Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | // SPDX-License-Identifier: GPL-2.0 /* * A memslot-related performance benchmark. * * Copyright (C) 2021 Oracle and/or its affiliates. * * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. */ #include <pthread.h> #include <sched.h> #include <semaphore.h> #include <stdatomic.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <time.h> #include <unistd.h> #include <linux/compiler.h> #include <linux/sizes.h> #include <test_util.h> #include <kvm_util.h> #include <processor.h> #define MEM_EXTRA_SIZE SZ_64K #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) #define MEM_GPA SZ_256M #define MEM_AUX_GPA MEM_GPA #define MEM_SYNC_GPA MEM_AUX_GPA #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) /* * 32 MiB is max size that gets well over 100 iterations on 509 slots. * Considering that each slot needs to have at least one page up to * 8194 slots in use can then be tested (although with slightly * limited resolution). */ #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) /* * 128 MiB is min size that fills 32k slots with at least one page in each * while at the same time gets 100+ iterations in such test * * 2 MiB chunk size like a typical huge page */ #define MEM_TEST_UNMAP_SIZE SZ_128M #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M /* * For the move active test the middle of the test area is placed on * a memslot boundary: half lies in the memslot being moved, half in * other memslot(s). * * We have different number of memory slots, excluding the reserved * memory slot 0, on various architectures and configurations. The * memory size in this test is calculated by picking the maximal * last memory slot's memory size, with alignment to the largest * supported page size (64KB). In this way, the selected memory * size for this test is compatible with test_memslot_move_prepare(). * * architecture slots memory-per-slot memory-on-last-slot * -------------------------------------------------------------- * x86-4KB 32763 16KB 160KB * arm64-4KB 32766 16KB 112KB * arm64-16KB 32766 16KB 112KB * arm64-64KB 8192 64KB 128KB */ #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, "invalid move test region size"); #define MEM_TEST_VAL_1 0x1122334455667788 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 struct vm_data { struct kvm_vm *vm; struct kvm_vcpu *vcpu; pthread_t vcpu_thread; uint32_t nslots; uint64_t npages; uint64_t pages_per_slot; void **hva_slots; bool mmio_ok; uint64_t mmio_gpa_min; uint64_t mmio_gpa_max; }; struct sync_area { uint32_t guest_page_size; atomic_bool start_flag; atomic_bool exit_flag; atomic_bool sync_flag; void *move_area_ptr; }; /* * Technically, we need also for the atomic bool to be address-free, which * is recommended, but not strictly required, by C11 for lockless * implementations. * However, in practice both GCC and Clang fulfill this requirement on * all KVM-supported platforms. */ static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); static sem_t vcpu_ready; static bool map_unmap_verify; static bool verbose; #define pr_info_v(...) \ do { \ if (verbose) \ pr_info(__VA_ARGS__); \ } while (0) static void check_mmio_access(struct vm_data *data, struct kvm_run *run) { TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); TEST_ASSERT(run->mmio.len == 8, "Unexpected exit mmio size = %u", run->mmio.len); TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && run->mmio.phys_addr <= data->mmio_gpa_max, "Unexpected exit mmio address = 0x%llx", run->mmio.phys_addr); } static void *vcpu_worker(void *__data) { struct vm_data *data = __data; struct kvm_vcpu *vcpu = data->vcpu; struct kvm_run *run = vcpu->run; struct ucall uc; while (1) { vcpu_run(vcpu); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: TEST_ASSERT(uc.args[1] == 0, "Unexpected sync ucall, got %lx", (ulong)uc.args[1]); sem_post(&vcpu_ready); continue; case UCALL_NONE: if (run->exit_reason == KVM_EXIT_MMIO) check_mmio_access(data, run); else goto done; break; case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); break; case UCALL_DONE: goto done; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } } done: return NULL; } static void wait_for_vcpu(void) { struct timespec ts; TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), "clock_gettime() failed: %d", errno); ts.tv_sec += 2; TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), "sem_timedwait() failed: %d", errno); } static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) { uint64_t gpage, pgoffs; uint32_t slot, slotoffs; void *base; uint32_t guest_page_size = data->vm->page_size; TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, "Too high gpa to translate"); gpa -= MEM_GPA; gpage = gpa / guest_page_size; pgoffs = gpa % guest_page_size; slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); slotoffs = gpage - (slot * data->pages_per_slot); if (rempages) { uint64_t slotpages; if (slot == data->nslots - 1) slotpages = data->npages - slot * data->pages_per_slot; else slotpages = data->pages_per_slot; TEST_ASSERT(!pgoffs, "Asking for remaining pages in slot but gpa not page aligned"); *rempages = slotpages - slotoffs; } base = data->hva_slots[slot]; return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; } static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) { uint32_t guest_page_size = data->vm->page_size; TEST_ASSERT(slot < data->nslots, "Too high slot number"); return MEM_GPA + slot * data->pages_per_slot * guest_page_size; } static struct vm_data *alloc_vm(void) { struct vm_data *data; data = malloc(sizeof(*data)); TEST_ASSERT(data, "malloc(vmdata) failed"); data->vm = NULL; data->vcpu = NULL; data->hva_slots = NULL; return data; } static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, uint64_t pages_per_slot, uint64_t rempages) { if (!pages_per_slot) return false; if ((pages_per_slot * guest_page_size) % host_page_size) return false; if ((rempages * guest_page_size) % host_page_size) return false; return true; } static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) { uint32_t guest_page_size = data->vm->page_size; uint64_t mempages, pages_per_slot, rempages; uint64_t slots; mempages = data->npages; slots = data->nslots; while (--slots > 1) { pages_per_slot = mempages / slots; if (!pages_per_slot) continue; rempages = mempages % pages_per_slot; if (check_slot_pages(host_page_size, guest_page_size, pages_per_slot, rempages)) return slots + 1; /* slot 0 is reserved */ } return 0; } static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, void *guest_code, uint64_t mem_size, struct timespec *slot_runtime) { uint64_t mempages, rempages; uint64_t guest_addr; uint32_t slot, host_page_size, guest_page_size; struct timespec tstart; struct sync_area *sync; host_page_size = getpagesize(); guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; mempages = mem_size / guest_page_size; data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); data->npages = mempages; TEST_ASSERT(data->npages > 1, "Can't test without any memory"); data->nslots = nslots; data->pages_per_slot = data->npages / data->nslots; rempages = data->npages % data->nslots; if (!check_slot_pages(host_page_size, guest_page_size, data->pages_per_slot, rempages)) { *maxslots = get_max_slots(data, host_page_size); return false; } data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); TEST_ASSERT(data->hva_slots, "malloc() fail"); pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", data->nslots, data->pages_per_slot, rempages); clock_gettime(CLOCK_MONOTONIC, &tstart); for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { uint64_t npages; npages = data->pages_per_slot; if (slot == data->nslots) npages += rempages; vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, guest_addr, slot, npages, 0); guest_addr += npages * guest_page_size; } *slot_runtime = timespec_elapsed(tstart); for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { uint64_t npages; uint64_t gpa; npages = data->pages_per_slot; if (slot == data->nslots) npages += rempages; gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); TEST_ASSERT(gpa == guest_addr, "vm_phy_pages_alloc() failed"); data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); guest_addr += npages * guest_page_size; } virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); sync->guest_page_size = data->vm->page_size; atomic_init(&sync->start_flag, false); atomic_init(&sync->exit_flag, false); atomic_init(&sync->sync_flag, false); data->mmio_ok = false; return true; } static void launch_vm(struct vm_data *data) { pr_info_v("Launching the test VM\n"); pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); /* Ensure the guest thread is spun up. */ wait_for_vcpu(); } static void free_vm(struct vm_data *data) { kvm_vm_free(data->vm); free(data->hva_slots); free(data); } static void wait_guest_exit(struct vm_data *data) { pthread_join(data->vcpu_thread, NULL); } static void let_guest_run(struct sync_area *sync) { atomic_store_explicit(&sync->start_flag, true, memory_order_release); } static void guest_spin_until_start(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) ; } static void make_guest_exit(struct sync_area *sync) { atomic_store_explicit(&sync->exit_flag, true, memory_order_release); } static bool _guest_should_exit(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); } #define guest_should_exit() unlikely(_guest_should_exit()) /* * noinline so we can easily see how much time the host spends waiting * for the guest. * For the same reason use alarm() instead of polling clock_gettime() * to implement a wait timeout. */ static noinline void host_perform_sync(struct sync_area *sync) { alarm(2); atomic_store_explicit(&sync->sync_flag, true, memory_order_release); while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) ; alarm(0); } static bool guest_perform_sync(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; bool expected; do { if (guest_should_exit()) return false; expected = true; } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, &expected, false, memory_order_acq_rel, memory_order_relaxed)); return true; } static void guest_code_test_memslot_move(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); GUEST_SYNC(0); guest_spin_until_start(); while (!guest_should_exit()) { uintptr_t ptr; for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; ptr += page_size) *(uint64_t *)ptr = MEM_TEST_VAL_1; /* * No host sync here since the MMIO exits are so expensive * that the host would spend most of its time waiting for * the guest and so instead of measuring memslot move * performance we would measure the performance and * likelihood of MMIO exits */ } GUEST_DONE(); } static void guest_code_test_memslot_map(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); GUEST_SYNC(0); guest_spin_until_start(); while (1) { uintptr_t ptr; for (ptr = MEM_TEST_GPA; ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += page_size) *(uint64_t *)ptr = MEM_TEST_VAL_1; if (!guest_perform_sync()) break; for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += page_size) *(uint64_t *)ptr = MEM_TEST_VAL_2; if (!guest_perform_sync()) break; } GUEST_DONE(); } static void guest_code_test_memslot_unmap(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; GUEST_SYNC(0); guest_spin_until_start(); while (1) { uintptr_t ptr = MEM_TEST_GPA; /* * We can afford to access (map) just a small number of pages * per host sync as otherwise the host will spend * a significant amount of its time waiting for the guest * (instead of doing unmap operations), so this will * effectively turn this test into a map performance test. * * Just access a single page to be on the safe side. */ *(uint64_t *)ptr = MEM_TEST_VAL_1; if (!guest_perform_sync()) break; ptr += MEM_TEST_UNMAP_SIZE / 2; *(uint64_t *)ptr = MEM_TEST_VAL_2; if (!guest_perform_sync()) break; } GUEST_DONE(); } static void guest_code_test_memslot_rw(void) { struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); GUEST_SYNC(0); guest_spin_until_start(); while (1) { uintptr_t ptr; for (ptr = MEM_TEST_GPA; ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) *(uint64_t *)ptr = MEM_TEST_VAL_1; if (!guest_perform_sync()) break; for (ptr = MEM_TEST_GPA + page_size / 2; ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { uint64_t val = *(uint64_t *)ptr; GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); *(uint64_t *)ptr = 0; } if (!guest_perform_sync()) break; } GUEST_DONE(); } static bool test_memslot_move_prepare(struct vm_data *data, struct sync_area *sync, uint64_t *maxslots, bool isactive) { uint32_t guest_page_size = data->vm->page_size; uint64_t movesrcgpa, movetestgpa; movesrcgpa = vm_slot2gpa(data, data->nslots - 1); if (isactive) { uint64_t lastpages; vm_gpa2hva(data, movesrcgpa, &lastpages); if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { *maxslots = 0; return false; } } movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); sync->move_area_ptr = (void *)movetestgpa; if (isactive) { data->mmio_ok = true; data->mmio_gpa_min = movesrcgpa; data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; } return true; } static bool test_memslot_move_prepare_active(struct vm_data *data, struct sync_area *sync, uint64_t *maxslots) { return test_memslot_move_prepare(data, sync, maxslots, true); } static bool test_memslot_move_prepare_inactive(struct vm_data *data, struct sync_area *sync, uint64_t *maxslots) { return test_memslot_move_prepare(data, sync, maxslots, false); } static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) { uint64_t movesrcgpa; movesrcgpa = vm_slot2gpa(data, data->nslots - 1); vm_mem_region_move(data->vm, data->nslots - 1 + 1, MEM_TEST_MOVE_GPA_DEST); vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); } static void test_memslot_do_unmap(struct vm_data *data, uint64_t offsp, uint64_t count) { uint64_t gpa, ctr; uint32_t guest_page_size = data->vm->page_size; for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { uint64_t npages; void *hva; int ret; hva = vm_gpa2hva(data, gpa, &npages); TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); npages = min(npages, count - ctr); ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); TEST_ASSERT(!ret, "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, hva, gpa); ctr += npages; gpa += npages * guest_page_size; } TEST_ASSERT(ctr == count, "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); } static void test_memslot_map_unmap_check(struct vm_data *data, uint64_t offsp, uint64_t valexp) { uint64_t gpa; uint64_t *val; uint32_t guest_page_size = data->vm->page_size; if (!map_unmap_verify) return; gpa = MEM_TEST_GPA + offsp * guest_page_size; val = (typeof(val))vm_gpa2hva(data, gpa, NULL); TEST_ASSERT(*val == valexp, "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", *val, valexp, gpa); *val = 0; } static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) { uint32_t guest_page_size = data->vm->page_size; uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; /* * Unmap the second half of the test area while guest writes to (maps) * the first half. */ test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); /* * Wait for the guest to finish writing the first half of the test * area, verify the written value on the first and the last page of * this area and then unmap it. * Meanwhile, the guest is writing to (mapping) the second half of * the test area. */ host_perform_sync(sync); test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); test_memslot_do_unmap(data, 0, guest_pages / 2); /* * Wait for the guest to finish writing the second half of the test * area and verify the written value on the first and the last page * of this area. * The area will be unmapped at the beginning of the next loop * iteration. * Meanwhile, the guest is writing to (mapping) the first half of * the test area. */ host_perform_sync(sync); test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); } static void test_memslot_unmap_loop_common(struct vm_data *data, struct sync_area *sync, uint64_t chunk) { uint32_t guest_page_size = data->vm->page_size; uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; uint64_t ctr; /* * Wait for the guest to finish mapping page(s) in the first half * of the test area, verify the written value and then perform unmap * of this area. * Meanwhile, the guest is writing to (mapping) page(s) in the second * half of the test area. */ host_perform_sync(sync); test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) test_memslot_do_unmap(data, ctr, chunk); /* Likewise, but for the opposite host / guest areas */ host_perform_sync(sync); test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) test_memslot_do_unmap(data, ctr, chunk); } static void test_memslot_unmap_loop(struct vm_data *data, struct sync_area *sync) { uint32_t host_page_size = getpagesize(); uint32_t guest_page_size = data->vm->page_size; uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 1 : host_page_size / guest_page_size; test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); } static void test_memslot_unmap_loop_chunked(struct vm_data *data, struct sync_area *sync) { uint32_t guest_page_size = data->vm->page_size; uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); } static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) { uint64_t gptr; uint32_t guest_page_size = data->vm->page_size; for (gptr = MEM_TEST_GPA + guest_page_size / 2; gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; host_perform_sync(sync); for (gptr = MEM_TEST_GPA; gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); uint64_t val = *vptr; TEST_ASSERT(val == MEM_TEST_VAL_1, "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", val, gptr); *vptr = 0; } host_perform_sync(sync); } struct test_data { const char *name; uint64_t mem_size; void (*guest_code)(void); bool (*prepare)(struct vm_data *data, struct sync_area *sync, uint64_t *maxslots); void (*loop)(struct vm_data *data, struct sync_area *sync); }; static bool test_execute(int nslots, uint64_t *maxslots, unsigned int maxtime, const struct test_data *tdata, uint64_t *nloops, struct timespec *slot_runtime, struct timespec *guest_runtime) { uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; struct vm_data *data; struct sync_area *sync; struct timespec tstart; bool ret = true; data = alloc_vm(); if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, mem_size, slot_runtime)) { ret = false; goto exit_free; } sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); if (tdata->prepare && !tdata->prepare(data, sync, maxslots)) { ret = false; goto exit_free; } launch_vm(data); clock_gettime(CLOCK_MONOTONIC, &tstart); let_guest_run(sync); while (1) { *guest_runtime = timespec_elapsed(tstart); if (guest_runtime->tv_sec >= maxtime) break; tdata->loop(data, sync); (*nloops)++; } make_guest_exit(sync); wait_guest_exit(data); exit_free: free_vm(data); return ret; } static const struct test_data tests[] = { { .name = "map", .mem_size = MEM_SIZE_MAP, .guest_code = guest_code_test_memslot_map, .loop = test_memslot_map_loop, }, { .name = "unmap", .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, .guest_code = guest_code_test_memslot_unmap, .loop = test_memslot_unmap_loop, }, { .name = "unmap chunked", .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, .guest_code = guest_code_test_memslot_unmap, .loop = test_memslot_unmap_loop_chunked, }, { .name = "move active area", .guest_code = guest_code_test_memslot_move, .prepare = test_memslot_move_prepare_active, .loop = test_memslot_move_loop, }, { .name = "move inactive area", .guest_code = guest_code_test_memslot_move, .prepare = test_memslot_move_prepare_inactive, .loop = test_memslot_move_loop, }, { .name = "RW", .guest_code = guest_code_test_memslot_rw, .loop = test_memslot_rw_loop }, }; #define NTESTS ARRAY_SIZE(tests) struct test_args { int tfirst; int tlast; int nslots; int seconds; int runs; }; static void help(char *name, struct test_args *targs) { int ctr; pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", name); pr_info(" -h: print this help screen.\n"); pr_info(" -v: enable verbose mode (not for benchmarking).\n"); pr_info(" -d: enable extra debug checks.\n"); pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", targs->nslots); pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", targs->tfirst, NTESTS - 1); pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", targs->tlast, NTESTS - 1); pr_info(" -l: specify the test length in seconds (currently: %i)\n", targs->seconds); pr_info(" -r: specify the number of runs per test (currently: %i)\n", targs->runs); pr_info("\nAvailable tests:\n"); for (ctr = 0; ctr < NTESTS; ctr++) pr_info("%d: %s\n", ctr, tests[ctr].name); } static bool check_memory_sizes(void) { uint32_t host_page_size = getpagesize(); uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", host_page_size, guest_page_size); return false; } if (MEM_SIZE % guest_page_size || MEM_TEST_SIZE % guest_page_size) { pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); return false; } if (MEM_SIZE_MAP % guest_page_size || MEM_TEST_MAP_SIZE % guest_page_size || (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); return false; } if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || MEM_TEST_UNMAP_SIZE % guest_page_size || (MEM_TEST_UNMAP_SIZE / guest_page_size) % (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); return false; } return true; } static bool parse_args(int argc, char *argv[], struct test_args *targs) { uint32_t max_mem_slots; int opt; while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { switch (opt) { case 'h': default: help(argv[0], targs); return false; case 'v': verbose = true; break; case 'd': map_unmap_verify = true; break; case 's': targs->nslots = atoi_paranoid(optarg); if (targs->nslots <= 1 && targs->nslots != -1) { pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); return false; } break; case 'f': targs->tfirst = atoi_non_negative("First test", optarg); break; case 'e': targs->tlast = atoi_non_negative("Last test", optarg); if (targs->tlast >= NTESTS) { pr_info("Last test to run has to be non-negative and less than %zu\n", NTESTS); return false; } break; case 'l': targs->seconds = atoi_non_negative("Test length", optarg); break; case 'r': targs->runs = atoi_positive("Runs per test", optarg); break; } } if (optind < argc) { help(argv[0], targs); return false; } if (targs->tfirst > targs->tlast) { pr_info("First test to run cannot be greater than the last test to run\n"); return false; } max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); if (max_mem_slots <= 1) { pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); return false; } /* Memory slot 0 is reserved */ if (targs->nslots == -1) targs->nslots = max_mem_slots - 1; else targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", targs->nslots + 1); return true; } struct test_result { struct timespec slot_runtime, guest_runtime, iter_runtime; int64_t slottimens, runtimens; uint64_t nloops; }; static bool test_loop(const struct test_data *data, const struct test_args *targs, struct test_result *rbestslottime, struct test_result *rbestruntime) { uint64_t maxslots; struct test_result result = {}; if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, &result.nloops, &result.slot_runtime, &result.guest_runtime)) { if (maxslots) pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", maxslots); else pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); return false; } pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); if (!result.nloops) { pr_info("No full loops done - too short test time or system too loaded?\n"); return true; } result.iter_runtime = timespec_div(result.guest_runtime, result.nloops); pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", result.nloops, result.iter_runtime.tv_sec, result.iter_runtime.tv_nsec); result.slottimens = timespec_to_ns(result.slot_runtime); result.runtimens = timespec_to_ns(result.iter_runtime); /* * Only rank the slot setup time for tests using the whole test memory * area so they are comparable */ if (!data->mem_size && (!rbestslottime->slottimens || result.slottimens < rbestslottime->slottimens)) *rbestslottime = result; if (!rbestruntime->runtimens || result.runtimens < rbestruntime->runtimens) *rbestruntime = result; return true; } int main(int argc, char *argv[]) { struct test_args targs = { .tfirst = 0, .tlast = NTESTS - 1, .nslots = -1, .seconds = 5, .runs = 1, }; struct test_result rbestslottime = {}; int tctr; if (!check_memory_sizes()) return -1; if (!parse_args(argc, argv, &targs)) return -1; for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { const struct test_data *data = &tests[tctr]; unsigned int runctr; struct test_result rbestruntime = {}; if (tctr > targs.tfirst) pr_info("\n"); pr_info("Testing %s performance with %i runs, %d seconds each\n", data->name, targs.runs, targs.seconds); for (runctr = 0; runctr < targs.runs; runctr++) if (!test_loop(data, &targs, &rbestslottime, &rbestruntime)) break; if (rbestruntime.runtimens) pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", rbestruntime.iter_runtime.tv_sec, rbestruntime.iter_runtime.tv_nsec, rbestruntime.nloops); } if (rbestslottime.slottimens) pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", rbestslottime.slot_runtime.tv_sec, rbestslottime.slot_runtime.tv_nsec); return 0; } |