Loading...
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/tlv.h>
30#include <sound/info.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/timer.h>
34
35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
36#define CREATE_TRACE_POINTS
37#include "pcm_trace.h"
38#else
39#define trace_hwptr(substream, pos, in_interrupt)
40#define trace_xrun(substream)
41#define trace_hw_ptr_error(substream, reason)
42#endif
43
44/*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54{
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140}
141
142#ifdef CONFIG_SND_DEBUG
143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145{
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151}
152EXPORT_SYMBOL(snd_pcm_debug_name);
153#endif
154
155#define XRUN_DEBUG_BASIC (1<<0)
156#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161#define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163#else
164#define xrun_debug(substream, mask) 0
165#endif
166
167#define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172static void xrun(struct snd_pcm_substream *substream)
173{
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186}
187
188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203#endif
204
205int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207{
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233}
234
235static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238{
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 runtime->status->audio_tstamp = *audio_tstamp;
268 runtime->status->tstamp = *curr_tstamp;
269
270 /*
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
273 */
274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
275 runtime->driver_tstamp = driver_tstamp;
276}
277
278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
279 unsigned int in_interrupt)
280{
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 snd_pcm_uframes_t pos;
283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
284 snd_pcm_sframes_t hdelta, delta;
285 unsigned long jdelta;
286 unsigned long curr_jiffies;
287 struct timespec curr_tstamp;
288 struct timespec audio_tstamp;
289 int crossed_boundary = 0;
290
291 old_hw_ptr = runtime->status->hw_ptr;
292
293 /*
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
298 */
299 pos = substream->ops->pointer(substream);
300 curr_jiffies = jiffies;
301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
302 if ((substream->ops->get_time_info) &&
303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
304 substream->ops->get_time_info(substream, &curr_tstamp,
305 &audio_tstamp,
306 &runtime->audio_tstamp_config,
307 &runtime->audio_tstamp_report);
308
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
312 } else
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 }
315
316 if (pos == SNDRV_PCM_POS_XRUN) {
317 xrun(substream);
318 return -EPIPE;
319 }
320 if (pos >= runtime->buffer_size) {
321 if (printk_ratelimit()) {
322 char name[16];
323 snd_pcm_debug_name(substream, name, sizeof(name));
324 pcm_err(substream->pcm,
325 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name, pos, runtime->buffer_size,
327 runtime->period_size);
328 }
329 pos = 0;
330 }
331 pos -= pos % runtime->min_align;
332 trace_hwptr(substream, pos, in_interrupt);
333 hw_base = runtime->hw_ptr_base;
334 new_hw_ptr = hw_base + pos;
335 if (in_interrupt) {
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta = runtime->hw_ptr_interrupt + runtime->period_size;
339 if (delta > new_hw_ptr) {
340 /* check for double acknowledged interrupts */
341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
343 hw_base += runtime->buffer_size;
344 if (hw_base >= runtime->boundary) {
345 hw_base = 0;
346 crossed_boundary++;
347 }
348 new_hw_ptr = hw_base + pos;
349 goto __delta;
350 }
351 }
352 }
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr < old_hw_ptr) {
356 hw_base += runtime->buffer_size;
357 if (hw_base >= runtime->boundary) {
358 hw_base = 0;
359 crossed_boundary++;
360 }
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367
368 if (runtime->no_period_wakeup) {
369 snd_pcm_sframes_t xrun_threshold;
370 /*
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
373 */
374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
376 goto no_delta_check;
377 hdelta = jdelta - delta * HZ / runtime->rate;
378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
379 while (hdelta > xrun_threshold) {
380 delta += runtime->buffer_size;
381 hw_base += runtime->buffer_size;
382 if (hw_base >= runtime->boundary) {
383 hw_base = 0;
384 crossed_boundary++;
385 }
386 new_hw_ptr = hw_base + pos;
387 hdelta -= runtime->hw_ptr_buffer_jiffies;
388 }
389 goto no_delta_check;
390 }
391
392 /* something must be really wrong */
393 if (delta >= runtime->buffer_size + runtime->period_size) {
394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream->stream, (long)pos,
397 (long)new_hw_ptr, (long)old_hw_ptr);
398 return 0;
399 }
400
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
403 goto no_jiffies_check;
404
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
408 */
409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
410 goto no_jiffies_check;
411 hdelta = delta;
412 if (hdelta < runtime->delay)
413 goto no_jiffies_check;
414 hdelta -= runtime->delay;
415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
417 delta = jdelta /
418 (((runtime->period_size * HZ) / runtime->rate)
419 + HZ/100);
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr = old_hw_ptr;
422 hw_base = delta;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
425 while (delta > 0) {
426 new_hw_ptr += runtime->period_size;
427 if (new_hw_ptr >= runtime->boundary) {
428 new_hw_ptr -= runtime->boundary;
429 crossed_boundary--;
430 }
431 delta--;
432 }
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos, (long)hdelta,
437 (long)runtime->period_size, jdelta,
438 ((hdelta * HZ) / runtime->rate), hw_base,
439 (unsigned long)old_hw_ptr,
440 (unsigned long)new_hw_ptr);
441 /* reset values to proper state */
442 delta = 0;
443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
444 }
445 no_jiffies_check:
446 if (delta > runtime->period_size + runtime->period_size / 2) {
447 hw_ptr_error(substream, in_interrupt,
448 "Lost interrupts?",
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream->stream, (long)delta,
451 (long)new_hw_ptr,
452 (long)old_hw_ptr);
453 }
454
455 no_delta_check:
456 if (runtime->status->hw_ptr == new_hw_ptr) {
457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
458 return 0;
459 }
460
461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
462 runtime->silence_size > 0)
463 snd_pcm_playback_silence(substream, new_hw_ptr);
464
465 if (in_interrupt) {
466 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
467 if (delta < 0)
468 delta += runtime->boundary;
469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
470 runtime->hw_ptr_interrupt += delta;
471 if (runtime->hw_ptr_interrupt >= runtime->boundary)
472 runtime->hw_ptr_interrupt -= runtime->boundary;
473 }
474 runtime->hw_ptr_base = hw_base;
475 runtime->status->hw_ptr = new_hw_ptr;
476 runtime->hw_ptr_jiffies = curr_jiffies;
477 if (crossed_boundary) {
478 snd_BUG_ON(crossed_boundary != 1);
479 runtime->hw_ptr_wrap += runtime->boundary;
480 }
481
482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
483
484 return snd_pcm_update_state(substream, runtime);
485}
486
487/* CAUTION: call it with irq disabled */
488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
489{
490 return snd_pcm_update_hw_ptr0(substream, 0);
491}
492
493/**
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
498 *
499 * Sets the given PCM operators to the pcm instance.
500 */
501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
502 const struct snd_pcm_ops *ops)
503{
504 struct snd_pcm_str *stream = &pcm->streams[direction];
505 struct snd_pcm_substream *substream;
506
507 for (substream = stream->substream; substream != NULL; substream = substream->next)
508 substream->ops = ops;
509}
510
511EXPORT_SYMBOL(snd_pcm_set_ops);
512
513/**
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
516 *
517 * Sets the PCM sync identifier for the card.
518 */
519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
520{
521 struct snd_pcm_runtime *runtime = substream->runtime;
522
523 runtime->sync.id32[0] = substream->pcm->card->number;
524 runtime->sync.id32[1] = -1;
525 runtime->sync.id32[2] = -1;
526 runtime->sync.id32[3] = -1;
527}
528
529EXPORT_SYMBOL(snd_pcm_set_sync);
530
531/*
532 * Standard ioctl routine
533 */
534
535static inline unsigned int div32(unsigned int a, unsigned int b,
536 unsigned int *r)
537{
538 if (b == 0) {
539 *r = 0;
540 return UINT_MAX;
541 }
542 *r = a % b;
543 return a / b;
544}
545
546static inline unsigned int div_down(unsigned int a, unsigned int b)
547{
548 if (b == 0)
549 return UINT_MAX;
550 return a / b;
551}
552
553static inline unsigned int div_up(unsigned int a, unsigned int b)
554{
555 unsigned int r;
556 unsigned int q;
557 if (b == 0)
558 return UINT_MAX;
559 q = div32(a, b, &r);
560 if (r)
561 ++q;
562 return q;
563}
564
565static inline unsigned int mul(unsigned int a, unsigned int b)
566{
567 if (a == 0)
568 return 0;
569 if (div_down(UINT_MAX, a) < b)
570 return UINT_MAX;
571 return a * b;
572}
573
574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
575 unsigned int c, unsigned int *r)
576{
577 u_int64_t n = (u_int64_t) a * b;
578 if (c == 0) {
579 snd_BUG_ON(!n);
580 *r = 0;
581 return UINT_MAX;
582 }
583 n = div_u64_rem(n, c, r);
584 if (n >= UINT_MAX) {
585 *r = 0;
586 return UINT_MAX;
587 }
588 return n;
589}
590
591/**
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
595 *
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
599 *
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
602 */
603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
604{
605 int changed = 0;
606 if (snd_BUG_ON(snd_interval_empty(i)))
607 return -EINVAL;
608 if (i->min < v->min) {
609 i->min = v->min;
610 i->openmin = v->openmin;
611 changed = 1;
612 } else if (i->min == v->min && !i->openmin && v->openmin) {
613 i->openmin = 1;
614 changed = 1;
615 }
616 if (i->max > v->max) {
617 i->max = v->max;
618 i->openmax = v->openmax;
619 changed = 1;
620 } else if (i->max == v->max && !i->openmax && v->openmax) {
621 i->openmax = 1;
622 changed = 1;
623 }
624 if (!i->integer && v->integer) {
625 i->integer = 1;
626 changed = 1;
627 }
628 if (i->integer) {
629 if (i->openmin) {
630 i->min++;
631 i->openmin = 0;
632 }
633 if (i->openmax) {
634 i->max--;
635 i->openmax = 0;
636 }
637 } else if (!i->openmin && !i->openmax && i->min == i->max)
638 i->integer = 1;
639 if (snd_interval_checkempty(i)) {
640 snd_interval_none(i);
641 return -EINVAL;
642 }
643 return changed;
644}
645
646EXPORT_SYMBOL(snd_interval_refine);
647
648static int snd_interval_refine_first(struct snd_interval *i)
649{
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->max = i->min;
655 i->openmax = i->openmin;
656 if (i->openmax)
657 i->max++;
658 return 1;
659}
660
661static int snd_interval_refine_last(struct snd_interval *i)
662{
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->min = i->max;
668 i->openmin = i->openmax;
669 if (i->openmin)
670 i->min--;
671 return 1;
672}
673
674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
675{
676 if (a->empty || b->empty) {
677 snd_interval_none(c);
678 return;
679 }
680 c->empty = 0;
681 c->min = mul(a->min, b->min);
682 c->openmin = (a->openmin || b->openmin);
683 c->max = mul(a->max, b->max);
684 c->openmax = (a->openmax || b->openmax);
685 c->integer = (a->integer && b->integer);
686}
687
688/**
689 * snd_interval_div - refine the interval value with division
690 * @a: dividend
691 * @b: divisor
692 * @c: quotient
693 *
694 * c = a / b
695 *
696 * Returns non-zero if the value is changed, zero if not changed.
697 */
698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
699{
700 unsigned int r;
701 if (a->empty || b->empty) {
702 snd_interval_none(c);
703 return;
704 }
705 c->empty = 0;
706 c->min = div32(a->min, b->max, &r);
707 c->openmin = (r || a->openmin || b->openmax);
708 if (b->min > 0) {
709 c->max = div32(a->max, b->min, &r);
710 if (r) {
711 c->max++;
712 c->openmax = 1;
713 } else
714 c->openmax = (a->openmax || b->openmin);
715 } else {
716 c->max = UINT_MAX;
717 c->openmax = 0;
718 }
719 c->integer = 0;
720}
721
722/**
723 * snd_interval_muldivk - refine the interval value
724 * @a: dividend 1
725 * @b: dividend 2
726 * @k: divisor (as integer)
727 * @c: result
728 *
729 * c = a * b / k
730 *
731 * Returns non-zero if the value is changed, zero if not changed.
732 */
733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
734 unsigned int k, struct snd_interval *c)
735{
736 unsigned int r;
737 if (a->empty || b->empty) {
738 snd_interval_none(c);
739 return;
740 }
741 c->empty = 0;
742 c->min = muldiv32(a->min, b->min, k, &r);
743 c->openmin = (r || a->openmin || b->openmin);
744 c->max = muldiv32(a->max, b->max, k, &r);
745 if (r) {
746 c->max++;
747 c->openmax = 1;
748 } else
749 c->openmax = (a->openmax || b->openmax);
750 c->integer = 0;
751}
752
753/**
754 * snd_interval_mulkdiv - refine the interval value
755 * @a: dividend 1
756 * @k: dividend 2 (as integer)
757 * @b: divisor
758 * @c: result
759 *
760 * c = a * k / b
761 *
762 * Returns non-zero if the value is changed, zero if not changed.
763 */
764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
765 const struct snd_interval *b, struct snd_interval *c)
766{
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = muldiv32(a->min, k, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = muldiv32(a->max, k, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787}
788
789/* ---- */
790
791
792/**
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
799 *
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
802 */
803int snd_interval_ratnum(struct snd_interval *i,
804 unsigned int rats_count, const struct snd_ratnum *rats,
805 unsigned int *nump, unsigned int *denp)
806{
807 unsigned int best_num, best_den;
808 int best_diff;
809 unsigned int k;
810 struct snd_interval t;
811 int err;
812 unsigned int result_num, result_den;
813 int result_diff;
814
815 best_num = best_den = best_diff = 0;
816 for (k = 0; k < rats_count; ++k) {
817 unsigned int num = rats[k].num;
818 unsigned int den;
819 unsigned int q = i->min;
820 int diff;
821 if (q == 0)
822 q = 1;
823 den = div_up(num, q);
824 if (den < rats[k].den_min)
825 continue;
826 if (den > rats[k].den_max)
827 den = rats[k].den_max;
828 else {
829 unsigned int r;
830 r = (den - rats[k].den_min) % rats[k].den_step;
831 if (r != 0)
832 den -= r;
833 }
834 diff = num - q * den;
835 if (diff < 0)
836 diff = -diff;
837 if (best_num == 0 ||
838 diff * best_den < best_diff * den) {
839 best_diff = diff;
840 best_den = den;
841 best_num = num;
842 }
843 }
844 if (best_den == 0) {
845 i->empty = 1;
846 return -EINVAL;
847 }
848 t.min = div_down(best_num, best_den);
849 t.openmin = !!(best_num % best_den);
850
851 result_num = best_num;
852 result_diff = best_diff;
853 result_den = best_den;
854 best_num = best_den = best_diff = 0;
855 for (k = 0; k < rats_count; ++k) {
856 unsigned int num = rats[k].num;
857 unsigned int den;
858 unsigned int q = i->max;
859 int diff;
860 if (q == 0) {
861 i->empty = 1;
862 return -EINVAL;
863 }
864 den = div_down(num, q);
865 if (den > rats[k].den_max)
866 continue;
867 if (den < rats[k].den_min)
868 den = rats[k].den_min;
869 else {
870 unsigned int r;
871 r = (den - rats[k].den_min) % rats[k].den_step;
872 if (r != 0)
873 den += rats[k].den_step - r;
874 }
875 diff = q * den - num;
876 if (diff < 0)
877 diff = -diff;
878 if (best_num == 0 ||
879 diff * best_den < best_diff * den) {
880 best_diff = diff;
881 best_den = den;
882 best_num = num;
883 }
884 }
885 if (best_den == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 t.max = div_up(best_num, best_den);
890 t.openmax = !!(best_num % best_den);
891 t.integer = 0;
892 err = snd_interval_refine(i, &t);
893 if (err < 0)
894 return err;
895
896 if (snd_interval_single(i)) {
897 if (best_diff * result_den < result_diff * best_den) {
898 result_num = best_num;
899 result_den = best_den;
900 }
901 if (nump)
902 *nump = result_num;
903 if (denp)
904 *denp = result_den;
905 }
906 return err;
907}
908
909EXPORT_SYMBOL(snd_interval_ratnum);
910
911/**
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
918 *
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
921 */
922static int snd_interval_ratden(struct snd_interval *i,
923 unsigned int rats_count,
924 const struct snd_ratden *rats,
925 unsigned int *nump, unsigned int *denp)
926{
927 unsigned int best_num, best_diff, best_den;
928 unsigned int k;
929 struct snd_interval t;
930 int err;
931
932 best_num = best_den = best_diff = 0;
933 for (k = 0; k < rats_count; ++k) {
934 unsigned int num;
935 unsigned int den = rats[k].den;
936 unsigned int q = i->min;
937 int diff;
938 num = mul(q, den);
939 if (num > rats[k].num_max)
940 continue;
941 if (num < rats[k].num_min)
942 num = rats[k].num_max;
943 else {
944 unsigned int r;
945 r = (num - rats[k].num_min) % rats[k].num_step;
946 if (r != 0)
947 num += rats[k].num_step - r;
948 }
949 diff = num - q * den;
950 if (best_num == 0 ||
951 diff * best_den < best_diff * den) {
952 best_diff = diff;
953 best_den = den;
954 best_num = num;
955 }
956 }
957 if (best_den == 0) {
958 i->empty = 1;
959 return -EINVAL;
960 }
961 t.min = div_down(best_num, best_den);
962 t.openmin = !!(best_num % best_den);
963
964 best_num = best_den = best_diff = 0;
965 for (k = 0; k < rats_count; ++k) {
966 unsigned int num;
967 unsigned int den = rats[k].den;
968 unsigned int q = i->max;
969 int diff;
970 num = mul(q, den);
971 if (num < rats[k].num_min)
972 continue;
973 if (num > rats[k].num_max)
974 num = rats[k].num_max;
975 else {
976 unsigned int r;
977 r = (num - rats[k].num_min) % rats[k].num_step;
978 if (r != 0)
979 num -= r;
980 }
981 diff = q * den - num;
982 if (best_num == 0 ||
983 diff * best_den < best_diff * den) {
984 best_diff = diff;
985 best_den = den;
986 best_num = num;
987 }
988 }
989 if (best_den == 0) {
990 i->empty = 1;
991 return -EINVAL;
992 }
993 t.max = div_up(best_num, best_den);
994 t.openmax = !!(best_num % best_den);
995 t.integer = 0;
996 err = snd_interval_refine(i, &t);
997 if (err < 0)
998 return err;
999
1000 if (snd_interval_single(i)) {
1001 if (nump)
1002 *nump = best_num;
1003 if (denp)
1004 *denp = best_den;
1005 }
1006 return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024 const unsigned int *list, unsigned int mask)
1025{
1026 unsigned int k;
1027 struct snd_interval list_range;
1028
1029 if (!count) {
1030 i->empty = 1;
1031 return -EINVAL;
1032 }
1033 snd_interval_any(&list_range);
1034 list_range.min = UINT_MAX;
1035 list_range.max = 0;
1036 for (k = 0; k < count; k++) {
1037 if (mask && !(mask & (1 << k)))
1038 continue;
1039 if (!snd_interval_test(i, list[k]))
1040 continue;
1041 list_range.min = min(list_range.min, list[k]);
1042 list_range.max = max(list_range.max, list[k]);
1043 }
1044 return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064 const struct snd_interval *ranges, unsigned int mask)
1065{
1066 unsigned int k;
1067 struct snd_interval range_union;
1068 struct snd_interval range;
1069
1070 if (!count) {
1071 snd_interval_none(i);
1072 return -EINVAL;
1073 }
1074 snd_interval_any(&range_union);
1075 range_union.min = UINT_MAX;
1076 range_union.max = 0;
1077 for (k = 0; k < count; k++) {
1078 if (mask && !(mask & (1 << k)))
1079 continue;
1080 snd_interval_copy(&range, &ranges[k]);
1081 if (snd_interval_refine(&range, i) < 0)
1082 continue;
1083 if (snd_interval_empty(&range))
1084 continue;
1085
1086 if (range.min < range_union.min) {
1087 range_union.min = range.min;
1088 range_union.openmin = 1;
1089 }
1090 if (range.min == range_union.min && !range.openmin)
1091 range_union.openmin = 0;
1092 if (range.max > range_union.max) {
1093 range_union.max = range.max;
1094 range_union.openmax = 1;
1095 }
1096 if (range.max == range_union.max && !range.openmax)
1097 range_union.openmax = 0;
1098 }
1099 return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105 unsigned int n;
1106 int changed = 0;
1107 n = i->min % step;
1108 if (n != 0 || i->openmin) {
1109 i->min += step - n;
1110 i->openmin = 0;
1111 changed = 1;
1112 }
1113 n = i->max % step;
1114 if (n != 0 || i->openmax) {
1115 i->max -= n;
1116 i->openmax = 0;
1117 changed = 1;
1118 }
1119 if (snd_interval_checkempty(i)) {
1120 i->empty = 1;
1121 return -EINVAL;
1122 }
1123 return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140 int var,
1141 snd_pcm_hw_rule_func_t func, void *private,
1142 int dep, ...)
1143{
1144 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145 struct snd_pcm_hw_rule *c;
1146 unsigned int k;
1147 va_list args;
1148 va_start(args, dep);
1149 if (constrs->rules_num >= constrs->rules_all) {
1150 struct snd_pcm_hw_rule *new;
1151 unsigned int new_rules = constrs->rules_all + 16;
1152 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153 if (!new) {
1154 va_end(args);
1155 return -ENOMEM;
1156 }
1157 if (constrs->rules) {
1158 memcpy(new, constrs->rules,
1159 constrs->rules_num * sizeof(*c));
1160 kfree(constrs->rules);
1161 }
1162 constrs->rules = new;
1163 constrs->rules_all = new_rules;
1164 }
1165 c = &constrs->rules[constrs->rules_num];
1166 c->cond = cond;
1167 c->func = func;
1168 c->var = var;
1169 c->private = private;
1170 k = 0;
1171 while (1) {
1172 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173 va_end(args);
1174 return -EINVAL;
1175 }
1176 c->deps[k++] = dep;
1177 if (dep < 0)
1178 break;
1179 dep = va_arg(args, int);
1180 }
1181 constrs->rules_num++;
1182 va_end(args);
1183 return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 u_int32_t mask)
1200{
1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 struct snd_mask *maskp = constrs_mask(constrs, var);
1203 *maskp->bits &= mask;
1204 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205 if (*maskp->bits == 0)
1206 return -EINVAL;
1207 return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221 u_int64_t mask)
1222{
1223 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224 struct snd_mask *maskp = constrs_mask(constrs, var);
1225 maskp->bits[0] &= (u_int32_t)mask;
1226 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228 if (! maskp->bits[0] && ! maskp->bits[1])
1229 return -EINVAL;
1230 return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1280{
1281 struct snd_pcm_hw_constraint_list *list = rule->private;
1282 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 *
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298 unsigned int cond,
1299 snd_pcm_hw_param_t var,
1300 const struct snd_pcm_hw_constraint_list *l)
1301{
1302 return snd_pcm_hw_rule_add(runtime, cond, var,
1303 snd_pcm_hw_rule_list, (void *)l,
1304 var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1311{
1312 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313 return snd_interval_ranges(hw_param_interval(params, rule->var),
1314 r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330 unsigned int cond,
1331 snd_pcm_hw_param_t var,
1332 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334 return snd_pcm_hw_rule_add(runtime, cond, var,
1335 snd_pcm_hw_rule_ranges, (void *)r,
1336 var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341 struct snd_pcm_hw_rule *rule)
1342{
1343 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344 unsigned int num = 0, den = 0;
1345 int err;
1346 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347 r->nrats, r->rats, &num, &den);
1348 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349 params->rate_num = num;
1350 params->rate_den = den;
1351 }
1352 return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1365 unsigned int cond,
1366 snd_pcm_hw_param_t var,
1367 const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369 return snd_pcm_hw_rule_add(runtime, cond, var,
1370 snd_pcm_hw_rule_ratnums, (void *)r,
1371 var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377 struct snd_pcm_hw_rule *rule)
1378{
1379 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380 unsigned int num = 0, den = 0;
1381 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382 r->nrats, r->rats, &num, &den);
1383 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384 params->rate_num = num;
1385 params->rate_den = den;
1386 }
1387 return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1400 unsigned int cond,
1401 snd_pcm_hw_param_t var,
1402 const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404 return snd_pcm_hw_rule_add(runtime, cond, var,
1405 snd_pcm_hw_rule_ratdens, (void *)r,
1406 var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412 struct snd_pcm_hw_rule *rule)
1413{
1414 unsigned int l = (unsigned long) rule->private;
1415 int width = l & 0xffff;
1416 unsigned int msbits = l >> 16;
1417 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419 if (!snd_interval_single(i))
1420 return 0;
1421
1422 if ((snd_interval_value(i) == width) ||
1423 (width == 0 && snd_interval_value(i) > msbits))
1424 params->msbits = min_not_zero(params->msbits, msbits);
1425
1426 return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 unsigned int width,
1446 unsigned int msbits)
1447{
1448 unsigned long l = (msbits << 16) | width;
1449 return snd_pcm_hw_rule_add(runtime, cond, -1,
1450 snd_pcm_hw_rule_msbits,
1451 (void*) l,
1452 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458 struct snd_pcm_hw_rule *rule)
1459{
1460 unsigned long step = (unsigned long) rule->private;
1461 return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474 unsigned int cond,
1475 snd_pcm_hw_param_t var,
1476 unsigned long step)
1477{
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_step, (void *) step,
1480 var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487 static unsigned int pow2_sizes[] = {
1488 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492 };
1493 return snd_interval_list(hw_param_interval(params, rule->var),
1494 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506 unsigned int cond,
1507 snd_pcm_hw_param_t var)
1508{
1509 return snd_pcm_hw_rule_add(runtime, cond, var,
1510 snd_pcm_hw_rule_pow2, NULL,
1511 var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517 struct snd_pcm_hw_rule *rule)
1518{
1519 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520 struct snd_interval *rate;
1521
1522 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523 return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534 unsigned int base_rate)
1535{
1536 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537 SNDRV_PCM_HW_PARAM_RATE,
1538 snd_pcm_hw_rule_noresample_func,
1539 (void *)(uintptr_t)base_rate,
1540 SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545 snd_pcm_hw_param_t var)
1546{
1547 if (hw_is_mask(var)) {
1548 snd_mask_any(hw_param_mask(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 if (hw_is_interval(var)) {
1554 snd_interval_any(hw_param_interval(params, var));
1555 params->cmask |= 1 << var;
1556 params->rmask |= 1 << var;
1557 return;
1558 }
1559 snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564 unsigned int k;
1565 memset(params, 0, sizeof(*params));
1566 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567 _snd_pcm_hw_param_any(params, k);
1568 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569 _snd_pcm_hw_param_any(params, k);
1570 params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585 snd_pcm_hw_param_t var, int *dir)
1586{
1587 if (hw_is_mask(var)) {
1588 const struct snd_mask *mask = hw_param_mask_c(params, var);
1589 if (!snd_mask_single(mask))
1590 return -EINVAL;
1591 if (dir)
1592 *dir = 0;
1593 return snd_mask_value(mask);
1594 }
1595 if (hw_is_interval(var)) {
1596 const struct snd_interval *i = hw_param_interval_c(params, var);
1597 if (!snd_interval_single(i))
1598 return -EINVAL;
1599 if (dir)
1600 *dir = i->openmin;
1601 return snd_interval_value(i);
1602 }
1603 return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609 snd_pcm_hw_param_t var)
1610{
1611 if (hw_is_mask(var)) {
1612 snd_mask_none(hw_param_mask(params, var));
1613 params->cmask |= 1 << var;
1614 params->rmask |= 1 << var;
1615 } else if (hw_is_interval(var)) {
1616 snd_interval_none(hw_param_interval(params, var));
1617 params->cmask |= 1 << var;
1618 params->rmask |= 1 << var;
1619 } else {
1620 snd_BUG();
1621 }
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_first(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_first(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_first(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (snd_BUG_ON(err < 0))
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var)
1675{
1676 int changed;
1677 if (hw_is_mask(var))
1678 changed = snd_mask_refine_last(hw_param_mask(params, var));
1679 else if (hw_is_interval(var))
1680 changed = snd_interval_refine_last(hw_param_interval(params, var));
1681 else
1682 return -EINVAL;
1683 if (changed) {
1684 params->cmask |= 1 << var;
1685 params->rmask |= 1 << var;
1686 }
1687 return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1704 struct snd_pcm_hw_params *params,
1705 snd_pcm_hw_param_t var, int *dir)
1706{
1707 int changed = _snd_pcm_hw_param_last(params, var);
1708 if (changed < 0)
1709 return changed;
1710 if (params->rmask) {
1711 int err = snd_pcm_hw_refine(pcm, params);
1712 if (snd_BUG_ON(err < 0))
1713 return err;
1714 }
1715 return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733 struct snd_pcm_hw_params *params)
1734{
1735 static int vars[] = {
1736 SNDRV_PCM_HW_PARAM_ACCESS,
1737 SNDRV_PCM_HW_PARAM_FORMAT,
1738 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739 SNDRV_PCM_HW_PARAM_CHANNELS,
1740 SNDRV_PCM_HW_PARAM_RATE,
1741 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743 SNDRV_PCM_HW_PARAM_TICK_TIME,
1744 -1
1745 };
1746 int err, *v;
1747
1748 for (v = vars; *v != -1; v++) {
1749 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751 else
1752 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753 if (snd_BUG_ON(err < 0))
1754 return err;
1755 }
1756 return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760 void *arg)
1761{
1762 struct snd_pcm_runtime *runtime = substream->runtime;
1763 unsigned long flags;
1764 snd_pcm_stream_lock_irqsave(substream, flags);
1765 if (snd_pcm_running(substream) &&
1766 snd_pcm_update_hw_ptr(substream) >= 0)
1767 runtime->status->hw_ptr %= runtime->buffer_size;
1768 else {
1769 runtime->status->hw_ptr = 0;
1770 runtime->hw_ptr_wrap = 0;
1771 }
1772 snd_pcm_stream_unlock_irqrestore(substream, flags);
1773 return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777 void *arg)
1778{
1779 struct snd_pcm_channel_info *info = arg;
1780 struct snd_pcm_runtime *runtime = substream->runtime;
1781 int width;
1782 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783 info->offset = -1;
1784 return 0;
1785 }
1786 width = snd_pcm_format_physical_width(runtime->format);
1787 if (width < 0)
1788 return width;
1789 info->offset = 0;
1790 switch (runtime->access) {
1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793 info->first = info->channel * width;
1794 info->step = runtime->channels * width;
1795 break;
1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798 {
1799 size_t size = runtime->dma_bytes / runtime->channels;
1800 info->first = info->channel * size * 8;
1801 info->step = width;
1802 break;
1803 }
1804 default:
1805 snd_BUG();
1806 break;
1807 }
1808 return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812 void *arg)
1813{
1814 struct snd_pcm_hw_params *params = arg;
1815 snd_pcm_format_t format;
1816 int channels;
1817 ssize_t frame_size;
1818
1819 params->fifo_size = substream->runtime->hw.fifo_size;
1820 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821 format = params_format(params);
1822 channels = params_channels(params);
1823 frame_size = snd_pcm_format_size(format, channels);
1824 if (frame_size > 0)
1825 params->fifo_size /= (unsigned)frame_size;
1826 }
1827 return 0;
1828}
1829
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842 unsigned int cmd, void *arg)
1843{
1844 switch (cmd) {
1845 case SNDRV_PCM_IOCTL1_INFO:
1846 return 0;
1847 case SNDRV_PCM_IOCTL1_RESET:
1848 return snd_pcm_lib_ioctl_reset(substream, arg);
1849 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853 }
1854 return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size. It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872 struct snd_pcm_runtime *runtime;
1873 unsigned long flags;
1874
1875 if (PCM_RUNTIME_CHECK(substream))
1876 return;
1877 runtime = substream->runtime;
1878
1879 snd_pcm_stream_lock_irqsave(substream, flags);
1880 if (!snd_pcm_running(substream) ||
1881 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882 goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885 if (substream->timer_running)
1886 snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1890 snd_pcm_stream_unlock_irqrestore(substream, flags);
1891}
1892
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp. When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902 snd_pcm_uframes_t *availp)
1903{
1904 struct snd_pcm_runtime *runtime = substream->runtime;
1905 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906 wait_queue_t wait;
1907 int err = 0;
1908 snd_pcm_uframes_t avail = 0;
1909 long wait_time, tout;
1910
1911 init_waitqueue_entry(&wait, current);
1912 set_current_state(TASK_INTERRUPTIBLE);
1913 add_wait_queue(&runtime->tsleep, &wait);
1914
1915 if (runtime->no_period_wakeup)
1916 wait_time = MAX_SCHEDULE_TIMEOUT;
1917 else {
1918 wait_time = 10;
1919 if (runtime->rate) {
1920 long t = runtime->period_size * 2 / runtime->rate;
1921 wait_time = max(t, wait_time);
1922 }
1923 wait_time = msecs_to_jiffies(wait_time * 1000);
1924 }
1925
1926 for (;;) {
1927 if (signal_pending(current)) {
1928 err = -ERESTARTSYS;
1929 break;
1930 }
1931
1932 /*
1933 * We need to check if space became available already
1934 * (and thus the wakeup happened already) first to close
1935 * the race of space already having become available.
1936 * This check must happen after been added to the waitqueue
1937 * and having current state be INTERRUPTIBLE.
1938 */
1939 if (is_playback)
1940 avail = snd_pcm_playback_avail(runtime);
1941 else
1942 avail = snd_pcm_capture_avail(runtime);
1943 if (avail >= runtime->twake)
1944 break;
1945 snd_pcm_stream_unlock_irq(substream);
1946
1947 tout = schedule_timeout(wait_time);
1948
1949 snd_pcm_stream_lock_irq(substream);
1950 set_current_state(TASK_INTERRUPTIBLE);
1951 switch (runtime->status->state) {
1952 case SNDRV_PCM_STATE_SUSPENDED:
1953 err = -ESTRPIPE;
1954 goto _endloop;
1955 case SNDRV_PCM_STATE_XRUN:
1956 err = -EPIPE;
1957 goto _endloop;
1958 case SNDRV_PCM_STATE_DRAINING:
1959 if (is_playback)
1960 err = -EPIPE;
1961 else
1962 avail = 0; /* indicate draining */
1963 goto _endloop;
1964 case SNDRV_PCM_STATE_OPEN:
1965 case SNDRV_PCM_STATE_SETUP:
1966 case SNDRV_PCM_STATE_DISCONNECTED:
1967 err = -EBADFD;
1968 goto _endloop;
1969 case SNDRV_PCM_STATE_PAUSED:
1970 continue;
1971 }
1972 if (!tout) {
1973 pcm_dbg(substream->pcm,
1974 "%s write error (DMA or IRQ trouble?)\n",
1975 is_playback ? "playback" : "capture");
1976 err = -EIO;
1977 break;
1978 }
1979 }
1980 _endloop:
1981 set_current_state(TASK_RUNNING);
1982 remove_wait_queue(&runtime->tsleep, &wait);
1983 *availp = avail;
1984 return err;
1985}
1986
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988 unsigned int hwoff,
1989 unsigned long data, unsigned int off,
1990 snd_pcm_uframes_t frames)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993 int err;
1994 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995 if (substream->ops->copy) {
1996 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997 return err;
1998 } else {
1999 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001 return -EFAULT;
2002 }
2003 return 0;
2004}
2005
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007 unsigned long data, unsigned int off,
2008 snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2011 unsigned long data,
2012 snd_pcm_uframes_t size,
2013 int nonblock,
2014 transfer_f transfer)
2015{
2016 struct snd_pcm_runtime *runtime = substream->runtime;
2017 snd_pcm_uframes_t xfer = 0;
2018 snd_pcm_uframes_t offset = 0;
2019 snd_pcm_uframes_t avail;
2020 int err = 0;
2021
2022 if (size == 0)
2023 return 0;
2024
2025 snd_pcm_stream_lock_irq(substream);
2026 switch (runtime->status->state) {
2027 case SNDRV_PCM_STATE_PREPARED:
2028 case SNDRV_PCM_STATE_RUNNING:
2029 case SNDRV_PCM_STATE_PAUSED:
2030 break;
2031 case SNDRV_PCM_STATE_XRUN:
2032 err = -EPIPE;
2033 goto _end_unlock;
2034 case SNDRV_PCM_STATE_SUSPENDED:
2035 err = -ESTRPIPE;
2036 goto _end_unlock;
2037 default:
2038 err = -EBADFD;
2039 goto _end_unlock;
2040 }
2041
2042 runtime->twake = runtime->control->avail_min ? : 1;
2043 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044 snd_pcm_update_hw_ptr(substream);
2045 avail = snd_pcm_playback_avail(runtime);
2046 while (size > 0) {
2047 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048 snd_pcm_uframes_t cont;
2049 if (!avail) {
2050 if (nonblock) {
2051 err = -EAGAIN;
2052 goto _end_unlock;
2053 }
2054 runtime->twake = min_t(snd_pcm_uframes_t, size,
2055 runtime->control->avail_min ? : 1);
2056 err = wait_for_avail(substream, &avail);
2057 if (err < 0)
2058 goto _end_unlock;
2059 }
2060 frames = size > avail ? avail : size;
2061 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062 if (frames > cont)
2063 frames = cont;
2064 if (snd_BUG_ON(!frames)) {
2065 runtime->twake = 0;
2066 snd_pcm_stream_unlock_irq(substream);
2067 return -EINVAL;
2068 }
2069 appl_ptr = runtime->control->appl_ptr;
2070 appl_ofs = appl_ptr % runtime->buffer_size;
2071 snd_pcm_stream_unlock_irq(substream);
2072 err = transfer(substream, appl_ofs, data, offset, frames);
2073 snd_pcm_stream_lock_irq(substream);
2074 if (err < 0)
2075 goto _end_unlock;
2076 switch (runtime->status->state) {
2077 case SNDRV_PCM_STATE_XRUN:
2078 err = -EPIPE;
2079 goto _end_unlock;
2080 case SNDRV_PCM_STATE_SUSPENDED:
2081 err = -ESTRPIPE;
2082 goto _end_unlock;
2083 default:
2084 break;
2085 }
2086 appl_ptr += frames;
2087 if (appl_ptr >= runtime->boundary)
2088 appl_ptr -= runtime->boundary;
2089 runtime->control->appl_ptr = appl_ptr;
2090 if (substream->ops->ack)
2091 substream->ops->ack(substream);
2092
2093 offset += frames;
2094 size -= frames;
2095 xfer += frames;
2096 avail -= frames;
2097 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099 err = snd_pcm_start(substream);
2100 if (err < 0)
2101 goto _end_unlock;
2102 }
2103 }
2104 _end_unlock:
2105 runtime->twake = 0;
2106 if (xfer > 0 && err >= 0)
2107 snd_pcm_update_state(substream, runtime);
2108 snd_pcm_stream_unlock_irq(substream);
2109 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115 struct snd_pcm_runtime *runtime;
2116 if (PCM_RUNTIME_CHECK(substream))
2117 return -ENXIO;
2118 runtime = substream->runtime;
2119 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120 return -EINVAL;
2121 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122 return -EBADFD;
2123 return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128 struct snd_pcm_runtime *runtime;
2129 int nonblock;
2130 int err;
2131
2132 err = pcm_sanity_check(substream);
2133 if (err < 0)
2134 return err;
2135 runtime = substream->runtime;
2136 nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139 runtime->channels > 1)
2140 return -EINVAL;
2141 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142 snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148 unsigned int hwoff,
2149 unsigned long data, unsigned int off,
2150 snd_pcm_uframes_t frames)
2151{
2152 struct snd_pcm_runtime *runtime = substream->runtime;
2153 int err;
2154 void __user **bufs = (void __user **)data;
2155 int channels = runtime->channels;
2156 int c;
2157 if (substream->ops->copy) {
2158 if (snd_BUG_ON(!substream->ops->silence))
2159 return -EINVAL;
2160 for (c = 0; c < channels; ++c, ++bufs) {
2161 if (*bufs == NULL) {
2162 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163 return err;
2164 } else {
2165 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167 return err;
2168 }
2169 }
2170 } else {
2171 /* default transfer behaviour */
2172 size_t dma_csize = runtime->dma_bytes / channels;
2173 for (c = 0; c < channels; ++c, ++bufs) {
2174 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175 if (*bufs == NULL) {
2176 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177 } else {
2178 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180 return -EFAULT;
2181 }
2182 }
2183 }
2184 return 0;
2185}
2186
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188 void __user **bufs,
2189 snd_pcm_uframes_t frames)
2190{
2191 struct snd_pcm_runtime *runtime;
2192 int nonblock;
2193 int err;
2194
2195 err = pcm_sanity_check(substream);
2196 if (err < 0)
2197 return err;
2198 runtime = substream->runtime;
2199 nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202 return -EINVAL;
2203 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204 nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2210 unsigned int hwoff,
2211 unsigned long data, unsigned int off,
2212 snd_pcm_uframes_t frames)
2213{
2214 struct snd_pcm_runtime *runtime = substream->runtime;
2215 int err;
2216 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217 if (substream->ops->copy) {
2218 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219 return err;
2220 } else {
2221 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223 return -EFAULT;
2224 }
2225 return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229 unsigned long data,
2230 snd_pcm_uframes_t size,
2231 int nonblock,
2232 transfer_f transfer)
2233{
2234 struct snd_pcm_runtime *runtime = substream->runtime;
2235 snd_pcm_uframes_t xfer = 0;
2236 snd_pcm_uframes_t offset = 0;
2237 snd_pcm_uframes_t avail;
2238 int err = 0;
2239
2240 if (size == 0)
2241 return 0;
2242
2243 snd_pcm_stream_lock_irq(substream);
2244 switch (runtime->status->state) {
2245 case SNDRV_PCM_STATE_PREPARED:
2246 if (size >= runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 break;
2252 case SNDRV_PCM_STATE_DRAINING:
2253 case SNDRV_PCM_STATE_RUNNING:
2254 case SNDRV_PCM_STATE_PAUSED:
2255 break;
2256 case SNDRV_PCM_STATE_XRUN:
2257 err = -EPIPE;
2258 goto _end_unlock;
2259 case SNDRV_PCM_STATE_SUSPENDED:
2260 err = -ESTRPIPE;
2261 goto _end_unlock;
2262 default:
2263 err = -EBADFD;
2264 goto _end_unlock;
2265 }
2266
2267 runtime->twake = runtime->control->avail_min ? : 1;
2268 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269 snd_pcm_update_hw_ptr(substream);
2270 avail = snd_pcm_capture_avail(runtime);
2271 while (size > 0) {
2272 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273 snd_pcm_uframes_t cont;
2274 if (!avail) {
2275 if (runtime->status->state ==
2276 SNDRV_PCM_STATE_DRAINING) {
2277 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278 goto _end_unlock;
2279 }
2280 if (nonblock) {
2281 err = -EAGAIN;
2282 goto _end_unlock;
2283 }
2284 runtime->twake = min_t(snd_pcm_uframes_t, size,
2285 runtime->control->avail_min ? : 1);
2286 err = wait_for_avail(substream, &avail);
2287 if (err < 0)
2288 goto _end_unlock;
2289 if (!avail)
2290 continue; /* draining */
2291 }
2292 frames = size > avail ? avail : size;
2293 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294 if (frames > cont)
2295 frames = cont;
2296 if (snd_BUG_ON(!frames)) {
2297 runtime->twake = 0;
2298 snd_pcm_stream_unlock_irq(substream);
2299 return -EINVAL;
2300 }
2301 appl_ptr = runtime->control->appl_ptr;
2302 appl_ofs = appl_ptr % runtime->buffer_size;
2303 snd_pcm_stream_unlock_irq(substream);
2304 err = transfer(substream, appl_ofs, data, offset, frames);
2305 snd_pcm_stream_lock_irq(substream);
2306 if (err < 0)
2307 goto _end_unlock;
2308 switch (runtime->status->state) {
2309 case SNDRV_PCM_STATE_XRUN:
2310 err = -EPIPE;
2311 goto _end_unlock;
2312 case SNDRV_PCM_STATE_SUSPENDED:
2313 err = -ESTRPIPE;
2314 goto _end_unlock;
2315 default:
2316 break;
2317 }
2318 appl_ptr += frames;
2319 if (appl_ptr >= runtime->boundary)
2320 appl_ptr -= runtime->boundary;
2321 runtime->control->appl_ptr = appl_ptr;
2322 if (substream->ops->ack)
2323 substream->ops->ack(substream);
2324
2325 offset += frames;
2326 size -= frames;
2327 xfer += frames;
2328 avail -= frames;
2329 }
2330 _end_unlock:
2331 runtime->twake = 0;
2332 if (xfer > 0 && err >= 0)
2333 snd_pcm_update_state(substream, runtime);
2334 snd_pcm_stream_unlock_irq(substream);
2335 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340 struct snd_pcm_runtime *runtime;
2341 int nonblock;
2342 int err;
2343
2344 err = pcm_sanity_check(substream);
2345 if (err < 0)
2346 return err;
2347 runtime = substream->runtime;
2348 nonblock = !!(substream->f_flags & O_NONBLOCK);
2349 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350 return -EINVAL;
2351 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357 unsigned int hwoff,
2358 unsigned long data, unsigned int off,
2359 snd_pcm_uframes_t frames)
2360{
2361 struct snd_pcm_runtime *runtime = substream->runtime;
2362 int err;
2363 void __user **bufs = (void __user **)data;
2364 int channels = runtime->channels;
2365 int c;
2366 if (substream->ops->copy) {
2367 for (c = 0; c < channels; ++c, ++bufs) {
2368 char __user *buf;
2369 if (*bufs == NULL)
2370 continue;
2371 buf = *bufs + samples_to_bytes(runtime, off);
2372 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373 return err;
2374 }
2375 } else {
2376 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377 for (c = 0; c < channels; ++c, ++bufs) {
2378 char *hwbuf;
2379 char __user *buf;
2380 if (*bufs == NULL)
2381 continue;
2382
2383 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384 buf = *bufs + samples_to_bytes(runtime, off);
2385 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386 return -EFAULT;
2387 }
2388 }
2389 return 0;
2390}
2391
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393 void __user **bufs,
2394 snd_pcm_uframes_t frames)
2395{
2396 struct snd_pcm_runtime *runtime;
2397 int nonblock;
2398 int err;
2399
2400 err = pcm_sanity_check(substream);
2401 if (err < 0)
2402 return err;
2403 runtime = substream->runtime;
2404 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405 return -EBADFD;
2406
2407 nonblock = !!(substream->f_flags & O_NONBLOCK);
2408 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409 return -EINVAL;
2410 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421 { .channels = 1,
2422 .map = { SNDRV_CHMAP_MONO } },
2423 { .channels = 2,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425 { .channels = 4,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 { .channels = 6,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432 { .channels = 8,
2433 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437 { }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443 { .channels = 1,
2444 .map = { SNDRV_CHMAP_MONO } },
2445 { .channels = 2,
2446 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447 { .channels = 4,
2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450 { .channels = 6,
2451 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454 { .channels = 8,
2455 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459 { }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465 if (ch > info->max_channels)
2466 return false;
2467 return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471 struct snd_ctl_elem_info *uinfo)
2472{
2473 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476 uinfo->count = 0;
2477 uinfo->count = info->max_channels;
2478 uinfo->value.integer.min = 0;
2479 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480 return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487 struct snd_ctl_elem_value *ucontrol)
2488{
2489 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491 struct snd_pcm_substream *substream;
2492 const struct snd_pcm_chmap_elem *map;
2493
2494 if (snd_BUG_ON(!info->chmap))
2495 return -EINVAL;
2496 substream = snd_pcm_chmap_substream(info, idx);
2497 if (!substream)
2498 return -ENODEV;
2499 memset(ucontrol->value.integer.value, 0,
2500 sizeof(ucontrol->value.integer.value));
2501 if (!substream->runtime)
2502 return 0; /* no channels set */
2503 for (map = info->chmap; map->channels; map++) {
2504 int i;
2505 if (map->channels == substream->runtime->channels &&
2506 valid_chmap_channels(info, map->channels)) {
2507 for (i = 0; i < map->channels; i++)
2508 ucontrol->value.integer.value[i] = map->map[i];
2509 return 0;
2510 }
2511 }
2512 return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519 unsigned int size, unsigned int __user *tlv)
2520{
2521 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522 const struct snd_pcm_chmap_elem *map;
2523 unsigned int __user *dst;
2524 int c, count = 0;
2525
2526 if (snd_BUG_ON(!info->chmap))
2527 return -EINVAL;
2528 if (size < 8)
2529 return -ENOMEM;
2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531 return -EFAULT;
2532 size -= 8;
2533 dst = tlv + 2;
2534 for (map = info->chmap; map->channels; map++) {
2535 int chs_bytes = map->channels * 4;
2536 if (!valid_chmap_channels(info, map->channels))
2537 continue;
2538 if (size < 8)
2539 return -ENOMEM;
2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541 put_user(chs_bytes, dst + 1))
2542 return -EFAULT;
2543 dst += 2;
2544 size -= 8;
2545 count += 8;
2546 if (size < chs_bytes)
2547 return -ENOMEM;
2548 size -= chs_bytes;
2549 count += chs_bytes;
2550 for (c = 0; c < map->channels; c++) {
2551 if (put_user(map->map[c], dst))
2552 return -EFAULT;
2553 dst++;
2554 }
2555 }
2556 if (put_user(count, tlv + 1))
2557 return -EFAULT;
2558 return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564 info->pcm->streams[info->stream].chmap_kctl = NULL;
2565 kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581 const struct snd_pcm_chmap_elem *chmap,
2582 int max_channels,
2583 unsigned long private_value,
2584 struct snd_pcm_chmap **info_ret)
2585{
2586 struct snd_pcm_chmap *info;
2587 struct snd_kcontrol_new knew = {
2588 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592 .info = pcm_chmap_ctl_info,
2593 .get = pcm_chmap_ctl_get,
2594 .tlv.c = pcm_chmap_ctl_tlv,
2595 };
2596 int err;
2597
2598 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2599 return -EBUSY;
2600 info = kzalloc(sizeof(*info), GFP_KERNEL);
2601 if (!info)
2602 return -ENOMEM;
2603 info->pcm = pcm;
2604 info->stream = stream;
2605 info->chmap = chmap;
2606 info->max_channels = max_channels;
2607 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608 knew.name = "Playback Channel Map";
2609 else
2610 knew.name = "Capture Channel Map";
2611 knew.device = pcm->device;
2612 knew.count = pcm->streams[stream].substream_count;
2613 knew.private_value = private_value;
2614 info->kctl = snd_ctl_new1(&knew, info);
2615 if (!info->kctl) {
2616 kfree(info);
2617 return -ENOMEM;
2618 }
2619 info->kctl->private_free = pcm_chmap_ctl_private_free;
2620 err = snd_ctl_add(pcm->card, info->kctl);
2621 if (err < 0)
2622 return err;
2623 pcm->streams[stream].chmap_kctl = info->kctl;
2624 if (info_ret)
2625 *info_ret = info;
2626 return 0;
2627}
2628EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38 snd_pcm_uframes_t ptr,
39 snd_pcm_uframes_t new_ptr)
40{
41 snd_pcm_sframes_t delta;
42
43 delta = new_ptr - ptr;
44 if (delta == 0)
45 return;
46 if (delta < 0)
47 delta += runtime->boundary;
48 if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49 runtime->silence_filled -= delta;
50 else
51 runtime->silence_filled = 0;
52 runtime->silence_start = new_ptr;
53}
54
55/*
56 * fill ring buffer with silence
57 * runtime->silence_start: starting pointer to silence area
58 * runtime->silence_filled: size filled with silence
59 * runtime->silence_threshold: threshold from application
60 * runtime->silence_size: maximal size from application
61 *
62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63 */
64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65{
66 struct snd_pcm_runtime *runtime = substream->runtime;
67 snd_pcm_uframes_t frames, ofs, transfer;
68 int err;
69
70 if (runtime->silence_size < runtime->boundary) {
71 snd_pcm_sframes_t noise_dist;
72 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74 /* initialization outside pointer updates */
75 if (new_hw_ptr == ULONG_MAX)
76 new_hw_ptr = runtime->status->hw_ptr;
77 /* get hw_avail with the boundary crossing */
78 noise_dist = appl_ptr - new_hw_ptr;
79 if (noise_dist < 0)
80 noise_dist += runtime->boundary;
81 /* total noise distance */
82 noise_dist += runtime->silence_filled;
83 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84 return;
85 frames = runtime->silence_threshold - noise_dist;
86 if (frames > runtime->silence_size)
87 frames = runtime->silence_size;
88 } else {
89 /*
90 * This filling mode aims at free-running mode (used for example by dmix),
91 * which doesn't update the application pointer.
92 */
93 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94 if (new_hw_ptr == ULONG_MAX) {
95 /*
96 * Initialization, fill the whole unused buffer with silence.
97 *
98 * Usually, this is entered while stopped, before data is queued,
99 * so both pointers are expected to be zero.
100 */
101 snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102 if (avail < 0)
103 avail += runtime->boundary;
104 /*
105 * In free-running mode, appl_ptr will be zero even while running,
106 * so we end up with a huge number. There is no useful way to
107 * handle this, so we just clear the whole buffer.
108 */
109 runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110 runtime->silence_start = hw_ptr;
111 } else {
112 /* Silence the just played area immediately */
113 update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114 }
115 /*
116 * In this mode, silence_filled actually includes the valid
117 * sample data from the user.
118 */
119 frames = runtime->buffer_size - runtime->silence_filled;
120 }
121 if (snd_BUG_ON(frames > runtime->buffer_size))
122 return;
123 if (frames == 0)
124 return;
125 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126 do {
127 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128 err = fill_silence_frames(substream, ofs, transfer);
129 snd_BUG_ON(err < 0);
130 runtime->silence_filled += transfer;
131 frames -= transfer;
132 ofs = 0;
133 } while (frames > 0);
134 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135}
136
137#ifdef CONFIG_SND_DEBUG
138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139 char *name, size_t len)
140{
141 snprintf(name, len, "pcmC%dD%d%c:%d",
142 substream->pcm->card->number,
143 substream->pcm->device,
144 substream->stream ? 'c' : 'p',
145 substream->number);
146}
147EXPORT_SYMBOL(snd_pcm_debug_name);
148#endif
149
150#define XRUN_DEBUG_BASIC (1<<0)
151#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
152#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
153
154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156#define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158#else
159#define xrun_debug(substream, mask) 0
160#endif
161
162#define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167/* call with stream lock held */
168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169{
170 struct snd_pcm_runtime *runtime = substream->runtime;
171
172 trace_xrun(substream);
173 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174 struct timespec64 tstamp;
175
176 snd_pcm_gettime(runtime, &tstamp);
177 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179 }
180 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182 char name[16];
183 snd_pcm_debug_name(substream, name, sizeof(name));
184 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185 dump_stack_on_xrun(substream);
186 }
187}
188
189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 do { \
192 trace_hw_ptr_error(substream, reason); \
193 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
194 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195 (in_interrupt) ? 'Q' : 'P', ##args); \
196 dump_stack_on_xrun(substream); \
197 } \
198 } while (0)
199
200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204#endif
205
206int snd_pcm_update_state(struct snd_pcm_substream *substream,
207 struct snd_pcm_runtime *runtime)
208{
209 snd_pcm_uframes_t avail;
210
211 avail = snd_pcm_avail(substream);
212 if (avail > runtime->avail_max)
213 runtime->avail_max = avail;
214 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215 if (avail >= runtime->buffer_size) {
216 snd_pcm_drain_done(substream);
217 return -EPIPE;
218 }
219 } else {
220 if (avail >= runtime->stop_threshold) {
221 __snd_pcm_xrun(substream);
222 return -EPIPE;
223 }
224 }
225 if (runtime->twake) {
226 if (avail >= runtime->twake)
227 wake_up(&runtime->tsleep);
228 } else if (avail >= runtime->control->avail_min)
229 wake_up(&runtime->sleep);
230 return 0;
231}
232
233static void update_audio_tstamp(struct snd_pcm_substream *substream,
234 struct timespec64 *curr_tstamp,
235 struct timespec64 *audio_tstamp)
236{
237 struct snd_pcm_runtime *runtime = substream->runtime;
238 u64 audio_frames, audio_nsecs;
239 struct timespec64 driver_tstamp;
240
241 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242 return;
243
244 if (!(substream->ops->get_time_info) ||
245 (runtime->audio_tstamp_report.actual_type ==
246 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248 /*
249 * provide audio timestamp derived from pointer position
250 * add delay only if requested
251 */
252
253 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255 if (runtime->audio_tstamp_config.report_delay) {
256 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257 audio_frames -= runtime->delay;
258 else
259 audio_frames += runtime->delay;
260 }
261 audio_nsecs = div_u64(audio_frames * 1000000000LL,
262 runtime->rate);
263 *audio_tstamp = ns_to_timespec64(audio_nsecs);
264 }
265
266 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272 }
273
274
275 /*
276 * re-take a driver timestamp to let apps detect if the reference tstamp
277 * read by low-level hardware was provided with a delay
278 */
279 snd_pcm_gettime(substream->runtime, &driver_tstamp);
280 runtime->driver_tstamp = driver_tstamp;
281}
282
283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284 unsigned int in_interrupt)
285{
286 struct snd_pcm_runtime *runtime = substream->runtime;
287 snd_pcm_uframes_t pos;
288 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289 snd_pcm_sframes_t hdelta, delta;
290 unsigned long jdelta;
291 unsigned long curr_jiffies;
292 struct timespec64 curr_tstamp;
293 struct timespec64 audio_tstamp;
294 int crossed_boundary = 0;
295
296 old_hw_ptr = runtime->status->hw_ptr;
297
298 /*
299 * group pointer, time and jiffies reads to allow for more
300 * accurate correlations/corrections.
301 * The values are stored at the end of this routine after
302 * corrections for hw_ptr position
303 */
304 pos = substream->ops->pointer(substream);
305 curr_jiffies = jiffies;
306 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307 if ((substream->ops->get_time_info) &&
308 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309 substream->ops->get_time_info(substream, &curr_tstamp,
310 &audio_tstamp,
311 &runtime->audio_tstamp_config,
312 &runtime->audio_tstamp_report);
313
314 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316 snd_pcm_gettime(runtime, &curr_tstamp);
317 } else
318 snd_pcm_gettime(runtime, &curr_tstamp);
319 }
320
321 if (pos == SNDRV_PCM_POS_XRUN) {
322 __snd_pcm_xrun(substream);
323 return -EPIPE;
324 }
325 if (pos >= runtime->buffer_size) {
326 if (printk_ratelimit()) {
327 char name[16];
328 snd_pcm_debug_name(substream, name, sizeof(name));
329 pcm_err(substream->pcm,
330 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331 name, pos, runtime->buffer_size,
332 runtime->period_size);
333 }
334 pos = 0;
335 }
336 pos -= pos % runtime->min_align;
337 trace_hwptr(substream, pos, in_interrupt);
338 hw_base = runtime->hw_ptr_base;
339 new_hw_ptr = hw_base + pos;
340 if (in_interrupt) {
341 /* we know that one period was processed */
342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 if (delta > new_hw_ptr) {
345 /* check for double acknowledged interrupts */
346 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348 hw_base += runtime->buffer_size;
349 if (hw_base >= runtime->boundary) {
350 hw_base = 0;
351 crossed_boundary++;
352 }
353 new_hw_ptr = hw_base + pos;
354 goto __delta;
355 }
356 }
357 }
358 /* new_hw_ptr might be lower than old_hw_ptr in case when */
359 /* pointer crosses the end of the ring buffer */
360 if (new_hw_ptr < old_hw_ptr) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 }
368 __delta:
369 delta = new_hw_ptr - old_hw_ptr;
370 if (delta < 0)
371 delta += runtime->boundary;
372
373 if (runtime->no_period_wakeup) {
374 snd_pcm_sframes_t xrun_threshold;
375 /*
376 * Without regular period interrupts, we have to check
377 * the elapsed time to detect xruns.
378 */
379 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381 goto no_delta_check;
382 hdelta = jdelta - delta * HZ / runtime->rate;
383 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384 while (hdelta > xrun_threshold) {
385 delta += runtime->buffer_size;
386 hw_base += runtime->buffer_size;
387 if (hw_base >= runtime->boundary) {
388 hw_base = 0;
389 crossed_boundary++;
390 }
391 new_hw_ptr = hw_base + pos;
392 hdelta -= runtime->hw_ptr_buffer_jiffies;
393 }
394 goto no_delta_check;
395 }
396
397 /* something must be really wrong */
398 if (delta >= runtime->buffer_size + runtime->period_size) {
399 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401 substream->stream, (long)pos,
402 (long)new_hw_ptr, (long)old_hw_ptr);
403 return 0;
404 }
405
406 /* Do jiffies check only in xrun_debug mode */
407 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408 goto no_jiffies_check;
409
410 /* Skip the jiffies check for hardwares with BATCH flag.
411 * Such hardware usually just increases the position at each IRQ,
412 * thus it can't give any strange position.
413 */
414 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415 goto no_jiffies_check;
416 hdelta = delta;
417 if (hdelta < runtime->delay)
418 goto no_jiffies_check;
419 hdelta -= runtime->delay;
420 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422 delta = jdelta /
423 (((runtime->period_size * HZ) / runtime->rate)
424 + HZ/100);
425 /* move new_hw_ptr according jiffies not pos variable */
426 new_hw_ptr = old_hw_ptr;
427 hw_base = delta;
428 /* use loop to avoid checks for delta overflows */
429 /* the delta value is small or zero in most cases */
430 while (delta > 0) {
431 new_hw_ptr += runtime->period_size;
432 if (new_hw_ptr >= runtime->boundary) {
433 new_hw_ptr -= runtime->boundary;
434 crossed_boundary--;
435 }
436 delta--;
437 }
438 /* align hw_base to buffer_size */
439 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441 (long)pos, (long)hdelta,
442 (long)runtime->period_size, jdelta,
443 ((hdelta * HZ) / runtime->rate), hw_base,
444 (unsigned long)old_hw_ptr,
445 (unsigned long)new_hw_ptr);
446 /* reset values to proper state */
447 delta = 0;
448 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449 }
450 no_jiffies_check:
451 if (delta > runtime->period_size + runtime->period_size / 2) {
452 hw_ptr_error(substream, in_interrupt,
453 "Lost interrupts?",
454 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455 substream->stream, (long)delta,
456 (long)new_hw_ptr,
457 (long)old_hw_ptr);
458 }
459
460 no_delta_check:
461 if (runtime->status->hw_ptr == new_hw_ptr) {
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464 return 0;
465 }
466
467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468 runtime->silence_size > 0)
469 snd_pcm_playback_silence(substream, new_hw_ptr);
470
471 if (in_interrupt) {
472 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473 if (delta < 0)
474 delta += runtime->boundary;
475 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476 runtime->hw_ptr_interrupt += delta;
477 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478 runtime->hw_ptr_interrupt -= runtime->boundary;
479 }
480 runtime->hw_ptr_base = hw_base;
481 runtime->status->hw_ptr = new_hw_ptr;
482 runtime->hw_ptr_jiffies = curr_jiffies;
483 if (crossed_boundary) {
484 snd_BUG_ON(crossed_boundary != 1);
485 runtime->hw_ptr_wrap += runtime->boundary;
486 }
487
488 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489
490 return snd_pcm_update_state(substream, runtime);
491}
492
493/* CAUTION: call it with irq disabled */
494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495{
496 return snd_pcm_update_hw_ptr0(substream, 0);
497}
498
499/**
500 * snd_pcm_set_ops - set the PCM operators
501 * @pcm: the pcm instance
502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503 * @ops: the operator table
504 *
505 * Sets the given PCM operators to the pcm instance.
506 */
507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508 const struct snd_pcm_ops *ops)
509{
510 struct snd_pcm_str *stream = &pcm->streams[direction];
511 struct snd_pcm_substream *substream;
512
513 for (substream = stream->substream; substream != NULL; substream = substream->next)
514 substream->ops = ops;
515}
516EXPORT_SYMBOL(snd_pcm_set_ops);
517
518/**
519 * snd_pcm_set_sync - set the PCM sync id
520 * @substream: the pcm substream
521 *
522 * Sets the PCM sync identifier for the card.
523 */
524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525{
526 struct snd_pcm_runtime *runtime = substream->runtime;
527
528 runtime->sync.id32[0] = substream->pcm->card->number;
529 runtime->sync.id32[1] = -1;
530 runtime->sync.id32[2] = -1;
531 runtime->sync.id32[3] = -1;
532}
533EXPORT_SYMBOL(snd_pcm_set_sync);
534
535/*
536 * Standard ioctl routine
537 */
538
539static inline unsigned int div32(unsigned int a, unsigned int b,
540 unsigned int *r)
541{
542 if (b == 0) {
543 *r = 0;
544 return UINT_MAX;
545 }
546 *r = a % b;
547 return a / b;
548}
549
550static inline unsigned int div_down(unsigned int a, unsigned int b)
551{
552 if (b == 0)
553 return UINT_MAX;
554 return a / b;
555}
556
557static inline unsigned int div_up(unsigned int a, unsigned int b)
558{
559 unsigned int r;
560 unsigned int q;
561 if (b == 0)
562 return UINT_MAX;
563 q = div32(a, b, &r);
564 if (r)
565 ++q;
566 return q;
567}
568
569static inline unsigned int mul(unsigned int a, unsigned int b)
570{
571 if (a == 0)
572 return 0;
573 if (div_down(UINT_MAX, a) < b)
574 return UINT_MAX;
575 return a * b;
576}
577
578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579 unsigned int c, unsigned int *r)
580{
581 u_int64_t n = (u_int64_t) a * b;
582 if (c == 0) {
583 *r = 0;
584 return UINT_MAX;
585 }
586 n = div_u64_rem(n, c, r);
587 if (n >= UINT_MAX) {
588 *r = 0;
589 return UINT_MAX;
590 }
591 return n;
592}
593
594/**
595 * snd_interval_refine - refine the interval value of configurator
596 * @i: the interval value to refine
597 * @v: the interval value to refer to
598 *
599 * Refines the interval value with the reference value.
600 * The interval is changed to the range satisfying both intervals.
601 * The interval status (min, max, integer, etc.) are evaluated.
602 *
603 * Return: Positive if the value is changed, zero if it's not changed, or a
604 * negative error code.
605 */
606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607{
608 int changed = 0;
609 if (snd_BUG_ON(snd_interval_empty(i)))
610 return -EINVAL;
611 if (i->min < v->min) {
612 i->min = v->min;
613 i->openmin = v->openmin;
614 changed = 1;
615 } else if (i->min == v->min && !i->openmin && v->openmin) {
616 i->openmin = 1;
617 changed = 1;
618 }
619 if (i->max > v->max) {
620 i->max = v->max;
621 i->openmax = v->openmax;
622 changed = 1;
623 } else if (i->max == v->max && !i->openmax && v->openmax) {
624 i->openmax = 1;
625 changed = 1;
626 }
627 if (!i->integer && v->integer) {
628 i->integer = 1;
629 changed = 1;
630 }
631 if (i->integer) {
632 if (i->openmin) {
633 i->min++;
634 i->openmin = 0;
635 }
636 if (i->openmax) {
637 i->max--;
638 i->openmax = 0;
639 }
640 } else if (!i->openmin && !i->openmax && i->min == i->max)
641 i->integer = 1;
642 if (snd_interval_checkempty(i)) {
643 snd_interval_none(i);
644 return -EINVAL;
645 }
646 return changed;
647}
648EXPORT_SYMBOL(snd_interval_refine);
649
650static int snd_interval_refine_first(struct snd_interval *i)
651{
652 const unsigned int last_max = i->max;
653
654 if (snd_BUG_ON(snd_interval_empty(i)))
655 return -EINVAL;
656 if (snd_interval_single(i))
657 return 0;
658 i->max = i->min;
659 if (i->openmin)
660 i->max++;
661 /* only exclude max value if also excluded before refine */
662 i->openmax = (i->openmax && i->max >= last_max);
663 return 1;
664}
665
666static int snd_interval_refine_last(struct snd_interval *i)
667{
668 const unsigned int last_min = i->min;
669
670 if (snd_BUG_ON(snd_interval_empty(i)))
671 return -EINVAL;
672 if (snd_interval_single(i))
673 return 0;
674 i->min = i->max;
675 if (i->openmax)
676 i->min--;
677 /* only exclude min value if also excluded before refine */
678 i->openmin = (i->openmin && i->min <= last_min);
679 return 1;
680}
681
682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683{
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = mul(a->min, b->min);
690 c->openmin = (a->openmin || b->openmin);
691 c->max = mul(a->max, b->max);
692 c->openmax = (a->openmax || b->openmax);
693 c->integer = (a->integer && b->integer);
694}
695
696/**
697 * snd_interval_div - refine the interval value with division
698 * @a: dividend
699 * @b: divisor
700 * @c: quotient
701 *
702 * c = a / b
703 *
704 * Returns non-zero if the value is changed, zero if not changed.
705 */
706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707{
708 unsigned int r;
709 if (a->empty || b->empty) {
710 snd_interval_none(c);
711 return;
712 }
713 c->empty = 0;
714 c->min = div32(a->min, b->max, &r);
715 c->openmin = (r || a->openmin || b->openmax);
716 if (b->min > 0) {
717 c->max = div32(a->max, b->min, &r);
718 if (r) {
719 c->max++;
720 c->openmax = 1;
721 } else
722 c->openmax = (a->openmax || b->openmin);
723 } else {
724 c->max = UINT_MAX;
725 c->openmax = 0;
726 }
727 c->integer = 0;
728}
729
730/**
731 * snd_interval_muldivk - refine the interval value
732 * @a: dividend 1
733 * @b: dividend 2
734 * @k: divisor (as integer)
735 * @c: result
736 *
737 * c = a * b / k
738 *
739 * Returns non-zero if the value is changed, zero if not changed.
740 */
741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742 unsigned int k, struct snd_interval *c)
743{
744 unsigned int r;
745 if (a->empty || b->empty) {
746 snd_interval_none(c);
747 return;
748 }
749 c->empty = 0;
750 c->min = muldiv32(a->min, b->min, k, &r);
751 c->openmin = (r || a->openmin || b->openmin);
752 c->max = muldiv32(a->max, b->max, k, &r);
753 if (r) {
754 c->max++;
755 c->openmax = 1;
756 } else
757 c->openmax = (a->openmax || b->openmax);
758 c->integer = 0;
759}
760
761/**
762 * snd_interval_mulkdiv - refine the interval value
763 * @a: dividend 1
764 * @k: dividend 2 (as integer)
765 * @b: divisor
766 * @c: result
767 *
768 * c = a * k / b
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773 const struct snd_interval *b, struct snd_interval *c)
774{
775 unsigned int r;
776 if (a->empty || b->empty) {
777 snd_interval_none(c);
778 return;
779 }
780 c->empty = 0;
781 c->min = muldiv32(a->min, k, b->max, &r);
782 c->openmin = (r || a->openmin || b->openmax);
783 if (b->min > 0) {
784 c->max = muldiv32(a->max, k, b->min, &r);
785 if (r) {
786 c->max++;
787 c->openmax = 1;
788 } else
789 c->openmax = (a->openmax || b->openmin);
790 } else {
791 c->max = UINT_MAX;
792 c->openmax = 0;
793 }
794 c->integer = 0;
795}
796
797/* ---- */
798
799
800/**
801 * snd_interval_ratnum - refine the interval value
802 * @i: interval to refine
803 * @rats_count: number of ratnum_t
804 * @rats: ratnum_t array
805 * @nump: pointer to store the resultant numerator
806 * @denp: pointer to store the resultant denominator
807 *
808 * Return: Positive if the value is changed, zero if it's not changed, or a
809 * negative error code.
810 */
811int snd_interval_ratnum(struct snd_interval *i,
812 unsigned int rats_count, const struct snd_ratnum *rats,
813 unsigned int *nump, unsigned int *denp)
814{
815 unsigned int best_num, best_den;
816 int best_diff;
817 unsigned int k;
818 struct snd_interval t;
819 int err;
820 unsigned int result_num, result_den;
821 int result_diff;
822
823 best_num = best_den = best_diff = 0;
824 for (k = 0; k < rats_count; ++k) {
825 unsigned int num = rats[k].num;
826 unsigned int den;
827 unsigned int q = i->min;
828 int diff;
829 if (q == 0)
830 q = 1;
831 den = div_up(num, q);
832 if (den < rats[k].den_min)
833 continue;
834 if (den > rats[k].den_max)
835 den = rats[k].den_max;
836 else {
837 unsigned int r;
838 r = (den - rats[k].den_min) % rats[k].den_step;
839 if (r != 0)
840 den -= r;
841 }
842 diff = num - q * den;
843 if (diff < 0)
844 diff = -diff;
845 if (best_num == 0 ||
846 diff * best_den < best_diff * den) {
847 best_diff = diff;
848 best_den = den;
849 best_num = num;
850 }
851 }
852 if (best_den == 0) {
853 i->empty = 1;
854 return -EINVAL;
855 }
856 t.min = div_down(best_num, best_den);
857 t.openmin = !!(best_num % best_den);
858
859 result_num = best_num;
860 result_diff = best_diff;
861 result_den = best_den;
862 best_num = best_den = best_diff = 0;
863 for (k = 0; k < rats_count; ++k) {
864 unsigned int num = rats[k].num;
865 unsigned int den;
866 unsigned int q = i->max;
867 int diff;
868 if (q == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 den = div_down(num, q);
873 if (den > rats[k].den_max)
874 continue;
875 if (den < rats[k].den_min)
876 den = rats[k].den_min;
877 else {
878 unsigned int r;
879 r = (den - rats[k].den_min) % rats[k].den_step;
880 if (r != 0)
881 den += rats[k].den_step - r;
882 }
883 diff = q * den - num;
884 if (diff < 0)
885 diff = -diff;
886 if (best_num == 0 ||
887 diff * best_den < best_diff * den) {
888 best_diff = diff;
889 best_den = den;
890 best_num = num;
891 }
892 }
893 if (best_den == 0) {
894 i->empty = 1;
895 return -EINVAL;
896 }
897 t.max = div_up(best_num, best_den);
898 t.openmax = !!(best_num % best_den);
899 t.integer = 0;
900 err = snd_interval_refine(i, &t);
901 if (err < 0)
902 return err;
903
904 if (snd_interval_single(i)) {
905 if (best_diff * result_den < result_diff * best_den) {
906 result_num = best_num;
907 result_den = best_den;
908 }
909 if (nump)
910 *nump = result_num;
911 if (denp)
912 *denp = result_den;
913 }
914 return err;
915}
916EXPORT_SYMBOL(snd_interval_ratnum);
917
918/**
919 * snd_interval_ratden - refine the interval value
920 * @i: interval to refine
921 * @rats_count: number of struct ratden
922 * @rats: struct ratden array
923 * @nump: pointer to store the resultant numerator
924 * @denp: pointer to store the resultant denominator
925 *
926 * Return: Positive if the value is changed, zero if it's not changed, or a
927 * negative error code.
928 */
929static int snd_interval_ratden(struct snd_interval *i,
930 unsigned int rats_count,
931 const struct snd_ratden *rats,
932 unsigned int *nump, unsigned int *denp)
933{
934 unsigned int best_num, best_diff, best_den;
935 unsigned int k;
936 struct snd_interval t;
937 int err;
938
939 best_num = best_den = best_diff = 0;
940 for (k = 0; k < rats_count; ++k) {
941 unsigned int num;
942 unsigned int den = rats[k].den;
943 unsigned int q = i->min;
944 int diff;
945 num = mul(q, den);
946 if (num > rats[k].num_max)
947 continue;
948 if (num < rats[k].num_min)
949 num = rats[k].num_max;
950 else {
951 unsigned int r;
952 r = (num - rats[k].num_min) % rats[k].num_step;
953 if (r != 0)
954 num += rats[k].num_step - r;
955 }
956 diff = num - q * den;
957 if (best_num == 0 ||
958 diff * best_den < best_diff * den) {
959 best_diff = diff;
960 best_den = den;
961 best_num = num;
962 }
963 }
964 if (best_den == 0) {
965 i->empty = 1;
966 return -EINVAL;
967 }
968 t.min = div_down(best_num, best_den);
969 t.openmin = !!(best_num % best_den);
970
971 best_num = best_den = best_diff = 0;
972 for (k = 0; k < rats_count; ++k) {
973 unsigned int num;
974 unsigned int den = rats[k].den;
975 unsigned int q = i->max;
976 int diff;
977 num = mul(q, den);
978 if (num < rats[k].num_min)
979 continue;
980 if (num > rats[k].num_max)
981 num = rats[k].num_max;
982 else {
983 unsigned int r;
984 r = (num - rats[k].num_min) % rats[k].num_step;
985 if (r != 0)
986 num -= r;
987 }
988 diff = q * den - num;
989 if (best_num == 0 ||
990 diff * best_den < best_diff * den) {
991 best_diff = diff;
992 best_den = den;
993 best_num = num;
994 }
995 }
996 if (best_den == 0) {
997 i->empty = 1;
998 return -EINVAL;
999 }
1000 t.max = div_up(best_num, best_den);
1001 t.openmax = !!(best_num % best_den);
1002 t.integer = 0;
1003 err = snd_interval_refine(i, &t);
1004 if (err < 0)
1005 return err;
1006
1007 if (snd_interval_single(i)) {
1008 if (nump)
1009 *nump = best_num;
1010 if (denp)
1011 *denp = best_den;
1012 }
1013 return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031 const unsigned int *list, unsigned int mask)
1032{
1033 unsigned int k;
1034 struct snd_interval list_range;
1035
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1039 }
1040 snd_interval_any(&list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1050 }
1051 return snd_interval_refine(i, &list_range);
1052}
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070 const struct snd_interval *ranges, unsigned int mask)
1071{
1072 unsigned int k;
1073 struct snd_interval range_union;
1074 struct snd_interval range;
1075
1076 if (!count) {
1077 snd_interval_none(i);
1078 return -EINVAL;
1079 }
1080 snd_interval_any(&range_union);
1081 range_union.min = UINT_MAX;
1082 range_union.max = 0;
1083 for (k = 0; k < count; k++) {
1084 if (mask && !(mask & (1 << k)))
1085 continue;
1086 snd_interval_copy(&range, &ranges[k]);
1087 if (snd_interval_refine(&range, i) < 0)
1088 continue;
1089 if (snd_interval_empty(&range))
1090 continue;
1091
1092 if (range.min < range_union.min) {
1093 range_union.min = range.min;
1094 range_union.openmin = 1;
1095 }
1096 if (range.min == range_union.min && !range.openmin)
1097 range_union.openmin = 0;
1098 if (range.max > range_union.max) {
1099 range_union.max = range.max;
1100 range_union.openmax = 1;
1101 }
1102 if (range.max == range_union.max && !range.openmax)
1103 range_union.openmax = 0;
1104 }
1105 return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111 unsigned int n;
1112 int changed = 0;
1113 n = i->min % step;
1114 if (n != 0 || i->openmin) {
1115 i->min += step - n;
1116 i->openmin = 0;
1117 changed = 1;
1118 }
1119 n = i->max % step;
1120 if (n != 0 || i->openmax) {
1121 i->max -= n;
1122 i->openmax = 0;
1123 changed = 1;
1124 }
1125 if (snd_interval_checkempty(i)) {
1126 i->empty = 1;
1127 return -EINVAL;
1128 }
1129 return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146 int var,
1147 snd_pcm_hw_rule_func_t func, void *private,
1148 int dep, ...)
1149{
1150 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 struct snd_pcm_hw_rule *c;
1152 unsigned int k;
1153 va_list args;
1154 va_start(args, dep);
1155 if (constrs->rules_num >= constrs->rules_all) {
1156 struct snd_pcm_hw_rule *new;
1157 unsigned int new_rules = constrs->rules_all + 16;
1158 new = krealloc_array(constrs->rules, new_rules,
1159 sizeof(*c), GFP_KERNEL);
1160 if (!new) {
1161 va_end(args);
1162 return -ENOMEM;
1163 }
1164 constrs->rules = new;
1165 constrs->rules_all = new_rules;
1166 }
1167 c = &constrs->rules[constrs->rules_num];
1168 c->cond = cond;
1169 c->func = func;
1170 c->var = var;
1171 c->private = private;
1172 k = 0;
1173 while (1) {
1174 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175 va_end(args);
1176 return -EINVAL;
1177 }
1178 c->deps[k++] = dep;
1179 if (dep < 0)
1180 break;
1181 dep = va_arg(args, int);
1182 }
1183 constrs->rules_num++;
1184 va_end(args);
1185 return 0;
1186}
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int32_t mask)
1201{
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 *maskp->bits &= mask;
1205 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206 if (*maskp->bits == 0)
1207 return -EINVAL;
1208 return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222 u_int64_t mask)
1223{
1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 struct snd_mask *maskp = constrs_mask(constrs, var);
1226 maskp->bits[0] &= (u_int32_t)mask;
1227 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229 if (! maskp->bits[0] && ! maskp->bits[1])
1230 return -EINVAL;
1231 return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248 return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278 struct snd_pcm_hw_rule *rule)
1279{
1280 struct snd_pcm_hw_constraint_list *list = rule->private;
1281 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 *
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297 unsigned int cond,
1298 snd_pcm_hw_param_t var,
1299 const struct snd_pcm_hw_constraint_list *l)
1300{
1301 return snd_pcm_hw_rule_add(runtime, cond, var,
1302 snd_pcm_hw_rule_list, (void *)l,
1303 var, -1);
1304}
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308 struct snd_pcm_hw_rule *rule)
1309{
1310 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311 return snd_interval_ranges(hw_param_interval(params, rule->var),
1312 r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328 unsigned int cond,
1329 snd_pcm_hw_param_t var,
1330 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332 return snd_pcm_hw_rule_add(runtime, cond, var,
1333 snd_pcm_hw_rule_ranges, (void *)r,
1334 var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339 struct snd_pcm_hw_rule *rule)
1340{
1341 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342 unsigned int num = 0, den = 0;
1343 int err;
1344 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345 r->nrats, r->rats, &num, &den);
1346 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347 params->rate_num = num;
1348 params->rate_den = den;
1349 }
1350 return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1363 unsigned int cond,
1364 snd_pcm_hw_param_t var,
1365 const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367 return snd_pcm_hw_rule_add(runtime, cond, var,
1368 snd_pcm_hw_rule_ratnums, (void *)r,
1369 var, -1);
1370}
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374 struct snd_pcm_hw_rule *rule)
1375{
1376 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377 unsigned int num = 0, den = 0;
1378 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379 r->nrats, r->rats, &num, &den);
1380 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381 params->rate_num = num;
1382 params->rate_den = den;
1383 }
1384 return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1397 unsigned int cond,
1398 snd_pcm_hw_param_t var,
1399 const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401 return snd_pcm_hw_rule_add(runtime, cond, var,
1402 snd_pcm_hw_rule_ratdens, (void *)r,
1403 var, -1);
1404}
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408 struct snd_pcm_hw_rule *rule)
1409{
1410 unsigned int l = (unsigned long) rule->private;
1411 int width = l & 0xffff;
1412 unsigned int msbits = l >> 16;
1413 const struct snd_interval *i =
1414 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416 if (!snd_interval_single(i))
1417 return 0;
1418
1419 if ((snd_interval_value(i) == width) ||
1420 (width == 0 && snd_interval_value(i) > msbits))
1421 params->msbits = min_not_zero(params->msbits, msbits);
1422
1423 return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1441 unsigned int cond,
1442 unsigned int width,
1443 unsigned int msbits)
1444{
1445 unsigned long l = (msbits << 16) | width;
1446 return snd_pcm_hw_rule_add(runtime, cond, -1,
1447 snd_pcm_hw_rule_msbits,
1448 (void*) l,
1449 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454 struct snd_pcm_hw_rule *rule)
1455{
1456 unsigned long step = (unsigned long) rule->private;
1457 return snd_interval_step(hw_param_interval(params, rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470 unsigned int cond,
1471 snd_pcm_hw_param_t var,
1472 unsigned long step)
1473{
1474 return snd_pcm_hw_rule_add(runtime, cond, var,
1475 snd_pcm_hw_rule_step, (void *) step,
1476 var, -1);
1477}
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482 static const unsigned int pow2_sizes[] = {
1483 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487 };
1488 return snd_interval_list(hw_param_interval(params, rule->var),
1489 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501 unsigned int cond,
1502 snd_pcm_hw_param_t var)
1503{
1504 return snd_pcm_hw_rule_add(runtime, cond, var,
1505 snd_pcm_hw_rule_pow2, NULL,
1506 var, -1);
1507}
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511 struct snd_pcm_hw_rule *rule)
1512{
1513 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514 struct snd_interval *rate;
1515
1516 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517 return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528 unsigned int base_rate)
1529{
1530 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531 SNDRV_PCM_HW_PARAM_RATE,
1532 snd_pcm_hw_rule_noresample_func,
1533 (void *)(uintptr_t)base_rate,
1534 SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539 snd_pcm_hw_param_t var)
1540{
1541 if (hw_is_mask(var)) {
1542 snd_mask_any(hw_param_mask(params, var));
1543 params->cmask |= 1 << var;
1544 params->rmask |= 1 << var;
1545 return;
1546 }
1547 if (hw_is_interval(var)) {
1548 snd_interval_any(hw_param_interval(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558 unsigned int k;
1559 memset(params, 0, sizeof(*params));
1560 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561 _snd_pcm_hw_param_any(params, k);
1562 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563 _snd_pcm_hw_param_any(params, k);
1564 params->info = ~0U;
1565}
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var, int *dir)
1579{
1580 if (hw_is_mask(var)) {
1581 const struct snd_mask *mask = hw_param_mask_c(params, var);
1582 if (!snd_mask_single(mask))
1583 return -EINVAL;
1584 if (dir)
1585 *dir = 0;
1586 return snd_mask_value(mask);
1587 }
1588 if (hw_is_interval(var)) {
1589 const struct snd_interval *i = hw_param_interval_c(params, var);
1590 if (!snd_interval_single(i))
1591 return -EINVAL;
1592 if (dir)
1593 *dir = i->openmin;
1594 return snd_interval_value(i);
1595 }
1596 return -EINVAL;
1597}
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601 snd_pcm_hw_param_t var)
1602{
1603 if (hw_is_mask(var)) {
1604 snd_mask_none(hw_param_mask(params, var));
1605 params->cmask |= 1 << var;
1606 params->rmask |= 1 << var;
1607 } else if (hw_is_interval(var)) {
1608 snd_interval_none(hw_param_interval(params, var));
1609 params->cmask |= 1 << var;
1610 params->rmask |= 1 << var;
1611 } else {
1612 snd_BUG();
1613 }
1614}
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618 snd_pcm_hw_param_t var)
1619{
1620 int changed;
1621 if (hw_is_mask(var))
1622 changed = snd_mask_refine_first(hw_param_mask(params, var));
1623 else if (hw_is_interval(var))
1624 changed = snd_interval_refine_first(hw_param_interval(params, var));
1625 else
1626 return -EINVAL;
1627 if (changed > 0) {
1628 params->cmask |= 1 << var;
1629 params->rmask |= 1 << var;
1630 }
1631 return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1648 struct snd_pcm_hw_params *params,
1649 snd_pcm_hw_param_t var, int *dir)
1650{
1651 int changed = _snd_pcm_hw_param_first(params, var);
1652 if (changed < 0)
1653 return changed;
1654 if (params->rmask) {
1655 int err = snd_pcm_hw_refine(pcm, params);
1656 if (err < 0)
1657 return err;
1658 }
1659 return snd_pcm_hw_param_value(params, var, dir);
1660}
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664 snd_pcm_hw_param_t var)
1665{
1666 int changed;
1667 if (hw_is_mask(var))
1668 changed = snd_mask_refine_last(hw_param_mask(params, var));
1669 else if (hw_is_interval(var))
1670 changed = snd_interval_refine_last(hw_param_interval(params, var));
1671 else
1672 return -EINVAL;
1673 if (changed > 0) {
1674 params->cmask |= 1 << var;
1675 params->rmask |= 1 << var;
1676 }
1677 return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1694 struct snd_pcm_hw_params *params,
1695 snd_pcm_hw_param_t var, int *dir)
1696{
1697 int changed = _snd_pcm_hw_param_last(params, var);
1698 if (changed < 0)
1699 return changed;
1700 if (params->rmask) {
1701 int err = snd_pcm_hw_refine(pcm, params);
1702 if (err < 0)
1703 return err;
1704 }
1705 return snd_pcm_hw_param_value(params, var, dir);
1706}
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709/**
1710 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711 * @p: hardware parameters
1712 *
1713 * Return: The number of bits per sample based on the format,
1714 * subformat and msbits the specified hw params has.
1715 */
1716int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1717{
1718 snd_pcm_subformat_t subformat = params_subformat(p);
1719 snd_pcm_format_t format = params_format(p);
1720
1721 switch (format) {
1722 case SNDRV_PCM_FORMAT_S32_LE:
1723 case SNDRV_PCM_FORMAT_U32_LE:
1724 case SNDRV_PCM_FORMAT_S32_BE:
1725 case SNDRV_PCM_FORMAT_U32_BE:
1726 switch (subformat) {
1727 case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728 return 20;
1729 case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730 return 24;
1731 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732 case SNDRV_PCM_SUBFORMAT_STD:
1733 default:
1734 break;
1735 }
1736 fallthrough;
1737 default:
1738 return snd_pcm_format_width(format);
1739 }
1740}
1741EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744 void *arg)
1745{
1746 struct snd_pcm_runtime *runtime = substream->runtime;
1747 unsigned long flags;
1748 snd_pcm_stream_lock_irqsave(substream, flags);
1749 if (snd_pcm_running(substream) &&
1750 snd_pcm_update_hw_ptr(substream) >= 0)
1751 runtime->status->hw_ptr %= runtime->buffer_size;
1752 else {
1753 runtime->status->hw_ptr = 0;
1754 runtime->hw_ptr_wrap = 0;
1755 }
1756 snd_pcm_stream_unlock_irqrestore(substream, flags);
1757 return 0;
1758}
1759
1760static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1761 void *arg)
1762{
1763 struct snd_pcm_channel_info *info = arg;
1764 struct snd_pcm_runtime *runtime = substream->runtime;
1765 int width;
1766 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1767 info->offset = -1;
1768 return 0;
1769 }
1770 width = snd_pcm_format_physical_width(runtime->format);
1771 if (width < 0)
1772 return width;
1773 info->offset = 0;
1774 switch (runtime->access) {
1775 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1776 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1777 info->first = info->channel * width;
1778 info->step = runtime->channels * width;
1779 break;
1780 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1781 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1782 {
1783 size_t size = runtime->dma_bytes / runtime->channels;
1784 info->first = info->channel * size * 8;
1785 info->step = width;
1786 break;
1787 }
1788 default:
1789 snd_BUG();
1790 break;
1791 }
1792 return 0;
1793}
1794
1795static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1796 void *arg)
1797{
1798 struct snd_pcm_hw_params *params = arg;
1799 snd_pcm_format_t format;
1800 int channels;
1801 ssize_t frame_size;
1802
1803 params->fifo_size = substream->runtime->hw.fifo_size;
1804 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1805 format = params_format(params);
1806 channels = params_channels(params);
1807 frame_size = snd_pcm_format_size(format, channels);
1808 if (frame_size > 0)
1809 params->fifo_size /= frame_size;
1810 }
1811 return 0;
1812}
1813
1814/**
1815 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1816 * @substream: the pcm substream instance
1817 * @cmd: ioctl command
1818 * @arg: ioctl argument
1819 *
1820 * Processes the generic ioctl commands for PCM.
1821 * Can be passed as the ioctl callback for PCM ops.
1822 *
1823 * Return: Zero if successful, or a negative error code on failure.
1824 */
1825int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1826 unsigned int cmd, void *arg)
1827{
1828 switch (cmd) {
1829 case SNDRV_PCM_IOCTL1_RESET:
1830 return snd_pcm_lib_ioctl_reset(substream, arg);
1831 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1832 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1833 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1834 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1835 }
1836 return -ENXIO;
1837}
1838EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1839
1840/**
1841 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1842 * under acquired lock of PCM substream.
1843 * @substream: the instance of pcm substream.
1844 *
1845 * This function is called when the batch of audio data frames as the same size as the period of
1846 * buffer is already processed in audio data transmission.
1847 *
1848 * The call of function updates the status of runtime with the latest position of audio data
1849 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1850 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1851 * substream according to configured threshold.
1852 *
1853 * The function is intended to use for the case that PCM driver operates audio data frames under
1854 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1855 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1856 * since lock of PCM substream should be acquired in advance.
1857 *
1858 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1859 * function:
1860 *
1861 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1862 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1863 * - .get_time_info - to retrieve audio time stamp if needed.
1864 *
1865 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1866 */
1867void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1868{
1869 struct snd_pcm_runtime *runtime;
1870
1871 if (PCM_RUNTIME_CHECK(substream))
1872 return;
1873 runtime = substream->runtime;
1874
1875 if (!snd_pcm_running(substream) ||
1876 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1877 goto _end;
1878
1879#ifdef CONFIG_SND_PCM_TIMER
1880 if (substream->timer_running)
1881 snd_timer_interrupt(substream->timer, 1);
1882#endif
1883 _end:
1884 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1885}
1886EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1887
1888/**
1889 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1890 * PCM substream.
1891 * @substream: the instance of PCM substream.
1892 *
1893 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1894 * acquiring lock of PCM substream voluntarily.
1895 *
1896 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1897 * the batch of audio data frames as the same size as the period of buffer is already processed in
1898 * audio data transmission.
1899 */
1900void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1901{
1902 unsigned long flags;
1903
1904 if (snd_BUG_ON(!substream))
1905 return;
1906
1907 snd_pcm_stream_lock_irqsave(substream, flags);
1908 snd_pcm_period_elapsed_under_stream_lock(substream);
1909 snd_pcm_stream_unlock_irqrestore(substream, flags);
1910}
1911EXPORT_SYMBOL(snd_pcm_period_elapsed);
1912
1913/*
1914 * Wait until avail_min data becomes available
1915 * Returns a negative error code if any error occurs during operation.
1916 * The available space is stored on availp. When err = 0 and avail = 0
1917 * on the capture stream, it indicates the stream is in DRAINING state.
1918 */
1919static int wait_for_avail(struct snd_pcm_substream *substream,
1920 snd_pcm_uframes_t *availp)
1921{
1922 struct snd_pcm_runtime *runtime = substream->runtime;
1923 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1924 wait_queue_entry_t wait;
1925 int err = 0;
1926 snd_pcm_uframes_t avail = 0;
1927 long wait_time, tout;
1928
1929 init_waitqueue_entry(&wait, current);
1930 set_current_state(TASK_INTERRUPTIBLE);
1931 add_wait_queue(&runtime->tsleep, &wait);
1932
1933 if (runtime->no_period_wakeup)
1934 wait_time = MAX_SCHEDULE_TIMEOUT;
1935 else {
1936 /* use wait time from substream if available */
1937 if (substream->wait_time) {
1938 wait_time = substream->wait_time;
1939 } else {
1940 wait_time = 100;
1941
1942 if (runtime->rate) {
1943 long t = runtime->buffer_size * 1100 / runtime->rate;
1944 wait_time = max(t, wait_time);
1945 }
1946 }
1947 wait_time = msecs_to_jiffies(wait_time);
1948 }
1949
1950 for (;;) {
1951 if (signal_pending(current)) {
1952 err = -ERESTARTSYS;
1953 break;
1954 }
1955
1956 /*
1957 * We need to check if space became available already
1958 * (and thus the wakeup happened already) first to close
1959 * the race of space already having become available.
1960 * This check must happen after been added to the waitqueue
1961 * and having current state be INTERRUPTIBLE.
1962 */
1963 avail = snd_pcm_avail(substream);
1964 if (avail >= runtime->twake)
1965 break;
1966 snd_pcm_stream_unlock_irq(substream);
1967
1968 tout = schedule_timeout(wait_time);
1969
1970 snd_pcm_stream_lock_irq(substream);
1971 set_current_state(TASK_INTERRUPTIBLE);
1972 switch (runtime->state) {
1973 case SNDRV_PCM_STATE_SUSPENDED:
1974 err = -ESTRPIPE;
1975 goto _endloop;
1976 case SNDRV_PCM_STATE_XRUN:
1977 err = -EPIPE;
1978 goto _endloop;
1979 case SNDRV_PCM_STATE_DRAINING:
1980 if (is_playback)
1981 err = -EPIPE;
1982 else
1983 avail = 0; /* indicate draining */
1984 goto _endloop;
1985 case SNDRV_PCM_STATE_OPEN:
1986 case SNDRV_PCM_STATE_SETUP:
1987 case SNDRV_PCM_STATE_DISCONNECTED:
1988 err = -EBADFD;
1989 goto _endloop;
1990 case SNDRV_PCM_STATE_PAUSED:
1991 continue;
1992 }
1993 if (!tout) {
1994 pcm_dbg(substream->pcm,
1995 "%s timeout (DMA or IRQ trouble?)\n",
1996 is_playback ? "playback write" : "capture read");
1997 err = -EIO;
1998 break;
1999 }
2000 }
2001 _endloop:
2002 set_current_state(TASK_RUNNING);
2003 remove_wait_queue(&runtime->tsleep, &wait);
2004 *availp = avail;
2005 return err;
2006}
2007
2008typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2009 int channel, unsigned long hwoff,
2010 struct iov_iter *iter, unsigned long bytes);
2011
2012typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2013 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2014 bool);
2015
2016/* calculate the target DMA-buffer position to be written/read */
2017static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2018 int channel, unsigned long hwoff)
2019{
2020 return runtime->dma_area + hwoff +
2021 channel * (runtime->dma_bytes / runtime->channels);
2022}
2023
2024/* default copy ops for write; used for both interleaved and non- modes */
2025static int default_write_copy(struct snd_pcm_substream *substream,
2026 int channel, unsigned long hwoff,
2027 struct iov_iter *iter, unsigned long bytes)
2028{
2029 if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2030 bytes, iter) != bytes)
2031 return -EFAULT;
2032 return 0;
2033}
2034
2035/* fill silence instead of copy data; called as a transfer helper
2036 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2037 * a NULL buffer is passed
2038 */
2039static int fill_silence(struct snd_pcm_substream *substream, int channel,
2040 unsigned long hwoff, struct iov_iter *iter,
2041 unsigned long bytes)
2042{
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044
2045 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2046 return 0;
2047 if (substream->ops->fill_silence)
2048 return substream->ops->fill_silence(substream, channel,
2049 hwoff, bytes);
2050
2051 snd_pcm_format_set_silence(runtime->format,
2052 get_dma_ptr(runtime, channel, hwoff),
2053 bytes_to_samples(runtime, bytes));
2054 return 0;
2055}
2056
2057/* default copy ops for read; used for both interleaved and non- modes */
2058static int default_read_copy(struct snd_pcm_substream *substream,
2059 int channel, unsigned long hwoff,
2060 struct iov_iter *iter, unsigned long bytes)
2061{
2062 if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2063 bytes, iter) != bytes)
2064 return -EFAULT;
2065 return 0;
2066}
2067
2068/* call transfer with the filled iov_iter */
2069static int do_transfer(struct snd_pcm_substream *substream, int c,
2070 unsigned long hwoff, void *data, unsigned long bytes,
2071 pcm_transfer_f transfer, bool in_kernel)
2072{
2073 struct iov_iter iter;
2074 int err, type;
2075
2076 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2077 type = ITER_SOURCE;
2078 else
2079 type = ITER_DEST;
2080
2081 if (in_kernel) {
2082 struct kvec kvec = { data, bytes };
2083
2084 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2085 return transfer(substream, c, hwoff, &iter, bytes);
2086 }
2087
2088 err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2089 if (err)
2090 return err;
2091 return transfer(substream, c, hwoff, &iter, bytes);
2092}
2093
2094/* call transfer function with the converted pointers and sizes;
2095 * for interleaved mode, it's one shot for all samples
2096 */
2097static int interleaved_copy(struct snd_pcm_substream *substream,
2098 snd_pcm_uframes_t hwoff, void *data,
2099 snd_pcm_uframes_t off,
2100 snd_pcm_uframes_t frames,
2101 pcm_transfer_f transfer,
2102 bool in_kernel)
2103{
2104 struct snd_pcm_runtime *runtime = substream->runtime;
2105
2106 /* convert to bytes */
2107 hwoff = frames_to_bytes(runtime, hwoff);
2108 off = frames_to_bytes(runtime, off);
2109 frames = frames_to_bytes(runtime, frames);
2110
2111 return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2112 in_kernel);
2113}
2114
2115/* call transfer function with the converted pointers and sizes for each
2116 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2117 */
2118static int noninterleaved_copy(struct snd_pcm_substream *substream,
2119 snd_pcm_uframes_t hwoff, void *data,
2120 snd_pcm_uframes_t off,
2121 snd_pcm_uframes_t frames,
2122 pcm_transfer_f transfer,
2123 bool in_kernel)
2124{
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 int channels = runtime->channels;
2127 void **bufs = data;
2128 int c, err;
2129
2130 /* convert to bytes; note that it's not frames_to_bytes() here.
2131 * in non-interleaved mode, we copy for each channel, thus
2132 * each copy is n_samples bytes x channels = whole frames.
2133 */
2134 off = samples_to_bytes(runtime, off);
2135 frames = samples_to_bytes(runtime, frames);
2136 hwoff = samples_to_bytes(runtime, hwoff);
2137 for (c = 0; c < channels; ++c, ++bufs) {
2138 if (!data || !*bufs)
2139 err = fill_silence(substream, c, hwoff, NULL, frames);
2140 else
2141 err = do_transfer(substream, c, hwoff, *bufs + off,
2142 frames, transfer, in_kernel);
2143 if (err < 0)
2144 return err;
2145 }
2146 return 0;
2147}
2148
2149/* fill silence on the given buffer position;
2150 * called from snd_pcm_playback_silence()
2151 */
2152static int fill_silence_frames(struct snd_pcm_substream *substream,
2153 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2154{
2155 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2156 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2157 return interleaved_copy(substream, off, NULL, 0, frames,
2158 fill_silence, true);
2159 else
2160 return noninterleaved_copy(substream, off, NULL, 0, frames,
2161 fill_silence, true);
2162}
2163
2164/* sanity-check for read/write methods */
2165static int pcm_sanity_check(struct snd_pcm_substream *substream)
2166{
2167 struct snd_pcm_runtime *runtime;
2168 if (PCM_RUNTIME_CHECK(substream))
2169 return -ENXIO;
2170 runtime = substream->runtime;
2171 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2172 return -EINVAL;
2173 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2174 return -EBADFD;
2175 return 0;
2176}
2177
2178static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2179{
2180 switch (runtime->state) {
2181 case SNDRV_PCM_STATE_PREPARED:
2182 case SNDRV_PCM_STATE_RUNNING:
2183 case SNDRV_PCM_STATE_PAUSED:
2184 return 0;
2185 case SNDRV_PCM_STATE_XRUN:
2186 return -EPIPE;
2187 case SNDRV_PCM_STATE_SUSPENDED:
2188 return -ESTRPIPE;
2189 default:
2190 return -EBADFD;
2191 }
2192}
2193
2194/* update to the given appl_ptr and call ack callback if needed;
2195 * when an error is returned, take back to the original value
2196 */
2197int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2198 snd_pcm_uframes_t appl_ptr)
2199{
2200 struct snd_pcm_runtime *runtime = substream->runtime;
2201 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2202 snd_pcm_sframes_t diff;
2203 int ret;
2204
2205 if (old_appl_ptr == appl_ptr)
2206 return 0;
2207
2208 if (appl_ptr >= runtime->boundary)
2209 return -EINVAL;
2210 /*
2211 * check if a rewind is requested by the application
2212 */
2213 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2214 diff = appl_ptr - old_appl_ptr;
2215 if (diff >= 0) {
2216 if (diff > runtime->buffer_size)
2217 return -EINVAL;
2218 } else {
2219 if (runtime->boundary + diff > runtime->buffer_size)
2220 return -EINVAL;
2221 }
2222 }
2223
2224 runtime->control->appl_ptr = appl_ptr;
2225 if (substream->ops->ack) {
2226 ret = substream->ops->ack(substream);
2227 if (ret < 0) {
2228 runtime->control->appl_ptr = old_appl_ptr;
2229 if (ret == -EPIPE)
2230 __snd_pcm_xrun(substream);
2231 return ret;
2232 }
2233 }
2234
2235 trace_applptr(substream, old_appl_ptr, appl_ptr);
2236
2237 return 0;
2238}
2239
2240/* the common loop for read/write data */
2241snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2242 void *data, bool interleaved,
2243 snd_pcm_uframes_t size, bool in_kernel)
2244{
2245 struct snd_pcm_runtime *runtime = substream->runtime;
2246 snd_pcm_uframes_t xfer = 0;
2247 snd_pcm_uframes_t offset = 0;
2248 snd_pcm_uframes_t avail;
2249 pcm_copy_f writer;
2250 pcm_transfer_f transfer;
2251 bool nonblock;
2252 bool is_playback;
2253 int err;
2254
2255 err = pcm_sanity_check(substream);
2256 if (err < 0)
2257 return err;
2258
2259 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2260 if (interleaved) {
2261 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2262 runtime->channels > 1)
2263 return -EINVAL;
2264 writer = interleaved_copy;
2265 } else {
2266 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2267 return -EINVAL;
2268 writer = noninterleaved_copy;
2269 }
2270
2271 if (!data) {
2272 if (is_playback)
2273 transfer = fill_silence;
2274 else
2275 return -EINVAL;
2276 } else {
2277 if (substream->ops->copy)
2278 transfer = substream->ops->copy;
2279 else
2280 transfer = is_playback ?
2281 default_write_copy : default_read_copy;
2282 }
2283
2284 if (size == 0)
2285 return 0;
2286
2287 nonblock = !!(substream->f_flags & O_NONBLOCK);
2288
2289 snd_pcm_stream_lock_irq(substream);
2290 err = pcm_accessible_state(runtime);
2291 if (err < 0)
2292 goto _end_unlock;
2293
2294 runtime->twake = runtime->control->avail_min ? : 1;
2295 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2296 snd_pcm_update_hw_ptr(substream);
2297
2298 /*
2299 * If size < start_threshold, wait indefinitely. Another
2300 * thread may start capture
2301 */
2302 if (!is_playback &&
2303 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2304 size >= runtime->start_threshold) {
2305 err = snd_pcm_start(substream);
2306 if (err < 0)
2307 goto _end_unlock;
2308 }
2309
2310 avail = snd_pcm_avail(substream);
2311
2312 while (size > 0) {
2313 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2314 snd_pcm_uframes_t cont;
2315 if (!avail) {
2316 if (!is_playback &&
2317 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2318 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2319 goto _end_unlock;
2320 }
2321 if (nonblock) {
2322 err = -EAGAIN;
2323 goto _end_unlock;
2324 }
2325 runtime->twake = min_t(snd_pcm_uframes_t, size,
2326 runtime->control->avail_min ? : 1);
2327 err = wait_for_avail(substream, &avail);
2328 if (err < 0)
2329 goto _end_unlock;
2330 if (!avail)
2331 continue; /* draining */
2332 }
2333 frames = size > avail ? avail : size;
2334 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2335 appl_ofs = appl_ptr % runtime->buffer_size;
2336 cont = runtime->buffer_size - appl_ofs;
2337 if (frames > cont)
2338 frames = cont;
2339 if (snd_BUG_ON(!frames)) {
2340 err = -EINVAL;
2341 goto _end_unlock;
2342 }
2343 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2344 err = -EBUSY;
2345 goto _end_unlock;
2346 }
2347 snd_pcm_stream_unlock_irq(substream);
2348 if (!is_playback)
2349 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2350 err = writer(substream, appl_ofs, data, offset, frames,
2351 transfer, in_kernel);
2352 if (is_playback)
2353 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2354 snd_pcm_stream_lock_irq(substream);
2355 atomic_dec(&runtime->buffer_accessing);
2356 if (err < 0)
2357 goto _end_unlock;
2358 err = pcm_accessible_state(runtime);
2359 if (err < 0)
2360 goto _end_unlock;
2361 appl_ptr += frames;
2362 if (appl_ptr >= runtime->boundary)
2363 appl_ptr -= runtime->boundary;
2364 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2365 if (err < 0)
2366 goto _end_unlock;
2367
2368 offset += frames;
2369 size -= frames;
2370 xfer += frames;
2371 avail -= frames;
2372 if (is_playback &&
2373 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2374 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2375 err = snd_pcm_start(substream);
2376 if (err < 0)
2377 goto _end_unlock;
2378 }
2379 }
2380 _end_unlock:
2381 runtime->twake = 0;
2382 if (xfer > 0 && err >= 0)
2383 snd_pcm_update_state(substream, runtime);
2384 snd_pcm_stream_unlock_irq(substream);
2385 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2386}
2387EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2388
2389/*
2390 * standard channel mapping helpers
2391 */
2392
2393/* default channel maps for multi-channel playbacks, up to 8 channels */
2394const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2395 { .channels = 1,
2396 .map = { SNDRV_CHMAP_MONO } },
2397 { .channels = 2,
2398 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2399 { .channels = 4,
2400 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2401 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2402 { .channels = 6,
2403 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2406 { .channels = 8,
2407 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2408 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2409 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2410 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2411 { }
2412};
2413EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2414
2415/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2416const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2417 { .channels = 1,
2418 .map = { SNDRV_CHMAP_MONO } },
2419 { .channels = 2,
2420 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2421 { .channels = 4,
2422 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2423 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424 { .channels = 6,
2425 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 { .channels = 8,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2431 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2433 { }
2434};
2435EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2436
2437static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2438{
2439 if (ch > info->max_channels)
2440 return false;
2441 return !info->channel_mask || (info->channel_mask & (1U << ch));
2442}
2443
2444static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2445 struct snd_ctl_elem_info *uinfo)
2446{
2447 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2448
2449 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2450 uinfo->count = info->max_channels;
2451 uinfo->value.integer.min = 0;
2452 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2453 return 0;
2454}
2455
2456/* get callback for channel map ctl element
2457 * stores the channel position firstly matching with the current channels
2458 */
2459static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2460 struct snd_ctl_elem_value *ucontrol)
2461{
2462 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2463 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2464 struct snd_pcm_substream *substream;
2465 const struct snd_pcm_chmap_elem *map;
2466
2467 if (!info->chmap)
2468 return -EINVAL;
2469 substream = snd_pcm_chmap_substream(info, idx);
2470 if (!substream)
2471 return -ENODEV;
2472 memset(ucontrol->value.integer.value, 0,
2473 sizeof(long) * info->max_channels);
2474 if (!substream->runtime)
2475 return 0; /* no channels set */
2476 for (map = info->chmap; map->channels; map++) {
2477 int i;
2478 if (map->channels == substream->runtime->channels &&
2479 valid_chmap_channels(info, map->channels)) {
2480 for (i = 0; i < map->channels; i++)
2481 ucontrol->value.integer.value[i] = map->map[i];
2482 return 0;
2483 }
2484 }
2485 return -EINVAL;
2486}
2487
2488/* tlv callback for channel map ctl element
2489 * expands the pre-defined channel maps in a form of TLV
2490 */
2491static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2492 unsigned int size, unsigned int __user *tlv)
2493{
2494 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495 const struct snd_pcm_chmap_elem *map;
2496 unsigned int __user *dst;
2497 int c, count = 0;
2498
2499 if (!info->chmap)
2500 return -EINVAL;
2501 if (size < 8)
2502 return -ENOMEM;
2503 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2504 return -EFAULT;
2505 size -= 8;
2506 dst = tlv + 2;
2507 for (map = info->chmap; map->channels; map++) {
2508 int chs_bytes = map->channels * 4;
2509 if (!valid_chmap_channels(info, map->channels))
2510 continue;
2511 if (size < 8)
2512 return -ENOMEM;
2513 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2514 put_user(chs_bytes, dst + 1))
2515 return -EFAULT;
2516 dst += 2;
2517 size -= 8;
2518 count += 8;
2519 if (size < chs_bytes)
2520 return -ENOMEM;
2521 size -= chs_bytes;
2522 count += chs_bytes;
2523 for (c = 0; c < map->channels; c++) {
2524 if (put_user(map->map[c], dst))
2525 return -EFAULT;
2526 dst++;
2527 }
2528 }
2529 if (put_user(count, tlv + 1))
2530 return -EFAULT;
2531 return 0;
2532}
2533
2534static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2535{
2536 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2537 info->pcm->streams[info->stream].chmap_kctl = NULL;
2538 kfree(info);
2539}
2540
2541/**
2542 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2543 * @pcm: the assigned PCM instance
2544 * @stream: stream direction
2545 * @chmap: channel map elements (for query)
2546 * @max_channels: the max number of channels for the stream
2547 * @private_value: the value passed to each kcontrol's private_value field
2548 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2549 *
2550 * Create channel-mapping control elements assigned to the given PCM stream(s).
2551 * Return: Zero if successful, or a negative error value.
2552 */
2553int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2554 const struct snd_pcm_chmap_elem *chmap,
2555 int max_channels,
2556 unsigned long private_value,
2557 struct snd_pcm_chmap **info_ret)
2558{
2559 struct snd_pcm_chmap *info;
2560 struct snd_kcontrol_new knew = {
2561 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2562 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2563 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2564 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2565 .info = pcm_chmap_ctl_info,
2566 .get = pcm_chmap_ctl_get,
2567 .tlv.c = pcm_chmap_ctl_tlv,
2568 };
2569 int err;
2570
2571 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2572 return -EBUSY;
2573 info = kzalloc(sizeof(*info), GFP_KERNEL);
2574 if (!info)
2575 return -ENOMEM;
2576 info->pcm = pcm;
2577 info->stream = stream;
2578 info->chmap = chmap;
2579 info->max_channels = max_channels;
2580 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2581 knew.name = "Playback Channel Map";
2582 else
2583 knew.name = "Capture Channel Map";
2584 knew.device = pcm->device;
2585 knew.count = pcm->streams[stream].substream_count;
2586 knew.private_value = private_value;
2587 info->kctl = snd_ctl_new1(&knew, info);
2588 if (!info->kctl) {
2589 kfree(info);
2590 return -ENOMEM;
2591 }
2592 info->kctl->private_free = pcm_chmap_ctl_private_free;
2593 err = snd_ctl_add(pcm->card, info->kctl);
2594 if (err < 0)
2595 return err;
2596 pcm->streams[stream].chmap_kctl = info->kctl;
2597 if (info_ret)
2598 *info_ret = info;
2599 return 0;
2600}
2601EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);