Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * A memslot-related performance benchmark.
   4 *
   5 * Copyright (C) 2021 Oracle and/or its affiliates.
   6 *
   7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
   8 */
   9#include <pthread.h>
  10#include <sched.h>
  11#include <semaphore.h>
  12#include <stdatomic.h>
  13#include <stdbool.h>
  14#include <stdint.h>
  15#include <stdio.h>
  16#include <stdlib.h>
  17#include <string.h>
  18#include <sys/mman.h>
  19#include <time.h>
  20#include <unistd.h>
  21
  22#include <linux/compiler.h>
  23#include <linux/sizes.h>
  24
  25#include <test_util.h>
  26#include <kvm_util.h>
  27#include <processor.h>
  28
  29#define MEM_EXTRA_SIZE		SZ_64K
  30
  31#define MEM_SIZE		(SZ_512M + MEM_EXTRA_SIZE)
  32#define MEM_GPA			SZ_256M
  33#define MEM_AUX_GPA		MEM_GPA
  34#define MEM_SYNC_GPA		MEM_AUX_GPA
  35#define MEM_TEST_GPA		(MEM_AUX_GPA + MEM_EXTRA_SIZE)
  36#define MEM_TEST_SIZE		(MEM_SIZE - MEM_EXTRA_SIZE)
  37
  38/*
  39 * 32 MiB is max size that gets well over 100 iterations on 509 slots.
  40 * Considering that each slot needs to have at least one page up to
  41 * 8194 slots in use can then be tested (although with slightly
  42 * limited resolution).
  43 */
  44#define MEM_SIZE_MAP		(SZ_32M + MEM_EXTRA_SIZE)
  45#define MEM_TEST_MAP_SIZE	(MEM_SIZE_MAP - MEM_EXTRA_SIZE)
  46
  47/*
  48 * 128 MiB is min size that fills 32k slots with at least one page in each
  49 * while at the same time gets 100+ iterations in such test
  50 *
  51 * 2 MiB chunk size like a typical huge page
  52 */
  53#define MEM_TEST_UNMAP_SIZE		SZ_128M
  54#define MEM_TEST_UNMAP_CHUNK_SIZE	SZ_2M
  55
  56/*
  57 * For the move active test the middle of the test area is placed on
  58 * a memslot boundary: half lies in the memslot being moved, half in
  59 * other memslot(s).
  60 *
  61 * We have different number of memory slots, excluding the reserved
  62 * memory slot 0, on various architectures and configurations. The
  63 * memory size in this test is calculated by picking the maximal
  64 * last memory slot's memory size, with alignment to the largest
  65 * supported page size (64KB). In this way, the selected memory
  66 * size for this test is compatible with test_memslot_move_prepare().
  67 *
  68 * architecture   slots    memory-per-slot    memory-on-last-slot
  69 * --------------------------------------------------------------
  70 * x86-4KB        32763    16KB               160KB
  71 * arm64-4KB      32766    16KB               112KB
  72 * arm64-16KB     32766    16KB               112KB
  73 * arm64-64KB     8192     64KB               128KB
  74 */
  75#define MEM_TEST_MOVE_SIZE		(3 * SZ_64K)
  76#define MEM_TEST_MOVE_GPA_DEST		(MEM_GPA + MEM_SIZE)
  77static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
  78	      "invalid move test region size");
  79
  80#define MEM_TEST_VAL_1 0x1122334455667788
  81#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
  82
  83struct vm_data {
  84	struct kvm_vm *vm;
  85	struct kvm_vcpu *vcpu;
  86	pthread_t vcpu_thread;
  87	uint32_t nslots;
  88	uint64_t npages;
  89	uint64_t pages_per_slot;
  90	void **hva_slots;
  91	bool mmio_ok;
  92	uint64_t mmio_gpa_min;
  93	uint64_t mmio_gpa_max;
  94};
  95
  96struct sync_area {
  97	uint32_t    guest_page_size;
  98	atomic_bool start_flag;
  99	atomic_bool exit_flag;
 100	atomic_bool sync_flag;
 101	void *move_area_ptr;
 102};
 103
 104/*
 105 * Technically, we need also for the atomic bool to be address-free, which
 106 * is recommended, but not strictly required, by C11 for lockless
 107 * implementations.
 108 * However, in practice both GCC and Clang fulfill this requirement on
 109 * all KVM-supported platforms.
 110 */
 111static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
 112
 113static sem_t vcpu_ready;
 114
 115static bool map_unmap_verify;
 116
 117static bool verbose;
 118#define pr_info_v(...)				\
 119	do {					\
 120		if (verbose)			\
 121			pr_info(__VA_ARGS__);	\
 122	} while (0)
 123
 124static void check_mmio_access(struct vm_data *data, struct kvm_run *run)
 125{
 126	TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit");
 127	TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
 128	TEST_ASSERT(run->mmio.len == 8,
 129		    "Unexpected exit mmio size = %u", run->mmio.len);
 130	TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min &&
 131		    run->mmio.phys_addr <= data->mmio_gpa_max,
 132		    "Unexpected exit mmio address = 0x%llx",
 133		    run->mmio.phys_addr);
 134}
 135
 136static void *vcpu_worker(void *__data)
 137{
 138	struct vm_data *data = __data;
 139	struct kvm_vcpu *vcpu = data->vcpu;
 140	struct kvm_run *run = vcpu->run;
 141	struct ucall uc;
 142
 143	while (1) {
 144		vcpu_run(vcpu);
 145
 146		switch (get_ucall(vcpu, &uc)) {
 147		case UCALL_SYNC:
 148			TEST_ASSERT(uc.args[1] == 0,
 149				"Unexpected sync ucall, got %lx",
 150				(ulong)uc.args[1]);
 151			sem_post(&vcpu_ready);
 152			continue;
 153		case UCALL_NONE:
 154			if (run->exit_reason == KVM_EXIT_MMIO)
 155				check_mmio_access(data, run);
 156			else
 157				goto done;
 158			break;
 159		case UCALL_ABORT:
 160			REPORT_GUEST_ASSERT(uc);
 161			break;
 162		case UCALL_DONE:
 163			goto done;
 164		default:
 165			TEST_FAIL("Unknown ucall %lu", uc.cmd);
 166		}
 167	}
 168
 169done:
 170	return NULL;
 171}
 172
 173static void wait_for_vcpu(void)
 174{
 175	struct timespec ts;
 176
 177	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
 178		    "clock_gettime() failed: %d", errno);
 179
 180	ts.tv_sec += 2;
 181	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
 182		    "sem_timedwait() failed: %d", errno);
 183}
 184
 185static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
 186{
 187	uint64_t gpage, pgoffs;
 188	uint32_t slot, slotoffs;
 189	void *base;
 190	uint32_t guest_page_size = data->vm->page_size;
 191
 192	TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
 193	TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size,
 194		    "Too high gpa to translate");
 195	gpa -= MEM_GPA;
 196
 197	gpage = gpa / guest_page_size;
 198	pgoffs = gpa % guest_page_size;
 199	slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
 200	slotoffs = gpage - (slot * data->pages_per_slot);
 201
 202	if (rempages) {
 203		uint64_t slotpages;
 204
 205		if (slot == data->nslots - 1)
 206			slotpages = data->npages - slot * data->pages_per_slot;
 207		else
 208			slotpages = data->pages_per_slot;
 209
 210		TEST_ASSERT(!pgoffs,
 211			    "Asking for remaining pages in slot but gpa not page aligned");
 212		*rempages = slotpages - slotoffs;
 213	}
 214
 215	base = data->hva_slots[slot];
 216	return (uint8_t *)base + slotoffs * guest_page_size + pgoffs;
 217}
 218
 219static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
 220{
 221	uint32_t guest_page_size = data->vm->page_size;
 222
 223	TEST_ASSERT(slot < data->nslots, "Too high slot number");
 224
 225	return MEM_GPA + slot * data->pages_per_slot * guest_page_size;
 226}
 227
 228static struct vm_data *alloc_vm(void)
 229{
 230	struct vm_data *data;
 231
 232	data = malloc(sizeof(*data));
 233	TEST_ASSERT(data, "malloc(vmdata) failed");
 234
 235	data->vm = NULL;
 236	data->vcpu = NULL;
 237	data->hva_slots = NULL;
 238
 239	return data;
 240}
 241
 242static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size,
 243			     uint64_t pages_per_slot, uint64_t rempages)
 244{
 245	if (!pages_per_slot)
 246		return false;
 247
 248	if ((pages_per_slot * guest_page_size) % host_page_size)
 249		return false;
 250
 251	if ((rempages * guest_page_size) % host_page_size)
 252		return false;
 253
 254	return true;
 255}
 256
 257
 258static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size)
 259{
 260	uint32_t guest_page_size = data->vm->page_size;
 261	uint64_t mempages, pages_per_slot, rempages;
 262	uint64_t slots;
 263
 264	mempages = data->npages;
 265	slots = data->nslots;
 266	while (--slots > 1) {
 267		pages_per_slot = mempages / slots;
 268		if (!pages_per_slot)
 269			continue;
 270
 271		rempages = mempages % pages_per_slot;
 272		if (check_slot_pages(host_page_size, guest_page_size,
 273				     pages_per_slot, rempages))
 274			return slots + 1;	/* slot 0 is reserved */
 275	}
 276
 277	return 0;
 278}
 279
 280static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
 281		       void *guest_code, uint64_t mem_size,
 282		       struct timespec *slot_runtime)
 283{
 284	uint64_t mempages, rempages;
 285	uint64_t guest_addr;
 286	uint32_t slot, host_page_size, guest_page_size;
 287	struct timespec tstart;
 288	struct sync_area *sync;
 289
 290	host_page_size = getpagesize();
 291	guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
 292	mempages = mem_size / guest_page_size;
 293
 294	data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code);
 295	TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size");
 296
 297	data->npages = mempages;
 298	TEST_ASSERT(data->npages > 1, "Can't test without any memory");
 299	data->nslots = nslots;
 300	data->pages_per_slot = data->npages / data->nslots;
 301	rempages = data->npages % data->nslots;
 302	if (!check_slot_pages(host_page_size, guest_page_size,
 303			      data->pages_per_slot, rempages)) {
 304		*maxslots = get_max_slots(data, host_page_size);
 305		return false;
 306	}
 307
 308	data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
 309	TEST_ASSERT(data->hva_slots, "malloc() fail");
 310
 311	pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
 312		data->nslots, data->pages_per_slot, rempages);
 313
 314	clock_gettime(CLOCK_MONOTONIC, &tstart);
 315	for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
 316		uint64_t npages;
 317
 318		npages = data->pages_per_slot;
 319		if (slot == data->nslots)
 320			npages += rempages;
 321
 322		vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
 323					    guest_addr, slot, npages,
 324					    0);
 325		guest_addr += npages * guest_page_size;
 326	}
 327	*slot_runtime = timespec_elapsed(tstart);
 328
 329	for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) {
 330		uint64_t npages;
 331		uint64_t gpa;
 332
 333		npages = data->pages_per_slot;
 334		if (slot == data->nslots)
 335			npages += rempages;
 336
 337		gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot);
 338		TEST_ASSERT(gpa == guest_addr,
 339			    "vm_phy_pages_alloc() failed");
 340
 341		data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr);
 342		memset(data->hva_slots[slot - 1], 0, npages * guest_page_size);
 343
 344		guest_addr += npages * guest_page_size;
 345	}
 346
 347	virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages);
 348
 349	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
 350	sync->guest_page_size = data->vm->page_size;
 351	atomic_init(&sync->start_flag, false);
 352	atomic_init(&sync->exit_flag, false);
 353	atomic_init(&sync->sync_flag, false);
 354
 355	data->mmio_ok = false;
 356
 357	return true;
 358}
 359
 360static void launch_vm(struct vm_data *data)
 361{
 362	pr_info_v("Launching the test VM\n");
 363
 364	pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
 365
 366	/* Ensure the guest thread is spun up. */
 367	wait_for_vcpu();
 368}
 369
 370static void free_vm(struct vm_data *data)
 371{
 372	kvm_vm_free(data->vm);
 373	free(data->hva_slots);
 374	free(data);
 375}
 376
 377static void wait_guest_exit(struct vm_data *data)
 378{
 379	pthread_join(data->vcpu_thread, NULL);
 380}
 381
 382static void let_guest_run(struct sync_area *sync)
 383{
 384	atomic_store_explicit(&sync->start_flag, true, memory_order_release);
 385}
 386
 387static void guest_spin_until_start(void)
 388{
 389	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 390
 391	while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
 392		;
 393}
 394
 395static void make_guest_exit(struct sync_area *sync)
 396{
 397	atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
 398}
 399
 400static bool _guest_should_exit(void)
 401{
 402	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 403
 404	return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
 405}
 406
 407#define guest_should_exit() unlikely(_guest_should_exit())
 408
 409/*
 410 * noinline so we can easily see how much time the host spends waiting
 411 * for the guest.
 412 * For the same reason use alarm() instead of polling clock_gettime()
 413 * to implement a wait timeout.
 414 */
 415static noinline void host_perform_sync(struct sync_area *sync)
 416{
 417	alarm(2);
 418
 419	atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
 420	while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
 421		;
 422
 423	alarm(0);
 424}
 425
 426static bool guest_perform_sync(void)
 427{
 428	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 429	bool expected;
 430
 431	do {
 432		if (guest_should_exit())
 433			return false;
 434
 435		expected = true;
 436	} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
 437							&expected, false,
 438							memory_order_acq_rel,
 439							memory_order_relaxed));
 440
 441	return true;
 442}
 443
 444static void guest_code_test_memslot_move(void)
 445{
 446	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 447	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
 448	uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
 449
 450	GUEST_SYNC(0);
 451
 452	guest_spin_until_start();
 453
 454	while (!guest_should_exit()) {
 455		uintptr_t ptr;
 456
 457		for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
 458		     ptr += page_size)
 459			*(uint64_t *)ptr = MEM_TEST_VAL_1;
 460
 461		/*
 462		 * No host sync here since the MMIO exits are so expensive
 463		 * that the host would spend most of its time waiting for
 464		 * the guest and so instead of measuring memslot move
 465		 * performance we would measure the performance and
 466		 * likelihood of MMIO exits
 467		 */
 468	}
 469
 470	GUEST_DONE();
 471}
 472
 473static void guest_code_test_memslot_map(void)
 474{
 475	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 476	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
 477
 478	GUEST_SYNC(0);
 479
 480	guest_spin_until_start();
 481
 482	while (1) {
 483		uintptr_t ptr;
 484
 485		for (ptr = MEM_TEST_GPA;
 486		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
 487		     ptr += page_size)
 488			*(uint64_t *)ptr = MEM_TEST_VAL_1;
 489
 490		if (!guest_perform_sync())
 491			break;
 492
 493		for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
 494		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE;
 495		     ptr += page_size)
 496			*(uint64_t *)ptr = MEM_TEST_VAL_2;
 497
 498		if (!guest_perform_sync())
 499			break;
 500	}
 501
 502	GUEST_DONE();
 503}
 504
 505static void guest_code_test_memslot_unmap(void)
 506{
 507	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 508
 509	GUEST_SYNC(0);
 510
 511	guest_spin_until_start();
 512
 513	while (1) {
 514		uintptr_t ptr = MEM_TEST_GPA;
 515
 516		/*
 517		 * We can afford to access (map) just a small number of pages
 518		 * per host sync as otherwise the host will spend
 519		 * a significant amount of its time waiting for the guest
 520		 * (instead of doing unmap operations), so this will
 521		 * effectively turn this test into a map performance test.
 522		 *
 523		 * Just access a single page to be on the safe side.
 524		 */
 525		*(uint64_t *)ptr = MEM_TEST_VAL_1;
 526
 527		if (!guest_perform_sync())
 528			break;
 529
 530		ptr += MEM_TEST_UNMAP_SIZE / 2;
 531		*(uint64_t *)ptr = MEM_TEST_VAL_2;
 532
 533		if (!guest_perform_sync())
 534			break;
 535	}
 536
 537	GUEST_DONE();
 538}
 539
 540static void guest_code_test_memslot_rw(void)
 541{
 542	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
 543	uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size);
 544
 545	GUEST_SYNC(0);
 546
 547	guest_spin_until_start();
 548
 549	while (1) {
 550		uintptr_t ptr;
 551
 552		for (ptr = MEM_TEST_GPA;
 553		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size)
 554			*(uint64_t *)ptr = MEM_TEST_VAL_1;
 555
 556		if (!guest_perform_sync())
 557			break;
 558
 559		for (ptr = MEM_TEST_GPA + page_size / 2;
 560		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) {
 561			uint64_t val = *(uint64_t *)ptr;
 562
 563			GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2);
 564			*(uint64_t *)ptr = 0;
 565		}
 566
 567		if (!guest_perform_sync())
 568			break;
 569	}
 570
 571	GUEST_DONE();
 572}
 573
 574static bool test_memslot_move_prepare(struct vm_data *data,
 575				      struct sync_area *sync,
 576				      uint64_t *maxslots, bool isactive)
 577{
 578	uint32_t guest_page_size = data->vm->page_size;
 579	uint64_t movesrcgpa, movetestgpa;
 580
 581	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
 582
 583	if (isactive) {
 584		uint64_t lastpages;
 585
 586		vm_gpa2hva(data, movesrcgpa, &lastpages);
 587		if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) {
 588			*maxslots = 0;
 589			return false;
 590		}
 591	}
 592
 593	movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
 594	sync->move_area_ptr = (void *)movetestgpa;
 595
 596	if (isactive) {
 597		data->mmio_ok = true;
 598		data->mmio_gpa_min = movesrcgpa;
 599		data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
 600	}
 601
 602	return true;
 603}
 604
 605static bool test_memslot_move_prepare_active(struct vm_data *data,
 606					     struct sync_area *sync,
 607					     uint64_t *maxslots)
 608{
 609	return test_memslot_move_prepare(data, sync, maxslots, true);
 610}
 611
 612static bool test_memslot_move_prepare_inactive(struct vm_data *data,
 613					       struct sync_area *sync,
 614					       uint64_t *maxslots)
 615{
 616	return test_memslot_move_prepare(data, sync, maxslots, false);
 617}
 618
 619static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
 620{
 621	uint64_t movesrcgpa;
 622
 623	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
 624	vm_mem_region_move(data->vm, data->nslots - 1 + 1,
 625			   MEM_TEST_MOVE_GPA_DEST);
 626	vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
 627}
 628
 629static void test_memslot_do_unmap(struct vm_data *data,
 630				  uint64_t offsp, uint64_t count)
 631{
 632	uint64_t gpa, ctr;
 633	uint32_t guest_page_size = data->vm->page_size;
 634
 635	for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) {
 636		uint64_t npages;
 637		void *hva;
 638		int ret;
 639
 640		hva = vm_gpa2hva(data, gpa, &npages);
 641		TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
 642		npages = min(npages, count - ctr);
 643		ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED);
 644		TEST_ASSERT(!ret,
 645			    "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
 646			    hva, gpa);
 647		ctr += npages;
 648		gpa += npages * guest_page_size;
 649	}
 650	TEST_ASSERT(ctr == count,
 651		    "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
 652}
 653
 654static void test_memslot_map_unmap_check(struct vm_data *data,
 655					 uint64_t offsp, uint64_t valexp)
 656{
 657	uint64_t gpa;
 658	uint64_t *val;
 659	uint32_t guest_page_size = data->vm->page_size;
 660
 661	if (!map_unmap_verify)
 662		return;
 663
 664	gpa = MEM_TEST_GPA + offsp * guest_page_size;
 665	val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
 666	TEST_ASSERT(*val == valexp,
 667		    "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
 668		    *val, valexp, gpa);
 669	*val = 0;
 670}
 671
 672static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
 673{
 674	uint32_t guest_page_size = data->vm->page_size;
 675	uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size;
 676
 677	/*
 678	 * Unmap the second half of the test area while guest writes to (maps)
 679	 * the first half.
 680	 */
 681	test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2);
 682
 683	/*
 684	 * Wait for the guest to finish writing the first half of the test
 685	 * area, verify the written value on the first and the last page of
 686	 * this area and then unmap it.
 687	 * Meanwhile, the guest is writing to (mapping) the second half of
 688	 * the test area.
 689	 */
 690	host_perform_sync(sync);
 691	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
 692	test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1);
 693	test_memslot_do_unmap(data, 0, guest_pages / 2);
 694
 695
 696	/*
 697	 * Wait for the guest to finish writing the second half of the test
 698	 * area and verify the written value on the first and the last page
 699	 * of this area.
 700	 * The area will be unmapped at the beginning of the next loop
 701	 * iteration.
 702	 * Meanwhile, the guest is writing to (mapping) the first half of
 703	 * the test area.
 704	 */
 705	host_perform_sync(sync);
 706	test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
 707	test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2);
 708}
 709
 710static void test_memslot_unmap_loop_common(struct vm_data *data,
 711					   struct sync_area *sync,
 712					   uint64_t chunk)
 713{
 714	uint32_t guest_page_size = data->vm->page_size;
 715	uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size;
 716	uint64_t ctr;
 717
 718	/*
 719	 * Wait for the guest to finish mapping page(s) in the first half
 720	 * of the test area, verify the written value and then perform unmap
 721	 * of this area.
 722	 * Meanwhile, the guest is writing to (mapping) page(s) in the second
 723	 * half of the test area.
 724	 */
 725	host_perform_sync(sync);
 726	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
 727	for (ctr = 0; ctr < guest_pages / 2; ctr += chunk)
 728		test_memslot_do_unmap(data, ctr, chunk);
 729
 730	/* Likewise, but for the opposite host / guest areas */
 731	host_perform_sync(sync);
 732	test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2);
 733	for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk)
 734		test_memslot_do_unmap(data, ctr, chunk);
 735}
 736
 737static void test_memslot_unmap_loop(struct vm_data *data,
 738				    struct sync_area *sync)
 739{
 740	uint32_t host_page_size = getpagesize();
 741	uint32_t guest_page_size = data->vm->page_size;
 742	uint64_t guest_chunk_pages = guest_page_size >= host_page_size ?
 743					1 : host_page_size / guest_page_size;
 744
 745	test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
 746}
 747
 748static void test_memslot_unmap_loop_chunked(struct vm_data *data,
 749					    struct sync_area *sync)
 750{
 751	uint32_t guest_page_size = data->vm->page_size;
 752	uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size;
 753
 754	test_memslot_unmap_loop_common(data, sync, guest_chunk_pages);
 755}
 756
 757static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
 758{
 759	uint64_t gptr;
 760	uint32_t guest_page_size = data->vm->page_size;
 761
 762	for (gptr = MEM_TEST_GPA + guest_page_size / 2;
 763	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size)
 764		*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
 765
 766	host_perform_sync(sync);
 767
 768	for (gptr = MEM_TEST_GPA;
 769	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) {
 770		uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
 771		uint64_t val = *vptr;
 772
 773		TEST_ASSERT(val == MEM_TEST_VAL_1,
 774			    "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
 775			    val, gptr);
 776		*vptr = 0;
 777	}
 778
 779	host_perform_sync(sync);
 780}
 781
 782struct test_data {
 783	const char *name;
 784	uint64_t mem_size;
 785	void (*guest_code)(void);
 786	bool (*prepare)(struct vm_data *data, struct sync_area *sync,
 787			uint64_t *maxslots);
 788	void (*loop)(struct vm_data *data, struct sync_area *sync);
 789};
 790
 791static bool test_execute(int nslots, uint64_t *maxslots,
 792			 unsigned int maxtime,
 793			 const struct test_data *tdata,
 794			 uint64_t *nloops,
 795			 struct timespec *slot_runtime,
 796			 struct timespec *guest_runtime)
 797{
 798	uint64_t mem_size = tdata->mem_size ? : MEM_SIZE;
 799	struct vm_data *data;
 800	struct sync_area *sync;
 801	struct timespec tstart;
 802	bool ret = true;
 803
 804	data = alloc_vm();
 805	if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
 806			mem_size, slot_runtime)) {
 807		ret = false;
 808		goto exit_free;
 809	}
 810
 811	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
 812	if (tdata->prepare &&
 813	    !tdata->prepare(data, sync, maxslots)) {
 814		ret = false;
 815		goto exit_free;
 816	}
 817
 818	launch_vm(data);
 819
 820	clock_gettime(CLOCK_MONOTONIC, &tstart);
 821	let_guest_run(sync);
 822
 823	while (1) {
 824		*guest_runtime = timespec_elapsed(tstart);
 825		if (guest_runtime->tv_sec >= maxtime)
 826			break;
 827
 828		tdata->loop(data, sync);
 829
 830		(*nloops)++;
 831	}
 832
 833	make_guest_exit(sync);
 834	wait_guest_exit(data);
 835
 836exit_free:
 837	free_vm(data);
 838
 839	return ret;
 840}
 841
 842static const struct test_data tests[] = {
 843	{
 844		.name = "map",
 845		.mem_size = MEM_SIZE_MAP,
 846		.guest_code = guest_code_test_memslot_map,
 847		.loop = test_memslot_map_loop,
 848	},
 849	{
 850		.name = "unmap",
 851		.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
 852		.guest_code = guest_code_test_memslot_unmap,
 853		.loop = test_memslot_unmap_loop,
 854	},
 855	{
 856		.name = "unmap chunked",
 857		.mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE,
 858		.guest_code = guest_code_test_memslot_unmap,
 859		.loop = test_memslot_unmap_loop_chunked,
 860	},
 861	{
 862		.name = "move active area",
 863		.guest_code = guest_code_test_memslot_move,
 864		.prepare = test_memslot_move_prepare_active,
 865		.loop = test_memslot_move_loop,
 866	},
 867	{
 868		.name = "move inactive area",
 869		.guest_code = guest_code_test_memslot_move,
 870		.prepare = test_memslot_move_prepare_inactive,
 871		.loop = test_memslot_move_loop,
 872	},
 873	{
 874		.name = "RW",
 875		.guest_code = guest_code_test_memslot_rw,
 876		.loop = test_memslot_rw_loop
 877	},
 878};
 879
 880#define NTESTS ARRAY_SIZE(tests)
 881
 882struct test_args {
 883	int tfirst;
 884	int tlast;
 885	int nslots;
 886	int seconds;
 887	int runs;
 888};
 889
 890static void help(char *name, struct test_args *targs)
 891{
 892	int ctr;
 893
 894	pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
 895		name);
 896	pr_info(" -h: print this help screen.\n");
 897	pr_info(" -v: enable verbose mode (not for benchmarking).\n");
 898	pr_info(" -d: enable extra debug checks.\n");
 899	pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
 900		targs->nslots);
 901	pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
 902		targs->tfirst, NTESTS - 1);
 903	pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
 904		targs->tlast, NTESTS - 1);
 905	pr_info(" -l: specify the test length in seconds (currently: %i)\n",
 906		targs->seconds);
 907	pr_info(" -r: specify the number of runs per test (currently: %i)\n",
 908		targs->runs);
 909
 910	pr_info("\nAvailable tests:\n");
 911	for (ctr = 0; ctr < NTESTS; ctr++)
 912		pr_info("%d: %s\n", ctr, tests[ctr].name);
 913}
 914
 915static bool check_memory_sizes(void)
 916{
 917	uint32_t host_page_size = getpagesize();
 918	uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
 919
 920	if (host_page_size > SZ_64K || guest_page_size > SZ_64K) {
 921		pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n",
 922			host_page_size, guest_page_size);
 923		return false;
 924	}
 925
 926	if (MEM_SIZE % guest_page_size ||
 927	    MEM_TEST_SIZE % guest_page_size) {
 928		pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n");
 929		return false;
 930	}
 931
 932	if (MEM_SIZE_MAP % guest_page_size		||
 933	    MEM_TEST_MAP_SIZE % guest_page_size		||
 934	    (MEM_TEST_MAP_SIZE / guest_page_size) <= 2	||
 935	    (MEM_TEST_MAP_SIZE / guest_page_size) % 2) {
 936		pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n");
 937		return false;
 938	}
 939
 940	if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE		||
 941	    MEM_TEST_UNMAP_SIZE % guest_page_size	||
 942	    (MEM_TEST_UNMAP_SIZE / guest_page_size) %
 943	    (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) {
 944		pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n");
 945		return false;
 946	}
 947
 948	return true;
 949}
 950
 951static bool parse_args(int argc, char *argv[],
 952		       struct test_args *targs)
 953{
 954	uint32_t max_mem_slots;
 955	int opt;
 956
 957	while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
 958		switch (opt) {
 959		case 'h':
 960		default:
 961			help(argv[0], targs);
 962			return false;
 963		case 'v':
 964			verbose = true;
 965			break;
 966		case 'd':
 967			map_unmap_verify = true;
 968			break;
 969		case 's':
 970			targs->nslots = atoi_paranoid(optarg);
 971			if (targs->nslots <= 1 && targs->nslots != -1) {
 972				pr_info("Slot count cap must be larger than 1 or -1 for no cap\n");
 973				return false;
 974			}
 975			break;
 976		case 'f':
 977			targs->tfirst = atoi_non_negative("First test", optarg);
 978			break;
 979		case 'e':
 980			targs->tlast = atoi_non_negative("Last test", optarg);
 981			if (targs->tlast >= NTESTS) {
 982				pr_info("Last test to run has to be non-negative and less than %zu\n",
 983					NTESTS);
 984				return false;
 985			}
 986			break;
 987		case 'l':
 988			targs->seconds = atoi_non_negative("Test length", optarg);
 989			break;
 990		case 'r':
 991			targs->runs = atoi_positive("Runs per test", optarg);
 992			break;
 993		}
 994	}
 995
 996	if (optind < argc) {
 997		help(argv[0], targs);
 998		return false;
 999	}
1000
1001	if (targs->tfirst > targs->tlast) {
1002		pr_info("First test to run cannot be greater than the last test to run\n");
1003		return false;
1004	}
1005
1006	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
1007	if (max_mem_slots <= 1) {
1008		pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n");
1009		return false;
1010	}
1011
1012	/* Memory slot 0 is reserved */
1013	if (targs->nslots == -1)
1014		targs->nslots = max_mem_slots - 1;
1015	else
1016		targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1;
1017
1018	pr_info_v("Allowed Number of memory slots: %"PRIu32"\n",
1019		  targs->nslots + 1);
1020
1021	return true;
1022}
1023
1024struct test_result {
1025	struct timespec slot_runtime, guest_runtime, iter_runtime;
1026	int64_t slottimens, runtimens;
1027	uint64_t nloops;
1028};
1029
1030static bool test_loop(const struct test_data *data,
1031		      const struct test_args *targs,
1032		      struct test_result *rbestslottime,
1033		      struct test_result *rbestruntime)
1034{
1035	uint64_t maxslots;
1036	struct test_result result = {};
1037
1038	if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
1039			  &result.nloops,
1040			  &result.slot_runtime, &result.guest_runtime)) {
1041		if (maxslots)
1042			pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
1043				maxslots);
1044		else
1045			pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
1046
1047		return false;
1048	}
1049
1050	pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
1051		result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
1052		result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
1053	if (!result.nloops) {
1054		pr_info("No full loops done - too short test time or system too loaded?\n");
1055		return true;
1056	}
1057
1058	result.iter_runtime = timespec_div(result.guest_runtime,
1059					   result.nloops);
1060	pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
1061		result.nloops,
1062		result.iter_runtime.tv_sec,
1063		result.iter_runtime.tv_nsec);
1064	result.slottimens = timespec_to_ns(result.slot_runtime);
1065	result.runtimens = timespec_to_ns(result.iter_runtime);
1066
1067	/*
1068	 * Only rank the slot setup time for tests using the whole test memory
1069	 * area so they are comparable
1070	 */
1071	if (!data->mem_size &&
1072	    (!rbestslottime->slottimens ||
1073	     result.slottimens < rbestslottime->slottimens))
1074		*rbestslottime = result;
1075	if (!rbestruntime->runtimens ||
1076	    result.runtimens < rbestruntime->runtimens)
1077		*rbestruntime = result;
1078
1079	return true;
1080}
1081
1082int main(int argc, char *argv[])
1083{
1084	struct test_args targs = {
1085		.tfirst = 0,
1086		.tlast = NTESTS - 1,
1087		.nslots = -1,
1088		.seconds = 5,
1089		.runs = 1,
1090	};
1091	struct test_result rbestslottime = {};
1092	int tctr;
1093
1094	if (!check_memory_sizes())
1095		return -1;
1096
1097	if (!parse_args(argc, argv, &targs))
1098		return -1;
1099
1100	for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1101		const struct test_data *data = &tests[tctr];
1102		unsigned int runctr;
1103		struct test_result rbestruntime = {};
1104
1105		if (tctr > targs.tfirst)
1106			pr_info("\n");
1107
1108		pr_info("Testing %s performance with %i runs, %d seconds each\n",
1109			data->name, targs.runs, targs.seconds);
1110
1111		for (runctr = 0; runctr < targs.runs; runctr++)
1112			if (!test_loop(data, &targs,
1113				       &rbestslottime, &rbestruntime))
1114				break;
1115
1116		if (rbestruntime.runtimens)
1117			pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1118				rbestruntime.iter_runtime.tv_sec,
1119				rbestruntime.iter_runtime.tv_nsec,
1120				rbestruntime.nloops);
1121	}
1122
1123	if (rbestslottime.slottimens)
1124		pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1125			rbestslottime.slot_runtime.tv_sec,
1126			rbestslottime.slot_runtime.tv_nsec);
1127
1128	return 0;
1129}