf, unsigned long reason)
 268{
 269	struct mm_struct *mm = vmf->vma->vm_mm;
 
 270	struct userfaultfd_ctx *ctx;
 271	struct userfaultfd_wait_queue uwq;
 272	int ret;
 273	bool must_wait, return_to_userland;
 274	long blocking_state;
 275
 276	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	ret = VM_FAULT_SIGBUS;
 279	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 
 280	if (!ctx)
 281		goto out;
 282
 283	BUG_ON(ctx->mm != mm);
 284
 285	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 286	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 
 
 287
 288	/*
 289	 * If it's already released don't get it. This avoids to loop
 290	 * in __get_user_pages if userfaultfd_release waits on the
 291	 * caller of handle_userfault to release the mmap_sem.
 292	 */
 293	if (unlikely(ACCESS_ONCE(ctx->released)))
 294		goto out;
 295
 296	/*
 297	 * We don't do userfault handling for the final child pid update.
 
 
 298	 */
 299	if (current->flags & PF_EXITING)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300		goto out;
 
 301
 302	/*
 303	 * Check that we can return VM_FAULT_RETRY.
 304	 *
 305	 * NOTE: it should become possible to return VM_FAULT_RETRY
 306	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 307	 * -EBUSY failures, if the userfaultfd is to be extended for
 308	 * VM_UFFD_WP tracking and we intend to arm the userfault
 309	 * without first stopping userland access to the memory. For
 310	 * VM_UFFD_MISSING userfaults this is enough for now.
 311	 */
 312	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 313		/*
 314		 * Validate the invariant that nowait must allow retry
 315		 * to be sure not to return SIGBUS erroneously on
 316		 * nowait invocations.
 317		 */
 318		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 319#ifdef CONFIG_DEBUG_VM
 320		if (printk_ratelimit()) {
 321			printk(KERN_WARNING
 322			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 323			       vmf->flags);
 324			dump_stack();
 325		}
 326#endif
 327		goto out;
 328	}
 329
 330	/*
 331	 * Handle nowait, not much to do other than tell it to retry
 332	 * and wait.
 333	 */
 334	ret = VM_FAULT_RETRY;
 335	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 336		goto out;
 337
 338	/* take the reference before dropping the mmap_sem */
 339	userfaultfd_ctx_get(ctx);
 340
 341	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 342	uwq.wq.private = current;
 343	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
 
 344	uwq.ctx = ctx;
 345	uwq.waken = false;
 346
 347	return_to_userland =
 348		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 349		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 350	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
 351			 TASK_KILLABLE;
 
 
 
 
 
 352
 353	spin_lock(&ctx->fault_pending_wqh.lock);
 354	/*
 355	 * After the __add_wait_queue the uwq is visible to userland
 356	 * through poll/read().
 357	 */
 358	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 359	/*
 360	 * The smp_mb() after __set_current_state prevents the reads
 361	 * following the spin_unlock to happen before the list_add in
 362	 * __add_wait_queue.
 363	 */
 364	set_current_state(blocking_state);
 365	spin_unlock(&ctx->fault_pending_wqh.lock);
 366
 367	must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 368					  reason);
 369	up_read(&mm->mmap_sem);
 370
 371	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
 372		   (return_to_userland ? !signal_pending(current) :
 373		    !fatal_signal_pending(current)))) {
 374		wake_up_poll(&ctx->fd_wqh, POLLIN);
 375		schedule();
 376		ret |= VM_FAULT_MAJOR;
 377
 378		/*
 379		 * False wakeups can orginate even from rwsem before
 380		 * up_read() however userfaults will wait either for a
 381		 * targeted wakeup on the specific uwq waitqueue from
 382		 * wake_userfault() or for signals or for uffd
 383		 * release.
 384		 */
 385		while (!READ_ONCE(uwq.waken)) {
 386			/*
 387			 * This needs the full smp_store_mb()
 388			 * guarantee as the state write must be
 389			 * visible to other CPUs before reading
 390			 * uwq.waken from other CPUs.
 391			 */
 392			set_current_state(blocking_state);
 393			if (READ_ONCE(uwq.waken) ||
 394			    READ_ONCE(ctx->released) ||
 395			    (return_to_userland ? signal_pending(current) :
 396			     fatal_signal_pending(current)))
 397				break;
 398			schedule();
 399		}
 400	}
 401
 402	__set_current_state(TASK_RUNNING);
 403
 404	if (return_to_userland) {
 405		if (signal_pending(current) &&
 406		    !fatal_signal_pending(current)) {
 407			/*
 408			 * If we got a SIGSTOP or SIGCONT and this is
 409			 * a normal userland page fault, just let
 410			 * userland return so the signal will be
 411			 * handled and gdb debugging works.  The page
 412			 * fault code immediately after we return from
 413			 * this function is going to release the
 414			 * mmap_sem and it's not depending on it
 415			 * (unlike gup would if we were not to return
 416			 * VM_FAULT_RETRY).
 417			 *
 418			 * If a fatal signal is pending we still take
 419			 * the streamlined VM_FAULT_RETRY failure path
 420			 * and there's no need to retake the mmap_sem
 421			 * in such case.
 422			 */
 423			down_read(&mm->mmap_sem);
 424			ret = 0;
 425		}
 426	}
 427
 428	/*
 429	 * Here we race with the list_del; list_add in
 430	 * userfaultfd_ctx_read(), however because we don't ever run
 431	 * list_del_init() to refile across the two lists, the prev
 432	 * and next pointers will never point to self. list_add also
 433	 * would never let any of the two pointers to point to
 434	 * self. So list_empty_careful won't risk to see both pointers
 435	 * pointing to self at any time during the list refile. The
 436	 * only case where list_del_init() is called is the full
 437	 * removal in the wake function and there we don't re-list_add
 438	 * and it's fine not to block on the spinlock. The uwq on this
 439	 * kernel stack can be released after the list_del_init.
 440	 */
 441	if (!list_empty_careful(&uwq.wq.task_list)) {
 442		spin_lock(&ctx->fault_pending_wqh.lock);
 443		/*
 444		 * No need of list_del_init(), the uwq on the stack
 445		 * will be freed shortly anyway.
 446		 */
 447		list_del(&uwq.wq.task_list);
 448		spin_unlock(&ctx->fault_pending_wqh.lock);
 449	}
 450
 451	/*
 452	 * ctx may go away after this if the userfault pseudo fd is
 453	 * already released.
 454	 */
 455	userfaultfd_ctx_put(ctx);
 456
 457out:
 458	return ret;
 459}
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461static int userfaultfd_release(struct inode *inode, struct file *file)
 462{
 463	struct userfaultfd_ctx *ctx = file->private_data;
 464	struct mm_struct *mm = ctx->mm;
 465	struct vm_area_struct *vma, *prev;
 466	/* len == 0 means wake all */
 467	struct userfaultfd_wake_range range = { .len = 0, };
 468	unsigned long new_flags;
 
 469
 470	ACCESS_ONCE(ctx->released) = true;
 471
 472	if (!mmget_not_zero(mm))
 473		goto wakeup;
 474
 475	/*
 476	 * Flush page faults out of all CPUs. NOTE: all page faults
 477	 * must be retried without returning VM_FAULT_SIGBUS if
 478	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 479	 * changes while handle_userfault released the mmap_sem. So
 480	 * it's critical that released is set to true (above), before
 481	 * taking the mmap_sem for writing.
 482	 */
 483	down_write(&mm->mmap_sem);
 484	prev = NULL;
 485	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 486		cond_resched();
 487		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 488		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 489		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 490			prev = vma;
 491			continue;
 492		}
 493		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 494		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 495				 new_flags, vma->anon_vma,
 496				 vma->vm_file, vma->vm_pgoff,
 497				 vma_policy(vma),
 498				 NULL_VM_UFFD_CTX);
 499		if (prev)
 500			vma = prev;
 501		else
 502			prev = vma;
 503		vma->vm_flags = new_flags;
 504		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 
 
 505	}
 506	up_write(&mm->mmap_sem);
 507	mmput(mm);
 508wakeup:
 509	/*
 510	 * After no new page faults can wait on this fault_*wqh, flush
 511	 * the last page faults that may have been already waiting on
 512	 * the fault_*wqh.
 513	 */
 514	spin_lock(&ctx->fault_pending_wqh.lock);
 515	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 516	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 517	spin_unlock(&ctx->fault_pending_wqh.lock);
 
 
 
 518
 519	wake_up_poll(&ctx->fd_wqh, POLLHUP);
 520	userfaultfd_ctx_put(ctx);
 521	return 0;
 522}
 523
 524/* fault_pending_wqh.lock must be hold by the caller */
 525static inline struct userfaultfd_wait_queue *find_userfault(
 526	struct userfaultfd_ctx *ctx)
 527{
 528	wait_queue_t *wq;
 529	struct userfaultfd_wait_queue *uwq;
 530
 531	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
 532
 533	uwq = NULL;
 534	if (!waitqueue_active(&ctx->fault_pending_wqh))
 535		goto out;
 536	/* walk in reverse to provide FIFO behavior to read userfaults */
 537	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
 538			     typeof(*wq), task_list);
 539	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 540out:
 541	return uwq;
 542}
 543
 544static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
 
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	struct userfaultfd_ctx *ctx = file->private_data;
 547	unsigned int ret;
 548
 549	poll_wait(file, &ctx->fd_wqh, wait);
 550
 551	switch (ctx->state) {
 552	case UFFD_STATE_WAIT_API:
 553		return POLLERR;
 554	case UFFD_STATE_RUNNING:
 555		/*
 556		 * poll() never guarantees that read won't block.
 557		 * userfaults can be waken before they're read().
 558		 */
 559		if (unlikely(!(file->f_flags & O_NONBLOCK)))
 560			return POLLERR;
 561		/*
 562		 * lockless access to see if there are pending faults
 563		 * __pollwait last action is the add_wait_queue but
 564		 * the spin_unlock would allow the waitqueue_active to
 565		 * pass above the actual list_add inside
 566		 * add_wait_queue critical section. So use a full
 567		 * memory barrier to serialize the list_add write of
 568		 * add_wait_queue() with the waitqueue_active read
 569		 * below.
 570		 */
 571		ret = 0;
 572		smp_mb();
 573		if (waitqueue_active(&ctx->fault_pending_wqh))
 574			ret = POLLIN;
 575		return ret;
 576	default:
 577		BUG();
 578	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579}
 580
 581static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 582				    struct uffd_msg *msg)
 583{
 584	ssize_t ret;
 585	DECLARE_WAITQUEUE(wait, current);
 586	struct userfaultfd_wait_queue *uwq;
 
 
 
 
 
 
 
 
 
 587
 588	/* always take the fd_wqh lock before the fault_pending_wqh lock */
 589	spin_lock(&ctx->fd_wqh.lock);
 590	__add_wait_queue(&ctx->fd_wqh, &wait);
 591	for (;;) {
 592		set_current_state(TASK_INTERRUPTIBLE);
 593		spin_lock(&ctx->fault_pending_wqh.lock);
 594		uwq = find_userfault(ctx);
 595		if (uwq) {
 596			/*
 597			 * Use a seqcount to repeat the lockless check
 598			 * in wake_userfault() to avoid missing
 599			 * wakeups because during the refile both
 600			 * waitqueue could become empty if this is the
 601			 * only userfault.
 602			 */
 603			write_seqcount_begin(&ctx->refile_seq);
 604
 605			/*
 606			 * The fault_pending_wqh.lock prevents the uwq
 607			 * to disappear from under us.
 608			 *
 609			 * Refile this userfault from
 610			 * fault_pending_wqh to fault_wqh, it's not
 611			 * pending anymore after we read it.
 612			 *
 613			 * Use list_del() by hand (as
 614			 * userfaultfd_wake_function also uses
 615			 * list_del_init() by hand) to be sure nobody
 616			 * changes __remove_wait_queue() to use
 617			 * list_del_init() in turn breaking the
 618			 * !list_empty_careful() check in
 619			 * handle_userfault(). The uwq->wq.task_list
 620			 * must never be empty at any time during the
 621			 * refile, or the waitqueue could disappear
 622			 * from under us. The "wait_queue_head_t"
 623			 * parameter of __remove_wait_queue() is unused
 624			 * anyway.
 625			 */
 626			list_del(&uwq->wq.task_list);
 627			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 628
 629			write_seqcount_end(&ctx->refile_seq);
 630
 631			/* careful to always initialize msg if ret == 0 */
 632			*msg = uwq->msg;
 633			spin_unlock(&ctx->fault_pending_wqh.lock);
 634			ret = 0;
 635			break;
 636		}
 637		spin_unlock(&ctx->fault_pending_wqh.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638		if (signal_pending(current)) {
 639			ret = -ERESTARTSYS;
 640			break;
 641		}
 642		if (no_wait) {
 643			ret = -EAGAIN;
 644			break;
 645		}
 646		spin_unlock(&ctx->fd_wqh.lock);
 647		schedule();
 648		spin_lock(&ctx->fd_wqh.lock);
 649	}
 650	__remove_wait_queue(&ctx->fd_wqh, &wait);
 651	__set_current_state(TASK_RUNNING);
 652	spin_unlock(&ctx->fd_wqh.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653
 654	return ret;
 655}
 656
 657static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 658				size_t count, loff_t *ppos)
 659{
 660	struct userfaultfd_ctx *ctx = file->private_data;
 661	ssize_t _ret, ret = 0;
 662	struct uffd_msg msg;
 663	int no_wait = file->f_flags & O_NONBLOCK;
 
 664
 665	if (ctx->state == UFFD_STATE_WAIT_API)
 666		return -EINVAL;
 667
 668	for (;;) {
 669		if (count < sizeof(msg))
 670			return ret ? ret : -EINVAL;
 671		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
 672		if (_ret < 0)
 673			return ret ? ret : _ret;
 674		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 675			return ret ? ret : -EFAULT;
 676		ret += sizeof(msg);
 677		buf += sizeof(msg);
 678		count -= sizeof(msg);
 679		/*
 680		 * Allow to read more than one fault at time but only
 681		 * block if waiting for the very first one.
 682		 */
 683		no_wait = O_NONBLOCK;
 684	}
 685}
 686
 687static void __wake_userfault(struct userfaultfd_ctx *ctx,
 688			     struct userfaultfd_wake_range *range)
 689{
 690	unsigned long start, end;
 691
 692	start = range->start;
 693	end = range->start + range->len;
 694
 695	spin_lock(&ctx->fault_pending_wqh.lock);
 696	/* wake all in the range and autoremove */
 697	if (waitqueue_active(&ctx->fault_pending_wqh))
 698		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 699				     range);
 700	if (waitqueue_active(&ctx->fault_wqh))
 701		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
 702	spin_unlock(&ctx->fault_pending_wqh.lock);
 703}
 704
 705static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 706					   struct userfaultfd_wake_range *range)
 707{
 708	unsigned seq;
 709	bool need_wakeup;
 710
 711	/*
 712	 * To be sure waitqueue_active() is not reordered by the CPU
 713	 * before the pagetable update, use an explicit SMP memory
 714	 * barrier here. PT lock release or up_read(mmap_sem) still
 715	 * have release semantics that can allow the
 716	 * waitqueue_active() to be reordered before the pte update.
 717	 */
 718	smp_mb();
 719
 720	/*
 721	 * Use waitqueue_active because it's very frequent to
 722	 * change the address space atomically even if there are no
 723	 * userfaults yet. So we take the spinlock only when we're
 724	 * sure we've userfaults to wake.
 725	 */
 726	do {
 727		seq = read_seqcount_begin(&ctx->refile_seq);
 728		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 729			waitqueue_active(&ctx->fault_wqh);
 730		cond_resched();
 731	} while (read_seqcount_retry(&ctx->refile_seq, seq));
 732	if (need_wakeup)
 733		__wake_userfault(ctx, range);
 734}
 735
 736static __always_inline int validate_range(struct mm_struct *mm,
 737					  __u64 start, __u64 len)
 738{
 739	__u64 task_size = mm->task_size;
 740
 741	if (start & ~PAGE_MASK)
 742		return -EINVAL;
 743	if (len & ~PAGE_MASK)
 744		return -EINVAL;
 745	if (!len)
 746		return -EINVAL;
 747	if (start < mmap_min_addr)
 748		return -EINVAL;
 749	if (start >= task_size)
 750		return -EINVAL;
 751	if (len > task_size - start)
 752		return -EINVAL;
 
 
 753	return 0;
 754}
 755
 
 
 
 
 
 
 
 
 
 756static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 757				unsigned long arg)
 758{
 759	struct mm_struct *mm = ctx->mm;
 760	struct vm_area_struct *vma, *prev, *cur;
 761	int ret;
 762	struct uffdio_register uffdio_register;
 763	struct uffdio_register __user *user_uffdio_register;
 764	unsigned long vm_flags, new_flags;
 765	bool found;
 
 766	unsigned long start, end, vma_end;
 
 
 767
 768	user_uffdio_register = (struct uffdio_register __user *) arg;
 769
 770	ret = -EFAULT;
 771	if (copy_from_user(&uffdio_register, user_uffdio_register,
 772			   sizeof(uffdio_register)-sizeof(__u64)))
 773		goto out;
 774
 775	ret = -EINVAL;
 776	if (!uffdio_register.mode)
 777		goto out;
 778	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
 779				     UFFDIO_REGISTER_MODE_WP))
 780		goto out;
 781	vm_flags = 0;
 782	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 783		vm_flags |= VM_UFFD_MISSING;
 784	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 
 
 
 785		vm_flags |= VM_UFFD_WP;
 786		/*
 787		 * FIXME: remove the below error constraint by
 788		 * implementing the wprotect tracking mode.
 789		 */
 790		ret = -EINVAL;
 791		goto out;
 
 
 792	}
 793
 794	ret = validate_range(mm, uffdio_register.range.start,
 795			     uffdio_register.range.len);
 796	if (ret)
 797		goto out;
 798
 799	start = uffdio_register.range.start;
 800	end = start + uffdio_register.range.len;
 801
 802	ret = -ENOMEM;
 803	if (!mmget_not_zero(mm))
 804		goto out;
 805
 806	down_write(&mm->mmap_sem);
 807	vma = find_vma_prev(mm, start, &prev);
 
 
 808	if (!vma)
 809		goto out_unlock;
 810
 811	/* check that there's at least one vma in the range */
 812	ret = -EINVAL;
 813	if (vma->vm_start >= end)
 814		goto out_unlock;
 
 
 
 
 
 
 815
 816	/*
 817	 * Search for not compatible vmas.
 818	 *
 819	 * FIXME: this shall be relaxed later so that it doesn't fail
 820	 * on tmpfs backed vmas (in addition to the current allowance
 821	 * on anonymous vmas).
 822	 */
 823	found = false;
 824	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 
 
 825		cond_resched();
 826
 827		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 828		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 829
 830		/* check not compatible vmas */
 831		ret = -EINVAL;
 832		if (cur->vm_ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833			goto out_unlock;
 834
 835		/*
 836		 * Check that this vma isn't already owned by a
 837		 * different userfaultfd. We can't allow more than one
 838		 * userfaultfd to own a single vma simultaneously or we
 839		 * wouldn't know which one to deliver the userfaults to.
 840		 */
 841		ret = -EBUSY;
 842		if (cur->vm_userfaultfd_ctx.ctx &&
 843		    cur->vm_userfaultfd_ctx.ctx != ctx)
 844			goto out_unlock;
 845
 
 
 
 
 
 
 846		found = true;
 847	}
 848	BUG_ON(!found);
 849
 
 
 850	if (vma->vm_start < start)
 851		prev = vma;
 852
 853	ret = 0;
 854	do {
 855		cond_resched();
 856
 857		BUG_ON(vma->vm_ops);
 858		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 859		       vma->vm_userfaultfd_ctx.ctx != ctx);
 
 860
 861		/*
 862		 * Nothing to do: this vma is already registered into this
 863		 * userfaultfd and with the right tracking mode too.
 864		 */
 865		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 866		    (vma->vm_flags & vm_flags) == vm_flags)
 867			goto skip;
 868
 869		if (vma->vm_start > start)
 870			start = vma->vm_start;
 871		vma_end = min(end, vma->vm_end);
 872
 873		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
 874		prev = vma_merge(mm, prev, start, vma_end, new_flags,
 875				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 876				 vma_policy(vma),
 877				 ((struct vm_userfaultfd_ctx){ ctx }));
 878		if (prev) {
 879			vma = prev;
 880			goto next;
 881		}
 882		if (vma->vm_start < start) {
 883			ret = split_vma(mm, vma, start, 1);
 884			if (ret)
 885				break;
 886		}
 887		if (vma->vm_end > end) {
 888			ret = split_vma(mm, vma, end, 0);
 889			if (ret)
 890				break;
 891		}
 892	next:
 893		/*
 894		 * In the vma_merge() successful mprotect-like case 8:
 895		 * the next vma was merged into the current one and
 896		 * the current one has not been updated yet.
 897		 */
 898		vma->vm_flags = new_flags;
 
 899		vma->vm_userfaultfd_ctx.ctx = ctx;
 900
 
 
 
 901	skip:
 902		prev = vma;
 903		start = vma->vm_end;
 904		vma = vma->vm_next;
 905	} while (vma && vma->vm_start < end);
 906out_unlock:
 907	up_write(&mm->mmap_sem);
 908	mmput(mm);
 909	if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910		/*
 911		 * Now that we scanned all vmas we can already tell
 912		 * userland which ioctls methods are guaranteed to
 913		 * succeed on this range.
 914		 */
 915		if (put_user(UFFD_API_RANGE_IOCTLS,
 916			     &user_uffdio_register->ioctls))
 917			ret = -EFAULT;
 918	}
 919out:
 920	return ret;
 921}
 922
 923static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 924				  unsigned long arg)
 925{
 926	struct mm_struct *mm = ctx->mm;
 927	struct vm_area_struct *vma, *prev, *cur;
 928	int ret;
 929	struct uffdio_range uffdio_unregister;
 930	unsigned long new_flags;
 931	bool found;
 932	unsigned long start, end, vma_end;
 933	const void __user *buf = (void __user *)arg;
 
 
 934
 935	ret = -EFAULT;
 936	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 937		goto out;
 938
 939	ret = validate_range(mm, uffdio_unregister.start,
 940			     uffdio_unregister.len);
 941	if (ret)
 942		goto out;
 943
 944	start = uffdio_unregister.start;
 945	end = start + uffdio_unregister.len;
 946
 947	ret = -ENOMEM;
 948	if (!mmget_not_zero(mm))
 949		goto out;
 950
 951	down_write(&mm->mmap_sem);
 952	vma = find_vma_prev(mm, start, &prev);
 
 
 953	if (!vma)
 954		goto out_unlock;
 955
 956	/* check that there's at least one vma in the range */
 957	ret = -EINVAL;
 958	if (vma->vm_start >= end)
 959		goto out_unlock;
 
 
 
 
 
 
 960
 961	/*
 962	 * Search for not compatible vmas.
 963	 *
 964	 * FIXME: this shall be relaxed later so that it doesn't fail
 965	 * on tmpfs backed vmas (in addition to the current allowance
 966	 * on anonymous vmas).
 967	 */
 968	found = false;
 969	ret = -EINVAL;
 970	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 971		cond_resched();
 972
 973		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 974		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 975
 976		/*
 977		 * Check not compatible vmas, not strictly required
 978		 * here as not compatible vmas cannot have an
 979		 * userfaultfd_ctx registered on them, but this
 980		 * provides for more strict behavior to notice
 981		 * unregistration errors.
 982		 */
 983		if (cur->vm_ops)
 984			goto out_unlock;
 985
 986		found = true;
 987	}
 988	BUG_ON(!found);
 989
 
 
 990	if (vma->vm_start < start)
 991		prev = vma;
 992
 993	ret = 0;
 994	do {
 995		cond_resched();
 996
 997		BUG_ON(vma->vm_ops);
 998
 999		/*
1000		 * Nothing to do: this vma is already registered into this
1001		 * userfaultfd and with the right tracking mode too.
1002		 */
1003		if (!vma->vm_userfaultfd_ctx.ctx)
1004			goto skip;
1005
 
 
1006		if (vma->vm_start > start)
1007			start = vma->vm_start;
1008		vma_end = min(end, vma->vm_end);
1009
1010		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013				 vma_policy(vma),
1014				 NULL_VM_UFFD_CTX);
1015		if (prev) {
1016			vma = prev;
1017			goto next;
1018		}
1019		if (vma->vm_start < start) {
1020			ret = split_vma(mm, vma, start, 1);
1021			if (ret)
1022				break;
1023		}
1024		if (vma->vm_end > end) {
1025			ret = split_vma(mm, vma, end, 0);
1026			if (ret)
1027				break;
 
 
 
 
 
 
 
1028		}
1029	next:
1030		/*
1031		 * In the vma_merge() successful mprotect-like case 8:
1032		 * the next vma was merged into the current one and
1033		 * the current one has not been updated yet.
1034		 */
1035		vma->vm_flags = new_flags;
 
1036		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1037
1038	skip:
1039		prev = vma;
1040		start = vma->vm_end;
1041		vma = vma->vm_next;
1042	} while (vma && vma->vm_start < end);
1043out_unlock:
1044	up_write(&mm->mmap_sem);
1045	mmput(mm);
1046out:
1047	return ret;
1048}
1049
1050/*
1051 * userfaultfd_wake may be used in combination with the
1052 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1053 */
1054static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1055			    unsigned long arg)
1056{
1057	int ret;
1058	struct uffdio_range uffdio_wake;
1059	struct userfaultfd_wake_range range;
1060	const void __user *buf = (void __user *)arg;
1061
1062	ret = -EFAULT;
1063	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1064		goto out;
1065
1066	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1067	if (ret)
1068		goto out;
1069
1070	range.start = uffdio_wake.start;
1071	range.len = uffdio_wake.len;
1072
1073	/*
1074	 * len == 0 means wake all and we don't want to wake all here,
1075	 * so check it again to be sure.
1076	 */
1077	VM_BUG_ON(!range.len);
1078
1079	wake_userfault(ctx, &range);
1080	ret = 0;
1081
1082out:
1083	return ret;
1084}
1085
1086static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1087			    unsigned long arg)
1088{
1089	__s64 ret;
1090	struct uffdio_copy uffdio_copy;
1091	struct uffdio_copy __user *user_uffdio_copy;
1092	struct userfaultfd_wake_range range;
 
1093
1094	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1095
 
 
 
 
1096	ret = -EFAULT;
1097	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1098			   /* don't copy "copy" last field */
1099			   sizeof(uffdio_copy)-sizeof(__s64)))
1100		goto out;
1101
 
 
 
 
1102	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1103	if (ret)
1104		goto out;
1105	/*
1106	 * double check for wraparound just in case. copy_from_user()
1107	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1108	 * in the userland range.
1109	 */
1110	ret = -EINVAL;
1111	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1112		goto out;
1113	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1114		goto out;
 
 
1115	if (mmget_not_zero(ctx->mm)) {
1116		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1117				   uffdio_copy.len);
 
1118		mmput(ctx->mm);
 
 
1119	}
1120	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1121		return -EFAULT;
1122	if (ret < 0)
1123		goto out;
1124	BUG_ON(!ret);
1125	/* len == 0 would wake all */
1126	range.len = ret;
1127	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1128		range.start = uffdio_copy.dst;
1129		wake_userfault(ctx, &range);
1130	}
1131	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1132out:
1133	return ret;
1134}
1135
1136static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1137				unsigned long arg)
1138{
1139	__s64 ret;
1140	struct uffdio_zeropage uffdio_zeropage;
1141	struct uffdio_zeropage __user *user_uffdio_zeropage;
1142	struct userfaultfd_wake_range range;
1143
1144	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1145
 
 
 
 
1146	ret = -EFAULT;
1147	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1148			   /* don't copy "zeropage" last field */
1149			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1150		goto out;
1151
1152	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1153			     uffdio_zeropage.range.len);
1154	if (ret)
1155		goto out;
1156	ret = -EINVAL;
1157	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1158		goto out;
1159
1160	if (mmget_not_zero(ctx->mm)) {
1161		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1162				     uffdio_zeropage.range.len);
 
1163		mmput(ctx->mm);
 
 
1164	}
1165	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1166		return -EFAULT;
1167	if (ret < 0)
1168		goto out;
1169	/* len == 0 would wake all */
1170	BUG_ON(!ret);
1171	range.len = ret;
1172	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1173		range.start = uffdio_zeropage.range.start;
1174		wake_userfault(ctx, &range);
1175	}
1176	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1177out:
1178	return ret;
1179}
1180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181/*
1182 * userland asks for a certain API version and we return which bits
1183 * and ioctl commands are implemented in this kernel for such API
1184 * version or -EINVAL if unknown.
1185 */
1186static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1187			   unsigned long arg)
1188{
1189	struct uffdio_api uffdio_api;
1190	void __user *buf = (void __user *)arg;
 
1191	int ret;
 
1192
1193	ret = -EINVAL;
1194	if (ctx->state != UFFD_STATE_WAIT_API)
1195		goto out;
1196	ret = -EFAULT;
1197	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1198		goto out;
1199	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1200		memset(&uffdio_api, 0, sizeof(uffdio_api));
1201		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1202			goto out;
1203		ret = -EINVAL;
1204		goto out;
1205	}
 
 
 
 
 
 
1206	uffdio_api.features = UFFD_API_FEATURES;
 
 
 
 
 
 
 
 
 
 
 
 
1207	uffdio_api.ioctls = UFFD_API_IOCTLS;
1208	ret = -EFAULT;
1209	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1210		goto out;
1211	ctx->state = UFFD_STATE_RUNNING;
 
 
 
 
 
 
1212	ret = 0;
1213out:
1214	return ret;
 
 
 
 
 
1215}
1216
1217static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1218			      unsigned long arg)
1219{
1220	int ret = -EINVAL;
1221	struct userfaultfd_ctx *ctx = file->private_data;
1222
1223	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1224		return -EINVAL;
1225
1226	switch(cmd) {
1227	case UFFDIO_API:
1228		ret = userfaultfd_api(ctx, arg);
1229		break;
1230	case UFFDIO_REGISTER:
1231		ret = userfaultfd_register(ctx, arg);
1232		break;
1233	case UFFDIO_UNREGISTER:
1234		ret = userfaultfd_unregister(ctx, arg);
1235		break;
1236	case UFFDIO_WAKE:
1237		ret = userfaultfd_wake(ctx, arg);
1238		break;
1239	case UFFDIO_COPY:
1240		ret = userfaultfd_copy(ctx, arg);
1241		break;
1242	case UFFDIO_ZEROPAGE:
1243		ret = userfaultfd_zeropage(ctx, arg);
1244		break;
 
 
 
 
 
 
 
 
 
 
 
 
1245	}
1246	return ret;
1247}
1248
1249#ifdef CONFIG_PROC_FS
1250static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1251{
1252	struct userfaultfd_ctx *ctx = f->private_data;
1253	wait_queue_t *wq;
1254	struct userfaultfd_wait_queue *uwq;
1255	unsigned long pending = 0, total = 0;
1256
1257	spin_lock(&ctx->fault_pending_wqh.lock);
1258	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1259		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1260		pending++;
1261		total++;
1262	}
1263	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1264		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1265		total++;
1266	}
1267	spin_unlock(&ctx->fault_pending_wqh.lock);
1268
1269	/*
1270	 * If more protocols will be added, there will be all shown
1271	 * separated by a space. Like this:
1272	 *	protocols: aa:... bb:...
1273	 */
1274	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1275		   pending, total, UFFD_API, UFFD_API_FEATURES,
1276		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1277}
1278#endif
1279
1280static const struct file_operations userfaultfd_fops = {
1281#ifdef CONFIG_PROC_FS
1282	.show_fdinfo	= userfaultfd_show_fdinfo,
1283#endif
1284	.release	= userfaultfd_release,
1285	.poll		= userfaultfd_poll,
1286	.read		= userfaultfd_read,
1287	.unlocked_ioctl = userfaultfd_ioctl,
1288	.compat_ioctl	= userfaultfd_ioctl,
1289	.llseek		= noop_llseek,
1290};
1291
1292static void init_once_userfaultfd_ctx(void *mem)
1293{
1294	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1295
1296	init_waitqueue_head(&ctx->fault_pending_wqh);
1297	init_waitqueue_head(&ctx->fault_wqh);
 
1298	init_waitqueue_head(&ctx->fd_wqh);
1299	seqcount_init(&ctx->refile_seq);
1300}
1301
1302/**
1303 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1304 * @flags: Flags for the userfaultfd file.
1305 *
1306 * This function creates an userfaultfd file pointer, w/out installing
1307 * it into the fd table. This is useful when the userfaultfd file is
1308 * used during the initialization of data structures that require
1309 * extra setup after the userfaultfd creation. So the userfaultfd
1310 * creation is split into the file pointer creation phase, and the
1311 * file descriptor installation phase.  In this way races with
1312 * userspace closing the newly installed file descriptor can be
1313 * avoided.  Returns an userfaultfd file pointer, or a proper error
1314 * pointer.
1315 */
1316static struct file *userfaultfd_file_create(int flags)
1317{
1318	struct file *file;
1319	struct userfaultfd_ctx *ctx;
 
1320
1321	BUG_ON(!current->mm);
1322
1323	/* Check the UFFD_* constants for consistency.  */
 
1324	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1325	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1326
1327	file = ERR_PTR(-EINVAL);
1328	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1329		goto out;
1330
1331	file = ERR_PTR(-ENOMEM);
1332	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1333	if (!ctx)
1334		goto out;
1335
1336	atomic_set(&ctx->refcount, 1);
1337	ctx->flags = flags;
1338	ctx->state = UFFD_STATE_WAIT_API;
1339	ctx->released = false;
 
1340	ctx->mm = current->mm;
1341	/* prevent the mm struct to be freed */
1342	atomic_inc(&ctx->mm->mm_count);
1343
1344	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1345				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1346	if (IS_ERR(file)) {
 
1347		mmdrop(ctx->mm);
1348		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1349	}
1350out:
1351	return file;
1352}
1353
1354SYSCALL_DEFINE1(userfaultfd, int, flags)
1355{
1356	int fd, error;
1357	struct file *file;
 
1358
1359	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1360	if (error < 0)
1361		return error;
1362	fd = error;
1363
1364	file = userfaultfd_file_create(flags);
1365	if (IS_ERR(file)) {
1366		error = PTR_ERR(file);
1367		goto err_put_unused_fd;
1368	}
1369	fd_install(fd, file);
1370
1371	return fd;
 
 
1372
1373err_put_unused_fd:
1374	put_unused_fd(fd);
 
 
1375
1376	return error;
1377}
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379static int __init userfaultfd_init(void)
1380{
 
 
 
 
 
 
1381	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1382						sizeof(struct userfaultfd_ctx),
1383						0,
1384						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1385						init_once_userfaultfd_ctx);
 
 
 
1386	return 0;
1387}
1388__initcall(userfaultfd_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  fs/userfaultfd.c
   4 *
   5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   6 *  Copyright (C) 2008-2009 Red Hat, Inc.
   7 *  Copyright (C) 2015  Red Hat, Inc.
   8 *
 
 
 
   9 *  Some part derived from fs/eventfd.c (anon inode setup) and
  10 *  mm/ksm.c (mm hashing).
  11 */
  12
  13#include <linux/list.h>
  14#include <linux/hashtable.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/mm.h>
  17#include <linux/mm.h>
  18#include <linux/mm_inline.h>
  19#include <linux/mmu_notifier.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32#include <linux/swapops.h>
  33#include <linux/miscdevice.h>
  34
  35static int sysctl_unprivileged_userfaultfd __read_mostly;
  36
  37#ifdef CONFIG_SYSCTL
  38static struct ctl_table vm_userfaultfd_table[] = {
  39	{
  40		.procname	= "unprivileged_userfaultfd",
  41		.data		= &sysctl_unprivileged_userfaultfd,
  42		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
  43		.mode		= 0644,
  44		.proc_handler	= proc_dointvec_minmax,
  45		.extra1		= SYSCTL_ZERO,
  46		.extra2		= SYSCTL_ONE,
  47	},
  48};
  49#endif
  50
  51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
  52
  53/*
  54 * Start with fault_pending_wqh and fault_wqh so they're more likely
  55 * to be in the same cacheline.
  56 *
  57 * Locking order:
  58 *	fd_wqh.lock
  59 *		fault_pending_wqh.lock
  60 *			fault_wqh.lock
  61 *		event_wqh.lock
  62 *
  63 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
  64 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
  65 * also taken in IRQ context.
  66 */
  67struct userfaultfd_ctx {
  68	/* waitqueue head for the pending (i.e. not read) userfaults */
  69	wait_queue_head_t fault_pending_wqh;
  70	/* waitqueue head for the userfaults */
  71	wait_queue_head_t fault_wqh;
  72	/* waitqueue head for the pseudo fd to wakeup poll/read */
  73	wait_queue_head_t fd_wqh;
  74	/* waitqueue head for events */
  75	wait_queue_head_t event_wqh;
  76	/* a refile sequence protected by fault_pending_wqh lock */
  77	seqcount_spinlock_t refile_seq;
  78	/* pseudo fd refcounting */
  79	refcount_t refcount;
  80	/* userfaultfd syscall flags */
  81	unsigned int flags;
  82	/* features requested from the userspace */
  83	unsigned int features;
  84	/* released */
  85	bool released;
  86	/* memory mappings are changing because of non-cooperative event */
  87	atomic_t mmap_changing;
  88	/* mm with one ore more vmas attached to this userfaultfd_ctx */
  89	struct mm_struct *mm;
  90};
  91
  92struct userfaultfd_fork_ctx {
  93	struct userfaultfd_ctx *orig;
  94	struct userfaultfd_ctx *new;
  95	struct list_head list;
  96};
  97
  98struct userfaultfd_unmap_ctx {
  99	struct userfaultfd_ctx *ctx;
 100	unsigned long start;
 101	unsigned long end;
 102	struct list_head list;
 103};
 104
 105struct userfaultfd_wait_queue {
 106	struct uffd_msg msg;
 107	wait_queue_entry_t wq;
 108	struct userfaultfd_ctx *ctx;
 109	bool waken;
 110};
 111
 112struct userfaultfd_wake_range {
 113	unsigned long start;
 114	unsigned long len;
 115};
 116
 117/* internal indication that UFFD_API ioctl was successfully executed */
 118#define UFFD_FEATURE_INITIALIZED		(1u << 31)
 119
 120static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
 121{
 122	return ctx->features & UFFD_FEATURE_INITIALIZED;
 123}
 124
 125static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
 126{
 127	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
 128}
 129
 130/*
 131 * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
 132 * meaningful when userfaultfd_wp()==true on the vma and when it's
 133 * anonymous.
 134 */
 135bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
 136{
 137	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 138
 139	if (!ctx)
 140		return false;
 141
 142	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
 143}
 144
 145static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
 146				     vm_flags_t flags)
 147{
 148	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
 149
 150	vm_flags_reset(vma, flags);
 151	/*
 152	 * For shared mappings, we want to enable writenotify while
 153	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
 154	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
 155	 */
 156	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
 157		vma_set_page_prot(vma);
 158}
 159
 160static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 161				     int wake_flags, void *key)
 162{
 163	struct userfaultfd_wake_range *range = key;
 164	int ret;
 165	struct userfaultfd_wait_queue *uwq;
 166	unsigned long start, len;
 167
 168	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 169	ret = 0;
 170	/* len == 0 means wake all */
 171	start = range->start;
 172	len = range->len;
 173	if (len && (start > uwq->msg.arg.pagefault.address ||
 174		    start + len <= uwq->msg.arg.pagefault.address))
 175		goto out;
 176	WRITE_ONCE(uwq->waken, true);
 177	/*
 178	 * The Program-Order guarantees provided by the scheduler
 179	 * ensure uwq->waken is visible before the task is woken.
 
 180	 */
 181	ret = wake_up_state(wq->private, mode);
 182	if (ret) {
 183		/*
 184		 * Wake only once, autoremove behavior.
 185		 *
 186		 * After the effect of list_del_init is visible to the other
 187		 * CPUs, the waitqueue may disappear from under us, see the
 188		 * !list_empty_careful() in handle_userfault().
 189		 *
 190		 * try_to_wake_up() has an implicit smp_mb(), and the
 191		 * wq->private is read before calling the extern function
 192		 * "wake_up_state" (which in turns calls try_to_wake_up).
 
 
 
 193		 */
 194		list_del_init(&wq->entry);
 195	}
 196out:
 197	return ret;
 198}
 199
 200/**
 201 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 202 * context.
 203 * @ctx: [in] Pointer to the userfaultfd context.
 
 
 204 */
 205static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 206{
 207	refcount_inc(&ctx->refcount);
 
 208}
 209
 210/**
 211 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 212 * context.
 213 * @ctx: [in] Pointer to userfaultfd context.
 214 *
 215 * The userfaultfd context reference must have been previously acquired either
 216 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 217 */
 218static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 219{
 220	if (refcount_dec_and_test(&ctx->refcount)) {
 221		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 222		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 223		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 224		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 225		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 226		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 227		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 228		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 229		mmdrop(ctx->mm);
 230		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 231	}
 232}
 233
 234static inline void msg_init(struct uffd_msg *msg)
 235{
 236	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 237	/*
 238	 * Must use memset to zero out the paddings or kernel data is
 239	 * leaked to userland.
 240	 */
 241	memset(msg, 0, sizeof(struct uffd_msg));
 242}
 243
 244static inline struct uffd_msg userfault_msg(unsigned long address,
 245					    unsigned long real_address,
 246					    unsigned int flags,
 247					    unsigned long reason,
 248					    unsigned int features)
 249{
 250	struct uffd_msg msg;
 251
 252	msg_init(&msg);
 253	msg.event = UFFD_EVENT_PAGEFAULT;
 254
 255	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
 256				    real_address : address;
 257
 258	/*
 259	 * These flags indicate why the userfault occurred:
 260	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 261	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 262	 * - Neither of these flags being set indicates a MISSING fault.
 263	 *
 264	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 265	 * fault. Otherwise, it was a read fault.
 266	 */
 267	if (flags & FAULT_FLAG_WRITE)
 
 
 
 
 
 
 
 268		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 269	if (reason & VM_UFFD_WP)
 
 
 
 
 
 
 
 270		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 271	if (reason & VM_UFFD_MINOR)
 272		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 273	if (features & UFFD_FEATURE_THREAD_ID)
 274		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 275	return msg;
 276}
 277
 278#ifdef CONFIG_HUGETLB_PAGE
 279/*
 280 * Same functionality as userfaultfd_must_wait below with modifications for
 281 * hugepmd ranges.
 282 */
 283static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 284					      struct vm_fault *vmf,
 285					      unsigned long reason)
 286{
 287	struct vm_area_struct *vma = vmf->vma;
 288	pte_t *ptep, pte;
 289	bool ret = true;
 290
 291	assert_fault_locked(vmf);
 292
 293	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
 294	if (!ptep)
 295		goto out;
 296
 297	ret = false;
 298	pte = huge_ptep_get(ptep);
 299
 300	/*
 301	 * Lockless access: we're in a wait_event so it's ok if it
 302	 * changes under us.  PTE markers should be handled the same as none
 303	 * ptes here.
 304	 */
 305	if (huge_pte_none_mostly(pte))
 306		ret = true;
 307	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 308		ret = true;
 309out:
 310	return ret;
 311}
 312#else
 313static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 314					      struct vm_fault *vmf,
 315					      unsigned long reason)
 316{
 317	return false;	/* should never get here */
 318}
 319#endif /* CONFIG_HUGETLB_PAGE */
 320
 321/*
 322 * Verify the pagetables are still not ok after having reigstered into
 323 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 324 * userfault that has already been resolved, if userfaultfd_read and
 325 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 326 * threads.
 327 */
 328static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 329					 struct vm_fault *vmf,
 
 330					 unsigned long reason)
 331{
 332	struct mm_struct *mm = ctx->mm;
 333	unsigned long address = vmf->address;
 334	pgd_t *pgd;
 335	p4d_t *p4d;
 336	pud_t *pud;
 337	pmd_t *pmd, _pmd;
 338	pte_t *pte;
 339	pte_t ptent;
 340	bool ret = true;
 341
 342	assert_fault_locked(vmf);
 343
 344	pgd = pgd_offset(mm, address);
 345	if (!pgd_present(*pgd))
 346		goto out;
 347	p4d = p4d_offset(pgd, address);
 348	if (!p4d_present(*p4d))
 349		goto out;
 350	pud = pud_offset(p4d, address);
 351	if (!pud_present(*pud))
 352		goto out;
 353	pmd = pmd_offset(pud, address);
 354again:
 355	_pmd = pmdp_get_lockless(pmd);
 356	if (pmd_none(_pmd))
 
 
 
 
 
 
 
 357		goto out;
 358
 359	ret = false;
 360	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
 361		goto out;
 362
 363	if (pmd_trans_huge(_pmd)) {
 364		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 365			ret = true;
 366		goto out;
 367	}
 368
 369	pte = pte_offset_map(pmd, address);
 370	if (!pte) {
 371		ret = true;
 372		goto again;
 373	}
 374	/*
 375	 * Lockless access: we're in a wait_event so it's ok if it
 376	 * changes under us.  PTE markers should be handled the same as none
 377	 * ptes here.
 378	 */
 379	ptent = ptep_get(pte);
 380	if (pte_none_mostly(ptent))
 381		ret = true;
 382	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
 383		ret = true;
 384	pte_unmap(pte);
 385
 386out:
 387	return ret;
 388}
 389
 390static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 391{
 392	if (flags & FAULT_FLAG_INTERRUPTIBLE)
 393		return TASK_INTERRUPTIBLE;
 394
 395	if (flags & FAULT_FLAG_KILLABLE)
 396		return TASK_KILLABLE;
 397
 398	return TASK_UNINTERRUPTIBLE;
 399}
 400
 401/*
 402 * The locking rules involved in returning VM_FAULT_RETRY depending on
 403 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 404 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 405 * recommendation in __lock_page_or_retry is not an understatement.
 406 *
 407 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 408 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 409 * not set.
 410 *
 411 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 412 * set, VM_FAULT_RETRY can still be returned if and only if there are
 413 * fatal_signal_pending()s, and the mmap_lock must be released before
 414 * returning it.
 415 */
 416vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 417{
 418	struct vm_area_struct *vma = vmf->vma;
 419	struct mm_struct *mm = vma->vm_mm;
 420	struct userfaultfd_ctx *ctx;
 421	struct userfaultfd_wait_queue uwq;
 422	vm_fault_t ret = VM_FAULT_SIGBUS;
 423	bool must_wait;
 424	unsigned int blocking_state;
 425
 426	/*
 427	 * We don't do userfault handling for the final child pid update.
 428	 *
 429	 * We also don't do userfault handling during
 430	 * coredumping. hugetlbfs has the special
 431	 * hugetlb_follow_page_mask() to skip missing pages in the
 432	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 433	 * the no_page_table() helper in follow_page_mask(), but the
 434	 * shmem_vm_ops->fault method is invoked even during
 435	 * coredumping and it ends up here.
 436	 */
 437	if (current->flags & (PF_EXITING|PF_DUMPCORE))
 438		goto out;
 439
 440	assert_fault_locked(vmf);
 441
 442	ctx = vma->vm_userfaultfd_ctx.ctx;
 443	if (!ctx)
 444		goto out;
 445
 446	BUG_ON(ctx->mm != mm);
 447
 448	/* Any unrecognized flag is a bug. */
 449	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 450	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
 451	VM_BUG_ON(!reason || (reason & (reason - 1)));
 452
 453	if (ctx->features & UFFD_FEATURE_SIGBUS)
 454		goto out;
 455	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
 
 
 
 456		goto out;
 457
 458	/*
 459	 * If it's already released don't get it. This avoids to loop
 460	 * in __get_user_pages if userfaultfd_release waits on the
 461	 * caller of handle_userfault to release the mmap_lock.
 462	 */
 463	if (unlikely(READ_ONCE(ctx->released))) {
 464		/*
 465		 * Don't return VM_FAULT_SIGBUS in this case, so a non
 466		 * cooperative manager can close the uffd after the
 467		 * last UFFDIO_COPY, without risking to trigger an
 468		 * involuntary SIGBUS if the process was starting the
 469		 * userfaultfd while the userfaultfd was still armed
 470		 * (but after the last UFFDIO_COPY). If the uffd
 471		 * wasn't already closed when the userfault reached
 472		 * this point, that would normally be solved by
 473		 * userfaultfd_must_wait returning 'false'.
 474		 *
 475		 * If we were to return VM_FAULT_SIGBUS here, the non
 476		 * cooperative manager would be instead forced to
 477		 * always call UFFDIO_UNREGISTER before it can safely
 478		 * close the uffd.
 479		 */
 480		ret = VM_FAULT_NOPAGE;
 481		goto out;
 482	}
 483
 484	/*
 485	 * Check that we can return VM_FAULT_RETRY.
 486	 *
 487	 * NOTE: it should become possible to return VM_FAULT_RETRY
 488	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 489	 * -EBUSY failures, if the userfaultfd is to be extended for
 490	 * VM_UFFD_WP tracking and we intend to arm the userfault
 491	 * without first stopping userland access to the memory. For
 492	 * VM_UFFD_MISSING userfaults this is enough for now.
 493	 */
 494	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 495		/*
 496		 * Validate the invariant that nowait must allow retry
 497		 * to be sure not to return SIGBUS erroneously on
 498		 * nowait invocations.
 499		 */
 500		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 501#ifdef CONFIG_DEBUG_VM
 502		if (printk_ratelimit()) {
 503			printk(KERN_WARNING
 504			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 505			       vmf->flags);
 506			dump_stack();
 507		}
 508#endif
 509		goto out;
 510	}
 511
 512	/*
 513	 * Handle nowait, not much to do other than tell it to retry
 514	 * and wait.
 515	 */
 516	ret = VM_FAULT_RETRY;
 517	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 518		goto out;
 519
 520	/* take the reference before dropping the mmap_lock */
 521	userfaultfd_ctx_get(ctx);
 522
 523	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 524	uwq.wq.private = current;
 525	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
 526				reason, ctx->features);
 527	uwq.ctx = ctx;
 528	uwq.waken = false;
 529
 530	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 531
 532        /*
 533         * Take the vma lock now, in order to safely call
 534         * userfaultfd_huge_must_wait() later. Since acquiring the
 535         * (sleepable) vma lock can modify the current task state, that
 536         * must be before explicitly calling set_current_state().
 537         */
 538	if (is_vm_hugetlb_page(vma))
 539		hugetlb_vma_lock_read(vma);
 540
 541	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 542	/*
 543	 * After the __add_wait_queue the uwq is visible to userland
 544	 * through poll/read().
 545	 */
 546	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 547	/*
 548	 * The smp_mb() after __set_current_state prevents the reads
 549	 * following the spin_unlock to happen before the list_add in
 550	 * __add_wait_queue.
 551	 */
 552	set_current_state(blocking_state);
 553	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 554
 555	if (!is_vm_hugetlb_page(vma))
 556		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
 557	else
 558		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
 559	if (is_vm_hugetlb_page(vma))
 560		hugetlb_vma_unlock_read(vma);
 561	release_fault_lock(vmf);
 
 
 
 562
 563	if (likely(must_wait && !READ_ONCE(ctx->released))) {
 564		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 565		schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566	}
 567
 568	__set_current_state(TASK_RUNNING);
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	/*
 571	 * Here we race with the list_del; list_add in
 572	 * userfaultfd_ctx_read(), however because we don't ever run
 573	 * list_del_init() to refile across the two lists, the prev
 574	 * and next pointers will never point to self. list_add also
 575	 * would never let any of the two pointers to point to
 576	 * self. So list_empty_careful won't risk to see both pointers
 577	 * pointing to self at any time during the list refile. The
 578	 * only case where list_del_init() is called is the full
 579	 * removal in the wake function and there we don't re-list_add
 580	 * and it's fine not to block on the spinlock. The uwq on this
 581	 * kernel stack can be released after the list_del_init.
 582	 */
 583	if (!list_empty_careful(&uwq.wq.entry)) {
 584		spin_lock_irq(&ctx->fault_pending_wqh.lock);
 585		/*
 586		 * No need of list_del_init(), the uwq on the stack
 587		 * will be freed shortly anyway.
 588		 */
 589		list_del(&uwq.wq.entry);
 590		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 591	}
 592
 593	/*
 594	 * ctx may go away after this if the userfault pseudo fd is
 595	 * already released.
 596	 */
 597	userfaultfd_ctx_put(ctx);
 598
 599out:
 600	return ret;
 601}
 602
 603static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 604					      struct userfaultfd_wait_queue *ewq)
 605{
 606	struct userfaultfd_ctx *release_new_ctx;
 607
 608	if (WARN_ON_ONCE(current->flags & PF_EXITING))
 609		goto out;
 610
 611	ewq->ctx = ctx;
 612	init_waitqueue_entry(&ewq->wq, current);
 613	release_new_ctx = NULL;
 614
 615	spin_lock_irq(&ctx->event_wqh.lock);
 616	/*
 617	 * After the __add_wait_queue the uwq is visible to userland
 618	 * through poll/read().
 619	 */
 620	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
 621	for (;;) {
 622		set_current_state(TASK_KILLABLE);
 623		if (ewq->msg.event == 0)
 624			break;
 625		if (READ_ONCE(ctx->released) ||
 626		    fatal_signal_pending(current)) {
 627			/*
 628			 * &ewq->wq may be queued in fork_event, but
 629			 * __remove_wait_queue ignores the head
 630			 * parameter. It would be a problem if it
 631			 * didn't.
 632			 */
 633			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 634			if (ewq->msg.event == UFFD_EVENT_FORK) {
 635				struct userfaultfd_ctx *new;
 636
 637				new = (struct userfaultfd_ctx *)
 638					(unsigned long)
 639					ewq->msg.arg.reserved.reserved1;
 640				release_new_ctx = new;
 641			}
 642			break;
 643		}
 644
 645		spin_unlock_irq(&ctx->event_wqh.lock);
 646
 647		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 648		schedule();
 649
 650		spin_lock_irq(&ctx->event_wqh.lock);
 651	}
 652	__set_current_state(TASK_RUNNING);
 653	spin_unlock_irq(&ctx->event_wqh.lock);
 654
 655	if (release_new_ctx) {
 656		struct vm_area_struct *vma;
 657		struct mm_struct *mm = release_new_ctx->mm;
 658		VMA_ITERATOR(vmi, mm, 0);
 659
 660		/* the various vma->vm_userfaultfd_ctx still points to it */
 661		mmap_write_lock(mm);
 662		for_each_vma(vmi, vma) {
 663			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 664				vma_start_write(vma);
 665				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 666				userfaultfd_set_vm_flags(vma,
 667							 vma->vm_flags & ~__VM_UFFD_FLAGS);
 668			}
 669		}
 670		mmap_write_unlock(mm);
 671
 672		userfaultfd_ctx_put(release_new_ctx);
 673	}
 674
 675	/*
 676	 * ctx may go away after this if the userfault pseudo fd is
 677	 * already released.
 678	 */
 679out:
 680	atomic_dec(&ctx->mmap_changing);
 681	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
 682	userfaultfd_ctx_put(ctx);
 683}
 684
 685static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 686				       struct userfaultfd_wait_queue *ewq)
 687{
 688	ewq->msg.event = 0;
 689	wake_up_locked(&ctx->event_wqh);
 690	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 691}
 692
 693int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 694{
 695	struct userfaultfd_ctx *ctx = NULL, *octx;
 696	struct userfaultfd_fork_ctx *fctx;
 697
 698	octx = vma->vm_userfaultfd_ctx.ctx;
 699	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 700		vma_start_write(vma);
 701		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 702		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 703		return 0;
 704	}
 705
 706	list_for_each_entry(fctx, fcs, list)
 707		if (fctx->orig == octx) {
 708			ctx = fctx->new;
 709			break;
 710		}
 711
 712	if (!ctx) {
 713		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 714		if (!fctx)
 715			return -ENOMEM;
 716
 717		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 718		if (!ctx) {
 719			kfree(fctx);
 720			return -ENOMEM;
 721		}
 722
 723		refcount_set(&ctx->refcount, 1);
 724		ctx->flags = octx->flags;
 725		ctx->features = octx->features;
 726		ctx->released = false;
 727		atomic_set(&ctx->mmap_changing, 0);
 728		ctx->mm = vma->vm_mm;
 729		mmgrab(ctx->mm);
 730
 731		userfaultfd_ctx_get(octx);
 732		atomic_inc(&octx->mmap_changing);
 733		fctx->orig = octx;
 734		fctx->new = ctx;
 735		list_add_tail(&fctx->list, fcs);
 736	}
 737
 738	vma->vm_userfaultfd_ctx.ctx = ctx;
 739	return 0;
 740}
 741
 742static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 743{
 744	struct userfaultfd_ctx *ctx = fctx->orig;
 745	struct userfaultfd_wait_queue ewq;
 746
 747	msg_init(&ewq.msg);
 748
 749	ewq.msg.event = UFFD_EVENT_FORK;
 750	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 751
 752	userfaultfd_event_wait_completion(ctx, &ewq);
 753}
 754
 755void dup_userfaultfd_complete(struct list_head *fcs)
 756{
 757	struct userfaultfd_fork_ctx *fctx, *n;
 758
 759	list_for_each_entry_safe(fctx, n, fcs, list) {
 760		dup_fctx(fctx);
 761		list_del(&fctx->list);
 762		kfree(fctx);
 763	}
 764}
 765
 766void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 767			     struct vm_userfaultfd_ctx *vm_ctx)
 768{
 769	struct userfaultfd_ctx *ctx;
 770
 771	ctx = vma->vm_userfaultfd_ctx.ctx;
 772
 773	if (!ctx)
 774		return;
 775
 776	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 777		vm_ctx->ctx = ctx;
 778		userfaultfd_ctx_get(ctx);
 779		atomic_inc(&ctx->mmap_changing);
 780	} else {
 781		/* Drop uffd context if remap feature not enabled */
 782		vma_start_write(vma);
 783		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 784		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 785	}
 786}
 787
 788void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 789				 unsigned long from, unsigned long to,
 790				 unsigned long len)
 791{
 792	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 793	struct userfaultfd_wait_queue ewq;
 794
 795	if (!ctx)
 796		return;
 797
 798	if (to & ~PAGE_MASK) {
 799		userfaultfd_ctx_put(ctx);
 800		return;
 801	}
 802
 803	msg_init(&ewq.msg);
 804
 805	ewq.msg.event = UFFD_EVENT_REMAP;
 806	ewq.msg.arg.remap.from = from;
 807	ewq.msg.arg.remap.to = to;
 808	ewq.msg.arg.remap.len = len;
 809
 810	userfaultfd_event_wait_completion(ctx, &ewq);
 811}
 812
 813bool userfaultfd_remove(struct vm_area_struct *vma,
 814			unsigned long start, unsigned long end)
 815{
 816	struct mm_struct *mm = vma->vm_mm;
 817	struct userfaultfd_ctx *ctx;
 818	struct userfaultfd_wait_queue ewq;
 819
 820	ctx = vma->vm_userfaultfd_ctx.ctx;
 821	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 822		return true;
 823
 824	userfaultfd_ctx_get(ctx);
 825	atomic_inc(&ctx->mmap_changing);
 826	mmap_read_unlock(mm);
 827
 828	msg_init(&ewq.msg);
 829
 830	ewq.msg.event = UFFD_EVENT_REMOVE;
 831	ewq.msg.arg.remove.start = start;
 832	ewq.msg.arg.remove.end = end;
 833
 834	userfaultfd_event_wait_completion(ctx, &ewq);
 835
 836	return false;
 837}
 838
 839static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 840			  unsigned long start, unsigned long end)
 841{
 842	struct userfaultfd_unmap_ctx *unmap_ctx;
 843
 844	list_for_each_entry(unmap_ctx, unmaps, list)
 845		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 846		    unmap_ctx->end == end)
 847			return true;
 848
 849	return false;
 850}
 851
 852int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
 853			   unsigned long end, struct list_head *unmaps)
 854{
 855	struct userfaultfd_unmap_ctx *unmap_ctx;
 856	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 857
 858	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 859	    has_unmap_ctx(ctx, unmaps, start, end))
 860		return 0;
 861
 862	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 863	if (!unmap_ctx)
 864		return -ENOMEM;
 865
 866	userfaultfd_ctx_get(ctx);
 867	atomic_inc(&ctx->mmap_changing);
 868	unmap_ctx->ctx = ctx;
 869	unmap_ctx->start = start;
 870	unmap_ctx->end = end;
 871	list_add_tail(&unmap_ctx->list, unmaps);
 872
 873	return 0;
 874}
 875
 876void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 877{
 878	struct userfaultfd_unmap_ctx *ctx, *n;
 879	struct userfaultfd_wait_queue ewq;
 880
 881	list_for_each_entry_safe(ctx, n, uf, list) {
 882		msg_init(&ewq.msg);
 883
 884		ewq.msg.event = UFFD_EVENT_UNMAP;
 885		ewq.msg.arg.remove.start = ctx->start;
 886		ewq.msg.arg.remove.end = ctx->end;
 887
 888		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 889
 890		list_del(&ctx->list);
 891		kfree(ctx);
 892	}
 893}
 894
 895static int userfaultfd_release(struct inode *inode, struct file *file)
 896{
 897	struct userfaultfd_ctx *ctx = file->private_data;
 898	struct mm_struct *mm = ctx->mm;
 899	struct vm_area_struct *vma, *prev;
 900	/* len == 0 means wake all */
 901	struct userfaultfd_wake_range range = { .len = 0, };
 902	unsigned long new_flags;
 903	VMA_ITERATOR(vmi, mm, 0);
 904
 905	WRITE_ONCE(ctx->released, true);
 906
 907	if (!mmget_not_zero(mm))
 908		goto wakeup;
 909
 910	/*
 911	 * Flush page faults out of all CPUs. NOTE: all page faults
 912	 * must be retried without returning VM_FAULT_SIGBUS if
 913	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 914	 * changes while handle_userfault released the mmap_lock. So
 915	 * it's critical that released is set to true (above), before
 916	 * taking the mmap_lock for writing.
 917	 */
 918	mmap_write_lock(mm);
 919	prev = NULL;
 920	for_each_vma(vmi, vma) {
 921		cond_resched();
 922		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 923		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 924		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 925			prev = vma;
 926			continue;
 927		}
 928		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 929		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
 930					    vma->vm_end, new_flags,
 931					    NULL_VM_UFFD_CTX);
 932
 933		vma_start_write(vma);
 934		userfaultfd_set_vm_flags(vma, new_flags);
 
 
 
 
 935		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 936
 937		prev = vma;
 938	}
 939	mmap_write_unlock(mm);
 940	mmput(mm);
 941wakeup:
 942	/*
 943	 * After no new page faults can wait on this fault_*wqh, flush
 944	 * the last page faults that may have been already waiting on
 945	 * the fault_*wqh.
 946	 */
 947	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 948	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 949	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 950	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 951
 952	/* Flush pending events that may still wait on event_wqh */
 953	wake_up_all(&ctx->event_wqh);
 954
 955	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 956	userfaultfd_ctx_put(ctx);
 957	return 0;
 958}
 959
 960/* fault_pending_wqh.lock must be hold by the caller */
 961static inline struct userfaultfd_wait_queue *find_userfault_in(
 962		wait_queue_head_t *wqh)
 963{
 964	wait_queue_entry_t *wq;
 965	struct userfaultfd_wait_queue *uwq;
 966
 967	lockdep_assert_held(&wqh->lock);
 968
 969	uwq = NULL;
 970	if (!waitqueue_active(wqh))
 971		goto out;
 972	/* walk in reverse to provide FIFO behavior to read userfaults */
 973	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 
 974	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 975out:
 976	return uwq;
 977}
 978
 979static inline struct userfaultfd_wait_queue *find_userfault(
 980		struct userfaultfd_ctx *ctx)
 981{
 982	return find_userfault_in(&ctx->fault_pending_wqh);
 983}
 984
 985static inline struct userfaultfd_wait_queue *find_userfault_evt(
 986		struct userfaultfd_ctx *ctx)
 987{
 988	return find_userfault_in(&ctx->event_wqh);
 989}
 990
 991static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 992{
 993	struct userfaultfd_ctx *ctx = file->private_data;
 994	__poll_t ret;
 995
 996	poll_wait(file, &ctx->fd_wqh, wait);
 997
 998	if (!userfaultfd_is_initialized(ctx))
 999		return EPOLLERR;
1000
1001	/*
1002	 * poll() never guarantees that read won't block.
1003	 * userfaults can be waken before they're read().
1004	 */
1005	if (unlikely(!(file->f_flags & O_NONBLOCK)))
1006		return EPOLLERR;
1007	/*
1008	 * lockless access to see if there are pending faults
1009	 * __pollwait last action is the add_wait_queue but
1010	 * the spin_unlock would allow the waitqueue_active to
1011	 * pass above the actual list_add inside
1012	 * add_wait_queue critical section. So use a full
1013	 * memory barrier to serialize the list_add write of
1014	 * add_wait_queue() with the waitqueue_active read
1015	 * below.
1016	 */
1017	ret = 0;
1018	smp_mb();
1019	if (waitqueue_active(&ctx->fault_pending_wqh))
1020		ret = EPOLLIN;
1021	else if (waitqueue_active(&ctx->event_wqh))
1022		ret = EPOLLIN;
1023
1024	return ret;
1025}
1026
1027static const struct file_operations userfaultfd_fops;
1028
1029static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1030				  struct inode *inode,
1031				  struct uffd_msg *msg)
1032{
1033	int fd;
1034
1035	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1036			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1037	if (fd < 0)
1038		return fd;
1039
1040	msg->arg.reserved.reserved1 = 0;
1041	msg->arg.fork.ufd = fd;
1042	return 0;
1043}
1044
1045static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1046				    struct uffd_msg *msg, struct inode *inode)
1047{
1048	ssize_t ret;
1049	DECLARE_WAITQUEUE(wait, current);
1050	struct userfaultfd_wait_queue *uwq;
1051	/*
1052	 * Handling fork event requires sleeping operations, so
1053	 * we drop the event_wqh lock, then do these ops, then
1054	 * lock it back and wake up the waiter. While the lock is
1055	 * dropped the ewq may go away so we keep track of it
1056	 * carefully.
1057	 */
1058	LIST_HEAD(fork_event);
1059	struct userfaultfd_ctx *fork_nctx = NULL;
1060
1061	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1062	spin_lock_irq(&ctx->fd_wqh.lock);
1063	__add_wait_queue(&ctx->fd_wqh, &wait);
1064	for (;;) {
1065		set_current_state(TASK_INTERRUPTIBLE);
1066		spin_lock(&ctx->fault_pending_wqh.lock);
1067		uwq = find_userfault(ctx);
1068		if (uwq) {
1069			/*
1070			 * Use a seqcount to repeat the lockless check
1071			 * in wake_userfault() to avoid missing
1072			 * wakeups because during the refile both
1073			 * waitqueue could become empty if this is the
1074			 * only userfault.
1075			 */
1076			write_seqcount_begin(&ctx->refile_seq);
1077
1078			/*
1079			 * The fault_pending_wqh.lock prevents the uwq
1080			 * to disappear from under us.
1081			 *
1082			 * Refile this userfault from
1083			 * fault_pending_wqh to fault_wqh, it's not
1084			 * pending anymore after we read it.
1085			 *
1086			 * Use list_del() by hand (as
1087			 * userfaultfd_wake_function also uses
1088			 * list_del_init() by hand) to be sure nobody
1089			 * changes __remove_wait_queue() to use
1090			 * list_del_init() in turn breaking the
1091			 * !list_empty_careful() check in
1092			 * handle_userfault(). The uwq->wq.head list
1093			 * must never be empty at any time during the
1094			 * refile, or the waitqueue could disappear
1095			 * from under us. The "wait_queue_head_t"
1096			 * parameter of __remove_wait_queue() is unused
1097			 * anyway.
1098			 */
1099			list_del(&uwq->wq.entry);
1100			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1101
1102			write_seqcount_end(&ctx->refile_seq);
1103
1104			/* careful to always initialize msg if ret == 0 */
1105			*msg = uwq->msg;
1106			spin_unlock(&ctx->fault_pending_wqh.lock);
1107			ret = 0;
1108			break;
1109		}
1110		spin_unlock(&ctx->fault_pending_wqh.lock);
1111
1112		spin_lock(&ctx->event_wqh.lock);
1113		uwq = find_userfault_evt(ctx);
1114		if (uwq) {
1115			*msg = uwq->msg;
1116
1117			if (uwq->msg.event == UFFD_EVENT_FORK) {
1118				fork_nctx = (struct userfaultfd_ctx *)
1119					(unsigned long)
1120					uwq->msg.arg.reserved.reserved1;
1121				list_move(&uwq->wq.entry, &fork_event);
1122				/*
1123				 * fork_nctx can be freed as soon as
1124				 * we drop the lock, unless we take a
1125				 * reference on it.
1126				 */
1127				userfaultfd_ctx_get(fork_nctx);
1128				spin_unlock(&ctx->event_wqh.lock);
1129				ret = 0;
1130				break;
1131			}
1132
1133			userfaultfd_event_complete(ctx, uwq);
1134			spin_unlock(&ctx->event_wqh.lock);
1135			ret = 0;
1136			break;
1137		}
1138		spin_unlock(&ctx->event_wqh.lock);
1139
1140		if (signal_pending(current)) {
1141			ret = -ERESTARTSYS;
1142			break;
1143		}
1144		if (no_wait) {
1145			ret = -EAGAIN;
1146			break;
1147		}
1148		spin_unlock_irq(&ctx->fd_wqh.lock);
1149		schedule();
1150		spin_lock_irq(&ctx->fd_wqh.lock);
1151	}
1152	__remove_wait_queue(&ctx->fd_wqh, &wait);
1153	__set_current_state(TASK_RUNNING);
1154	spin_unlock_irq(&ctx->fd_wqh.lock);
1155
1156	if (!ret && msg->event == UFFD_EVENT_FORK) {
1157		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1158		spin_lock_irq(&ctx->event_wqh.lock);
1159		if (!list_empty(&fork_event)) {
1160			/*
1161			 * The fork thread didn't abort, so we can
1162			 * drop the temporary refcount.
1163			 */
1164			userfaultfd_ctx_put(fork_nctx);
1165
1166			uwq = list_first_entry(&fork_event,
1167					       typeof(*uwq),
1168					       wq.entry);
1169			/*
1170			 * If fork_event list wasn't empty and in turn
1171			 * the event wasn't already released by fork
1172			 * (the event is allocated on fork kernel
1173			 * stack), put the event back to its place in
1174			 * the event_wq. fork_event head will be freed
1175			 * as soon as we return so the event cannot
1176			 * stay queued there no matter the current
1177			 * "ret" value.
1178			 */
1179			list_del(&uwq->wq.entry);
1180			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1181
1182			/*
1183			 * Leave the event in the waitqueue and report
1184			 * error to userland if we failed to resolve
1185			 * the userfault fork.
1186			 */
1187			if (likely(!ret))
1188				userfaultfd_event_complete(ctx, uwq);
1189		} else {
1190			/*
1191			 * Here the fork thread aborted and the
1192			 * refcount from the fork thread on fork_nctx
1193			 * has already been released. We still hold
1194			 * the reference we took before releasing the
1195			 * lock above. If resolve_userfault_fork
1196			 * failed we've to drop it because the
1197			 * fork_nctx has to be freed in such case. If
1198			 * it succeeded we'll hold it because the new
1199			 * uffd references it.
1200			 */
1201			if (ret)
1202				userfaultfd_ctx_put(fork_nctx);
1203		}
1204		spin_unlock_irq(&ctx->event_wqh.lock);
1205	}
1206
1207	return ret;
1208}
1209
1210static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1211				size_t count, loff_t *ppos)
1212{
1213	struct userfaultfd_ctx *ctx = file->private_data;
1214	ssize_t _ret, ret = 0;
1215	struct uffd_msg msg;
1216	int no_wait = file->f_flags & O_NONBLOCK;
1217	struct inode *inode = file_inode(file);
1218
1219	if (!userfaultfd_is_initialized(ctx))
1220		return -EINVAL;
1221
1222	for (;;) {
1223		if (count < sizeof(msg))
1224			return ret ? ret : -EINVAL;
1225		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1226		if (_ret < 0)
1227			return ret ? ret : _ret;
1228		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1229			return ret ? ret : -EFAULT;
1230		ret += sizeof(msg);
1231		buf += sizeof(msg);
1232		count -= sizeof(msg);
1233		/*
1234		 * Allow to read more than one fault at time but only
1235		 * block if waiting for the very first one.
1236		 */
1237		no_wait = O_NONBLOCK;
1238	}
1239}
1240
1241static void __wake_userfault(struct userfaultfd_ctx *ctx,
1242			     struct userfaultfd_wake_range *range)
1243{
1244	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 
 
 
 
 
1245	/* wake all in the range and autoremove */
1246	if (waitqueue_active(&ctx->fault_pending_wqh))
1247		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1248				     range);
1249	if (waitqueue_active(&ctx->fault_wqh))
1250		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1251	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1252}
1253
1254static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1255					   struct userfaultfd_wake_range *range)
1256{
1257	unsigned seq;
1258	bool need_wakeup;
1259
1260	/*
1261	 * To be sure waitqueue_active() is not reordered by the CPU
1262	 * before the pagetable update, use an explicit SMP memory
1263	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1264	 * have release semantics that can allow the
1265	 * waitqueue_active() to be reordered before the pte update.
1266	 */
1267	smp_mb();
1268
1269	/*
1270	 * Use waitqueue_active because it's very frequent to
1271	 * change the address space atomically even if there are no
1272	 * userfaults yet. So we take the spinlock only when we're
1273	 * sure we've userfaults to wake.
1274	 */
1275	do {
1276		seq = read_seqcount_begin(&ctx->refile_seq);
1277		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1278			waitqueue_active(&ctx->fault_wqh);
1279		cond_resched();
1280	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1281	if (need_wakeup)
1282		__wake_userfault(ctx, range);
1283}
1284
1285static __always_inline int validate_unaligned_range(
1286	struct mm_struct *mm, __u64 start, __u64 len)
1287{
1288	__u64 task_size = mm->task_size;
1289
 
 
1290	if (len & ~PAGE_MASK)
1291		return -EINVAL;
1292	if (!len)
1293		return -EINVAL;
1294	if (start < mmap_min_addr)
1295		return -EINVAL;
1296	if (start >= task_size)
1297		return -EINVAL;
1298	if (len > task_size - start)
1299		return -EINVAL;
1300	if (start + len <= start)
1301		return -EINVAL;
1302	return 0;
1303}
1304
1305static __always_inline int validate_range(struct mm_struct *mm,
1306					  __u64 start, __u64 len)
1307{
1308	if (start & ~PAGE_MASK)
1309		return -EINVAL;
1310
1311	return validate_unaligned_range(mm, start, len);
1312}
1313
1314static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1315				unsigned long arg)
1316{
1317	struct mm_struct *mm = ctx->mm;
1318	struct vm_area_struct *vma, *prev, *cur;
1319	int ret;
1320	struct uffdio_register uffdio_register;
1321	struct uffdio_register __user *user_uffdio_register;
1322	unsigned long vm_flags, new_flags;
1323	bool found;
1324	bool basic_ioctls;
1325	unsigned long start, end, vma_end;
1326	struct vma_iterator vmi;
1327	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1328
1329	user_uffdio_register = (struct uffdio_register __user *) arg;
1330
1331	ret = -EFAULT;
1332	if (copy_from_user(&uffdio_register, user_uffdio_register,
1333			   sizeof(uffdio_register)-sizeof(__u64)))
1334		goto out;
1335
1336	ret = -EINVAL;
1337	if (!uffdio_register.mode)
1338		goto out;
1339	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
 
1340		goto out;
1341	vm_flags = 0;
1342	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1343		vm_flags |= VM_UFFD_MISSING;
1344	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1345#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1346		goto out;
1347#endif
1348		vm_flags |= VM_UFFD_WP;
1349	}
1350	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1351#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 
 
1352		goto out;
1353#endif
1354		vm_flags |= VM_UFFD_MINOR;
1355	}
1356
1357	ret = validate_range(mm, uffdio_register.range.start,
1358			     uffdio_register.range.len);
1359	if (ret)
1360		goto out;
1361
1362	start = uffdio_register.range.start;
1363	end = start + uffdio_register.range.len;
1364
1365	ret = -ENOMEM;
1366	if (!mmget_not_zero(mm))
1367		goto out;
1368
1369	ret = -EINVAL;
1370	mmap_write_lock(mm);
1371	vma_iter_init(&vmi, mm, start);
1372	vma = vma_find(&vmi, end);
1373	if (!vma)
1374		goto out_unlock;
1375
1376	/*
1377	 * If the first vma contains huge pages, make sure start address
1378	 * is aligned to huge page size.
1379	 */
1380	if (is_vm_hugetlb_page(vma)) {
1381		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1382
1383		if (start & (vma_hpagesize - 1))
1384			goto out_unlock;
1385	}
1386
1387	/*
1388	 * Search for not compatible vmas.
 
 
 
 
1389	 */
1390	found = false;
1391	basic_ioctls = false;
1392	cur = vma;
1393	do {
1394		cond_resched();
1395
1396		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1397		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1398
1399		/* check not compatible vmas */
1400		ret = -EINVAL;
1401		if (!vma_can_userfault(cur, vm_flags, wp_async))
1402			goto out_unlock;
1403
1404		/*
1405		 * UFFDIO_COPY will fill file holes even without
1406		 * PROT_WRITE. This check enforces that if this is a
1407		 * MAP_SHARED, the process has write permission to the backing
1408		 * file. If VM_MAYWRITE is set it also enforces that on a
1409		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1410		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1411		 */
1412		ret = -EPERM;
1413		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1414			goto out_unlock;
1415
1416		/*
1417		 * If this vma contains ending address, and huge pages
1418		 * check alignment.
1419		 */
1420		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1421		    end > cur->vm_start) {
1422			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1423
1424			ret = -EINVAL;
1425
1426			if (end & (vma_hpagesize - 1))
1427				goto out_unlock;
1428		}
1429		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1430			goto out_unlock;
1431
1432		/*
1433		 * Check that this vma isn't already owned by a
1434		 * different userfaultfd. We can't allow more than one
1435		 * userfaultfd to own a single vma simultaneously or we
1436		 * wouldn't know which one to deliver the userfaults to.
1437		 */
1438		ret = -EBUSY;
1439		if (cur->vm_userfaultfd_ctx.ctx &&
1440		    cur->vm_userfaultfd_ctx.ctx != ctx)
1441			goto out_unlock;
1442
1443		/*
1444		 * Note vmas containing huge pages
1445		 */
1446		if (is_vm_hugetlb_page(cur))
1447			basic_ioctls = true;
1448
1449		found = true;
1450	} for_each_vma_range(vmi, cur, end);
1451	BUG_ON(!found);
1452
1453	vma_iter_set(&vmi, start);
1454	prev = vma_prev(&vmi);
1455	if (vma->vm_start < start)
1456		prev = vma;
1457
1458	ret = 0;
1459	for_each_vma_range(vmi, vma, end) {
1460		cond_resched();
1461
1462		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1463		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1464		       vma->vm_userfaultfd_ctx.ctx != ctx);
1465		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1466
1467		/*
1468		 * Nothing to do: this vma is already registered into this
1469		 * userfaultfd and with the right tracking mode too.
1470		 */
1471		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1472		    (vma->vm_flags & vm_flags) == vm_flags)
1473			goto skip;
1474
1475		if (vma->vm_start > start)
1476			start = vma->vm_start;
1477		vma_end = min(end, vma->vm_end);
1478
1479		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1480		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1481					    new_flags,
1482					    (struct vm_userfaultfd_ctx){ctx});
1483		if (IS_ERR(vma)) {
1484			ret = PTR_ERR(vma);
1485			break;
 
 
 
 
 
 
 
 
 
 
 
1486		}
1487
1488		/*
1489		 * In the vma_merge() successful mprotect-like case 8:
1490		 * the next vma was merged into the current one and
1491		 * the current one has not been updated yet.
1492		 */
1493		vma_start_write(vma);
1494		userfaultfd_set_vm_flags(vma, new_flags);
1495		vma->vm_userfaultfd_ctx.ctx = ctx;
1496
1497		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1498			hugetlb_unshare_all_pmds(vma);
1499
1500	skip:
1501		prev = vma;
1502		start = vma->vm_end;
1503	}
1504
1505out_unlock:
1506	mmap_write_unlock(mm);
1507	mmput(mm);
1508	if (!ret) {
1509		__u64 ioctls_out;
1510
1511		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1512		    UFFD_API_RANGE_IOCTLS;
1513
1514		/*
1515		 * Declare the WP ioctl only if the WP mode is
1516		 * specified and all checks passed with the range
1517		 */
1518		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1519			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1520
1521		/* CONTINUE ioctl is only supported for MINOR ranges. */
1522		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1523			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1524
1525		/*
1526		 * Now that we scanned all vmas we can already tell
1527		 * userland which ioctls methods are guaranteed to
1528		 * succeed on this range.
1529		 */
1530		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
 
1531			ret = -EFAULT;
1532	}
1533out:
1534	return ret;
1535}
1536
1537static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1538				  unsigned long arg)
1539{
1540	struct mm_struct *mm = ctx->mm;
1541	struct vm_area_struct *vma, *prev, *cur;
1542	int ret;
1543	struct uffdio_range uffdio_unregister;
1544	unsigned long new_flags;
1545	bool found;
1546	unsigned long start, end, vma_end;
1547	const void __user *buf = (void __user *)arg;
1548	struct vma_iterator vmi;
1549	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1550
1551	ret = -EFAULT;
1552	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1553		goto out;
1554
1555	ret = validate_range(mm, uffdio_unregister.start,
1556			     uffdio_unregister.len);
1557	if (ret)
1558		goto out;
1559
1560	start = uffdio_unregister.start;
1561	end = start + uffdio_unregister.len;
1562
1563	ret = -ENOMEM;
1564	if (!mmget_not_zero(mm))
1565		goto out;
1566
1567	mmap_write_lock(mm);
1568	ret = -EINVAL;
1569	vma_iter_init(&vmi, mm, start);
1570	vma = vma_find(&vmi, end);
1571	if (!vma)
1572		goto out_unlock;
1573
1574	/*
1575	 * If the first vma contains huge pages, make sure start address
1576	 * is aligned to huge page size.
1577	 */
1578	if (is_vm_hugetlb_page(vma)) {
1579		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1580
1581		if (start & (vma_hpagesize - 1))
1582			goto out_unlock;
1583	}
1584
1585	/*
1586	 * Search for not compatible vmas.
 
 
 
 
1587	 */
1588	found = false;
1589	cur = vma;
1590	do {
1591		cond_resched();
1592
1593		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1594		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1595
1596		/*
1597		 * Check not compatible vmas, not strictly required
1598		 * here as not compatible vmas cannot have an
1599		 * userfaultfd_ctx registered on them, but this
1600		 * provides for more strict behavior to notice
1601		 * unregistration errors.
1602		 */
1603		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1604			goto out_unlock;
1605
1606		found = true;
1607	} for_each_vma_range(vmi, cur, end);
1608	BUG_ON(!found);
1609
1610	vma_iter_set(&vmi, start);
1611	prev = vma_prev(&vmi);
1612	if (vma->vm_start < start)
1613		prev = vma;
1614
1615	ret = 0;
1616	for_each_vma_range(vmi, vma, end) {
1617		cond_resched();
1618
1619		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1620
1621		/*
1622		 * Nothing to do: this vma is already registered into this
1623		 * userfaultfd and with the right tracking mode too.
1624		 */
1625		if (!vma->vm_userfaultfd_ctx.ctx)
1626			goto skip;
1627
1628		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1629
1630		if (vma->vm_start > start)
1631			start = vma->vm_start;
1632		vma_end = min(end, vma->vm_end);
1633
1634		if (userfaultfd_missing(vma)) {
1635			/*
1636			 * Wake any concurrent pending userfault while
1637			 * we unregister, so they will not hang
1638			 * permanently and it avoids userland to call
1639			 * UFFDIO_WAKE explicitly.
1640			 */
1641			struct userfaultfd_wake_range range;
1642			range.start = start;
1643			range.len = vma_end - start;
1644			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
 
 
1645		}
1646
1647		/* Reset ptes for the whole vma range if wr-protected */
1648		if (userfaultfd_wp(vma))
1649			uffd_wp_range(vma, start, vma_end - start, false);
1650
1651		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1652		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1653					    new_flags, NULL_VM_UFFD_CTX);
1654		if (IS_ERR(vma)) {
1655			ret = PTR_ERR(vma);
1656			break;
1657		}
1658
1659		/*
1660		 * In the vma_merge() successful mprotect-like case 8:
1661		 * the next vma was merged into the current one and
1662		 * the current one has not been updated yet.
1663		 */
1664		vma_start_write(vma);
1665		userfaultfd_set_vm_flags(vma, new_flags);
1666		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1667
1668	skip:
1669		prev = vma;
1670		start = vma->vm_end;
1671	}
1672
1673out_unlock:
1674	mmap_write_unlock(mm);
1675	mmput(mm);
1676out:
1677	return ret;
1678}
1679
1680/*
1681 * userfaultfd_wake may be used in combination with the
1682 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1683 */
1684static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1685			    unsigned long arg)
1686{
1687	int ret;
1688	struct uffdio_range uffdio_wake;
1689	struct userfaultfd_wake_range range;
1690	const void __user *buf = (void __user *)arg;
1691
1692	ret = -EFAULT;
1693	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1694		goto out;
1695
1696	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1697	if (ret)
1698		goto out;
1699
1700	range.start = uffdio_wake.start;
1701	range.len = uffdio_wake.len;
1702
1703	/*
1704	 * len == 0 means wake all and we don't want to wake all here,
1705	 * so check it again to be sure.
1706	 */
1707	VM_BUG_ON(!range.len);
1708
1709	wake_userfault(ctx, &range);
1710	ret = 0;
1711
1712out:
1713	return ret;
1714}
1715
1716static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1717			    unsigned long arg)
1718{
1719	__s64 ret;
1720	struct uffdio_copy uffdio_copy;
1721	struct uffdio_copy __user *user_uffdio_copy;
1722	struct userfaultfd_wake_range range;
1723	uffd_flags_t flags = 0;
1724
1725	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1726
1727	ret = -EAGAIN;
1728	if (atomic_read(&ctx->mmap_changing))
1729		goto out;
1730
1731	ret = -EFAULT;
1732	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1733			   /* don't copy "copy" last field */
1734			   sizeof(uffdio_copy)-sizeof(__s64)))
1735		goto out;
1736
1737	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1738				       uffdio_copy.len);
1739	if (ret)
1740		goto out;
1741	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1742	if (ret)
1743		goto out;
1744
 
 
 
 
1745	ret = -EINVAL;
1746	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
 
 
1747		goto out;
1748	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1749		flags |= MFILL_ATOMIC_WP;
1750	if (mmget_not_zero(ctx->mm)) {
1751		ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1752					uffdio_copy.len, &ctx->mmap_changing,
1753					flags);
1754		mmput(ctx->mm);
1755	} else {
1756		return -ESRCH;
1757	}
1758	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1759		return -EFAULT;
1760	if (ret < 0)
1761		goto out;
1762	BUG_ON(!ret);
1763	/* len == 0 would wake all */
1764	range.len = ret;
1765	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1766		range.start = uffdio_copy.dst;
1767		wake_userfault(ctx, &range);
1768	}
1769	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1770out:
1771	return ret;
1772}
1773
1774static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1775				unsigned long arg)
1776{
1777	__s64 ret;
1778	struct uffdio_zeropage uffdio_zeropage;
1779	struct uffdio_zeropage __user *user_uffdio_zeropage;
1780	struct userfaultfd_wake_range range;
1781
1782	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1783
1784	ret = -EAGAIN;
1785	if (atomic_read(&ctx->mmap_changing))
1786		goto out;
1787
1788	ret = -EFAULT;
1789	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1790			   /* don't copy "zeropage" last field */
1791			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1792		goto out;
1793
1794	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1795			     uffdio_zeropage.range.len);
1796	if (ret)
1797		goto out;
1798	ret = -EINVAL;
1799	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1800		goto out;
1801
1802	if (mmget_not_zero(ctx->mm)) {
1803		ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1804					   uffdio_zeropage.range.len,
1805					   &ctx->mmap_changing);
1806		mmput(ctx->mm);
1807	} else {
1808		return -ESRCH;
1809	}
1810	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1811		return -EFAULT;
1812	if (ret < 0)
1813		goto out;
1814	/* len == 0 would wake all */
1815	BUG_ON(!ret);
1816	range.len = ret;
1817	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1818		range.start = uffdio_zeropage.range.start;
1819		wake_userfault(ctx, &range);
1820	}
1821	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1822out:
1823	return ret;
1824}
1825
1826static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1827				    unsigned long arg)
1828{
1829	int ret;
1830	struct uffdio_writeprotect uffdio_wp;
1831	struct uffdio_writeprotect __user *user_uffdio_wp;
1832	struct userfaultfd_wake_range range;
1833	bool mode_wp, mode_dontwake;
1834
1835	if (atomic_read(&ctx->mmap_changing))
1836		return -EAGAIN;
1837
1838	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1839
1840	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1841			   sizeof(struct uffdio_writeprotect)))
1842		return -EFAULT;
1843
1844	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1845			     uffdio_wp.range.len);
1846	if (ret)
1847		return ret;
1848
1849	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1850			       UFFDIO_WRITEPROTECT_MODE_WP))
1851		return -EINVAL;
1852
1853	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1854	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1855
1856	if (mode_wp && mode_dontwake)
1857		return -EINVAL;
1858
1859	if (mmget_not_zero(ctx->mm)) {
1860		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1861					  uffdio_wp.range.len, mode_wp,
1862					  &ctx->mmap_changing);
1863		mmput(ctx->mm);
1864	} else {
1865		return -ESRCH;
1866	}
1867
1868	if (ret)
1869		return ret;
1870
1871	if (!mode_wp && !mode_dontwake) {
1872		range.start = uffdio_wp.range.start;
1873		range.len = uffdio_wp.range.len;
1874		wake_userfault(ctx, &range);
1875	}
1876	return ret;
1877}
1878
1879static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1880{
1881	__s64 ret;
1882	struct uffdio_continue uffdio_continue;
1883	struct uffdio_continue __user *user_uffdio_continue;
1884	struct userfaultfd_wake_range range;
1885	uffd_flags_t flags = 0;
1886
1887	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1888
1889	ret = -EAGAIN;
1890	if (atomic_read(&ctx->mmap_changing))
1891		goto out;
1892
1893	ret = -EFAULT;
1894	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1895			   /* don't copy the output fields */
1896			   sizeof(uffdio_continue) - (sizeof(__s64))))
1897		goto out;
1898
1899	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1900			     uffdio_continue.range.len);
1901	if (ret)
1902		goto out;
1903
1904	ret = -EINVAL;
1905	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1906				     UFFDIO_CONTINUE_MODE_WP))
1907		goto out;
1908	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1909		flags |= MFILL_ATOMIC_WP;
1910
1911	if (mmget_not_zero(ctx->mm)) {
1912		ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1913					    uffdio_continue.range.len,
1914					    &ctx->mmap_changing, flags);
1915		mmput(ctx->mm);
1916	} else {
1917		return -ESRCH;
1918	}
1919
1920	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1921		return -EFAULT;
1922	if (ret < 0)
1923		goto out;
1924
1925	/* len == 0 would wake all */
1926	BUG_ON(!ret);
1927	range.len = ret;
1928	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1929		range.start = uffdio_continue.range.start;
1930		wake_userfault(ctx, &range);
1931	}
1932	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1933
1934out:
1935	return ret;
1936}
1937
1938static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1939{
1940	__s64 ret;
1941	struct uffdio_poison uffdio_poison;
1942	struct uffdio_poison __user *user_uffdio_poison;
1943	struct userfaultfd_wake_range range;
1944
1945	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1946
1947	ret = -EAGAIN;
1948	if (atomic_read(&ctx->mmap_changing))
1949		goto out;
1950
1951	ret = -EFAULT;
1952	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1953			   /* don't copy the output fields */
1954			   sizeof(uffdio_poison) - (sizeof(__s64))))
1955		goto out;
1956
1957	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1958			     uffdio_poison.range.len);
1959	if (ret)
1960		goto out;
1961
1962	ret = -EINVAL;
1963	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1964		goto out;
1965
1966	if (mmget_not_zero(ctx->mm)) {
1967		ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start,
1968					  uffdio_poison.range.len,
1969					  &ctx->mmap_changing, 0);
1970		mmput(ctx->mm);
1971	} else {
1972		return -ESRCH;
1973	}
1974
1975	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1976		return -EFAULT;
1977	if (ret < 0)
1978		goto out;
1979
1980	/* len == 0 would wake all */
1981	BUG_ON(!ret);
1982	range.len = ret;
1983	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1984		range.start = uffdio_poison.range.start;
1985		wake_userfault(ctx, &range);
1986	}
1987	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1988
1989out:
1990	return ret;
1991}
1992
1993bool userfaultfd_wp_async(struct vm_area_struct *vma)
1994{
1995	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1996}
1997
1998static inline unsigned int uffd_ctx_features(__u64 user_features)
1999{
2000	/*
2001	 * For the current set of features the bits just coincide. Set
2002	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
2003	 */
2004	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
2005}
2006
2007static int userfaultfd_move(struct userfaultfd_ctx *ctx,
2008			    unsigned long arg)
2009{
2010	__s64 ret;
2011	struct uffdio_move uffdio_move;
2012	struct uffdio_move __user *user_uffdio_move;
2013	struct userfaultfd_wake_range range;
2014	struct mm_struct *mm = ctx->mm;
2015
2016	user_uffdio_move = (struct uffdio_move __user *) arg;
2017
2018	if (atomic_read(&ctx->mmap_changing))
2019		return -EAGAIN;
2020
2021	if (copy_from_user(&uffdio_move, user_uffdio_move,
2022			   /* don't copy "move" last field */
2023			   sizeof(uffdio_move)-sizeof(__s64)))
2024		return -EFAULT;
2025
2026	/* Do not allow cross-mm moves. */
2027	if (mm != current->mm)
2028		return -EINVAL;
2029
2030	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2031	if (ret)
2032		return ret;
2033
2034	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2035	if (ret)
2036		return ret;
2037
2038	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2039				  UFFDIO_MOVE_MODE_DONTWAKE))
2040		return -EINVAL;
2041
2042	if (mmget_not_zero(mm)) {
2043		mmap_read_lock(mm);
2044
2045		/* Re-check after taking mmap_lock */
2046		if (likely(!atomic_read(&ctx->mmap_changing)))
2047			ret = move_pages(ctx, mm, uffdio_move.dst, uffdio_move.src,
2048					 uffdio_move.len, uffdio_move.mode);
2049		else
2050			ret = -EINVAL;
2051
2052		mmap_read_unlock(mm);
2053		mmput(mm);
2054	} else {
2055		return -ESRCH;
2056	}
2057
2058	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2059		return -EFAULT;
2060	if (ret < 0)
2061		goto out;
2062
2063	/* len == 0 would wake all */
2064	VM_WARN_ON(!ret);
2065	range.len = ret;
2066	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2067		range.start = uffdio_move.dst;
2068		wake_userfault(ctx, &range);
2069	}
2070	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2071
2072out:
2073	return ret;
2074}
2075
2076/*
2077 * userland asks for a certain API version and we return which bits
2078 * and ioctl commands are implemented in this kernel for such API
2079 * version or -EINVAL if unknown.
2080 */
2081static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2082			   unsigned long arg)
2083{
2084	struct uffdio_api uffdio_api;
2085	void __user *buf = (void __user *)arg;
2086	unsigned int ctx_features;
2087	int ret;
2088	__u64 features;
2089
 
 
 
2090	ret = -EFAULT;
2091	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2092		goto out;
2093	features = uffdio_api.features;
2094	ret = -EINVAL;
2095	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2096		goto err_out;
2097	ret = -EPERM;
2098	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2099		goto err_out;
2100
2101	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2102	if (features & UFFD_FEATURE_WP_ASYNC)
2103		features |= UFFD_FEATURE_WP_UNPOPULATED;
2104
2105	/* report all available features and ioctls to userland */
2106	uffdio_api.features = UFFD_API_FEATURES;
2107#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2108	uffdio_api.features &=
2109		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2110#endif
2111#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2112	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2113#endif
2114#ifndef CONFIG_PTE_MARKER_UFFD_WP
2115	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2116	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2117	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2118#endif
2119	uffdio_api.ioctls = UFFD_API_IOCTLS;
2120	ret = -EFAULT;
2121	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2122		goto out;
2123
2124	/* only enable the requested features for this uffd context */
2125	ctx_features = uffd_ctx_features(features);
2126	ret = -EINVAL;
2127	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2128		goto err_out;
2129
2130	ret = 0;
2131out:
2132	return ret;
2133err_out:
2134	memset(&uffdio_api, 0, sizeof(uffdio_api));
2135	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2136		ret = -EFAULT;
2137	goto out;
2138}
2139
2140static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2141			      unsigned long arg)
2142{
2143	int ret = -EINVAL;
2144	struct userfaultfd_ctx *ctx = file->private_data;
2145
2146	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2147		return -EINVAL;
2148
2149	switch(cmd) {
2150	case UFFDIO_API:
2151		ret = userfaultfd_api(ctx, arg);
2152		break;
2153	case UFFDIO_REGISTER:
2154		ret = userfaultfd_register(ctx, arg);
2155		break;
2156	case UFFDIO_UNREGISTER:
2157		ret = userfaultfd_unregister(ctx, arg);
2158		break;
2159	case UFFDIO_WAKE:
2160		ret = userfaultfd_wake(ctx, arg);
2161		break;
2162	case UFFDIO_COPY:
2163		ret = userfaultfd_copy(ctx, arg);
2164		break;
2165	case UFFDIO_ZEROPAGE:
2166		ret = userfaultfd_zeropage(ctx, arg);
2167		break;
2168	case UFFDIO_MOVE:
2169		ret = userfaultfd_move(ctx, arg);
2170		break;
2171	case UFFDIO_WRITEPROTECT:
2172		ret = userfaultfd_writeprotect(ctx, arg);
2173		break;
2174	case UFFDIO_CONTINUE:
2175		ret = userfaultfd_continue(ctx, arg);
2176		break;
2177	case UFFDIO_POISON:
2178		ret = userfaultfd_poison(ctx, arg);
2179		break;
2180	}
2181	return ret;
2182}
2183
2184#ifdef CONFIG_PROC_FS
2185static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2186{
2187	struct userfaultfd_ctx *ctx = f->private_data;
2188	wait_queue_entry_t *wq;
 
2189	unsigned long pending = 0, total = 0;
2190
2191	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2192	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
 
2193		pending++;
2194		total++;
2195	}
2196	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
 
2197		total++;
2198	}
2199	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2200
2201	/*
2202	 * If more protocols will be added, there will be all shown
2203	 * separated by a space. Like this:
2204	 *	protocols: aa:... bb:...
2205	 */
2206	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2207		   pending, total, UFFD_API, ctx->features,
2208		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2209}
2210#endif
2211
2212static const struct file_operations userfaultfd_fops = {
2213#ifdef CONFIG_PROC_FS
2214	.show_fdinfo	= userfaultfd_show_fdinfo,
2215#endif
2216	.release	= userfaultfd_release,
2217	.poll		= userfaultfd_poll,
2218	.read		= userfaultfd_read,
2219	.unlocked_ioctl = userfaultfd_ioctl,
2220	.compat_ioctl	= compat_ptr_ioctl,
2221	.llseek		= noop_llseek,
2222};
2223
2224static void init_once_userfaultfd_ctx(void *mem)
2225{
2226	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2227
2228	init_waitqueue_head(&ctx->fault_pending_wqh);
2229	init_waitqueue_head(&ctx->fault_wqh);
2230	init_waitqueue_head(&ctx->event_wqh);
2231	init_waitqueue_head(&ctx->fd_wqh);
2232	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2233}
2234
2235static int new_userfaultfd(int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236{
 
2237	struct userfaultfd_ctx *ctx;
2238	int fd;
2239
2240	BUG_ON(!current->mm);
2241
2242	/* Check the UFFD_* constants for consistency.  */
2243	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2244	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2245	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2246
2247	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2248		return -EINVAL;
 
2249
 
2250	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2251	if (!ctx)
2252		return -ENOMEM;
2253
2254	refcount_set(&ctx->refcount, 1);
2255	ctx->flags = flags;
2256	ctx->features = 0;
2257	ctx->released = false;
2258	atomic_set(&ctx->mmap_changing, 0);
2259	ctx->mm = current->mm;
2260	/* prevent the mm struct to be freed */
2261	mmgrab(ctx->mm);
2262
2263	/* Create a new inode so that the LSM can block the creation.  */
2264	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2265			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2266	if (fd < 0) {
2267		mmdrop(ctx->mm);
2268		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2269	}
2270	return fd;
 
2271}
2272
2273static inline bool userfaultfd_syscall_allowed(int flags)
2274{
2275	/* Userspace-only page faults are always allowed */
2276	if (flags & UFFD_USER_MODE_ONLY)
2277		return true;
2278
2279	/*
2280	 * The user is requesting a userfaultfd which can handle kernel faults.
2281	 * Privileged users are always allowed to do this.
2282	 */
2283	if (capable(CAP_SYS_PTRACE))
2284		return true;
 
 
 
 
 
2285
2286	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2287	return sysctl_unprivileged_userfaultfd;
2288}
2289
2290SYSCALL_DEFINE1(userfaultfd, int, flags)
2291{
2292	if (!userfaultfd_syscall_allowed(flags))
2293		return -EPERM;
2294
2295	return new_userfaultfd(flags);
2296}
2297
2298static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2299{
2300	if (cmd != USERFAULTFD_IOC_NEW)
2301		return -EINVAL;
2302
2303	return new_userfaultfd(flags);
2304}
2305
2306static const struct file_operations userfaultfd_dev_fops = {
2307	.unlocked_ioctl = userfaultfd_dev_ioctl,
2308	.compat_ioctl = userfaultfd_dev_ioctl,
2309	.owner = THIS_MODULE,
2310	.llseek = noop_llseek,
2311};
2312
2313static struct miscdevice userfaultfd_misc = {
2314	.minor = MISC_DYNAMIC_MINOR,
2315	.name = "userfaultfd",
2316	.fops = &userfaultfd_dev_fops
2317};
2318
2319static int __init userfaultfd_init(void)
2320{
2321	int ret;
2322
2323	ret = misc_register(&userfaultfd_misc);
2324	if (ret)
2325		return ret;
2326
2327	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2328						sizeof(struct userfaultfd_ctx),
2329						0,
2330						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2331						init_once_userfaultfd_ctx);
2332#ifdef CONFIG_SYSCTL
2333	register_sysctl_init("vm", vm_userfaultfd_table);
2334#endif
2335	return 0;
2336}
2337__initcall(userfaultfd_init);