Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/fs/fcntl.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7#include <linux/syscalls.h>
  8#include <linux/init.h>
  9#include <linux/mm.h>
 
 10#include <linux/fs.h>
 
 11#include <linux/file.h>
 12#include <linux/fdtable.h>
 13#include <linux/capability.h>
 14#include <linux/dnotify.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17#include <linux/pipe_fs_i.h>
 18#include <linux/security.h>
 19#include <linux/ptrace.h>
 20#include <linux/signal.h>
 21#include <linux/rcupdate.h>
 22#include <linux/pid_namespace.h>
 23#include <linux/user_namespace.h>
 24#include <linux/shmem_fs.h>
 
 
 
 25
 26#include <asm/poll.h>
 27#include <asm/siginfo.h>
 28#include <linux/uaccess.h>
 29
 30#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
 31
 32static int setfl(int fd, struct file * filp, unsigned long arg)
 33{
 34	struct inode * inode = file_inode(filp);
 35	int error = 0;
 36
 37	/*
 38	 * O_APPEND cannot be cleared if the file is marked as append-only
 39	 * and the file is open for write.
 40	 */
 41	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
 42		return -EPERM;
 43
 44	/* O_NOATIME can only be set by the owner or superuser */
 45	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
 46		if (!inode_owner_or_capable(inode))
 47			return -EPERM;
 48
 49	/* required for strict SunOS emulation */
 50	if (O_NONBLOCK != O_NDELAY)
 51	       if (arg & O_NDELAY)
 52		   arg |= O_NONBLOCK;
 53
 54	/* Pipe packetized mode is controlled by O_DIRECT flag */
 55	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
 56		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
 57			!filp->f_mapping->a_ops->direct_IO)
 58				return -EINVAL;
 59	}
 60
 61	if (filp->f_op->check_flags)
 62		error = filp->f_op->check_flags(arg);
 63	if (error)
 64		return error;
 65
 66	/*
 67	 * ->fasync() is responsible for setting the FASYNC bit.
 68	 */
 69	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
 70		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
 71		if (error < 0)
 72			goto out;
 73		if (error > 0)
 74			error = 0;
 75	}
 76	spin_lock(&filp->f_lock);
 77	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
 
 78	spin_unlock(&filp->f_lock);
 79
 80 out:
 81	return error;
 82}
 83
 84static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
 85                     int force)
 86{
 87	write_lock_irq(&filp->f_owner.lock);
 88	if (force || !filp->f_owner.pid) {
 89		put_pid(filp->f_owner.pid);
 90		filp->f_owner.pid = get_pid(pid);
 91		filp->f_owner.pid_type = type;
 92
 93		if (pid) {
 94			const struct cred *cred = current_cred();
 95			filp->f_owner.uid = cred->uid;
 96			filp->f_owner.euid = cred->euid;
 97		}
 98	}
 99	write_unlock_irq(&filp->f_owner.lock);
100}
101
102void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
103		int force)
104{
105	security_file_set_fowner(filp);
106	f_modown(filp, pid, type, force);
107}
108EXPORT_SYMBOL(__f_setown);
109
110void f_setown(struct file *filp, unsigned long arg, int force)
111{
112	enum pid_type type;
113	struct pid *pid;
114	int who = arg;
115	type = PIDTYPE_PID;
 
116	if (who < 0) {
 
 
 
 
117		type = PIDTYPE_PGID;
118		who = -who;
119	}
 
120	rcu_read_lock();
121	pid = find_vpid(who);
122	__f_setown(filp, pid, type, force);
 
 
 
 
 
 
123	rcu_read_unlock();
 
 
124}
125EXPORT_SYMBOL(f_setown);
126
127void f_delown(struct file *filp)
128{
129	f_modown(filp, NULL, PIDTYPE_PID, 1);
130}
131
132pid_t f_getown(struct file *filp)
133{
134	pid_t pid;
135	read_lock(&filp->f_owner.lock);
136	pid = pid_vnr(filp->f_owner.pid);
137	if (filp->f_owner.pid_type == PIDTYPE_PGID)
138		pid = -pid;
139	read_unlock(&filp->f_owner.lock);
 
 
 
 
 
140	return pid;
141}
142
143static int f_setown_ex(struct file *filp, unsigned long arg)
144{
145	struct f_owner_ex __user *owner_p = (void __user *)arg;
146	struct f_owner_ex owner;
147	struct pid *pid;
148	int type;
149	int ret;
150
151	ret = copy_from_user(&owner, owner_p, sizeof(owner));
152	if (ret)
153		return -EFAULT;
154
155	switch (owner.type) {
156	case F_OWNER_TID:
157		type = PIDTYPE_MAX;
158		break;
159
160	case F_OWNER_PID:
161		type = PIDTYPE_PID;
162		break;
163
164	case F_OWNER_PGRP:
165		type = PIDTYPE_PGID;
166		break;
167
168	default:
169		return -EINVAL;
170	}
171
172	rcu_read_lock();
173	pid = find_vpid(owner.pid);
174	if (owner.pid && !pid)
175		ret = -ESRCH;
176	else
177		 __f_setown(filp, pid, type, 1);
178	rcu_read_unlock();
179
180	return ret;
181}
182
183static int f_getown_ex(struct file *filp, unsigned long arg)
184{
185	struct f_owner_ex __user *owner_p = (void __user *)arg;
186	struct f_owner_ex owner;
187	int ret = 0;
188
189	read_lock(&filp->f_owner.lock);
190	owner.pid = pid_vnr(filp->f_owner.pid);
 
 
 
191	switch (filp->f_owner.pid_type) {
192	case PIDTYPE_MAX:
193		owner.type = F_OWNER_TID;
194		break;
195
196	case PIDTYPE_PID:
197		owner.type = F_OWNER_PID;
198		break;
199
200	case PIDTYPE_PGID:
201		owner.type = F_OWNER_PGRP;
202		break;
203
204	default:
205		WARN_ON(1);
206		ret = -EINVAL;
207		break;
208	}
209	read_unlock(&filp->f_owner.lock);
210
211	if (!ret) {
212		ret = copy_to_user(owner_p, &owner, sizeof(owner));
213		if (ret)
214			ret = -EFAULT;
215	}
216	return ret;
217}
218
219#ifdef CONFIG_CHECKPOINT_RESTORE
220static int f_getowner_uids(struct file *filp, unsigned long arg)
221{
222	struct user_namespace *user_ns = current_user_ns();
223	uid_t __user *dst = (void __user *)arg;
224	uid_t src[2];
225	int err;
226
227	read_lock(&filp->f_owner.lock);
228	src[0] = from_kuid(user_ns, filp->f_owner.uid);
229	src[1] = from_kuid(user_ns, filp->f_owner.euid);
230	read_unlock(&filp->f_owner.lock);
231
232	err  = put_user(src[0], &dst[0]);
233	err |= put_user(src[1], &dst[1]);
234
235	return err;
236}
237#else
238static int f_getowner_uids(struct file *filp, unsigned long arg)
239{
240	return -EINVAL;
241}
242#endif
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
245		struct file *filp)
246{
 
 
 
247	long err = -EINVAL;
248
249	switch (cmd) {
250	case F_DUPFD:
251		err = f_dupfd(arg, filp, 0);
252		break;
253	case F_DUPFD_CLOEXEC:
254		err = f_dupfd(arg, filp, O_CLOEXEC);
255		break;
256	case F_GETFD:
257		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
258		break;
259	case F_SETFD:
260		err = 0;
261		set_close_on_exec(fd, arg & FD_CLOEXEC);
262		break;
263	case F_GETFL:
264		err = filp->f_flags;
265		break;
266	case F_SETFL:
267		err = setfl(fd, filp, arg);
268		break;
269#if BITS_PER_LONG != 32
270	/* 32-bit arches must use fcntl64() */
271	case F_OFD_GETLK:
272#endif
273	case F_GETLK:
274		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
 
 
 
 
275		break;
276#if BITS_PER_LONG != 32
277	/* 32-bit arches must use fcntl64() */
278	case F_OFD_SETLK:
279	case F_OFD_SETLKW:
 
280#endif
281		/* Fallthrough */
282	case F_SETLK:
283	case F_SETLKW:
284		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
 
 
285		break;
286	case F_GETOWN:
287		/*
288		 * XXX If f_owner is a process group, the
289		 * negative return value will get converted
290		 * into an error.  Oops.  If we keep the
291		 * current syscall conventions, the only way
292		 * to fix this will be in libc.
293		 */
294		err = f_getown(filp);
295		force_successful_syscall_return();
296		break;
297	case F_SETOWN:
298		f_setown(filp, arg, 1);
299		err = 0;
300		break;
301	case F_GETOWN_EX:
302		err = f_getown_ex(filp, arg);
303		break;
304	case F_SETOWN_EX:
305		err = f_setown_ex(filp, arg);
306		break;
307	case F_GETOWNER_UIDS:
308		err = f_getowner_uids(filp, arg);
309		break;
310	case F_GETSIG:
311		err = filp->f_owner.signum;
312		break;
313	case F_SETSIG:
314		/* arg == 0 restores default behaviour. */
315		if (!valid_signal(arg)) {
316			break;
317		}
318		err = 0;
319		filp->f_owner.signum = arg;
320		break;
321	case F_GETLEASE:
322		err = fcntl_getlease(filp);
323		break;
324	case F_SETLEASE:
325		err = fcntl_setlease(fd, filp, arg);
326		break;
327	case F_NOTIFY:
328		err = fcntl_dirnotify(fd, filp, arg);
329		break;
330	case F_SETPIPE_SZ:
331	case F_GETPIPE_SZ:
332		err = pipe_fcntl(filp, cmd, arg);
333		break;
334	case F_ADD_SEALS:
335	case F_GET_SEALS:
336		err = shmem_fcntl(filp, cmd, arg);
 
 
 
 
 
 
337		break;
338	default:
339		break;
340	}
341	return err;
342}
343
344static int check_fcntl_cmd(unsigned cmd)
345{
346	switch (cmd) {
347	case F_DUPFD:
348	case F_DUPFD_CLOEXEC:
349	case F_GETFD:
350	case F_SETFD:
351	case F_GETFL:
352		return 1;
353	}
354	return 0;
355}
356
357SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
358{	
359	struct fd f = fdget_raw(fd);
360	long err = -EBADF;
361
362	if (!f.file)
363		goto out;
364
365	if (unlikely(f.file->f_mode & FMODE_PATH)) {
366		if (!check_fcntl_cmd(cmd))
367			goto out1;
368	}
369
370	err = security_file_fcntl(f.file, cmd, arg);
371	if (!err)
372		err = do_fcntl(fd, cmd, arg, f.file);
373
374out1:
375 	fdput(f);
376out:
377	return err;
378}
379
380#if BITS_PER_LONG == 32
381SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
382		unsigned long, arg)
383{	
 
384	struct fd f = fdget_raw(fd);
 
385	long err = -EBADF;
386
387	if (!f.file)
388		goto out;
389
390	if (unlikely(f.file->f_mode & FMODE_PATH)) {
391		if (!check_fcntl_cmd(cmd))
392			goto out1;
393	}
394
395	err = security_file_fcntl(f.file, cmd, arg);
396	if (err)
397		goto out1;
398	
399	switch (cmd) {
400	case F_GETLK64:
401	case F_OFD_GETLK:
402		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
 
 
 
 
 
403		break;
404	case F_SETLK64:
405	case F_SETLKW64:
406	case F_OFD_SETLK:
407	case F_OFD_SETLKW:
408		err = fcntl_setlk64(fd, f.file, cmd,
409				(struct flock64 __user *) arg);
 
 
410		break;
411	default:
412		err = do_fcntl(fd, cmd, arg, f.file);
413		break;
414	}
415out1:
416	fdput(f);
417out:
418	return err;
419}
420#endif
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422/* Table to convert sigio signal codes into poll band bitmaps */
423
424static const long band_table[NSIGPOLL] = {
425	POLLIN | POLLRDNORM,			/* POLL_IN */
426	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
427	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
428	POLLERR,				/* POLL_ERR */
429	POLLPRI | POLLRDBAND,			/* POLL_PRI */
430	POLLHUP | POLLERR			/* POLL_HUP */
431};
432
433static inline int sigio_perm(struct task_struct *p,
434                             struct fown_struct *fown, int sig)
435{
436	const struct cred *cred;
437	int ret;
438
439	rcu_read_lock();
440	cred = __task_cred(p);
441	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
442		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
443		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
444	       !security_file_send_sigiotask(p, fown, sig));
445	rcu_read_unlock();
446	return ret;
447}
448
449static void send_sigio_to_task(struct task_struct *p,
450			       struct fown_struct *fown,
451			       int fd, int reason, int group)
452{
453	/*
454	 * F_SETSIG can change ->signum lockless in parallel, make
455	 * sure we read it once and use the same value throughout.
456	 */
457	int signum = ACCESS_ONCE(fown->signum);
458
459	if (!sigio_perm(p, fown, signum))
460		return;
461
462	switch (signum) {
463		siginfo_t si;
464		default:
 
465			/* Queue a rt signal with the appropriate fd as its
466			   value.  We use SI_SIGIO as the source, not 
467			   SI_KERNEL, since kernel signals always get 
468			   delivered even if we can't queue.  Failure to
469			   queue in this case _should_ be reported; we fall
470			   back to SIGIO in that case. --sct */
 
471			si.si_signo = signum;
472			si.si_errno = 0;
473		        si.si_code  = reason;
 
 
 
 
 
 
 
 
 
 
 
474			/* Make sure we are called with one of the POLL_*
475			   reasons, otherwise we could leak kernel stack into
476			   userspace.  */
477			BUG_ON((reason & __SI_MASK) != __SI_POLL);
478			if (reason - POLL_IN >= NSIGPOLL)
479				si.si_band  = ~0L;
480			else
481				si.si_band = band_table[reason - POLL_IN];
482			si.si_fd    = fd;
483			if (!do_send_sig_info(signum, &si, p, group))
484				break;
485		/* fall-through: fall back on the old plain SIGIO signal */
 
486		case 0:
487			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
488	}
489}
490
491void send_sigio(struct fown_struct *fown, int fd, int band)
492{
493	struct task_struct *p;
494	enum pid_type type;
 
495	struct pid *pid;
496	int group = 1;
497	
498	read_lock(&fown->lock);
499
500	type = fown->pid_type;
501	if (type == PIDTYPE_MAX) {
502		group = 0;
503		type = PIDTYPE_PID;
504	}
505
506	pid = fown->pid;
507	if (!pid)
508		goto out_unlock_fown;
509	
510	read_lock(&tasklist_lock);
511	do_each_pid_task(pid, type, p) {
512		send_sigio_to_task(p, fown, fd, band, group);
513	} while_each_pid_task(pid, type, p);
514	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
515 out_unlock_fown:
516	read_unlock(&fown->lock);
517}
518
519static void send_sigurg_to_task(struct task_struct *p,
520				struct fown_struct *fown, int group)
521{
522	if (sigio_perm(p, fown, SIGURG))
523		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
524}
525
526int send_sigurg(struct fown_struct *fown)
527{
528	struct task_struct *p;
529	enum pid_type type;
530	struct pid *pid;
531	int group = 1;
532	int ret = 0;
533	
534	read_lock(&fown->lock);
535
536	type = fown->pid_type;
537	if (type == PIDTYPE_MAX) {
538		group = 0;
539		type = PIDTYPE_PID;
540	}
541
542	pid = fown->pid;
543	if (!pid)
544		goto out_unlock_fown;
545
546	ret = 1;
547	
548	read_lock(&tasklist_lock);
549	do_each_pid_task(pid, type, p) {
550		send_sigurg_to_task(p, fown, group);
551	} while_each_pid_task(pid, type, p);
552	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
553 out_unlock_fown:
554	read_unlock(&fown->lock);
555	return ret;
556}
557
558static DEFINE_SPINLOCK(fasync_lock);
559static struct kmem_cache *fasync_cache __read_mostly;
560
561static void fasync_free_rcu(struct rcu_head *head)
562{
563	kmem_cache_free(fasync_cache,
564			container_of(head, struct fasync_struct, fa_rcu));
565}
566
567/*
568 * Remove a fasync entry. If successfully removed, return
569 * positive and clear the FASYNC flag. If no entry exists,
570 * do nothing and return 0.
571 *
572 * NOTE! It is very important that the FASYNC flag always
573 * match the state "is the filp on a fasync list".
574 *
575 */
576int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
577{
578	struct fasync_struct *fa, **fp;
579	int result = 0;
580
581	spin_lock(&filp->f_lock);
582	spin_lock(&fasync_lock);
583	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
584		if (fa->fa_file != filp)
585			continue;
586
587		spin_lock_irq(&fa->fa_lock);
588		fa->fa_file = NULL;
589		spin_unlock_irq(&fa->fa_lock);
590
591		*fp = fa->fa_next;
592		call_rcu(&fa->fa_rcu, fasync_free_rcu);
593		filp->f_flags &= ~FASYNC;
594		result = 1;
595		break;
596	}
597	spin_unlock(&fasync_lock);
598	spin_unlock(&filp->f_lock);
599	return result;
600}
601
602struct fasync_struct *fasync_alloc(void)
603{
604	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
605}
606
607/*
608 * NOTE! This can be used only for unused fasync entries:
609 * entries that actually got inserted on the fasync list
610 * need to be released by rcu - see fasync_remove_entry.
611 */
612void fasync_free(struct fasync_struct *new)
613{
614	kmem_cache_free(fasync_cache, new);
615}
616
617/*
618 * Insert a new entry into the fasync list.  Return the pointer to the
619 * old one if we didn't use the new one.
620 *
621 * NOTE! It is very important that the FASYNC flag always
622 * match the state "is the filp on a fasync list".
623 */
624struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
625{
626        struct fasync_struct *fa, **fp;
627
628	spin_lock(&filp->f_lock);
629	spin_lock(&fasync_lock);
630	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
631		if (fa->fa_file != filp)
632			continue;
633
634		spin_lock_irq(&fa->fa_lock);
635		fa->fa_fd = fd;
636		spin_unlock_irq(&fa->fa_lock);
637		goto out;
638	}
639
640	spin_lock_init(&new->fa_lock);
641	new->magic = FASYNC_MAGIC;
642	new->fa_file = filp;
643	new->fa_fd = fd;
644	new->fa_next = *fapp;
645	rcu_assign_pointer(*fapp, new);
646	filp->f_flags |= FASYNC;
647
648out:
649	spin_unlock(&fasync_lock);
650	spin_unlock(&filp->f_lock);
651	return fa;
652}
653
654/*
655 * Add a fasync entry. Return negative on error, positive if
656 * added, and zero if did nothing but change an existing one.
657 */
658static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
659{
660	struct fasync_struct *new;
661
662	new = fasync_alloc();
663	if (!new)
664		return -ENOMEM;
665
666	/*
667	 * fasync_insert_entry() returns the old (update) entry if
668	 * it existed.
669	 *
670	 * So free the (unused) new entry and return 0 to let the
671	 * caller know that we didn't add any new fasync entries.
672	 */
673	if (fasync_insert_entry(fd, filp, fapp, new)) {
674		fasync_free(new);
675		return 0;
676	}
677
678	return 1;
679}
680
681/*
682 * fasync_helper() is used by almost all character device drivers
683 * to set up the fasync queue, and for regular files by the file
684 * lease code. It returns negative on error, 0 if it did no changes
685 * and positive if it added/deleted the entry.
686 */
687int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
688{
689	if (!on)
690		return fasync_remove_entry(filp, fapp);
691	return fasync_add_entry(fd, filp, fapp);
692}
693
694EXPORT_SYMBOL(fasync_helper);
695
696/*
697 * rcu_read_lock() is held
698 */
699static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
700{
701	while (fa) {
702		struct fown_struct *fown;
703		unsigned long flags;
704
705		if (fa->magic != FASYNC_MAGIC) {
706			printk(KERN_ERR "kill_fasync: bad magic number in "
707			       "fasync_struct!\n");
708			return;
709		}
710		spin_lock_irqsave(&fa->fa_lock, flags);
711		if (fa->fa_file) {
712			fown = &fa->fa_file->f_owner;
713			/* Don't send SIGURG to processes which have not set a
714			   queued signum: SIGURG has its own default signalling
715			   mechanism. */
716			if (!(sig == SIGURG && fown->signum == 0))
717				send_sigio(fown, fa->fa_fd, band);
718		}
719		spin_unlock_irqrestore(&fa->fa_lock, flags);
720		fa = rcu_dereference(fa->fa_next);
721	}
722}
723
724void kill_fasync(struct fasync_struct **fp, int sig, int band)
725{
726	/* First a quick test without locking: usually
727	 * the list is empty.
728	 */
729	if (*fp) {
730		rcu_read_lock();
731		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
732		rcu_read_unlock();
733	}
734}
735EXPORT_SYMBOL(kill_fasync);
736
737static int __init fcntl_init(void)
738{
739	/*
740	 * Please add new bits here to ensure allocation uniqueness.
741	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
742	 * is defined as O_NONBLOCK on some platforms and not on others.
743	 */
744	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
745		O_RDONLY	| O_WRONLY	| O_RDWR	|
746		O_CREAT		| O_EXCL	| O_NOCTTY	|
747		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
748		__O_SYNC	| O_DSYNC	| FASYNC	|
749		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
750		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
751		__FMODE_EXEC	| O_PATH	| __O_TMPFILE	|
752		__FMODE_NONOTIFY
753		));
754
755	fasync_cache = kmem_cache_create("fasync_cache",
756		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
 
757	return 0;
758}
759
760module_init(fcntl_init)
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/fcntl.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/syscalls.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/fs.h>
  13#include <linux/filelock.h>
  14#include <linux/file.h>
  15#include <linux/fdtable.h>
  16#include <linux/capability.h>
  17#include <linux/dnotify.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/pipe_fs_i.h>
  21#include <linux/security.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/rcupdate.h>
  25#include <linux/pid_namespace.h>
  26#include <linux/user_namespace.h>
  27#include <linux/memfd.h>
  28#include <linux/compat.h>
  29#include <linux/mount.h>
  30#include <linux/rw_hint.h>
  31
  32#include <linux/poll.h>
  33#include <asm/siginfo.h>
  34#include <linux/uaccess.h>
  35
  36#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
  37
  38static int setfl(int fd, struct file * filp, unsigned int arg)
  39{
  40	struct inode * inode = file_inode(filp);
  41	int error = 0;
  42
  43	/*
  44	 * O_APPEND cannot be cleared if the file is marked as append-only
  45	 * and the file is open for write.
  46	 */
  47	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
  48		return -EPERM;
  49
  50	/* O_NOATIME can only be set by the owner or superuser */
  51	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
  52		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
  53			return -EPERM;
  54
  55	/* required for strict SunOS emulation */
  56	if (O_NONBLOCK != O_NDELAY)
  57	       if (arg & O_NDELAY)
  58		   arg |= O_NONBLOCK;
  59
  60	/* Pipe packetized mode is controlled by O_DIRECT flag */
  61	if (!S_ISFIFO(inode->i_mode) &&
  62	    (arg & O_DIRECT) &&
  63	    !(filp->f_mode & FMODE_CAN_ODIRECT))
  64		return -EINVAL;
 
  65
  66	if (filp->f_op->check_flags)
  67		error = filp->f_op->check_flags(arg);
  68	if (error)
  69		return error;
  70
  71	/*
  72	 * ->fasync() is responsible for setting the FASYNC bit.
  73	 */
  74	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
  75		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
  76		if (error < 0)
  77			goto out;
  78		if (error > 0)
  79			error = 0;
  80	}
  81	spin_lock(&filp->f_lock);
  82	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
  83	filp->f_iocb_flags = iocb_flags(filp);
  84	spin_unlock(&filp->f_lock);
  85
  86 out:
  87	return error;
  88}
  89
  90static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
  91                     int force)
  92{
  93	write_lock_irq(&filp->f_owner.lock);
  94	if (force || !filp->f_owner.pid) {
  95		put_pid(filp->f_owner.pid);
  96		filp->f_owner.pid = get_pid(pid);
  97		filp->f_owner.pid_type = type;
  98
  99		if (pid) {
 100			const struct cred *cred = current_cred();
 101			filp->f_owner.uid = cred->uid;
 102			filp->f_owner.euid = cred->euid;
 103		}
 104	}
 105	write_unlock_irq(&filp->f_owner.lock);
 106}
 107
 108void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
 109		int force)
 110{
 111	security_file_set_fowner(filp);
 112	f_modown(filp, pid, type, force);
 113}
 114EXPORT_SYMBOL(__f_setown);
 115
 116int f_setown(struct file *filp, int who, int force)
 117{
 118	enum pid_type type;
 119	struct pid *pid = NULL;
 120	int ret = 0;
 121
 122	type = PIDTYPE_TGID;
 123	if (who < 0) {
 124		/* avoid overflow below */
 125		if (who == INT_MIN)
 126			return -EINVAL;
 127
 128		type = PIDTYPE_PGID;
 129		who = -who;
 130	}
 131
 132	rcu_read_lock();
 133	if (who) {
 134		pid = find_vpid(who);
 135		if (!pid)
 136			ret = -ESRCH;
 137	}
 138
 139	if (!ret)
 140		__f_setown(filp, pid, type, force);
 141	rcu_read_unlock();
 142
 143	return ret;
 144}
 145EXPORT_SYMBOL(f_setown);
 146
 147void f_delown(struct file *filp)
 148{
 149	f_modown(filp, NULL, PIDTYPE_TGID, 1);
 150}
 151
 152pid_t f_getown(struct file *filp)
 153{
 154	pid_t pid = 0;
 155
 156	read_lock_irq(&filp->f_owner.lock);
 157	rcu_read_lock();
 158	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
 159		pid = pid_vnr(filp->f_owner.pid);
 160		if (filp->f_owner.pid_type == PIDTYPE_PGID)
 161			pid = -pid;
 162	}
 163	rcu_read_unlock();
 164	read_unlock_irq(&filp->f_owner.lock);
 165	return pid;
 166}
 167
 168static int f_setown_ex(struct file *filp, unsigned long arg)
 169{
 170	struct f_owner_ex __user *owner_p = (void __user *)arg;
 171	struct f_owner_ex owner;
 172	struct pid *pid;
 173	int type;
 174	int ret;
 175
 176	ret = copy_from_user(&owner, owner_p, sizeof(owner));
 177	if (ret)
 178		return -EFAULT;
 179
 180	switch (owner.type) {
 181	case F_OWNER_TID:
 182		type = PIDTYPE_PID;
 183		break;
 184
 185	case F_OWNER_PID:
 186		type = PIDTYPE_TGID;
 187		break;
 188
 189	case F_OWNER_PGRP:
 190		type = PIDTYPE_PGID;
 191		break;
 192
 193	default:
 194		return -EINVAL;
 195	}
 196
 197	rcu_read_lock();
 198	pid = find_vpid(owner.pid);
 199	if (owner.pid && !pid)
 200		ret = -ESRCH;
 201	else
 202		 __f_setown(filp, pid, type, 1);
 203	rcu_read_unlock();
 204
 205	return ret;
 206}
 207
 208static int f_getown_ex(struct file *filp, unsigned long arg)
 209{
 210	struct f_owner_ex __user *owner_p = (void __user *)arg;
 211	struct f_owner_ex owner = {};
 212	int ret = 0;
 213
 214	read_lock_irq(&filp->f_owner.lock);
 215	rcu_read_lock();
 216	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
 217		owner.pid = pid_vnr(filp->f_owner.pid);
 218	rcu_read_unlock();
 219	switch (filp->f_owner.pid_type) {
 220	case PIDTYPE_PID:
 221		owner.type = F_OWNER_TID;
 222		break;
 223
 224	case PIDTYPE_TGID:
 225		owner.type = F_OWNER_PID;
 226		break;
 227
 228	case PIDTYPE_PGID:
 229		owner.type = F_OWNER_PGRP;
 230		break;
 231
 232	default:
 233		WARN_ON(1);
 234		ret = -EINVAL;
 235		break;
 236	}
 237	read_unlock_irq(&filp->f_owner.lock);
 238
 239	if (!ret) {
 240		ret = copy_to_user(owner_p, &owner, sizeof(owner));
 241		if (ret)
 242			ret = -EFAULT;
 243	}
 244	return ret;
 245}
 246
 247#ifdef CONFIG_CHECKPOINT_RESTORE
 248static int f_getowner_uids(struct file *filp, unsigned long arg)
 249{
 250	struct user_namespace *user_ns = current_user_ns();
 251	uid_t __user *dst = (void __user *)arg;
 252	uid_t src[2];
 253	int err;
 254
 255	read_lock_irq(&filp->f_owner.lock);
 256	src[0] = from_kuid(user_ns, filp->f_owner.uid);
 257	src[1] = from_kuid(user_ns, filp->f_owner.euid);
 258	read_unlock_irq(&filp->f_owner.lock);
 259
 260	err  = put_user(src[0], &dst[0]);
 261	err |= put_user(src[1], &dst[1]);
 262
 263	return err;
 264}
 265#else
 266static int f_getowner_uids(struct file *filp, unsigned long arg)
 267{
 268	return -EINVAL;
 269}
 270#endif
 271
 272static bool rw_hint_valid(u64 hint)
 273{
 274	BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
 275	BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
 276	BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
 277	BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
 278	BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
 279	BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
 280
 281	switch (hint) {
 282	case RWH_WRITE_LIFE_NOT_SET:
 283	case RWH_WRITE_LIFE_NONE:
 284	case RWH_WRITE_LIFE_SHORT:
 285	case RWH_WRITE_LIFE_MEDIUM:
 286	case RWH_WRITE_LIFE_LONG:
 287	case RWH_WRITE_LIFE_EXTREME:
 288		return true;
 289	default:
 290		return false;
 291	}
 292}
 293
 294static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
 295			      unsigned long arg)
 296{
 297	struct inode *inode = file_inode(file);
 298	u64 __user *argp = (u64 __user *)arg;
 299	u64 hint = READ_ONCE(inode->i_write_hint);
 300
 301	if (copy_to_user(argp, &hint, sizeof(*argp)))
 302		return -EFAULT;
 303	return 0;
 304}
 305
 306static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
 307			      unsigned long arg)
 308{
 309	struct inode *inode = file_inode(file);
 310	u64 __user *argp = (u64 __user *)arg;
 311	u64 hint;
 312
 313	if (copy_from_user(&hint, argp, sizeof(hint)))
 314		return -EFAULT;
 315	if (!rw_hint_valid(hint))
 316		return -EINVAL;
 317
 318	WRITE_ONCE(inode->i_write_hint, hint);
 319
 320	/*
 321	 * file->f_mapping->host may differ from inode. As an example,
 322	 * blkdev_open() modifies file->f_mapping.
 323	 */
 324	if (file->f_mapping->host != inode)
 325		WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
 326
 327	return 0;
 328}
 329
 330static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
 331		struct file *filp)
 332{
 333	void __user *argp = (void __user *)arg;
 334	int argi = (int)arg;
 335	struct flock flock;
 336	long err = -EINVAL;
 337
 338	switch (cmd) {
 339	case F_DUPFD:
 340		err = f_dupfd(argi, filp, 0);
 341		break;
 342	case F_DUPFD_CLOEXEC:
 343		err = f_dupfd(argi, filp, O_CLOEXEC);
 344		break;
 345	case F_GETFD:
 346		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
 347		break;
 348	case F_SETFD:
 349		err = 0;
 350		set_close_on_exec(fd, argi & FD_CLOEXEC);
 351		break;
 352	case F_GETFL:
 353		err = filp->f_flags;
 354		break;
 355	case F_SETFL:
 356		err = setfl(fd, filp, argi);
 357		break;
 358#if BITS_PER_LONG != 32
 359	/* 32-bit arches must use fcntl64() */
 360	case F_OFD_GETLK:
 361#endif
 362	case F_GETLK:
 363		if (copy_from_user(&flock, argp, sizeof(flock)))
 364			return -EFAULT;
 365		err = fcntl_getlk(filp, cmd, &flock);
 366		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 367			return -EFAULT;
 368		break;
 369#if BITS_PER_LONG != 32
 370	/* 32-bit arches must use fcntl64() */
 371	case F_OFD_SETLK:
 372	case F_OFD_SETLKW:
 373		fallthrough;
 374#endif
 
 375	case F_SETLK:
 376	case F_SETLKW:
 377		if (copy_from_user(&flock, argp, sizeof(flock)))
 378			return -EFAULT;
 379		err = fcntl_setlk(fd, filp, cmd, &flock);
 380		break;
 381	case F_GETOWN:
 382		/*
 383		 * XXX If f_owner is a process group, the
 384		 * negative return value will get converted
 385		 * into an error.  Oops.  If we keep the
 386		 * current syscall conventions, the only way
 387		 * to fix this will be in libc.
 388		 */
 389		err = f_getown(filp);
 390		force_successful_syscall_return();
 391		break;
 392	case F_SETOWN:
 393		err = f_setown(filp, argi, 1);
 
 394		break;
 395	case F_GETOWN_EX:
 396		err = f_getown_ex(filp, arg);
 397		break;
 398	case F_SETOWN_EX:
 399		err = f_setown_ex(filp, arg);
 400		break;
 401	case F_GETOWNER_UIDS:
 402		err = f_getowner_uids(filp, arg);
 403		break;
 404	case F_GETSIG:
 405		err = filp->f_owner.signum;
 406		break;
 407	case F_SETSIG:
 408		/* arg == 0 restores default behaviour. */
 409		if (!valid_signal(argi)) {
 410			break;
 411		}
 412		err = 0;
 413		filp->f_owner.signum = argi;
 414		break;
 415	case F_GETLEASE:
 416		err = fcntl_getlease(filp);
 417		break;
 418	case F_SETLEASE:
 419		err = fcntl_setlease(fd, filp, argi);
 420		break;
 421	case F_NOTIFY:
 422		err = fcntl_dirnotify(fd, filp, argi);
 423		break;
 424	case F_SETPIPE_SZ:
 425	case F_GETPIPE_SZ:
 426		err = pipe_fcntl(filp, cmd, argi);
 427		break;
 428	case F_ADD_SEALS:
 429	case F_GET_SEALS:
 430		err = memfd_fcntl(filp, cmd, argi);
 431		break;
 432	case F_GET_RW_HINT:
 433		err = fcntl_get_rw_hint(filp, cmd, arg);
 434		break;
 435	case F_SET_RW_HINT:
 436		err = fcntl_set_rw_hint(filp, cmd, arg);
 437		break;
 438	default:
 439		break;
 440	}
 441	return err;
 442}
 443
 444static int check_fcntl_cmd(unsigned cmd)
 445{
 446	switch (cmd) {
 447	case F_DUPFD:
 448	case F_DUPFD_CLOEXEC:
 449	case F_GETFD:
 450	case F_SETFD:
 451	case F_GETFL:
 452		return 1;
 453	}
 454	return 0;
 455}
 456
 457SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
 458{	
 459	struct fd f = fdget_raw(fd);
 460	long err = -EBADF;
 461
 462	if (!f.file)
 463		goto out;
 464
 465	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 466		if (!check_fcntl_cmd(cmd))
 467			goto out1;
 468	}
 469
 470	err = security_file_fcntl(f.file, cmd, arg);
 471	if (!err)
 472		err = do_fcntl(fd, cmd, arg, f.file);
 473
 474out1:
 475 	fdput(f);
 476out:
 477	return err;
 478}
 479
 480#if BITS_PER_LONG == 32
 481SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 482		unsigned long, arg)
 483{	
 484	void __user *argp = (void __user *)arg;
 485	struct fd f = fdget_raw(fd);
 486	struct flock64 flock;
 487	long err = -EBADF;
 488
 489	if (!f.file)
 490		goto out;
 491
 492	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 493		if (!check_fcntl_cmd(cmd))
 494			goto out1;
 495	}
 496
 497	err = security_file_fcntl(f.file, cmd, arg);
 498	if (err)
 499		goto out1;
 500	
 501	switch (cmd) {
 502	case F_GETLK64:
 503	case F_OFD_GETLK:
 504		err = -EFAULT;
 505		if (copy_from_user(&flock, argp, sizeof(flock)))
 506			break;
 507		err = fcntl_getlk64(f.file, cmd, &flock);
 508		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 509			err = -EFAULT;
 510		break;
 511	case F_SETLK64:
 512	case F_SETLKW64:
 513	case F_OFD_SETLK:
 514	case F_OFD_SETLKW:
 515		err = -EFAULT;
 516		if (copy_from_user(&flock, argp, sizeof(flock)))
 517			break;
 518		err = fcntl_setlk64(fd, f.file, cmd, &flock);
 519		break;
 520	default:
 521		err = do_fcntl(fd, cmd, arg, f.file);
 522		break;
 523	}
 524out1:
 525	fdput(f);
 526out:
 527	return err;
 528}
 529#endif
 530
 531#ifdef CONFIG_COMPAT
 532/* careful - don't use anywhere else */
 533#define copy_flock_fields(dst, src)		\
 534	(dst)->l_type = (src)->l_type;		\
 535	(dst)->l_whence = (src)->l_whence;	\
 536	(dst)->l_start = (src)->l_start;	\
 537	(dst)->l_len = (src)->l_len;		\
 538	(dst)->l_pid = (src)->l_pid;
 539
 540static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
 541{
 542	struct compat_flock fl;
 543
 544	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
 545		return -EFAULT;
 546	copy_flock_fields(kfl, &fl);
 547	return 0;
 548}
 549
 550static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
 551{
 552	struct compat_flock64 fl;
 553
 554	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
 555		return -EFAULT;
 556	copy_flock_fields(kfl, &fl);
 557	return 0;
 558}
 559
 560static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
 561{
 562	struct compat_flock fl;
 563
 564	memset(&fl, 0, sizeof(struct compat_flock));
 565	copy_flock_fields(&fl, kfl);
 566	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
 567		return -EFAULT;
 568	return 0;
 569}
 570
 571static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
 572{
 573	struct compat_flock64 fl;
 574
 575	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
 576	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
 577
 578	memset(&fl, 0, sizeof(struct compat_flock64));
 579	copy_flock_fields(&fl, kfl);
 580	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
 581		return -EFAULT;
 582	return 0;
 583}
 584#undef copy_flock_fields
 585
 586static unsigned int
 587convert_fcntl_cmd(unsigned int cmd)
 588{
 589	switch (cmd) {
 590	case F_GETLK64:
 591		return F_GETLK;
 592	case F_SETLK64:
 593		return F_SETLK;
 594	case F_SETLKW64:
 595		return F_SETLKW;
 596	}
 597
 598	return cmd;
 599}
 600
 601/*
 602 * GETLK was successful and we need to return the data, but it needs to fit in
 603 * the compat structure.
 604 * l_start shouldn't be too big, unless the original start + end is greater than
 605 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
 606 * -EOVERFLOW in that case.  l_len could be too big, in which case we just
 607 * truncate it, and only allow the app to see that part of the conflicting lock
 608 * that might make sense to it anyway
 609 */
 610static int fixup_compat_flock(struct flock *flock)
 611{
 612	if (flock->l_start > COMPAT_OFF_T_MAX)
 613		return -EOVERFLOW;
 614	if (flock->l_len > COMPAT_OFF_T_MAX)
 615		flock->l_len = COMPAT_OFF_T_MAX;
 616	return 0;
 617}
 618
 619static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
 620			     compat_ulong_t arg)
 621{
 622	struct fd f = fdget_raw(fd);
 623	struct flock flock;
 624	long err = -EBADF;
 625
 626	if (!f.file)
 627		return err;
 628
 629	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 630		if (!check_fcntl_cmd(cmd))
 631			goto out_put;
 632	}
 633
 634	err = security_file_fcntl(f.file, cmd, arg);
 635	if (err)
 636		goto out_put;
 637
 638	switch (cmd) {
 639	case F_GETLK:
 640		err = get_compat_flock(&flock, compat_ptr(arg));
 641		if (err)
 642			break;
 643		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 644		if (err)
 645			break;
 646		err = fixup_compat_flock(&flock);
 647		if (!err)
 648			err = put_compat_flock(&flock, compat_ptr(arg));
 649		break;
 650	case F_GETLK64:
 651	case F_OFD_GETLK:
 652		err = get_compat_flock64(&flock, compat_ptr(arg));
 653		if (err)
 654			break;
 655		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 656		if (!err)
 657			err = put_compat_flock64(&flock, compat_ptr(arg));
 658		break;
 659	case F_SETLK:
 660	case F_SETLKW:
 661		err = get_compat_flock(&flock, compat_ptr(arg));
 662		if (err)
 663			break;
 664		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 665		break;
 666	case F_SETLK64:
 667	case F_SETLKW64:
 668	case F_OFD_SETLK:
 669	case F_OFD_SETLKW:
 670		err = get_compat_flock64(&flock, compat_ptr(arg));
 671		if (err)
 672			break;
 673		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 674		break;
 675	default:
 676		err = do_fcntl(fd, cmd, arg, f.file);
 677		break;
 678	}
 679out_put:
 680	fdput(f);
 681	return err;
 682}
 683
 684COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 685		       compat_ulong_t, arg)
 686{
 687	return do_compat_fcntl64(fd, cmd, arg);
 688}
 689
 690COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
 691		       compat_ulong_t, arg)
 692{
 693	switch (cmd) {
 694	case F_GETLK64:
 695	case F_SETLK64:
 696	case F_SETLKW64:
 697	case F_OFD_GETLK:
 698	case F_OFD_SETLK:
 699	case F_OFD_SETLKW:
 700		return -EINVAL;
 701	}
 702	return do_compat_fcntl64(fd, cmd, arg);
 703}
 704#endif
 705
 706/* Table to convert sigio signal codes into poll band bitmaps */
 707
 708static const __poll_t band_table[NSIGPOLL] = {
 709	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
 710	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
 711	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
 712	EPOLLERR,				/* POLL_ERR */
 713	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
 714	EPOLLHUP | EPOLLERR			/* POLL_HUP */
 715};
 716
 717static inline int sigio_perm(struct task_struct *p,
 718                             struct fown_struct *fown, int sig)
 719{
 720	const struct cred *cred;
 721	int ret;
 722
 723	rcu_read_lock();
 724	cred = __task_cred(p);
 725	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
 726		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
 727		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
 728	       !security_file_send_sigiotask(p, fown, sig));
 729	rcu_read_unlock();
 730	return ret;
 731}
 732
 733static void send_sigio_to_task(struct task_struct *p,
 734			       struct fown_struct *fown,
 735			       int fd, int reason, enum pid_type type)
 736{
 737	/*
 738	 * F_SETSIG can change ->signum lockless in parallel, make
 739	 * sure we read it once and use the same value throughout.
 740	 */
 741	int signum = READ_ONCE(fown->signum);
 742
 743	if (!sigio_perm(p, fown, signum))
 744		return;
 745
 746	switch (signum) {
 747		default: {
 748			kernel_siginfo_t si;
 749
 750			/* Queue a rt signal with the appropriate fd as its
 751			   value.  We use SI_SIGIO as the source, not 
 752			   SI_KERNEL, since kernel signals always get 
 753			   delivered even if we can't queue.  Failure to
 754			   queue in this case _should_ be reported; we fall
 755			   back to SIGIO in that case. --sct */
 756			clear_siginfo(&si);
 757			si.si_signo = signum;
 758			si.si_errno = 0;
 759		        si.si_code  = reason;
 760			/*
 761			 * Posix definies POLL_IN and friends to be signal
 762			 * specific si_codes for SIG_POLL.  Linux extended
 763			 * these si_codes to other signals in a way that is
 764			 * ambiguous if other signals also have signal
 765			 * specific si_codes.  In that case use SI_SIGIO instead
 766			 * to remove the ambiguity.
 767			 */
 768			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
 769				si.si_code = SI_SIGIO;
 770
 771			/* Make sure we are called with one of the POLL_*
 772			   reasons, otherwise we could leak kernel stack into
 773			   userspace.  */
 774			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
 775			if (reason - POLL_IN >= NSIGPOLL)
 776				si.si_band  = ~0L;
 777			else
 778				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
 779			si.si_fd    = fd;
 780			if (!do_send_sig_info(signum, &si, p, type))
 781				break;
 782		}
 783			fallthrough;	/* fall back on the old plain SIGIO signal */
 784		case 0:
 785			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
 786	}
 787}
 788
 789void send_sigio(struct fown_struct *fown, int fd, int band)
 790{
 791	struct task_struct *p;
 792	enum pid_type type;
 793	unsigned long flags;
 794	struct pid *pid;
 
 795	
 796	read_lock_irqsave(&fown->lock, flags);
 797
 798	type = fown->pid_type;
 
 
 
 
 
 799	pid = fown->pid;
 800	if (!pid)
 801		goto out_unlock_fown;
 802
 803	if (type <= PIDTYPE_TGID) {
 804		rcu_read_lock();
 805		p = pid_task(pid, PIDTYPE_PID);
 806		if (p)
 807			send_sigio_to_task(p, fown, fd, band, type);
 808		rcu_read_unlock();
 809	} else {
 810		read_lock(&tasklist_lock);
 811		do_each_pid_task(pid, type, p) {
 812			send_sigio_to_task(p, fown, fd, band, type);
 813		} while_each_pid_task(pid, type, p);
 814		read_unlock(&tasklist_lock);
 815	}
 816 out_unlock_fown:
 817	read_unlock_irqrestore(&fown->lock, flags);
 818}
 819
 820static void send_sigurg_to_task(struct task_struct *p,
 821				struct fown_struct *fown, enum pid_type type)
 822{
 823	if (sigio_perm(p, fown, SIGURG))
 824		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
 825}
 826
 827int send_sigurg(struct fown_struct *fown)
 828{
 829	struct task_struct *p;
 830	enum pid_type type;
 831	struct pid *pid;
 832	unsigned long flags;
 833	int ret = 0;
 834	
 835	read_lock_irqsave(&fown->lock, flags);
 836
 837	type = fown->pid_type;
 
 
 
 
 
 838	pid = fown->pid;
 839	if (!pid)
 840		goto out_unlock_fown;
 841
 842	ret = 1;
 843
 844	if (type <= PIDTYPE_TGID) {
 845		rcu_read_lock();
 846		p = pid_task(pid, PIDTYPE_PID);
 847		if (p)
 848			send_sigurg_to_task(p, fown, type);
 849		rcu_read_unlock();
 850	} else {
 851		read_lock(&tasklist_lock);
 852		do_each_pid_task(pid, type, p) {
 853			send_sigurg_to_task(p, fown, type);
 854		} while_each_pid_task(pid, type, p);
 855		read_unlock(&tasklist_lock);
 856	}
 857 out_unlock_fown:
 858	read_unlock_irqrestore(&fown->lock, flags);
 859	return ret;
 860}
 861
 862static DEFINE_SPINLOCK(fasync_lock);
 863static struct kmem_cache *fasync_cache __ro_after_init;
 
 
 
 
 
 
 864
 865/*
 866 * Remove a fasync entry. If successfully removed, return
 867 * positive and clear the FASYNC flag. If no entry exists,
 868 * do nothing and return 0.
 869 *
 870 * NOTE! It is very important that the FASYNC flag always
 871 * match the state "is the filp on a fasync list".
 872 *
 873 */
 874int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
 875{
 876	struct fasync_struct *fa, **fp;
 877	int result = 0;
 878
 879	spin_lock(&filp->f_lock);
 880	spin_lock(&fasync_lock);
 881	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 882		if (fa->fa_file != filp)
 883			continue;
 884
 885		write_lock_irq(&fa->fa_lock);
 886		fa->fa_file = NULL;
 887		write_unlock_irq(&fa->fa_lock);
 888
 889		*fp = fa->fa_next;
 890		kfree_rcu(fa, fa_rcu);
 891		filp->f_flags &= ~FASYNC;
 892		result = 1;
 893		break;
 894	}
 895	spin_unlock(&fasync_lock);
 896	spin_unlock(&filp->f_lock);
 897	return result;
 898}
 899
 900struct fasync_struct *fasync_alloc(void)
 901{
 902	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
 903}
 904
 905/*
 906 * NOTE! This can be used only for unused fasync entries:
 907 * entries that actually got inserted on the fasync list
 908 * need to be released by rcu - see fasync_remove_entry.
 909 */
 910void fasync_free(struct fasync_struct *new)
 911{
 912	kmem_cache_free(fasync_cache, new);
 913}
 914
 915/*
 916 * Insert a new entry into the fasync list.  Return the pointer to the
 917 * old one if we didn't use the new one.
 918 *
 919 * NOTE! It is very important that the FASYNC flag always
 920 * match the state "is the filp on a fasync list".
 921 */
 922struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
 923{
 924        struct fasync_struct *fa, **fp;
 925
 926	spin_lock(&filp->f_lock);
 927	spin_lock(&fasync_lock);
 928	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 929		if (fa->fa_file != filp)
 930			continue;
 931
 932		write_lock_irq(&fa->fa_lock);
 933		fa->fa_fd = fd;
 934		write_unlock_irq(&fa->fa_lock);
 935		goto out;
 936	}
 937
 938	rwlock_init(&new->fa_lock);
 939	new->magic = FASYNC_MAGIC;
 940	new->fa_file = filp;
 941	new->fa_fd = fd;
 942	new->fa_next = *fapp;
 943	rcu_assign_pointer(*fapp, new);
 944	filp->f_flags |= FASYNC;
 945
 946out:
 947	spin_unlock(&fasync_lock);
 948	spin_unlock(&filp->f_lock);
 949	return fa;
 950}
 951
 952/*
 953 * Add a fasync entry. Return negative on error, positive if
 954 * added, and zero if did nothing but change an existing one.
 955 */
 956static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
 957{
 958	struct fasync_struct *new;
 959
 960	new = fasync_alloc();
 961	if (!new)
 962		return -ENOMEM;
 963
 964	/*
 965	 * fasync_insert_entry() returns the old (update) entry if
 966	 * it existed.
 967	 *
 968	 * So free the (unused) new entry and return 0 to let the
 969	 * caller know that we didn't add any new fasync entries.
 970	 */
 971	if (fasync_insert_entry(fd, filp, fapp, new)) {
 972		fasync_free(new);
 973		return 0;
 974	}
 975
 976	return 1;
 977}
 978
 979/*
 980 * fasync_helper() is used by almost all character device drivers
 981 * to set up the fasync queue, and for regular files by the file
 982 * lease code. It returns negative on error, 0 if it did no changes
 983 * and positive if it added/deleted the entry.
 984 */
 985int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
 986{
 987	if (!on)
 988		return fasync_remove_entry(filp, fapp);
 989	return fasync_add_entry(fd, filp, fapp);
 990}
 991
 992EXPORT_SYMBOL(fasync_helper);
 993
 994/*
 995 * rcu_read_lock() is held
 996 */
 997static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
 998{
 999	while (fa) {
1000		struct fown_struct *fown;
1001		unsigned long flags;
1002
1003		if (fa->magic != FASYNC_MAGIC) {
1004			printk(KERN_ERR "kill_fasync: bad magic number in "
1005			       "fasync_struct!\n");
1006			return;
1007		}
1008		read_lock_irqsave(&fa->fa_lock, flags);
1009		if (fa->fa_file) {
1010			fown = &fa->fa_file->f_owner;
1011			/* Don't send SIGURG to processes which have not set a
1012			   queued signum: SIGURG has its own default signalling
1013			   mechanism. */
1014			if (!(sig == SIGURG && fown->signum == 0))
1015				send_sigio(fown, fa->fa_fd, band);
1016		}
1017		read_unlock_irqrestore(&fa->fa_lock, flags);
1018		fa = rcu_dereference(fa->fa_next);
1019	}
1020}
1021
1022void kill_fasync(struct fasync_struct **fp, int sig, int band)
1023{
1024	/* First a quick test without locking: usually
1025	 * the list is empty.
1026	 */
1027	if (*fp) {
1028		rcu_read_lock();
1029		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1030		rcu_read_unlock();
1031	}
1032}
1033EXPORT_SYMBOL(kill_fasync);
1034
1035static int __init fcntl_init(void)
1036{
1037	/*
1038	 * Please add new bits here to ensure allocation uniqueness.
1039	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1040	 * is defined as O_NONBLOCK on some platforms and not on others.
1041	 */
1042	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1043		HWEIGHT32(
1044			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1045			__FMODE_EXEC | __FMODE_NONOTIFY));
 
 
 
 
 
 
1046
1047	fasync_cache = kmem_cache_create("fasync_cache",
1048					 sizeof(struct fasync_struct), 0,
1049					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1050	return 0;
1051}
1052
1053module_init(fcntl_init)